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Abstract. SPARQL is the w3cC standard query language for querying
data expressed in the Resource Description Framework (RDF). The in-
creasing amounts of RDF data available raise a major need and research
interest in building efficient and scalable distributed SPARQL query eval-
uators. In this context, we propose SPARQLGX: our implementation of
a distributed RDF datastore based on Apache Spark. SPARQLGX is de-
signed to leverage existing Hadoop infrastructures for evaluating SPARQL
queries. SPARQLGX relies on a translation of SPARQL queries into exe-
cutable Spark code that adopts evaluation strategies according to (1)
the storage method used and (2) statistics on data. We show that SPAR-
QLGX makes it possible to evaluate SPARQL queries on billions of triples
distributed across multiple nodes, while providing attractive performance
figures. We report on experiments which show how SPARQLGX compares
to related state-of-the-art implementations and we show that our ap-
proach scales better than these systems in terms of supported dataset
size. With its simple design, SPARQLGX represents an interesting alterna-
tive in several scenarios.

Keywords: RDF System, Distributed SPARQL Evaluation

1 Introduction

SPARQL is the standard query language for retrieving and manipulating data rep-
resented in the Resource Description Framework (RDF) [11]. SPARQL constitutes
one key technology of the semantic web and has become very popular since it
became an official W3¢ recommendation [1].

The construction of efficient SPARQL query evaluators faces several challenges.
First, RDF datasets are increasingly large, with some already containing more
than a billion triples. To handle efficiently this growing amount of data, we need
systems to be distributed and to scale. Furthermore, semantic data often have the
characteristic of being dynamic (frequently updated). Thus being able to answer
quickly after a change in the input data constitutes a very desirable property for
a SPARQL evaluator. In this context, we propose SPARQLGX: an engine designed



to evaluate SPARQL queries based on Apache Spark [21]: it relies on a compiler
of SPARQL conjunctive queries which generates Scala code that is executed by
the Spark infrastructure. The source code of our system is available online from
the following URL:

https://github.com/tyrex-team/sparqlgx

The paper is organized as follows: we first introduce the technologies that
we consider in Section 2. Then, in Section 3, we describe SPARQLGX and present
additional available tools in Section 4. Section 5 reports on our experimental
validation to compare our implementation with other open source HDFS-based
RDF systems. Finally, we review related works in Section 6 and conclude in
Section 7.

2 Background

The Resource Description Framework (RDF) is a language standardized by w3cC
to express structured information on the Web as graphs [11]. It models knowledge
about arbitrary resources represented by URIs (Unique Resource Identifiers),
Blank Nodes or Literals. RDF data is structured in sentences, each one having a
subject, a predicate and an object.

The sPARQL standard language has been studied under various forms and
fragments. We focus on the problem of evaluating the Basic Graph Pattern
fragment (BGP) over a dataset of RDF triples. The BGP fragment is composed
of conjunctions of triple patterns (TPs). Each TP expresses conditions that must
be matched by parts of an RDF triple for it to be selected.

Apache Hadoop' is a framework for distributed systems based on the Map-
Reduce paradigm. The Hadoop Distributed File System (HDFS) is a popular
distributed file system handling the distribution of data across a cluster and its
replication [19].

Apache Spark [21] is a MapReduce-like data-parallel framework designed for
large-scale data processing running on top of the JvM. Spark can be set up to
use HDFS.

3 SPARQLGX: General Architecture

In this Section, we explain how we translate queries from our SPARQL fragment
into lower-level Scala code [14] which is directly executable with the Spark API.
To this end, after presenting the chosen data storage model, we give a translation
into a sequence of Spark-compliant Scala-commands for each operator of the
considered fragment.

! Apache Hadoop: http://hadoop.apache.org



3.1 Data Storage Model

In order to process RDF datasets with Apache Spark, we first have to adopt a
convenient storage model on the HDFS. From the “raw” storage (writing all the
triples in a plain text file) to complex schemes (involving indexes, B-trees, etc.),
there are many ways to store RDF data. Any storage choice is a compromise
between (1) the time required for converting origin data into the target format,
(2) the total disk-space needed, (3) the possible response time improvement
induced.

RDF triples have very specific semantics. In a RDF triple (s p 0), the predicate
p represents the “semantic relationship” between the subject s and the object o.
Thus, there are often relatively few distinct predicates compared to the number
of distinct subjects or objects. The vertically partitioned architecture introduced
by Abadi et al. in [2] takes advantage of this observation by storing the triple
(s p o) in a file named p whose contents keeps only s and o entries. Converting
RDF data into a vertically partitioned dataset is thus straightforward. Each triple
is read once and the pair (subject, object) is appended to the predicate file.

For large datasets with only a few predicates, the vertical partitioning pro-
vides a good way to minimize the memory footprint and the datasets size on
disks, since only two URIs are stored instead of three.

Having vertically partitioned data reduces evaluation time of triple patterns
whose predicate is a constant (i.e. not a variable): searches are simply limited
to the relevant files. In practice, one can observe that most SPARQL queries have
triple patterns with a constant predicate. [7] showed that graph patterns where
all predicates are constant represent 77.81% of the queries asked to DBpedia and
98.08% of the ones asked to SWDF.

Thereby, using the vertical partitioning scheme provides three advantages:
first, a fast conversion since it is linear and requires only one dataset traversal;
second, a compression of data since the predicate column is removed; third,
a slight indexation which reduces response time in some cases since triples are
classified by predicates. For all these reasons we believe that vertical partitioning
is very well suited for RDF and we adopt it for building our evaluator.

3.2 SPARQL Fragment Translation

To translate a conjunction of triple patterns, several steps are required. We first
deal with each TP to extract relevant data from disk, second we aggregate them
according to common variables.

Given a TP, we count the number of variables and locate the variable places
in the Tp. If the predicate is a constant, we open the relevant HDFS file using
textFile; if not, we have to open all predicate files. Then, using the constants
of the TP, a filter allows to keep only the matching elements. For instance, the
following TP {?s age 21 .} matching people that are 21 is translated into:

val tp=sc.textFile("age.txt")
.filter{case(sub,obj)=>0bj==21}



In order to translate a conjunction of TPs (i.e. a BGP), the TPs are joined.
Two TPs are joined using their common variables as a key: keyBy in Spark.
Joining TPs is then realized with join. For example the following TPs {?s age 21 .
?s gender ?g .} are translated into:

val tpl=sc.textFile("age.txt")
.filter{case(s,0)=>0==21}
.keyBy{case(s,0)=>s}

val tp2=sc.textFile("gender.txt")
.keyBy{case(s,g)=>s}

val bgp=tp2.join(tpl)
.values

If there are no common variables we return the cross product (cartesian).
Usually, we perform (n — 1) joins for a conjunction of n TPs.

Finally, to deal with a group of TPs, SPARQLGX translates the first one and
then searches for a common variable to make a join. Joins are generated when
progressing in the list; the obtained translation (the Scala-code) thus depends
on the initial order of TPs since the joins will not be perfomed in the same order.
This allows us to develop optimizations based on join commutativity such as the
ones presented in Section 4.1.

3.3 SPARQL Fragment Extension

Once the TPs are translated, we use a map to retain only the desired fields (é.e. the
distinguished variables) of the query. At that stage, we can also modify results
according to the SPARQL solution modifiers [1] (e.g. removing duplicates with
distinct, sorting with sortByKey, returning only few lines with take, etc.)
Furthermore, we also easily translate two additional SPARQL keywords: UNION
and OPTIONAL, provided they are located at top-level in the WHERE clauses.
Indeed, Spark allows to aggregate sets having similar structures with union
and is also able to add data if possible with leftOuterJoin. Thus SPARQLGX
natively supports a slight extension (UNIONs and OPTIONALs at top level) of the
extensively studied SPARQL fragment made of conjunctions of triple patterns.

4 Additional Features

4.1 Optimized Joins With Statistics

The execution order of the query can also have an impact on performance. As
described previously, the evaluation process (using Spark) first evaluates TPs and
then joins these subsets according to their common variables. Thus, minimizing
the intermediate set sizes involved in the join process reduces evaluation time
(since communication between workers is then faster). Thereby, statistics on data
and information on intermediate results sizes provide useful information that we
exploit for optimisation purposes.



Dataset  |Number of Triples|Original File Size on HDFS
Watdiv-100M 109 million 46.8 GB
Lubm-1k 134 million 72.0 GB
Lubm-10k 1.38 billion 747 GB

Table 1: General Information about Used Datasets.

Given an RDF dataset D having T triples, and given a place in an RDF sentence
k € {subj,pred,obj}, we define the selectivity in D of an element e located at k
as: (1) the occurrence number of e as k in D if e is a constant; (2) T if e is a vari-
able. We note it sel% (e). Similarly, we define the selectivity of a TP (a b ¢ .) over
an RDF dataset D as: SELp(a,b,¢) = min(sel3™ (a), selZ“(b), sel?? (c)).

Thereby, to rank each TP, we compute statistics on datasets counting all the
distinct subjects, predicates and objects. This is implemented in a compile-time
module that sorts TPs in ascending order of their selectivities before they are
translated.

4.2 SDE: SPARQLGX as a Direct Evaluator

Our tool evaluates SPARQL queries using Apache Spark after preprocessing RDF
data. However, in certain situations, data might be dynamic (e.g. subject to
updates) and/or users might only need to evaluate a single query (e.g. when
evaluation is integrated into a pipeline of transformations). In such cases, it is
interesting to limit as much as possible both the preprocessing time and the
query evaluation time.

To take the original triple file as source, we only have to modify in our
translation process the way we treat TPs to change our storage model. Instead
of searching in predicate files, we directly use the initial file; and the rest of the
translation process remains the same. We call this variant of our evaluator the
“direct evaluator” or SDE.

5 Experimental Results

In this Section, we present an excerpt of our empirical comparison of our ap-
proach with other open source HDFS-based RDF systems. RYA [16] relies on
key-value tables using Apache Accumulo?. CliqueSquare [8] converts queries in
a Hadoop list of instructions. S2RDF [18] is a recent tool that allow to load
RDF data according to a novel scheme called ExtVP and then to query the re-
lational tables using Apache SparkSQL [4]. Finally, PigSPARQL [17] just trans-
lates SPARQL queries into an executable PigLatin [15] instruction sequence; and
RDFHive? is a straightforward tool we made to evaluate SPARQL conjunctive

2 Apache Accumulo: accumulo.apache.org
3 RDFHive Sources: http://tyrex.inria.fr/rdfhive/home.html



queries directly on Apache Hive [20] after a naive translation of SPARQL into
Hive-QL.

All experiments are performed on a cluster of 10 Virtual Machines (vM) dis-
tributed on two physical machines (each one running 5 of them). The operating
system is CentOS-X64 6.6-final. Each vM has 17 GB of memory and 4 cores at
2.1 GHz. We kept the default setting with which HDFS is resilient to the loss of
two nodes and we do not consider the data import on the HDFS as part of the
preprocessing phase.

We compare the presented systems using two popular benchmarks: LUBM [9]
and Watdiv [3]. Table 1 presents characteristics of the considered datasets. We
rely on three metrics to discuss results (Table 2): query execution times, pre-
processing times (for systems that need to preprocess data), and disk footprints.
For space reasons, Table 2 presents three Lubm queries: Q1 because it bears
large input and high selectivity, Q2 since it has large intermediate results while
involving a triangular pattern and Q14 for its simplicity. Moreover, we aggregate
Watdiv queries by the categories proposed in the Watdiv paper [3]: 3 complex
(QQC), 5 snowflake-shaped (QF), 5 linear (QL) and 7 star queries (QS). In Ta-
ble 2 we indicate “TIMEOUT” whenever the process did not complete within a
certain amount of time*. We indicate “FAIL” whenever the system crashed be-
fore this timeout delay. This regroups several kinds of failure such as unability of
evaluating queries and also unability of preprocessing the datasets. We indicate
“N/A” whenever the task could not be accomplished because of a failure during
the preprocessing phase.

Table 2 shows that SPARQLGX always answer all tested queries on all tested
datasets whereas this is not the case with other conventional RDF datastores
which either timeout or fail at some point.

In addition, SPARQLGX outperforms several implementations in many cases
(also as shown on Table 2), while implementing a simple architecture exclusively
built on top of open source and publicly available technologies. Furthermore,
the SDE variant of our implementation, which does not require any preprocess-
ing phase offers performances similar to the ones obtained with state-of-the-art
implementations that require preprocessing.

6 Related Work

In recent years, many RDF systems capable of evaluating SPARQL queries have
been developed [12]. These stores can be divided in two categories: centralized
systems (e.g. RDF-3X [13] or Virtuoso [5]) and distributed ones, that we fur-
ther review. Distributed RDF stores can in turn be divided into three categories.
(1) The ad-hoc systems that are specially designed for RDF data and that dis-
tribute and store data across the nodes according to custom ad-hoc methods
(e.g. 4store [10]). (2) Other systems use a communication layer between central-
ized systems deployed across the cluster and then evaluate sub-queries on each

4 We set the timeout delay to 10 hours for the query evaluation stage and to 24 hours
for the dataset preprocessing stage.



Conventional RDF Datastores Direct Evaluators
RYA |CliqueSquare|S2RDF |SPARQLGX| sDE |RDFHive|PigSPARQL

—|Preprocessing (minutes) 35 288 718 24 0 0 0
§ Footprint (GB) 11.0 30.2 15.2 23.6 46.8 46.8 46.8
E‘ QC (seconds) TIMEOUT 333 504 118 278 1174 6973
5 QF (seconds) 12071 FAIL 771 182 355 1640 9904
= QL (seconds) 5895 94 490 119 199 1175 5670
= QS (seconds) 1892 FAIL 805 210 363 1053 2460

Preprocessing (minutes) 34 157 408 55 0 0 0
Z[ Footprint (GB) 16.2 55.8 131 | 391 72.0 72.0 72.0
E Q1 (seconds) 192 461 118 22 96 281 226
E Q2 (seconds) TIMEOUT 105 1599 320 8917 |TIMEOUT 1239
Q14 (seconds) 66 22 86 9 149 274 212

_|Preprocessing (minutes)| 410 TIMEOUT FAIL 672 0 0 0
= Footprint (GB) 177 403 N/A 407 47 747 747
& QI (seconds) 1799 524 N/A | 305 904 1631 2272
= Q2 (seconds) TIMEOUT 22093 N/A 19158 [TIMEOUT|TIMEOUT 18029
=" Q14 (seconds) 571 731 N/A | 541 1500 | 2937 2525

Table 2: Compared System Performance.

node such as Partout with RDF-3X [6]. (3) Lastly, some RDF systems [8, 16-18]
are built on top of distributed Cloud platforms such as Apache Hadoop. One
major interest of such platforms relies on their common file systems (e.g., HDFS):
indeed various applications can access data at the same time and the distribu-
tion/replication issues are transparent. These systems [8,16-18], then evaluate
SPARQL conjunctive queries using various tools as presented in Section 5 (e.g.
Accumulo, Hive, Spark, etc.). To set up appropriate tools for pipeline applica-
tions, we choose to distribute data with a Cloud platform (HDFS) and evaluate
queries using Spark. We compared the performances of SPARQLGX with the most
closely related implementations in Section 5.

Finally, it is worthwhile to notice that SPARQL is a very expressive language
which offers a rich set of features and operators. Most evaluators based on Cloud
platforms focus on the restricted SPARQL fragment composed of conjunctive
queries. SPARQLCX also natively supports a slight extension of this fragment
with UNION and OPTIONAL operators at top level.

7 Conclusion

We proposed SPARQLGX: a tool for the efficient evaluation of SPARQL queries on
distributed RDF datasets. SPARQL queries are translated into Spark executable
code, that attempts to leverage the advantages of the Spark platform in the
specific setting of RDF data. SPARQLGX also comes with a direct evaluator based
on the same SPARQL translation process and called SDE, for situations where
preprocessing time matters as much as query evaluation time. We report on
practical experiments with our systems that outperform several state-of-the-art
Hadoop-reliant systems, while implementing a simple architecture that is easily
deployable across a cluster.
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