
DB2 UDB for AS/400
Object Relational Support

Jarek Miszczyk, Bronach Bromley, Mark Endrei
Skip Marchesani, Deepak Pai, Barry Thorn

International Technical Support Organization

SG24-5409-00

www.redbooks.ibm.com

International Technical Support Organization SG24-5409-00

DB2 UDB for AS/400 Object Relational Support

February 2000

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (February 2000)

This edition applies to Version 4 Release 4 of the Operating System/400 (5769-SS1).

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix B,
“Special notices” on page 229.

Take Note!

Contents

Figures . vii

Preface . xi
The team that wrote this redbook . xi
Comments welcome . xii

Chapter 1. Introduction .1
1.1 Why we need complex objects on an AS/400 system1
1.2 Using complex objects .2

Chapter 2. Large object support in DB2 UDB for AS/4003
2.1 A need for large objects .3
2.2 What is an LOB? .4
2.3 Using LOBs with SQL .5

2.3.1 Creating a table with LOB data types .5
2.3.2 Adding data to the CUSTOMERHUS table .7

2.4 LOB locators .8
2.4.1 LOB locator characteristics .8
2.4.2 LOB locator processing .9
2.4.3 Commitment control and LOB locators .12

2.5 LOB file reference variable .12
2.5.1 LOB file reference characteristics .13
2.5.2 LOB file reference processing .14

2.6 Commitment control and journaling for LOBs .18
2.7 SQL functions supporting LOBs .19

2.7.1 Basic predicate support for LOBs .19
2.7.2 Column functions .21
2.7.3 Scalar functions .21

2.8 LOBs and the native interface .22
2.9 LOB column considerations .24

2.9.1 Triggers. .25
2.9.2 Using in Net.Data .25

Chapter 3. User-defined Distinct Types (UDTs). .27
3.1 A need for user-defined types .27
3.2 Creating distinct types. .28

3.2.1 Creating UDT sourced from DECIMAL .28
3.2.2 Creating a table using UDTs .29
3.2.3 Creating distinct types with the SQL interface32
3.2.4 Altering and deleting distinct types .34

3.3 Casting for distinct types .34
3.3.1 Explicit casting .35
3.3.2 Implicit casting .38
3.3.3 Implicit casting and promotion .40
3.3.4 Implicit casting and host variables .42

3.4 SQL support for distinct types .43
3.4.1 Using predicates with UDT .44
3.4.2 Joining on UDT .45
3.4.3 Using a default value with UDT .47

3.5 DB2 UDB for AS/400 implementation .49
3.5.1 Native system interfaces .49
iii

3.5.2 Keeping track of distinct types . 57
3.5.3 Database recovery. 62

Chapter 4. User Defined Functions (UDFs) . 69
4.1 A need for User Defined Functions . 69
4.2 UDF types . 70

4.2.1 Sourced . 70
4.2.2 SQL . 70
4.2.3 External . 71

4.3 Resolving UDF . 71
4.3.1 UDF function overloading and function signature 72
4.3.2 Function path and the function selection algorithm. 72
4.3.3 Parameter matching and promotion . 74
4.3.4 The function selection algorithm . 76

4.4 Coding UDFs . 77
4.4.1 Coding sourced UDFs . 78
4.4.2 Coding SQL UDFs . 85
4.4.3 Coding external UDFs . 95

4.5 Function resolution and parameter promotion in UDFs 108
4.5.1 An example of function resolution in UDFs. 108
4.5.2 An example of parameter promotion in UDF 112

4.6 The system catalog for UDFs . 116
4.6.1 SYSROUTINES catalog . 116
4.6.2 SYSPARMS catalog . 117

4.7 Dropping UDFs . 118
4.8 Saving and restoring UDFs . 119
4.9 Debugging UDFs . 119
4.10 Coding considerations . 127

Chapter 5. Programming alternatives for complex objects 129
5.1 Using complex objects in Java client applications 129

5.1.1 Getting ready to use JDBC 2.0 driver. 129
5.1.2 Using a Blob object . 130
5.1.3 Using a Clob object . 134
5.1.4 Using metadata . 137

5.2 Using complex objects in CLI or ODBC . 139
5.2.1 DB2 CLI application flow . 139
5.2.2 Passing LOB to a stored procedure written in CLI 139
5.2.3 Calling the CLI stored procedure . 143
5.2.4 Retrieving LOBs in CLI . 143

Chapter 6. DataLinks . 147
6.1 A need for DataLinks . 147
6.2 DataLinks components . 150

6.2.1 DataLink data type. 150
6.2.2 DataLink file manager . 151
6.2.3 DataLink filter . 153
6.2.4 APIs. 153

6.3 DataLinks system configuration . 154
6.3.1 Initializing the DLFM server . 156
6.3.2 DLFM configuration . 157
6.3.3 Starting the DLFM server . 163

6.4 Using DataLinks with SQL . 164
6.4.1 DataLink options: General . 165
iv DB2 UDB for AS/400 Object Relational Support

6.4.2 DataLink options: DB2 Universal Database for AS/400167
6.4.3 Data manipulation examples .178
6.4.4 DataLink SQL scalar functions .182
6.4.5 Using the DataLink in dynamic Web pages183
6.4.6 Using the DataLink access control token .186

6.5 Native interface considerations .193
6.6 DataLinks management considerations .202

6.6.1 Backup and recovery procedures .202
6.7 Using DataLinks in a heterogeneous environment.212

6.7.1 DataLinks Manager for Windows NT and for AIX.212

Appendix A. Source code listings . 215
A.1 UDTLABA: Using UDTs . 215
A.2 UDTLABB: Casting UDTs . 216
A.3 PictCheck: External UDF. 218
A.4 ChkHdr . 220
A.5 RunGetPicture: Testing GetPicture UDF. 220
A.6 Rating: External UDF using SCRATCHPAD. 221
A.7 RtvPrdNbr3: External stored procedure written in CLI 222

Appendix B. Special notices. 229

Appendix C. Related publications . 231
C.1 IBM Redbooks publications. 231
C.2 IBM Redbooks collections. 231
C.3 Other resources . 231
C.4 Referenced Web sites. 232

How to get IBM Redbooks .233
IBM Redbooks fax order form. 234

List of abbreviations .235

Index .237

IBM Redbooks evaluation .241
v

vi DB2 UDB for AS/400 Object Relational Support

Figures

1. Pictorial demonstration of a database with large objects 3
2. LOB types . 4
3. CUSTOMERHUS table . 7
4. LOB file reference variables. 13
5. LOB file reference variable expanded structure. 13
6. Comparing lengths of CLOB values. 20
7. Using "=" predicate with CLOB values . 20
8. Using TRIM with CLOB values. 20
9. Using "<>" predicate with CLOB values. 21
10. Result of the Count function. 21
11. Result of concat Customer_Number and House_Decsription 22
12. Displaying LOB data with ISQL . 23
13. Displaying LOB data with the DSPPFM command . 23
14. Displaying LOB column information with the DSPFFD command 24
15. New type dialog for distinct type MONEY . 28
16. Casting functions registered in QSYS2/SYSROUTINES 29
17. Casting function parameters registered in QSYS2/SYSPARMS 29
18. New table dialog. 30
19. Column type list in a new table dialog . 30
20. Products master table 01 properties . 32
21. Results window for explicit cast from MONEY to DECIMAL 36
22. UDT not equal query results . 45
23. UDT IN query results . 45
24. UDT JOIN query results . 47
25. PRODMAST01 table properties with the UDT column default value 48
26. UDT column set using default value . 49
27. UDTLABC test program results . 51
28. UDTLABC job log error message. 51
29. UDTLABC job log additional message information . 52
30. UDTLFA display file screen . 52
31. UDTLABD native I/O read results . 54
32. UDTLABE native I/O results. 56
33. UDTLABE job log entry with no error messages . 56
34. Column read-only error . 57
35. SYSTYPES catalog . 58
36. SYSCOLUMNS catalog . 58
37. SYSCOLUMNS catalog with SYSTYPES.SOURCE_TYPE 59
38. Operations Navigator view of user type objects . 59
39. UDT properties dialog . 60
40. Work with *SQLUDT objects . 60
41. File field description for the PRODMAST01 table . 61
42. UDT cannot be dropped error window . 63
43. UDT cannot be dropped message details . 64
44. UDT not found error window . 66
45. Job log for UDT not found . 66
46. UDT error message details . 67
47. SYSCOLUMNS details for PRODMAST01 table . 67
48. Function resolution algorithm . 77
49. Opening up a Run SQL Scripts session. 79
50. The CREATE FUNCTION statement for sourced UDF 79
© Copyright IBM Corp. 2000 vii

51. The SUBSTR(PRDDESC, INTEGER, INTEGER) sourced function81
52. Using the SUBSTR(PRDDESC, INTEGER, INTEGER) function in a query . .81
53. Creating the MAX(MONEY) sourced UDF as a column function82
54. Running the MAX(MONEY) column UDF .83
55. Creating the "+"(MONEY, MONEY) sourced UDF over arithmetic operators .84
56. Using the "+"(MONEY, MONEY) sourced UDF .84
57. Creating an SQL UDF using the new SQL function dialog86
58. New SQL function dialog. .86
59. Defining the input parameters for the SQL UDF .87
60. Typing in the body of the SQL UDF. .87
61. Creating an SQL UDF with UDT parameter .90
62. Using SQL UDF GetDescription(PRDDESC) in a query.91
63. Creating the GetPicture SQL UDF which returns a BLOB as a return value . .92
64. Calling the RunGetPicture. .94
65. The result of the call to the GetPicture SQL UDF .94
66. Running the IsGif external UDF with the SQL parameter style.102
67. Running the IsBmp external UDF with the SQL parameter style103
68. Creating the rating UDF with the DB2SQL parameter style104
69. Using the rating external function with DB2SQL parameter style108
70. Finding the number and name of the customer using the rating function108
71. Executing the GetDescription (CHAR(5)) function .109
72. The query fails when it is run over the Prodmast01 table110
73. Creating the GetDescrption(SRLNUMBER) sourced UDF111
74. Running the GetDescription(SRLNUMBER) UDF. .111
75. The GetSize(CLOB(50K))SQL UDF .112
76. Running the GetSize(CLOB(50K) function .113
77. Creating the GetSize(VARCHAR(5))SQL UDF. .114
78. Running the GetSize(VARCHAR(5)) SQL UDF .115
79. Creating the GetSize(CHAR(5)) SQL UDF .115
80. Running the GetSize(CHAR(5)) function. .116
81. Content of SYSROUTINES catalog .117
82. UDF parameter details in SYSPARMS catalog. .118
83. The Work with Active Jobs screen listing all currently active jobs.120
84. Working with the job in Session B. .121
85. Adding a breakpoint to the debug session .122
86. Invoking the IsGif(PICTURE) external UDF .123
87. Debugging the PICTCHECK service program .124
88. Checking the value of the program variables using the F11 key125
89. Displaying the information in pointer variables using the EVAL command. . .126
90. Displaying the contents of a variable in hexadecimal format127
91. Using Java to display DB2 UDB for AS/400 BLOBs .132
92. Large objects in tables: The LOB approach .148
93. Large objects in tables: The DataLink approach. .149
94. DataLinks components summary .150
95. Inserting a column of data type DataLink .151
96. DLFM objects in library QDLFM .152
97. Distributed heterogeneous DLFM environment .153
98. Adding the TCP/IP server name .154
99. Adding the IP server name: IP address already configured155
100.Adding the relational database directory entry (WRKRDBDIRE)155
101.Initializing the DLFM tables (INZDLFM) .156
102.ADDPFXDLFM command prompt .158
103.ADDHDBDLFM command prompt .160
viii DB2 UDB for AS/400 Object Relational Support

104.Table DFM_DBID in QDLFM library: Viewed with Operations Navigator . . . 162
105.Table DFM_FILE in QDLFM library: Viewed with Operations Navigator 162
106.Table DFM_PRFX in QDLFM library: Viewed with Operations Navigator . . . 162
107.Starting the DLFM server jobs . 163
108.DLFM server jobs in Operations Navigator . 164
109.DLFM server jobs in subsystem QSYSWRK. 164
110.New table dialog . 167
111.Inserting a DataLink column . 168
112.Create table: DataLink column display . 169
113.Create table: DataLink column link control Read FS/Write FS 170
114.Create table: DataLink column link control Read DB/Write Blocked 171
115.File ownership: Before linking . 172
116.File ownership: After linking. 173
117.Summary of DB2 Universal Database for AS/400 link control options 174
118.DataLink column with read permission DB/Write permission blocked 175
119.DataLink column with read permission FS/Write permission FS 175
120.Create table with DataLinks: SQL (Mode DB2Options). 176
121.Detailed journal entry: DataLink row insert . 177
122.DSPFFD output for a table with a DataLink column 178
123.Insert with DLVALUE DataLink scalar function . 178
124.DLVALUE function overloading . 179
125.Table with empty DataLink column . 179
126.Update with DLVALUE DataLink scalar function . 180
127.Order by on DataLink column . 181
128.DataLink SQL scalar functions script. 182
129.Result set from the DLURLCOMPLETE scalar function 182
130.Result set from the DLURLPATH scalar function . 183
131.Result set from the DLURLPATHONLY scalar function 183
132.Result sets from DLURLSCHEME and DLURLSERVER scalar functions . . 183
133.Using linked image files in HTML pages . 186
134.Executing program READPM02: Direct file operations on boot1.jpg. 187
135.Executing program READPM02: Read of boot1.jpg with control token. 188
136.Executing program READPM03: Direct file operations on boot4.jpg. 192
137.Access control token: Dynamic generation . 193
138.Table SPORTS for native tests . 194
139.Table with DataLink input to RPG program: Error . 198
140.Table with DataLink input to RPG program: Recovery 198
141.Script for save/restore exercise: Restore table before file 203
142.DSPFD of table: Link pending status after file restore. 204
143.WRKPFDL TEAMXX/SAVETABLE: Link pending . 205
144.DataLink file attributes for TEAMXX/SAVETABLE . 205
145.Delete from table in link pending status: Error message 206
146.WRKPFDL TEAMXX/SAVETABLE: Link pending after file restore 206
147.EDTDLFA display: Status LNKPND . 207
148.EDTDLFA display: Status READY. 208
149.EDTDLFA display: Links reconciled . 208
150.DSPFD of TEAMXX/SAVETABLE: Link pending status after reconciliation . 209
151.WRKPFDL TEAMXX/SAVETABLE: After link reconciliation 210
152.DSPFD of TEAMXX/SAVETABLE: Link pending status after table restore. . 211
153.WRKPFDL TEAMXX/SAVETABLE: No link pending. 211
154.The IBM heterogeneous DataLink server environment 212
155.DataLink environment for Windows NT . 214
156.DataLink environment for AIX . 214
ix

x DB2 UDB for AS/400 Object Relational Support

Preface

Learn to efficiently use Universal Database (UDB) functions provided by the
AS/400 database using the suggestions, guidelines, and examples in this
redbook.This redbook is intended for programmers, analysts, and database
administrators. It specifically focuses on the need to take the database
applications beyond traditional numeric and character data to images, video,
voice, and complex documents. By reading this redbook, you gain a broad
understanding of DB2 UDB for AS/400 implementation that you can use for
building a new generation of multimedia and Web-enabled database applications.

This redbook contains information that you may not find anywhere else and
includes detailed coverage of the following topics:

• Large objects support
• LOB locators and LOB file reference variable processing
• User Defined Types (UDTs)
• User Defined Functions (UDFs)
• DataLinks

It also documents how the Universal Database enhancements support the
object-oriented paradigms of data encapsulation and function overloading.

This redbook reports a wide range of code examples developed in several
programming languages (SQL, C, Java) using different interfaces (JDBC, CLI).
Prior to reading this book, you should be familiar with SQL and object-oriented
programming concepts.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Rochester Center.

Jarek Miszczyk is an International Technical Support Organization Specialist at
the ITSO Rochester Center. He writes extensively and teaches IBM classes
worldwide in all areas of DB2 UDB for AS/400. Before joining the ITSO more than
two years ago, he worked in IBM Poland as a Systems Engineer. He has over 12
years experience in the computer field. His areas of expertise include
cross-platform database programming, SQL, and Object Oriented programming.

Bronach Bromley is the Technical Advisor for the Database and Languages
team within the UK AS/400 Support Center. She has 16 years of experience in
the IT field. She holds a degree in Business Information Technology from
Bournemouth University. Her areas of expertise include databases, DB2/400,
UDB2, SQL, and C++. She has written extensively on Large Complex Objects.

Mark Endrei is a Senior IT Architect in Australia. He has 10 years of experience
in the application development and maintenance field. He holds a bachelor's
degree in Computer Systems Engineering from Royal Melbourne Institute of
Technology, and an MBA (Technology Management) from Deakin
University/APESMA. His areas of expertise include C++, midrange systems, and
DBMS.
© Copyright IBM Corp. 2000 xi

Skip Marchesani retired from IBM in June of 1993 after a successful 25-year
career. He is recognized by many as the leading industry expert on DB2 for
AS/400. Skip is now a consultant with Custom Systems Corp, an independent
consulting firm in Newton, NJ. In the past two years, he has spent much of his
time teaching a variety of AS/400 topics, including Year 2000, Notes/Domino, and
DB2 for AS/400. Skip spent much of his IBM career working with the Rochester
Lab on projects for S/38 and AS/400 and was involved with the development of
the AS/400 system. Skip is a frequent speaker for various AS/400 Technical
Conferences, COMMON, and local user groups in the United States and
worldwide.

Deepak Pai is a software engineer in India. He holds a degree in computer
science from B.M.S College of Engineering, Bangalore India. His areas of
expertise include database programming using ILE C/400 and SQL/400,
client/server architecture, and native programming using COBOL/400 and
RPG/400. He has written extensively on database programming in DB2/400.

Barry Thorn is a Consultant IT Specialist in IBM United Kingdom providing
technical support to EMEA. He has 29 years of IT experience in IBM, including 11
years with AS/400. His areas of expertise include Business Intelligence and
database. He has written papers and presentations and runs classes on AS/400
Business Intelligence and data warehouse implementation.

Thanks to the following people for their invaluable contributions to this project:

Mark Anderson
Rob Bestgen
Russ Bruhnke
John Edwards
Jim Flanagan
Kent Milligan
Cliff Nock
Tony Poirier
IBM Rochester

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks evaluation” on page 241 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xii DB2 UDB for AS/400 Object Relational Support

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction

Object-oriented programming is rapidly gaining acceptance because it can
reduce the cost and time required to build complex applications. During the last
several years, a new generation of database systems, called object-relational
systems, appeared in the marketplace. The object-relational database systems
combine a high-level query language (SQL) and multiple views of data, which
provides the ability to define new data types and functions for storage and
manipulation of complex objects.

With V4R4 enhancements, IBM Rochester has set a clear direction for the
product to evolve toward support for the object-oriented paradigm. The new
database functions that were made available on the AS/400 include Large Binary
Objects (LOBs), User Defined Types (UDTs), and User Defined Functions
(UDFs). We sometimes refer to these functions as a complex object support.

UDTs are data types that you define. UDTs, such as built-in types, can be used to
describe the data that is stored in columns of tables. UDFs are functions that you
define. UDFs, such as built-in functions or operators, support the manipulation of
UDT instances. Therefore, UDT instances are stored in columns of tables and
manipulated by UDFs in SQL queries. UDTs can be internally represented in
different ways. LOBs are just one example of this.

1.1 Why we need complex objects on an AS/400 system

The IT industry is undergoing very rapid changes, stimulated by the dramatic
growth of Internet-based businesses. The applications used on the Internet face
fundamentally different challenges than traditional host-centric applications. The
new paradigm of programming has been devised and implemented for the Web to
cope with problems, such as demand for very high availability, scalability, and
seamless integration of heterogeneous environments.

This new programming model is based on the three-tier application architecture,
which consists of the thin client, the dedicated application server, and the
database server. To implement the three-tier architecture, the software vendors
often use a new set of tools based on the Java technology (Applets, Servlets,
Java Script, Enterprise Java Beans). Furthermore, the Web applications need to
be easy to use and visually attractive. A typical Internet page contains a lot of
multimedia content, such as graphics, audio, and video.

So, how does DB2 UDB for AS/400 fit into this new programming paradigm? We
believe that the complex object support available in V4R4 makes the AS/400
system an excellent choice for a robust and highly scalable database server. With
the LOB and Datalinks support, you can use DB2 UDB for AS/400 as a central
repository of multimedia objects. UDT and UDF support allow you to reflect the
object-oriented features of a Java application directly in your database design.
UDTs provide for data encapsulation, and UDFs provide for function overloading
and polymorphism.
© Copyright IBM Corp. 2000 1

1.2 Using complex objects

Generally, the DB2 UDB for AS/400 supports complex objects only through an
SQL interface. On the AS/400 system, there are many different ways to work with
the SQL. You can use the following methods:

• Interactive SQL in a traditional 5250 emulation
• Operations Navigator GUI
• Operations Navigator SQL script utility
• High-level language with embedded SQL
• DB2 Call Level Interface (CLI)
• Native JDBC
• SQLJ
• Client/server through ODBC, JDBC, OLE DB

The Operations Navigator provides an attractive graphical interface that allows
you to perform typical database administration tasks. It allows easy access to all
server administration tools, gives a clear overview of the entire database system,
enables remote database management, and provides assistance for complex
object manipulation. The Run SQL Scripts window lets you create, edit, run, and
troubleshoot scripts of SQL statements. You can save the scripts with which you
work on your PC.

In this redbook, we decided to use the Operations Navigator as a primary user
interface. Most of our coding examples are written in ILE C with embedded SQL
and Java language. We assume that the Client Access Express with the
Operation Navigator Interface is installed on your workstation.

Refer to AS/400 Client Access Express for Windows: Implementing V4R4M0,
SG24-5191, for more details on how to install this product.
2 DB2 UDB for AS/400 Object Relational Support

Chapter 2. Large object support in DB2 UDB for AS/400

This chapter describes:

• Large Object Types, concepts, and benefits
• SQL functions supporting LOBs
• LOB column considerations
• LOB locators, concepts, and benefits
• LOB file references, concepts, and benefits

2.1 A need for large objects

Today’s multimedia applications depend on the storage of many types of large
data objects, such as X-ray images, large text documents, and audio messages.
The data types provided by DB2 for AS/400 were not large enough to hold this
amount of data, the limit being 32 KB. With Large Object support, the AS/400
database can store and manipulate data objects that are much larger than the
current limits. In the V4R4 release of OS/400, this limit is extended to 15 MB, with
future releases of the AS/400 providing an increase to 2 GB.

Figure 1 demonstrates how large objects can be used within a database. For
each video title in a repository, there is a record in the database that contains the
traditional information, such as how many copies there are, the rating, the artist,
and so on. With Large Object support, we can also hold the actual video
recording, a picture of the video cover, and the sound track for the video.

Figure 1. Pictorial demonstration of a database with large objects
© Copyright IBM Corp. 2000 3

Table 1 shows examples of the types of data that might be required to be held in a
database. It also demonstrates how large some of these typical objects can
become.

Table 1. Average size for LOB objects

The AS/400 system provides support for three Large Object data types: Binary
Large Objects (BLOB), Character Large Object (CLOB), and Double Byte Large
Objects (DBCLOB).

This chapter discusses how we store, access, and control these new LOB data
types within DB2 UDB for AS/400 databases.

2.2 What is an LOB?

An LOB, put simply, is a Large Object. Currently, an LOB field holds a string of
ordered bytes from zero to 15 MB in length. There is the potential in future
releases of the AS/400 to increase this value up to 2 GB in length.

There are three different type of LOBs, each with its own definition, behavior,
functionality, and so on. Figure 2 illustrates these three LOB types.

Figure 2. LOB types

Object From To

Bank checks 45 K -

Text 30 KB per page 40 KB per page

Small image 30 KB 40 KB

Large image 200 KB 3 MB

Color image 20 MB 40 MB

Radiology image 40 MB 60 MB

Video 1 GB per hour -

Feature-length movie 2 GB -

High-resolution video 3 GB per hour -

High-resolution movie 5 GB 6 GB

High-definition TV 200 MB per second -
4 DB2 UDB for AS/400 Object Relational Support

The following list contains a short description of the LOB data types supported on
the AS/400 system:

• Binary Large Object (BLOB) strings

A Binary Large Object (BLOB) is a varying-length string with a maximum
length of 15 MB. A BLOB is designed to store non-traditional data, such as
pictures, voice, and mixed media. BLOBs can also store structured data for
use by distinct types and user defined functions. A BLOB is considered to be a
binary string. A BLOB cannot be assigned or compared with values of other
data types.

• Character Large Object (CLOB) strings

A Character Large Object (CLOB) is a varying-length character string with a
maximum length of 15 MB and an associated code page. A CLOB is designed
to store large Single Byte Character Set (SBCS) data or mixed data, such as
lengthy documents, where the data could grow beyond the limits of a regular
VARCHAR data type. For example, you can store information, such as an
employee resume, the script of a play, or the text of novel in a CLOB. A CLOB
can be assigned to, and compared with, values of other character-string data
types: CHAR and VARCHAR.

• Double-byte Character Large Object (DBCLOB) strings

A Double-Byte Character Large Object (DBCLOB) is a varying-length graphic
string with a maximum length of 15 MB double-byte characters and an
associated code page. A DBCLOB is designed to store large DBCS data, such
as lengthy documents using, for example, UCS-2. A DBCLOB can be assigned
to or compared with values of other double byte string data types, Graphic,
and VARGRAPHIC.

In this chapter, we mainly discuss and give examples of BLOBs and CLOBs.
Whenever a CLOB is discussed, a DBCLOB may be substituted.

2.3 Using LOBs with SQL

In this section, we document the steps required to create and insert data into a
table with LOB fields. We then carry out some of the SQL functions supporting
LOB data types.

2.3.1 Creating a table with LOB data types
As mentioned in 1.2, “Using complex objects” on page 2, we decided to use the
Operations Navigator as a primary interface to manipulate the complex objects on
the AS/400 system. By doing so, we want to encourage you to have a closer look
at this powerful DB2 UDB for AS/400 interface. Where applicable, we also provide
the corresponding SQL statements that can be run either in the Run SQL Scripts
utility or in the traditional 5250 Interactive SQL session.

Any operation that combines an LOB type along with any of the other character
types always returns a result that is an LOB. Refer to DB2 UDB for AS/400
SQL Reference, SC41-5612, for detailed information on casting allowed for the
new data types.

Note
Large object support in DB2 UDB for AS/400 5

The example table we are going to create is used to store information about
house details. It consists of three fields:

• Customer Number: A unique character data type of length 5 MB, short name
CUSNUM, used to hold a reference number for a customer.

• House Reference: A BLOB data type of length 1 MB, short name HUSREF,
used to hold a reference number for a particular house.

• House_Description: A CLOB data type of length 1 MB, short name HUSDES,
used to hold a large string of text describing the house and its location in
detail.

LOB data types are varying length types. When declaring a column of an LOB
data type, you must declare its maximum length which, at the V4R4 release, can
be anywhere in the range from one byte to 15 MB. The maximum length can be
declared as a single integer representing a number of bytes or as an integer
followed by one of the following suffixes:

• K = size value *1024, the number of kilobytes.
• M = size value * 1048576, the number of megabytes

The CCSID for a BLOB field is set to 65535 and, consequently, requires no
CCSID conversion at I/O time. The default CCSID, for example, for a U.S.
English-based system and for a CLOB field, is 37 and, therefore, may require
conversion at I/O time. The default CCSID for a DBCLOB is 835 and, therefore,
may require conversion at I/O time.

The major steps required to create a table with LOB columns using the Create
Table dialog of the Operations Navigator are outlined here:

1. Start Operations Navigator and expand the Database object by right-clicking
the (+) icon next to it.

2. Select a library that should contain the new table, and right-click it. From the
context menu, select New->Table.

The Create New Table dialog window appears as shown in Figure 3.

3. Enter the details as shown in Figure 3.

To define and then manipulate a column, which is based on one of the LOB
data types, you must use one of the SQL interfaces. In other words, the new
data types, are not supported by either the Data Definition Specification (DDS)
or native I/O functions.

Important
6 DB2 UDB for AS/400 Object Relational Support

Figure 3. CUSTOMERHUS table

The corresponding SQL statement to create the CUSTOMERHUS table is shown
here:

create table TEAMXX/CUSTOMERRHUS
(Customer_Number Char(5) not null with default,
House_Ref Blob(1M) not null with default,
House_Description Clob(1M) not null with default)

2.3.2 Adding data to the CUSTOMERHUS table
We insert data into a table with LOB objects through the Operations Navigator
Script utility. You can access this utility from the main Operations Navigator
window by right-clicking the Database object and selecting Run SQL Scripts
from its context menu.

An example SQL syntax for inserting data into the CUSTOMERHUS table is as
follows:

INSERT INTO CUSTOMERHUS VALUES ('12345, BLOB(X'1234'), 'A very long text
string');

Note, that in a real life application, you would probably never insert BLOB data in
the way shown in this SQL statement. In 2.5, “LOB file reference variable” on
page 12, we show code examples on how to use file reference variables to insert
BLOB data into a table. The purpose of the above SQL statement is to illustrate
important differences between LOB and CLOB data types. We use system

You can run the same SQL statements in the Interactive SQL session.

Note
Large object support in DB2 UDB for AS/400 7

supplied function BLOB to insert data of type BLOB, but we don’t use the CLOB
function to insert CLOB data. The reason for this is the compatibility of data
types. CLOB and VARCHAR data types are both character data. Because of this,
there is no problem in mapping from VARCHAR to CLOB on an insert request.
The character constant, such as "A very long text string" in the INSERT
statement shown previously, is treated by DB2 UDB for AS/400 as VARCHAR,
and the system knows how to implicitly convert it to CLOB.

However, a BLOB value is binary data, and binary data is incompatible with
character data. As a result, we are unable to automatically map from a character
data type to a BLOB. The same is true for character and integer. We do not allow
the insert of a character value into an integer field without first casting the
character to an integer.

For more information on the BLOB function, see DB2 UDB for AS/400 SQL
Reference, SC41-5612.

2.4 LOB locators

LOB fields can be up to 15 MB in length, which is more than the current maximum
record length within the AS/400 system. This would be costly in both performance
and space if we had to keep moving large objects back and forth between the
database and an application.

It would be more desirable to defer the actual movement of the data from the
database into the application for as long as possible and, if possible, move only
those portions of data that are really needed.

For example, say a user wants to read an LOB value from one file and update a
second file with that value. A poorer performing implementation would copy the
LOB value into a separate buffer space at read time and then update the second
file using this copy as the update image. A better performing implementation
would be to defer any data movement until the update operation itself.
Sometimes, however, it is reasonable to access LOB data without a locator. For
example, if you know that you always need the data in a variable, you may
materialize the LOB immediately instead of using a locator.

2.4.1 LOB locator characteristics
An LOB locator is intended to refer to the data we are manipulating. Operations
against the LOB Locator avoid the need for copies of the data to be held in a host
variable.

Conceptually, LOB locators represent a simple idea and use a small, easily
managed value to refer to a much larger value. Specifically, an LOB locator is a
4-byte value stored in a host variable that a program uses to refer to an LOB
value (or LOB expression) held in the database. Using an LOB locator, a program
can manipulate the LOB value as if the LOB value was stored in a regular host
variable

An LOB locator gives read-only access to the data it addresses. It is important to
understand that the LOB locator is associated with an LOB value or LOB
expression, not a row or physical storage location in the database. Once a value
is selected into a locator, no operation performed on the original rows or tables
8 DB2 UDB for AS/400 Object Relational Support

would have any effect on the value referenced by the locator. The value
associated with the locator is constant until the unit of work ends, or the locator is
explicitly freed, whichever comes first.

In our example, if the user were to select the LOB value into an LOB locator
rather than buffer area, we would set the locator to reference the actual data in
the file rather than copying the data from the file into a buffer area.

Using the LOB locator, the application program can issue subsequent database
operations on the LOB value (such as applying the scalar functions SUBSTR,
CONCAT, VALUE, LENGTH, doing an assignment, searching the LOB with LIKE
or POSSTR, or applying UDFs against the LOB) by supplying the locator value as
input. The resulting output of the locator operation, for example, the amount of
data assigned to a client host variable, would then typically be a small subset of
the input LOB value.

An LOB locator is only a mechanism used to refer to an LOB value during a
transaction. It does not persist beyond the transaction in which it was created.
Also, it is not a database data type. It is never stored in the database and, as a
result, cannot participate in views or check constraints. However, since a locator
is a representation of an LOB type, there are SQLTYPEs for LOB locators. They
can be described within an SQLDA structure that is used by FETCH, OPEN,
CALL, and EXECUTE statements.

The FREE LOCATOR statement releases a locator from its associated value. In a
similar way, a commit or rollback operation frees all LOB locators associated with
the transaction.

2.4.2 LOB locator processing
An LOB locator variable is a host variable that contains the locator representing
an LOB value on the application server, which can be defined in the following
host languages:

• C
• C++
• ILE RPG
• ILE COBOL
• PL/I

A locator variable in an SQL statement must identify an LOB locator variable
described in the program according to the rules for declaring locator variables.
This is always indirectly through an SQL statement, for example, in C:

SQL TYPE IS BLOB_LOCATOR blobhand;
SQL TYPE IS CLOB_LOCATOR clobhand;
SQL TYPE IS DBCLOB_LOCATOR dbclobhand;

The AS/400 JDBC driver uses locators under the covers so it is transparent to
the client code.

Note
Large object support in DB2 UDB for AS/400 9

2.4.2.1 C example 1 using an LOB locator
The example program shown in this section demonstrates how to declare an LOB
locator and select a CLOB value into it. It also shows how to use the locator to
substring a portion of the CLOB and display it to the screen. The numbered
sections of the source code are explained in the notes following this listing.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
EXEC SQL INCLUDE SQLCA;
char dummy[[5];
void main(int argc, char **argv)
{
/* Host variable declarations */
1 EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS CLOB(1M) desc01;
SQL TYPE IS CLOB_LOCATOR clobhand;
long pos;
long len;

EXEC SQL END DECLARE SECTION;

EXEC SQL
2 SELECT House_description INTO :clobhand

FROM TEAMXX/CUSTOMERHUS
WHERE CUSNUM = ('00001');

3 EXEC SQL VALUES posstr(:clobhand, 'Description') INTO :pos;
EXEC SQL VALUES char_length(:clobhand) INTO :len;
EXEC SQL

VALUES substr(:clobhand, :pos, :len - 105)
INTO :desc01;

printf(
"The Description of the House Details for Customer 00001 is: \n" \
"%s\n",
desc01.data);

printf(
"\n" \
" Hit enter key TWICE to continue and end the program \n");
getchar ();

gets(dummy);
exit(0);

badnews:
printf("Error occured in stored procedure. SQLCODE = %5d\n",
SQLCODE);
gets(dummy);
exit(1); }

Example 1 LOB locator program notes
1. Declare host variables. The BEGIN DECLARE SECTION and END DECLARE

SECTION statements delimit the host variable declarations. Host variables are
prefixed with a colon (:) when referenced in an SQL statement. A CLOB
locator host variable clobhand is declared.

2. Select the LOB value into the Locator clobhand host variable. A SELECT
routine is used to obtain the location of the LOB field House_description, in
the database to a locator host variable clobhand.

3. Use the locator host variable clobhand to substring a portion of the CLOB into
another CLOB desc1.

Our example 1 program was coded in ILE C with embedded SQL. The following
CL commands show how to compile and bind the sample on the AS/400 system:

CRTSQLCI OBJ(TEAMXX/EXAMPLE1) COMMIT(*ALL) 1
CRTPGM PGM(TEAMXX/EXAMPLE1) MODULE(TEAMXX/EXAMPLE1)
10 DB2 UDB for AS/400 Object Relational Support

CL commands note 1
For performance reasons, we use the COMMIT(*ALL) isolation level. Refer to
2.4.3, “Commitment control and LOB locators” on page 12, for more details.

2.4.2.2 C example 2 using LOB locators
The following example program demonstrates how to declare two LOB locators.
Select a CLOB value into one, use it to access specific data in the CLOB, and
then use the other LOB to create a new record in the database. The numbered
sections of the source code are explained in the notes following the listing.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
EXEC SQL INCLUDE SQLCA;
char dummy[5];
void main(int argc, char **argv)
{

/* Host variable declarations */
1 EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS CLOB_LOCATOR clobhand;
SQL TYPE IS CLOB_LOCATOR newhand;
long pos;
long len;

EXEC SQL END DECLARE SECTION;

/* Using a CLOB Locator to access specific data in a CLOB field */
/* and using a new CLOB Locator to inset the retrieved data back */
/* into the table as a new record. */

EXEC SQL WHENEVER SQLERROR GO TO badnews;

/* Select the LOB Locator for the CLOB field House_Description */
/* for Customer '00001' into 'clobhand' */
2 EXEC SQL

SELECT House_description INTO :clobhand
FROM TEAMXX/CUSTOMERHUS
WHERE CUSNUM = ('00001');

/* Find the word 'Description' in the CLOB and copy the word, */
/* 'Description' plus the CLOB's remaining trailing text */
/* into the value for the CLOB Locator, newhand. */

3 EXEC SQL VALUES posstr(:clobhand, 'Description') INTO :pos;
EXEC SQL VALUES char_length(:clobhand) INTO :len;
EXEC SQL

VALUES substr(:clobhand, :pos, :len - 105)
INTO :newhand;

/* Insert a new record into table CUSTOMERHUS for */
/* CUSNUM '12345', HUSREF X'4444', with a HUSDES from the */
/* value referenced by the CLOB Locator 'newhand'. */
/* INSERT into TEAMxx/CUSTOMERHUS VALUES ('12345', */
/* Blob(X'4444'), :newhand); */

4 EXEC SQL
INSERT into TEAMxx/CUSTOMERHUS VALUES ('12345', Blob(X'4444'),
:newhand);

/* To check that the record has been inserted we must first */
/* COMMIT the database changes i.e the INSERT. */
/* EXEC SQL COMMIT WORK; */

5 EXEC SQL COMMIT WORK;
...
badnews:

...
error handling code
...

}

Large object support in DB2 UDB for AS/400 11

Example 2 LOB locator program notes
1. Declare host variables. The BEGIN DECLARE SECTION and END DECLARE

SECTION statements delimit the host variable declarations. Host variables are
prefixed with a colon (:) when referenced in an SQL statement. Two CLOB
locator host variables clobhand and newhand are declared.

2. Select the LOB value into the Locator clobhand host variable. A SELECT
routine is used to obtain the location of the LOB field House_description in the
database to a locator host variable clobhand.

3. Use the locator host variable clobhand to substring a portion of the CLOB into
the data space for the CLOB Locator newhand.

4. Insert a new record into the database table with a House_description from the
databases referred to by the CLOB Locator newhand,

5. Commit the SQL so that the insertion of this row could be seen through the
Operations Navigator’s Quick View context menu option. Refer to 2.6,
“Commitment control and journaling for LOBs” on page 18, for more details on
commitment control considerations while using locators to access data.

2.4.3 Commitment control and LOB locators
The commit level of *NONE is not allowed for programs using LOB locators,
because DB2 UDB for AS/400 implementation requires the commitment control to
cleanup the internal structures used to keep track of the locators. We recommend
that you use the commit level of *ALL for programs using LOB locators if you
want to achieve best performance. DB2 UDB for AS/400 doesn’t have to create a
copy of the LOB data when running under this isolation level. However, the down
side of using this setting is a more restricted concurrent access to the underlying
tables.

The following example shows how to use the SQL precompiler options to set the
commitment control level of *ALL for a C program:

CRTSQLCI OBJ(TEAMXX/LOBLOCLB4) COMMIT(*ALL) OUTPUT(*PRINT) DBGVIEW(*SOURCE)
CRTPGM PGM(TEAMXX/LOBLOCLB4) MODULE(TEAMXX/LOBLOCLB4)

2.5 LOB file reference variable

File reference variables are similar to host variables, except they are used to
transfer data to and from IFS files, rather than to and from memory buffers. A file
reference variable represents (rather than contains) the file, just as an LOB
locator represents (rather than contains) the LOB value. Database queries,
updates, and inserts may use file reference variables to store or retrieve single
LOB values.

For very large objects, files are natural containers. It is likely that most LOBs
begin as data stored in files on the client before they are moved to the database
on the server. The use of file reference variables assists in moving LOB data.
Programs use file reference variables to transfer LOB data from the IFS file
directly to the database engine. To carry out the movement of LOB data, the
application does not have to write utility routines to read and write files using host
variables.
12 DB2 UDB for AS/400 Object Relational Support

2.5.1 LOB file reference characteristics
A file reference variable has a data type of BLOB, CLOB, or DBCLOB as shown
in Figure 4. It is used either as the source of data (input) or as the target of data
(output). The file reference variable may have a relative file name or a complete
path name of the file. The file name length is specified within the application
program. The data length portion of the file reference variable is unused during
input. During output, the data length is set by the application requestor code to
the length of the new data that is written to the file.

Figure 4. LOB file reference variables

Figure 5 shows an example on how the SQL precompiler expands the file
reference variable into a structure containing four fields. In this example, we use a
CLOB File Reference Variable myfile_txt.

Figure 5. LOB file reference variable expanded structure

When using file reference variables, there are different options on both input and
output. You must choose an action for the file by setting the file_options field in

The file referenced by the file reference variable must be accessible from (but
not necessarily reside on) the system on which the program runs. For a stored
procedure, this would be the server.

Note

SQL TYPE IS CLOB_FILE myfile_txt;
struct {

unsigned long name_length; /* Length of file name */
unsigned long data_length; /* Length of data in file */
unsigned long file_options; /* Denote usage of file */
char name[255]; /* Filename */
} myfile_txt;
Large object support in DB2 UDB for AS/400 13

the file reference variable structure. Choices for assignment to the field covering
both input and output values are shown in Table 2.

Table 2. File reference variable file options

2.5.1.1 CCSID and file reference variables
As stated earlier, a large object of data type BLOB has a CCSID of 65535
associated with it, and no conversion is carried out on this data type.

An LOB of data type CLOB can have a CCSID associated with it. If the file option
CREATE is used, where the column in the table to be auctioned is a CLOB, the
created file has the same CCSID as the column in the database table. For
example, if a CLOB column in a table is created with CCSID of 37, which
represents US English, and a file reference variable with a file option CREATE is
used on that column, the resulting created file will also have a CCSID of 37. This
means that the character data is stored in EBCDIC format. If you want to store a
CLOB value in a file that is used by a PC application, you need to force an
EBCDIC to ASCII conversion while writing the data into the file. You can achieve
this by creating a dummy file in the IFS with an ASCII code page of 437 and use
the file option OVERWRITE to write the new data to the file. For example, you
can map an IFS directory to a network drive on your PC and use WordPad to
create an empty file myfile.txt in this directory. Then, you can use the file
reference variable with the file_option set to SQL_FILE_OVERWRITE to copy the
CLOB column data into myfile.txt. The data is then converted on the fly from
EBCDIC to ASCII by the database manager.

2.5.2 LOB file reference processing
An LOB file reference variable is used for direct file input and output for an LOB,
which can be defined in the following host languages:

• C
• C++
• ILE RPG
• ILE COBOL
• PL/1

Since these are not native data types, SQL extensions are used, and the
precompilers generate the host language constructs necessary to represent each
variable. A file reference variable represents, rather than contains, the file.

Option Option
value

Meaning

SQL_FILE_READ 2 This is a file that can be opened, read, and closed.
DB2 determines the length of the data in the file (in
bytes) when opening the file. DB2 then returns the
length through the data_length field of the file
reference variable structure.

SQL_FILE_CREATE 8 This option creates a new file. Should the file
already exist, an error message is returned.

SQL_FILE_OVERWRITE 16 This option creates a new file if none already exist.
If the file already exists, the new data overwrites
the data in the file.

SQL_FILE_APPEND 32 This option has the output appended to the file if it
exists. Otherwise, it creates a new file.
14 DB2 UDB for AS/400 Object Relational Support

Database queries, updates, and inserts may use file references variables to store
or retrieve single column values.

As with all host variables, a file reference variable may have an associated
indicator variable.

2.5.2.1 C example 3 using LOB file reference variables
The following example demonstrates how to declare an LOB file reference
variable and move data from the Integrated File System to a CLOB column in a
database table using the file option READ. The numbered sections are explained
in the notes that follow.

/* DB2 UDB for AS/400 File Reference Test Program */
/* Use a File Reference to move data from the IFS to a column in */
/* the table USERPROGRAMS. This is using the File option Code */
/* SQL_FILE_READ. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

EXEC SQL INCLUDE SQLCA;
char dummy[5];
void main(int argc, char **argv)
{
/* Host variable Declaration */
/* CLOB FILE REFERENCE host variable set up. */
/* for the File Reference txt_file. */

1 EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS CLOB_FILE txt_file;

EXEC SQL END DECLARE SECTION;

EXEC SQL WHENEVER SQLERROR GO TO badnews;

/*set up the txt_file variable */
2 strcpy(txt_file.name, "/TEAMXX/Text_Files/qcsrc.txt");
txt_file.name_length = strlen(txt_file.name);
txt_file.file_options = SQL_FILE_READ;
/* Insert the File Reference txt_file for option Read, */
/* into the CLOB column of the USERPROGRAMS table, for */
/* a Identiy Number of 100. */

3 EXEC SQL
INSERT INTO TEAMXX/USERPROGRAMS
VALUES ('100','C', :txt_file);

EXEC SQL COMMIT WORK;
...

badnews:
...
error handling code
...

}

Example 3 LOB file reference variable program notes
1. Declare Host Variable. The BEGIN DECLARE SECTION and END DECLARE

SECTION statements delimit the host variable declarations. Host variables are
prefixed with a colon (:) when referenced in an SQL statement. A CLOB File
Reference host variable txt_file is declared.

2. CLOB file reference host variable is set up. The attributes of the file reference
are set up.

Note: A file name without a fully declared path is, by default, placed in the
user’s current directory. If the pathname does not begin with the forward
slash(/) character, it is not qualified.

String copy the full pathname into name, the string length of name into
name_length, and the usage of file, in this case READ, into file_options.
Large object support in DB2 UDB for AS/400 15

3. Insert a new record in the database table USERPROGRAMS. Insert the file
reference variable txt_file for option read into the CLOB column of the
database table.

2.5.2.2 C example 4 using LOB file reference variables
The following example program demonstrates how to declare an LOB file
reference variable and move data from the Integrated File System to a CLOB
column in a database table using the file option READ. Then, manipulate the data
in the LOB column via the LOB Locator, and send the manipulated data to a file in
the IFS via a file reference variable. The numbered sections are explained in the
notes that follow.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

EXEC SQL INCLUDE SQLCA;
char dummy[5];
void main(int argc, char **argv)

{
1 EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS CLOB_FILE txt_file;
SQL TYPE is CLOB_FILE outtxt_file;
SQL TYPE is CLOB_LOCATOR clobhand;
SQL TYPE is CLOB_LOCATOR newhand;
long pos;
long len;

EXEC SQL END DECLARE SECTION;

EXEC SQL WHENEVER SQLERROR GO TO badnews;

/*set up the txt_file variables */
2 strcpy(txt_file.name, "/TEAMXX/Text_Files/lobloclab2.txt");
txt_file.name_length = strlen(txt_file.name);
txt_file.file_options = SQL_FILE_READ;

/* set up the outtext_file variable */
strcpy(outtxt_file.name, "/TEAMXX/Text_Files/loblab2bak.txt");
outtxt_file.name_length = strlen(outtxt_file.name);
outtxt_file.file_options = SQL_FILE_OVERWRITE;

/* Insert the File Reference txt_file for option Read, */
/* into the CLOB column of the USERPROGRAMS table, for */
/* a Identity Number of 999. */

3 EXEC SQL
INSERT INTO TEAMXX/USERPROGRAMS
VALUES ('999','C', :txt_file);

/* Select the column PRMSRC (which was created from a */
/* file reference) form USERPROGRAMS where IDNUM is */
/* equal to '999'. */
4 EXEC SQL

SELECT PRMSRC INTO :clobhand
FROM TEAMXX/USERPROGRAMS
WHERE IDNUM = ('999');

/* Manipulate the data using the CLOB handler, so that */
/* we find the string IBM Corp, and insert in front of */
/* it '& 2000'. When the manipulation is complete the */
/* text line should look like this : */
/* Copyright (c) 1999 & 2000 IBM Corp */

5 EXEC SQL VALUES posstr(:clobhand, 'IBM Corp') INTO :pos;
EXEC SQL VALUES char_length(:clobhand) INTO :len;

EXEC SQL
SET :newhand =

6 concat(substr(cast(:clobhand as clob(200k)),
1, :pos -1), ' & 2000 ');

EXEC SQL
6 VALUES concat(cast(:newhand as clob(200k)),
16 DB2 UDB for AS/400 Object Relational Support

substr(cast(:clobhand as clob(200k)), :pos, :len - :pos))
INTO :clobhand;

/* Insert the now maipulated data, via an LOB Locator */
/* into a new record in table USERPROGRAMS. */

EXEC SQL
INSERT INTO TEAMXX/USERPROGRAMS VALUES ('919','C', :clobhand);

printf(
/* Select column PRMSRC (CLOB) from table USERPROGRAMS */
/* where IDNUM = '919', into File Reference outtxt_file */
/* That is, move the manipulated data in the CLOB to */
/* the file in the IFS system referenced by outtxt_file */

7 EXEC SQL
SELECT PRMSRC INTO :outtxt_file FROM USERPROGRAMS
WHERE IDNUM = '919';

EXEC SQL COMMIT WORK;
...
badnews:

...
error handling code
...

}

Example 4 LOB file reference variable program notes
1. Declare Host Variable. The BEGIN DECLARE SECTION and END DECLARE

SECTION statements delimit the host variable declarations. Host variables are
prefixed with a colon (:) when referenced in an SQL statement. Two CLOB File
Reference host variables txt_file and outtext_file are declared. Two CLOB
LOB locators clobhand and newhand are also declared.

2. CLOB file reference host variables are set up. The attributes of the file
reference are set up.

String copy the full pathname of lobloclab2.txt into txt_file.name, string length
of name into name_length, and the usage of file, in this case READ, into
file_options.

String copy the full pathname of loblab2bak.txt into outtext_file.name, string
length of name into name_length, and the usage of file, in this case
OVERWRITE, into file_options.

3. Create a new record in the database table USERPROGRAMS where column
PRMSRC is referenced by the file reference txt_file.

4. The LOB locator clobhand is set to reference the column PRMSRC (which was
created from the file reference).

5. Manipulate the data in the column via the LOB locators clobhand and
newhand to add some characters before a certain point in the LOB. Put the
manipulated data into the data space for LOB locator newhand.

6. Cast the locator to its underlying CLOB type.

The file option OVERWRITE is used because we have a file in the IFS with
a CCSID that allows us to view the contents of the file through Operations
Navigator.

Note
Large object support in DB2 UDB for AS/400 17

7. Move the contents of the manipulated column into the file reference outtxt_file
that has a file option of overwrite. We selected this file option so that we could
view the resulting manipulated column in the IFS via Operations Navigator.
See 2.5.1.1, “CCSID and file reference variables” on page 14, for an
explanation of CCSID and file reference variable’s interfaces.

2.6 Commitment control and journaling for LOBs

As you probably noticed in the coding examples discussed in the previous
sections, you need to commit your changes to an LOB object before other users
can get access to this object. The reason why "dirty data" is not viewable for
records that hold LOB data is pretty straightforward. It is a result of the way the
database returns LOB data at read time. For every other data type on the AS/400
system, a read of a record makes a copy of the data in the user's I/O buffer.
However, for LOBs, the database does not return a copy of the data.

DB2 UDB for AS/400 treats LOB data differently primarily because of a restriction
on the amount of data that can be returned for each record. For now, the
database is only able to return 32 KB of data for each record. The performance
cost of changing that limit to be able to accommodate 15 MB (in the future 2 GB)
of copied data was too high.

Because the database returns a pointer rather than a copy of the data, it must
ensure that the LOB data addressed does not change while the pointer is in use.
The LOB data that is addressed in one cursor cannot be updated or deleted by
another cursor. We cannot allow the holder of this address to look at LOB data
that has been updated. Even if an LOB has been deleted, the disk location may
be reused and end up holding other data. For security reasons, the database
must ensure that the data it is addressing stays fixed while a user is looking at it.

Even though we may not be running under commitment control, we need to
acquire a read lock on the record (or, in a Get Multiple, the records) that we read.

This cast is required since the database manager does not know the size of
the locator result when it is validating the concat(..., substr(..)) operation.
First, the database manager tries to determine the result size of the
substring. Because there is no size associated with any LOB Locator, and
because the substring in this program uses host variables rather than
constants, the database cannot assess the size of the locator operand at
validation time. Consequently, it chooses the maximum LOB size. After
choosing the max LOB size, the concatenation of even a single byte literal
along with the substring result will result in exceeding the maximum result size
limit. One way of getting around this is to cast the CLOB Locator to a CLOB
of a defined length:

EXEC SQL
VALUES concat(substr(cast(:clobhand as clob(200k)), 1, :pos -1),
' & 2000 ')

By doing this, the validation code is able to use 200 KB as the maximum
size of the result rather than 15 MB.

Note
18 DB2 UDB for AS/400 Object Relational Support

We do not escalate the lock level from *None to *Cursor Stability but, instead,
simply get read locks on each record. We hold these locks until the next read
request or until the cursor is closed.

The bottom line is that, since we work with addresses into the data space, rather
than copies of the data, we can never allow another cursor to read a record that
holds LOB data without acquiring at least a read lock on that record.

The following example illustrates this database behavior. We insert a new record
into the CUSTOMERHUS table with the following SQL statement:

INSERT INTO customerhus
VALUES ('11111', BLOB(X'1111'), CLOB('This is a house description'))

This statement is run under the commitment control level of *CHG. Now, we
switch to another session, which runs under a commitment level of *NONE, and
issue the following SQL statement:

SELECT customer_number, HEX(CAST(house_ref AS BLOB(1k)))
FROM customerhus

Since we didn’t commit our changes in the first session, the database manager is
not able to obtain the required read lock on the newly inserted record, and the
SELECT statement times out with the inquiry message QRY5050 Record in use.
Note, that if the CUSTOMER table had not contained LOB columns, the SELECT
statement would have run to completion with uncommitted changes visible in the
session run under the commitment control level of *NONE.

2.7 SQL functions supporting LOBs

This section describes the basic predicates, and the most important column and
scalar function that support LOB data types. For a complete list of functions that
support the new data types, refer to DB2 UDB for AS/400 SQL Reference,
SC41-5612.

2.7.1 Basic predicate support for LOBs
The basic predicates supported are:"=", ">", "<", "¬=", "<>", "<=", "¬>", ">=", "¬<"

2.7.1.1 Comparing CLOB data
When comparisons are made between CLOB data, the database runtime
removes the trailing spaces first and then compares the character values. Note
that the leading spaces are not trimmed.

To clarify this, let’s take a closer look at the following example. From the data that
we inserted into the CUSTOMERHUS table, we can see that Customer_Number
00001, 00003, and 00004 have a House_Description CLOB value, which looks
the same as the example shown in Figure 6 on page 20. Notice the actual length
of the House_Description column values.
Large object support in DB2 UDB for AS/400 19

Figure 6. Comparing lengths of CLOB values

Now, let’s check how the"=" basic predicate works with CLOB values. In the Run
SQL Scripts utility, run the following SQL statement:

select * from customerhus where House_Description = 'Description: This is a
large modern family house, situated on the edge of town.';

Note that the result set from this query, as shown in Figure 7, only contains the
records for Customer_Number "00001" and "00004."

Figure 7. Using "=" predicate with CLOB values

You may now wonder why the row for Customer_Number "00003" is not shown in
the result set. The reason for this is that the database manager first removes the
trailing space from the CLOB value in row 00004 so that the values in rows 0001
and 00004 are exactly the same as the character constant used in the equal
expression in the WHERE clause of our SELECT statement. The
House_Description column for row 00003 still has the leading space, so it doesn’t
satisfy the search condition.

Now, we modify the SELECT statement to remove both trailing and leading
spaces. To achieve this, we use the TRIM function as shown here:

select * from customerhus where trim(House_Description) = 'Description: This
is a large modern family house, situated on the edge of town.';

Figure 8 shows the results for this statement.

Figure 8. Using TRIM with CLOB values

As expected, this time the result set contains three rows.

The next example uses the not equal predicate. In the Run SQL Script window,
run the following SQL statement:

select * from customerhus where House_Description <> 'Description: This is a
large modern family house, situated on the edge of town.';
20 DB2 UDB for AS/400 Object Relational Support

The results are shown in Figure 9.

Figure 9. Using "<>" predicate with CLOB values

Notice that Customer_Number 00003 is displayed as part of this result set.

2.7.1.2 Comparing BLOB data
When comparisons are made between BLOB data types, the first comparison is
of their length. Once the lengths are found to be equal, a comparison of the
binary contents is made. If it is not equal, no further comparison is made. It
applies the predicate to test their binary content only if the database finds out that
the length of the objects is equal. For example, the following expression is
evaluated as FALSE:

blob(X'123456') > blob(X'1234')

Because the lengths of the two BLOB objects are different, no further comparison
is made. In other words, blob(X’123456’) is neither greater, nor equal, nor smaller
than blob ('1234'). Because it’s different, only the '<>' predicate is evaluated as
TRUE.

2.7.2 Column functions
The most important column functions supporting LOBs are: COUNT() and
COUNT ALL. In our example, we count the number of times a particular House
Reference Number is present in the CUSTOMERHUS table using the COUNT
function. Remember, we have declared the House Reference Number as data
type BLOB.

In the Run SQL Script window, run the following SQL statement:

select count(*) as Count from CUSTOMERHUS where House_Ref = blob(X'1234');

The result set for this query is shown in Figure 10.

Figure 10. Result of the Count function

Again, you can see the method of comparing the LOBs at work. The database
first compares the length. Then, if it is equal, it compares the binary content.

2.7.3 Scalar functions
The most important scalar functions supporting LOBs are: CHAR(), CONCAT(),
LENGTH(), and SUBSTR().
Large object support in DB2 UDB for AS/400 21

In Figure 6 on page 20, we demonstrated how the LENGTH scalar function
works. Now, we will concatenate the Customer_Number (Character 5) with the
House_Description (of type CLOB) using the CONCAT function.

In an operation where one of the operands is an LOB, the result from the
operation is always an LOB. For example, if you added a Hex value to a BLOB,
the result is always of data type BLOB.

In the Run SQL Script window, run the following SQL statement, where ‘|’
represents the pipe character:

select Customer_Number concat '|' concat House_Description as Concatenate
from CustomerHUS

The results of the query are shown in Figure 11.

Figure 11. Result of concat Customer_Number and House_Decsription

2.8 LOBs and the native interface

As previously stated, LOBs are not supported by either DDS or native I/O. The
only interface that allows access to the new data types is SQL. However, we
conducted a number of tests to identify the behavior of various traditional 5250
interfaces with tables containing LOB columns.

Our tests were based on the CUSTOMERHUS table. Its definition is shown in
Figure 3 on page 7. The table was created with both BLOB and CLOB columns.

First, we check how the Interactive SQL utility handles LOB data:

1. Open a 5250 session, and at the command prompt, start the Interactive SQL
session with the following CL command:

STRSQL

2. To display the rows contained in the CUSTOMERHUS table, type the following
SQL statement at the ISQL prompt:

select * from customerhus

The results are shown in Figure 12.

Make sure that you have the DB2 Query Manager and SQL Development
Kit for AS/400 (5769-ST1) license program installed on your AS/400
system.

Note
22 DB2 UDB for AS/400 Object Relational Support

Figure 12. Displaying LOB data with ISQL

Note, that no content for LOB objects is displayed. Instead, the ISQL shows
*POINTER as the value for both BLOB and CLOB columns.

We can also display the content of the CUSTOMERHUS table with the Display
Physical File Member (DSPPFM) command. Again, the values for the LOB columns
are displayed as *POINTER. The results are shown in Figure 13.

Figure 13. Displaying LOB data with the DSPPFM command

The Display File Field Description (DSPFFD) CL command has been updated in
V4R4 so that it can now be used to display column-level information for a file
containing LOBs. The results of running the DSPFFD command for the
CUSTOMERHUS table are shown in Figure 14 on page 24.

Display Data
Data width : 94

Position to line Shift to column
....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
Customer Number House Ref Nbr House Description

00001 *POINTER *POINTER
00002 *POINTER *POINTER
00003 *POINTER *POINTER
00004 *POINTER *POINTER

******** End of data ********

Bottom
F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Display Physical File Member
File : CUSTO00001 Library : TEAMXX
Member : CUSTO00001 Record : 1
Control Column : 1
Find
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
00001 *POINTER *POINTER
00002 *POINTER *POINTER
00003 *POINTER *POINTER
00004 *POINTER *POINTER
Large object support in DB2 UDB for AS/400 23

Figure 14. Displaying LOB column information with the DSPFFD command

Note, that the Buffer Length is the space needed to store the LOB column pointer
value in the buffer. DB2 UDB for AS/400 uses 32 bytes to store this pointer.
However, since any AS/400 pointer must be aligned on a 16-byte boundary, the
buffer for the HUSREF column is 43 bytes long. 11 bytes are needed to offset
from the end of the CUSNUM column buffer to the next 16-byte boundary and 32
bytes for the pointer itself. The buffer for the HUSDES column is just 32 bytes
long because it’s already aligned.

2.9 LOB column considerations

This section describes the restrictions that are in place on LOB columns at this
time:

• A single column can only be up to 15 MB (architecture to 2 GB).

• LOB column is not allowed in distributed tables.

• LOB column is not allowed as a key field in an index. LOBs are not allowed as
key fields because of the size restriction.

• Distinct, Union, and Group By on LOB fields are not supported because each
of these functions require the building of an index over the fields.

• LOB column is not allowed in IN predicate.

• LOB column is not allowed in COUNT(DISTINCT c1).

• LOB parameters are allowed in external stored procedures but not in SQL
stored procedures.

• There is no support for REXX with LOBs.

• The following scalar functions are not supported at this time:

Display Spooled File
File : QPDSPFFD Page/Line 1/26
Control Columns 1 - 78
Find
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
Field Level Information

Data Field Buffer Buffer Field Column
Field Type Length Length Position Usage Heading
CUSNUM CHAR 5 5 1 Both Customer Num
Field text : Customer ID Number
Alternative name : CUSTOMER_NUMBER
Allows the null value
Coded Character Set Identifier : 37

HUSREF BLOB 1048576 43 6 Both House Ref Nb
Field text : House Reference Number
Alternative name : HOUSE_REF
Allocated Length : 0
Allows the null value
Coded Character Set Identifier : 65535

HUSDES CLOB 1048576 32 49 Both House Descri
Field text : House Description
Alternative name : HOUSE_DESCRIPTION
Allocated Length : 0
Allows the null value
Coded Character Set Identifier : 37
24 DB2 UDB for AS/400 Object Relational Support

– LAND
– LNOT
– LOR
– XOR

• CHECK constraints are limited on tables with LOBs.

• REUSEDLT(*YES) must be used with tables with LOB columns.

2.9.1 Triggers
A file containing LOB fields cannot support triggers. The buffer images passed to
trigger programs are currently unable to handle LOB data. Creating a new trigger
parameter to make the LOB data available to the trigger program would present a
non-SQL interface with pointers that directly address LOB data in the database
file. By doing this, the database would lose control over the LOB data. Access to
the LOB data should only be through the use of LOB locators.

The Add Physical File Trigger (ADDPFTRG) command has been changed so that it
will not allow adding a trigger to a file that contains LOB fields.

2.9.2 Using in Net.Data
You can store large object files (LOBs) in DB2 databases and access them using
the SQL language environment for your Web applications. The SQL language
environment does not store large objects in Net.Data table processing variables
(such as V1 or V2), or Net.Data table fields when a SQL query returns LOBs in a
result set. Instead, when Net.Data encounters an LOB, it stores the LOB in a file
that Net.Data creates. This file is in a directory specified by the HTML_PATH path
configuration variable. The values of Net.Data table fields and table processing
variables are set to the path of the file. Note that, in a busy Web environment, the
number of files created on the fly by Net.Data may grow very rapidly and your
application is responsible for cleaning up the directory on a regular basis.
Therefore, we recommend that you use DataLinks, which eliminate the need to
store files in directories by the SQL language environment, resulting in better
performance and the use of much less system resources. Refer to Net.Data
Administration and Programming Guide for OS/400, available for download from
the Web at: http://www.as400.ibm.com/products/netdata/docs/doc.htm
Large object support in DB2 UDB for AS/400 25

26 DB2 UDB for AS/400 Object Relational Support

Chapter 3. User-defined Distinct Types (UDTs)

This chapter describes:

• User-defined Distinct Types concepts and benefits
• Creating and using distinct types
• Casting of distinct types
• SQL support for distinct types
• Specifics on the AS/400 implementation of distinct types

3.1 A need for user-defined types

DB2 UDB for AS/400 provides a range of built-in data types, which include the
basic data types, such as INTEGER, DECIMAL, CHAR, plus the large object data
types discussed in the previous chapters of this book (BLOB, CLOB, DBCLOB).
Your database design may, however, require that you use one of the built-in data
types in a specialized way. You may use, for example, DECIMAL(11,2) data type
to represent amounts of money. From the database semantic point of view, it
makes sense to add and subtract two amounts of money, but it probably makes
no sense to multiply two amounts of money.

DB2 UDB for AS/400 provides a way to declare such specialized usages of data
types and the rules that go with them in a form of User-defined Distinct Type or
UDT. Distinct data types are user-defined types that are derived from existing
built-in types (predefined types, such as INTEGER, DECIMAL, CLOB). They
share the same representation with the types they are derived from but, because
they are incompatible types, they can have quite different semantics.

The most important characteristics of user-defined types include:

• Strong typing

Strong typing insures that your UDTs behave appropriately. It guarantees that
only user-defined functions defined on your UDT can be applied to instances
of the UDT.

• Casting

Casting from a distinct type to its source types and vice versa is allowed.

• Performance

Distinct types are highly integrated into the database manager. Because
distinct types are internally represented the same way as built-in data types,
they share the same efficient code used to implement built-in functions,
comparison operators, indexes, joins, and so forth, for built-in data types.
Once the type check or conversion is completed, a join, for example, can be
performed with no overhead.

• Foundation for object-oriented extensions

UDTs are the foundation for most object-oriented features. They represent the
most important step towards object-oriented extensions and future support for
abstract or complex data types.

• Compatible with the ANSI X3H2-99 standard (better known as SQL3)
© Copyright IBM Corp. 2000 27

3.2 Creating distinct types

DB2 UDB for AS/400 supports User-defined Distinct Types only through the SQL
interface. This section describes how to use Operations Navigator to:

• Create User-defined Distinct Types
• Create a table containing distinct type columns

We also repeat the procedure using the CREATE DISTINCT TYPE SQL
statement.

3.2.1 Creating UDT sourced from DECIMAL
The Operations Navigator Library context menu can be used to create a new
distinct type. Select the New->Type option from this menu to display the New
Type dialog. This dialog allows you to set:

• Type name
• Description
• Source data type details

The source data type is the existing system data type that the distinct type is
derived from.

To create a new distinct type using Operations Navigator, open the Libraries
folder under the Database object. Select a library from the list, and right-click it to
open its context menu. Select New->Type to display the New Type dialog.

Figure 15 shows the New Type dialog settings used to create a distinct type
called MONEY with source data type of DECIMAL(11,2). It may be used to store
and manipulate money values.

Figure 15. New type dialog for distinct type MONEY

Once you have entered the required details, click the OK button to create the new
distinct type in the selected library.

Along with the new type definition, the database manager also registers casting
functions in the selected library. You can see these casting functions in the
QSYS2/SYSROUTINES catalog and the casting function parameters in the
QSYS2/SYSPARMS catalog.
28 DB2 UDB for AS/400 Object Relational Support

Running the following SQL statement in the Operations Navigator Run SQL
Script window displays the casting functions registered for the TEAMXX library:

select * from qsys2/sysroutines where specific_schema = 'TEAMXX';

Having previously created the MONEY distinct type source from DECIMAL(11,2),
the results window for this SQL statement query is shown in Figure 16. It shows
that three casting functions were created for the MONEY distinct type.

Figure 16. Casting functions registered in QSYS2/SYSROUTINES

Running the following SQL statement in the Operations Navigator Run SQL
Script window will display the casting parameters registered for the TEAMXX
library:

select * from qsys2/sysparms where specific_schema = 'TEAMXX';

The results window, shown in Figure 17, shows that two parameters were
registered for each casting function. For example, the DECIMAL casting function
has a MONEY IN parameter and a DECIMAL OUT (return) parameter.

Figure 17. Casting function parameters registered in QSYS2/SYSPARMS

The database manager has automatically registered the following casting
functions:

• DECIMAL(MONEY) returns DECIMAL
• MONEY(DECIMAL) returns MONEY
• NUMERIC(MONEY) returns NUMERIC

These functions allow you to convert from the underlying built-in source types into
the new distinct type and vice versa.

3.2.2 Creating a table using UDTs
Having created a distinct type, it is possible to use the new type in table column
definitions when creating or altering a table. To create a table using Operations
Navigator, open the Libraries folder under the Database object. Select a library
from the list, and right-click to open its context menu. Select New->Table to
User-defined Distinct Types (UDTs) 29

display the New Table dialog. Figure 18 shows the New Table dialog settings for
our example table using distinct types.

Figure 18. New table dialog

The purpose of our example table is to store information about the ski equipment
offered in a Web warehouse. We store a GIF file with the equipment picture and a
detailed, structured description of the product in the table rows. The aim is to
make a Web application visually attractive and, at the same time, easy to use.

Once you enter the Table name and optional Description, click the OK button to
begin column definition using the New Table dialog.

As shown in Figure 19, the column type drop-down list in the New Table dialog
contains the available data types. The available data types include the new
built-in types implemented in V4R4 (DATALINK, BLOB, CLOB, DBCLOB), other
built-in types, and User-defined Distinct Types.

Figure 19. Column type list in a new table dialog
30 DB2 UDB for AS/400 Object Relational Support

To add a new column, click the Insert button. Type in a column name and select
the required distinct type from the drop-down list of available types as shown in
Figure 19. You can also set other column options, such as Short column name or
not null.

Table 3 shows the required column definitions of our example table.

Table 3. Products Master Table 01 properties

Table 4 lists the distinct types needed in our table.

Table 4. Distinct type properties

Refer to 3.2.3, “Creating distinct types with the SQL interface” on page 32, for the
SQL DDL statements to create these distinct types.

Figure 20 on page 32 shows the completed table definition for our example table.

Name Type Size Default
value

Short
column
name

Must
contain
a value

Product_Number TEAMXX.
SRLNUMBER

PMNBR Yes

Product_Name CHARACTER 25 PMNAM Yes

Product_Description TEAMXX.PRDDESC PMDESC No

Product_Price TEAMXX.MONEY PMPRIC Yes

Product_Picture TEAMXX.PICTURE PMPICT No

Type name Description Source data type

PRDDESC UDT sourced from CLOB(50 K) CLOB(50 K)

MONEY UDT sourced from DECIMAL(11,2) DECIMAL(11,2)

PICTURE UDT sourced from BLOB(1 M) BLOB(1 M)

SRLNUMBER UDT sourced from CHAR(5) CHAR(5)
User-defined Distinct Types (UDTs) 31

Figure 20. Products master table 01 properties

If required, constraints and triggers can also be defined for a table containing
distinct types.

To create the table, click the OK button. The new table object appears in the
selected library in the right panel of the main Operations Navigator window.

3.2.3 Creating distinct types with the SQL interface
The CREATE DISTINCT TYPE statement creates a distinct type sourced from
one of the built-in data types:

CREATE [DISTINCT] TYPE distinct-type-name AS source-data-type
[WITH COMPARISONS]

This statement allows you to:

• Set the distinct type name
• Select the source data type

Note that the WITH COMPARISONS option is the default, so that the system generates
comparison operators whether it is specified. However, we recommend that you
specify it for compatibility with other DB2 products.

You can add a description to the distinct type using the COMMENT ON DISTINCT
TYPE statement.

To run an SQL statement using Operations Navigator, right-click on the Database
object under your AS/400 Connection, and select Run SQL Script. After typing in
the SQL statement, either place the cursor over the statement you want to run
32 DB2 UDB for AS/400 Object Relational Support

and click the Run Selected icon, or click the Run All icon to run all SQL
statements.

The following SQL statement creates a distinct type called money sourced from
built-in type DECIMAL(11,2):

create distinct type teamxx/money as decimal(11,2)
with comparisons;

Optionally, use the COMMENT ON DISTINCT TYPE SQL statement to add a description
to the distinct type:

comment on distinct type teamxx/money is
'UDT sourced from DECIMAL(11,2)';

The following SQL statements create a distinct type called prddesc sourced from
built-in type CLOB(50K) and adds a description to the new type:

create distinct type teamxx/prddesc as clob(50k)
with comparisons;

comment on distinct type teamxx/prddesc is
'UDT sourced from CLOB(50K)';

The following SQL statements create other distinct types used in our test table:

CREATE DISTINCT TYPE teamxx/srlnumber AS CHAR(5) WITH COMPARISONS;
COMMENT ON DISTINCT TYPE teamxx/srlnumber IS 'UDT sourced from CHAR(5)';

CREATE DISTINCT TYPE teamxx/picture AS BLOB(1M) WITH COMPARISONS;
COMMENT ON DISTINCT TYPE teamxx/picture IS 'UDT sourced from BLOB(1M)';

The following SQL statement creates a table called prodmast01 with five
columns:

create table teamxx/prodmast01(
product_number for column pmnbr teamxx/srlnumber not null,
product_name for column pmnam char(25) not null,
product_description for column pmdesc teamxx/prddesc,
product_price for column pmpric teamxx/money not null,
product_picture for column pmpict teamxx/picture);

The table column definitions are in the following form:

column-name FOR COLUMN system-column-name data-type ...

The data-type can be a built-in data type specification or a distinct type name. If
the distinct type is specified without a collection name, the distinct type name is
resolved by searching the collections in the SQL path. We explicitly qualified the
distinct type names with the TEAMXX library name in this CREATE TABLE
example.

Optionally, use the COMMENT ON TABLE SQL statement to add a description to the
table:

comment on table teamxx/prodmast01 is 'Products Master Table 01';

The above steps use the Operations Navigator Run SQL Scripts window. The
SQL statements could equally be used in a 5250 Interactive SQL session. The
only change needed is to leave out the terminating semicolon.
User-defined Distinct Types (UDTs) 33

3.2.4 Altering and deleting distinct types
The database manager does not allow a distinct type to be deleted if it is being
used by an existing table. The dependent table must be deleted first. This may be
a problem if you want to alter a distinct type without having to delete the
dependent tables.

If you need to alter a User-defined Distinct Type without having to delete all the
dependent tables, follow these steps:

1. Use alter table to change the data type of the distinct type column to its source
type.

2. Delete the distinct type.

3. Re-create the distinct type with its new attributes.

4. Use alter table to change the data type of the column back to the distinct type.

A practical example may involve the product_discription column in the
PRODMAST01 table, which is a distinct type prddesc sourced from clob(50k).
You may want to alter the prddesc distinct type to increase its CLOB size from
50 KB to 100 KB:

1. To alter the data type of the product_description column to the source data
type of the prddesc distinct clob(50k), use the following SQL statement:

alter table teamxx/prodmast01
alter column product_description set data type clob(50k);

2. To drop the prddesc distinct type, use the following SQL statement:

drop distinct type teamxx/prddesc;

3. To re-create the prddesc distinct type as clob(100k), use the following SQL
statements:

create distinct type teamxx/prddesc as clob(100k) with comparisons;
comment on distinct type teamxx/prddesc is 'UDT sourced from CLOB(100K)';

4. To alter the product_description column data type back to distinct type
prddesc, enter the following SQL statement:

alter table teamxx/prodmast01
alter column product_description set data type prddesc;

3.3 Casting for distinct types

The strong typing characteristic of distinct types means that distinct types are not
compatible with other types. Compatibility with other types can be achieved by
casting. Casting allows a value of one data type to be changed to another data
type. When a data type can be changed to another data type, it is castable from
the source data type to the target data type.

Casting functions are used to convert one data type to another. We saw in 3.2.1,
“Creating UDT sourced from DECIMAL” on page 28, that the database manager
automatically registers distinct type casting functions to allow casting between
the distinct type and its source types.

Casting can occur implicitly or explicitly. It occurs explicitly when you use casting
functions to cast a data type. Casting occurs implicitly when the database
manager recognizes that an automatic cast is allowed in certain situations.
34 DB2 UDB for AS/400 Object Relational Support

Strong typing requires that distinct types be explicitly cast when using:

• Built-in functions and operators
• Basic predicate comparisons, such as "=", "<", ">", involving different types
• Other predicate comparisons, such as BETWEEN, IN, LIKE

Implicit casting allows some distinct type assignments without exact type
matching. Implicit casting allows:

• Castable constant and other type values to be assigned to distinct types
• Castable distinct type values to be assigned to other types
• Host variable assignments for non-SQL language access to distinct types

Promotion of data types allows the database manager to consider additional data
types when performing implicit casts based on the precedence of data types.

3.3.1 Explicit casting
The strong typing characteristic of distinct types prevents comparisons between
distinct types and other types. It is meaningless, for example, to compare
APPLES with ORANGES.

The strong typing characteristic also prevents distinct types from being accepted
as parameters to built-in functions or operators. The built-in functions and
operators are not defined for distinct types. It may be pointless to take the square
root of a MONEY value, for example.

Explicit casting can be used on the many occasions when you need to use built-in
functions or operators with distinct types or compare distinct types with other
types.

Table 5 provides a summary of the various SQL elements and their compatibility
with distinct types. Incompatible SQL elements require that a distinct type be
explicitly cast to its source type.

Table 5. UDT compatibility with various SQL elements

SQL
element

Examples Distinct type
compatible

Comment

Basic
predicates

"=", "<>", "<",
">" Yes

Defined by the with comparisons
default. Explicit cast only necessary if
comparing a UDT with another type.

Other
predicates

BETWEEN,
IN, LIKE

Yes Same as above.

Expressions CASE Yes Same as above.

Special case
scalar
functions

NULLIF,
COALESCE,
VALUE

Yes
NULLIF, COALESCE, and VALUE were
special cased to be allowed for UDTs.

Other scalar
functions

LENGTH,
MAX, MIN No

Not defined for new type. Explicitly cast
UDT or create a UDF sourced from
built-in function.

Column
functions

SUM, AVG,
MIN, MAX,
COUNT

No Same as above.
User-defined Distinct Types (UDTs) 35

The following examples demonstrate how explicit casting can be used to:

• Use a built-in operator with a distinct type
• Compare a distinct type with another type
• Use a built-in function with a distinct type

3.3.1.1 Explicit casting UDT sourced from DECIMAL
This example demonstrates why explicit casting of User-defined Distinct Types is
needed and how it can be used for UDT sourced from DECIMAL.

Say you want to add a 10 percent sales tax to the price of each product in a table
named prodmast01. The product_price column in this table is distinct type money.
Money is sourced from built-in type DECIMAL(11,2).

You could try multiplying the product_price column, which is distinct type money,
by the decimal constant 1.1, as follows:

select product_price * 1.1 as "AFTER_TAX_PRICE"
from teamxx/prodmast01;

Running this SQL statement in the Operations Navigator Run SQL Script window
will fail with the following message in the run history:

SQL0402 - * use not valid.

It fails because the multiplication operator * does not accept arguments that are
User-defined Distinct Types, such as the product_price in this case.

Explicit casting can be used to cast a User-defined Distinct Type to a data type
that is accepted by the multiplication operator.

Use the decimal casting function to cast the product_price to decimal, a type that
is accepted by the multiplication operator, as follows:

select decimal(product_price) * 1.1 as "AFTER_TAX_PRICE"
from teamxx/prodmast01;

Running this SQL statement in the Operations Navigator Run SQL Script. window
will successfully display a results window as shown in Figure 21.

Figure 21. Results window for explicit cast from MONEY to DECIMAL

The multiplication operator can multiply two decimal values. We have explicitly
cast the product_price money value to a decimal value using the decimal casting
function, allowing multiplication with the decimal constant: 1.1.

Arithmetic
operators

"*", "+", "-" No Same as above.

SQL
element

Examples Distinct type
compatible

Comment
36 DB2 UDB for AS/400 Object Relational Support

Notice how the value displayed in the AFTER_TAX_PRICE column in Figure 21 is
not in the decimal(11,2) format of money. You could use explicit casting to cast
the multiplication result back to money:

select money(decimal(product_price) * 1.1) as "AFTER_TAX_PRICE"
from teamxx/prodmast01;

You could also use the built-in decimal function to set the required precision and
scale of the decimal result:

select decimal(decimal(product_price) * 1.1,11,2) as "AFTER_TAX_PRICE"
from teamxx/prodmast01;

You could also create a User Defined Function (UDF) to register a new '*' function
that accepts money data type as input parameters. See Chapter 4, “User Defined
Functions (UDFs)” on page 69, for details.

Explicit casting can also be used for comparisons between a User-defined
Distinct Type and another type. For example, you may want to find the number of
products with a price less than $500.00.

The SQL statement:

select product_price from teamxx/prodmast01
where product_price < 500.00;

will fail with the following message in the run history:

SQL0401 - Comparison operator < operands not compatible.

The less than comparison operator cannot compare distinct type value with a
DECIMAL constant: 500.00. The database manager treats the constant 500.00 as
DECIMAL data type.

Use the money casting function to cast the decimal constant to money as follows:

select product_price from teamxx/prodmast01
where product_price < money(500.00);

Running this SQL statement in the Operations Navigator Run SQL Script window
successfully displays a results window showing products with a price of
< $500.00.

The less than comparison operator can compare two money values. We have
explicitly cast the decimal constant to a money value using the money casting
function, therefore allowing comparison with the product_price money value.

3.3.1.2 Explicit casting UDT sourced from CLOB
This example demonstrates how to use explicit casting to cast a distinct type
sourced from CLOB to a data type that is accepted by the POSSTR built-in
function.

For example, you may want to find all the ski products in a table named
PRODMAST01 that have a description containing the word moguls. The
PRODUCT_DESCRIPTION column in this table is distinct type PRDDESC.
PRDDESC is sourced from built-in type CLOB(50K).

You could try passing the PRODUCT_DESCRIPTION column, which is distinct
type PRDDESC, to the POSSTR function as follows:
User-defined Distinct Types (UDTs) 37

select product_number, product_description from teamxx/prodmast01
where posstr(product_description, 'moguls') <> 0;

This statement will fail with the following run history message:

SQL0171 - Argument 1 of function POSSTR not valid.

The PRODUCT_DESCRIPTION column is distinct type PRDDESC. The POSSTR
built-in function does not accept arguments that are User-defined Distinct Types,
such as the PRODUCT_DESCRIPTION in this case.

Explicit casting can be used to cast a User-defined Distinct Type to a data type
that is accepted by the function.

Use the CLOB casting function to cast the PRODUCT_DESCRIPTION to CLOB,
a type that is accepted by the POSSTR function, as follows:

select product_number, product_description from teamxx/prodmast01
where posstr(clob(product_description), 'moguls') <> 0;

Running this SQL statement in the Operations Navigator Run SQL Script window
will successfully display a results window showing the list of products with
PRODUCT_DESCRIPTION containing the word moguls.

The POSSTR built-in function can search for a substring in a CLOB. By explicitly
casting the PRODUCT_DESCRIPTION to CLOB using the CLOB casting
function, POSSTR can be used on the PRODUCT_DESCRIPTION.

Alternatively, you can create a User Defined Function that accepts the PRDDESC
distinct type as an argument. The UDF could be sourced from the built-in
POSSTR function. See Chapter 4, “User Defined Functions (UDFs)” on page 69,
for details.

3.3.2 Implicit casting
The database manager can perform implicit casting on assignments involving
User-defined Distinct Types. Table 6 shows that a distinct data type is castable to
its source data type. It also shows that the source data type of a distinct data type
is castable to the distinct data type.

Table 6. Supported casts when a distinct type is involved

Data type ... Is castable to data type ...

Distinct type DT Source data type of distinct type DT.

Source data type of distinct type DT Distinct type DT.

Distinct type DT Distinct type DT.

Data type A Distinct type DT, where A is promotable to the source
data type of distinct type DT (see “Implicit casting and
promotion” on page 40).

INTEGER Distinct type DT if the DTs source type is SMALLINT.

DOUBLE Distinct type DT if the DTs source type is REAL.

VARCHAR or VARGRAPHIC Distinct type DT if the DTs source type is CHAR or
GRAPHIC.
38 DB2 UDB for AS/400 Object Relational Support

Implicit casting occurs on assignments where a distinct type is the source or the
target of an assignment with its source data type. This allows you to make
assignments between a distinct type and its source type without the need for
explicit casting.

The following statement is an example on how implicit casting works when a
distinct type is the target in an SQL assignment:

update teamxx/prodmast01 set product_price = 99.999
where product_number = srlnumber('00001');

This statement assigns the DECIMAL constant 99.999 to PRODUCT_PRICE of
the MONEY distinct type column. The source data type of distinct type MONEY is
DECIMAL; so, DECIMAL is castable to MONEY. The database manager can,
therefore, implicitly cast the DECIMAL constant on assignment to the MONEY
PRODUCT_PRICE column.

Note that the price assigned to product 00001 will be truncated to 99.99 using the
standard numeric assignments rules, that is, extra trailing digits in the fractional
part of the number are eliminated.

The next statement is an example of how implicit casting works when a distinct
type is the source in an SQL assignment:

update teamxx/prodmast01 set product_name = srlnumber('12345')
where product_number = srlnumber('00001');

Implicit casting can also occur when assigning a distinct type to a compatible
built-in type. The SRLNUMBER functions casts the CHAR constant '12345' to
distinct type SRLNUMBER, which is sourced from built-in type CHAR(5).

The database manager performs an implicit cast when assigning a SRLNUMBER
distinct type value to the PRODUCT_NAME column, which is built-in type CHAR.

Table 6 shows that Distinct type DT is castable to data type Source data type of
distinct type DT. The source data type of distinct type SRLNUMBER is CHAR, so,
SRLNUMBER is castable to CHAR.

We have seen that implicit casting can occur when a distinct type is either the
source or the target in an assignment with a compatible built-in type using SQL.

Implicit casting can also occur for assignments involving host variables in
embedded SQL.

Using the C programming language, we can declare a DECIMAL host variable
named dec_price_in with an initial value of 88.88 as follows:

/* host variable declaration */
decimal(11,2) dec_price_in = 88.88d;

Note that a C program must include the decimal.h header file to use the decimal
type:

#include <decimal.h>

The following embedded SQL UPDATE statement assigns the dec_price_in host
variable to the product_price column using an implicit cast from DECIMAL to
distinct type MONEY:
User-defined Distinct Types (UDTs) 39

/* implicit cast on assignment from decimal into money */
exec sql
update prodmast01 set product_price = :dec_price_in
where product_number = srlnumber('00001');

The dec_price_in host variable is implicitly cast to the target MONEY distinct
type, to allow assignment to the PRODUCT_PRICE column.

A DECIMAL host variable named dec_price_out is declared as follows:

/* host variable declaration */
decimal(11,2) dec_price_out = 0.00d;

The next embedded SQL statement uses the MONEY distinct type
PRODUCT_PRICE column as the source of an assignment to the dec_price_out
host variable:

/* implicit cast on assignment from money into decimal */
exec sql
select product_price into :dec_price_out from prodmast01
where product_number = srlnumber('00001');

The SQL SELECT statement assigns a MONEY value from the
PRODUCT_PRICE column to the dec_price_out host variable using an implicit
cast.

See A.1, “UDTLABA: Using UDTs” on page 215, for the full source listing of the
source fragments used in this section.

3.3.3 Implicit casting and promotion
Promotion of source types allows additional source types to be assigned to the
target distinct type. Table 7 shows the precedence that the database manager
uses to promote one data type to another.

As an example, Table 7 shows that the INTEGER data type can be promoted from
INTEGER to DECIMAL or NUMERIC, to REAL, and to DOUBLE. This means that
we can assign an INTEGER field to a MONEY distinct type field. The MONEY
distinct type is sourced from DECIMAL, and INTEGER can be promoted to
DECIMAL so that implicit casting can occur.

Table 7. Precedence of Data Types

Data type Data type precedence list (in best-to-worst order)

CHAR or GRAPHIC CHAR or GRAPHIC, VARCHAR or VARGRAPHIC, CLOB
or DBCLOB

VARCHAR or VARGRAPHIC VARCHAR or VARGRAPHIC, CLOB or DBCLOB

CLOB or DBCLOB CLOB or DBCLOB

BLOB BLOB

SMALLINT SMALLINT, INTEGER, DECIMAL or NUMERIC, REAL,
DOUBLE

INTEGER INTEGER, DECIMAL or NUMERIC, REAL, DOUBLE

DECIMAL or NUMERIC DECIMAL or NUMERIC, REAL, DOUBLE

REAL REAL, DOUBLE
40 DB2 UDB for AS/400 Object Relational Support

Implicit casting with promotion will allow an INTEGER column to be assigned to a
distinct type column sourced from DECIMAL.

Consider a simple table named TABLEA with an INTEGER column named
INT_COL and one row of data created using the following SQL statements:

create table teamxx/tablea (int_col integer);
insert into teamxx/tablea values (12);

Implicit casting with promotion will allow a value from INT_COL to be assigned to
a column of distinct type MONEY, where MONEY is sourced from
DECIMAL(11,2).

The following SQL statement selects INT_COL from the TABLEA table and
assigns it to PRODUCT_PRICE to update a row in the PRODMAST01 table:

update teamxx/prodmast01
set product_price = (select int_col from teamxx/tablea)
where product_number = srlnumber('00001');

The PRODUCT_PRICE column is distinct type MONEY sourced from
DECIMAL(11,2). The INT_COL is built-in type INTEGER.

Table 7 shows that the INTEGER Data Type has DECIMAL second in its Data
Type Precedence List. The INTEGER Data Type is, therefore, promotable to
DECIMAL. The database manager performs this assignment by promoting
INTEGER to DECIMAL and implicitly casting DECIMAL to MONEY.

Now, let’s look at the Data Type Precedence List for the DECIMAL Data Type in
Table 7. Notice that DECIMAL can only be promoted to REAL or DOUBLE.
Promotion will not occur if attempting to assign a DECIMAL value to an INTEGER
value.

The promotion precedence order does not allow the reverse assignment used in
our previous example. We cannot assign a MONEY distinct type column to an
INTEGER column.

We may try selecting PRODUCT_PRICE from the PRODMAST01 table and
assigning it to INT_COL to update a row in the TABLEA table as follows:

update teamxx/tablea
set int_col = (
select product_price from teamxx/prodmast01
where product_number = srlnumber('00001'));

DOUBLE DOUBLE

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

DATALINK DATALINK

A distinct type The same distinct type

Data type Data type precedence list (in best-to-worst order)
User-defined Distinct Types (UDTs) 41

Then, the following error will be returned:

SQL0408 - Value for column or variable INT_COL not compatible.

INTEGER cannot be promoted to DECIMAL, so, the assignment fails. The
precedence order of data types does not allow reverse promotion.

3.3.4 Implicit casting and host variables
Programming languages do not allow host variables to be declared with distinct
types. Special rules extend implicit casting on assignment of distinct types to host
variables. The source type of the distinct type must be assignable to the host
variable for implicit casting to occur.

The following C-program fragment declares a long integer host variable named
int_price_in with an initial value of 111:

/* host variable declaration */
long int_price_in = 111;

/* implicit cast on assignment from long integer into money */
exec sql
insert into prodmast01 (product_number, product_name, product_price)
values('00004', 'New product', :int_price_in);

The embedded SQL INSERT statement inserts a row and assigns the
int_price_in host variable to the PRODUCT_PRICE column. Again, the
PRODUCT_PRICE column is distinct type MONEY, and MONEY is sourced from
DECIMAL(11,2). The database manager performs this assignment using an
implicit cast from an INTEGER type to DECIMAL.

The database manager will also allow the reverse assignment of a MONEY value
to a INTEGER host variable.

In the next C-program fragment, a host variable array named product_rec is
declared with an INTEGER field named int_price_out:

/* host variable declaration */
_Packed struct {
char number[5];
char name[25];
long int_price_out;

} product_rec[10];
struct { short ind[3]; } product_ind[10];

/* declare and open fetch cursor */
exec sql
declare c1 cursor for
select product_number, product_name, product_price from prodmast01;

exec sql open c1;
/* implicit cast on assignment from money into long integer */
exec sql
fetch c1 for 10 rows into :product_rec indicator :product_ind;

We then use embedded SQL to declare and open a cursor to be used in a
multiple-row fetch statement.

The SQL FETCH statement will assign the PRODUCT_PRICE MONEY column to
the int_price_out field in the product_rec host variable array using an implicit cast.
42 DB2 UDB for AS/400 Object Relational Support

The FETCH statement sets the SQLERRD(3) field in the SQL Communication
Area to the number of rows fetched. Include the SQLCA structure declaration in a
C-program using the following statement:

exec sql include SQLCA;

The SQLERRD(3) field can then be accessed using the SQLCA structure
member sqlca.sqlerrd[2]. The following for loop displays the records fetched:

for (i=0; i<sqlca.sqlerrd[2]; i++)
{
printf("product_rec[%d].number = %5.5s\n",
i, product_rec[i].number);

printf("product_rec[%d].name = %25.25s\n",
i, product_rec[i].name);

printf("product_rec[%d].int_price_out = %d\n",
i, product_rec[i].int_price_out);

}

The for loop code snippet shown above produces the following output listing for
our test table:

values assigned to host variable array:

product_rec[0].number = 00001
product_rec[0].name = Atomic Betaflex 9.08
product_rec[0].int_price_out = 455
product_rec[1].number = 00002
product_rec[1].name = Atomic BetaCarvX 9.26
product_rec[1].int_price_out = 705
product_rec[2].number = 00003
product_rec[2].name = Tecnica Explosion SR
product_rec[2].int_price_out = 530
product_rec[3].number = 00004
product_rec[3].name = New product
product_rec[3].int_price_out = 111

The last record, product_rec[3], shows that PRODUCT_PRICE for the previously
inserted row has been successfully assigned to product_rec[3].int_price_out.

We have seen that different casting rules apply when assigning distinct type
values to host variables.

Assignment of an INTEGER host variable to a MONEY distinct type column
behaves as explained previously for the implicit cast with promotion assignment.
Implicit casting with promotion also allows an INTEGER value to be assigned to a
MONEY value, but it does not allow the reverse cast.

However, implicit casting can be used on the reverse assignment of a MONEY
distinct type column to an INTEGER host variable. Implicit casting on assignment
to the host variable can occur because the source type of the distinct type is
assignable to the host variable type.

See A.2, “UDTLABB: Casting UDTs” on page 216, for the full source listing of the
source fragments used in this section.

3.4 SQL support for distinct types

In this section, we examine the SQL support provided for dealing with
User-defined Distinct Types. The basic operations of SQL are comparison and
assignment.
User-defined Distinct Types (UDTs) 43

Comparison operations are performed when using predicates and other language
elements, such as ORDER BY. As explained in 3.2.3, “Creating distinct types with
the SQL interface” on page 32, the CREATE DISTINCT TYPE SQL statement WITH
COMPARISONS default option means that the system will always generate
comparison operators for distinct types. The SQL basic predicates, "=", "<>", "<",
">", "<=", ">=", can therefore be used to compare values of the same distinct
type.

Basic predicates also allow distinct type columns to be used in SQL table joins
and in SQL subqueries. Other predicates, such as BETWEEN and IN, cannot be
used with distinct types directly, but casting functions allow use with some
restrictions. The COALESCE (or VALUE), NULLIF scalar functions, and the
CASE expression can be used to compare distinct type values.

Assignment operations are performed during the execution of statements, such
as INSERT and UPDATE. In our look at casting on assignments in 3.3, “Casting
for distinct types” on page 34, we found that the source and target data types in
an assignment must be compatible. Specifying a DEFAULT value when creating a
table is another example where SQL can assign a value to a distinct type column.

Strong typing prevents the use of functions defined for other types on distinct
types. SQL distinct type operations can be extended by using User Defined
Functions. See Chapter 4, “User Defined Functions (UDFs)” on page 69, for
details.

3.4.1 Using predicates with UDT
The basic predicates: "=", "<>", "<", ">", "<=", ">=", allow comparison of two
values. The BETWEEN predicate compares a value with a range of values. The
IN predicate compares a value with a set of values. Other predicates include the
LIKE predicate and the NULL predicate.

The values being compared by a basic predicate must be compatible. Strong
typing means that distinct type values are not compatible with other types.

We may attempt to compare the PRODUCT_PRICE column, which is distinct type
MONEY, with a NUMERIC constant using the following SQL statement:

select product_name, product_price from teamxx/prodmast01
where product_price <> 530;

Then, the following error will be returned:

SQL0401 - Comparison operator ¬= operands not compatible.

The not equals operator <> cannot compare a MONEY value with a NUMERIC
constant.

As shown in 3.3.1, “Explicit casting” on page 35, explicit casting can be used to
compare distinct types with other data types. We can use the MONEY casting
function to cast the NUMERIC constant to distinct type MONEY as follows:

select product_name, product_price from teamxx/prodmast01
where product_price <> money(530);
44 DB2 UDB for AS/400 Object Relational Support

If we run this statement using the Operations Navigator Run SQL Scripts window,
the query results viewer successfully displays the rows with a PRODUCT_PRICE
that does not equal $530.00 as shown in Figure 22.

Figure 22. UDT not equal query results

As with basic predicates, the values being compared by other predicates must be
compatible.

The following SQL statement attempts to use the IN predicate to compare a
distinct type MONEY value with a set of NUMERIC constants:

select product_name, product_price from teamxx/prodmast01
where product_price in (530, 705);

This statement will fail with the following message:

SQL0401 - Comparison operator IN operands not compatible.

The IN predicate cannot compare MONEY with NUMERIC constants.

The DECIMAL casting function can be used to cast the PRODUCT_PRICE
column to DECIMAL to allow comparison with a set of NUMERIC constants as
follows:

select product_name, product_price from teamxx/prodmast01
where decimal(product_price) in (530, 705);

If we run this statement using the Operations Navigator Run SQL Scripts window,
the query results viewer successfully displays the rows with PRODUCT_PRICE in
530.00 and 705.00 as shown in Figure 23.

Figure 23. UDT IN query results

3.4.2 Joining on UDT
User-defined Distinct Type columns can be used to join tables in an SQL
statement.

The system-generated distinct type comparison operator behavior is the same
as for the source data type. Comparison operator behavior for distinct types
cannot be customized.

Note
User-defined Distinct Types (UDTs) 45

For example, we may have a table called PRODMAST01 containing an inventory
list of products with the columns listed in Table 3 on page 31. Another table,
called ORDERDTL, contains a row for each product listed on a customer order
with the columns listed in Table 8.

Table 8. Order Detail table properties

Both the PRODMAST01 and ORDERDTL tables have a PRODUCT_NUMBER
column with data type of distinct type SRLNUMBER.

We can list the ORDER_NUMBER from the ORDERDTL table with the
PRODUCT_NAME from the PRODMAST01 table using the following SQL
statement:

select order_number, product_name
from prodmast01, orderdtl
where prodmast01.product_number = orderdtl.product_number;

This statement performs a default inner join on the PRODMAST01 table and the
ORDERDTL table with join condition, prodmast01.product_number =

orderdtl.product_number. The join columns are both distinct type SRLNUMBER
sourced from CHAR(5) so that the database manager can perform the join
comparison.

If we run this statement using the Operations Navigator Run SQL Scripts window,
the query results viewer successfully displays the required list of
ORDER_NUMBER versus PRODUCT_NAME as shown in Figure 24.

Name Type Size
Default
value

Short
column
name

Must
contain a

value

Order_Number TEAMXX.
SRLNUMBER

ODONBR Yes

Product_Number TEAMXX.
SRLNUMBER

ODPNBR Yes

Orderdtl_Quantity DECIMAL() 5,0 ODOQTY No

Orderdtl_Item_Cost TEAMXX.MONEY ODDCST Yes

Order_Abstract CLOB() 50 K ODABS Yes
46 DB2 UDB for AS/400 Object Relational Support

Figure 24. UDT JOIN query results

3.4.3 Using a default value with UDT
As with built-in data type columns, a default value can be specified for
User-defined Distinct Type columns.

A default value can be specified using the Table Properties window in Operations
Navigator. To display the Table Properties window, open the Libraries folder under
the Database object. Click on the required library to display its contents.
Right-click the required table, and select Properties.

Figure 25 on page 48 shows the Table Properties window for the table named
PRODMAST01. The default value field shows that we have selected the
PRODUCT_PRICE column and set its default value to:

MONEY(99.99)

Use casting functions when joining tables on columns that are not of the same
distinct type.

Note
User-defined Distinct Types (UDTs) 47

Figure 25. PRODMAST01 table properties with the UDT column default value

Click the OK button to update the table properties. The column default value is
used when adding a new row without specifying a value for the column.

You can also set the same default value using the following SQL ALTER TABLE
statement:

alter table teamxx/prodmast01 alter column product_price
set default money(99.99);

If you need to create a new table using a distinct type column default value, the
following example applies:

create table teamxx/prodmast01(
product_number for column pmnbr teamxx/srlnumber not null,
product_name for column pmnam char(25) not null,
product_description for column pmdesc teamxx/prddesc,
product_price for column pmpric teamxx/money not null
with default money(99.99),

product_picture for column pmpict teamxx/picture
);
comment on table teamxx/prodmast01 is 'Products Master Table 01';

The column default value will be used when inserting a new row without
specifying a value for the column:

insert into teamxx/prodmast01 (product_number,product_name)
values('00004','New product');

The Operations Navigator Quick View window should show that the
PRODUCT_PRICE column in the new row has been assigned the default value of
99.99 as shown in Figure 26.
48 DB2 UDB for AS/400 Object Relational Support

Figure 26. UDT column set using default value

3.5 DB2 UDB for AS/400 implementation

In this section, we examine specifics related to the DB2 UDB for AS/400
implementation of User-defined Distinct Types. These specifics include distinct
type access limitations using native I/O, keeping track of distinct types, and
database recovery.

Data Description Specification (DDS) does not support distinct types, so native
I/O access to distinct type fields is not possible. The preferred alternative is to
use embedded SQL to handle distinct type columns. Otherwise, restricted native
I/O access to tables containing distinct type columns is possible using logical files
or SQL views.

A logical file or SQL view that excludes distinct type columns can provide read
and write access to the non-distinct type columns in a table. An SQL view can
also cast distinct type fields to their source type to provide read only access to a
distinct type column.

The AS/400 implementation of distinct types provides a number of data dictionary
facilities that can be used to keep track of your distinct types. The SYSTYPES
catalog contains information on all distinct types in the database. The
SYSCOLUMNS catalog also contains information on all columns in the database.

The AS/400 implementation creates distinct types as *SQLUDT objects. The
basic Work with Objects options are available using a 5250 session. The
DSPFFD CL command can also be used to display File Field Descriptions
providing details, such as column definitions and distinct type source types.

Dependencies exist between distinct type objects and other objects that use the
distinct type, such as tables or user-defined functions. These dependencies have
implications for the sequence in which you save and restore objects that use
distinct types. For example, the implications of restoring a table before restoring a
distinct type that it uses need to be considered.

The AS/400 implementation does not log distinct types when journaling. Only the
source type is logged. This is consistent with the database manager using the
same internal representation for a distinct type and its source type.

3.5.1 Native system interfaces
As stated in the introduction of this section, Data Description Specification (DDS)
does not support distinct types, so native I/O access to distinct type fields is not
possible. While the preferred alternative is to use embedded SQL to handle
User-defined Distinct Types (UDTs) 49

distinct type columns, restricted native I/O access is possible using logical files or
SQL views.

3.5.1.1 Creating a logical file from a table containing UDT
A C program attempting to access a table (physical file) containing distinct type
columns using native I/O is shown in the following source listing. The numbered
lines are explained in the notes that follow the listing.

#include <stdio.h>
#include <recio.h>
#include <decimal.h>

#pragma mapinc("prodmast01","PRODMAST01(*ALL)","both","d z _P","")

1 #include "prodmast01"

static char* FILE_NAME = "PRODMAST01";

int main(int argc, char** argv)
{

2 TEAMXX_PRODMAST01_PRODMAST01_both_t buf;

3 _RFILE *fp;
_RIOFB_T *fb;

printf("\n");
printf("AS/400 DB2 UDB UDT Lab Test Program: %s\n", argv[0]);
printf("\n");

4 if ((fp = _Ropen(FILE_NAME, "rr")) == NULL)
{
perror("File open error");
return 0;

}

printf("Read all records: %s\n", FILE_NAME);
printf("\n");
printf("%-25.25s\n", "PRODUCT_NAME");

5 for (
fb = _Rreadf(fp, (void *)&buf, sizeof(buf), __NO_LOCK);
fb->num_bytes == sizeof(buf);
fb = _Rreadn(fp, (void *)&buf, sizeof(buf), __NO_LOCK))

{
printf("%-25.25s\n", buf.PRODUCT_NAME);

}

6 _Rclose(fp);

return -1;

}

C program notes
1. Include the typedefs generated from the external AS/400 file descriptions

(DDS) based on the preceding mapinc pragma.

2. Declare record file pointers needed to work with native files. These are defined
in recio.h.

3. Declare a record buffer using the typedef generated from the DDS. You can
compile your ILE C program with OUTPUT(*PRINT) OPTION(*SHOWUSR) to
see the typedefs in your compiler listing.

4. Open existing native file for reading records, setting fp to the return record file
pointer.
50 DB2 UDB for AS/400 Object Relational Support

5. The for loop initializes by reading the first record from the file. It checks that
the record buffer has been successfully read before each iteration, and it
reads the next record at the end of each iteration,

6. Close the native file on exit.

Create the bound C program using the following CL command:

CRTBNDC PGM(TEAMXX/UDTLABC) SRCMBR(UDTLABC)

The UDTLABC test program attempts to open the PRODMAST01 table for read
using native I/O. This table contains a number of distinct type fields. If we call the
program using: CALL TEAMXX/UDTLABC, the program terminates with a File open

error as shown in Figure 27.

Figure 27. UDTLABC test program results

Displaying the job log using the DSPJOBLOG command, we find the following error
message under the CALL TEAMXX/UDTLABC job log entry as shown in Figure
28.

Figure 28. UDTLABC job log error message

The Additional Message Information screen for this message is shown in Figure
29 on page 52.

Cause 3 applies in this case. The native I/O interface is not able to process user
defined data type fields. The recovery information suggests that embedded SQL
be used.

AS/400 DB2 UDB UDT Lab Test Program: TEAMXX/UDTLABC

File open error: A non-recoverable I/O error occurred.
Press ENTER to end terminal session.

4 > CALL TEAMXX/UDTLABC
Open of member PRODMAST01 file PRODMAST01 in TEAMXX failed.
User-defined Distinct Types (UDTs) 51

Figure 29. UDTLABC job log additional message information

We now examine another alternative using native I/O. It is possible to use logical
files or SQL views to gain limited native I/O access to tables with distinct type
columns. We can create a logical file from a table that contains distinct types. We
can create it without including the source table distinct types fields.

Figure 30 shows the Data Description Specification source to create a logical file
named UDTLFA that only defines the PMNAM field from our PRODMAST01
table. Table 3 on page 31 shows that this is the PRODUCT_NAME field, which is
built-in type CHARACTER.

Figure 30. UDTLFA display file screen

Create the logical file from the DDS using the following command:

CRTLF FILE(TEAMXX/UDTLFA) SRCFILE(TEAMXX/QDDSSRC)

We need to change the UDTLABC program to access the UDTLFA view rather
than the PRODMAST01 table. See the following program listing of the updated
program UDTLABD. The numbered lines are explained in the note that follows.

Additional Message Information

Message ID : CPF428A Severity : 40
Message type : Escape

Message : Open of member PRODMAST01 file PRODMAST01 in TEAMXX
failed.

Cause : Member PRODMAST01 file PRODMAST01 in library TEAMXX was
not opened because of error code 3. The error codes and their meanings are:

1 -- The format for file PRODMAST01 contains one or more large object
fields and the open request did not indicate that large object fields could
be processed by the user of the open.

2 -- The format for file PRODMAST01 contains one or more data link fields
and the open request did not indicate that data link fields could be
processed by the user of the open.

3 -- The format for file PRODMAST01 contains one or more user defined
data type fields and the open request did not indicate that user defined
data type fields could be processed by the user of the open.

4 -- A user-defined type for a field for the file does not exist.
Recovery . . . : Either specify a different file, use the DSPFFD command to
determine what user-defined type is missing, change the open request to
indicate that the specified field type can be processed, or change the
program to use embedded SQL to process the file. Then try your request
again. These field types are fully supported only through SQL. Therefore, if
you do not have the DB2 Query Manager and SQL Development Tool Kit for
AS/400 product, your program may not be able to access file PRODMAST01.

Browse : TEAMXX/QDDSSRC(UDTLFA)
Record . : 1 of 2 by 15 Column: 13 of 92 by 79
Control :

..+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9.
************Beginning of data**************

R PRODMAST01 PFILE(TEAMXX/PRODMAST01)
PMNAM

************End of Data********************
52 DB2 UDB for AS/400 Object Relational Support

#include <stdio.h>
#include <recio.h>
#include <decimal.h>

#pragma mapinc("udtlfa", "UDTLFA(*ALL)", "both", "d z _P","")

1 #include "udtlfa"

static char* FILE_NAME = "UDTLFA";

int main(int argc, char** argv)
{

2 TEAMXX_UDTLFA_PRODMAST01_both_t buf;

_RFILE *fp;
_RIOFB_T *fb;

printf("\n");
printf("AS/400 DB2 UDB UDT Lab Test Program: %s\n", argv[0]);
printf("\n");

if ((fp = _Ropen(FILE_NAME, "rr")) == NULL)
{
perror("File open error");
return 0;

}

printf("Read all records: %s\n", FILE_NAME);
printf("\n");
printf("%-25.25s\n", "PRODUCT_NAME");

for (
fb = _Rreadf(fp, (void *)&buf, sizeof(buf), __NO_LOCK);
fb->num_bytes == sizeof(buf);
fb = _Rreadn(fp, (void *)&buf, sizeof(buf), __NO_LOCK))

{
printf("%-25.25s\n", buf.PRODUCT_NAME);

}

_Rclose(fp);

return -1;

}

UDTLABD program notes
1. Changed mapinc pragma and include to use UDTLFA logical file.
2. Changed record buffer declaration to use the new typedef generated from the

UDTLFA DDS.

Create the bound C program using the following CL command:

CRTBNDC PGM(TEAMXX/UDTLABD) SRCMBR(UDTLABD)

The UDTLABD test program attempts to open the UDTLFA logical file for read
using native I/O. This logical file excludes the distinct type fields in the
PRODMAST01 table. If we call the program using: CALL TEAMXX/UDTLABD, the
program terminates having read all records successfully as shown in Figure 31
on page 54.
User-defined Distinct Types (UDTs) 53

Figure 31. UDTLABD native I/O read results

We have demonstrated that native read can be performed on a table containing
distinct types if we create a logical file excluding the distinct types.

3.5.1.2 Creating an SQL view from a table containing UDT
We have seen that logical files can be used to provide native I/O access to
non-distinct type fields in tables using distinct types. SQL views can be used to
extend native I/O access to enable read-only access to distinct type columns.

The SQL interface provides access to distinct type casting functions. These
casting functions can be used to cast a distinct type column in a table to a source
type in a view. View columns are read-only if a column function is used. The cast
distinct type field will, therefore, be read-only.

The following SQL statement creates a view named UDTLFB:

create view teamxx/udtlfb (product_name, product_dec_price)
as select product_name, decimal(product_price)
from teamxx/prodmast01;

The statement selects the PRODUCT_NAME column and DECIMAL of the
PRODUCT_PRICE column from our PRODMAST01 table.

The following source listing of a C program attempts to access this SQL view
containing distinct type column cast to its source type using native I/O. The
numbered lines are explained in the note that follows.

#include <stdio.h>
#include <decimal.h>
#include <recio.h>

#pragma mapinc("udtlfb", "UDTLFB(*ALL)", "both", "d z _P","")

1 #include "udtlfb"

static char* FILE_NAME = "UDTLFB";

int main(int argc, char** argv)
{

TEAMXX_UDTLFB_UDTLFB_both_t buf;

_RFILE *fp;
_RIOFB_T *fb;

printf("\n");
printf("AS/400 DB2 UDB UDT Lab Test Program: %s\n", argv[0]);
printf("\n");

2 if ((fp = _Ropen(FILE_NAME, "rr+")) == NULL)

AS/400 DB2 UDB UDT Lab Test Program: TEAMXX/UDTLABD

Read all records: TEAMXX/UDTLFA

PRODUCT_NAME
Atomic Betaflex 9.08
Atomic BetaCarvX 9.26
Tecnica Explosion SR
Press ENTER to end terminal session.
54 DB2 UDB for AS/400 Object Relational Support

{
perror("File open error");
return 0;

}

3 sprintf(buf.PRODUCT_NAME, "%-25.25s", "New name");
buf.PRODUCT_DEC_PRICE = 0;

printf("Update first record: %s\n", FILE_NAME);
printf("\n");
printf("%-25.25s %-17.17s\n", "PRODUCT_NAME", "PRODUCT_DEC_PRICE");
printf("%-25.25s ", buf.PRODUCT_NAME);
printf("%17D(11,2)\n", buf.PRODUCT_DEC_PRICE);
printf("\n");

4 _Rlocate(fp, NULL, 0, __FIRST);
5 fb = _Rupdate(fp, (void *)&buf, sizeof(buf));
6 if (fb->num_bytes != sizeof(buf))
{
perror("File update error");

}

printf("Read all records: %s\n", FILE_NAME);
printf("\n");
printf("%-25.25s %-17.17s\n", "PRODUCT_NAME", "PRODUCT_DEC_PRICE");

7 for (
fb = _Rreadf(fp, (void *)&buf, sizeof(buf), __NO_LOCK);
fb->num_bytes == sizeof(buf);
fb = _Rreadn(fp, (void *)&buf, sizeof(buf), __NO_LOCK))

{
printf("%-25.25s ", buf.PRODUCT_NAME);
printf("%17D(11,2)\n", buf.PRODUCT_DEC_PRICE);

}

_Rclose(fp);

return -1;

}

C program notes
1. mapinc pragma and include set to use UDTLFB logical file.

2. Open existing native file for reading, writing, or updating records.

3. Initialize the record buffer with the record update data.

4. Locate the first record.

5. Update the first record with the data in the record buffer.

6. Check that the record was successfully updated.

7. Read all records.

Create the bound C program using the following CL command:

CRTBNDC PGM(TEAMXX/UDTLABE) SRCMBR(UDTLABE)

The UDTLABE test program attempts to open the UDTLFB SQL view for read and
update using native I/O. This logical file excludes the distinct type fields in the
PRODMAST01 table. If we call the program using: CALL TEAMXX/UDTLABE, the
program terminates having updated the first record and then reads all records
successfully as shown in Figure 32 on page 56.
User-defined Distinct Types (UDTs) 55

Figure 32. UDTLABE native I/O results

Looking closely at these results, we can see that the first record was updated with
PRODUCT_NAME set to New name, and PRODUCT_DEC_PRICE set to 0.00.

When reading all records after the write, we can see that the PRODUCT_NAME
field was successfully updated, but the PRODUCT_DEC_PRICE was not.

As shown in Figure 33, the DSPJOBLOG command shows no error or warning
messages under the CALL TEAMXX/UDTLABE job log entry.

Figure 33. UDTLABE job log entry with no error messages

The following SQL statement updates the same column using the SQL interface:

update teamxx/udtlfb set product_dec_price = 0
where product_name = 'New name';

This statement will fail with the following message:

SQL0151 - Column PRODUCT_DEC_PRICE in table UDTLFB in TEAMXX read-only.

The job log provides further details on SQL execution errors.

In the Operations Navigator Run SQL Scripts window, select View->Job Log....
Then double-click the Message ID of interest, SQL0151, to display the Detailed
Message Information window as shown in Figure 34.

In this case, the detailed message information indicates that the
PRODUCT_DEC_PRICE column is read only because it is derived from an

AS/400 DB2 UDB UDT Lab Test Program: TEAMXX/UDTLABE

Update first record: TEAMXX/UDTLFB

PRODUCT_NAME PRODUCT_DEC_PRICE
New name 0.00

Read all records: TEAMXX/UDTLFB

PRODUCT_NAME PRODUCT_DEC_PRICE
New name 455.00
Atomic BetaCarvX 9.26 705.00
Tecnica Explosion SR 530.00
Press ENTER to end terminal session.

4 > CALL TEAMXX/UDTLABE

As we have seen, the native I/O interface does not flag an error when
attempting to update a distinct type field using a view that casts the distinct
type column to its source type.

Important
56 DB2 UDB for AS/400 Object Relational Support

expression. The recovery advice suggests removing the PRODUCT_DEC_PRICE
column from the column list.

Figure 34. Column read-only error

3.5.2 Keeping track of distinct types
The database manager provides a number of data dictionary facilities that can be
used to keep track of User-defined Distinct Types. In this section, we see how to
view UDT information using the SYSTYPES catalog, the SYSCOLUMNS catalog,
the *SQLUDT object, and the DSPFFD CL command.

3.5.2.1 SYSTYPES catalog
Distinct types (and built-in types) are stored in the SYSTYPES catalog. Refer to
DB2 UDB for AS/400 SQL Reference, SC41-5612, for the detailed description of
the catalog views.

The following SQL statement displays SYSTYPES information on User-defined
Distinct Types in the TEAMXX library:

select * from systypes where user_defined_type_schema = 'TEAMXX';

If we run this statement using the Operations Navigator Run SQL Scripts window,
with the distinct types listed in Table 4 on page 31 in the TEAMXX library, the
query results viewer displays distinct type details as shown in Figure 35 on page
58.
User-defined Distinct Types (UDTs) 57

Figure 35. SYSTYPES catalog

3.5.2.2 SYSCOLUMNS catalog
Column details are stored in the SYSCOLUMNS catalog. Refer to DB2 UDB for
AS/400 SQL Reference, SC41-5612, for the detailed description of the catalog
views.

The following SQL statement displays SYSCOLUMNS information on the
PRODMAST01 table in the TEAMXX library:

select column_name, data_type, user_defined_type_name from syscolumns
where table_name = 'PRODMAST01' and table_schema = 'TEAMXX';

If we run this statement using the Operations Navigator Run SQL Scripts window,
with the PRODMAST01 table defined, as shown in Table 3 on page 31, the query
results viewer displays PRODMAST01 column details as shown in Figure 36.

Figure 36. SYSCOLUMNS catalog

We can join the SYSCOLUMNS table to the SYSTYPES table to find the source
data type as follows:

select
syscolumns.column_name,
syscolumns.data_type,
syscolumns.user_defined_type_schema as "UDT_SCHEMA",
syscolumns.user_defined_type_name as "UDT_NAME",
systypes.source_type

from
syscolumns left join systypes on
syscolumns.user_defined_type_schema =
systypes.user_defined_type_schema and

syscolumns.user_defined_type_name =
systypes.user_defined_type_name

where
syscolumns.table_name = 'PRODMAST01' and
syscolumns.table_schema = 'TEAMXX';

If we run this statement using the Operations Navigator Run SQL Scripts window,
with the PRODMAST01 table defined, as shown in Table 3 on page 31, the query
results viewer displays PRODMAST01 column details and source type as shown
in Figure 37.
58 DB2 UDB for AS/400 Object Relational Support

Figure 37. SYSCOLUMNS catalog with SYSTYPES.SOURCE_TYPE

3.5.2.3 The *SQLUDT object
The *SQLUDT object type contains all of the information for a distinct type. There
is one *SQLUDT object for each distinct type in the system.

To view *SQLUDT objects using Operations Navigator, click the required library
object in the Libraries folders. Objects in the library are displayed in the right
panel as shown in Figure 38. This view contains a list of the distinct types in the
TEAMXX library.

Figure 38. Operations Navigator view of user type objects

To view the properties of an *SQLUDT object, right-click the required object, and
select Properties. The Properties window appears showing details on the Source
data type. Figure 39 on page 60 shows properties for the MONEY distinct type.
User-defined Distinct Types (UDTs) 59

Figure 39. UDT properties dialog

You can also view distinct type information using the *SQLUDT object from a
5250 session. To work with *SQLUDT objects in the TEAMXX library, use the
following command:

WRKOBJ OBJ(TEAMXX/*ALL) OBJTYPE(*SQLUDT)

The Work with Objects screen is displayed as shown in Figure 40. Information on
the source types of distinct types is not available here, but you can find out what
distinct types are in a library.

Figure 40. Work with *SQLUDT objects

3.5.2.4 The DSPFFD CL command
The Display File Field Description (DSPFFD) CL command can be used to view
table column descriptions from a 5250 session.

The following command displays the File Field Description for the PRODMAST01
table in the TEAMXX library:

DSPFFD FILE(TEAMXX/PRODMAST01)

If we run this statement with the PRODMAST01 table defined, as shown in Table
3 on page 31, the DSPFFD Display Spooled File screen is displayed as shown in
Figure 41.

Work with Objects

Type options, press Enter.
2=Edit authority 3=Copy 4=Delete 5=Display authority 7=Rename
8=Display description 13=Change description

Opt Object Type Library Attribute Text
MONEY *SQLUDT TEAMXX UDT sourced from DECIMAL(11
PICTURE *SQLUDT TEAMXX UDT sourced from BLOB(1M)
PRDDESC *SQLUDT TEAMXX UDT sourced from CLOB(100K)
SRLNUMBER *SQLUDT TEAMXX UDT sourced from CHAR(5)
60 DB2 UDB for AS/400 Object Relational Support

Figure 41. File field description for the PRODMAST01 table

The File Field Description contains a Field Level Information section that lists the
Data Type, Field Length, Buffer Length, Buffer Position, Field Usage, and Column
Heading for each field. The User defined-type name and User defined-type library
name are provided for fields using a distinct type.

Display Spooled File
File : QPDSPFFD Page/Line 1/1
Control Columns 1 - 130
Find
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....

Display File Field Description
Input parameters
File : PRODMAST01
Library : TEAMXX

File Information
File : PRODMAST01
Library : TEAMXX

File location : *LCL
Externally described : Yes
Number of record formats : 1
Type of file : Physical
SQL file type : TABLE
File creation date : 09/28/99

Record Format Information
Record format : PRODMAST01
Format level identifier : 5D683E61EECB3
Number of fields : 5
Record length : 112

Field Level Information
Data Field Buffer Buffer Field Column

Field Type Length Length Position Usage Heading
PMNBR CHAR 5 5 1 Both PRODUCT_NUMBER
Alternative name : PRODUCT_NUMBER
User defined-type name : SRLNUMBER
User defined-type library name : TEAMXX
Default value : None
Coded Character Set Identifier : 37

PMNAM CHAR 25 25 6 Both PRODUCT_NAME
Alternative name : PRODUCT_NAME
Default value : None
Coded Character Set Identifier : 37

PMDESC CLOB 102400 34 31 Both PRODUCT_DESCRIPTION
Alternative name : PRODUCT_DESCRIPTION
Allocated Length : 0
User defined-type name : PRDDESC
User defined-type library name : TEAMXX
Allows the null value
Coded Character Set Identifier : 37

PMPRIC PACKED 11 2 6 65 Both PRODUCT_PRICE
Alternative name : PRODUCT_PRICE
User defined-type name : MONEY
User defined-type library name : TEAMXX
Default value : None

PMPICT BLOB 1048576 42 71 Both PRODUCT_PICTURE
Alternative name : PRODUCT_PICTURE
Allocated Length : 0
User defined-type name : PICTURE
User defined-type library name : TEAMXX
Allows the null value
Coded Character Set Identifier : 65535
User-defined Distinct Types (UDTs) 61

Note how the Buffer Length was adjusted for the PRODUCT_DESCRIPTION and
PRODUCT_PICTURE fields. Both fields are sourced from an LOB type. An LOB
type value is represented in the record structure by a pointer to a data space
location. This pointer must be aligned on a 16-byte boundary. Therefore, the
database manager assigns a buffer, which is large enough to accommodate a
required shift to the next 16-byte boundary and 32 bytes for the pointer.

Note also how the Data Type (PACKED) and Field Length (11 2) of the
PRODUCT_PRICE column relate to the source type of MONEY, that is,
DECIMAL(11,2).

3.5.3 Database recovery
This section describes how to save and restore distinct types and dependent
tables and some of the considerations that apply.

3.5.3.1 Saving a table using UDT
To save a table using a distinct type to a save file, complete these steps:

1. Use the CRTSAVF CL command to create a new save file.
2. Use the SAVOBJ CL command to save the table object.

To create a new save file in the TEAMXX library, use the following command:

CRTSAVF FILE(TEAMXX/UDTASAVF) TEXT('UDT Lab A Save File')

To save the PRODMAST01 table in the TEAMXX library, defined as shown in
Table 3 on page 31, use the following command:

SAVOBJ OBJ(PRODMAST01) LIB(TEAMXX) DEV(*SAVF) OBJTYPE(*FILE)
SAVF(TEAMXX/UDTASAVF)

3.5.3.2 Saving a UDT
To save a distinct type to a save file, perform these steps:

1. Use the CRTSAVF CL command to create a new save file.
2. Use the SAVOBJ CL command to save the distinct type object.

Note that, as with other objects, distinct types can also be saved to other offline
media.

To create a new save file in the TEAMXX library, use the following command:

CRTSAVF FILE(TEAMXX/UDTBSAVF) TEXT('UDT Lab B Save File')

To save the MONEY distinct type in the TEAMXX library, defined as shown in
Table 4 on page 31, use the following command:

SAVOBJ OBJ(MONEY) LIB(TEAMXX) DEV(*SAVF) OBJTYPE(*SQLUDT)
SAVF(TEAMXX/UDTBSAVF)

The database manager allows you to save a table that is using distinct types
without saving the required distinct types. A database administrator may want
to distribute a shared UDT library to a number of servers without having to save
the UDT library on each server.

Note
62 DB2 UDB for AS/400 Object Relational Support

3.5.3.3 Dropping a UDT in use
There are dependencies between User-defined Distinct Types and other objects,
such as tables with distinct type columns. The database manager requires that
dependent objects be dropped first. This section shows what to expect if
attempting to drop a distinct type that is being used by a table.

To drop a distinct type using Operations Navigator, you open the required library,
right-click on the distinct type object you wish to delete, and select Delete from
the context menu.

If you attempt to delete the MONEY distinct type from the TEAMXX library when it
is in use by a table, a Database Error window appears indicating that the distinct
type cannot be dropped as shown in Figure 42.

Figure 42. UDT cannot be dropped error window

The error occurs if the database manager finds another object that uses the
distinct type to be dropped. In this case, the error message indicates that the
dependent object is the ORDERDTL table, which has a column of distinct type
MONEY. As advised in the error message Recovery note, dependent objects
must be dropped first.

To drop a distinct type using the SQL interface, use the DROP DISTINCT TYPE
statement.

We may attempt to delete the MONEY distinct type from the TEAMXX library
when it is in use by a table as follows:

drop distinct type teamxx/money;

Then, the run history in the Operations Navigator Run SQL Scripts window shows
that this statement failed by providing the following message:

SQL0478 - Object MONEY in TEAMXX of type SQLUDT cannot be dropped.

The job log provides further details on SQL execution errors. In the Operations
Navigator Run SQL Scripts window, select View->Job Log... to display the Job
Log window.

Double-clicking the Message ID of interest (in this case SQL0478) displays the
Detailed Message Information window as shown in Figure 43 on page 64.
User-defined Distinct Types (UDTs) 63

The detailed message information indicates that the dependent object is the
PRODMAST01 table, which has a column of distinct type MONEY. The Recovery
note again advises that dependent objects must be dropped first.

Figure 43. UDT cannot be dropped message details

3.5.3.4 Dropping a table using UDT
As seen in 3.5.3.3, “Dropping a UDT in use” on page 63, objects that depend on a
User-defined Distinct Type must be dropped before the distinct type can be
dropped.

To drop a table using Operations Navigator, you open the required library,
right-click on the table object you want to delete, and select Delete from the
context menu.

To drop a table using the SQL interface, use the DROP TABLE statement. For
example, use the following statement to drop the PRODMAST01 table in the
TEAMXX library:

drop table teamxx/prodmast01;

3.5.3.5 Dropping a UDT
A distinct type can be dropped by issuing the DROP DISTINCT TYPE statement.
This statement accepts two additional options that determine what actions are
performed by the database manager:

• No option specified: If a user-defined type can be dropped, every User-defined
Function that has the following elements is also dropped:

– Parameters of the type being dropped
– A return value of the type being dropped
– A reference to the type being dropped
64 DB2 UDB for AS/400 Object Relational Support

Consider this example:

DROP DISTINCT TYPE money

If there is no table using the money data type, the type definition, along with all
dependent functions, are dropped.

• CASCADE: All dependent objects, along with the UDT definition, are dropped,
for example:

DROP DISTINCT TYPE money CASCADE

This statement drops all tables and UDFs that reference the money distinct
type.

• RESTRICT: The UDT is dropped only if there are no dependent objects, for
example:

DROP DISTINCT TYPE money RESTRICT

This statement drops the UDT only if there are no UDFs and tables that refer
to it.

To drop a distinct type using Operations Navigator, you open the required library,
right-click on the distinct type object you wish to delete, and select Delete from
the context menu. If there are no dependent objects, the right panel refreshes
and you should see that the distinct type object has been removed from the
library. Note that the Operations Navigator Delete Object dialog uses the DROP
TYPE statement with no option specified.

3.5.3.6 Restoring a table using a UDT with UDT not restored
As shown in 3.5.3.3, “Dropping a UDT in use” on page 63, there are
dependencies between User-defined Distinct Types and other objects, such as
tables with distinct type columns. These dependencies need to be considered
when restoring objects that use distinct types. We now examine what to expect if
a table is restored from a save file when a required distinct type is not accessible.

We may restore the PRODMAST01 table, used in our example 3.5.3.1, “Saving a
table using UDT” on page 62, with the following CL command:

RSTOBJ OBJ(PRODMAST01) SAVLIB(TEAMXX) DEV(*SAVF) OBJTYPE(*FILE)
SAVF(TEAMXX/UDTASAVF)

Then, the following message appears in the 5250 message line, indicating that
the table was successfully restored:

1 objects restored from TEAMXX to TEAMXX.

If we then try accessing the restored table using Operations Navigator by
double-clicking the table object, a Database Error window appears. The error
indicates that a distinct type cannot be found as shown in Figure 44 on page 66.

You can omit the keyword DISTINCT in the DROP DISTINCT TYPE statement.

Note
User-defined Distinct Types (UDTs) 65

Figure 44. UDT not found error window

The error occurs if the database manager cannot find a required distinct type. In
this case, the MONEY distinct type is missing. If the missing distinct type is not
known, the data dictionary facilities discussed in 3.5.2, “Keeping track of distinct
types” on page 57, can be used to identify it.

If we try accessing the restored table using the SQL interface as follows:

select * from teamxx/prodmast01;

The run history shows that this statement failed and the following message
appears:

SQL0204 - *N in *N type *SQLUDT not found.

We can select View->Job Log... in the Run SQL Scripts window to display the
Job Log window.

Figure 45. Job log for UDT not found

Double-clicking on the Message ID of interest, in this case SQL0204, does not
identify the missing UDT. Returning to the job log, we see two other messages
logged with the SQL0204 message as shown in Figure 45. Double-clicking on the
Datalink, user-defined type, or LOB field error, reason code 6. message, as
highlighted in Figure 45, displays the Detailed Message Information window
shown in Figure 46.
66 DB2 UDB for AS/400 Object Relational Support

Figure 46. UDT error message details

The detailed message information shown in Figure 46 indicates that the UDT not
found problem is with the PMPRIC column in the TEAMXX/PRODMAST01 table.

We can check the data type of the PMPRIC column in the SYSCOLUMNS catalog
with the following SQL statement:

select
system_column_name,
user_defined_type_schema,
user_defined_type_name

from
syscolumns

where
table_name = 'PRODMAST01' and
table_schema = 'TEAMXX';

If we run this statement using the Operations Navigator Run SQL Scripts window,
the query results viewer displays PRODMAST01 column details as shown in
Figure 47.

Figure 47. SYSCOLUMNS details for PRODMAST01 table
User-defined Distinct Types (UDTs) 67

Looking at Figure 47 on page 67, we can see that
USER_DEFINED_TYPE_NAME for the PMPRIC column is TEAMXX/MONEY.
We need to redefine the MONEY distinct type or restore it from the save file to
reestablish access to the PMPRIC column.

You could also use the DSPFFD CL command to find the data type of the PMPRIC
column instead of using the SYSCOLUMNS catalog. Refer to 3.5.2.4, “The
DSPFFD CL command” on page 60, for further details. Another alternative is to
use Operations Navigator interface. We show how to display the UDT’s Property
dialog in 3.5.2.3, “The *SQLUDT object” on page 59.

Note: Only columns that are defined using missing distinct types are
inaccessible. You can still select other columns.

The following SQL example will work because the PRODUCT_NAME column is a
built-in data type:

select product_name from teamxx/prodmast01;

3.5.3.7 Restoring a UDT to allow access to a table using UDT
We may restore the MONEY distinct type, used in our example 3.5.3.2, “Saving a
UDT” on page 62, with the following CL command:

RSTOBJ OBJ(MONEY) SAVLIB(TEAMXX) DEV(*SAVF) OBJTYPE(*SQLUDT)
SAVF(TEAMXX/UDTBSAVF)

Then, the following message appears in the 5250 message line, indicating that
the distinct type was successfully restored:

1 objects restored from TEAMXX to TEAMXX.

If we then try accessing the restored table using Operations Navigator by
double-clicking on the table object, the Edit Table window appears, confirming
that the distinct type has been correctly restored.

If we try accessing the restored table using the SQL interface as follows:

select * from teamxx/prodmast01;

the query results viewer is displayed, again confirming that the distinct type has
been correctly restored.

Restoring the distinct type also reestablishes access to objects dependent on the
distinct type.
68 DB2 UDB for AS/400 Object Relational Support

Chapter 4. User Defined Functions (UDFs)

This chapter describes:

• User-defined Function (UDF) types
• Resolving UDFs
• Coding UDFs in SQL and High-level Languages
• Parameters styles for external UDFs
• Using LOBs and UDTs with UDFs
• Debugging UDFs
• Backup/Recovery considerations for UDFs

4.1 A need for User Defined Functions

A function is a relationship between a set of input values and a set of result
values. When invoked, a function performs some operation (for example,
concatenate) based on the input and returns a single result to the invoker.
Functions can be specified anywhere where an expression is allowed in SQL.

On a DB2 UDB system, the functions that are available for use fall into three
categories:

• Built-in Functions: These functions come pre-installed with the system. They
are built into the code of the DB2 UDB system. Examples of such functions
are the SUBSTR and the CONCAT function.

• System Generated Functions: These functions are automatically generated
when a distinct type is created on the system. When a distinct type is created,
you are automatically provided with the cast functions between the distinct
type and its source type. You are also provided with comparison operators,
such as =, <, and >.

• User Defined Functions (UDFs): These functions are explicitly created by
the users of the system using the CREATE FUNCTION SQL statement. This
statement names the function and specifies its characteristics.

The User Defined Function (UDF) support is a facility given to the database
programmers to create a function that can, subsequently, be used in SQL. It can
be thought of as an interface that lets you extend and customize SQL to meet
your needs. DB2 UDB for AS/400 comes with a set of built in functions, such as
SUBSTRING and CONCAT, but these may not satisfy all of your requirements.
With UDFs, you can write your own scalar functions and then, subsequently, use
them in SQL statements just like any other system supplied function.

UDFs are useful for the following reasons:

• Supplement built-in functions: A User Defined Function is a mechanism
with which you can write your own extensions to SQL. The built-in functions
supplied with DB2 are a useful set of functions, but they may not satisfy all of
your requirements. So, you may need to extend SQL. For example, porting
applications from other database platforms may require coding of some
platform specific functions.

• Handle user-defined data types: You can implement the behavior of a
User-defined Distinct Type (UDT) using UDFs. When you create a distinct
type, the database provides only cast functions and comparison operators for
© Copyright IBM Corp. 2000 69

the new type. You are responsible for providing any additional behavior. It is
best to keep the behavior of a distinct type in the database where all of the
users of the distinct type can easily access it. Therefore, UDFs are the best
implementation mechanism for UDTs.

• Provide function overloading: Function overloading means that you can
have two or more functions with the same name in the same library. For
example, you can have several instances of the SUBSTR function that accept
different data types as input parameters. Function overloading is one the key
features required by the object-oriented paradigm.

• Allow code re-use and sharing: A business logic implemented as a UDF
becomes part of the database, and it can be accessed by any interface or
application using SQL.

UDFs can be written in any of the languages available on the AS/400 system,
with the exception of REXX and Java (with Java support coming very soon). You
can also use the SQL scripting language to write UDFs.

4.2 UDF types

There are three categories into which User Defined Functions can be divided.
These categories and their characteristics are discussed in this section. Refer to
4.4, “Coding UDFs” on page 77, for code examples and implementation details.

4.2.1 Sourced
A sourced UDF enhances the functionality of a function that already exists on the
system at the time of creation of the sourced function. In other words, these are
functions registered to the database that themselves reference another function.
There is no coding involved. You simply register a new function to the database
using the CREATE FUNCTION statement. Sourced UDFs are often used to implement
the required behavior of UDTs. The following example illustrates how to
implement the "-" operator for the money data type without the need for
reinventing arithmetic operations:

create function TEAMxx/"-"(MONEY, MONEY)
returns MONEY
specific MINUS00001
source QSYS2/"-"(decimal, decimal);

4.2.2 SQL
These are functions that are written entirely using SQL. The body of the function
is embedded within the CREATE FUNCTION statement. The SQL UDFs have the
structure as shown here:

create function myUDF (Parameters)
returns ReturnvValue
language SQL
BEGIN

sql statements
END;

Since these functions are written using pure SQL, it is easy to port them to other
database platforms. In the following, SQL UDF is used to retrieve the first two and
last two characters of a CLOB value:
70 DB2 UDB for AS/400 Object Relational Support

CREATE FUNCTION slice(p1 clob)
RETURNS CHAR(4)
LANGUAGE SQL
-- returns the first two and the last two characters of the clob
s1: BEGIN
DECLARE temp CHAR(4);
SET temp = CONCAT(SUBSTR(p1,1,2), SUBSTR(p1,LENGTH(p1)-1,2));
RETURN temp;

END s1;

4.2.3 External
An external function is one that has been written by the user in one of the
programming languages on the AS/400 system. External functions can be written
in ILE C/400, ILE RPG/400, ILE COBOL/400, ILE CL/400, RPG/400,
COBOL/400, and CL/400. You can compile the host language programs to create
either programs or service programs. To create an external UDF, the source code
for the host language program must first be compiled so that a program or a
service program object is created. Then, the CREATE FUNCTION statement is used to
tell the system where to find the program object that implements the function. The
function registered in the following example checks whether the passed BLOB
object contains a picture in GIF format. The function was implemented in the C
language:

create function TEAMxx/ISGIF(BLOB)
returns INTEGER
language C
specific ISGIF00001
no sql
no external action
external name 'TEAMXX/PICTCHECK(fun_CheckPictureType)'
parameter style SQL;

The following SQL statement uses the newly created function to retrieve product
numbers of those products that have an accompanying GIF picture:

select product_number from prodmast01 where isgif(product_picture) = 1;

4.3 Resolving UDF

Resolving to the correct function to use for an operation is more complicated than
other resolution operations since DB2 UDB supports function overloading. This
means that a user may define a function with the same name as a built-in function
or another UDF on the system. For example, SUBSTR is a built-in function, but
the user may define their own SUBSTR function that takes slightly different
parameters. Therefore, even resolving to a supposedly built-in function still
requires that function resolution be performed. The following sections explain how
DB2 UDB for AS/400 resolves references to functions.

To create an SQL UDF, you must have the SQL Development Kit and the ILE
C/400 products installed on your development system. Once created, the SQL
UDF may be run on an AS/400 system without needing these license
programs. The run time support for the SQL UDFs is part of the OS/400.

Note
User Defined Functions (UDFs) 71

4.3.1 UDF function overloading and function signature
As mentioned earlier, DB2 UDB supports the concept of function overloading.
This means that you can have two or more functions with the same name in the
same library, provided they have a different signature. The signature of a function
can be defined as the combination of the qualified function name and the data
types of the input parameters of the function.

No two functions on the system can have the same signature. The lengths and
precision of the input parameters is not considered to be part of the signature.
Only the data type of the input parameters is considered to be part of the
signature. Therefore, if you have a function called myUDF in library LIB1 that
accepts an input parameter of type CHAR(5), you cannot have another function
called myUDF in the same LIB1 that accepts CHAR(10). The length of the
variable is not considered part of the signature. However, it is possible to have
another function myUDF in library LIB1 that accepts a DECIMAL value as an
input parameter. The following examples illustrate the concept of the function
signature. These two functions can exist in the same collection:

lib1.myUDF(char(5))
lib1.myUDF(decimal)

These two functions cannot exist in the same collection:

myUDF(char(10))
myUDF(char(5))

Notice that certain data types are considered equivalent when it comes to
function signatures. For example, CHAR and GRAPHIC are treated as the same
type from the signature point of view.

The data type of the value returned by the function is not considered to be part of
the function signature. This means that you cannot have two functions called
myUDF in library LIB1 that accept input parameters of the same data type, even if
they return values of different data types.

4.3.2 Function path and the function selection algorithm
On the AS/400 system, there are two types of naming conventions when using
SQL. One of them is called the system naming convention, and the other one is
called the SQL naming convention. The system naming convention is native to
the AS/400 system, and the SQL naming convention is specified by the ANSI
SQL standard.

The function resolution process depends on which naming convention you are
using at the time you execute the SQL statement, which refers to a UDF.

4.3.2.1 Function path
When unqualified references are made to a UDF inside an SQL statement, DB2
UDB for AS/400 uses the concept of PATH to resolve references to the UDF. The
path is an ordered list of library names. It provides a set of libraries for resolving
unqualified references to UDFs as well as UDTs. In cases where a reference to a
UDF matches more than one UDF in different libraries, the order of libraries in the
path is used to resolve to the correct UDF.
72 DB2 UDB for AS/400 Object Relational Support

The path can be set to any desired set of libraries using the SQL SET PATH

statement. The current setting of the path is stored in the CURRENT PATH
special register.

For the SQL naming convention, the path is set initially to the following default
value:

"QSYS", "QSYS2", "<USER ID>"

For the system naming convention, the path is set initially to the following default
value:

*LIBL

When you are using the system naming convention, the system uses the library
list of the current job as the path and uses this list to resolve the reference to the
unqualified references to the UDFs.

The current path can be changed with the SET PATH statement. Note that this
statement overrides the initial setting for both naming conventions. For example,
you can use the following statement:

SET PATH = MYUDFS, COMMONUDFS

to set the path to the following list of libraries:

QSYS, QSYS2, MYUDFS, COMMONUDFS

Notice that the libraries QSYS and QSYS2 are automatically added to the front of
the list. This is the case unless you explicitly change the position of these libraries
in the SET PATH statement. For example, the following statement sets the
CURRENT PATH registry to myfunc, QSYS, QSYS2:

SET PATH myfunc, SYSTEM PATH

For portability reasons, we recommend that you use SYSTEM PATH registry
rather then QSYS and QSYS2 library names on the SET PATH statement.

4.3.2.2 Function resolution in the CREATE FUNCTION statements
The function resolution for the supported naming conventions works as described
here:

• SQL naming convention: If the function name is qualified, the function is
created in the library specified. If a user profile with the same name as the
qualifying library exists, that user profile is the owner of the created function;
otherwise, the user profile that is creating the function is the owner of the
created function. If the function name is not qualified, the function is created in
a library with the same name as the user profile executing the SQL statement.
If such a library does not exist, you will receive an error message when
executing the statement.

• System naming convention: If the function name is qualified, the function is
created in the specified library. The owner of the function is the name of the
user profile that executes the SQL statement. If the function name is not
qualified, the function is created in the current library (*CURLIB). If there is no
current library, the function is created in QGPL.
User Defined Functions (UDFs) 73

If you are using system naming convention, you code the qualified function name
in the CREATE FUNCTION SQL statement in the following way:

CREATE FUNCTION LIB1/myUDF(CHAR(5))
...

If you are using SQL naming convention, you code the qualified function name in
the CREATE FUNCTION SQL statement in the following way:

CREATE FUNCTION LIB1.myUDF(CHAR(5))
...

4.3.2.3 Function resolution in data manipulation statements
The function resolution for the supported naming conventions works as described
here:

• SQL naming convention: If the name of the UDF is qualified, the system
searches for the function in the specified library. The function matching the
function signature specified in the SQL statement is chosen. The following
statements show how to invoke a UDF with its qualified name:

SELECT LIB1.myUDF(FIELD1) FROM LIB1.TABLE1

• System Naming Convention: You cannot have qualified references to UDFs
using the system naming convention. Qualified references to functions are
allowed only in the SQL naming convention. Therefore, a statement, such as
SELECT LIB1/myUDF(FIELD1) FROM LIB1/TABLE1, is not allowed.

If there is more than one function having a signature that matches those specified
in the SQL statement, the list of libraries in the current path is used to resolve the
reference. The system picks the first function matching the signature from the
libraries specified in the path. In case there are no functions exactly matching the
signature, the system uses parameter promotion (this concept is discussed in the
following section) to find the "best fit" for the function specified in the SQL
statement. If the system cannot find the function matching the required signature,
you receive an SQL error message similar to the one shown here:

SQL0204 - GETDESCRIPTION in *LIBL type *N not found.

All functions on the system, including built-in functions, have to pass through the
function selection algorithm before being selected for execution.

4.3.3 Parameter matching and promotion
When an SQL DML statement references a UDF, the system, at first, tries to find
an exact match for the function by searching for functions that have the same
signature. If the system finds a function having input parameters that exactly
match those specified in the DML statement, that function is chosen for
execution. In case the system cannot find any function in the path that exactly
matches those specified on the DML statement, the parameters on the function
call in the DML statement are promoted to their next higher type. Then, another
search is made for a function that accepts the promoted parameters as input.
During parameter promotion, a parameter is cast to its next higher data type. For
example, a parameter of type CHAR is promoted to VARCHAR, and then to
CLOB. There are restrictions on the data type to which a particular parameter can
be promoted. We explain this concept with an example.
74 DB2 UDB for AS/400 Object Relational Support

Let us assume that you have created a table CUSTOMER in library LIB1. This
table has, among its other fields, a field named CUSTOMER_NUMBER, which is
a CHAR(5). Let us also assume that you have written a function GetRegion that
will perform some processing and return the region to which your customer
belongs. The data type of the parameter that this function accepts as input is
defined to be of type CLOB(50K). Let us assume that there are no other functions
called GetRegion in the path. Now, if you execute the following query, you will see
that the function GetRegion(CLOB(50K)) is actually executed:

select GetRegion(customer_number) from customer

How is this possible? The field CUSTOMER_NUMBER from the CUSTOMER
table has the data type CHAR(5). The function GetRegion actually accepts a
CLOB as a parameter, and there are no other functions called GetRegion in the
path. In its attempt to resolve the function call, the system first searched the
library path for a UDF called GetRegion, which accepts an input parameter of
type CHAR. However, no such UDF was found. The system then promoted the
input parameter, in our case the customer number, up in the hierarchy list of
promotable types to a VARCHAR. Then, a search was made for an UDF called
GetRegion, which accepted an input parameter of type VARCHAR. Again, no
such UDF was found. Then, the system promoted the input parameter up the
hierarchy list to a CLOB. A search was made for an UDF called GetRegion, which
accepted an input parameter of type CLOB. This time the search was successful.
The system invoked the UDF GetRegion(CLOB(50K)) to satisfy the user
request.

The concept of parameter promotion is clearly demonstrated in the previous
example. Table 9 on page 76 gives a list of data types and the data types to which
they can be promoted.
User Defined Functions (UDFs) 75

Table 9. Precedence of data types

As you see from Table 9, data types can be promoted up the hierarchy only to
particular data types. Distinct types cannot be promoted. Even though distinct
types are based on one of the built-in data types, it is not possible to promote
distinct types to anything other than the same type.

Parameters cannot be demoted down the hierarchy list as shown in Table 9. This
means that, if the CUSTOMER_NUMBER column of the CUSTOMER table is a
CLOB, and the GetRegion UDF was defined to accept a CHAR as an input
parameter, a call, such as the one shown here, will fail because function
resolution will not find the UDF:

SELECT GetRegion(CUSTOMER_NUMBER) from customer

4.3.4 The function selection algorithm
The function selection algorithm searches the library path for a UDF using the
steps outlined here:

1. Finds all functions from the catalog (SYSFUNCS) and built-in functions that
match the name of the function. If a library was specified, it only gets those
functions from that library. Otherwise, it gets all functions whose library is in
the function path.

2. Eliminates those functions whose number of defined parameters does not
match the invocation.

3. Eliminates functions whose parameters are not compatible or "promotable" to
the invocation.

Data type Data type precedence list (in best to worst order)

CHAR or GRAPHIC CHAR or GRAPHIC, VARCHAR or VARGRAPHIC, CLOB, or
DBCLOB

VARCHAR or
VARGRAPHIC

VARCHAR or VARGRAPHIC, CLOB, or DBCLOB

CLOB or DBCLOB CLOB or DBCLOB

BLOB BLOB

SMALLINT SMALLINT, INTEGER, DECIMAL or NUMERIC, REAL,
DOUBLE

INTEGER INTEGER, DECIMAL or NUMERIC, REAL, DOUBLE

DECIMAL or NUMERIC DECIMAL or NUMERIC, REAL, DOUBLE

REAL REAL, DOUBLE

DOUBLE DOUBLE

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

DATALINK DATALINK

A distinct type The same distinct type
76 DB2 UDB for AS/400 Object Relational Support

For the remaining functions, the algorithm follows these steps:

1. Considers each argument of the function invocation, from left to right. For
each argument, it eliminates all functions that are not the best match for that
argument. The best match for a given argument is the first data type
appearing in the precedence list. Lengths, precessions, scales, and the "FOR
BIT DATA" attribute are not considered in this comparison. For example, a
DECIMAL(9,1) argument is considered an exact match for a DECIMAL(6,5)
parameter, and a VARCHAR(19) argument is an exact match for a
VARCHAR(6) parameter.

2. If more than one candidate function remains after the above steps, it has to be
the case (the way the algorithm works) that all the remaining candidate
functions have identical signatures but are in different schemas. It chooses the
function whose schema is earliest in the user's function path.

3. If there are no candidate functions, it signals the error SQLSTATE 42884.

Figure 48 summarizes the steps performed by DB2 UDB for AS/400 to resolve a
call to a UDF.

Figure 48. Function resolution algorithm

4.4 Coding UDFs

Before a UDF can be used in a Data Manipulation Language (DML) statement, it
must be registered with the database. This can be done by using the CREATE

FUNCTION DDL statement. The CREATE FUNCTION statement is used to define the
name of the function, the type of the function, the number and data type of the
input parameters, and the data type of the value returned by the UDF to the
invoking process. The CREATE FUNCTION statement can be embedded in an
application program, or it can be executed interactively. All three types of UDFs
can be created by this statement. The syntax of the statement is different for

Locate all function signatures with
same function name
schema name in function path
same number of parameters

(exact match or "promotable")

Is
qualified

name
given?

Function
signatures
remaining?

Error

Function
selected

Choose function
whose schema is
earliest in the
user's function
path

No Yes

=0 >1

=1

Locate all function signatures with
qualified name
same number of parameters

(exact match or "promotable")

Process arguments from first to last
for each argument eliminate all
functions that are not the
"best match"
User Defined Functions (UDFs) 77

sourced UDFs, SQL, and external UDFs. After a UDF is registered, it can be used
in any SELECT, UPDATE, DELETE DML statement from any interface from where an
SQL statement can be executed.

When a UDF is registered with the database, entries are made into the
SYSFUNCS and SYSPARMS system tables. These tables store information on
every function that is registered with the database. The information that is
recorded in these tables is discussed in 4.6, “The system catalog for UDFs” on
page 116.

UDFs can be defined to accept and return parameters of any datatype including
distinct types.

Apart from being classified as sourced, SQL, and external, UDFs can also be
classified as scalar or column. The scalar functions return a single value each
time they are invoked. These functions are executed once for every row of the
table. The SUBSTR() built-in function is an example of a scalar function. Column
functions receive a set of values as input. They return one value. The AVG()
built-in function is an example of a column function. Scalar functions can be
created as External, SQL, and Sourced functions. Column functions can only be
created as sourced functions.

4.4.1 Coding sourced UDFs
A sourced function is a function that references another function which, in turn, is
already registered with the database. The UDF can be sourced from any function
that is registered to the database, including built in functions. These operators
are: +, -, *, /, ||, CONCAT. The name of the sourced function cannot be any of the
comparison operators on the system. Functions for these operators are part of
the database system. There is also a number of other system functions that
cannot be used as the name of the sourced UDF. For more information on these
restrictions, refer to DB2 UDB for AS/400 SQL Reference, SC41-5612.

If the Sourced UDF being created references a scalar function, it inherits all the
attributes of the referenced function. When a sourced UDF is created, a small
service program is automatically created by the system in the background. This
service program is there to assist the system in the save/restore and grant/revoke
operations. You can think of it as a place holder for a function body, which is
implemented elsewhere (typically by a built-in function).

4.4.1.1 Creating sourced UDFs as scalar functions
We illustrate the use of the CREATE FUNCTION statement with an example. We
create an overloaded version of the SUBSTR function. The function accepts three
input parameters: a distinct type PRDDESC and two integers. It returns a
parameter of type PRDDESC. The function is sourced from the built-in function
SUBSTR(CLOB, INTEGER, INTEGER). In this example, we show you how to
create the script through the Operations Navigator Run SQL Scripts utility.

To open the Run SQL Scripts window, follow the steps outlined here:

1. Open an Operations Navigator session.

2. Right-click the Database object.

3. From the Database context menu, select the Run SQL Scripts option. This
opens the Run SQL Scripts window (Figure 49).
78 DB2 UDB for AS/400 Object Relational Support

Figure 49. Opening up a Run SQL Scripts session

Figure 50 shows the CREATE FUNCTION statement for the SUBSTR(PRDDESC,
INTEGER, INTEGER) function. The result of running the statement is shown in
the Run History panel of the Run SQL Scripts utility.

Figure 50. The CREATE FUNCTION statement for sourced UDF

Let us examine the CREATE FUNCTION statement shown in Figure 50 in detail. The
numbered sections are explained in the list that follows:

create function TEAMxx/SUBSTR(PRDDESC, INTEGER, INTEGER) 1
returns PRDDESC 2
specific SUBSTR0001 3
source QSYS2/SUBSTR(CLOB, INTEGER, INTEGER); 4
User Defined Functions (UDFs) 79

CREATE FUNCTION statement notes
1. We qualify the function name with the library name, TEAMxx in this case. We

use the system naming convention. If you do not qualify the function’s name in
the CREATE FUNCTION statement, the function is created in the current library.
The function takes three input parameters: the distinct type PRDDESC and
two parameters of type INTEGER. The definition for the distinct type
PRDDESC is taken from a library in the library list. If no definition of the UDT
is found, the CREATE FUNCTION statement returns an error. If multiple definitions
of the distinct type are found, the first definition found in the library list is used.

2. The RETURNS clause specifies the data type of the value returned by the
function. Note that the data type of the value returned by the function can be
different from the type of the value returned from the referenced program
object. However, the type returned from the program object must be castable
to the data type of the value returned by the function you are creating. For
example, you cannot define a SUBSTR function that returns a DECIMAL data
type as the return value of the function.

3. This is the SPECIFIC NAME clause of the CREATE FUNCTION statement. Every
function created on the AS/400 system must have a specific name. This name
must be unique for a given library. The service program that is created by the
DB2 UDB for AS/400 to implement the function has the same name as the
specific name provided in this clause. This is an optional clause. If you do not
specify a specific name for the function, the system will generate a specific
name. Normally, the specific name is the same as the function’s name,
provided it is a valid system name (for instance, it’s not longer than 10
characters). However, if a function with that specific name already exists, the
system generates a unique name. When the service program created for the
sourced function is saved and restored to another system, the attributes of the
CREATE FUNCTION statement are automatically added to the system catalogs.

4. This is the SOURCE clause of the CREATE FUNCTION statement, which points to
the existing function that is the source for the function being created. In our
example, the source function is SUBSTR(CLOB, INTEGER, INTEGER) and it
exists in the QSYS2 library.

You can use the Operations Navigator to check that your function was created
correctly. To see the definition of your function, follow the steps outlined here:

1. In the main Operations Navigator window, click the (+) icon next the Database
object to expand its content.

2. Expand the Libraries object. You see all the libraries in your library list.

3. Click the name of the library where you created the function. You should see
all the database objects in that library displayed in the right panel of the
display. Please note that only database objects are shown in this panel. You
should now see your function listed as shown in Figure 51.
80 DB2 UDB for AS/400 Object Relational Support

Figure 51. The SUBSTR(PRDDESC, INTEGER, INTEGER) sourced function

Once you register the function with the database, you can use it in your SQL DML
statements. The following example shows you how to use the newly created
SUBSTR function in a SELECT statement. Our PRODMAST01 test table has a
column named PRODUCT_DESCRIPTION that is based on the PRDDESC
distinct type. The PRODUCT_DESCRIPTION column is a structured text of type
CLOB, which contains the description of the product, the range of sizes for the
product, the color of the product, and the best use of the product. Let us assume
that we want to get the range of sizes for all products in the PRODMAST01 table.
We execute a SELECT statement, such as the one shown in Figure 52.

Figure 52. Using the SUBSTR(PRDDESC, INTEGER, INTEGER) function in a query

Notice that in the SELECT statement shown in Figure 52, we have to cast the
PRODUCT_DESCRIPTION to CLOB when it is used in the LOCATE built-in
function. This is because there is no function called LOCATE that accepts a
column of type PRDDESC as an input parameter. However, there is a function
User Defined Functions (UDFs) 81

called LOCATE that accepts a CLOB as an input parameter. Therefore, we cast
the PRODUCT_DESCRIPTION column of the PRODMAST01 table to a CLOB
when we pass it as a parameter to the LOCATE function. Notice also that we do
not cast the PRODUCT_DESCRIPTION column when we pass it as a parameter
to the SUBSTR function. This is because we just created a SUBSTR function that
accepts an input parameter of type PRDDESC. If we were to create a function
called LOCATE(CLOB, PRDDESC, INTEGER), we would not need to cast the
PRODUCT_DESCRIPTION column in the call to the function in the above
statement.

4.4.1.2 Creating sourced UDFs as column functions
We have just seen how to create a scalar sourced UDF. We can also create
sourced UDFs as column functions. Recall that the argument of a column
function is a set of values derived from one or more columns and that it returns
one value as the result. Only sourced UDFs can be created as column functions.
External and SQL UDFs cannot be created as column functions.

As an example, we create a new MAX function as sourced UDF. The function
takes one input parameter of distinct type MONEY. The function returns a value of
type MONEY. It is based on the built-in function MAX(DECIMAL), which exists in
the QSYS2 library. The CREATE FUNCTION statement for this function is shown in
Figure 53.

Figure 53. Creating the MAX(MONEY) sourced UDF as a column function

We can now use the newly created MAX(MONEY) function with the
ORDER_TOTAL column of the ORDERHDR table as the input parameter. The
ORDER_TOTAL column of the ORDERHDR table is of type MONEY. The query
and its results are shown in Figure 54.
82 DB2 UDB for AS/400 Object Relational Support

Figure 54. Running the MAX(MONEY) column UDF

Notice that, in the SOURCE clause of the CREATE FUNCTION statement in Figure 53,
the precision of the DECIMAL input parameter for the referenced function is not
specified. If you do not specify the precision of a parameter, the system ignores
the precision of the value supplied as the input parameter to the function. In the
example in Figure 53, this approach is used in the SOURCE CLAUSE. Similarly,
you can specify input parameters without specifying their precision. If you do so,
the system ignores the precision of the values that you are supplying as input to
the UDF at run time. If the precision was specified for the function’s parameters,
the system looks for a function that has input parameters which exactly match the
precision of those specified on the CREATE FUNCTION statement.

4.4.1.3 Creating sourced UDFs over arithmetic operators
You can define a sourced UDF over the arithmetic operators available in the
system, provided one of the new function’s parameters is a distinct type. These
operators are +, -, *, /, ||. You cannot define sourced UDFs over comparison
operators, such as =, <, >, and so forth.

As an example, we create a sourced UDF over the "+" operator. This function
accepts two input parameters of type MONEY. The function returns a value of
type MONEY. The function is based on the built-in function "+"(DECIMAL,
DECIMAL). Figure 55 on page 84 shows the CREATE FUNCTION statement used to
create this function.
User Defined Functions (UDFs) 83

Figure 55. Creating the "+"(MONEY, MONEY) sourced UDF over arithmetic operators

An example query using the newly created function is shown in Figure 56.

Figure 56. Using the "+"(MONEY, MONEY) sourced UDF

Note that we use the prefix notation for calling the "+"(MONEY, MONEY) UDF.
Currently, DB2 UDB for AS/400 does not support the infix notation for calls to
UDFs, even if the UDFs are created over arithmetic operators. Calls, such as the
one shown here, will fail:
84 DB2 UDB for AS/400 Object Relational Support

select order_number, order_total, order_total + order_total as DoubleCost from
OrderHdr;

In addition, when an UDF is defined over an arithmetic operator, you have to
enclose the name of the called UDF in double quotes.

4.4.2 Coding SQL UDFs
Until now, you’ve seen how to create sourced UDFs. In this section, we discuss
SQL UDFs. SQL UDFs are functions that use the SQL language to implement
their business logic. In SQL UDFs, the entire procedure body is embedded within
the CREATE FUNCTION statement.

When you execute the CREATE FUNCTION statement for the SQL UDF, DB2 UDB for
AS/400 walks through a multiphase process to create an ILE C service program
object (*SRVPGM). During this process, DB2 UDB for AS/400 generates an
intermediary ILE C code with embedded SQL statements. This ILE C code is then
precompiled, compiled, and linked automatically. This means that the SQL
Development Kit for AS/400, and the ILE C compiler, need to be installed on the
system where you plan to develop SQL stored procedures. Once the ILE C object
is created, it can be restored onto any V4R4 or higher system and run without the
SQL Development Kit and ILE C compiler. Note that the ILE C program object is
created with the Activation Group parameter set to *CALLER.

As an example, we create the GetDescription function, which accepts one
parameter: product number of type CHAR(5). The function returns the description
of the product as a VARCHAR(1024) by substringing the structured text stored
in the PRODUCT_DESCRIPTION field of the PRODMAST04 table.

In this example, we also show you how to create a UDF using the Operations
Navigator Create SQL Function dialog. The required steps are listed here:

1. In the main Operations Navigator window, click the (+) icon next to the
Database object to expand its content.

2. Expand the Libraries object. You see all the libraries in your library list.

3. Right-click the library in which you want to create the SQL UDF. A context
menu appears (Figure 57 on page 86).
User Defined Functions (UDFs) 85

Figure 57. Creating an SQL UDF using the new SQL function dialog

4. Choose the New->Function->SQL option. The New SQL Function dialog box
appears on the screen.

5. Type the name, description, and specific name of the function. Select the
datatype of the value returned by the function (Figure 58).

Figure 58. New SQL function dialog

6. Click the Parameters tab of the dialog. Click the Insert button. Type in the
name of the parameter and the length of the parameter. Select the datatype of
the parameter (Figure 59).
86 DB2 UDB for AS/400 Object Relational Support

Figure 59. Defining the input parameters for the SQL UDF

7. Click the SQL Statements tab. Click in the Statements area, and type the
SQL statements that will make up the body of the procedure. Click the OK
button (Figure 60).

Figure 60. Typing in the body of the SQL UDF.

As you can see, this is a much easier method to create a UDF than with the Run
SQL Scripts utility. However, you may find it advantageous to preserve the
sources for all of your SQL functions in the form of an SQL script. In this form,
your functions can be maintained and re-created more easily.
User Defined Functions (UDFs) 87

The SQL source for the GetDescription function is shown here. The numbered
sections are explained in the list that follows.

create function TEAMxx/GETDESCRIPTION(chs_ProductNumber CHAR(5)) 1
returns VARCHAR(1024) 2
language SQL 3
specific GTDESC0001 4
is deterministic 5
reads SQL DATA 5
no external action 7
BEGIN 8
DECLARE chs_Description CLOB(50K);
DECLARE chs_ReturnValue VARCHAR(1024);

select product_description 9
into chs_Description
from prodmast04
where product_number = chs_ProductNumber;

set chs_ReturnValue =
VARCHAR(CLOB(SUBSTRING(chs_Description, 1, (LOCATE('Sizes', 10
chs_Description,
1) - 1))), 1024);

return chs_ReturnValue; 11
END 12

GetDescription function notes
1. The qualified name of the function and the input parameters to the function

and their data types are specified here. Unlike the sourced UDFs, here you
have to specify names for the input parameters to the function. The
GetDescription function shown above has only one input parameter: the
product number (chs_ProductNumber) which is of type CHAR(5).

2. This is the RETURNS clause of the CREATE FUNCTION statement. Here, you
specify the data type of the value returned by the function. This can be any
data type available on the system, including complex data types and distinct
types. The only restriction is that you cannot return a distinct type if it is based
on a datalink. It is a mandatory clause.

3. This is the LANGUAGE clause of the CREATE FUNCTION statement. It must be
specified in SQL functions. If you specify the language of a function to be
SQL, then the body of the function must be specified within the body of the
CREATE FUNCTION statement. Also, when you specify the language of a function
to be SQL, you cannot specify the EXTERNAL NAME clause. The EXTERNAL
NAME clause identifies the name of the program to be executed when an
external function is being created. The LANGUAGE SQL and the EXTERNAL
NAME clauses are mutually exclusive.

Several options on the CREATE FUNCTION statement are not allowed for the
SQL UDFs:

• FINAL CALL/NO FINAL CALL
• SCRATCHPAD/NO SCRATCHPAD
• DBINFO/NO DBINFO

However, these options may be used in external UDFs. Refer to 4.4.3.3,
“Coding external UDFs using the DB2SQL parameter style” on page 103, for
more details.

Important
88 DB2 UDB for AS/400 Object Relational Support

4. This is the SPECIFIC NAME clause of the CREATE FUNCTION statement. Every
function that is created must have a specific name, and this name must be
unique for a given library. This clause specifies the specific name of the
function. It is not mandatory, but if you do not specify this clause, the system
generates a specific name for the function. The system generated name is
normally the same as that of the function, provided it is a valid system name.
However, if another function exists with the same specific name, the name is
generated using rules that are similar to those used for generating unique
table and column names.

5. This is the DETERMINISTIC or NOT DETERMINISTIC clause of the CREATE

FUNCTION statement. Here, you specify whether the function returns the same
value if it is called repeatedly with the same value of the input parameter. If
you specify IS DETERMINISTIC, the function always returns the same value
from successive invocations of the function with the same values of input
parameters. If you specify IS NOT DETERMINISTIC, the function does not
return the same value from successive invocations of the function. In the
previous example, the function has been declared as DETERMINISTIC. For
an example of a NON DETERMINISTIC function, look at the following
scenario. Let us say you have written a function GetPrice that picks up the
price of a specified product from the product master file, converts it to pounds,
and returns the result. Let us also assume that it picks up the current rate of
conversion from another file that contains the conversion rates from US
dollars to any other currency for all major currencies. This would be an
example of a non-deterministic function. This is because the value returned by
the GetPrice depends on two variables: the conversion rate from the U.S.
dollar to the pound, and the current U.S. price per unit of the product. Both of
these values may change dynamically. Therefore, successive calls to the
GetPrice function with the same input parameters might produce different
results. The default setting for this clause is DETERMINISTIC.

6. This is the NO/READS/MODIFIES/CONTAINS SQL DATA clause of the CREATE

FUNCTION statement. Here, you specify what kind of SQL statements the
function will execute. Refer to DB2 UDB for AS/400 SQL Reference,
SC41-5612, for detailed description of valid SQL statements for a given
clause.

7. This is the EXTERNAL / NO EXTERNAL ACTION clause of the CREATE

FUNCTION statement. This clause defines whether the function performs any
action on external objects. This would be in addition to any processing the
function performs on the input parameters that are sent to it. If the function
writes/deletes/updates records in files, calls another sub program, or initiates
any kind of processing, the EXTERNAL ACTION clause should be specified.
In our GetDescription function, the function does not do any processing other
than executing a SELECT statement. Therefore, NO EXTERNAL ACTION is
specified.

8. The body of the SQL function begins here. This is signified by the BEGIN SQL

statement in the CREATE FUNCTION statement above.

9. This is the SET SQL statement in the function where the function selects the
structured CLOB value to a host variable. The description part of this variable
is then extracted by the substring function.

10.Substrings and extracts the description part of the host variable and stores
this value in the variable to be returned to the invoking process.
User Defined Functions (UDFs) 89

11. Returns the value stored in the return variable to the invoking process

12.The end of the function’s body.

4.4.2.1 Passing LOBs and UDTs as parameters
In this section, we discuss a function that accepts a parameter being a distinct
type based on a LOB. The function’s name is GetDescription. It manipulates data
from the PRODUCT_DESCRIPTION column in our test table PRODMAST01. The
column stores the description of the product in a structured format. The contents
of this column include a short description of the product, the range of sizes for the
product, the color of the product, and the best use for the product. The data type
of this column is the distinct type PRDDESC. This distinct type is sourced from
the base type CLOB(50K). The GetDescription function takes the value of this
column as an input, extracts the description part of the column, and returns this
value to the calling program. In our example, the data type of the value returned
by the function is VARCHAR(1024). Figure 61 shows the CREATE FUNCTION

statement for this function.

Figure 61. Creating an SQL UDF with UDT parameter

Notice in the CREATE FUNCTION statement in Figure 61 that the following clause is
included in addition to the ones already described:

static dispatch

This is the STATIC DISPATCH clause of the CREATE FUNCTION statement. When you
define an input parameter to a function as UDT, you have to specify this clause. If
this clause is not specified, you are not allowed to create the function. The
following error message is returned by the database:

SQL0104 - Token <END-OF-STATEMENT> was not valid. Valid tokens: STATIC.

Figure 62 shows how to use the GetDescription SQL UDF in an SQL statement.
90 DB2 UDB for AS/400 Object Relational Support

Figure 62. Using SQL UDF GetDescription(PRDDESC) in a query

As seen from the example shown in Figure 61, there is no extra handling involved
in using LOBs in SQL UDFs. SQL Functions provide a simple interface for
handling LOB parameters, since the system takes care of most of the
complexities on how to pass and receive the LOB parameter into the function.

If you want to write an external function that uses LOBs, this is also possible.
However, the handling of how to receive the LOB value into the function would
have to be taken care of by you in the function program. This would be in addition
to any other processing you do as part of the function.

4.4.2.2 Returning LOBs and UDTs as a result
In this section, we describe how an SQL function returns a LOB type value. Our
PRODMAST01 test table contains the PRODUCT_DESCRIPTION column that
stores a description of the product and the PRODUCT_PICTURE column that
stores the picture of the product. It would be useful to have a function that
accepts this description as an input and then returns a picture of the product. This
way, you can have a list of product descriptions displayed on the screen, and
upon selection you could display the picture for that product. The GetPicture
function, which implements the outlined logic, accepts three parameters: avalue
of type CLOB(50K), a value of type PRDDESC, and a value of type PICTURE.
The first parameter is the description for which you require the picture of the
product. The second parameter is the value of the PRODUCT_PICTURE column
of the PRODMAST01 table. The third parameter is the PRODUCT_PICTURE
column of the PRODMAST01 table. The CREATE FUNCTION statement is shown in
Figure 63 on page 92.
User Defined Functions (UDFs) 91

Figure 63. Creating the GetPicture SQL UDF which returns a BLOB as a return value

Notice that the CREATE FUNCTION statement defines the data type of the parameter
returned by the function to be the distinct type PICTURE. This data type is based
on the base type BLOB(1M). You also see that no other extra clauses are needed
in the CREATE FUNCTION statement when you define the return type of the function
to be a distinct type.

create functionTEAMxx/GETPICTURE(chs_QueryDescription CLOB(50K),
chs_ProductDescription PRDDESC,
bin_ProductPicturePICTURE)
returns PICTURE
languageSQL
specific GTPICT0001
is deterministic
reads SQL DATA
no external action
static dispatch
BEGIN
if CLOB(chs_ProductDescription) = chs_QueryDescription
then return bin_ProductPicture;
else
return NULL;
end if;
END;

In the code snippet of the GetPicture function shown here, you see that a
comparison is made of the two descriptions sent as input to the program. One of
the descriptions is the one for which you want the picture, and the other one is the
description value for the product for the row of the table. If they match, the
function returns the picture back to the calling program. Otherwise, it returns a
NULL value.

Now, let us run this function and check the result. To demonstrate how this
function works, we created a stored procedure called RunGetPicture. The stored
procedure has a SELECT statement that calls the GetPicture function. The stored
procedure accepts one parameter: the product number. Then, the stored
procedure retrieves the description of the product corresponding to this product
92 DB2 UDB for AS/400 Object Relational Support

number. Next, the SELECT statement, which invokes the GetPicture UDF, is
executed. The following code sample shows the most important parts of the
stored procedure:

...
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB(1M) bin_ProductPicture;
SQL TYPE IS CLOB(50K) chs_ProductDescription;
char chs_ProductNumber[5];
char chs_Description[1024];

EXEC SQL END DECLARE SECTION;
void main(int argc, char **argv)
{
strcpy(chs_ProductNumber, argv[1]);

printf("The product number - %s\n", chs_ProductNumber);

EXEC SQL
select Product_Description into :chs_ProductDescription
from prodmast01
where product_number = SRLNUMBER(:chs_ProductNumber);

EXEC SQL
DECLARE cur_Picture CURSOR FOR
Select GetPicture(:chs_ProductDescription, Product_Description,

Product_Picture)
from prodmast01;

.....
while (sqlca.sqlcode != 100)

{
printf("\n");
if (bin_ProductPicture.length != 0)
{

printf("Values returned by GetPicture(CLOB,PRDDESC,PICTURE):\n");
printf("The picture length - %d\n", bin_ProductPicture.length);
printf("The picture data - %s\n", bin_ProductPicture.data);

}
else
{
printf("GetPicture (CLOB,PRDDESC,PICTURE) returned NULL\n");

}
bin_ProductPicture.length = 0;

strcpy(bin_ProductPicture.data, " ");
EXEC SQL fetch cur_Picture into :bin_ProductPicture;

}

....
}

The stored procedure prints out the length and the contents of the picture
returned to it by the BLOB. The full code of the stored procedure is given in
Appendix A, “Source code listings” on page 215. The stored procedure was
called from the interactive SQL prompt. Figure 64 on page 94 shows the call to
the stored procedure from the interactive SQL prompt.
User Defined Functions (UDFs) 93

Figure 64. Calling the RunGetPicture

The result of the call to the GetPicture is shown in Figure 65.

Figure 65. The result of the call to the GetPicture SQL UDF

As shown in Figure 65, the length and data is returned only by the first call to the
function. The other two calls to the function result in a NULL value. This is
because one description matches only one product. If there were multiple
products matching the same description, multiple non-null results would have

Enter SQL Statements

Type SQL statement, press Enter.
Current connection is to relational database RCHASM23.

===> CALL RUNGETPICTURE('00001')

Bottom
F3=Exit F4=Prompt F6=Insert line F9=Retrieve F10=Copy line
F12=Cancel F13=Services F24=More keys

(C) COPYRIGHT IBM CORP. 1982, 1999.

The product number - 00001

Values returned by GetPicture(CLOB, PRDDESC, PICTURE):
The picture length - 26810
The picture data - åñã / {

The GetPicture function(CLOB, PRDDESC, PICTURE) returned NULL

The GetPicture function(CLOB, PRDDESC, PICTURE) returned NULL
Press ENTER to end terminal session.

===>

F3=Exit F4=End of File F6=Print F9=Retrieve F17=Top
F18=Bottom F19=Left F20=Right F21=User Window
94 DB2 UDB for AS/400 Object Relational Support

been returned. Since the data for the picture is in binary format, you cannot
display this data on the 5250 terminal. You see some non-printable characters
displayed on the screen. However, if you called the function from an interface that
is capable of displaying graphics data, you could see the picture displayed on the
screen.

4.4.3 Coding external UDFs
External functions are functions coded in one of the High Level Languages (HLL)
available on the AS/400 system. Implementing an external function is more
difficult than writing an SQL function. However, if you want to do some complex or
sophisticated processing, or plan to re-use the code that already exists, the
external functions are the best choice for you.

4.4.3.1 Parameter styles in external UDFs
You can specify several different parameter styles for an external function. On the
external function invocation, DB2 UDB passes a number of parameters to the
function in addition to those that you provide as input parameters. The number
and type of extra parameters passed by DB2 UDB depends on the parameter
style. You can specify the required parameter style at the time the function is
created. DB2 UDB for AS/400 supports four parameter styles:

• SQL
• DB2SQL
• GENERAL
• GENERAL WITH NULLS

The various parameters passed in each of the parameter styles are discussed in
this section. Later, we provide examples for each of these parameter styles.

SQL parameter style
The required set of parameters for this parameter style are:

ExternalUDF(IN arguments (repeated),
OUT result,
IN argument indicator variables (repeated),
OUT result indicator,
OUT sqlstate,
IN function name,
IN specific name,
OUT diagnostic message)

The elements of the parameters are explained in the following list:

• Arguments: Input parameters. Passed in from database to UDF.

• Result: Result value. Returned from the UDF to database.

• Argument indicators: NULL indicator for each argument. If NULL was
passed for the corresponding argument, the indicator variable contains -1. If a
valid value was passed, the indicator variable contains 0. The function can

The current sizes for all the arguments supported by the different parameter
styles are defined in the sqludf.h include file found in QSYSINC library. There
are also equivalent include files for RPG and Cobol.

Note
User Defined Functions (UDFs) 95

test the value of an argument indicator. If the corresponding argument
contains NULL or was truncated, it can take corrective action. These are input
parameters.

• Result indicator: NULL or mapping error indicator for each argument. This
variable is examined by the invoking database process to check if the function
returned a correct, NULL, or a truncated value. Set this parameter to -1 to
indicate NULL, or 0 to indicate correct return value. This is an output variable.

• SQL state: Corresponds to SQLSTATE in SQL. It is defined as CHAR(5). This
value is set by the function to signal an error or warning to the database. It has
one of the following values:

– 00000: No errors

– 01Hxx: Warning. It results in SQLCODE +462 from SQL. The last two
characters, xx, are set by the function and can be anything you like.

– 38xxx: Error occurred in UDF. It results in SQL -443. The last three
characters, xxx, are set by the function and can be anything you like. When
you set this error state the database interrupts the execution of the
invoking SQL statement. In the Interactive SQL environment, the following
message is displayed in this situation:

Query cannot be run. See lower level messages.

This is an output parameter.

• Function name: A fully qualified function name. The fully qualified function
name follows the SQL naming standard. This is an input parameter.

• Specific name: The specific name of the function. This is an input parameter.

• Diagnostic message: The message text to put into an SQL message. It
corresponds to the sqlstate setting. When the function signals an error
message to the database, it can set this parameter to a customized error
message. This text is then embedded inside the second level message for the
CPF503E, which is placed in the job log of the job running the SQL statement.
Refer to 4.4.3.2, “Coding UDFs using the SQL parameter style” on page 97,
for more details. This is an output parameter.

DB2SQL parameter style
All the parameters passed to a function for the SQL paramours style are also
passed to a function with the DB2SQL heptameter style. However, DB2SQL
parameter style allows additional parameters to be passed. The supported set of
parameters for this parameter style are:

externalUDF(IN arguments (repeated),
OUT result,
IN argument indicator variables (repeated),
OUT result indicator,
OUT sqlstate,
IN function name,
IN specific name,
OUT diagnostic message,
scratchpad,
call type,
dbinfo)

The additional parameters, not covered in the previous section, are explained in
the following list:
96 DB2 UDB for AS/400 Object Relational Support

• Scratchpad: The scratchpad if the SCRATCHPAD clause was specified in the
CREATE FUNCTION statement. This can be used by the function as an area where
it can save the results of the last call in between calls to the function. If the
length of the scratchpad area required is not specified in the CREATE FUNCTION

statement, the system reserves 100 bytes for the function by default. The
maximum length that can be reserved for the scratchpad is 16,000,000 bytes.
Each invocation of the function will be able to see the results stored by the last
function invocation in the scratchpad. On the first call to the function, the
contents of the scratchpad are initialized to all zeros. The data can be stored
into the scratchpad area by a function only during the processing of a given
SQL statement. No function can store data in the scratchpad area between
SQL statements. This is an optional input and output parameter.

• Call type: A parameter for the type of call if the FINAL CALL was specified on
the CREATE FUNCTION statement. This can be one of three values:

-1 First call to UDF
0 Normal call to UDF
1 Final call to UDF

This parameter is normally used with the SCRATCHPAD parameter. On the
first call, the scratchpad area is set up by the function and then used in
subsequent normal calls. On the last call to the function, the scratchpad area
is cleaned up. This is an optional input parameter.

• dbinfo: A parameter for the dbinfo structure if the DBINFO clause is specified
on the CREATE FUNCTION statement. Refer to the sqludf.h include found in the
QSYSINC library for a detailed definition of this structure.

General parameter style
The supported set of parameters for this parameter style is:

externalUDF(IN arguments (repeated))

For this parameter style, the result is the return value of the value returning
function itself.

4.4.3.2 Coding UDFs using the SQL parameter style
In this section, we look at examples on how to code external UDFs with the SQL
parameter style. We also demonstrate how the parameters that DB2 passes to
the function can be used within the function.

Our test PRODMAST01 table contains the PRODUCT_PICTURE column. This
column stores a picture of the product. The picture can be stored in this column in
one of the widely accepted formats, such as GIF, BMP, JPG, and so forth. The

The maximum number of parameters allowed in CREATE FUNCTION is 90. For
external functions created with PARAMETER STYLE SQL, and for SQL
functions, the input and result parameters specified and the implicit parameters
for indicators, such as SQLSTATE, function name, specific name, and
message text, as well as any optional parameters, are included. The maximum
number of parameters is also limited by the maximum number of parameters
allowed by the licensed program that is used to compile the external program
or service program.

Note
User Defined Functions (UDFs) 97

data type of the column is the PICTURE distinct type which, itself, is based on the
base type BLOB(1M). Let us suppose you need to find out how many pictures are
stored in this column with a specified file format. To accomplish this task, we
implement two functions IsGif and IsBmp, which take the value of the
PRODUCT_PICTURE column and determine whether its contents are in GIF or
BMP format, respectively. If the contents are in the GIF format, the IsGif function
returns 1. Otherwise, it returns 0. If the input to the IsGif function is NULL, it
returns NULL. Similarly, the IsBmp function returns 1 if the input is in BMP format.
Otherwise, the function returns 0. It returns a NULL if the input is NULL.

Let us examine the CREATE FUNCTION statement for the IsGif function. The
numbered sections are further explained in the list that follows:

create function TEAMxx/ISGIF(PICTURE) 1
returns INTEGER 2
language C 3
specific ISGIF00001 4
no sql 5
no external action 6
static dispatch 7
external name 'TEAMXX/PICTCHECK(fun_CheckPictureType)' 8
parameter style SQL; 9

CREATE FUNCTION statement notes
1. Here, you define the name of the function, the input parameters to the

function, and their data types. Refer to 4.4.1.1, “Creating sourced UDFs as
scalar functions” on page 78, for more information on this.

2. This is the RETURNS clause of the CREATE FUNCTION statement. Refer to
4.4.1.1, “Creating sourced UDFs as scalar functions” on page 78, for more
information on this.

3. This is the LANGUAGE clause of the CREATE FUNCTION statement. The
LANGUAGE clause specifies what language was used to implement the
external UDF. In our case, it is written in ILE C/400. This information helps the
database to pass parameters to the UDF in the format required by the
programming language. You can write the UDFs in any of the following
languages:

• CL
• COBOL
• COBOLLE
• PLI
• RPG
• RPGLE
• SQL
• C/C++

The LANGUAGE clause is optional. If it is not specified, the system tries to
retrieve the attribute of the program object specified in the EXTERNAL NAME
clause and set the language clause accordingly. If the program object does
not exist, or if the attribute is not present, the language is defaulted to ILE
C/400.

4. This is the SPECIFIC NAME clause of the CREATE FUNCTION statement. The
specific name is checked for uniqueness and entered into the system
catalogue.
98 DB2 UDB for AS/400 Object Relational Support

5. This is the NO / READS / MODIFIES / CONTAINS SQL DATA clause of the
CREATE FUNCTION statement. Refer to 4.4.2, “Coding SQL UDFs” on page 85, for
more information on this.

6. This is the EXTERNAL / NO EXTERNAL ACTION clause of the CREATE

FUNCTION statement. Refer to 4.4.2, “Coding SQL UDFs” on page 85, for more
information on this.

7. This is the STATIC DISPATCH clause of the CREATE FUNCTION statement. Refer
to 4.4.2.1, “Passing LOBs and UDTs as parameters” on page 90, for more
information on this.

8. This is the EXTERNAL NAME clause of the CREATE FUNCTION statement. This is
the name of the external program that this function calls when it is invoked by
the database. In this example, TEAMXX is the name of the library in which the
program resides. PICTCHECK is the name of the service program that is to be
executed, and fun_CheckPicture is the name of the ILE C/400 function inside
the program that will be called when the function is invoked. The program
does not need to exist at the time of the creation of the function, but it must be
created before the function is invoked for the first time. This is an optional
clause. If it is not specified, the system assumes that the name of the program
to be executed is the same as the name of the function.

9. This is the PARAMETER STYLE clause of the CREATE FUNCTION statement. This
can be one of four values: SQL, DB2SQL, GENERAL WITH NULLS, or
GENERAL. DB2 UDB passes additional parameters, apart from the input
arguments defined in the CREATE FUNCTION statement, based on the parameter
style specified.

Now let’s examine the external program PICTCHECK referred to in the CREATE

FUNCTION statement above. We discuss what parameters DB2 sends to the
program and how the program makes use of the parameters. The complete listing
of the program is given in A.3, “PictCheck: External UDF” on page 218. This
program also calls the fun_CheckHeader function. The source for this function is
listed in A.4, “ChkHdr” on page 220. The PICTCHECK is used by both the IsGif
and the IsBmp functions discussed earlier in this section. Depending on what
function calls the program, its logic checks for the appropriate type of image. This
leads to the reuse of the common code in the two functions. Both functions are
defined with the parameter style SQL. The following code sample illustrates how
a function with parameter style SQL is coded. The numbered areas are further
explained in the list that follows:

void SQL_API_FN fun_CheckPictureType(BLOB1M *str_ProductPicture, 1
SQLUDF_INTEGER *nmi_IsCorrect, 2
SQLUDF_NULLIND *nms_InputNullIndicator01, 3
SQLUDF_NULLIND *nms_OutputNullIndicator01,
SQLUDF_CHAR sqludf_sqlstate[SQLUDF_SQLSTATE_LEN + 1], 4
SQLUDF_CHAR sqludf_fname[SQLUDF_FQNAME_LEN + 1], 5
SQLUDF_CHAR sqludf_fspecname[SQLUDF_SPECNAME_LEN + 1], 6
SQLUDF_CHAR sqludf_msgtext[SQLUDF_MSGTEXT_LEN + 1]) 4

Code sample notes
1. The function named fun_CheckPictureType is the entry point in the ILE C

service program. This entry point is referred to in the CREATE FUNCTION

statement for the IsGif and the IsBmp functions as follows:

external name 'TEAMXX/PICTCHECK(fun_CheckPictureType)'
User Defined Functions (UDFs) 99

If the reference is to an entry point in a service program, the external name is
specified as lib.pgmname(entrypoint) or just pgmname(entrypoint).

Note the use of the SQL_API_FN constant in the function declaration. This
constant makes the function portable to multiple platforms. The value of this
constant is set in an include file specific for a given platform, such as Windows
NT, OS/2, or AIX. The value of this constant for the AS/400 system is defined
in the header file sqlsystm.h found in the source file named H in the QSYSINC
library.

The IsGif or the IsBmp functions accept an input parameter of type PICTURE,
which is a distinct type based on the base type BLOB(1M). When passed to an
external program, a UDT is implicitly cast to its source type. In our case, we
defined a structure called BLOB1M inside our program, which serves as a
buffer for the picture object. The structure definition is shown here:

typedef struct
{

unsigned long length;
char data[1];

} BLOB1M;

The function accepts one input parameter, which is the picture whose format
we wish to determine. This is the first parameter to the ILE C function
fun_CheckPictureType, which implements the UDF.

2. This is the value returned by the function. In the CREATE FUNCTION statement
shown on page 98, it was defined as INTEGER. However, in the ILE C
implementation, we defined it to be of type SQLUDF_INTEGER. We used this
convention so that the function is portable across DB2 UDB platforms. All the
basic data types on the AS/400 system have their counterparts under the DB2
UDB convention. These counterparts are defined in the header file sqludf.h.
This file has to be included when you write an external program for a UDF.

3. The next two parameters to the fun_CheckPictureType function are the null
input indicators for the input parameter and the return value. Whenever a null
value is passed into the function on input, the input null indicator contains -1.
If the value is correct, it contains 0. In our program, we check for null input,
and if we get a null input, we return a null output. This is shown in the code
sample here:

if (*nms_InputNullIndicator01 == -1)
{

*nms_OutputNullIndicator01 = -1;
return;

}

If we want to pass a return value back to the database, we set the return
variable, which in our case is nmi_IsCorrect, and set the return indicator to 0
as shown in the following code snippet:

if ((nmi_CompareResult01 == 1) || (nmi_CompareResult02 == 1))
{

*nmi_IsCorrect = 1;
*nms_OutputNullIndicator01 = 0;

}
else
{

100 DB2 UDB for AS/400 Object Relational Support

*nmi_IsCorrect = 0;
*nms_OutputNullIndicator01 = 0;

}

4. The next two parameters, sqludf_sqlstate and sqludf_msgtext are used
together. The sqludf_sqlstate contains the SQL state. This parameter can be
used to signal an error or a warning condition on return to the database. The
function can also set the message text parameter to a customized error
message. However, the message text can only be set when sqludf_sqlstate is
also set. Our program checks whether it was called by either the IsGif or the
IsBmp function. If it is neither of these two, the program simply signals an error
condition and returns it as in the following code example:

*nms_OutputNullIndicator01 = -1;
strcpy(sqludf_sqlstate, "38501");
strcpy(sqludf_msgtext, "Unregistered function");
return;

5. The parameter sqludf_fname contains the fully qualified name of the function
that called this program. In our case, either the IsGif or the IsBmp functions
can call the program. The program checks which function called it. If it was the
IsGif function that made the call, the program checks the picture for GIF
picture format; otherwise, it checks for the BMP picture format. This is
implemented in the following code snippet:

.
#define GIF_FUNCTION "ISGIF"
#define BMP_FUNCTION "ISBMP"
...
void SQL_API_FN fun_CheckPictureType(......)
{
...
char *chr_FunctionResolution;
...
chr_FunctionResolution = strstr(sqludf_fname, GIF_FUNCTION);

if (chr_FunctionResolution != NULL)
{

...
}

...
chr_FunctionResolution = strstr(sqludf_fname, BMP_FUNCTION);

if (chr_FunctionResolution != NULL)
{

...
}
}

6. The parameter, sqludf_specname, is the specific name of the function that is
passed by the database. Instead of using the function name, you can also use
the specific name for comparisons. This is useful since UDFs can be
overloaded. You can have more than one UDF with the same name calling the
same program. Even if the function names were the same, the specific names
would be unique.

As mentioned earlier, the PICTCHECK program was created as a service
program. The advantage of this approach is that the service program becomes
active (if run in activation group *CALLER) when the function is resolved,
therefore minimizing call overhead at IO. We used the following CL commands to
compile and bind the PICTCHECK service program:

CRTCMOD MODULE(TEAMXX/PICTCHECK) SRCFILE(TEAMXX/QCSRC) DBGVIEW(*SOURCE)
CRTCMOD MODULE(TEAMXX/CHKHDR) SRCFILE(TEAMXX/QCSRC) DBGVIEW(*SOURCE)
User Defined Functions (UDFs) 101

CRTSRVPGM SRVPGM(TEAMXX/PICTCHECK) MODULE(TEAMXX/PICTCHECK TEAMXX/CHKHDR)
EXPORT(*ALL)

To invoke the IsGif function, use a SELECT statement, such as the following
example:

SELECT Product_Number, IsGif(Product_Picture) from PRODMAST01;

The results of the above query are shown in Figure 66.

Figure 66. Running the IsGif external UDF with the SQL parameter style

You would, similarly, run the IsBmp function. The output of the IsBmp function is
shown in Figure 67.
102 DB2 UDB for AS/400 Object Relational Support

Figure 67. Running the IsBmp external UDF with the SQL parameter style

4.4.3.3 Coding external UDFs using the DB2SQL parameter style
This section shows you how to code external UDFs using the DB2SQL parameter
style. You learn how to use the SCRATCHPAD and the FINAL CALL parameters
inside the UDF.

The ORDER_TOTAL column in the ORDERHDR table contains the total of the
customer’s order. The data type of this column is the distinct type MONEY, which
is based on the built-in type DECIMAL(11,2). Suppose you wanted to find out the
second, third, or the fifth best order by order total from the ORDERHDR table.
One of the approaches might involve writing a program that calculates, for
instance, the third best order total and writes it to a file. Then, your application
would need to access this file and read the data from the file. We believe it would
be much better to have a UDF that does this processing. The UDF could then be
used inside a SELECT statement in any AS/400 interface that supports SQL. To
accomplish this task, we coded an external UDF called Rating. The function takes
in two parameters: a value of type MONEY from the ORDER_TOTAL column and
an INTEGER, which specifies which rating you want to retrieve. The function
scans the ORDER_TOTAL column and returns for each row the Nth best order
total where N is the INTEGER that you specified. The CREATE FUNCTION statement
for the function is shown in Figure 68 on page 104.
User Defined Functions (UDFs) 103

Figure 68. Creating the rating UDF with the DB2SQL parameter style

Let us examine the CREATE FUNCTION statement. The CREATE FUNCTION statement is
presented here. The numbered areas are explained in the list that follows:

create function TEAMxx/RATING(MONEY, INTEGER)
returns MONEY
language C
specific RATING0001
no SQL
no external action
scratchpad 1
final call 2
static dispatch
external name 'TEAMXX/RATING(fun_Rating)'
parameter style DB2SQL;

CREATE FUNCTION statement notes
1. This is the SCRATCHPAD clause of the CREATE FUNCTION statement. When you

specify this clause, DB2 passes a scratchpad area to the function where the
function can store results of the last call, and it will be available to the function
the next time it is called. You can specify the required length for the scratchpad
area if you want. This can be a maximum of 16,000,000 bytes. If not specified,
system defaults the length of the scratch pad area to 100 bytes. In our
example above, we did not specify the length of the scratchpad area.
Therefore, the system will reserve 100 bytes of memory for scratchpad area
and send the address of this area to the function program.

2. This is the FINAL CALL clause of the CREATE FUNCTION statement. When this
clause is specified, DB2 UDB sends the type of call to the function every time
the function is invoked. The value passed can be one of three values: 1 if this
is the first call to the function, 0 if this is neither the first nor the last call to the
function, and 1 if this is the last call to the function. This parameter is normally
used along with the SCRATCHPAD clause. On the first call, the function sets
up the scratchpad area. On a regular call, it accesses the scratchpad area. On
the last call, the function cleans up the scratchpad area.
104 DB2 UDB for AS/400 Object Relational Support

Now let’s examine the contents of the Rating program. The complete listing of the
source code is given in Appendix A.6, “Rating: External UDF using
SCRATCHPAD” on page 221. We start with the function declaration for a function
with the DB2SQL parameter style, concentrating on the most important
parameters. The numbered areas are explained in the list that follows:

void SQL_API_FN fun_Rating(decimal(11, 2) *nmpd_InputMoneyValue,
SQLUDF_INTEGER*nml_InputRequiredRank,
decimal(11, 2)*nmpd_OutputMoneyValue,
SQLUDF_NULLIND*nms_InputNullIndicator01,
SQLUDF_NULLIND*nms_InputNullIndicator02,
SQLUDF_NULLIND*nms_OutputNullIndicator01,
SQLUDF_CHARsqludf_sqlstate[SQLUDF_SQLSTATE_LEN + 1], 1
SQLUDF_CHARsqludf_fname[SQLUDF_FQNAME_LEN + 1],
SQLUDF_CHARsqludf_fspecname[SQLUDF_SPECNAME_LEN + 1],
SQLUDF_CHARsqludf_msgtext[SQLUDF_MSGTEXT_LEN + 1], 1
SQLUDF_SCRATCHPAD*sqludf_scratchpad, 2
SQLUDF_CALL_TYPE*sqludf_call_type) 3

Code sample notes
1. The sqludf_sqlstate is set by the function to indicate an error condition to the

database on return from the function. In our function, we set this parameter if
the required rank parameter is either null or less than zero. This is shown in
the following code snippet:

if ((*nms_InputNullIndicator02 != 0) || (*nml_InputRequiredRank < 0))
{

strcpy(sqludf_sqlstate, "38601");
strcpy(sqludf_msgtext, "Incorrect rank value specified");
*nms_OutputNullIndicator01 = -1;
return;

}

The function can also pass a custom message back to the database by setting
the message text parameter sqludf_msgtext.

2. When a function is created as a scratchpad function, the database provides
the function with a 100 byte scratchpad area. The function can store data in
this area that it needs to preserve between function calls. Each invocation of
the function can see the data stored by the last invocation of the function. The
data in the scratchpad is stored only during the processing of a given SQL
statement and not between SQL statements. The function is passed a pointer
to the scratchpad area called sqludf_scratchpad. The scratchpad is initialized
to zeros before the first call to the function. The following code snippets show
how the scratchpad is implemented. First, we define our internal structure,
called str_ScratchPad, that helps us keep track of different values stored in the
ORDER_TOTAL column:

typedef struct
{

decimal(11, 2) *nmpd_LargeValue ;
long nml_RequiredRating;
long nml_ValuesStored;

} str_ScratchPad;
.
.
..
str_ScratchPad *str_SPad;
str_ScratchPad **ptr_AlignmentPointer;
.
.
..
/* Get the address of the scratchpad buffer passed by the DB2 UDB and align the pointer for
the internal scratchpad structure at the 16 byte boundary */
ptr_AlignmentPointer = ((str_ScratchPad **)(sqludf_scratchpad)) + 1;
str_SPad = (str_ScratchPad *) ptr_AlignmentPointer;
User Defined Functions (UDFs) 105

In the previous code snippet, you see that a structure, called str_ScratchPad,
has been declared. The variable, nmpd_LargeValue, is an array of packed
decimals that is used to keep the list of values encountered so far. The
variable, nml_RequiredRating, stores the rank that you wish to retrieve. The
variable, nml_ValuesStored, stores the number of values stored so far in the
packed decimal array. We declare a pointer to this structure called str_SPad.
The scratchpad that is passed to the program itself is a structure of two
elements. The following snippet gives the definition of the scratchpad
structure as it is defined in the include file sqludf.h:

SQL_STRUCTURE sqludf_scratchpad
{

unsigned long length; /* length of scratchpad data */
char data[SQLUDF_SCRATCHPAD_LEN]; /* scratchpad data, init.

to all \0 */
};

In this program, you see that the data element of the scratchpad structure is
cast to the str_scratchPad structure. In other words, we use the data element
of the sqludf_scratchpad structure as a memory buffer for our internal
str_ScratchPad structure. The method of casting, such as the one shown
above, is used to align the str_SPad pointer on a 16-byte boundary. The
AS/400 system requires that the memory addresses be placed on the 16-byte
boundaries. If your code fails to align addresses properly, an exception is
thrown at the run time, and the application is terminated.

In the following code snippet, the scratchpad area that was sent to the function
by the database is being put to work. The largest numbers are moved to the
top of the array, the smaller ones follow them, and the required rating is then
returned to the database from the array. This processing is performed on
every invocation of the function:

/* Check for regular function call */
if (*nms_InputNullIndicator01 == 0)
{

/* Set the lowest value variable */
nmpd_LowestValue = *nmpd_InputMoneyValue;

for (nmi_Counter = 0; nmi_Counter < str_SPad->nml_ValuesStored; nmi_Counter++)
{

/* Exchange if the current lowest value is higher than the stored lowest */
/* value */
if (str_SPad->nmpd_LargeValue[nmi_Counter] < nmpd_LowestValue)
{

nmpd_Temp = nmpd_LowestValue;
nmpd_LowestValue = str_SPad->nmpd_LargeValue[nmi_Counter];
str_SPad->nmpd_LargeValue[nmi_Counter] = nmpd_Temp;

}

/* Array not full then add the next element */
if (str_SPad->nml_ValuesStored < str_SPad->nml_RequiredRating)
{

str_SPad->nml_ValuesStored++;
str_SPad->nmpd_LargeValue[str_SPad->nml_ValuesStored - 1] =

nmpd_LowestValue;
}

/* return NULL if required ranking not in the array*/
if (str_SPad->nml_ValuesStored < str_SPad->nml_RequiredRating)
{

*nms_OutputNullIndicator01 = -1;
return;

}
/* Otherwise return the required ranking */
else
{

*nmpd_OutputMoneyValue = str_SPad->nmpd_LargeValue[
106 DB2 UDB for AS/400 Object Relational Support

str_SPad->nml_RequiredRating - 1];
*nms_OutputNullIndicator01 = 0;
return;

}
}

}

3. The scratchpad parameter is normally used in conjunction with the FINAL
CALL parameter. This is the last parameter in the fun_Rating function and is
named sqludf_call_type. This parameter tells the function whether this is the
first call, the last call, or a regular call. The following code snippets show how
to use this parameter:

if (*sqludf_call_type == -1)
{
if ((*nms_InputNullIndicator02 != 0) || (*nml_InputRequiredRank < 0))
{
strcpy(sqludf_sqlstate, "38601");
strcpy(sqludf_msgtext, "Incorrect rank value specified");
*nms_OutputNullIndicator01 = -1;
return;
}

str_SPad->nml_RequiredRating = *nml_InputRequiredRank;
str_SPad->nml_ValuesStored = 0;
nml_Temp = *nml_InputRequiredRank * sizeof(decimal(11, 2));
str_SPad->nmpd_LargeValue = (decimal(11, 2) *)malloc(*nml_InputRequiredRank *

sizeof(decimal(11, 2)));
}

First, a check is made to see if this is the first call. If so, at this point in time,
the function must perform required initialization tasks. In our case, the
program dynamically allocates the memory for storing the required number of
values in the scratchpad using the ILE C/400 malloc function. This allocation
is not done on the subsequent calls to the function that are considered to be
regular calls.

In the following snippet, you see that we also check if this is the final call:

if (*sqludf_call_type == 1)
{

free(str_SPad->nmpd_LargeValue);
}

At this point in time, the function must perform any cleanup tasks that need to
be performed. In our case, we allocated a piece of memory for our scratchpad
using the malloc ILE C/400 function. This piece of memory needs to be freed.
This is done by the free statement.

To invoke this function, you could use a SELECT statement, such as the one shown
here:

SELECT Max(Decimal(Rating(Order_Total, 2)))from OrderHdr

In the SELECT statement above, you ask the function to calculate the second best
order total in the ORDERHDR table. Note the usage of the MAX built-in function.
Our rating function is invoked for each row of the ORDERHDR table, and it
produces a result for each row. In our example, the function shows the second
best result for all the rows retrieved so far. We want to calculate the second best
rating for all rows in the table, which explains the need for a MAX function. The
result of the above query is shown in Figure 69 on page 108.
User Defined Functions (UDFs) 107

Figure 69. Using the rating external function with DB2SQL parameter style

A more complex query can be given to find the number or the name of the
customer with the second best order total. Figure 70 shows a sample query that
does this.

Figure 70. Finding the number and name of the customer using the rating function

4.5 Function resolution and parameter promotion in UDFs

In this section, we demonstrate function resolution and parameter promotion. For
concepts of function resolution, parameter promotion, and overloading, refer to
4.3, “Resolving UDF” on page 71.

4.5.1 An example of function resolution in UDFs
Consider the following situation. Say there is a function, GetDescription, which
accepts one parameter: A product number that is CHAR(5) and returns the
product description as a VARCHAR(1024). This function operates on the
108 DB2 UDB for AS/400 Object Relational Support

PRODUCT_NUMBER column of the PRODMAST04 table. It returns the contents
of the PRODUCT_DESCRIPTION column, which is of data type CLOB(50K).
Now, another table, PRODMAST01, is created with the same columns and data
as PRODMAST04. Here, the columns PRODUCT_NUMBER and
PRODUCT_DESCRIPTION are based on distinct types SRLNUMBER and
PRDDESC, respectively. The SRLNUMBER distinct type is based on the built-in
type CHAR(5), and the PRDDESC column is based on the built-in type
CLOB(50K). Now, you execute the following query:

select Product_Number, GetDescription(Product_Number) as Product_Description
from ProdMast04;

The GetDescription(CHAR5) function executes correctly. This is shown in Figure
71.

Figure 71. Executing the GetDescription (CHAR(5)) function

The system searched for a function called GetDescription that would accept an
input parameter of data type CHAR(5) using the function selection algorithm
described in 4.3.4, “The function selection algorithm” on page 76. It found one
function that exactly matched the criteria. If there had been no function called
GetDescription, accepting a CHAR(5) as input parameter, the system would have
searched for the next best alternative: afunction called GetDescription, which
accepts a VARCHAR as an input parameter. See 4.3.3, “Parameter matching and
promotion” on page 74, for details.

Now, we try to execute the same query on the PRODMAST01 table. This time the
query fails. Figure 72 on page 110 shows the result of the query.
User Defined Functions (UDFs) 109

Figure 72. The query fails when it is run over the Prodmast01 table

The query fails because the system could not find a function called
GetDescription that accepts an input parameter of data type SRLNUMBER. Then,
the data type precedence is checked to see if the parameter can be promoted to
other data types. In this case, since the data type of the parameter is a distinct
type, it cannot be promoted to anything other than itself. Since the parameter is
not promotable, the system returns the following message:

SQL0204 - GETDESCRIPTION in *LIBL type *N not found.

To solve this problem, we need to overload the GetDescription function. Figure 73
shows the CREATE FUNCTION statement that we used to create a GetDescription
function that accepts the SRLNUMBER distinct type as an input parameter.
110 DB2 UDB for AS/400 Object Relational Support

Figure 73. Creating the GetDescrption(SRLNUMBER) sourced UDF

Note that, instead of implementing the function from scratch, we reuse the
existing implementation of the GetDesciption(char()) function.

After creating the function, we run the query again. This time it works. The results
of the query are shown in Figure 74.

Figure 74. Running the GetDescription(SRLNUMBER) UDF
User Defined Functions (UDFs) 111

This time, the system was able to find a function called GetDescription, which
accepts SRLNUMBER distinct type as a parameter. The function is then
executed.

4.5.2 An example of parameter promotion in UDF
In this section, we will show you an example of parameter promotion. Consider
the following scenario: The PRODMAST04 table has a
PRODUCT_DESCRIPTION and a PRODUCT_NUMBER column. The data type
of the PRODUCT_NUMBER column is CHAR(5), and the data type of the
PRODUCT_DESCRIPTION column is CLOB(50K). The
PRODUCT_DESCRIPTION column is a CLOB containing the description of the
product, the size range of the product, and the color of the product. Suppose we
wish to extract the size range from this column. We code a UDF, called GetSize,
which accepts the product number and returns the size of the product. Let’s
assume, for illustration purposes, that the type of the product number parameter
is CLOB(50K). Please note that the actual data type of the PRODUCT_NUMBER
column in the table is CHAR(5). The CREATE FUNCTION statement for the function is
shown in Figure 75.

Figure 75. The GetSize(CLOB(50K))SQL UDF

The data type of the value returned by the function is VARCHAR(1024). Note that
we concatenate the character constant 'Function GetSize(CLOB(50K))' with the
return variable chs_ReturnValue. After the function was successfully created, we
used it in a SELECT statement, such as the one shown here:

select product_number, GetSize(product_number) as SizeRange from prodmast04
112 DB2 UDB for AS/400 Object Relational Support

The function GetSize(CLOB(50K)) is executed by the system. This is shown in
Figure 76.

Figure 76. Running the GetSize(CLOB(50K) function

Notice that the text 'Function GetSize(CLOB(50K))' appears as part of the size
range column. The input to the GetSize function was a value of type CHAR(5).
The GetSize(CLOB(50K)) function executed because of parameter promotion.
The system searches the system catalog for all functions named GetSize that are
located in the library list of the job executing the SELECT statement. A list of all
such functions is compiled. Then, all selected functions that have more than one
input parameter are eliminated. Now, for the remaining functions, a search is
made for a function GetSize that accepts CHAR(5). The system finds no such
function. The function’s parameter is now promoted to the next level. This is done
by looking up the precedence list, as shown in Table 9 on page 76, and finding
out which is the next datatype in the hierarchy for the CHAR data type. In our
case, it is the VARCHAR data type. The product_number value, which we
supplied to the GetSize function, is now cast to a VARCHAR data type, and the
list is scanned to check for a function GetSize that accepts a VARCHAR as an
input variable. Again, the system finds no such function and the precedence list is
checked again to find the next data type higher in the hierarchy. In our example, it
is CLOB. The product_number value is now cast to a CLOB, and the list of
functions is again scanned to check for a function GetSize, which accepts a
CLOB as an input parameter. This time the system finds the
GetSize(CLOB(50K)) function. Therefore, this function is currently the best fit
for the function referenced in the SELECT statement. Therefore, this function is
executed.

Now, let’s create another GetSize function. This time the input parameter is
VARCHAR(5). The CREATE FUNCTION statement is shown in Figure 77 on page 114.
Notice that here the character constant 'Function GetSize(VARCHAR(5))' is
concatenated to the end of the return variable chs_ReturnValue.
User Defined Functions (UDFs) 113

Figure 77. Creating the GetSize(VARCHAR(5))SQL UDF

Now, we run our query again. This time, function GetSize(VARCHAR(5)) is
executed. The product_number value that we supplied to the GetSize function is
now cast to a VARCHAR data type, and the list of selected GetSize functions is
scanned to check for a function GetSize, which accepts a VARCHAR as an input
variable. This time, the system finds the function with the signature GetSize
(VARCHAR(5)). The function GetSize(VARCHAR(5)) is the best match for the
function called in the SELECT statement. Figure 78 shows the result of the query.
114 DB2 UDB for AS/400 Object Relational Support

Figure 78. Running the GetSize(VARCHAR(5)) SQL UDF

Let’s now create a third GetSize function. This time, the data type of the input
parameter is CHAR(5). Figure 79 shows the CREATE FUNCTION statement.

Figure 79. Creating the GetSize(CHAR(5)) SQL UDF
User Defined Functions (UDFs) 115

Again, the same query is run. This time, the system selects the function
GetSize(CHAR(5)) to be executed because it constitutes an exact match for the
function called in the SELECT statement. Figure 80 shows the results of the query.

Figure 80. Running the GetSize(CHAR(5)) function.

4.6 The system catalog for UDFs

The database manager provides a number of data dictionary facilities that can be
used to keep track of User Defined Functions. In this section we see how to view
UDF information using the SYSROUTINES catalog, the SYSPARAMS catalog,
and the SYSFUNCS view.

4.6.1 SYSROUTINES catalog
User Defined Functions are stored in the SYSROUTINES catalog. Refer to DB2
UDB for AS/400 SQL Reference, SC41-5612, for the detailed description of the
catalog views.

The following SQL statement displays SYSROUTINES information on User
Defined Functions in our test TEAMXX library:

The SYSROUTINES catalog contains details for both User Defined Functions
and stored procedures. When you want to work only with UDFs you can use a
view called SYSFUNCS. This view was created over the SYSROUTINES
catalog with the following SQL statement:

create view qsys2/sysfuncs as select * from qsys2/sysroutine
where routine_type='FUNCTION'

Note
116 DB2 UDB for AS/400 Object Relational Support

select * from sysroutines where routine_schema = 'TEAMXX' and routine_type =
'FUNCTION';

If we run this statement using the Operations Navigator Run SQL Scripts window,
the query results viewer displays UDFs details as shown in Figure 81.

Figure 81. Content of SYSROUTINES catalog

Note that our catalog query shows both user created UDFs, as well as system
generated cast functions needed for the UDT implementation. If you want to
select only non-cast UDFs, try the following query:

select * from sysfuncs where routine_schema = 'TEAMXX'
and is_user_defined_cast = 'NO'

4.6.2 SYSPARMS catalog
The SYSPARMS catalog contains one row for each parameter of an UDF created
by the CREATE FUNCTION statement. Refer to DB2 UDB for AS/400 SQL Reference,
SC41-5612, for the detailed description of the catalog views.

Let’s suppose you want to retrieve the parameter details for all instances of the
GETSIZE function located in the TEAMXX library. The following SQL statement
can be run to display this information:

select * from qsys2/sysparms where specific_schema = 'TEAMXX' and specific_name
in (select specific_name from qsys2/sysfuncs where specific_schema = 'TEAMXX'
and routine_name = 'GETSIZE');

Note that, due to function overloading, the TEAMXX library can contain several
functions with the same routine name. Running this query produced the results
shown in Figure 82 on page 118.

The SYSPARMS catalog contains parameter detail for both User Defined
Functions and stored procedures.

Note
User Defined Functions (UDFs) 117

Figure 82. UDF parameter details in SYSPARMS catalog

There are two instances of the GETSIZE function in the TEAMXX library. Their
signatures differ since they accept an input parameter of type CHARACTER or
CLOB, respectively. Note, also, that the result of a function is stored in the
SYSPARMS catalog as an OUTPUT parameter.

4.7 Dropping UDFs

To drop an UDF using the SQL interface, use the DROP FUNCTION statement. The
DROP FUNCTION statement references the function by:

• Name: For example, DROP FUNCTION myUDF. This is only valid if exactly
one function of that name exists in that library. Otherwise, SQLSTATE 42854
('More than one found') or SQLSTATE42704 ('Function not found') is signalled.

• Signature (name and parameters): For example, DROP FUNCTION
myUDF(int). The data type of the parameter(s) must match exactly those of
the function found. Also, if length, precision, or scale are specified, they must
match exactly the function to be dropped. SQLSTATE 42883 is signalled if a
match to an existing function is not found.

• Specific name: For example, DROP SPECIFIC FUNCTION myFun0001.
Since the SPECIFIC name must be unique per library, this will find, at most,
one function. If the function is not found, SQLSTATE 42704 ('Function not
found') is signalled.

To drop a UDF using Operations Navigator, you open the required library,
right-click on the user defined function you wish to delete, and select Delete from
the context menu.

If there are no dependent functions, the right panel refreshes, and you should see
that the UDF object has been removed from the library.

Functions created implicitly by a CREATE DISTINCT TYPE statement cannot be
explicitly dropped. They can only be deleted by dropping the type. Built-in
functions, and those functions shipped with the database, cannot be deleted.

When a DISTINCT TYPE is dropped, all functions that have one or more parameters
of that type are implicitly dropped as well. This is accomplished by use of the
SYSPARMS catalog.

If a schema is not specified, the authorization ID (user lib) is used if SQL
naming is specified. Otherwise, the library list is used.

Note
118 DB2 UDB for AS/400 Object Relational Support

4.8 Saving and restoring UDFs

This section describes how to save and restore UDFs and some of the
considerations that apply. The save and restore of functions currently can only be
performed by saving (and restoring) the QSYS2 library. Note that the you can
save and restore the catalogs themselves, but this is not recommended.

For external functions, enough information is saved with the external program
such that, when it is saved and restored, the function is 're-created' on the
restore. However, the external program should be implemented in one of the ILE
languages, and it has to contain at least one embedded SQL statement

Note that storing information in an external function is a bit tricky. The program
may not exist at function creation and may be deleted/re-created/moved at any
time. For this reason, saving the SQL information in the program occurs if:

• The external program exists at the time the function is created.
• The function is invoked at least once so that the SQL information can be

added to program during the reference/use of it.

As mentioned earlier, sourced and SQL UDFs are implemented as embedded
SQL ILE C service programs. This implies that they have enough information
stored in the program object such that the function can be re-created.

On a restore of an external program of a function, the following is performed:

• Function (signature) does not exist. In this case, add the function to the
catalogs.

• Function (signature) exists (may or may not have exactly the same attributes,
but same signature). Do nothing.

• If the function will be 'created' in QSYS2, do not create the function definition
(to prevent user functions from being in QSYS2).

4.9 Debugging UDFs

In this section, we show you how to debug UDFs. SQL UDFs are always created
as service programs. We recommend that you create external functions as
service programs. Therefore, we show you how to debug a service program here.
The same technique needs to be used if you wish to debug a program object that
is being referenced by an external UDF.

In this example, we debug our IsGif External UDF. Debugging UDFs may be a bit
tricky since they are run on the AS/400 system in secondary threads. The
following steps outline the debug procedure:

1. Open two native AS/400 5250 sessions and sign on to both sessions. From
here onwards, we refer to the first session as Session A and to the second
session as Session B.

2. Switch to Session B, and type in the following command on the command line:

STRSQL

The interactive SQL session is started, and the SQL command line is
displayed.
User Defined Functions (UDFs) 119

3. Switch to Session A and type in the following command line:

WRKACTJOB

The Work with Active Jobs screen is displayed as shown in Figure 83. This
screen displays a list of all jobs that are currently active on the system. The
job in Session B will be listed as one among these.

Figure 83. The Work with Active Jobs screen listing all currently active jobs.

4. Find the job started in Session B under the QINTER subsystem. This is done
by looking for jobs under the QINTER subsystem that are started with the user
ID you used to log on. In our case, it is TEAMxx. Then, locate the job that has
the action named STRSQL under the column named Function. When this job
is located, use option 5 to work with that job. This is shown in Figure 84.

Work with Active Jobs AS400WS
10/07/99 10:26:47

CPU %: .0 Elapsed time: 00:00:00 Active jobs: 217

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status
ADMIN QTMHHTTP BCI .0 TIMW
JERRY QTMHHTTP BCH .0 PGM-QZHBHTTP CNDW
JERRY QTMHHTTP BCI .0 TIMW
JERRY QTMHHTTP BCI .0 TIMW
JERRY QTMHHTTP BCI .0 TIMW
JERRY QTMHHTTP BCI .0 TIMW

QINTER QSYS SBS .0 DEQW
QPADEV0002 TEAMXX INT .0 CMD-STRSQL DSPW
QPADEV0003 TEAMXX INT .0 MNU-MAIN DSPW

More...
Parameters or command
===>
F3=Exit F5=Refresh F7=Find F10=Restart statistics
F11=Display elapsed data F12=Cancel F23=More options F24=More keys
120 DB2 UDB for AS/400 Object Relational Support

Figure 84. Working with the job in Session B

5. The Work with Job screen is displayed. This screen displays the various
actions that can be taken for this job. On the top of the screen, you see the
following information:

• Job: This is the name of the job with which you are working.

• User: This is the name of the user profile that is using the job.

• Number: This is the number assigned to the job you are working with.
Every job on the AS/400 system is assigned a six digit unique job number.

Write down your fully qualified name for the Session B job. In our case, it is:

044733/TEAMXX/QPADEV0002

Now, start a service job for the Session B job. Enter the following command on
the command line:

STRSRVJOB 044733/TEAMXX/QPADEV0002

6. Start a debug session for the service program used in the IsGif function. Type
the following command on the command line:

STRDBG UPDPROD(*YES) SRVPGM(TEAMXX/PICTCHECK)

7. The debug session appears on your screen with the source code loaded into
the debugger. Enter a breakpoint for the first executable statement in the
program. In our case, this is the following statement in the PICTCHECK
program:

if (*nms_InputNullIndicator01 == -1).

Work with Active Jobs AS400WS
10/07/99 10:26:47

CPU %: .0 Elapsed time: 00:00:00 Active jobs: 217

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status
ADMIN QTMHHTTP BCI .0 TIMW
JERRY QTMHHTTP BCH .0 PGM-QZHBHTTP CNDW
JERRY QTMHHTTP BCI .0 TIMW
JERRY QTMHHTTP BCI .0 TIMW
JERRY QTMHHTTP BCI .0 TIMW
JERRY QTMHHTTP BCI .0 TIMW

QINTER QSYS SBS .0 DEQW
5 QPADEV0002 TEAMXX INT .0 CMD-STRSQL DSPW

QPADEV0003 TEAMXX INT .0 MNU-MAIN DSPW
More...

Parameters or command
===>
F3=Exit F5=Refresh F7=Find F10=Restart statistics
F11=Display elapsed data F12=Cancel F23=More options F24=More keys

The job name will be different for you.

Note
User Defined Functions (UDFs) 121

This can be done by placing your cursor on the line of code at which you wish
to place the breakpoint and pressing the F6 key. The following message
appears at the bottom of the screen:

Breakpoint added to line 47

This is shown in Figure 85.

Figure 85. Adding a breakpoint to the debug session

8. Press F12. This takes you back to the command line. Now, you need to invoke
the UDF from the Interactive SQL run in Session B.

9. Switch to Session B and type in the following SQL statement on the SQL
command line:

select product_number, isgif(product_picture) from prodmast01

The SELECT statement begins to execute. The IsGif(PICTURE) UDF is
invoked. This also means that the PICTCHECK program is invoked. The
following message is displayed at the bottom of the screen:

Query running. 3 records selected. Selection complete.

This is shown in Figure 86. However, the results of the query do not show up.
Instead, the session busy cross sign stays at the bottom of the screen.

Display Module Source

Program: PICTCHECK Library: TEAMXX Module: PICTTYPE
46
47 if (*nms_InputNullIndicator01 == -1)
48 {
49 *nms_OutputNullIndicator01 = -1;
50 return;
51 }
52
53 chr_FunctionResolution = strstr(sqludf_fname, GIF_FUNCTION);
54
55 if (chr_FunctionResolution != NULL)
56 {
57 nmi_CompareResult01 = fun_CheckHeader(str_ProductPicture->data
58 GIF_HEADER_LENGTH,
59 chr_GifHeader87);
60 nmi_CompareResult02 = fun_CheckHeader(str_ProductPicture->data

More...
Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
Breakpoint added to line 47.
122 DB2 UDB for AS/400 Object Relational Support

Figure 86. Invoking the IsGif(PICTURE) external UDF

10.Now, switch back to Session A. You see the source code of the PICTCHECK
service program displayed on the screen. The line of source code that is to be
currently executed is highlighted in white on the screen. In our case, this is the
line at which you set the breakpoint in step 8. This is shown in Figure 87 on
page 124.

Enter SQL Statements

Type SQL statement, press Enter.
Current connection is to relational database AS400WS.

===> select product_number, isgif(product_picture) from prodmast01

Bottom
F3=Exit F4=Prompt F6=Insert line F9=Retrieve F10=Copy line
F12=Cancel F13=Services F24=More keys
Query running. 3 records selected. Selection complete.

In print, the line of source code to be executed is shown in bold.

Note
User Defined Functions (UDFs) 123

Figure 87. Debugging the PICTCHECK service program

11.Press the F10 function key to execute the highlighted line of code. The line is
executed and gets de-highlighted. The next line of code to be executed is
highlighted. Each time you press the F10 key, the next line of code in
sequence is executed.

12.You can check the value contained in any of the program variables. This can
be done in two ways:

• Pressing the F11 key after placing the cursor over the variable for which
you wish to check the value.

• Typing in the EVAL command on the debug command line.

We now check the value of the program variable nmi_CompareResult01.
Place your cursor over the variable and press F11. The value of the variable is
displayed on the bottom of the screen. This is shown in Figure 88.

Display Module Source
Current thread: 00000020 Stopped thread: 00000020
Program: PICTCHECK Library: TEAMXX Module: PICTTYPE

43 int nmi_CompareResult01 = 0;
44 int nmi_CompareResult02 = 0;
45
46
47 if (*nms_InputNullIndicator01 == -1)
48 {
49 *nms_OutputNullIndicator01 = -1;
50 return;
51 }
52
53 chr_FunctionResolution = strstr(sqludf_fname, GIF_FUNCTION);
54
55 if (chr_FunctionResolution != NULL)
56 {
57 nmi_CompareResult01 = fun_CheckHeader(str_ProductPicture->data

More...
Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
Breakpoint at line 47 in thread 00000020
124 DB2 UDB for AS/400 Object Relational Support

Figure 88. Checking the value of the program variables using the F11 key

13.Place the cursor on the debug command line and type the following command:

EVAL *nmi_InputNullIndicator01

This time, the value of nmi_InputNullIndicator 01 is displayed on the bottom of
the screen.

Display Module Source
Current thread: 00000020 Stopped thread: 00000020
Program: PICTCHECK Library: TEAMXX Module: PICTTYPE

43 int nmi_CompareResult01 = 0;
44 int nmi_CompareResult02 = 0;
45
46
47 if (*nms_InputNullIndicator01 == -1)
48 {
49 *nms_OutputNullIndicator01 = -1;
50 return;
51 }
52
53 chr_FunctionResolution = strstr(sqludf_fname, GIF_FUNCTION);
54
55 if (chr_FunctionResolution != NULL)
56 {
57 nmi_CompareResult01 = fun_CheckHeader(str_ProductPicture->data

More...
Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
nmi_CompareResult01 = 0

To display the value of pointer variables, you have to use the EVAL command
on the debug command line. You can use the ILE C/400 pointer notation to
display the information in pointer variables. This is shown in Figure 89 on
page 126.

Note
User Defined Functions (UDFs) 125

Figure 89. Displaying the information in pointer variables using the EVAL command.

14.Sometimes, you may want to display the content of a variable in hexadecimal
format. This is especially useful when you work with BLOB variables. You will
now display the contents of the str_ProductPicture variable. This variable
contains the data from the PRODUCT_PICTURE column of the
PRODMAST01 table. The PRODUCT_PICTURE column is based on the
distinct type PICTURE which, in turn, is based on BLOB(1M). In our program,
we declared the BLOB1M structure to accommodate the BLOB value. This
structure is composed of two parts: the length and the data part. The data part
of the variable actually contains the binary information passed to our function
by the database.

15.Type in the following command on the debug command line:

EVAL *str_ProductPicture->data:x 64

Since the data part of the str_ProductPicture variable is a string, we must use
the pointer notation to display the contents of it. The :x after the variable name
is used to display the contents of the variable in hexadecimal format. The
value 64 instructs the system to display the first 64 bytes of the variable. The
result is shown in Figure 90.

Display Module Source
Current thread: 00000020 Stopped thread: 00000020
Program: PICTCHECK Library: TEAMXX Module: PICTTYPE

43 int nmi_CompareResult01 = 0;
44 int nmi_CompareResult02 = 0;
45
46
47 if (*nms_InputNullIndicator01 == -1)
48 {
49 *nms_OutputNullIndicator01 = -1;
50 return;
51 }
52
53 chr_FunctionResolution = strstr(sqludf_fname, GIF_FUNCTION);
54
55 if (chr_FunctionResolution != NULL)
56 {
57 nmi_CompareResult01 = fun_CheckHeader(str_ProductPicture->data

More...
Debug . . . EVAL *nms_InputNullIndicator01

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
*nms_InputNullIndicator01 = 0
126 DB2 UDB for AS/400 Object Relational Support

Figure 90. Displaying the contents of a variable in hexadecimal format

16.Continue to press the F10 key until you step through the entire program. At
any time, you can run the program to completion by pressing the F12 key.

17.Once debugging your code is finished, you return to the Work with Job screen.
On the command line, type the following CL commands:

ENDDBG
ENDSRVJOB

This ends the debug mode and the service job being run to debug the service
program.

4.10 Coding considerations

When coding UDFs, you should keep in mind some of the limitations and
restrictions that apply to them. The following list contains important
recommendations and hints for UDFs developers:

• UDFs should not perform operations that take a long time (minutes or hours).

• UDFs are invoked from a low-level in DB2 that holds resources (locks and
seizes) for duration of the UDF execution.

• If UDF doesn't finish in an allocated time, the SQL statement fails. You can
override the system time out value with UDF_TIME_OUT parameter in the
query option file QAQQINI. Refer to DB2 UDB for AS/400 SQL Programming,
SC41-5611, for details.

• Avoid inserts, updates, and delete operations on the same tables as the one
referred to in the invoking statement.

• A UDF runs in the same job as the invoking SQL statement, but runs in a
separate system thread, so secondary thread considerations apply:

Evaluate Expression

Previous debug expressions

nmi_CompareResult01 = 0
> EVAL nmi_CompareResult01
nmi_CompareResult01 = 0

> EVAL nms_InputNullIndicator01
nms_InputNullIndicator01 = SPP:E2F09C16E30011C0

> EVAL *nms_InputNullIndicator01
*nms_InputNullIndicator01 = 0

> EVAL *nms_InputNullIndicator01
*nms_InputNullIndicator01 = 0

> EVAL *str_ProductPicture->data:x 64
00000 47494638 39613601 C000F700 000B0B0B - åñã../..{.7.....
00010 427B9430 117F3AAB EC454480 43484234 - â#m..".¿ÖáàØäçâ.
00020 7BB56D4C C2D0CFB1 7C83BC22 18482F64 - #§_<B}õ£@c¯..ç.À
00030 81B0C3D8 4866689F A4B8AFAE 99A6DBF7 - a ĈQçÃÇ¤u½®Þrwû7

Bottom
Debug . . .

F3=Exit F9=Retrieve F12=Cancel F16=Repeat find F19=Left F20=Right
F21=Command entry F23=Display output
User Defined Functions (UDFs) 127

– UDFs will conflict with thread-level resources held by the SQL statement.
UDFs cannot perform any operation that is blocked from secondary
threads.

– Activation Group (*NEW) is not allowed for UDFs.

– UDFs do not inherit program adopted authority that may have been active.
Authority comes from the UDF program itself or the user running the SQL.
128 DB2 UDB for AS/400 Object Relational Support

Chapter 5. Programming alternatives for complex objects

Throughout this redbook, we present a wide range of code examples that
illustrate how to use complex objects in SQL and ILE C with embedded SQL
programming interfaces. However, depending on your skills, you may use other
programming tools available both on the AS/400 system and the clients. In this
chapter, we provide you with a set of basic code examples to assist you in writing
UDB-aware applications in other programming environments. We discuss
building a client/server application with Java running on the client. We also show
how to code using Call Level Interface (CLI).

The code examples illustrated in this chapter refer to an SQL table called
PRODMASTOL. The column definition for this table is shown in 3.2.3, “Creating
distinct types with the SQL interface” on page 32.

5.1 Using complex objects in Java client applications

In this section, we outline the steps required to use complex objects managed by
the DB2 UDB for AS/400 in a Java client application. The combination of Java
running on the client, and the SQL running on the powerful database server, such
as the AS/400 system, can result in a highly scalable and robust software
solution.

We assume that you are already familiar with JDBC, so we provide a detailed
discussion only for the JDBC APIs pertaining to the complex object support.
Refer to Building AS/400 Client/Server Applications with Java, SG24-2152, to
learn how to use JDBC with the AS/400 database.

In our test scenario, we coded a Java client, which uses the AS/400 Toolbox for
Java JDBC driver, to send the SQL request to DB2 UDB for AS/400. In the
AS/400 client/server architecture, a JDBC client communicates with a
corresponding AS/400 server job, which runs the SQL requests on behalf of this
client. In other words, when we submit an SQL request from the Java client, there
is an AS/400 server job that actually performs the requested operation on the
server and then passes back the results to the client. The AS/400 server jobs
associated with the database access are named QZDASOINIT and run in the
QSERVER subsystem.

5.1.1 Getting ready to use JDBC 2.0 driver
JDBC is a Java API for executing SQL statements. The initial release of the JDBC
API, JDBC 1.0, provided the basic functionality for database access. The second
edition of this API specification, JDBC 2.0, supplements the basic set of functions
with advanced features. In particular, JDBC 2.0 adds support for storing
persistent Java objects and mapping for SQL3 data types, such as BLOBs and
User Defined Types. Note that the JDBC 2.0 requires Java 2 platform.

The AS/400 Toolbox for Java supports JDBC 2.0. The AS/400 Toolbox for Java is
currently available from IBM with OS/400 as a no charge licensed program
product (LPP) 5769-JC1. To take advantage of the JDBC 2.0 features, you need
to install modification 2 of the Toolbox, which is available at the following Web
site: http://www.ibm.com/as400/toolbox
© Copyright IBM Corp. 2000 129

Refer to Building AS/400 Client/Server Applications with Java, SG24-2152, for
details on how to install and utilize the Toolbox classes.

We tested our Java samples using JDK 1.2.2 for Windows NT. We set the full path
of the \jdk1.2.2\bin directory with the following command:

SET PATH=D:\JDK1.2.2\BIN;

We also had to set the CLASSPATH variable to point to the Toolbox classes. We
used the following command:

SET CLASSPATH=D:\Program Files\IBM\Client Access\jt400\lib\jt400.zip;

Make sure that you specify the full path of the directory where you installed the
Toolbox classes. We installed the Toolbox as part of Client Access Express
installation. In your case, the CLASSPATH may point to a different directory.
Notice also that you may use jt400.jar rather than jt400.zip. This setup is valid for
the duration of your DOS session. To set PATH and CLASSPATH permanently,
start the Control Panel. Select System->Environment. Look for PATH or CLASSPATH
in the User Variables and System Variables.

5.1.2 Using a Blob object
An SQL BLOB is mapped by the JDBC driver into a Java Blob object. You can
access values of type Blob in the same way that you access traditional SQL92
built-in types. The interfaces ResultSet, CallableStatement, and PreparedStatement

support methods getBlob and setBlob for a BLOB value. You can use these
methods in the same way that you use getString and setString to manipulate a
CHAR or VARCHAR value. The JDBC 2.0 specification defines Blob as an
interface. The JDBC 2.0 driver provides a database specific class, which
implements this interface. In case of the AS/400 Toolbox for Java driver, this class
is called com.ibm.as400.access.AS400JDBCBlob.

5.1.2.1 Creating and materializing a Blob object
The following short Java program illustrates how to use the AS/400 Toolbox for
Java JDBC 2.0 driver to retrieve a BLOB from an AS/400 table. The
ImageDisplayer class accepts one input parameter: Product_Number. It connects
to the AS/400 system and retrieves the Product_Picture for the given
Product_Number. After materializing the Product_Picture data on the workstation,
the program uses Swing GUI to display the picture. The numbered sections of the
source code are explained in the notes following the listD.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.sql.*;

/* This class displays an image retrieved from DB2 UDB for AS/400. */
public class ImageDisplayer extends JFrame {

public static void main(String[] args) {
Image image = db2getImage(args[0]);
ImagePanel imagePanel = new ImagePanel(image);

JFrame f = new JFrame("ImageDisplayer");
f.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);
}

});

f.getContentPane().add(imagePanel, BorderLayout.CENTER);
130 DB2 UDB for AS/400 Object Relational Support

f.setSize(new Dimension(200,200));
f.setVisible(true);
}
public static Image db2getImage (String productNumber)
{
String system = "AS400WS";
Connection connection = null;
Image image = null;

try {
// Load the AS/400 Toolbox for Java JDBC driver.
DriverManager.registerDriver(new
com.ibm.as400.access.AS400JDBCDriver());

// Get a connection to the database. Since we do not
// provide a user id or password, a prompt will appear.
connection = DriverManager.getConnection ("jdbc:as400://" + system);

PreparedStatement stmt = connection.prepareStatement(
"SELECT product_picture " +
"FROM teamxx.prodmast01 " +
"WHERE PRODUCT_NUMBER = CAST(? AS SRLNUMBER)"); 1
stmt.setString(1, productNumber); 2
ResultSet rs = stmt.executeQuery();
while (rs.next()) {
Blob pictblob = rs.getBlob(1); 3
long length = pictblob.length();
ImageIcon imageicon = new ImageIcon(pictblob.getBytes(0, (int)
length)); 4
image = imageicon.getImage();
}

}
catch (Exception e) {
System.out.println ();
System.out.println ("ERROR: " + e.getMessage());
}

return image;
}
}

class ImagePanel extends JPanel {
Image image;

public ImagePanel(Image image) {
this.image = image;

}

public void paintComponent(Graphics g) {
super.paintComponent(g); //paint background

//Draw image at its natural size.
g.drawImage(image, 0, 0, this);

}
}

Notes for ImageDisplayer.java
1. The Product_Number column in the PRODMAST01 table is of user defined

type SRLNUMBER. Because the implicit casting is not supported in the
WHERE clause, we need to explicitly cast the parameter marker to the
SRLNUMBER UDT.

2. The setString method of the PreparedStatement class is used to set the
parameter to the Product_Number passed by the invoking process.

3. The Blob object is created. At this time, the variable pictblob contains a logical
pointer to the BLOB value stored in the Product_Picture column. Note that the
UDT Picture was implicitly cast to its source type BLOB(1M) on the I/O
operation. Therefore, no explicit casting is needed, and we can use getBlob

method on the rs object.

4. We need to materialize the BLOB data before we can display it on the
workstation. We use the getBytes method on the Blob object for this purpose.
Programming alternatives for complex objects 131

The imageicon object now contains a copy of all of the bytes in the BLOB
value.

You can use the getBytes method on a BLOB object to materialize only a
fragment of the BLOB object. The first argument of this method is used to specify
the starting byte, while the second argument tells how many bytes should be
returned.

To compile the ImageDisplayer.java program, type the following command at the
DOS prompt:

javac ImageDisplayer.java

To execute the program, type the following command:

java ImageDisplayer 00001

Note, that the string value '00001' was passed as the Product_Number
parameter. The results are shown in Figure 91.

Figure 91. Using Java to display DB2 UDB for AS/400 BLOBs

5.1.2.2 Storing a Blob object in the database
You can use the setBlob method on a BLOB object to store it in the DB2 UDB for
AS/400 database. The following code snippet illustrates this approach:

...
Blob pictblob = rs.getBlob("PRODUCT_PICTURE"); 1
...
// Prepare UPDATE statement.
PreparedStatement stmt = connection.prepareStatement(
"UPDATE teamxx.prodmast01" +
" SET PRODUCT_PICTURE = ? WHERE PRODUCT_NUMBER = CAST(? AS SRLNUMBER)");
// Set the first parameter marker to a blob object
stmt.setBlob(1, pictblob); 2
// Set the second parameter marker to a String
stmt.setString(2, productNumber);
// Execute the SQL statement
stmt.executeUpdate(); 3
132 DB2 UDB for AS/400 Object Relational Support

Notes on Blob object storage code
1. The Blob object is retrieved from the PRODMAST01 table. We can now use

this object within our Java application. For example, we could crop the
retrieved product picture. The next two steps demonstrate how to update the
table with this changed object.

2. The pictblob object is passed as the input parameter to the prepared
statement object stmt.

3. The Blob value pointed by pictblob is now stored in PRODMAST01 table.

The pictblob Blob object must exist in your Java application before you can
execute the setBlob method on it. The sql.java package defines the Blob as a
public interface, so you cannot instantiate it in your application. Instead, you need
to use getBlob method on ResultSet, CallableStatement, or PreparedStatement to
get access to the Blob data or you can provide your own implementation.

The setBlob method is capable of sending large amounts of data. You can also
accomplish this task by setting a Blob parameter marker to a Java input stream.
The following code example shows how to load Blob data into a AS/400 table
using the setBinaryStream method. This approach is useful if you have to
construct the BLOB object in your application and then upload it to the database
for persistent storage. The LoadPicture program accepts two parameters: name
of a file on the workstation that contains the product picture, and the product
number for the given picture. The program reads the content of the file and stores
it as a Blob object in the AS/400 database.

import java.sql.*;
import java.io.*;

public class LoadPicture
{
public static void main (String[] args)
{
String system = "AS400WS";
Connection connection = null;
try {

File file = new File(args[0]);
int fileLength = (int)file.length();
InputStream fin = new FileInputStream(file); 1
// Load the AS/400 Toolbox for Java JDBC driver.
DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver());
// Get a connection to the database. Since we do not
// provide a user id or password, a prompt will appear.
connection = DriverManager.getConnection ("jdbc:as400://" + system);
DatabaseMetaData dmd = connection.getMetaData ();

// Prepare UPDATE statement.
PreparedStatement stmt = connection.prepareStatement(
"UPDATE " + collectionName + dmd.getCatalogSeparator() + tableName +
" SET PRODUCT_PICTURE = ? WHERE PRODUCT_NUMBER = CAST(? AS SRLNUMBER)");
// Set the first parameter marker to a binary input stream
stmt.setBinaryStream(1, fin, fileLength); 2
// Set the second parameter marker to a String
stmt.setString(2, args[1]);
// Execute the SQL statement
stmt.executeUpdate(); 3

}
catch (Exception e) {

System.out.println ();
System.out.println ("ERROR: " + e.getMessage());

}
finally {
// Clean up.
try {

if (connection != null)
connection.close ();
}

Programming alternatives for complex objects 133

catch (SQLException e) {
// Ignore.

}
}
System.exit (0);
}
}

Notes for LoadPicture.java
1. We use the instance of FileInputStream to obtain the content of the picture file

located in the workstation’s file system.

2. The Blob parameter marker is set to input stream.

3. At the SQL statement execution, the JDBC driver repeatedly calls to the fin
input stream to transmit the Blob content to the database.

5.1.3 Using a Clob object
An SQL Clob is mapped by the JDBC driver into a Java Clob object. The
interfaces ResultSet, CallableStatement, and PreparedStatement support methods
getClob and setClob that can be used to manipulate the CLOB data. These
interfaces also support setAsciiStream, and setCharacterStream methods that
allow you to input a stream as a Clob value. Additionally, you can use
getAsciiStream and getCharecterStream methods on a Clob object to materialize it
as an input stream.

5.1.3.1 Creating and materializing a Clob object
The following Java program shows how to retrieve a Clob value from an AS/400
table. The QueryClob class connects to the AS/400 using the AS/400 Toolbox for
Java JDBC driver and retrieves two columns, Product_Number and
Product_Description, from the PRODMAST01 table. Then, it iterates through all
rows in the result set. For every row, it materializes the Product_Description data
as a Clob object and then manipulates the object to retrieve the color of a
product.

import java.sql.*;
public class ClobQuery
{
public static void main (String[] parameters)
{
String system = "AS400WS";
Connection connection = null;

try {

// Load the AS/400 Toolbox for Java JDBC driver.
DriverManager.registerDriver(new

com.ibm.as400.access.AS400JDBCDriver());

// Get a connection to the database. Since we do not
// provide a user id or password, a prompt will appear.
connection = DriverManager.getConnection ("jdbc:as400://" + system);

// Allocate the statement and execute the query.
Statement stmt = connection.createStatement ();

ResultSet rs = stmt.executeQuery (
"SELECT Product_Number, Product_Description " +
"FROM TEAMXX.PRODMAST01");
// Iterate throught the rows in the result set and output
// the columns for each row.
while (rs.next ()) {

String prdnum = rs.getString(1);
System.out.print(prdnum + " ");
Clob prddesc = rs.getClob(2); 1
if (prddesc != null)
{

134 DB2 UDB for AS/400 Object Relational Support

long length = prddesc.length();
String desc = prddesc.getSubString(0, (int) length); 2
int startcolor = desc.indexOf((String) "Color:")+ 6;
int stopcolor = desc.indexOf((String)"Best For:",startcolor);
System.out.print(desc.substring(startcolor, stopcolor - 1));
}
else
{
System.out.print("NULL");
}
System.out.println ();

}
}

catch (Exception e) {
System.out.println ();
System.out.println ("ERROR: " + e.getMessage());

}
finally {

// Clean up.
try {

if (connection != null)
connection.close ();

}
catch (SQLException e) {

// Ignore.
}

}
System.exit (0);

}
}

Notes for ClobQuery.java
1. A Clob object is created. The prddesc variable contains a logical pointer to the

Clob value stored in the Product_Description column. Note that this column
was specified with a user defined type PRDDESC. This UDT was implicitly cast to
its source built-in type CLOB(50k) on the I/O operation.

2. The getSubString method can be used to materialize all or part of the Clob
value as a String object. It was used to materialize the complete content of the
Product_Description column.

As mentioned earlier, you may also materialize the Clob value as a byte stream
containing Unicode characters. The following code snippet illustrates how to use
the getCharacterStream method on a Clob value to accomplish this task:

...
File file = new File(args[0]);
OutputStream fout = new FileOutputStream(file); 1
...
byte[] clobBytes = new byte[MAX_FILE_SIZE];
char[] clobData = new char[MAX_FILE_SIZE];
PreparedStatement stmt = connection.prepareStatement(
"SELECT product_description FROM TEAMXX.PRODMAST01 " +
"WHERE PRODUCT_NUMBER = CAST(? as SRLNUMBER)");
String productNumber = new String(args[1]);
stmt.setString(1, productNumber);
ResultSet rs = stmt.executeQuery();
while (rs.next()) {
Clob prddesc = rs.getClob(1); 2
Reader rin = prddesc.getCharacterStream(); 3
int max = rin.read(clobData); 4
for (int cnt = 0; cnt < max; cnt = cnt + 1) {

clobBytes[cnt] = (byte)clobData[cnt]; 5
}

fout.write(clobBytes); 6
}

Code example notes
1. The FileOutputStream class is used to write the Clob data retrieved from the

AS/400 system to a file on the workstation.
Programming alternatives for complex objects 135

2. The Clob object is created. The underlying UDT PRDDESC was implicitly cast
to its source type CLOB(50k).

3. The Clob value is materialized as a stream of Unicode characters.

4. The read method reads the Unicode characters from the stream into a
character array. The variable max contains the number of characters retrieved
from the database (length of Clob).

5. We copy the description from the character array to the byte array to write the
content out to the output stream.

6. We write the Clob data to a workstation file using the fout output stream.

5.1.3.2 Storing Clob in the database
A PreparedStatement object supports the setClob method, which can be used to
store the Clob data in the DB2 UDB for AS/400 database. The following code
snippet illustrates this approach:

...
Clob prddesc = rs.getClob("PRODUCT_PICTURE"); 1
...
// Prepare UPDATE statement.
PreparedStatement stmt = connection.prepareStatement(
"UPDATE teamxx.prodmast01" +
" SET PRODUCT_DESCRIPTION = ? WHERE PRODUCT_NUMBER = CAST(? AS SRLNUMBER)");
// Set the first parameter marker to a blob object
stmt.setClob(1, prddesc); 2
// Set the second parameter marker to a String
stmt.setString(2, productNumber);
// Execute the SQL statement
stmt.executeUpdate(); 3

Code sample notes
1. The Clob object is retrieved from the database.

2. The setClob method on the stmt object allows the Clob data to be passed as
an input parameter. The setClob method requires an existing Clob object as
the second parameter. We set this parameter to the Clob retrieved in step 1.

3. The Clob is now stored in the AS/400 table.

The setClob method can be used to upload large amounts of data. The alternate
approach is to load a large Clob object by setting a Clob parameter marker to a
Java input stream. The following code snippet shows how to read a text file from
the workstation and upload it to the AS/400 as a Clob.

...
File file = new File(args[0]);
int fileLength = (int)file.length();
InputStream fin = new FileInputStream(file); 1
...
// Prepare UPDATE statement.
PreparedStatement stmt = connection.prepareStatement(
"UPDATE TEAMXX.PRODMAST01 " +
" SET PRODUCT_DESCRIPTION = ? WHERE PRODUCT_NUMBER = CAST(? AS SRLNUMBER)");
// Set the first parameter marker to a binary input stream
stmt.setAsciiStream(1, fin, fileLength); 2
// Set the second parameter marker to a String
stmt.setString(2, args[1]);
// Execute the SQL statement
stmt.executeUpdate(); 3

Code sample notes
1. We use an instance of FileInputStream to read the product description from a

workstation’s file.
136 DB2 UDB for AS/400 Object Relational Support

2. The Clob parameter marker is set to an input stream. We need to cast the
parameter marker to the appropriate UDT in the SQL statement.

3. The JDBC driver repeatedly calls to the fin input stream to transmit the Clob
content to the database.

5.1.4 Using metadata
Metadata is useful when you write programs that use advanced database
features like complex object support. The JDBC defines two metadata interfaces:
DatabaseMetaData and ResultSetMetaData. A DataBaseMetaData object
provides comprehensive information about the database. A ResultSetMetaData
object retrieves information about the columns in a ResultSet object.

The following code example illustrates how to use the metadata interfaces to get
the column information for our test table PRODMAST01. It also retrieves the
descriptions of all UDTs defined in the TEAMxx collection.

import java.sql.*;

public class GetMetaData {

public static void main(String args[]) {
Connection con;
Statement stmt;
String system = "AS400WS";
String collectionName = "TEAMXX";
String tableName = "PRODMAST01";

try {
DriverManager.registerDriver(new

com.ibm.as400.access.AS400JDBCDriver());
con = DriverManager.getConnection ("jdbc:as400://" + system);
DatabaseMetaData dmd = con.getMetaData (); 1
stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("select * from " +
collectionName + dmd.getCatalogSeparator() + tableName);

ResultSetMetaData rsmd = rs.getMetaData(); 2
int numberOfColumns = rsmd.getColumnCount(); 3
for (int i = 1; i <= numberOfColumns; i++) {

String colName = rsmd.getColumnName(i);
String tblName = rsmd.getTableName(i);
int type = rsmd.getColumnType(i);
String name = rsmd.getColumnTypeName(i);4
boolean caseSen = rsmd.isCaseSensitive(i);
boolean writable = rsmd.isWritable(i);
System.out.println("Information for column " + colName);
System.out.println(" Column is in table " + tblName);
System.out.println(" Column type is " + type);
System.out.println(" DBMS name for type is " + name);
System.out.println(" Is case sensitive: " + caseSen);
System.out.println(" Is possibly writable: " + writable);
System.out.println("");

}

int[] types = {Types.DISTINCT};
ResultSet rsUDT = dmd.getUDTs(null, collectionName, "%", types); 5

while (rsUDT.next()) {
System.out.println("UDT catalog " + rsUDT.getString(1));
System.out.println("UDT schema " + rsUDT.getString(2));
System.out.println("Type name " + rsUDT.getString(3)); 6
System.out.println("Class name " + rsUDT.getString(4)); 7
System.out.println("Data type " + rsUDT.getString(5));
System.out.println("Remarks " + rsUDT.getString(6));

}
stmt.close();
con.close();

} catch(SQLException ex) {
System.err.println("SQLException: " + ex.getMessage());
Programming alternatives for complex objects 137

}
System.exit (0);

}
}

Notes for GetMetaData.java
1. We create a DatabaseMetaData object that contains information about DB2

UDB for AS/400. We use the getMetaData method on the Connection object for
this purpose.

2. The rs object contains the data retrieved from the PRODMAST01 table with
the SELECT statement. Now we can get information about the columns in the
rs ResultSet by creating a ResultSetMetaData object. We use the getMetaData

method on the rs object for this purpose.

3. The getColumnCount method on the ResultSetMetaData object created in step 2
is used here to find out how many columns the result set has. Our SELECT
statement retrieved all of the columns in the PRODMAST01 table, so the value
of the numberOfColumns variable is set to 5.

4. We iterate through the rsmd columns to print out the detailed metadata
information about each particular column in the PRODMAST01 table. For
instance, the getColumnTypeName method is used to find out a column’s data
type name. The example data retrieved for the Product_Number column is
shown here:

Information for column PRODUCT_NUMBER
Column is in table
Column type is 1
DBMS name for type is CHAR
Is case sensitive: true
Is possibly writable: false

Note, that the getColumnTypeName method reports the name of the source
built-in data type name, rather than the UDT name for the Product_Number
column.

5. The getUDTs method on the DatabaseMetaData object gets a description of the
UDTs defined in a particular schema. This method accepts four parameters:

• catalog: A string object representing a catalog name. Set this parameter to
null for the DB2 UDB for AS/400 database.

• schemaPattern: A string object representing a schema name pattern. We
use TEAMxx to indicate that we want to retrieve the UDTs definitions from
this particular schema (library). You can set this parameter to null to
retrieve all UDTs without any schema name restrictions.

• typeNamePattern: A string object representing type name pattern. We use %

to indicate that we want to retrieve all UDTs definitions in the TEAMxx
schema.

• types[]: An array representing the data types to be retrieved. We set it to
Types.DISTINCT to indicate that we want only user distinct types definitions.
Other database platforms may support other values, such as Types.STRUCT.

The rsUDT result set object contains one row for each UDT found in the
TEAMxx schema. Each row of this ResultSet object has six columns
containing a type catalog, type schema, UDT’s type name (as defined on the
CREATE table statement), Java class name to represent given UDT, generic
JDBC data type as defined in java.sql.Types, and remarks.
138 DB2 UDB for AS/400 Object Relational Support

6. The third column of the rsUDT result set contains the SQL type name for a
given UDT.

7. The fourth column of the rsUDT contains a String object giving a class name in
the Java programming language for this UDT. The example data retrieved for
the PRDDESC distinct type is shown here:

UDT catalog AS400WS
UDT schema TEAMXX
Type name PRDDESC
Class name com.ibm.as400.access.AS400JDBCClob
Data type 2001
Remarks UDT sourced from CLOB(50K)

Note that the Clob interface is implemented by the AS/400 Toolbox class
called com.ibm.as400.access.AS400JDBCClob.

5.2 Using complex objects in CLI or ODBC

In this section, we explain how to use complex objects with the DB2 Call Level
Interface (CLI). Since the CLI specification is based on the ODBC, the discussion
presented here should be relevant to the ODBC support. However, we didn’t test
the code samples listed in this section with the AS/400 ODBC driver.

5.2.1 DB2 CLI application flow
The DB2 Call Level Interface allows applications to access the data in the DB2
family of database management systems (DBMS) using Structured Query
Language (SQL) as a standard for accessing data. Using this interface, a single
application can access different DBMS. This allows the application developer to
develop, compile, and ship an application without targeting the specific database.
The DB2 Call Level Interface is an alternative to an embedded dynamic SQL. On
the AS/400 system, this interface is available to any of the ILE languages.

A DB2 CLI application can be broken down into a set of tasks. Each task may be
composed of several lines of code and may use a number of DB2 CLI functions.
The sample applications included in this section demonstrate only a small subset
of all CLI functions available on the AS/400 system. Refer to DB2/400 Advanced
Database Functions, SG24-4249, for more details on CLI programming.

5.2.2 Passing LOB to a stored procedure written in CLI
The following C code illustrates how to pass a BLOB value as an input parameter
to the CLI stored procedure. The BLOB is the first parameter passed to the
RTVPRDNB3 procedure and is defined as INPUT. You could use this procedure
as part of your Web store application, which presents online customers with a
range of product pictures. Then, customers can click on the product they want to
purchase. The stored procedure is then used to find out the product number for
the item which was clicked.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sqlcli.h" 1

...
typedef struct
{
unsigned long length;
char data[1048576];
Programming alternatives for complex objects 139

} BLOB1M; 2

BLOB1M bin_ProductPicture; 3

...
void main(int argc, char **argv)
{
...

memcpy((void *)&bin_ProductPicture, argv[1], 1048580); 4
...

C code notes
1. To use DB2 CLI functions in your C programs, you must include the header file

called “sqlcli.h”. This include file is contained in QSYSINC library. The OS/400
option Openness Includes needs to be installed on the AS/400 system for this
library to be present.

2. The BLOB1M structure is declared. This structure has two elements, the
current length of the BLOB object and the data buffer, which can contain up to
1 MB of binary data.

3. The bin_ProductPicture variable contains the picture passed to the stored
procedure by the invoking process.

4. The content of the first parameter is copied into the bin_ProductPicture
variable. Note that, in the C calling convention, the second argument passed
to the program object constitutes the first parameter passed to the stored
procedure. The first argument of the program, pointed by argv[0], is always set
to the called program name, RTVPRDNB3 in this case. When copying the
BLOB parameter into a variable, make sure that you copy both data length
and data buffer.

Once the parameters we passed and the initial CLI environment were
successfully created, we can implement the business logic of the stored
procedure. Let’s take a closer look at the fun_Process function, which is the core
of the RTVPRDNB3 program. The most interesting (and tricky) part of this
function is the code, which illustrates how to bind a BLOB parameter using the
SQLBindParam function. Refer to A.7, “RtvPrdNbr3: External stored procedure
written in CLI” on page 222, for a complete code listing.

SQLRETURN fun_Process()
{
short Pictture_Ind = 0;

printf("Attempting to allocate handle to statement\n");

nml_ReturnCode = SQLAllocStmt(nml_HandleToDatabaseConnection,
&nml_HandleToSqlStatement); 1

{
printf("Could not allocate handle to statement\n");
fun_PrintError(SQL_NULL_HSTMT);
printf("Terminating\n");
return SQL_ERROR;
} 2

strcpy(chs_SqlStatement01, "select product_number ");
strcat(chs_SqlStatement01, "from teamxx.prodmast01 ");
strcat(chs_SqlStatement01, "where ");
strcat(chs_SqlStatement01, "product_picture = ");
strcat(chs_SqlStatement01, " cast(? as TEAMXX.PICTURE)") 3;

nml_ReturnCode = SQLPrepare(nml_HandleToSqlStatement,
chs_SqlStatement01,
SQL_NTS); 4

if (nml_ReturnCode != SQL_SUCCESS)
{
...
140 DB2 UDB for AS/400 Object Relational Support

}

nmi_PcbValue = bin_ProductPicture.length;
nml_ReturnCode = SQLBindParam(nml_HandleToSqlStatement,

1,
SQL_BLOB,
SQL_BLOB,
sizeof(bin_ProductPicture),
0,
(SQLPOINTER) bin_ProductPicture.data,
(SQLINTEGER *) &nmi_PcbValue);5

if (nml_ReturnCode != SQL_SUCCESS)
{

...
}

nml_ReturnCode = SQLExecute(nml_HandleToSqlStatement);
if (nml_ReturnCode != SQL_SUCCESS)
{

...
}

nml_ReturnCode = SQLBindCol(nml_HandleToSqlStatement,
1,
SQL_CHAR,
(SQLPOINTER) chs_ProductNumber,
sizeof(chs_ProductNumber),
(SQLINTEGER *) &nmi_PcbValue); 6

if (nml_ReturnCode != SQL_SUCCESS)
{

...
}

nml_ReturnCode = SQLFetch(nml_HandleToSqlStatement);
if (nml_ReturnCode != SQL_SUCCESS)
{
....

}
else
{
return SQL_SUCCESS;

}
}

Code listing notes
1. The SQL statement handle is allocated. This handle is used to pass SQL

requests to the DB2 UDB for AS/400 database engine.

2. This a typical error-handling routine, which is used to catch SQL error
conditions returned from the database. This routine is used after each
execution of a CLI function to make sure that there are no pending SQL errors.

3. The text of the SQL request is assembled here. Note the use of the parameter
marker. This marker is used to bind the BLOB value passed from the invoking
process. We need to explicitly cast the parameter marker to the TEAMXX.PICTURE

UDT, because the implicit casting is not supported in the WHERE clauses.

4. The SQL statement is prepared. Notice that the CLI uses dynamic SQL under
the covers.

5. To bind application variables to parameter markers, the application must call
SQLBindParam() or SQLSetParam(). Both functions are the same and are included
for compatibility. The sample application provides the following parameters to
the SQLBindParam function:

• nml_HandleToSqlStatement: This is the handle to the SQL statement that
contains the parameter markers.

• 1: This is the number of the parameter marker to which you want to bind the
application variable. We bind the chs_ProductNumber variable to the first
(and only) parameter marker. If you have more parameter markers in your
Programming alternatives for complex objects 141

SQL statement, you need to call the SQLBindParam function for each of
them. The parameter markers are counted from left to right, starting with 1.

• SQL_BLOB: This is the data type of the application variable as it is defined in
C. This is the data type of the parameter passed by the invoking process.

• SQL_BLOB: This is the SQL data type of the application variable.

• sizeof(bin_ProductPicture): This is the precision or length of the
application variable. In the case of BLOB variables, this is the variable size
in bytes. For this parameter you need to pass the size of the
bin_ProductPicture structure.

• 0: This is the scale of the application variable. In data types other than
zoned packed decimals, this is unused. In case of packed and zoned
decimals, this is the number of digits to the right of the decimal point.

• (SQLPOINTER) bin_ProductPicture.data: This is a pointer to the buffer that
actually contains the data to be used at the execution time. For this
parameter, we pass the pointer to the data buffer containing the BLOB
object.

• (SQLINTEGER *) &nmi_PcbValue: This is an integer pointer that, for the BLOB
variable, points to a location containing the exact length of the BLOB data.
The nmi_PcbValue was set to bin_ProductPicture.length just before the
SQLBindParam was called.

6. After the SQL statement is successfully executed, we bind the value of the
column returned by the run time to an application variable. The
chs_ProductNumber variable contains the product number for the first item in the
table, which has the same product picture as the picture passed by the
invoking process as a search parameter.

Note: The PRODUCT_NUMBER column was implicitly cast from the
SRLNUMBER UDT to its underlying source type of CHARACTER(5). The DB2
CLI, like any other high level programing interface, is not aware of the UDTs,
so UDTs are implicitly converted to their appropriate source data types during
the INPUT/OUTPUT operations.

The following CL command compiles our sample CLI stored procedure:

CRTBNDC PGM(DPOBJECT/RTVPRDNBR3) SRCFILE(DPSOURCE/QCSRC) OUTPUT(*PRINT)
DBGVIEW(*ALL)

Since CLI is not using embedded SQL, the DB2 for AS/400 Development Kit is
not required on your development machine. Once the program object is
successfully created, we register the stored procedure with the following SQL
statement:

create procedure TEAMXX/RTVPRDNB3(IN ProductPicture BLOB(1M),
OUT ProductNumber CHAR(5)) 1

language C
specific RTVPRD0003
deterministic
external name DPOBJECT/RTVPRDNBR3
general;

SQL statement note
1. The stored procedure is defined with two parameters. The BLOB object is

passed by value.
142 DB2 UDB for AS/400 Object Relational Support

For the external stored procedure, you can specify the input parameter as a
locator to the value rather than the actual value. You can use the AS LOCATOR
clause only if the input parameter has a LOB data type or a distinct type based on
a LOB data type. The AS LOCATOR clause is not allowed for SQL procedures.

5.2.3 Calling the CLI stored procedure
Once the RTVPRDNB3 external stored procedure is successfully registered in
the system catalogs, it can be called from any interface that supports SQL CALL
statement. The following embedded SQL code example illustrates how to call the
procedure and how to pass LOB value as one of the parameters:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS BLOB(1M) bin_ProductPicture;
char chs_ProductNumber[5];

EXEC SQL END DECLARE SECTION;

void main(int argc, char **argv)
{

EXEC SQL WHENEVER NOT FOUND GOTO badnews;
EXEC SQL WHENEVER SQLERROR GOTO badnews;

EXEC SQL DECLARE
cur_Picture
CURSOR FOR
select Product_Picture
from
prodmast01; 1

EXEC SQL OPEN cur_Picture;

do
{

EXEC SQL FETCH cur_Picture into :bin_ProductPicture; 2
EXEC SQL SET :chs_ProductNumber = ' ';
EXEC SQL CALL RTVPRDNB3(:bin_ProductPicture, :chs_ProductNumber); 3
printf("The product number - %s\n", chs_ProductNumber);

} while (sqlca.sqlcode != 100);
exit(0);
badnews:
EXEC SQL CLOSE cur_Picture;
exit(1);

}

Notes for CALLRPNBR3 C embedded SQL program
1. The SQL cursor is defined. We use this cursor to retrieve product pictures

from the prodmast01 table. The PRODUCT_PICTURE column is of user defined
type PICTURE.

2. A PRODUCT_PICTURE value is fetched from the table. The value is implicitly
cast from the PICTURE UDT into the sourced data type (BLOB in this case)
before it is assigned to the bin_ProductPicture host variable.

3. The retrieved value, now stored in bin_ProductPicture host variable, is passed
by value to the stored procedure.

5.2.4 Retrieving LOBs in CLI
In this section, we describe how to use the CLI to retrieve LOB data. We coded
another stored procedure called RTVPRDNBR4. The procedure accepts two
parameters: chs_ProductNumber as an INPUT parameter and bin_ProductPicture as
an OUTPUT parameter. This time, we use the procedure to retrieve the product
Programming alternatives for complex objects 143

picture for the given product number. The product number is passed by the
invoking process. We focus our attention on the most important portion of the
source code:

typedef struct
{
unsigned long length;
char data[1048576];

} BLOB1M;

BLOB1M bin_ProductPicture;
...
SQLRETURN fun_Process()
{
...
strcpy(chs_SqlStatement01, "select product_picture ");
strcat(chs_SqlStatement01, "from prodmast01 ");
strcat(chs_SqlStatement01, "where ");
strcat(chs_SqlStatement01, "product_number = cast (? as SRLNUMBER)"); 1

nml_ReturnCode = SQLPrepare(nml_HandleToSqlStatement,
chs_SqlStatement01,
SQL_NTS);

if (nml_ReturnCode != SQL_SUCCESS)
{
...

}

nml_ReturnCode = SQLBindParam(nml_HandleToSqlStatement,
1,
SQL_CHAR,
SQL_CHAR,
sizeof(chs_ProductNumber),
0,
(SQLPOINTER) chs_ProductNumber,
(SQLINTEGER *) &nmi_PcbValue); 2

if (nml_ReturnCode != SQL_SUCCESS)
{

...
}

nml_ReturnCode = SQLExecute(nml_HandleToSqlStatement);
if (nml_ReturnCode != SQL_SUCCESS)
{
...

}

nml_ReturnCode = SQLBindCol(nml_HandleToSqlStatement,
1,
SQL_BLOB,
(SQLPOINTER) bin_ProductPicture.data,
sizeof(bin_ProductPicture),
(SQLINTEGER *) &nmi_PcbValue); 3

if (nml_ReturnCode != SQL_SUCCESS)
{
...

}

nml_ReturnCode = SQLFetch(nml_HandleToSqlStatement);
if (nml_ReturnCode != SQL_SUCCESS)

{
...

}
else
{
return SQL_SUCCESS;

}
}

Notes for RTVPRDNBR4 CLI stored procedure
1. The SQL request is assembled here. The PRODUCT_NUMBER column is of

user defined type SRLNUMBER, so we need to explicitly cast the parameter
marker to the appropriate type.

2. We use SQLBindParam function to bind the parameter marker.
144 DB2 UDB for AS/400 Object Relational Support

3. To bind a column to an application variable, the application must call the
SQLBindCol function. The sample application provides the following parameters
to this function:

• nml_HandleToSqlStatement: This is the handle to the SQL statement that
contains the column.

• 1: We retrieve Product_Picture as the first and only column in the result set.

• SQL_BLOB: This is the SQL data type of the application variable.

• (SQLPOINTER) bin_ProductPicture.data: This is a pointer to the buffer
where the retrieved picture is stored at the fetch time.

• sizeof(bin_ProductPicture): This is the size of the buffer that stores the
data retrieved from the column. Note that, in case of BLOB data type, you
need to pass the size of bin_ProductPicture structure.

• (SQLINTEGER *) &nmi_PcbValue: This is an integer pointer that points to a
location containing the length of the BLOB data returned at fetch time.
Programming alternatives for complex objects 145

146 DB2 UDB for AS/400 Object Relational Support

Chapter 6. DataLinks

This chapter describes:

• The role of DataLinks in applications and their use relative to LOBs
• The generic components of DataLinks
• The AS/400 operational environment to support the DataLinks components
• The creation of DataLinks in DB2 Universal Database for AS/400
• The considerations for working with DataLinks in DB2 UDB for AS/400
• An overview of working with DataLinks in an heterogeneous environment
• Backup/recovery considerations for DataLinks

6.1 A need for DataLinks

Chapter 2, “Large object support in DB2 UDB for AS/400” on page 3, described
the potential role that large objects can play in modern applications. In particular,
with the growth of Internet-based applications, the desire for organizations to
capture and retain the interest of potential customers is driving the need to
include types of data beyond the simple structured interface presented by
characters and numerics. This new breed of unstructured data includes images,
sound recordings, video clips, and complex text.

Large objects, in the form of BLOBs, CLOBS, and DBCLOBS, are now supported
as data types for inclusion in DB2 Universal Database for AS/400 tables.
Although the DB2 Universal Database architecture defines 2 GB as the maximum
size of a LOB, the current OS/400 V4R4 implementation limits the size to 15 MB.

While a majority of unstructured data that an application needs to use is likely to
fall below the 2 GB, or even the 15 MB limit, some will undoubtedly be larger.
Video recordings are a prime example of data that can be very large. These file
objects will need to overcome that limit.

As a further scenario, consider a user with thousands of file objects, for example,
video recordings, images, or sound bites, stored on a hard drive of a PC server or
in the Integrated File System of their AS/400. These files may simply be there for
ease of storage, with hierarchical structure of file system directories being well
suited to stream file management. Additionally, they may be currently used by PC
based applications, such as audio and video players and graphics and drawing
packages. New application requirements may then arise, which are best fulfilled
by using an SQL table, to contain information about these file objects, for
example, title, length, creation date, artist, and so forth. However, since the user
already has the objects stored in a file directory, they may be reluctant to transfer
them into the SQL table as LOB columns. Furthermore, it may not be feasible to
move them from the file system if they need to be accessed by PC applications.

The DataLink data type extends the types of data that can be stored in an SQL
table. The principle behind a DataLink is that the actual data stored in the table
column is only a pointer to an object residing in a file system on any file server
that supports DataLinks. The file object can be any file type. The method used to
resolve the file object in an application is to store this pointer in the form of a
Uniform Resource Locator (URL). This URL can use any of the following formats:
© Copyright IBM Corp. 2000 147

• file:
• http:
• https:

This means that a row in a table can be used to contain information about the file
object in columns of traditional data types, and the object itself can be referenced
using the DataLink data type. An application can use new SQL scalar functions to
retrieve the name of the server on which the file object is stored and the path to it.
The application can then hand control to software more appropriate in handling
streaming data, for example a browser, to retrieve the object. This approach also
has the advantage of deferring the physical movement of potentially very large
objects from the server until needed by the client application. The access of such
objects through the file system is also likely to provide better performance than
through the relational database management system (RDBMS).

However, there are a number of important considerations if the RDBMS is to be
used to effectively manage unstructured data that is stored in a file system. The
two major considerations are:

• There has to be some relationship between the relational data and the file
data.

• This relationship must be managed, particularly in the areas of data integrity,
data access control, and data backup/recovery to ensure high-application
availability.

Relational database management systems provide the robust environment that is
lacking in file systems by applying that environment to the DataLinks.

Figure 92 shows a relational table with the LOB data actually stored in columns
within each row along with the traditional structured data columns.

Figure 93 shows the same data, but the LOB data is stored as DataLinks within
each row. Each DataLink column points to a file server, for example, the AS/400
Integrated File System, and a directory and file object within that server.

Figure 92. Large objects in tables: The LOB approach

SOLD ONHAND RATING ARTIST TITLE COVER VIDEO MUSIC SCRIPT

234 59 PG-13 Arnold The Exter
minator

13 45 R Kevin Dancing
with Bulls

1295 209 G Glenn 101 Doll
Imitations

379 112 G Buzz Toy Glory
148 DB2 UDB for AS/400 Object Relational Support

Figure 93. Large objects in tables: The DataLink approach

There are a number of additional benefits from the DataLinks approach. File
systems, including the AS/400 Integrated File System (IFS), are able to store any
type of stream file. The current scope includes all of the types referenced in
Figure 93 and more. However, technological advances will, over time, no doubt
give birth to new ways of storing complex unstructured data using new file types.
In other words, using the file system approach to unstructured data storage
provides a high degree of future proofing to applications.

In summary, any application that could benefit from significant content
management capabilities and robust and secure file management would be a
candidate for deploying DataLinks. Examples include:

• Web-based electronic commerce

• Intranet applications

• Applications with links to computer-aided design and manufacturing
(CAD/CAM)

• Library and asset management applications (for example, entertainment
industry, medical applications using X-rays, and so on)

SOLD ONHAND RATING ARTIST TITLE COVER VIDEO MUSIC SCRIPT

234 59 PG-13 Arnold The
Exterminator

file://AS400
WS/covers/
ext.jpg

file://AS400
WS/videos/
ext.mpg

file://AS400
WS/music/
ext.wav

file://AS40
0WS/script
/ext.lwp

13 45 R Kevin Dancing
withBulls

file://AS400
WS/covers/
dbull.jpg

file://AS400
WS/videos/
dbull.mpg

file://AS400
WS/music/
dbull.wav

file://AS40
0WS/script
/dbull.lwp

1295 209 G Glenn 101 Doll
Imitations

file://AS400
WS/covers/
di101.jpg

file://AS400
WS/videos/
di101.mpg

file://AS400
WS/music/
di101.wav

file://AS40
0WS/script
/di101.lwp

379 112 G Buzz Toy Glory file://AS400
WS/covers/
toyg.jpg

file://AS400
WS/videos/
toyg.mpg

file://AS400
WS/music/t
oyg.wav

file://AS40
0WS/script
/toyg.lwp

Directory:
M usic

toyg.w avd i101.w avdbull.w avext.w av

D irectory:
Covers

toyg.jpgd i101.jpgdbull.jpgext.jpg

D irectory:
Videos

ext.m pg toyg.m pgdi101.m pgdbull.m pg

D irectory:
S cript

toyg.lw p
dbull.lw p d i101.lw pext.lw p
DataLinks 149

6.2 DataLinks components

DataLink support on the AS/400 system is comprised of four major components:

• The DataLink data type
• The DataLink File Manager (DLFM)
• The DataLink filter
• DBMS/DLFM APIs

Figure 94 summarizes the DataLinks components and the API interfaces they use
to communicate.

Figure 94. DataLinks components summary

6.2.1 DataLink data type
The DataLink data type is new to DB2 Universal Database for AS/400 in V4R4
with the Database Fixpack. When you use Operations Navigator to create a table,
the data type can be found in the drop-down list box when you insert a column as
illustrated in Figure 95.

RDBMS
Manages file access requests
from DataLinks Filter
Applies Transaction Integrity to
Link/Unlink actions

Employee Table

Name Dept Picture

DATALINK
type (URL)

Applications

SQL API Requests File API Requests

DBMS /
DLFM

APIs

Data Links File Manager (DLFM)
Link/unlink
Apply transaction consistency

DataLinks Filter
Referential integrity for file
rename, move and delete
Database access control for
file open

Images
in External

Files
150 DB2 UDB for AS/400 Object Relational Support

Figure 95. Inserting a column of data type DataLink

The SQL statements that support the data type are CREATE TABLE and ALTER TABLE.
The only default value that you can specify for a column of type DataLink is null.
Because the DataLink is not compatible with any host variable data type, the only
interface that allows access is SQL. The underlying format of the data in a
DataLink column is character format, and you can use a number of SQL scalar
functions to retrieve the Datalink value in this format. When you insert or update
data in a DataLinks column, you must use the DLVALUE scalar function with SQL
INSERT or UPDATE.

6.2.2 DataLink file manager
The DataLink File Manager (DLFM) is the core component of the support for
DataLinks on any platform. It controls and maintains the status of the links
between the RDBMS tables and their associated file system objects. It does this
by creating and maintaining metadata for each table and file. On the AS/400
system, this metadata is stored in a number of tables in the QDLFM collection
(library). Figure 96 on page 152 shows the objects in the QDLFM library.
DataLinks 151

Figure 96. DLFM objects in library QDLFM

The DLFM handles the linking and unlinking of files with tables. Because it is
using DB2 Universal Database for AS/400 tables (in library QDLFM) for managing
the environment, it can also manage the integrity of those links through
commitment control by treating link and unlink actions as transactions.

One of the most important aspects of the DataLinks architecture is that it is
designed so that the DLFM can reside on a remote AS/400 system running V4R4
or higher. It achieves this by using a standard set of APIs between the RDBMS
and DLFM components. This approach allows relational tables on one system to

No explicit user interface is provided to these objects. We strongly recommend
that you do not make any changes to their content. However, if you view the
content of some of the tables, you will find useful information on the setup and
state of the DataLink environment. Some examples are shown in 6.3.2.4,
“Additional DataLink management interfaces” on page 161.

Important
152 DB2 UDB for AS/400 Object Relational Support

link to files on the same or another system, either locally or remotely. This flexible
approach allows the files to reside on the most appropriate system from an
overall application standpoint. Such flexibility can also aid performance and
minimize network costs by allowing file servers to be positioned close to the end
users, enabling files to be delivered over shorter distances. Figure 97 shows an
example of the type of DataLink environment that could be deployed. Relational
DB2 Universal Database for AS/400 tables on the Rochester system are linked to:

• Files in directories in its own Integrated File System
• Files in directories on the London AS/400s Integrated File System

A DLFM is running on both systems.

Figure 97. Distributed heterogeneous DLFM environment

6.2.3 DataLink filter
The DataLink filter is an internal function that is invoked whenever a program
attempts operations, through a file system interface, on a file that is within a
directory registered as containing linked files. It determines if the file is actually
linked and, depending on the attempted operation, may also check if the user is
authorized to access the file and open it. If it finds that the file is linked, it will
impose a form of referential constraint and reject any attempt to move, rename, or
delete the file. This aspect is covered in more detail in 6.4.6, “Using the DataLink
access control token” on page 186.

The DataLink Filter is invoked regardless of whether a file is linked or unlinked.
Because invoking the DataLink Filter generates resource overhead, it is only
executed when the file being accessed is in a registered directory or in a directory
path below a registered directory. This is covered in more detail in 6.3.2.1,
“Adding a prefix” on page 157.

6.2.4 APIs
There are essentially three API interfaces in the DataLinks environment:

• The interface to the relational table. This is through SQL and uses new scalar
functions to work with the DataLink in the table rows. No OS/400 native I/O
interface is provided to the DataLink data type.

• The interface to objects in the file system from file API requests. Access to
linked or unlinked files residing in a registered directory is intercepted by the

Rochester
AS400RCH

London
AS/400LON
DataLinks 153

DataLinks Filter. Access can be directly from file system programs and utilities
or, in the case of the AS/400 IFS, from an AS/400 ILE C program.

• The interface between the RDBMS and the DLFM. These APIs allow the
RDBMS to communicate link and unlink activities to the DLFM, and the DLFM
to communicate file access requests to the RDBMS if the option has been
taken to use the RDBMS to control file access.

6.3 DataLinks system configuration

A number of basic configuration tasks are necessary to enable the DataLinks
environment to be defined.

You must configure TCP/IP on all systems that you want to participate in the
environment. That is, those that will host the SQL tables in which DataLink
columns are created, and those that will host the file objects to be linked. In the
case of a single AS/400 system where IFS files are going to be linked to DB2
Universal Database for AS/400 tables, the configuration is a single process. The
URL in the DataLink column used to reference the file object contains the name
of the file server. You must configure this name or register a TCP/IP name server.
Enter the command:

CFGTCP

Then, enter option 10 as shown in Figure 98.

Figure 98. Adding the TCP/IP server name

Figure 99 shows the next screen displayed. If the system is not already
configured, type 1 and the IP address on the top line, and press Enter to add a
new entry. The next screen allows you to type in the name of the AS/400 server.

If the IP address is configured, but the AS/400 system name you want to use in
your DataLink columns is not, type 2 next to the appropriate IP address and press

CFGTCP Configure TCP/IP
System: R

Select one of the following:

1. Work with TCP/IP interfaces
2. Work with TCP/IP routes
3. Change TCP/IP attributes
4. Work with TCP/IP port restrictions
5. Work with TCP/IP remote system information

10. Work with TCP/IP host table entries
11. Merge TCP/IP host table
12. Change TCP/IP domain information

20. Configure TCP/IP applications
21. Configure related tables
22. Configure point-to-point TCP/IP

Selection or command
===> 10

F3=Exit F4=Prompt F9=Retrieve F12=Cancel
154 DB2 UDB for AS/400 Object Relational Support

Enter. The next screen allows you to enter an additional server name. In our
case, this is AS400RCH.

Figure 99. Adding the IP server name: IP address already configured

Next, you must ensure that the AS/400 system that will host the relational tables
with the DataLink columns has a relational database directory entry. You can
define this system as *LOCAL in the system’s relational database directory by
running the CL command:

WRKRDBDIRE

The screen shown in Figure 100 is displayed.

Figure 100. Adding the relational database directory entry (WRKRDBDIRE)

If there is no entry with a remote location name of *LOCAL, you must add this
entry for the local AS/400 system. You should use the AS/400 system name that
you used for the TCP/IP server as the relational database name. This enables the

Work with TCP/IP Host Table Entries
System: RCH

Type options, press Enter.
1=Add 2=Change 4=Remove 5=Display 7=Rename

Internet Host
Opt Address Name

2 1.1.12.30 AS23
AS400WS

1.1.92.31 AS400LON
1.11.208.1 AS89
127.0.0.1 LOOPBACK

LOCALHOST

B
F3=Exit F5=Refresh F6=Print list F12=Cancel F17=Position to

Work with Relational Database Directory Entries

Position to

Type options, press Enter.
1=Add 2=Change 4=Remove 5=Display details 6=Print details

Relational Remote
Option Database Location Text

AS400RCH *LOCAL

Bottom
F3=Exit F5=Refresh F6=Print list F12=Cancel
(C) COPYRIGHT IBM CORP. 1980, 1999.
DataLinks 155

DLFM to communicate with DB2 Universal Database for AS/400 within the local
AS/400 system.

Note that the *LOCAL entry in the RDB directory is required only on the system
where the tables reside. In a distributed environment, if the DLFM server is
running on the system with no linked tables, there is no need for either the
*LOCAL RDB entry or the remote entry for the system where the linked tables
reside.

6.3.1 Initializing the DLFM server
In 6.2.2, “DataLink file manager” on page 151, we explained how the DLFM
manages the environment by keeping and maintaining metadata in a number of
tables in the QDLFM collection. These tables must be set up and initialized. To do
this, you must run the CL command INZDLFM as follows:

INZDLFM *ALL

The prompted command is shown in Figure 101.

Figure 101. Initializing the DLFM tables (INZDLFM)

The INZDLFM command with the *LNKSTS parameter clears the tables in the
QDLFM library that contain the link status of DataLinks. You then need to relink
all your files.

Initialize DLFM (INZDLFM)

Type choices, press Enter.

Clear existing databases *all *LNKSTS, *ALL

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
156 DB2 UDB for AS/400 Object Relational Support

6.3.2 DLFM configuration
Once the generic DLFM environment has been initialized, you begin to customize
it for your own application environment. This involves defining information to
DLFM about your specific relational table and file system entities that will be
included in the DLFM configuration. You should note that *IOSYSCFG special
authority is needed to perform these administrative functions.

6.3.2.1 Adding a prefix
DLFM needs to know the file system directories where it will find file objects to be
linked and which will come under its management and control. For example, if
you wanted to define the directory "Videos" as one containing files to be linked,
you use the following CL command example:

ADDPFXDLFM PREFIX('/videos')

Figure 102 on page 158 shows it as a prompted command.

You should use this command with caution. Under normal circumstances, its
use should be viewed as a one-time exercise. If you run it again once the
environment has been set up and Datalinks have been created, the system
attempts to re-create the internal DLFM tables and delete any rows of data that
they contain. You will then be faced with re-creating the entire environment and
relinking your files. You are strongly advised to add the backup of the QDLFM
library to your existing installation backup policies. If you should accidentally
rerun the command, you will have to re-IPL the system. This is because DLFM
mounts the file directories that are registered to it (refer to 6.3.2.1, “Adding a
prefix” for more details) at IPL time, and rerunning the initialization causes the
mount points to be lost.

Attention
DataLinks 157

Figure 102. ADDPFXDLFM command prompt

When rows containing DataLinks columns are inserted into a table, if the
referenced files are to be linked, the DLFM checks to ensure that the files exist
and that they are within a file directory that is a registered prefix or within a
sub-directory of a registered prefix. For example, if the directory TEAMXX has
been registered as follows:

ADDPFXDLFM PREFIX('/teamxx')

then files in any of the following paths are valid candidates for linking:

• /teamxx
• /teamxx/multimedia
• /teamxx/multimedia/sound_bites

To minimize the performance overhead incurred when the DLFM checks the
registered prefixes, you should keep the number of prefixes to a minimum. For
optimum manageability, you should keep files to be linked in sub-directories
within the directories defined as prefixes, not within the registered directories
themselves. This allows you to manipulate those sub-directories without affecting
the mount points that have been set up at IPL. Therefore, using the above
example, if you wanted to replace the complete set of sound bite files in the

Add Prefix to DLFM (ADDPFXDLFM)

Type choices, press Enter.

Prefix: PREFIX
Name > '/videos'

+ for more values
Source file SRCFILE
Library *LIBL

Source member SRCMBR

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

You may use the format '/videos' or '/videos/' for the PREFIX parameter, but
you should be consistent in their usage. The directory that you are registering
must exist at the time of registration. The SRCFILE and SRCMBR parameters
allow you to pre-build the prefix names in a separately maintained source file
member for input to the command. Each prefix name would occupy a line in the
source member.

Note
158 DB2 UDB for AS/400 Object Relational Support

sub-directory '/sound_bites', you could simply delete the complete sub-directory
and restore the new version. Because '/sound_bites' is not a registered prefix,
deleting it will not affect the file mount point.

6.3.2.2 Adding a host database
DLFM needs to know the AS/400 systems and the libraries within those systems
where relational tables will be found that need to link to files in a file system. Note
that both the local AS/400 system and any remote AS/400 system that may
generate link requests must be known to DLFM. For example, you have a local
system, AS400RCH, and a remote system, AS400LON, with libraries as indicated
in Table 10.

Table 10. Host database registration example

The local AS400RCH system tables link to files in the local IFS and the remote
system’s IFS. The remote system tables only link to files in its own IFS. To
register the necessary host database information on system AS400RCH, you use
the following CL commands:

ADDHDBDLFM HOSTDBLIB((MULTIM01)(MULTIM02)) HOSTDB(AS400RCH)

On the AS400LON system, use the following command:

ADDHDBDLFM HOSTDBLIB(IMAGMAST) HOSTDB(AS400LON)
ADDHDBDLFM HOSTDBLIB((MULTIM01)(MULTIM02)) HOSTDB(AS400RCH)

AS/400 system Libraries with tables to be linked

AS400RCH MULTIM01
MULTIM02

AS400LON IMAGMAST

There is a command to remove prefixes (see 6.3.2.4, “Additional DataLink
management interfaces” on page 161). However, this would not be a commonly
used function since prefixes can only be removed if there are no linked files
anywhere in the directory path within and below the prefix directory.

Note

The value of the HOSTDB parameter must be set to the relational database
name that you used for the *LOCAL RDB entry on the AS400RCH system.

Note
DataLinks 159

Table 11. RDB entries on the AS400RCH system

The RDB entries on the London system are shown in Table 12.

Table 12. RDB entries on the AS400LON system

The prompted ADDHDBDLFM command is shown in Figure 103.

Figure 103. ADDHDBDLFM command prompt

Relational database Remote location

AS400RCH *LOCAL

Relational database Remote location

AS400LON *LOCAL

London’s system will have link requests coming from Rochester (remote) and
London (local). You need to register libraries from both systems. For the local
system, you use the HOSTDB name, as specified for the *LOCAL RDB entry
on the AS400LON machine. Similarly, for the remote system, you use the
HOSTDB name, as specified for the *LOCAL RDB entry on the AS400RCH
machine. In other words, to register libraries on the remote system, you need
to know the name of the relational database for the *LOCAL entry on the
remote system.

Note also that, in this scenario, there is no need for the AS400RCH RDB entry
on the AS400LON machine. However, this entry may be required for some
other functionality, such as DRDA and/or DDM. To summarize, the RDB entries
required by the DataLink interface on the Rochester system are shown in Table
11.

Note

Add Host Database to DLFM (ADDHDBDLFM)

Type choices, press Enter.

Host database library: HOSTDBLIB
Name > MULTIM01

Name > MULTIM02
+ for more values

Host database instance HOSTDBINST QSYS
Host database HOSTDB AS400RCH

Source file SRCFILE
Library *LIBL

Source member SRCMBR

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
160 DB2 UDB for AS/400 Object Relational Support

The SRCFILE and SRCMBR parameters allow you to pre-build the host database
names in a separately maintained source file member for input to the command.
The format of the input should be: HOSTDBLIB HOSTDBINST HOSTDB. Using
Figure 103 as an example, the source file member would consist of the two
following entries:

MULTIM01 QSYS AS400RCH
MULTIM02 QSYS AS400RCH

6.3.2.3 Additional configuration commands
The functions of registering prefixes and host databases are both provided
through CL commands. Sometimes, you may also want to remove registered
prefixes. However, this administrative function is not accessed through CL
commands but through the QShell interactive interface. The following example
shows how to use the dfmadmin command in the QShell. To use the command,
type the following statement into an OS/400 command prompt, and press Enter:

QSH

You are now presented with the QShell command interface. To remove the prefix
'/teamzz,' which you accidentally mis-typed, run the following QShell command:

dfmadmin -del_prefix

Press Enter. When prompted, type:

/teamzz

Press Enter. Press Enter again to terminate the command.

6.3.2.4 Additional DataLink management interfaces
Viewing the content of some of the database tables in the QDLFM library through
the Operations Navigator Quick View function can be a useful way of determining
the current state of the DataLink environment. The tables in QDLFM on which you
should focus are:

The ADDHDBDLFM command has an additional parameter, the host database
instance (HOSTDBINST). This is always QSYS on the AS/400 system and
does not need to be specified as the parameter defaults to this value. It is
present for compatibility with DB2 Universal Database on other platforms
which, unlike DB2 Universal Database for AS/400, supports multiple database
instances.

Note

Exercise caution if using the QShell commands. Their use should be restricted
to deleting inappropriate prefixes or host database names. For example, a
particular directory prefix is no longer needed and it does not contain any
linked files, or a library referenced in the host database entries is being
replaced by a new library.

Attention
DataLinks 161

DFM_DBID
DFM_FILE
DFM_PRFX

From the Operations Navigator window, right-click on the DFM_DBID table icon,
and select Quick View to display the rows in the table. You should not
double-click on the table, since this opens it for update, exposing you to the
danger of accidentally overwriting or deleting values in the table rows. You see a
display similar to that in Figure 104. It contains one row for each library that has
been registered with the DLFM and the name of the system on which that library
resides.

Figure 104. Table DFM_DBID in QDLFM library: Viewed with Operations Navigator

Repeat the Quick View operation on the table DFM_FILE. The Results window
should resemble that shown in Figure 105. This table has one row for each file
that is linked and includes the directory path to the file.

Figure 105. Table DFM_FILE in QDLFM library: Viewed with Operations Navigator

Finally, repeat the Quick View operation on the table DFM_PRFX. You see a
Results window similar to that shown in Figure 106. This has one row for each
prefix that has been registered with the DLFM.

Figure 106. Table DFM_PRFX in QDLFM library: Viewed with Operations Navigator
162 DB2 UDB for AS/400 Object Relational Support

6.3.3 Starting the DLFM server
Once the generic DLFM environment has been initialized, you are ready to start
the DLFM. It must be started on any systems that contain file objects to be linked.
On the AS/400 system, the DLFM is, in fact, a TCP/IP server job. To start it, run
the following CL command:

STRTCPSVR SERVER(*DLFM)

The screen shown in Figure 107 should be displayed. You will notice that this
screen is not a conventional command display. The reason for this is that the
DLFM server is started through the OS/400 QShell interface, and it is the
interactive shell interface that is displayed. Once the DLFM server has started,
you must press Enter to terminate the QShell terminal session and return to the
OS/400 command interface.

Once started, the DLFM would normally be permanently active. However, to
terminate it in a controlled way, there is the following CL command:

ENDTCPSVR SERVER(*DLFM)

Once execution of this command has completed, you receive a the message:

DLFM server ended

Figure 107. Starting the DLFM server jobs

When the DLFM has successfully started, there will be a number of jobs active in
the OS/400 QSYSWRK subsystem. These are shown in Figure 108 and Figure
109 on page 164.

Create detach session message queue.
DLFM server started.
Press ENTER to end terminal session.

===>

F3=Exit F4=End of File F6=Print F9=Retrieve F17=Top
F18=Bottom F19=Left F20=Right F21=User Window
DataLinks 163

Figure 108. DLFM server jobs in Operations Navigator

Figure 109. DLFM server jobs in subsystem QSYSWRK

6.4 Using DataLinks with SQL

Once you have registered the prefixes and host database names, and the DLFM
server has been started, you can start to link to objects in the file system.

You begin by defining and creating the tables you need in the libraries that have
been registered to the DLFM. There are a number of options to be considered as
part of the table creation process as you define the DataLinks columns. These
are covered in detail in 6.4.1, “DataLink options: General” on page 165. The
options you choose will be governed primarily by the nature of the applications
that will be using the DataLinks. It is important to note that the DataLinks
architecture defines a number of possible attributes for creating, processing, and
managing linked files. V4R4 delivers the first stage of the implementation for DB2

Work with Active Jobs AS400WS
09/24/99 15:23:29

CPU %: .0 Elapsed time: 00:00:00 Active jobs: 197

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status
QZDFMCHD QSYS BCI .0 TIMW
QZDFMCOD QSYS BCI .0 DEQW
QZDFMCPD QSYS BCI .0 SIGW
QZDFMDGD QSYS BCI .0 DEQW
QZDFMGCD QSYS BCI .0 SIGW
QZDFMRTD QSYS BCI .0 DEQW
QZDFMSVR QSYS BCH .0 TIMW
QZDFMUPD QSYS BCI .0 DEQW

Bottom
Parameters or command
===>
F3=Exit F5=Refresh F7=Find F10=Restart statistics
F11=Display elapsed data F12=Cancel F23=More options F24=More keys
164 DB2 UDB for AS/400 Object Relational Support

Universal Database for AS/400 and, therefore, delivers a subset of those
attributes.

6.4.1 DataLink options: General
The DataLinks architecture defines the following attributes that are summarized
in Table 13 on page 167:

• Linktype: The only link type currently defined is the URL.

• Link Control: This is the basic attribute that defines whether file system
objects will be linked to a DataLink row in an RDBMS table. The choice is
between No Link Control and File Link Control:

– No Link Control: When rows are inserted into the table, there would be no
links established to the file objects referenced in the DataLink column. No
check is made to verify that the file server can be accessed or that the file
object being referenced even exists. However, the syntax of the URL is
validated. While the No Link Control option still provides value in terms of
new application potential, it does not enable you to benefit from the
management and integrity control provided by the File Link Control option.

– File Link Control: When a row is inserted into the table, the DLFM
immediately attempts to establish a link to the referenced file object. The
file server must be accessible, and the file object must exist. Once the link
has been established, the DLFM maintains control of the link through its
metadata. A file object may only be linked to one table row. However, a
table row may contain multiple DataLink columns as long as each is linked
to a different file object. Once a file has been linked, it may not be moved,
deleted, or renamed. Deleting the table row unlinks the associated file.
Updating the DataLink value in the table row causes the original referenced
file to be unlinked while the new referenced file is linked.

• Integrity: This attribute controls the level of data integrity between the
database server and the file server. The two options are Integrity All and
Integrity Selective:

– Integrity All: Any linked file object referenced by a DataLink column is
considered to be under the control of the RDBMS, and attempts to rename,
delete, or move the file object from a file system interface are rejected.

– Integrity Selective: Any linked file object referenced by a DataLink column
is considered to be under the control of the RDBMS only if the file server
has the DataLinks Filter installed. This option is not supported by V4R4 of
DB2 Universal Database for AS/400.

• Read Permission: This defines where file object read access is controlled.
The choices are Read Permission FS and Read Permission DB:

– Read Permission FS: The file system controls whether a user has the
necessary authority to perform a read operation on a linked file system
object. No prior access to the associated RDBMS table is required.

– Read Permission DB: The RDBMS controls whether a user may perform a
read operation on a linked file system object. Assuming the file system
object has been given no public access authority, it can only be read by first
accessing the DataLink value in the database table and retrieving an
access control token. This is covered in more detail in 6.4.6, “Using the
DataLink access control token” on page 186.
DataLinks 165

• Write Permission: This defines whether a user can write to the file object.
The choices are Write Permission FS and Write Permission Blocked:

– Write Permission FS: The file system controls whether a user has the
necessary authority to perform a write operation to a linked file system
object. No prior access to the associated RDBMS table is required.

– Write Permission Blocked: A file system object cannot be written to through
any interface because it is owned by the DLFM. V4R4 of DB2 Universal
Database for AS/400 enforces this option if Read Permission DB has been
selected.

• Recovery: This attribute specifies whether point-in-time recovery of linked
files will be supported. The two options are Recovery Yes and Recovery No:

– Recovery Yes: Point-in-time recovery is achieved by the RDBMS ensuring
that backup copies of the linked files are made as needed. It is only valid
when Integrity All and Write Permission Blocked are also specified. This
option is not supported by V4R4 of DB2 Universal Database for AS/400.

– Recovery No: Point-in-time recovery is not supported.

• On Unlink: This attribute determines the action to be taken when the RDBMS
controls write operations to a linked file (Write Permission Blocked), and the
file is unlinked either through the DataLink value in the associated table row
being updated or the row being deleted. Note that updating a row’s DataLink
value effectively deletes the current file link and replaces it with a new file link.
The option is not applicable when write operations are controlled by the file
system (Write Permission FS). The options are On Unlink Restore and On
Unlink Delete:

– On Unlink Restore: When a file is unlinked, this option will ensure that the
file’s ownership and permissions are restored to their state at the time that
the file was linked. If the owner no longer exists in the file system, a default
owner may be established, but this action depends on the particular file
system involved. Apart from only being a valid option when Write
Permission Blocked is also specified, Integrity All is also a prerequisite.

– On Unlink Delete: When a file is unlinked, it is automatically deleted. This
option is only valid when Read Permission DB and Write Permission
Blocked are also specified.
166 DB2 UDB for AS/400 Object Relational Support

Table 13. Architected DataLink attributes: Permissible combinations

6.4.2 DataLink options: DB2 Universal Database for AS/400
You can see from Table 13 that V4R4 of DB2 Universal Database for AS/400
supports a subset of the architected options. We now review how those options
are defined and implemented.

Tables that are to contain rows with DataLink columns can be created through the
Operations Navigator or through a 5250 session and Interactive SQL. To use the
Operations Navigator interface, you must right-click on a library object and select
New->Table. The New Table dialog appears as shown in Figure 110.

Figure 110. New table dialog

Once you type the name of your new table and its optional description and click
OK, the table definition can begin. You start inserting columns into the table,
defining the appropriate data type for each column from the drop-down list box in
the normal way. Figure 111 on page 168 shows a DataLink type column about to
be inserted.

Link
control

Integrity Read
permission

Write
permission

Recovery On unlink

N/A N/A N/A N/A N/A N/A

FILE ALL FS FS NO N/A

FILE ALL FS BLOCKED NO RESTORE

FILE ALL FS BLOCKED YES RESTORE

FILE ALL DB BLOCKED NO RESTORE

FILE ALL DB BLOCKED NO DELETE

FILE ALL DB BLOCKED YES RESTORE

FILE ALL DB BLOCKED YES DELETE

FILE SELECTIVE FS FS NO N/A

Note:

• N/A means not applicable

• The shaded rows indicate the combination of options that are supported by V4R4 of
DB2 Universal Database for AS/400.
DataLinks 167

Figure 111. Inserting a DataLink column

If you do not specify a length for the column, a default value of 200 is applied.
Make sure that the specified length is sufficient to contain both the largest
expected URL and any DataLink comment. The maximum length that can be
specified is 32718. Once the DataLink column has been inserted, a number of
options must be considered for that column, some of which are specific to the
DataLink data type. These options could be grouped under the general
description of "Link Control". The Link Control options you select determines if file
system objects are linked to this table and how the links will be managed with
regards to access control and integrity.

Although a linked file cannot be referenced by more than one table row, a table
row may contain more than one DataLink column. However, each of those
columns must link to a different file. Figure 112 shows the state of the display
after you have selected the DataLink data type and decided on its length. We now
look at the remaining options for a DataLink column on the display.
168 DB2 UDB for AS/400 Object Relational Support

Figure 112. Create table: DataLink column display

A DataLink column can be defined as not null. There are two valid default values:
null and DLVALUE('','URL','').

The Length to allocate box has a value of 50. This specifies the default
fixed-length space to be allocated for the DataLink column in each row. Column
values with lengths less than or equal to the allocated length are stored in the
fixed-length portion of the row. Column values with lengths greater than the
allocated value are stored in the variable-length portion of the row. Column
values stored in the variable-length portion of the row require additional
input/output operations to retrieve. The allocated value may range from 0 to the
maximum length of the string.

The Link control check box can be left unchecked. This would result in the table
being created, but when rows are inserted, there would be no links established to
the file objects referenced in the DataLink column. In fact, the DLFM does not
become involved, and no check is made to verify that the file server can be
accessed or that the file object being referenced even exists. However, the
syntax of the URL is validated. This option corresponds to the first row of
attributes in Table 13 on page 167. While the 'No Link Control' option still provides
value in terms of new application potential, it does not enable you to benefit from
the management and integrity control provided by the File Link Control option.
However, it allows a linked file to be referenced by a DataLink value in more than
one table. If you now check the Link control check box, the display changes look
like those shown in Figure 113 on page 170.
DataLinks 169

Figure 113. Create table: DataLink column link control Read FS/Write FS

Refer to Figure 119 on page 175 for the equivalent SQL statement.

When you specify Link control, the check box Allow read and write of the linked
file through the file system is no longer grayed out and is checked by default. If
you now create the table by pressing the OK button, it is created with the
DataLink option READ PERMISSIONS FS/WRITE PERMISSIONS FS. This
means that the file system controls access to the associated file objects.
However, attempts to move, delete, or rename the file while it is linked are always
denied because the data integrity is enforced. Attempts by a program to perform
read and write operations directly on the file are allowed if all the appropriate
authorities are in place. There is no requirement to retrieve an access control
token from the database table (see 6.4.6, “Using the DataLink access control
token” on page 186, for a detailed explanation). This option corresponds to the
second row of attributes in Table 13 on page 167.

However, if you un-check the Allow read and write of the linked file through the
file system check box, the display appears as shown in Figure 114.
170 DB2 UDB for AS/400 Object Relational Support

Figure 114. Create table: DataLink column link control Read DB/Write Blocked

The equivalent SQL statement looks like the following example:

CREATE TABLE ProdMast02
(Product_Number FOR COLUMN PMNBR TEAMXX/SRLNUMBER NOT NULL WITH DEFAULT,
Product_Name FOR COLUMN PMNAM CHAR(25) NOT NULL WITH DEFAULT,
Product_Description FOR COLUMN PMDESC TEAMXX/PRDDESC,
Product_Price FOR COLUMN PMPRIC TEAMXX/MONEY,
Product_Picture_Link FOR COLUMN PMPICT DATALINK(200)
LINKTYPE URL
FILE LINK CONTROL
INTEGRITY ALL
READ PERMISSION DB
WRITE PERMISSION BLOCKED
RECOVERY NO
ON UNLINK RESTORE);

This indicates implicitly that you wish to create the table with the attributes READ
PERMISSION DB/WRITE PERMISSION BLOCKED. This means that DB2
Universal Database for AS/400 controls access to the associated file objects.
This is achieved by transferring ownership of each file object to the DLFM (user
profile QDLFM) at the time that a table row is inserted and the link is established.
However, attempts to move, delete, or rename the file while it is linked are always
denied because the data integrity is enforced. Attempts by a program to perform
write operations on the file are always rejected regardless of the permissions in
place for the file. Attempts to perform read operations directly on the file will be
honored if the user has sufficient permissions in place for that file. However, as
the intention of this link option is to have the database control read access to the
file objects, you should always ensure that the files to be linked have no public
access permissions defined. Then, read operations are only successful if the
program first obtains an access control token from the database by reading the
DataLinks 171

associated table row. Refer to 6.4.6, “Using the DataLink access control token” on
page 186, for a detailed explanation.

You can display the file permissions by using Operations Navigator to display the
IFS files. Select a file, right-click on it, and select Permissions from the
drop-down box. Figure 115 shows the ownership of a file in the AS/400 IFS before
it has been linked. You see that it is owned by user TEAMXX.

Figure 115. File ownership: Before linking

Figure 116 shows the ownership of the same file after it has been linked to a table
row where the table was created with the option Read Permission DB.
172 DB2 UDB for AS/400 Object Relational Support

Figure 116. File ownership: After linking

You will see that the owner of the file is now QDLFM, the user profile of the
DataLinks File Manager. However, when ownership is changed to QDLFM, details
about the previous ownership are saved.

Referring back to Figure 114 on page 171, the final check box option is the one
labeled 'Delete file when unlinked'. If you place a check mark in this box, you
establish the option ON UNLINK DELETE when the table is created. Note that the
check box is grayed out if the file system is controlling authorities for read and
write operations. This is because it is not logical for unlink actions caused by
database activity to operate on file objects when the file system is managing write
access to those objects. If you select On Unlink Delete when a table row is
deleted, the associated file is unlinked and then deleted from the file system. The
same action occurs when a table row is updated, because an update is executed
as a delete of the existing row followed by an insert of the new row. This option
corresponds to the sixth row of attributes in Table 13 on page 167.

If you leave the check box empty, you are implicitly indicating that you wish to
create the table with the option ON UNLINK RESTORE. When a file is unlinked,
this option ensures that the file’s ownership and permissions are restored to their
state at the time that the file was linked. If the owner no longer exists in the file
system, ownership is given to the default owner, which is QDFTOWN on AS/400.
This option corresponds to the fifth row of attributes in Table 13 on page 167.

You must exercise caution if you use the On Unlink Delete option. We strongly
advise that you use the On Unlink Restore option unless an application can
significantly benefit from the delete action. For example, you may have a Web
application that allows potential customers to listen to CDs and watch video clips
from an online catalog. While the CD or video are popular, you are using the l
integrity of DataLinks to prevent the CD sound bites and video clips from being
deleted. However, you would want to maintain the catalog so that, when a CD or
video is no longer current or popular, it is removed. The On Unlink Delete option
DataLinks 173

would ease the maintenance of the catalog by automatically deleting the CD
sound bites and video clips when the row is deleted from the catalog table in the
database. Figure 117 summarizes the V4R4 DB2 Universal Database for AS/400
link control options.

Figure 117. Summary of DB2 Universal Database for AS/400 link control options

When you create a table, there are a number of other table properties that can be
defined. These properties include Key Constraints, Indexes, Referential
Constraints, and so forth.

DataLink fields have special considerations. They may not be used as key fields
in an index. Consequently, they may not be used to define key constraints or
referential constraints. Any attempt to define an index, key constraint, or
referential constraint will result in an error message.

Triggers may be defined for tables containing DataLinks columns.

Because DataLink columns cannot be compared with other columns or literals,
they cannot have check constraints defined on them. An attempt to define a
check constraint results in the SQL0401 error message.

Operations Navigator now provides a more complete interface than the 5250
interface for database management activities. However, for those who need to
use the 5250 interface, the SQL constructs to enable tables to be created with
DataLinks are shown in Figure 118 and Figure 119. For the sake of clarity, these
are depicted using the Operations Navigator Run SQL Scripts interface.

123

124

125

126

Atomic B

Atomic C

Atomic D

Atomic E URL

URL

URL

URL

boot4.jpg

boot3.jpg

boot2.jpg

boot1.jpg

NO LINK CONTROL

123

124

125

126

Atomic B

Atomic C

Atomic D

Atomic E URL

URL

URL

URL

boot4.jpg

boot3.jpg

boot2.jpg

boot1.jpgFILE LINK CONTROL

123

124

125

126

Atomic B

Atomic C

Atomic D

Atomic E URL

URL

URL

URL

boot4.jpg

boot3.jpg

boot2.jpg

boot1.jpgFILE LINK CONTROL

READ PERMISSION FS
WRITE PERMISSION FS

PROGRAM

PROGRAM

READ PERMISSION DB
WRITE PERMISSION BLOCKED
ON UNLINK RESTORE/DELETE
174 DB2 UDB for AS/400 Object Relational Support

Figure 118. DataLink column with read permission DB/Write permission blocked

Figure 119. DataLink column with read permission FS/Write permission FS

Figure 120 on page 176 shows an alternative, shorthand definition to that in
Figure 119. MODE DB2OPTIONS is used to define a default set of options and is
functionally equivalent to:

INTEGRITY ALL
READ PERMISSION FS
WRITE PERMISSIN FS
RECOVERY NO

• If the On Unlink Delete option is required, simply substitute ON UNLINK
RESTORE with ON UNLINK DELETE.

• LINKTYPE URL is currently the only link type supported by the architecture.

Note
DataLinks 175

This notation is currently the only mode option that has been defined and is
provided by DB2 Universal Database for AS/400 for compatibility with the other
DataLink capable platforms.

Figure 120. Create table with DataLinks: SQL (Mode DB2Options)

If a table with a datalink column is created with File Link Control, that table must
be journaled. This is because the link operation operates on two separate
entities, the table and the file, and they are considered to be part of one
transaction in order to maximize integrity. Because a table and its linked files
could be on different physical servers, two-phase commitment control is exploited
in order to extend that transaction integrity.

If you attempt to insert data into a table with a DataLink that has been created
with File Link Control, and you have failed to start journaling that table, you
receive an SQL7008 error message (for example, SQL7008 - PICTU00001 in TEAMXX

not valid for operation). It is worth remembering that placing your tables in a
collection rather than a library will automate journaling for those tables. However,
you must not forget the need to manage the journal receivers to prevent them
from growing in an uncontrolled way. The journal entry for a DataLink column is
written in the normal way with the row content appearing as characters as shown
in Figure 121.
176 DB2 UDB for AS/400 Object Relational Support

Figure 121. Detailed journal entry: DataLink row insert

V4R4 of Operations Navigator does not provide a function for viewing the link
attributes of DataLink column within a table. However, the DSPFFD CL command
has been updated to display the information in a 5250 session. The last page of
the displayed output will look similar to the example shown in Figure 122 on page
178.

Display Journal Entry

Object : PICTU00001 Library : TEAMXX
Member : PICTU00001 Sequence : 387
Code : R - Operation on specific record
Type : PT - Record added
Incomplete data . . : No

Entry specific data
Column *...+....1....+....2....+....3....+....4....+....5
00001 'A é00001URL 00043 FILE://AS400WS/teamxx/Fun'
00051 '_pictures/fish.gifThis is The Fish '
00101 ' '

More...

Null value indicators
Field *...+....1....+....2....+....3....+....4....+....5
00001 >00<

Bottom
Press Enter to continue.

F3=Exit F6=Display only entry specific data
F10=Display only entry details F12=Cancel F24=More keys
DataLinks 177

Figure 122. DSPFFD output for a table with a DataLink column

6.4.3 Data manipulation examples
Once you have created a table with one or more DataLink columns, you can use
an SQL scalar function to insert or update data.

Figure 123 shows an example of a table insert. DLVALUE is the scalar function. It
is overloaded to accept one, two, or three parameters.

Figure 123. Insert with DLVALUE DataLink scalar function

Display Spooled File
File : QPDSPFFD
Page/Line 1/47
Control
Columns 1 - 130
Find

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
....+....9....+....0....+....1....+....2....+....3

Alternativename: PRODUCT_PRICE
Userdefined-typename: MONEY
Userdefined-typelibraryname: TEAMXX
Allows the null value
PMPICT DATALINK 200 224 71 Both

PRODUCT_PICTURE_LINK
Alternativename: PRODUCT_PICTURE_LINK
Variablelengthfield--Allocatedlength: 50
Datalinklinkcontrol..........: File
Datalinkintegrity: All
Datalinkreadpermission: Database
Datalinkwritepermission........: Blocked
Datalinkrecovery............: No
Datalinkunlinkcontrol.........: Restore
Allows the null value
Defaultvalue.. :

*NULL
Coded Character Set Identifier : 37

Bottom
F3=Exit F12=Cancel F19=Left F20=Right F24=More keys
178 DB2 UDB for AS/400 Object Relational Support

The example shows all three parameters being passed to the function. These
parameters are:

• The data location, for example:

'file://as400ws/teamxx/Product_Pictures/boot1.jpg'

• The link type, for example: 'URL' (currently only 'URL' is supported). This
argument is optional. If not specified, it will be set to 'URL'.

• A comment, for example:

’Atomic Betaflex 9.08’.

The comment is optional. If it is not specified, it is set to an empty string.

The full file path comprises the file server name, the registered prefix, the
sub-directory path below the prefix, and the file name. The file must exist at the
time the insert operation is executed if the table was created with file link control.

Using the DataLink data from the example in Figure 123, other valid parameter
combinations provided by function overloading of the DLVALUE scalar function
are:

• dlvalue('file://as400ws/teamxx/Product_Pictures/boot1.jpg')
• dlvalue('', 'URL', 'Atomic Betaflex 9.08')

In the case where only the link type (URL) and the comment are provided, the file
path is defined as a zero-length string. The resulting row in the table would
contain empty link attributes, and no file link would exist. This can be used, for
example, to create rows in the table that are place-holders for files that, as yet, do
not exist. Figure 124 shows an example of inserting a row into a table where the
DataLink column does not specify a data location parameter. Using the
Operations Navigator Quick View function, Figure 125 shows the contents of the
table after the successful insert operation. The newly inserted row has an empty
DataLink column.

Figure 124. DLVALUE function overloading

Figure 125. Table with empty DataLink column
DataLinks 179

However, there is one important consideration when inserting DataLink values
into a table. A linked file cannot be referenced by more than one table row, that is,
there is a one-to-one relationship between a file and the table to which it is linked.
However, another table may include a linked file in its DataLink column value if
that table was created with no link control.

The Update statement works in the same way with the DLVALUE scalar function.
However, an update to a row with a linked file is treated as a delete of the existing
row followed by an insert of a new row. The effect on the linked file is to unlink the
existing file and link the new file. In 6.4.1, “DataLink options: General” on page
165, the On Unlink Delete option is discussed in detail. However, to reiterate a
word of caution, if On Unlink Delete is the option you choose for a table, the
Update operation causes the file referenced by the row being updated to be
deleted from the file system. Figure 126 shows an example of an Update
operation. In this example file, ski12.mpg is linked to the Sports table immediately
after the existing row has been deleted and the new row inserted.

Figure 126. Update with DLVALUE DataLink scalar function

When you insert a row with a DataLink into a table using the DLVALUE scalar
function, the DataLink content that is actually stored is an encapsulated value. It
contains a logical reference from the database to a file stored externally to the
database within a file system. The encapsulated value is comprised of the
following elements:

• Link Type: Currently, only type URL is supported.

• Scheme (Optional): For Link Type URL file:, http:, and https: are supported.
Note that the scheme simply aids the DLFM in locating and validating the file
object to be linked.There is no requirement for the presence of any particular
Web server product.

• File Server Name: The complete server address.

• File Path: The directory and file name hierarchy within the file server

Since the update is really a delete followed by an insert, you need to specify
link type and comment values again. If you omit them in the update statement,
they will be set to their respective default values.

Note
180 DB2 UDB for AS/400 Object Relational Support

• Access Control Token: Generated dynamically (see 6.4.6, “Using the DataLink
access control token” on page 186, for more details).

• Comment (Optional): Up to 254 characters of description.

Once you insert data into a table, you must use an SQL scalar function to retrieve
data from the encapsulated DataLink value. The valid scalar functions are
covered in 6.4.4, “DataLink SQL scalar functions” on page 182.

Other common types of SQL data manipulation you may use include Group By
and Order By. Neither grouping nor ordering is allowed based on a DataLink
column. Figure 127 shows the error message you receive if you attempt Order By
on a DataLink.

Figure 127. Order by on DataLink column
DataLinks 181

6.4.4 DataLink SQL scalar functions
In addition to the DLVALUE scalar function, a number of others are provided in
order to extract data from the encapsulated DataLink. They are summarized in
Table 14.

Table 14. DataLinks SQL scalar functions

As an example, if you run the SQL statements from the Operations Navigator Run
SQL Scripts window, as shown in Figure 128, the output appears similar to the
example displayed in Figure 129 through Figure 132.

Figure 128. DataLink SQL scalar functions script

Figure 129. Result set from the DLURLCOMPLETE scalar function

Scalar function name Data type returned Data returned

DLVALUE DATALINK N/A (For Insert and Update)

DLCOMMENT VARCHAR(254) Comment

DLLINKTYPE VARCHAR(4) Link Type (Only URL
currently supported)

DLURLCOMPLETE VARCHAR Server Name+ Full Directory
Path + Access Control Token

DLURLPATH VARCHAR Full Directory Path + Access
Control Token

DLURLPATHONLY VARCHAR Full Directory Path

DLURLSCHEME VARCHAR(20) FILE or HTTP or HTTPS

DLURLSERVER VARCHAR Server name
182 DB2 UDB for AS/400 Object Relational Support

In Figure 129, as well as returning the file server name (AS400WS) and the full
file directory path (/teamxx/Product_Pictures/boot1.jpg), you can also see the
access control token immediately before the file name.

Figure 130. Result set from the DLURLPATH scalar function

Figure 130 shows that DLURLPATH omits the file server name, while Figure 131,
DLURLPATHONLY, also omits the access control token.

Figure 131. Result set from the DLURLPATHONLY scalar function

Finally, Figure 132 shows the simple scalar functions, DLURLSCHEME and
DLURLSERVER, that merely return the URL scheme (file:, http:, or https:) and
the file server name, respectively.

Figure 132. Result sets from DLURLSCHEME and DLURLSERVER scalar functions

6.4.5 Using the DataLink in dynamic Web pages
To achieve better scalability of your Internet software solution, you usually split
the application server running the Web server from the database server. For
performance reasons, you also want to store the files referred in the Web pages
on the Web server. Now, you may ask the question: How does the DataLink
DataLinks 183

support fit into this picture? In this section, we explain how to take advantage of
the DataLinks for building dynamic Web pages.

Let’s suppose that the database containing all the products we want to sell over
the Internet reside in the library TEAMXX on the AS400RCH database server,
and that the product picture files reside on the AS400LON Web server machine.
The product picture files are linked to appropriate rows in the PRODMAST03
table on the AS400RCH machine. The following procedure outlines the major
steps required to set up our application environment:

1. The PRODMAST03 table containing detailed product information was created
with the following SQL statement:

CREATE TABLE ProdMast03
(Product_Number FOR COLUMN PMNBR TEAMXX/SRLNUMBER NOT NULL WITH DEFAULT,
Product_Name FOR COLUMN PMNAM CHAR(25) NOT NULL WITH DEFAULT,
Product_Description FOR COLUMN PMDESC TEAMXX/PRDDESC,
Product_Price FOR COLUMN PMPRIC TEAMXX/MONEY,
Product_Picture_Link FOR COLUMN PMPICT DATALINK(200)
LINKTYPE URL
FILE LINK CONTROL
INTEGRITY ALL
READ PERMISSION FS
WRITE PERMISSION FS
RECOVERY NO);

Note that we use file system permission for read and write options for the
DataLink column.

2. The linked objects, which are product pictures in this case, were copied to the
/teamxx/images/ IFS directory on the Web server system AS400LON. To
enhance the Web server security, all files located in this directory have the
PUBLIC permission set to *EXCLUDE. At the same time, we added the *RX
permission for the QTMHHTTP profile so that the HTTP server jobs running on
the AS400LON system can access the image files and serve them to the
clients.

3. The DLFM environment was initialized on the AS400LON system with the
INZDLFM command. The directory prefix was set up with the following CL
command:

ADDPFXDLFM PREFIX(('/teamxx/'))

The host database was set up as follows:

ADDHDBDLFM HOSTDBLIB((TEAMXX)) HOSTDB(AS400RCH)

The DLFM server was started with the following CL command:

STRTCPSVR SERVER(*DLFM)

4. The product details were inserted into the PRODMAST03 table on the
database server AS400RCH. An example of the insert statement is shown as
follows:

Insert into teamxx/prodmast02 values('00001','Solomon X-scream Series',
'Description:A solid, reliable performer for experts. A sense of freedom and
speed when turning. For playing with the terrain and improvising at high
speed.
Sizes:179 - 195
Color:yellow
Best For:all but the gnarliest terrain',
730.00,
dlvalue('file://as400lon/teamxx/images/xscr_pr.gif', 'URL', 'Solomon
Xscream'));
184 DB2 UDB for AS/400 Object Relational Support

Note that the URL value in the DataLink column points to the remote system
AS400LON.

Now, our Web Shop application can generate dynamic HTML pages on the fly,
fetching the required product data from the AS400RCH system. To retrieve a
product picture file name for a given product number, we could use the following
SQL statements:

CONNECT TO AS400RCH 1
....
SELECT dlurlpath(Product_Picture_Link) INTO :src FROM prodmast03 WHERE
Product_number = '00001' 2

SQL statement notes
1. Since the product database resides on the remote system, we can use DRDA

to connect to the remote database. Note that, in this scenario, we need an
RDB directory entry for the AS400RCH system on the AS400LON machine.
Refer to DB2/400 Advanced Database Functions, SG24-4249, for details on
setting up the DRDA environment.

2. The DLURLPATH scalar function is used to retrieve the full file directory path
for a given product into the src host variable. We can now use this variable
to generate an appropriate IMG HTML tag:

There are several advantages of using DataLinks in this scenario:

• The product picture files on the Web server machine are safe. Nobody, even
with QSECOFR authority, can move, rename, or delete linked files.

Note that unlinked objects in the /teamxx/images/ directory can still be
manipulated by a user who has proper authority. However, this is only true
when the DLFM server is up and running. When the server is down, no
manipulation of the objects in the prefixed directory is allowed, because the
file system cannot verify whether any of these objects is linked. For example,
deleting an object in the /teamxx/images/ directory could compromise the
integrity of the PRODMAST03 file.

• Although the image files logically belong to the PRODMAST03 table, they are
physically stored on the machine where they are needed.

• IFS APIs, rather than SQL, are used to serve potentially large objects to the
client Web browser.

Figure 133 on page 186 shows our example HTML page using linked image files.
DataLinks 185

Figure 133. Using linked image files in HTML pages

6.4.6 Using the DataLink access control token
Section 6.4.1, “DataLink options: General” on page 165, provides detailed
coverage of the link control options defined in the DataLinks architecture and
those implemented in V4R4 of DB2 Universal Database for AS/400. In particular,
Figure 114 on page 171 and Figure 118 on page 175 show the option for creating
the table with the link option of Read Permission DB/Write Permission Blocked.
You select this option when you want your application to control access to
associated file objects. More specifically, you want your application to be able to
read file system objects but not to write to or update them. However, if you define
the PUBLIC file permissions or ownership properties of a file to allow read
access, your application will bypass the database access control. Therefore, you
should always ensure that the files to be linked have no public access
permissions defined. Then, read operations will only be successful if the program
first obtains an access control token from the database by reading the associated
table row, and the DataLink Filter validates that token. The DLURLPATH scalar
function may be used to retrieve the full directory path along with the control
token. This section illustrates how to retrieve and use the token.

We coded programs in C with embedded SQL to test both the Read Permission
DB/Write Permission Blocked and the Read Permission FS/Write Permission FS
environments. The programs also tested the integrity of both environments by
attempting various operations on linked files.

6.4.6.1 READPM02 program
The details are for program READPM02, Test Read Permission DB/Write
Permission Blocked. The table is PRODMAST02 and the file boot1.jpg. The file
was originally defined with no public authority. The DataLink column definition
looks like the following example:
186 DB2 UDB for AS/400 Object Relational Support

Product_Picture_LinkFOR COLUMN PMPICTDATALINK(200)
LINKTYPE URL
FILE LINK CONTROL
INTEGRITY ALL
READ PERMISSION DB
WRITE PERMISSION BLOCKED
RECOVERY NO
ON UNLINK RESTORE

The program steps are:

1. Read file directly in the IFS.

2. Move the file to another directory.

3. Update the file (coded in the program as an append).

4. Delete the file.

5. Read the file after reading the table row to which it is linked and executing
several scalar functions.

Figure 134 shows the output from the program after running the first four steps.
Figure 135 on page 188 shows the output from the program after executing step
five. The numbered lines are explained in the notes that follow each figure.

Figure 134. Executing program READPM02: Direct file operations on boot1.jpg

Notes on READPM02 program
1. The direct read operation failed. It is because of Read Permission DB and no

public read access for the boot1.jpg file, and no control token was passed on
the open file request.

2. The move operation failed because the file is linked, and data integrity is
enforced by the DataLink Filter.

3. The direct write operation failed because the DataLinks were created with
Write Permission Blocked.

4. The delete operation failed because the file is linked, and data integrity is
enforced by the DataLink Filter.

DB2 Universal Database for AS/400
DataLink Test Program: TEAMXX/READPM02
Read Permission DB/Write Permission Blocked

Hit Enter to continue...
>
Attempting file system operations on: /teamxx/Product_Pictures/boot1.jpg

1 Read failed: /teamxx/Product_Pictures/boot1.jpg: Permission denied.
2 Move failed: /teamxx/Product_Pictures/boot1.jpg -> /boot1.jpg: Improper link.
3 Append failed: /teamxx/Product_Pictures/boot1.jpg: Permission denied.
4 Delete failed: /teamxx/Product_Pictures/boot1.jpg: Object is a Datalink object.

Hit Enter to continue...
===>

F3=Exit F4=End of File F6=Print F9=Retrieve F17=Top
F18=Bottom F19=Left F20=Right F21=User Window
DataLinks 187

Figure 135. Executing program READPM02: Read of boot1.jpg with control token

5. Various SQL scalar functions used to retrieve the DataLink value from the row
in the PRODMAST02 table.

6. The SQL scalar function actually used in the program to retrieve the access
control token, file directory path, and file name. The access control token
value is highlighted.

7. Opening the file for read access succeeded because the access control token
was passed to the file open operation.

The following snippets of the program code highlight the most significant parts of
the program with regards to working with the DataLinks. The full program listing
can be found in Appendix A, “Source code listings” on page 215.

1/ Compile: CRTSQLCI OBJ(TEAMXX/READPM02) SRCFILE(TEAMXX/QCSRC) +
/ SRCMBR(READPM02) OPTION(*NOGEN)
/ CRTBNDC PGM(TEAMXX/READPM02) SRCFILE(QTEMP/QSQLTEMP) +
/ SRCMBR(READPM02) SYSIFCOPT(*IFSIO)

Note 1: The comment lines show the method of program compilation. Note the
SYSIFCOPT parameter, which directs the created object to use the IFS for
stream I/O operations.

2{
exec sql include SQLCA;

/* declare host variables */
exec sql begin declare section;
char link_comment[255];
char link_type[5];
struct VARCHAR1
{
short length;
char data[200];

} link_url_complete;
struct VARCHAR2

Selecting Product_Picture_Link from teamxx/prodmast02
where Product_Number = '00001'

5 dlcomment(Product_Picture_Link) =
Atomic Betaflex 9.08

5 dllinktype(Product_Picture_Link) =
URL

5 dlurlcomplete(Product_Picture_Link) =
FILE://AS400WS/teamxx/Product_Pictures/SS3AYIS;JG2A;F.CC.;boot1.jpg

6 dlurlpath(Product_Picture_Link) =
/teamxx/Product_Pictures/SS3AYIS;JG2A;F.CC.;boot1.jpg

5 dlurlpathonly(Product_Picture_Link) =
/teamxx/Product_Pictures/boot1.jpg

7 Readok:/teamxx/Product_Pictures/SS3AYIS;JG2A;F.CC.;boot1.jpg10530bytesread

Press ENTER to end terminal session.

===>

F3=Exit F4=End of File F6=Print F9=Retrieve F17=Top
F18=Bottom F19=Left F20=Right F21=User Window
188 DB2 UDB for AS/400 Object Relational Support

{
short length;
char data[200];

} link_url_path;
struct VARCHAR3
{
short length;
char data[200];

} link_url_path_only;
char where_value[6];

exec sql end declare section;

char file_name[FILENAME_MAX];
char ren_file_name[FILENAME_MAX];
char mov_file_name[FILENAME_MAX];

exec sql whenever sqlerror go to sqlexit;
exec sql set path teamxx;

Note 2: Declaring the host variables.

3/* initialize the datalink file name */
strcpy(file_name, "/teamxx/Product_Pictures/boot1.jpg");

Note 3: Establishing the path and file name of the IFS file to be processed. Refer
to the execution time results shown in Figure 136 on page 192.

4 /* read file */
file_read(file_name);

/* move file to new location */
file_move(file_name, mov_file_name);

/* update file */
file_append(file_name);

/* delete file */
file_delete(file_name);

Note 4: Attempting operations directly on the file.

5 exec sql
select
dlcomment(Product_Picture_Link),
dllinktype(Product_Picture_Link),
dlurlcomplete(Product_Picture_Link),
dlurlpath(Product_Picture_Link),
dlurlpathonly(Product_Picture_Link)

into
:link_comment,
:link_type,
:link_url_complete,
:link_url_path,
:link_url_path_only

from
teamxx/prodmast02

where
Product_Number = srlnumber(:where_value);

/* null terminate the varchar host variables */
link_url_path.data[link_url_path.length] = '\0';

Note 5: Retrieve DataLink values into host variables using scalar functions.

6 /* read file using access control token */
file_read(link_url_path.data);

return 0;
}

DataLinks 189

Note 6: Attempt to read the IFS file with the access control token. The host
variable 'link_url_path' contains the value obtained from the DLURLPATH SQL
scalar function. This value includes the access control token and must be passed
to the file open operation. If no token is present, or the token is invalid (for
example, it is a previously retrieved token that has expired), the file open fails.
Refer to Figure 137 on page 193 for the execution time results.

7/*---
/
/ Description: Read a file. Display number of bytes read.
/
/ Usage: file_name name of the file to read
/ returns -1 on success
/ 0 on failure
/
*/
int file_read(char* file_name)
{
FILE* read_file;
char buf[BUF_SIZE+1];
int read_count;
long read_total;
char perror_message[FILENAME_MAX+128];

sprintf(perror_message, "Read failed: %s", file_name);
read_total = 0;

if ((read_file = fopen(file_name,"rb")) == NULL)
{
perror(perror_message);
return 0;

}
while ((read_count =
fread(buf, sizeof(char), BUF_SIZE, read_file)) > 0)

{
read_total += read_count;

}
if (fclose(read_file) == EOF)
{
perror(perror_message);
return 0;

}
printf("Read ok: %s %ld bytes read\n", file_name, read_total);
return -1;

}

Note 7: Set up the direct file read operation.

8/*---
/
/ Description: Append EOF to a file.
/
/ Usage: file_name name of the file to append EOF to
/ returns -1 on success
/ 0 on failure
/
*/
int file_append(char* file_name)
{
FILE* append_file;
char perror_message[FILENAME_MAX+128];

sprintf(perror_message, "Append failed: %s", file_name);

/* make sure that the file exists first */
if ((append_file = fopen(file_name,"rb")) == NULL)
{
perror(perror_message);
return 0;

}
fclose(append_file);
190 DB2 UDB for AS/400 Object Relational Support

if ((append_file = fopen(file_name,"ab")) == NULL)
{
perror(perror_message);
return 0;

}
fputc(EOF, append_file);
if (fclose(append_file) == EOF)
{
perror(perror_message);
return 0;

}
printf("Append ok: %s\n", file_name);
return -1;

}

Note 8: Set up the direct file update operation.

9/*---
/
/ Description: Move a file. File only renamed if no or same path
/ supplied in dest_file_name.
/
/ Usage: src_file_name old name of the file to move
/ dest_file_name new name of the file to move
/ returns -1 on success
/ 0 on failure
/
*/
int file_move(char* src_file_name, char* dest_file_name)
{
char perror_message[FILENAME_MAX+FILENAME_MAX+128];

sprintf(
perror_message, "Move failed: %s -> %s",
src_file_name, dest_file_name);

if (rename(src_file_name, dest_file_name))
{
perror(perror_message);
return 0;

}
printf("Move ok: %s -> %s\n", src_file_name, dest_file_name);
return -1;

}

Note 9: Set up the direct file move operation.

READPM03 program
For the program READPM03, we used Test Read Permission FS/Write
Permission FS. The table is PRODMAST03, and the file is boot4.jpg. The file was
defined with *RWX public authority. The DataLink column definition is shown
here:

Product_Picture_Link FOR COLUMN PMPICTDATALINK(200)
LINKTYPE URL
FILE LINK CONTROL
INTEGRITY ALL
READ PERMISSION FS
WRITE PERMISSION FS
RECOVERY NO

The program steps are:

1. Read file directly in the IFS.
2. Move the file to another directory.
3. Update the file (coded in the program as an append).
4. Delete the file.
DataLinks 191

Figure 136 shows the output from the program after executing the four steps. The
numbered lines are explained in the notes that follow.

Figure 136. Executing program READPM03: Direct file operations on boot4.jpg

Notes on the READPM03 program
1. The direct read operation succeeded because the public file permissions for

boot4.jpg are *RWX and the DataLink column attribute READ PERMISSION
FS rather than READ PERMISSION DB.

2. The move operation failed because the file is linked, and data integrity is
enforced by the DataLink Filter.

3. The direct write operation succeeded because the DataLinks were created
with Write Permission FS, and the public file permissions for boot4.jpg are
*RWX.

4. The delete operation failed because the file is linked, and data integrity is
enforced by the DataLink Filter.

The READPM03 program is identical to READPM02, except the code to access
the database table and retrieve DataLinks values have been removed. The full
program listing can be found in Appendix A, “Source code listings” on page 215.

In summary, when a file has been linked, any attempt to move, delete, rename, or
update that file is denied by the DataLink Filter.

When a DataLink has been created with the option READ PERMISSIONS
DB/WRITE PERMISSIONS BLOCKED, you are allowing the database to control
access to associated file objects by transferring ownership of the files to the
DLFM (user QDLFM). An attempt to read the file after first using an SQL scalar
function to retrieve the access control token from the linked database table is
permitted by the DataLink Filter.

When a DataLink has been created with the option READ PERMISSIONS
FS/WRITE PERMISSIONS FS, the file system controls access to the associated
file objects. Attempts by a program to perform read and write operations directly

DB2 Universal Database for AS/400
DataLink Test Program: TEAMXX/READPM03
Read Permission FS/Write Permission FS

Hit Enter to continue...
>
Attempting file system operations on: /teamxx/Product_Pictures/boot4.jpg

1 Read ok: /teamxx/Product_Pictures/boot4.jpg 12094 bytes read
2 Move failed: /teamxx/Product_Pictures/boot4.jpg -> /boot4.jpg: Improper link.
3 Append ok: /teamxx/Product_Pictures/boot4.jpg
4 Deletefailed:/teamxx/Product_Pictures/boot4.jpg:ObjectisaDatalinkobject.

Press ENTER to end terminal session.
===>

F3=Exit F4=End of File F6=Print F9=Retrieve F17=Top
F18=Bottom F19=Left F20=Right F21=User Window
192 DB2 UDB for AS/400 Object Relational Support

on the file are allowed if all the appropriate authorities are in place. There is no
need to retrieve an access control token from the database table.

The value of the access control token is not stored permanently in the DataLink
value within the table row. It is generated dynamically when a scalar function is
executed to retrieve it. Once retrieved, it eventually expires to prevent a user from
storing it permanently for later use. Currently, the expiration time is set to two
weeks. Figure 137 shows an example of retrieving the token for each of three
table rows with the SQL scalar function DLURLPATH and then retrieving it again a
few seconds later.

Figure 137. Access control token: Dynamic generation

Notice that the value of the tokens has changed in the short time it took to re-read
the table rows.

6.5 Native interface considerations

As previously stated, because the DataLink is not compatible with any host
variable data type, the only interface that allows access is SQL. However, we
conducted a number of tests to identify what native activities, if any, would be
allowed with tables containing DataLink columns. Our conclusion is that, while
DataLink columns cannot be used in applications using native I/O access, the
tables in which they reside can be used by defining a logical file over the
underlaying table that omits the DataLink columns.

The tests were based on a table, SPORTS, which contains three columns of
character data type and a single DataLink column. Figure 138 on page 194
shows the table properties. Both the table name and the column names have
been kept short to simplify the native file and RPG program coding. The table was
created with File Link Control and Read Permissions FS/Write Permissions FS,
although these characteristics should have no bearing on the native interface
capabilities.

An RPG program, SPORTRPG1, was written to read a row from the SPORTS
table, check the product season code column (PRDSEA) for the character 'W'
and, if it is equal to 'W', add a row to the output table WINTER containing all the
input columns, including a DataLink column. WINTER was created with the option
No Link Control.
DataLinks 193

Figure 138. Table SPORTS for native tests

The program was compiled, and the compilation listing is shown in here:

5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG1 10/06/99
15:56:28 Page 1
Compiler : IBM RPG/400
Command Options:
Program : TEAMXX/SPORTRPG1
Source file : TEAMXX/QRPGSRC
Source member : SPORTRPG1
Source listing options : *SOURCE *XREF *GEN *NODUMP *NOSECLVL

*NOSRCDBG *NOLSTDBG
Generation options : *NOLIST *NOXREF *NOATR *NODUMP *NOOPTIMIZE
Source listing indentation . . . : *NONE
Type conversion options : *NONE
Sort sequence : *HEX
Language identifier : *JOBRUN
SAA flagging : *NOFLAG
Generation severity level . . . : 9
Print file : *LIBL/QSYSPRT
Replace program : *NO
Target release : *CURRENT
User profile : *USER
Authority : *LIBCRTAUT
Text : *SRCMBRTXT
Phase trace : *NO
Intermediate text dump : *NONE
Snap dump : *NONE
Codelist : *NONE
Ignore decimal data error . . . : *NO
Allow null values : *NO

Actual Program Source:
Member : SPORTRPG1
File : QRPGSRC
Library : TEAMXX
Last Change : 10/06/99 15:56:26
Description : RPG Program to Read PF with DataLink

5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG1 10/06/99
15:56:28 Page 2
SEQUENCE IND DO LAST
PAGE PROGRAM
194 DB2 UDB for AS/400 Object Relational Support

NUMBER *...1....+....2....+....3....+....4....+....5....+....6....+....7...* USE NUM UPDATE
LINE ID

S o u r c e L i s t i n g
H *****

100 FSPORTS IF E DISK 10/06/99
200 F SPORTS KRENAMESPREC 10/06/99

RECORD FORMAT(S): LIBRARY TEAMXX FILE SPORTS.
EXTERNAL FORMAT SPORTS RPG NAME SPREC

300 FWINTER O E DISK 10/06/99
400 F WINTER KRENAMEWINREC 10/06/99

RECORD FORMAT(S): LIBRARY TEAMXX FILE WINTER.
EXTERNAL FORMAT WINTER RPG NAME WINREC

A000000 INPUT FIELDS FOR RECORD SPREC FILE SPORTS FORMAT SPORTS.
A000001 1 5 PRDID
A000002 6 30 PRDDES
A000003 31 31 PRDSEA

500 C NEXTR TAG 10/06/99
600 C READ SPREC 60 3 10/06/99
700 C *IN60 DOWEQ*OFF B001 10/06/99
800 C PRDSEA IFEQ 'W' B002 10/06/99
900 C WRITEWINREC 002 10/06/99
1000 C ENDIF E002 10/06/99
1100 C READ SPREC 60 3 001 10/06/99
1200 C ENDDO E001 10/06/99
1300 C SETON LR 1 10/06/99

B000000 OUTPUT FIELDS FOR RECORD WINREC FILE WINTER FORMAT WINTER.
B000001 PRDID 5 CHAR 5
B000002 PRDDES 30 CHAR 25

* 6074 FIELD PRDLNK HAS A DATA TYPE OR ATTRIBUTE THAT IS NOT SUPPORTED.
* * * * * E N D O F S O U R C E * * * * *
A d d i t i o n a l D i a g n o s t i c M e s s a g e s

* 7086 100 RPG PROVIDES BLOCK OR UNBLOCK SUPPORT FOR FILE SPORTS.
* 7150 RECORD SPORTS IN FILE SPORTS CONTAINS NULL-CAPABLE FIELDS.
* 7154 IGNORED VARIABLE-LENGTH FIELDS IN RECORD SPORTS OF FILE SPORTS.
* 7150 RECORD WINTER IN FILE WINTER CONTAINS NULL-CAPABLE FIELDS.
* 7154 IGNORED VARIABLE-LENGTH FIELDS IN RECORD WINTER OF FILE WINTER.
5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG1 10/06/99
15:56:28 Page 3

C r o s s R e f e r e n c e
File and Record References:

FILE/RCD DEV/RCD REFERENCES (D=DEFINED)
01 SPORTS DISK 100D

SPREC SPORTS 100D A000000 600 1100
02 WINTER DISK 300D

WINREC WINTER 300D 900 B000000
Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)
*IN60 A(1) 700

* 7031 NEXTR TAG 500D
PRDDES A(25) A000002D B000002D
PRDID A(5) A000001D B000001D
PRDSEA A(1) A000003D 800
*OFF LITERAL 700
'W' LITERAL 800

Indicator References:
INDICATOR REFERENCES (M=MODIFIED D=DEFINED)
*IN 700
LR 1300M
60 600M 700 1100M

* * * * * E N D O F C R O S S R E F E R E N C E * * * * *
5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG1 10/06/99
15:56:28 Page 4

M e s s a g e S u m m a r y
* QRG6074 Severity: 40 Number: 1

Message : Field data type from an externally-described
file is not supported. The file is ignored.

* QRG7031 Severity: 00 Number: 1
Message : The Name or indicator is not referenced.

* QRG7086 Severity: 00 Number: 1
Message : RPG handles blocking function for file. INFDS
updated only when blocks of data transferred.

* QRG7150 Severity: 00 Number: 2
Message : The record format contains null-capable fields.

* QRG7154 Severity: 00 Number: 2
Message : The record format contains variable length
fields. Variable length fields ignored.

* * * * * E N D O F M E S S A G E S U M M A R Y * * * * *
DataLinks 195

5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG1 10/06/99
15:56:28 Page 5

F i n a l S u m m a r y
Message Count: (by Severity Number)

TOTAL 00 10 20 30 40 50
7 6 0 0 0 1 0

Program Source Totals:
Records : 13
Specifications : 13
Table Records : 0
Comments : 0

Compile stopped. Severity level 40 errors found in file.
* * * * * E N D O F C O M P I L A T I O N * * * * *

You can see that the compilation failed because of the presence of a DataLink
field in the output file. However, the DataLink field in the input file was ignored.

Using another RPG program, SPORTRPG2, we tried to perform exactly the same
processing as SPORTRPG1, except the program adds a row to a different table,
WINTER2, which only has the Product Code (PRDID) and Product Description
(PRDDES) columns defined. It does not have a DataLink column.

The program was compiled, and the listing is shown in here:

5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG2 10/06/99
16:17:43 Page 1
Compiler : IBM RPG/400
Command Options:
Program : TEAMXX/SPORTRPG2
Source file : TEAMXX/QRPGSRC
Source member : SPORTRPG2
Source listing options : *SOURCE *XREF *GEN *NODUMP *NOSECLVL

*NOSRCDBG *NOLSTDBG
Generation options : *NOLIST *NOXREF *NOATR *NODUMP *NOOPTIMIZE
Source listing indentation . . . : *NONE
Type conversion options : *NONE
Sort sequence : *HEX
Language identifier : *JOBRUN
SAA flagging : *NOFLAG
Generation severity level . . . : 9
Print file : *LIBL/QSYSPRT
Replace program : *NO
Target release : *CURRENT
User profile : *USER
Authority : *LIBCRTAUT
Text : *SRCMBRTXT
Phase trace : *NO
Intermediate text dump : *NONE
Snap dump : *NONE
Codelist : *NONE
Ignore decimal data error . . . : *NO
Allow null values : *NO

Actual Program Source:
Member : SPORTRPG2
File : QRPGSRC
Library : TEAMXX
Last Change : 10/06/99 16:17:41
Description : RPG Program to Read PF with DataLink

5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG2 10/06/99
16:17:43 Page 2
SEQUENCE IND DO LAST
PAGE PROGRAM
NUMBER *...1....+....2....+....3....+....4....+....5....+....6....+....7...* USE NUM UPDATE
LINE ID

S o u r c e L i s t i n g
H *****

100 FSPORTS IF E DISK 10/06/99
200 F SPORTS KRENAMESPREC 10/06/99

RECORD FORMAT(S): LIBRARY TEAMXX FILE SPORTS.
EXTERNAL FORMAT SPORTS RPG NAME SPREC

300 FWINTER2 O E DISK 10/06/99
400 F WINTER2 KRENAMEWINREC 10/06/99

RECORD FORMAT(S): LIBRARY TEAMXX FILE WINTER2.
EXTERNAL FORMAT WINTER2 RPG NAME WINREC

A000000 INPUT FIELDS FOR RECORD SPREC FILE SPORTS FORMAT SPORTS.
196 DB2 UDB for AS/400 Object Relational Support

A000001 1 5 PRDID
A000002 6 30 PRDDES
A000003 31 31 PRDSEA

500 C NEXTR TAG 10/06/99
600 C READ SPREC 60 3 10/06/99
700 C *IN60 DOWEQ*OFF B001 10/06/99
800 C PRDSEA IFEQ 'W' B002 10/06/99
900 C WRITEWINREC 002 10/06/99
1000 C ENDIF E002 10/06/99
1100 C READ SPREC 60 3 001 10/06/99
1200 C ENDDO E001 10/06/99
1300 C SETON LR 1 10/06/99

B000000 OUTPUT FIELDS FOR RECORD WINREC FILE WINTER2 FORMAT WINTER2.
B000001 PRDID 5 CHAR 5
B000002 PRDDES 30 CHAR 25

* * * * * E N D O F S O U R C E * * * * *
A d d i t i o n a l D i a g n o s t i c M e s s a g e s

* 7086 100 RPG PROVIDES BLOCK OR UNBLOCK SUPPORT FOR FILE SPORTS.
* 7086 300 RPG PROVIDES BLOCK OR UNBLOCK SUPPORT FOR FILE WINTER2.
* 7150 RECORD SPORTS IN FILE SPORTS CONTAINS NULL-CAPABLE FIELDS.
* 7154 IGNORED VARIABLE-LENGTH FIELDS IN RECORD SPORTS OF FILE SPORTS.
* 7150 RECORD WINTER2 IN FILE WINTER2 CONTAINS NULL-CAPABLE FIELDS.
5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG2 10/06/99
16:17:43 Page 3

C r o s s R e f e r e n c e
File and Record References:

FILE/RCD DEV/RCD REFERENCES (D=DEFINED)
01 SPORTS DISK 100D

SPREC SPORTS 100D A000000 600 1100
02 WINTER2 DISK 300D

WINREC WINTER2 300D 900 B000000
Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)
*IN60 A(1) 700

* 7031 NEXTR TAG 500D
PRDDES A(25) A000002D B000002D
PRDID A(5) A000001D B000001D
PRDSEA A(1) A000003D 800
*OFF LITERAL 700
'W' LITERAL 800

Indicator References:
INDICATOR REFERENCES (M=MODIFIED D=DEFINED)
*IN 700
LR 1300M
60 600M 700 1100M

* * * * * E N D O F C R O S S R E F E R E N C E * * * * *
5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG2 10/06/99
16:17:43 Page 4

M e s s a g e S u m m a r y
* QRG7031 Severity: 00 Number: 1

Message : The Name or indicator is not referenced.
* QRG7086 Severity: 00 Number: 2

Message : RPG handles blocking function for file. INFDS
updated only when blocks of data transferred.

* QRG7150 Severity: 00 Number: 2
Message : The record format contains null-capable fields.

* QRG7154 Severity: 00 Number: 1
Message : The record format contains variable length
fields. Variable length fields ignored.

* * * * * E N D O F M E S S A G E S U M M A R Y * * * * *
5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG2 10/06/99
16:17:43 Page 5

F i n a l S u m m a r y
Message Count: (by Severity Number)

TOTAL 00 10 20 30 40 50
6 6 0 0 0 0 0

Program Source Totals:
Records : 13
Specifications : 13
Table Records : 0
Comments : 0

PRM has been called.
Program SPORTRPG2 is placed in library TEAMXX. 00 highest severity. Created on 10/06/99 at 16:17:45.

* * * * * E N D O F C O M P I L A T I O N * * * * *

The DataLink field on the input file was ignored, and the compilation succeeded.
DataLinks 197

The next step was to execute the program, resulting in the error message shown
in Figure 139 and Figure 140.

Figure 139. Table with DataLink input to RPG program: Error

Figure 140. Table with DataLink input to RPG program: Recovery

Even though the program compiled successfully as a result of ignoring the
DataLink column, as soon as an attempt was made to open the file that contained
the DataLink, the program failed. We attempted to recompile the program with the
option CVTOPT(*VARCHAR), but the compilation failed because the DataLink
column was no longer ignored.

Additional Message Information

Message ID : CPF428A Severity : 40
Message type : Escape
Date sent : 10/06/99 Time sent : 16:20:02

Message : Open of member SPORTS file SPORTS in TEAMXX failed.
Cause : Member SPORTS file SPORTS in library TEAMXX was not opened
because of error code 2. The error codes and their meanings are:

1 -- The format for file SPORTS contains one or more large object fields
and the open request did not indicate that large object fields could be
processed by the user of the open.

2 -- The format for file SPORTS contains one or more data link fields and
the open request did not indicate that data link fields could be processed
by the user of the open.

3 -- The format for file SPORTS contains one or more user defined data
type fields and the open request did not indicate that user defined data
type fields could be processed by the user of the open.

More...
Press Enter to continue.

F3=Exit F6=Print F9=Display message details F12=Cancel
F21=Select assistance level

Additional Message Information

Message ID : CPF428A Severity : 40
Message type : Escape

4 -- A user-defined type for a field for the file does not exist.
Recovery . . . : Either specify a different file, use the DSPFFD command to
determine what user-defined type is missing, change the open request to
indicate that the specified field type can be processed, or change the
program to use embedded SQL to process the file. Then try your request
again. These field types are fully supported only through SQL. Therefore, if
you do not have the DB2 Query Manager and SQL Development Tool Kit for
AS/400 product, your program may not be able to access file SPORTS.

Bottom
Press Enter to continue.

F3=Exit F6=Print F9=Display message details F12=Cancel
F21=Select assistance level
198 DB2 UDB for AS/400 Object Relational Support

In an attempt to avoid the DataLink problem, we created a Logical File,
SPORTLF1, with a DataLink field defined. The following listing shows the CRTLF
output:

5716SS1 V4R4M0 990521 Data Description TEAMXX/SPORTLF1 10/06/99
15:43:43 Page 1
File name . : SPORTLF1
Library name : TEAMXX

File attribute : Logical
Source file containing DDS : QDDSSRC
Library name : TEAMXX

Source member containing DDS : SPORTLF1
Source member last changed : 10/06/99 15:43:31
Source listing options : *SOURCE *LIST *NOSECLVL *NOEVENTF
DDS generation severity level : 20
DDS flagging severity level : 00
File type . : *DATA
Authority . : *LIBCRTAUT
Replace file : *NO
Text . :
Compiler . : IBM AS/400 Data Description Processor

Data Description Source
SEQNBR *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 Date

100 R SPREC PFILE(TEAMXX/SPORTS) 10/06/99
200 A PRDID 10/06/99
300 A PRDDES 10/06/99
400 A PRDSEA 10/06/99
500 A PRDLNK 10/06/99

* CPD7426-*****
* * * * * E N D O F S O U R C E * * * * *

5716SS1 V4R4M0 990521 Data Description TEAMXX/SPORTLF1 10/06/99
15:43:43 Page 2

Expanded Source
Field

Buffer position
SEQNBR *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 length
Out In

100 R SPREC PFILE(TEAMXX/SPORTS)
200 PRDID 5A B COLHDG('PRDID') 5

1 1
300 PRDDES 25A B COLHDG('PRDDES') 25

6 6
400 PRDSEA 1A B COLHDG('PRDSEA') 1

31 31
* * * * * E N D O F E X P A N D E D S O U R C E * * * * *

5716SS1 V4R4M0 990521 Data Description TEAMXX/SPORTLF1 10/06/99
15:43:43 Page 3

Messages
ID Severity Number

* CPD7426 30 1 Message : Field length too large for data type.
5716SS1 V4R4M0 990521 Data Description TEAMXX/SPORTLF1 10/06/99
15:43:43 Page 4

Message Summary
Total Informational Warning Error Severe

(0-9) (10-19) (20-29) (30-99)
1 0 0 0 1

* CPF7302 40 Message : File SPORTLF1 not created in library TEAMXX.
* * * * * E N D O F C O M P I L A T I O N * * * * *

The creation failed because the DataLink field was an unacceptable length, even
though this had been defined as only 50. We then attempted to create the Logical
File, SPORTLF2, over the SPORT table with the DataLink field omitted. The
CRTLF listing is shown here:

5716SS1 V4R4M0 990521 Data Description TEAMXX/SPORTLF2 10/06/99
15:43:48 Page 1
File name . : SPORTLF2
Library name : TEAMXX

File attribute : Logical
Source file containing DDS : QDDSSRC
Library name : TEAMXX

Source member containing DDS : SPORTLF2
Source member last changed : 10/06/99 15:43:41
Source listing options : *SOURCE *LIST *NOSECLVL *NOEVENTF
DDS generation severity level : 20
DataLinks 199

DDS flagging severity level : 00
File type . : *DATA
Authority . : *LIBCRTAUT
Replace file : *NO
Text . :
Compiler . : IBM AS/400 Data Description Processor

Data Description Source
SEQNBR *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 Date

100 R SPREC PFILE(TEAMXX/SPORTS) 10/06/99
200 A PRDID 10/06/99
300 A PRDDES 10/06/99
400 A PRDSEA 10/06/99

* * * * * E N D O F S O U R C E * * * * *
5716SS1 V4R4M0 990521 Data Description TEAMXX/SPORTLF2 10/06/99
15:43:48 Page 2

Expanded Source
Field

Buffer position
SEQNBR *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 length
Out In

100 R SPREC PFILE(TEAMXX/SPORTS)
200 PRDID 5A B COLHDG('PRDID') 5

1 1
300 PRDDES 25A B COLHDG('PRDDES') 25

6 6
400 PRDSEA 1A B COLHDG('PRDSEA') 1

31 31
* * * * * E N D O F E X P A N D E D S O U R C E * * * * *

5716SS1 V4R4M0 990521 Data Description TEAMXX/SPORTLF2
10/06/99 15:43:48 Page 3

Message Summary
Total Informational Warning Error Severe

(0-9) (10-19) (20-29) (30-99)
0 0 0 0 0

* CPC7301 00 Message : File SPORTLF2 created in library TEAMXX.
* * * * * E N D O F C O M P I L A T I O N * * * * *

The Logical File was successfully created. We then created an additional RPG
program, SPORTRPG3, which defined the SPORTLF2 logical file as input and
the WINTER2 table as output, in other words, no DataLink fields defined on input
or output, but the underlying input table with a DataLink column. The compilation
listing is shown here:

5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG3 10/06/99
18:14:21 Page 1
Compiler : IBM RPG/400
Command Options:
Program : TEAMXX/SPORTRPG3
Source file : TEAMXX/QRPGSRC
Source member : SPORTRPG3
Source listing options : *SOURCE *XREF *GEN *NODUMP *NOSECLVL

*NOSRCDBG *NOLSTDBG
Generation options : *NOLIST *NOXREF *NOATR *NODUMP *NOOPTIMIZE
Source listing indentation . . . : *NONE
Type conversion options : *NONE
Sort sequence : *HEX
Language identifier : *JOBRUN
SAA flagging : *NOFLAG
Generation severity level . . . : 9
Print file : *LIBL/QSYSPRT
Replace program : *YES
Target release : *CURRENT
User profile : *USER
Authority : *LIBCRTAUT
Text : *SRCMBRTXT
Phase trace : *NO
Intermediate text dump : *NONE
Snap dump : *NONE
Codelist : *NONE
Ignore decimal data error . . . : *NO
Allow null values : *NO

Actual Program Source:
Member : SPORTRPG3
File : QRPGSRC
Library : TEAMXX
Last Change : 10/06/99 18:14:17
200 DB2 UDB for AS/400 Object Relational Support

Description : RPG Program to Read PF with DataLink
5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG3 10/06/99
18:14:21 Page 2
SEQUENCE IND DO LAST
PAGE PROGRAM
NUMBER *...1....+....2....+....3....+....4....+....5....+....6....+....7...* USE NUM UPDATE
LINE ID

S o u r c e L i s t i n g
H *****

100 FSPORTLF2IF E DISK 10/06/99
RECORD FORMAT(S): LIBRARY TEAMXX FILE SPORTLF2.

EXTERNAL FORMAT SPREC RPG NAME SPREC
200 FWINTER2 O E DISK 10/06/99
300 F WINTER2 KRENAMEWINREC 10/06/99

RECORD FORMAT(S): LIBRARY TEAMXX FILE WINTER2.
EXTERNAL FORMAT WINTER2 RPG NAME WINREC

A000000 INPUT FIELDS FOR RECORD SPREC FILE SPORTLF2 FORMAT SPREC.
A000001 1 5 PRDID
A000002 6 30 PRDDES
A000003 31 31 PRDSEA

400 C NEXTR TAG 10/06/99
500 C READ SPREC 60 3 10/06/99
600 C *IN60 DOWEQ*OFF B001 10/06/99
700 C PRDSEA IFEQ 'W' B002 10/06/99
800 C WRITEWINREC 002 10/06/99
900 C ENDIF E002 10/06/99
1000 C READ SPREC 60 3 001 10/06/99
1100 C ENDDO E001 10/06/99
1200 C SETON LR 1 10/06/99

B000000 OUTPUT FIELDS FOR RECORD WINREC FILE WINTER2 FORMAT WINTER2.
B000001 PRDID 5 CHAR 5
B000002 PRDDES 30 CHAR 25

* * * * * E N D O F S O U R C E * * * * *
A d d i t i o n a l D i a g n o s t i c M e s s a g e s

* 7086 100 RPG PROVIDES BLOCK OR UNBLOCK SUPPORT FOR FILE SPORTLF2.
* 7086 200 RPG PROVIDES BLOCK OR UNBLOCK SUPPORT FOR FILE WINTER2.
* 7150 RECORD SPREC IN FILE SPORTLF2 CONTAINS NULL-CAPABLE FIELDS.
* 7150 RECORD WINTER2 IN FILE WINTER2 CONTAINS NULL-CAPABLE FIELDS.
5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG3 10/06/99
18:14:21 Page 3

C r o s s R e f e r e n c e
File and Record References:

FILE/RCD DEV/RCD REFERENCES (D=DEFINED)
01 SPORTLF2 DISK 100D

SPREC 100D A000000 500 1000
02 WINTER2 DISK 200D

WINREC WINTER2 200D 800 B000000
Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)
*IN60 A(1) 600

* 7031 NEXTR TAG 400D
PRDDES A(25) A000002D B000002D
PRDID A(5) A000001D B000001D
PRDSEA A(1) A000003D 700
*OFF LITERAL 600
'W' LITERAL 700

Indicator References:
INDICATOR REFERENCES (M=MODIFIED D=DEFINED)
*IN 600
LR 1200M
60 500M 600 1000M

* * * * * E N D O F C R O S S R E F E R E N C E * * * * *
5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG3 10/06/99
18:14:21 Page 4

M e s s a g e S u m m a r y
* QRG7031 Severity: 00 Number: 1

Message : The Name or indicator is not referenced.
* QRG7086 Severity: 00 Number: 2

Message : RPG handles blocking function for file. INFDS
updated only when blocks of data transferred.

* QRG7150 Severity: 00 Number: 2
Message : The record format contains null-capable fields.

* * * * * E N D O F M E S S A G E S U M M A R Y * * * * *
5769RG1 V4R4M0 990521 IBM RPG/400 TEAMXX/SPORTRPG3 10/06/99
18:14:21 Page 5

F i n a l S u m m a r y
Message Count: (by Severity Number)

TOTAL 00 10 20 30 40 50
DataLinks 201

5 5 0 0 0 0 0
Program Source Totals:

Records : 12
Specifications : 12
Table Records : 0
Comments : 0

PRM has been called.
Program SPORTRPG3 is placed in library TEAMXX. 00 highest severity. Created on 10/06/99 at 18:14:21.

* * * * * E N D O F C O M P I L A T I O N * * * * *

The compilation was successful. Program SPORTRPG3 was then executed, and
it also ran successfully.

In summary, while DataLink columns cannot be used in applications using native
I/O techniques, regardless of the programming language, the tables in which they
reside can be used by defining a logical file over the underlying data that omits
the DataLink column. To gain access to the DataLink columns, you have to use
SQL interface.

6.6 DataLinks management considerations

To use the DataLink environment in the most effective way, you are linking files in
file systems with tables in the RDBMS. Most application requirements dictate
that, in addition to maintaining the integrity of the environment, you also need to
ensure the highest availability. Therefore, it is important that you pay attention to
managing the DataLink environment and, in particular, the backup and restoration
requirements.

6.6.1 Backup and recovery procedures
Consider the AS/400-only environment. On the AS/400 system, you are dealing
with two distinct data storage systems, each with its own support software. The
relational tables reside in DB2 Universal Database for AS/400, while the file
objects reside in the IFS. Each has its own set of CL commands to handle the
save and restore of data. Currently, there is no direct linkage or communication
between those two command sets. If you save a table using the SAVOBJ
command, there is no facility to automatically save linked files with the SAV
command. Therefore, you must manually manage the synchronization of backup
copies of related table and file objects.

DB2 Universal Database for AS/400 provides assistance when tables and their
linked files are restored to the system. It tracks the status of the links through the
DLFM metadata. It also helps with reconciling the links. We ran tests to cover the
following scenarios where a table and a linked file have been deleted from the
system and have to be restored from a backup copy:

• Restore the table before restoring the linked files.
• Restore the linked file before restoring the table.

Note that it is not possible to delete linked files before the associated table has
been dropped due to the integrity rules applied by the DataLinks Filter.

To be able to manipulate any object residing in the prefixed directory, the DLFM
server must be up and running. This also applies to save and restore activities.

Important
202 DB2 UDB for AS/400 Object Relational Support

Two save files were created, one to receive the backup copy of the saved table
and the other the backup copy of the linked file. Figure 141 shows the script used
to run the first test.

Figure 141. Script for save/restore exercise: Restore table before file

The statements perform the following steps:

1. Clear the save file for the linked file.
2. Clear the save file for the table.
3. Save the table to the save file.
4. Save the linked file to the save file.
5. Drop the table from the system.
6. Delete the linked file from the system.
7. Restore the table.

By running the DSPFD CL command for the table that has just been restored and
paging down the resulting displays, you see a screen similar to the one shown in
Figure 142 on page 204. This display is shown for a table called SAVETABLE in
library TEAMXX. Look for the line "File is in link pending status". This shows that
this table has at least one linked file object that is currently not present on the
system. The DLFM has determined the link pending status from the metadata it
maintains in the QDLFM library. As a result, it also marks the table as read-only.
Any attempt to insert, update, or delete rows is rejected until the pending links are
reconciled.
DataLinks 203

Figure 142. DSPFD of table: Link pending status after file restore

A new CL command has been introduced in V4R4 of OS/400. This is the Work
with Physical File DataLinks (WRKPFDL) command. When you run the following
command for the same SAVETABLE table, you should see a display similar to the
one shown in Figure 143:

WRKPFDL FILE(TEAMXX/SAVETABLE)

This shows that the field PICTU00001 is in Link Pending status. PICTU00001 is
the system-derived short name for the DataLink column Picture_Link. This CL
command displays the status of all DataLink columns defined for a table.

Display Spooled File
File : QPDSPFD Page/Line 1/58
Control Columns 1 - 130
Find
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....
+....8....+....9....+....0....+....1....+....2....+....3
Allow delete operation : ALWDLT *YES
Record format level check : LVLCHK *YES
Access path : Arrival
Access path size : ACCPTHSIZ *MAX1TB
Maximum record length : 225
File is currently journaled : Yes
Current or last journal : TEAMXX_JRN
Library : TEAMXX

Journal images : IMAGES *AFTER
Journal entries to be omitted : OMTJRNE *NONE
Lastjournalstart date/time : 09/23/99 19:10:53
File is in link pending status : Yes
Access Path Description
Access path : Arrival
Sort Sequence : SRTSEQ *HEX
Language identifier : LANGID ENU
Member Description
Member : MBR SAVETABLE
Member level identifier : 0990923190615

More...
F3=Exit F12=Cancel F19=Left F20=Right F24=Morekeys
204 DB2 UDB for AS/400 Object Relational Support

Figure 143. WRKPFDL TEAMXX/SAVETABLE: Link pending

If you type option 6 next to the SAVETABLE table and press Enter, you should see
a display like the example shown in Figure 144. The only additional information
displayed is the name of the RDBMS server.

Figure 144. DataLink file attributes for TEAMXX/SAVETABLE

With the table in link pending status, we attempted to perform a write operation on
the table by trying to delete a row. The result was the error shown in Figure 145
on page 206.

Work with Physical File DataLinks

Type options, press Enter.
2=Reconcile 6=Display

Link
Opt File Library Field Pending

SAVETABLE TEAMXX PICTU00001 YES

Bottom
Parameters for option 6 or command
===>
F3=Exit F5=Refresh F9=Retrieve F12=Cancel F15=Sort by
F16=Repeat position to F17=Position to

Display Physical File Member
File : QDL_000001 Library : QTEMP
Member : QDL_000001 Record : 1
Control Column : 1
Find
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7

Display DataLink File Attributes
File name : SAVETABLE
Library name : TEAMXX

Field name : PICTU00001
Link pending : Yes
Server names : AS400WS

****** END OF DATA ******
DataLinks 205

Figure 145. Delete from table in link pending status: Error message

Before the pending links could be reconciled, we restored the file object from the
save file by using the RST CL command:

RST DEV('/qsys.lib/teamxx.lib/linkedfile.file')
OBJ(('TEAMXX/Save_Picture/hero.gif'))

We then ran the following command once again:

WRKPFDL FILE(TEAMXX/SAVETABLE)

The display shown in Figure 146 appeared. This shows that field PICTU00001 is
still in Link Pending status, even though the linked file has been restored.

Figure 146. WRKPFDL TEAMXX/SAVETABLE: Link pending after file restore

Work with Physical File DataLinks

Type options, press Enter.
2=Reconcile 6=Display

Link
Opt File Library Field Pending

SAVETABLE TEAMXX PICTU00001 YES

Bottom
Parameters for option 6 or command
===>
F3=Exit F5=Refresh F9=Retrieve F12=Cancel F15=Sort by
F16=Repeat position to F17=Position to
206 DB2 UDB for AS/400 Object Relational Support

We then entered option 2 (Reconcile) in the Opt field on the SAVETABLE line.
Specifying the reconcile option does not actually perform the reconciliation at this
stage. It simply marks the table as being eligible for reconciliation. Another new
CL command has been provided in V4R4 of OS/400 to actually perform the
reconciliation. This command is Edit DataLink File Attributes (EDTDLFA). Running
this command resulted in a display like the example shown in Figure 147.

This shows that the table SAVETABLE in library TEAMXX is in a "Link Pending"
status and has been marked for reconciliation. It now provides you with an
opportunity to actually perform the reconciliation.

Figure 147. EDTDLFA display: Status LNKPND

On this display, you over-type the value in the SEQ column with any value
between 01 and 98 inclusive and press the Enter key. The display should now
appear like the one shown in Figure 148 on page 208.

EDIT DATALINK FILE ATTRIBUTES AS400WS
09/30/99 18:00:13

TYPE SEQUENCE, PRESS ENTER.
SEQUENCE: 1-99, *HLD, *RMV

DLFM
SEQ STATUS FILE LIBRARY SERVER
99 LNKPND SAVETABLE TEAMXX

BOTTOM
F3=EXIT F5=REFRESH F11=DISPLAY DETAILS F12=CANCEL F15=SORT BY
F16=REPEAT POSITION TO F17=POSITION TO F22=DISPLAY SERVER NAME
DataLinks 207

Figure 148. EDTDLFA display: Status READY

The DLFM is ready to attempt to reconcile any pending links. The sequence
number can be used to prioritize the order in which table reconciliation is
executed when there are several tables to be processed that may have pending
links to thousands of files.

If you refresh the display, it should appear like the example in Figure 149.

Figure 149. EDTDLFA display: Links reconciled

EDIT DATALINK FILE ATTRIBUTES AS400WS
09/30/99 18:07:17

TYPE SEQUENCE, PRESS ENTER.
SEQUENCE: 1-99, *HLD, *RMV

DLFM
SEQ STATUS FILE LIBRARY SERVER
98 READY SAVETABLE TEAMXX

BOTTOM
F3=EXIT F5=REFRESH F11=DISPLAY DETAILS F12=CANCEL F15=SORT BY
F16=REPEAT POSITION TO F17=POSITION TO F22=DISPLAY SERVER NAME

EDIT DATALINK FILE ATTRIBUTES ASM23
09/30/99 18:44:01

TYPE SEQUENCE, PRESS ENTER.
SEQUENCE: 1-99, *HLD, *RMV

DLFM
SEQ STATUS FILE LIBRARY SERVER

(No DataLinks to display)

BOTTOM
F3=EXIT F5=REFRESH F11=DISPLAY DETAILS F12=CANCEL F15=SORT BY
F16=REPEAT POSITION TO F17=POSITION TO F22=DISPLAY SERVER NAME
208 DB2 UDB for AS/400 Object Relational Support

Figure 150. DSPFD of TEAMXX/SAVETABLE: Link pending status after reconciliation

Rerunning the WRKPFDL command also confirmed that the DataLink column is no
longer in Link Pending status as shown in Figure 151 on page 210.

If you press F5 very quickly, you may see the Status field displayed as RUN.
This indicates that the reconciliation is still in progress. Redisplaying the link
pending status of the table by running the DSPFD command resulted in a
display like the one shown in Figure 150.

Note

Display Spooled File
File : QPDSPFD
Control
Find

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
...

Allow delete operation : ALWDLT *YES
Record format level check : LVLCHK *YES
Access path : Arrival
Access path size : ACCPTHSIZ *MAX1TB
Maximum record length : 225
File is currently journaled : Yes
Current or last journal : TEAMXX_JRN
Library : TEAMXX

Journal images : IMAGES *AFTER
Journal entries to be omitted : OMTJRNE *NONE
Last journal start date/time : 09/30/99 15:51:06
File is in link pending status : No

Access Path Description
Access path : Arrival
Sort Sequence : SRTSEQ *HEX
Language identifier : LANGID ENU

Member Description
Member : MBR SAVETABLE
Member level identifier : 0990930154509

F3=Exit F12=Cancel F19=Left F20=Right F24=More keys
DataLinks 209

Figure 151. WRKPFDL TEAMXX/SAVETABLE: After link reconciliation

We then ran the second test. This was identical to the first test except that the file
was restored to the system before the table to which it was linked. Displaying the
link pending status of the table with the DSPFD command immediately after it
was restored resulted in the display shown in Figure 152. This shows that the
table was restored, and its file links were automatically reconciled. Rerunning the
WRKPFDL command also confirmed that the table was not in link pending status
as shown in Figure 153.

Work with Physical File DataLinks

Type options, press Enter.
2=Reconcile 6=Display

Link
Opt File Library Field Pending

SAVETABLE TEAMXX PICTU00001 NO

Bottom
Parameters for option 6 or command
===>
F3=Exit F5=Refresh F9=Retrieve F12=Cancel F15=Sort by
F16=Repeat position to F17=Position to
210 DB2 UDB for AS/400 Object Relational Support

Figure 152. DSPFD of TEAMXX/SAVETABLE: Link pending status after table restore

Figure 153. WRKPFDL TEAMXX/SAVETABLE: No link pending

The two tests show that the integrity of the DataLinks environment can be
maintained by either restoring the tables or the linked files first. However, we
strongly advise that you base your normal recovery policy on restoring the files
first. This approach avoids placing the tables into the Link Pending status and,
therefore, removes the need for the links to be reconciled.

Display Spooled File
File : QPDSPFD
Control
Find

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8.
Allow delete operation : ALWDLT *YES
Record format level check : LVLCHK *YES
Access path : Arrival
Access path size : ACCPTHSIZ *MAX1TB
Maximum record length : 225
File is currently journaled : Yes
Current or last journal : TEAMXX_JRN
Library : TEAMXX

Journal images : IMAGES *AFTER
Journal entries to be omitted : OMTJRNE *NONE
Last journal start date/time : 09/30/99 15:51:06
File is in link pending status : No

Access Path Description
Access path : Arrival
Sort Sequence : SRTSEQ *HEX
Language identifier : LANGID ENU

Member Description
Member : MBR SAVETABLE
Member level identifier : 0990930154509

F3=Exit F12=Cancel F19=Left F20=Right F24=Morekeys

Work with Physical File DataLinks

Type options, press Enter.
2=Reconcile 6=Display

Link
Opt File Library Field Pending

SAVETABLE TEAMXX PICTU00001 NO

Bottom
Parameters for option 6 or command
===>
F3=Exit F5=Refresh F9=Retrieve F12=Cancel F15=Sort by
F16=Repeat position to F17=Position to
DataLinks 211

There are other save/restore and copy considerations for tables with DataLinks
columns. The save of such a table with a target release prior to OS/400 V4R4 is
not supported.

6.7 Using DataLinks in a heterogeneous environment

In 6.2.2, “DataLink file manager” on page 151, we described the DataLinks
architecture and how it was designed in a way that allowed the DLFM to reside on
any file server with a supporting operating system and RDBMS. Currently,
support is provided by DB2 Universal Database for AS/400 V4R4 and by DB2
Universal Database V6 running on Windows NT or AIX. This permits the type of
heterogeneous environment shown in Figure 154, where DB2 Universal
Database tables on any of the three platforms can be linked to file objects
residing in any of the three different file systems.

Figure 154. The IBM heterogeneous DataLink server environment

6.7.1 DataLinks Manager for Windows NT and for AIX
This section describes the different components that make up a database system
that is using DB2 DataLinks Manager for Windows NT and for AIX. The Windows
NT and the AIX versions are functionally identical except for where they interact
with the underlying file systems, NT File System (NTFS) and Journaled File
System (JFS) respectively. These components include the:

At publication time, there were some known interopability issues and problems
between the different IBM DB2 DataLink managers. Please check the following
Web site for the latest status on these issues before implementing a
cross-platform DataLink solution: http://www.as400.ibm.com/db2/dlinkinter.htm

Disclaimer

OS/400
IFS

NTFS

JFS

DB2
UNIVERSAL
DATABASE
FOR AS/400

DB2
UNIVERSAL
DATABASE

FOR AIX

DB2
UNIVERSAL
DATABASE

FOR
WINDOWS NT
212 DB2 UDB for AS/400 Object Relational Support

• DataLinks Server
• DB2 Universal Database Server
• DB2 Client

The DataLinks Server is comprised of the following components:

• DataLinks File Manager (DLFM): The DLFM has identical functions to the
DB2 Universal Database for AS/400 DLFM. It registers all the files on a
particular DataLinks server that are linked to a DB2 database. It receives and
processes link-file and unlink-file messages arising from SQL INSERT,
UPDATE, and DELETE statements that reference a DATALINK column. For
each linked file, the DLFM logically tracks the database instance, the fully
qualified table name, and the column name referred to in the SQL statement.
However, unlike DB2 Universal Database for AS/400, it also tracks previously
linked files, if they were linked to a DATALINK column for which the
RECOVERY=YES option was specified, during table creation. This allows DB2
to provide point-in-time roll-forward recovery for any file that is specified by a
DATALINK column. The Recovery Yes option is not supported by V4R4 of DB2
Universal Database for AS/400.

• Data Links Filesystem Filter (DLFF): Filter commands to ensure that linked
files are not deleted, renamed, or the file’s attributes are not changed.
Optionally, it also filters commands to ensure that proper access authority
exists.

• DB2 (Logging Manager): This is a Logging Manager that contains the
DLFM_DB database. It provides equivalent function to the QDLFM library on
the AS/400 system. This database contains registration information about
databases that can connect to a Data Links server (equivalent to the Host
Database entries in the AS/400 QDLFM table dfm_dbid), and the sharename
of the drives that are managed by a DLFF (equivalent to the prefix entries in
the AS/400 QDLFM table dfm_prfx). The DLFM_DB database also contains
information about files that have been linked, unlinked, or backed up on a
Data Links server (the AS/400 QDLFM library equivalent is the table dfm_file,
except this does not track file backup activity). This database is created during
the installation of DB2 Data Links Manager.

Unlike V4R4 of DB2 Universal Database for AS/400, DB2 DataLinks Manager
can provide point-in-time roll-forward recovery on the Data Links server (if the
RECOVERY=YES option was specified during table creation) for any linked
file that is specified by a DATALINK column. The files can be backed up on a
disk or using ADSTAR Distributed Storage Manager (ADSM). The files that are
linked via a DATALINK column are ensured to be backed up when your
database is backed up.

The DB2 Universal Database Server is the location of the main database where
the DataLinks server is registered. It contains the table that includes the
DATALINK data type. No sharing is required between a DB2 server and a
DataLinks Server. All communication is done through a port reserved for
communications. The remote DB2 Universal Database server can only be
participating in a single-partitioned database system. Unlike DB2 Universal
Database for AS/400s MultiSystem option, DB2 DataLinks Manager does not
support interaction with partitioned database systems.

A DB2 Client connects to a DB2 server as normal. In the case of Windows NT, a
remote client can share a drive under the control of a DataLinks Filesystem Filter
DataLinks 213

that is installed on a DataLinks server. This way, the client can directly access the
files on the DataLinks server. AIX provides this capability with a Network File
System (NFS) mount of the file system under the control of the DataLinks
Filesystem Filter. This is equivalent to the way that AS/400 provides simultaneous
access to DB2 Universal Database for AS/400 tables and Integrated File System
files through, for example, the C programming language.

The DataLink environment and components for Windows NT are shown in Figure
155 and for AIX in Figure 156.

Figure 155. DataLink environment for Windows NT

Figure 156. DataLink environment for AIX

DB2
UNIVERSAL DATABASE

FOR WINDOWS NT

DLFM

DB2 UDB

DataLink
Filesystem
Filter

NTFS

DB2
CLIENT

Shared
Directory

Table

SQL

File

DB2
UNIVERSAL DATABASE

FOR AIX

DLFM

DB2 UDB

DataLink
Filesystem
Filter

JFS

DB2
CLIENT

NFS
Mount

Table

SQL

File
214 DB2 UDB for AS/400 Object Relational Support

Appendix A. Source code listings

This appendix contains detailed example programs implementing functions and
concepts covered in this redbook. The logic and programmimg techniques used
in the programs listed here are thoroughly explained in the relevant sections of
the redbook.

A.1 UDTLABA: Using UDTs
/*---
/
/ File: UDTLABA
/
/ Description: AS/400 DB2 UDT test program
/
/ Usage: CALL TEAMXX/UDTLABA
/
/ Author: Mark Endrei
/
/ Complile: CRTSQLCI OBJ(TEAMXX/UDTLABA) SRCFILE(TEAMXX/QCSRC) +
/ SRCMBR(UDTLABA) COMMIT(*NONE)
/ CRTPGM PGM(TEAMXX/UDTLABA) MODULE(TEAMXX/UDTLABA)
/
/ Copyright (c) 1999 IBM Corp.
/ All Rights Reserved.
/
*/

#include <stdio.h>
#include <decimal.h>

/*---
/
/ Description: Main program
/
/ Usage: CALL TEAMXX/UDTLABA
/ returns -1 on success
/ 0 on failure
/
*/
int main(int argc, char** argv)
{
exec sql include SQLCA;

/* host variable declarations */
decimal(11,2) dec_price_in = 88.88d;
decimal(11,2) dec_price_out = 0.00d;

printf("\n");
printf("AS/400 DB2 UDB UDT Lab Test Program: %s\n", argv??(0??));
printf("\n");

printf(
"/* host variable declaration */\n" \
"decimal(11,2) dec_price_in = 88.88d;\n" \
"\n" \
"/* implicit cast on assignment from decimal into money */\n" \
"exec sql\n" \
" update prodmast01 set product_price = :dec_price_in\n" \
" where product_number = srlnumber('00001');\n" \
"\n" \

These example programs have not been subjected to any formal testing. They
are provided "as is"; they should be used for reference only. Please refer to the
Appendix B, “Special notices” on page 229.

Important information
© Copyright IBM Corp. 2000 215

"Use Operations Navigator to view current\n" \
"product_price for product_number 00001.\n" \
"\n" \
"Then hit Enter key to continue...\n");

getchar();

/* implicit cast on assignment from decimal into money */
exec sql
update prodmast01 set product_price = :dec_price_in
where product_number = srlnumber('00001');

if (SQLCODE != 0)
{
printf("SQL Error, SQLCODE = %d\n", SQLCODE);

}

printf(
"SQL statement executed.\n" \
"\n" \
"Use Operations Navigator to view updated\n" \
"product_price for product_number 00001.\n" \
"\n" \
"Then hit Enter key to continue...\n");

getchar();

printf(
"/* host variable declaration */\n" \
"decimal(11,2) dec_price_out = 0.00d;\n" \
"\n" \
"/* implicit cast on assignment from money into decimal */\n" \
"exec sql\n" \
" select product_price into :dec_price_out from prodmast01\n" \
" where product_number = srlnumber('00001');\n" \
"\n" \
"Hit Enter key to continue...\n");

getchar();

/* implicit cast on assignment from money into decimal */
exec sql
select product_price into :dec_price_out from prodmast01
where product_number = srlnumber('00001');

if (SQLCODE != 0)
{
printf("SQL Error, SQLCODE = %d\n", SQLCODE);

}

printf(
"SQL statement executed.\n" \
"\n" \
"value assigned to host variable :dec_price_out = %D(11,2)\n" \
"\n", dec_price_out);

return -1;

}

A.2 UDTLABB: Casting UDTs
/*---
/
/ File: UDTLABB
/
/ Description: AS/400 DB2 UDT test program
/
/ Usage: CALL TEAMXX/UDTLABB
/
/ Author: Mark Endrei
/
/ Complile: CRTSQLCI OBJ(TEAMXX/UDTLABB) SRCFILE(TEAMXX/QCSRC) +
/ SRCMBR(UDTLABB) COMMIT(*NONE)
/ CRTPGM PGM(TEAMXX/UDTLABB) MODULE(TEAMXX/UDTLABB)
/
/ Copyright (c) 1999 IBM Corp.
/ All Rights Reserved.
/

216 DB2 UDB for AS/400 Object Relational Support

*/

#include <stdio.h>
#include <decimal.h>

#define HOST_STRUCT_SIZE 10

/*---
/
/ Description: Main program
/
/ Usage: CALL TEAMXX/UDTLABB
/ returns -1 on success
/ 0 on failure
/
*/
int main(int argc, char** argv)
{
exec sql include SQLCA;

/* host variable declarations */
long int_price_in = 111;
_Packed struct {
char number??(5??);
char name??(25??);
long int_price_out;

} product_rec??(10??);
struct { short ind??(3??); } product_ind??(10??);

int i;

printf("\n");
printf("AS/400 DB2 UDB UDT Lab Test Program: %s\n", argv??(0??));
printf("\n");

printf(
"/* host variable declaration */\n" \
"long int_price_in = 111;\n" \
"\n" \
"/* implicit cast on assignment from long integer into money */\n" \
"exec sql\n" \
" insert into prodmast01 (product_number, product_name, product_price)\n" \
" values('00004', 'New product', :int_price_in);\n" \
"\n" \
"Hit Enter key to insert row...\n");

getchar();

/* implicit cast on assignment from long integer into money */
exec sql
insert into prodmast01 (product_number, product_name, product_price)
values('00004', 'New product', :int_price_in);

if (SQLCODE != 0)
{
printf("SQL Error, SQLCODE = %d\n", SQLCODE);

}

printf(
"SQL statement executed.\n" \
"\n" \
"Hit Enter key to continue...\n");

getchar();

printf(
"/* host variable declaration */\n" \
"_Packed struct {\n" \
" char number??(5??);\n" \
" char name??(25??);\n" \
" long int_price_out;\n" \
"} product_rec??(10??);\n" \
"struct { short ind??(3??); } product_ind??(10??);\n" \
"\n" \
"/* declare and open fetch cursor */\n" \
"exec sql\n" \
" declare c1 cursor for\n" \
" select product_number, product_name, product_price from prodmast01;\n" \
"exec sql open c1;\n" \
Source code listings 217

"/* implicit cast on assignment from money into long integer */\n" \
"exec sql\n" \
" fetch c1 for 10 rows into :product_rec indicator :product_ind;\n" \
"\n" \
"Hit Enter key to continue...\n");

getchar();

/* declare and open fetch cursor */
exec sql
declare c1 cursor for
select product_number, product_name, product_price from prodmast01;

exec sql open c1;
/* implicit cast on assignment from money into long integer */
exec sql
fetch c1 for 10 rows into :product_rec indicator :product_ind;

if (SQLCODE != 0)
{
printf("SQL Error, SQLCODE = %d\n", SQLCODE);

}

printf(
"SQL statement executed.\n" \
"\n" \
"values assigned to host variable array:\n" \
"\n");

for (i=0; i<sqlca.sqlerrd??(2??); i++)
{
printf("product_rec??(%d??).number = %5.5s\n",
i, product_rec??(i??).number);

printf("product_rec??(%d??).name = %25.25s\n",
i, product_rec??(i??).name);

printf("product_rec??(%d??).int_price_out = %d\n",
i, product_rec??(i??).int_price_out);

}
printf(
"\n" \
"Hit Enter key to delete new row...\n");

getchar();

exec sql
delete from prodmast01 where product_number = srlnumber('00004');

if (SQLCODE != 0)
{
printf("SQL Error, SQLCODE = %d\n", SQLCODE);

}

return -1;

}

A.3 PictCheck: External UDF
#define GIF_HEADER_LENGTH 6
#define BMP_HEADER_LENGTH 2
#define GIF_FUNCTION "ISGIF"
#define BMP_FUNCTION "ISBMP"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqludf.h>

int fun_CheckHeader(char *, int, char *);

typedef struct
{

unsigned long length;
char data??(1 ??);

} BLOB1M;

void SQL_API_FN fun_CheckPictureType(BLOB1M *str_ProductPicture,
SQLUDF_INTEGER *nmi_IsCorrect,
SQLUDF_NULLIND *nms_InputNullIndicator01,
218 DB2 UDB for AS/400 Object Relational Support

SQLUDF_NULLIND *nms_OutputNullIndicator01,
SQLUDF_CHAR sqludf_sqlstate??(SQLUDF_SQLSTATE_LEN + 1 ??),
SQLUDF_CHAR sqludf_fname??(SQLUDF_FQNAME_LEN + 1 ??),
SQLUDF_CHAR sqludf_fspecname??(SQLUDF_SPECNAME_LEN + 1 ??),
SQLUDF_CHAR sqludf_msgtext??(SQLUDF_MSGTEXT_LEN + 1 ??))

{
char chr_GifHeader87??(GIF_HEADER_LENGTH ??) = { 0x47,

0x49,
0x46,
0x38,
0x37,
0x61 };

char chr_GifHeader89??(GIF_HEADER_LENGTH ??) = { 0x47,
0x49,
0x46,
0x38,
0x39,
0x61 };

char chr_BmpHeader??(BMP_HEADER_LENGTH ??) = { 0x42, 0x4D};
char *chr_FunctionResolution;
int nmi_CompareResult01 = 0;
int nmi_CompareResult02 = 0;

if (*nms_InputNullIndicator01 == -1)
{

*nms_OutputNullIndicator01 = -1;
return;

}

chr_FunctionResolution = strstr(sqludf_fname, GIF_FUNCTION);

if (chr_FunctionResolution != NULL)
{

nmi_CompareResult01 = fun_CheckHeader(str_ProductPicture->data,
GIF_HEADER_LENGTH,
chr_GifHeader87);

nmi_CompareResult02 = fun_CheckHeader(str_ProductPicture->data,
GIF_HEADER_LENGTH,
chr_GifHeader89);

if ((nmi_CompareResult01 == 1) || (nmi_CompareResult02 == 1))
{

*nmi_IsCorrect = 1;
*nms_OutputNullIndicator01 = 0;

}
else
{

*nmi_IsCorrect = 0;
*nms_OutputNullIndicator01 = 0;

}

return;
}

chr_FunctionResolution = strstr(sqludf_fname, BMP_FUNCTION);

if (chr_FunctionResolution != NULL)
{

nmi_CompareResult01 = fun_CheckHeader(str_ProductPicture->data,
BMP_HEADER_LENGTH,
chr_BmpHeader);

if (nmi_CompareResult01 == 1)
{

*nmi_IsCorrect = 1;
*nms_OutputNullIndicator01 = 0;

}
else
{

*nmi_IsCorrect = 0;
*nms_OutputNullIndicator01 = 0;

}

return;
}

*nms_OutputNullIndicator01 = -1;
Source code listings 219

strcpy(sqludf_sqlstate, "38501");
strcpy(sqludf_msgtext, "Unregistered function");
return;

}

A.4 ChkHdr
#define MAX_HEADER_SIZE 10

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int fun_CheckHeader(char *chr_HeaderData,
int nmi_HeaderLength,
char *chr_HeaderFormat)

{
char chr_HeaderString[MAX_HEADER_SIZE];
int nmi_CompareResult;

memcpy(chr_HeaderString, chr_HeaderData, nmi_HeaderLength);
nmi_CompareResult=memcmp(chr_HeaderString,chr_HeaderFormat,nmi_HeaderLength);

if (nmi_CompareResult != 0)
{
return 0;

}
else
{
return 1;

}
}

A.5 RunGetPicture: Testing GetPicture UDF
#include <stdio.h>

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS BLOB(1M) bin_ProductPicture;
SQL TYPE IS CLOB(50K) chs_ProductDescription;
char chs_ProductNumber??(5 ??);
char chs_Description??(1024 ??);

EXEC SQL END DECLARE SECTION;

void main(int argc, char **argv)
{

EXEC SQL WHENEVER NOT FOUND GOTO BadNews;

strcpy(chs_ProductNumber, argv??(1 ??));
printf("The product number - %s\n", chs_ProductNumber);

EXEC SQL
select Product_Description
into :chs_ProductDescription
from
prodmast01
where
product_number = SRLNUMBER(:chs_ProductNumber);

EXEC SQL
DECLARE cur_Picture CURSOR FOR
Select GetPicture(:chs_ProductDescription,

Product_Description,
Product_Picture)

from
prodmast01;

EXEC SQL open cur_Picture;

bin_ProductPicture.length = 0;
strcpy(bin_ProductPicture.data, " ");
220 DB2 UDB for AS/400 Object Relational Support

EXEC SQL fetch cur_Picture into :bin_ProductPicture;

while (sqlca.sqlcode != 100)
{

printf("\n");
if (bin_ProductPicture.length != 0)
{

printf("Values returned by GetPicture(CLOB, PRDDESC, ");
printf("PICTURE): \n");
printf("The picture length - %d\n", bin_ProductPicture.length);
printf("The picture data - %s\n", bin_ProductPicture.data);

}
else
{

printf("The GetPicture function(CLOB, PRDDESC, PICTURE) ");
printf("returned NULL\n");

}

bin_ProductPicture.length = 0;
strcpy(bin_ProductPicture.data, " ");

EXEC SQL fetch cur_Picture into :bin_ProductPicture;
}

BadNews:
EXEC SQL close cur_Picture;
return;

}

A.6 Rating: External UDF using SCRATCHPAD
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <decimal.h>
#include <sqludf.h>

typedef struct
{

decimal(15, 5) *nmpd_LargeValue;
long nml_RequiredRating;
long nml_ValuesStored;

} str_ScratchPad;

void SQL_API_FN fun_Rating(decimal(11, 2) *nmpd_InputMoneyValue,
SQLUDF_INTEGER *nml_InputRequiredRank,
decimal(11, 2) *nmpd_OutputMoneyValue,
SQLUDF_NULLIND *nms_InputNullIndicator01,
SQLUDF_NULLIND *nms_InputNullIndicator02,
SQLUDF_NULLIND *nms_OutputNullIndicator01,
SQLUDF_CHAR sqludf_sqlstate[SQLUDF_SQLSTATE_LEN + 1],
SQLUDF_CHAR sqludf_fname[SQLUDF_FQNAME_LEN +1],
SQLUDF_CHAR sqludf_fspecname[SQLUDF_SPECNAME_LEN + 1],
SQLUDF_CHAR sqludf_msgtext[SQLUDF_MSGTEXT_LEN + 1],
SQLUDF_SCRATCHPAD *sqludf_scratchpad,
SQLUDF_CALL_TYPE *sqludf_call_type)

{
str_ScratchPad *str_SPad;
str_ScratchPad **ptr_AlignmentPointer;
decimal(11, 2) nmpd_LowestValue, nmpd_Temp;
int nmi_Counter;
long nml_Temp;

/* Get the address of the data part of the scratchpad and align the */
/* pointer for the scratchpad to the 16 byte boundary */

ptr_AlignmentPointer = ((str_ScratchPad **)(sqludf_scratchpad)) + 1;
str_SPad = (str_ScratchPad *) ptr_AlignmentPointer;

if (*sqludf_call_type == -1)
{

if ((*nms_InputNullIndicator02 != 0) ||
(*nml_InputRequiredRank < 0))

{
strcpy(sqludf_sqlstate, "38601");
strcpy(sqludf_msgtext, "Incorrect rank value specified");
Source code listings 221

*nms_OutputNullIndicator01 = -1;
return;

}

str_SPad->nml_RequiredRating = *nml_InputRequiredRank;
str_SPad->nml_ValuesStored = 0;
nml_Temp = *nml_InputRequiredRank * sizeof(decimal(15, 5));
str_SPad->nmpd_LargeValue = (decimal(15, 5) *)

malloc(*nml_InputRequiredRank *
sizeof(decimal(11, 2)));

}

if (*sqludf_call_type == 1)
{

free(str_SPad->nmpd_LargeValue);
}

if (*sqludf_call_type < 1)
{

if (*nms_InputNullIndicator01 == 0)
{

nmpd_LowestValue = *nmpd_InputMoneyValue;

for (nmi_Counter = 0;
nmi_Counter < str_SPad->nml_ValuesStored;
nmi_Counter++)

{
if (str_SPad->nmpd_LargeValue[nmi_Counter] <

nmpd_LowestValue)
{

nmpd_Temp = nmpd_LowestValue;
nmpd_LowestValue = str_SPad->nmpd_LargeValue[nmi_Counter];
str_SPad->nmpd_LargeValue[nmi_Counter] = nmpd_Temp;

}
}

if (str_SPad->nml_ValuesStored < str_SPad->nml_RequiredRating)
{

str_SPad->nml_ValuesStored++;
str_SPad->nmpd_LargeValue[str_SPad->nml_ValuesStored - 1]
= nmpd_LowestValue;

}
}

if (str_SPad->nml_ValuesStored < str_SPad->nml_RequiredRating)
{

*nms_OutputNullIndicator01 = -1;
return;

}
else
{

*nmpd_OutputMoneyValue =
str_SPad->nmpd_LargeValue[str_SPad->nml_RequiredRating - 1];
*nms_OutputNullIndicator01 = 0;
return;

}
}

}

A.7 RtvPrdNbr3: External stored procedure written in CLI
#define SQL_MAX_PWD_LENGTH 10
#define SQL_MAX_STM_LENGTH 255

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sqlcli.h"

#define SQL_MAX_UID_LENGTH 10
SQLRETURN fun_Connect(void);
SQLRETURN fun_DisConnect(void);
SQLRETURN fun_ReleaseEnvHandle(void);
222 DB2 UDB for AS/400 Object Relational Support

SQLRETURN fun_ReleaseDbcHandle(void);
SQLRETURN fun_ReleaseStmHandle(void);
SQLRETURN fun_Process(void);
void fun_PrintError(SQLHSTMT);

typedef struct
{

unsigned long length;
char data[1048576];

} BLOB1M;

SQLRETURN nml_ReturnCode;
SQLHENV nml_HandleToEnvironment;
SQLHDBC nml_HandleToDatabaseConnection;
SQLHSTMT nml_HandleToSqlStatement;
SQLINTEGER nmi_PcbValue;
SQLCHAR chs_SqlStatement01[SQL_MAX_STM_LENGTH + 1];
SQLCHAR chs_ProductNumber[5];
BLOB1M bin_ProductPicture;

void main(int argc, char **argv)
{

SQLRETURN nml_ConnectionStatus;
char chs_OrderNumber[5];

nml_ConnectionStatus = fun_Connect();
if (nml_ConnectionStatus == SQL_SUCCESS)
{

printf("Connection Succeeded\n");
}
else
{

printf("Connection Failed\n");
exit(-1);

}

memcpy((void *)&bin_ProductPicture, argv[1], 1048580);
nml_ConnectionStatus = fun_Process();

if (nml_ConnectionStatus == SQL_SUCCESS)
{

strncpy(argv[2], chs_ProductNumber, sizeof(chs_ProductNumber));
}

nml_ConnectionStatus = fun_DisConnect();
if (nml_ConnectionStatus == SQL_SUCCESS)
{

printf("DisConnect Succeeded\n");
exit(0);

}
else
{

printf("DisConnect Failed\n");
exit(-1);

}
}

SQLRETURN fun_Connect()
{

SQLCHAR chs_As400System[SQL_MAX_DSN_LENGTH];
SQLCHAR chs_UserName[SQL_MAX_UID_LENGTH];
SQLCHAR chs_UserPassword[SQL_MAX_PWD_LENGTH];

printf("Attempting to connect\n");

nml_ReturnCode = SQLAllocEnv(&nml_HandleToEnvironment);
if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Error allocating environment handle\n");
fun_PrintError(SQL_NULL_HSTMT);
printf("Terminating\n");
return SQL_ERROR;

}

printf("Please enter the name of the As/400 system\n");
gets(chs_As400System);
Source code listings 223

printf("Please enter User Id for Log On\n");
gets(chs_UserName);
printf("Please enter password for Log On\n");
gets(chs_UserPassword);

nml_ReturnCode = SQLAllocConnect(nml_HandleToEnvironment,
&nml_HandleToDatabaseConnection);

if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Error allocating databse connection handle\n");
fun_PrintError(SQL_NULL_HSTMT);
nml_ReturnCode = fun_ReleaseEnvHandle();
printf("Terminating\n");
return SQL_ERROR;

}

nml_ReturnCode = SQLConnect(nml_HandleToDatabaseConnection,
chs_As400System,
SQL_NTS,
chs_UserName,
SQL_NTS,
chs_UserPassword,
SQL_NTS);

if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Could not connect to system %s\n", chs_As400System);
fun_PrintError(SQL_NULL_HSTMT);
nml_ReturnCode = fun_ReleaseDbcHandle();
nml_ReturnCode = fun_ReleaseEnvHandle();
printf("Terminating\n");
return SQL_ERROR;

}
else
{

return SQL_SUCCESS;
}

}

SQLRETURN fun_Process()
{

short Pictture_Ind = 0;

printf("Attempting to allocate handle to statement\n");

nml_ReturnCode = SQLAllocStmt(nml_HandleToDatabaseConnection,
&nml_HandleToSqlStatement);

if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Could not allocate handle to statement\n");
fun_PrintError(SQL_NULL_HSTMT);
printf("Terminating\n");
return SQL_ERROR;

}

strcpy(chs_SqlStatement01, "select product_number ");
strcat(chs_SqlStatement01, "from teamxx.prodmast01 ");
strcat(chs_SqlStatement01, "where ");
strcat(chs_SqlStatement01, "product_picture = ");
strcat(chs_SqlStatement01, "cast(? as TEAMXX.PICTURE)");

nml_ReturnCode = SQLPrepare(nml_HandleToSqlStatement,
chs_SqlStatement01,
SQL_NTS);

if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Could not prepare SQL statement\n");
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("Terminating\n");
return SQL_ERROR;

}

nmi_PcbValue = bin_ProductPicture.length;
nml_ReturnCode = SQLBindParam(nml_HandleToSqlStatement,

1,
SQL_BLOB,
224 DB2 UDB for AS/400 Object Relational Support

SQL_BLOB,
sizeof(bin_ProductPicture),
0,
(SQLPOINTER) bin_ProductPicture.data,
(SQLINTEGER *) &nmi_PcbValue);

if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Could not bind SQL statement\n");
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("Terminating\n");
return SQL_ERROR;

}

nml_ReturnCode = SQLExecute(nml_HandleToSqlStatement);
if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Could not execute the SQL statement\n");
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("Terminating\n");
return SQL_ERROR;

}

nml_ReturnCode = SQLBindCol(nml_HandleToSqlStatement,
1,
SQL_CHAR,
(SQLPOINTER) chs_ProductNumber,
sizeof(chs_ProductNumber),
(SQLINTEGER *) &nmi_PcbValue);

if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Could not bind columns of the cursor\n");
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("Terminating\n");
return SQL_ERROR;

}

nml_ReturnCode = SQLFetch(nml_HandleToSqlStatement);
if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Could not fetch from the SQL cursor\n");
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("Terminating\n");
return SQL_ERROR;

}
else
{

return SQL_SUCCESS;
}

}

SQLRETURN fun_DisConnect()
{

printf("Attempting to disconnect\n");

nml_ReturnCode = SQLDisconnect(nml_HandleToDatabaseConnection);
if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Failed to disconnect\n");
fun_PrintError(SQL_NULL_HSTMT);
printf("Terminating\n");
return 1;

}
else
{

printf("Successfully disconnected\n");
}

nml_ReturnCode = fun_ReleaseDbcHandle();
nml_ReturnCode = fun_ReleaseEnvHandle();

return nml_ReturnCode;
}

Source code listings 225

SQLRETURN fun_ReleaseEnvHandle()
{

printf("Attempting to release handle to environment\n");
nml_ReturnCode = SQLFreeEnv(nml_HandleToEnvironment);
if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Could not release handle to environment\n");
fun_PrintError(SQL_NULL_HSTMT);
return SQL_ERROR;

}
else
{

printf("Successfully released handle to environment\n");
return SQL_SUCCESS;

}
}

SQLRETURN fun_ReleaseDbcHandle()
{

printf("Attempting to release handle to database connection\n");
nml_ReturnCode = SQLFreeConnect(nml_HandleToDatabaseConnection);
if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Could not release handle to database connection\n");
fun_PrintError(SQL_NULL_HSTMT);
return SQL_ERROR;

}
else
{

printf("Successfully released handle to database connection\n");
return SQL_SUCCESS;

}
}

SQLRETURN fun_ReleaseStmHandle()
{

printf("Attempting to release handle to SQL statement\n");

nml_ReturnCode = SQLFreeStmt(nml_HandleToSqlStatement, SQL_CLOSE);
if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Could not release handle to SQL statement\n");
fun_PrintError(nml_HandleToSqlStatement);
return SQL_ERROR;

}
else
{

printf("Successfully released handle to SQL statement\n");
return SQL_SUCCESS;

}
}

void fun_PrintError(SQLHSTMT nml_HandleToSqlStatement)
{

SQLCHAR chs_SqlState[SQL_SQLSTATE_SIZE];
SQLINTEGER nmi_NativeErrorCode;
SQLCHAR chs_ErrorMessageText[SQL_MAX_MESSAGE_LENGTH + 1];
SQLSMALLINT nmi_NumberOfBytes;

nml_ReturnCode = SQLError(nml_HandleToEnvironment,
nml_HandleToDatabaseConnection,
nml_HandleToSqlStatement,
chs_SqlState,
&nmi_NativeErrorCode,
chs_ErrorMessageText,
sizeof(chs_ErrorMessageText),
&nmi_NumberOfBytes);

if (nml_ReturnCode != SQL_SUCCESS)
{

printf("Could not retrieve error information\n");
return;

}

226 DB2 UDB for AS/400 Object Relational Support

printf("SqlState - %s\n", chs_SqlState);
printf("SqlCode - %d\n", nmi_NativeErrorCode);
printf("Error Message:\n");
printf("%s\n", chs_ErrorMessageText);

}

Source code listings 227

228 DB2 UDB for AS/400 Object Relational Support

Appendix B. Special notices

This publication is intended to help programmers, analysts, and database
administrators to implement DB2 UDB for AS/400. The information in this
publication is not intended as the specification of any programming interfaces that
are provided by DB2 UDB for AS/400. See the PUBLICATIONS section of the IBM
Programming Announcement for DB2 UDB for AS/400, for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.
© Copyright IBM Corp. 2000 229

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In Denmark,
Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.

AIX AS/400
AT C/400
COBOL/400 CT
DB2 DRDA
IBM® Netfinity
Operating System/400 OS/2
OS/400 RPG/400
RS/6000 SP
SQL/400 System/390
XT 400
230 DB2 UDB for AS/400 Object Relational Support

Appendix C. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

C.1 IBM Redbooks publications

For information on ordering these ITSO publications see “How to get IBM
Redbooks” on page 233.

• Building AS/400 Client/Server Applications with Java, SG24-2152

• DB2/400 Advanced Database Functions, SG24-4249

• DB2/400: Mastering Data Warehousing Functions, SG24-5184

• AS/400 Client Access Express for Windows: Implementing V4R4M0,
SG24-5191

• Developing Cross-Platform DB2 Stored Procedures, SG24-5485

C.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

C.3 Other resources

These publications are also relevant as further information sources:

• IBM DB2 Universal Database Application Development Guide, SC09-2845

• DB2 UDB for AS/400 SQL Programming, SC41-5611

• DB2 UDB for AS/400 SQL Reference, SC41-5612

• White, Seth. JDBC API Tutorial and Reference, Second Edition.
Addison-Wesley Publishing, Co., 1999 (ISBN: 0-2014332-81).

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 231

http://www.redbooks.ibm.com/

C.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• Visit the IBM Redbooks home page at: http://www.redbooks.ibm.com for
announcements about upcoming redbooks, redpieces, and full redbook
downloads and ordering information.

• The reference tool Net.Data Administration and Programming Guide for
OS/400 is available for download from the Web at:
http://www.as400.ibm.com/products/netdata/docs/doc.htm

• Modification 2 of the AS/400 Toolbox for Java is available for download from
the Web at: http://www.ibm.com/as400/toolbox

• For information regarding interopability issues and problems between the
different IBM DB2 DataLink managers, and for DB2 information in general,
check the following Web site: http://www.as400.ibm.com/db2/dlinkinter.htm
232 DB2 UDB for AS/400 Object Relational Support

http://www.redbooks.ibm.com
http://www.as400.ibm.com/products/netdata/docs/doc.htm
http://www.ibm.com/as400/toolbox
http://www.as400.ibm.com/db2/dlinkinter.htm

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this Redbooks
site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the Redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 233

http://www.redbooks.ibm.com/
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/

IBM Redbooks fax order form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
234 DB2 UDB for AS/400 Object Relational Support

List of abbreviations

CPU Central Processing Unit

DBMS Database Management
System

CLI Call Level Interface

DDL Data Definition Language

DDS Data Definition Specification

DML Data Manipulation Language

IBM International Business
Machines Corporation

ILE Integrated Language
Environment

ITSO International Technical
Support Organization

LOB Large Object
© Copyright IBM Corp. 2000
I/O Input/Output

ODBC Open Database Connectivity

OLAP On-line Analytical Processing

OLTP On-line Transaction
Processing

RRA Relative Record Address

RDBMS Relational Database
Management System

SEU Screen Edit Utility

SLIC System License Internal Code

SQL Structured Query Language

UDF User Defined Function

UDT User Defined Type
235

236 DB2 UDB for AS/400 Object Relational Support

Index

A
activation group, *CALLER 101
AS LOCATOR clause 143
AS/400 Toolbox for Java 129

B
bind, external UDFs 101
BLOB 5

using in Java 130
Blob

code example in Java 130
parameter marker 133

Blob interface 130
Blob object

creating and materializing 130
storing in the database 132

C
Call Level Interface 139
casting functions 28
CL command

ADDHDBDLFM 159
ADDPFXDLFM 157
CRTCMOD 101
CRTSRVPGM 101
DSPFD 203
DSPFFD 60, 177
EDTDLFA 207
ENDTCPSVR 163
INZDLFM 156
STRTCPSVR 163
WRKPFDL 204
WRKRDBDIRE 155

CLASSPATH variable 130
CLI 139

code example 139
compile and bind 142
retrieving LOBs 143
stored procedure 139

CLOB 5
Clob object

code example 135
creating and materializing 134
storing in the database 136
Unicode 135
using 134

column function 78
commitment control 12, 18
compile

CLI program 142
external UDFs 101
Java program 132

complex objects 1, 129
control token 165, 186, 190

code example 186
CREATE FUNCTION statement 78
© Copyright IBM Corp. 2000
FINAL CALL clause 107
SCRATCHPAD clause 104
STATIC DISPATCH clause 90

CREATE PROCEDURE statement 142

D
Data Links Filesystem Filter (DLFF) 213
data type precedence list 40
data type promotion 40
Datalink APIs 153
DataLink File Manager 151
Datalink Filter 153
DataLinks

architecture 150
attributes 165
code examples 186
configuration 153, 154
considerations 174
control token 165, 186

code example 186
definition 147
delete ON UNLINK 166
in dynamic web pages 183
journal function 176
link control 165
link pending 205
ON UNLINK DELETE explained 173
read permission 165
reconcile pending link 206
save and restore 202
scalar function DLVALUE 178
SQL examples 175
SQL scalar functions 182
using as column type 168
write permission 166

DataLinks File Manager (DLFM) 213
DB2 (Logging Manager) 213
DB2SQL parameter style 96

coding example 104
DBCLOB 5
debugging 119
display pictures 130
DLFM 151

adding host database 159
adding prefix 157
initialize 156
on remote system 152

DLFM server job 156
checking the status 163
starting 163
stopping 163

DLURLCOMPLETE scalar function 182
DLURLPATH scalar function 183
DLURLPATHONLY scalar function 183
DLURLSERVER scalar function 183
DLVALUE scalar function 178

overloading example 179
237

dropping UDF 118

E
error handling in UDF 96
explicit casting 35, 141

of parameter markers 131
external UDF 71, 95

error handling 101
null indicator 100
parameter styles 95

F
FINAL CALL clause 107
full file path 179
function overloading 72, 179

code example 110
function parameters 90
function path 72
function resolution 71

code example 108
function selection algorithm 76
function signature 72

H
HTTP 184

I
IFS 149

file permission 172
mount points 158

implicit casting 38, 141
host variables 42
in Java 131

input stream in Java 136
input stream using in Java 133
Integrated File System 149

J
Java 2 platfrom 129
Java input stream 133, 136
JDBC 2.0 129
JDK 1.2.2 130
join 45

L
link pending status 205
LOB

commitment control 18
comparing 19
compatibility of data types 8
definition 4
maximum size 6
native interface 22
passing as a parameter 143
supported built-in functions 21
triggers 25

using as column type 7
using in CLI 139

LOB file reference
CCSID conversion 14
definition 12
file options 14

LOB locator
commitment control 12
declaring 9
definition 8

LOBs
using in Net.Data 25

M
Metadata

using in Java 137
metadata

code example in Java 137
retrieving column information 137

N
native I/O 202
native interface 22, 49, 193
Net.Data 25

O
Operations Navigator 2, 28, 85, 150, 167

Run SQL Scripts utility 7

P
parameter markers

BLOB 141
Blob 133
casting 131

parameter matching 74
parameter promotion 74, 112, 113
parameter styles in external UDFs 95
pending link reconcilation 206
picture, load into database 133
precedence of data types 76

R
RDB entry 155
RPG code example 202
Run SQL Scripts utility 78

S
save and restore for UDTs 60
scalar function 78
scratchpad 104

code example 105
secondary thread 119
SET PATH statement 73
sourced UDF 70, 78

arithmetic operators 83
code example 79, 82, 84
238 DB2 UDB for AS/400 Object Relational Support

column functions 82
scalar function 78

SQL naming convention 72
SQL parameter style 95

coding example 99
SQL UDF 70, 85

code example 87
STATIC DISPATCH clause 90
strong typing 34
Swing GUI 130
system catalog

SYSCOLUMNS 58
SYSPARMS 117
SYSROUTINES 113, 116
SYSTYPES 57

system naming convention 72

T
Toolbox for Java 129
triggers 25

U
UDF

code example 92
compile and bind 101
debugging 119
definition 69
dropping 118
error handling 96
external 71, 95
function overloading 72
function path 72
function signature 72
LOB parameters 90
LOB return value 91
resolving 71
return value 91
save and restore 119
sourced 70, 78
SQL 70, 85
UDF_TIME_OUT parameter 127
UDT parameters 90
UDT return value 91

UDT
casting functions 28
changing definition 34
comparing 44
creating 28
data type promotion 40
definition 27
dropping 64
explicit casting 35
implicit casting 38
joining on UDT columns 45
native I/O 49, 54
native interface 49
save and restore 60, 62
strong typing 34
system catalog 57

using as column type 31, 33
using in CLI 142
using in Java 137

Unicode 135
239

240 DB2 UDB for AS/400 Object Relational Support

© Copyright IBM Corp. 2000 241

IBM Redbooks evaluation

DB2 UDB for AS/400 Object Relational Support
SG24-5409-00

Your feedback is very important to help us maintain the quality of IBM Redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other Redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

SG24-5409-00

Printed in the U.S.A.

D
B

2
U

D
B

for
A

S/400
O

bject
R

elationalSupport
SG

24-5409-00

®

	Contents
	Figures
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction
	1.1 Why we need complex objects on an AS/400 system
	1.2 Using complex objects

	Chapter 2. Large object support in DB2 UDB for AS/400
	2.1 A need for large objects
	2.2 What is an LOB?
	2.3 Using LOBs with SQL
	2.3.1 Creating a table with LOB data types
	2.3.2 Adding data to the CUSTOMERHUS table

	2.4 LOB locators
	2.4.1 LOB locator characteristics
	2.4.2 LOB locator processing
	2.4.3 Commitment control and LOB locators

	2.5 LOB file reference variable
	2.5.1 LOB file reference characteristics
	2.5.2 LOB file reference processing

	2.6 Commitment control and journaling for LOBs
	2.7 SQL functions supporting LOBs
	2.7.1 Basic predicate support for LOBs
	2.7.2 Column functions
	2.7.3 Scalar functions

	2.8 LOBs and the native interface
	2.9 LOB column considerations
	2.9.1 Triggers
	2.9.2 Using in Net.Data

	Chapter 3. User-defined Distinct Types (UDTs)
	3.1 A need for user-defined types
	3.2 Creating distinct types
	3.2.1 Creating UDT sourced from DECIMAL
	3.2.2 Creating a table using UDTs
	3.2.3 Creating distinct types with the SQL interface
	3.2.4 Altering and deleting distinct types

	3.3 Casting for distinct types
	3.3.1 Explicit casting
	3.3.2 Implicit casting
	3.3.3 Implicit casting and promotion
	3.3.4 Implicit casting and host variables

	3.4 SQL support for distinct types
	3.4.1 Using predicates with UDT
	3.4.2 Joining on UDT
	3.4.3 Using a default value with UDT

	3.5 DB2 UDB for AS/400 implementation
	3.5.1 Native system interfaces
	3.5.2 Keeping track of distinct types
	3.5.3 Database recovery

	Chapter 4. User Defined Functions (UDFs)
	4.1 A need for User Defined Functions
	4.2 UDF types
	4.2.1 Sourced
	4.2.2 SQL
	4.2.3 External

	4.3 Resolving UDF
	4.3.1 UDF function overloading and function signature
	4.3.2 Function path and the function selection algorithm
	4.3.3 Parameter matching and promotion
	4.3.4 The function selection algorithm

	4.4 Coding UDFs
	4.4.1 Coding sourced UDFs
	4.4.2 Coding SQL UDFs
	4.4.3 Coding external UDFs

	4.5 Function resolution and parameter promotion in UDFs
	4.5.1 An example of function resolution in UDFs
	4.5.2 An example of parameter promotion in UDF

	4.6 The system catalog for UDFs
	4.6.1 SYSROUTINES catalog
	4.6.2 SYSPARMS catalog

	4.7 Dropping UDFs
	4.8 Saving and restoring UDFs
	4.9 Debugging UDFs
	4.10 Coding considerations

	Chapter 5. Programming alternatives for complex objects
	5.1 Using complex objects in Java client applications
	5.1.1 Getting ready to use JDBC 2.0 driver
	5.1.2 Using a Blob object
	5.1.3 Using a Clob object
	5.1.4 Using metadata

	5.2 Using complex objects in CLI or ODBC
	5.2.1 DB2 CLI application flow
	5.2.2 Passing LOB to a stored procedure written in CLI
	5.2.3 Calling the CLI stored procedure
	5.2.4 Retrieving LOBs in CLI

	Chapter 6. DataLinks
	6.1 A need for DataLinks
	6.2 DataLinks components
	6.2.1 DataLink data type
	6.2.2 DataLink file manager
	6.2.3 DataLink filter
	6.2.4 APIs

	6.3 DataLinks system configuration
	6.3.1 Initializing the DLFM server
	6.3.2 DLFM configuration
	6.3.3 Starting the DLFM server

	6.4 Using DataLinks with SQL
	6.4.1 DataLink options: General
	6.4.2 DataLink options: DB2 Universal Database for AS/400
	6.4.3 Data manipulation examples
	6.4.4 DataLink SQL scalar functions
	6.4.5 Using the DataLink in dynamic Web pages
	6.4.6 Using the DataLink access control token

	6.5 Native interface considerations
	6.6 DataLinks management considerations
	6.6.1 Backup and recovery procedures

	6.7 Using DataLinks in a heterogeneous environment
	6.7.1 DataLinks Manager for Windows NT and for AIX

	Appendix A. Source code listings
	A.1 UDTLABA: Using UDTs
	A.2 UDTLABB: Casting UDTs
	A.3 PictCheck: External UDF
	A.4 ChkHdr
	A.5 RunGetPicture: Testing GetPicture UDF
	A.6 Rating: External UDF using SCRATCHPAD
	A.7 RtvPrdNbr3: External stored procedure written in CLI

	Appendix B. Special notices
	Appendix C. Related publications
	C.1 IBM Redbooks publications
	C.2 IBM Redbooks collections
	C.3 Other resources
	C.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	List of abbreviations
	Index
	IBM Redbooks evaluation

