

Intel® Math Kernel Library

Reference Manual

Document Number: 630813-045US

MKL 10.3 Update 8

Legal Information

Contents

Legal Information 33
Introducing the Inte ${ }^{\circledR}$ Math Kernel Library 35
Getting Help and Support 37
What's New 39
Notational Conventions 41
Chapter 1: Function Domains
BLAS Routines 44
Sparse BLAS Routines 44
LAPACK Routines 44
ScaLAPACK Routines 44
PBLAS Routines 45
Sparse Solver Routines 45
VML Functions 46
Statistical Functions 46
Fourier Transform Functions 46
Partial Differential Equations Support 46
Nonlinear Optimization Problem Solvers 47
Support Functions. 47
BLACS Routines 47
Data Fitting Functions 48
GMP Arithmetic Functions 48
Performance Enhancements 48
Parallelism 49
C Datatypes Specific to Intel MKL 49
Chapter 2: BLAS and Sparse BLAS Routines
BLAS Routines 51
Routine Naming Conventions 51
Fortran 95 Interface Conventions 52
Matrix Storage Schemes 53
BLAS Level 1 Routines and Functions 53
?asum 54
?axpy 55
?copy 56
?dot 58
?sdot 59
?dotc 60
?dotu 61
?nrm2 62
?rot. 63
?rotg 64
?rotm 65
?rotmg 67
?scal 69
?swap 70
i?amax 71
i?amin 72
?cabs1 73
BLAS Level 2 Routines 74
?gbmv 75
?gemv 77
?ger 79
?gerc 81
?geru 82
?hbmv 84
?hemv 86
?her. 87
?her2 89
?hpmv 91
?hpr. 92
?hpr2 94
?sbmv 95
?spmv 98
?spr 99
?spr2 101
?symv 102
?syr. 104
?syr2 106
?tbmv 107
?tbsv 109
?tpmv 112
?tpsv 113
?trmv 115
?trsv 117
BLAS Level 3 Routines. 118
?gemm 119
?hemm 122
?herk. 124
?her2k 126
?symm 128
?syrk. 131
?syr2k 133
?trmm 135
?trsm. 138
Sparse BLAS Level 1 Routines. 140
Vector Arguments. 140
Naming Conventions. 140
Routines and Data Types. 141
BLAS Level 1 Routines That Can Work With Sparse Vectors. 141
?axpyi 141
?doti. 143
?dotci 144
?dotui. 145
?gthr 146
?gthrz 147
?roti 148
?sctr. 149
Sparse BLAS Level 2 and Level 3 Routines 151
Naming Conventions in Sparse BLAS Level 2 and Level 3 151
Sparse Matrix Storage Formats 152
Routines and Supported Operations 152
Interface Consideration 153
Sparse BLAS Level 2 and Level 3 Routines 158
mkl_?csrgemv. 161
mkl_?bsrgemv 164
mkl_?coogemv 166
mkl_?diagemv. 169
mkl_?csrsymv 171
mkl_?bsrsymv 173
mkl_?coosymv 176
mkl_?diasymv. 178
mkl_?csrtrsv 181
mkl_?bsrtrsv 184
mkl_?cootrsv. 186
mkl_?diatrsv. 189
mkl_cspblas_?csrgemv. 192
mkl_cspblas_?bsrgemv. 194
mkl_cspblas_?coogemv 197
mkl_cspblas_?csrsymv. 199
mkl_cspblas_?bsrsymv 202
mkl_cspblas_?coosymv 204
mkl_cspblas_?csrtrsv 207
mkl_cspblas_?bsrtrsv 209
mkl_cspblas_?cootrsv. 212
mkl_?csrmv. 215
mkl_?bsrmv 218
mkl_?cscmv 222
mkl_?coomv 225
mkl_?csrsv 228
mkl_?bsrsv 232
mkl_?cscsv. 235
mkl_?coosv. 239
mkl_?csrmm 242
mkl_?bsrmm 246
mkl_?cscmm 250
mkl_?coomm 254
mkl_?csrsm. 257
mkl_?cscsm. 261
mkl_?coosm 265
mkl_?bsrsm 268
mkl_?diamv 272
mkl_?skymv. 275
mkl_?diasv. 278
mkl_?skysv 281
mkl_?diamm 284
mkl_?skymm 288
mkl_?diasm 291
mkl_?skysm 295
mkl_?dnscsr 298
mkl_?csrcoo 301
mkl_?csrbsr. 304
mkl_?csrcsc. 307
mkl_?csrdia. 309
mkl_?csrsky 313
mkl_?csradd. 316
mkl_?csrmultcsr 320
mkl_?csrmultd. 324
BLAS-like Extensions 327
?axpby 327
?gem2vu 329
?gem2vc 331
?gemm3m. 333
mkl_?imatcopy 335
mkl_?omatcopy 338
mkl_?omatcopy2 341
mkl_?omatadd 344
Chapter 3: LAPACK Routines: Linear Equations
Routine Naming Conventions 347
C Interface Conventions 348
Fortran 95 Interface Conventions. 351
Intel ${ }^{\circledR}$ MKL Fortran 95 Interfaces for LAPACK Routines vs. Netlib Implementation 352
Matrix Storage Schemes 353
Mathematical Notation. 354
Error Analysis. 354
Computational Routines. 355
Routines for Matrix Factorization 357
?getrf 357
?gbtrf 359
?gttrf 361
?dttrfb 363
?potrf. 364
?pstrf. 366
?pftrf. 368
?pptrf 369
?pbtrf 371
?pttrf. 373
?sytrf. 374
?hetrf. 378
?sptrf. 381
?hptrf 383
Routines for Solving Systems of Linear Equations 385
?getrs 385
?gbtrs 387
?gttrs 389
?dttrsb 392
?potrs 393
?pftrs 395
?pptrs 396
?pbtrs 398
?pttrs 400
?sytrs 402
?hetrs 404
?sytrs2 406
?hetrs2 408
?sptrs 409
?hptrs 411
?trtrs. 413
?tptrs 416
?tbtrs. 418
Routines for Estimating the Condition Number 420
?gecon 420
?gbcon 422
?gtcon 424
?pocon 426
?ppcon 428
?pbcon 430
?ptcon 432
?sycon 434
?syconv 436
?hecon 438
?spcon 439
?hpcon 441
?trcon 443
?tpcon 445
?tbcon 447
Refining the Solution and Estimating Its Error 449
?gerfs 449
?gerfsx 452
?gbrfs 458
?gbrfsx 461
?gtrfs 467
?porfs 469
?porfsx 472
?pprfs 478
?pbrfs 480
?ptrfs 483
?syrfs 485
?syrfsx 488
?herfs 494
?herfsx 496
?sprfs 501
?hprfs 504
?trrfs 506
?tprfs 508
?tbrfs 511
Routines for Matrix Inversion 514
?getri 514
?potri 516
?pftri 517
?pptri 519
?sytri 520
?hetri. 522
?sytri2 523
?hetri2 525
?sytri2x 527
?hetri2x. 529
?sptri 530
?hptri 532
?trtri 534
?tftri 535
?tptri. 536
Routines for Matrix Equilibration 538
?geequ 538
?geequb 540
?gbequ 542
?gbequb 545
?poequ 547
?poequb 549
?ppequ 550
?pbequ 552
?syequb 554
?heequb. 556
Driver Routines 557
?gesv 558
?gesvx 561
?gesvxx 567
?gbsv 574
?gbsvx 576
?gbsvxx 582
?gtsv 589
?gtsvx 591
?dtsvb 595
?posv 596
?posvx 599
?posvxx 604
?ppsv 611
?ppsvx 612
?pbsv 617
?pbsvx 619
?ptsv 623
?ptsvx 625
?sysv 629
?sysvx. 631
?sysvxx 635
?hesv 642
?hesvx 645
?hesvxx 649
?spsv. 655
?spsvx. 657
?hpsv 661
?hpsvx 663
Chapter 4: LAPACK Routines: Least Squares and Eigenvalue Problems
Routine Naming Conventions 668
Matrix Storage Schemes 669
Mathematical Notation. 669
Computational Routines 669
Orthogonal Factorizations 670
?geqrf. 671
?geqrfp. 674
?geqpf. 676
?geqp3 678
?orgqr 681
?ormqr. 683
?ungqr 685
?unmqr 687
?gelqf 689
?orglq 692
?ormlq 694
?unglq. 696
?unmlq 698
?geqlf 700
?orgql 702
?ungql. 704
?ormql 706
?unmql 708
?gerqf. 710
?orgrq 712
?ungrq 714
?ormrq 716
?unmrq 718
?tzrzf. 720
?ormrz. 723
?unmrz 725
?ggqrf. 728
?ggrqf. 731
Singular Value Decomposition 734
?gebrd 736
?gbbrd 739
?orgbr 742
?ormbr 744
?ungbr 747
?unmbr 749
?bdsqr 752
?bdsdc 756
Symmetric Eigenvalue Problems 758
?sytrd 762
?syrdb 764
?herdb 766
?orgtr. 768
?ormtr 770
?hetrd 772
?ungtr 775
?unmtr 776
?sptrd 779
?opgtr 781
?opmtr 782
?hptrd 784
?upgtr 786
?upmtr. 787
?sbtrd 789
?hbtrd 791
?sterf. 793
?steqr 795
?stemr 798
?stedc 801
?stegr 805
?pteqr 810
?stebz 813
?stein. 815
?disna 818
Generalized Symmetric-Definite Eigenvalue Problems 819
?sygst 820
?hegst 822
?spgst 823
?hpgst 825
?sbgst 827
?hbgst 829
?pbstf 831
Nonsymmetric Eigenvalue Problems 833
?gehrd 835
?orghr 837
?ormhr 839
?unghr 842
?unmhr 844
?gebal 847
?gebak 849
?hseqr 851
?hsein 855
?trevc. 860
?trsna 864
?trexc 868
?trsen 870
?trsyl 874
Generalized Nonsymmetric Eigenvalue Problems 877
?gghrd 878
?ggbal 880
?ggbak. 883
?hgeqz. 885
?tgevc 890
?tgexc 894
?tgsen 896
?tgsyl 902
?tgsna 906
Generalized Singular Value Decomposition 910
?ggsvp 910
?tgsja 914
Cosine-Sine Decomposition 919
?bbcsd 920
?orbdb/?unbdb 925
Driver Routines 930
Linear Least Squares (LLS) Problems 930
?gels 930
?gelsy 933
?gelss 937
?gelsd 939
Generalized LLS Problems 943
?gglse 943
?ggglm 946
Symmetric Eigenproblems 948
?syev 949
?heev 951
?syevd 954
?heevd 956
?syevx 959
?heevx 963
?syevr 966
?heevr 970
?spev 975
?hpev. 977
?spevd 979
?hpevd 981
?spevx 985
?hpevx 988
?sbev 991
?hbev. 993
?sbevd 995
?hbevd 998
?sbevx 1001
?hbevx 1004
?stev 1008
?stevd 1009
?stevx 1012
?stevr 1015
Nonsymmetric Eigenproblems 1019
?gees 1020
?geesx 1024
?geev. 1028
?geevx. 1032
Singular Value Decomposition 1037
?gesvd 1037
?gesdd. 1041
?gejsv 1045
?gesvj 1051
?ggsvd 1055
Cosine-Sine Decomposition 1060
?orcsd/?uncsd 1060
Generalized Symmetric Definite Eigenproblems 1065
?sygv 1066
?hegv. 1068
?sygvd 1071
?hegvd 1074
?sygvx 1077
?hegvx 1081
?spgv 1085
?hpgv. 1087
?spgvd. 1089
?hpgvd 1092
?spgvx 1096
?hpgvx 1099
?sbgv 1103
?hbgv. 1105
?sbgvd. 1107
?hbgvd 1110
?sbgvx 1113
?hbgvx 1117
Generalized Nonsymmetric Eigenproblems 1120
?gges 1121
?ggesx 1126
?ggev 1132
?ggevx 1136
Chapter 5: LAPACK Auxiliary and Utility Routines
Auxiliary Routines 1143
?lacgv 1155
?lacrm 1156
?lacrt. 1156
?laesy 1157
?rot. 1158
?spmv 1159
?spr 1161
?symv 1162
?syr. 1163
i?max1 1164
?sum1 1165
?gbtf2 1166
?gebd2 1167
?gehd2 1168
?gelq2 1170
?geql2 1171
?geqr2 1172
?geqr2p 1174
?gerq2 1175
?gesc2 1176
?getc2 1177
?getf2 1178
?gtts2 1179
?isnan 1180
?laisnan 1181
?labrd 1181
?lacn2 1184
?lacon 1185
?lacpy 1186
?ladiv 1187
?lae2 1188
?laebz 1189
?laed0 1192
?laed1 1194
?laed2 1195
?laed3 1197
?laed4 1199
?laed5 1200
?laed6 1200
?laed7 1202
?laed8 1204
?laed9 1207
?laeda 1208
?laein 1209
?laev2 1212
?laexc 1213
?lag2 1214
?lags2 1216
?lagtf. 1218
?lagtm 1220
?lagts 1221
?lagv2 1223
?lahqr 1224
?lahrd 1226
?lahr2 1228
?laic1 1230
?laln2 1232
?lals0 1234
?lalsa. 1236
?lalsd 1239
?lamrg 1241
?laneg 1242
?langb 1243
?lange 1244
?langt. 1245
?lanhs 1246
?lansb 1247
?lanhb 1248
?lansp 1249
?lanhp 1250
?lanst/?lanht. 1251
?lansy 1252
?lanhe 1253
?lantb 1255
?lantp. 1256
?lantr 1257
?lanv2 1259
?lapll 1259
?lapmr 1260
?lapmt. 1262
?lapy2 1262
?lapy3 1263
?laqgb 1264
?laqge 1265
?laqhb 1266
?laqp2 1268
?laqps 1269
?laqr0 1270
?laqr1. 1273
?laqr2 1274
?laqr3 1277
?laqr4 1280
?laqr5 1282
?laqsb 1285
?laqsp 1286
?laqsy 1287
?laqtr 1289
?lar1v 1290
?lar2v. 1293
?larf. 1294
?larfb 1295
?larfg 1298
?larfgp 1299
?larft 1300
?larfx 1302
?largv. 1304
?larnv 1305
?larra 1306
?larrb 1307
?larrc. 1309
?larrd 1310
?larre 1312
?larrf 1315
?larrj 1317
?larrk 1318
?larrr. 1319
?larrv 1320
?lartg 1323
?lartgp 1324
?lartgs 1326
?lartv 1327
?laruv. 1328
?larz 1329
?larzb 1330
?larzt. 1332
?las2 1334
?lascl. 1335
?lasd0 1336
?lasd1 1338
?lasd2 1340
?lasd3 1342
?lasd4 1344
?lasd5 1346
?lasd6 1347
?lasd7 1350
?lasd8 1353
?lasd9 1354
?lasda 1356
?lasdq 1358
?lasdt 1360
?laset 1361
?lasq1 1362
?lasq2 1363
?lasq3 1364
?lasq4 1365
?lasq5 1366
?lasq6 1367
?lasr 1368
?lastr. 1371
?lassq. 1372
?lasv2 1373
?laswp. 1374
?lasy2 1375
?lasyf 1377
?lahef. 1378
?latbs 1380
?latdf. 1382
?latps 1383
?latrd 1385
?latrs. 1387
?latrz 1390
?lauu2 1392
?lauum 1393
?org21/?ung21 1394
?org2r/?ung2r. 1395
?orgl2/?ungl2 1396
?orgr2/?ungr2 1397
?orm21/?unm21 1399
?orm2r/?unm2r 1400
?orml2/?unml2 1402
?ormr2/?unmr2 1404
?ormr3/?unmr3 1405
?pbtf2 1407
?potf2 1408
?ptts2 1409
?rscl 1411
?syswapr. 1411
?heswapr 1413
?sygs2/?hegs2 1415
?sytd2/?hetd2. 1417
?sytf2. 1418
?hetf2. 1419
?tgex2 1421
?tgsy2 1423
?trti2 1426
clag2z 1427
dlag2s 1427
slag2d 1428
zlag2c 1429
?larfp. 1429
ila?lc. 1431
ila?lr. 1432
?gsvj0 1432
?gsvj1 1434
?sfrk. 1437
?hfrk 1438
?tfsm 1440
?lansf 1442
?lanhf. 1443
?tfttp 1444
?tfttr. 1445
?tpttf. 1446
?tpttr 1448
?trttf. 1449
?trttp. 1450
?pstf2 1451
dlat2s 1453
zlat2c 1454
?lacp2 1455
?la_gbamv 1455
?la_gbrcond 1457
?la_gbrcond_c 1459
?la_gbrcond_x 1460
?la_gbrfsx_extended 1462
?la_gbrpvgrw 1467
?la_geamv 1468
?la_gercond 1470
?la_gercond_c 1471
?la_gercond_x 1472
?la_gerfsx_extended 1473
?la_heamv. 1478
?la_hercond_c. 1480
?la_hercond_x 1481
?la_herfsx_extended 1482
?la_herpvgrw. 1487
?la_lin_berr. 1488
?la_porcond 1489
?la_porcond_c 1490
?la_porcond_x 1492
?la_porfsx_extended 1493
?la_porpvgrw 1498
?laqhe 1499
?laqhp 1501
?larcm 1502
?la_rpvgrw 1503
?larscl2 1504
?lascl2 1504
?la_syamv 1505
?la_syrcond. 1507
?la_syrcond_c. 1508
?la_syrcond_x 1509
?la_syrfsx_extended 1511
?la_syrpvgrw 1516
?la_wwaddw 1517
Utility Functions and Routines 1518
ilaver. 1519
ilaenv. 1520
iparmq 1522
ieeeck. 1523
Isamen 1524
?labad 1524
?lamch 1525
?lamc1 1526
?lamc2 1526
?lamc3 1527
?lamc4 1528
?lamc5 1528
second/dsecnd 1529
chla_transtype 1529
iladiag 1530
ilaprec 1531
ilatrans 1531
ilauplo 1532
xerbla_array 1532
Chapter 6: ScaLAPACK Routines
Overview 1535
Routine Naming Conventions. 1536
Computational Routines 1537
Linear Equations. 1537
Routines for Matrix Factorization 1538
p?getrf. 1538
p?gbtrf. 1540
p?dbtrf. 1542
p?dttrf. 1543
p?potrf. 1545
p?pbtrf. 1546
p?pttrf. 1548
Routines for Solving Systems of Linear Equations 1550
p?getrs 1550
p?gbtrs 1551
p?dbtrs 1553
p?dttrs 1555
p?potrs 1557
p?pbtrs 1558
p?pttrs. 1560
p?trtrs 1562
Routines for Estimating the Condition Number 1563
p?gecon 1564
p?pocon 1566
p?trcon 1568
Refining the Solution and Estimating Its Error 1570
p?gerfs 1570
p?porfs 1573
p?trrfs 1576
Routines for Matrix Inversion. 1578
p?getri 1578
p?potri 1580
p?trtri. 1581
Routines for Matrix Equilibration 1583
p?geequ 1583
p?poequ 1584
Orthogonal Factorizations 1586
p?geqrf. 1587
p?geqpf 1589
p?orgqr 1591
p?ungqr 1592
p?ormq 1594
p?unmqr 1596
p?gelqf. 1598
p?orglq 1600
p?unglq 1602
p?ormla 1603
p?unmlq 1605
p?geqlf. 1608
p?orgal 1609
p?ungql 1611
p?ormq 1612
p?unmql 1615
p?gerqf 1617
p?orgrq 1619
p?ungrq 1620
p?ormrq 1622
p?unmrq 1624
p?tzrzf 1626
p?ormrz 1628
p?unmrz 1631
p?ggqrf 1633
p?ggrqf 1636
Symmetric Eigenproblems 1640
p?sytrd 1640
p?ormtr 1643
p?hetrd 1646
p?unmtr 1648
p?stebz 1651
p?stein 1653
Nonsymmetric Eigenvalue Problems 1656
p?gehrd 1657
p?ormhr 1659
p?unmhr 1662
p?lahqr 1664
Singular Value Decomposition 1666
p?gebrd 1666
p?ormbr 1669
p?unmbr 1672
Generalized Symmetric-Definite Eigen Problems 1676
p?sygst 1676
p?hegst 1677
Driver Routines 1679
p?gesv 1679
p?gesvx 1681
p?gbsv 1685
p?dbsv 1687
p?dtsv 1689
p?posv 1691
p?posvx 1693
p?pbsv 1697
p?ptsv 1699
p?gels 1701
p?syev 1704
p?syevd 1706
p?syevx 1708
p?heev 1713
p?heevd 1715
p?heevx 1717
p?gesvd 1723
p?sygvx 1726
p?hegvx 1732
Chapter 7: ScaLAPACK Auxiliary and Utility Routines
Auxiliary Routines 1739
p?lacgv 1743
p?max1 1744
?combamax1 1745
p?sum1 1745
p?dbtrsv 1746
p?dttrsv 1748
p?gebd2 1751
p?gehd2 1754
p?gelq2 1756
p?geql2 1758
p?geqr2 1760
p?gerq2 1762
p?getf2 1763
p?labrd 1765
p?lacon 1768
p?laconsb 1769
p?lacp2 1770
p?lacp3 1772
p?lacpy 1773
p?laevswp 1774
p?lahrd 1775
p?laiect 1778
p?lange 1779
p?lanhs 1780
p?lansy, p?lanhe. 1782
p?lantr. 1783
p?lapiv 1785
p?laqge 1787
p?laqsy 1789
p?lared1d 1791
p?lared2d 1792
p?larf. 1793
p?larfb 1795
p?larfc 1798
p?larfg 1800
p?larft 1802
p?larz 1804
p?larzb 1807
p?larzc 1809
p?larzt. 1813
p?lascl 1815
p?laset 1817
p?lasmsub 1818
p?lassq 1819
p?laswp 1821
p?latra 1822
p?latrd 1823
p?latrs 1826
p?latrz 1828
p?lauu2 1830
p?lauum 1831
p?lawil 1832
p?org21/p?ung21 1833
p?org2r/p?ung2r 1835
p?orgl2/p?ungl2 1836
p?orgr2/p?ungr2 1838
p?orm21/p?unm21 1840
p?orm2r/p?unm2r 1843
p?orml2/p?unml2 1846
p?ormr2/p?unmr2 1849
p?pbtrsv 1851
p?pttrsv 1854
p?potf2 1857
p?rscl 1858
p?sygs2/p?hegs2 1859
p?sytd2/p?hetd2 1861
p?trti2 1864
?lamsh 1866
?laref. 1867
?lasorte 1868
?lasrt2 1869
?stein2 1870
?dbtf2 1872
?dbtrf 1873
?dttrf. 1874
?dttrsv 1875
?pttrsv 1876
?steqr2 1878
Utility Functions and Routines 1879
p?labad 1879
p?lachkieee 1880
p?lamch 1881
p?lasnbt 1882
pxerbla 1882
Chapter 8: Sparse Solver Routines
PARDISO* - Parallel Direct Sparse Solver Interface 1885
pardiso 1886
pardisoinit. 1902
pardiso_64 1903
pardiso_getenv, pardiso_setenv 1904
PARDISO Parameters in Tabular Form 1905
Direct Sparse Solver (DSS) Interface Routines. 1914
DSS Interface Description 1916
DSS Routines 1916
dss_create 1916
dss_define_structure 1918
dss_reorder 1920
dss_factor_real, dss_factor_complex 1921
dss_solve_real, dss_solve_complex 1923
dss_delete. 1926
dss_statistics 1927
mkl_cvt_to_null_terminated_str 1930
Implementation Details 1931
Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS). 1932
CG Interface Description 1933
FGMRES Interface Description 1938
RCI ISS Routines 1945
dcg_init. 1945
dcg_check 1946
dcg. 1946
dcg_get 1948
dcgmrhs_init 1948
dcgmrhs_check 1949
dcgmrhs 1950
dcgmrhs_get 1952
dfgmres_init 1952
dfgmres_check 1953
dfgmres 1954
dfgmres_get 1956
Implementation Details 1957
Preconditioners based on Incomplete LU Factorization Technique 1958
ILUO and ILUT Preconditioners Interface Description 1960
dcsrilu0 1961
dcsrilut 1963
Calling Sparse Solver and Preconditioner Routines from C/C++ 1967
Chapter 9: Vector Mathematical Functions
Data Types, Accuracy Modes, and Performance Tips 1969
Function Naming Conventions 1970
Function Interfaces 1971
VML Mathematical Functions 1971
Pack Functions 1971
Unpack Functions 1972
Service Functions 1972
Input Parameters 1972
Output Parameters 1973
Vector Indexing Methods 1973
Error Diagnostics 1973
VML Mathematical Functions 1974
Special Value Notations 1976
Arithmetic Functions. 1976
v?Add 1976
v?Sub 1979
v?Sqr. 1981
v?Mul. 1983
v?MulByConj 1986
v?Conj 1987
v?Abs. 1989
v?Arg 1991
v?LinearFrac 1993
Power and Root Functions 1995
v?Inv 1995
v?Div 1997
v?Sqrt. 2000
v?InvSqrt 2002
v?Cbrt 2004
v?InvCbrt 2006
v?Pow2o3 2007
v?Pow3o2 2009
v?Pow. 2011
v?Powx 2014
v?Hypot. 2017
Exponential and Logarithmic Functions 2019
v?Exp. 2019
v?Expm1 2022
v?Ln. 2024
v?Log10 2027
v?Log1p. 2030
Trigonometric Functions. 2031
v?Cos 2031
v?Sin 2034
v ?SinCos 2036
v?CIS 2038
v?Tan. 2040
v?Acos 2042
v?Asin. 2045
v?Atan 2047
v?Atan2 2050
Hyperbolic Functions 2052
v?Cosh 2052
v?Sinh 2055
v?Tanh 2058
v?Acosh 2061
v?Asinh 2064
v?Atanh 2067
Special Functions 2070
v? Erf. 2070
v? Erfc 2073
v?CdfNorm 2075
v?ErfInv 2077
v?ErfcInv 2080
v?CdfNormInv. 2082
v?LGamma 2084
v?TGamma 2086
Rounding Functions 2088
v?Floor 2088
v?Ceil. 2089
v?Trunc 2091
v ?Round 2093
v?NearbyInt 2094
v?Rint 2096
v?Modf. 2098
VML Pack/Unpack Functions 2100
v?Pack. 2100
v?Unpack 2103
VML Service Functions 2106
vmISetMode 2106
vmlGetMode 2108
vmISetErrStatus 2109
vmlGetErrStatus 2110
vmIClearErrStatus. 2111
vmISetErrorCallBack. 2111
vmIGetErrorCallBack 2114
vmIClearErrorCallBack 2114
Chapter 10: Statistical Functions
Random Number Generators. 2115
Conventions 2116
Mathematical Notation 2117
Naming Conventions. 2118
Basic Generators. 2121
BRNG Parameter Definition 2122
Random Streams 2123
Data Types. 2124
Error Reporting 2124
VSL RNG Usage Model. 2125
Service Routines. 2127
vsINewStream 2128
vsINewStreamEx 2129
vsliNewAbstractStream. 2131
vsIdNewAbstractStream. 2133
vslsNewAbstractStream 2135
vsIDeleteStream 2137
vsICopyStream 2138
vsICopyStreamState 2139
vsISaveStreamF 2140
vsILoadStreamF 2141
vsISaveStreamM 2142
vsILoadStreamM 2144
vsIGetStreamSize 2145
vsILeapfrogStream 2146
vsISkipAheadStream 2148
vsIGetStreamStateBrng 2151
vsIGetNumRegBrngs 2152
Distribution Generators 2153
Continuous Distributions 2156
Discrete Distributions 2189
Advanced Service Routines 2208
Data types 2208
vsIRegisterBrng. 2209
vslGetBrngProperties 2210
Formats for User-Designed Generators 2211
Convolution and Correlation 2214
Naming Conventions. 2215
Data Types 2215
Parameters 2216
Task Status and Error Reporting 2218
Task Constructors. 2220
vsIConvNewTask/vsICorrNewTask 2220
vsIConvNewTask1D/vsICorrNewTask1D. 2223
vsIConvNewTaskX/vsICorrNewTaskX 2225
vsIConvNewTaskX1D/vsICorrNewTaskX1D. 2228
Task Editors 2232
vsIConvSetMode/vsICorrSetMode. 2232
vsIConvSetInternalPrecision/vsICorrSetInternalPrecision. 2234
vsIConvSetStart/vsICorrSetStart. 2235
vsIConvSetDecimation/vsICorrSetDecimation. 2237
Task Execution Routines. 2238
vsIConvExec/vsICorrExec 2239
vsIConvExec1D/vsICorrExec1D. 2242
vsIConvExecX/vsICorrExecX 2246
vsIConvExecX1D/vsICorrExecX1D. 2249
Task Destructors. 2253
vsIConvDeleteTask/vsICorrDeleteTask 2253
Task Copy 2254
vsIConvCopyTask/vsICorrCopyTask 2254
Usage Examples 2256
Mathematical Notation and Definitions. 2258
Data Allocation 2259
VSL Summary Statistics 2261
Naming Conventions 2262
Data Types 2263
Parameters 2263
Task Status and Error Reporting 2263
Task Constructors. 2267
vsISSNewTask. 2267
Task Editors 2269
vsISSEditTask 2270
vsISSEditMoments 2278
vsISSEditCovCor 2280
vsISSEditPartialCovCor 2282
vsISSEditQuantiles 2284
vsISSEditStreamQuantiles 2286
vsISSEditPooledCovariance. 2287
vsISSEditRobustCovariance 2289
vsISSEditOutliersDetection 2292
vsISSEditMissingValues 2294
vsISSEditCorParameterization. 2298
Task Computation Routines 2300
vsISSCompute 2302
Task Destructor 2303
vsISSDeleteTask 2303
Usage Examples 2304
Mathematical Notation and Definitions 2305
Chapter 11: Fourier Transform Functions
FFT Functions 2312
Computing an FFT. 2313
FFT Interface 2313
Descriptor Manipulation Functions 2313
DftiCreateDescriptor 2314
DftiCommitDescriptor 2316
DftiFreeDescriptor 2317
DftiCopyDescriptor 2318
FFT Computation Functions 2319
DftiComputeForward. 2320
DftiComputeBackward 2322
Descriptor Configuration Functions 2325
DftiSetValue 2325
DftiGetValue 2327
Status Checking Functions 2329
DftiErrorClass 2329
DftiErrorMessage. 2331
Configuration Settings. 2332
DFTI_PRECISION 2334
DFTI_FORWARD_DOMAIN 2335
DFTI_DIMENSION, DFTI_LENGTHS 2336
DFTI_PLACEMENT 2336
DFTI_FORWARD_SCALE, DFTI_BACKWARD_SCALE 2336
DFTI_NUMBER_OF_USER_THREADS 2336
DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES. 2337
DFTI_NUMBER_OF_TRANSFORMS 2339
DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE 2339
DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE. 2340
DFTI_PACKED_FORMAT 2347
DFTI_WORKSPACE 2351
DFTI_COMMIT_STATUS 2352
DFTI_ORDERING. 2352
Cluster FFT Functions 2352
Computing Cluster FFT. 2353
Distributing Data among Processes 2354
Cluster FFT Interface 2356
Descriptor Manipulation Functions 2356
DftiCreateDescriptorDM 2357
DftiCommitDescriptorDM 2358
DftiFreeDescriptorDM 2359
FFT Computation Functions 2360
DftiComputeForwardDM 2360
DftiComputeBackwardDM 2362
Descriptor Configuration Functions 2364
DftiSetValueDM 2365
DftiGetValueDM 2367
Error Codes. 2370
Chapter 12: PBLAS Routines
Overview. 2373
Routine Naming Conventions. 2374
PBLAS Level 1 Routines 2375
p?amax 2376
p?asum 2377
p?axpy 2378
p?copy 2379
p?dot. 2380
p?dotc 2381
p?dotu. 2382
p?nrm2 2383
p?scal. 2384
p?swap 2385
PBLAS Level 2 Routines 2386
p?gemv 2387
p?agemv 2389
p?ger. 2391
p?gerc 2393
p?geru 2394
p?hemv 2396
p?ahemv 2397
p?her 2399
p?her2 2400
p?symv 2402
p?asymv 2404
p?syr 2406
p?syr2 2407
p? trmv 2409
p?atrmv 2410
p?trsv 2413
PBLAS Level 3 Routines 2414
p?geadd 2415
p?tradd 2416
p?gemm 2418
p?hemm 2420
p?herk 2422
p?her2k 2424
p?symm 2426
p?syrk 2428
p?syr2k 2430
p?tran 2432
p?tranu 2433
p?tranc 2434
p?trmm 2435
p?trsm 2437
Chapter 13: Partial Differential Equations Support
Trigonometric Transform Routines 2441
Transforms Implemented. 2442
Sequence of Invoking TT Routines. 2443
Interface Description 2445
TT Routines. 2445
?_init_trig_transform 2445
?_commit_trig_transform 2446
?_forward_trig_transform 2448
?_backward_trig_transform 2450
free_trig_transform. 2451
Common Parameters 2452
Implementation Details 2455
Poisson Library Routines 2457
Poisson Library Implemented. 2457
Sequence of Invoking PL Routines. 2462
Interface Description 2464
PL Routines for the Cartesian Solver 2465
?_init_Helmholtz_2D/?_init_Helmholtz_3D 2465
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D 2467
?_Helmholtz_2D/?_Helmholtz_3D 2470
free_Helmholtz_2D/free_Helmholtz_3D. 2474
PL Routines for the Spherical Solver 2475
?_init_sph_p/?_init_sph_np 2475
?_commit_sph_p/?_commit_sph_np 2476
?_sph_p/?_sph_np 2478
free_sph_p/free_sph_np 2480
Common Parameters 2481
Implementation Details 2486
Calling PDE Support Routines from Fortran 90 2492
Chapter 14: Nonlinear Optimization Problem SolversOrganization and Implementation.2495
Routine Naming Conventions 2496
Nonlinear Least Squares Problem without Constraints 2496
?trnlsp_init 2497
?trnlsp_check 2499
?trnlsp_solve. 2500
?trnlsp_get. 2502
?trnlsp_delete. 2503
Nonlinear Least Squares Problem with Linear (Bound) Constraints 2504
?trnlspbc_init 2505
?trnlspbc_check 2506
?trnlspbc_solve. 2508
?trnlspbc_get. 2510
?trnlspbc_delete 2511
Jacobian Matrix Calculation Routines 2512
?jacobi_init 2512
?jacobi_solve 2513
?jacobi_delete. 2514
?jacobi 2515
?jacobix. 2516
Chapter 15: Support Functions
Version Information Functions. 2521
mkl_get_version. 2521
mkl_get_version_string 2523
Threading Control Functions.... 2524
mkl_set_num_threads 2524
mkl_domain_set_num_threads 2525
mkl_set_dynamic 2526
mkl_get_max_threads 2526
mkl_domain_get_max_threads 2527
mkl_get_dynamic. 2528
Error Handling Functions 2528
xerbla 2529
pxerbla 2530
Equality Test Functions 2530
Isame 2530
Isamen 2531
Timing Functions 2532
second/dsecnd 2532
mkl_get_cpu_clocks 2533
mkl_get_cpu_frequency. 2534
mkl_get_max_cpu_frequency 2534
mkl_get_clocks_frequency 2535
Memory Functions 2536
mkl_free_buffers 2536
mkl_thread_free_buffers 2537
mkl_disable_fast_mm. 2538
mkl_mem_stat 2538
mkl_malloc 2539
mkl_free 2540
Examples of mkl_malloc(), mkl_free(), mkl_mem_stat() Usage 2540
Miscellaneous Utility Functions 2542
mkl_progress 2542
mkl_enable_instructions 2544
Functions Supporting the Single Dynamic Library. 2545
mkl_set_interface_layer. 2545
mkl_set_threading_layer 2546
mkl_set_xerbla. 2546
mkl_set_progress. 2547
Chapter 16: BLACS Routines
Matrix Shapes. 2549
BLACS Combine Operations 2550
?gamx2d 2551
?gamn2d. 2552
?gsum2d. 2553
BLACS Point To Point Communication 2554
?gesd2d 2556
?trsd2d 2557
?gerv2d. 2557
?trrv2d 2558
BLACS Broadcast Routines. 2559
?gebs2d 2560
?trbs2d 2560
?gebr2d. 2561
?trbr2d. 2562
BLACS Support Routines 2562
Initialization Routines. 2562
blacs_pinfo. 2563
blacs_setup. 2563
blacs_get. 2564
blacs_set. 2565
blacs_gridinit. 2566
blacs_gridmap. 2567
Destruction Routines 2568
blacs_freebuff. 2568
blacs_gridexit. 2569
blacs_abort. 2569
blacs_exit. 2569
Informational Routines. 2570
blacs_gridinfo 2570
blacs_pnum. 2570
blacs_pcoord. 2571
Miscellaneous Routines. 2571
blacs_barrier. 2571
Examples of BLACS Routines Usage. 2572
Chapter 17: Data Fitting Functions
Naming Conventions. 2581
Data Types 2582
Mathematical Conventions 2582
Data Fitting Usage Model 2585
Data Fitting Usage Examples 2585
Task Status and Error Reporting 2590
Task Creation and Initialization Routines 2592
df?newtask1d 2592
Task Editors 2594
df?editppspline1d 2595
df?editptr 2601
dfieditval. 2602
df?editidxptr 2604
Computational Routines 2606
df?construct1d 2606
df?interpolate1d/df?interpolateex1d 2607
df? integrate1d/df?integrateex1d 2613
df?searchcells1d/df?searchcellsex1d 2619
df?interpcallback. 2621
df?integrcallback 2623
df?searchcellscallback. 2625
Task Destructors 2627
dfdeletetask. 2627
Appendix A: Linear Solvers Basics
Sparse Linear Systems 2629
Matrix Fundamentals 2629
Direct Method 2630
Sparse Matrix Storage Formats 2634
Appendix B: Routine and Function Arguments
Vector Arguments in BLAS 2645
Vector Arguments in VML. 2646
Matrix Arguments. 2646
Appendix C: Code Examples
BLAS Code Examples 2653
Fourier Transform Functions Code Examples. 2656
FFT Code Examples 2656
Examples of Using Multi-Threading for FFT Computation 2662
Examples for Cluster FFT Functions. 2666
Auxiliary Data Transformations 2667
Appendix D: CBLAS Interface to the BLAS
CBLAS Arguments 2669
Level 1 CBLAS 2670
Level 2 CBLAS 2672
Level 3 CBLAS 2676
Sparse CBLAS 2678
Appendix E: Specific Features of Fortran 95 Interfaces for LAPACK Routines
Interfaces Identical to Netlib 2681
Interfaces with Replaced Argument Names 2682
Modified Netlib Interfaces. 2684
Interfaces Absent From Netlib 2684
Interfaces of New Functionality 2687
Appendix F: FFTW Interface to Intel ${ }^{\circledR}$ Math Kernel Library
Notational Conventions 2689
FFTW2 Interface to Intel ${ }^{\circledR}$ Math Kernel Library 2689
Wrappers Reference 2689
One-dimensional Complex-to-complex FFTs 2689
Multi-dimensional Complex-to-complex FFTs. 2690
One-dimensional Real-to-half-complex/Half-complex-to-real FFTs 2690
Multi-dimensional Real-to-complex/Complex-to-real FFTs. 2690
Multi-threaded FFTW. 2691
FFTW Support Functions. 2691
Limitations of the FFTW2 Interface to Intel MKL 2691
Calling Wrappers from Fortran 2692
Installation 2693
Creating the Wrapper Library 2693
Application Assembling 2694
Running Examples 2694
MPI FFTW Wrappers 2694
MPI FFTW Wrappers Reference 2694
Creating MPI FFTW Wrapper Library 2696
Application Assembling with MPI FFTW Wrapper Library 2696
Running Examples 2696
FFTW3 Interface to Intel ${ }^{\circledR}$ Math Kernel Library 2697
Using FFTW3 Wrappers 2697
Calling Wrappers from Fortran 2699
Building Your Own Wrapper Library 2699
Building an Application. 2700
Running Examples 2700
MPI FFTW Wrappers. 2701
Building Your Own Wrapper Library. 2701
Building an Application 2701
Running Examples 2702
Appendix G: Bibliography
Appendix H: Glossary

Legal Information

Abstract

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http:// www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Go to: http://www.intel.com/products/ processor_number/

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-GOLD, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Insider, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel StrataFlash, Intel vPro, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX, Moblin, Pentium, Pentium Inside, Puma, skoool, the skoool logo, SMARTi, Sound Mark, The Creators Project, The Journey Inside, Thunderbolt, Ultrabook, vPro Inside, VTune, Xeon, Xeon Inside, X-GOLD, XMM, X-PMU and XPOSYS are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Microsoft, Windows, Visual Studio, Visual C++, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Third Party Content

Intel ${ }^{\circledR}$ Math Kernel Library (Intel ${ }^{\circledR}$ MKL) includes content from several 3rd party sources that was originally governed by the licenses referenced below:

- Portions ${ }^{\circledR}$ Copyright 2001 Hewlett-Packard Development Company, L.P.
- Sections on the Linear Algebra PACKage (LAPACK) routines include derivative work portions that have been copyrighted:
© 1991, 1992, and 1998 by The Numerical Algorithms Group, Ltd.
- Intel MKL fully supports LAPACK 3.3 set of computational, driver, auxiliary and utility routines under the following license:
Copyright ${ }^{\odot}$ 1992-2010 The University of Tennessee. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution.
- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The original versions of LAPACK from which that part of Intel MKL was derived can be obtained from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.

- The original versions of the Basic Linear Algebra Subprograms (BLAS) from which the respective part of Intel ${ }^{\circledR}$ MKL was derived can be obtained from http://www.netlib.org/blas/index.html.
- The original versions of the Basic Linear Algebra Communication Subprograms (BLACS) from which the respective part of Intel MKL was derived can be obtained from http://www.netlib.org/blacs/index.html. The authors of BLACS are Jack Dongarra and R. Clint Whaley.
- The original versions of Scalable LAPACK (ScaLAPACK) from which the respective part of Intel ${ }^{\circledR}$ MKL was derived can be obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.
- The original versions of the Parallel Basic Linear Algebra Subprograms (PBLAS) routines from which the respective part of Intel ${ }^{\circledR}$ MKL was derived can be obtained from http://www.netlib.org/scalapack/html/ pblas_qref.html.
- PARDISO (PARallel DIrect SOlver)* in Intel ${ }^{\circledR}$ MKL is compliant with the 3.2 release of PARDISO that is freely distributed by the University of Basel. It can be obtained at http://www.pardiso-project.org.
- Some Fast Fourier Transform (FFT) functions in this release of Intel ${ }^{\circledR}$ MKL have been generated by the SPIRAL software generation system (http://www.spiral.net/) under license from Carnegie Mellon University. The authors of SPIRAL are Markus Puschel, Jose Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo.

Copyright ${ }^{\ominus}$ 1994-2011, Intel Corporation. All rights reserved.

Introducing the Intel® Math Kernel Library

The Inte ${ }^{\circledR}$ Math Kernel Library (Intel ${ }^{\circledR}$ MKL) improves performance of scientific, engineering, and financial software that solves large computational problems. Among other functionality, Intel MKL provides linear algebra routines, fast Fourier transforms, as well as vectorized math and random number generation functions, all optimized for the latest Intel processors, including processors with multiple cores (see the Intel ${ }^{\circledR}$ MKL Release Notes for the full list of supported processors). Intel MKL also performs well on non-Intel processors.

Intel MKL is thread-safe and extensively threaded using the OpenMP* technology.
For more details about functionality provided by Intel MKL, see the Function Domains section.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

Getting Help and Support

Getting Help

The online version of the Intel ${ }^{\circledR}$ Math Kernel Library (Intel ${ }^{\circledR}$ MKL) Reference Manual integrates into the Microsoft Visual Studio* development system help on Windows* OS or into the Eclipse* development system help on Linux* OS. For information on how to use the online help, see the Intel MKL User's Guide.

Getting Technical Support

Intel MKL provides a product web site that offers timely and comprehensive product information, including product features, white papers, and technical articles. For the latest information, check: http:// www.intel.com/software/products/support.

Intel also provides a support web site that contains a rich repository of self help information, including getting started tips, known product issues, product errata, license information, user forums, and more (visit http://www.intel.com/software/products/).
Registering your product entitles you to one year of technical support and product updates through Intel ${ }^{\circledR}$ Premier Support. Intel Premier Support is an interactive issue management and communication web site providing these services:

- Submit issues and review their status.
- Download product updates anytime of the day.

To register your product, contact Intel, or seek product support, please visit http://www.intel.com/software/ products/support.

What's New

This Reference Manual documents Inte ${ }^{\circledR}$ Math Kernel Library (Intel ${ }^{\circledR}$ MKL) 10.3 Update 8 release.
The following function domains were updated in Intel MKL 10.3 Update 8 with new functions, enhancements to the existing functionality, or improvements to the existing documentation:

- New data fitting functions provide spline-based interpolation capabilities that you can use to approximate functions, function derivatives or function integrals, and perform cell search operations. See Data Fitting Functions.
- The Fourier transform documentation has been updated and improved, especially in the descriptions of configuration settings that define the forward domain of the transform (see DFTI_FORWARD_DOMAIN), memory layout of the input/output data (see DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES), distances between consecutive data sets for computing multiple transforms (see DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE), and storage schemes (see DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE).

Additionally, several minor updates have been made to correct errors in the manual.

Notational Conventions

This manual uses the following terms to refer to operating systems:
Windows* OS This term refers to information that is valid on all supported Windows* operating systems.
Linux* OS This term refers to information that is valid on all supported Linux* operating systems.
Mac OS* $X \quad$ This term refers to information that is valid on Intel ${ }^{(0}$-based systems running the Mac OS* X operating system.

This manual uses the following notational conventions:

- Routine name shorthand (for example, ?ungqr instead of cungqr/zungqr).
- Font conventions used for distinction between the text and the code.

Routine Name Shorthand

For shorthand, names that contain a question mark "?" represent groups of routines with similar functionality. Each group typically consists of routines used with four basic data types: single-precision real, double-precision real, single-precision complex, and double-precision complex. The question mark is used to indicate any or all possible varieties of a function; for example:
?swap Refers to all four data types of the vector-vector ?swap routine:
sswap, dswap, cswap, and zswap.

Font Conventions

The following font conventions are used:

UPPERCASE COURIER
lowercase courier

Data type used in the description of input and output parameters for Fortran interface. For example, CHARACTER*1.
Code examples:
$a(k+i, j)=\operatorname{matrix}(i, j)$
and data types for C interface, for example, const float*
lowercase courier mixed with Function names for C interface, for example, vmlSetMode
UpperCase courier
lowercase courier italic Variables in arguments and parameters description. For example, incx.

Used as a multiplication symbol in code examples and equations and where required by the Fortran syntax.

Function Domains

The Intel ${ }^{\circledR}$ Math Kernel Library includes Fortran routines and functions optimized for Intel ${ }^{\circledR}$ processor-based computers running operating systems that support multiprocessing. In addition to the Fortran interface, Intel MKL includes a C-language interface for the Discrete Fourier transform functions, as well as for the Vector Mathematical Library and Vector Statistical Library functions. For hardware and software requirements to use Intel MKL, see Inte ${ }^{\circledR}$ MKL Release Notes.

The Intel ${ }^{\circledR}$ Math Kernel Library includes the following groups of routines:

- Basic Linear Algebra Subprograms (BLAS):
- vector operations
- matrix-vector operations
- matrix-matrix operations
- Sparse BLAS Level 1, 2, and 3 (basic operations on sparse vectors and matrices)
- LAPACK routines for solving systems of linear equations
- LAPACK routines for solving least squares problems, eigenvalue and singular value problems, and Sylvester's equations
- Auxiliary and utility LAPACK routines
- ScaLAPACK computational, driver and auxiliary routines (only in Intel MKL for Linux* and Windows* operating systems)
- PBLAS routines for distributed vector, matrix-vector, and matrix-matrix operation
- Direct and Iterative Sparse Solver routines
- Vector Mathematical Library (VML) functions for computing core mathematical functions on vector arguments (with Fortran and C interfaces)
- Vector Statistical Library (VSL) functions for generating vectors of pseudorandom numbers with different types of statistical distributions and for performing convolution and correlation computations
- General Fast Fourier Transform (FFT) Functions, providing fast computation of Discrete Fourier Transform via the FFT algorithms and having Fortran and C interfaces
- Cluster FFT functions (only in Intel MKL for Linux* and Windows* operating systems)
- Tools for solving partial differential equations - trigonometric transform routines and Poisson solver
- Optimization Solver routines for solving nonlinear least squares problems through the Trust-Region (TR) algorithms and computing Jacobi matrix by central differences
- Basic Linear Algebra Communication Subprograms (BLACS) that are used to support a linear algebra oriented message passing interface
- Data Fitting functions for spline-based approximation of functions, derivatives and integrals of functions, and search
- GMP arithmetic functions

For specific issues on using the library, also see the Inte ${ }^{\circledR}$ MKL Release Notes.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

BLAS Routines

The BLAS routines and functions are divided into the following groups according to the operations they perform:

- BLAS Level 1 Routines perform operations of both addition and reduction on vectors of data. Typical operations include scaling and dot products.
- BLAS Level 2 Routines perform matrix-vector operations, such as matrix-vector multiplication, rank-1 and rank-2 matrix updates, and solution of triangular systems.
- BLAS Level 3 Routines perform matrix-matrix operations, such as matrix-matrix multiplication, rank-k update, and solution of triangular systems.

Starting from release 8.0, Inte ${ }^{\circledR}$ MKL also supports the Fortran 95 interface to the BLAS routines.
Starting from release 10.1, a number of BLAS-like Extensions are added to enable the user to perform certain data manipulation, including matrix in-place and out-of-place transposition operations combined with simple matrix arithmetic operations.

Sparse BLAS Routines

The Sparse BLAS Level 1 Routines and Functions and Sparse BLAS Level 2 and Level 3 Routines routines and functions operate on sparse vectors and matrices. These routines perform vector operations similar to the BLAS Level 1, 2, and 3 routines. The Sparse BLAS routines take advantage of vector and matrix sparsity: they allow you to store only non-zero elements of vectors and matrices. Intel MKL also supports Fortran 95 interface to Sparse BLAS routines.

LAPACK Routines

The Intel® Math Kernel Library fully supports LAPACK 3.1 set of computational, driver, auxiliary and utility routines.
The original versions of LAPACK from which that part of Intel MKL was derived can be obtained from http:// www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.

The LAPACK routines can be divided into the following groups according to the operations they perform:

- Routines for solving systems of linear equations, factoring and inverting matrices, and estimating condition numbers (see Chapter 3).
- Routines for solving least squares problems, eigenvalue and singular value problems, and Sylvester's equations (see Chapter 4).
- Auxiliary and utility routines used to perform certain subtasks, common low-level computation or related tasks (see Chapter 5).

Starting from release 8.0, Intel MKL also supports the Fortran 95 interface to LAPACK computational and driver routines. This interface provides an opportunity for simplified calls of LAPACK routines with fewer required arguments.

ScaLAPACK Routines

The ScaLAPACK package (included only with the Intel ${ }^{\circledR}$ MKL versions for Linux* and Windows* operating systems, see Chapter 6 and Chapter 7) runs on distributed-memory architectures and includes routines for solving systems of linear equations, solving linear least squares problems, eigenvalue and singular value problems, as well as performing a number of related computational tasks.

The original versions of ScaLAPACK from which that part of Intel MKL was derived can be obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are L. Blackford, J. Choi, A.Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K.Stanley, D. Walker, and R. Whaley.

The Intel MKL version of ScaLAPACK is optimized for Intel® processors and uses MPICH version of MPI as well as Intel MPI.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

PBLAS Routines

The PBLAS routines perform operations with distributed vectors and matrices.

- PBLAS Level 1 Routines perform operations of both addition and reduction on vectors of data. Typical operations include scaling and dot products.
- PBLAS Level 2 Routines perform distributed matrix-vector operations, such as matrix-vector multiplication, rank-1 and rank-2 matrix updates, and solution of triangular systems.
- PBLAS Level 3 Routines perform distributed matrix-matrix operations, such as matrix-matrix multiplication, rank- k update, and solution of triangular systems.

Intel MKL provides the PBLAS routines with interface similar to the interface used in the Netlib PBLAS (part of the ScaLAPACK package, see http://www.netlib.org/scalapack/html/pblas_qref.html).

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

Sparse Solver Routines

Direct sparse solver routines in Intel MKL (see Chapter 8) solve symmetric and symmetrically-structured sparse matrices with real or complex coefficients. For symmetric matrices, these Intel MKL subroutines can solve both positive-definite and indefinite systems. Intel MKL includes the PARDISO* sparse solver interface as well as an alternative set of user callable direct sparse solver routines.
If you use the sparse solver PARDISO* from Intel MKL, please cite:
O.Schenk and K.Gartner. Solving unsymmetric sparse systems of linear equations with PARDISO. J. of Future Generation Computer Systems, 20(3):475-487, 2004.
Intel MKL provides also an iterative sparse solver (see Chapter 8) that uses Sparse BLAS level 2 and 3 routines and works with different sparse data formats.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for

Optimization Notice

use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

VML Functions

The Vector Mathematical Library (VML) functions (see Chapter 9) include a set of highly optimized implementations of certain computationally expensive core mathematical functions (power, trigonometric, exponential, hyperbolic, etc.) that operate on vectors of real and complex numbers.

Application programs that might significantly improve performance with VML include nonlinear programming software, integrals computation, and many others. VML provides interfaces both for Fortran and C languages.

Statistical Functions

The Vector Statistical Library (VSL) contains three sets of functions (see Chapter 10):

- The first set includes a collection of pseudo- and quasi-random number generator subroutines implementing basic continuous and discrete distributions. To provide best performance, the VSL subroutines use calls to highly optimized Basic Random Number Generators (BRNGs) and a library of vector mathematical functions.
- The second set includes a collection of routines that implement a wide variety of convolution and correlation operations.
- The third set includes a collection of routines for initial statistical analysis of raw single and double precision multi-dimensional datasets.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

Fourier Transform Functions

The Intel® MKL multidimensional Fast Fourier Transform (FFT) functions with mixed radix support (see Chapter 11) provide uniformity of discrete Fourier transform computation and combine functionality with ease of use. Both Fortran and C interface specification are given. There is also a cluster version of FFT functions, which runs on distributed-memory architectures and is provided only in Intel MKL versions for the Linux* and Windows* operating systems.

The FFT functions provide fast computation via the FFT algorithms for arbitrary lengths. See the Inte/® MKL User's Guide for the specific radices supported.

Partial Differential Equations Support

Intel ${ }^{\circledR}$ MKL provides tools for solving Partial Differential Equations (PDE) (see Chapter 13). These tools are Trigonometric Transform interface routines and Poisson Library.

The Trigonometric Transform routines may be helpful to users who implement their own solvers similar to the solver that the Poisson Library provides. The users can improve performance of their solvers by using fast sine, cosine, and staggered cosine transforms implemented in the Trigonometric Transform interface.
The Poisson Library is designed for fast solving of simple Helmholtz, Poisson, and Laplace problems. The Trigonometric Transform interface, which underlies the solver, is based on the Intel MKL FFT interface (refer to Chapter 11), optimized for Intel ${ }^{\circledR}$ processors.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

Nonlinear Optimization Problem Solvers

Intel ${ }^{8}$ MKL provides Nonlinear Optimization Problem Solver routines (see Chapter 14) that can be used to solve nonlinear least squares problems with or without linear (bound) constraints through the Trust-Region (TR) algorithms and compute Jacobi matrix by central differences.

Support Functions

The Intel ${ }^{\circledR}$ MKL support functions (see Chapter 15) are used to support the operation of the Intel MKL software and provide basic information on the library and library operation, such as the current library version, timing, setting and measuring of CPU frequency, error handling, and memory allocation.
Starting from release 10.0, the Intel MKL support functions provide additional threading control.
Starting from release 10.1, Intel MKL selectively supports a Progress Routine feature to track progress of a lengthy computation and/or interrupt the computation using a callback function mechanism. The user application can define a function called mkl_progress that is regularly called from the Intel MKL routine supporting the progress routine feature. See the Progress Routines section in Chapter 15 for reference. Refer to a specific LAPACK or DSS/PARDISO function description to see whether the function supports this feature or not.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

BLACS Routines

The Intel ${ }^{\otimes}$ Math Kernel Library implements routines from the BLACS (Basic Linear Algebra Communication Subprograms) package (see Chapter 16) that are used to support a linear algebra oriented message passing interface that may be implemented efficiently and uniformly across a large range of distributed memory platforms.
The original versions of BLACS from which that part of Intel MKL was derived can be obtained from http:// www.netlib.org/blacs/index.html. The authors of BLACS are Jack Dongarra and R. Clint Whaley.

Data Fitting Functions

The Data Fitting component includes a set of highly-optimized implementations of algorithms for the following spline-based computations:

- spline construction
- interpolation including computation of derivatives and integration
- search

The algorithms operate on single and double vector-valued functions set in the points of the given partition. You can use Data Fitting algorithms in applications that are based on data approximation.

GMP Arithmetic Functions

Intel ${ }^{\text {® MKL }}$ implementation of GMP* arithmetic functions includes arbitrary precision arithmetic operations on integer numbers. The interfaces of such functions fully match the GNU Multiple Precision (GMP*) Arithmetic Library.

NOTE GMP Arithmetic Functions are deprecated and will be removed in a future Intel MKL release.

Performance Enhancements

The Intel® Math Kernel Library has been optimized by exploiting both processor and system features and capabilities. Special care has been given to those routines that most profit from cache-management techniques. These especially include matrix-matrix operation routines such as dgemm().
In addition, code optimization techniques have been applied to minimize dependencies of scheduling integer and floating-point units on the results within the processor.
The major optimization techniques used throughout the library include:

- Loop unrolling to minimize loop management costs
- Blocking of data to improve data reuse opportunities
- Copying to reduce chances of data eviction from cache
- Data prefetching to help hide memory latency
- Multiple simultaneous operations (for example, dot products in dgemm) to eliminate stalls due to arithmetic unit pipelines
- Use of hardware features such as the SIMD arithmetic units, where appropriate

These are techniques from which the arithmetic code benefits the most.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

Parallelism

In addition to the performance enhancements discussed above, Intel ${ }^{(\$ K L}$ offers performance gains through parallelism provided by the symmetric multiprocessing performance (SMP) feature. You can obtain improvements from SMP in the following ways:

- One way is based on user-managed threads in the program and further distribution of the operations over the threads based on data decomposition, domain decomposition, control decomposition, or some other parallelizing technique. Each thread can use any of the Intel MKL functions (except for the deprecated ? lacon LAPACK routine) because the library has been designed to be thread-safe.
- Another method is to use the FFT and BLAS level 3 routines. They have been parallelized and require no alterations of your application to gain the performance enhancements of multiprocessing. Performance using multiple processors on the level 3 BLAS shows excellent scaling. Since the threads are called and managed within the library, the application does not need to be recompiled thread-safe (see also Fortran 95 Interface Conventions in Chapter 2).
- Yet another method is to use tuned LAPACK routines. Currently these include the single- and double precision flavors of routines for $Q R$ factorization of general matrices, triangular factorization of general and symmetric positive-definite matrices, solving systems of equations with such matrices, as well as solving symmetric eigenvalue problems.
For instructions on setting the number of available processors for the BLAS level 3 and LAPACK routines, see Inte』 ${ }^{\text {® }}$ MKL User's Guide.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

C Datatypes Specific to Intel MKL

The mkı_types.h file defines datatypes specific to Intel MKL.

C/C++ Type	Fortran Type	LP32 Equivalent (Size in Bytes)	LP64 Equivalent (Size in Bytes)	ILP64 Equivalent (Size in Bytes)
MKL_INT (MKL integer)	INTEGER (default INTEGER)	$C / C++:$ int Fortran: INTEGER*4 (4 bytes)	```C/C++: int Fortran: INTEGER*4 (4 bytes)```	C/C++: long long (or define MKL_ILP64 macros Fortran: INTEGER*8 (8 bytes)
MKL_UINT (MKL unsigned integer)	N/A	C/C++: unsigned int (4 bytes)	$C / C++:$ unsigned int (4 bytes)	C/C++: unsigned long long (8 bytes)
MKL_LONG (MKL long integer)	N/A	$C / C++:$ long (4 bytes)	C/C++: long (Windows: 4 bytes) (Linux, Mac: 8 bytes)	C/C++: long (8 bytes)

$\left.\begin{array}{|llll|}\hline \text { C/C++ Type } & \text { Fortran Type } & \begin{array}{l}\text { LP32 } \\ \text { Equivalent } \\ \text { (Size in } \\ \text { Bytes) }\end{array} & \begin{array}{l}\text { LP64 Equivalent } \\ \text { (Size in Bytes) }\end{array}\end{array} \begin{array}{l}\text { ILP64 Equivalent } \\ \text { (Size in Bytes) }\end{array}\right]$ (8 bytes)

You can redefine datatypes specific to Intel MKL. One reason to do this is if you have your own types which are binary-compatible with Intel MKL datatypes, with the same representation or memory layout. To redefine a datatype, use one of these methods:

- Insert the \#define statement redefining the datatype before the mkl.h header file \#include statement. For example,

```
    #define MKL_INT size_t
```

 \#include "mkl.h"
 - Use the compiler -D option to redefine the datatype. For example,
...-DMKL_INT=size_t...
NOTE As the user, if you redefine Intel MKL datatypes you are responsible for making sure that your definition is compatible with that of Intel MKL. If not, it might cause unpredictable results or crash the application.

BLAS and Sparse BLAS Routines

This chapter describes the Inte ${ }^{\circledR}$ Math Kernel Library implementation of the BLAS and Sparse BLAS routines, and BLAS-like extensions. The routine descriptions are arranged in several sections:

- BLAS Level 1 Routines (vector-vector operations)
- BLAS Level 2 Routines (matrix-vector operations)
- BLAS Level 3 Routines (matrix-matrix operations)
- Sparse BLAS Level 1 Routines (vector-vector operations).
- Sparse BLAS Level 2 and Level 3 Routines (matrix-vector and matrix-matrix operations)
- BLAS-like Extensions

Each section presents the routine and function group descriptions in alphabetical order by routine or function group name; for example, the ?asum group, the ?axpy group. The question mark in the group name corresponds to different character codes indicating the data type (s, d, c, and z or their combination); see Routine Naming Conventions.
When BLAS or Sparse BLAS routines encounter an error, they call the error reporting routine xerbla.
In BLAS Level 1 groups i?amax and i?amin, an "i" is placed before the data-type indicator and corresponds to the index of an element in the vector. These groups are placed in the end of the BLAS Level 1 section.

BLAS Routines

Routine Naming Conventions

BLAS routine names have the following structure:

```
<character> <name> <mod> ( )
```

The <character> field indicates the data type:

$$
\begin{array}{ll}
\mathrm{s} & \text { real, single precision } \\
\mathrm{c} & \text { complex, single precision } \\
\mathrm{d} & \text { real, double precision } \\
\mathrm{z} & \text { complex, double precision }
\end{array}
$$

Some routines and functions can have combined character codes, such as sc or dz.
For example, the function scasum uses a complex input array and returns a real value.
The <name> field, in BLAS level 1, indicates the operation type. For example, the BLAS level 1 routines ? dot, ?rot, ?swap compute a vector dot product, vector rotation, and vector swap, respectively.
In BLAS level 2 and 3, <name> reflects the matrix argument type:

ge	general matrix
gb	general band matrix
sy	symmetric matrix
sp	symmetric matrix (packed storage)
s.b	symmetric band matrix
he	Hermitian matrix
hp	Hermitian matrix (packed storage)

hb	Hermitian band matrix
tr	triangular matrix
tp	triangular matrix (packed storage)
t.b	triangular band matrix.

The $<\bmod >$ field, if present, provides additional details of the operation. BLAS level 1 names can have the following characters in the <mod> field:

c	conjugated vector
u	unconjugated vector
g	Givens rotation construction
m	modified Givens rotation
$m g$	modified Givens rotation construction

BLAS level 2 names can have the following characters in the $<m o d>$ field:

mv	matrix-vector product
SV	solving a system of linear equations with a single unknown vector
r	rank-1 update of a matrix
r 2	rank-2 update of a matrix.

BLAS level 3 names can have the following characters in the $<\bmod >$ field:

mm	matrix-matrix product
sm	solving a system of linear equations with multiple unknown vectors
rk	rank- k update of a matrix
r 2 k	rank- $2 k$ update of a matrix.

The examples below illustrate how to interpret BLAS routine names:

ddot	<d> <dot>: double-precision real vector-vector dot product
cdotc	<c> <dot> <c>: complex vector-vector dot product, conjugated
scasum	<sc> <asum>: sum of magnitudes of vector elements, single precision real output and single precision complex input
cdotu	<c> <dot> <u>: vector-vector dot product, unconjugated, complex
sgemv	<s> <ge> <mv>: matrix-vector product, general matrix, single precision
ztrmm	<z> <tr> <mm>: matrix-matrix product, triangular matrix, double-precision complex.

Sparse BLAS level 1 naming conventions are similar to those of BLAS level 1. For more information, see Naming Conventions.

Fortran 95 Interface Conventions

Fortran 95 interface to BLAS and Sparse BLAS Level 1 routines is implemented through wrappers that call respective FORTRAN 77 routines. This interface uses such features of Fortran 95 as assumed-shape arrays and optional arguments to provide simplified calls to BLAS and Sparse BLAS Level 1 routines with fewer parameters.

- using mkl_blas.fi only through include 'mkl_blas_subroutine.fi' statement. Such interfaces allow you to make use of the original LAPACK routines with all their arguments
- using blas.fgo that includes improved interfaces. This file is used to generate the module files blas $95 . \bmod$ and $f 95$ _precision.mod. The module files mkl95_blas.mod and mkl95_precision.mod are also generated. See also section "Fortran 95 interfaces and wrappers to LAPACK and BLAS" of Inte/® MKL User's Guide for details. The module files are used to process the FORTRAN use clauses referencing the BLAS interface: use blas 95 (or an equivalent use mkl95_blas) and use f95_precision (or an equivalent use mkl95_precision).

The main conventions used in Fortran 95 interface are as follows:

- The names of parameters used in Fortran 95 interface are typically the same as those used for the respective generic (FORTRAN 77) interface. In rare cases formal argument names may be different.
- Some input parameters such as array dimensions are not required in Fortran 95 and are skipped from the calling sequence. Array dimensions are reconstructed from the user data that must exactly follow the required array shape.
- A parameter can be skipped if its value is completely defined by the presence or absence of another parameter in the calling sequence, and the restored value is the only meaningful value for the skipped parameter.
- Parameters specifying the increment values incx and incy are skipped. In most cases their values are equal to 1 . In Fortran 95 an increment with different value can be directly established in the corresponding parameter.
- Some generic parameters are declared as optional in Fortran 95 interface and may or may not be present in the calling sequence. A parameter can be declared optional if it satisfies one of the following conditions:

1. It can take only a few possible values. The default value of such parameter typically is the first value in the list; all exceptions to this rule are explicitly stated in the routine description.
2. It has a natural default value.

Optional parameters are given in square brackets in Fortran 95 call syntax.
The particular rules used for reconstructing the values of omitted optional parameters are specific for each routine and are detailed in the respective "Fortran 95 Notes" subsection at the end of routine specification section. If this subsection is omitted, the Fortran 95 interface for the given routine does not differ from the corresponding FORTRAN 77 interface.
Note that this interface is not implemented in the current version of Sparse BLAS Level 2 and Level 3 routines.

Matrix Storage Schemes

Matrix arguments of BLAS routines can use the following storage schemes:

- Full storage: a matrix A is stored in a two-dimensional array $a_{\text {, }}$ with the matrix element $a_{i j}$ stored in the array element $a(i, j)$.
- Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more compactly: the upper or lower triangle of the matrix is packed by columns in a one-dimensional array.
- Band storage: a band matrix is stored compactly in a two-dimensional array: columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.
For more information on matrix storage schemes, see Matrix Arguments in Appendix B.

BLAS Level 1 Routines and Functions

BLAS Level 1 includes routines and functions, which perform vector-vector operations. Table "BLAS Level 1 Routine Groups and Their Data Types" lists the BLAS Level 1 routine and function groups and the data types associated with them.

Routine or Function Group	Data Types	Description
? asum	s, d, sc, dz	Sum of vector magnitudes (functions)
? axpy	s, d, c, z	Scalar-vector product (routines)
? copy	s, d, c, z	Copy vector (routines)
? dot	s, d	Dot product (functions)
?sdot	sd, d	Dot product with extended precision (functions)
? dotc	C, z	Dot product conjugated (functions)
?dotu	c, z	Dot product unconjugated (functions)
? nrm 2	s, d, sc, dz	Vector 2-norm (Euclidean norm) (functions)
?rot	s, d, cs, zd	Plane rotation of points (routines)
?rotg	s, d, c, z	Generate Givens rotation of points (routines)
?rotm	s, d	Modified Givens plane rotation of points (routines)
?rotmg	s, d	Generate modified Givens plane rotation of points (routines)
?scal	s, d, c, z, cs, zd	Vector-scalar product (routines)
? swap	s, d, c, z	Vector-vector swap (routines)
i?amax	s, d, c, z	Index of the maximum absolute value element of a vector (functions)
i?amin	s, d, c, z	Index of the minimum absolute value element of a vector (functions)
?cabs1	s, d	Auxiliary functions, compute the absolute value of a complex number of single or double precision

?asum
Computes the sum of magnitudes of the vector elements.

Syntax

Fortran 77:

```
res = sasum(n, x, incx)
res = scasum(n, x, incx)
res = dasum(n, x, incx)
res = dzasum(n, x, incx)
```


Fortran 95:

```
res = asum(x)
```


Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

Description

The ?asum routine computes the sum of the magnitudes of elements of a real vector, or the sum of magnitudes of the real and imaginary parts of elements of a complex vector:

```
res = |Rex(1)| + | Im x(1)| + | Re x(2)| + | Im x(2)|+\ldots .. + |Re x(n) | + | Im x(n)|,
```

where x is a vector with a number of elements that equals n.

Input Parameters

n
x
inc

Output Parameters

INTEGER. Specifies the number of elements in vector x.
REAL for sasum
DOUBLE PRECISION for dasum
COMPLEX for scasum
DOUBLE COMPLEX for dzasum

Array, DIMENSION at least ($1+(n-1) * a b s$ (incx)).
INTEGER. Specifies the increment for indexing vector x.

REAL for sasum
DOUBLE PRECISION for dasum
REAL for scasum
DOUBLE PRECISION for dzasum
Contains the sum of magnitudes of real and imaginary parts of all elements of the vector.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine asum interface are the following:

```
\(x\)
Holds the array of size \(n\).
```

?axpy
Computes a vector-scalar product and adds the result to a vector.

Syntax

Fortran 77:

```
call saxpy(n, a, x, incx, y, incy)
call daxpy(n, a, x, incx, y, incy)
call caxpy(n, a, x, incx, y, incy)
call zaxpy(n, a, x, incx, y, incy)
```


Fortran 95:

```
call axpy(x, y [,a])
```


Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

Description

The ?axpy routines perform a vector-vector operation defined as

```
y := a* x + y
```

where:
a is a scalar
x and y are vectors each with a number of elements that equals n.

Input Parameters

```
n INTEGER. Specifies the number of elements in vectors x and y.
a REAL for saxpy
    DOUBLE PRECISION for daxpy
    COMPLEX for caxpy
    DOUBLE COMPLEX for zaxpy
    Specifies the scalar a.
x
    REAL for saxpy
    DOUBLE PRECISION for daxpy
    COMPLEX for caxpy
    DOUBLE COMPLEX for zaxpy
    Array, DIMENSION at least (1 + (n-1)*abs(incx)).
incx INTEGER. Specifies the increment for the elements of x.
y REAL for saxpy
    DOUBLE PRECISION for daxpy
    COMPLEX for caxpy
    DOUBLE COMPLEX for zaxpy
    Array, DIMENSION at least (1 + (n-1)*abs(incy)).
incy INTEGER. Specifies the increment for the elements of y.
```


Output Parameters

y
Contains the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine axpy interface are the following:

x	Holds the array of size n.
y	Holds the array of size n.
a	The default value is 1.

?copy
Copies vector to another vector.

Syntax

Fortran 77:

```
call scopy(n, x, incx, y, incy)
call dcopy(n, x, incx, y, incy)
call ccopy(n, x, incx, y, incy)
call zcopy(n, x, incx, y, incy)
```


Fortran 95:

```
call copy(x, y)
```


Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

Description

The ?copy routines perform a vector-vector operation defined as
$y=x$,
where x and y are vectors.

Input Parameters

```
n
x
incx
y REAL for scopy
    DOUBLE PRECISION for dcopy
    COMPLEX for ccopy
    DOUBLE COMPLEX for zcopy
    Array, DIMENSION at least (1 + (n-1)*abs (incy)).
incy INTEGER. Specifies the increment for the elements of y.
```


Output Parameters

Y
Contains a copy of the vector x if n is positive. Otherwise, parameters are unaltered.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine copy interface are the following:

x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.

?dot
Computes a vector-vector dot product.

Syntax

Fortran 77:

```
res = sdot(n, x, incx, y, incy)
res = ddot(n, x, incx, y, incy)
```


Fortran 95:

```
res = dot(x, y)
```

Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

Description

The ?dot routines perform a vector-vector reduction operation defined as

$$
\text { res }=\sum_{i=1}^{\pi} x_{i} * y_{i^{\prime}}
$$

where x_{i} and y_{i} are elements of vectors x and y.
Input Parameters

```
n INTEGER. Specifies the number of elements in vectors }x\mathrm{ and }y\mathrm{ .
x REAL for sdot
    DOUBLE PRECISION for ddot
    Array, DIMENSION at least (1+(n-1)*abs(incx)).
incx INTEGER. Specifies the increment for the elements of x.
y REAL for sdot
    DOUBLE PRECISION for ddot
    Array, DIMENSION at least (1+(n-1)*abs (incy)).
incy INTEGER. Specifies the increment for the elements of y.
```


Output Parameters

```
res
REAL for sdot
DOUBLE PRECISION for ddot
Contains the result of the dot product of }x\mathrm{ and }y\mathrm{ , if }n\mathrm{ is positive. Otherwise,
res contains 0.
```


Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine dot interface are the following: Holds the vector with the number of elements n.

```

\section*{?sdot}

Computes a vector-vector dot product with extended precision.

\section*{Syntax}

\section*{Fortran 77:}
```

res = sdsdot(n, sb, sx, incx, sy, incy)
res = dsdot(n, sx, incx, sy, incy)

```

\section*{Fortran 95:}
```

res = sdot(sx, sy)
res = sdot(sx, sy, sb)

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?sdot routines compute the inner product of two vectors with extended precision. Both routines use extended precision accumulation of the intermediate results, but the sdsdot routine outputs the final result in single precision, whereas the dsdot routine outputs the double precision result. The function sdsdot also adds scalar value sb to the inner product.

\section*{Input Parameters}
```

n INTEGER. Specifies the number of elements in the input vectors sx and sy.
sb REAL. Single precision scalar to be added to inner product (for the function
sdsdot only).
REAL.
Arrays, DIMENSION at least (1+(n -1)*abs(incx)) and (1+
(n-1)*abs(incy)), respectively. Contain the input single precision vectors.
incx INTEGER. Specifies the increment for the elements of $s x$.
incy \quad INTEGER. Specifies the increment for the elements of sy.

```

\section*{Output Parameters}
```

res

```

REAL for sdsdot
DOUBLE PRECISION for dsdot
Contains the result of the dot product of \(s x\) and \(s y\) (with \(s b\) added for sdsdot), if \(n\) is positive. Otherwise, res contains sb for sdsdot and 0 for dsdot.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sdot interface are the following:
\(s x \quad\) Holds the vector with the number of elements \(n\).
sy Holds the vector with the number of elements \(n\).

\(\square\)
NOTE Note that scalar parameter \(s b\) is declared as a required parameter in Fortran 95 interface for the function sdot to distinguish between function flavors that output final result in different precision.

\section*{?dotc}

Computes a dot product of a conjugated vector with another vector.

Syntax

\section*{Fortran 77:}
```

res = cdotc(n, x, incx, y, incy)
res = zdotc(n, x, incx, y, incy)

```

Fortran 95:
```

res = dotc (x, y)

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ? dotc routines perform a vector-vector operation defined as:
\[
\text { res }=\sum_{i-1}^{n} \operatorname{conjg}\left(\mathrm{x}_{\mathrm{i}}\right) * y_{i}
\]
where \(x_{i}\) and \(y_{i}\) are elements of vectors \(x\) and \(y\).
Input Parameters
```

n INTEGER. Specifies the number of elements in vectors x and y.
x COMPLEX for cdotc
DOUBLE COMPLEX for zdotc
Array, DIMENSION at least (1 + (n -1)*abs(incx)).
incx INTEGER. Specifies the increment for the elements of x.
y COMPLEX for cdotc
DOUBLE COMPLEX for zdotc
Array, DIMENSION at least (1 + (n -1)*abs(incy)).
incy INTEGER. Specifies the increment for the elements of y.

```

\section*{Output Parameters}
res
COMPLEX for cdotc
DOUBLE COMPLEX for zdotc
Contains the result of the dot product of the conjugated \(x\) and unconjugated \(y\), if \(n\) is positive. Otherwise, res contains 0 .

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine dotc interface are the following:
\(x \quad\) Holds the vector with the number of elements \(n\).
\(y\) Holds the vector with the number of elements \(n\).

\section*{?dotu}

Computes a vector-vector dot product.

\section*{Syntax}

\section*{Fortran 77:}
```

res = cdotu(n, x, incx, y, incy)
res = zdotu(n, x, incx, y, incy)

```

\section*{Fortran 95:}
```

res = dotu (x, y)

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ? dotu routines perform a vector-vector reduction operation defined as
\[
\text { res }=\sum_{i=1}^{n} x_{i} * Y_{i r}
\]
where \(x_{i}\) and \(y_{i}\) are elements of complex vectors \(x\) and \(y\).

\section*{Input Parameters}
```

n
x COMPLEX for cdotu
DOUBLE COMPLEX for zdotu
Array, DIMENSION at least (1 + (n -1)*abs(incx)).
incx INTEGER. Specifies the increment for the elements of x.
y COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

```

Array, DIMENSION at least \((1+(n-1) * a b s(i n c y))\).
incy INTEGER. Specifies the increment for the elements of \(y\).

\section*{Output Parameters}
res COMPLEX for cdotu

DOUBLE COMPLEX for zdotu
Contains the result of the dot product of \(x\) and \(y\), if \(n\) is positive. Otherwise, res contains 0 .

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine dotu interface are the following:
\(x \quad\) Holds the vector with the number of elements \(n\).
\(y\) Holds the vector with the number of elements \(n\).

\section*{?nrm2}

Computes the Euclidean norm of a vector.

\section*{Syntax}

\section*{Fortran 77:}
```

res = snrm2(n, x, incx)
res = dnrm2(n, x, incx)
res = scnrm2(n, x, incx)
res = dznrm2(n, x, incx)

```

\section*{Fortran 95:}
```

res = nrm2(x)

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ? nrm2 routines perform a vector reduction operation defined as
\[
\text { res }=||x||
\]
where:
\(x\) is a vector,
res is a value containing the Euclidean norm of the elements of \(x\).
Input Parameters
\begin{tabular}{ll}
\(n\) & INTEGER. Specifies the number of elements in vector \(x\). \\
\(x\) & REAL for snrm2
\end{tabular}
\begin{tabular}{ll} 
& DOUBLE PRECISION for dnrm2 \\
COMPLEX for scnrm2 \\
incx & DOUBLE COMPLEX for dznrm2 \\
& Array, DIMENSION at least \((1+(n-1) * a b s\) (incx) ). \\
INTEGER. Specifies the increment for the elements of \(x\).
\end{tabular}

\section*{Output Parameters}
```

res

```
REAL for snrm2
DOUBLE PRECISION for dnrm2
REAL for scnrm2
DOUBLE PRECISION for dznrm2
Contains the Euclidean norm of the vector x .

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine nrm2 interface are the following:
\(x\)
Holds the vector with the number of elements \(n\).
?rot
Performs rotation of points in the plane.

\section*{Syntax}

\section*{Fortran 77:}
```

call srot(n, x, incx, y, incy, c, s)
call drot(n, x, incx, y, incy, c, s)
call csrot(n, x, incx, y, incy, c, s)
call zdrot(n, x, incx, y, incy, c, s)

```

\section*{Fortran 95:}
```

call rot (x, Y, c, s)

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

Given two complex vectors \(x\) and \(y\), each vector element of these vectors is replaced as follows:
```

x(i) = c*x(i) + s*y(i)
y(i) = c*y(i) - s^x(i)

```

Input Parameters
n
INTEGER. Specifies the number of elements in vectors \(x\) and \(y\).
\(x\)
REAL for srot
```

DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot
Array, DIMENSION at least (1 + (n-1)*abs(incx)).
incx INTEGER. Specifies the increment for the elements of x.
y REAL for srot
DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot
Array, DIMENSION at least (1 + (n -1)*abs(incy)).
incy INTEGER. Specifies the increment for the elements of y.
C
REAL for srot
DOUBLE PRECISION for drot
REAL for csrot
DOUBLE PRECISION for zdrot
A scalar.
s
REAL for srot
DOUBLE PRECISION for drot
REAL for csrot
DOUBLE PRECISION for zdrot
A scalar.

```

\section*{Output Parameters}
```

x
Each element is replaced by c*x + s*y.
Each element is replaced by c* y - s*x.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine rot interface are the following:
\begin{tabular}{ll}
\(x\) & Holds the vector with the number of elements \(n\). \\
\(y\) & Holds the vector with the number of elements \(n\).
\end{tabular}

\section*{?rotg}

Computes the parameters for a Givens rotation.
Syntax

\section*{Fortran 77:}
```

call srotg(a, b, c, s)
call drotg(a, b, c, s)
call crotg(a, b, c, s)
call zrotg(a, b, c, s)

```

\section*{Fortran 95:}
```

call rotg(a, b, c, s)

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

Given the Cartesian coordinates ( \(a, b\) ) of a point, these routines return the parameters \(c, s, r\), and \(z\) associated with the Givens rotation. The parameters \(c\) and \(s\) define a unitary matrix such that:
\[
\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right]
\]

The parameter \(z\) is defined such that if \(|a|>|b|, z\) is \(s\); otherwise if \(c\) is not \(0 z\) is \(1 / c\); otherwise \(z\) is 1 . See a more accurate LAPACK version ?lartg.

Input Parameters
```

a REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg
Provides the x-coordinate of the point p.
b
REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg
Provides the y-coordinate of the point p .

```

\section*{Output Parameters}
\begin{tabular}{ll}
\(a\) \\
\(b\) & Contains the parameter \(r\) associated with the Givens rotation. \\
\(c\) & Contains the parameter \(z\) associated with the Givens rotation. \\
& REAL for srotg \\
DOUBLE PRECISION for drotg \\
& REAL for crotg \\
& DOUBLE PRECISION for \(z r o t g\) \\
& Contains the parameter \(c\) associated with the Givens rotation. \\
& REAL for srotg \\
& DOUBLE PRECISION for drotg \\
& COMPLEX for crotg \\
DOUBLE COMPLEX for zrotg \\
& Contains the parameter \(s\) associated with the Givens rotation.
\end{tabular}
?rotm
Performs modified Givens rotation of points in the plane.

Syntax

\section*{Fortran 77:}
```

call srotm(n, x, incx, y, incy, param)

```
```

call drotm(n, x, incx, y, incy, param)

```

\section*{Fortran 95:}
```

call rotm(x, y, param)

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

Given two vectors \(x\) and \(y\), each vector element of these vectors is replaced as follows:
\[
\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]=H\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]
\]
for \(i=1\) to \(n\), where \(H\) is a modified Givens transformation matrix whose values are stored in the param (2) through param (5) array. See discussion on the param argument.

\section*{Input Parameters}
n
X
incx
Y
incy
param

INTEGER. Specifies the number of elements in vectors \(x\) and \(y\).
REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION at least (1 + (n -1)*abs (incx)).
INTEGER. Specifies the increment for the elements of \(x\).
REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION at least \((1+(n-1) * a b s(i n c y))\).
INTEGER. Specifies the increment for the elements of \(y\).
REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION 5.
The elements of the param array are:
param(1) contains a switch, flag. param(2-5) contain h11, h21, h12, and h22, respectively, the components of the array \(H\).
Depending on the values of flag, the components of \(H\) are set as follows:
\[
\begin{aligned}
& \text { flag }=-1 .: H=\left[\begin{array}{ll}
h 11 & h 12 \\
h 21 & h 22
\end{array}\right] \\
& \text { flag }=0 .: H=\left[\begin{array}{cc}
1 . & h 12 \\
h 21 & 1 .
\end{array}\right]
\end{aligned}
\]
\[
\begin{aligned}
& \text { flag }=1 .: H=\left[\begin{array}{cc}
h 11 & 1 . \\
-1 & h 22
\end{array}\right] \\
& \text { flag }=-2 .: H=\left[\begin{array}{ll}
1 & 0 . \\
0 . & 1 .
\end{array}\right]
\end{aligned}
\]

In the last three cases, the matrix entries of \(1 .,-1 .\), and 0 . are assumed based on the value of \(f l a g\) and are not required to be set in the param vector.

\section*{Output Parameters}
```

x
Each element x(i) is replaced by h11*x(i) +h12*y(i).
Each element y(i) is replaced by h21*x(i) +h22*y(i).

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine rotm interface are the following:
\begin{tabular}{ll}
\(x\) & Holds the vector with the number of elements \(n\). \\
\(y\) & Holds the vector with the number of elements \(n\).
\end{tabular}

\section*{?rotmg}

Computes the parameters for a modified Givens
rotation.

\section*{Syntax}

\section*{Fortran 77:}
```

call srotmg(d1, d2, x1, y1, param)
call drotmg(d1, d2, x1, y1, param)

```

\section*{Fortran 95:}
```

call rotmg(d1, d2, x1, y1, param)

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

Given Cartesian coordinates ( \(x 1, y 1\) ) of an input vector, these routines compute the components of a modified Givens transformation matrix \(H\) that zeros the \(y\)-component of the resulting vector:
\[
\left[\begin{array}{c}
x 1 \\
0
\end{array}\right]=H\left[\begin{array}{c}
x 1 \sqrt{d 1} \\
y 1 \sqrt{d 1}
\end{array}\right]
\]

\section*{Input Parameters}

> REAL for srotmg

DOUBLE PRECISION for drotmg
Provides the scaling factor for the \(x\)-coordinate of the input vector.
REAL for srotmg DOUBLE PRECISION for drotmg
Provides the scaling factor for the \(y\)-coordinate of the input vector.
REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the \(x\)-coordinate of the input vector.
REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the \(y\)-coordinate of the input vector.

\section*{Output Parameters}

REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the first diagonal element of the updated matrix.
REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the second diagonal element of the updated matrix.
x1
param
REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the \(x\)-coordinate of the rotated vector before scaling.
REAL for srotmg
DOUBLE PRECISION for drotmg
Array, DIMENSION 5.
The elements of the param array are:
param(1) contains a switch, flag. param(2-5) contain h11, h21, h12, and h22, respectively, the components of the array H .
Depending on the values of \(f l a g\), the components of \(H\) are set as follows:
\[
\begin{aligned}
& \text { flag }=-1 .: H=\left[\begin{array}{ll}
h 11 & h 12 \\
h 21 & h 22
\end{array}\right] \\
& \text { flag }=0 .: H=\left[\begin{array}{cc}
1 . & h 12 \\
h 21 & 1 .
\end{array}\right] \\
& \text { flag }=1 .: H=\left[\begin{array}{cc}
h 11 & 1 . \\
-1 & h 22
\end{array}\right] \\
& \text { flag }=-2 .: H=\left[\begin{array}{ll}
1 . & 0 . \\
0 . & 1 .
\end{array}\right]
\end{aligned}
\]

In the last three cases, the matrix entries of 1., \(-1 .\), and 0 . are assumed based on the value of flag and are not required to be set in the param vector.

\section*{?scal}

Computes the product of a vector by a scalar.

\section*{Syntax}

\section*{Fortran 77:}
```

call sscal(n, a, x, incx)
call dscal(n, a, x, incx)
call cscal(n, a, x, incx)
call zscal(n, a, x, incx)
call csscal(n, a, x, incx)
call zdscal(n, a, x, incx)

```

\section*{Fortran 95:}
```

call scal(x, a)

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?scal routines perform a vector operation defined as
\(x=a^{\star} X\)
where:
\(a\) is a scalar, \(x\) is an \(n\)-element vector.

\section*{Input Parameters}
```

n
a
x
incx
INTEGER. Specifies the number of elements in vector x.
REAL for sscal and csscal
DOUBLE PRECISION for dscal and zdscal
COMPLEX for cscal
DOUBLE COMPLEX for zscal
Specifies the scalar a.
REAL for sscal
DOUBLE PRECISION for dscal
COMPLEX for cscal and csscal
DOUBLE COMPLEX for zscal and zdscal
Array, DIMENSION at least (1 + (n -1)*abs(incx)).
INTEGER. Specifies the increment for the elements of x.

```

\section*{Output Parameters}

X
Updated vector x.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine scal interface are the following:
X
Holds the vector with the number of elements \(n\).

\section*{?swap}

Swaps a vector with another vector.
Syntax

\section*{Fortran 77:}
```

call sswap(n, x, incx, y, incy)
call dswap(n, x, incx, y, incy)
call cswap(n, x, incx, y, incy)
call zswap(n, x, incx, y, incy)

```

\section*{Fortran 95:}
```

call swap(x, y)

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

Given two vectors \(x\) and \(y\), the ?swap routines return vectors \(y\) and \(x\) swapped, each replacing the other.

\section*{Input Parameters}
```

n INTEGER. Specifies the number of elements in vectors x and y.
x REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap
Array, DIMENSION at least (1 + (n-1)*abs(incx)).
incx INTEGER. Specifies the increment for the elements of x.
y REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap
Array, DIMENSION at least (1 + (n-1)*abs(incy)).
incy INTEGER. Specifies the increment for the elements of y.

```

\section*{Output Parameters}
\begin{tabular}{ll}
\(x\) & Contains the resultant vector \(x\), that is, the input vector \(y\). \\
\(y\) & Contains the resultant vector \(y\), that is, the input vector \(x\).
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine swap interface are the following:
```

x Holds the vector with the number of elements n.
y Holds the vector with the number of elements n.

```

\section*{i?amax}

Finds the index of the element with maximum
absolute value.

\section*{Syntax}

\section*{Fortran 77:}
```

index = isamax(n, x, incx)
index = idamax(n, x, incx)
index = icamax(n, x, incx)
index = izamax(n, x, incx)

```

\section*{Fortran 95:}
```

index = iamax(x)

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

This function is declared in mkl_blas.fi for FORTRAN 77 interface, in blas.f90 for Fortran 95 interface, and in mkl_blas.h for C interface.
Given a vector \(x\), the \(i\) ?amax functions return the position of the vector element \(x(i)\) that has the largest absolute value for real flavors, or the largest sum \(|\operatorname{Re}(x(i))|+|\operatorname{Im}(x(i))|\) for complex flavors.

If \(n\) is not positive, 0 is returned.
If more than one vector element is found with the same largest absolute value, the index of the first one encountered is returned.

\section*{Input Parameters}
n
INTEGER. Specifies the number of elements in vector \(x\).
REAL for isamax
DOUBLE PRECISION for idamax
COMPLEX for icamax

DOUBLE COMPLEX for izamax
Array, DIMENSION at least (1+(n-1)*abs (incx)).
incx INTEGER. Specifies the increment for the elements of \(x\).

\section*{Output Parameters}
index
INTEGER. Contains the position of vector element \(x\) that has the largest absolute value.

\section*{Fortran 95 Interface Notes}

Functions and routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the function iamax interface are the following:
X
Holds the vector with the number of elements \(n\).

\section*{i?amin}

Finds the index of the element with the smallest absolute value.

\section*{Syntax}

\section*{Fortran 77:}
```

index = isamin(n, x, incx)
index = idamin(n, x, incx)
index = icamin(n, x, incx)
index = izamin(n, x, incx)

```

\section*{Fortran 95:}
```

index = iamin(x)

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

This function is declared in mkl_blas.fi for FORTRAN 77 interface, in blas.f90 for Fortran 95 interface, and in mkl_blas.h for C interface.

Given a vector \(x\), the i?amin functions return the position of the vector element \(x(i)\) that has the smallest absolute value for real flavors, or the smallest sum \(|\operatorname{Re}(x(i))|+|\operatorname{Im}(x(i))|\) for complex flavors.

If \(n\) is not positive, 0 is returned.
If more than one vector element is found with the same smallest absolute value, the index of the first one encountered is returned.

\section*{Input Parameters}
\(n\)
\(x\)

INTEGER. On entry, \(n\) specifies the number of elements in vector \(x\).
REAL for isamin
\begin{tabular}{ll} 
& DOUBLE PRECISION for idamin \\
& COMPLEX for icamin \\
& DOUBLE COMPLEX for izamin \\
incx & Array, DIMENSION at least \((1+(n-1) * a b s(\) incx \())\). \\
& INTEGER. Specifies the increment for the elements of \(x\).
\end{tabular}

\section*{Output Parameters}
index
INTEGER. Contains the position of vector element \(x\) that has the smallest absolute value.

\section*{Fortran 95 Interface Notes}

Functions and routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the function iamin interface are the following:
\(x \quad\) Holds the vector with the number of elements \(n\).

\section*{?cabs1}

Computes absolute value of complex number.

\section*{Syntax}

\section*{Fortran 77:}
```

res = scabs1(z)
res = dcabs1(z)

```

\section*{Fortran 95:}
```

res = cabs1(z)

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?cabs1 is an auxiliary routine for a few BLAS Level 1 routines. This routine performs an operation defined as
```

res=|\operatorname{Re}(z)|+|\operatorname{Im}(z)|,

```
where \(z\) is a scalar, and res is a value containing the absolute value of a complex number \(z\).

\section*{Input Parameters}
```

z COMPLEX scalar for scabs1.
DOUBLE COMPLEX scalar for dcabs1.

```

\section*{Output Parameters}
```

res
REAL for scabs1.
DOUBLE PRECISION for dcabs1.
Contains the absolute value of a complex number z

```

\section*{BLAS Level 2 Routines}

This section describes BLAS Level 2 routines, which perform matrix-vector operations. Table "BLAS Level 2 Routine Groups and Their Data Types" lists the BLAS Level 2 routine groups and the data types associated with them.

\section*{BLAS Level 2 Routine Groups and Their Data Types}
\begin{tabular}{|c|c|c|}
\hline Routine Groups & Data Types & Description \\
\hline ? gbmv & \(s, d, c, z\) & Matrix-vector product using a general band matrix \\
\hline gemv & \(s, d, c, z\) & Matrix-vector product using a general matrix \\
\hline ? ger & s, d & Rank-1 update of a general matrix \\
\hline ? gerc & c, z & Rank-1 update of a conjugated general matrix \\
\hline ? geru & C, z & Rank-1 update of a general matrix, unconjugated \\
\hline ? h.bmv & c, z & Matrix-vector product using a Hermitian band matrix \\
\hline ? hemv & C, z & Matrix-vector product using a Hermitian matrix \\
\hline ?her & c, z & Rank-1 update of a Hermitian matrix \\
\hline ?her2 & c, z & Rank-2 update of a Hermitian matrix \\
\hline ? hpmv & C, z & Matrix-vector product using a Hermitian packed matrix \\
\hline ?hpr & C, z & Rank-1 update of a Hermitian packed matrix \\
\hline ?hpr2 & c, z & Rank-2 update of a Hermitian packed matrix \\
\hline ? s.bmv & s, d & Matrix-vector product using symmetric band matrix \\
\hline ? spmv & \(s, d\) & Matrix-vector product using a symmetric packed matrix \\
\hline ? spr & \(s, d\) & Rank-1 update of a symmetric packed matrix \\
\hline ?spr2 & \(s, d\) & Rank-2 update of a symmetric packed matrix \\
\hline ?symv & s, d & Matrix-vector product using a symmetric matrix \\
\hline ?syr & s, d & Rank-1 update of a symmetric matrix \\
\hline ?syr2 & s, d & Rank-2 update of a symmetric matrix \\
\hline ? t.bmv & s, d, c, z & Matrix-vector product using a triangular band matrix \\
\hline ?tbsv & s, d, c, z & Solution of a linear system of equations with a triangular band matrix \\
\hline ? tpmv & s, d, c, z & Matrix-vector product using a triangular packed matrix \\
\hline ?tpsv & \(s, d, c, z\) & Solution of a linear system of equations with a triangular packed matrix \\
\hline ? trmv & s, d, c, z & Matrix-vector product using a triangular matrix \\
\hline ?trsv & \(s, d, c, z\) & Solution of a linear system of equations with a triangular matrix \\
\hline
\end{tabular}
```

?gbmv
Computes a matrix-vector product using a general
band matrix
Syntax

```

\section*{Fortran 77:}
```

call sgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)

```
call sgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)
call dgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)
call dgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)
call cgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)
call cgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)
call zgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)
```

call zgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)

```

\section*{Fortran 95:}
```

call gbmv(a, x, y [,kl] [,m] [,alpha] [,beta] [,trans])

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ? gbmv routines perform a matrix-vector operation defined as
```

y := alpha*A*x + beta*y,

```
or
```

y := alpha*A'*x + beta*y,

```
or
```

y := alpha *conjg(A')*x + beta*y,

```
where:
alpha and beta are scalars,
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(n\) band matrix, with \(k l\) sub-diagonals and \(k u\) super-diagonals.

\section*{Input Parameters}
trans
m
n
kl
ku

CHARACTER*1. Specifies the operation:
If trans= 'N' or 'n', then \(y\) := alpha*A*x + beta* \(y\) If trans= 'T' or 't', then \(y:=a l p h a * A ' *_{x}+b e t a * y\) If trans= 'C' or 'c', then \(y:=a l p h a{ }^{*} c o n j g(A '){ }^{*} x+b e t a * y\) INTEGER. Specifies the number of rows of the matrix \(A\). The value of \(m\) must be at least zero.

INTEGER. Specifies the number of columns of the matrix \(A\). The value of \(n\) must be at least zero.
INTEGER. Specifies the number of sub-diagonals of the matrix \(A\). The value of \(k l\) must satisfy \(0 \leq k l\).
INTEGER. Specifies the number of super-diagonals of the matrix \(A\). The value of \(k u\) must satisfy \(0 \leq k u\).


\section*{Output Parameters}
```

y Updated vector y.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gbmv interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the array a of size \((k I+k u+1, n)\). Contains a banded matrix \(m^{*} n\) with \(k I\) lower diagonal and \(k u\) upper diagonal. \\
\hline \(x\) & Holds the vector with the number of elements \(r x\), where \(r x=n\) if trans \(=\) ' \(N\) ', rx \(=m\) otherwise. \\
\hline Y & Holds the vector with the number of elements ry, where ry \(=m\) if trans \(=\) ' N ', ry \(=n\) otherwise. \\
\hline trans & Must be 'N', 'C', or 'T'. The default value is ' N '. \\
\hline \(k 1\) & If omitted, assumed \(k l=k u\), that is, the number of lower diagonals equals the number of the upper diagonals. \\
\hline ku & Restored as \(k u=I d a-k I-1\), where \(I d a\) is the leading dimension of matrix A. \\
\hline \(m\) & If omitted, assumed \(m=n\), that is, a square matrix. \\
\hline alpha & The default value is 1. \\
\hline beta & The default value is 0 . \\
\hline
\end{tabular}
?gemv
Computes a matrix-vector product using a general matrix

Syntax

\section*{Fortran 77:}
```

call sgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call zgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call scgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call dzgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

```

\section*{Fortran 95:}
```

call gemv(a, x, y [,alpha][,beta] [,trans])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ? gemv routines perform a matrix-vector operation defined as
```

y := alpha*A*x + beta*y,

```
or
\(y:=a l p h a^{*} A^{\prime} \star_{x}+b e t a^{\star} y\),
or
```

y := alpha*conjg(A')*x + beta*y,

```
where:
```

alpha and beta are scalars,
x and y are vectors,
A is an m-by-n matrix.

```

\section*{Input Parameters}
trans
m
n
alpha
a

Ida

X
incx
beta

CHARACTER*1. Specifies the operation:
if trans= 'N' or 'n', then \(y:=a l p h a * A * x+b e t a * y\);
if trans= 'T' or 't', then \(y:=a l p h a * A ' * x+b e t a * y\); if trans \(=\) ' C' or 'c', then \(y:=a l p h a * \operatorname{conjg}\left(A^{\prime}\right) * x+\) beta* \(y\).

INTEGER. Specifies the number of rows of the matrix \(A\). The value of \(m\) must be at least zero.

INTEGER. Specifies the number of columns of the matrix \(A\). The value of \(n\) must be at least zero.

REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv, scgemv
DOUBLE COMPLEX for zgemv, dzgemv
Specifies the scalar alpha.
REAL for sgemv, scgemv
DOUBLE PRECISION for dgemv, dzgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv
Array, DIMENSION (lda, n). Before entry, the leading m-by-n part of the array a must contain the matrix of coefficients.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub) program. The value of 1 da must be at least max \((1, m)\).

REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv, scgemv
DOUBLE COMPLEX for zgemv, dzgemv
Array, DIMENSION at least (1+(n-1)*abs(incx)) when trans = 'N' or ' n ' and at least ( \(1+(m-1) * a b s(i n c x)\) ) otherwise. Before entry, the incremented array \(x\) must contain the vector \(x\).

INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero.

REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv, scgemv
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
DOUBLE COMPLEX for zgemv, dzgemv \\
Specifies the scalar beta. When beta is set to zero, then y need not be set on input.
\end{tabular} \\
\hline \multirow[t]{5}{*}{y} & REAL for sgemv \\
\hline & DOUBLE PRECISION for dgemv \\
\hline & COMPLEX for cgemv, scgemv \\
\hline & DOUBLE COMPLEX for zgemv, dzgemv \\
\hline & Array, DIMENSION at least (1 + \(m-1\) )*abs (incy)) when trans \(={ }^{\prime} \mathrm{N}^{\prime}\) or ' n ' and at least \((1+(n-1) * a b s(i n c y))\) otherwise. Before entry with non-zero beta, the incremented array \(y\) must contain the vector \(y\). \\
\hline incy & INTEGER. Specifies the increment for the elements of \(y\). \\
\hline & The value of incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}

Updated vector \(y\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gemv interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size ( \(m, n\) ). \\
\hline \(x\) & Holds the vector with the number of elements \(r x\) where \(r x=n\) if trans \(=\) ' \(N\) ', \(r x=m\) otherwise. \\
\hline y & Holds the vector with the number of elements ry where ry \(=m\) if trans \(=\) 'N', ry = \(n\) otherwise. \\
\hline trans & Must be 'N', 'C', or 'T'. The default value is ' N '. \\
\hline alpha & The default value is 1 . \\
\hline beta & The default value is 0 . \\
\hline
\end{tabular}
?ger
Performs a rank-1 update of a general matrix.
Syntax

\section*{Fortran 77:}
```

call sger(m, n, alpha, x, incx, y, incy, a, lda)
call dger(m, n, alpha, x, incx, y, incy, a, lda)

```

\section*{Fortran 95:}
```

call ger(a, x, y [,alpha])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?ger routines perform a matrix-vector operation defined as
\(A:=a l p h a^{\star} x^{\star} y^{\prime}+A\),
where:
```

alpha is a scalar,
x is an m-element vector,
y is an n-element vector,
A is an m-by-n general matrix.
Input Parameters

```
m
n
alpha

X
incx
y
incy
a

Ida

INTEGER. Specifies the number of rows of the matrix \(A\). The value of \(m\) must be at least zero.

INTEGER. Specifies the number of columns of the matrix \(A\). The value of \(n\) must be at least zero.

REAL for sger DOUBLE PRECISION for dger Specifies the scalar alpha.

REAL for sger
DOUBLE PRECISION for dger
Array, DIMENSION at least (1 + (m-1)*abs (incx)). Before entry, the incremented array \(x\) must contain the m-element vector \(x\).
INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero.

REAL for sger
DOUBLE PRECISION for dger
Array, DIMENSION at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array y must contain the \(n\)-element vector \(y\).

INTEGER. Specifies the increment for the elements of \(y\).
The value of incy must not be zero.
REAL for sger
DOUBLE PRECISION for dger
Array, DIMENSION (lda, \(n\) ).
Before entry, the leading \(m\)-by-n part of the array a must contain the matrix of coefficients.

INTEGER. Specifies the leading dimension of a declared in the calling (sub)program. The value of 1 da must be at least max \((1, m)\).

\section*{Output Parameters}
a
Overwritten by the updated matrix.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ger interface are the following:

\section*{a}

Holds the matrix \(A\) of size \((m, n)\).
\begin{tabular}{ll}
\(x\) & Holds the vector with the number of elements \(m\). \\
\(y\) & Holds the vector with the number of elements \(n\). \\
alpha & The default value is 1.
\end{tabular}

\section*{?gerc}

Performs a rank-1 update (conjugated) of a general
matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call cgerc(m, n, alpha, x, incx, y, incy, a, lda)
call zgerc(m, n, alpha, x, incx, y, incy, a, lda)

```

\section*{Fortran 95:}
```

call gerc(a, x, y [,alpha])

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ? gerc routines perform a matrix-vector operation defined as
\[
A:=\operatorname{alpha} x^{\star} \operatorname{conjg}\left(y^{\prime}\right)+A,
\]
where:
```

alpha is a scalar,
x is an m-element vector,
y is an n-element vector,
A is an m-by-n matrix.

```

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & INTEGER. Specifies the number of rows of the matrix \(A\). The value of \(m\) must be at least zero. \\
\hline \(n\) & INTEGER. Specifies the number of columns of the matrix \(A\). The value of \(n\) must be at least zero. \\
\hline alpha & \begin{tabular}{l}
COMPLEX for cgerc \\
DOUBLE COMPLEX for zgerc \\
Specifies the scalar alpha.
\end{tabular} \\
\hline \(x\) & \begin{tabular}{l}
COMPLEX for cgerc \\
DOUBLE COMPLEX for zgerc \\
Array, DIMENSION at least \((1+(m-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the m-element vector \(x\).
\end{tabular} \\
\hline incx & INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero. \\
\hline y & COMPLEX for cgerc \\
\hline
\end{tabular}

DOUBLE COMPLEX for zgerc
Array, DIMENSION at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\).
incy INTEGER. Specifies the increment for the elements of \(y\). The value of incy must not be zero.
a
COMPLEX for cgerc
DOUBLE COMPLEX for zgerc
Array, DIMENSION (lda, \(n\) ).
Before entry, the leading \(m\)-by-n part of the array a must contain the matrix of coefficients.
Ida INTEGER. Specifies the leading dimension of \(a\) as declared in the calling (sub) program. The value of Ida must be at least max \((1, \mathrm{~m})\).

\section*{Output Parameters}

Overwritten by the updated matrix.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gerc interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((m, n)\). \\
\(x\) & Holds the vector with the number of elements \(m\). \\
\(y\) & Holds the vector with the number of elements \(n\). \\
alpha & The default value is 1.
\end{tabular}
?geru
Performs a rank-1 update (unconjugated) of a general matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call cgeru(m, n, alpha, x, incx, y, incy, a, lda)
call zgeru(m, n, alpha, x, incx, y, incy, a, lda)

```

\section*{Fortran 95:}
```

call geru(a, x, y [,alpha])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?geru routines perform a matrix-vector operation defined as
```

A := alpha* ** y ' + A,

```
where:
```

alpha is a scalar,
x is an m-element vector,
y is an n-element vector,
A is an m-by-n matrix.
Input Parameters
m
n
alpha
X
incx
Y
incy
a
Ida

```

\section*{Output Parameters}

Overwritten by the updated matrix.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine geru interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the matrix A of size \((m, n)\). \\
\(x\) & Holds the vector with the number of elements \(m\). \\
\(y\) & Holds the vector with the number of elements \(n\). \\
alpha & The default value is 1.
\end{tabular}
?hbmv
Computes a matrix-vector product using a Hermitian band matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call chbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)
call zhbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

```

\section*{Fortran 95:}
```

call hbmv(a, x, y [,uplo][,alpha] [,beta])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?hbmv routines perform a matrix-vector operation defined as \(y:=a l p h a \star A^{\star} x+b e t a * y\), where:
```

alpha and beta are scalars,
x and y are n-element vectors,
A is an n-by-n Hermitian band matrix, with k super-diagonals.
Input Parameters

```
uplo
n
k
alpha
a

CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian band matrix \(A\) is used:
If uplo = 'U' or 'u', then the upper triangular part of the matrix \(A\) is used.
If uplo = 'L' or 'l', then the low triangular part of the matrix \(A\) is used. least zero.
INTEGER. Specifies the number of super-diagonals of the matrix \(A\).
The value of \(k\) must satisfy \(0 \leq k\).
COMPLEX for chbmv
DOUBLE COMPLEX for zh.bmv
Specifies the scalar alpha.
COMPLEX for chbmv
DOUBLE COMPLEX for zh.bmv
Array, DIMENSION (lda, n).
Before entry with uplo \(=\) ' \(U\) ' or ' \(u\) ', the leading \((k+1)\) by \(n\) part of the array a must contain the upper triangular band part of the Hermitian matrix. The matrix must be supplied column-by-column, with the leading diagonal of the matrix in row \((k+1)\) of the array, the first super-diagonal starting at position 2 in row \(k\), and so on. The top left \(k\) by \(k\) triangle of the array \(a\) is not referenced.

The following program segment transfers the upper triangular part of a Hermitian band matrix from conventional full matrix storage to band storage:
```

do 20, j = 1, n
m=k+1-j
do 10, i = max(1, j - k), j
a(m + i, j) = matrix(i, j)
continue
continue

```

Before entry with uplo \(=\) 'L' or 'l', the leading \((k+1)\) by \(n\) part of the array a must contain the lower triangular band part of the Hermitian matrix, supplied column-by-column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right \(k\) by \(k\) triangle of the array \(a\) is not referenced. The following program segment transfers the lower triangular part of a Hermitian band matrix from conventional full matrix storage to band storage:
```

do $20, j=1, n$
$m=1-j$
do 10, $i=j, \min (n, j+k)$
$a(m+i, j)=\operatorname{matrix}(i, j)$
continue
continue

```

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.
INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of 1 da must be at least \((k+1)\).

COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the vector \(x\).
INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero.

COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv
Specifies the scalar beta.
COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv
Array, DIMENSION at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array y must contain the vector \(y\).
INTEGER. Specifies the increment for the elements of \(y\). The value of incy must not be zero.

\section*{Output Parameters}
y
Overwritten by the updated vector \(y\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hbmv interface are the following:
a
Holds the array a of size \((k+1, n)\).
\begin{tabular}{ll}
\(x\) & Holds the vector with the number of elements \(n\). \\
\(y\) & Holds the vector with the number of elements \(n\). \\
uplo & Must be 'U' or ' \(L\) '. The default value is 'U'. \\
alpha & The default value is 1. \\
beta & The default value is 0.
\end{tabular}

\section*{?hemv}

Computes a matrix-vector product using a Hermitian matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call chemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call zhemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

```

\section*{Fortran 95:}
```

call hemv(a, x, y [,uplo][,alpha] [,beta])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?hemv routines perform a matrix-vector operation defined as
\[
y:=a l p h a^{\star} A^{\star} x+b^{*} a^{\star} y
\]
where:
alpha and beta are scalars,
\(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) Hermitian matrix.

\section*{Input Parameters}
uplo
\(n\)
alpha
a

CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is used.
If uplo = 'U' or 'u', then the upper triangular of the array a is used. If uplo = 'L' or 'l', then the low triangular of the array a is used.
INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
COMPLEX for chemv
DOUBLE COMPLEX for zhemv
Specifies the scalar alpha.
COMPLEX for chemv
DOUBLE COMPLEX for zhemv
Array, DIMENSION (lda, n).

Before entry with uplo = 'U' or 'u', the leading \(n\)-by- \(n\) upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(a\) is not referenced. Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of \(a\) is not referenced.
The imaginary parts of the diagonal elements need not be set and are assumed to be zero.
Ida
INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of 1 da must be at least max \((1, n)\).
x
COMPLEX for chemv
DOUBLE COMPLEX for zhemv
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).
INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero.

COMPLEX for chemv
DOUBLE COMPLEX for zhemv
Specifies the scalar beta. When beta is supplied as zero then \(y\) need not be set on input.
COMPLEX for chemv
DOUBLE COMPLEX for zhemv
Array, DIMENSION at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\).
INTEGER. Specifies the increment for the elements of \(y\). The value of incy must not be zero.

\section*{Output Parameters}

\section*{y}

Overwritten by the updated vector \(y\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine hemv interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((n, n)\). \\
\(x\) & Holds the vector with the number of elements \(n\). \\
\(y\) & Holds the vector with the number of elements \(n\). \\
uplo & Must be 'U' or 'L'. The default value is ' \(U\) '. \\
alpha & The default value is 1. \\
beta & The default value is 0.
\end{tabular}
?her
Performs a rank-1 update of a Hermitian matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call cher(uplo, n, alpha, x, incx, a, lda)

```
```

call zher(uplo, n, alpha, x, incx, a, lda)

```

\section*{Fortran 95:}
```

call her(a, x [,uplo] [, alpha])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?her routines perform a matrix-vector operation defined as
```

A := alpha* **conjg(x') + A,

```
where:
alpha is a real scalar,
\(x\) is an \(n\)-element vector,
\(A\) is an \(n\)-by- \(n\) Hermitian matrix.
Input Parameters
uplo
n
alpha
x
incx
a
lda

CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is used.
If uplo = 'U' or 'u', then the upper triangular of the array a is used. If uplo = 'L' or 'l', then the low triangular of the array a is used.
INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
REAL for cher
DOUBLE PRECISION for zher
Specifies the scalar alpha.
COMPLEX for cher
DOUBLE COMPLEX for zher
Array, dimension at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).

INTEGER. Specifies the increment for the elements of \(x\).
The value of incx must not be zero.
COMPLEX for cher
DOUBLE COMPLEX for zher
Array, DIMENSION (lda, n).
Before entry with uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(a\) is not referenced.
Before entry with uplo = 'L' or 'l', the leading \(n\)-by-n lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of \(a\) is not referenced.
The imaginary parts of the diagonal elements need not be set and are assumed to be zero.
INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of 1 da must be at least max \((1, n)\).

\section*{Output Parameters} a

With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated matrix. The imaginary parts of the diagonal elements are set to zero.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine her interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((n, n)\). \\
\(x\) & Holds the vector with the number of elements \(n\). \\
uplo & Must be 'U' or 'L'. The default value is ' \(U\) '. \\
alpha & The default value is 1.
\end{tabular}
?her2
Performs a rank-2 update of a Hermitian matrix.
Syntax

\section*{Fortran 77:}
```

call cher2(uplo, n, alpha, x, incx, y, incy, a, lda)
call zher2(uplo, n, alpha, x, incx, y, incy, a, lda)

```

\section*{Fortran 95:}
```

call her2(a, x, y [,uplo][,alpha])

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?her2 routines perform a matrix-vector operation defined as
```

A := alpha *x*conjg(y') + conjg(alpha)*y *conjg(x') + A,

```
where:
alpha is a scalar,
\(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) Hermitian matrix.
Input Parameters
uplo

CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is used.
If uplo = 'U' or 'u', then the upper triangular of the array \(a\) is used.

If uplo = 'L' or 'l', then the low triangular of the array a is used.
\begin{tabular}{ll}
\(n\) \\
alpha & INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at \\
& least zero. \\
& COMPLEX for cher2 \\
& DOUBLE COMPLEX for zher2 \\
& Specifies the scalar alpha. \\
& COMPLEX for cher2 \\
& DOUBLE COMPLEX for zher2 \\
& Array, DIMENSION at least \((1+(n-1) *\) abs (incx) ). Before entry, the \\
& incremented array \(x\) must contain the \(n\)-element vector \(x\).
\end{tabular}

\section*{Output Parameters}
a
With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated matrix. With uplo = 'L' or 'l', the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated matrix. The imaginary parts of the diagonal elements are set to zero.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine her2 interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((n, n)\). \\
\(x\) & Holds the vector with the number of elements \(n\). \\
\(y\) & Holds the vector with the number of elements \(n\). \\
uplo & Must be 'U' or 'L'. The default value is ' \(U\) '. \\
alpha & The default value is 1.
\end{tabular}
```

?hpmv
Computes a matrix-vector product using a Hermitian
packed matrix.
Syntax

```

\section*{Fortran 77:}
```

call chpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

```
call chpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
call zhpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
```

call zhpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

```

\section*{Fortran 95:}
```

call hpmv(ap, x, y [,uplo][,alpha] [,beta])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?hpmv routines perform a matrix-vector operation defined as
```

y := alpha* A*}x+b,beta*y

```
where:
```

alpha and beta are scalars,
x and y are n-element vectors,
A is an n-by-n Hermitian matrix, supplied in packed form.

```

\section*{Input Parameters}
uplo
n
alpha
ap

CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix \(A\) is supplied in the packed array \(a p\).
If uplo = 'U' or 'u', then the upper triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = 'L' or 'l', then the low triangular part of the matrix \(A\) is supplied in the packed array ap.

INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv
Specifies the scalar alpha.
COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv
Array, DIMENSION at least ( \(\left.\left(n^{*}(n+1)\right) / 2\right)\). Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, column-by-column, so that ap(1) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(1,2)\) and \(a(2,2)\) respectively, and so on. Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, column-by-column, so that ap(1) contains a(1, 1), ap (2) and \(a p(3)\) contain \(a(2,1)\) and \(a(3,1)\) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

COMPLEX for chpmv
DOUBLE PRECISION COMPLEX for zhpmv
Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).
incx
beta
y
INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero.

COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv
Specifies the scalar beta.
When beta is equal to zero then \(y\) need not be set on input.
COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv
Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\).
incy
INTEGER. Specifies the increment for the elements of \(y\). The value of incy must not be zero.

\section*{Output Parameters}

Y
Overwritten by the updated vector \(y\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hpmv interface are the following:
\begin{tabular}{ll} 
ap & Holds the array ap of size \((n *(n+1) / 2)\). \\
\(x\) & Holds the vector with the number of elements \(n\). \\
\(y\) & Holds the vector with the number of elements \(n\). \\
alpha & Must be ' \(U\) ' or ' \(L\) '. The default value is ' \(U^{\prime}\). \\
beta & The default value is 1.
\end{tabular}
?hpr
Performs a rank-1 update of a Hermitian packed
matrix.
Syntax
Fortran 77:
```

call chpr(uplo, n, alpha, x, incx, ap)
call zhpr(uplo, n, alpha, x, incx, ap)

```

\section*{Fortran 95:}
```

call hpr(ap, x [,uplo] [, alpha])

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?hpr routines perform a matrix-vector operation defined as
\[
A:=\operatorname{alpha} x^{\star} \operatorname{conjg}\left(x^{\prime}\right)+A,
\]
where:
```

alpha is a real scalar,
x is an n-element vector,
A is an n-by-n Hermitian matrix, supplied in packed form.

```

\section*{Input Parameters}
uplo
n
alpha

X
incx
\(a p\)

CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = 'U' or 'u', the upper triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = 'L' or 'l', the low triangular part of the matrix \(A\) is supplied in the packed array ap.
INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.

REAL for chpr
DOUBLE PRECISION for zhpr
Specifies the scalar alpha.
COMPLEX for chpr
DOUBLE COMPLEX for zhpr
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).
INTEGER. Specifies the increment for the elements of \(x\). incx must not be zero.
COMPLEX for chpr
DOUBLE COMPLEX for zhpr
Array, DIMENSION at least \(\left(\left(n^{*}(n+1)\right) / 2\right)\). Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, column-by-column, so that ap(1) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(1,2)\) and \(a(2,2)\) respectively, and so on.
Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, column-bycolumn, so that \(a p(1)\) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(2\), 1) and a(3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

\section*{Output Parameters}
\(a p\)

With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.
The imaginary parts of the diagonal elements are set to zero.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hpr interface are the following:
\begin{tabular}{ll} 
ap & Holds the array ap of size \((n *(n+1) / 2)\). \\
\(x\) & Holds the vector with the number of elements \(n\). \\
uplo & Must be 'U' or 'L'. The default value is 'U'. \\
alpha & The default value is 1.
\end{tabular}
?hpr2
Performs a rank-2 update of a Hermitian packed matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call chpr2(uplo, n, alpha, x, incx, y, incy, ap)
call zhpr2(uplo, n, alpha, x, incx, y, incy, ap)

```

Fortran 95:
```

call hpr2(ap, x, y [,uplo][,alpha])

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?hpr2 routines perform a matrix-vector operation defined as
```

A := alpha* x*conjg(y') + conjg(alpha)*y*conjg(x') + A,

```
where:
```

alpha is a scalar,
x and y are n-element vectors,
A is an n-by-n Hermitian matrix, supplied in packed form.

```

\section*{Input Parameters}
uplo
n
alpha

CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix \(A\) is supplied in the packed array ap. If uplo = 'U' or 'u', then the upper triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = 'L' or 'l', then the low triangular part of the matrix \(A\) is supplied in the packed array ap.
INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.

COMPLEX for chpr2
\begin{tabular}{|c|c|}
\hline \multirow{5}{*}{\(x\)} & DOUBLE COMPLEX for zhpr2 \\
\hline & Specifies the scalar alpha. \\
\hline & COMPLEX for chpr2 \\
\hline & DOUBLE COMPLEX for zhpr2 \\
\hline & Array, dimension at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\). \\
\hline incx & INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero. \\
\hline \multirow[t]{3}{*}{y} & COMPLEX for chpr2 \\
\hline & DOUBLE COMPLEX for zhpr2 \\
\hline & Array, DIMENSION at least (1 + (n - 1)*abs (incy)). Before entry, the incremented array y must contain the \(n\)-element vector \(y\). \\
\hline \multirow[t]{2}{*}{incy} & INTEGER. Specifies the increment for the elements of \(y\). \\
\hline & The value of incy must not be zero. \\
\hline \multirow[t]{6}{*}{ap} & COMPLEX for chpr2 \\
\hline & DOUBLE COMPLEX for zhpr2 \\
\hline & Array, DIMENSION at least \(\left(\left(n^{*}(n+1)\right) / 2\right)\). Before entry with uplo \(=\) 'U' or 'u', the array ap must contain the upper triangular part of the \\
\hline & Hermitian matrix packed sequentially, column-by-column, so that ap(1) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(1,2)\) and \(a(2,2)\) respectively, and so on. \\
\hline & Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, column-bycolumn, so that \(a p(1)\) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(2,1)\) and a(3,1) respectively, and so on. \\
\hline & The imaginary parts of the diagonal elements need not be set and are assumed to be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
ap
With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.
The imaginary parts of the diagonal elements need are set to zero.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hpr2 interface are the following:
```

ap Holds the array ap of size (n* (n+1)/2).
x Holds the vector with the number of elements n.
y Holds the vector with the number of elements n.
uplo Must be 'U' or 'L'. The default value is 'U'.
alpha The default value is }1

```
?sbmv
Computes a matrix-vector product using a symmetric band matrix.

Syntax

\section*{Fortran 77:}
```

call ssbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)
call dsbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

```

\section*{Fortran 95:}
```

call sbmv(a, x, y [,uplo][,alpha] [,beta])

```

\section*{Include files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?s.bmv routines perform a matrix-vector operation defined as
```

y := alpha*A*x + beta*y,

```
where:
alpha and beta are scalars,
\(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n-b y-n\) symmetric band matrix, with \(k\) super-diagonals.

\section*{Input Parameters}
n
k
alpha
a

CHARACTER*1. Specifies whether the upper or lower triangular part of the band matrix \(A\) is used:
if uplo = 'U' or 'u' - upper triangular part;
if uplo = 'L' or 'l' - low triangular part.
INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.

INTEGER. Specifies the number of super-diagonals of the matrix \(A\).
The value of \(k\) must satisfy \(0 \leq k\).
REAL for ssbmv
DOUBLE PRECISION for dsbmv
Specifies the scalar alpha.
REAL for ssbmv
DOUBLE PRECISION for dsbmv
Array, DIMENSION (lda, n). Before entry with uplo = 'U' or 'u', the leading \((k+1)\) by \(n\) part of the array a must contain the upper triangular band part of the symmetric matrix, supplied column-by-column, with the leading diagonal of the matrix in row \((k+1)\) of the array, the first superdiagonal starting at position 2 in row \(k\), and so on. The top left \(k\) by \(k\) triangle of the array \(a\) is not referenced.
The following program segment transfers the upper triangular part of a symmetric band matrix from conventional full matrix storage to band storage:
```

do 20, j $=1, \mathrm{n}$
$m=k+1-j$
do 10, i $=\max (1, j-k), j$

```
\begin{tabular}{|c|c|}
\hline & 10
20 \begin{tabular}{c} 
continue \\
continue
\end{tabular} \\
\hline & Before entry with uplo = 'L' or 'l', the leading \((k+1)\) by \(n\) part of the array a must contain the lower triangular band part of the symmetric matrix, supplied column-by-column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right \(k\) by \(k\) triangle of the array a is not referenced. The following program segment transfers the lower triangular part of a symmetric band matrix from conventional full matrix storage to band storage: \\
\hline & ```
    do 20, j = 1, n
    m = 1 - j
    do 10, i = j, min( n, j + k )
        a( m + i, j ) = matrix( i, j )
    continue
``` \\
\hline Ida & Integer. Specifies the leading dimension of a as declared in the calling (sub)program. The value of 1 da must be at least \((k+1)\). \\
\hline \(x\) & \begin{tabular}{l}
REAL for ssbmv \\
DOUBLE PRECISION for dsbmv \\
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the vector \(x\).
\end{tabular} \\
\hline incx & INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero. \\
\hline beta & \begin{tabular}{l}
REAL for ssbmv \\
DOUBLE PRECISION for dsbmv \\
Specifies the scalar beta.
\end{tabular} \\
\hline y & \begin{tabular}{l}
REAL for ssbmv \\
DOUBLE PRECISION for dsbmv \\
Array, DIMENSION at least \((1+(n-1) * a b s\) (incy)). Before entry, the incremented array \(y\) must contain the vector \(y\).
\end{tabular} \\
\hline incy & INTEGER. Specifies the increment for the elements of \(y\). The value of incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by the updated vector \(y\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine sbmv interface are the following:
\begin{tabular}{ll}
a & Holds the array a of size \((k+1, n)\). \\
\(x\) & Holds the vector with the number of elements \(n\). \\
\(y\) & Holds the vector with the number of elements \(n\). \\
uplo & Must be 'U' or 'L'. The default value is ' \(U\) '. \\
alpha & The default value is 1. \\
beta & The default value is 0.
\end{tabular}
```

?spmv
Computes a matrix-vector product using a symmetric
packed matrix.
Syntax

```

\section*{Fortran 77:}
```

call sspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

```
call sspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
call dspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
```

call dspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

```

\section*{Fortran 95:}
```

call spmv(ap, x, y [,uplo][,alpha] [,beta])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ? spmv routines perform a matrix-vector operation defined as
```

y := alpha* A*}x+\mp@subsup{b}{}{*

```
where:
```

alpha and beta are scalars,

```
\(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n-b y-n\) symmetric matrix, supplied in packed form.

\section*{Input Parameters}
uplo
n
alpha
\(a p\)

CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = 'U' or 'u', then the upper triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = 'L' or 'l', then the low triangular part of the matrix \(A\) is supplied in the packed array ap.
INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.

REAL for sspmv
DOUBLE PRECISION for dspmv
Specifies the scalar alpha.
REAL for sspmv
DOUBLE PRECISION for dspmv
Array, DIMENSION at least (\(\left.\left(n^{*}(n+1)\right) / 2\right)\).
Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that \(a p(1)\) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(1,2)\) and \(a(2,2)\) respectively, and so on. Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric
\begin{tabular}{|c|c|}
\hline & matrix packed sequentially, column-by-column, so that ap (1) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(2,1)\) and \(a(3,1)\) respectively, and so on. \\
\hline \multirow[t]{3}{*}{\(x\)} & REAL for sspmv \\
\hline & DOUBLE PRECISION for dspmv \\
\hline & Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\). \\
\hline incx & INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero. \\
\hline \multirow[t]{4}{*}{beta} & REAL for sspmv \\
\hline & DOUBLE PRECISION for dspmv \\
\hline & Specifies the scalar beta. \\
\hline & When beta is supplied as zero, then \(y\) need not be set on input. \\
\hline \multirow[t]{3}{*}{y} & REAL for sspmv \\
\hline & DOUBLE PRECISION for dspmv \\
\hline & Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\). \\
\hline \multirow[t]{2}{*}{incy} & INTEGER. Specifies the increment for the elements of \(y\). \\
\hline & The value of incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

y Overwritten by the updated vector y.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine spmv interface are the following:
```

ap Holds the array ap of size (n* (n+1)/2).
x Holds the vector with the number of elements n.
y Holds the vector with the number of elements n.
uplo Must be 'U' or 'L'. The default value is 'U'.
alpha The default value is 1.
beta The default value is 0.

```

\section*{?spr}

Performs a rank-1 update of a symmetric packed matrix.

Syntax

\section*{Fortran 77:}
```

call sspr(uplo, n, alpha, x, incx, ap)
call dspr(uplo, n, alpha, x, incx, ap)

```

Fortran 95:
```

call spr(ap, x [,uplo] [, alpha])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?spr routines perform a matrix-vector operation defined as
```

a:= alpha*\mp@subsup{x}{}{*}\mp@subsup{x}{}{\prime}+ A,

```
where:
alpha is a real scalar,
\(x\) is an \(n\)-element vector,
\(A\) is an \(n-b y-n\) symmetric matrix, supplied in packed form.

\section*{Input Parameters}
uplo
n
alpha

X
incx
ap

CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = 'U' or 'u', then the upper triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = 'L' or 'l', then the low triangular part of the matrix \(A\) is supplied in the packed array ap.
INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.

REAL for sspr
DOUBLE PRECISION for dspr
Specifies the scalar alpha.
REAL for sspr
DOUBLE PRECISION for dspr
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).
INTEGER. Specifies the increment for the elements of \(x\).
The value of incx must not be zero.
REAL for sspr
DOUBLE PRECISION for dspr
Array, DIMENSION at least (\(n *(n+1)) / 2)\). Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that ap (1) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(1,2)\) and \(a(2,2)\) respectively, and so on.
Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that \(a p(1)\) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(2,1)\) and \(a(3,1)\) respectively, and so on.

\section*{Output Parameters}
\(a p\)

With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine spr interface are the following:
\begin{tabular}{ll}
ap & Holds the array ap of size \((n *(n+1) / 2)\). \\
\(x\) & Holds the vector with the number of elements \(n\). \\
uplo & Must be 'U' or 'L'. The default value is 'U'. \\
alpha & The default value is 1.
\end{tabular}
?spr2
Performs a rank-2 update of a symmetric packed matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call sspr2(uplo, n, alpha, x, incx, y, incy, ap)
call dspr2(uplo, n, alpha, x, incx, y, incy, ap)

```

\section*{Fortran 95:}
```

call spr2(ap, x, y [,uplo][,alpha])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?spr2 routines perform a matrix-vector operation defined as
```

A:= alpha*\mp@subsup{x}{}{*}\mp@subsup{y}{}{\prime}+ alpha* \mp@subsup{y}{}{\star}\mp@subsup{x}{}{\prime}+A,

```
where:
alpha is a scalar,
\(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n-b y-n\) symmetric matrix, supplied in packed form.
Input Parameters
uplo
CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = 'U' or 'u', then the upper triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = 'L' or 'l', then the low triangular part of the matrix \(A\) is supplied in the packed array ap.
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero. \\
\hline \multirow[t]{3}{*}{alpha} & REAL for sspr2 \\
\hline & DOUBLE PRECISION for dspr2 \\
\hline & Specifies the scalar alpha. \\
\hline \multirow[t]{3}{*}{\(x\)} & REAL for sspr2 \\
\hline & DOUBLE PRECISION for dspr2 \\
\hline & Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\). \\
\hline incx & \begin{tabular}{l}
INTEGER. Specifies the increment for the elements of \(x\). \\
The value of incx must not be zero.
\end{tabular} \\
\hline \multirow[t]{3}{*}{y} & REAL for sspr2 \\
\hline & DOUBLE PRECISION for dspr2 \\
\hline & Array, DIMENSION at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\). \\
\hline incy & INTEGER. Specifies the increment for the elements of \(y\). The value of incy must not be zero. \\
\hline \multirow[t]{4}{*}{\(a p\)} & REAL for sspr2 \\
\hline & DOUBLE PRECISION for dspr2 \\
\hline & Array, DIMENSION at least \(\left(\left(n^{*}(n+1)\right) / 2\right)\). Before entry with uplo \(=\) 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that ap(1) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(1,2)\) and \(a(2,2)\) respectively, and so on. \\
\hline & Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that \(a p(1)\) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(2,1)\) and \(a(3,1)\) respectively, and so on. \\
\hline
\end{tabular}

\section*{Output Parameters}
ap
With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine spr2 interface are the following:
\begin{tabular}{ll}
ap & Holds the array ap of size \((n *(n+1) / 2)\). \\
\(x\) & Holds the vector with the number of elements \(n\). \\
\(y\) & Holds the vector with the number of elements \(n\). \\
uplo & Must be 'U' or 'L'. The default value is 'U'. \\
alpha & The default value is 1.
\end{tabular}
?symv
Computes a matrix-vector product for a symmetric matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call dsymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

```

\section*{Fortran 95:}
```

call symv(a, x, y [,uplo][,alpha] [,beta])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?symv routines perform a matrix-vector operation defined as
\[
y:=a l p h a^{\star} A^{\star} x+b^{2} a^{\star} y
\]
where:
```

alpha and beta are scalars,
x and y are n-element vectors,
A is an n-by-n symmetric matrix.

```

\section*{Input Parameters}
uplo
n
alpha
a

Ida

X

CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is used.
If uplo = 'U' or 'u', then the upper triangular part of the array a is used.
If uplo = 'L' or 'l', then the low triangular part of the array \(a\) is used.
INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
REAL for ssymv
DOUBLE PRECISION for dsymv
Specifies the scalar alpha.
REAL for ssymv
DOUBLE PRECISION for dsymv
Array, DIMENSION (lda, n).
Before entry with uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a must contain the upper triangular part of the symmetric matrix \(A\) and the strictly lower triangular part of \(a\) is not referenced. Before entry with uplo = 'L' or 'l', the leading \(n\)-by-n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix \(A\) and the strictly upper triangular part of \(a\) is not referenced.
INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of 1 da must be at least max \((1, n)\).
REAL for ssymv
DOUBLE PRECISION for dsymv
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).
\begin{tabular}{|c|c|}
\hline incx & INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero. \\
\hline \multirow[t]{4}{*}{beta} & REAL for ssymv \\
\hline & DOUBLE PRECISION for dsymv \\
\hline & Specifies the scalar beta. \\
\hline & When beta is supplied as zero, then y need not be set on input. \\
\hline \multirow[t]{3}{*}{Y} & REAL for ssymv \\
\hline & DOUBLE PRECISION for dsymv \\
\hline & Array, DIMENSION at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\). \\
\hline \multirow[t]{2}{*}{incy} & INTEGER. Specifies the increment for the elements of \(y\). \\
\hline & The value of incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
y
Overwritten by the updated vector \(y\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine symv interface are the following:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
\(x\) & Holds the vector with the number of elements \(n\). \\
\(y\) & Holds the vector with the number of elements \(n\). \\
uplo & Must be 'U' or 'L'. The default value is ' \(U\) '. \\
alpha & The default value is 1. \\
beta & The default value is 0.
\end{tabular}
?syr
Performs a rank-1 update of a symmetric matrix.
Syntax
Fortran 77:
call ssyr(uplo, \(n, ~ a l p h a, ~ x, ~ i n c x, ~ a, ~ l d a)\)
call dsyr(uplo, \(n, ~ a l p h a, ~ x, ~ i n c x, ~ a, ~ l d a) ~\)
Fortran 95:
call syr(a, x [, uplo] [, alpha])
Include files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

Description
The ?syr routines perform a matrix-vector operation defined as
\(A:=\) alpha* \(x^{*} x^{\prime}+A\),
where:

\section*{Output Parameters}
a
With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated matrix. With uplo = 'L' or 'l', the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated matrix.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine syr interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((n, n)\). \\
\(x\) & Holds the vector with the number of elements \(n\). \\
uplo & Must be 'U' or 'L'. The default value is ' \(U\) '. \\
alpha & The default value is 1.
\end{tabular}

\section*{?syr2}

Performs a rank-2 update of symmetric matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssyr2(uplo, n, alpha, x, incx, y, incy, a, lda)
call dsyr2(uplo, n, alpha, x, incx, y, incy, a, lda)

```

\section*{Fortran 95:}
```

call syr2(a, x, y [,uplo][,alpha])

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?syr2 routines perform a matrix-vector operation defined as

where:
```

alpha is a scalar,
x and y are n-element vectors,

```
\(A\) is an \(n-b y-n\) symmetric matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is used. \\
If uplo = 'U' or 'u', then the upper triangular part of the array \(a\) is used. \\
If uplo = 'L' or 'l', then the low triangular part of the array \(a\) is used.
\end{tabular} \\
\hline \(n\) & INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero. \\
\hline \multirow[t]{3}{*}{alpha} & REAL for ssyr2 \\
\hline & DOUBLE PRECISION for dsyr2 \\
\hline & Specifies the scalar alpha. \\
\hline \multirow[t]{3}{*}{\(x\)} & REAL for ssyr2 \\
\hline & DOUBLE PRECISION for dsyr2 \\
\hline & Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\). \\
\hline incx & INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero. \\
\hline \multirow[t]{3}{*}{Y} & REAL for ssyr2 \\
\hline & DOUBLE PRECISION for dsyr2 \\
\hline & Array, DIMENSION at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array y must contain the \(n\)-element vector \(y\). \\
\hline incy & INTEGER. Specifies the increment for the elements of \(y\). The value of incy must not be zero. \\
\hline
\end{tabular}
a
REAL for ssyr2
DOUBLE PRECISION for dsyr2
Array, DIMENSION (Ida, \(n\)).
Before entry with uplo = 'U' or 'u', the leading \(n\)-by- \(n\) upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of a is not referenced.
Before entry with uplo = 'L' or 'l', the leading \(n\)-by- \(n\) lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(a\) is not referenced.
Ida
integer. Specifies the leading dimension of \(a\) as declared in the calling (sub)program. The value of 1 da must be at least \(\max (1, n)\).

\section*{Output Parameters}
a
With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated matrix. With uplo = 'L' or 'l', the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated matrix.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine syr2 interface are the following:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
\(x\) & Holds the vector \(x\) of length \(n\). \\
\(y\) & Holds the vector \(y\) of length \(n\). \\
uplo & Must be ' \(U\) ' or ' \(L\) '. The default value is ' \(U\) '. \\
alpha & The default value is 1.
\end{tabular}

\section*{?tbmv \\ Computes a matrix-vector product using a triangular band matrix.}

\section*{Syntax}

\section*{Fortran 77:}
```

call stbmv(uplo, trans, diag, n, k, a, lda, x, incx)
call dtbmv(uplo, trans, diag, n, k, a, lda, x, incx)
call ctbmv(uplo, trans, diag, n, k, a, lda, x, incx)
call zt.bmv(uplo, trans, diag, n, k, a, lda, x, incx)

```

\section*{Fortran 95:}
```

call t.bmv(a, x [,uplo] [, trans] [,diag])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?tbmv routines perform one of the matrix-vector operations defined as
```

x := A*}x,\mathrm{ or }x := A'*x, or x := conjg(A')*x

```
where:
\(x\) is an \(n\)-element vector,
A is an \(n\)-by-n unit, or non-unit, upper or lower triangular band matrix, with \((k+1)\) diagonals.

\section*{Input Parameters}
uplo
trans
diag
\(n\)
k
a

CHARACTER*1. Specifies whether the matrix \(A\) is an upper or lower triangular matrix:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
CHARACTER*1. Specifies the operation:
if trans \(={ }^{\prime} N\) ' or ' \(n\) ', then \(x:=A^{*} x\);
if trans \(=\) 'T' or 't', then \(x:=A ' A_{x}\);
if trans \(=\) ' C' or 'c', then \(x:=\operatorname{conjg}(A '){ }^{*} x\).
CHARACTER*1. Specifies whether the matrix \(A\) is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag = 'N' or 'n', then the matrix is not unit triangular.
INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.

INTEGER. On entry with uplo = 'U' or 'u', \(k\) specifies the number of super-diagonals of the matrix \(A\). On entry with uplo = 'L' or 'l', \(k\) specifies the number of sub-diagonals of the matrix \(a\).
The value of \(k\) must satisfy \(0 \leq k\).
REAL for stbmv
DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv
DOUBLE COMPLEX for zt.bmv
Array, DIMENSION (lda, \(n\)).
Before entry with uplo \(=\) 'U' or 'u', the leading \((k+1)\) by \(n\) part of the array a must contain the upper triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row (\(k+1\)) of the array, the first super-diagonal starting at position 2 in row \(k\), and so on. The top left \(k\) by \(k\) triangle of the array \(a\) is not referenced. The following program segment transfers an upper triangular band matrix from conventional full matrix storage to band storage:
```

do 20, j = 1, n
$m=k+1-j$
do 10, i $=\max (1, j-k), j$
$a(m+i, j)=\operatorname{matrix}(i, j)$
continue
continue

```

Before entry with uplo = 'L' or 'l', the leading (\(k+1\)) by \(n\) part of the array a must contain the lower triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in
row 2, and so on. The bottom right \(k\) by \(k\) triangle of the array \(a\) is not referenced. The following program segment transfers a lower triangular band matrix from conventional full matrix storage to band storage:
```

lda
x
incx

```
lda
x
incx

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of lda must be at least \((k+1)\).
REAL for st.bmv
DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv
DOUBLE COMPLEX for zt.bmv
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).

INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero.
```

do 20, j = 1, n
m = 1 - j
do 10, i = j, min(n, j + k)
a(m+i, j) = matrix (i, j)
continue
continue

```

Note that when diag = 'U' or 'u', the elements of the array a corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.

\section*{Output Parameters}

X
Overwritten with the transformed vector \(x\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine tbmv interface are the following:
```

a Holds the array a of size (k+1,n).
x Holds the vector with the number of elements n.
uplo Must be 'U' or 'L'. The default value is 'U'.
trans Must be 'N', 'C', or 'T'.
The default value is 'N'.
Must be 'N' or 'U'. The default value is 'N'.

```

\section*{?tbsv}

Solves a system of linear equations whose coefficients are in a triangular band matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call stbsv(uplo, trans, diag, n, k, a, lda, x, incx)
call dtbsv(uplo, trans, diag, n, k, a, lda, x, incx)
call ctbsv(uplo, trans, diag, n, k, a, lda, x, incx)
call ztbsv(uplo, trans, diag, n, k, a, lda, x, incx)

```

\section*{Fortran 95:}
```

call tbsv(a, x [,uplo] [, trans] [,diag])

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ? tbsv routines solve one of the following systems of equations:
```

A*}\mp@subsup{x}{x}{= b, or }\mp@subsup{A}{}{\prime*}\mp@subsup{*}{x}{}= b, or conjg(A')** ( b b

```
where:
\(b\) and \(x\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) unit, or non-unit, upper or lower triangular band matrix, with \((k+1)\) diagonals.
The routine does not test for singularity or near-singularity.
Such tests must be performed before calling this routine.

\section*{Input Parameters}
uplo
trans
diag
\(n\)
k
a

CHARACTER*1. Specifies whether the matrix \(A\) is an upper or lower triangular matrix:
if uplo = 'U' or 'u' the matrix is upper triangular;
if uplo = 'L' or 'l', the matrix is low triangular.
CHARACTER*1. Specifies the system of equations:
if trans \(=\) ' \(N\) ' or ' \(n\) ', then \(A^{*} x=b\);
if trans \(=\) 'T' or 't', then \(A^{\prime *}{ }^{\prime}=b\);
if trans \(=\) 'C' or 'c', then conjg (\(\left.A^{\prime}\right) * x=b\).
CHARACTER*1. Specifies whether the matrix \(A\) is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag \(=\) ' \(N\) ' or ' n ', then the matrix is not unit triangular.
INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
INTEGER. On entry with uplo = 'U' or 'u', \(k\) specifies the number of super-diagonals of the matrix \(A\). On entry with uplo = 'L' or 'l', \(k\) specifies the number of sub-diagonals of the matrix \(A\).
The value of \(k\) must satisfy \(0 \leq k\).
REAL for stbsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv
Array, DIMENSION (lda, n).
Before entry with uplo = 'U' or 'u', the leading \((k+1)\) by \(n\) part of the array a must contain the upper triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row \((k+1)\) of the array, the first super-diagonal starting at position 2 in row \(k\), and so on. The top left \(k\) by \(k\) triangle of the array \(a\) is not referenced.

The following program segment transfers an upper triangular band matrix from conventional full matrix storage to band storage:
```

do 20, j = 1, n
m=k+1-j
do 10, i = max(1, j - k), jl
a(m + i, j) = matrix (i, j)
10 continue
20 continue

```

Before entry with uplo = 'L' or 'l', the leading \((k+1)\) by \(n\) part of the array a must contain the lower triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2 , and so on. The bottom right \(k\) by \(k\) triangle of the array \(a\) is not referenced.
The following program segment transfers a lower triangular band matrix from conventional full matrix storage to band storage:
```

do 20, j = 1, n
m=1-j
do 10, i = j, min(n, j + k)
a(m+i, j) = matrix (i, j)
1 0 continue
20 continue

```

When diag = 'U' or 'u', the elements of the array a corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.
INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of 1 da must be at least \((k+1)\).
REAL for st.bsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element right-hand side vector \(b\).
incx
INTEGER. Specifies the increment for the elements of \(x\).
The value of incx must not be zero.

\section*{Output Parameters}
x
Overwritten with the solution vector \(x\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine tbsv interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the array a of size \((k+1, n)\). \\
\(x\) & Holds the vector with the number of elements \(n\).
\end{tabular}
\begin{tabular}{ll}
uplo & Must be 'U' or 'L'. The default value is ' \(U\) '. \\
trans & Must be ' \(N^{\prime}\), ' \(C^{\prime}\), or 'T'. \\
& The default value is ' \(N^{\prime}\). \\
diag & Must be ' \(N^{\prime}\) or ' \(U^{\prime}\). The default value is ' \(N^{\prime}\).
\end{tabular}
?tpmu
Computes a matrix-vector product using a triangular packed matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call stpmv(uplo, trans, diag, n, ap, x, incx)
call dtpmv(uplo, trans, diag, n, ap, x, incx)
call ctpmv(uplo, trans, diag, n, ap, x, incx)
call ztpmv(uplo, trans, diag, n, ap, x, incx)

```

\section*{Fortran 95:}
```

call tpmv(ap, x [,uplo] [, trans] [,diag])

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?tpmv routines perform one of the matrix-vector operations defined as
```

x := A*x, or x := A'*x, or x := conjg(A')*x,

```
where:
\(x\) is an \(n\)-element vector,
\(A\) is an \(n-b y-n\) unit, or non-unit, upper or lower triangular matrix, supplied in packed form.
Input Parameters
```

uplo CHARACTER*1. Specifies whether the matrix A is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or'l', then the matrix is low triangular.
trans
diag
n
ap
CHARACTER*1. Specifies the operation:
if trans = 'N' or 'n', then x := A*x;
if trans = 'T' or 't', then x := A'*x;
if trans = 'C' or 'c', then x := conjg(A')*x.
CHARACTER*1. Specifies whether the matrix A is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag = 'N' or 'n', then the matrix is not unit triangular.
INTEGER. Specifies the order of the matrix A. The value of n must be at
least zero.
REAL for stpmv

```

DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv
DOUBLE COMPLEX for ztpmv
Array, DIMENSION at least \(((n *(n+1)) / 2)\). Before entry with uplo \(=\) 'U' or 'u', the array ap must contain the upper triangular matrix packed sequentially, column-by-column, so that ap(1) contains a(1,1), ap(2) and ap \((3)\) contain \(a(1,2)\) and \(a(2,2)\) respectively, and so on. Before entry with uplo \(=\) 'L' or 'l', the array ap must contain the lower triangular matrix packed sequentially, column-by-column, so that ap (1) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(2,1)\) and \(a(3,1)\) respectively, and so on. When diag = 'U' or 'u', the diagonal elements of a are not referenced, but are assumed to be unity.
REAL for stpmv
DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv
DOUBLE COMPLEX for ztpmv
Array, DIMENSION at least (1 + (n - 1)*abs (incx)). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).
incx
INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero.

\section*{Output Parameters}

X
Overwritten with the transformed vector \(x\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine tpmv interface are the following:
\begin{tabular}{|c|c|}
\hline ap & Holds the array ap of size \(\left(n^{*}(n+1) / 2\right)\). \\
\hline \(x\) & Holds the vector with the number of elements \(n\). \\
\hline uplo & Must be 'U' or 'L'. The default value is 'U'. \\
\hline trans & Must be ' N ', ' \(\mathrm{C}^{\prime}\), or ' T '. \\
\hline & The default value is ' N '. \\
\hline diag & Must be 'N' or 'U'. The default value is ' N '. \\
\hline
\end{tabular}
?tpsv
Solves a system of linear equations whose coefficients are in a triangular packed matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call stpsv(uplo, trans, diag, n, ap, x, incx)
call dtpsv(uplo, trans, diag, n, ap, x, incx)
call ctpsv(uplo, trans, diag, n, ap, x, incx)
call ztpsv(uplo, trans, diag, n, ap, x, incx)

```

\section*{Fortran 95:}
```

call tpsv(ap, x [,uplo] [, trans] [,diag])

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?tpsv routines solve one of the following systems of equations
```

A*x = b, or A'*x = b, or conjg(A')*x = b,

```
where:
\(b\) and \(x\) are \(n\)-element vectors,
\(A\) is an \(n-b y-n\) unit, or non-unit, upper or lower triangular matrix, supplied in packed form.
This routine does not test for singularity or near-singularity.
Such tests must be performed before calling this routine.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER* \({ }^{*}\). Specifies whether the matrix \(A\) is upper or lower triangular: \\
if uplo = 'U' or 'u', then the matrix is upper triangular; \\
if uplo = 'L' or 'l', then the matrix is low triangular.
\end{tabular} \\
\hline trans & \begin{tabular}{l}
CHARACTER*1. Specifies the system of equations: \\
if trans \(=\) 'N' or ' \(\mathrm{n}^{\prime}\), then \(A^{\star}{ }^{x}=\mathrm{b}\); \\
if trans \(=\) 'T' or 't', then \(A^{\prime} *_{x}=b\); \\
if trans \(=\) 'C' or 'c', then conjg (A') \({ }^{*} x=b\).
\end{tabular} \\
\hline diag & \begin{tabular}{l}
CHARACTER* 1 . Specifies whether the matrix \(A\) is unit triangular: \\
if diag = 'U' or 'u' then the matrix is unit triangular; \\
if diag = 'N' or ' n ', then the matrix is not unit triangular.
\end{tabular} \\
\hline \(n\) & INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero. \\
\hline \(a p\) & \begin{tabular}{l}
REAL for stpsv \\
DOUBLE PRECISION for dtpsv \\
COMPLEX for ctpsv \\
DOUBLE COMPLEX for ztpsv \\
Array, DIMENSION at least \(\left(\left(n^{\star}(n+1)\right) / 2\right)\). Before entry with uplo \(=\) 'U' or 'u', the array ap must contain the upper triangular matrix packed sequentially, column-by-column, so that ap(1) contains a(1, +1), ap (2) and \(a p(3)\) contain \(a(1,2)\) and \(a(2,2)\) respectively, and so on. \\
Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular matrix packed sequentially, column-by-column, so that ap(1) contains \(a(1,+1), a p(2)\) and \(a p(3)\) contain \(a(2,+1)\) and \(a(3,+1)\) respectively, and so on. \\
When diag = 'U' or 'u', the diagonal elements of a are not referenced, but are assumed to be unity.
\end{tabular} \\
\hline \(x\) & \begin{tabular}{l}
REAL for stpsv \\
DOUBLE PRECISION for dtpsv \\
COMPLEX for ctpsv
\end{tabular} \\
\hline
\end{tabular}

DOUBLE COMPLEX for ztpsv
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element right-hand side vector \(b\).
incx INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero.

\section*{Output Parameters}

X
Overwritten with the solution vector \(x\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine tpsv interface are the following:
ap Holds the array ap of size \(\left(n^{*}(n+1) / 2\right)\).
\(x \quad\) Holds the vector with the number of elements \(n\).
uplo Must be 'U' or 'L'. The default value is 'U'.
trans Must be 'N', 'C', or 'T'.
The default value is ' \(N\) '.
diag Must be 'N' or 'U'. The default value is 'N'.
?trmv
Computes a matrix-vector product using a triangular matrix.

Syntax

\section*{Fortran 77:}
```

call strmv(uplo, trans, diag, n, a, lda, x, incx)
call dtrmv(uplo, trans, diag, n, a, lda, x, incx)
call ctrmv(uplo, trans, diag, n, a, lda, x, incx)
call ztrmv(uplo, trans, diag, n, a, lda, x, incx)

```

\section*{Fortran 95:}
```

call trmv(a, x [,uplo] [, trans] [,diag])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?trmv routines perform one of the following matrix-vector operations defined as
\(x:=A^{*} x\), or \(x:=A^{\prime *} x\), or \(x:=\operatorname{conjg}\left(A^{\prime}\right){ }^{*} x\),
where:
\(x\) is an \(n\)-element vector,
\(A\) is an \(n-b y-n\) unit, or non-unit, upper or lower triangular matrix.

CHARACTER*1. Specifies whether the matrix A is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
CHARACTER*1. Specifies the operation:
if trans \(={ }^{\prime} N\) ' or ' \(n\) ', then \(x:=A^{*} x\);
if trans \(=\) 'T' or 't', then \(x:=A ' A_{x}\);
if trans \(=\) 'C' or 'c', then \(x:=\operatorname{conjg}(A '){ }^{*} x\).
CHARACTER*1. Specifies whether the matrix \(A\) is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag \(=\) ' \(N\) ' or ' n ', then the matrix is not unit triangular.
INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
REAL for strmv
DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for ztrmv
Array, DIMENSION (lda, n). Before entry with uplo = 'U' or 'u', the leading \(n-b y-n\) upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of \(a\) is not referenced. Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of \(a\) is not referenced.
When diag = 'U' or 'u', the diagonal elements of a are not referenced either, but are assumed to be unity.
INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of 1 da must be at least max \((1, n)\).

REAL for strmv
DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for ztrmv
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).

INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero.

\section*{Output Parameters}

Overwritten with the transformed vector x .

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine trmv interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the matrix A of size \((n, n)\). \\
\(x\) & Holds the vector with the number of elements \(n\). \\
uplo & Must be 'U' or 'L'. The default value is 'U'. \\
trans & Must be 'N', 'C' or 'T'.
\end{tabular}

The default value is ' N '.
diag
Must be 'N' or 'U'. The default value is 'N'.
?trsv
Solves a system of linear equations whose coefficients are in a triangular matrix.

Syntax

\section*{Fortran 77:}
```

call strsv(uplo, trans, diag, n, a, lda, x, incx)
call dtrsv(uplo, trans, diag, n, a, lda, x, incx)
call ctrsv(uplo, trans, diag, n, a, lda, x, incx)
call ztrsv(uplo, trans, diag, n, a, lda, x, incx)

```

\section*{Fortran 95:}
```

call trsv(a, x [,uplo] [, trans] [,diag])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?trsv routines solve one of the systems of equations:
```

A*}X=b,or A'* * = b, or conjg(A')** = b

```
where:
```

b}\mathrm{ and }x\mathrm{ are n-element vectors,

```
\(A\) is an \(n-b y-n\) unit, or non-unit, upper or lower triangular matrix.
The routine does not test for singularity or near-singularity.
Such tests must be performed before calling this routine.
Input Parameters
```

uplo CHARACTER*1. Specifies whether the matrix A is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
trans
diag
n
a
CHARACTER*1. Specifies the systems of equations:
if trans = 'N' or 'n', then A*x = b;
if trans = 'T' or 't', then A'**}= b
if trans = 'C' or 'c', then oconjg(A')*x = b.
CHARACTER*1. Specifies whether the matrix A is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag = 'N' or 'n', then the matrix is not unit triangular.
INTEGER. Specifies the order of the matrix $A$. The value of $n$ must be at least zero.
a

DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv
Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading $n-b y-n$ upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of a is not referenced. Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of $a$ is not referenced.
When diag = 'U' or 'u', the diagonal elements of a are not referenced either, but are assumed to be unity.
lda

X
INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, n)$.
REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array $x$ must contain the $n$-element right-hand side vector $b$.
incx
INTEGER. Specifies the increment for the elements of $x$.
The value of incx must not be zero.

## Output Parameters

Overwritten with the solution vector $x$.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine trsv interface are the following:

$a$	Holds the matrix a of size $(n, n)$.
$x$	Holds the vector with the number of elements $n$.
uplo	Must be 'U' or 'L'. The default value is ' U '.
trans	Must be 'N', 'C', or 'T'.
	The default value is 'N'.
diag	Must be 'N' or 'U'. The default value is 'N'.

## BLAS Level 3 Routines

BLAS Level 3 routines perform matrix-matrix operations. Table "BLAS Level 3 Routine Groups and Their Data Types" lists the BLAS Level 3 routine groups and the data types associated with them.

## BLAS Level 3 Routine Groups and Their Data Types

Routine Group	Data Types	Description
$?$ gemm	$\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}$	Matrix-matrix product of general matrices
?hemm	$\mathrm{c}, \mathrm{z}$	Matrix-matrix product of Hermitian matrices
?herk	$\mathrm{c}, \mathrm{z}$	Rank-k update of Hermitian matrices


Routine Group	Data Types	Description
?her2k	c, z	Rank-2k update of Hermitian matrices
?symm	s, d, c, z	Matrix-matrix product of symmetric matrices
?syrk	s, d, c, z	Rank-k update of symmetric matrices
?syr2k	s, d, c, z	Rank-2k update of symmetric matrices
?trmm	s, d, c, z	Matrix-matrix product of triangular matrices
?trsm	s, d, c, z	Linear matrix-matrix solution for triangular matrices

## Symmetric Multiprocessing Version of Intel® MKL

Many applications spend considerable time executing BLAS routines. This time can be scaled by the number of processors available on the system through using the symmetric multiprocessing (SMP) feature built into the Intel MKL Library. The performance enhancements based on the parallel use of the processors are available without any programming effort on your part.
To enhance performance, the library uses the following methods:

- The BLAS functions are blocked where possible to restructure the code in a way that increases the localization of data reference, enhances cache memory use, and reduces the dependency on the memory bus.
- The code is distributed across the processors to maximize parallelism.


## Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

## ?gemm

Computes a scalar-matrix-matrix product and adds
the result to a scalar-matrix product.

## Syntax

## Fortran 77:

```
call sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call scgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call dzgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
```

Fortran 95:
call gemm (a, b, c [,transa][,transb] [, alpha][,beta])

## Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ? gemm routines perform a matrix-matrix operation with general matrices. The operation is defined as

```
C := alpha*op (A)*op (B) + beta*C,
```

where:

```
op(x) is one of op (x) = x, or op (x) = x', or op (x) = conjg(x'),
```

alpha and beta are scalars,
$A, B$ and $C$ are matrices:
$o p(A)$ is an $m$-by- $k$ matrix,
$o p(B)$ is a $k-b y-n$ matrix,
$C$ is an $m$-by- $n$ matrix.
See also ?gemm3m, BLAS-like extension routines, that use matrix multiplication for similar matrix-matrix operations.

## Input Parameters

transa
transb
m
n
k
alpha
a

CHARACTER*1. Specifies the form of op ( $A$ ) used in the matrix multiplication:
if transa $=$ 'N' or 'n', then op $(A)=A$;
if transa $=$ 'T' or 't', then op $(A)=A$ ';
if transa $=$ 'C' or 'c', then op $(A)=\operatorname{conjg}(A ')$.
CHARACTER*1. Specifies the form of op ( $B$ ) used in the matrix multiplication:
if transb $=$ 'N' or 'n', then op $(B)=B$;
if transb $=$ 'T' or 't', then op $(B)=B$ ';
if transb $=$ 'C' or 'c', then op $(B)=$ conjg ( $\left.B^{\prime}\right)$.
INTEGER. Specifies the number of rows of the matrix op ( $A$ ) and of the matrix $C$. The value of $m$ must be at least zero.

INTEGER. Specifies the number of columns of the matrix op ( $B$ ) and the number of columns of the matrix $C$.
The value of $n$ must be at least zero.
INTEGER. Specifies the number of columns of the matrix op ( $A$ ) and the number of rows of the matrix op ( $B$ ).
The value of $k$ must be at least zero.
REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm, scgemm
DOUBLE COMPLEX for zgemm, dzgemm
Specifies the scalar alpha.
REAL for sgemm, scgemm
DOUBLE PRECISION for dgemm, dzgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Array, DIMENSION (Ida, $k a$ ), where $k a$ is $k$ when transa $=$ ' $N$ ' or ' $n$ ', and is $m$ otherwise. Before entry with transa $={ }^{\prime} N$ ' or ' $n$ ', the leading $m$ -by- $k$ part of the array a must contain the matrix $A$, otherwise the leading $k$ -by-m part of the array a must contain the matrix $A$.
lda
INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. When transa $=$ ' $N$ ' or ' n ', then lda must be at least $\max (1, m)$, otherwise lda must be at least max $(1, k)$.
b
$1 d b$
beta
c
ldc

## Output Parameters

c
Overwritten by the $m$-by-n matrix (alpha*op $(A) * o p(B)+b e t a * C)$.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine gemm interface are the following:
Holds the matrix $A$ of size (ma,ka) where

$$
\begin{aligned}
k a & =k \text { if transa= } ' N^{\prime} \\
k a & =m \text { otherwise, } \\
m a & =m \text { if transa= ' } N^{\prime}, \\
m a & =k \text { otherwise } .
\end{aligned}
$$

b
Holds the matrix $B$ of size $(m b, k b)$ where

	$k b=n$ if transb $=' N '$,
	$k b=k$ otherwise,
	$m b=k$ if transb $=' N '$,
	$m b=n$ otherwise.
$C$	Holds the matrix $C$ of size $(m, n)$.
transa	Must be 'N', 'C', or 'T'.
transb	The default value is 'N'.
	Must be 'N', 'C', or 'T'.
alpha	The default value is 'N'.
beta	The default value is 1.
	The default value is 0.

?hemm
Computes a scalar-matrix-matrix product (either one of the matrices is Hermitian) and adds the result to scalar-matrix product.

Syntax

## Fortran 77:

```
call chemm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
call zhemm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
```


## Fortran 95:

```
call hemm(a, b, c [,side][,uplo] [,alpha][,beta])
```


## Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ?hemm routines perform a matrix-matrix operation using Hermitian matrices. The operation is defined as

```
C := alpha* A}\mp@subsup{A}{}{*}B+\mathrm{ beta* C
```

or

```
C := alpha* B}\mp@subsup{|}{}{*}A+beta*C
```

where:
alpha and beta are scalars,
$A$ is an Hermitian matrix,
$B$ and $C$ are $m-$ by- $n$ matrices.
Input Parameters
side
CHARACTER*1. Specifies whether the Hermitian matrix A appears on the left or right in the operation as follows:

```
if side = 'L' or 'l',then C := alpha*A*B + beta*C;
```

if side $=$ 'R' or 'r',then $C:=a l p h a \star B^{\star} A+$ beta* $C$.

uplo	CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian matrix $A$ is used:   If uplo = 'U' or 'u', then the upper triangular part of the Hermitian matrix $A$ is used.   If uplo = 'L' or 'l', then the low triangular part of the Hermitian matrix $A$ is used.
m	INTEGER. Specifies the number of rows of the matrix $C$. The value of $m$ must be at least zero.
$n$	INTEGER. Specifies the number of columns of the matrix $C$. The value of $n$ must be at least zero.
alpha	COMPLEX for chemm   DOUBLE COMPLEX for zhemm Specifies the scalar alpha.
a	COMPLEX for chemm   DOUBLE COMPLEX for zhemm   Array, DIMENSION (lda,ka), where ka is m when side = 'L' or 'l' and is $n$ otherwise. Before entry with side = 'L' or 'l', the $m$-by- $m$ part of the array a must contain the Hermitian matrix, such that when uplo = 'U' or ' u', the leading m-by-m upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of $a$ is not referenced, and when uplo = 'L' or 'l', the leading $m$-by- $m$ lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix, and the strictly upper triangular part of $a$ is not referenced.   Before entry with side $=$ 'R' or 'r', the $n-b y-n$ part of the array a must contain the Hermitian matrix, such that when uplo = 'U' or 'u', the leading $n-b y-n$ upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of $a$ is not referenced, and when uplo = 'L' or 'l', the leading $n$-by- $n$ lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix, and the strictly upper triangular part of $a$ is not referenced. The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.
Ida	INTEGER. Specifies the leading dimension of a declared in the calling (sub) program. When side $=$ 'L' or 'l' then lda must be at least $\max (1, m)$, otherwise lda must be at least max $(1, n)$.
$b$	COMPLEX for chemm   DOUBLE COMPLEX for zhemm   Array, DIMENSION ( $1 \mathrm{db}, n$ ).   Before entry, the leading m-by-n part of the array $b$ must contain the matrix B.
1 db	INTEGER. Specifies the leading dimension of $b$ as declared in the calling (sub)program. The value of $1 d b$ must be at least max $(1, m)$.
beta	COMPLEX for chemm   DOUBLE COMPLEX for zhemm   Specifies the scalar beta.   When beta is supplied as zero, then $c$ need not be set on input.
c	COMPLEX for chemm   DOUBLE COMPLEX for zhemm

Array, DIMENSION ( $c, n$ ). Before entry, the leading m-by-n part of the array $c$ must contain the matrix $C$, except when beta is zero, in which case $c$ need not be set on entry.
ldc INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program. The value of $l d c$ must be at least max $(1, m)$.

## Output Parameters

c
Overwritten by the m-by-n updated matrix.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hemm interface are the following:

a	Holds the matrix $A$ of size $(k, k)$ where
$k=m$ if side $=' L '$,	
$k=n$ otherwise.	
$b$	Holds the matrix $B$ of size $(m, n)$.
c	Holds the matrix $C$ of size $(m, n)$.
side	Must be 'L' or 'R'. The default value is 'L'.
alpha	Must be 'U' or 'L'. The default value is 'U'.
beta	The default value is 1.

?herk
Performs a rank-k update of a Hermitian matrix.

## Syntax

## Fortran 77:

```
call cherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call zherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
```


## Fortran 95:

```
call herk(a, c [,uplo] [, trans] [,alpha][,beta])
```


## Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ?herk routines perform a matrix-matrix operation using Hermitian matrices. The operation is defined as

```
C := alpha*A*conjg(A') + beta*C,
```

or
$C:=$ alpha* $\operatorname{conjg}\left(A^{\prime}\right) * A+$ beta*C,
where:
alpha and beta are real scalars,
$C$ is an $n$-by- $n$ Hermitian matrix,
$A$ is an $n$-by- $k$ matrix in the first case and a $k$-by-n matrix in the second case.

## Input Parameters

uplo
trans
n
k
alpha
a
lda
beta
c
ldc

CHARACTER*1. Specifies whether the upper or lower triangular part of the array $c$ is used.
If uplo = 'U' or 'u', then the upper triangular part of the array $c$ is used. If uplo = 'L' or 'l', then the low triangular part of the array $c$ is used.
CHARACTER*1. Specifies the operation:
if trans $=$ 'N' or 'n', then $C:=a l p h a * A * \operatorname{conjg}(A ')+b e t a * C$;
if trans $=$ 'C' or 'c', then $C:=a l p h a * \operatorname{conjg}(A ') * A+b e t a * C$.
INTEGER. Specifies the order of the matrix $c$. The value of $n$ must be at least zero.
INTEGER. With trans $=$ ' $N$ ' or ' $n$ ', $k$ specifies the number of columns of the matrix $A$, and with trans $=$ ' C' or 'c', $k$ specifies the number of rows of the matrix $A$.
The value of $k$ must be at least zero.
REAL for cherk
DOUBLE PRECISION for zherk
Specifies the scalar alpha.
COMPLEX for cherk
DOUBLE COMPLEX for zherk
Array, DIMENSION (lda, ka), where ka is $k$ when trans $=$ 'N' or 'n', and is $n$ otherwise. Before entry with trans $=$ ' $N$ ' or ' $n$ ', the leading $n$ -by- $k$ part of the array a must contain the matrix $a$, otherwise the leading $k$ -by-n part of the array a must contain the matrix $A$.
INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. When trans $=$ ' $N$ ' or ' $n$ ', then lda must be at least $\max (1, n)$, otherwise lda must be at least max $(1, k)$.
REAL for cherk
DOUBLE PRECISION for zherk
Specifies the scalar beta.
COMPLEX for cherk
DOUBLE COMPLEX for zherk
Array, DIMENSION ( $1 d c, n$ ).
Before entry with uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array $c$ must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of $c$ is not referenced.
Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array $c$ must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of $c$ is not referenced.
The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.
INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program. The value of $1 d c$ must be at least max $(1, n)$.

## Output Parameters

 cWith uplo = 'U' or 'u', the upper triangular part of the array $c$ is overwritten by the upper triangular part of the updated matrix. With uplo = 'L' or 'l', the lower triangular part of the array $c$ is overwritten by the lower triangular part of the updated matrix. The imaginary parts of the diagonal elements are set to zero.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine herk interface are the following:

a	Holds the matrix A of size (ma,ka) where $\begin{aligned} k a & =k \text { if transa= 'N', } \\ k a & =n \text { otherwise, } \\ m a & =n \text { if transa= 'N', } \\ m a & =k \text { otherwise. } \end{aligned}$
c	Holds the matrix $c$ of size ( $n, n$ ).
uplo	Must be 'U' or 'L'. The default value is 'U'.
trans	Must be ' N ' or ' C '. The default value is ' N '.
alpha	The default value is 1 .
beta	The default value is 0 .

## ?her2k

Performs a rank-2k update of a Hermitian matrix.
Syntax

## Fortran 77:

```
call cher2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call zher2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
```


## Fortran 95:

```
call her2k(a, b, c [,uplo][,trans] [,alpha][,beta])
```

Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ?her 2 k routines perform a rank-2k matrix-matrix operation using Hermitian matrices. The operation is defined as

```
C := alpha*A*conjg(B') + conjg(alpha)*B*conjg(A') + beta*C,
```

or
$C:=$ alpha *conjg( $\left.B^{\prime}\right) * A+$ conjg(alpha) *conjg(A')*B + beta*C,
where:

```
alpha is a scalar and beta is a real scalar,
\(c\) is an \(n\)-by- \(n\) Hermitian matrix,
\(A\) and \(B\) are \(n\)-by- \(k\) matrices in the first case and \(k\)-by- \(n\) matrices in the second case.
```


## Input Parameters

```
CHARACTER*1. Specifies whether the upper or lower triangular part of the array \(c\) is used.
If uplo = 'U' or 'u', then the upper triangular of the array \(c\) is used. If uplo = 'L' or 'l', then the low triangular of the array \(c\) is used.
CHARACTER*1. Specifies the operation:
if trans \(=\) ' \(N\) ' or 'n', then \(C:=a l p h a^{\star} A^{*} \operatorname{conjg}\left(B^{\prime}\right)+\) alpha* \(B^{*} \operatorname{conjg}\left(A^{\prime}\right)+\) beta*C;
if trans \(=\) ' C' or 'C', then \(C:=a l p h a * \operatorname{conjg}\left(A^{\prime}\right) * B+\)
alpha*conjg(\(B^{\prime}\))*A + beta* \(C\).
```

n
k

INTEGER. Specifies the order of the matrix $C$. The value of $n$ must be at least zero.
INTEGER. With trans $=$ 'N' or 'n', $k$ specifies the number of columns of the matrix $A$, and with trans $=$ ' C' or 'c', $k$ specifies the number of rows of the matrix $A$.
The value of $k$ must be at least equal to zero.
COMPLEX for cher 2 k
DOUBLE COMPLEX for zher 2 k
Specifies the scalar alpha.
COMPLEX for cher 2 k
DOUBLE COMPLEX for zher2k
Array, DIMENSION (lda, ka), where ka is $k$ when trans $=$ ' $N$ ' or 'n', and is $n$ otherwise. Before entry with trans $=$ ' $N$ ' or ' $n$ ', the leading $n$ -by- $k$ part of the array a must contain the matrix $A$, otherwise the leading $k$ -by- $n$ part of the array a must contain the matrix $A$.
INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. When trans $=$ ' $N$ ' or ' $n$ ', then lda must be at least $\max (1, n)$, otherwise lda must be at least max $(1, k)$.
REAL for cher $2 k$
DOUBLE PRECISION for zher 2 k
Specifies the scalar beta.

COMPLEX for cher 2 k
DOUBLE COMPLEX for zher2k
Array, DIMENSION (ldb, kb), where $k b$ is $k$ when trans $=$ ' $N$ ' or 'n', and is $n$ otherwise. Before entry with trans $=$ ' $N$ ' or ' $n$ ', the leading $n$ -by- $k$ part of the array $b$ must contain the matrix $B$, otherwise the leading $k$ -by- $n$ part of the array $b$ must contain the matrix $B$.

INTEGER. Specifies the leading dimension of $b$ as declared in the calling (sub)program. When trans $=$ ' $N$ ' or ' $n$ ', then 1 db must be at least $\max (1, n)$, otherwise $1 d b$ must be at least $\max (1, k)$.
COMPLEX for cher 2 k
DOUBLE COMPLEX for zher 2 k
Array, DIMENSION ( $1 d c, n$ ).

Before entry with uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array $c$ must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of $c$ is not referenced.
Before entry with uplo $=$ 'L' or 'l', the leading n-by-n lower triangular part of the array c must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of $c$ is not referenced. The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.
ldc
INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program. The value of $l d c$ must be at least max $(1, n)$.

## Output Parameters

c
With uplo = 'U' or 'u', the upper triangular part of the array $c$ is overwritten by the upper triangular part of the updated matrix. With uplo = 'L' or 'l', the lower triangular part of the array $c$ is overwritten by the lower triangular part of the updated matrix. The imaginary parts of the diagonal elements are set to zero.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine her 2 k interface are the following:

```
a Holds the matrix A of size (ma,ka) where
 ka = k if trans = 'N',
 ka = n otherwise,
 ma = n if trans = 'N',
 ma = k otherwise.
b Holds the matrix B of size (mb,kb) where
 kb = k if trans = 'N',
 kb = n otherwise,
 mb = n if trans = 'N',
 mb = k otherwise.
C Holds the matrix }C\mathrm{ of size (}n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.
trans Must be 'N' or 'C'. The default value is 'N'.
alpha The default value is 1.
beta The default value is 0.
```

?symm
Performs a scalar-matrix-matrix product (one matrix operand is symmetric) and adds the result to a scalarmatrix product.

## Syntax

## Fortran 77:

```
call ssymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
call dsymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
call csymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
```

```
call zsymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
```


## Fortran 95:

```
call symm(a, b, c [,side][,uplo] [,alpha][,beta])
```

Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ?symm routines perform a matrix-matrix operation using symmetric matrices. The operation is defined as

```
C := alpha\starA\star B + beta*C,
```

or
$C$ := alpha* $B^{\star} A+b e t a \star C$,
where:
alpha and beta are scalars,
$A$ is a symmetric matrix,
$B$ and $C$ are m-by- $n$ matrices.
Input Parameters
side
uplo
m
$n$
alpha

CHARACTER* 1 . Specifies whether the symmetric matrix $A$ appears on the left or right in the operation:
if side $=$ 'L' or 'l', then $C:=$ alpha*A*B + beta*C;
if side $=$ 'R' or 'r', then $C:=a l p h a \star B^{\star} A+$ beta* $C$.
CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric matrix $A$ is used:
if uplo = 'U' or 'u', then the upper triangular part is used; if uplo = 'L' or 'l', then the lower triangular part is used.
INTEGER. Specifies the number of rows of the matrix $C$.
The value of $m$ must be at least zero.
INTEGER. Specifies the number of columns of the matrix $C$.
The value of $n$ must be at least zero.
REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Specifies the scalar alpha.
REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Array, DIMENSION (lda, ka), where ka is m when side = 'L' or 'l' and is $n$ otherwise.
Before entry with side $=$ 'L' or 'l', the $m$-by-m part of the array a must contain the symmetric matrix, such that when uplo = 'U' or 'u', the leading m-by-m upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part
of $a$ is not referenced, and when uplo = 'L' or 'l', the leading m-by-m lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of $a$ is not referenced.
Before entry with side $=$ ' $\mathrm{R}^{\prime}$ or 'r', the $n$-by- $n$ part of the array a must contain the symmetric matrix, such that when uplo = 'U' or 'u', the leading $n-b y-n$ upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of $a$ is not referenced, and when uplo = 'L' or 'l', the leading $n$-by- $n$ lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of $a$ is not referenced.

INTEGER. Specifies the leading dimension of a declared in the calling (sub)program. When side $=$ 'L' or 'l' then lda must be at least max (1, $m$ ), otherwise 1 da must be at least $\max (1, n)$.

REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Array, DIMENSION ( $1 \mathrm{db}, \mathrm{n}$ ). Before entry, the leading m-by-n part of the array $b$ must contain the matrix $B$.
INTEGER. Specifies the leading dimension of $b$ as declared in the calling (sub)program. The value of $1 d b$ must be at least max $(1, m)$.
REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Specifies the scalar beta.
When beta is set to zero, then $c$ need not be set on input.
REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Array, DIMENSION ( $1 d c, n$ ). Before entry, the leading m-by-n part of the array $c$ must contain the matrix $C$, except when beta is zero, in which case $c$ need not be set on entry.
ldc
INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program. The value of $l d c$ must be at least max $(1, m)$.

## Output Parameters

Overwritten by the m-by-n updated matrix.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine symm interface are the following:

a | Holds the matrix $A$ of size $(k, k)$ where |
| :--- |
| $k=m$ if side $=' L '$, |
| $k=n$ otherwise. |

b	Holds the matrix $B$ of size $(m, n)$.
c	Holds the matrix $C$ of size $(m, n)$.
side	Must be 'L' or 'R'. The default value is 'L'.
uplo	Must be ' $U$ ' or ' $L$ '. The default value is ' $U$ '.
alpha	The default value is 1.
beta	The default value is 0.

?syrk
Performs a rank-n update of a symmetric matrix.

## Syntax

## Fortran 77:

```
call ssyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call dsyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call csyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call zsyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
```

Fortran 95:

```
call syrk(a, c [,uplo] [, trans] [,alpha][,beta])
```

Include files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ?syrk routines perform a matrix-matrix operation using symmetric matrices. The operation is defined as

$$
C:=\text { alpha* } A^{\star} A^{\prime}+b^{\prime} t a^{\star} C,
$$

or

```
C := alpha\starA'*A + beta* C,
```

where:
alpha and beta are scalars,
$C$ is an $n$-by- $n$ symmetric matrix,
$A$ is an $n-b y-k$ matrix in the first case and a $k-b y-n$ matrix in the second case.

## Input Parameters

uplo
trans

CHARACTER*1. Specifies whether the upper or lower triangular part of the array $c$ is used.
If uplo = 'U' or 'u', then the upper triangular part of the array $c$ is used.
If uplo = 'L' or 'l', then the low triangular part of the array $c$ is used.
CHARACTER*1. Specifies the operation:
if trans $=$ 'N' or 'n', then $C:=a l p h a \star A \star A '+b e t a \star C$;
if trans $=$ 'T' or 't', then $C:=a l p h a \star A ' * A+b e t a \star C$;
if trans $=$ 'C' or 'c', then $C:=a l p h a \star A ' * A+b e t a \star C$.

n	INTEGER. Specifies the order of the matrix $c$. The value of $n$ must be at least zero.
k	INTEGER. On entry with trans $=$ ' N ' or ' n ', $k$ specifies the number of columns of the matrix $a$, and on entry with trans = 'T' or 't' or 'C' or ' $c$ ', $k$ specifies the number of rows of the matrix $a$. The value of $k$ must be at least zero.
alpha	REAL for ssyrk   DOUBLE PRECISION for dsyrk   COMPLEX for csyrk   DOUBLE COMPLEX for zsyrk   Specifies the scalar alpha.
a	REAL for ssyrk   DOUBLE PRECISION for dsyrk   COMPLEX for csyrk   DOUBLE COMPLEX for zsyrk   Array, DIMENSION (lda,ka), where ka is $k$ when trans $=$ 'N' or 'n', and is $n$ otherwise. Before entry with trans $=$ ' $N$ ' or ' $n$ ', the leading $n$ by $-k$ part of the array a must contain the matrix $A$, otherwise the leading $k$ by $-n$ part of the array a must contain the matrix $A$.
Ida	INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. When trans $=$ ' N ' or ' n ', then lda must be at least $\max (1, n)$, otherwise lda must be at least max $(1, k)$.
beta	REAL for ssyrk   DOUBLE PRECISION for dsyrk   COMPLEX for csyrk   DOUBLE COMPLEX for zsyrk   Specifies the scalar beta.
c	REAL for ssyrk   DOUBLE PRECISION for dsyrk   COMPLEX for csyrk   DOUBLE COMPLEX for zsyrk   Array, DIMENSION (ldc, n). Before entry with uplo = 'U' or 'u', the leading $n-b y-n$ upper triangular part of the array $c$ must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of $c$ is not referenced.   Before entry with uplo = 'L' or 'l', the leading $n$-by- $n$ lower triangular part of the array c must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of $c$ is not referenced.
$1 d c$	INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program. The value of $l d c$ must be at least max $(1, n)$.

## Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the array $c$ is overwritten by the upper triangular part of the updated matrix. With uplo = 'L' or 'l', the lower triangular part of the array $c$ is overwritten by the lower triangular part of the updated matrix.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine syrk interface are the following:

a	Holds the matrix A of size (ma,ka) where   $k a=k$ if transa= 'N',   $k a=n$ otherwise,   ma $=n$ if transa= 'N',   ma $=k$ otherwise.
c	Holds the matrix $C$ of size ( $n, n$ ).
uplo	Must be 'U' or 'L'. The default value is 'U'.
trans	Must be 'N', 'C', or 'T'. The default value is ' N '.
alpha	The default value is 1 .
beta	The default value is 0 .

?syr2k
Performs a rank-2k update of a symmetric matrix.

## Syntax

## Fortran 77:

```
call ssyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call dsyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call csyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call zsyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
```


## Fortran 95:

```
call syr2k(a, b, c [,uplo][,trans] [,alpha][,beta])
```


## Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ?syr 2 k routines perform a rank-2k matrix-matrix operation using symmetric matrices. The operation is defined as

```
C := alpha* A* B' + alpha* B*}\mp@subsup{A}{}{\prime}+beta*C
```

or
$C:=a l p h a^{*} A^{\prime} * B+a l p h a^{*} B^{\prime} * A+b e t a * C$,
where:
alpha and beta are scalars,
$C$ is an $n-b y-n$ symmetric matrix,
$A$ and $B$ are $n$-by- $k$ matrices in the first case, and $k$-by- $n$ matrices in the second case.

CHARACTER*1. Specifies whether the upper or lower triangular part of the array $c$ is used.
If uplo = 'U' or 'u', then the upper triangular part of the array $c$ is used.
If uplo = 'L' or 'l', then the low triangular part of the array $c$ is used.
CHARACTER*1. Specifies the operation:
if trans $=$ 'N' or 'n', then $C:=a l p h a \star A \star B^{\prime}+a l p h a \star B^{\star} A '+b e t a * C$;
if trans $=$ 'T' or 't', then $C:=a l p h a \star A ' \star B+a l p h a \star B ' * A+b e t a \star C$;
if trans $=$ 'C' or 'c', then $C:=a l p h a \star A ' * B+a l p h a \star B ' * A+b e t a * C$.
INTEGER. Specifies the order of the matrix $C$. The value of $n$ must be at least zero.
INTEGER. On entry with trans $=$ 'N' or 'n', $k$ specifies the number of columns of the matrices $A$ and $B$, and on entry with trans $=$ 'T' or 't' or 'C' or 'c', k specifies the number of rows of the matrices $A$ and $B$. The value of $k$ must be at least zero.
REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Specifies the scalar alpha.
REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Array, DIMENSION (Ida,ka), where ka is $k$ when trans $=$ ' $N$ ' or 'n', and is $n$ otherwise. Before entry with trans $=N^{\prime} N^{\prime}$ or ' $n$ ', the leading $n$ -by- $k$ part of the array a must contain the matrix $A$, otherwise the leading $k$ -by-n part of the array a must contain the matrix $A$.
INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. When trans $=$ ' $N$ ' or 'n', then lda must be at least $\max (1, n)$, otherwise lda must be at least max $(1, k)$.
REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Array, DIMENSION (ldb, kb) where $k b$ is $k$ when trans $=$ ' $N$ ' or ' $n$ ' and is ' $n$ ' otherwise. Before entry with trans $=$ ' $N$ ' or ' $n$ ', the leading $n$-by$k$ part of the array $b$ must contain the matrix $B$, otherwise the leading $k$-by$n$ part of the array $b$ must contain the matrix $B$.
INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub)program. When trans $=$ ' $N$ ' or ' $n$ ', then $1 d b$ must be at least $\max (1, n)$, otherwise $1 d b$ must be at least $\max (1, k)$.
REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Specifies the scalar beta.
REAL for ssyr2k
DOUBLE PRECISION for dsyr2k

COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Array, DIMENSION (Idc, n). Before entry with uplo = 'U' or 'u', the leading $n-b y-n$ upper triangular part of the array $c$ must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of $c$ is not referenced.
Before entry with uplo = 'L' or 'l', the leading $n$-by-n lower triangular part of the array $c$ must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of $c$ is not referenced.
ldc
INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program. The value of $I d c$ must be at least max $(1, n)$.

## Output Parameters

c
With uplo = 'U' or 'u', the upper triangular part of the array $c$ is overwritten by the upper triangular part of the updated matrix. With uplo = 'L' or 'l', the lower triangular part of the array $c$ is overwritten by the lower triangular part of the updated matrix.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine syr2k interface are the following:

a	Holds the matrix $A$ of size ( $m a, k a$ ) where   $k a=k$ if trans $=$ ' $N$ ',   $k a=n$ otherwise,   ma $=n$ if trans $=$ 'N',   ma $=k$ otherwise.
b	Holds the matrix $B$ of size $(m b, k b)$ where   $k b=k$ if trans $=$ ' $N$ ',   $k b=n$ otherwise,   $m b=n$ if trans $='^{\prime}$ ',   $m b=k$ otherwise.
c	Holds the matrix $C$ of size ( $n, n$ ).
uplo	Must be 'U' or 'L'. The default value is 'U'.
trans	Must be 'N', 'C', or 'T'. The default value is ' N '.
alpha	The default value is 1 .
beta	The default value is 0 .

## ?trmm

Computes a scalar-matrix-matrix product (one matrix operand is triangular).

## Syntax

## Fortran 77:

```
call strmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call dtrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
```

```
call ctrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call ztrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
```


## Fortran 95:

```
call trmm(a, b [,side] [, uplo] [,transa][,diag] [,alpha])
```


## Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ?trmm routines perform a matrix-matrix operation using triangular matrices. The operation is defined as $B:=$ alpha*op $(A) * B$
or
$B:=$ alpha*B*op (A)
where:
alpha is a scalar,
$B$ is an m-by-n matrix,
$A$ is a unit, or non-unit, upper or lower triangular matrix
op $(A)$ is one of op $(A)=A$, or op $(A)=A^{\prime}, \operatorname{orop}(A)=\operatorname{conjg}\left(A^{\prime}\right)$.
Input Parameters
side
uplo
transa
diag
m
n
alpha

CHARACTER*1. Specifies whether op ( $A$ ) appears on the left or right of $B$ in the operation:
if side $=$ 'L' or 'l', then $B:=$ alpha*op $(A) * B$;
if side = 'R' or 'r', then $B:=$ alpha* $B^{*} o p(A)$.
CHARACTER*1. Specifies whether the matrix $A$ is upper or lower triangular: if uplo = 'U' or 'u', then the matrix is upper triangular; if uplo = 'L' or 'l', then the matrix is low triangular.

CHARACTER*1. Specifies the form of op ( $A$ ) used in the matrix multiplication:
if transa $=$ ' $N$ ' or ' $n$ ', then op $(A)=A$;
if transa $=$ 'T' or 't', then op $(A)=A$ ';
if transa $=$ 'C' or 'C', then op $(A)=\operatorname{conjg}(A ')$.
CHARACTER*1. Specifies whether the matrix $A$ is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag = 'N' or 'n', then the matrix is not unit triangular.
INTEGER. Specifies the number of rows of $B$. The value of $m$ must be at least zero.
INTEGER. Specifies the number of columns of $B$. The value of $n$ must be at least zero.
REAL for strmm
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm
Specifies the scalar alpha.


## Output Parameters

b
Overwritten by the transformed matrix.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine trmm interface are the following:

a	Holds the matrix $A$ of size $(k, k)$ where   $k=m$ if side $=~ ' L ', ~$
$k=n$ otherwise.	
$b$	Holds the matrix $B$ of size $(m, n)$.
side	Must be 'L' or 'R'. The default value is 'L'.
uplo	Must be 'U' or 'L'. The default value is 'U'.
transa	Must be 'N', 'C', or 'T'.
diag	The default value is 'N'.
alpha	Must be 'N' or 'U'. The default value is 'N'.
	The default value is 1.

## ?trsm

## Solves a matrix equation (one matrix operand is

 triangular).Syntax

## Fortran 77:

```
call strsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call dtrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call ctrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call ztrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
```


## Fortran 95:

```
call trsm(a, b [,side] [, uplo] [,transa][,diag] [,alpha])
```

Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ?trsm routines solve one of the following matrix equations:

```
op (A)*X = alpha*B,
```

or
$X^{*} o p(A)=a l p h{ }^{*} B$,
where:
alpha is a scalar,
$X$ and $B$ are m-by- $n$ matrices,
$A$ is a unit, or non-unit, upper or lower triangular matrix
op $(A)$ is one of op $(A)=A$, or op $(A)=A^{\prime}$, or op $(A)=\operatorname{conjg}\left(A^{\prime}\right)$.
The matrix $B$ is overwritten by the solution matrix $x$.

## Input Parameters

side
uplo
transa
diag

CHARACTER*1. Specifies whether op ( $A$ ) appears on the left or right of $x$ in the equation:
if side $=$ 'L' or 'l', then op $(A) * X=$ alpha*B;
if side $=$ 'R' or 'r', then $X^{\star} o p(A)=a l p h a * B$.
CHARACTER*1. Specifies whether the matrix $A$ is upper or lower triangular: if uplo = 'U' or 'u', then the matrix is upper triangular; if uplo = 'L' or 'l', then the matrix is low triangular.

CHARACTER*1. Specifies the form of op (A) used in the matrix multiplication:
if transa $=$ 'N' or 'n', then op $(A)=A$;
if transa $=$ 'T' or 't', then op $(A)=A$ ';
if transa $=$ 'C' or 'c', then op $(A)=\operatorname{conjg}(A ')$.
CHARACTER*1. Specifies whether the matrix $A$ is unit triangular:

	if diag = 'U' or 'u' then the matrix is unit triangular;   if $d i a g=$ ' $N$ ' or ' $n$ ', then the matrix is not unit triangular.
m	INTEGER. Specifies the number of rows of $B$. The value of $m$ must be at least zero.
$n$	INTEGER. Specifies the number of columns of $B$. The value of $n$ must be at least zero.
alpha	REAL for strsm
	DOUBLE PRECISION for dtrsm
	COMPLEX for ctrsm
	double Complex for ztrsm
	Specifies the scalar alpha.
	When alpha is zero, then $a$ is not referenced and $b$ need not be set before entry.
a	REAL for strsm
	DOUBLE PRECISION for dtrsm
	COMPLEX for ctrsm
	DOUBLE COMPLEX for ztrsm
	Array, DIMENSION ( $I d a, k$ ), where $k$ is $m$ when side $=$ 'L' or 'l' and is $n$ when side = 'R' or 'r'. Before entry with uplo = 'U' or 'u', the leading $k$ by $k$ upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of $a$ is not referenced.
	Before entry with uplo = 'L' or 'l', the leading $k$ by $k$ lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of $a$ is not referenced.
	When diag = 'U' or 'u', the diagonal elements of $a$ are not referenced either, but are assumed to be unity.
Ida	INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub)program. When side = 'L' or 'l', then lda must be at least $\max (1, m)$, when side $=$ 'R' or 'r', then lda must be at least max (1, n).
b	REAL for strsm
	DOUBLE PRECISION for dtrsm
	COMPLEX for ctrsm
	DOUBLE COMPLEX for ztrsm
	Array, DIMENSION ( $1 \mathrm{db}, \mathrm{n}$ ). Before entry, the leading $m-\mathrm{by}-\mathrm{n}$ part of the array $b$ must contain the right-hand side matrix $B$.
1 db	INTEGER. Specifies the leading dimension of $b$ as declared in the calling (sub)program. The value of 1 db must be at least $\max (1,+m)$.

## Output Parameters

Overwritten by the solution matrix $X$.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine trsm interface are the following:
$a$
Holds the matrix $A$ of size $(k, k)$ where $k=m$ if side $=' L ', k=n$ otherwise.

b	Holds the matrix $B$ of size ( $m, n$ ).
side	Must be 'L' or 'R'. The default value is 'L'.
uplo	Must be 'U' or 'L'. The default value is 'U'.
transa	Must be 'N', 'C', or 'T'.
	The default value is ' N '.
diag	Must be ' N ' or ' U '. The default value is ' N '.
alpha	The default value is 1.

## Sparse BLAS Level 1 Routines

This section describes Sparse BLAS Level 1, an extension of BLAS Level 1 included in the Intel® Math Kernel Library beginning with the Intel MKL release 2.1. Sparse BLAS Level 1 is a group of routines and functions that perform a number of common vector operations on sparse vectors stored in compressed form.

Sparse vectors are those in which the majority of elements are zeros. Sparse BLAS routines and functions are specially implemented to take advantage of vector sparsity. This allows you to achieve large savings in computer time and memory. If $n z$ is the number of non-zero vector elements, the computer time taken by Sparse BLAS operations will be $O(n z)$.

## Vector Arguments

Compressed sparse vectors. Let a be a vector stored in an array, and assume that the only non-zero elements of a are the following:

```
a(k}),a(\mp@subsup{k}{2}{}),a(\mp@subsup{k}{3}{}) . . . a(knz)
```

where $n z$ is the total number of non-zero elements in $a$.
In Sparse BLAS, this vector can be represented in compressed form by two FORTRAN arrays, $x$ (values) and indx (indices). Each array has $n z$ elements:
$x(1)=a\left(k_{1}\right), x(2)=a\left(k_{2}\right), . . . x(n z)=a\left(k_{n z}\right)$,
$\operatorname{indx}(1)=k_{1}, \quad$ indx $(2)=k_{2}, \quad . \quad . \quad \operatorname{indx}(n z)=k_{n z}$.
Thus, a sparse vector is fully determined by the triple ( $n z, x$, indx). If you pass a negative or zero value of $n z$ to Sparse BLAS, the subroutines do not modify any arrays or variables.

Full-storage vectors. Sparse BLAS routines can also use a vector argument fully stored in a single FORTRAN array (a full-storage vector). If $y$ is a full-storage vector, its elements must be stored contiguously: the first element in $y(1)$, the second in $y(2)$, and so on. This corresponds to an increment incy $=1$ in BLAS Level 1. No increment value for full-storage vectors is passed as an argument to Sparse BLAS routines or functions.

## Naming Conventions

Similar to BLAS, the names of Sparse BLAS subprograms have prefixes that determine the data type involved: $s$ and $d$ for single- and double-precision real; $c$ and $z$ for single- and double-precision complex respectively.

If a Sparse BLAS routine is an extension of a "dense" one, the subprogram name is formed by appending the suffix $i$ (standing for indexed) to the name of the corresponding "dense" subprogram. For example, the Sparse BLAS routine saxpyi corresponds to the BLAS routine saxpy, and the Sparse BLAS function cdotci corresponds to the BLAS function cdotc.

## Routines and Data Types

Routines and data types supported in the Intel MKL implementation of Sparse BLAS are listed in Table "Sparse BLAS Routines and Their Data Types".
Sparse BLAS Routines and Their Data Types

Routine/   Function	Data Types	Description
?axpyi	s, d, c, z	Scalar-vector product plus vector (routines)
?doti	s, d	Dot product (functions)
?dotci	c, z	Complex dot product conjugated (functions)   ?dotui
complex dot product unconjugated (functions)		

## BLAS Level 1 Routines That Can Work With Sparse Vectors

The following BLAS Level 1 routines will give correct results when you pass to them a compressed-form array $x$ (with the increment incx=1):

?asum	sum of absolute values of vector elements
?copy	copying a vector
?nrm2	Euclidean norm of a vector
?scal	scaling a vector
i?amax	index of the element with the largest absolute value for real flavors, or the   largest sum $\|\operatorname{Re}(x(i))\|+\|\operatorname{Im}(x(i))\|$ for complex flavors.   i?amin
	index of the element with the smallest absolute value for real flavors, or the   smallest sum $\|\operatorname{Re}(x(i))\|+\|\operatorname{Im}(x(i))\|$ for complex flavors.

The result $i$ returned by i?amax and i?amin should be interpreted as index in the compressed-form array, so that the largest (smallest) value is $x(i)$; the corresponding index in full-storage array is indx(i).
You can also call ?rotg to compute the parameters of Givens rotation and then pass these parameters to the Sparse BLAS routines ?roti.

## ?axpyi

Adds a scalar multiple of compressed sparse vector to a full-storage vector.

Syntax

## Fortran 77:

call saxpyi(nz, $a, x, i n d x, y)$

```
call daxpyi(nz, a, x, indx, y)
call caxpyi(nz, a, x, indx, y)
call zaxpyi(nz, a, x, indx, y)
```


## Fortran 95:

```
call axpyi(x, indx, y [, a])
```

Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ?axpyi routines perform a vector-vector operation defined as

```
y := a* }x+
```

where:
a is a scalar,
$x$ is a sparse vector stored in compressed form,
$y$ is a vector in full storage form.
The ?axpyi routines reference or modify only the elements of $y$ whose indices are listed in the array indx.
The values in indx must be distinct.

## Input Parameters

```
nz INTEGER. The number of elements in }x\mathrm{ and indx.
a REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Specifies the scalar a.
x
indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.
REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, DIMENSION at least max(indx(i)).
```


## Output Parameters

y
Contains the updated vector $y$.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine axpyi interface are the following:

$x$	Holds the vector with the number of elements $n z$.
$i n d x$	Holds the vector with the number of elements $n z$.
$y$	Holds the vector with the number of elements $n z$.
$a$	The default value is 1.

## ?doti

Computes the dot product of a compressed sparse real vector by a full-storage real vector.

## Syntax

## Fortran 77:

```
res = sdoti(nz, x, indx, y)
res = ddoti(nz, x, indx, y)
```


## Fortran 95:

```
res = doti(x, indx, y)
```


## Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ?doti routines return the dot product of $x$ and $y$ defined as

```
res =x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+ x(nz)*y(indx(nz))
```

where the triple ( $n z, x, i n d x$ ) defines a sparse real vector stored in compressed form, and $y$ is a real vector in full storage form. The functions reference only the elements of $y$ whose indices are listed in the array indx. The values in indx must be distinct.

## Input Parameters

```
nz
 INTEGER. The number of elements in }x\mathrm{ and indx.
REAL for sdoti
DOUBLE PRECISION for ddoti
Array, DIMENSION at least nz.
indx
y REAL for sdoti
DOUBLE PRECISION for ddoti
Array, DIMENSION at least max(indx(i)).
```


## Output Parameters

```
res REAL for sdoti
DOUBLE PRECISION for ddoti
Contains the dot product of }x\mathrm{ and }y\mathrm{ , if }nz\mathrm{ is positive. Otherwise, res
contains 0.
```


## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine doti interface are the following:

$x$	Holds the vector with the number of elements $n z$.
indx	Holds the vector with the number of elements $n z$.
$y$	Holds the vector with the number of elements $n z$.

```
?dotci
Computes the conjugated dot product of a
compressed sparse complex vector with a full-storage
complex vector.
Syntax
```


## Fortran 77:

```
res = cdotci(nz, x, indx, y)
```

res = cdotci(nz, x, indx, y )
res = zdotci(nz, x, indx, y )

```
res = zdotci(nz, x, indx, y)
```


## Fortran 95:

```
res = dotci(x, indx, y)
```


## Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ?dotci routines return the dot product of $x$ and $y$ defined as

```
conjg(x(1))*y(indx(1)) + ... + conjg(x(nz))*y(indx(nz))
```

where the triple ( $n z, x$, indx) defines a sparse complex vector stored in compressed form, and $y$ is a real vector in full storage form. The functions reference only the elements of $y$ whose indices are listed in the array indx. The values in indx must be distinct.

## Input Parameters

```
nz INTEGER. The number of elements in x and indx .
X COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least nz.
indx INTEGER. Specifies the indices for the elements of }x\mathrm{ .
```

Array, DIMENSION at least $n z$.
y
COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least max(indx(i)).

## Output Parameters

```
res COMPLEX for cdotci
 DOUBLE COMPLEX for zdotci
 Contains the conjugated dot product of }x\mathrm{ and }y\mathrm{ , if nz is positive. Otherwise,
 res contains 0.
```


## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine dotci interface are the following:

```
x Holds the vector with the number of elements (nz).
indx Holds the vector with the number of elements (nz).
y Holds the vector with the number of elements (nz).
```


## ?dotui

Computes the dot product of a compressed sparse
complex vector by a full-storage complex vector.

## Syntax

## Fortran 77:

```
res = cdotui(nz, x, indx, y)
res = zdotui(nz, x, indx, y)
```


## Fortran 95:

```
res = dotui(x, indx, y)
```


## Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ? dotui routines return the dot product of $x$ and $y$ defined as

```
res = x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+ x(nz)*y(indx(nz))
```

where the triple ( $n z, x$, indx) defines a sparse complex vector stored in compressed form, and $y$ is a real vector in full storage form. The functions reference only the elements of $y$ whose indices are listed in the array indx. The values in indx must be distinct.

## Input Parameters

```
2Intel* Math Kernel Library Reference Manual
x COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least nz.
indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.
COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least max(indx(i)).
```


## Output Parameters

```
res COMPLEX for cdotui
 DOUBLE COMPLEX for zdotui
 Contains the dot product of }x\mathrm{ and }y\mathrm{ , if }nz\mathrm{ is positive. Otherwise, res
 contains 0.
```


## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine dotui interface are the following:

$x$	Holds the vector with the number of elements $n z$.
indx	Holds the vector with the number of elements $n z$.
$y$	Holds the vector with the number of elements $n z$.

```
?gthr
Gathers a full-storage sparse vector's elements into
compressed form.
Syntax
```


## Fortran 77:

```
call sgthr(nz, y, x, indx)
```

call sgthr(nz, y, x, indx )
call dgthr(nz, y, x, indx )
call dgthr(nz, y, x, indx )
call cgthr(nz, y, x, indx )
call cgthr(nz, y, x, indx )
call zgthr(nz, y, x, indx )

```
call zgthr(nz, y, x, indx)
```


## Fortran 95:

```
res = gthr(x, indx, y)
```


## Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ?gthr routines gather the specified elements of a full-storage sparse vector $y$ into compressed form( $n z$, $x$, indx). The routines reference only the elements of $y$ whose indices are listed in the array indx:

```
x(i) = y(indx(i)), for i=1,2,\ldots + . + z.
```


## Input Parameters

```
nz INTEGER. The number of elements of y to be gathered.
indx INTEGER. Specifies indices of elements to be gathered.
Array, DIMENSION at least nz.
REAL for sgthr
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least max(indx(i)).
```


## Output Parameters

x

```
REAL for sgthr
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least nz.
Contains the vector converted to the compressed form.
```


## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine gthr interface are the following:

$x$	Holds the vector with the number of elements $n z$.
indx	Holds the vector with the number of elements $n z$.
$y$	Holds the vector with the number of elements $n z$.

## ?gthrz

Gathers a sparse vector's elements into compressed
form, replacing them by zeros.

## Syntax

## Fortran 77:

```
call sgthrz(nz, y, x, indx)
call dgthrz(nz, y, x, indx)
call cgthrz(nz, y, x, indx)
call zgthrz(nz, y, x, indx)
```


## Fortran 95:

```
res = gthrz(x, indx, y)
```


## Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ? gthrz routines gather the elements with indices specified by the array indx from a full-storage vector $y$ into compressed form ( $n z, x$, indx) and overwrite the gathered elements of $y$ by zeros. Other elements of $y$ are not referenced or modified (see also ?gthr).

Input Parameters

```
nz INTEGER. The number of elements of y to be gathered.
indx INTEGER. Specifies indices of elements to be gathered.
Array, DIMENSION at least nz.
REAL for sgthrz
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz
DOUBLE COMPLEX for zgthrz
Array, DIMENSION at least max(indx(i)).
```


## Output Parameters

```
x REAL for sgthrz
 DOUBLE PRECISION ford gthrz
 COMPLEX for cgthrz
 DOUBLE COMPLEX for zgthrz
Array, DIMENSION at least nz.
Contains the vector converted to the compressed form.
y The updated vector y.
```


## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gthrz interface are the following:

$x$	Holds the vector with the number of elements $n z$.
indx	Holds the vector with the number of elements $n z$.
$y$	Holds the vector with the number of elements $n z$.

## ?roti

Applies Givens rotation to sparse vectors one of which is in compressed form.

## Syntax

## Fortran 77:

```
call sroti(nz, x, indx, y, c, s)
call droti(nz, x, indx, y, c, s)
```


## Fortran 95:

```
call roti(x, indx, y, c, s)
```

Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ?roti routines apply the Givens rotation to elements of two real vectors, $x$ (in compressed form $n z, x$, indx) and $y$ (in full storage form):
$x(i)=c^{\star} x(i)+s^{*} y($ indx $(i))$
$y($ indx $(i))=c^{*} y($ indx $(i))-s^{*} x(i)$
The routines reference only the elements of $y$ whose indices are listed in the array indx. The values in indx must be distinct.

## Input Parameters

```
nz INTEGER. The number of elements in x and indx.
X REAL for sroti
 DOUBLE PRECISION for droti
 Array, DIMENSION at least nz.
indx INTEGER. Specifies the indices for the elements of }x\mathrm{ .
 Array, DIMENSION at least nz.
 REAL for sroti
 DOUBLE PRECISION for droti
 Array, DIMENSION at least max(indx(i)).
C A scalar: REAL for sroti
 DOUBLE PRECISION for droti.
 A scalar: REAL for sroti
 DOUBLE PRECISION for droti.
```


## Output Parameters

$x$ and $y \quad$ The updated arrays.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine roti interface are the following:

$x$	Holds the vector with the number of elements $n z$.
indx	Holds the vector with the number of elements $n z$.
$y$	Holds the vector with the number of elements $n z$.

## ?sctr

Converts compressed sparse vectors into full storage
form.
Syntax

## Fortran 77:

```
call ssctr(nz, x, indx, y)
call dsctr(nz, x, indx, y)
```

```
call csctr(nz, x, indx, y)
call zsctr(nz, x, indx, y)
```


## Fortran 95:

call sctr(x, indx, $y$ )

## Include Files

- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h


## Description

The ? sctr routines scatter the elements of the compressed sparse vector ( $n z, x$, indx) to a full-storage vector $y$. The routines modify only the elements of $y$ whose indices are listed in the array indx:

```
y(indx(i) = x(i), for i=1,2,\ldots +nz.
```

Input Parameters

```
nz INTEGER. The number of elements of }x\mathrm{ to be scattered.
indx INTEGER. Specifies indices of elements to be scattered.
 Array, DIMENSION at least nz.
 REAL for ssctr
 DOUBLE PRECISION for dsctr
 COMPLEX for csctr
 DOUBLE COMPLEX for zsctr
 Array, DIMENSION at least nz.
 Contains the vector to be converted to full-storage form.
```


## Output Parameters

```
REAL for ssctr
```

    DOUBLE PRECISION for dsctr
    COMPLEX for csctr
    DOUBLE COMPLEX for zsctr
    Array, DIMENSION at least max(indx(i)).
    Contains the vector \(y\) with updated elements.
    
## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sctr interface are the following:

$x$	Holds the vector with the number of elements $n z$.
indx	Holds the vector with the number of elements $n z$.
$y$	Holds the vector with the number of elements $n z$.

## Sparse BLAS Level 2 and Level 3 Routines

This section describes Sparse BLAS Level 2 and Level 3 routines included in the Intel® Math Kernel Library (Intel ${ }^{\circledR}$ MKL). Sparse BLAS Level 2 is a group of routines and functions that perform operations between a sparse matrix and dense vectors. Sparse BLAS Level 3 is a group of routines and functions that perform operations between a sparse matrix and dense matrices.
The terms and concepts required to understand the use of the Intel MKL Sparse BLAS Level 2 and Level 3 routines are discussed in the Linear Solvers Basics appendix.

The Sparse BLAS routines can be useful to implement iterative methods for solving large sparse systems of equations or eigenvalue problems. For example, these routines can be considered as building blocks for Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS) described in the Chapter 8 of the manual.
Intel MKL provides Sparse BLAS Level 2 and Level 3 routines with typical (or conventional) interface similar to the interface used in the NIST* Sparse BLAS library [Rem05].
Some software packages and libraries (the PARDISO* Solver used in Intel MKL, Sparskit 2 [Saad94], the Compaq* Extended Math Library (CXML)[CXML01]) use different (early) variation of the compressed sparse row (CSR) format and support only Level 2 operations with simplified interfaces. Intel MKL provides an additional set of Sparse BLAS Level 2 routines with similar simplified interfaces. Each of these routines operates only on a matrix of the fixed type.
The routines described in this section support both one-based indexing and zero-based indexing of the input data (see details in the section One-based and Zero-based Indexing).

## Naming Conventions in Sparse BLAS Level 2 and Level 3

Each Sparse BLAS Level 2 and Level 3 routine has a six- or eight-character base name preceded by the prefix mkl_ormkl_cspblas_.

The routines with typical (conventional) interface have six-character base names in accordance with the template:
mkl_<character > <data> <operation> ( )
The routines with simplified interfaces have eight-character base names in accordance with the templates:
mkl_<character > <data> <mtype> <operation>( )
for routines with one-based indexing; and
mkl_csp.blas_<character> <data> <mtype> <operation>( )
for routines with zero-based indexing.
The <character> field indicates the data type:

$$
\begin{array}{ll}
s & \text { real, single precision } \\
c & \text { complex, single precision } \\
d & \text { real, double precision } \\
z & \text { complex, double precision }
\end{array}
$$

The <data> field indicates the sparse matrix storage format (see section Sparse Matrix Storage Formats):

coo	coordinate format
csr	compressed sparse row format and its variations
csc	compressed sparse column format and its variations
dia	diagonal format
sky	skyline storage format
bsr	block sparse row format and its variations

The <operation> field indicates the type of operation:

```
mv matrix-vector product (Level 2)
mm matrix-matrix product (Level 3)
sv solving a single triangular system (Level 2)
sm solving triangular systems with multiple right-hand sides (Level 3)
```

The field <mtype> indicates the matrix type:

ge	sparse representation of a general matrix
sy	sparse representation of the upper or lower triangle of a symmetric matrix
tr	sparse representation of a triangular matrix

## Sparse Matrix Storage Formats

The current version of Intel MKL Sparse BLAS Level 2 and Level 3 routines support the following point entry [Duff86] storage formats for sparse matrices:

- compressed sparse row format (CSR) and its variations;
- compressed sparse column format (CSC);
- coordinate format;
- diagonal format;
- skyline storage format;
and one block entry storage format:
- block sparse row format (BSR) and its variations.

For more information see "Sparse Matrix Storage Formats" in Appendix A.
Intel MKL provides auxiliary routines - matrix converters - that convert sparse matrix from one storage format to another.

## Routines and Supported Operations

This section describes operations supported by the Intel MKL Sparse BLAS Level 2 and Level 3 routines. The following notations are used here:

```
A is a sparse matrix;
B and C are dense matrices;
D \text { is a diagonal scaling matrix;}
x and y are dense vectors;
alpha and beta are scalars;
```

$o p(A)$ is one of the possible operations:

```
op (A) = A;
```

op $(A)=A^{\prime}$ - transpose of $A$;
$\mathrm{op}(A)=\operatorname{conj}\left(A^{\prime}\right)$ - conjugated transpose of $A$.
inv (op (A)) denotes the inverse of op (A).
The Intel MKL Sparse BLAS Level 2 and Level 3 routines support the following operations:

- computing the vector product between a sparse matrix and a dense vector:

```
y := alpha*op(A)*x + beta* y
```

- solving a single triangular system:
$y:=a l p h a * \operatorname{inv}(o p(A)) * X$
- computing a product between sparse matrix and dense matrix:
$C:=a l p h a * o p(A) * B+b e t a * C$
- solving a sparse triangular system with multiple right-hand sides:
$C:=$ alpha*inv $(o p(A)) * B$
Intel MKL provides an additional set of the Sparse BLAS Level 2 routines with simplified interfaces. Each of these routines operates on a matrix of the fixed type. The following operations are supported:
- computing the vector product between a sparse matrix and a dense vector (for general and symmetric matrices):
$y:=o p(A) * x$
- solving a single triangular system (for triangular matrices):
$y:=\operatorname{inv}(o p(A)) * X$
Matrix type is indicated by the field <mtype> in the routine name (see section Naming Conventions in Sparse BLAS Level 2 and Level 3).

NOTE The routines with simplified interfaces support only four sparse matrix storage formats, specifically:

CSR format in the 3-array variation accepted in the direct sparse solvers and in the CXML;
diagonal format accepted in the CXML;
coordinate format;
BSR format in the 3-array variation.

Note that routines with both typical (conventional) and simplified interfaces use the same computational kernels that work with certain internal data structures.
The Intel MKL Sparse BLAS Level 2 and Level 3 routines do not support in-place operations.
Complete list of all routines is given in the "Sparse BLAS Level 2 and Level 3 Routines".

## Interface Consideration

## One-Based and Zero-Based Indexing

The Intel MKL Sparse BLAS Level 2 and Level 3 routines support one-based and zero-based indexing of data arrays.
Routines with typical interfaces support zero-based indexing for the following sparse data storage formats: CSR, CSC, BSR, and COO. Routines with simplified interfaces support zero based indexing for the following sparse data storage formats: CSR, BSR, and COO. See the complete list of Sparse BLAS Level 2 and Level 3 Routines.

The one-based indexing uses the convention of starting array indices at 1 . The zero-based indexing uses the convention of starting array indices at 0 . For example, indices of the 5 -element array $x$ can be presented in case of one-based indexing as follows:
Element index: $1 \begin{array}{lllll}1 & 3 & 4 & 5\end{array}$
Element value: 1.05 .07 .08 .09 .0
and in case of zero-based indexing as follows:
Element index: $\begin{array}{lllll}1 & 1 & 2 & 3 & 4\end{array}$
Element value: $1.0 \quad 5.07 .08 .0 \quad 9.0$
The detailed descriptions of the one-based and zero-based variants of the sparse data storage formats are given in the "Sparse Matrix Storage Formats" in Appendix A.

Most parameters of the routines are identical for both one-based and zero-based indexing, but some of them have certain differences. The following table lists all these differences.

Parameter	One-based Indexing	Zero-based Indexing
val	Array containing non-zero elements of the matrix $A$, its length is pntre (m) pntrb(1).	Array containing non-zero elements of the matrix $A$, its length is pntre (m-1)   - pntrb(0).
pntrb	Array of length $m$. This array contains row indices, such that pntrb(i) pntrb (1) +1 is the first index of row $i$ in the arrays val and indx	Array of length $m$. This array contains row indices, such that pntrb (i) pntrb (0) is the first index of row $i$ in the arrays val and indx.
pntre	Array of length $m$. This array contains row indices, such that pntre(I) pntrb (1) is the last index of row $i$ in the arrays val and indx.	Array of length $m$. This array contains row indices, such that pntre(i) pntrb (0)-1 is the last index of row i in the arrays val and indx.
ia	Array of length $m+1$, containing indices of elements in the array $a$, such that $i a(i)$ is the index in the array $a$ of the first non-zero element from the row $i$. The value of the last element $i a(m+1)$ is equal to the number of non-zeros plus one.	Array of length $m+1$, containing indices of elements in the array $a$, such that ia(i) is the index in the array a of the first non-zero element from the row $i$. The value of the last element ia(m) is equal to the number of nonzeros.
1 db	Specifies the leading dimension of $b$ as declared in the calling (sub)program.	Specifies the second dimension of $b$ as declared in the calling (sub)program.
$1 d c$	Specifies the leading dimension of $c$ as declared in the calling (sub)program.	Specifies the second dimension of $c$ as declared in the calling (sub)program.

## Difference Between Fortran and C Interfaces

Intel MKL provides both Fortran and C interfaces to all Sparse BLAS Level 2 and Level 3 routines. Parameter descriptions are common for both interfaces with the exception of data types that refer to the FORTRAN 77 standard types. Correspondence between data types specific to the Fortran and C interfaces are given below:

Fortran	C
REAL*4	float
REAL*8	double
INTEGER*4	int
INTEGER*8	long long int
CHARACTER	char

For routines with C interfaces all parameters (including scalars) must be passed by references.
Another difference is how two-dimensional arrays are represented. In Fortran the column-major order is used, and in C-row-major order. This changes the meaning of the parameters $l d b$ and $l d c$ (see the table above).

## Differences Between Intel MKL and NIST* Interfaces

The Intel MKL Sparse BLAS Level 3 routines have the following conventional interfaces:
mkl_xyyymm(transa, $m, n, k, a l p h a, ~ m a t d e s c r a, ~ a r g(A), b, l d b, b e t a, ~ c, ~ l d c)$, for matrixmatrix product;
mkl_xyyysm(transa, $m, n, a l p h a, ~ m a t d e s c r a, ~ a r g(A), b, l d b, c, \quad l d c)$, for triangular solvers with multiple right-hand sides.

Here x denotes data type, and yyy - sparse matrix data structure (storage format).
The analogous NIST* Sparse BLAS (NSB) library routines have the following interfaces:
xyyymm(transa, $m, n, k, ~ a l p h a, ~ d e s c r a, ~ \arg (A), b, l d b, b e t a, c, l d c, ~ w o r k, ~ l w o r k), f o r$ matrix-matrix product;
xyyysm(transa, $m, n$, unitd, dv, alpha, descra, arg(A), b, ldb, beta, $c, l d c, ~ w o r k$, l work), for triangular solvers with multiple right-hand sides.

Some similar arguments are used in both libraries. The argument transa indicates what operation is performed and is slightly different in the NSB library (see Table "Parameter transa"). The arguments $m$ and $k$ are the number of rows and column in the matrix $A$, respectively, $n$ is the number of columns in the matrix c. The arguments alpha and beta are scalar alpha and beta respectively (beta is not used in the Intel MKL triangular solvers.) The arguments $b$ and $c$ are rectangular arrays with the leading dimension $I d b$ and $I d c$, respectively. $\arg (A)$ denotes the list of arguments that describe the sparse representation of $A$.

Parameter transa

	MKL interface	NSB interface	Operation
data type	CHARACTER*1	INTEGER	
value	N or $n$	0	op $(A)=A$
	T or t	1	$o p(A)=A^{\prime}$
	C or c	2	$o p(A)=A^{\prime}$

## Parameter matdescra

The parameter matdescra describes the relevant characteristic of the matrix $A$. This manual describes matdescra as an array of six elements in line with the NIST* implementation. However, only the first four elements of the array are used in the current versions of the Intel MKL Sparse BLAS routines. Elements matdescra(5) and matdescra(6) are reserved for future use. Note that whether matdescra is described in your application as an array of length 6 or 4 is of no importance because the array is declared as a pointer in the Intel MKL routines. To learn more about declaration of the matdescra array, see Sparse BLAS examples located in the following subdirectory of the Intel MKL installation directory: examples/spblas/. The table below lists elements of the parameter matdescra, their values and meanings. The parameter matdescra corresponds to the argument descra from NSB library.
Possible Values of the Parameter matdescra (descra)

	MKL interface	NSB   interface	Matrix characteristics	
	one-based   indexing	zero-based   indexing		
data type	CHARACTER	Char	INTEGER	
1st element	matdescra(1)	matdescra $(0)$	descra (1)	matrix structure
value	G	G	0	general
	S	S	1	symmetric $\left(A=A^{\prime}\right)$


	MKL interface		NSB   interface	Matrix characteristics
	H	H	2	Hermitian ( $A=\operatorname{conjg}\left(A^{\prime}\right)$ )
	T	T	3	triangular
	A	A	4	skew(anti)-symmetric ( $A=-A^{\prime}$ )
	D	D	5	diagonal
2nd element	matdescra(2)	matdescra(1)	descra(2)	upper/lower triangular indicator
value	L	L	1	lower
	U	U	2	upper
3rd element	matdescra(3)	matdescra(2)	descra(3)	main diagonal type
value	$\mathrm{N}$	N	0	non-unit
	U	U	1	unit
4th element	matdescra(4)	matdescra(3)		type of indexing
value	F			one-based indexing
		C		zero-based indexing

In some cases possible element values of the parameter matdescra depend on the values of other elements. The Table "Possible Combinations of Element Values of the Parameter matdescra" lists all possible combinations of element values for both multiplication routines and triangular solvers.
Possible Combinations of Element Values of the Parameter matdescra

Routines	matdescra(1)	matdescra(2)	matdescra(3)	matdescra(4)
Multiplication Routines	G	ignored	ignored	F (default) or C
	S or H	L (default)	$\mathbf{N}$ (default)	$F$ (default) or C
	S or H	L (default)	U	$F$ (default) or C
	S or H	U	$\mathbf{N}$ (default)	$F$ (default) or C
	S or H	U	U	$F$ (default) or $C$
	A	L (default)	ignored	F (default) or C
	A	U	ignored	F (default) or C
Multiplication   Routines and   Triangular Solvers	T	L	U	F (default) or C
	T	L	N	$F$ (default) or C
	T	U	U	F (default) or C
	T	U	N	F (default) or C
	D	ignored	N (default)	$F$ (default) or $C$
	D	ignored	U	F (default) or C

For a matrix in the skyline format with the main diagonal declared to be a unit, diagonal elements must be stored in the sparse representation even if they are zero. In all other formats, diagonal elements can be stored (if needed) in the sparse representation if they are not zero.

## Operations with Partial Matrices

One of the distinctive feature of the Intel MKL Sparse BLAS routines is a possibility to perform operations only on partial matrices composed of certain parts (triangles and the main diagonal) of the input sparse matrix. It can be done by setting properly first three elements of the parameter matdescra.

An arbitrary sparse matrix $A$ can be decomposed as
$A=L+D+U$
where $L$ is the strict lower triangle of $A, U$ is the strict upper triangle of $A, D$ is the main diagonal.
Table "Output Matrices for Multiplication Routines" shows correspondence between the output matrices and values of the parameter matdescra for the sparse matrix $A$ for multiplication routines.
Output Matrices for Multiplication Routines

matdescra(1)	matdescra(2)	matdescra(3)	Output Matrix
G	ignored	ignored	alpha*op (A)*x + beta* ${ }^{\text {a }}$
			alpha*op(A)*B+ beta* ${ }^{\text {a }}$
S or H	L	N	alpha*op ( $\left.L+D+L^{\prime}\right){ }^{*} \mathrm{X}+$ beta* $y$
			alpha*op( $L+D+L^{\prime}$ ) ${ }_{B}+$ beta ${ }^{*}{ }_{C}$
S or H	L	U	alpha*op (L+I+L')*x + beta*
			alpha*op $\left(L+I+L^{\prime}\right) * B+$ beta* $C$
S or H	U	N	alpha*op ( $\left.U^{\prime}+D+U\right) * x+$ beta* $y$
			alpha*op ( $\left.U^{\prime}+D+U\right) *_{B}+$ beta* ${ }^{\text {a }}$
S or H	U	U	alpha*op ( $\left.U^{\prime}+I+U\right) * x+$ beta* $y$
			alpha*op( $\left.U^{\prime}+I+U\right) * B+$ beta* ${ }^{\text {a }}$
T	L	U	alpha*op $(L+I) *_{x}+$ beta* $y$
			alpha*op(L+I)*B+beta*C
T	L	N	alpha*op (L+D)*x + beta* $y$
			alpha*op( $L+D$ ) ${ }_{B}+$ beta* $^{\text {c }}$
T	U	U	alpha*op $(U+I) *_{x}+$ beta* $y$
			alpha*op(U+I)*B+beta*C
T	U	N	alpha*op $(U+D){ }^{*} x+$ beta* $y$
			alpha*op(U+D)* ${ }_{B}+$ beta $^{*} C$
A	L	ignored	alpha*op (L-L')*x + beta* ${ }^{\prime}$
			alpha*op( $L-L^{\prime}$ )* ${ }_{B}+$ beta* ${ }_{C}$
A	U	ignored	alpha*op (U-U')*x + beta* $y$
			alpha*op(U-U')*B ${ }^{*}$ beta* ${ }_{C}$
D	ignored	N	alpha* ${ }^{\star} x+$ beta* $y$
			alpha* ${ }^{*}{ }^{*}+$ beta* ${ }^{*}$
D	ignored	U	alpha* X + beta* y
			alpha* ${ }^{\text {+ }}$ beta* ${ }^{\text {c }}$

Table "Output Matrices for Triangular Solvers" shows correspondence between the output matrices and values of the parameter matdescra for the sparse matrix A for triangular solvers.

## Output Matrices for Triangular Solvers

matdescra(1)	matdescra(2)	matdescra(3)	Output Matrix
T	L	N	alpha*inv (op (L+L))*x
			alpha*inv(op( $L+L$ ) ${ }^{*}{ }_{B}$
T	L	U	alpha*inv (op ( $L+L$ ) ) * ${ }_{\text {x }}$
			alpha*inv(op( $L+L$ ) $*_{B}$
T	U	N	alpha*inv (op ( U $+U$ ) ${ }^{\text {* }}$ X
			alpha*inv(op(U+U))*B
T	U	U	alpha*inv(op (U+U) ) ** ${ }_{\text {x }}$
			alpha*inv(op(U+U))*B
D	ignored	N	alpha*inv (D) * ${ }_{X}$
			alpha*inv( $D$ * $*_{B}$
D	ignored	U	alpha*x
			alpha* ${ }_{B}$

## Sparse BLAS Level 2 and Level 3 Routines.

Table "Sparse BLAS Level 2 and Level 3 Routines" lists the sparse BLAS Level 2 and Level 3 routines described in more detail later in this section.

Sparse BLAS Level 2 and Level 3 Routines

## Routine/Function <br> Description

## Simplified interface, one-based indexing

mkl_?csrgemv	Computes matrix - vector product of a sparse general matrix in the CSR format (3-array variation)
mkl_? bsrgemv	Computes matrix - vector product of a sparse general matrix in the BSR format (3-array variation).
mkl_? coogemv	Computes matrix - vector product of a sparse general matrix in the coordinate format.
mkl_?diagemv	Computes matrix - vector product of a sparse general matrix in the diagonal format.
mkl_?csrsymv	Computes matrix - vector product of a sparse symmetrical matrix in the CSR format (3-array variation)
mkl_? bsrsymv	Computes matrix - vector product of a sparse symmetrical matrix in the BSR format (3-array variation).
mkl_?coosymv	Computes matrix - vector product of a sparse symmetrical matrix in the coordinate format.
mkl_?diasymv	Computes matrix - vector product of a sparse symmetrical matrix in the diagonal format.
mkl_?csrtrsv	Triangular solvers with simplified interface for a sparse matrix in the CSR format (3-array variation).


Routine/Function	Description
$m k l_{\_} ? b s r t r s v$	Triangular solver with simplified interface for a sparse matrix   in the BSR format (3-array variation).
$m k l_{-} ? c o o t r s v$	Triangular solvers with simplified interface for a sparse matrix   in the coordinate format.
$m k l_{\text {_ }}$ ?diatrsv	Triangular solvers with simplified interface for a sparse matrix   in the diagonal format.

## Simplified interface, zero-based indexing

```
mkl_cspblas_?csrgemv
mkl_cspblas_?bsrgemv
mkl_cspblas_?coogemv
mkl_cspblas_?csrsymv
mkl_cspblas_?bsrsymv
mkl_cspblas_?coosymv
mkl_cspblas_?csrtrsv
mkl_cspblas_?bsrtrsv
mkl_cspblas_?cootrsv
```

Typical (conventional) interface, one-based and zero-based indexing

```
mkl_?csrmv
mkl_?bsrmv
mkl_?cscmv
mkl ?coomv
mkl_?csrsv
```

Computes matrix - vector product of a sparse matrix in the CSR format.

Computes matrix - vector product of a sparse matrix in the BSR format.

Computes matrix - vector product for a sparse matrix in the CSC format.

Computes matrix - vector product for a sparse matrix in the coordinate format.

Solves a system of linear equations for a sparse matrix in the CSR format.

Routine/Function	Description
mkl_?bsrsv	Solves a system of linear equations for a sparse matrix in the BSR format.
mkl_?cscsv	Solves a system of linear equations for a sparse matrix in the CSC format.
mkl_?coosv	Solves a system of linear equations for a sparse matrix in the coordinate format.
mkl_?csrmm	Computes matrix - matrix product of a sparse matrix in the CSR format
mkl_? bsrmm	Computes matrix - matrix product of a sparse matrix in the BSR format.
mkl_?cscmm	Computes matrix - matrix product of a sparse matrix in the CSC format
mkl_?coomm	Computes matrix - matrix product of a sparse matrix in the coordinate format.
mkl_?csrsm	Solves a system of linear matrix equations for a sparse matrix in the CSR format.
mkl_? bsrsm	Solves a system of linear matrix equations for a sparse matrix in the BSR format.
mkl_?cscsm	Solves a system of linear matrix equations for a sparse matrix in the CSC format.
mkl_?coosm	Solves a system of linear matrix equations for a sparse matrix in the coordinate format.

## Typical (conventional) interface, one-based indexing

```
mkl_?diamv
mkl_?skymv
mkl ?diasv
mkl_?skysv
mkl_?diamm
mkl_?skymm
mkl_?diasm
mkl_?skysm
```


## Auxiliary routines

Matrix converters

Computes matrix - vector product of a sparse matrix in the diagonal format.

Computes matrix - vector product for a sparse matrix in the skyline storage format.

Solves a system of linear equations for a sparse matrix in the diagonal format.

Solves a system of linear equations for a sparse matrix in the skyline format.

Computes matrix - matrix product of a sparse matrix in the diagonal format.

Computes matrix - matrix product of a sparse matrix in the skyline storage format.

Solves a system of linear matrix equations for a sparse matrix in the diagonal format.

Solves a system of linear matrix equations for a sparse matrix in the skyline storage format.

Routine/Function	Description
mkl_?dnscsr	Converts a sparse matrix in the dense representation to the CSR format (3-array variation).
mkl_?csrcoo	Converts a sparse matrix in the CSR format (3-array variation) to the coordinate format and vice versa.
mkl_?csrbsr	Converts a sparse matrix in the CSR format to the BSR format (3-array variations) and vice versa.
mkl_? csrcsc	Converts a sparse matrix in the CSR format to the CSC and vice versa (3-array variations).
mkl_?csrdia	Converts a sparse matrix in the CSR format (3-array variation) to the diagonal format and vice versa.
mkl_?csrsky	Converts a sparse matrix in the CSR format (3-array variation) to the sky line format and vice versa.
Operations on sparse matrices	
mkl_?csradd	Computes the sum of two sparse matrices stored in the CSR format (3-array variation) with one-based indexing.
mkl_?csrmultcsr	Computes the product of two sparse matrices stored in the CSR format (3-array variation) with one-based indexing.
mkl_?csrmultd	Computes product of two sparse matrices stored in the CSR format (3-array variation) with one-based indexing. The result is stored in the dense matrix.

mkl_?csrgemv
Computes matrix - vector product of a sparse general matrix stored in the CSR format (3-array variation) with one-based indexing.

Syntax

## Fortran:

```
call mkl_scsrgemv(transa, m, a, ia, ja, x, y)
call mkl_dcsrgemv(transa, m, a, ia, ja, x, y)
call mkl_ccsrgemv(transa, m, a, ia, ja, x, y)
call mkl_zcsrgemv(transa, m, a, ia, ja, x, y)
```

C:

```
mkl_scsrgemv(&transa, &m, a, ia, ja, x, y);
mkl_dcsrgemv(&transa, &m, a, ia, ja, x, y);
mkl_ccsrgemv(&transa, &m, a, ia, ja, x, y);
mkl_zcsrgemv(&transa, &m, a, ia, ja, x, y);
```


## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?csrgemv routine performs a matrix-vector operation defined as

```
y := A* }
```

or
$y:=A^{\prime *} x$,
where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ sparse square matrix in the CSR format (3-array variation), $A^{\prime}$ is the transpose of $A$.

NOTE This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
m
a

X

CHARACTER*1. Specifies the operation.
If transa $=$ 'N' or 'n', then as $y:=A^{*} x$ If transa $=$ 'T' or 't' or 'C' or 'c', then $y:=A{ }^{\prime *} x$,
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_scsrgemv.
DOUBLE PRECISION for mkl_dcsrgemv.
COMPLEX for mkl_ccsrgemv.
DOUBLE COMPLEX for mkl_zcsrgemv.
Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length $m+1$, containing indices of elements in the array a, such that ia(i) is the index in the array a of the first non-zero element from the row $i$. The value of the last element $\operatorname{ia}(m+1)$ is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.
Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.
REAL for mkl_scsrgemv.
DOUBLE PRECISION for mkl_dcsrgemv.
COMPLEX for mkl_ccsrgemv.
DOUBLE COMPLEX for mkl_zcsrgemv.
Array, DIMENSION is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

```
y
```

REAL for mkl_scsrgemv.
DOUBLE PRECISION for mkl_dcsrgemv.
COMPLEX for mkl_ccsrgemv.

DOUBLE COMPLEX for mkl_zcsrgemv. Array, DIMENSION at least $m$. On exit, the array $y$ must contain the vector $y$.

## Interfaces

## FORTRAN 77:

SUBROUTINE mkl_scsrgemv(transa, m, a, ia, ja, x, y)

```
 CHARACTER*1 transa
```

    INTEGER m
    INTEGER ia(*), ja(*)
    REAL \(\quad a(*), x(*), y(*)\)
    SUBROUTINE mkl_dcsrgemv(transa, m, a, ia, ja, x, y)
CHARACTER*1 transa
INTEGER m
INTEGER ia(*), ja(*)
DOUBLE PRECISION $a(*), x(*), y(*)$
SUBROUTINE mkl_ccsrgemv(transa, m, a, ia, ja, x, y)
CHARACTER*1 transa
INTEGER m
INTEGER ia(*), ja(*)
COMPLEX $\mathrm{a}(*), \mathrm{x}(*), \mathrm{y}(*)$
SUBROUTINE mkl_zCsrgemv(transa, m, a, ia, ja, x, y)
CHARACTER*1 transa
INTEGER m
INTEGER ia(*), ja(*)
DOUBLE COMPLEX $a(*), x(*), y(*)$
C:
void mkl_scsrgemv (char *transa, int *m, float *a,
int *ia, int *ja, float *x, float *y);
void mkl_dcsrgemv (char *transa, int *m, double *a,
int *ia, int *ja, double *x, double *y);
void mkl_ccsrgemv(char *transa, int *m, MKL_Complex8 *a,
int *ia, int *ja, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zcsrgemv (char *transa, int *m, MKL_Complex16 *a,
int *ia, int *ja, MKL_Complex16 *x, MKL_Complex16 *y);

## mkl_?bsrgemv

Computes matrix - vector product of a sparse general matrix stored in the BSR format (3-array variation) with one-based indexing.

## Syntax

## Fortran:

```
call mkl_sbsrgemv(transa, m, lb, a, ia, ja, x, y)
call mkl_dbsrgemv(transa, m, lb, a, ia, ja, x, y)
call mkl_cbsrgemv(transa, m, lb, a, ia, ja, x, y)
call mkl_zbsrgemv(transa, m, lb, a, ia, ja, x, y)
```

C:
mkl_sbsrgemv(\&transa, \&m, \&lb, a, ia, ja, x, y);
$m k l \_d b s r g e m v(\& t r a n s a, ~ \& m, ~ \& l b, ~ a, ~ i a, ~ j a, ~ x, ~ y)$;
$m k l_{1} c b s r g e m v(\& t r a n s a, ~ \& m, ~ \& l b, ~ a, ~ i a, ~ j a, ~ x, ~ y)$;
mkl_zbsrgemv(\&transa, \&m, \&lb, a, ia, ja, x, y);
Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?bsrgemv routine performs a matrix-vector operation defined as
$y:=A^{\star} X$
or
$y:=A^{\prime *} X$,
where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ block sparse square matrix in the BSR format (3-array variation), $A^{\prime}$ is the transpose of $A$.

NOTE This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
m

CHARACTER*1. Specifies the operation.
If transa = 'N' or 'n', then the matrix-vector product is computed as $y:=A^{*} x$
If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as $y$ : $=A^{\prime}{ }^{\prime} x$,
INTEGER. Number of block rows of the matrix $A$.
1.6
a

x


```
INTEGER. Size of the block in the matrix \(A\).
REAL for mkl_sbsrgemv.
DOUBLE PRECISION for mkl_dbsrgemv.
COMPLEX for mkl_cbsrgemv.
DOUBLE COMPLEX for mkl_zbsrgemv.
Array containing elements of non-zero blocks of the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\) multiplied by \(1 b^{\star} 1 b\). Refer to values array description in BSR Format for more details.
INTEGER. Array of length \((m+1)\), containing indices of block in the array \(a\), such that \(i a(i)\) is the index in the array \(a\) of the first non-zero element from the row \(i\). The value of the last element \(\operatorname{ia}(m+1)\) is equal to the number of non-zero blocks plus one. Refer to rowIndex array description in BSR Format for more details.
INTEGER. Array containing the column indices for each non-zero block in the matrix \(A\).
Its length is equal to the number of non-zero blocks of the matrix A. Refer to columns array description in BSR Format for more details.
```


## Output Parameters

y
REAL for mkl_sbsrgemv.
DOUBLE PRECISION for mkl_dbsrgemv.
COMPLEX for mkl_cbsrgemv.
DOUBLE COMPLEX for mkl_zbsrgemv.
Array, DIMENSION at least ( $m^{\star} l b$ ).
On exit, the array $y$ must contain the vector $y$.

## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_sbsrgemv(transa, m, lb, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
SUBROUTINE mkl_dbsrgemv(transa, m, lb, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
```

```
SUBROUTINE mkl_cbsrgemv(transa, m, lb, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
SUBROUTINE mkl_zbsrgemv(transa, m, lb, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
C:
void mkl_dbsrgemv(char *transa, int *m, int *lb, double *a,
int *ia, int *ja, double *x, double *y);
void mkl_sbsrgemv(char *transa, int *m, int *lb, float *a,
int *ia, int *ja, float *x, float *y);
void mkl cbsrgemv(char *transa, int *m, int *lb, MKL Complex8 *a,
int *ia, int *ja, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zbsrgemv(char *transa, int *m, int *lb, MKL_Complex16 *a,
int *ia, int *ja, MKL_Complex16 *x, MKL_Complex16 *y);
```


## mkl_?coogemv

```
Computes matrix-vector product of a sparse general matrix stored in the coordinate format with one-based indexing.
```


## Syntax

## Fortran:

```
call mkl_scoogemv(transa, m, val, rowind, colind, nnz, x, y)
call mkl_dcoogemv(transa, m, val, rowind, colind, nnz, x, y)
call mkl_ccoogemv(transa, m, val, rowind, colind, nnz, x, y)
call mkl_zcoogemv(transa, m, val, rowind, colind, nnz, x, y)
```

C:
mkl_scoogemv(\&transa, \&m, val, rowind, colind, \&nnz, x, y);
mkl_dcoogemv(\&transa, \&m, val, rowind, colind, \&nnz, x, y);
mkl_ccoogemv(\&transa, \&m, val, rowind, colind, \&nnz, x, y);
mkl_zcoogemv(\&transa, \&m, val, rowind, colind, \&nnz, x, y);

## Include files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?coogemv routine performs a matrix-vector operation defined as
$y:=A^{\star} X$
or
$y:=A^{\prime *} x$,
where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ sparse square matrix in the coordinate format, $A^{\prime}$ is the transpose of $A$.

NOTE This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa CHARACTER*1. Specifies the operation.
If transa $=$ 'N' or 'n', then the matrix-vector product is computed as $y:=A^{\star} x$
If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as $y:=A^{\prime *} X$,

INTEGER. Number of rows of the matrix $A$.
REAL for mkl_scoogemv.
DOUBLE PRECISION for mkl_dcoogemv.
COMPLEX for mkl_ccoogemv.
DOUBLE COMPLEX for mkl_zcoogemv.
Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.
Refer to values array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.
Refer to rows array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the column indices for each non-
zero element of the matrix A. Refer to columns array description in Coordinate Format for more details.
INTEGER. Specifies the number of non-zero element of the matrix $A$. Refer to $n n z$ description in Coordinate Format for more details.
REAL for mkl_scoogemv.
DOUBLE PRECISION for mkl_dcoogemv.
COMPLEX for mkl_ccoogemv.
DOUBLE COMPLEX for mkl_zcoogemv.
Array, DIMENSION is $m$.
One entry, the array $x$ must contain the vector $x$.

## Output Parameters

COMPLEX for mkl_ccoogemv.
DOUBLE COMPLEX for mkl_zcoogemv.
Array, DIMENSION at least $m$.
On exit, the array $y$ must contain the vector $y$.

## Interfaces

## FORTRAN 77:



```
C:
void mkl_scoogemv(char *transa, int *m, float *val, int *rowind,
int *colind, int *nnz, float *x, float *y);
void mkl_dcoogemv(char *transa, int *m, double *val, int *rowind,
int *colind, int *nnz, double *x, double *y);
void mkl_ccoogemv(char *transa, int *m, MKL_Complex8 *val, int *rowind,
int *colind, int *nnz, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zcoogemv(char *transa, int *m, MKL_Complex16 *val, int *rowind,
int *colind, int *nnz, MKL_Complex16 *x, MKI__Complex16 *y);
```


## mkl_?diagemv

Computes matrix - vector product of a sparse general matrix stored in the diagonal format with one-based indexing.

## Syntax

## Fortran:

```
call mkl_sdiagemv(transa, m, val, lval, idiag, ndiag, x, y)
call mkl_ddiagemv(transa, m, val, lval, idiag, ndiag, x, y)
call mkl_cdiagemv(transa, m, val, lval, idiag, ndiag, x, y)
call mkl_zdiagemv(transa, m, val, lval, idiag, ndiag, x, y)
```

C:
mkl_sdiagemv(\&transa, \&m, val, \&lval, idiag, \&ndiag, x, y);
mkl_ddiagemv(\&transa, \&m, val, \&lval, idiag, \&ndiag, x, y);
mkl_cdiagemv(\&transa, \&m, val, \&lval, idiag, \&ndiag, x, y);
mkl_zdiagemv(\&transa, \&m, val, \&lval, idiag, \&ndiag, x, y);

## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?diagemv routine performs a matrix-vector operation defined as
$y:=A^{\star} X$
or
$y:=A^{\prime *} x^{\prime}$,
where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ sparse square matrix in the diagonal storage format, $A^{\prime}$ is the transpose of $A$.

NOTE This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
transa
m
val
CHARACTER*1. Specifies the operation.
If transa = 'N' or 'n', then y := A*x
If transa = 'T' or 't' or 'C' or 'c', then y := A'*x,
INTEGER. Number of rows of the matrix A.
REAL for mkl_sdiagemv.
DOUBLE PRECISION for mkl_ddiagemv.
```

	COMPLEX for mkl_ccsrgemv.   DOUBLE COMPLEX for mkl_zdiagemv.   Two-dimensional array of size $l^{2} \mathrm{val}{ }^{*}$ ndiag, contains non-zero diagonals of the matrix A. Refer to values array description in Diagonal Storage Scheme for more details.
Ival	INTEGER. Leading dimension of val $\operatorname{lval} \geq m$. Refer to $\operatorname{lval}$ description in Diagonal Storage Scheme for more details.
idiag	INTEGER. Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix $A$. Refer to distance array description in Diagonal Storage Scheme for more details.
ndiag	INTEGER. Specifies the number of non-zero diagonals of the matrix $A$.
$x$	REAL for mkl_sdiagemv.   DOUBLE PRECISION for mkl_ddiagemv.   COMPLEX for mkl_ccsrgemv.   DOUBLE COMPLEX for mkl_zdiagemv.   Array, DIMENSION is $m$.   On entry, the array $x$ must contain the vector $x$.

## Output Parameters

```
y REAL for mkl_sdiagemv.
 DOUBLE PRECISION for mkl_ddiagemv.
 COMPLEX for mkl_ccsrgemv.
 DOUBLE COMPLEX for mkl_zdiagemv.
 Array, DIMENSION at least m.
 On exit, the array y must contain the vector y.
```


## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sdiagemv(transa, m, val, lval, idiag, ndiag, x, y)
CHARACTER*1 transa
INTEGER m, lval, ndiag
 INTEGER idiag(*)
 REAL val(lval,*), x(*), y(*)
SUBROUTINE mkl_ddiagemv(transa, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 transa
 INTEGER m, lval, ndiag
 INTEGER idiag(*)
 DOUBLE PRECISION val(lval,*), x(*), y(*)
SUBROUTINE mkl_cdiagemv(transa, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 transa
 INTEGER m, lval, ndiag
 INTEGER idiag(*)
 COMPLEX val(lval,*), x(*), y(*)
```

```
SUBROUTINE mkl_zdiagemv(transa, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 transa
 INTEGER m, lval, ndiag
 INTEGER idiag(*)
 DOUBLE COMPLEX val(lval,*), x(*), y(*)
```

C:
void mkl sdiagemv(char *transa, int *m, float *val, int *lval,
int *idiag, int *ndiag, float *x, float *y);
void mkl_ddiagemv(char *transa, int *m, double *val, int *lval,
int *idiag, int *ndiag, double *x, double *y);
void mkl_cdiagemv(char *transa, int *m, MKL_Complex8 *val, int *lval,
int *idiag, int *ndiag, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zdiagemv(char *transa, int *m, MKL_Complex16 *val, int *lval,
int *idiag, int *ndiag, MKL_Complex16 *x, MKL_Complex16 *y);

## mkl_?csrsymv

Computes matrix - vector product of a sparse symmetrical matrix stored in the CSR format (3-array variation) with one-based indexing.

## Syntax

## Fortran:

```
call mkl_scsrsymv(uplo, m, a, ia, ja, x, y)
call mkl_dcsrsymv(uplo, m, a, ia, ja, x, y)
call mkl_ccsrsymv(uplo, m, a, ia, ja, x, y)
call mkl_zcsrsymv(uplo, m, a, ia, ja, x, y)
```

C:
mkl_scsrsymv(\&uplo, \&m, a, ia, ja, x, y);
mkl_dcsrsymv(\&uplo, \&m, a, ia, ja, x, y);
mkl_ccsrsymv(\&uplo, \&m, a, ia, ja, x, y);
mkl_zcsrsymv(\&uplo, \&m, a, ia, ja, x, y);

## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?csrsymv routine performs a matrix-vector operation defined as $y:=A^{*} x$
where:
$x$ and $y$ are vectors,
$A$ is an upper or lower triangle of the symmetrical sparse matrix in the CSR format (3-array variation).

NOTE This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
uplo
m
a
ia
ja

X

## Output Parameters

Y

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_scsrsymv.
DOUBLE PRECISION for mkl_dcsrsymv.
COMPLEX for mkl_ccsrsymv.
DOUBLE COMPLEX for mkl_zcsrsymv.
Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array of length $m+1$, containing indices of elements in the array $a$, such that $i a(i)$ is the index in the array $a$ of the first non-zero element from the row $i$. The value of the last element $\operatorname{ia}(m+1)$ is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.
Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.
REAL for mkl_scsrsymv.
DOUBLE PRECISION for mkl_dcsrsymv.
COMPLEX for mkl_ccsrsymv.
DOUBLE COMPLEX for mkl_zcsrsymv.
Array, DIMENSION is $m$.
On entry, the array $x$ must contain the vector $x$.

REAL for mkl_scsrsymv.
DOUBLE PRECISION for mkl_dcsrsymv.
COMPLEX for mkl_ccsrsymv.
DOUBLE COMPLEX for mkl_zcsrsymv.
Array, DIMENSION at least $m$.
On exit, the array y must contain the vector $y$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_scsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
SUBROUTINE mkl_dcsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_ccsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
SUBROUTINE mkl_zcsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
```

C:
void mkl_scsrsymv(char *uplo, int *m, float *a,
int *ia, int *ja, float *x, float *y);
void mkl_dcsrsymv(char *uplo, int *m, double *a,
int *ia, int *ja, double *x, double *y);
void mkl_ccsrsymv (char *uplo, int *m, MKL_Complex8 *a,
int *ia, int *ja, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zcsrsymv(char *uplo, int *m, MKL_Complex16 *a,
int *ia, int *ja, MKL_Complex16 *x, MKL_Complex16 *y);

## mkl_?bsrsymv

Computes matrix-vector product of a sparse symmetrical matrix stored in the BSR format (3-array variation) with one-based indexing.

## Syntax

## Fortran:

```
call mkl_sbsrsymv(uplo, m, lb, a, ia, ja, x, y)
call mkl_dbsrsymv(uplo, m, lb, a, ia, ja, x, y)
call mkl_cbsrsymv(uplo, m, lb, a, ia, ja, x, y)
call mkl_zbsrsymv(uplo, m, lb, a, ia, ja, x, y)
```

C:
mkl_sbsrsymv(\&uplo, \&m, \&lb, a, ia, ja, $x, y)$;
mkl_dbsrsymv(\&uplo, \&m, \&lb, a, ia, ja, x, y);
mkl cbsrsymv(\&uplo, \&m, \&lb, a, ia, ja, x, y);
mkl_zbsrsymv(\&uplo, \&m, \&lb, a, ia, ja, $x, y)$;

## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?bsrsymv routine performs a matrix-vector operation defined as $y:=A^{\star} X$
where:
$x$ and $y$ are vectors,
$A$ is an upper or lower triangle of the symmetrical sparse matrix in the BSR format (3-array variation).

NOTE This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
uplo
m
1.b
a
CHARACTER* 1. Specifies whether the upper or low triangle of the matrix \(A\) is considered.
If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used. If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used.
INTEGER. Number of block rows of the matrix \(A\).
INTEGER. Size of the block in the matrix \(A\).
REAL for mkl_sbsrsymv.
DOUBLE PRECISION for mkl dbsrsymv.
COMPLEX for mkl_cbsrsymv.
DOUBLE COMPLEX for mkl zcsrgemv.
```

Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 b^{\star} l b$. Refer to values array description in BSR Format for more details.

## Output Parameters

INTEGER. Array of length $(m+1)$, containing indices of block in the array $a$, such that $i a(i)$ is the index in the array $a$ of the first non-zero element from the row $i$. The value of the last element $\operatorname{ia}(m+1)$ is equal to the number of non-zero blocks plus one. Refer to rowIndex array description in BSR Format for more details.

INTEGER. Array containing the column indices for each non-zero block in the matrix $A$.
Its length is equal to the number of non-zero blocks of the matrix A. Refer to columns array description in BSR Format for more details.

Y
REAL for mkl_sbsrsymv. DOUBLE PRECISION for mkl_dbsrsymv.
COMPLEX for mkl_cbsrsymv. DOUBLE COMPLEX for mkl_zcsrgemv.
Array, DIMENSION at least ( $m^{*}$ lb).
On exit, the array $y$ must contain the vector $y$.

## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_sbsrsymv(uplo, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
SUBROUTINE mkl_dbsrsymv(uplo, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_cbsrsymv(uplo, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
```

```
SUBROUTINE mkl_zbsrsymv(uplo, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
```

C:
void mkl sbsrsymv(char *uplo, int *m, int *lb,
float *a, int *ia, int *ja, float *x, float *y);
void mkl_dbsrsymv(char *uplo, int *m, int *lb,
double *a, int *ia, int *ja, double *x, double *y);
void mkl_cbsrsymv(char *uplo, int *m, int *lb,
MKL_Complex8 *a, int *ia, int *ja, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zbsrsymv(char *uplo, int *m, int *lb,
MKL_Complex16 *a, int *ia, int *ja, MKL_Complex16 *x, MKL_Complex16 *y);
mkl_?coosymv
Computes matrix - vector product of a sparse symmetrical matrix stored in the coordinate format with one-based indexing.

## Syntax

## Fortran:

```
call mkl_scoosymv(uplo, m, val, rowind, colind, nnz, x, y)
call mkl_dcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
call mkl_ccoosymv(uplo, m, val, rowind, colind, nnz, x, y)
call mkl_zcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
```

C:
mkl_scoosymv(\&uplo, \&m, val, rowind, colind, \&nnz, $x, y)$;
mkl_dcoosymv(\&uplo, \&m, val, rowind, colind, \&nnz, $x, y)$;
mkl_ccoosymv(\&uplo, \&m, val, rowind, colind, \&nnz, $x, y)$;
mkl_zcoosymv(\&uplo, \&m, val, rowind, colind, \&nnz, x, y);

## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?coosymv routine performs a matrix-vector operation defined as $y:=A^{*} X$
where:
$x$ and $y$ are vectors,
$A$ is an upper or lower triangle of the symmetrical sparse matrix in the coordinate format.

$\square$
NOTE This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
uplo
m
val
rowind
colind
nnz
X
```


## Output Parameters

y
REAL for mkl_scoosymv.
DOUBLE PRECISION for mkl_dcoosymv.
COMPLEX for mkl_ccoosymv.
DOUBLE COMPLEX for mkl_zcoosymv.
Array, DIMENSION at least $m$.
On exit, the array $y$ must contain the vector $y$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_scoosymv(uplo, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 uplo
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 REAL val(*), x(*), y(*)
SUBROUTINE mkl_dcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 uplo
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 DOUBLE PRECISION val(*), x(*), y(*)
SUBROUTINE mkl_cdcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 uplo
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 COMPLEX val(*), x(*), y(*)
SUBROUTINE mkl_zcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 uplo
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 DOUBLE COMPLEX val(*), x(*), y(*)
```

C:
void mkl_scoosymv(char *uplo, int *m, float *val, int *rowind,
int *colind, int *nnz, float *x, float *y);
void mkl_dcoosymv(char *uplo, int *m, double *val, int *rowind,
int *colind, int *nnz, double ${ }^{*} x$, double ${ }^{*} y$ );
void mkl_ccoosymv(char *uplo, int *m, MKL_Complex8 *val, int *rowind,
int *colind, int *nnz, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zcoosymv(char *uplo, int *m, MKL_Complex16 *val, int *rowind,
int *colind, int *nnz, MKL_Complex16 *x, MKL_Complex16 *y);
mkl_?diasymv
Computes matrix - vector product of a sparse
symmetrical matrix stored in the diagonal format with
one-based indexing.

## Syntax

## Fortran:

```
call mkl_sdiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
call mkl_ddiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
call mkl_cdiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
call mkl_zdiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
C:
mkl_sdiasymv(&uplo, &m, val, &lval, idiag, &ndiag, x, y);
mkl_ddiasymv(&uplo, &m, val, &lval, idiag, &ndiag, x, y);
mkl_cdiasymv(&uplo, &m, val, &lval, idiag, &ndiag, x, y);
mkl_zdiasymv(&uplo, &m, val, &lval, idiag, &ndiag, x, y);
```


## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?diasymv routine performs a matrix-vector operation defined as $y:=A^{\star} X$
where:
$x$ and $y$ are vectors,
$A$ is an upper or lower triangle of the symmetrical sparse matrix.

NOTE This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
uplo
m
val
lval
CHARACTER*1. Specifies whether the upper or low triangle of the matrix \(A\) is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used. If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used.
INTEGER. Number of rows of the matrix \(A\).
REAL for mkl_sdiasymv.
DOUBLE PRECISION for mkl_ddiasymv.
COMPLEX for mkl_cdiasymv.
DOUBLE COMPLEX for mkl_zdiasymv.
Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix \(A\). Refer to values array description in Diagonal Storage Scheme for more details.
INTEGER. Leading dimension of val, lval \(\geq m\). Refer to lval description in Diagonal Storage Scheme for more details.
```

```
idiag INTEGER. Array of length ndiag, contains the distances between main
diagonal and each non-zero diagonals in the matrix A.
Refer to distance array description in Diagonal Storage Scheme for more
details.
ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix A.
x
REAL for mkl_sdiasymv.
DOUBLE PRECISION for mkl_ddiasymv.
COMPLEX for mkl_cdiasymv.
DOUBLE COMPLEX for mkl_zdiasymv.
Array, DIMENSION is m.
On entry, the array x must contain the vector x.
```


## Output Parameters

```
Y
REAL for mkl_sdiasymv.
DOUBLE PRECISION for mkl_ddiasymv.
COMPLEX for mkl_cdiasymv.
DOUBLE COMPLEX for mkl_zdiasymv.
Array, DIMENSION at least m.
On exit, the array y must contain the vector y.
```


## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_sdiasymv (uplo, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 uplo
 INTEGER m, lval, ndiag
 INTEGER idiag(*)
 REAL val(lval,*), x(*), y(*)
SUBROUTINE mkl_ddiasymv (uplo, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 uplo
 INTEGER m, lval, ndiag
 INTEGER idiag(*)
 DOUBLE PRECISION val(lval,*), x(*), y(*)
SUBROUTINE mkl_cdiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 uplo
 INTEGER m, lval, ndiag
 INTEGER idiag(*)
 COMPLEX val(lval,*), x(*), y(*)
SUBROUTINE mkl_zdiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 uplo
 INTEGER m, lval, ndiag
 INTEGER idiag(*)
 DOUBLE COMPLEX val(lval,*), x(*), y(*)
```

```
C:
void mkl_sdiasymv(char *uplo, int *m, float *val, int *lval,
int *idiag, int *ndiag, float *X, float *y);
void mkl_ddiasymv(char *uplo, int *m, double *val, int *lval,
int *idiag, int *ndiag, double *x, double *y);
void mkl_cdiasymv(char *uplo, int *m, MKL_Complex8 *val, int *lval,
int *idiag, int *ndiag, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zdiasymv(char *uplo, int *m, MKL_Complex16 *val, int *lval,
int *idiag, int *ndiag, MKL_Complex16 *x, MKL_Complex16 *y);
```


## mkl_?csrtrsv

Triangular solvers with simplified interface for a sparse matrix in the CSR format (3-array variation) with onebased indexing.

## Syntax

## Fortran:

```
call mkl_scsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
call mkl_dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
call mkl_ccsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
call mkl_zcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
C:
mkl_scsrtrsv(&uplo, &transa, &diag, &m, a, ia, ja, x, y);
mkl_dcsrtrsv(&uplo, &transa, &diag, &m, a, ia, ja, x, y);
mkl_ccsrtrsv(&uplo, &transa, &diag, &m, a, ia, ja, x, y);
mkl_zcsrtrsv(&uplo, &transa, &diag, &m, a, ia, ja, x, y);
```


## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?csrtrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the CSR format (3 array variation):
$A^{*} y=x$
or
$A^{\prime *} y=x$,
where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\prime}$ is the transpose of $A$.

NOTE This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used. If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.

CHARACTER*1. Specifies the system of linear equations.
If transa $=$ 'N' or 'n', then $A * y=x$
If transa $=$ 'T' or 't' or 'C' or 'c', then $A$ '*y $=x$,
CHARACTER*1. Specifies whether $A$ is unit triangular.
If diag = 'U' or 'u', then $A$ is a unit triangular.
If diag $=$ ' $N$ ' or ' $n$ ', then $A$ is not unit triangular.
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_scsrtrmv.
DOUBLE PRECISION for mkl_dcsrtrmv.
COMPLEX for mkl_ccsrtrmv.
DOUBLE COMPLEX for mkl_zcsrtrmv.
Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.

NOTE The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

INTEGER. Array of length $m+1$, containing indices of elements in the array a, such that ia(i) is the index in the array a of the first non-zero element from the row $i$. The value of the last element $\operatorname{ia}(m+1)$ is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.
Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

NOTE Column indices must be sorted in increasing order for each row.

REAL for mkl_scsrtrmv.
DOUBLE PRECISION for mkl_dcsrtrmv.
COMPLEX for mkl_ccsrtrmv.
DOUBLE COMPLEX for mkl_zcsrtrmv.
Array, DIMENSION is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

```
y
REAL for mkl_scsrtrmv.
DOUBLE PRECISION for mkl_dcsrtrmv.
COMPLEX for mkl_ccsrtrmv.
DOUBLE COMPLEX for mkl_zcsrtrmv.
Array, DIMENSION at least m.
Contains the vector y.
```


## Interfaces

## FORTRAN 77:

SUBROUTINE mkl_scsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)

```
 CHARACTER*1 uplo, transa, diag
```

    INTEGER m
    INTEGER ia(*), ja(*)
    REAL \(a(*), x(*), y(*)\)
    SUBROUTINE mkl_dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
CHARACTER*1 uplo, transa, diag
INTEGER m
INTEGER ia(*), ja(*)
DOUBLE PRECISION $a(*), x(*), y(*)$
SUBROUTINE mkl_ccsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
CHARACTER*1 uplo, transa, diag
INTEGER m
INTEGER ia(*), ja(*)
COMPLEX $a(*), x(*), y(*)$
SUBROUTINE mkl_zcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
CHARACTER*1 uplo, transa, diag
INTEGER m
INTEGER ia(*), ja(*)
DOUBLE COMPLEX $a(*), x(*), y(*)$
C:
void mkl_scsrtrsv(char *uplo, char *transa, char *diag, int *m,
float *a, int *ia, int *ja, float *x, float *y);
void mkl_dcsrtrsv(char *uplo, char *transa, char *diag, int *m,
double *a, int *ia, int *ja, double *x, double *y);
void mkl_ccsrtrsv(char *uplo, char *transa, char *diag, int *m,
MKL_Complex8 *a, int *ia, int *ja, MKL_Complex8 *x, MKL_Complex 8 *y);
void mkl_zcsrtrsv(char *uplo, char *transa, char *diag, int *m,
MKL_Complex16 *a, int *ia, int *ja, MKL_Complex16 *x, MKL_Complex16 *y);

## mkl_?bsrtrsv

Triangular solver with simplified interface for a sparse matrix stored in the BSR format (3-array variation) with one-based indexing.

## Syntax

## Fortran:

```
call mkl_sbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
call mkl_dbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
call mkl_cbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
call mkl_zbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
```

C:
mkl_sbsrtrsv(\&uplo, \&transa, \&diag, \&m, \&lb, a, ia, ja, x, y);
mkl_dbsrtrsv(\&uplo, \&transa, \&diag, \&m, \&lb, a, ia, ja, x, y);
mkl_cbsrtrsv(\&uplo, \&transa, \&diag, \&m, \&lb, a, ia, ja, x, y);
mkl_zbsrtrsv(\&uplo, \&transa, \&diag, \&m, \&lb, a, ia, ja, x, y);

Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?bsrtrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the BSR format (3-array variation) :

```
y := A* }
```

or
$y:=A^{\prime *} X$,
where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\prime}$ is the transpose of $A$.

D
NOTE This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
uplo
transa

CHARACTER*1. Specifies the upper or low triangle of the matrix $A$ is used. If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used. If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
CHARACTER*1. Specifies the operation. If transa = 'N' or 'n', then the matrix-vector product is computed as $y:=A^{*} X$

	If transa $=$ ' $T$ ' or 't' or 'C' or 'c', then the matrix-vector product is computed as $y$ := $A^{\prime *} x$.
diag	CHARACTER* 1 . Specifies whether $A$ is a unit triangular matrix.   If diag = 'U' or 'u', then $A$ is a unit triangular.   If diag = ' $N$ ' or ' n ', then $A$ is not a unit triangular.
m	integer. Number of block rows of the matrix $A$.
1 b	Integer. Size of the block in the matrix A.
a	REAL for mkl_sbsrtrsv.   DOUBLE PRECISION for mkl_dbsrtrsv.   COMPLEX for mkl_cbsrtrsv.   DOUBLE COMPLEX for mkl_zbsrtrsv.   Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 b^{\star} 1 b$. Refer to values array description in BSR Format for more details.
	NOTE The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).   No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.
ia	INTEGER. Array of length $(m+1)$, containing indices of block in the array $a$, such that $i a(I)$ is the index in the array $a$ of the first non-zero element from the row $I$. The value of the last element $i a(m+1)$ is equal to the number of non-zero blocks plus one. Refer to rowIndex array description in BSR Format for more details.
ja	INTEGER.   Array containing the column indices for each non-zero block in the matrix $A$. Its length is equal to the number of non-zero blocks of the matrix $A$. Refer to columns array description in BSR Format for more details.
x	REAL for mkl_sbsrtrsv.   DOUBLE PRECISION for mkl_dbsrtrsv.   COMPLEX for mkl_cbsrtrsv.   DOUBLE COMPLEX for mkl_zbsrtrsv.   Array, DIMENSION ( $m^{\star}$ lb).   On entry, the array $x$ must contain the vector x .

## Output Parameters

## y

REAL for mkl_sbsrtrsv.
DOUBLE PRECISION for mkl_dbsrtrsv.
COMPLEX for mkl_cbsrtrsv.
DOUBLE COMPLEX for mkl_zbsrtrsv.
Array, DIMENSION at least ( $m^{\star}$ lb).
On exit, the array $y$ must contain the vector $y$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
SUBROUTINE mkl_dbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_cbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
SUBROUTINE mkl_zbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
```

C:
void mkl_sbsrtrsv(char *uplo, char *transa, char *diag, int *m,
int *lb, float *a, int *ia, int *ja, float *x, float *y);
void mkl_dbsrtrsv(char *uplo, char *transa, char *diag, int *m,
int *lb, double *a, int *ia, int *ja, double *x, double *y);
void mkl_cbsrtrsv(char *uplo, char *transa, char *diag, int *m,
int *lb, MKL_Complex8 *a, int *ia, int *ja, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zbsrtrsv(char *uplo, char *transa, char *diag, int *m,
int *lb, MKL_Complex16 *a, int *ia, int *ja, MKL_Complex16 *x, MKL_Complex16 *y);
mkl_?cootrsv
Triangular solvers with simplified interface for a sparse matrix in the coordinate format with one-based indexing.

## Syntax

## Fortran:

```
call mkl_scootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
call mkl_dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
call mkl_ccootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
call mkl_zcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
C:
mkl_scootrsv(&uplo, &transa, &diag, &m, val, rowind, colind, &nnz, x, y);
mkl_dcootrsv(&uplo, &transa, &diag, &m, val, rowind, colind, &nnz, x, y);
mkl_ccootrsv(&uplo, &transa, &diag, &m, val, rowind, colind, &nnz, x, y);
mkl_zcootrsv(&uplo, &transa, &diag, &m, val, rowind, colind, &nnz, x, y);
```


## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_? cootrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the coordinate format:

```
A*}y=
or
A'*}Y=x
```

where:

```
x and y are vectors,
```

$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\prime}$ is the transpose of $A$.

$\square$
NOTE This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
uplo
transa
diag
CHARACTER*1. Specifies whether the upper or low triangle of the matrix \(A\) is considered.
If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used.
If uplo \(=\) 'L' or 'l', then the low triangle of the matrix \(A\) is used.
CHARACTER*1. Specifies the system of linear equations.
If transa \(='^{\prime} N^{\prime}\) or ' \(n\) ', then \(A^{\star} y=x\) If transa \(=\) ' \(^{T}\) ' or 't' or 'C' or ' C ', then \(A^{\prime}{ }^{\star} y=x\),
CHARACTER*1. Specifies whether \(A\) is unit triangular.
If diag \(=\) ' \(U\) ' or 'u', then \(A\) is unit triangular.
If diag \(=\) ' \(N\) ' or ' \(n\) ', then \(A\) is not unit triangular.
```

m	INTEGER. Number of rows of the matrix $A$.
val	REAL for mkl_scootrsv.
	DOUBLE PRECISION for mkl_dcootrsv.
	COMPLEX for mkl_ccootrsv.
	DOUBLE COMPLEX for mkl_zcootrsv.
	Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.
	Refer to values array description in Coordinate Format for more details.
rowind	INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.
	Refer to rows array description in Coordinate Format for more details.
colind	INTEGER. Array of length $n n z$, contains the column indices for each nonzero element of the matrix $A$. Refer to columns array description in Coordinate Format for more details.
$n n z$	INTEGER. Specifies the number of non-zero element of the matrix $A$. Refer to $n n z$ description in Coordinate Format for more details.
$x$	REAL for mkl_scootrsv.
	DOUBLE PRECISION for mkl_dcootrsv.
	COMPLEX for mkl_ccootrsv.
	DOUBLE COMPLEX for mkl_zcootrsv.
	Array, DIMENSION is $m$.
	On entry, the array x must contain the vector x .

## Output Parameters

```
y REAL for mkl_scootrsv.
DOUBLE PRECISION formkl_dcootrsv.
COMPLEX formkl_ccootrsv.
DOUBLE COMPLEX for mkl_zcootrsv.
Array, DIMENSION at least m.
Contains the vector }y\mathrm{ .
```


## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_scootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
CHARACTER*1 uplo, transa, diag
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 REAL val(*), x(*), y(*)
SUBROUTINE mkl_dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 DOUBLE PRECISION val(*), x(*), y(*)
```



## Fortran:

```
call mkl_sdiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)
call mkl_ddiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)
call mkl_cdiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)
call mkl_zdiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)
C:
mkl_sdiatrsv(&uplo, &transa, &diag, &m, val, &lval, idiag, &ndiag, x, y);
mkl_ddiatrsv(&uplo, &transa, &diag, &m, val, &lval, idiag, &ndiag, x, y);
mkl_cdiatrsv(&uplo, &transa, &diag, &m, val, &lval, idiag, &ndiag, x, y);
mkl_zdiatrsv(&uplo, &transa, &diag, &m, val, &lval, idiag, &ndiag, x, y);
```


## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?diatrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the diagonal format:

```
A*}Y=
```

or
$A^{\prime} * y=x$,
where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\prime}$ is the transpose of $A$.

NOTE This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

Ival
idiag
ndiag
$X$

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
CHARACTER*1. Specifies the system of linear equations.
If transa $=$ ' $N$ ' or ' $n$ ', then $A^{\star} y=x$
If transa $=$ 'T' or 't' or 'C' or 'C', then $A$ '*y $=x$,
CHARACTER*1. Specifies whether $A$ is unit triangular.
If diag = 'U' or 'u', then $A$ is unit triangular.
If diag = 'N' or 'n', then $A$ is not unit triangular.
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_sdiatrsv.
DOUBLE PRECISION for mkl_ddiatrsv.
COMPLEX for mkl_cdiatrsv.
DOUBLE COMPLEX for mkl_zdiatrsv.
Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix A. Refer to values array description in Diagonal Storage Scheme for more details.

INTEGER. Leading dimension of val, lval $\geq m$. Refer to lval description in Diagonal Storage Scheme for more details.
INTEGER. Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix $A$.

NOTE All elements of this array must be sorted in increasing order.

Refer to distance array description in Diagonal Storage Scheme for more details.

INTEGER. Specifies the number of non-zero diagonals of the matrix $A$.
REAL for mkl_sdiatrsv.

```
DOUBLE PRECISION for mkl_ddiatrsv.
COMPLEX for mkl_cdiatrsv.
DOUBLE COMPLEX for mkl_zdiatrsv.
Array, DIMENSION is m.
On entry, the array x must contain the vector }x\mathrm{ .
```


## Output Parameters

```
Y
REAL for mkl_sdiatrsv.
DOUBLE PRECISION for mkl_ddiatrsv.
COMPLEX formkl_cdiatrsv.
DOUBLE COMPLEX formkl_zdiatrsv.
Array, DIMENSION at least m.
Contains the vector y.
```


## Interfaces

## FORTRAN 77:

SUBROUTINE mkl_sdiatrsv (uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)


## C:

```
void mkl_sdiatrsv(char *uplo, char *transa, char *diag, int *m, float
```

    *val, int *lval, int *idiag, int *ndiag, float *x, float *y);
    void mkl_ddiatrsv(char *uplo, char *transa, char *diag, int *m, double

```
 *val, int *lval, int *idiag, int *ndiag, double *x, double *y);
```

```
void mkl_cdiatrsv(char *uplo, char *transa, char *diag, int *m, MKL_Complex8
 *val, int *lval, int *idiag, int *ndiag, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zdiatrsv(char *uplo, char *transa, char *diag, int *m, MKL_Complex16
 *val, int *lval, int *idiag, int *ndiag, MKL_Complex16 *x, MKL_Complex16 *y);
```

mkl_cspblas_?csrgemv
Computes matrix - vector product of a sparse general matrix stored in the CSR format (3-array variation) with zero-based indexing.

## Syntax

## Fortran:

```
call mkl_cspblas_scsrgemv(transa, m, a, ia, ja, x, y)
call mkl_cspblas_dcsrgemv(transa, m, a, ia, ja, x, y)
call mkl_cspblas_ccsrgemv(transa, m, a, ia, ja, x, y)
call mkl_cspblas_zcsrgemv(transa, m, a, ia, ja, x, y)
```

C:
mkl_cspblas_scsrgemv(\&transa, \&m, a, ia, ja, x, y);
mkl_cspblas_dcsrgemv(\&transa, \&m, a, ia, ja, x, y);
mkl_cspblas_ccsrgemv(\&transa, $\& m, ~ a, ~ i a, ~ j a, ~ x, ~ y) ; ~$
mkl_cspblas_zcsrgemv(\&transa, \&m, a, ia, ja, x, y);

## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_cspblas_?csrgemv routine performs a matrix-vector operation defined as
$y:=A^{\star} X$
or
$y:=A^{\prime *} x$,
where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ sparse square matrix in the CSR format (3-array variation) with zero-based indexing, $A^{\prime}$ is the transpose of $A$.

NOTE This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

transa	CHARACTER*1. Specifies the operation.
	If transa $=$ 'N' or 'n', then the matrix-vector product is computed as $y:=A^{*} x$   If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as $y:=A^{\prime *} x^{\prime}$
m	INTEGER. Number of rows of the matrix $A$.
a	REAL for mkl_cspblas_scsrgemv.
	DOUBLE PRECISION formkl_cspblas_dcsrgemv.
	COMPLEX formkl_cspblas_ccsrgemv.
	DOUBLE COMPLEX for mkl_cspblas_zcsrgemv.
	Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix A. Refer to values array description in Sparse Matrix Storage Formats for more details.
ia	INTEGER. Array of length $m+1$, containing indices of elements in the array $a$, such that $i a(I)$ is the index in the array $a$ of the first non-zero element from the row $I$. The value of the last element $i a(m)$ is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
ja	INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.   Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.
$x$	REAL for mkl_cspblas_scsrgemv.
	DOUBLE PRECISION for mkl_cspblas_dcsrgemv.
	COMPLEX for mkl_cspblas_ccsrgemv.
	DOUBLE COMPLEX for mkl_cspblas_zcsrgemv.
	Array, DIMENSION is $m$.
	One entry, the array $x$ must contain the vector $x$.

## Output Parameters

```
y
REAL formkl_cspblas_scsrgemv.
DOUBLE PRECISION formkl_cspblas_dcsrgemv.
COMPLEX formkl_cspblas_ccsrgemv.
DOUBLE COMPLEX formkl_cspblas_zcsrgemv.
Array, DIMENSION at least m.
On exit, the array y must contain the vector y.
```


## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_cspblas_scsrgemv(transa, m, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
```

```
SUBROUTINE mkl_cspblas_dcsrgemv(transa, m, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_ccsrgemv(transa, m, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_zcsrgemv(transa, m, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
C:
void mkl_cspblas_scsrgemv(char *transa, int *m, float *a,
int *ia, int *ja, float *x, float *y);
void mkl_cspblas_dcsrgemv(char *transa, int *m, double *a,
int *ia, int *ja, double *x, double *y);
void mkl_cspblas_ccsrgemv(char *transa, int *m, MKL_Complex8 *a,
int *ia, int *ja, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_cspblas_zcsrgemv(char *transa, int *m, MKL_Complex16 *a,
int *ia, int *ja, MKL_Complex16 *x, MKL_Complex16 *y);
```


## mkl_cspblas_?bsrgemv

Computes matrix - vector product of a sparse general matrix stored in the BSR format (3-array variation) with zero-based indexing.

## Syntax

## Fortran:

```
call mkl_cspblas_sbsrgemv(transa, m, lb, a, ia, ja, x, y)
call mkl_cspblas_dbsrgemv(transa, m, lb, a, ia, ja, x, y)
call mkl_cspblas_cbsrgemv(transa, m, lb, a, ia, ja, x, y)
call mkl_cspblas_zbsrgemv(transa, m, lb, a, ia, ja, x, y)
```

C:
mkl_cspblas_sbsrgemv(\&transa, \&m, \&lb, a, ia, ja, x, y);
mkl_cspblas_dbsrgemv(\&transa, \&m, \&lb, a, ia, ja, $x, y)$;

```
mkl_cspblas_cbsrgemv(&transa, &m, &lb, a, ia, ja, x, y);
mkl_cspblas_zbsrgemv(&transa, &m, &lb, a, ia, ja, x, y);
```


## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_cspblas_?bsrgemv routine performs a matrix-vector operation defined as
$y:=A^{*} X$
or
$y:=A^{\prime *} X$,
where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ block sparse square matrix in the BSR format (3-array variation) with zero-based indexing, $A^{\prime}$ is the transpose of $A$.

$\square$
NOTE This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.


REAL for mkl_cspblas_sbsrgemv. DOUBLE PRECISION for mkl_cspblas_dbsrgemv. COMPLEX for mkl_cspblas_cbsrgemv. DOUBLE COMPLEX for mkl_cspblas_zbsrgemv. Array, DIMENSION ( $m \star$ lb). On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y
REAL for mkl_cspblas_sbsrgemv. DOUBLE PRECISION for mkl_cspblas_dbsrgemv. COMPLEX for mkl_cspblas_cbsrgemv. DOUBLE COMPLEX for mkl_cspblas_zbsrgemv.
Array, DIMENSION at least ( $m^{*}$ lb).
On exit, the array $y$ must contain the vector $y$.

## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_cspblas_sbsrgemv(transa, m, lb, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_dbsrgemv(transa, m, lb, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_cbsrgemv(transa, m, lb, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_zbsrgemv(transa, m, lb, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
```

C:
void mkl_cspblas_sbsrgemv(char *transa, int *m, int *lb,
float *a, int *ia, int *ja, float *x, float *y);

```
void mkl_cspblas_dbsrgemv(char *transa, int *m, int *lb,
double *a, int *ia, int *ja, double *x, double *y);
void mkl_cspblas_cbsrgemv(char *transa, int *m, int *lb,
MKL_Complex8 *a, int *ia, int *ja, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_cspblas_zbsrgemv(char *transa, int *m, int *lb,
MKL_Complex16 *a, int *ia, int *ja, MKL_Complex16 *x, MKL_Complex16 *y);
mkl_cspblas_?coogemv
Computes matrix - vector product of a sparse general
matrix stored in the coordinate format with zero-
based indexing.
```


## Syntax

## Fortran:

```
call mkl_cspblas_scoogemv(transa, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_dcoogemv(transa, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_ccoogemv(transa, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_zcoogemv(transa, m, val, rowind, colind, nnz, x, y)
C:
mkl_cspblas_scoogemv(&transa, &m, val, rowind, colind, &nnz, x, y);
mkl_cspblas_dcoogemv(&transa, &m, val, rowind, colind, &nnz, x, y);
mkl_cspblas_ccoogemv(&transa, &m, val, rowind, colind, &nnz, x, y);
mkl_cspblas_zcoogemv(&transa, &m, val, rowind, colind, &nnz, x, y);
```


## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_cspblas_dcoogemv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} X
$$

or
$y:=A^{\prime *} X$,
where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ sparse square matrix in the coordinate format with zero-based indexing, $A^{\prime}$ is the transpose of $A$.

NOTE This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa CHARACTER*1. Specifies the operation.
If transa $=$ ' $N$ ' or ' $n$ ', then the matrix-vector product is computed as $y:=A^{\star} x$
If transa $=$ 'T' or 't' or 'C' or ' C ', then the matrix-vector product is computed as $y:=A^{\prime *} X$.

INTEGER. Number of rows of the matrix $A$.
REAL for mkl_cspblas_scoogemv.
DOUBLE PRECISION for mkl_cspblas_dcoogemv.
COMPLEX for mkl_cspblas_ccoogemv.
DOUBLE COMPLEX for mkl_cspblas_zcoogemv.
Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.
Refer to values array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.
Refer to rows array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the column indices for each nonzero element of the matrix $A$. Refer to columns array description in Coordinate Format for more details.
INTEGER. Specifies the number of non-zero element of the matrix $A$. Refer to $n n z$ description in Coordinate Format for more details.

X
REAL for mkl_cspblas_scoogemv. DOUBLE PRECISION for mkl_cspblas_dcoogemv. COMPLEX for mkl_cspblas_ccoogemv. DOUBLE COMPLEX for mkl_cspblas_zcoogemv.
Array, DIMENSION is m.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

Y

```
REAL for mkl_cspblas_scoogemv.
DOUBLE PRECISION for mkl_cspblas_dcoogemv.
COMPLEX for mkl_cspblas_ccoogemv.
DOUBLE COMPLEX for mkl_cspblas_zcoogemv.
Array, DIMENSION at least m.
On exit, the array y must contain the vector y.
```


## Interfaces

FORTRAN 77:
SUBROUTINE mkl_cspblas_scoogemv (transa, m, val, rowind, colind, nnz, $x, y$ )

CHARACTER*1	transa
INTEGER	$\mathrm{m}, \mathrm{nnz}$
INTEGER	rowind (*), colind (*)
REAL	$\operatorname{val}(*), \mathrm{x}(*), \mathrm{y}(*)$



## mkl_cspblas_?csrsymv

## Computes matrix-vector product of a sparse symmetrical matrix stored in the CSR format (3-array variation) with zero-based indexing.

## Syntax

## Fortran:

```
call mkl_cspblas_scsrsymv(uplo, m, a, ia, ja, x, y)
call mkl_cspblas_dcsrsymv(uplo, m, a, ia, ja, x, y)
call mkl_cspblas_ccsrsymv(uplo, m, a, ia, ja, x, y)
call mkl_cspblas_zcsrsymv(uplo, m, a, ia, ja, x, y)
```

C:
mkl_cspblas_scsrsymv(\&uplo, \&m, a, ia, ja, x, y);
mkl_cspblas_dcsrsymv(\&uplo, \&m, a, ia, ja, x, y);

```
mkl_cspblas_ccsrsymv(&uplo, &m, a, ia, ja, x, y);
```

```
mkl_cspblas_zcsrsymv(&uplo, &m, a, ia, ja, x, y);
```


## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_cspblas_?csrsymv routine performs a matrix-vector operation defined as
$y:=A^{\star} X$
where:
$x$ and $y$ are vectors,
$A$ is an upper or lower triangle of the symmetrical sparse matrix in the CSR format (3-array variation) with zero-based indexing.

NOTE This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
uplo
m
a

X

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used. If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.

INTEGER. Number of rows of the matrix $A$.
REAL for mkl_csp.blas_scsrsymv.
DOUBLE PRECISION for mkl_cspblas_dcsrsymv.
COMPLEX for mkl_cspblas_ccsrsymv.
DOUBLE COMPLEX for mkl_cspblas_zcsrsymv.
Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array of length $m+1$, containing indices of elements in the array $a$, such that $i a(i)$ is the index in the array $a$ of the first non-zero element from the row $i$. The value of the last element $i a(m+1)$ is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.
Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.
REAL for mkl_cspblas_scsrsymv.
DOUBLE PRECISION for mkl_cspblas_dcsrsymv.
COMPLEX for mkl_cspblas_ccsrsymv.

DOUBLE COMPLEX for mkl_cspblas_zcsrsymv. Array, DIMENSION is $m$. On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y
REAL for mkl_csp.blas_scsrsymv.
DOUBLE PRECISION for mkl_cspblas_dcsrsymv.
COMPLEX for mkl_cspblas_ccsrsymv.
DOUBLE COMPLEX for mkl_cspblas_zcsrsymv.
Array, DIMENSION at least $m$.
On exit, the array $y$ must contain the vector $y$.

## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_cspblas_scsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 REAL a(*), x(*),y(*)
SUBROUTINE mkl_cspblas_dcsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_ccsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_zcsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
```


## C:

void mkl_cspblas_scsrsymv(char *uplo, int *m, float *a,
int *ia, int *ja, float *x, float *y);
void mkl_cspblas_dcsrsymv(char *uplo, int *m, double *a,
int *ia, int *ja, double *x, double *y);

```
void mkl_cspblas_ccsrsymv(char *uplo, int *m, MKL_Complex8 *a,
int *ia, int *ja, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_cspblas_zcsrsymv(char *uplo, int *m, MKL_Complex16 *a,
int *ia, int *ja, MKL_Complex16 *x, MKL_Complex16 *y);
```

mkl_cspblas_?bsrsymv
Computes matrix-vector product of a sparse
symmetrical matrix stored in the BSR format (3-arrays
variation) with zero-based indexing.
Syntax

## Fortran:

```
call mkl_cspblas_sbsrsymv(uplo, m, lb, a, ia, ja, x, y)
call mkl_cspblas_dbsrsymv(uplo, m, lb, a, ia, ja, x, y)
call mkl_cspblas_cbsrsymv(uplo, m, lb, a, ia, ja, x, y)
call mkl_cspblas_zbsrsymv(uplo, m, lb, a, ia, ja, x, y)
```

C:
mkl_cspblas_sbsrsymv(\&uplo, \&m, \&lb, a, ia, ja, x, y);
mkl_cspblas_dbsrsymv(\&uplo, \&m, \&lb, a, ia, ja, $x, y)$;
mkl_cspblas_cbsrsymv(\&uplo, \&m, \&lb, a, ia, ja, x, y);
mkl_cspblas_zbsrsymv(\&uplo, \&m, \&lb, a, ia, ja, x, y);

## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_cspblas_?bsrsymv routine performs a matrix-vector operation defined as $y:=A^{*} x$
where:
$x$ and $y$ are vectors,
$A$ is an upper or lower triangle of the symmetrical sparse matrix in the BSR format (3-array variation) with zero-based indexing.

NOTE This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
uplo
m
1.b
a
ia
ja
X
```


## Output Parameters

y
REAL for mkl_cspblas_sbsrsymv.
DOUBLE PRECISION for mkl_cspblas_dbsrsymv.
COMPLEX for mkl_cspblas_cbsrsymv.
DOUBLE COMPLEX for mkl_cspblas_zbsrsymv.
Array, DIMENSION at least ( $m^{*}$ lb).
On exit, the array $y$ must contain the vector $y$.

## Interfaces

FORTRAN 77:
SUBROUTINE mkl_cspblas_sbsrsymv(uplo, m, lb, a, ia, ja, x, y)
CHARACTER*1 uplo
INTEGER m, lb
INTEGER ia(*), ja(*)
REAL $\quad a(*), x(*), y(*)$

```
SUBROUTINE mkl_cspblas_dbsrsymv(uplo, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_cbsrsymv(uplo, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_zbsrsymv(uplo, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m, l.b
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
```

C:
void mkl_cspblas_sbsrsymv(char *uplo, int *m, int *lb,
float *a, int *ia, int *ja, float *x, float *y);
void mkl_cspblas_dbsrsymv(char *uplo, int *m, int *lb,
double *a, int *ia, int *ja, double *x, double *y);
void mkl_cspblas_cbsrsymv(char *uplo, int *m, int *lb,
MKL_Complex8 *a, int *ia, int *ja, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_cspblas_zbsrsymv(char *uplo, int *m, int *lb,
MKL_Complex16 *a, int *ia, int *ja, MKL_Complex16 *x, MKL_Complex16 *y);

## mkl_cspblas_?coosymv

> Computes matrix - vector product of a sparse symmetrical matrix stored in the coordinate format with zero-based indexing .

## Syntax

## Fortran:

```
call mkl_cspblas_scoosymv(uplo, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_dcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_ccoosymv(uplo, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_zcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
```

C:
mkl_cspblas_scoosymv(\&uplo, \&m, val, rowind, colind, \&nnz, x, y);
mkl_cspblas_dcoosymv(\&uplo, \&m, val, rowind, colind, \&nnz, x, y);

```
mkl_cspblas_ccoosymv(&uplo, &m, val, rowind, colind, &nnz, x, y);
mkl_cspblas_zcoosymv(&uplo, &m, val, rowind, colind, &nnz, x, y);
```


## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_cspblas_?coosymv routine performs a matrix-vector operation defined as
$y:=A^{\star} X$
where:
$x$ and $y$ are vectors,
$A$ is an upper or lower triangle of the symmetrical sparse matrix in the coordinate format with zero-based indexing.

NOTE This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

uplo	CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.   If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.   If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
m	INTEGER. Number of rows of the matrix $A$.
val	REAL for mkl_cspblas_scoosymv.
	DOUBLE PRECISION for mkl_cspblas_dcoosymv.
	COMPLEX for mkl_cspblas_ccoosymv.
	DOUBLE COMPLEX for mkl_cspblas_zcoosymv.
	Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.
	Refer to values array description in Coordinate Format for more details.
rowind	INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.
	Refer to rows array description in Coordinate Format for more details.
colind	INTEGER. Array of length $n n z$, contains the column indices for each nonzero element of the matrix $A$. Refer to columns array description in Coordinate Format for more details.
$n \cap z$	INTEGER. Specifies the number of non-zero element of the matrix $A$. Refer to $n n z$ description in Coordinate Format for more details.
X	REAL for mkl_cspblas_scoosymv.
	DOUBLE PRECISION for mkl_cspblas_dcoosymv.
	COMPLEX for mkl_cspblas_ccoosymv.
	DOUBLE COMPLEX for mkl_cspblas_zcoosymv.
	Array, DIMENSION is m.
	On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y
REAL for mkl_cspblas_scoosymv. DOUBLE PRECISION for mkl_cspblas_dcoosymv. COMPLEX for mkl_cspblas_ccoosymv. DOUBLE COMPLEX for mkl_cspblas_zcoosymv.
Array, DIMENSION at least m.
On exit, the array $y$ must contain the vector $y$.

## Interfaces

## FORTRAN 77:

```
 CHARACTER*1 uplo
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 REAL val(*), x(*), y(*)
```

SUBROUTINE mkl_cspblas_scoosymv (uplo, m, val, rowind, colind, nnz, x, y)
SUBROUTINE mkl_cspblas_dcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
CHARACTER*1 uplo
INTEGER m, nnz
INTEGER rowind(*), colind(*)
DOUBLE PRECISION val(*), $x(*), y(*)$
SUBROUTINE mkl_cspblas_ccoosymv (uplo, m, val, rowind, colind, nnz, x, y)
CHARACTER*1 uplo
INTEGER m, nnz
INTEGER rowind(*), colind(*)
COMPLEX val(*), $\mathrm{x}\left({ }^{*}\right), \mathrm{y}(*)$
SUBROUTINE mkl_cspblas_zcoosymv (uplo, m, val, rowind, colind, nnz, x, y)
CHARACTER*1 uplo
INTEGER m, nnz
INTEGER rowind(*), colind(*)
DOUBLE COMPLEX val(*), $x(*), y(*)$
C:
void mkl_cspblas_scoosymv (char *uplo, int *m, float *val, int *rowind,
int *colind, int *nnz, float *x, float *y);
void mkl_cspblas_dcoosymv (char *uplo, int *m, double *val, int *rowind,
int *colind, int *nnz, double *x, double *y);
void mkl_cspblas_ccoosymv (char *uplo, int *m, MKL_Complex8 *val, int *rowind,
int *colind, int *nnz, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_cspblas_zcoosymv(char *uplo, int *m, MKL_Complex16 *val, int *rowind,
int *colind, int *nnz, MKL_Complex16 *x, MKL_Complex16 *y);
mkl_cspblas_?csrtrsv
Triangular solvers with simplified interface for a sparse matrix in the CSR format (3-array variation) with zero-based indexing.

## Syntax

## Fortran:

```
call mkl_cspblas_scsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
call mkl_cspblas_dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
call mkl_cspblas_ccsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
call mkl_cspblas_zcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
```

C:

```
mkl_cspblas_scsrtrsv(&uplo, &transa, &diag, &m, a, ia, ja, x, y);
mkl_cspblas_dcsrtrsv(&uplo, &transa, &diag, &m, a, ia, ja, x, y);
mkl_cspblas_ccsrtrsv(&uplo, &transa, &diag, &m, a, ia, ja, x, y);
mkl_cspblas_zcsrtrsv(&uplo, &transa, &diag, &m, a, ia, ja, x, y);
```


## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_cspblas_?csrtrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the CSR format (3-array variation) with zero-based indexing:
$A^{\star} y=x$
or
$A^{\prime *} y=x$,
where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\prime}$ is the transpose of $A$.

NOTE This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
uplo
transa

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
CHARACTER*1. Specifies the system of linear equations. If transa $=$ ' $N$ ' or ' $n$ ', then $A^{\star} y=x$

If transa $=$ 'T' or 't' or 'C' or 'c', then $A$ '*y $=x$,

## Output Parameters

## y

CHARACTER*1. Specifies whether matrix $A$ is unit triangular.
If diag = 'U' or 'u', then $A$ is unit triangular.
If diag = 'N' or 'n', then $A$ is not unit triangular.
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_cspblas_scsrtrsv.
DOUBLE PRECISION for mkl_cspblas_dcsrtrsv. COMPLEX for mkl_cspblas_ccsrtrsv. DOUBLE COMPLEX for mkl_cspblas_zcsrtrsv.
Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.

NOTE The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

INTEGER. Array of length m+1, containing indices of elements in the array $a$, such that ia(i) is the index in the array a of the first non-zero element from the row $i$. The value of the last element $i a(m)$ is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.
Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

## NOTE Column indices must be sorted in increasing order for each row.

REAL for mkl_cspblas_scsrtrsv.
DOUBLE PRECISION for mkl_cspblas_dcsrtrsv.
COMPLEX for mkl_cspblas_ccsrtrsv.
DOUBLE COMPLEX for mkl_cspblas_zcsrtrsv.
Array, DIMENSION is $m$.
On entry, the array $x$ must contain the vector $x$.

REAL for mkl_cspblas_scsrtrsv.
DOUBLE PRECISION for mkl_cspblas_dcsrtrsv.
COMPLEX for mkl_cspblas_ccsrtrsv.
DOUBLE COMPLEX for mkl_cspblas_zcsrtrsv.
Array, DIMENSION at least $m$.
Contains the vector $y$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_cspblas_scsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_ccsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_zcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
```


## C:

void mkl_cspblas_scsrtrsv(char *uplo, char *transa, char *diag, int *m,
float *a, int *ia, int *ja, float *X, float *y);
void mkl_cspblas_dcsrtrsv(char *uplo, char *transa, char *diag, int *m,
double *a, int *ia, int *ja, double *x, double *y);
void mkl_cspblas_ccsrtrsv(char *uplo, char *transa, char *diag, int *m,
MKL_Complex8 *a, int *ia, int *ja, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_cspblas_zcsrtrsv(char *uplo, char *transa, char *diag, int *m,
MKL_Complex16 *a, int *ia, int *ja, MKL_Complex16 *x, MKL_Complex16 *y) ;

## mkl_cspblas_?bsrtrsv

Triangular solver with simplified interface for a sparse matrix stored in the BSR format (3-array variation) with zero-based indexing.

## Syntax

## Fortran:

```
call mkl_cspblas_sbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
call mkl_cspblas_dbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
call mkl_cspblas_cbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
call mkl_cspblas_zbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
C:
mkl_cspblas_sbsrtrsv(&uplo, &transa, &diag, &m, &lb, a, ia, ja, x, y);
mkl_cspblas_dbsrtrsv(&uplo, &transa, &diag, &m, &lb, a, ia, ja, x, y);
mkl_cspblas_cbsrtrsv(&uplo, &transa, &diag, &m, &lb, a, ia, ja, x, y);
mkl_cspblas_zbsrtrsv(&uplo, &transa, &diag, &m, &lb, a, ia, ja, x, y);
```


## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_cspblas_?bsrtrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the BSR format (3-array variation) with zero-based indexing:

```
y := A*}
```

or
$y:=A^{\prime *} X$,
where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A$ ' is the transpose of $A$.

$\square$
NOTE This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

uplo	CHARACTER*1. Specifies the upper or low triangle of the matrix $A$ is used.
	If uplo $=$ ' U' or 'u', then the upper triangle of the matrix $A$ is used.
	If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
transa	CHARACTER*1. Specifies the operation.
	If transa ${ }^{\prime}$ ' N ' or ' n ', then the matrix-vector product is computed as
	$y:=A^{\star} X$
	If transa ${ }^{\prime} \mathrm{T}^{\prime}$ ' or 't' or ' $\mathrm{C}^{\prime}$ or ' C ', then the matrix-vector product is
	computed as $y:=A^{\prime *} x$.
diag	CHARACTER*1. Specifies whether matrix $A$ is unit triangular or not.
	If diag = 'U' or 'u', $A$ is unit triangular.


	If diag = 'N' or ' n ', A is not unit triangular.
m	INTEGER. Number of block rows of the matrix $A$.
1.6	INTEGER. Size of the block in the matrix $A$.
a	REAL for mkl_cspblas_sbsrtrsv.   DOUBLE PRECISION for mkl_cspblas_dbsrtrsv.   COMPLEX for mkl_cspblas_cbsrtrsv.   DOUBLE COMPLEX for mkl_cspblas_zbsrtrsv.   Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 b^{*} 1 b$. Refer to values array description in BSR Format for more details.
	NOTE The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).   No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.
ia	INTEGER. Array of length $(m+1)$, containing indices of block in the array $a$, such that $\mathrm{ia}(I)$ is the index in the array $a$ of the first non-zero element from the row $I$. The value of the last element ia $(m+1)$ is equal to the number of non-zero blocks. Refer to rowIndex array description in BSR Format for more details.
ja	INTEGER. Array containing the column indices for each non-zero block in the matrix $A$.   Its length is equal to the number of non-zero blocks of the matrix A. Refer to columns array description in BSR Format for more details.
$x$	REAL for mkl_cspblas_sbsrtrsv.   DOUBLE PRECISION for mkl_cspblas_dbsrtrsv.   COMPLEX for mkl_cspblas_cbsrtrsv.   DOUBLE COMPLEX for mkl_cspblas_zbsrtrsv.   Array, DIMENSION (m*lb).   On entry, the array $x$ must contain the vector $x$.

## Output Parameters

```
REAL formkl_cspblas_sbsrtrsv.
DOUBLE PRECISION formkl_cspblas_dbsrtrsv.
COMPLEX formkl_cspblas_cbsrtrsv.
DOUBLE COMPLEX formkl_cspblas_zbsrtrsv.
Array, DIMENSION at least (m* lb).
On exit, the array y must contain the vector y.
```


## Interfaces

FORTRAN 77:
SUBROUTINE mkl_cspblas_sbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)

```
CHARACTER*1 uplo, transa, diag
INTEGER m, lb
INTEGER ia(*), ja(*)
REAL a(*), x(*), y(*)
```

C:
void mkl_cspblas_sbsrtrsv(char *uplo, char *transa, char *diag, int *m,
int *lb, float *a, int *ia, int *ja, float *x, float *y);
void mkl_cspblas_dbsrtrsv(char *uplo, char *transa, char *diag, int *m,
int *lb, double *a, int *ia, int *ja, double *x, double *y);
void mkl_cspblas_cbsrtrsv(char *uplo, char *transa, char *diag, int *m,
int *lb, MKL_Complex8 *a, int *ia, int *ja, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_cspblas_zbsrtrsv(char *uplo, char *transa, char *diag, int *m,
int *lb, MKL_Complex16 *a, int *ia, int *ja, MKL_Complex16 *x, MKL_Complex16 *y);

## mkl_cspblas_?cootrsv

Triangular solvers with simplified interface for a sparse matrix in the coordinate format with zero-based
indexing.

## Syntax

## Fortran:

```
call mkl_cspblas_scootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_ccootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_zcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
C:
mkl_cspblas_scootrsv(&uplo, &transa, &diag, &m, val, rowind, colind, &nnz, x, y);
mkl_cspblas_dcootrsv(&uplo, &transa, &diag, &m, val, rowind, colind, &nnz, x, y);
```

```
mkl_cspblas_ccootrsv(&uplo, &transa, &diag, &m, val, rowind, colind, &nnz, x, y);
mkl_cspblas_zcootrsv(&uplo, &transa, &diag, &m, val, rowind, colind, &nnz, x, y);
```


## Include files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_cspblas_?cootrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the coordinate format with zero-based indexing:

```
A*}Y=
```

or
$A^{\prime *} y=x$,
where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\prime}$ is the transpose of $A$.
NOTE This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

uplo	CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is considered.   If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.   If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
transa	CHARACTER* ${ }^{\star}$. Specifies the system of linear equations.   If transa $=$ ' $N$ ' or ' $n$ ', then $A^{*} y=x$   If transa $=$ 'T' or 't' or 'C' or 'c', then $A$ '*y $=x$,
diag	CHARACTER*1. Specifies whether $A$ is unit triangular.   If diag $=$ ' $U$ ' or 'u', then $A$ is unit triangular.   If diag $=$ ' $N$ ' or ' $n$ ', then $A$ is not unit triangular.
m	INTEGER. Number of rows of the matrix $A$.
val	REAL for mkl_cspblas_scootrsv.   DOUBLE PRECISION for mkl_cspblas_dcootrsv.   COMPLEX for mkl_cspblas_ccootrsv.   DOUBLE COMPLEX for mkl_cspblas_zcootrsv.   Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.   Refer to values array description in Coordinate Format for more details.
rowind	INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.   Refer to rows array description in Coordinate Format for more details.


colind	INTEGER. Array of length $n n z$, contains the column indices for each non-
	zero element of the matrix $A$. Refer to columns array description in
$n n z$	Coordinate Format for more details.
$x$	INTEGER. Specifies the number of non-zero element of the matrix A.
	Refer to $n n z$ description in Coordinate Format for more details.
	REAL for mkl_cspblas_scootrsv.
	DOUBLE PRECISION for mkl_cspblas_dcootrsv.
	COMPLEX formkl_cspblas_ccootrsv.
	DOUBLE COMPLEX for mkl_cspblas_zcootrsv.
	Array, DIMENSION is m.
	On entry, the array $x$ must contain the vector $x$.

## Output Parameters

```
Y
REAL formkl_cspblas_scootrsv.
DOUBLE PRECISION for mkl_cspblas_dcootrsv.
COMPLEX for mkl_cspblas_ccootrsv.
DOUBLE COMPLEX for mkl_cspblas_zcootrsv.
Array, DIMENSION at least m.
Contains the vector y.
```


## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_cspblas_scootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 REAL val(*), x(*), y(*)
SUBROUTINE mkl_cspblas_dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 DOUBLE PRECISION val(*), x(*), y(*)
SUBROUTINE mkl_cspblas_ccootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 COMPLEX val(*), x(*), y(*)
SUBROUTINE mkl_cspblas_zcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 DOUBLE COMPLEX val(*), x(*), y(*)
```

C:
void mkl_cspblas_scootrsv(char *uplo, char *transa, char *diag, int *m,
float *val, int *rowind, int *colind, int *nnz, float *x, float *y);
void mkl_cspblas_dcootrsv(char *uplo, char *transa, char *diag, int *m,
double *val, int *rowind, int *colind, int *nnz, double *x, double *y);
void mkl_cspblas_ccootrsv(char *uplo, char *transa, char *diag, int *m,
MKL_Complex 8 *val, int *rowind, int *colind, int *nnz, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_cspblas_zcootrsv(char *uplo, char *transa, char *diag, int *m,
MKL_Complex16 *val, int *rowind, int *colind, int *nnz, MKL_Complex16 *x, MKL_Complex16 *y);

## mkl_?csrmv

Computes matrix - vector product of a sparse matrix stored in the CSR format.

## Syntax

## Fortran:

```
call mkl_scsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_dcsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_ccsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_zcsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
C:
mkl_scsrmv(&transa, &m, &k, &alpha, matdescra, val, indx, pntrb, pntre, x, &beta, y);
mkl_dcsrmv(&transa, &m, &k, &alpha, matdescra, val, indx, pntrb, pntre, x, &beta, y);
mkl_ccsrmv(&transa, &m, &k, &alpha, matdescra, val, indx, pntrb, pntre, x, &beta, y);
mkl_zcsrmv(&transa, &m, &k, &alpha, matdescra, val, indx, pntrb, pntre, x, &beta, y);
```


## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?csrmv routine performs a matrix-vector operation defined as

## $y:=$ alpha* $A^{\star} x+$ beta* $^{\star} y$

or
$y:=$ alpha* $A^{\prime *} x+$ beta* $y$,
where:
alpha and beta are scalars,
$x$ and $y$ are vectors,
$A$ is an $m$-by- $k$ sparse matrix in the CSR format, $A^{\prime}$ is the transpose of $A$.

NOTE This routine supports a CSR format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

transa	CHARACTER*1. Specifies the operation.   If transa $=$ 'N' or 'n', then $y:=a l p h a \star A \star x+b e t a * y$   If transa $=$ 'T' or 't' or 'C' or 'c', then $y:=a l p h a \star A ' * x+b e t a \star y$,
m	INTEGER. Number of rows of the matrix $A$.
k	INTEGER. Number of columns of the matrix $A$.
alpha	REAL for mkl_scsrmv.   DOUBLE PRECISION for mkl_dcsrmv.   COMPLEX for mkl_ccsrmv.   DOUBLE COMPLEX for mkl_zcsrmv.   Specifies the scalar alpha.
matdescra	CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".
val	REAL for mkl_scsrmv.   DOUBLE PRECISION for mkl_dcsrmv.   COMPLEX for mkl_ccsrmv.   DOUBLE COMPLEX for mkl_zcsrmv.   Array containing non-zero elements of the matrix $A$.   For one-based indexing its length is pntre(m) - pntrb(1).   For zero-based indexing its length is pntre (m-1) - pntrb(0).   Refer to values array description in CSR Format for more details.
indx	INTEGER. Array containing the column indices for each non-zero element of the matrix A.Its length is equal to length of the val array. Refer to columns array description in CSR Format for more details.
pntrb	INTEGER. Array of length $m$.   For one-based indexing this array contains row indices, such that pntrb(i)   - pntrb (1) +1 is the first index of row $i$ in the arrays val and indx.   For zero-based indexing this array contains row indices, such that pntrb(i) - pntrb(0) is the first index of row $i$ in the arrays val and indx. Refer to pointerb array description in CSR Format for more details.
pntre	INTEGER. Array of length $m$.   For one-based indexing this array contains row indices, such that pntre (i)   - pntrb(1) is the last index of row $i$ in the arrays val and indx.   For zero-based indexing this array contains row indices, such that pntre(i) - pntrb(0)-1 is the last index of row $i$ in the arrays val and indx. Refer to pointerE array description in CSR Format for more details.
$x$	REAL for mkl_scsrmv.   DOUBLE PRECISION for mkl_dcsrmv.   COMPLEX for mkl_ccsrmv.   DOUBLE COMPLEX for mkl_zcsrmv.


	Array, DIMENSION at least $k$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $m$ otherwise. On entry, the array $x$ must contain the vector x .
beta	REAL for mkl_scsrmv.   DOUBLE PRECISION for mkl_dcsrmv.   COMPLEX for mkl_ccsrmv.   DOUBLE COMPLEX for mkl_zcsrmv.   Specifies the scalar beta.
y	REAL for mkl_scsrmv.   DOUBLE PRECISION for mkl_dcsrmv.   COMPLEX for mkl_ccsrmv.   DOUBLE COMPLEX for mkl_zcsrmv.   Array, DIMENSION at least $m$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $k$ otherwise. On entry, the array $y$ must contain the vector $y$.

## Output Parameters

y
Overwritten by the updated vector y.

## Interfaces

## FORTRAN 77:

SUBROUTINE mkl_scsrmv(transa, m, k, alpha, matdescra, val, indx,

```
pntrb, pntre, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL alpha, beta
 REAL val(*), x(*), y(*)
SUBROUTINE mkl_dcsrmv(transa, m, k, alpha, matdescra, val, indx,
pntrb, pntre, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE PRECISION alpha, beta
 DOUBLE PRECISION val(*), x(*), y(*)
SUBROUTINE mkl_ccsrmv(transa, m, k, alpha, matdescra, val, indx,
pntrb, pntre, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k
 INTEGER indx(*), pntrb(m), pntre(m)
 COMPLEX alpha, beta
 COMPLEX val(*), x(*), y(*)
```



## C:

void mkl_scsrmv(char *transa, int *m, int *k, float *alpha, char *matdescra,
float *val, int *indx, int *pntrb, int *pntre, float *x, float *beta, float *y);
void mkl_dcsrmv(char *transa, int *m, int *k, double *alpha, char *matdescra,
double *val, int *indx, int *pntrb, int *pntre, double *x, double *beta, double *y);
void mkl_ccsrmv(char *transa, int *m, int *k, MKL_Complex8 *alpha, char *matdescra,
MKL_Complex8 *val, int *indx, int *pntrb, int *pntre, MKL_Complex8 *x, MKL_Complex8 *beta, double *y);
void mkl_zcsrmv(char *transa, int *m, int *k, MKL_Complex16 *alpha, char *matdescra,
MKL_Complex16 *val, int *indx, int *pntrb, int *pntre, MKL_Complex16 *x, MKL_Complex16 *beta,
MKL_Complex16 *y);

## mkl_?bsrmv

Computes matrix - vector product of a sparse matrix stored in the BSR format.

## Syntax

## Fortran:

```
call mkl_sbsrmv(transa, m, k, lb, alpha, matdescra, val, indx, pntrb, pntre, x, beta,
y)
call mkl_dbsrmv(transa, m, k, lb, alpha, matdescra, val, indx, pntrb, pntre, x, beta,
y)
call mkl_cbsrmv(transa, m, k, lb, alpha, matdescra, val, indx, pntrb, pntre, x, beta,
y)
call mkl_zbsrmv(transa, m, k, lb, alpha, matdescra, val, indx, pntrb, pntre, x, beta,
y)
C:
mkl_sbsrmv(&transa, &m, &k, &lb, &alpha, matdescra, val, indx, pntrb, pntre, x, &beta,
y) ;
mkl_dbsrmv(&transa, &m, &k, &lb, &alpha, matdescra, val, indx, pntrb, pntre, x, &beta,
y);
mkl_cbsrmv(&transa, &m, &k, &lb, &alpha, matdescra, val, indx, pntrb, pntre, x, &beta,
y) ;
mkl_zbsrmv(&transa, &m, &k, &lb, &alpha, matdescra, val, indx, pntrb, pntre, x, &beta,
y) ;
```


## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?bsrmv routine performs a matrix-vector operation defined as

```
y := alpha* A* }X+\mathrm{ beta* Y
or
y := alpha*A'*X + beta*y,
where:
alpha and beta are scalars,
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(k\) block sparse matrix in the BSR format, \(A^{\prime}\) is the transpose of \(A\).
```

D
NOTE This routine supports a BSR format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

transa	CHARACTER*1. Specifies the operation.
	If transa ${ }^{\prime}$ ' $\mathrm{N}^{\prime}$ or ' n ', then the matrix-vector product is computed as
	$y:=a l p h a^{*} A^{*} x+\operatorname{beta}^{*} y$
	If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is
	computed as $y:=a l p h a^{*} A^{\prime *} x+b$ beta* $y$,
m	INTEGER. Number of block rows of the matrix $A$.
k	INTEGER. Number of block columns of the matrix $A$.
1.6	INTEGER. Size of the block in the matrix $A$.
alpha	REAL for mkl_sbsrmv.
	DOUBLE PRECISION for mkl_dbsrmv.
	COMPLEX for mkl_cbsrmv.
	DOUBLE COMPLEX for mkl_zbsrmv.
	Specifies the scalar alpha.
matdescra	CHARACTER. Array of six elements, specifies properties of the matrix used
	for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)".
	Possible combinations of element values of this parameter are given in
	Table "Possible Combinations of Element Values of the Parameter
	matdescra".
val	REAL for mkl_sbsrmv.
	DOUBLE PRECISION for mkl_dbsrmv.
	COMPLEX for mkl_cbsrmv.
	DOUBLE COMPLEX for mkl_zbsrmv.
	Array containing elements of non-zero blocks of the matrix $A$. Its length is

Refer to values array description in BSR Format for more details.
indx
pntrb
pntre
x
beta
y

## Output Parameters

INTEGER. Array containing the column indices for each non-zero block in the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$.
Refer to columns array description in BSR Format for more details.
INTEGER. Array of length $m$.
For one-based indexing: this array contains row indices, such that pntrb(i) - pntrb(1)+1 is the first index of block row $i$ in the array indx.
For zero-based indexing: this array contains row indices, such that pntrb(i) - pntrb(0) is the first index of block row $i$ in the array indx Refer to pointerB array description in BSR Format for more details.
INTEGER. Array of length $m$.
For one-based indexing this array contains row indices, such that pntre (i) - pntrb(1) is the last index of block row in the array indx.

For zero-based indexing this array contains row indices, such that pntre(i) - pntrb(0)-1 is the last index of block row $i$ in the array indx. Refer to pointerE array description in BSR Format for more details.
REAL for mkl_sbsrmv. DOUBLE PRECISION for mkl_dbsrmv.
COMPLEX for mkl_cbsrmv.
DOUBLE COMPLEX for mkl_zbsrmv.
Array, DIMENSION at least ( $k^{\star} l b$ ) if transa $={ }^{\prime} N$ ' or ' $n$ ', and at least ( $m^{\star}$ lb) otherwise. On entry, the array $x$ must contain the vector $x$.

REAL for mkl_sbsrmv.
DOUBLE PRECISION for mkl_dbsrmv.
COMPLEX for mkl_cbsrmv.
DOUBLE COMPLEX for mkl_zbsrmv.
Specifies the scalar beta.
REAL for mkl_sbsrmv.
DOUBLE PRECISION for mkl_dbsrmv.
COMPLEX for mkl_cbsrmv.
DOUBLE COMPLEX for mkl_zbsrmv.
Array, DIMENSION at least ( $m^{\star} l b$ ) if transa $=$ ' $N$ ' or ' $n$ ', and at least ( $k * l b$ ) otherwise. On entry, the array $y$ must contain the vector $y$.

## y

Overwritten by the updated vector $y$.

## Interfaces

## FORTRAN 77:

SUBROUTINE mkl_sbsrmv(transa, m, k, lb, alpha, matdescra, val, indx, pntrb, pntre, $x$, beta, $y)$

CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, k, lb
INTEGER indx(*), pntrb(m), pntre(m)
REAL alpha, beta
REAL val(*), $x(*), y(*)$
SUBROUTINE mkl_dbsrmv(transa, m, k, lb, alpha, matdescra, val, indx,
pntrb, pntre, $x$, beta, y)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, k, lb
INTEGER indx(*), pntrb(m), pntre(m)
DOUBLE PRECISION alpha, beta
DOUBLE PRECISION val(*), $x(*), y(*)$
SUBROUTINE mkl_cbsrmv(transa, m, k, lb, alpha, matdescra, val, indx, pntrb, pntre, $x$, beta, y)

CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, k, lb
INTEGER indx(*), pntrb(m), pntre(m)
COMPLEX alpha, beta
COMPLEX val(*), $\mathrm{x}\left({ }^{*}\right), \mathrm{y}\left({ }^{*}\right)$
SUBROUTINE mkl_zbsrmv(transa, m, $k$, lb, alpha, matdescra, val, indx,
pntrb, pntre, $x$, beta, $y$ )
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, k, lb
INTEGER indx(*), pntrb(m), pntre(m)
DOUBLE COMPLEX alpha, beta
DOUBLE COMPLEX val(*), $x(*), y(*)$

C:
void mkl_sbsrmv(char *transa, int *m, int *k, int *lb,
float *alpha, char *matdescra, float *val, int *indx,
int *pntrb, int *pntre, float *x, float *beta, float *y);

```
void mkl_dbsrmv(char *transa, int *m, int *k, int *lb,
double *alpha, char *matdescra, double *val, int *indx,
int *pntrb, int *pntre, double *x, double *beta, double *y);
void mkl_cbsrmv(char *transa, int *m, int *k, int *lb,
MKL_Complex8 *alpha, char *matdescra, MKL_Complex8 *val, int *indx,
int *pntrb, int *pntre, MKL_Complex8 *x, MKL_Complex8 *beta, MKL_Complex8 *y);
void mkl_zbsrmv(char *transa, int *m, int *k, int *lb,
MKL_Complex16 *alpha, char *matdescra, MKL_Complex16 *val, int *indx,
int *pntrb, int *pntre, MKL_Complex16 *x, MKL_Complex16 *beta, MKL_Complex16 *y);
```


## mkl_?cscmv

Computes matrix-vector product for a sparse matrix in the CSC format.

## Syntax

## Fortran:

```
call mkl_scscmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_dcscmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_ccscmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_zcscmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
```

C:
$m k l \_s c s c m v(\& t r a n s a, ~ \& m, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ x, ~ \& b e t a, ~ y) ;$
mkl_dcscmv(\&transa, \&m, \&k, \&alpha, matdescra, val, indx, pntrb, pntre, x, \&beta, y);
$m k l \_c c s c m v(\& t r a n s a, ~ \& m, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ x, ~ \& b e t a, ~ y) ;$
mkl_zcscmv(\&transa, \&m, \&k, \&alpha, matdescra, val, indx, pntrb, pntre, x, \&beta, y);
Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?cscmv routine performs a matrix-vector operation defined as

```
y := alpha* A* x + beta* y
```

or
$y$ := alpha*A'*x + beta* $y$,
where:
alpha and beta are scalars,
$x$ and $y$ are vectors,
$A$ is an $m$-by- $k$ sparse matrix in compressed sparse column (CSC) format, $A^{\prime}$ is the transpose of $A$.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
$m$
$k$
alpha
matdescra

indx
pntrb
pntre

CHARACTER*1. Specifies the operation.
If transa $=$ 'N' or 'n', then $y:=a l p h a * A * x+b e t a * y$
If transa $=$ 'T' or 't' or 'C' or 'c', then $y:=a l p h a \star A ' * x+b e t a * y$,
INTEGER. Number of rows of the matrix $A$.
INTEGER. Number of columns of the matrix $A$.
REAL for mkl_scscmv.
DOUBLE PRECISION for mkl_dcscmv.
COMPLEX for mkl_ccscmv.
DOUBLE COMPLEX for mkl_zcscmv.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".
REAL for mkl_scscmv.
DOUBLE PRECISION for mkl_dcscmv.
COMPLEX for mkl_ccscmv.
DOUBLE COMPLEX for mkl_zcscmv.
Array containing non-zero elements of the matrix $A$.
For one-based indexing its length is pntre ( $k$ ) - pntrb(1).
For zero-based indexing its length is pntre(m-1) - pntrb(0).
Refer to values array description in CSC Format for more details.
INTEGER. Array containing the row indices for each non-zero element of the matrix $A$. Its length is equal to length of the val array.
Refer to rows array description in CSC Format for more details.
INTEGER. Array of length $k$.
For one-based indexing this array contains column indices, such that pntrb(i) - pntrb(1)+1 is the first index of column $i$ in the arrays val and indx.
For zero-based indexing this array contains column indices, such that pntrb(i) - pntrb(0) is the first index of column $i$ in the arrays val and indx.
Refer to pointerb array description in CSC Format for more details.
INTEGER. Array of length $k$.
For one-based indexing this array contains column indices, such that pntre(i) - pntrb(1) is the last index of column $i$ in the arrays val and indx.
For zero-based indexing this array contains column indices, such that pntre(i) - pntrb(1)-1 is the last index of column $i$ in the arrays val and indx.
Refer to pointerE array description in CSC Format for more details.

REAL for mkl_scscmv.
DOUBLE PRECISION for mkl_dcscmv. COMPLEX for mkl_ccscmv. DOUBLE COMPLEX for mkl_zcscmv.
Array, DIMENSION at least $k$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $m$ otherwise. On entry, the array $x$ must contain the vector $x$.
beta REAL for mkl_scscmv. DOUBLE PRECISION for mkl_dcscmv. COMPLEX for mkl_ccscmv. DOUBLE COMPLEX for mkl_zcscmv. Specifies the scalar beta.

Y
REAL for mkl_scscmv. DOUBLE PRECISION for mkl_dcscmv. COMPLEX for mkl_ccscmv. DOUBLE COMPLEX for mkl_zcscmv. Array, DIMENSION at least $m$ if transa $={ }^{\prime} N$ ' or ' $n$ ' and at least $k$ otherwise. On entry, the array $y$ must contain the vector $y$.

## Output Parameters

```
Y
 Overwritten by the updated vector y.
Interfaces
```


## FORTRAN 77:

SUBROUTINE mkl_scscmv (transa, m, k, alpha, matdescra, val, indx,

```
pntrb, pntre, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL alpha, beta
 REAL val(*), x(*), y(*)
SUBROUTINE mkl_dcscmv(transa, m, k, alpha, matdescra, val, indx,
pntrb, pntre, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE PRECISION alpha, beta
 DOUBLE PRECISION val(*), x(*), y(*)
```



## C:

```
void mkl_scscmv(char *transa, int *m, int *k, float *alpha,
```

char *matdescra, float *val, int *indx, int *pntrb,
int *pntre, float *x, float *beta, float *y);
void mkl_dcscmv(char *transa, int *m, int *k, double *alpha,
char *matdescra, double *val, int *indx, int *pntrb,
int *pntre, double *x, double *beta, double *y);
void mkl_ccscmv (char *transa, int *m, int *k, MKL_Complex8 *alpha,
char *matdescra, MKL_Complex8 *val, int *indx, int *pntrb,
int *pntre, MKL_Complex8 *x, MKL_Complex8 *beta, MKL_Complex8 *y);
void mkl_zcscmv (char *transa, int *m, int *k, MKL_Complex16 *alpha,
char *matdescra, MKL_Complex16 *val, int *indx, int *pntrb,
int *pntre, MKL_Complex16 *x, MKL_Complex16 *beta, MKL_Complex16 *y);
mkl_?coomv
Computes matrix - vector product for a sparse matrix
in the coordinate format.

## Syntax

## Fortran:

```
call mkl_scoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz, x, beta, y)
call mkl_dcoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz, x, beta, y)
call mkl_ccoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz, x, beta, y)
```

```
call mkl_zcoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz, x, beta, y)
```

C:

```
mkl_scoomv(&transa, &m, &k, &alpha, matdescra, val, rowind, colind, &nnz, x, &beta,
```

y) ;
mkl_dcoomv(\&transa, \&m, \&k, \&alpha, matdescra, val, rowind, colind, \&nnz, x, \&beta,
y) ;
$m k l \_c c o o m v(\& t r a n s a, ~ \& m, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ r o w i n d, ~ c o l i n d, ~ \& n n z, ~ x, ~ \& b e t a, ~$
y) ;
$m k l \_z c o o m v(\& t r a n s a, ~ \& m, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ r o w i n d, ~ c o l i n d, ~ \& n n z, ~ x, ~ \& b e t a, ~$
y) ;

## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_? coomv routine performs a matrix-vector operation defined as

```
y := alpha*A*}x+beta*
```

or
$y:=a l p h a^{*} A^{\prime *} x+b e t a \star y$,
where:
alpha and beta are scalars,
$x$ and $y$ are vectors,
$A$ is an $m$-by- $k$ sparse matrix in compressed coordinate format, $A^{\prime}$ is the transpose of $A$.

NOTE This routine supports a coordinate format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

transa	CHARACTER*1. Specifies the operation.   If transa $=$ 'N' or 'n', then $y:=a l p h a \star A \star x+b e t a * y$   If transa $=$ 'T' or 't' or 'C' or 'c', then $y:=a l p h a \star A ' * x+b e t a * y$,
m	INTEGER. Number of rows of the matrix $A$.
k	INTEGER. Number of columns of the matrix $A$.
alpha	REAL for mkl_scoomv.   DOUBLE PRECISION for mkl_dcoomv. COMPLEX for mkl_ccoomv.   DOUBLE COMPLEX for mkl_zcoomv.   Specifies the scalar alpha.
matdescra	CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)".


	Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".
val	REAL for mkl_scoomv.   DOUBLE PRECISION for mkl_dcoomv.   COMPLEX for mkl_ccoomv.   DOUBLE COMPLEX for mkl_zcoomv.   Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.   Refer to values array description in Coordinate Format for more details.
rowind	INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.   Refer to rows array description in Coordinate Format for more details.
colind	INTEGER. Array of length nnz, contains the column indices for each nonzero element of the matrix $A$. Refer to columns array description in Coordinate Format for more details.
nnz	INTEGER. Specifies the number of non-zero element of the matrix $A$. Refer to $n n z$ description in Coordinate Format for more details.
$x$	REAL for mkl_scoomv.   DOUBLE PRECISION for mkl_dcoomv.   COMPLEX for mkl_ccoomv.   DOUBLE COMPLEX for mkl_zcoomv.   Array, DIMENSION at least $k$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $m$ otherwise. On entry, the array $x$ must contain the vector $x$.
beta	REAL for mkl_scoomv. DOUBLE PRECISION for mkl_dcoomv. COMPLEX for mkl_ccoomv. DOUBLE COMPLEX for mkl_zcoomv. Specifies the scalar beta.
Y	REAL for mkl_scoomv.   DOUBLE PRECISION for mkl_dcoomv.   COMPLEX for mkl_ccoomv.   DOUBLE COMPLEX for mkl_zcoomv.   Array, DIMENSION at least $m$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $k$ otherwise. On entry, the array $y$ must contain the vector $y$.

## Output Parameters

Overwritten by the updated vector $y$.
Interfaces
FORTRAN 77:

```
SUBROUTINE mkl_scoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz, x, beta, y)
CHARACTER*1 transa
CHARACTER matdescra(*)
 INTEGER m, k, nnz
 INTEGER rowind(*), colind(*)
 REAL alpha, beta
 REAL val(*), x(*), y(*)
```



C:
void mkl_scoomv(char *transa, int *m, int *k, float *alpha, char *matdescra, float *val, int *rowind, int *colind, int *nnz, float *x, float *beta, float *y);
void mkl_dcoomv(char *transa, int *m, int *k, double *alpha, char *matdescra,
double *val, int *rowind, int *colind, int *nnz, double *x, double *beta, double *y);
void mkl_ccoomv(char *transa, int *m, int *k, MKL_Complex8 *alpha, char *matdescra,
MKL_Complex 8 *val, int *rowind, int *colind, int *nnz, MKL_Complex 8 * $x, M K L \_C o m p l e x 8 ~ * b e t a, ~$ MKL_Complex8 *y);
void mkl_zcoomv(char *transa, int *m, int *k, MKL_Complex16 *alpha, char *matdescra,
MKL_Complex16 *val, int *rowind, int *colind, int *nnz, MKL_Complex16 *x, MKL_Complex16 *beta, MKL_Complex16 *y);

## mkl_?csrsv

Solves a system of linear equations for a sparse matrix in the CSR format.

## Syntax

## Fortran:

call mkl_scsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, $x, y)$

```
call mkl_dcsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_ccsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_zcsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
```

C:
$m k l \_s c s r s v(\& t r a n s a, ~ \& m, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ x, ~ y) ;$
$m k l \_d c s r s v(\& t r a n s a, ~ \& m, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ x, ~ y) ;$
$m k l_{\text {_csisv }}(\& t r a n s a, ~ \& m, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ x, ~ y)$;
mkl_zcsrsv(\&transa, \&m, \&alpha, matdescra, val, indx, pntrb, pntre, $x, y)$;

## Include Files

- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h


## Description

The mkl_?csrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the CSR format:

```
y := alpha*inv(A)*x
```

or
$y:=a l p h a * i n v\left(A^{\prime}\right){ }^{*} x^{\prime}$,
where:
alpha is scalar, $x$ and $y$ are vectors, $A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\prime}$ is the transpose of $A$.

D
NOTE This routine supports a CSR format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
transa
m
alpha

CHARACTER*1. Specifies the system of linear equations.
If transa \(=\) 'N' or 'n', then \(y:=a l p h a * i n v(A) *_{x}\) If transa \(=\) 'T' or 't' or 'C' or 'C', then \(y:=a l p h a * i n v(A ') * x\), INTEGER. Number of columns of the matrix \(A\).

REAL for mkl_scsrsv. DOUBLE PRECISION for mkl_dcsrsv. COMPLEX for mkl_ccsrsv. DOUBLE COMPLEX for mkl_zcsrsv. Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".
```

val REAL for mkl_scsrsv.
DOUBLE PRECISION formkl_dcsrsv.
COMPLEX formkl_ccsrsv.
DOUBLE COMPLEX for mkl_zcsrsv.
Array containing non-zero elements of the matrix A.
For one-based indexing its length is pntre(m) - pntrb(1).
For zero-based indexing its length is pntre(m-1) - pntrb(0).
Refer to values array description in CSR Format for more details.

```

NOTE The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

Y

INTEGER. Array containing the column indices for each non-zero element of the matrix \(A\). Its length is equal to length of the val array. Refer to columns array description in CSR Format for more details.

NOTE Column indices must be sorted in increasing order for each row.

INTEGER. Array of length \(m\).
For one-based indexing this array contains row indices, such that pntrb(i) - pntrb(1)+1 is the first index of row \(i\) in the arrays val and indx. For zero-based indexing this array contains row indices, such that pntrb(i) - pntrb(0) is the first index of row \(i\) in the arrays val and indx. Refer to pointerb array description in CSR Format for more details.
INTEGER. Array of length \(m\).
For one-based indexing this array contains row indices, such that pntre(i) - pntrb(1) is the last index of row \(i\) in the arrays val and indx. For zero-based indexing this array contains row indices, such that pntre(i) - pntrb(0)-1 is the last index of row \(i\) in the arrays val and indx. Refer to pointerE array description in CSR Format for more details.

REAL for mkl_scsrsv.
DOUBLE PRECISION for mkl_dcsrsv.
COMPLEX for mkl_ccsrsv.
DOUBLE COMPLEX for mkl_zcsrsv.
Array, DIMENSION at least m.
On entry, the array \(x\) must contain the vector \(x\). The elements are accessed with unit increment.

REAL for mkl_scsrsv.
DOUBLE PRECISION for mkl_dcsrsv.
COMPLEX for mkl_ccsrsv.
DOUBLE COMPLEX for mkl_zcsrsv.
Array, DIMENSION at least m.
On entry, the array \(y\) must contain the vector \(y\). The elements are accessed with unit increment.

\section*{Output Parameters}

\section*{Interfaces}

\section*{FORTRAN 77:}

SUBROUTINE mkl_scsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, \(x, y)\)
\begin{tabular}{ll}
CHARACTER*1 & transa \\
CHARACTER & matdescra(*) \\
INTEGER & \(m\) \\
INTEGER & indx(*), pntrb(m), pntre (m) \\
REAL & alpha \\
REAL & \(\operatorname{val(*)~}\) \\
REAL & \(x(*), y(*)\)
\end{tabular}

SUBROUTINE mkl_dcsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
```

    CHARACTER*1 transa
    ```
 CHARACTER matdescra(*)
 INTEGER m
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE PRECISION alpha
 DOUBLE PRECISION val(*)
 DOUBLE PRECISION \(x(*), y(*)\)
SUBROUTINE mkl_cCsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m
 INTEGER indx(*), pntrb(m), pntre(m)
 COMPLEX alpha
 COMPLEX val(*)
 COMPLEX \(\mathrm{x}\left({ }^{*}\right), \mathrm{y}\left({ }^{*}\right)\)
SUBROUTINE mkl_zCSrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE COMPLEX alpha
 DOUBLE COMPLEX val (*)
 DOUBLE COMPLEX \(\mathrm{x}\left({ }^{*}\right)\), \(\mathrm{y}\left({ }^{*}\right)\)
C:
void mkl_scsrsv(char *transa, int *m, float *alpha, char *matdescra,
float *val, int *indx, int *pntrb, int *pntre, float *x, float *y);
```

void mkl_dcsrsv(char *transa, int *m, double *alpha, char *matdescra,
double *val, int *indx, int *pntrb, int *pntre, double *x, double *y);
void mkl_ccsrsv(char *transa, int *m, MKL_Complex8 *alpha, char *matdescra,
MKL_Complex8 *val, int *indx, int *pntrb, int *pntre, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zcsrsv(char *transa, int *m, MKL_Complex16 *alpha, char *matdescra,
MKL_Complex16 *val, int *indx, int *pntrb, int *pntre, MKL_Complex16 *x, MKL_Complex16 *y);

```
mkl_?bsrsv
Solves a system of linear equations for a sparse matrix in the BSR format.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_sbsrsv(transa, m, lb, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_dbsrsv(transa, m, lb, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_cbsrsv(transa, m, lb, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_zbsrsv(transa, m, lb, alpha, matdescra, val, indx, pntrb, pntre, x, y)

```
C:
\(m k l _s b s r s v(\& t r a n s a, ~ \& m, ~ \& l b, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ x, ~ y) ;\)
\(m k l _d b s r s v(\& t r a n s a, ~ \& m, ~ \& l b, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ x, ~ y) ;\)
\(m k l_{\text {_c }} \mathrm{cbs} s(\& t r a n s a, ~ \& m, ~ \& l b, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ x, ~ y) ;\)
mkl_zbsrsv(\&transa, \&m, \&lb, \&alpha, matdescra, val, indx, pntrb, pntre, \(x, y)\);

Include files
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?bsrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the BSR format:
\(y:=a l p h a * \operatorname{inv}(A){ }^{*}{ }_{X}\)
or
\(y:=a l p h a^{*} \operatorname{inv}\left(A^{\prime}\right) * x\),
where:
alpha is scalar, \(x\) and \(y\) are vectors, \(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports a BSR format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
m
1.b
alpha
matdescra
val
indx
pntrb
pntre

CHARACTER*1. Specifies the operation.
If transa \(=\) 'N' or 'n', then \(y:=a l p h a * i n v(A) * x\)
If transa \(=\) 'T' or 't' or 'C' or 'c', then \(y:=a l p h a * i n v(A ') * x\),
INTEGER. Number of block columns of the matrix \(A\).
INTEGER. Size of the block in the matrix \(A\).
REAL for mkl_sbsrsv.
DOUBLE PRECISION for mkl_dbsrsv.
COMPLEX for mkl_cbsrsv.
DOUBLE COMPLEX for mkl_zbsrsv.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

REAL for mkl_sbsrsv.
DOUBLE PRECISION for mkl_dbsrsv.
COMPLEX for mkl_cbsrsv.
DOUBLE COMPLEX for mkl_zbsrsv.
Array containing elements of non-zero blocks of the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\) multiplied by \(1 b^{\star} 1 b\). Refer to the values array description in BSR Format for more details.

NOTE The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).
No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

INTEGER. Array containing the column indices for each non-zero block in the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\).
Refer to the columns array description in BSR Format for more details.
INTEGER. Array of length \(m\).
For one-based indexing: this array contains row indices, such that pntrb(i) - pntrb(1)+1 is the first index of block row \(i\) in the array indx.
For zero-based indexing: this array contains row indices, such that pntrb(i) - pntrb(0) is the first index of block row \(i\) in the array indx Refer to pointerB array description in BSR Format for more details.
INTEGER. Array of length \(m\).
For one-based indexing this array contains row indices, such that pntre (i) - pntrb(1) is the last index of block row \(i\) in the array indx. For zero-based indexing this array contains row indices, such that pntre(i) - pntrb(0)-1 is the last index of block row \(i\) in the array indx.

Refer to pointerE array description in BSR Format for more details.
x
REAL for mkl_sbsrsv.
DOUBLE PRECISION for mkl_dbsrsv.
COMPLEX for mkl_cbsrsv.
DOUBLE COMPLEX for mkl_zbsrsv.
Array, DIMENSION at least (\(m^{*}\) lb).
On entry, the array \(x\) must contain the vector \(x\). The elements are accessed with unit increment.
y
REAL for mkl_sbsrsv. DOUBLE PRECISION for mkl_dbsrsv. COMPLEX for mkl_cbsrsv. DOUBLE COMPLEX for mkl_zbsrsv.
Array, DIMENSION at least (\(m^{\star} l b\)).
On entry, the array y must contain the vector \(y\). The elements are accessed with unit increment.

\section*{Output Parameters}
```

y
Contains solution vector x.
Interfaces

```

FORTRAN 77:

\section*{C:}
void mkl_sbsrsv(char *transa, int *m, int *lb, float *alpha, char *matdescra, float *val, int *indx, int *pntrb, int *pntre, float *x, float *y);
void mkl_dbsrsv(char *transa, int *m, int *lb, double *alpha, char *matdescra, double *val, int *indx, int *pntrb, int *pntre, double *x, double *y);
void mkl_cbsrsv(char *transa, int *m, int *lb, MKL_Complex8 *alpha, char *matdescra,
MKL_Complex 8 *val, int *indx, int *pntrb, int *pntre, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zbsrsv(char *transa, int *m, int *lb, MKL_Complex16 *alpha, char *matdescra,
MKL_Complex16 *val, int *indx, int *pntrb, int *pntre, MKL_Complex16 *x, MKL_Complex16 *y);

\section*{mkl_?cscsv}

\section*{Solves a system of linear equations for a sparse}
matrix in the CSC format.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scscsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)call
mkl_dcscsv
call mkl_dcscsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)call
mkl_dcscsv
call mkl_ccscsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)call
mkl_dcscsv
call mkl_zcscsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)call
mkl_dcSCSV

```

C:
mkl_scscsv(\&transa, \&m, \&alpha, matdescra, val, indx, pntrb, pntre, x, y);
mkl_dcscsv(\&transa, \&m, \&alpha, matdescra, val, indx, pntrb, pntre, x, y);
mkl_ccscsv(\&transa, \&m, \&alpha, matdescra, val, indx, pntrb, pntre, x, y);
mkl_zcscsv(\&transa, \&m, \&alpha, matdescra, val, indx, pntrb, pntre, x, y);

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?cscsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the CSC format:
```

y := alpha*inv (A)*x

```
or
\(y\) := alpha*inv(A')* x,
where:
alpha is scalar, \(x\) and \(y\) are vectors, \(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports a CSC format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
\begin{tabular}{|c|c|}
\hline transa & \begin{tabular}{l}
CHARACTER*1. Specifies the operation. \\
If transa \(=\) 'N' or 'n', then \(y:=a l p h a * i n v(A) * x\) \\
If transa= 'T' or 't' or 'C' or 'C', then \(y:=a l p h a * i n v(A ') * x\),
\end{tabular} \\
\hline \(m\) & INTEGER. Number of columns of the matrix \(A\). \\
\hline alpha & \begin{tabular}{l}
REAL for mkl_scscsv. \\
DOUBLE PRECISION for mkl_dcscsv. \\
COMPLEX for mkl_ccscsv. \\
DOUBLE COMPLEX for mkl_zcscsv. \\
Specifies the scalar alpha.
\end{tabular} \\
\hline matdescra & CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & \begin{tabular}{l}
REAL for mkl_scscsv. \\
DOUBLE PRECISION for mkl_dcscsv. \\
COMPLEX for mkl_ccscsv. \\
DOUBLE COMPLEX for mkl zcscsv.
\end{tabular} \\
\hline
\end{tabular}

Array containing non-zero elements of the matrix \(A\).
For one-based indexing its length is pntre(m) - pntrb(1).
For zero-based indexing its length is pntre(m-1) - pntrb(0).
Refer to values array description in CSC Format for more details.

NOTE The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

\section*{Output Parameters}

\section*{Interfaces}

\section*{FORTRAN 77:}

\section*{C:}
void mkl_scscsv(char *transa, int *m, float *alpha, char *matdescra,
float *val, int *indx, int *pntrb, int *pntre, float *x, float *y);
```

void mkl_dcscsv(char *transa, int *m, double *alpha, char *matdescra,
double *val, int *indx, int *pntrb, int *pntre, double *x, double *y);
void mkl_ccscsv(char *transa, int *m, MKL_Complex8 *alpha, char *matdescra,
MKL_Complex8 *val, int *indx, int *pntrb, int *pntre, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zcscsv(char *transa, int *m, MKL_Complex16 *alpha, char *matdescra,
MKL_Complex16 *val, int *indx, int *pntrb, int *pntre, MKL_Complex16 *x, MKL_Complex16 *y);

```

\section*{mkl_?coosv}
```

Solves a system of linear equations for a sparse matrix in the coordinate format.

```

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, x, y)
call mkl_dcoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, x, y)
call mkl_ccoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, x, y)
call mkl_zcoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, x, y)
C:
mkl_scoosv(\&transa, \&m, \&alpha, matdescra, val, rowind, colind, \&nnz, x, y);
mkl_dcoosv(\&transa, \&m, \&alpha, matdescra, val, rowind, colind, \&nnz, x, y);
mkl_ccoosv(\&transa, \&m, \&alpha, matdescra, val, rowind, colind, \&nnz, x, y);
mkl_zcoosv(\&transa, \&m, \&alpha, matdescra, val, rowind, colind, \&nnz, x, y);

```

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_? coosv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the coordinate format:
```

y := alpha*inv(A)*x

```
or
```

y := alpha*inv(A')*x,

```
where:
alpha is scalar, \(x\) and \(y\) are vectors, \(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports a coordinate format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa CHARACTER*1. Specifies the system of linear equations.
If transa \(=\) ' \(N\) ' or ' \(n\) ', then \(y:=a l p h a^{*} \operatorname{inv}(A){ }^{*} x\)
If transa \(=\) 'T' or 't' or 'C' or 'C', then \(y:=a \operatorname{lnh} \mathrm{C}^{*} i n v\left(A^{\prime}\right) \star \mathrm{X}^{*}\)
INTEGER. Number of rows of the matrix \(A\).
REAL for mkl_scoosv.
DOUBLE PRECISION for mkl_dcoosv.
COMPLEX for mkl_ccoosv.
DOUBLE COMPLEX for mkl_zcoosv.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

REAL for mkl_scoosv.
DOUBLE PRECISION for mkl_dcoosv.
COMPLEX for mkl_ccoosv.
DOUBLE COMPLEX for mkl_zcoosv.
Array of length \(n n z\), contains non-zero elements of the matrix \(A\) in the arbitrary order.
Refer to values array description in Coordinate Format for more details.
INTEGER. Array of length nnz, contains the row indices for each non-zero element of the matrix \(A\).
Refer to rows array description in Coordinate Format for more details.
INTEGER. Array of length \(n n z\), contains the column indices for each nonzero element of the matrix \(A\). Refer to columns array description in Coordinate Format for more details.
INTEGER. Specifies the number of non-zero element of the matrix \(A\). Refer to \(n n z\) description in Coordinate Format for more details.

REAL for mkl_scoosv.
DOUBLE PRECISION for mkl_dcoosv.
COMPLEX for mkl_ccoosv.
DOUBLE COMPLEX for mkl_zcoosv.
Array, DIMENSION at least m.
On entry, the array \(x\) must contain the vector \(x\). The elements are accessed with unit increment.

REAL for mkl_scoosv.
DOUBLE PRECISION for mkl_dcoosv.
COMPLEX for mkl_ccoosv.
DOUBLE COMPLEX for mkl_zcoosv.
Array, DIMENSION at least m.
On entry, the array \(y\) must contain the vector \(y\). The elements are accessed with unit increment.

\section*{Output Parameters}
```

Y

```

\section*{Contains solution vector \(x\).}
```

Interfaces

```

FORTRAN 77:
```

SUBROUTINE mkl_Scoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, x, y)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, nnz
INTEGER rowind(*), colind(*)
REAL alpha
REAL val(*)
REAL x(*), y(*)

```
SUBROUTINE mkl_dcoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, \(x, y)\)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 DOUBLE PRECISION alpha
 DOUBLE PRECISION val(*)
 DOUBLE PRECISION \(x(*), y(*)\)
SUBROUTINE mkl_ccoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, x, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 COMPLEX alpha
 COMPLEX val(*)
 COMPLEX \(x(*), y(*)\)
SUBROUTINE mkl_zcoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, \(x, y)\)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 DOUBLE COMPLEX alpha
 DOUBLE COMPLEX val (*)
 DOUBLE COMPLEX \(x(*), y(*)\)

C:
void mkl_scoosv(char *transa, int *m, float *alpha, char *matdescra,
float *val, int *rowind, int *colind, int *nnz,
float *x, float *y);
void mkl_dcoosv(char *transa, int *m, double *alpha, char *matdescra,
double *val, int *rowind, int *colind, int *nnz,
double \({ }^{*}\), double \({ }^{*} y\)) ;
void mkl_ccoosv(char *transa, int *m, MKL_Complex8 *alpha, char *matdescra,
MKL_Complex8 *val, int *rowind, int *colind, int *nnz,
MKL_Complex8 *x, MKL_Complex8 *y) ;
void mkl_zcoosv(char *transa, int *m, MKL_Complex16 *alpha, char *matdescra,
MKL_Complex16 *val, int *rowind, int *colind, int *nnz,
MKL_Complex16 *x, MKL_Complex16 *y) ;

\section*{mkl_?csrmm}

Computes matrix - matrix product of a sparse matrix
stored in the CSR format.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scsrmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
call mkl_dcsrmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
call mkl_ccsrmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
call mkl_zcsrmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, Idc)

```

C:
```

mkl_scsrmm(\&transa, \&m, \&n, \&k, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb,
\&beta, c, \&Idc);
mkl_dcsrmm(\&transa, \&m, \&n, \&k, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb,
\&beta, c, \&Idc);
mkl_ccsrmm(\&transa, \&m, \&n, \&k, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb,
\&beta, c, \&Idc);
mkl_zcsrmm(\&transa, \&m, \&n, \&k, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb,
\&beta, c, \&Idc);

```

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?csrmm routine performs a matrix-matrix operation defined as
\[
C:=\text { alpha* } A^{\star} B+\operatorname{beta}^{\star} C
\]
or
```

C := alpha*A'*B + beta*C,

```
where:
alpha and beta are scalars,
\(B\) and \(C\) are dense matrices, \(A\) is an \(m\)-by- \(k\) sparse matrix in compressed sparse row (CSR) format, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports a CSR format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
\begin{tabular}{|c|c|}
\hline transa & \begin{tabular}{l}
CHARACTER*1. Specifies the operation. \\
If transa \(=\) 'N' or 'n', then \(C:=\) alpha*A*B + beta* \(C\) \\
If transa \(=\) 'T' or 't' or 'C' or 'C', then \(C:=a l p h a \star A ' * B+b e t a * C\),
\end{tabular} \\
\hline m & INTEGER. Number of rows of the matrix \(A\). \\
\hline \(n\) & INTEGER. Number of columns of the matrix \(C\). \\
\hline k & INTEGER. Number of columns of the matrix \(A\). \\
\hline alpha & REAL for mkl_scsrmm. DOUBLE PRECISION for mkl_dcsrmm. COMPLEX for mkl_ccsrmm. DOUBLE COMPLEX for mkl_zcsrmm. Specifies the scalar alpha. \\
\hline matdescra & CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & \begin{tabular}{l}
REAL for mkl_scsrmm. \\
DOUBLE PRECISION for mkl_dcsrmm. \\
COMPLEX for mkl_ccsrmm. \\
DOUBLE COMPLEX for mkl_zcsrmm. \\
Array containing non-zero elements of the matrix \(A\). \\
For one-based indexing its length is pntre(m) - pntrb(1). \\
For zero-based indexing its length is pntre(-1) - pntrb(0). \\
Refer to values array description in CSR Format for more details.
\end{tabular} \\
\hline indx & INTEGER. Array containing the column indices for each non-zero element of the matrix \(A\). Its length is equal to length of the val array. Refer to columns array description in CSR Format for more details. \\
\hline pntrb & \begin{tabular}{l}
INTEGER. Array of length \(m\). \\
For one-based indexing this array contains row indices, such that pntrb (I) \\
- pntrb(1)+1 is the first index of row \(I\) in the arrays val and indx. \\
For zero-based indexing this array contains row indices, such that pntrb(I) - pntrb(0) is the first index of row \(I\) in the arrays val and indx. \\
Refer to pointerb array description in CSR Format for more details.
\end{tabular} \\
\hline
\end{tabular}
```

pntre INTEGER. Array of length m.
For one-based indexing this array contains row indices, such that pntre(I)
- pntrb(1) is the last index of row I in the arrays val and indx.
For zero-based indexing this array contains row indices, such that
pntre(I) - pntrb(0)-1 is the last index of row I in the arrays val and
indx.
Refer to pointerE array description in CSR Format for more details.

```
b

1 db

\section*{Output Parameters}

\section*{C}

Overwritten by the matrix (alpha*A*B+beta* C) or (alpha*A'*B+ beta*C).

\section*{Interfaces}

\section*{FORTRAN 77:}

SUBROUTINE mkl_dcsrmm(transa, m, \(n, k, a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~\)
\begin{tabular}{ll}
pntrb, pntre, \(b, ~ l d b, ~ b e t a, ~\) & , ldc) \\
CHARACTER*1 & transa \\
CHARACTER & matdescra (*) \\
INTEGER & \(m, n, k, l d b, ~ l d c\) \\
INTEGER & indx(*), pntrb(m), pntre (m) \\
REAL & alpha, beta \\
REAL & val (*), b(ldb,*), c(ldc,*)
\end{tabular}

SUBROUTINE mkl_dcsrmm(transa, m, \(n, k, a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~\)
```

pntrb, pntre, b, ldb, beta, c, ldc)

```
CHARACTER*1 transa

CHARACTER matdescra(*)
INTEGER \(m, n, k, l d b, l d c\)
INTEGER indx(*), pntrb(m), pntre(m)
DOUBLE PRECISION alpha, beta
DOUBLE PRECISION val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_dcsrmm(transa, m, \(n, k, a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~\) pntrb, pntre, b, ldb, beta, \(c, l d c\))
\begin{tabular}{ll}
CHARACTER*1 & transa \\
CHARACTER & matdescra (*) \\
INTEGER & \(m, n, k, l d b, l d c\) \\
INTEGER & indx (*), pntrb (m), pntre (m) \\
COMPLEX & alpha, beta \\
COMPLEX & val \((*), b(l d b, *), c(l d c, *)\)
\end{tabular}

SUBROUTINE mkl_dcsrmm(transa, \(m, n, k, a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~\)
```

pntrb, pntre, b, ldb, beta, c, ldc)

```
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER \(m, n, k, l d b, l d c\)
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE COMPLEX alpha, beta
 DOUBLE COMPLEX val(*), b(ldb,*), c(ldc,*)
C:
void mkl_scsrmm(char *transa, int *m, int *n, int *k, float *alpha,
char *matdescra, float *val, int *indx, int *pntrb, int *pntre,
float *b, int *ldb, float *beta, float *c, int *ldc,);
```

void mkl_dcsrmm(char *transa, int *m, int *n, int *k, double *alpha,
char *matdescra, double *val, int *indx, int *pntrb, int *pntre,
double *b, int *ldb, double *beta, double *c, int *ldc,);
void mkl_ccsrmm(char *transa, int *m, int *n, int *k, double *alpha,
char *matdescra, double *val, int *indx, int *pntrb, int *pntre,
double *b, int *ldb, double *beta, double *c, int *ldc,);
void mkl_zcsrmm(char *transa, int *m, int *n, int *k, double *alpha,
char *matdescra, double *val, int *indx, int *pntrb, int *pntre,
double *b, int *ldb, double *beta, double *c, int *ldc,);

```

\section*{mkl_?bsrmm}

Computes matrix - matrix product of a sparse matrix stored in the BSR format.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_sbsrmm(transa, m, n, k, lb, alpha, matdescra, val, indx, pntrb, pntre, b,
ldb, beta, c, ldc)
call mkl_dbsrmm(transa, m, n, k, lb, alpha, matdescra, val, indx, pntrb, pntre, b,
ldb, beta, c, Idc)
call mkl_cbsrmm(transa, m, n, k, lb, alpha, matdescra, val, indx, pntrb, pntre, b,
ldb, beta, c, Idc)
call mkl_zbsrmm(transa, m, n, k, lb, alpha, matdescra, val, indx, pntrb, pntre, b,
ldb, beta, c, Idc)
C:
mkl_sbsrmm(\&transa, \&m, \&n, \&k, \&lb, \&alpha, matdescra, val, indx, pntrb, pntre, b,
\&ldb, \&beta, c, \&ldc);
mkl_dbsrmm(\&transa, \&m, \&n, \&k, \&lb, \&alpha, matdescra, val, indx, pntrb, pntre, b,
\&ldb, \&beta, c, \&ldc);
mkl_cbsrmm(\&transa, \&m, \&n, \&k, \&lb, \&alpha, matdescra, val, indx, pntrb, pntre, b,
\&ldb, \&beta, c, \&ldc);
mkl_zbsrmm(\&transa, \&m, \&n, \&k, \&lb, \&alpha, matdescra, val, indx, pntrb, pntre, b,
\&ldb, \&beta, c, \&ldc);
Include Files

```
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?bssmm routine performs a matrix-matrix operation defined as
```

C := alpha*A*B + beta*C

```
or
\(C\) := alpha*A'*B + beta* \(C\),
where:
alpha and beta are scalars,
\(B\) and \(C\) are dense matrices, \(A\) is an \(m\)-by- \(k\) sparse matrix in block sparse row (BSR) format, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports a BSR format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
\begin{tabular}{|c|c|}
\hline transa & \begin{tabular}{l}
CHARACTER*1. Specifies the operation. \\
If transa \(=\) ' \(N\) ' or ' \(n\) ', then the matrix-matrix product is computed as \\
\(C\) : = alpha*A*B + beta* \(C\) \\
If transa \(=\) 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as \(C:=\) alpha* \(A{ }^{\prime}{ }^{*} B+\) beta* \(C\),
\end{tabular} \\
\hline m & INTEGER. Number of block rows of the matrix \(A\). \\
\hline \(n\) & INTEGER. Number of columns of the matrix \(C\). \\
\hline k & INTEGER. Number of block columns of the matrix \(A\). \\
\hline 1.6 & INTEGER. Size of the block in the matrix \(A\). \\
\hline alpha & REAL for mkl_sbsrmm. DOUBLE PRECISION for mkl_dbsrmm. COMPLEX for mkl_cbsrmm. DOUBLE COMPLEX for mkl_zbsrmm. Specifies the scalar alpha. \\
\hline matdescra & CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & \begin{tabular}{l}
REAL for mkl_sbsrmm. \\
DOUBLE PRECISION for mkl_dbsrmm. \\
COMPLEX for mkl_cbsrmm. \\
DOUBLE COMPLEX for mkl_zbsrmm. \\
Array containing elements of non-zero blocks of the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\) multiplied by \(1 b \star l b\). Refer to the values array description in BSR Format for more details.
\end{tabular} \\
\hline indx & INTEGER. Array containing the column indices for each non-zero block in the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\). Refer to the columns array description in BSR Format for more details. \\
\hline pntrb & \begin{tabular}{l}
INTEGER. Array of length \(m\). \\
For one-based indexing: this array contains row indices, such that pntrb (I) - pntrb(1)+1 is the first index of block row \(I\) in the array indx. \\
For zero-based indexing: this array contains row indices, such that pntrb(I) - pntrb(0) is the first index of block row \(I\) in the array indx.
\end{tabular} \\
\hline
\end{tabular}

Refer to pointerB array description in BSR Format for more details.
pntre
b

\section*{Output Parameters}

\section*{C}

INTEGER. Array of length m.
For one-based indexing this array contains row indices, such that pntre (I) - pntrb(1) is the last index of block row I in the array indx.

For zero-based indexing this array contains row indices, such that pntre (I) - pntrb(0)-1 is the last index of block row \(I\) in the array indx. Refer to pointerE array description in BSR Format for more details.
REAL for mkl_sbsrmm. DOUBLE PRECISION for mkl_dbsrmm.
COMPLEX for mkl_cbsrmm.
DOUBLE COMPLEX for mkl_zbsrmm.
Array, DIMENSION (1 db , at least \(n\) for non-transposed matrix \(A\) and at least \(m\) for transposed) for one-based indexing, and (at least \(k\) for nontransposed matrix \(A\) and at least \(m\) for transposed, \(l d b\)) for zero-based indexing.
On entry with transa= 'N' or 'n', the leading \(n\)-by- \(k\) block part of the array \(b\) must contain the matrix \(B\), otherwise the leading \(m\)-by- \(n\) block part of the array \(b\) must contain the matrix \(B\).
INTEGER. Specifies the leading dimension (in blocks) of \(b\) as declared in the calling (sub)program.
REAL for mkl_sbsrmm.
DOUBLE PRECISION for mkl_dbsrmm.
COMPLEX for mkl_cbsrmm.
DOUBLE COMPLEX for mkl_zbsrmm.
Specifies the scalar beta.
REAL for mkl_sbsrmm.
DOUBLE PRECISION for mkl_dbsrmm.
COMPLEX for mkl_cbsrmm.
DOUBLE COMPLEX for mkl_zbsrmm.
Array, DIMENSION (ldc, \(n\)) for one-based indexing, DIMENSION (\(k\), ldc) for zero-based indexing.
On entry, the leading m-by-n block part of the array c must contain the matrix \(C\), otherwise the leading \(n\)-by- \(k\) block part of the array \(c\) must contain the matrix \(C\).
INTEGER. Specifies the leading dimension (in blocks) of \(c\) as declared in the calling (sub)program.

Overwritten by the matrix (alpha*A*B + beta*C) or (alpha*A'*B + beta*C).

\section*{Interfaces}

\section*{FORTRAN 77:}
\begin{tabular}{|c|}
\hline bsrmm(transa, m, n, k, lb, alpha, matdescra, val, \\
\hline indx, pntrb, pntre, b, ldb, beta, \(\mathrm{c}, \mathrm{ldc}\)) \\
\hline CHARACTER*1 transa \\
\hline CHARACTER matdescra(*) \\
\hline INTEGER \(m, \mathrm{n}, \mathrm{k}, \mathrm{ld}, \mathrm{ldb}, \mathrm{ldc}\) \\
\hline INTEGER indx(*), pntrb(m), pntre(m) \\
\hline REAL alpha, beta \\
\hline REAL \(\operatorname{val}(*), \mathrm{b}(\mathrm{ldb}, *), \mathrm{c}\left(1 \mathrm{dc},^{*}\right)\) \\
\hline SUBROUTINE mkl_dbsrmm(transa, m, n , \(\mathrm{k}, \mathrm{lb}\), alpha, matdescra, val, \\
\hline indx, pntrb, pntre, b, ldb, beta, \(\mathrm{c}, \mathrm{ldc})\) \\
\hline CHARACTER*1 transa \\
\hline CHARACTER matdescra(*) \\
\hline INTEGER \(m, n, k, l d, l d b, ~ l d c\) \\
\hline INTEGER indx(*), pntrb(m), pntre(m) \\
\hline DOUBLE PRECISION alpha, beta \\
\hline DOUBLE PRECISION val (*), b(ldb,*), c(ldc,*) \\
\hline SUBROUTINE mkl_cbsrmm(transa, m, n , \(\mathrm{k}, \mathrm{lb}\), alpha, matdescra, val, \\
\hline indx, pntrb, pntre, b, ldb, beta, \(\mathrm{c}, \mathrm{ldc}\)) \\
\hline CHARACTER*1 transa \\
\hline CHARACTER matdescra(*) \\
\hline INTEGER \(m, \mathrm{n}, \mathrm{k}, \mathrm{ld}, \mathrm{ldb}, \mathrm{ldc}\) \\
\hline INTEGER indx(*), pntrb(m), pntre(m) \\
\hline COMPLEX alpha, beta \\
\hline COMPLEX val(*), b(ldb,*), c(ldc,*) \\
\hline
\end{tabular}

SUBROUTINE mkl_zbsrmm(transa, m, n, k, lb, alpha, matdescra, val,
```

indx, pntrb, pntre, b, ldb, beta, c, ldc)

```
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER \(m, n, k, l d, l d b, l d c\)
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE COMPLEX alpha, beta
 DOUBLE COMPLEX val(*), b(ldb,*), c(ldc,*)
C:
void mkl_sbsrmm(char *transa, int *m, int *n, int *k, int *lb,
float *alpha, char *matdescra, float *val, int *indx, int *pntrb,
int *pntre, float *b, int *ldb, float *beta, float *c, int *ldc,);
```

void mkl dbsrmm(char *transa, int *m, int *n, int *k, int *lb,
double *alpha, char *matdescra, double *val, int *indx, int *pntrb,
int *pntre, double *b, int *ldb, double *beta, double *c, int *ldc,);
void mkl_cbsrmm(char *transa, int *m, int *n, int *k, int *lb,
MKL_Complex8 *alpha, char *matdescra, MKL_Complex8 *val, int *indx, int *pntrb,
int *pntre, MKL_Complex8 *b, int *ldb, MKL_Complex8 *beta, MKL_Complex8 *c, int *ldc,);
void mkl_zbssmm(char *transa, int *m, int *n, int *k, int *lb,
MKL_Complex16 *alpha, char *matdescra, MKL_Complex16 *val, int *indx, int *pntrb,
int *pntre, MKL_Complex16 *b, int *ldb, MKL_Complex16 *beta, MKL_Complex16 *c, int *ldc,);

```

\section*{mkl_?cscmm}

Computes matrix-matrix product of a sparse matrix stored in the CSC format.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scscmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, Idc)
call mkl_dcscmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, Idc)
call mkl_ccscmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
call mkl_zcscmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)

```
C:
mkl_scscmm(\&transa, \&m, \&n, \&k, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb,
\&beta, \(c, \quad \& I d c) ;\)
\(m k l _d c s c m m(\& t r a n s a, \quad \& m, \& n, \& k, \& a l p h a, \quad m a t d e s c r a, ~ v a l, i n d x, p n t r b, p n t r e, b, \& l d b\),
\&beta, \(c, \quad \& I d c) ;\)
\(m k l _c c s c m m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ b, ~ \& l d b\),
\&beta, c, \&ldc);
\(m k l _z c s c m m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ b, ~ \& l d b\),
\&beta, \(c, \quad \& I d c) ;\)

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?cscmm routine performs a matrix-matrix operation defined as
```

C := alpha*A*B + beta*C

```
or
\(C\) := alpha*A'*B + beta* \(C\),
where:
alpha and beta are scalars,
\(B\) and \(C\) are dense matrices, \(A\) is an \(m\)-by- \(k\) sparse matrix in compressed sparse column (CSC) format, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports CSC format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
\begin{tabular}{|c|c|}
\hline transa & \begin{tabular}{l}
CHARACTER*1. Specifies the operation. \\
If transa \(=\) 'N' or 'n', then \(C:=\) alpha*A* \(B+\) beta* \(C\) \\
If transa \(=\) 'T' or 't' or 'C' or 'c', then \(C:=a l p h a \star A ' * B+b e t a * C\),
\end{tabular} \\
\hline m & INTEGER. Number of rows of the matrix \(A\). \\
\hline \(n\) & INTEGER. Number of columns of the matrix \(C\). \\
\hline k & INTEGER. Number of columns of the matrix \(A\). \\
\hline alpha & REAL for mkl_scscmm. DOUBLE PRECISION for mkl_dcscmm. COMPLEX for mkl_ccscmm. DOUBLE COMPLEX for mkl_zcscmm. Specifies the scalar alpha. \\
\hline matdescra & CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & \begin{tabular}{l}
REAL for mkl_scscmm. \\
DOUBLE PRECISION for mkl_dcscmm. \\
COMPLEX for mkl_ccscmm. \\
DOUBLE COMPLEX for mkl_zcscmm. \\
Array containing non-zero elements of the matrix \(A\). \\
For one-based indexing its length is pntre (k) - pntrb(1). \\
For zero-based indexing its length is pntre(m-1) - pntrb(0). \\
Refer to values array description in CSC Format for more details.
\end{tabular} \\
\hline indx & \begin{tabular}{l}
INTEGER. Array containing the row indices for each non-zero element of the matrix A.Its length is equal to length of the val array. \\
Refer to rows array description in CSC Format for more details.
\end{tabular} \\
\hline pntrb & \begin{tabular}{l}
INTEGER. Array of length \(k\). \\
For one-based indexing this array contains column indices, such that pntrb(i) - pntrb(1)+1 is the first index of column \(i\) in the arrays val and indx. \\
For zero-based indexing this array contains column indices, such that pntrb(i) - pntrb(0) is the first index of column \(i\) in the arrays val and indx. \\
Refer to pointerb array description in CSC Format for more details.
\end{tabular} \\
\hline pntre & INTEGER. Array of length \(k\). \\
\hline
\end{tabular}

For one-based indexing this array contains column indices, such that pntre(i) - pntrb(1) is the last index of column \(i\) in the arrays val and indx.
For zero-based indexing this array contains column indices, such that pntre(i) - pntrb(1)-1 is the last index of column \(i\) in the arrays val and indx.
Refer to pointerE array description in CSC Format for more details.
b
REAL for mkl_scscmm.
DOUBLE PRECISION for mkl_dcscmm.
COMPLEX for mkl_ccscmm.
DOUBLE COMPLEX for mkl_zcscmm.
Array, DIMENSION (1 db , at least \(n\) for non-transposed matrix \(A\) and at least \(m\) for transposed) for one-based indexing, and (at least \(k\) for nontransposed matrix \(A\) and at least \(m\) for transposed, \(l d b\)) for zero-based indexing.
On entry with transa \(=\) 'N' or 'n', the leading \(k\)-by-n part of the array \(b\) must contain the matrix \(B\), otherwise the leading \(m-b y-n\) part of the array \(b\) must contain the matrix \(B\).

INTEGER. Specifies the leading dimension of \(b\) for one-based indexing, and the second dimension of \(b\) for zero-based indexing, as declared in the calling (sub)program.
beta REAL*8. Specifies the scalar beta.
c
REAL for mkl_scscmm.
DOUBLE PRECISION for mkl_dcscmm.
COMPLEX for mkl_ccscmm.
DOUBLE COMPLEX for mkl_zcscmm.
Array, DIMENSION (\(l d c, n\)) for one-based indexing, and (\(m, ~ l d c\)) for zerobased indexing.
On entry, the leading \(m\)-by- \(n\) part of the array \(c\) must contain the matrix \(C_{\text {, }}\) otherwise the leading \(k\)-by- \(n\) part of the array \(c\) must contain the matrix \(C\).
ldc
INTEGER. Specifies the leading dimension of \(c\) for one-based indexing, and the second dimension of \(c\) for zero-based indexing, as declared in the calling (sub) program.

\section*{Output Parameters}

Overwritten by the matrix (alpha*A*B + beta* C) or (alpha*A'*B+ beta* \(C\)).

\section*{Interfaces}

\section*{FORTRAN 77:}

SUBROUTINE mkl_scscmm (transa, m, \(n, k, a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~\)
pntrb, pntre, \(b, l d b\), beta, \(c, l d c\))
\begin{tabular}{ll}
CHARACTER*1 & transa \\
CHARACTER & matdescra \((*)\) \\
INTEGER & \(m, n, k, l d b, l d c\) \\
INTEGER & indx \((*)\), pntrb \((k)\), pntre \((k)\) \\
REAL & alpha, beta \\
REAL & \(\operatorname{val}(*), b(l d b, *), ~ c(l d c, *)\)
\end{tabular}

```

void mkl_zcscmm(char *transa, int *m, int *n, int *k,
MKL_Complex16 *alpha, char *matdescra, MKL_Complex16 *val, int *indx,
int *pntrb, int *pntre, MKL_Complex16 *b, int *ldb,
MKL_Complex16 *beta, MKL_Complex16 *C, int *ldc);

```

\section*{mkl_?coomm}

Computes matrix-matrix product of a sparse matrix stored in the coordinate format.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scoomm(transa, m, n, k, alpha, matdescra, val, rowind, colind, nnz, b, ldb,
beta, c, ldc)
call mkl_dcoomm(transa, m, n, k, alpha, matdescra, val, rowind, colind, nnz, b, ldb,
beta, c, ldc)
call mkl_ccoomm(transa, m, n, k, alpha, matdescra, val, rowind, colind, nnz, b, ldb,
beta, c, ldc)
call mkl_zcoomm(transa, m, n, k, alpha, matdescra, val, rowind, colind, nnz, b, ldb,
beta, c, ldc)

```

C:
\(m k l _s c o o m m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ r o w i n d, ~ c o l i n d, ~ \& n n z, ~ b, ~ \& l d b\),
\&beta, \(c\), \&Idc);
\(m k l _d c o o m m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ r o w i n d, ~ c o l i n d, ~ \& n n z, ~ b, ~ \& l d b\),
\&beta, \(c, \quad \& I d c)\);
\(m k l _c c o o m m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ r o w i n d, ~ c o l i n d, ~ \& n n z, ~ b, ~ \& l d b\),
\&beta, \(c, \quad \& I d c)\);
\(m k l _z c o o m m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ r o w i n d, ~ c o l i n d, ~ \& n n z, ~ b, ~ \& l d b\),
\&beta, \(c, \quad \& I d c)\);

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?coomm routine performs a matrix-matrix operation defined as
```

C := alpha* A* B + beta* C

```
or
\(C\) := alpha*A'*B + beta* \(C\),
where:
alpha and beta are scalars,
\(B\) and \(C\) are dense matrices, \(A\) is an \(m\)-by- \(k\) sparse matrix in the coordinate format, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports a coordinate format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
\begin{tabular}{|c|c|}
\hline transa & \begin{tabular}{l}
CHARACTER*1. Specifies the operation. \\
If transa \(=\) 'N' or 'n', then \(C:=a l p h a \star A \star B+b e t a * C\) \\
If transa \(=\) 'T' or 't' or 'C' or 'C', then \(C:=a l p h a \star A ' * B+b e t a * C\),
\end{tabular} \\
\hline \(m\) & INTEGER. Number of rows of the matrix \(A\). \\
\hline \(n\) & INTEGER. Number of columns of the matrix \(C\). \\
\hline k & INTEGER. Number of columns of the matrix \(A\). \\
\hline alpha & \begin{tabular}{l}
REAL for mkl_scoomm. \\
DOUBLE PRECISION for mkl_dcoomm. COMPLEX for mkl_ccoomm. \\
DOUBLE COMPLEX for mkl_zcoomm. Specifies the scalar alpha.
\end{tabular} \\
\hline matdescra & CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & \begin{tabular}{l}
REAL for mkl_scoomm. \\
DOUBLE PRECISION for mkl_dcoomm. \\
COMPLEX for mkl_ccoomm. \\
DOUBLE COMPLEX for mkl_zcoomm. \\
Array of length \(n n z\), contains non-zero elements of the matrix \(A\) in the arbitrary order. \\
Refer to values array description in Coordinate Format for more details.
\end{tabular} \\
\hline rowind & \begin{tabular}{l}
INTEGER. Array of length \(n n z\), contains the row indices for each non-zero element of the matrix \(A\). \\
Refer to rows array description in Coordinate Format for more details.
\end{tabular} \\
\hline colind & INTEGER. Array of length \(n n z\), contains the column indices for each nonzero element of the matrix A. Refer to columns array description in Coordinate Format for more details. \\
\hline \(n n z\) & INTEGER. Specifies the number of non-zero element of the matrix \(A\). Refer to \(n n z\) description in Coordinate Format for more details. \\
\hline \(b\) & \begin{tabular}{l}
REAL for mkl_scoomm. \\
DOUBLE PRECISION for mkl_dcoomm. \\
COMPLEX for mkl_ccoomm. \\
DOUBLE COMPLEX for mkl_zcoomm. \\
Array, DIMENSION (ldb, at least \(n\) for non-transposed matrix \(A\) and at least \(m\) for transposed) for one-based indexing, and (at least \(k\) for nontransposed matrix \(A\) and at least \(m\) for transposed, \(l d b\)) for zero-based indexing.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & On entry with transa \(=\) ' \(N\) ' or ' \(n\) ', the leading \(k\)-by-n part of the array \(b\) must contain the matrix \(B\), otherwise the leading \(m\)-by-n part of the array \(b\) must contain the matrix \(B\). \\
\hline 1 db & INTEGER. Specifies the leading dimension of \(b\) for one-based indexing, and the second dimension of \(b\) for zero-based indexing, as declared in the calling (sub)program. \\
\hline beta & \begin{tabular}{l}
REAL for mkl_scoomm. \\
DOUBLE PRECISION for mkl_dcoomm. \\
COMPLEX for mkl_ccoomm. \\
DOUBLE COMPLEX for mkl_zcoomm. \\
Specifies the scalar beta.
\end{tabular} \\
\hline c & \begin{tabular}{l}
REAL for mkl_scoomm. \\
DOUBLE PRECISION for mkl_dcoomm. \\
COMPLEX for mkl_ccoomm. \\
DOUBLE COMPLEX for mkl_zcoomm. \\
Array, DIMENSION (\(l d c, n\)) for one-based indexing, and (\(m, l d c\)) for zerobased indexing. \\
On entry, the leading \(m\)-by- \(n\) part of the array \(c\) must contain the matrix \(c_{\text {, }}\) otherwise the leading \(k-b y-n\) part of the array \(c\) must contain the matrix \(c\).
\end{tabular} \\
\hline \(1 d \mathrm{c}\) & INTEGER. Specifies the leading dimension of \(c\) for one-based indexing, and the second dimension of \(c\) for zero-based indexing, as declared in the calling (sub)program. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

C Overwritten by the matrix (alpha*A*B + beta*C) or (alpha\starA'*B +
beta*C).

```

\section*{Interfaces}

\section*{FORTRAN 77:}
```

SUBROUTINE mkl_scoomm(transa, m, n, k, alpha, matdescra, val,
rowind, colind, nnz, b, ldb, beta, c, ldc)

| CHARACTER*1 | transa |
| :--- | :--- |
| CHARACTER | matdescra (*) |
| INTEGER | $m, n, k, l d b, l d c, ~ n n z$ |
| INTEGER | rowind(*), colind (*) |
| REAL | alpha, beta |
| REAL | val (*), b(ldb,*), c (ldc,*) |

SUBROUTINE mkl_dcoomm(transa, m, n, k, alpha, matdescra, val,
rowind, colind, nnz, b, ldb, beta, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, k, ldb, ldc, nnz
INTEGER rowind(*), colind(*)
DOUBLE PRECISION alpha, beta
DOUBLE PRECISION val(*), b(ldb,*), c(ldc,*)

```


C:
void mkl_scoomm(char *transa, int *m, int *n, int *k, float *alpha,
char *matdescra, float *val, int *rowind, int *colind, int *nnz,
float *b, int *ldb, float *beta, float *c, int *ldc);
void mkl_dcoomm(char *transa, int \({ }^{*} m\), int \({ }^{*} n\), int \({ }^{*} k\), double *alpha,
char *matdescra, double *val, int *rowind, int *colind, int *nnz,
double *b, int *ldb, double *beta, double \({ }^{*} c\), int \(\left.{ }^{*} l d c\right)\);
void mkl_ccoomm(char *transa, int *m, int *n, int *k, MKL_Complex8 *alpha,
char *matdescra, MKL_Complex8 *val, int *rowind, int *colind, int *nnz,
MKL_Complex8 *b, int *ldb, MKL_Complex8 *beta, MKL_Complex8 * \({ }^{*}\), int *ldc) ;
void mkl_zcoomm(char *transa, int *m, int *n, int *k, MKL_Complex16 *alpha,
char *matdescra, MKL_Complex16 *val, int *rowind, int *colind, int *nnz,
MKL_Complex16 *b, int *ldb, MKL_Complex16 *beta, MKL_Complex16 *C, int *ldc);

\section*{mkl_?csrsm}

Solves a system of linear matrix equations for a sparse matrix in the CSR format.

\section*{Syntax}

\section*{Fortran:}
call mkl_scsrsm(transa, m, \(n, ~ a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ b, ~ l d b, ~ c, ~\)
ldc)
call mkl_dcsrsm(transa, m, \(n, ~ a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ b, ~ l d b, ~ c\), ldc)
```

call mkl_ccsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c,
ldc)
call mkl_zcsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c,
ldc)

```

C:
mkl_scsrsm(\&transa, \&m, \&n, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb, c,
\&Idc);
mkl_dcsrsm(\&transa, \&m, \&n, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb, c,
\& Idc);
mkl_ccsrsm(\&transa, \(\& m, ~ \& n, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ b, ~ \& l d b, ~ c, ~\)
\&ldc);
mkl_zcsrsm(\&transa, \(\& m, \quad \& n, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ b, ~ \& l d b, ~ c, ~\)
\&ldc);

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?csrsm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the CSR format:
```

C := alpha*inv(A)*B

```
or
\(C:=\) alpha*inv(\(\left.A^{\prime}\right) * B\),
where:
alpha is scalar, \(B\) and \(C\) are dense matrices, \(A\) is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports a CSR format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
```

transa
m
n
alpha
CHARACTER*1. Specifies the system of linear equations.
If transa = 'N' or 'n', then C := alpha*inv(A)*B
If transa = 'T' or 't' or 'C' or 'C', then C := alpha*inv(A')*B,
INTEGER. Number of columns of the matrix A.
INTEGER. Number of columns of the matrix C.
REAL for mkl_scsrsm.
DOUBLE PRECISION formkl_dcsrsm.
COMPLEX for mkl_ccsrsm.
DOUBLE COMPLEX for mkl_zcsrsm.
Specifies the scalar alpha.

```
```

matdescra
val
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".
REAL for mkl_scsrsm.
DOUBLE PRECISION for mkl_dcsrsm.
COMPLEX for mkl_ccsrsm.
DOUBLE COMPLEX for mkl_zcsrsm.
Array containing non-zero elements of the matrix $A$.
For one-based indexing its length is pntre(m) - pntrb(1).
For zero-based indexing its length is pntre(m-1) - pntrb(0).
Refer to values array description in CSR Format for more details.

```

NOTE The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

INTEGER. Array containing the column indices for each non-zero element of the matrix \(A\). Its length is equal to length of the val array.
Refer to columns array description in CSR Format for more details.

NOTE Column indices must be sorted in increasing order for each row.

INTEGER. Array of length \(m\).
For one-based indexing this array contains row indices, such that pntrb(i) - pntrb(1)+1 is the first index of row \(i\) in the arrays val and indx. For zero-based indexing this array contains row indices, such that pntrb(i) - pntrb(0) is the first index of row \(i\) in the arrays val and indx. Refer to pointerb array description in CSR Format for more details.

INTEGER. Array of length \(m\).
For one-based indexing this array contains row indices, such that pntre (i) - pntrb(1) is the last index of row \(i\) in the arrays val and indx. For zero-based indexing this array contains row indices, such that pntre(i) - pntrb(0)-1 is the last index of row \(i\) in the arrays val and indx. Refer to pointerE array description in CSR Format for more details.
REAL for mkl_scsrsm.
DOUBLE PRECISION for mkl_dcsrsm.
COMPLEX for mkl_ccsrsm.
DOUBLE COMPLEX for mkl_zcsrsm.
Array, DIMENSION (\(1 \mathrm{db}, \mathrm{n}\)) for one-based indexing, and (\(m\), 1 db) for zero-based indexing.
On entry the leading \(m\)-by-n part of the array \(b\) must contain the matrix \(B\).
INTEGER. Specifies the leading dimension of \(b\) for one-based indexing, and the second dimension of \(b\) for zero-based indexing, as declared in the calling (sub)program.

INTEGER. Specifies the leading dimension of \(c\) for one-based indexing, and the second dimension of \(c\) for zero-based indexing, as declared in the calling (sub)program.

\section*{Output Parameters}
```

c

```

REAL* 8.
Array, DIMENSION (\(I d c, n\)) for one-based indexing, and (\(m, ~ l d c\)) for zerobased indexing.
The leading \(m\)-by-n part of the array \(c\) contains the output matrix \(c\).

\section*{Interfaces}

FORTRAN 77:
SUBROUTINE mkl_scsrsm(transa, m, \(n\), alpha, matdescra, val, indx,
```

pntrb, pntre, b, ldb, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, ldb, ldc
INTEGER indx(*), pntrb(m), pntre(m)
REAL alpha
REAL val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_dcsrsm(transa, m, n, alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, ldb, ldc
INTEGER indx(*), pntrb(m), pntre(m)
DOUBLE PRECISION alpha
DOUBLE PRECISION val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_ccsrsm(transa, m, n, alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, ldb, ldc
INTEGER indx(*), pntrb(m), pntre(m)
COMPLEX alpha
COMPLEX val(*), b(ldb,*), c(ldc,*)

```


\section*{mkl_?cscsm}

Solves a system of linear matrix equations for a sparse matrix in the CSC format.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scscsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c,
ldc)
call mkl_dcscsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c,
ldc)
call mkl_ccscsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c,
ldc)
call mkl_zcscsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c,
ldc)
C:
mkl_scscsm(\&transa, $\& m, ~ \& n, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ b, ~ \& l d b, ~ c$, \& ldc);

```
```

mkl_dcscsm(\&transa, \&m, \&n, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb, c,
\&IdC);
mkl_ccscsm(\&transa, \&m, \&n, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb, c,
\&IdC);
mkl_zcscsm(\&transa, \&m, \&n, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb, c,
\&IdC);

```

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?cscsm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the CSC format:
```

C := alpha*inv(A)*B

```
or
\(C:=a l p h a * \operatorname{inv}\left(A^{\prime}\right) * B\),
where:
alpha is scalar, \(B\) and \(C\) are dense matrices, \(A\) is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, \(A\) ' is the transpose of \(A\).

NOTE This routine supports a CSC format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
```

transa CHARACTER*1. Specifies the system of equations.
If transa = 'N' or 'n', then C := alpha*inv(A)*B
If transa = 'T' or 't' or 'C' or 'c',then C := alpha*inv(A')*B,
INTEGER. Number of columns of the matrix A.
INTEGER. Number of columns of the matrix C.
REAL for mkl_scscsm.
DOUBLE PRECISION for mkl_dcscsm.
COMPLEX for mkl_ccscsm.
DOUBLE COMPLEX for mkl_zcscsm.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".
REAL for mkl_scscsm. DOUBLE PRECISION for mkl_dcscsm. COMPLEX for mkl_ccscsm.

```

DOUBLE COMPLEX for mkl_zcscsm.
Array containing non-zero elements of the matrix \(A\).
For one-based indexing its length is pntre (\(k\)) - pntrb(1).
For zero-based indexing its length is pntre(m-1) - pntrb(0).
Refer to values array description in CSC Format for more details.

NOTE The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.
indx
pntrb
pntre
b

1 db
ldc

INTEGER. Array containing the row indices for each non-zero element of the matrix \(A\). Its length is equal to length of the val array.
Refer to rows array description in CSC Format for more details.

NOTE Row indices must be sorted in increasing order for each column.

INTEGER. Array of length \(m\).
For one-based indexing this array contains column indices, such that pntrb(I) - pntrb(1)+1 is the first index of column \(I\) in the arrays val and indx.
For zero-based indexing this array contains column indices, such that pntrb(I) - pntrb(0) is the first index of column \(I\) in the arrays val and indx.
Refer to pointerb array description in CSC Format for more details.
INTEGER. Array of length \(m\).
For one-based indexing this array contains column indices, such that pntre(I) - pntrb(1) is the last index of column \(I\) in the arrays val and indx.
For zero-based indexing this array contains column indices, such that pntre(I) - pntrb(1)-1 is the last index of column \(I\) in the arrays val and indx.
Refer to pointerE array description in CSC Format for more details.
REAL for mkl_scscsm.
DOUBLE PRECISION for mkl_dcscsm.
COMPLEX for mkl_ccscsm.
DOUBLE COMPLEX for mkl_zcscsm.
Array, DIMENSION (\(1 \mathrm{db}, n\)) for one-based indexing, and (\(m, l d b\)) for zerobased indexing.
On entry the leading \(m\)-by-n part of the array \(b\) must contain the matrix \(B\).
INTEGER. Specifies the leading dimension of \(b\) for one-based indexing, and the second dimension of \(b\) for zero-based indexing, as declared in the calling (sub) program.
INTEGER. Specifies the leading dimension of \(c\) for one-based indexing, and the second dimension of \(c\) for zero-based indexing, as declared in the calling (sub) program.

\section*{Output Parameters}

DOUBLE PRECISION for mkl_dcscsm.
COMPLEX for mkl_ccscsm.
DOUBLE COMPLEX for mkl_zcscsm.
Array, DIMENSION (\(l d c, \bar{n}\)) for one-based indexing, and (\(m, l d c\)) for zerobased indexing.
The leading \(m\)-by-n part of the array \(c\) contains the output matrix \(c\).

\section*{Interfaces}

\section*{FORTRAN 77:}

SUBROUTINE mkl_scscsm(transa, m, \(n\), alpha, matdescra, val, indx,
```

pntrb, pntre, b, ldb, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, ldb, ldc
INTEGER indx(*), pntrb(m), pntre(m)
REAL alpha
REAL val(*), b(ldb,*), c(ldc,*)

```
SUBROUTINE mkl_dcscsm(transa, m, n, alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, \(\mathrm{c}, \mathrm{ldc})\)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER \(\quad m, n, l d b, l d c\)
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE PRECISION alpha
 DOUBLE PRECISION val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_cCScsm(transa, m, \(n\), alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, \(\mathrm{c}, \mathrm{ldc}\))
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER \(\quad m, n, l d b, l d c\)
 INTEGER indx(*), pntrb(m), pntre(m)
 COMPLEX alpha
 COMPLEX val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_zcscsm(transa, m, n, alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER \(\quad m, n, l d b, l d c\)
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE COMPLEX alpha
 DOUBLE COMPLEX val(*), b(ldb,*), c(ldc,*)

\section*{C:}
```

void mkl_scscsm(char *transa, int *m, int *n, float *alpha,

```
char *matdescra, float *val, int *indx, int *pntrb,
int *pntre, float *b, int *ldb, float \({ }^{*} c\), int \(\left.{ }^{*} l d c\right)\);
void mkl_dcscsm(char *transa, int *m, int *n, double *alpha,
char *matdescra, double *val, int *indx, int *pntrb,
int *pntre, double *b, int *ldb, double \({ }^{*} C\), int \(\left.{ }^{*} l d c\right)\);
void mkl_ccscsm(char *transa, int *m, int *n, MKL_Complex8 *alpha,
char *matdescra, MKL_Complex8 *val, int *indx, int *pntrb,
int *pntre, MKL_Complex8 *b, int *ldb, MKL_Complex8 *c, int *ldc);
void mkl_zCSCsm(char *transa, int *m, int *n, MKL_Complex16 *alpha,
char *matdescra, MKL_Complex16 *val, int *indx, int *pntrb,
int *pntre, MKL_Complex16 *b, int *ldb, MKL_Complex16 *c, int *ldc);

\section*{mkl_?coosm}

\section*{Solves a system of linear matrix equations for a sparse matrix in the coordinate format.}

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scoosm(transa, m, n, alpha, matdescra, val, rowind, colind, nnz, b, ldb, c,
ldc)
call mkl_dcoosm(transa, m, n, alpha, matdescra, val, rowind, colind, nnz, b, ldb, c,
ldc)
call mkl_ccoosm(transa, m, n, alpha, matdescra, val, rowind, colind, nnz, b, ldb, c,
ldc)
call mkl_zcoosm(transa, m, n, alpha, matdescra, val, rowind, colind, nnz, b, ldb, c,
Idc)

```

C:
mkl_scoosm(\&transa, \&m, \&n, \&alpha, matdescra, val, rowind, colind, \&nnz, b, \&ldb, c, \& \(1 d C\));
\(m k l _d c o o s m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ r o w i n d, ~ c o l i n d, ~ \& n n z, ~ b, ~ \& l d b, ~ c\), \& \(1 d C\));
\(m k l _c o o s m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ r o w i n d, ~ c o l i n d, ~ \& n n z, ~ b, ~ \& l d b, ~ c\), \& IdC);
\(m k l _z c o o s m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ r o w i n d, ~ c o l i n d, ~ \& n n z, ~ b, ~ \& l d b, ~ c\), \& \(1 d C\));

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_? coosm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the coordinate format:
```

C := alpha*inv(A) *B

```
or
\(C:=a l p h a * i n v\left(A^{\prime}\right) * B\),
where:
alpha is scalar, \(B\) and \(C\) are dense matrices, \(A\) is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, \(A\) ' is the transpose of \(A\).

NOTE This routine supports a coordinate format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{transa} & CHARACTER*1. Specifies the system of linear equations. \\
\hline & If transa \(=\) ' N ' or ' n ', then the matrix-matrix product is computed as \(C:=a \operatorname{lpha*inv}(A) * B\) \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as \(C\) := alpha*inv \(\left(A^{\prime}\right) * B\), \\
\hline m & Integer. Number of rows of the matrix \(A\). \\
\hline \(n\) & INTEGER. Number of columns of the matrix \(C\). \\
\hline \multirow[t]{5}{*}{alpha} & REAL for mkl_scoosm. \\
\hline & DOUBLE PRECISION for mkl_dcoosm. \\
\hline & COMPLEX for mkl_ccoosm. \\
\hline & DOUBLE COMPLEX for mkl_zcoosm. \\
\hline & Specifies the scalar alpha. \\
\hline \multirow[t]{3}{*}{matdescra} & CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". \\
\hline & Possible combinations of element values of this parameter are given in \\
\hline & Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline \multirow[t]{6}{*}{val} & REAL for mkl_scoosm. \\
\hline & DOUBLE PRECISION for mkl_dcoosm. \\
\hline & COMPLEX for mkl_ccoosm. \\
\hline & DOUBLE COMPLEX for mkl_zcoosm. \\
\hline & Array of length \(n n z\), contains non-zero elements of the matrix \(A\) in the arbitrary order. \\
\hline & Refer to values array description in Coordinate Format for more details. \\
\hline \multirow[t]{2}{*}{rowind} & INTEGER. Array of length \(n n z\), contains the row indices for each non-zero element of the matrix \(A\). \\
\hline & Refer to rows array description in Coordinate Format for more details. \\
\hline
\end{tabular}
```

colind
nnz
b
ldb
ldc

```

\section*{Output Parameters}
REAL for mkl_scoosm.
DOUBLE PRECISION for mkl_dcoosm.
COMPLEX for mkl_ccoosm.
DOUBLE COMPLEX for mkl_zcoosm.
Array, DIMENSION (\(l d c, n\)) for one-based indexing, and (\(m, ~ l d c\)) for zero-
based indexing.
The leading \(m\)-by-n part of the array \(c\) contains the output matrix \(c\).

\section*{Interfaces}

FORTRAN 77:
```

SUBROUTINE mkl_scoosm(transa, m, n, alpha, matdescra, val, rowind, colind, nnz, b, ldb, c, ldc)

```


C:
void mkl_scoosm(char *transa, int *m, int *n, float *alpha, char *matdescra,
float *val, int *rowind, int *colind, int *nnz, float *b, int *ldb, float *c, int *ldc);
void mkl_dcoosm(char *transa, int *m, int *n, double *alpha, char *matdescra,
double *val, int *rowind, int *colind, int *nnz, double *b, int *ldb, double *c, int *ldc);
void mkl_ccoosm(char *transa, int *m, int *n, MKL_Complex8 *alpha, char *matdescra,
MKL_Complex 8 *Val, int *rowind, int *colind, int *nnz, MKL_Complex8 *b, int *ldb, MKL_Complex8 *C, int *ldc) ;
void mkl_zcoosm(char *transa, int *m, int *n, MKL_Complex16 *alpha, char *matdescra,
MKL_Complex16 *val, int *rowind, int *colind, int *nnz, MKL_Complex16 *b, int *ldb, MKL_Complex16 *C, int \({ }^{-}\)*IdC);

\section*{mkl_?bsrsm}

Solves a system of linear matrix equations for a sparse matrix in the BSR format.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scsrsm(transa, m, n, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
c, Idc)
call mkl_dcsrsm(transa, m, n, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
c, Idc)
call mkl_ccsrsm(transa, m, n, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
c, ldc)
call mkl_zcsrsm(transa, m, n, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
c, Idc)

```

C:
```

mkl_scsrsm(\&transa, \&m, \&n, \&lb, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb,
c, \&ldc);
mkl_dcsrsm(\&transa, \&m, \&n, \&lb, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb,
C, \&ldc);
mkl_ccsrsm(\&transa, \&m, \&n, \&lb, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb,
C, \&ldc);
mkl_zcsrsm(\&transa, \&m, \&n, \&lb, \&alpha, matdescra, val, indx, pntrb, pntre, b, \&ldb,
c, \&ldc);

```

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?bsrsm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the BSR format:
\(C:=\operatorname{alpha*inv}(A) * B\)
or
\(C:=\) alpha*inv(\(\left.A^{\prime}\right){ }^{*} B\),
where:
alpha is scalar, \(B\) and \(C\) are dense matrices, \(A\) is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, \(A^{\prime}\) is the transpose of \(A\).

D
NOTE This routine supports a BSR format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
```

transa
m
n
1.b
alpha
CHARACTER*1. Specifies the operation.
If transa $=$ 'N' or 'n', then the matrix-matrix product is computed as $C$ := alpha*inv(A)*B.
If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as $C:=$ alpha*inv $\left(A^{\prime}\right) * B$.
INTEGER. Number of block columns of the matrix $A$.
INTEGER. Number of columns of the matrix $C$.
INTEGER. Size of the block in the matrix $A$.
REAL for mkl_sbsrsm.
DOUBLE PRECISION for mkl_dbsrsm.
COMPLEX for mkl_cbsrsm.
DOUBLE COMPLEX for mkl_zbsrsm.
Specifies the scalar alpha.

```
\begin{tabular}{ll}
matdescra & CHARACTER. Array of six elements, specifies properties of the matrix used \\
& for operation. Only first four array elements are used, their possible values \\
are given in Table "Possible Values of the Parameter matdescra (descra)". \\
Possible combinations of element values of this parameter are given in \\
& Table "Possible Combinations of Element Values of the Parameter \\
& matdescra". \\
& REAL for mkl_sbsrsm. \\
& DOUBLE PRECISION for mkl_dbsrsm. \\
& COMPLEX for mkl_cbsrsm. \\
& DOUBLE COMPLEX for mkl_zbsrsm. \\
& Array containing elements of non-zero blocks of the matrix \(A\). Its length is \\
& equal to the ABAB number ABAB of non-zero blocks in the matrix \(A\)
\end{tabular}

\section*{Output Parameters}
c
REAL for mkl_sbsrsm.
DOUBLE PRECISION for mkl_dbsrsm.
COMPLEX for mkl_cbsrsm.
DOUBLE COMPLEX for mkl_zbsrsm.
Array, DIMENSION (\(1 d c, n\)) for one-based indexing, DIMENSION (\(m, ~ l d c\)) for zero-based indexing.
The leading \(m\)-by- \(n\) part of the array \(c\) contains the output matrix \(c\).

\section*{Interfaces}

FORTRAN 77:

C:
void mkl_s.bsrsm(char *transa, int *m, int *n, int *lb, float *alpha, char *matdescra, float *val, int *indx, int *pntrb, int *pntre, float *b, int *ldb, float *c, int *ldc);
void mkl_dbsrsm(char *transa, int \(\star_{m}\), int \(*_{n}\), int *lb, double *alpha, char *matdescra,
double *val, int *indx, int *pntrb, int *pntre, double *b, int *ldb, double *c, int *ldc);
void mkl_cbsrsm(char *transa, int *m, int *n, int *lb, MKL_Complex8 *alpha, char *matdescra,
MKL_Complex8 *val, int *indx, int *pntrb, int *pntre, MKL_Complex8 *b, int *ldb, MKL_Complex8 *C, int *ld \(\bar{c})\);
void mkl_zbsrsm(char *transa, int *m, int *n, int *lb, MKL_Complex16 *alpha, char *matdescra,
MKL_Complex16 *val, int *indx, int *pntrb, int *pntre, MKL_Complex16 *b, int *ldb, MKL_Complex16 *C, int \({ }^{-}\)*ldc);

\section*{mkl_?diamv}

Computes matrix - vector product for a sparse matrix in the diagonal format with one-based indexing.

\section*{Syntax}

\section*{Fortran:}
call mkl_sdiamv(transa, m, k, alpha, matdescra, val, lval, idiag, ndiag, x, beta, y) call mkl_ddiamv(transa, m, k, alpha, matdescra, val, lval, idiag, ndiag, \(x, ~ b e t a, ~ y)\) call mkl_cdiamv(transa, m, k, alpha, matdescra, val, lval, idiag, ndiag, x, beta, y) call mkl_zdiamv(transa, m, k, alpha, matdescra, val, lval, idiag, ndiag, \(x, ~ b e t a, ~ y)\)

C:
mkl_sdiamv(\&transa, \&m, \&k, \&alpha, matdescra, val, \&lval, idiag, \&ndiag, x, \&beta, y) ;
\(m k l _d d i a m v(\& t r a n s a, \quad \& m, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ \& l v a l, ~ i d i a g, ~ \& n d i a g, ~ x, ~ \& b e t a\), y) ;
\(m k l_{1} c d i a m v(\& t r a n s a, \quad \& m, \quad \& k, \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ \& l v a l, ~ i d i a g, ~ \& n d i a g, ~ x, ~ \& b e t a\), \(y)\);
\(m k l _z d i a m v(\& t r a n s a, \quad \& m, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ \& l v a l, ~ i d i a g, ~ \& n d i a g, ~ x, ~ \& b e t a\), y) ;

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_? diamv routine performs a matrix-vector operation defined as
```

y := alpha*A*}x+\operatorname{beta*}

```
or
\(y:=\) alpha* \(A^{\prime *} x+\operatorname{beta}^{\star} y\),
where:
alpha and beta are scalars,
```

x and y are vectors,

```
\(A\) is an \(m\)-by- \(k\) sparse matrix stored in the diagonal format, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
\begin{tabular}{|c|c|}
\hline transa & \begin{tabular}{l}
CHARACTER*1. Specifies the operation. \\
If transa \(=\) ' \(N\) ' or 'n', then \(y:=a l p h a^{\star} A^{\star} X+\) beta* \(y\), \\
If transa \(=\) 'T' or 't' or 'C' or 'c', then \(y:=a l p h a \star A ' * x+b e t a * y\).
\end{tabular} \\
\hline m & INTEGER. Number of rows of the matrix \(A\). \\
\hline k & INTEGER. Number of columns of the matrix \(A\). \\
\hline alpha & \begin{tabular}{l}
REAL for mkl_sdiamv. \\
DOUBLE PRECISION for mkl_ddiamv. COMPLEX for mkl_cdiamv. \\
DOUBLE COMPLEX for mkl_zdiamv. \\
Specifies the scalar alpha.
\end{tabular} \\
\hline matdescra & CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & \begin{tabular}{l}
REAL for mkl_sdiamv. \\
DOUBLE PRECISION for mkl_ddiamv. \\
COMPLEX for mkl_cdiamv. \\
DOUBLE COMPLEX for mkl_zdiamv. \\
Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix A. Refer to values array description in Diagonal Storage Scheme for more details.
\end{tabular} \\
\hline Ival & INTEGER. Leading dimension of val, lval \(\geq m\). Refer to lval description in Diagonal Storage Scheme for more details. \\
\hline idiag & INTEGER. Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix \(A\). Refer to distance array description in Diagonal Storage Scheme for more details. \\
\hline ndiag & INTEGER. Specifies the number of non-zero diagonals of the matrix \(A\). \\
\hline \(x\) & \begin{tabular}{l}
REAL for mkl_sdiamv. \\
DOUBLE PRECISION for mkl_ddiamv. \\
COMPLEX for mkl_cdiamv. \\
DOUBLE COMPLEX for mkl_zdiamv. \\
Array, DIMENSION at least \(k\) if transa \(=\) ' \(N\) ' or ' \(n\) ', and at least \(m\) otherwise. On entry, the array \(x\) must contain the vector \(x\).
\end{tabular} \\
\hline beta & \begin{tabular}{l}
REAL for mkl_sdiamv. \\
DOUBLE PRECISION for mkl_ddiamv. \\
COMPLEX for mkl cdiamv.
\end{tabular} \\
\hline
\end{tabular}

DOUBLE COMPLEX for mkl_zdiamv. Specifies the scalar beta.
y
REAL for mkl_sdiamv.
DOUBLE PRECISION for mkl_ddiamv.
COMPLEX for mkl_cdiamv.
DOUBLE COMPLEX for mkl_zdiamv.
Array, DIMENSION at least \(m\) if transa \(=\) ' \(N\) ' or ' \(n\) ', and at least \(k\) otherwise. On entry, the array \(y\) must contain the vector \(y\).

\section*{Output Parameters}
\(y \quad\) Overwritten by the updated vector \(y\).
Interfaces
FORTRAN 77:
SUBROUTINE mkl_sdiamv(transa, m, k, alpha, matdescra, val, lval, idiag, ndiag, \(x\), beta, \(y)\)
\begin{tabular}{ll}
CHARACTER*1 & transa \\
CHARACTER & matdescra(*) \\
INTEGER & m, \(k, ~ l v a l, ~ n d i a g ~\) \\
INTEGER & idiag(*) \\
REAL & alpha, beta \\
REAL & \(\operatorname{val}(l v a l, *), ~ x(*), y(*)\)
\end{tabular}

SUBROUTINE mkl_ddiamv(transa, m, k, alpha, matdescra, val, lval, idiag, ndiag, \(x\), beta, \(y)\)
CHARACTER*1 transa

CHARACTER matdescra(*)
INTEGER m, k, lval, ndiag
INTEGER idiag(*)
DOUBLE PRECISION alpha, beta
DOUBLE PRECISION val(lval,*), \(x(*), y(*)\)
SUBROUTINE mkl_cdiamv(transa, m, k, alpha, matdescra, val, lval, idiag,
ndiag, x, beta, y)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER \(m, k, ~ l v a l, ~ n d i a g ~\)
INTEGER idiag(*)
COMPLEX alpha, beta
COMPLEX val(lval,*), \(x(*), y(*)\)
SUBROUTINE mkl_zdiamv(transa, m, k, alpha, matdescra, val, lval, idiag,
ndiag, \(x\), beta, y)
CHARACTER*1 transa
\begin{tabular}{l}
CHARACTER matdescra(*) \\
INTEGER \(\quad\) m, k, lval, ndiag \\
INTEGER idiag(*) \\
\begin{tabular}{l}
DOUBLE COMPLEX \\
DOUBLE COMPLEX
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l}
alpha, beta \\
val (lval,*), \(x(*), y(*)\)
\end{tabular}

\section*{C:}
```

void mkl_sdiamv(char *transa, int *m, int *k, float *alpha,

```
char *matdescra, float *val, int *lval, int *idiag,
int *ndiag, float *x, float *beta, float *y);
void mkl_ddiamv(char *transa, int *m, int *k, double *alpha,
char *matdescra, double *val, int *lval, int *idiag,
int *ndiag, double *x, double *beta, double *y);
void mkl_cdiamv(char *transa, int *m, int *k, MKL_Complex8 *alpha,
char *matdescra, MKL_Complex8 *val, int *lval, int *idiag,
int *ndiag, MKL_Complex8 *x, MKL_Complex8 *beta, MKL_Complex8 *y);
void mkl_zdiamv (char *transa, int *m, int *k, MKL_Complex16 *alpha,
char *matdescra, MKL_Complex16 *val, int *lval, int *idiag,
int *ndiag, MKL_Complex16 *x, MKL_Complex16 *beta, MKL_Complex16 *y);

\section*{mkl_?skymv}

Computes matrix - vector product for a sparse matrix in the skyline storage format with one-based indexing.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_sskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)
call mkl_dskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)
call mkl_cskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)
call mkl_zskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)
C:
mkl_sskymv(\&transa, \&m, \&k, \&alpha, matdescra, val, pntr, x, \&beta, y);
mkl_dskymv(\&transa, \&m, \&k, \&alpha, matdescra, val, pntr, x, \&beta, y);
mkl_cskymv(\&transa, \&m, \&k, \&alpha, matdescra, val, pntr, x, \&beta, y);
mkl_zskymv(\&transa, \&m, \&k, \&alpha, matdescra, val, pntr, x, \&beta, y);
Include Files

```
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?skymv routine performs a matrix-vector operation defined as
```

y := alpha*A*x + beta* y

```
or
\(y:=\) alpha* \(A^{\prime *} x+\) beta* \(y\),
where:
alpha and beta are scalars,
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(k\) sparse matrix stored using the skyline storage scheme, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
```

transa CHARACTER*1.Specifies the operation.
If transa = 'N' or 'n', then y := alpha*A*x + beta*y
If transa = 'T' or 't' or 'C' or 'c', then y := alpha*A'*x + beta*y,
INTEGER. Number of rows of the matrix A.
INTEGER. Number of columns of the matrix A.
REAL formkl_sskymv.
DOUBLE PRECISION for mkl_dskymv.
COMPLEX for mkl_cskymv.
DOUBLE COMPLEX for mkl_zskymv.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

```

NOTE General matrices (matdescra (1)='G') is not supported.

REAL for mkl_sskymv.
DOUBLE PRECISION for mkl_dskymv.
COMPLEX for mkl_cskymv.
DOUBLE COMPLEX for mkl_zskymv.
Array containing the set of elements of the matrix \(A\) in the skyline profile form.
If matdescrsa(2) = 'L', then val contains elements from the low triangle of the matrix \(A\).
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If matdescrsa(2) \(=\) 'U', then val contains elements from the upper triangle of the matrix \(A\). \\
Refer to values array description in Skyline Storage Scheme for more details.
\end{tabular} \\
\hline pntr & \begin{tabular}{l}
INTEGER. Array of length \((m+m)\) for lower triangle, and \((k+k)\) for upper triangle. \\
It contains the indices specifying in the val the positions of the first element in each row (column) of the matrix A. Refer to pointers array description in Skyline Storage Scheme for more details.
\end{tabular} \\
\hline \(x\) & \begin{tabular}{l}
REAL for mkl_sskymv. \\
DOUBLE PRECISION for mkl_dskymv. \\
COMPLEX for mkl_cskymv. \\
DOUBLE COMPLEX for mkl_zskymv. \\
Array, DIMENSION at least \(k\) if transa \(=\) ' \(N\) ' or ' \(n\) ' and at least \(m\) otherwise. On entry, the array \(x\) must contain the vector \(x\).
\end{tabular} \\
\hline beta & \begin{tabular}{l}
REAL for mkl_sskymv. \\
DOUBLE PRECISION for mkl_dskymv. \\
COMPLEX for mkl_cskymv. \\
DOUBLE COMPLEX for mkl_zskymv. \\
Specifies the scalar beta.
\end{tabular} \\
\hline Y & \begin{tabular}{l}
REAL for mkl_sskymv. \\
DOUBLE PRECISION for mkl_dskymv. \\
COMPLEX for mkl_cskymv. \\
DOUBLE COMPLEX for mkl_zskymv. \\
Array, DIMENSION at least \(m\) if transa \(=\) ' \(N\) ' or ' \(n\) ' and at least \(k\) otherwise. On entry, the array \(y\) must contain the vector \(y\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
\(y \quad\) Overwritten by the updated vector \(y\).
Interfaces
FORTRAN 77:
SUBROUTINE mkl_sskymv(transa, m, k, alpha, matdescra, val, pntr, \(x\), beta, y)

\section*{C:}
void mkl_sskymv (char *transa, int *m, int *k, float *alpha, char *matdescra, float *Val, int *pntr, float *x, float *beta, float *y);
void mkl_dskymv (char *transa, int *m, int *k, double *alpha, char *matdescra,
double *val, int *pntr, double *x, double *beta, double *y);
void mkl_cskymv (char *transa, int *m, int *k, MKL_Complex8 *alpha, char *matdescra, MKL_Complex8 *val, int *pntr, MKL_Complex8 *x, MKL_Complex8 *beta, MKL_Complex8 *y);
void mkl_zskymv (char *transa, int *m, int *k, MKL_Complex16 *alpha, char *matdescra, MKL_Complex16 *Val, int *pntr, MKL_Complex16 *x, MKL_Complex16 *beta, MKL_Complex16 *y);

\section*{mkl_?diasv}

Solves a system of linear equations for a sparse matrix in the diagonal format with one-based indexing.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_sdiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)
call mkl_ddiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)
call mkl_cdiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)
call mkl_zdiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)
C:
mkl_sdiasv(\&transa, \&m, \&alpha, matdescra, val, \&lval, idiag, \&ndiag, x, y);
mkl_ddiasv(\&transa, \&m, \&alpha, matdescra, val, \&lval, idiag, \&ndiag, x, y);
mkl_cdiasv(\&transa, \&m, \&alpha, matdescra, val, \&lval, idiag, \&ndiag, x, y);

```
```

mkl_zdiasv(\&transa, \&m, \&alpha, matdescra, val, \&lval, idiag, \&ndiag, x, y);

```

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?diasv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the diagonal format:
```

y := alpha*inv(A)*x

```
or
\(y:=a l p h a^{*} i n v\left(A^{\prime}\right) * x\),
where:
alpha is scalar, \(x\) and \(y\) are vectors, \(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\prime}\) is the transpose of \(A\).

\(\square\)
NOTE This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
\begin{tabular}{|c|c|}
\hline transa & \begin{tabular}{l}
CHARACTER* 1 . Specifies the system of linear equations. \\
If transa \(=\) ' \(N\) ' or ' \(n\) ', then \(y:=a l p h a * i n v(A) * x\) \\
If transa \(=\) 'T' or 't' or 'C' or 'c', then \(y:=a l p h a * i n v(A ') * x\),
\end{tabular} \\
\hline m & INTEGER. Number of rows of the matrix \(A\). \\
\hline \multirow[t]{5}{*}{alpha} & REAL for mkl_sdiasv. \\
\hline & DOUBLE PRECISION for mkl_ddiasv. \\
\hline & COMPLEX for mkl_cdiasv. \\
\hline & DOUBLE COMPLEX for mkl_zdiasv. \\
\hline & Specifies the scalar alpha. \\
\hline \multirow[t]{3}{*}{matdescra} & CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". \\
\hline & Possible combinations of element values of this parameter are given in \\
\hline & Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline \multirow[t]{5}{*}{val} & REAL for mkl_sdiasv. \\
\hline & DOUBLE PRECISION for mkl_ddiasv. \\
\hline & COMPLEX for mkl_cdiasv. \\
\hline & DOUBLE COMPLEX for mkl_zdiasv. \\
\hline & Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix A. Refer to values array description in Diagonal Storage Scheme for more details. \\
\hline Ival & INTEGER. Leading dimension of val, lval \(\geq m\). Refer to lval description in Diagonal Storage Scheme for more details. \\
\hline
\end{tabular}

INTEGER. Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix \(A\).

NOTE All elements of this array must be sorted in increasing order.

Refer to distance array description in Diagonal Storage Scheme for more details.
INTEGER. Specifies the number of non-zero diagonals of the matrix \(A\).
REAL for mkl_sdiasv. DOUBLE PRECISION for mkl_ddiasv.
COMPLEX for mkl_cdiasv. DOUBLE COMPLEX for mkl_zdiasv.
Array, DIMENSION at least \(m\).
On entry, the array \(x\) must contain the vector \(x\). The elements are accessed with unit increment.
y
REAL for mkl_sdiasv.
DOUBLE PRECISION for mkl_ddiasv.
COMPLEX for mkl_cdiasv.
DOUBLE COMPLEX for mkl_zdiasv.
Array, DIMENSION at least m.
On entry, the array \(y\) must contain the vector \(y\). The elements are accessed with unit increment.

\section*{Output Parameters}
\(y\) Contains solution vector \(x\).
Interfaces
FORTRAN 77:

C:
void mkl_sdiasv(char *transa, int *m, float *alpha, char *matdescra,
```

float *val, int *lval, int *idiag, int *ndiag, float *x, float *y);

```
void mkl_ddiasv(char *transa, int *m, double *alpha, char *matdescra,
double *val, int *lval, int *idiag, int *ndiag, double *x, double *y);
void mkl_cdiasv(char *transa, int *m, MKL_Complex8 *alpha, char *matdescra,
MKL_Complex8 *val, int *lval, int *idiag, int *ndiag, MKL_Complex8 *x, MKL_Complex8 *y);
void mkl_zdiasv(char *transa, int *m, MKL_Complex16 *alpha, char *matdescra,
MKL_Complex16 *val, int *lval, int *idiag, int *ndiag, MKL_Complex16 *x, MKL_Complex16 *y);

\section*{mkl_?skysv}

Solves a system of linear equations for a sparse matrix in the skyline format with one-based indexing.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_sskysv(transa, m, alpha, matdescra, val, pntr, x, y)
call mkl_dskysv(transa, m, alpha, matdescra, val, pntr, x, y)
call mkl_cskysv(transa, m, alpha, matdescra, val, pntr, x, y)
call mkl_zskysv(transa, m, alpha, matdescra, val, pntr, x, y)

```
C:
mkl_sskysv(\&transa, \&m, \&alpha, matdescra, val, pntr, \(x, y)\);
mkl_dskysv(\&transa, \&m, \&alpha, matdescra, val, pntr, \(x, y\));
mkl_cskysv(\&transa, \&m, \&alpha, matdescra, val, pntr, \(x, y)\);
mkl_zskysv(\&transa, \&m, \&alpha, matdescra, val, pntr, \(x, y)\);

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?skysv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the skyline storage format:
```

y := alpha*inv(A)*x

```
or
\(y:=a l p h a * i n v\left(A^{\prime}\right) * x\),
where:
alpha is scalar, \(x\) and \(y\) are vectors, \(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
```

transa
CHARACTER*1. Specifies the system of linear equations.
If transa = 'N' or 'n', then y := alpha*inv(A)**
If transa = 'T' or't' or 'C' or'C', then y := alpha*inv(A')* x,
INTEGER.Number of rows of the matrix A.
REAL formkl_sskysv.
DOUBLE PRECISION for mkl_dskysv.
COMPLEX formkl_cskysv.
DOUBLE COMPLEX for mkl_zskysv.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used
for operation. Only first four array elements are used, their possible values
are given in Table "Possible Values of the Parameter matdescra (descra)".
Possible combinations of element values of this parameter are given in
Table "Possible Combinations of Element Values of the Parameter
matdescra".

```
 NOTE General matrices (matdescra \((1)=\) 'G') is not supported.
 REAL for mkl_sskysv.
 DOUBLE PRECISION for mkl_dskysv.
 COMPLEX for mkl_cskysv.
 DOUBLE COMPLEX for mkl_zskysv.
 Array containing the set of elements of the matrix \(A\) in the skyline profile
 form.
 If matdescrsa(2) = 'L', then val contains elements from the low triangle
 of the matrix \(A\).
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If matdescrsa(2) \(=\) 'U', then val contains elements from the upper triangle of the matrix \(A\). \\
Refer to values array description in Skyline Storage Scheme for more details.
\end{tabular} \\
\hline pntr & \begin{tabular}{l}
INTEGER. Array of length \((m+m)\) for lower triangle, and \((k+k)\) for upper triangle. \\
It contains the indices specifying in the val the positions of the first element in each row (column) of the matrix A. Refer to pointers array description in Skyline Storage Scheme for more details.
\end{tabular} \\
\hline \(x\) & \begin{tabular}{l}
REAL for mkl_sskysv. \\
DOUBLE PRECISION for mkl_dskysv. \\
COMPLEX for mkl_cskysv. \\
DOUBLE COMPLEX for mkl_zskysv. \\
Array, DIMENSION at least \(m\). \\
On entry, the array \(x\) must contain the vector \(x\). The elements are accessed with unit increment.
\end{tabular} \\
\hline y & \begin{tabular}{l}
REAL for mkl_sskysv. \\
DOUBLE PRECISION for mkl_dskysv. \\
COMPLEX for mkl_cskysv. \\
DOUBLE COMPLEX for mkl_zskysv. \\
Array, DIMENSION at least \(m\). \\
On entry, the array \(y\) must contain the vector \(y\). The elements are accessed with unit increment.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
```

y Contains solution vector x.

```

\section*{Interfaces}

FORTRAN 77:
SUBROUTINE mkl_sskysv(transa, m, alpha, matdescra, val, pntr, x, y)

C:
void mkl_sskysv(char *transa, int *m, float *alpha, char *matdescra,
float *val, int *pntr, float *x, float *y);
void mkl_dskysv(char *transa, int *m, double *alpha, char *matdescra,
double *val, int *pntr, double *x, double *y);
void mkl_cskysv(char *transa, int *m, MKL_Complex8 *alpha, char *matdescra,
MKL_Complex 8 *Val, int *pntr, MKL_Complex \(\left.8{ }^{*} x^{\prime}, M K L _C o m p l e x 8 ~ * y\right) ; ~\)
void mkl_zskysv(char *transa, int *m, MKL_Complex16 *alpha, char *matdescra,
MKL_Complex16 *val, int *pntr, MKL_Complex16 *x, MKL_Complex16 *y);

\section*{mkl_?diamm}

Computes matrix-matrix product of a sparse matrix
stored in the diagonal format with one-based
indexing.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_sdiamm(transa, m, n, k, alpha, matdescra, val, lval, idiag, ndiag, b, ldb,
beta, c, ldc)
call mkl_ddiamm(transa, m, n, k, alpha, matdescra, val, lval, idiag, ndiag, b, ldb,
beta, c, ldc)
call mkl_cdiamm(transa, m, n, k, alpha, matdescra, val, lval, idiag, ndiag, b, ldb,
beta, c, ldc)
call mkl_zdiamm(transa, m, n, k, alpha, matdescra, val, lval, idiag, ndiag, b, ldb,
beta, c, ldc)

```

C:
mkl_sdiamm(\&transa, \&m, \&n, \&k, \&alpha, matdescra, val, \&lval, idiag, \&ndiag, b, \&ldb, \&beta, \(c, \quad \& I d c) ;\)
\(m k l _d d i a m m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ \& l v a l, ~ i d i a g, ~ \& n d i a g, ~ b, ~ \& l d b\), \&beta, \(c, \& I d c) ;\)
\(m k l _c d i a m m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& k, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ \& l v a l, ~ i d i a g, ~ \& n d i a g, ~ b, ~ \& l d b\), \&beta, \(c, \quad \& l d c) ;\)
mkl_zdiamm(\&transa, \&m, \&n, \&k, \&alpha, matdescra, val, \&lval, idiag, \&ndiag, b, \&ldb, \&beta, \(c, \& I d c) ;\)

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?diamm routine performs a matrix-matrix operation defined as
```

C := alpha*A*B + beta*C

```
or
```

C := alpha*A'*B + beta*C,

```
where:
alpha and beta are scalars,
\(B\) and \(C\) are dense matrices, \(A\) is an \(m\)-by- \(k\) sparse matrix in the diagonal format, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{transa} & CHARACTER*1. Specifies the operation. \\
\hline & If transa \(=\) ' \(N\) ' or 'n', then \(C:=a l p h a * A * B+\) beta* \(C\), \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then \(C:=a l p h a * A ' * B+\) beta*C. \\
\hline \(m\) & INTEGER. Number of rows of the matrix \(A\). \\
\hline \(n\) & INTEGER. Number of columns of the matrix \(C\). \\
\hline k & INTEGER. Number of columns of the matrix \(A\). \\
\hline \multirow[t]{5}{*}{alpha} & REAL for mkl_sdiamm. \\
\hline & DOUBLE PRECISION for mkl_ddiamm. \\
\hline & COMPLEX for mkl_cdiamm. \\
\hline & DOUBLE COMPLEX for mkl_zdiamm. \\
\hline & Specifies the scalar alpha. \\
\hline matdescra & CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". \\
\hline
\end{tabular}

Possible combinations of element values of this parameter are given in
Table "Possible Combinations of Element Values of the Parameter
matdescra".
val
lval
idiag
ndiag
b

1 db
beta
c
\(1 d c\)

\section*{Output Parameters}
c

Overwritten by the matrix (alpha*A*B + beta*C) or (alpha*A'*B + beta*C).

\section*{Interfaces}

\section*{FORTRAN 77:}

C:
void mkl_sdiamm(char *transa, int *m, int *n, int *k, float *alpha,
char *matdescra, float *val, int *lval, int *idiag, int *ndiag,
float *b, int *ldb, float *beta, float *c, int *ldc);
```

void mkl_ddiamm(char *transa, int *m, int *n, int *k, double *alpha,
char *matdescra, double *val, int *lval, int *idiag, int *ndiag,
double *b, int *ldb, double *beta, double *c, int *ldc);
void mkl_cdiamm(char *transa, int *m, int *n, int *k, MKL_Complex8 *alpha,
char *matdescra, MKL_Complex8 *val, int *lval, int *idiag, int *ndiag,
MKL_Complex8 *b, int *ldb, MKL_Complex8 *beta, MKL_Complex8 *C, int *ldc);
void mkl_zdiamm(char *transa, int *m, int *n, int *k, MKL_Complex16 *alpha,
char *matdescra, MKL_Complex16 *val, int *lval, int *idiag, int *ndiag,
MKL_Complex16 *b, int *ldb, MKL_Complex16 *beta, MKL_Complex16 *c, int *ldc);

```

\section*{mkl_?skymm}

Computes matrix-matrix product of a sparse matrix stored using the skyline storage scheme with onebased indexing.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_sskymm(transa, m, n, k, alpha, matdescra, val, pntr, b, ldb, beta, c, ldc)
call mkl_dskymm(transa, m, n, k, alpha, matdescra, val, pntr, b, ldb, beta, c, ldc)
call mkl_cskymm(transa, m, n, k, alpha, matdescra, val, pntr, b, ldb, beta, c, ldc)
call mkl_zskymm(transa, m, n, k, alpha, matdescra, val, pntr, b, ldb, beta, c, ldc)
C:
mkl_sskymm(\&transa, \&m, \&n, \&k, \&alpha, matdescra, val, pntr, b, \&ldb, \&beta, c,
\&ldc);
mkl_dskymm(\&transa, \&m, \&n, \&k, \&alpha, matdescra, val, pntr, b, \&ldb, \&beta, c,
\& ldc);
mkl_cskymm(\&transa, \&m, \&n, \&k, \&alpha, matdescra, val, pntr, b, \&ldb, \&beta, c,
\&ldc);
mkl_zskymm(\&transa, \&m, \&n, \&k, \&alpha, matdescra, val, pntr, b, \&ldb, \&beta, c,
\&ldc);

```

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?skymm routine performs a matrix-matrix operation defined as
```

C := alpha*A*B + beta*C

```
or
C := alpha*A'*B + beta*C,
where:
alpha and beta are scalars,
\(B\) and \(C\) are dense matrices, \(A\) is an \(m\)-by- \(k\) sparse matrix in the skyline storage format, \(A^{\prime}\) is the transpose of A.

NOTE This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
\begin{tabular}{|c|c|}
\hline transa & \begin{tabular}{l}
CHARACTER*1. Specifies the operation. \\
If transa \(=\) 'N' or 'n', then \(C:=a l p h a \star A \star B+b e t a * C\), \\
If transa \(=\) 'T' or 't' or 'C' or 'c', then \(C:=a l p h a \star A ' * B+b e t a * C\),
\end{tabular} \\
\hline \(m\) & Integer. Number of rows of the matrix \(A\). \\
\hline \(n\) & INTEGER. Number of columns of the matrix \(C\). \\
\hline k & INTEGER. Number of columns of the matrix \(A\). \\
\hline alpha & \begin{tabular}{l}
REAL for mkl_sskymm. \\
DOUBLE PRECISION for mkl_dskymm. COMPLEX for mkl_cskymm. \\
DOUBLE COMPLEX for mkl_zskymm. Specifies the scalar alpha.
\end{tabular} \\
\hline matdescra & CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline
\end{tabular}

D
NOTE General matrices (matdescra (1)='G') is not supported.

REAL for mkl_sskymm.
DOUBLE PRECISION for mkl_dskymm.
COMPLEX for mkl_cskymm.
DOUBLE COMPLEX for mkl_zskymm.
Array containing the set of elements of the matrix \(A\) in the skyline profile form.
If matdescrsa(2) = 'L', then val contains elements from the low triangle of the matrix \(A\).
If matdescrsa(2) = 'U', then val contains elements from the upper triangle of the matrix \(A\).
Refer to values array description in Skyline Storage Scheme for more details.
INTEGER. Array of length \((m+m)\) for lower triangle, and (\(k+k\)) for upper triangle.
It contains the indices specifying in the val the positions of the first element in each row (column) of the matrix A. Refer to pointers array description in Skyline Storage Scheme for more details.
b
REAL for mkl_sskymm.
DOUBLE PRECISION for mkl_dskymm.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
COMPLEX for mkl_cskymm. \\
DOUBLE COMPLEX for mkl_zskymm. \\
Array, DIMENSION (ldb, \(n\)). \\
On entry with transa \(=\) ' \(N\) ' or ' \(n\) ', the leading \(k\)-by-n part of the array \(b\) must contain the matrix \(B\), otherwise the leading \(m-b y-n\) part of the array \(b\) must contain the matrix \(B\).
\end{tabular} \\
\hline 1 db & INTEGER. Specifies the leading dimension of \(b\) as declared in the calling (sub)program. \\
\hline beta & \begin{tabular}{l}
REAL for mkl_sskymm. \\
DOUBLE PRECISION for mkl_dskymm. \\
COMPLEX for mkl_cskymm. \\
DOUBLE COMPLEX for mkl_zskymm. \\
Specifies the scalar beta.
\end{tabular} \\
\hline C & \begin{tabular}{l}
REAL for mkl_sskymm. \\
DOUBLE PRECISION for mkl_dskymm. \\
COMPLEX for mkl_cskymm. \\
DOUBLE COMPLEX for mkl_zskymm. \\
Array, DIMENSION (\(1 d c, n\)). \\
On entry, the leading \(m\)-by- \(n\) part of the array \(c\) must contain the matrix \(c\), otherwise the leading \(k-b y-n\) part of the array \(c\) must contain the matrix \(c\).
\end{tabular} \\
\hline \(1 d c\) & INTEGER. Specifies the leading dimension of \(c\) as declared in the calling (sub)program. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

c Overwritten by the matrix (alpha*A*B + beta*C) or (alpha*A'*B +
beta*C).

```

\section*{Interfaces}

\section*{FORTRAN 77:}
```

SUBROUTINE mkl_sskymm(transa, m, n, k, alpha, matdescra, val, pntr, b,
ldb, beta, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, k, ldb, ldc
INTEGER pntr(*)
REAL alpha, beta
REAL val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_dskymm(transa, m, n, k, alpha, matdescra, val, pntr, b,
ldb, beta, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, k, ldb, ldc
INTEGER pntr(*)
DOUBLE PRECISION alpha, beta
DOUBLE PRECISION val(*), b(ldb,*), c(ldc,*)

```
C:
void mkl_sskymm(char *transa, int *m, int *n, int *k, float *alpha,
char *matdescra, float *val, int *pntr, float *b, int *ldb,
float *beta, float *\({ }^{*}\), int *ldc);
void mkl_dskymm(char *transa, int *m, int *n, int *k, double *alpha,
char *matdescra, double *val, int *pntr, double *b, int *ldb,
double *beta, double *c, int *ldc);
void mkl_cskymm(char *transa, int *m, int *n, int *k, MKL_Complex8 *alpha,
char *matdescra, MKL_Complex8 *val, int *pntr, MKL_Complex8 *b, int *ldb,
MKL_Complex8 *beta, MKL_Complex8 *c, int *ldc);
void mkl_zskymm(char *transa, int *m, int *n, int *k, MKL_Complex16 *alpha,
char *matdescra, MKL_Complex16 *val, int *pntr, MKL_Complex16 *b, int *ldb,
MKL_Complex16 *beta, MKL_Complex16 *c, int *ldc);

\section*{mkl_?diasm}

Solves a system of linear matrix equations for a sparse matrix in the diagonal format with one-based indexing.

\section*{Syntax}

\section*{Fortran:}
call mkl_sdiasm(transa, m, n, alpha, matdescra, val, lval, idiag, ndiag, b, ldb, c, ldc)
```

call mkl_ddiasm(transa, m, n, alpha, matdescra, val, lval, idiag, ndiag, b, ldb, c,
ldc)
call mkl_cdiasm(transa, m, n, alpha, matdescra, val, lval, idiag, ndiag, b, ldb, c,
ldc)
call mkl_zdiasm(transa, m, n, alpha, matdescra, val, lval, idiag, ndiag, b, ldb, c,
ldc)

```

C:
\(m k l _s d i a s m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ \& l v a l, ~ i d i a g, ~ \& n d i a g, ~ b, ~ \& l d b, ~ c\),
\& IdC);
\(m k l _d d i a s m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ \& l v a l, ~ i d i a g, ~ \& n d i a g, ~ b, ~ \& l d b, ~ C\),
\& \(1 d C\));
\(m k l _c d i a s m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ \& l v a l, ~ i d i a g, ~ \& n d i a g, ~ b, ~ \& l d b, ~ C\),
\& \(1 d C\));
\(m k l _z d i a s m(\& t r a n s a, ~ \& m, ~ \& n, ~ \& a l p h a, ~ m a t d e s c r a, ~ v a l, ~ \& l v a l, ~ i d i a g, ~ \& n d i a g, ~ b, ~ \& l d b, ~ C\),
\& ldC);

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?diasm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the diagonal format:
```

C := alpha*inv (A)*B

```
or
\(C:=a l p h a * \operatorname{inv}\left(A^{\prime}\right) * B\),
where:
alpha is scalar, \(B\) and \(C\) are dense matrices, \(A\) is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
```

transa
m
n
alpha
CHARACTER*1. Specifies the system of linear equations.
If transa = 'N' or 'n', then C := alpha*inv(A)*B,
If transa = 'T' or 't' or 'C' or 'c', then C := alpha*inv(A')*B.
INTEGER. Number of rows of the matrix A.
INTEGER. Number of columns of the matrix C.
REAL for mkl_sdiasm.
DOUBLE PRECISION formkl_ddiasm.
COMPLEX for mkl_cdiasm.
DOUBLE COMPLEX for mkl_zdiasm.

```
\begin{tabular}{|c|c|}
\hline & Specifies the scalar alpha. \\
\hline matdescra & CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline \multirow[t]{5}{*}{val} & REAL for mkl_sdiasm. \\
\hline & DOUBLE PRECISION for mkl_ddiasm. \\
\hline & COMPLEX for mkl_cdiasm. \\
\hline & DOUBLE COMPLEX for mkl_zdiasm. \\
\hline & Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix A. Refer to values array description in Diagonal Storage Scheme for more details. \\
\hline Ival & INTEGER. Leading dimension of val, lval \(\geq m\). Refer to 1 val description in Diagonal Storage Scheme for more details. \\
\hline \multirow[t]{3}{*}{idiag} & INTEGER. Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix \(A\). \\
\hline & NOTE All elements of this array must be sorted in increasing order. \\
\hline & Refer to distance array description in Diagonal Storage Scheme for more details. \\
\hline ndiag & INTEGER. Specifies the number of non-zero diagonals of the matrix \(A\). \\
\hline \multirow[t]{6}{*}{b} & REAL for mkl_sdiasm. \\
\hline & DOUBLE PRECISION for mkl_ddiasm. \\
\hline & COMPLEX for mkl_cdiasm. \\
\hline & DOUBLE COMPLEX for mkl_zdiasm. \\
\hline & Array, DIMENSION (ldb, \(n\)). \\
\hline & On entry the leading m-by-n part of the array 6 must contain the matrix \(B\). \\
\hline 1 db & INTEGER. Specifies the leading dimension of \(b\) as declared in the calling (sub)program. \\
\hline \(1 d c\) & integer. Specifies the leading dimension of \(c\) as declared in the calling (sub)program. \\
\hline
\end{tabular}

\section*{Output Parameters}

REAL for mkl_sdiasm.
DOUBLE PRECISION for mkl_ddiasm.
COMPLEX for mkl_cdiasm.
DOUBLE COMPLEX for mkl_zdiasm.
Array, DIMENSION (ldc, n).
The leading \(m\)-by- \(n\) part of the array \(c\) contains the matrix \(c\).

\section*{Interfaces}

\section*{FORTRAN 77:}
```

SUBROUTINE mkl_sdiasm(transa, m, n, alpha, matdescra, val, lval, idiag,
ndiag, b, ldb, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, ldb, ldc, lval, ndiag
INTEGER idiag(*)
REAL alpha
REAL val(lval,*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_ddiasm(transa, m, n, alpha, matdescra, val, lval, idiag,
ndiag, b, ldb, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, ldb, ldc, lval, ndiag
INTEGER idiag(*)
DOUBLE PRECISION alpha
DOUBLE PRECISION val(lval,*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_cdiasm(transa, m, n, alpha, matdescra, val, lval, idiag,
ndiag, b, ldb, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, ldb, ldc, lval, ndiag
INTEGER idiag(*)
COMPLEX alpha
COMPLEX val(lval,*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_zdiasm(transa, m, n, alpha, matdescra, val, lval, idiag,
ndiag, b, ldb, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, ldb, ldc, lval, ndiag
INTEGER idiag(*)
DOUBLE COMPLEX alpha
DOUBLE COMPLEX val(lval,*), b(ldb,*), c(ldc,*)

```
C:
void mkl_sdiasm(char *transa, int *m, int *n, float *alpha,
char *matdescra, float *val, int *lval, int *idiag, int *ndiag,
float *b, int *ldb, float \({ }^{*} c\), int *ldc);
```

void mkl_ddiasm(char *transa, int *m, int *n, double *alpha,
char *matdescra, double *val, int *lval, int *idiag, int *ndiag,
double *b, int *ldb, double *c, int *ldc);
void mkl_cdiasm(char *transa, int *m, int *n, MKL_Complex8 *alpha,
char *matdescra, MKL_Complex8 *val, int *lval, int *idiag, int *ndiag,
MKL_Complex8 *b, int *ldb, MKL_Complex8 *c, int *ldc);
void mkl_zdiasm(char *transa, int *m, int *n, MKL_Complex16 *alpha,
char *matdescra, MKL_Complex16 *val, int *lval, int *idiag, int *ndiag,
MKL_Complex16 *b, int *ldb, MKL_Complex16 *C, int *ldc);

```

\section*{mkl_?skysm}

Solves a system of linear matrix equations for a sparse matrix stored using the skyline storage scheme with one-based indexing.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_sskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c, ldc)
call mkl_dskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c, ldc)
call mkl_cskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c, ldc)
call mkl_zskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c, ldc)
C:
mkl_sskysm(\&transa, \&m, \&n, \&alpha, matdescra, val, pntr, b, \&ldb, c, \&ldc);
mkl_dskysm(\&transa, \&m, \&n, \&alpha, matdescra, val, pntr, b, \&ldb, c, \&ldc);
mkl_cskysm(\&transa, \&m, \&n, \&alpha, matdescra, val, pntr, b, \&ldb, c, \&ldc);
mkl_zskysm(\&transa, \&m, \&n, \&alpha, matdescra, val, pntr, b, \&ldb, c, \&ldc);

```

\section*{Include files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?skysm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the skyline storage format:
```

C := alpha*inv (A)*B

```
or
\(C:=a l p h a^{*} \operatorname{inv}\left(A^{\prime}\right) * B\),
where:
alpha is scalar, \(B\) and \(C\) are dense matrices, \(A\) is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, \(A^{\prime}\) is the transpose of \(A\).

NOTE This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
```

transa
m
n
alpha

```
matdescra
val
pntr
b

CHARACTER*1. Specifies the system of linear equations.
If transa \(=\) 'N' or 'n', then \(C:=a l p h a * i n v(A) * B\), If transa \(=\) 'T' or 't' or 'C' or 'C', then \(C:=\operatorname{alpha*inv(A')*B,~}\)
INTEGER. Number of rows of the matrix \(A\).
INTEGER. Number of columns of the matrix \(C\).
REAL for mkl_sskysm.
DOUBLE PRECISION for mkl_dskysm.
COMPLEX for mkl_cskysm.
DOUBLE COMPLEX for mkl_zskysm.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

NOTE General matrices (matdescra (1)='G') is not supported.

REAL for mkl_sskysm.
DOUBLE PRECISION for mkl_dskysm.
COMPLEX for mkl_cskysm.
DOUBLE COMPLEX for mkl_zskysm.
Array containing the set of elements of the matrix \(A\) in the skyline profile form.
If matdescrsa(2) = 'L', then val contains elements from the low triangle of the matrix \(A\).
If matdescrsa(2) = 'U', then val contains elements from the upper triangle of the matrix \(A\).
Refer to values array description in Skyline Storage Scheme for more details.
INTEGER. Array of length \((m+m)\). It contains the indices specifying in the val the positions of the first non-zero element of each i-row (column) of the matrix \(A\) such that pointers(i) - pointers(1)+1. Refer to pointers array description in Skyline Storage Scheme for more details.
REAL for mkl_sskysm.
DOUBLE PRECISION for mkl_dskysm.
COMPLEX for mkl_cskysm.
DOUBLE COMPLEX for mkl_zskysm.
Array, DIMENSION (\(1 d b, n\)).
On entry the leading \(m\)-by-n part of the array \(b\) must contain the matrix \(B\).
\begin{tabular}{ll}
\(I d b\) & INTEGER. Specifies the leading dimension of \(b\) as declared in the calling \\
(sub)program. \\
\(I d c\) & \begin{tabular}{l}
INTEGER. Specifies the leading dimension of \(c\) as declared in the calling \\
(sub)program.
\end{tabular}
\end{tabular}

\section*{Output Parameters} c

REAL for mkl_sskysm. DOUBLE PRECISION for mkl_dskysm.
COMPLEX for mkl_cskysm.
DOUBLE COMPLEX for mkl_zskysm.
Array, DIMENSION (ldc, n).
The leading \(m\)-by- \(n\) part of the array \(c\) contains the matrix \(c\).

\section*{Interfaces}

FORTRAN 77:
```

SUBROUTINE mkl_sskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, ldb, ldc
INTEGER pntr(*)
REAL alpha
REAL val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_dskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, ldb, ldc
INTEGER pntr(*)
DOUBLE PRECISION alpha
DOUBLE PRECISION val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_cskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, ldb, ldc
INTEGER pntr(*)
COMPLEX alpha
COMPLEX val(*), b(ldb,*), c(ldc,*)

```
SUBROUTINE mkl_zskysm(transa, \(m, n, a l p h a, ~ m a t d e s c r a, ~ v a l, ~ p n t r, ~ b, ~ l d b, ~ c, ~ l d c) ~\)
CHARACTER*1 \(\quad\) transa
CHARACTER \(\quad\) matdescra(*)
\begin{tabular}{ll}
INTEGER & \(m, n, l d b, ~ l d c\)
\end{tabular}
\begin{tabular}{ll}
INTEGER & pntr (*) \\
DOUBLE COMPLEX & alpha \\
DOUBLE COMPLEX & val \((*), ~ b(l d b, *), ~ c(l d c, *)\)
\end{tabular}
```

C:
void mkl_sskysm(char *transa, int *m, int *n, float *alpha, char *matdescra,
float *val, int *pntr, float *b, int *ldb, float *c, int *ldc);
void mkl_dskysm(char *transa, int *m, int *n, double *alpha, char *matdescra,
double *val, int *pntr, double *b, int *ldb, double *c, int *ldc);
void mkl_cskysm(char *transa, int *m, int *n, MKL_Complex8 *alpha, char *matdescra,
MKL_Complex8 *val, int *pntr, MKL_Complex8 *b, int *ldb, MKL_Complex8 *c, int *ldc);
void mkl_zskysm(char *transa, int *m, int *n, MKL_Complex16 *alpha, char *matdescra,
MKL_Complex16 *val, int *pntr, MKL_Complex16 *b, int *ldb, MKL_Complex16 *C, int *ldc);

```

\section*{mkl_?dnscsr}

Convert a sparse matrix in dense representation to the CSR format and vice versa.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_sdnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
call mkl_ddnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
call mkl_cdnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
call mkl_zdnscsr(job, m, n, adns, lda, acsr, ja, ia, info)

```

C:
mkl_sdnscsr(job, \&m, \&n, adns, \&lda, acsr, ja, ia, \&info);
mkl_ddnscsr(job, \&m, \&n, adns, \&lda, acsr, ja, ia, \&info);
mkl_cdnscsr(job, \&m, \&n, adns, \&lda, acsr, ja, ia, \&info);
mkl_zdnscsr(job, \&m, \&n, adns, \&lda, acsr, ja, ia, \&info);

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

This routine converts an sparse matrix stored as a rectangular m-by-n matrix \(A\) (dense representation) to the compressed sparse row (CSR) format (3-array variation) and vice versa.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
job
m
\(n\)
adns

Ida
acsr
ja
ia

INTEGER
Array, contains the following conversion parameters:
job(1)
If \(j o b(1)=0\), the rectangular matrix \(A\) is converted to the CSR format;
if \(j \circ b(1)=1\), the rectangular matrix \(A\) is restored from the CSR format.
job(2)
If \(j o b(2)=0\), zero-based indexing for the rectangular matrix \(A\) is used;
if \(j o b(2)=1\), one-based indexing for the rectangular matrix \(A\) is used.
job(3)
If job (3) \(=0\), zero-based indexing for the matrix in CSR format is used;
if \(j \circ b(3)=1\), one-based indexing for the matrix in CSR format is used.
job(4)
If job(4) \(=0\), adns is a lower triangular part of matrix \(A\);
If job (4) =1, adns is an upper triangular part of matrix \(A\);
If \(j o b(4)=2\), adns is a whole matrix \(A\).
job(5)
job(5) =nzmax - maximum number of the non-zero elements allowed if
job(1) \(=0\).
job(6) - job indicator for conversion to CSR format.
If job(6) =0, only array \(i\) a is generated for the output storage.
If job(6)>0, arrays acsr, ia, ja are generated for the output storage.
INTEGER. Number of rows of the matrix \(A\).
INTEGER. Number of columns of the matrix \(A\).
(input/output)
REAL for mkl_sdnscsr.
DOUBLE PRECISION for mkl_ddnscsr.
COMPLEX for mkl_cdnscsr.
DOUBLE COMPLEX for mkl_zdnscsr.
Array containing non-zero elements of the matrix \(A\).
(input/output)INTEGER. Specifies the leading dimension of adns as declared in the calling (sub) program, must be at least max \((1, m)\).
(input/output)
REAL for mkl_sdnscsr.
DOUBLE PRECISION for mkl_ddnscsr.
COMPLEX for mkl_cdnscsr.
DOUBLE COMPLEX for mkl_zdnscsr.
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array containing the column indices for each nonzero element of the matrix \(A\).
Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array of length \(m+1\), containing indices of elements in the array acsr, such that ia(I) is the index in the array acsr of the first non-zero element from the row \(I\). The value of the last element
ia \((m+1)\) is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

\section*{Output Parameters}
info
INTEGER. Integer info indicator only for restoring the matrix \(A\) from the CSR format.
If info \(=0\), the execution is successful.
If info=i, the routine is interrupted processing the \(i\)-th row because there is no space in the arrays adns and ja according to the value nzmax.

\section*{Interfaces}

\section*{FORTRAN 77:}

SUBROUTINE mkl_sdnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
```

    INTEGER job(8)
    INTEGER m, n, lda, info
    INTEGER ja(*), ia(m+1)
    REAL adns(*), acsr(*)
    SUBROUTINE mkl_ddnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
INTEGER job(8)
INTEGER m, n, lda, info
INTEGER ja(*), ia(m+1)
DOUBLE PRECISION adns(*), acsr(*)
SUBROUTINE mkl_cdnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
INTEGER job(8)
INTEGER m, n, lda, info
INTEGER ja(*), ia(m+1)
COMPLEX adns(*), acsr(*)
SUBROUTINE mkl_zdnSCSr(job, m, n, adns, lda, acSr, ja, ia, info)
INTEGER job(8)
INTEGER m, n, lda, info
INTEGER ja(*), ia(m+1)
DOUBLE COMPLEX adns(*), acsr(*)

```
C:
void mkl_sdnscsr(int *job, int *m, int *n, float *adns,
int *lda, float *acsr, int *ja, int *ia, int *info);
void mkl_ddnscsr(int *job, int *m, int *n, double *adns,
int *lda, double *acsr, int *ja, int *ia, int *info);
void mkl_cdnscsr(int *job, int *m, int *n, MKL_Complex8 *adns,
int *lda, MKL_Complex8 *acsr, int *ja, int *ia, int *info);
```

void mkl_zdnscsr(int *job, int *m, int *n, MKL_Complex16 *adns,
int *lda, MKL_Complex16 *acsr, int *ja, int *ia, int *info);

```

\section*{mkl_?csrcoo}

Converts a sparse matrix in the CSR format to the coordinate format and vice versa.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scsrcoo(job, n, acsr, ja, ia, nnz, acoo, rowind, colind, info)
call mkl_dcsrcoo(job, n, acsr, ja, ia, nnz, acoo, rowind, colind, info)
call mkl_ccsrcoo(job, n, acsr, ja, ia, nnz, acoo, rowind, colind, info)
call mkl_zcsrcoo(job, n, acsr, ja, ia, nnz, acoo, rowind, colind, info)

```
C:
mkl_scsrcoo(job, \&n, acsr, ja, ia, \&nnz, acoo, rowind, colind, \&info);
\(m k l _d c s r c o o(j o b, ~ \& n, ~ a c s r, ~ j a, ~ i a, ~ \& n n z, ~ a c o o, ~ r o w i n d, ~ c o l i n d, ~ \& i n f o) ; ~\)
mkl_ccsrcoo(job, \&n, acsr, ja, ia, \&nnz, acoo, rowind, colind, \&info);
mkl_zcsrcoo(job, \&n, acsr, ja, ia, \&nnz, acoo, rowind, colind, \&info);

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

This routine converts a sparse matrix A stored in the compressed sparse row (CSR) format (3-array variation) to coordinate format and vice versa.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
```

job

```

\section*{INTEGER}

Array, contains the following conversion parameters:
job(1)
If job(1) \(=0\), the matrix in the CSR format is converted to the coordinate format;
if \(j o b(1)=1\), the matrix in the coordinate format is converted to the CSR format.
if job(1)=2, the matrix in the coordinate format is converted to the CSR format, and the column indices in CSR representation are sorted in the increasing order within each row.
job(2)
If \(j o b(2)=0\), zero-based indexing for the matrix in CSR format is used; if job(2)=1, one-based indexing for the matrix in CSR format is used. job(3)

If \(\operatorname{job}(3)=0\), zero-based indexing for the matrix in coordinate format is used;
if \(\operatorname{job}(3)=1\), one-based indexing for the matrix in coordinate format is used.
job(5)
job (5) =nzmax - maximum number of the non-zero elements allowed if
job(1) \(=0\).
job(5) \(=n n z\) - sets number of the non-zero elements of the matrix \(A\) if \(j o b(1)=1\).
job(6) - job indicator.
For conversion to the coordinate format:
If job(6) \(=1\), only array rowind is filled in for the output storage.
If job(6) \(=2\), arrays rowind, colind are filled in for the output storage. If job(6)=3, all arrays rowind, colind, acoo are filled in for the output storage.
For conversion to the CSR format:
If \(j o b(6)=0\), all arrays acsr, ja, ia are filled in for the output storage.
If \(j o b(6)=1\), only array \(i\) ia is filled in for the output storage.
If \(j o b(6)=2\), then it is assumed that the routine already has been called with the \(j \circ b(6)=1\), and the user allocated the required space for storing the output arrays acsr and ja.
\(n\)
\(\operatorname{acsr}\)
ja
ia
acoo
rowind

INTEGER. Dimension of the matrix \(A\).
(input/output)
REAL for mkl_scsrcoo.
DOUBLE PRECISION for mkl_dcsrcoo.
COMPLEX for mkl_ccsrcoo.
DOUBLE COMPLEX for mkl_zcsrcoo.
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output) INTEGER. Array containing the column indices for each nonzero element of the matrix \(A\).
Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output) INTEGER. Array of length \(n+1\), containing indices of elements in the array acsr, such that ia(I) is the index in the array acsr of the first non-zero element from the row \(I\). The value of the last element ia \((n+1)\) is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
(input/output)
REAL for mkl_scsrcoo.
DOUBLE PRECISION for mkl_dcsrcoo.
COMPLEX for mkl_ccsrcoo.
DOUBLE COMPLEX for mkl_zcsrcoo.
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array of length \(n n z\), contains the row indices for each non-zero element of the matrix \(A\).
Refer to rows array description in Coordinate Format for more details.
(input/output) INTEGER. Array of length \(n n z\), contains the column indices for each non-zero element of the matrix \(A\). Refer to columns array description in Coordinate Format for more details.

\section*{Output Parameters}
nnz
info

INTEGER. Specifies the number of non-zero element of the matrix \(A\). Refer to \(n n z\) description in Coordinate Format for more details.
INTEGER. Integer info indicator only for converting the matrix \(A\) from the CSR format.
If info=0, the execution is successful.
If info=1, the routine is interrupted because there is no space in the arrays acoo, rowind, colind according to the value nzmax.

\section*{Interfaces}

\section*{FORTRAN 77:}
```

SUBROUTINE mkl_scsrcoo(job, n, acsr, ja, ia, nnz, acoo, rowind, colind, info)

| INTEGER | job(8) |
| :--- | :--- |
| INTEGER | $n, n n z, ~ i n f o$ |
| INTEGER | ja(*), ia(n+1), rowind(*), colind(*) |
| REAL | $\operatorname{acsr}(*)$, acoo(*) |

SUBROUTINE mkl_dcsrcoo(job, n, acsr, ja, ia, nnz, acoo, rowind, colind, info)
INTEGER job(8)
INTEGER n, nnz, info
INTEGER ja(*), ia(n+1), rowind(*), colind(*)
DOUBLE PRECISION acsr(*), acoo(*)
SUBROUTINE mkl_ccsrcoo(job, n, acsr, ja, ia, nnz, acoo, rowind, colind, info)
INTEGER job(8)
INTEGER n, nnz, info
INTEGER ja(*), ia(n+1), rowind(*), colind(*)
COMPLEX acsr(*), acoo(*)
SUBROUTINE mkl_zCsrcoo(job, n, acsr, ja, ia, nnz, acoo, rowind, colind, info)
INTEGER job(8)
INTEGER n, nnz, info
INTEGER ja(*), ia(n+1), rowind(*), colind(*)
DOUBLE COMPLEX acsr(*), acoo(*)

```
C:
void mkl_scsrcoo(int *job, int *n, float *acsr, int *ja,
int *ia, int *nnz, float *acoo, int *rowind, int *colind, int *info);
void mkl_dcsrcoo(int *job, int *n, double *acsr, int *ja,
int *ia, int *nnz, double *acoo, int *rowind, int *colind, int *info);
```

void mkl_ccsrcoo(int *job, int *n, MKL_Complex8 *acsr, int *ja,
int *ia, int *nnz, MKL_Complex8 *acoo, int *rowind, int *colind, int *info);
void mkl_zcsrcoo(int *job, int *n, MKL_Complex16 *acsr, int *ja,
int *ia, int *nnz, MKL_Complex16 *acoo, int *rowind, int *colind, int *info);

```

\section*{mkl_?csrbsr}

Converts a sparse matrix in the CSR format to the
BSR format and vice versa.

\section*{Syntax}

Fortran:
```

call mkl_scsrbsr(job, m, mblk, ldabsr, acsr, ja, ia, absr, jab, iab, info)
call mkl_dcsrbsr(job, m, mblk, ldabsr, acsr, ja, ia, absr, jab, iab, info)
call mkl_ccsrbsr(job, m, mblk, ldabsr, acsr, ja, ia, absr, jab, iab, info)
call mkl_zcsrbsr(job, m, mblk, ldabsr, acsr, ja, ia, absr, jab, iab, info)

```

C:
\(m k l _s c s r b s r(j o b, ~ \& m, ~ \& m b l k, ~ \& l d a b s r, ~ a c s r, ~ j a, ~ i a, ~ a b s r, ~ j a b, ~ i a b, ~ \& i n f o) ;\)
\(m k l _d c s r b s r(j o b, ~ \& m, ~ \& m b l k, ~ \& l d a b s r, ~ a c s r, ~ j a, ~ i a, ~ a b s r, ~ j a b, ~ i a b, ~ \& i n f o) ; ~\)
\(m k l _c c s r b s r(j o b, ~ \& m, ~ \& m b l k, ~ \& l d a b s r, ~ a c s r, ~ j a, ~ i a, ~ a b s r, ~ j a b, ~ i a b, ~ \& i n f o) ; ~\)
\(m k l _z c s r b s r(j o b, ~ \& m, ~ \& m b l k, ~ \& l d a b s r, ~ a c s r, ~ j a, ~ i a, ~ a b s r, ~ j a b, ~ i a b, ~ \& i n f o) ; ~\)

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

This routine converts a sparse matrix A stored in the compressed sparse row (CSR) format (3-array variation) to the block sparse row (BSR) format and vice versa.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
job

\section*{INTEGER}

Array, contains the following conversion parameters:
job(1)
If \(j o b(1)=0\), the matrix in the CSR format is converted to the BSR format;
if \(j o b(1)=1\), the matrix in the BSR format is converted to the CSR format. job(2)
If job(2)=0, zero-based indexing for the matrix in CSR format is used;
if \(j o b(2)=1\), one-based indexing for the matrix in CSR format is used.
job(3)
If \(j o b(3)=0\), zero-based indexing for the matrix in the BSR format is used;
if \(j o b(3)=1\), one-based indexing for the matrix in the BSR format is used.
job (4) is only used for conversion to CSR format. By default, the converter saves the blocks without checking whether an element is zero or not. If job (4) \(=1\), then the converter only saves non-zero elements in blocks. job(6) - job indicator.
For conversion to the BSR format:
If job (6) \(=0\), only arrays jab, iab are generated for the output storage.
If job(6)>0, all output arrays absr, jab, and iab are filled in for the output storage.
If job(6)=-1, iab(1) returns the number of non-zero blocks. For conversion to the CSR format:
If job (6) \(=0\), only arrays ja, ia are generated for the output storage.
m
mblk
ldabsr
\(\operatorname{acsr}\)
ja
ia
absr
jab

INTEGER. Actual row dimension of the matrix A for convert to the BSR format; block row dimension of the matrix \(A\) for convert to the CSR format.
INTEGER. Size of the block in the matrix \(A\).
INTEGER. Leading dimension of the array absr as declared in the calling program. ldabsr must be greater than or equal to \(m b l k^{\star} m b l k\).
(input/output)
REAL for mkl_scsrbsr.
DOUBLE PRECISION for mkl_dcsrbsr.
COMPLEX for mkl_ccsrbsr.
DOUBLE COMPLEX for mkl_zcsrbsr.
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output) INTEGER. Array containing the column indices for each nonzero element of the matrix \(A\).
Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output) INTEGER. Array of length \(m+1\), containing indices of elements in the array acsr, such that \(i a(I)\) is the index in the array acsr of the first non-zero element from the row \(I\). The value of the last element ia \((m+1)\) is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
(input/output)
REAL for mkl_scsrbsr.
DOUBLE PRECISION for mkl_dcsrbsr.
COMPLEX for mkl_ccsrbsr.
DOUBLE COMPLEX for mkl_zcsrbsr.
Array containing elements of non-zero blocks of the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\) multiplied by \(m b l k^{\star} m b l k\). Refer to values array description in BSR Format for more details.
(input/output) INTEGER. Array containing the column indices for each nonzero block of the matrix \(A\).
Its length is equal to the number of non-zero blocks of the matrix A. Refer to columns array description in BSR Format for more details.
iab (input/output) INTEGER. Array of length \((m+1)\), containing indices of blocks in the array absr, such that iab(i) is the index in the array absr of the first non-zero element from the \(i\)-th row. The value of the last element iab \((m+1)\) is equal to the number of non-zero blocks plus one. Refer to rowIndex array description in BSR Format for more details.

\section*{Output Parameters}
```

info INTEGER. Integer info indicator only for converting the matrix A from the
CSR format.
If info=0, the execution is successful.
If info=1, it means that mblk is equal to 0.
If info=2, it means that ldabsr is less than mblk*mblk and there is no
space for all blocks.

```

\section*{Interfaces}

\section*{FORTRAN 77:}
```

SUBROUTINE mkl_scsrbsr(job, m, mblk, ldabsr, acsr, ja, ia, absr, jab, iab, info)
INTEGER job(8)
INTEGER m, mblk, ldabsr, info
INTEGER ja(*), ia(m+1), jab(*), iab(*)
REAL acsr(*), absr(ldabsr,*)
SUBROUTINE mkl_dcsrbsr(job, m, mblk, ldabsr, acsr, ja, ia, absr, jab, iab, info)
INTEGER job(8)
INTEGER m, mblk, ldabsr, info
INTEGER ja(*), ia(m+1), jab(*), iab(*)
DOUBLE PRECISION acsr(*), absr(ldabsr,*)
SUBROUTINE mkl_ccsrbsr(job, m, mblk, ldabsr, acsr, ja, ia, absr, jab, iab, info)
INTEGER job(8)
INTEGER m, mblk, ldabsr, info
INTEGER ja(*), ia(m+1), jab(*), iab(*)
COMPLEX acsr(*), absr(ldabsr,*)
SUBROUTINE mkl_zcsrbsr(job, m, mblk, ldabsr, acsr, ja, ia, absr, jab, iab, info)
INTEGER job(8)
INTEGER m, mblk, ldabsr, info
INTEGER ja(*), ia(m+1), jab(*), iab(*)
DOUBLE COMPLEX acsr(*), absr(ldabsr,*)

```
C:
void mkl_scsrbsr(int *job, int *m, int *mblk, int *ldabsr, float *acsr, int *ja,
int *ia, float *absr, int *jab, int *iab, int *info);
void mkl_dcsrbsr(int *job, int *m, int *mblk, int *ldabsr, double *acsr, int *ja,
int *ia, double *absr, int *jab, int *iab, int *info);
```

void mkl_ccsrbsr(int *job, int *m, int *mblk, int *ldabsr, MKL_Complex8 *acsr, int *ja,
int *ia, MKL_Complex8 *absr, int *jab, int *iab, int *info);
void mkl_zcsrbsr(int *job, int *m, int *mblk, int *ldabsr, MKL_Complex16 *acsr, int *ja,
int *ia, MKL_Complex16 *absr, int *jab, int *iab, int *info);

```
mkl_?csrcsc
Converts a square sparse matrix in the CSR format to the CSC format and vice versa.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scsrcsc(job, m, acsr, ja, ia, acsc, jal, ial, info)
call mkl_dcsrcsc(job, m, acsr, ja, ia, acsc, jal, ial, info)
call mkl_ccsrcsc(job, m, acsr, ja, ia, acsc, jal, ial, info)
call mkl_zcsrcsc(job, m, acsr, ja, ia, acsc, jal, ial, info)

```
C:
mkl_scsrcsc(job, \&m, acsr, ja, ia, acsc, jal, ial, \&info);
mkl_dcsrcsc(job, \&m, acsr, ja, ia, acsc, jal, ial, \&info);
\(m k l _c c s r c s c(j o b, ~ \& m, ~ a c s r, ~ j a, ~ i a, ~ a c S C, ~ j a l, ~ i a l, ~ \& i n f o) ; ~\)
mkl_zcsrcsc(job, \&m, acsr, ja, ia, acSC, jal, ial, \&info);

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

This routine converts a square sparse matrix A stored in the compressed sparse row (CSR) format (3-array variation) to the compressed sparse column (CSC) format and vice versa.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

INTEGER
Array, contains the following conversion parameters:
job(1)
If \(j o b(1)=0\), the matrix in the CSR format is converted to the CSC format;
if \(j o b(1)=1\), the matrix in the CSC format is converted to the CSR format. job(2)
If job (2) \(=0\), zero-based indexing for the matrix in CSR format is used;
if \(j \circ b(2)=1\), one-based indexing for the matrix in CSR format is used.
job(3)
If job(3) \(=0\), zero-based indexing for the matrix in the CSC format is used; if \(j o b(3)=1\), one-based indexing for the matrix in the CSC format is used. job(6) - job indicator.

For conversion to the CSC format:
If job(6) \(=0\), only arrays ja1, ial are filled in for the output storage. If \(j o b(6) \neq 0\), all output arrays acsc, jal, and ial are filled in for the output storage.
For conversion to the CSR format:
If \(j o b(6)=0\), only arrays ja, ia are filled in for the output storage. If \(j o b(6) \neq 0\), all output arrays acsr, \(j a\), and ia are filled in for the output storage.
m
\(\operatorname{acsr}\)
ja
ia
\(\operatorname{acsc}\)
jal
ial

INTEGER. Dimension of the square matrix \(A\).
(input/output)
REAL for mkl_scsrcsc.
DOUBLE PRECISION for mkl dcsrcsc.
COMPLEX for mkl_ccsrcsc.
DOUBLE COMPLEX for mkl_zcsrcsc.
Array containing non-zero elements of the square matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output) INTEGER. Array containing the column indices for each nonzero element of the matrix \(A\).
Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output) INTEGER. Array of length \(m+1\), containing indices of elements in the array acsr, such that \(i a(I)\) is the index in the array acsr of the first non-zero element from the row \(I\). The value of the last element ia \((m+1)\) is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
(input/output)
REAL for mkl_scsrcsc.
DOUBLE PRECISION for mkl_dcsrcsc.
COMPLEX for mkl_ccsrcsc.
DOUBLE COMPLEX for mkl_zcsrcsc.
Array containing non-zero elements of the square matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output) INTEGER. Array containing the row indices for each non-zero element of the matrix \(A\).
Its length is equal to the length of the array acsc. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output) INTEGER. Array of length \(m+1\), containing indices of elements in the array acsc, such that ial(I) is the index in the array acsc of the first non-zero element from the column \(I\). The value of the last element ial \((m+1)\) is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

\section*{Output Parameters}

\section*{Interfaces}

\section*{FORTRAN 77:}
```

SUBROUTINE mkl_scsrcsc(job, m, acsr, ja, ia, acsc, jal, ia1, info)
INTEGER job(8)
INTEGER m, info
INTEGER ja(*), ia(m+1), ja1(*), ial(m+1)
REAL acsr(*), acsc(*)
SUBROUTINE mkl_dcsrcsc(job, m, acsr, ja, ia, acsc, jal, ial, info)
INTEGER job(8)
INTEGER m, info
INTEGER ja(*), ia(m+1), ja1(*), ial(m+1)
DOUBLE PRECISION acsr(*), acsc(*)
SUBROUTINE mkl_ccSrcsc(job, m, acsr, ja, ia, acsc, jal, ia1, info)
INTEGER job(8)
INTEGER m, info
INTEGER ja(*), ia(m+1), jal(*), ial(m+1)
COMPLEX acsr(*), acsc(*)
SUBROUTINE mkl_zcSrcsc(job, m, acsr, ja, ia, acsc, jal, ial, info)
INTEGER job(8)
INTEGER m, info
INTEGER ja(*), ia(m+1), ja1(*), ial(m+1)
DOUBLE COMPLEX acsr(*), acsc(*)

```
C:
void mkl_scsrcsc(int *job, int *m, float *acsr, int *ja,
int *ia, float *acsc, int *jal, int *ial, int *info);
void mkl_dcsrcsc(int *job, int *m, double *acsr, int *ja,
int *ia, double *acsc, int *jal, int *ial, int *info);
void mkl_ccsrcsc(int *job, int *m, MKL_Complex8 *acsr, int *ja,
int *ia, MKL_Complex8 *acsc, int *ja1, int *ial, int *info);
void mkl_zcsrcsc(int *job, int *m, MKL_Complex16 *acsr, int *ja,
int *ia, MKL_Complex16 *acsc, int *jal, int *ial, int *info);
mkl_?csrdia
Converts a sparse matrix in the CSR format to the diagonal format and vice versa.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scsrdia(job, m, acsr, ja, ia, adia, ndiag, distance, idiag, acsr_rem, ja_rem,
ia_rem, info)
call mkl_dcsrdia(job, m, acsr, ja, ia, adia, ndiag, distance, idiag, acsr_rem, ja_rem,
ia_rem, info)
call mkl_ccsrdia(job, m, acsr, ja, ia, adia, ndiag, distance, idiag, acsr_rem, ja_rem,
ia_rem, info)
call mkl_zcsrdia(job, m, acsr, ja, ia, adia, ndiag, distance, idiag, acsr_rem, ja_rem,
ia_rem, info)
C:
mkl_scsrdia(job, \&m, acsr, ja, ia, adia, \&ngiag, distance, \&idiag, acsr_rem, ja_rem,
ia_rem, \&info);
mkl_dcsrdia(job, \&m, acsr, ja, ia, adia, \&ngiag, distance, \&idiag, acsr_rem, ja_rem,
ia_rem, \&info);
mkl_ccsrdia(job, \&m, acsr, ja, ia, adia, \&ngiag, distance, \&idiag, acsr_rem, ja_rem,
ia_rem, \&info);
mkl_zcsrdia(job, \&m, acsr, ja, ia, adia, \&ngiag, distance, \&idiag, acsr_rem, ja_rem,
ia_rem, \&info);

```

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

This routine converts a sparse matrix \(A\) stored in the compressed sparse row (CSR) format (3-array variation) to the diagonal format and vice versa.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

INTEGER
Array, contains the following conversion parameters:
job(1)
If job(1) \(=0\), the matrix in the CSR format is converted to the diagonal format;
if job(1)=1, the matrix in the diagonal format is converted to the CSR format.
job(2)
If \(j o b(2)=0\), zero-based indexing for the matrix in CSR format is used; if \(j o b(2)=1\), one-based indexing for the matrix in CSR format is used.
job(3)
If job(3)=0, zero-based indexing for the matrix in the diagonal format is used;
if \(j o b(3)=1\), one-based indexing for the matrix in the diagonal format is used.
job(6) - job indicator.
For conversion to the diagonal format:
If job (6) \(=0\), diagonals are not selected internally, and acsr_rem, ja_rem,
ia_rem are not filled in for the output storage.
If job (6) \(=1\), diagonals are not selected internally, and acsr_rem, ja_rem, ia_rem are filled in for the output storage.
If job (6) =10, diagonals are selected internally, and acsr_rem, ja_rem, ia_rem are not filled in for the output storage.
If job (6)=11, diagonals are selected internally, and csr_rem, ja_rem, ia_rem are filled in for the output storage.
For conversion to the CSR format:
If job(6) \(=0\), each entry in the array adia is checked whether it is zero.
Zero entries are not included in the array acsr.
If \(j o b(6) \neq 0\), each entry in the array adia is not checked whether it is zero.
m
(input/output)
REAL for mkl_scsrdia.
DOUBLE PRECISION for mkl_dcsrdia.
COMPLEX for mkl_ccsrdia.
DOUBLE COMPLEX for mkl_zcsrdia.
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output) INTEGER. Array containing the column indices for each nonzero element of the matrix \(A\).
Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output) INTEGER. Array of length \(m+1\), containing indices of elements in the array acsr, such that ia(I) is the index in the array acsr of the first non-zero element from the row \(I\). The value of the last element ia \((m+1)\) is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
(input/output)
REAL for mkl_scsrdia.
DOUBLE PRECISION for mkl_dcsrdia.
COMPLEX for mkl_ccsrdia.
DOUBLE COMPLEX for mkl_zcsrdia.
Array of size (ndiag x idiag) containing diagonals of the matrix \(A\).
The key point of the storage is that each element in the array adia retains the row number of the original matrix. To achieve this diagonals in the lower triangular part of the matrix are padded from the top, and those in the upper triangular part are padded from the bottom.
INTEGER.
Specifies the leading dimension of the array adia as declared in the calling (sub) program, must be at least max \((1, m)\).
INTEGER.
Array of length idiag, containing the distances between the main diagonal and each non-zero diagonal to be extracted. The distance is positive if the diagonal is above the main diagonal, and negative if the diagonal is below the main diagonal. The main diagonal has a distance equal to zero.
```

idiag INTEGER.
Number of diagonals to be extracted. For conversion to diagonal format on
return this parameter may be modified.
acsr_rem, ja_rem, ia_rem Remainder of the matrix in the CSR format if it is needed for conversion to
the diagonal format.

```

\section*{Output Parameters}
```

info INTEGER. This parameter is not used now.

```

\section*{Interfaces}

\section*{FORTRAN 77:}

SUBROUTINE mkl_scsrdia(job, m, acsr, ja, ia, adia, ndiag, distance, idiag, acsr_rem, ja_rem, ia_rem, info)
\begin{tabular}{ll}
INTEGER & job(8) \\
INTEGER & \(m\), info, ndiag, idiag \\
INTEGER & ja(*), ia(m+1), distance(*), ja_rem(*), ia_rem(*) \\
REAL & \(\operatorname{acsr}(*)\), adia(*), acsr_rem(*)
\end{tabular}
SUBROUTINE mkl_dcsrdia(job, m, acsr, ja, ia, adia, ndiag, distance, idiag, acsr_rem, ja_rem, ia_rem,
info)
 INTEGER job(8)
 INTEGER m, info, ndiag, idiag
 INTEGER ja(*), ia(m+1), distance(*), ja_rem(*), ia_rem(*)
 DOUBLE PRECISION acsr(*), adia(*), acsr_rem(*)
SUBROUTINE mkl_ccsrdia(job, m, acsr, ja, ia, adia, ndiag, distance, idiag, acsr_rem, ja_rem, ia_rem,
info)
\begin{tabular}{ll}
INTEGER & job(8) \\
INTEGER & \(m\), info, ndiag, idiag \\
INTEGER & ja(*), ia(m+1), distance (*), ja_rem(*), ia_rem(*) \\
COMPLEX & acsr(*), adia(*), acsr_rem(*)
\end{tabular}
SUBROUTINE mkl_zCSrdia(job, m, acsr, ja, ia, adia, ndiag, distance, idiag, acsr_rem, ja_rem, ia_rem,
info)
 INTEGER job(8)
 INTEGER m, info, ndiag, idiag
 INTEGER ja(*), ia(m+1), distance(*), ja_rem(*), ia_rem(*)
 DOUBLE COMPLEX acsr(*), adia(*), acsr_rem(*)
C:
void mkl_scsrdia(int *job, int *m, float *acsr, int *ja,
int *ia, float *adia, int *ndiag, int *distance, int *distance,
int *idiag, float *acsr_rem, int *ja_rem, int *ia_rem, int *info);
void mkl_dcsrdia(int *job, int *m, double *acsr, int *ja,
int *ia, double *adia, int *ndiag, int *distance, int *distance,
int *idiag, double *acsr_rem, int *ja_rem, int *ia_rem, int *info);
```

void mkl_ccsrdia(int *job, int *m, MKL_Complex8 *acsr, int *ja,
int *ia, MKL_Complex8 *adia, int *ndiag, int *distance, int *distance,
int *idiag, MMK_Complex8 *acsr_rem, int *ja_rem, int *ia_rem, int *info);
void mkl_zcsrdia(int *job, int *m, MKL_Complexl6 *acsr, int *ja,
int *ia, MKL_Complex16 *adia, int *ndiag, int *distance, int *distance,
int *idiag, \overline{MKL_Complex16 *acsr_rem, int *ja_rem, int *ia_rem, int *info);}

```
mkl_?csrsky
Converts a sparse matrix in CSR format to the skyline format and vice versa.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scsrsky(job, m, acsr, ja, ia, asky, pointers, info)
call mkl_dcsrsky(job, m, acsr, ja, ia, asky, pointers, info)
call mkl_ccsrsky(job, m, acsr, ja, ia, asky, pointers, info)
call mkl_zcsrsky(job, m, acsr, ja, ia, asky, pointers, info)

```

C:
mkl_scsrsky(job, \&m, acsr, ja, ia, asky, pointers, \&info);
mkl_dcsrsky(job, \&m, acsr, ja, ia, asky, pointers, \&info);
mkl_ccsrsky(job, \&m, acsr, ja, ia, asky, pointers, \&info);
mkl_zcsrsky(job, \&m, acsr, ja, ia, asky, pointers, \&info);

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

This routine converts a sparse matrix \(A\) stored in the compressed sparse row (CSR) format (3-array variation) to the skyline format and vice versa.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

\section*{job}

\section*{INTEGER}

Array, contains the following conversion parameters:
job(1)
If job(1) \(=0\), the matrix in the CSR format is converted to the skyline format;
if \(j o b(1)=1\), the matrix in the skyline format is converted to the CSR format.
job(2)
If job(2) \(=0\), zero-based indexing for the matrix in CSR format is used;
if \(j \circ b(2)=1\), one-based indexing for the matrix in CSR format is used.
job(3)
If job (3) \(=0\), zero-based indexing for the matrix in the skyline format is used;
if \(\operatorname{job}(3)=1\), one-based indexing for the matrix in the skyline format is used.
job(4)
For conversion to the skyline format:
If \(j o b(4)=0\), the upper part of the matrix \(A\) in the CSR format is converted. If \(j o b(4)=1\), the lower part of the matrix \(A\) in the CSR format is converted. For conversion to the CSR format:
If \(j o b(4)=0\), the matrix is converted to the upper part of the matrix \(A\) in the CSR format.
If job (4)=1, the matrix is converted to the lower part of the matrix \(A\) in the CSR format.
job(5)
job \((5)=\) nzmax - maximum number od the non-zero elements of the matrix \(A\) if job(1) \(=0\).
job(6) - job indicator.
Only for conversion to the skyline format:
If job(6)=0, only arrays pointers is filled in for the output storage.
If job (6) =1, all output arrays asky and pointers are filled in for the output storage.
INTEGER. Dimension of the matrix \(A\).
(input/output)
REAL for mkl_scsrsky.
DOUBLE PRECISION for mkl_dcsrsky.
COMPLEX for mkl_ccsrsky.
DOUBLE COMPLEX for mkl_zcsrsky.
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output) INTEGER. Array containing the column indices for each nonzero element of the matrix \(A\).
Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output) INTEGER. Array of length \(m+1\), containing indices of elements in the array acsr, such that \(i a(I)\) is the index in the array acsr of the first non-zero element from the row \(I\). The value of the last element ia \((m+1)\) is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
(input/output)
REAL for mkl_scsrsky.
DOUBLE PRECISION for mkl_dcsrsky.
COMPLEX for mkl_ccsrsky.
DOUBLE COMPLEX for mkl_zcsrsky.
Array, for a lower triangular part of \(A\) it contains the set of elements from each row starting from the first none-zero element to and including the diagonal element. For an upper triangular matrix it contains the set of elements from each column of the matrix starting with the first non-zero
element down to and including the diagonal element. Encountered zero elements are included in the sets. Refer to values array description in Skyline Storage Format for more details.
pointers
(input/output) INTEGER.
Array with dimension \((m+1)\), where \(m\) is number of rows for lower triangle (columns for upper triangle), pointers(I) - pointers(1)+1 gives the index of element in the array asky that is first non-zero element in row (column)I. The value of pointers \((m+1)\) is set tonnz + pointers(1), wherennz is the number of elements in the array asky. Refer to pointers array description in Skyline Storage Format for more details

\section*{Output Parameters}
```

info

```

INTEGER. Integer info indicator only for converting the matrix \(A\) from the CSR format.
If infor 0 , the execution is successful.
If info=1, the routine is interrupted because there is no space in the array asky according to the value nzmax.

\section*{Interfaces}

FORTRAN 77:
```

SUBROUTINE mkl_scsrsky(job, m, acsr, ja, ia, asky, pointers, info)
INTEGER job(8)
INTEGER m, info
INTEGER ja(*), ia(m+1), pointers(m+1)
REAL acsr(*), asky(*)
SUBROUTINE mkl_dcsrsky(job, m, acsr, ja, ia, asky, pointers, info)
INTEGER job(8)
INTEGER m, info
INTEGER ja(*), ia(m+1), pointers(m+1)
DOUBLE PRECISION acsr(*), asky(*)
SUBROUTINE mkl_ccsrsky(job, m, acsr, ja, ia, asky, pointers, info)
INTEGER job(8)
INTEGER m, info
INTEGER ja(*), ia(m+1), pointers(m+1)
COMPLEX acsr(*), asky(*)
SUBROUTINE mkl_zcsrsky(job, m, acsr, ja, ia, asky, pointers, info)
INTEGER job(8)
INTEGER m, info
INTEGER ja(*), ia(m+1), pointers(m+1)
DOUBLE COMPLEX acsr(*), asky(*)

```

C:
void mkl_scsrsky(int *job, int *m, float *acsr, int *ja,
int *ia, float *asky, int *pointers, int *info);
void mkl_dcsrsky(int *job, int *m, double *acsr, int *ja, int *ia, double *asky, int *pointers, int *info);
void mkl_ccsrsky(int *job, int *m, MKL_COMPLEX8 *acsr, int *ja, int *ia, MKL_COMPLEX8 *asky, int *pointers, int *info);
```

void mkl_zcsrsky(int *job, int *m, MKL_COMPLEX16 *acsr, int *ja,

```
 int *ia, MKL_COMPLEX16 *asky, int *pointers, int *info);

\section*{mkl_?csradd}

Computes the sum of two matrices stored in the CSR format (3-array variation) with one-based indexing.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scsradd(trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic,
nzmax, info)
call mkl_dcsradd(trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic,
nzmax, info)
call mkl_ccsradd(trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic,
nzmax, info)
call mkl_zcsradd(trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic,
nzmax, info)
C:
mkl_scsradd(\&trans, \&request, \&sort, \&m, \&n, a, ja, ia, \&beta, b, jb, ib, c, jc, ic,
\&nzmax, \&info);
mkl_dcsradd(\&trans, \&request, \&sort, \&m, \&n, a, ja, ia, \&beta, b, jb, ib, c, jc, ic,
\&nzmax, \&info);
mkl_ccsradd(\&trans, \&request, \&sort, \&m, \&n, a, ja, ia, \&beta, b, jb, ib, c, jc, ic,
\&nzmax, \&info);
mkl_zcsradd(\&trans, \&request, \&sort, \&m, \&n, a, ja, ia, \&beta, b, jb, ib, c, jc, ic,
\&nzmax, \&info);

```

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?csradd routine performs a matrix-matrix operation defined as
\[
C:=A+b e t a * o p(B)
\]
where:

\section*{\(A, B, C\) are the sparse matrices in the CSR format (3-array variation).}
```

op $(B)$ is one of op $(B)=B$, or op $(B)=B^{\prime}$, or op $(A)=\operatorname{conjg}\left(B^{\prime}\right)$

```
beta is a scalar.
The routine works correctly if and only if the column indices in sparse matrix representations of matrices \(A\) and \(B\) are arranged in the increasing order for each row. If not, use the parameter sort (see below) to reorder column indices and the corresponding elements of the input matrices.

NOTE This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
\begin{tabular}{|c|c|}
\hline trans & \begin{tabular}{l}
CHARACTER*1. Specifies the operation. \\
If trans \(=\) 'N' or 'n', then \(C:=A+\) beta* \(B\) \\
If trans \(=\) 'T' or 't' or 'C' or 'c', then \(C:=A+b e t a \star B '\).
\end{tabular} \\
\hline request & \begin{tabular}{l}
INTEGER. \\
If request=0, the routine performs addition, the memory for the output arrays ic, jc, c must be allocated beforehand. \\
If request=1, the routine computes only values of the array ic of length \(m\) +1 , the memory for this array must be allocated beforehand. On exit the value \(i_{c}(m+1)-1\) is the actual number of the elements in the arrays \(c\) and jc. \\
If request=2, the routine has been called previously with the parameter request \(=1\), the output arrays \(j c\) and \(c\) are allocated in the calling program and they are of the length \((m+1)-1\) at least.
\end{tabular} \\
\hline sort & \begin{tabular}{l}
INTEGER. Specifies the type of reordering. If this parameter is not set (default), the routine does not perform reordering. \\
If sort=1, the routine arranges the column indices ja for each row in the increasing order and reorders the corresponding values of the matrix \(A\) in the array \(a\). \\
If sort=2, the routine arranges the column indices jb for each row in the increasing order and reorders the corresponding values of the matrix \(B\) in the array \(b\). \\
If sort=3, the routine performs reordering for both input matrices \(A\) and \(B\).
\end{tabular} \\
\hline m & INTEGER. Number of rows of the matrix \(A\). \\
\hline \(n\) & INTEGER. Number of columns of the matrix \(A\). \\
\hline a & \begin{tabular}{l}
REAL for mkl_scsradd. \\
DOUBLE PRECISION for mkl_dcsradd. \\
COMPLEX for mkl_ccsradd. \\
DOUBLE COMPLEX for mkl_zcsradd. \\
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix A. Refer to values array description in Sparse Matrix Storage Formats for more details.
\end{tabular} \\
\hline ja & \begin{tabular}{l}
INTEGER. Array containing the column indices for each non-zero element of the matrix \(A\). For each row the column indices must be arranged in the increasing order. \\
The length of this array is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.
\end{tabular} \\
\hline
\end{tabular}

INTEGER. Array of length \(m+1\), containing indices of elements in the array \(a\), such that \(\mathrm{ia}(I)\) is the index in the array a of the first non-zero element from the row \(I\). The value of the last element \(i a(m+1)\) is equal to the number of non-zero elements of the matrix \(B\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
```

REAL for mkl_scsradd.
DOUBLE PRECISION formkl_dcsradd.
COMPLEX for mkl_ccsradd.
DOUBLE COMPLEX for mkl_zcsradd.
Specifies the scalar beta.
REAL for mkl_scsradd.
DOUBLE PRECISION formkl_dcsradd.
COMPLEX formkl_ccsradd.
DOUBLE COMPLEX for mkl_zcsradd.

```

Array containing non-zero elements of the matrix \(B\). Its length is equal to the number of non-zero elements in the matrix \(B\). Refer to values array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array containing the column indices for each non-zero element of the matrix \(B\). For each row the column indices must be arranged in the increasing order.
The length of this array is equal to the length of the array \(b\). Refer to columns array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array of length \(m+1\) when trans \(=\) 'N' or 'n', or \(n+1\) otherwise.
This array contains indices of elements in the array \(b\), such that \(i b(I)\) is the index in the array \(b\) of the first non-zero element from the row \(I\). The value of the last element \(i b(m+1)\) or \(i b(n+1)\) is equal to the number of non-zero elements of the matrix \(B\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

INTEGER. The length of the arrays \(c\) and \(j c\).
This parameter is used only if request=0. The routine stops calculation if the number of elements in the result matrix \(c\) exceeds the specified value of nzmax.

\section*{Output Parameters}

REAL for mkl_scsradd.
DOUBLE PRECISION for mkl_dcsradd.
COMPLEX for mkl_ccsradd.
DOUBLE COMPLEX for mkl_zcsradd.
Array containing non-zero elements of the result matrix \(C\). Its length is equal to the number of non-zero elements in the matrix \(C\). Refer to values array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array containing the column indices for each non-zero element of the matrix \(C\).
The length of this array is equal to the length of the array c. Refer to columns array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length \(m+1\), containing indices of elements in the array \(c\), such that \(i_{c}(I)\) is the index in the array \(c\) of the first non-zero element from the row \(I\). The value of the last element \(i c(m+1)\) is equal to the number of non-zero elements of the matrix \(C\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

If info \(=0\), the execution is successful.
If info \(=I>0\), the routine stops calculation in the \(I\)-th row of the matrix \(C\) because number of elements in \(C\) exceeds nzmax.
If info=-1, the routine calculates only the size of the arrays \(c\) and \(j c\) and returns this value plus 1 as the last element of the array ic.

\section*{Interfaces}

\section*{FORTRAN 77:}
```

SUBROUTINE mkl_scsradd( trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic, nzmax,

```
info)
 CHARACTER trans
 INTEGER request, sort, \(m, n, n z m a x, ~ i n f o\)
 INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
 REAL \(a(*), b(*), c(*)\), beta
SUBROUTINE mkl_dcsradd(trans, request, sort, m, \(n, a, j a, i a, ~ b e t a, ~ b, j b, i b, ~ c, j c, i c, ~ n z m a x, ~\)
info)
 CHARACTER trans
 INTEGER request, sort, \(m, n, n z m a x, ~ i n f o\)
 INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
 DOUBLE PRECISION \(\mathrm{a}(*), \mathrm{b}(*), \mathrm{c}(*)\), beta
SUBROUTINE mkl_ccsradd(trans, request, sort, m, \(n, a, j a, i a, ~ b e t a, ~ b, ~ j b, ~ i b, ~ c, ~ j c, ~ i c, ~ n z m a x, ~\)
info)
 CHARACTER trans
 INTEGER request, sort, \(m, n, n z m a x, ~ i n f o\)
 INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
 COMPLEX \(\mathrm{a}\left({ }^{*}\right), \mathrm{b}\left({ }^{*}\right), \mathrm{c}\left({ }^{*}\right)\), beta
SUBROUTINE mkl_zcsradd(trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic, nzmax,
info)
 CHARACTER trans
 INTEGER request, sort, \(m, n, n z m a x, ~ i n f o\)
 INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
 DOUBLE COMPLEX \(\mathrm{a}(*), \mathrm{b}(*), \mathrm{c}(*)\), beta

\section*{C:}
```

void mkl_scsradd(char *trans, int *request, int *sort, int *m, int *n, float *a, int *ja, int *ia,
float *b\overline{e}ta, float *b, int *jb, int *ib, float *c,
int *jc, int *ic, int *nzmax, int *info);
void mkl_dcsradd(char *trans, int *request, int *sort, int *m, int *n,
double *\overline{a}, int *ja, int *ia, double *beta, double *b, int *jb, int *ib, double *c,
int *jc, int *ic, int *nzmax, int *info);

```
```

void mkl ccsradd(char *trans, int *request, int *sort, int *m, int *n,
MKL_Complex8 *a, int *ja, int *ia, MKL_Complex8 *beta, MKL_Complex8 *b,
int }\mp@subsup{}{\mathrm{ jb, int *ib, MKL_Complex8 *C, int }}{
void mkl_zcsradd(char *trans, int *request, int *sort, int *m, int *n,
MKL Complex16 *a, int *ja, int *ia, MKL Complex16 *beta, MKL Complex16 *b,
int * jb, int *ib, MKL_Complex16 *c, int *

```

\section*{mkl_?csrmultcsr}

Computes product of two sparse matrices stored in the CSR format (3-array variation) with one-based indexing.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scsrmultcsr(trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic,
nzmax, info)
call mkl_dcsrmultcsr(trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic,
nzmax, info)
call mkl_ccsrmultcsr(trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic,
nzmax, info)
call mkl_zcsrmultcsr(trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic,
nzmax, info)

```

C:
```

mkl_scsrmultcsr(\&trans, \&request, \&sort, \&m, \&n, \&k, a, ja, ia, b, jb, ib, c, jc, ic,

```
\&nzmax, \&info);
\(m k l _d c s r m u l t c s r(\& t r a n s, ~ \& r e q u e s t, ~ \& s o r t, ~ \& m, ~ \& n, ~ \& k, ~ a, ~ j a, ~ i a, ~ b, ~ j b, ~ i b, ~ c, ~ j c, ~ i c, ~\)
\&nzmax, \&info);
\(m k l _c c s r m u l t c s r(\& t r a n s, ~ \& r e q u e s t, ~ \& s o r t, ~ \& m, ~ \& n, ~ \& k, ~ a, ~ j a, ~ i a, ~ b, ~ j b, ~ i b, ~ c, ~ j c, ~ i c, ~\)
\&nzmax, \&info);
mkl_zcsrmultcsr(\&trans, \&request, \&sort, \(\& m, ~ \& n, ~ \& k, ~ a, j a, ~ i a, ~ b, j b, i b, ~ c, j c, i c\),
\&nzmax, \&info);

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?csrmultcsr routine performs a matrix-matrix operation defined as
\[
C:=o p(A) * B
\]
where:
\(A, B, C\) are the sparse matrices in the CSR format (3-array variation);
op \((A)\) is one of op \((A)=A\), or op \((A)=A^{\prime}\), or op \((A)=\operatorname{conjg}\left(A^{\prime}\right)\).
You can use the parameter sort to perform or not perform reordering of non-zero entries in input and output sparse matrices. The purpose of reordering is to rearrange non-zero entries in compressed sparse row matrix so that column indices in compressed sparse representation are sorted in the increasing order for each row.

The following table shows correspondence between the value of the parameter sort and the type of reordering performed by this routine for each sparse matrix involved:
\begin{tabular}{|llll|}
\hline \begin{tabular}{l}
Value of the parameter \\
sort
\end{tabular} & \begin{tabular}{l}
Reordering of \(A\) (arrays \\
\(a, j a, i a)\)
\end{tabular} & \begin{tabular}{l}
Reordering of \(B\) (arrays \\
\(b, j a, i b)\)
\end{tabular} & \begin{tabular}{l}
Reordering of \(C\) (arrays \\
\(c, j c, i c)\)
\end{tabular} \\
\hline 1 & yes & no & yes \\
2 & no & yes & yes \\
3 & yes & yes & yes \\
4 & yes & no & no \\
5 & no & yes & no \\
6 & yes & nes & no \\
7 & no & no & no \\
arbitrary value not equal to & no & & \\
\(1,2, \ldots, 7\) & & & \\
\hline
\end{tabular}

NOTE This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
\begin{tabular}{|c|c|}
\hline trans & \begin{tabular}{l}
CHARACTER*1. Specifies the operation. \\
If trans \(=\) ' \(N\) ' or ' n ', then \(C:=A \star B\) \\
If trans \(=\) ' \(T\) ' or 't' or 'C' or 'c', then \(C:=A ' * B\).
\end{tabular} \\
\hline request & \begin{tabular}{l}
INTEGER. \\
If request \(=0\), the routine performs multiplication, the memory for the output arrays ic, jc, c must be allocated beforehand. \\
If request=1, the routine computes only values of the array ic of length \(m\) +1 , the memory for this array must be allocated beforehand. On exit the value ic \((m+1)-1\) is the actual number of the elements in the arrays \(c\) and \(j c\). \\
If request=2, the routine has been called previously with the parameter request=1, the output arrays \(j c\) and \(c\) are allocated in the calling program and they are of the length ic \((m+1)-1\) at least.
\end{tabular} \\
\hline sort & INTEGER. Specifies whether the routine performs reordering of non-zeros entries in input and/or output sparse matrices (see table above). \\
\hline m & INTEGER. Number of rows of the matrix \(A\). \\
\hline \(n\) & INTEGER. Number of columns of the matrix \(A\). \\
\hline k & INTEGER. Number of columns of the matrix \(B\). \\
\hline a & \begin{tabular}{l}
REAL for mkl_scsrmultcsr. \\
DOUBLE PRECISION for mkl_dcsrmultcsr. \\
COMPLEX for mkl_ccsrmultcsr. \\
DOUBLE COMPLEX for mkl_zcsrmultcsr. \\
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
\end{tabular} \\
\hline ja & INTEGER. Array containing the column indices for each non-zero element of the matrix \(A\). For each row the column indices must be arranged in the increasing order. \\
\hline
\end{tabular}

The length of this array is equal to the length of the array \(a\). Refer to columns array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length \(m+1\).
This array contains indices of elements in the array \(a\), such that ia(I) is the index in the array \(a\) of the first non-zero element from the row \(I\). The value of the last element \(i a(m+1)\) is equal to the number of non-zero elements of the matrix \(A\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
REAL for mkl_scsrmultcsr.
DOUBLE PRECISION for mkl_dcsrmultcsr.
COMPLEX for mkl_ccsrmultcsr.
DOUBLE COMPLEX for mkl_zcsrmultcsr.
Array containing non-zero elements of the matrix \(B\). Its length is equal to the number of non-zero elements in the matrix \(B\). Refer to values array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array containing the column indices for each non-zero element of the matrix \(B\). For each row the column indices must be arranged in the increasing order.
The length of this array is equal to the length of the array b. Refer to columns array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array of length \(n+1\) when trans \(=\) 'N' or 'n', or \(m+1\) otherwise.
This array contains indices of elements in the array \(b\), such that \(i b(I)\) is the index in the array \(b\) of the first non-zero element from the row \(I\). The value of the last element \(i b(n+1)\) or \(i b(m+1)\) is equal to the number of non-zero elements of the matrix \(B\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
INTEGER. The length of the arrays \(c\) and \(j c\).
This parameter is used only if request=0. The routine stops calculation if the number of elements in the result matrix \(C\) exceeds the specified value of nzmax.

\section*{Output Parameters}

REAL for mkl_scsrmultcsr.
DOUBLE PRECISION for mkl_dcsrmultcsr.
COMPLEX for mkl_ccsrmultcsr.
DOUBLE COMPLEX for mkl_zcsrmultcsr.
Array containing non-zero elements of the result matrix \(C\). Its length is equal to the number of non-zero elements in the matrix \(C\). Refer to values array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array containing the column indices for each non-zero element of the matrix \(C\).
The length of this array is equal to the length of the array c. Refer to columns array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length \(m+1\) when trans \(=\) ' \(N\) ' or ' \(n\) ', or \(n+1\) otherwise.

This array contains indices of elements in the array \(c\), such that \(i c(I)\) is the index in the array \(c\) of the first non-zero element from the row \(I\). The value of the last element \(i c(m+1)\) or \(i c(n+1)\) is equal to the number of non-zero elements of the matrix \(c\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
INTEGER.
If inforo, the execution is successful.
If info \(I>0\), the routine stops calculation in the \(I\)-th row of the matrix \(C\) because number of elements in \(C\) exceeds nzmax.
If info=-1, the routine calculates only the size of the arrays \(c\) and \(j c\) and returns this value plus 1 as the last element of the array ic.

\section*{Interfaces}

FORTRAN 77:
```

SUBROUTINE mkl_scsrmultcsr( trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic, nzmax,
info)
CHARACTER*1 trans
INTEGER request, sort, m, n, k, nzmax, info
INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
REAL a(*), b(*), c(*)
SUBROUTINE mkl_dcsrmultcsr( trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic, nzmax,
info)
CHARACTER*1 trans
INTEGER request, sort, m, n, k, nzmax, info
INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
DOUBLE PRECISION a(*), b(*), c(*)
SUBROUTINE mkl_ccsrmultcsr( trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic, nzmax,
info)
CHARACTER*1 trans
INTEGER request, sort, m, n, k, nzmax, info
INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
COMPLEX a(*), b(*), c(*)
SUBROUTINE mkl_zcsrmultcsr( trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic, nzmax,
info)
CHARACTER*1 trans
INTEGER request, sort, m, n, k, nzmax, info
INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
DOUBLE COMPLEX a(*), b(*), c(*)

```

C:
void mkl_scsrmultcsr(char *trans, int *request, int *sort, int *m, int *n, int *k,
float *a, int *ja, int *ia, float *b, int *jb, int *ib, float * \(c\),
int *jc, int *ic, int *nzmax, int *info);
```

void mkl dcsrmultcsr(char *trans, int *request, int *sort, int *m, int *n, int *k,
double *\overline{a}, int *ja, int *ia, double *b, int *jb, int *ib, double *C,
int *jc, int *ic, int *nzmax, int *infO);
void mkl_ccsrmultcsr(char *trans, int *request, int *sort, int *m, int *n, int *k,
MKL_Complex8 *a, int *ja, int *ia, MKL Complex8 *b, int *jb, int *ib,
MKL_Complex8 * c, int *jc, int *ic, int ` nzmax, int *info);
void mkl zcsrmultcsr(char *trans, int *request, int *sort, int *m, int *n, int *k,
MKL_Complex16 *a, int *ja, int *ia, MKL_Complex16 *b, int *jb, int *ib,
MKL_Complex16 *C, int *jc, int *ic, int**nzmax, int *info);

```
mkl_?csrmultd
Computes product of two sparse matrices stored in
the CSR format (3-array variation) with one-based indexing. The result is stored in the dense matrix.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_scsrmultd(trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
call mkl_dcsrmultd(trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
call mkl_ccsrmultd(trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
call mkl_zcsrmultd(trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)

```
C:
mkl_scsrmultd(\&trans, \&m, \&n, \&k, a, ja, ia, b, jb, ib, c, \&ldc);
mkl dcsrmultd(\&trans, \(\& m, \quad \& n, \quad \& k, a, j a, i a, b, j b, i b, \quad c, \quad \& l d c)\);
mkl_ccsrmultd(\&trans, \&m, \&n, \&k, a, ja, ia, b, jb, ib, c, \&ldc);
mkl_zcsrmultd(\&trans, \&m, \&n, \&k, a, ja, ia, b, jb, ib, c, \&ldc);

\section*{Include Files}
- FORTRAN 77: mkl_spblas.fi
- C: mkl_spblas.h

\section*{Description}

The mkl_?csrmultd routine performs a matrix-matrix operation defined as
```

C:= op (A)*B

```
where:
\(A, B\) are the sparse matrices in the CSR format (3-array variation), \(C\) is dense matrix;
op \((A)\) is one of op \((A)=A\), or op \((A)=A^{\prime}\), or op \((A)=\operatorname{conjg}\left(A^{\prime}\right)\).
The routine works correctly if and only if the column indices in sparse matrix representations of matrices \(A\) and \(B\) are arranged in the increasing order for each row. If not, use the parameter sort (see below) to reorder column indices and the corresponding elements of the input matrices.

NOTE This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
trans
m
n
k
a
ja
ia
b
ib

CHARACTER*1. Specifies the operation.
If trans \(=\) ' \(N\) ' or ' n ', then \(C:=A \star B\)
If trans \(=\) 'T' or 't' or 'C' or 'C', then \(C:=A\) '*B.

\section*{INTEGER. Number of rows of the matrix \(A\).}

INTEGER. Number of columns of the matrix \(A\).
INTEGER. Number of columns of the matrix \(B\).
REAL for mkl_scsrmultd.
DOUBLE PRECISION for mkl_dcsrmultd.
COMPLEX for mkl_ccsrmult \(\overline{\mathrm{d}}\).
DOUBLE COMPLEX for mkl_zcsrmultd.
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array containing the column indices for each non-zero element of the matrix \(A\). For each row the column indices must be arranged in the increasing order.
The length of this array is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array of length \(m+1\) when trans \(=\) 'N' or 'n', or \(n+1\) otherwise.
This array contains indices of elements in the array \(a\), such that ia(I) is the index in the array \(a\) of the first non-zero element from the row \(I\). The value of the last element ia(m+1) or ia \((n+1)\) is equal to the number of non-zero elements of the matrix A plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
```

REAL for mkl_scsrmultd.
DOUBLE PRECISION for mkl_dcsrmultd.
COMPLEX for mkl_ccsrmultd.
DOUBLE COMPLEX for mkl_zcsrmultd.

```

Array containing non-zero elements of the matrix \(B\). Its length is equal to the number of non-zero elements in the matrix \(B\). Refer to values array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array containing the column indices for each non-zero element of the matrix \(B\). For each row the column indices must be arranged in the increasing order.
The length of this array is equal to the length of the array \(b\). Refer to columns array description in Sparse Matrix Storage Formats for more details.
INTEGER. Array of length \(m+1\).
This array contains indices of elements in the array \(b\), such that \(i b(I)\) is the index in the array \(b\) of the first non-zero element from the row \(I\). The value of the last element \(i b(m+1)\) is equal to the number of non-zero elements of the matrix \(B\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

\section*{Output Parameters}
c
REAL for mkl_scsrmultd.
DOUBLE PRECISION for mkl_dcsrmultd.
COMPLEX for mkl_ccsrmultd.
DOUBLE COMPLEX for mkl_zcsrmultd.
Array containing non-zero elements of the result matrix \(c\).
ldc
INTEGER. Specifies the leading dimension of the dense matrix \(C\) as declared in the calling (sub)program. Must be at least \(\max (m, 1)\) when trans \(=\) 'N' or 'n', or max (\(1, n\)) otherwise.

\section*{Interfaces}

\section*{FORTRAN 77:}
```

    CHARACTER*1 trans
    INTEGER m, n, k, ldc
    INTEGER ja(*), jb(*), ia(*), ib(*)
    REAL a(*), b(*), c(ldc, *)
    ```
SUBROUTINE mkl_scsrmultd(trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
SUBROUTINE mkl_dcsrmultd(trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
 CHARACTER*1 trans
 INTEGER \(m, n, k, l d c\)
 INTEGER ja(*), jb(*), ia(*), ib(*)
 DOUBLE PRECISION \(a(*), b(*), c(l d c, *)\)
SUBROUTINE mkl_ccsrmultd(trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
 CHARACTER*1 trans
 INTEGER m, n, k, ldc
 INTEGER ja(*), jb(*), ia(*), ib(*)
 COMPLEX \(a(*), b(*), c(l d c, *)\)
SUBROUTINE mkl_zcsrmultd(trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
 CHARACTER*1 trans
 INTEGER \(m, n, k, l d c\)
 INTEGER ja(*), jb(*), ia(*), ib(*)
 DOUBLE COMPLEX \(a(*), b(*), c(l d c, *)\)
C:
void mkl scsrmultd(char *trans, int \({ }^{*} m\), int \({ }^{n} n\), int \({ }^{*} k\),
float *a, int *ja, int *ia, float *b, int *jb, int *ib, float *c, int *ldc);
void mkl_dcsrmultd(char *trans, int *m, int *n, int *k,
double *a, int *ja, int *ia, double *b, int *jb, int *ib, double *c, int *ldc);
void mkl_ccsrmultd(char *trans, int *m, int *n, int *k,
MKL_Complex8 *a, int *ja, int *ia, MKL_Complex8 *b, int *jb, int *ib,
MKL_Complex8 * \(c\), int *ldc);
```

void mkl zcsrmultd(char *trans, int *m, int *n, int *k,
MKL_Complex16 *a, int *ja, int *ia, MKL_Complex16 *b, int *jb, int *ib,
MKL_Complex16 *C, int *ldc);

```

\section*{BLAS-like Extensions}

Intel MKL provides C and Fortran routines to extend the functionality of the BLAS routines. These include routines to compute vector products, matrix-vector products, and matrix-matrix products.

Intel MKL also provides routines to perform certain data manipulation, including matrix in-place and out-ofplace transposition operations combined with simple matrix arithmetic operations. Transposition operations are Copy As Is, Conjugate transpose, Transpose, and Conjugate. Each routine adds the possibility of scaling during the transposition operation by giving some alpha and/or beta parameters. Each routine supports both row-major orderings and column-major orderings.
Table "BLAS-like Extensions" lists these routines.
The <?> symbol in the routine short names is a precision prefix that indicates the data type:
\begin{tabular}{ll}
\(s\) & REAL for Fortran interface, or float for C interface \\
\(d\) & DOUBLE PRECISION for Fortran interface, or double for C interface. \\
\(c\) & COMPLEX for Fortran interface, or MKL_Complex 8 for C interface. \\
\(z\) & DOUBLE COMPLEX for Fortran interface, or MKL_Complex16 for C interface.
\end{tabular}

BLAS-like Extensions
\begin{tabular}{|c|c|c|}
\hline Routine & Data Types & Description \\
\hline axpby & s, d, c, z & Scales two vectors, adds them to one another and stores result in the vector (routines) \\
\hline gem2vu & \(s, d\) & Two matrix-vector products using a general matrix, real data \\
\hline gem2vc & c, z & Two matrix-vector products using a general matrix, complex data \\
\hline ? gemm3m & c, z & Computes a scalar-matrix-matrix product using matrix multiplications and adds the result to a scalar-matrix product. \\
\hline mkl_?imatcopy & s, d, c, z & Performs scaling and in-place transposition/copying of matrices. \\
\hline mkl_?omatcopy & s, d, c, z & Performs scaling and out-of-place transposition/copying of matrices. \\
\hline mkl_?omatcopy2 & s, d, c, z & Performs two-strided scaling and out-of-place transposition/copying of matrices. \\
\hline mkl_?omatadd & s, d, c, z & Performs scaling and sum of two matrices including their out-of-place transposition/copying. \\
\hline
\end{tabular}

\section*{?axpby}

Scales two vectors, adds them to one another and stores result in the vector.

\section*{Syntax}

\section*{Fortran 77:}
```

call saxpby(n, a, x, incx, b, y, incy)

```
```

2
Inte| Math Kernel Library Reference Manual

```
```

call daxpby(n, a, x, incx, b, y, incy)

```
call daxpby(n, a, x, incx, b, y, incy)
call caxpby(n, a, x, incx, b, y, incy)
call caxpby(n, a, x, incx, b, y, incy)
call zaxpby(n, a, x, incx, b, y, incy)
```

call zaxpby(n, a, x, incx, b, y, incy)

```

\section*{Fortran 95:}
```

call axpby(x, y [,a] [,b])

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?axpby routines perform a vector-vector operation defined as
```

y := a*x + b* y

```
where:
\(a\) and \(b\) are scalars
\(x\) and \(y\) are vectors each with \(n\) elements.

\section*{Input Parameters}
```

n INTEGER. Specifies the number of elements in vectors x and y.
a REAL for saxpby
DOUBLE PRECISION for daxpby
COMPLEX for caxpby
DOUBLE COMPLEX for zaxpby
Specifies the scalar a.
x
incx
b
y
incy

```

\section*{Output Parameters}
y
Contains the updated vector \(y\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine axpby interface are the following:
\begin{tabular}{ll}
\(x\) & Holds the array of size \(n\). \\
\(y\) & Holds the array of size \(n\). \\
\(a\) & The default value is 1. \\
\(b\) & The default value is 1.
\end{tabular}

\section*{?gem2vu}

Computes two matrix-vector products using a general matrix (real data)

\section*{Syntax}

\section*{Fortran 77:}
```

call sgem2vu(m, n, alpha, a, lda, x1, incx1, x2, incx2, beta, y1, incyl, y2, incy2)
call dgem2vu(m, n, alpha, a, lda, x1, incx1, x2, incx2, beta, y1, incy1, y2, incy2)

```

\section*{Fortran 95:}
```

call gem2vu(a, x1, x2, y1, y2 [,alpha][,beta] )

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?gem 2 vu routines perform two matrix-vector operations defined as
```

y1 := alpha*A*x1 + beta*y1,

```
and
\(y 2\) := alpha*A'*x2 + beta*y2,
where:
alpha and beta are scalars,
\(x 1, x 2, y 1\), and \(y 2\) are vectors,
\(A\) is an \(m\)-by-n matrix.

\section*{Input Parameters}
m
\(n\)
alpha
INTEGER. Specifies the number of rows of the matrix \(A\). The value of \(m\) must be at least zero.
INTEGER. Specifies the number of columns of the matrix \(A\). The value of \(n\) must be at least zero.
REAL for sgem2vu
DOUBLE PRECISION for dgem2vu
\begin{tabular}{|c|c|}
\hline & Specifies the scalar alpha. \\
\hline \multirow[t]{3}{*}{a} & REAL for sgem2vu \\
\hline & DOUBLE PRECISION for dgem2vu \\
\hline & Array, DIMENSION (lda, n). Before entry, the leading m-by-n part of the array a must contain the matrix of coefficients. \\
\hline Ida & INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least max (\(1, \mathrm{~m}\)). \\
\hline \multirow[t]{3}{*}{x1} & REAL for sgem2vu \\
\hline & DOUBLE PRECISION for dgem2vu \\
\hline & Array, DIMENSION at least (\(1+(n-1) * a b s(i n c x 1))\). Before entry, the incremented array \(\times 1\) must contain the vector xl . \\
\hline incx1 & INTEGER. Specifies the increment for the elements of \(x 1\). \\
\hline \multirow[t]{3}{*}{\(x 2\)} & REAL for sgem2vu \\
\hline & DOUBLE PRECISION for dgem2vu \\
\hline & Array, DIMENSION at least (1+(m-1)*abs (incx2)). Before entry, the incremented array \(x 2\) must contain the vector \(x 2\). \\
\hline \multirow[t]{2}{*}{incx 2} & INTEGER. Specifies the increment for the elements of \(x 2\). \\
\hline & The value of incx2 must not be zero. \\
\hline \multirow[t]{3}{*}{beta} & REAL for sgem2vu \\
\hline & DOUBLE PRECISION for dgem2vu \\
\hline & Specifies the scalar beta. When beta is set to zero, then \(y 1\) and \(y 2\) need not be set on input. \\
\hline \multirow[t]{3}{*}{y1} & REAL for sgem2vu \\
\hline & DOUBLE PRECISION for dgem2vu \\
\hline & Array, DIMENSION at least \((1+(m-1) * a b s(i n c y 1))\). Before entry with nonzero beta, the incremented array y1 must contain the vector \(y 1\). \\
\hline \multirow[t]{2}{*}{incyl} & INTEGER. Specifies the increment for the elements of \(y 1\). \\
\hline & The value of incyl must not be zero. \\
\hline \multirow[t]{3}{*}{y} & REAL for sgem2vu \\
\hline & DOUBLE PRECISION for dgem2vu \\
\hline & Array, DIMENSION at least \((1+(n-1) * a b s(i n c y 2))\). Before entry with nonzero beta, the incremented array y 2 must contain the vector \(y 2\). \\
\hline \multirow[t]{2}{*}{incy2} & INTEGER. Specifies the increment for the elements of \(y 2\). \\
\hline & The value of incy 2 must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

y1 Updated vector y1.
y2 Updated vector y2.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gem2vu interface are the following:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((m, n)\). \\
\(x 1\) & Holds the vector with the number of elements \(r x 1\) where \(r x 1=n\). \\
\(x 2\) & Holds the vector with the number of elements \(r x 2\) where \(r x 2=m\).
\end{tabular}
\begin{tabular}{ll}
\(y 1\) & Holds the vector with the number of elements ry1 where ry1 \(=m\). \\
\(y^{2}\) & Holds the vector with the number of elements ry2 where ry2 \(=n\). \\
alpha & The default value is 1.
\end{tabular}
?gem2vc
Computes two matrix-vector products using a general matrix (complex data)

Syntax

\section*{Fortran 77:}
```

call cgem2vc(m, n, alpha, a, lda, x1, incx1, x2, incx2, beta, y1, incy1, y2, incy2)
call zgem2vc(m, n, alpha, a, lda, x1, incx1, x2, incx2, beta, yl, incyl, y2, incy2)

```

\section*{Fortran 95:}
```

call gem2vc(a, x1, x2, y1, y2 [,alpha][,beta] )

```

Include Files
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ? gem2vc routines perform two matrix-vector operations defined as
```

y1 := alpha* A*x1 + beta* y1,
and
y2 := alpha*conjg(A')*x2 + beta*y2,

```
where:
```

alpha and beta are scalars,

```
\(x 1, x 2, y 1\), and \(y 2\) are vectors,
\(A\) is an m-by-n matrix.

\section*{Input Parameters}
m
n
alpha
a

INTEGER. Specifies the number of rows of the matrix \(A\). The value of \(m\) must be at least zero.
INTEGER. Specifies the number of columns of the matrix \(A\). The value of \(n\) must be at least zero.
COMPLEX for cgem2vc
DOUBLE COMPLEX for zgem2vc
Specifies the scalar alpha.
COMPLEX for cgem2vc
DOUBLE COMPLEX for zgem2vc
Array, DIMENSION (lda, n). Before entry, the leading m-by-n part of the array a must contain the matrix of coefficients.
\begin{tabular}{|c|c|}
\hline Ida & INTEGER. Specifies the leading dimension of a declared in the calling (sub)program. The value of 1 da must be at least max \((1, \mathrm{~m})\). \\
\hline x1 & \begin{tabular}{l}
COMPLEX for cgem2vc \\
DOUBLE COMPLEX for zgem2vc \\
Array, DIMENSION at least (1+(n-1)*abs(incx1)). Before entry, the incremented array \(x 1\) must contain the vector \(\times 1\).
\end{tabular} \\
\hline incxl & INTEGER. Specifies the increment for the elements of \(x 1\). The value of incx1 must not be zero. \\
\hline \(x 2\) & \begin{tabular}{l}
COMPLEX for cgem2vc \\
DOUBLE COMPLEX for zgem2vc \\
Array, DIMENSION at least (1+(m-1)*abs (incx2)). Before entry, the incremented array \(x 2\) must contain the vector \(x 2\).
\end{tabular} \\
\hline incx 2 & INTEGER. Specifies the increment for the elements of \(x 2\). The value of incx2 must not be zero. \\
\hline beta & \begin{tabular}{l}
COMPLEX for cgem2vc \\
DOUBLE COMPLEX for zgem2vc \\
Specifies the scalar beta. When beta is set to zero, then \(y 1\) and \(y 2\) need not be set on input.
\end{tabular} \\
\hline y1 & \begin{tabular}{l}
COMPLEX for cgem2vc \\
DOUBLE COMPLEX for zgem2vc \\
Array, DIMENSION at least (1+(m-1)*abs (incy1)). Before entry with nonzero beta, the incremented array y1 must contain the vector \(y 1\).
\end{tabular} \\
\hline incyl & INTEGER. Specifies the increment for the elements of \(y 1\). The value of incyl must not be zero. \\
\hline \(y^{2}\) & \begin{tabular}{l}
COMPLEX for cgem2vc \\
DOUBLE COMPLEX for zgem2vc \\
Array, DIMENSION at least (1+(n-1)*abs (incy2)). Before entry with nonzero beta, the incremented array y2 must contain the vector \(y 2\).
\end{tabular} \\
\hline incy2 & \begin{tabular}{l}
INTEGER. Specifies the increment for the elements of \(y 2\). The value of incy must not be zero. \\
Integer. Specifies the increment for the elements of \(y\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
```

y1 Updated vector y1.
y2 Updated vector y2.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gem2vc interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size (\(m, n\)). \\
\hline x1 & Holds the vector with the number of elements rx1 where rxi \(=n\). \\
\hline \(x 2\) & Holds the vector with the number of elements rx2 where rx2 \(m\) m \\
\hline y1 & Holds the vector with the number of elements ryl where ryl \(=\mathrm{m}\). \\
\hline \(y^{2}\) & Holds the vector with the number of elements ry2 where ry2 \(n\). \\
\hline alpha & The default value is 1. \\
\hline
\end{tabular}
beta \(\quad\) The default value is 0 .
?gemm3m
Computes a scalar-matrix-matrix product using matrix multiplications and adds the result to a scalar-matrix product.

\section*{Syntax}

\section*{Fortran 77:}
```

call cgemm3m(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call zgemm3m(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

```

\section*{Fortran 95:}
```

call gemm3m(a, b, c [,transa][,transb] [,alpha][,beta])

```

\section*{Include Files}
- FORTRAN 77: mkl_blas.fi
- Fortran 95: blas.f90
- C: mkl_blas.h

\section*{Description}

The ?gemm 3 m routines perform a matrix-matrix operation with general complex matrices. These routines are similar to the ?gemm routines, but they use matrix multiplications(see Application Notes below).

The operation is defined as
```

C := alpha*op (A)*op (B) + beta*C,

```
where:
```

op(x) is one of op (x) = x, or op (x) = x',orop(x) = conjg(x'),
alpha and beta are scalars,
A,B and C are matrices:
op (A) is an m-by-k matrix,
op (B) is a k-by-n matrix,
C is an m-by-n matrix.
Input Parameters

```
transa CHARACTER*1. Specifies the form of op (\(A\)) used in the matrix
multiplication:
if transa \(=\) ' \(N\) ' or ' n ', then \(o p(A)=A\);
if transa \(=\) 'T' or 't', then op \((A)=A\) ';
if transa \(=\) 'C' or 'c', then op \((A)=\operatorname{conjg}(A\) ').
transb CHARACTER*1. Specifies the form of op (\(B\)) used in the matrix multiplication:
if transb \(=\) ' \(N\) ' or 'n', then op \((B)=B\);
if transb \(=\) 'T' or 't', then op \((B)=B\) ';
if transb \(=\) 'C' or ' \(C\) ', then \(o p(B)=\operatorname{conjg}\left(B^{\prime}\right)\).
\begin{tabular}{|c|c|}
\hline m & INTEGER. Specifies the number of rows of the matrix op (A) and of the matrix \(C\). The value of \(m\) must be at least zero. \\
\hline \(n\) & \begin{tabular}{l}
INTEGER. Specifies the number of columns of the matrix op (\(B\)) and the number of columns of the matrix \(C\). \\
The value of \(n\) must be at least zero.
\end{tabular} \\
\hline k & \begin{tabular}{l}
INTEGER. Specifies the number of columns of the matrix op (\(A\)) and the number of rows of the matrix op (\(B\)). \\
The value of \(k\) must be at least zero.
\end{tabular} \\
\hline alpha & COMPLEX for cgemm3m DOUBLE COMPLEX for zgemm3m Specifies the scalar alpha. \\
\hline a & \begin{tabular}{l}
COMPLEX for cgemm3m \\
DOUBLE COMPLEX for zgemm3m \\
Array, DIMENSION (lda, ka), where ka is \(k\) when transa= 'N' or 'n', and is \(m\) otherwise. Before entry with transa= ' \(N\) ' or ' \(n\) ', the leading \(m\) -by- \(k\) part of the array a must contain the matrix \(A\), otherwise the leading \(k\) -by-m part of the array a must contain the matrix \(A\).
\end{tabular} \\
\hline Ida & INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. When transa= 'N' or 'n', then lda must be at least \(\max (1, m)\), otherwise lda must be at least max \((1, k)\). \\
\hline b & \begin{tabular}{l}
COMPLEX for cgemm3m \\
DOUBLE COMPLEX for zgemm3m \\
Array, DIMENSION (\(1 \mathrm{db}, \mathrm{kb}\)), where \(k b\) is \(n\) when transb \(=\) ' \(N\) ' or ' \(n\) ', and is \(k\) otherwise. Before entry with transb \(=\) ' \(N\) ' or ' \(n\) ', the leading \(k\) by \(-n\) part of the array \(b\) must contain the matrix \(B\), otherwise the leading \(n\) -by- \(k\) part of the array \(b\) must contain the matrix \(B\).
\end{tabular} \\
\hline 1 db & INTEGER. Specifies the leading dimension of \(b\) as declared in the calling (sub)program. When transb \(=\) ' \(N\) ' or ' \(n\) ', then ldb must be at least \(\max (1, k)\), otherwise 1 db must be at least max \((1, n)\). \\
\hline beta & \begin{tabular}{l}
COMPLEX for cgemm3m \\
DOUBLE COMPLEX for zgemm3m \\
Specifies the scalar beta. \\
When beta is equal to zero, then \(c\) need not be set on input.
\end{tabular} \\
\hline c & \begin{tabular}{l}
COMPLEX for cgemm3m \\
DOUBLE COMPLEX for zgemm3m \\
Array, DIMENSION (\(1 d c, n\)). \\
Before entry, the leading \(m\)-by- \(n\) part of the array \(c\) must contain the matrix \(C\), except when beta is equal to zero, in which case \(c\) need not be set on entry.
\end{tabular} \\
\hline \(1 d c\) & INTEGER. Specifies the leading dimension of \(c\) as declared in the calling (sub) program. The value of \(1 d c\) must be at least max \((1, m)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by the m-by-n matrix (alpha*op (A)*op \((B)+\) beta* \(C\)).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
```

Specific details for the routine gemm3m interface are the following:
a Holds the matrix A of size (ma,ka) where
ka = k if transa= 'N',
ka = m otherwise,
ma = m if transa= 'N',
ma = k otherwise.
b Holds the matrix B of size (mb,kb) where
kb = n if transb = 'N',
kb = k otherwise,
mb = k if transb = 'N',
mb = n otherwise.
C
Holds the matrix C of size ( m,n).
Must be 'N', 'C', or 'T'.
The default value is 'N'.
transb Must be 'N','C', or 'T'.
The default value is 'N'.
alpha The default value is 1.
beta The default value is 1.

```

\section*{Application Notes}

These routines perform the complex multiplication by forming the real and imaginary parts of the input matrices. It allows to use three real matrix multiplications and five real matrix additions, instead of the conventional four real matrix multiplications and two real matrix additions. The use of three real matrix multiplications only gives a \(25 \%\) reduction of time in matrix operations. This can result in significant savings in computing time for large matrices.
If the errors in the floating point calculations satisfy the following conditions:
```

fl(x op y)=(x op y)(1+\delta), |\delta|\lequ, op=x,/, fl (x\pmy)=x(1+\alpha)\pmy(1+\beta), |\alpha|, | \beta|\lequ

```
then for \(n\)-by-n matrix \(\hat{C}=f l\left(C_{1}+i C_{2}\right)=f l\left(\left(A_{1}+i A_{2}\right)\left(B_{1}+i B_{2}\right)\right)=\hat{C}_{1}+i \hat{C}_{2}\) the following estimations are correct
\(\left\|\hat{C}_{1}-C_{2}\right\| \leq 2(n+1) u\|A\|_{\infty}\|B\|_{\infty}+O\left(u^{2}\right)\),
\(\left\|\hat{C}_{2}-C_{1}\right\| \leq 4(n+4) u\|A\|_{\infty}\|B\|_{\infty}+O\left(u^{2}\right)\),
where \(\|A\|_{\infty}=\max \left(\left\|A_{1}\right\|_{\infty},\left\|A_{2}\right\|_{\infty}\right)\), and \(\|B\|_{\infty}=\max \left(\left\|B_{1}\right\|_{\infty},\left\|B_{2}\right\|_{\infty}\right)\).
and hence the matrix multiplications are stable.

\section*{mkl_?imatcopy}

Performs scaling and in-place transposition/copying of matrices.

Syntax

\section*{Fortran:}
```

call mkl_simatcopy(ordering, trans, rows, cols, alpha, a, src_lda, dst_lda)
call mkl_dimatcopy(ordering, trans, rows, cols, alpha, a, src_lda, dst_lda)
call mkl_cimatcopy(ordering, trans, rows, cols, alpha, a, src_lda, dst_lda)
call mkl_zimatcopy(ordering, trans, rows, cols, alpha, a, src_lda, dst_lda)

```

C:
```

mkl_simatcopy(ordering, trans, rows, cols, alpha, a, src_lda, dst_lda);
mkl_dimatcopy(ordering, trans, rows, cols, alpha, a, src_lda, dst_lda);
mkl_cimatcopy(ordering, trans, rows, cols, alpha, a, src_lda, dst_lda);
mkl_zimatcopy(ordering, trans, rows, cols, alpha, a, src_lda, dst_lda);

```

\section*{Include Files}
- FORTRAN 77: mkl_trans.fi
- C: mkl_trans.h

\section*{Description}

The mkl_?imatcopy routine performs scaling and in-place transposition/copying of matrices. A transposition operation can be a normal matrix copy, a transposition, a conjugate transposition, or just a conjugation. The operation is defined as follows:
```

A := alpha*op(A).

```

The routine parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

Note that different arrays should not overlap.

\section*{Input Parameters}
```

ordering
trans CHARACTER*1. Parameter that specifies the operation type.
rows
cols
a
alpha
CHARACTER*1. Ordering of the matrix storage.
If ordering = 'R' or 'r', the ordering is row-major.
If ordering = 'C' or 'c', the ordering is column-major.
If trans = 'N' or 'n',op (A)=A and the matrix A is assumed unchanged
on input.
If trans = 'T' or 't', it is assumed that A should be transposed.
If trans = 'C' or 'c', it is assumed that A should be conjugate
transposed.
If trans = 'R' or 'r', it is assumed that A should be only conjugated.
If the data is real, then trans = 'R' is the same as trans='N', and
trans='C' is the same as trans='T'.
INTEGER. The number of matrix rows.
INTEGER. The number of matrix columns.
REAL for mkl_simatcopy.
DOUBLE PRECISION formkl_dimatcopy.
COMPLEX formkl_cimatcopy.
DOUBLE COMPLEX for mkl_zimatcopy.
Array, DIMENSION a(scr_lda,*).
REAL for mkl_simatcopy.
DOUBLE PRECISION formkl_dimatcopy.
COMPLEX formkl_cimatcopy.
DOUBLE COMPLEX for mkl_zimatcopy.
This parameter scales the input matrix by alpha.

```
src_lda
\(d s t _l d a\)

INTEGER. Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the source matrix; measured in the number of elements.
This parameter must be at least max (1, rows) if ordering = ' C' or 'c', and max (1, cols) otherwise.

INTEGER. Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the destination matrix; measured in the number of elements. To determine the minimum value of \(d s t _l d a\) on output, consider the following guideline:
If ordering = 'C' or 'c', then
- If trans \(=\) 'T' or 't' or 'C' or 'c', this parameter must be at least max (1, rows)
- If trans \(=\) ' \(N\) ' or ' \(n\) ' or 'R' or 'r', this parameter must be at least \(\max (1\), cols \()\)

If ordering = 'R' or 'r', then
- If trans \(=\) 'T' or 't' or 'C' or 'c', this parameter must be at least max (1, cols)
- If trans \(=\) ' \(N\) ' or ' \(n\) ' or 'R' or 'r', this parameter must be at least \(\max (1\), rows \()\)

\section*{Output Parameters}
a
```

REAL for mkl_simatcopy.
DOUBLE PRECISION formkl_dimatcopy.
COMPLEX for mkl_cimatcopy.
DOUBLE COMPLEX formkl_zimatcopy.
Array, DIMENSION at least m.
Contains the matrix A.

```

\section*{Interfaces}

FORTRAN 77:
```

SUBROUTINE mkl_simatcopy ( ordering, trans, rows, cols, alpha, a, src_lda, dst_lda )
CHARACTER*1 ordering, trans
INTEGER rows, cols, src_ld, dst_ld
REAL a(*), alpha*
SUBROUTINE mkl_dimatcopy ( ordering, trans, rows, cols, alpha, a, src_lda, dst_lda )
CHARACTER*1 ordering, trans
INTEGER rows, cols, src_ld, dst_ld
DOUBLE PRECISION a(*), alpha*
SUBROUTINE mkl_cimatcopy ( ordering, trans, rows, cols, alpha, a, src_lda, dst_lda )
CHARACTER*1-ordering, trans
INTEGER rows, cols, src_ld, dst_ld
COMPLEX a(*), alpha*
SUBROUTINE mkl_zimatcopy ( ordering, trans, rows, cols, alpha, a, src_lda, dst_lda )
CHARACTER*1-ordering, trans
INTEGER rows, cols, src_ld, dst_ld
DOUBLE COMPLEX a(*), alp

```
C:
void mkl_simatcopy(char ordering, char trans, size_t rows, size_t cols, float *alpha, float *a, size_t
src_lda, -size_t dst_lda);
```

void mkl_dimatcopy(char ordering, char trans, size_t rows, size_t cols, double *alpha, float *a, size_t

```
src_lda,-size_t dst_lda);
void mkl_cimatcopy(char ordering, char trans, size_t rows, size_t cols, MKL_Complex8 *alpha,
MKL_Complex8 *a, size_t src_lda, size_t dst_lda);
void mkl_zimatcopy(char ordering, char trans, size_t rows, size_t cols, MKL_Complex16 *alpha,
MKL_Complex16 *a, size_t src_lda, size_t dst_lda);
mkl_?omatcopy
Performs scaling and out-place transposition/copying of matrices.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_somatcopy(ordering, trans, rows, cols, alpha, src, src_ld, dst, dst_ld)
call mkl_domatcopy(ordering, trans, rows, cols, alpha, src, src_ld, dst, dst_ld)
call mkl_comatcopy(ordering, trans, rows, cols, alpha, src, src_ld, dst, dst_ld)
call mkl_zomatcopy(ordering, trans, rows, cols, alpha, src, src_ld, dst, dst_ld)
C:
mkl_somatcopy(ordering, trans, rows, cols, alpha, SRC, src_stride, DST, dst_stride);
mkl_domatcopy(ordering, trans, rows, cols, alpha, SRC, src_stride, DST, dst_stride);
mkl_comatcopy(ordering, trans, rows, cols, alpha, SRC, src_stride, DST, dst_stride);
mkl_zomatcopy(ordering, trans, rows, cols, alpha, SRC, src_stride, DST, dst_stride);

```

Include Files
- FORTRAN 77: mkl_trans.fi
- C: mkl_trans.h

\section*{Description}

The mkl_?omatcopy routine performs scaling and out-of-place transposition/copying of matrices. A transposition operation can be a normal matrix copy, a transposition, a conjugate transposition, or just a conjugation. The operation is defined as follows:
```

B := alpha*op(A)

```

The routine parameter descriptions are common for all implemented interfaces with the exception of data types that mostly refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

Note that different arrays should not overlap.

\section*{Input Parameters}
ordering
trans

CHARACTER*1. Ordering of the matrix storage.
If ordering = 'R' or 'r', the ordering is row-major. If ordering = 'C' or 'c', the ordering is column-major.
CHARACTER*1. Parameter that specifies the operation type.
If trans \(=\) ' \(N\) ' or ' \(n\) ', op \((A)=A\) and the matrix \(A\) is assumed unchanged on input.

If trans \(=\) 'T' or 't', it is assumed that \(A\) should be transposed. If trans \(=\) ' \(C\) ' or ' \(C\) ', it is assumed that \(A\) should be conjugate transposed.
If trans \(=\) ' \(R\) ' or 'r', it is assumed that \(A\) should be only conjugated. If the data is real, then trans \(=\) ' R ' is the same as trans \(=\) ' \(N\) ', and \(\operatorname{trans}=' \mathrm{C}\) ' is the same as trans \(=\) ' T '.

INTEGER. The number of matrix rows.
INTEGER. The number of matrix columns.
REAL for mkl_somatcopy.
DOUBLE PRECISION for mkl_domatcopy.
COMPLEX for mkl_comatcopy.
DOUBLE COMPLEX for mkl_zomatcopy.
This parameter scales the input matrix by alpha.
REAL for mkl_somatcopy.
DOUBLE PRECISION for mkl_domatcopy.
COMPLEX for mkl_comatcopy.
DOUBLE COMPLEX for mkl_zomatcopy.
Array, DIMENSION src(scr_ld,*).
INTEGER. (Fortran interface). Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the source matrix; measured in the number of elements.
This parameter must be at least max (1, rows) if ordering = ' C' or 'c', and max (1, cols) otherwise.
INTEGER. (C interface). Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the source matrix; measured in the number of elements.
This parameter must be at least max (1, rows) if ordering = 'C' or 'c', and max (1, cols) otherwise.
REAL for mkl_somatcopy.
DOUBLE PRECISION for mkl_domatcopy.
COMPLEX for mkl_comatcopy.
DOUBLE COMPLEX for mkl_zomatcopy.
Array, DIMENSION dst(dst_ld,*).
INTEGER. (Fortran interface). Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the destination matrix; measured in the number of elements.
To determine the minimum value of \(d s t _l d a\) on output, consider the following guideline:
If ordering = 'C' or 'c', then
- If trans \(=\) 'T' or 't' or 'C' or 'c', this parameter must be at least \(\max (1\), rows \()\)
- If trans \(=\) ' \(N\) ' or 'n' or 'R' or 'r', this parameter must be at least max (1, cols)

If ordering = 'R' or 'r', then
- If trans \(=\) 'T' or 't' or 'C' or 'c', this parameter must be at least \(\max (1, \operatorname{cols})\)
- If trans \(=\) ' \(N\) ' or ' \(n\) ' or 'R' or 'r', this parameter must be at least \(\max (1\), rows \()\)

INTEGER. (C interface). Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the destination matrix; measured in the number of elements.
To determine the minimum value of dst_lda on output, consider the following guideline:
If ordering = 'C' or 'c', then
- If trans \(=\) 'T' or 't' or 'C' or 'c', this parameter must be at least max (1, rows)
- If trans \(=\) ' \(N\) ' or ' \(n\) ' or 'R' or 'r', this parameter must be at least \(\max (1\), cols \()\)

If ordering = 'R' or 'r', then
- If trans \(=\) 'T' or 't' or 'C' or 'c', this parameter must be at least \(\max (1, \operatorname{cols})\)
- If trans \(=\) 'N' or 'n' or 'R' or 'r', this parameter must be at least \(\max (1\), rows \()\)

\section*{Output Parameters}

REAL for mkl_somatcopy.
DOUBLE PRECISION for mkl_domatcopy.
COMPLEX for mkl_comatcopy.
DOUBLE COMPLEX for mkl_zomatcopy.
Array, DIMENSION at least \(m\).
Contains the destination matrix.

\section*{Interfaces}

FORTRAN 77:
```

SUBROUTINE mkl somatcopy ( ordering, trans, rows, cols, alpha, src, src ld, dst, dst_ld )
CHARACTER*1-ordering, trans
INTEGER rows, cols, src ld, dst ld
REAL alpha, dst(dst_ld,}\mp@subsup{}{}{\star}),\operatorname{src}(\overline{src}_ld,*
SUBROUTINE mkl_domatcopy ( ordering, trans, rows, cols, alpha, src, src_ld, dst, dst_ld )
CHARACTER*1-ordering, trans
INTEGER rows, cols, src lda, dst lda
DOUBLE PRECISION alpha,_dst(dst_Id,*), src(src_ld,*)

```
```

SUBROUTINE mkl_comatcopy ( ordering, trans, rows, cols, alpha, src, src_ld, dst, dst_ld )
CHARACTER*1 ordering, trans
INTEGER rows, cols, src lda, dst lda
COMPLEX alpha, dst(dst_\overline{l}d,*), sr\overline{c}(src_ld,*)
SUBROUTINE mkl_zomatcopy ( ordering, trans, rows, cols, alpha, src, src_ld, dst, dst_ld )
CHARACTER*1-ordering, trans
INTEGER rows, cols, src_lda, dst_lda
DOUBLE COMPLEX alpha, d\overline{s}t(dst_ld,**), src(src_ld,*)

```
C:
void mkl_somatcopy(char ordering, char trans, size_t rows, size_t cols, float alpha, float *SRC, size_t
src_stride, float *DST, size_t dst_stride);
```

void mkl_domatcopy(char ordering, char trans, size_t rows, size_t cols, double alpha, double *SRC,
size_t srrc_stride, double *DST, size_t dst_stride);
void mkl comatcopy(char ordering, char trans, size_t rows, size_t cols, MKL_Complex8 alpha,
MKL_Complex8 *SRC, size_t src_stride, MKL_Complex8}\mp@subsup{}{}{*}*DST, size_t - dst_stride);
void mkl_zomatcopy(char ordering, char trans, size_t rows, size_t cols, MKL_Complex16 alpha,
MKL_Complex16 *SRC, size_t src_stride, MKL_Complex16 *DST, size_t dst_stride);

```
mkl_?omatcopy2
Performs two-strided scaling and out-of-place transposition/copying of matrices.

\section*{Syntax}

\section*{Fortran:}
```

call mkl_somatcopy2(ordering, trans, rows, cols, alpha, src, src_row, src_col, dst,
dst_row, dst_col)
call mkl_domatcopy2(ordering, trans, rows, cols, alpha, src, src_row, src_col, dst,
dst_row, dst_col)
call mkl_comatcopy2(ordering, trans, rows, cols, alpha, src, src_row, src_col, dst,
dst_row, dst_col)
call mkl_zomatcopy2(ordering, trans, rows, cols, alpha, src, src_row, src_col, dst,
dst_row, dst_col)
C:
mkl_somatcopy2(ordering, trans, rows, cols, alpha, SRC, src_row, src_col, DST,
dst_row, dst_col);
mkl_domatcopy2(ordering, trans, rows, cols, alpha, SRC, src_row, src_col, DST,
dst_row, dst_col);
mkl_comatcopy2(ordering, trans, rows, cols, alpha, SRC, src_row, src_col, DST,
dst_row, dst_col);
mkl_zomatcopy2(ordering, trans, rows, cols, alpha, SRC, src_row, src_col, DST,
dst_row, dst_col);

```

\section*{Include Files}
- FORTRAN 77: mkl_trans.fi
- C: mkl_trans.h

\section*{Description}

The mkl_?omatcopy2 routine performs two-strided scaling and out-of-place transposition/copying of matrices. A transposition operation can be a normal matrix copy, a transposition, a conjugate transposition, or just a conjugation. The operation is defined as follows:
```

B := alpha*op (A)

```

Normally, matrices in the BLAS or LAPACK are specified by a single stride index. For instance, in the columnmajor order, \(A(2,1)\) is stored in memory one element away from \(A(1,1)\), but \(A(1,2)\) is a leading dimension away. The leading dimension in this case is the single stride. If a matrix has two strides, then both \(A(2,1)\) and \(A(1,2)\) may be an arbitrary distance from \(A(1,1)\).

The routine parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

Note that different arrays should not overlap.

\section*{Input Parameters}
ordering
trans
rows
cols
alpha
src
src row
src_COl
\(d s t\)
dst row

CHARACTER*1. Ordering of the matrix storage.
If ordering = 'R' or 'r', the ordering is row-major.
If ordering \(=\) ' \(C\) ' or ' \(C\) ', the ordering is column-major.
CHARACTER*1. Parameter that specifies the operation type.
If trans \(=\) ' \(N\) ' or ' n ', op \((A)=A\) and the matrix \(A\) is assumed unchanged on input.
If trans \(=\) ' \(T\) ' or ' \(t\) ', it is assumed that \(A\) should be transposed.
If trans \(=\) ' C' or 'c', it is assumed that \(A\) should be conjugate transposed.
If trans \(=\) ' \(R\) ' or ' \(r\) ', it is assumed that \(A\) should be only conjugated. If the data is real, then trans = 'R' is the same as trans = 'N', and trans \(=\) ' C' is the same as trans \(=\) ' \(T\) '.

INTEGER. The number of matrix rows.
INTEGER. The number of matrix columns.
REAL for mkl_somatcopy2.
DOUBLE PRECISION for mkl_domatcopy2.
COMPLEX for mkl_comatcopy2.
DOUBLE COMPLEX for mkl_zomatcopy2.
This parameter scales the input matrix by alpha.
REAL for mkl_somatcopy2.
DOUBLE PRECISION for mkl_domatcopy2.
COMPLEX for mkl_comatcopy2.
DOUBLE COMPLEX for mkl_zomatcopy2.
Array, DIMENSION src(*).
INTEGER. Distance between the first elements in adjacent rows in the source matrix; measured in the number of elements.
This parameter must be at least max (1 , rows).
INTEGER. Distance between the first elements in adjacent columns in the source matrix; measured in the number of elements.
This parameter must be at least max (1, cols).
REAL for mkl_somatcopy2.
DOUBLE PRECISION for mkl_domatcopy2.
COMPLEX for mkl_comatcopy2.
DOUBLE COMPLEX for mkl_zomatcopy2.
Array, DIMENSION dst(*).
INTEGER. Distance between the first elements in adjacent rows in the destination matrix; measured in the number of elements.
To determine the minimum value of dst_row on output, consider the following guideline:
- If trans \(=\) 'T' or 't' or 'C' or 'c', this parameter must be at least \(\max (1\), cols \()\)
- If trans \(=\) 'N' or 'n' or 'R' or 'r', this parameter must be at least max (1, rows)

INTEGER. Distance between the first elements in adjacent columns in the destination matrix; measured in the number of elements.
To determine the minimum value of dst_lda on output, consider the following guideline:
- If trans \(=\) 'T' or 't' or 'C' or 'c', this parameter must be at least max (1, rows)
- If trans \(=\) ' \(N\) ' or ' \(n\) ' or 'R' or 'r', this parameter must be at least \(\max (1, \operatorname{cols})\)

\section*{Output Parameters}

REAL for mkl_somatcopy2.
DOUBLE PRECISION for mkl_domatcopy2.
COMPLEX for mkl_comatcopy2.
DOUBLE COMPLEX for mkl_zomatcopy2.
Array, DIMENSION at least m.
Contains the destination matrix.

\section*{Interfaces}

\section*{FORTRAN 77:}
```

SUBROUTINE mkl somatcopy2 ( ordering, trans, rows, cols, alpha, src, src row, src col, dst, dst row,
dst_col )
CHARACTER*1 ordering, trans
INTEGER rows, cols, src_row, src_col, dst_row, dst_col
REAL alpha, dst(*), sr\overline{c}(*)
SUBROUTINE mkl_domatcopy2 ( ordering, trans, rows, cols, alpha, src, src_row, src_col, dst, dst_row,
dst col )
\overline{CHARACTER*1 ordering, trans}
INTEGER rows, cols, src_row, src_col, dst_row, dst_col
DOUBLE PRECISION alpha, dst(*), src(*)

```
```

SUBROUTINE mkl_comatcopy2 ( ordering, trans, rows, cols, alpha, src, src_row, src_col, dst, dst_row,
dst_col )
CHARACTER*1 ordering, trans
INTEGER rows, cols, src_row, src_col, dst_row, dst_col
COMPLEX alpha, dst(*), \overline{src(*)}

```
```

SUBROUTINE mkl_zomatcopy2 ( ordering, trans, rows, cols, alpha, src, src_row, src_col, dst, dst_row,

```
SUBROUTINE mkl_zomatcopy2 (ordering, trans, rows, cols, alpha, src, src_row, src_col, dst, dst_row,
dst col)
dst col)
 CHARACTER*1 ordering, trans
 CHARACTER*1 ordering, trans
 INTEGER rows, cols, src_row, src_col, dst_row, dst_col
 INTEGER rows, cols, src_row, src_col, dst_row, dst_col
 DOUBLE COMPLEX alpha, d\overline{s}t(*), sr\overline{c}(*)
```

    DOUBLE COMPLEX alpha, d\overline{s}t(*), sr\overline{c}(*)
    ```

\section*{C:}
void mkl_somatcopy2 (char ordering, char trans, size_t rows, size_t cols, float *alpha, float *SRC, size_t src_row, size_t src_col, float *DST, size_t dst_row, size_t dst_col);
void mkl_domatcopy2 (char ordering, char trans, size_t rows, size_t cols, float *alpha, double *SRC, size_t sr\(\left.\overline{C l}_{-} r o w, ~ s i z e _t ~ s r c _c o l, ~ d o u b l e ~ * D S T, ~ s i z e _t-d s t _r o w, ~ s i z \bar{e} _t ~ d s t _c o l\right) ; ~\)
void mkl_comatcopy2 (char ordering, char trans, size_t rows, size_t cols, MKL_Complex8 *alpha, MKL_Complex \(8 * S R C\), size_t src_row, size_t src_col, MKL_Complex \({ }^{\star}{ }^{\star} D S T\), size_t dst_row, size_t dst_col);
void mkl_zomatcopy2 (char ordering, char trans, size_t rows, size_t cols, MKL_Complex16 *alpha,

```

mkl_?omatadd
Performs scaling and sum of two matrices including
their out-of-place transposition/copying.

```

\section*{Syntax}

\section*{Fortran:}
```

call mkl_somatadd(ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc)
call mkl_domatadd(ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc)
call mkl_comatadd(ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc)
call mkl_zomatadd(ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc)

```
C:
mkl_somatadd(ordering, transa, transb, \(m, n, a l p h a, ~ A, ~ l d a, ~ b e t a, ~ B, ~ l d b, ~ C, ~ l d c) ;\)
mkl_domatadd(ordering, transa, transb, \(m, n, a l p h a, ~ A, ~ l d a, ~ b e t a, ~ B, ~ l d b, ~ C, ~ l d c) ;\)
mkl_comatadd(ordering, transa, transb, \(m, n, a l p h a, ~ A, ~ l d a, ~ b e t a, ~ B, ~ l d b, ~ C, ~ l d c) ;\)
mkl zomatadd(ordering, transa, transb, \(m, n, a l p h a, ~ A, ~ l d a, ~ b e t a, ~ B, ~ l d b, ~ C, ~ l d c) ; ~\)

Include Files
- FORTRAN 77: mkl_trans.fi
- C: mkl_trans.h

\section*{Description}

The mkl_? omatadd routine scaling and sum of two matrices including their out-of-place transposition/ copying. A transposition operation can be a normal matrix copy, a transposition, a conjugate transposition, or just a conjugation. The following out-of-place memory movement is done:
```

C := alpha*op(A) + beta*op(B)

```
op (A) is either transpose, conjugate-transpose, or leave alone depending on transa. If no transposition of the source matrices is required, \(m\) is the number of rows and \(n\) is the number of columns in the source matrices \(A\) and \(B\). In this case, the output matrix \(C\) is \(m-b y-n\).

The routine parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

Note that different arrays should not overlap.

\section*{Input Parameters}
ordering
transa

CHARACTER*1. Ordering of the matrix storage.
If ordering = 'R' or 'r', the ordering is row-major.
If ordering \(=\) ' C' or 'c', the ordering is column-major.
CHARACTER*1. Parameter that specifies the operation type on matrix \(A\). If transa \(=\) ' \(N\) ' or ' \(n\) ', op \((A)=A\) and the matrix \(A\) is assumed unchanged on input.
If transa \(=\) ' \(T\) ' or ' \(t\) ', it is assumed that \(A\) should be transposed. If transa \(=\) ' C' or ' C ', it is assumed that \(A\) should be conjugate transposed.
If transa \(=\) ' \(R\) ' or 'r', it is assumed that \(A\) should be only conjugated.

If the data is real, then transa \(=\) ' R ' is the same as transa \(=\) ' \(N\) ', and transa \(=\) ' C' is the same as transa \(=\) ' \(T\) '.
CHARACTER*1. Parameter that specifies the operation type on matrix \(B\). If transb \(=\) ' \(N\) ' or ' \(n\) ', op \((B)=B\) and the matrix \(B\) is assumed unchanged on input.
If transb \(=\) ' \(T\) ' or ' \(t\) ', it is assumed that \(B\) should be transposed.
If transb \(=\) ' \(C\) ' or ' \(C\) ', it is assumed that \(B\) should be conjugate transposed.
If transb = ' \(R\) ' or 'r', it is assumed that \(B\) should be only conjugated. If the data is real, then transb \(=\) ' \(R\) ' is the same as transb \(=\) ' \(N\) ', and transb \(=\) ' C' is the same as transb \(=\) ' \(T\) '.
INTEGER. The number of matrix rows.
INTEGER. The number of matrix columns.
REAL for mkl_somatadd.
DOUBLE PRECISION for mkl_domatadd.
COMPLEX for mkl_comatadd.
DOUBLE COMPLEX for mkl_zomatadd.
This parameter scales the input matrix by alpha.
```

REAL for mkl_somatadd.
DOUBLE PRECISION for mkl_domatadd.
COMPLEX for mkl_comatadd.
DOUBLE COMPLEX for mkl_zomatadd.
Array, DIMENSION a(lda,*).

```

INTEGER. Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the source matrix \(A\); measured in the number of elements.
This parameter must be at least max (1, rows) if ordering = ' C' or 'c', and max (1, cols) otherwise.
REAL for mkl_somatadd.
DOUBLE PRECISION for mkl_domatadd.
COMPLEX for mkl_comatadd.
DOUBLE COMPLEX for mkl_zomatadd.
This parameter scales the input matrix by beta.
```

REAL for mkl_somatadd.
DOUBLE PRECISION for mkl_domatadd.
COMPLEX for mkl_comatadd.
DOUBLE COMPLEX for mkl_zomatadd.
Array, DIMENSION b(ldb,*).

```

INTEGER. Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the source matrix \(B\); measured in the number of elements.
This parameter must be at least max (1, rows) if ordering = ' C' or 'c', and max (1, cols) otherwise.

\section*{Output Parameters}
c
REAL for mkl_somatadd.
DOUBLE PRECISION for mkl_domatadd.
COMPLEX for mkl_comatadd.
DOUBLE COMPLEX for mkl_zomatadd.
Array, DIMENSION \(c(l d c, *)\).

INTEGER. Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the destination matrix \(c\); measured in the number of elements. To determine the minimum value of \(l d c\), consider the following guideline: If ordering \(=\) ' C ' or ' c ', then
- If transa or transb \(=\) 'T' or 't' or 'C' or 'c', this parameter must be at least max (1, rows)
- If transa or transb \(=\) 'N' or 'n' or 'R' or 'r', this parameter must be at least max (1, cols)

If ordering = 'R' or 'r', then
- If transa or transb \(=\) 'T' or 't' or 'C' or 'c', this parameter must be at least max (1, cols)
- If transa or transb \(=\) 'N' or 'n' or 'R' or 'r', this parameter must be at least max (1, rows)

\section*{Interfaces}

\section*{FORTRAN 77:}
```

SUBROUTINE mkl_somatadd ( ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc )
CHARACTER*1-ordering, transa, transb
INTEGER m, n, lda, ldb, ldc
REAL alpha, beta
REAL a(lda,*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_domatadd ( ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc )
CHARACTER*1- ordering, transa, transb
INTEGER m, n, lda, ldb, ldc
DOUBLE PRECISION alpha, beta
DOUBLE PRECISION a(lda,*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_comatadd ( ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc )
CHARACTER*1- ordering, transa, transb
INTEGER m, n, lda, ldb, ldc
COMPLEX alpha, beta
COMPLEX a(lda,*), b(ldb,*), c(ldc,*)

```
```

SUBROUTINE mkl zomatadd ( ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc )
CHARACTER*1-
INTEGER m, n, lda, ldb, ldc
DOUBLE COMPLEX alpha, beta
DOUBLE COMPLEX a(lda,*), b(ldb,*), c(ldc,*)

```
C:
void mkl_somatadd(char ordering, char transa, char transb, size_t m, size_t n, float *alpha, float *A,
size_t lda, float *beta, float *B, size_t ldb, float *C, size_t \({ }^{-} l d c\));
void mkl_domatadd (char ordering, char transa, char transb, size_t m, size_t \(n\), double *alpha, double
*A, size_t lda, double *beta, float *B, size_t ldb, double *C, \(\overline{\text { size_t }}\) ldc) ;
void mkl_comatadd(char ordering, char transa, char transb, size_t m, size_t n,
 MKL_Complex 8 *alpha, MKL_Complex 8 *A, size_t lda, float *beta, float *B, Size_t ldb, MKL_Complex8 *C,
size_t ldc);
void mkl_zomatadd(char ordering, char transa, char transb, size_t m, size_t \(n\),
 MKL_Complex16 *alpha, MKL_Complex16 *A, size_t lda, float *betā, float * \(\bar{B}\), size_t ldb, MKL_Complex16
 \({ }^{*} C\), \(\left.\bar{s} i z e _t \quad l d c\right) ;\)

\section*{LAPACK Routines: Linear Equations}

This chapter describes the Intel \({ }^{\circledR}\) Math Kernel Library implementation of routines from the LAPACK package that are used for solving systems of linear equations and performing a number of related computational tasks. The library includes LAPACK routines for both real and complex data. Routines are supported for systems of equations with the following types of matrices:
- general
- banded
- symmetric or Hermitian positive-definite (full, packed, and rectangular full packed (RFP) storage)
- symmetric or Hermitian positive-definite banded
- symmetric or Hermitian indefinite (both full and packed storage)
- symmetric or Hermitian indefinite banded
- triangular (full, packed, and RFP storage)
- triangular banded
- tridiagonal
- diagonally dominant tridiagonal.

For each of the above matrix types, the library includes routines for performing the following computations:
- factoring the matrix (except for triangular matrices)
- equilibrating the matrix (except for RFP matrices)
- solving a system of linear equations
- estimating the condition number of a matrix (except for RFP matrices)
- refining the solution of linear equations and computing its error bounds (except for RFP matrices)
- inverting the matrix.

To solve a particular problem, you can call two or more computational routines or call a corresponding driver routine that combines several tasks in one call. For example, to solve a system of linear equations with a general matrix, call ?getrf (\(L U\) factorization) and then ?getrs (computing the solution). Then, call ?gerfs to refine the solution and get the error bounds. Alternatively, use the driver routine ?gesvx that performs all these tasks in one call.

WARNING LAPACK routines assume that input matrices do not contain IEEE 754 special values such as INF or NaN values. Using these special values may cause LAPACK to return unexpected results or become unstable.

Starting from release 8.0, Intel MKL along with the FORTRAN 77 interface to LAPACK computational and driver routines also supports the Fortran 95 interface that uses simplified routine calls with shorter argument lists. The syntax section of the routine description gives the calling sequence for the Fortran 95 interface, where available, immediately after the FORTRAN 77 calls.

\section*{Routine Naming Conventions}

To call each routine introduced in this chapter from the FORTRAN 77 program, you can use the LAPACK name.
LAPACK names are listed in Table "Computational Routines for Systems of Equations with Real Matrices" and Table "Computational Routines for Systems of Equations with Complex Matrices", and have the structure ?yyzzz or ?yyzz, which is described below.

The initial symbol ? indicates the data type:
S
real, single precision
\begin{tabular}{ll}
c & complex, single precision \\
d & real, double precision \\
z & complex, double precision
\end{tabular}

Some routines can have combined character codes, such as ds or zc.
The second and third letters yy indicate the matrix type and storage scheme:
\begin{tabular}{ll}
ge & general \\
\(g b\) & general band \\
\(g t\) & general tridiagonal \\
\(d t\) & diagonally dominant tridiagonal \\
po & symmetric or Hermitian positive-definite \\
pp & symmetric or Hermitian positive-definite (packed storage) \\
pf & symmetric or Hermitian positive-definite (RFP storage) \\
pb & symmetric or Hermitian positive-definite band \\
pt & symmetric or Hermitian positive-definite tridiagonal \\
sy & symmetric indefinite \\
sp & symmetric indefinite (packed storage) \\
he & Hermitian indefinite \\
\(t r\) & Hermitian indefinite (packed storage) \\
\(t p\) & triangular \\
\(t f\) & triangular (packed storage) \\
\(t b\) & triangular (RFP storage) \\
& triangular band
\end{tabular}

The last three letters zzz indicate the computation performed:
\begin{tabular}{ll}
\(\operatorname{trf}\) & perform a triangular matrix factorization \\
\(\operatorname{trs}\) & solve the linear system with a factored matrix \\
con & estimate the matrix condition number \\
rfs & refine the solution and compute error bounds \\
rfsx & \begin{tabular}{l}
refine the solution and compute error bounds using extra-precise \\
iterative refinement
\end{tabular} \\
tri & compute the inverse matrix using the factorization \\
equ, equb & equilibrate a matrix.
\end{tabular}

For example, the sgetrf routine performs the triangular factorization of general real matrices in single precision; the corresponding routine for complex matrices is cgetrf.

Driver routine names can end with -sv (meaning a simple driver), or with -svx (meaning an expert driver) or with -svxx (meaning an extra-precise iterative refinement expert driver).

The Fortran 95 interfaces to the LAPACK computational and driver routines are the same as the FORTRAN 77 names but without the first letter that indicates the data type. For example, the name of the routine that performs a triangular factorization of general real matrices in Fortran 95 is getrf. Different data types are handled through the definition of a specific internal parameter that refers to a module block with named constants for single and double precision.

\section*{C Interface Conventions}

The C interfaces are implemented for most of the Intel MKL LAPACK driver and computational routines.
The arguments of the C interfaces for the Intel MKL LAPACK functions comply with the following rules:
- Scalar input arguments are passed by value.
- Array arguments are passed by reference.
- Array input arguments are declared with the const modifier.
- Function arguments are passed by pointer.
- An integer return value replaces the info output parameter. The return value equal to 0 means the function operation is completed successfully. See also special error codes below.

\section*{Matrix Order}

Most of the LAPACK C interfaces have an additional parameter matrix_order of type int as their first argument. This parameter specifies whether the two-dimensional arrays are row-major (LAPACK_ROW_MAJOR) or column-major (LAPACK_COL_MAJOR).

In general the leading dimension \(1 d a\) is equal to the number of elements in the major dimension. It is also equal to the distance in elements between two neighboring elements in a line in the minor dimension. If there are no extra elements in a matrix with \(m\) rows and \(n\) columns, then
- For row-major ordering: the number of elements in a row is \(n\), and row \(i\) is stored in memory right after row \(i-1\). Therefore Ida is \(n\).
- For column-major ordering: the number of elements in a column is \(m\), and column \(i\) is stored in memory right after column \(i-1\). Therefore \(1 d a\) is \(m\).

To refer to a submatrix with dimensions \(k\) by \(l\), use the number of elements in the major dimension of the whole matrix (as above) as the leading dimension and \(k\) and \(l\) in the subroutine's input parameters to describe the size of the submatrix.

\section*{Workspace Arrays}

The LAPACK C interface omits workspace parameters because workspace is allocated during runtime and released upon completion of the function operation.
For some functions, work arrays contain valuable information on exit. In such cases, the interface contains an additional argument or arguments, namely:
- ?gesvx and ?gbsvx contain rpivot
- ?gesvd contains superb
- ?gejsv and ?gesvj contain istat and stat, respectively.

\section*{Function Types}

The function types are used in non-symmetric eigenproblem functions only.
```

typedef lapack_logical (*LAPACK_S_SELECT2) (const float*, const float*);
typedef lapack_logical (*LAPACK_S_SELECT3) (const float*, const float*, const float*);
typedef lapack_logical (*LAPACK_D_SELECT2) (const double*, const double*);
typedef lapack__logical (*LAPACK_D__SELECT3) (const double*, const double*, const double*);

```
```

typedef lapack logical (*LAPACK C SELECT1) (const lapack complex float*);
typedef lapack_logical (*LAPACK_C_SELECT2) (const lapack_complex_float*, const lapack_complex_float*);
typedef lapack-logical (*LAPACK_Z-SELECT1) (const lapack_complex_double*);
typedef lapack_logical (*LAPACK_Z_SELECT2) (const lapack_complex_double*, const lapack_complex_double*);

```

\section*{Mapping FORTRAN Data Types against C Data Types}

FORTRAN Data Types vs. C Data Types
\begin{tabular}{ll}
\hline FORTRAN & C \\
\hline INTEGER & lapack_int \\
LOGICAL & lapack_logical \\
REAL & float \\
DOUBLE PRECISION & double \\
COMPLEX & lapack_complex_float \\
COMPLEX*16/DOUBLE COMPLEX & lapack_complex_double \\
CHARACTER & char \\
\hline
\end{tabular}

\section*{C Type Definitions}
```

\#ifndef lapack_int
\#define lapack_int MKL_INT
\#endif
\#ifndef lapack_logical
\#define lapack-logical lapack int
\#endif

```

\section*{Complex Type Definitions}

Complex type for single precision:
```

\#ifndef lapack_complex_float
\#define lapack_complex_float MKL_Complex8
\#endif

```

Complex type for double precision:
```

\#ifndef lapack_complex_double
\#define lapack_complex_double MKL_Complex16
\#endif

```

\section*{Matrix Order Definitions}
```

\#define LAPACK ROW MAJOR 101
\#define LAPACK_COL_MAJOR 102

```

See Matrix Order for an explanation of row-major order and column-major order storage.

\section*{Error Code Definitions}
\begin{tabular}{cc}
\#define LAPACK_WORK_MEMORY_ERROR & -1010 /* Failed to allocate memory \\
for a working array */ \\
\#define LAPACK_TRANSPOSE_MEMORY_ERROR & -1011 /* Failed to allocate memory \\
for transposed matrix */
\end{tabular}

If the return value is -i, the -i-th parameter has an invalid value.

\section*{Function Prototypes}

Some Intel MKL functions differ in data types they support and vary in the parameters they take.
Each function type has a unique prototype defined. Use this prototype when you call the function from your application program. In most cases, Intel MKL supports four distinct floating-point precisions. Each corresponding prototype looks similar, usually differing only in the data type. To avoid listing all the prototypes in every supported precision, a generic prototype template is provided.
<?> denotes precision and is \(s, d, c\), or \(z\) :
- \(s\) for real, single precision
- d for real, double precision
- c for complex, single precision
- \(\quad\) z for complex, double precision
<datatype> stands for a respective data type: float, double, lapack_complex_float, or lapack_complex_double.
For example, the C prototype template for the ?pptrs function that solves a system of linear equations with a packed Cholesky-factored symmetric (Hermitian) positive-definite matrix looks as follows:
lapack_int LAPACKE_<?>pptrs(int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
const <datatype>* ap, <datatype>* b, lapack_int ldb);
To obtain the function name and parameter list that corresponds to a specific precision, replace the <?> symbol with \(s, d, c\), or \(z\) and the <datatype> field with the corresponding data type (float, double, lapack_complex_float, or lapack_complex_double respectively).

A specific example follows. To solve a system of linear equations with a packed Cholesky-factored Hermitian positive-definite matrix with complex precision, use the following:
lapack_int LAPACKE_cpptrs(int matrix_order, char uplo, lapack_int n, lapack_int nrhs, const lapack_complex_float* ap, lapack_complex_float* b, lapack_int ldb);

NOTE For the select parameter, the respective values of the <datatype> field for \(s, d, c\), or \(z\) are as follows: LAPACK_S_SELECT3, LAPACK_D_SELECT3, LAPACK_C_SELECT2, and LAPACK_Z_SELECT2.

\section*{Fortran 95 Interface Conventions}

Inte \({ }^{\circledR}\) MKL implements the Fortran 95 interface to LAPACK through wrappers that call respective FORTRAN 77 routines. This interface uses such Fortran 95 features as assumed-shape arrays and optional arguments to provide simplified calls to LAPACK routines with fewer arguments.

NOTE For LAPACK, Intel MKL offers two types of the Fortran 95 interfaces:
- using mkl_lapack.fi only through the include 'mkl_lapack.fi' statement. Such interfaces allow you to make use of the original LAPACK routines with all their arguments
- using lapack.f90 that includes improved interfaces. This file is used to generate the module files lapack95.mod and f95_precision.mod. The module files mkl95_lapack.mod and mkl95_precision.mod are also generated. See also the section "Fortran 95 interfaces and wrappers to LAPACK and BLAS" of the Inte \({ }^{\circledR}\) MKL User's Guide for details. The module files are used to process the FORTRAN use clauses referencing the LAPACK interface: use lapack95 (or an equivalent use mkl95_lapack) and use f95_precision (or an equivalent use mkl95_precision).

The main conventions for the Fortran 95 interface are as follows:
- The names of arguments used in Fortran 95 call are typically the same as for the respective generic (FORTRAN 77) interface. In rare cases, formal argument names may be different. For instance, select instead of selctg.
- Input arguments such as array dimensions are not required in Fortran 95 and are skipped from the calling sequence. Array dimensions are reconstructed from the user data that must exactly follow the required array shape.

Another type of generic arguments that are skipped in the Fortran 95 interface are arguments that represent workspace arrays (such as work, rwork, and so on). The only exception are cases when workspace arrays return significant information on output.

An argument can also be skipped if its value is completely defined by the presence or absence of another argument in the calling sequence, and the restored value is the only meaningful value for the skipped argument.
- Some generic arguments are declared as optional in the Fortran 95 interface and may or may not be present in the calling sequence. An argument can be declared optional if it meets one of the following conditions:
- If an argument value is completely defined by the presence or absence of another argument in the calling sequence, it can be declared optional. The difference from the skipped argument in this case is that the optional argument can have some meaningful values that are distinct from the value reconstructed by default. For example, if some argument (like jobz) can take only two values and one of these values directly implies the use of another argument, then the value of jobz can be uniquely reconstructed from the actual presence or absence of this second argument, and jobz can be omitted.
- If an input argument can take only a few possible values, it can be declared as optional. The default value of such argument is typically set as the first value in the list and all exceptions to this rule are explicitly stated in the routine description.
- If an input argument has a natural default value, it can be declared as optional. The default value of such optional argument is set to its natural default value.
- Argument info is declared as optional in the Fortran 95 interface. If it is present in the calling sequence, the value assigned to info is interpreted as follows:
- If this value is more than -1000, its meaning is the same as in the FORTRAN 77 routine.
- If this value is equal to -1000, it means that there is not enough work memory.
- If this value is equal to -1001, incompatible arguments are present in the calling sequence.
- If this value is equal to -i, the \(i\) th parameter (counting parameters in the FORTRAN 77 interface, not the Fortran 95 interface) had an illegal value.
- Optional arguments are given in square brackets in the Fortran 95 call syntax.

The "Fortran 95 Notes" subsection at the end of the topic describing each routine details concrete rules for reconstructing the values of the omitted optional parameters.

\section*{Intel® MKL Fortran 95 Interfaces for LAPACK Routines vs. Netlib Implementation}

The following list presents general digressions of the Intel MKL LAPACK95 implementation from the Netlib analog:
- The Intel MKL Fortran 95 interfaces are provided for pure procedures.
- Names of interfaces do not contain the LA_ prefix.
- An optional array argument always has the target attribute.
- Functionality of the Intel MKL LAPACK95 wrapper is close to the FORTRAN 77 original implementation in the getrf, gbtrf, and potrf interfaces.
- If jobz argument value specifies presence or absence of \(z\) argument, then \(z\) is always declared as optional and jobz is restored depending on whether \(z\) is present or not. It is not always so in the Netlib version (see "Modified Netlib Interfaces" in Appendix E).
- To avoid double error checking, processing of the info argument is limited to checking of the allocated memory and disarranging of optional arguments.
- If an argument that is present in the list of arguments completely defines another argument, the latter is always declared as optional.

You can transform an application that uses the Netlib LAPACK interfaces to ensure its work with the Intel MKL interfaces providing that:
a. The application is correct, that is, unambiguous, compiler-independent, and contains no errors.
b. Each routine name denotes only one specific routine. If any routine name in the application coincides with a name of the original Netlib routine (for example, after removing the LA_ prefix) but denotes a routine different from the Netlib original routine, this name should be modified through context name replacement.

You should transform your application in the following cases (see Appendix E for specific differences of individual interfaces):
- When using the Netlib routines that differ from the Intel MKL routines only by the LA_ prefix or in the array attribute target. The only transformation required in this case is context name replacement. See "Interfaces Identical to Netlib" in Appendix E for details.
- When using Netlib routines that differ from the Intel MKL routines by the LA_ prefix, the target array attribute, and the names of formal arguments. In the case of positional passing of arguments, no additional transformation except context name replacement is required. In the case of the keywords passing of arguments, in addition to the context name replacement the names of mismatching keywords should also be modified. See "Interfaces with Replaced Argument Names" in Appendix E for details.
- When using the Netlib routines that differ from the respective Intel MKL routines by the LA_ prefix, the target array attribute, sequence of the arguments, arguments missing in Intel MKL but present in Netlib and, vice versa, present in Intel MKL but missing in Netlib. Remove the differences in the sequence and range of the arguments in process of all the transformations when you use the Netlib routines specified by this bullet and the preceding bullet. See "Modified Netlib Interfaces" in Appendix E for details.
- When using the getrf, gbtrf, and potrf interfaces, that is, new functionality implemented in Intel MKL but unavailable in the Netlib source. To override the differences, build the desired functionality explicitly with the Intel MKL means or create a new subroutine with the new functionality, using specific MKL interfaces corresponding to LAPACK 77 routines. You can call the LAPACK 77 routines directly but using the new Intel MKL interfaces is preferable. See "Interfaces Absent From Netlib" and "Interfaces of New Functionality" in Appendix E for details. Note that if the transformed application calls getrf, gbtrf or potrf without controlling arguments rcond and norm, just context name replacement is enough in modifying the calls into the Intel MKL interfaces, as described in the first bullet above. The Netlib functionality is preserved in such cases.
- When using the Netlib auxiliary routines. In this case, call a corresponding subroutine directly, using the Intel MKL LAPACK 77 interfaces.

Transform your application as follows:
1. Make sure conditions a. and b. are met.
2. Select Netlib LAPACK 95 calls. For each call, do the following:
- Select the type of digression and do the required transformations.
- Revise results to eliminate unneeded code or data, which may appear after several identical calls.
3. Make sure the transformations are correct and complete.

\section*{Matrix Storage Schemes}

LAPACK routines use the following matrix storage schemes:
- Full storage: a matrix \(A\) is stored in a two-dimensional array \(a_{\text {, }}\) with the matrix element \(a_{i j}\) stored in the array element \(a(i, j)\).
- Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more compactly: the upper or lower triangle of the matrix is packed by columns in a one-dimensional array.
- Band storage: an \(m\)-by- \(n\) band matrix with \(k l\) sub-diagonals and \(k u\) superdiagonals is stored compactly in a two-dimensional array \(a b\) with \(k l+k u+1\) rows and \(n\) columns. Columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.
- Rectangular Full Packed (RFP) storage: the upper or lower triangle of the matrix is packed combining the full and packed storage schemes. This combination enables using half of the full storage as packed storage while maintaining efficiency by using Level 3 BLAS/LAPACK kernels as the full storage.

In Chapters 4 and 5, arrays that hold matrices in packed storage have names ending in \(p\); arrays with matrices in band storage have names ending in b; arrays with matrices in the RFP storage have names ending in \(f p\).
For more information on matrix storage schemes, see "Matrix Arguments" in Appendix B.

\section*{Mathematical Notation}

Descriptions of LAPACK routines use the following notation:
\begin{tabular}{ll}
\(A x=b\) & \begin{tabular}{l}
A system of linear equations with an \(n\)-by-n matrix \(A=\left\{a_{i j}\right\}, a\) \\
right-hand side vector \(b=\left\{b_{i}\right\}\), and an unknown vector \(x=\left\{x_{i}\right\}\).
\end{tabular} \\
\(A X=B\) & \begin{tabular}{l}
A set of systems with a common matrix \(A\) and multiple right-hand \\
sides. The columns of \(B\) are individual right-hand sides, and the \\
columns of \(x\) are the corresponding solutions.
\end{tabular} \\
\(|x|\) & \begin{tabular}{l}
the vector with elements \(\left|x_{i}\right|\) (absolute values of \(x_{i}\)). \\
\(|A|\) \\
\(||x||_{\infty}=\max _{i}\left|x_{i}\right|\) \\
the matrix with elements \(\left|a_{i j}\right|\) (absolute values of \(\left.a_{i j}\right)\). \\
\(||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\)
\end{tabular} \\
\(||A|| I=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) & The infinity-norm of the vector \(x\). \\
\(\kappa(A)=||A||| | A^{-1}| |\) & The infinity-norm of the matrix \(A\).
\end{tabular}

\section*{Error Analysis}

In practice, most computations are performed with rounding errors. Besides, you often need to solve a system \(A x=b\), where the data (the elements of \(A\) and \(b\)) are not known exactly. Therefore, it is important to understand how the data errors and rounding errors can affect the solution \(x\).
Data perturbations. If \(x\) is the exact solution of \(A x=b\), and \(x+\delta x\) is the exact solution of a perturbed problem \((A+\delta A) x=(b+\delta b)\), then
\[
\frac{\|\delta x\|}{\|x\|} \leq \kappa(A)\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|b\|}\right)
\]
where
\[
K(A)=\|A\|\left\|A^{-1}\right\|
\]

In other words, relative errors in \(A\) or \(b\) may be amplified in the solution vector x by a factor \(\kappa(A)=\| A| |\) \(\left|\left|A^{-1}\right|\right|\) called the condition number of \(A\).

Rounding errors have the same effect as relative perturbations \(c(n) \varepsilon\) in the original data. Here \(\varepsilon\) is the machine precision, and \(c(n)\) is a modest function of the matrix order \(n\). The corresponding solution error is
\(||\delta x|| /||x|| \leq C(n) \kappa(A) \varepsilon\). (The value of \(c(n)\) is seldom greater than \(10 n\).)
Thus, if your matrix \(A\) is ill-conditioned (that is, its condition number \(\kappa(A)\) is very large), then the error in the solution \(x\) is also large; you may even encounter a complete loss of precision. LAPACK provides routines that allow you to estimate \(\kappa(A)\) (see Routines for Estimating the Condition Number) and also give you a more precise estimate for the actual solution error (see Refining the Solution and Estimating Its Error).

\section*{Computational Routines}

Table "Computational Routines for Systems of Equations with Real Matrices" lists the LAPACK computational routines (FORTRAN 77 and Fortran 95 interfaces) for factorizing, equilibrating, and inverting real matrices, estimating their condition numbers, solving systems of equations with real matrices, refining the solution, and estimating its error. Table "Computational Routines for Systems of Equations with Complex Matrices" lists similar routines for complex matrices. Respective routine names in the Fortran 95 interface are without the first symbol (see Routine Naming Conventions).

Computational Routines for Systems of Equations with Real Matrices

In the table above, ? denotes \(s\) (single precision) or \(d\) (double precision) for the FORTRAN 77 interface.
Computational Routines for Systems of Equations with Complex Matrices
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Matrix type, storage scheme & Factorize matrix & Equilibrate matrix & Solve system & Condition number & Estimate error & Invert matrix \\
\hline \multirow[t]{2}{*}{general} & \multirow[t]{2}{*}{? getrf} & ? geequ, & \multirow[t]{2}{*}{? getrs} & \multirow[t]{2}{*}{? gecon} & ? gerfs, & \multirow[t]{4}{*}{? getri} \\
\hline & & ? geequb & & & ? gerfsx & \\
\hline \multirow[t]{2}{*}{general band} & \multirow[t]{2}{*}{? gbtrf} & ? g bequ, & \multirow[t]{2}{*}{? gbtrs} & \multirow[t]{2}{*}{? gbcon} & ? gbrfs , & \\
\hline & & ? gbequb & & & ? gbrfsx & \\
\hline general tridiagonal & ? gttrf & & ? gttrs & ? gtcon & ? gtrfs & \\
\hline \multirow[t]{2}{*}{Hermitian positive-definite} & \multirow[t]{2}{*}{?potrf} & ?poequ, & \multirow[t]{2}{*}{?potrs} & \multirow[t]{2}{*}{?pocon} & ?porfs, & \multirow[t]{2}{*}{?potri} \\
\hline & & ?poequb & & & ?porfsx & \\
\hline Hermitian positive-definite, packed storage & ?pptrf & ?ppequ & ?pptrs & ?ppcon & ?pprfs & ?pptri \\
\hline Hermitian positive-definite, RFP storage & ?pftrf & & ?pftrs & & & ?pftri \\
\hline Hermitian positive-definite, band & ?pbtrf & ?pbequ & ?pbtrs & ? pbocon & ?pbrfs & \\
\hline Hermitian positive-definite, tridiagonal & ?pttrf & & ?pttrs & ?ptcon & ?ptrfs & \\
\hline \multirow[t]{3}{*}{Hermitian indefinite} & \multirow[t]{3}{*}{?hetrf} & \multirow[t]{3}{*}{? heequb} & ?hetrs & \multirow[t]{3}{*}{?hecon} & ?herfs, & ?hetri \\
\hline & & & \multirow[t]{2}{*}{?hetrs2} & & ?herfsx & ?hetri2 \\
\hline & & & & & & ?hetri2x \\
\hline \multirow[t]{3}{*}{symmetric indefinite} & \multirow[t]{3}{*}{?sytrf} & \multirow[t]{3}{*}{?syequb} & ?sytrs & ?sycon & ?syrfs, & ?sytri \\
\hline & & & \multirow[t]{2}{*}{?sytrs2} & \multirow[t]{2}{*}{?syconv} & \multirow[t]{2}{*}{?syrfsx} & ?sytri2 \\
\hline & & & & & & ?sytri2x \\
\hline Hermitian indefinite, packed storage & ?hptrf & & ?hptrs & ?hpcon & ?hprfs & ?hptri \\
\hline symmetric indefinite, packed storage & \multirow[t]{5}{*}{?sptrf} & & ?sptrs & ? spcon & ?sprfs & ?sptri \\
\hline triangular & & & ?trtrs & ?trcon & ?trrfs & ?trtri \\
\hline triangular, packed storage & & & \multirow[t]{2}{*}{?tptrs} & \multirow[t]{2}{*}{?tpcon} & \multirow[t]{2}{*}{?tprfs} & ?tptri \\
\hline triangular, RFP storage & & & & & & ?tftri \\
\hline triangular band & & & ?tbtrs & ?t.bcon & ?tbrfs & \\
\hline
\end{tabular}

In the table above, ? stands for c (single precision complex) or \(z\) (double precision complex) for FORTRAN 77 interface.

\section*{Routines for Matrix Factorization}

This section describes the LAPACK routines for matrix factorization. The following factorizations are supported:
- LU factorization
- Cholesky factorization of real symmetric positive-definite matrices
- Cholesky factorization of real symmetric positive-definite matrices with pivoting
- Cholesky factorization of Hermitian positive-definite matrices
- Cholesky factorization of Hermitian positive-definite matrices with pivoting
- Bunch-Kaufman factorization of real and complex symmetric matrices
- Bunch-Kaufman factorization of Hermitian matrices.

You can compute:
- the \(L U\) factorization using full and band storage of matrices
- the Cholesky factorization using full, packed, RFP, and band storage
- the Bunch-Kaufman factorization using full and packed storage.

\section*{?getrf}

Computes the LU factorization of a general m-by-n
matrix.
Syntax

\section*{Fortran 77:}
```

call sgetrf( m, n, a, lda, ipiv, info )
call dgetrf( m, n, a, lda, ipiv, info )
call cgetrf( m, n, a, lda, ipiv, info )
call zgetrf( m, n, a, lda, ipiv, info )

```

\section*{Fortran 95:}
```

call getrf( a [,ipiv] [,info] )

```

C:
```

lapack_int LAPACKE_<?>getrf( int matrix_order, lapack_int m, lapack_int n, <datatype>*
a, lapack_int lda, lapack_int* ipiv);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the \(L U\) factorization of a general \(m\)-by- \(n\) matrix \(A\) as
\[
A=P^{\star} L^{\star} U,
\]
where \(P\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>\) \(n\)) and \(U\) is upper triangular (upper trapezoidal if \(m<n\)). The routine uses partial pivoting, with row interchanges.

NOTE This routine supports the Progress Routine feature. See Progress Function section for details.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

m INTEGER. The number of rows in the matrix A (m\geq0).
n INTEGER. The number of columns in A;n\geq0.
a REAL for sgetrf
DOUBLE PRECISION for dgetrf
COMPLEX for cgetrf
DOUBLE COMPLEX for zgetrf.
Array, DIMENSION (Ida,*). Contains the matrix A. The second
dimension of a must be at least max (1, n).
Ida INTEGER. The leading dimension of array a.

```

\section*{Output Parameters}
a
ipiv
info
Overwritten by \(L\) and \(U\). The unit diagonal elements of \(L\) are not stored.

INTEGER.
Array, DIMENSION at least max \((1, \min (m, n))\). The pivot indices; for \(1 \leq i \leq \min (m, n)\), row \(i\) was interchanged with row ipiv(i).
INTEGER. If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, u_{i i}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine getrf interface are as follows:
```

a Holds the matrix A of size (m,n).
ipiv Holds the vector of length min}(m,n)

```

\section*{Application Notes}

The computed \(L\) and \(U\) are the exact factors of a perturbed matrix \(A+E\), where
```

|E|\leqC(min(m,n))\varepsilonP|L||U|

```
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations for real flavors is
\begin{tabular}{ll}
\((2 / 3) n^{3}\) & If \(m=n\), \\
\((1 / 3) n^{2}(3 m-n)\) & If \(m>n\), \\
\((1 / 3) m^{2}(3 n-m)\) & If \(m<n\).
\end{tabular}

The number of operations for complex flavors is four times greater.

After calling this routine with \(m=n\), you can call the following:
```

?getrs to solve }\mp@subsup{A}{}{*}X=B\mathrm{ or }\mp@subsup{A}{}{T}X=B\mathrm{ or }\mp@subsup{A}{}{H}X=

```
?gecon to estimate the condition number of \(A\)
?getri to compute the inverse of \(A\).
```

See Also
mkl_progress
?gbtrf
Computes the LU factorization of a general m-by-n
band matrix.

```
Syntax

\section*{Fortran 77:}
```

call sgbtrf( m, n, kl, ku, ab, ldab, ipiv, info )
call dgbtrf( m, n, kl, ku, ab, ldab, ipiv, info )
call cgbtrf( m, n, kl, ku, ab, ldab, ipiv, info )
call zgbtrf( m, n, kl, ku, ab, ldab, ipiv, info )

```

\section*{Fortran 95:}
```

call gbtrf( ab [,kl] [,m] [,ipiv] [,info] )

```

C:
lapack_int LAPACKE_<?>gbtrf(int matrix_order, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, <datatype>* ab, lapack_int ldab, lapack_int* ipiv);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine forms the \(L U\) factorization of a general \(m-b y-n\) band matrix \(A\) with \(k l\) non-zero subdiagonals and ku non-zero superdiagonals, that is,
\(A=P * L^{*} U\),
where \(P\) is a permutation matrix; \(L\) is lower triangular with unit diagonal elements and at most kl non-zero elements in each column; \(U\) is an upper triangular band matrix with \(k l+k u\) superdiagonals. The routine uses partial pivoting, with row interchanges (which creates the additional \(k l\) superdiagonals in \(U\)).

NOTE This routine supports the Progress Routine feature. See Progress Function section for details.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

INTEGER. The number of rows in matrix \(A ; m \geq 0\).
\begin{tabular}{ll}
\(n\) & INTEGER. The number of columns in matrix \(A ; n \geq 0\). \\
\(k l\) & INTEGER. The number of subdiagonals within the band of \(A ; k I \geq 0\). \\
\(k b\) & INTEGER. The number of superdiagonals within the band of \(A ; k u \geq 0\). \\
& REAL for sgbtrf \\
& DOUBLE PRECISION for dgbtrf \\
& COMPLEX for cgbtrf \\
& DOUBLE COMPLEX for \(z g b t r f\).
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \(a . b\) & Overwritten by \(L\) and \(U . U\) is stored as an upper triangular band matrix with \(k l+k u\) superdiagonals in rows 1 to \(k l+k u+1\), and the multipliers used during the factorization are stored in rows \(k l+k u+\) 2 to \(2 * k l+k u+1\). See Application Notes below for further details. \\
\hline ipiv & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION at least max \((1, \min (m, n))\). The pivot indices; for \(1 \leq i \leq \min (m, n)\), row \(i\) was interchanged with row ipiv(i)..
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
If info \(=i, u_{i i}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gbtrf interface are as follows:
```

abb Holds the array A of size (2* kl+ku+1,n).
ipiv Holds the vector of length min (m,n).
kl If omitted, assumed kl = ku.
ku Restored as ku = lda-2*kl-1.
m If omitted, assumed m=n.

```

\section*{Application Notes}

The computed \(L\) and \(U\) are the exact factors of a perturbed matrix \(A+E\), where
\(|E| \leq c(k l+k u+1) \varepsilon P|L||U|\)
\(c(k)\) is a modest linear function of \(k\), and \(\varepsilon\) is the machine precision.

The total number of floating-point operations for real flavors varies between approximately \(2 n(k u+1) k l\) and \(2 n(k l+k u+1) k l\). The number of operations for complex flavors is four times greater. All these estimates assume that \(k l\) and \(k u\) are much less than \(\min (m, n)\).

The band storage scheme is illustrated by the following example, when \(m=n=6, k l=2, k u=1\) :
\[
\begin{aligned}
& \text { on entry } \\
& {\left[\begin{array}{cccccc}
\star & \star & \star & + & + & + \\
\star & \star & + & + & + & + \\
\star & a_{12} & a_{23} & a_{34} & a_{45} & a_{56} \\
a_{11} & a_{22} & a_{33} & a_{44} & a_{55} & a_{66} \\
a_{21} & a_{32} & a_{43} & a_{54} & a_{65} & t \\
a_{31} & a_{42} & a_{53} & a_{64} & t & t
\end{array}\right]} \\
& \text { on exit } \\
& {\left[\begin{array}{cccccc}
\star & \star & \star & u_{14} & u_{25} & u_{36} \\
\star & \star & u_{13} & u_{24} & u_{35} & u_{46} \\
\star & u_{12} & u_{23} & u_{34} & u_{45} & u_{56} \\
u_{11} & u_{22} & u_{33} & u_{44} & u_{55} & u_{66} \\
m_{21} & m_{32} & m_{43} & m_{54} & m_{85} & t \\
m_{31} & m_{42} & m_{53} & m_{64} & \star & t
\end{array}\right]}
\end{aligned}
\]

Array elements marked * are not used by the routine; elements marked + need not be set on entry, but are required by the routine to store elements of \(U\) because of fill-in resulting from the row interchanges.

After calling this routine with \(m=n\), you can call the following routines:
```

gbtrs to solve A* X = B or AT* X = B or A A*X = B
gbcon to estimate the condition number of }A\mathrm{ .

```

\section*{See Also}
mkl_progress
?gttrf
Computes the LU factorization of a tridiagonal matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgttrf( n, dl, d, du, du2, ipiv, info )
call dgttrf( n, dl, d, du, du2, ipiv, info )
call cgttrf( n, dl, d, du, du2, ipiv, info )
call zgttrf( n, dl, d, du, du2, ipiv, info )

```

\section*{Fortran 95:}
```

call gttrf( dl, d, du, du2 [, ipiv] [,info] )

```

C:
```

lapack_int LAPACKE_<?>gttrf( lapack_int n, <datatype>* dl, <datatype>* d, <datatype>*
du, <datatype>* du2, lapack_int* ipiv );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the \(L U\) factorization of a real or complex tridiagonal matrix \(A\) in the form
\(A=P^{*} L^{*} U\),
where \(P\) is a permutation matrix; \(L\) is lower bidiagonal with unit diagonal elements; and \(U\) is an upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals. The routine uses elimination with partial pivoting and row interchanges.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

n
$d l, d, d u$

```
```

INTEGER. The order of the matrix }A;n\geq0
REAL for sgttrf
DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Arrays containing elements of A.
The array dl of dimension (n - 1) contains the subdiagonal
elements of A.
The array d of dimension n contains the diagonal elements of A.
The array du of dimension (n - 1) contains the superdiagonal
elements of A.

```

\section*{Output Parameters}

Overwritten by the (\(n-1\)) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\). The matrix \(L\) has unit diagonal elements, and the (\(n-1\)) elements of \(d l\) form the subdiagonal. All other elements of \(L\) are zero.

Overwritten by the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of \(A\).

Overwritten by the (\(n-1\)) elements of the first superdiagonal of \(U\).
REAL for sgttrf
DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Array, dimension (\(n-2\)). On exit, du2 contains (\(n-2\)) elements of the second superdiagonal of \(U\).

INTEGER.
Array, dimension (n). The pivot indices: for \(1 \leq i \leq n\), row \(i\) was interchanged with row ipiv(i). ipiv(i) is always \(i\) or \(i+1\); ipiv(i) \(=i\) indicates a row interchange was not required.
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, u_{i i}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by zero will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine \(g t t r f\) interface are as follows:
```

dl Holds the vector of length (n-1).
d Holds the vector of length n.
du Holds the vector of length (n-1).
du2 Holds the vector of length (n-2).
ipiv Holds the vector of length n.

```

\section*{Application Notes}
?gbtrs to solve \(A * X=B\) or \(A^{T} * X=B\) or \(A^{H} * X=B\)
?gbcon to estimate the condition number of \(A\).

\section*{?dttrfb}

Computes the factorization of a diagonally dominant tridiagonal matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call sdttrfb( n, dl, d, du, info )
call ddttrfb( n, dl, d, du, info )
call cdttrfb( n, dl, d, du, info )
call zdttrfb( n, dl, d, du, info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ? dttrfb routine computes the factorization of a real or complex diagonally dominant tridiagonal matrix A with the BABE (Burning At Both Ends) algorithm in the form
\(A=L_{1} \star U^{\star} L_{2}\)
where
- \(L_{1}, L_{2}\) are lower bidiagonal with unit diagonal elements corresponding to the Gaussian elimination taken from both ends of the matrix.
- \(U\) is an upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.

\section*{Input Parameters}
```

n
dl, d, du

```

INTEGER. The order of the matrix \(A ; n \geq 0\).
REAL for sdttrfb
DOUBLE PRECISION for ddttrfb
COMPLEX for cdttrfb
DOUBLE COMPLEX for zdttrfb.

Arrays containing elements of \(A\).
The array \(d l\) of dimension (\(n-1\)) contains the subdiagonal elements of \(A\).
The array \(d\) of dimension \(n\) contains the diagonal elements of \(A\). The array \(d u\) of dimension (\(n-1\)) contains the superdiagonal elements of \(A\).

\section*{Output Parameters}
```

dl
d
info
info

```

Overwritten by the (\(n-1\)) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\).
Overwritten by the \(n\) diagonal element reciprocals of the upper triangular matrix \(U\) from the factorization of \(A\).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, u_{i i}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by zero will occur if you use the factor \(u\) for solving a system of linear equations.

\section*{Application Notes}

A diagonally dominant tridiagonal system is defined such that \(\left|d_{i}\right|>\left|d l_{i-1}\right|+\left|d u_{i}\right|\) for any \(i\) :
```

1<i<n, and |d | | > |du | |, |d d | > |dln-1 |

```

The underlying BABE algorithm is designed for diagonally dominant systems. Such systems are free from the numerical stability issue unlike the canonical systems that use elimination with partial pivoting (see ?gttrf). The diagonally dominant systems are much faster than the canonical systems.

\section*{NOTE}
- The current implementation of BABE has a potential accuracy issue on very small or large data close to the underflow or overflow threshold respectively. Scale the matrix before applying the solver in the case of such input data.
- Applying the ?dttrfb factorization to non-diagonally dominant systems may lead to an accuracy loss, or false singularity detected due to no pivoting.
?potrf
Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call spotrf( uplo, n, a, lda, info )
call dpotrf( uplo, n, a, lda, info )
call cpotrf( uplo, n, a, lda, info )
call zpotrf( uplo, n, a, lda, info )

```

Fortran 95:
```

call potrf( a [, uplo] [,info] )

```
```

C:
lapack_int LAPACKE_<?>potrf( int matrix_order, char uplo, lapack_int n, <datatype>* a,
lapack_int lda );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix A:
\[
\begin{array}{ll}
A=U^{T} * U \text { for real data, } A=U^{H} \star U \text { for complex data } & \text { if uplo='U' } \\
A=L^{\star} L^{T} \text { for real data, } A=L^{\star} L^{H} \text { for complex data } & \text { if uplo='L' }
\end{array}
\]
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

NOTE This routine supports the Progress Routine feature. See Progress Function section for details.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo
n
a
lda INTEGER. The leading dimension of a.
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored and
how A is factored:
If uplo = 'U', the array a stores the upper triangular part of the
matrix A.
If uplo = 'L', the array a stores the lower triangular part of the
matrix A.
INTEGER. The order of matrix A; n\geq0.
REAL for spotrf
DOUBLE PRECISION for dpotrf
COMPLEX for cpotrf
DOUBLE COMPLEX for zpotrf.
Array, DIMENSION (Ida,*). The array a contains either the upper or
the lower triangular part of the matrix A (see uplo). The second
dimension of a must be at least max (1, n).

```

\section*{Output Parameters}
```

a
info INTEGER. If info=0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

```

If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix \(A\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine potrf interface are as follows:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

If uplo = 'U', the computed factor \(U\) is the exact factor of a perturbed matrix \(A+E\), where
\[
|E| \leq C(n) \varepsilon\left|U^{H}\right||U|,\left|e_{i j}\right| \leq C(n) \varepsilon_{\sqrt{ }} \sqrt{a_{i j} a_{j j}}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo = 'L'.
The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors or \((4 / 3) n^{3}\) for complex flavors.
After calling this routine, you can call the following routines:
?potrs to solve \(A \star X=B\)
?pocon to estimate the condition number of \(A\)
?potri to compute the inverse of \(A\).
See Also
mkl_progress

\section*{?pstrf}

Computes the Cholesky factorization with complete pivoting of a real symmetric (complex Hermitian)
positive semidefinite matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call spstrf( uplo, n, a, lda, piv, rank, tol, work, info )
call dpstrf( uplo, n, a, lda, piv, rank, tol, work, info )
call cpstrf( uplo, n, a, lda, piv, rank, tol, work, info )
call zpstrf( uplo, n, a, lda, piv, rank, tol, work, info )
C:
lapack_int LAPACKE_spstrf( int matrix_order, char uplo, lapack_int n, float* a,
lapack_int lda, lapack_int* piv, lapack_int* rank, float tol );
lapack_int LAPACKE_dpstrf( int matrix_order, char uplo, lapack_int n, double* a,
lapack_int lda, lapack_int* piv, lapack_int* rank, double tol );

```
```

lapack_int LAPACKE_cpstrf( int matrix_order, char uplo, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_int* piv, lapack_int* rank, float
tol );
lapack_int LAPACKE_zpstrf( int matrix_order, char uplo, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_int* piv, lapack_int* rank, double
tol );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the Cholesky factorization with complete pivoting of a real symmetric (complex Hermitian) positive semidefinite matrix. The form of the factorization is:
```

PT * A * P = UT * U, if uplo='U' for real flavors,
PH}* A * P = U' * U, if uplo='U' for complex flavors
PT * A * P = L * L'T, if uplo ='L' for real flavors,
PH * A * P = L * L', if uplo ='L' for complex flavors,

```
where \(P\) is stored as vector \(p i v\), 'U' and 'L' are upper and lower triangular matrices respectively.
This algorithm does not attempt to check that \(A\) is positive semidefinite. This version of the algorithm calls level 3 BLAS.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates whether the upper or lower triangular part of \(A\) is stored: If uplo = 'U', the array a stores the upper triangular part of the matrix \(A\), and the strictly lower triangular part of the matrix is not referenced. \\
If uplo = 'L', the array a stores the lower triangular part of the matrix \(A\), and the strictly upper triangular part of the matrix is not referenced.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline a, work & \begin{tabular}{l}
REAL for spstrf \\
DOUBLE PRECISION for dpstrf \\
COMPLEX for cpstrf \\
DOUBLE COMPLEX for zpstrf. \\
Array a, DIMENSION (lda,*). The array a contains either the upper or the lower triangular part of the matrix \(A\) (see uplo). The second dimension of a must be at least max \((1, n)\). \\
work (*) is a workspace array. The dimension of work is at least \(\max \left(1,2 *_{n}\right)\).
\end{tabular} \\
\hline tol & \begin{tabular}{l}
REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors.
\end{tabular} \\
\hline
\end{tabular}

User difined tolerance. If tol \(<0\), then \(n * U * \max (a(k, k))\) will be used. The algorithm terminates at the \((k-1)\)-th step, if the pivot \(\leq\) tol.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & If info \(=0\), the factor \(U\) or \(L\) from the Cholesky factorization is as described in Description. \\
\hline \(p i v\) & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION at least max \((1, n)\). The array piv is such that the nonzero entries are p(piv(k),k) = 1 .
\end{tabular} \\
\hline rank & \begin{tabular}{l}
INTEGER. \\
The rank of a given by the number of steps the algorithm completed.
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. If info \(=0\), the execution is successful. \\
If info \(=-k\), the \(k\)-th argument had an illegal value. \\
If info \(>0\), the matrix \(A\) is either rank deficient with a computed rank as returned in rank, or is indefinite.
\end{tabular} \\
\hline
\end{tabular}
?pftrf
Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite matrix using the Rectangular Full Packed (RFP) format .

Syntax

\section*{Fortran 77:}
```

call spftrf( transr, uplo, n, a, info )
call dpftrf( transr, uplo, n, a, info )
call cpftrf( transr, uplo, n, a, info )
call zpftrf( transr, uplo, n, a, info )

```

C:
lapack_int LAPACKE_<?>pftrf(int matrix_order, char transr, char uplo, lapack_int n, <datatype>* a);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, a Hermitian positive-definite matrix \(A\) :
\[
\begin{array}{ll}
A=U^{T} \star U \text { for real data, } A=U^{H} \star U \text { for complex data } & \text { if uplo='U' } \\
A=L^{\star} L^{T} \text { for real data, } A=L^{\star} L^{H} \text { for complex data } & \text { if uplo='L' }
\end{array}
\]
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.
The matrix \(A\) is in the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

This is the block version of the algorithm, calling Level 3 BLAS.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

transr CHARACTER*1.Must be 'N', 'T' (for real data) or 'C' (for complex
data).
If transr = 'N', the Normal transr of RFP A is stored.
If transr = 'T', the Transpose transr of RFP A is stored.
If transr = 'C', the Conjugate-Transpose transr of RFP A is stored.
uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the array a stores the upper triangular part of the
matrix A.
If uplo = 'L', the array a stores the lower triangular part of the
matrix A.
INTEGER. The order of the matrix A; n\geq0.
REAL for spftrf
DOUBLE PRECISION for dpftrf
COMPLEX for cpftrf
DOUBLE COMPLEX for zpftrf.
Array, DIMENSION (n* (n+1)/2). The array a contains the matrix }A\mathrm{ in
the RFP format.

```

\section*{Output Parameters}
a
info

The upper or lower triangular part of a is overwritten by the Cholesky factor \(U\) or \(L\), as specified by info.
INTEGER. If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix \(A\).

\section*{?pptrf}

Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite matrix using packed
storage.

\section*{Syntax}

\section*{Fortran 77:}
```

call spptrf( uplo, n, ap, info )
call dpptrf( uplo, n, ap, info )
call cpptrf( uplo, n, ap, info )
call zpptrf( uplo, n, ap, info )

```

Fortran 95:
```

call pptrf( ap [, uplo] [,info] )

```

C:
```

lapack_int LAPACKE_<?>pptrf( int matrix_order, char uplo, lapack_int n, <datatype>*

```
ap);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, Hermitian positive-definite packed matrix A:
\[
\begin{array}{ll}
A=U^{T} \star U \text { for real data, } A=U^{H} \star U \text { for complex data } & \text { if uplo='U' } \\
A=L^{\star} L^{T} \text { for real data, } A=L^{\star} L^{H} \text { for complex data } & \text { if uplo='L' }
\end{array}
\]
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

NOTE This routine supports the Progress Routine feature. See Progress Function section for details.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is packed in
the array ap, and how A is factored:
If uplo = 'U', the array ap stores the upper triangular part of the
matrix }A\mathrm{ , and }A\mathrm{ is factored as U}\mp@subsup{U}{}{H}*U\mathrm{ .
If uplo = 'L', the array ap stores the lower triangular part of the
matrix A;A is factored as L**LH
INTEGER. The order of matrix }A;n\geq0
REAL for spptrf
DOUBLE PRECISION for dpptrf
COMPLEX for cpptrf
DOUBLE COMPLEX for zpptrf.
Array, DIMENSION at least max(1,n(n+1)/2). The array ap contains
either the upper or the lower triangular part of the matrix A (as
specified by uplo) in packed storage (see Matrix Storage Schemes).

```

\section*{Output Parameters}
\(a p\)
info
The upper or lower triangular part of \(A\) in packed storage is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.
INTEGER. If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix \(A\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pptrf interface are as follows:
ap Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\).
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

If uplo = 'U', the computed factor \(U\) is the exact factor of a perturbed matrix \(A+E\), where
\[
|E| \leq C(n) \varepsilon\left|U^{H}\right||U|,\left|e_{i j}\right| \leq C(n) c_{\sqrt{ }} \sqrt{a_{i j} a_{j j}}
\]
\(C(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo = 'L'.
The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors and \((4 / 3) n^{3}\) for complex flavors.

After calling this routine, you can call the following routines:
```

?pptrs to solve }A*X=
?ppcon to estimate the condition number of }
?pptri to compute the inverse of }A\mathrm{ .

```

\section*{See Also}
mkl_progress

\section*{?pbtrf}

Computes the Cholesky factorization of a symmetric (Hermitian) positive-definite band matrix.

Syntax

\section*{Fortran 77:}
```

call spbtrf( uplo, n, kd, ab, ldab, info )
call dpbtrf( uplo, n, kd, ab, ldab, info )
call cpbtrf( uplo, n, kd, ab, ldab, info )
call zpbtrf( uplo, n, kd, ab, ldab, info )

```

\section*{Fortran 95:}
```

call pbtrf( ab [, uplo] [,info] )

```

C:
```

lapack_int LAPACKE_<?>pbtrf( int matrix_order, char uplo, lapack_int n, lapack_int kd,
<datatype>* ab, lapack_int ldab );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, Hermitian positive-definite band matrix \(A\) :
```

A = U'T}*U\mathrm{ for real data, }A=\mp@subsup{U}{}{H}*U\mathrm{ for complex data if uplo='U'
A = L* LT'Tor real data, }A=L*\mp@subsup{L}{}{H}\mathrm{ for complex data if uplo='L'

```
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

D
NOTE This routine supports the Progress Routine feature. See Progress Function section for details.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & \begin{tabular}{l}
Indicates whether the upper or lower triangular part of \(A\) is stored in the array \(a b\), and how \(A\) is factored: \\
If uplo = 'U', the upper triangle of \(A\) is stored. \\
If uplo = 'L', the lower triangle of \(A\) is stored.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline kd & INTEGER. The number of superdiagonals or subdiagonals in the matrix \(A ; k d \geq 0\). \\
\hline \multirow[t]{5}{*}{\(a b\)} & REAL for spbtrf \\
\hline & DOUBLE PRECISION for dpbtrf \\
\hline & COMPLEX for cpbtrf \\
\hline & DOUBLE COMPLEX for zpbtrf. \\
\hline & Array, DIMENSION (,*). The array ab contains either the upper or the lower triangular part of the matrix \(A\) (as specified by uplo) in band storage (see Matrix Storage Schemes). The second dimension of ab must be at least max \((1, n)\). \\
\hline 1 dab & INTEGER. The leading dimension of the array \(a b .(1 d a b \geq k d+1)\) \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a b\)
info

The upper or lower triangular part of \(A\) (in band storage) is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value. If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix \(A\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pbtrf interface are as follows:
\(a b \quad\) Holds the array \(A\) of size \((k d+1, n)\).
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

If uplo = ' \(U\) ', the computed factor \(U\) is the exact factor of a perturbed matrix \(A+E\), where
\[
|E| \leq c(k d+1) \varepsilon\left|U^{H}\right||U|,\left|e_{i j}\right| \leq c(k d+1) \varepsilon \sqrt{a_{i i} a_{j j}}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo = 'L'.
The total number of floating-point operations for real flavors is approximately \(n(k d+1)^{2}\). The number of operations for complex flavors is 4 times greater. All these estimates assume that \(k d\) is much less than \(n\). After calling this routine, you can call the following routines:
```

?pbtrs to solve }A*X=
?pbcon to estimate the condition number of A.

```
```

See Also
mkl_progress

```
?pttrf
Computes the factorization of a symmetric (Hermitian)
positive-definite tridiagonal matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call spttrf( n, d, e, info )
call dpttrf( }n,d,e, info
call cpttrf( }n,d,e, info
call zpttrf( n, d, e, info )

```

\section*{Fortran 95:}
```

call pttrf( d, e [,info] )

```

C:
```

lapack_int LAPACKE_spttrf( lapack_int n, float* d, float* e );
lapack_int LAPACKE_dpttrf( lapack_int n, double* d, double* e );
lapack_int LAPACKE_cpttrf( lapack_int n, float* d, lapack_complex_float* e );
lapack_int LAPACKE_zpttrf( lapack_int n, double* d, lapack_complex_double* e );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine forms the factorization of a symmetric positive-definite or, for complex data, Hermitian positivedefinite tridiagonal matrix \(A\) :
\(A=L \star D * L^{T}\) for real flavors, or
\(A=L * D^{*} L^{H}\) for complex flavors,
where \(D\) is diagonal and \(L\) is unit lower bidiagonal. The factorization may also be regarded as having the form \(A=U^{T} \star^{*} U\) for real flavors, or \(A=U^{H} D^{*} U\) for complex flavors, where \(D\) is unit upper bidiagonal.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

n INTEGER. The order of the matrix A; n\geq0.
d REAL for spttrf, cpttrf
DOUBLE PRECISION for dpttrf, zpttrf.
Array, dimension (n). Contains the diagonal elements of A.
e
REAL for spttrf
DOUBLE PRECISION for dpttrf
COMPLEX for cpttrf
DOUBLE COMPLEX for zpttrf. Array, dimension ( $n-1$ ). Contains the subdiagonal elements of $A$.

```

\section*{Output Parameters}
```

d
Overwritten by the $n$ diagonal elements of the diagonal matrix $D$ from the $L \star D^{\star} L^{T}$ (for real flavors) or $L \star D^{\star} L^{H}$ (for complex flavors) factorization of $A$.
e
Overwritten by the ( $n-1$ ) off-diagonal elements of the unit bidiagonal factor $L$ or $U$ from the factorization of $A$.
info
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i$, the leading minor of order $i$ (and therefore the matrix $A$ itself) is not positive-definite; if $i<n$, the factorization could not be completed, while if $i=n$, the factorization was completed, but $d(n)$ $\leq 0$.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pttrf interface are as follows:
```

d Holds the vector of length n.
e Holds the vector of length (n-1).

```
```

?sytrf
Computes the Bunch-Kaufman factorization of a
symmetric matrix.

```

\section*{Syntax}

\section*{Fortran 77:}
```

call ssytrf( uplo, n, a, lda, ipiv, work, lwork, info )
call dsytrf( uplo, n, a, lda, ipiv, work, lwork, info )
call csytrf( uplo, n, a, lda, ipiv, work, lwork, info )
call zsytrf( uplo, n, a, lda, ipiv, work, lwork, info )

```

\section*{Fortran 95:}
```

call sytrf( a [, uplo] [,ipiv] [,info] )

```

C:
lapack_int LAPACKE_<?>sytrf(int matrix_order, char uplo, lapack_int \(n\), <datatype>* a, lapack_int lda, lapack_int* ipiv);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the factorization of a real/complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting method. The form of the factorization is:
\[
\begin{aligned}
& \text { if uplo='U', A }=P^{*} U^{*} D^{*} U^{T} * P^{T} \\
& \text { if uplo='L', } A=P^{*} L^{*} D^{*} L^{T} * P^{T},
\end{aligned}
\]
where \(A\) is the input matrix, \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of \(D\).

NOTE This routine supports the Progress Routine feature. See Progress Routine section for details.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored:
If uplo = 'U', the array a stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(P^{\star} U^{\star} D^{\star} U^{T} \star P^{T}\).
If uplo = ' L', the array a stores the lower triangular part of the matrix \(A\), and \(A\) is factored as \(P{ }^{\star} L^{*} D^{*} L^{T} * P^{T}\).
n
INTEGER. The order of matrix \(A ; n \geq 0\).
REAL for ssytrf
DOUBLE PRECISION for dsytrf
COMPLEX for csytrf
DOUBLE COMPLEX for zsytrf.

Array, DIMENSION (Ida,*). The array a contains either the upper or the lower triangular part of the matrix \(A\) (see uplo). The second dimension of a must be at least \(\max (1, n)\).
lda
work
lwork

INTEGER. The leading dimension of \(a\); at least \(\max (1, n)\).
Same type as a. A workspace array, dimension at least \(\max (1,1\) work).
INTEGER. The size of the work array (lwork \(\geq n\)).
If \(l_{\text {work }}=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of 1 work.

\section*{Output Parameters}
a
work (1)
ipiv
info

The upper or lower triangular part of \(a\) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\)).
If info=0, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
Array, DIMENSION at least max \((1, n)\). Contains details of the interchanges and the block structure of \(\operatorname{D}\). If \(\operatorname{ipiv}(i)=k>0\), then \(d_{i i}\) is a 1 -by- 1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.
If uplo = 'U' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and (\(i-1\))-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo \(=\) 'L' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a \(2-b y-2\) block in rows/columns \(i\) and \(i+1\), and (\(i+1\))-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value. If info \(=i, D_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sytrf interface are as follows:
a holds the matrix \(A\) of size \((n, n)\)
ipiv holds the vector of length \(n\)
uplo must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

For better performance, try using lwork = \(n^{*}\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible 1 work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set lwork \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) are stored in the corresponding columns of the array \(a\), but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).

If \(\operatorname{ipiv}(i)=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in the corresponding elements of the array \(a\).
If uplo = 'U', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
\(|E| \leq c(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T}\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. A similar estimate holds for the computed \(L\) and \(D\) when uplo \(=\) 'L'.
The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors or \((4 / 3) n^{3}\) for complex flavors.
After calling this routine, you can call the following routines:
```

?sytrs to solve $A * X=B$

```
?sycon to estimate the condition number of \(A\)
?sytri to compute the inverse of \(A\).

If uplo \(=\) 'U', then \(A=U * D * U '\), where
\(U=P(n) * U(n) * \ldots\) *P \((k) * U(k) * \ldots\),
that is, U is a product of terms \(\mathrm{P}(k){ }^{*} \mathrm{U}(k)\), where
- \(k\) decreases from \(n\) to 1 in steps of 1 and 2 .
- \(\quad D\) is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(D(k)\).
- \(\mathrm{P}(k)\) is a permutation matrix as defined by ipiv(k).
- \(\mathrm{U}(k)\) is a unit upper triangular matrix, such that if the diagonal block \(\mathrm{D}(k)\) is of order \(s(s=1\) or 2\()\), then
\[
\left.U(k)=\left(\begin{array}{ccc}
I & V & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right) \begin{array}{c}
k-s \\
s \\
k-s \\
s
\end{array}\right) n-k
\]

If \(s=1, \mathrm{D}(k)\) overwrites \(A(k, k)\), and \(v\) overwrites \(A(1: k-1, k)\).

If \(s=2\), the upper triangle of \(D(k)\) overwrites \(A(k-1, k-1), A(k-1, k)\) and \(A(k, k)\), and \(v\) overwrites \(A(1: k-2, k\) \(-1: k)\).

If uplo = 'L', then \(A=L * D * L '\), where
\(L=P(1) * L(1) * \ldots * P(k) * L(k) * \ldots\),
that is, L is a product of terms \(\mathrm{P}(k)^{*} \mathrm{~L}(k)\), where
- \(k\) decreases from 1 to \(n\) in steps of 1 and 2 .
- \(D\) is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(\mathrm{D}(k)\).
- \(\mathrm{P}(k)\) is a permutation matrix as defined by ipiv(k).
- \(L(k)\) is a unit lower triangular matrix, such that if the diagonal block \(D(k)\) is of order \(s(s=1\) or 2\()\), then
\[
\left.L(k)=\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
0 & V & I
\end{array}\right) \begin{array}{c}
k-1 \\
s \\
k-1 \\
s
\end{array}\right) n-k-s+1 .
\]

If \(s=1, \mathrm{D}(k)\) overwrites \(A(k, k)\), and \(v\) overwrites \(A(k+1: n, k)\).
If \(s=2\), the lower triangle of \(D(k)\) overwrites \(A(k, k), A(k+1, k)\), and \(A(k+1, k+1)\), and \(v\) overwrites \(A(k\) \(+2: n, k: k+1)\).

\section*{See Also}
mkl_progress
?hetrf
Computes the Bunch-Kaufman factorization of a
complex Hermitian matrix.
Syntax

\section*{Fortran 77:}
```

call chetrf( uplo, n, a, lda, ipiv, work, lwork, info )
call zhetrf( uplo, n, a, lda, ipiv, work, lwork, info )

```

\section*{Fortran 95:}
```

call hetrf( a [, uplo] [,ipiv] [,info] )

```

C:
lapack_int LAPACKE_<?>hetrf(int matrix_order, char uplo, lapack_int \(n\), <datatype>* \(a\), lapack_int lda, lapack_int* ipiv);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the factorization of a complex Hermitian matrix \(A\) using the Bunch-Kaufman diagonal pivoting method:
```

if uplo='U',A = P* U*D* U'H* PT
if uplo='L',A = P* L* D* L'H* P',

```
where \(A\) is the input matrix, \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of \(D\).

ロ
NOTE This routine supports the Progress Routine feature. See Progress Routine section for details.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored: \\
If uplo = 'U', the array a stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(P^{*} U^{*} D^{*} U^{H} * P^{T}\). \\
If uplo = ' L ', the array a stores the lower triangular part of the matrix \(A\), and \(A\) is factored as \(P^{\star} L^{\star} D^{\star} L^{H *} P^{T}\).
\end{tabular} \\
\hline n & Integer. The order of matrix \(A ; n \geq 0\). \\
\hline a, work & \begin{tabular}{l}
COMPLEX for chetrf \\
DOUBLE COMPLEX for zhetrf. \\
Arrays, DIMENSION a(lda,*), work (*). \\
The array a contains the upper or the lower triangular part of the matrix A (see uplo). The second dimension of a must be at least \(\max (1, n)\). \\
work (*) is a workspace array of dimension at least max (1, lwork).
\end{tabular} \\
\hline Ida & Integer. The leading dimension of \(a\); at least max \((1, n)\). \\
\hline lwork & \begin{tabular}{l}
INTEGER. The size of the work array (1 work \(\geq n\)). \\
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. \\
See Application Notes for the suggested value of 1 work.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

The upper or lower triangular part of \(a\) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\)).
If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
INTEGER.

Array, DIMENSION at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\). If ipiv(i) \(=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column. If uplo \(=\) 'U' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and the (\(i-1\))-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo \(=\) 'L' and ipiv(i) \(=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and the (\(i+1\))-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
info
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value. If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hetrf interface are as follows:
```

a holds the matrix A of size (n,n)
ipiv holds the vector of length n
uplo must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

This routine is suitable for Hermitian matrices that are not known to be positive-definite. If \(A\) is in fact positive-definite, the routine does not perform interchanges, and no 2-by-2 diagonal blocks occur in D.
For better performance, try using lwork \(=n^{*}\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible 1 work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) are stored in the corresponding columns of the array \(a\), but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).

If \(\operatorname{ipiv}(i)=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in the corresponding elements of the array \(a\).

If uplo = 'U', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
\(|E| \leq c(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T}\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for the computed \(L\) and \(D\) when uplo = 'L'.
The total number of floating-point operations is approximately \((4 / 3) n^{3}\).
After calling this routine, you can call the following routines:
?hetrs to solve \(A \star X=B\)
?hecon to estimate the condition number of \(A\)
?hetri to compute the inverse of \(A\).

\section*{See Also \\ mkl_progress}

\section*{?sptrf}

Computes the Bunch-Kaufman factorization of a symmetric matrix using packed storage.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssptrf( uplo, n, ap, ipiv, info )
call dsptrf( uplo, n, ap, ipiv, info )
call csptrf( uplo, n, ap, ipiv, info )
call zsptrf( uplo, n, ap, ipiv, info )

```

\section*{Fortran 95:}
```

call sptrf( ap [,uplo] [,ipiv] [,info] )

```

C:
lapack_int LAPACKE_<?>sptrf(int matrix_order, char uplo, lapack_int n, <datatype>* ap, lapack_int* ipiv);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the factorization of a real/complex symmetric matrix \(A\) stored in the packed format using the Bunch-Kaufman diagonal pivoting method. The form of the factorization is:
```

if uplo='U',A = P*U*D* UT* *P

```

where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of \(D\).

NOTE This routine supports the Progress Routine feature. See Progress Function section for details.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is packed in
the array ap and how A is factored:
If uplo = 'U', the array ap stores the upper triangular part of the

```

```

If uplo = 'L', the array ap stores the lower triangular part of the
matrix A, and A is factored as P* L*D* LT* 喑.
INTEGER. The order of matrix A; n\geq0.
REAL for ssptrf
DOUBLE PRECISION for dsptrf
COMPLEX for csptrf
DOUBLE COMPLEX for zsptrf.
Array, DIMENSION at least max(1,n(n+1)/2). The array ap contains
the upper or the lower triangular part of the matrix A (as specified by
uplo) in packed storage (see Matrix Storage Schemes).

```

\section*{Output Parameters}

The upper or lower triangle of \(A\) (as specified by uplo) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\)).

INTEGER.
Array, DIMENSION at least max \((1, n)\). Contains details of the interchanges and the block structure of D. If ipiv(i) \(=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.
If uplo = 'U' and ipiv(i) \(\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and the (\(i-1\))-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo \(=\) 'L' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and the (\(i+1\))-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
info
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sptrf interface are as follows:
ap Holds the array \(A\) of size \(\left(n^{\star}(n+1) / 2\right)\).
ipiv Holds the vector of length \(n\).
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) overwrite elements of the corresponding columns of the matrix \(A\), but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).
If \(\operatorname{ipiv}(i)=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in packed form.
If uplo = 'U', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
\(|E| \leq C(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T}\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. A similar estimate holds for the computed \(L\) and \(D\) when uplo \(=\) 'L'.

The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors or \((4 / 3) n^{3}\) for complex flavors.

After calling this routine, you can call the following routines:
```

?sptrs to solve }A*X=
?spcon to estimate the condition number of }
?sptri to compute the inverse of }A\mathrm{ .

```

\section*{See Also \\ mkl_progress \\ ?hptrf \\ Computes the Bunch-Kaufman factorization of a complex Hermitian matrix using packed storage.}

\section*{Syntax}

\section*{Fortran 77:}
```

call chptrf( uplo, n, ap, ipiv, info )
call zhptrf( uplo, n, ap, ipiv, info )

```

\section*{Fortran 95:}
```

call hptrf( ap [,uplo] [,ipiv] [,info] )

```

C:
lapack_int LAPACKE_<?>hptrf(int matrix_order, char uplo, lapack_int \(n\), <datatype>* ap, lapack_int* ipiv);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the factorization of a complex Hermitian packed matrix \(A\) using the Bunch-Kaufman diagonal pivoting method:
```

if uplo='U',A = P*U*D* 生 H}*\mp@subsup{P}{}{T

```

where \(A\) is the input matrix, \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of \(D\).

NOTE This routine supports the Progress Routine feature. See Progress Function section for details.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
uplo
n
ap

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is packed and how \(A\) is factored:
If uplo = 'U', the array ap stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(P \star U^{\star} D^{\star} U^{H} \star P^{T}\).
If uplo = 'L', the array ap stores the lower triangular part of the matrix \(A\), and \(A\) is factored as \(P^{\star} L^{\star} D \star L^{H} \star P^{T}\).
INTEGER. The order of matrix \(A ; n \geq 0\).
COMPLEX for chptrf
DOUBLE COMPLEX for zhptrf.
Array, DIMENSION at least max(1, \(n(n+1) / 2)\). The array ap contains the upper or the lower triangular part of the matrix \(A\) (as specified by uplo) in packed storage (see Matrix Storage Schemes).

\section*{Output Parameters}
ap
ipiv
info

The upper or lower triangle of \(A\) (as specified by uplo) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\)).

INTEGER.
Array, DIMENSION at least max \((1, n)\). Contains details of the interchanges and the block structure of \(\operatorname{D}\). If ipiv(i) \(=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.
If uplo \(=\) 'U' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and the (\(i-1\))-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo \(=\) 'L' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and the (\(i+1\))-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hptrf interface are as follows:
\(a p \quad\) Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\).
ipiv Holds the vector of length \(n\).
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) are stored in the corresponding columns of the array a, but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).

If \(\operatorname{ipiv}(i)=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in the corresponding elements of the array \(a\).

If uplo = 'U', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
\(|E| \leq c(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T}\)
\(C(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for the computed \(L\) and \(D\) when up \(10=\) ' L '.
The total number of floating-point operations is approximately \((4 / 3) n^{3}\).
After calling this routine, you can call the following routines:
?hptrs to solve \(A * X=B\)
?hpcon to estimate the condition number of \(A\)
?hptri to compute the inverse of \(A\).
See Also
mkl_progress

\section*{Routines for Solving Systems of Linear Equations}

This section describes the LAPACK routines for solving systems of linear equations. Before calling most of these routines, you need to factorize the matrix of your system of equations (see Routines for Matrix Factorization in this chapter). However, the factorization is not necessary if your system of equations has a triangular matrix.

\section*{?getrs}

Solves a system of linear equations with an LU-
factored square matrix, with multiple right-hand sides.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgetrs( trans, n, nrhs, a, lda, ipiv, b, ldb, info )
call dgetrs( trans, n, nrhs, a, lda, ipiv, b, ldb, info )
call cgetrs( trans, n, nrhs, a, lda, ipiv, b, ldb, info)
call zgetrs( trans, n, nrhs, a, lda, ipiv, b, ldb, info )

```

\section*{Fortran 95:}
```

call getrs( a, ipiv, b [, trans] [,info] )

```

C:
lapack_int LAPACKE_<?>getrs(int matrix_order, char trans, lapack_int \(n\), lapack_int nrhs, const <datatype>* a, lapack_int lda, const lapack_int* ipiv, <datatype>* b, lapack_int ldb);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the following systems of linear equations:
\[
\begin{array}{ll}
A^{*} X=B & \text { if } \operatorname{trans}={ }^{\prime} N^{\prime}, \\
A^{T} \star_{X}=B & \text { if } \operatorname{tran}==^{\prime} T^{\prime}, \\
A^{H} \star_{X}=B & \text { if } \operatorname{tran}==^{\prime} C^{\prime} \text { (for complex matrices only). }
\end{array}
\]

Before calling this routine, you must call ? getrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans ='N', then A*X = B is solved for }X\mathrm{ .
If trans = 'T', then }\mp@subsup{A}{}{T}*X=B is solved for X.
If trans =' 'C', then 的*X = B is solved for }X\mathrm{ .

```
n
nrhs
\(a, b\)
Ida
\(1 d b\)
ipiv

\section*{Output Parameters}

INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine getrs interface are as follows:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((n, n)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
ipiv & Holds the vector of length \(n\). \\
trans & Must be ' \(\mathrm{N}^{\prime}, \mathrm{I}^{\prime} \mathrm{C}^{\prime}\), or ' T '. The default value is ' N '.
\end{tabular}

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations (\(A\) \(+E) x=b\), where
\(|E| \leq C(n) \varepsilon P|L||U|\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{COn}(A, x) \varepsilon
\]
where cond \((A, x)=\left\|\left.\left|\left|A^{-1}\right|\right| A| | x| |\right|_{\infty} /||x||_{\infty} \leq\left|\left|A^{-1}\right|\right|_{\infty}| | A \mid\right\|_{\infty}=\kappa_{\infty}(A)\).
Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{\infty}(A)\).

The approximate number of floating-point operations for one right-hand side vector \(b\) is \(2 n^{2}\) for real flavors and \(8 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?gecon.
To refine the solution and estimate the error, call ?gerfs.

\section*{?gbtrs}

Solves a system of linear equations with an LUfactored band matrix, with multiple right-hand sides.

Syntax
Fortran 77:
```

call sgbtrs( trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
call dgbtrs( trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
call cgbtrs( trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
call zgbtrs( trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )

```

\section*{Fortran 95:}
```

call gbtrs( ab, b, ipiv, [, kl] [, trans] [, info] )

```

C:
lapack_int LAPACKE_<? \({ }^{\prime}\) gbtrs(int matrix_order, char trans, lapack_int \(n\), lapack_int kl,
lapack int ku, lapack int nrhs, const <datatype>* ab, lapack int ldab, const
lapack int* ipiv, <datatype>* b, lapack int ldb);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the following systems of linear equations:
\(A * X=B\)
if trans='N',
\(A^{T} * X=B\)
if trans='T',
\(A^{H}{ }^{*} X=B\)
if trans='C' (for complex matrices only).

Here \(A\) is an \(L U\)-factored general band matrix of order \(n\) with \(k l\) non-zero subdiagonals and \(k u\) nonzero superdiagonals. Before calling this routine, call ?gbtrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline trans & CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline \(n\) & INTEGER. The order of \(A\); the number of rows in \(B ; n \geq 0\). \\
\hline kI & INTEGER. The number of subdiagonals within the band of \(A ; k l \geq 0\). \\
\hline ku & INTEGER. The number of superdiagonals within the band of \(A ; k u \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; nrhs \(\geq 0\). \\
\hline \multirow[t]{8}{*}{\(a b, b\)} & REAL for sgbtrs \\
\hline & DOUBLE PRECISION for dgbtrs \\
\hline & COMPLEX for cgbtrs \\
\hline & DOUBLE COMPLEX for zgbtrs. \\
\hline & Arrays: ab (ldab,*), b(ldb,*). \\
\hline & The array \(a b\) contains the matrix \(A\) in band storage (see Matrix Storage Schemes). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. \\
\hline & The second dimension of \(a b\) must be at least max \((1, n)\), and the second dimension of \(b\) at least max (\(1, n r h s\)). \\
\hline Idab & INTEGER. The leading dimension of the array \(a b ; ~ I d a b \geq 2^{*} k I+k u\) +1 . \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline ipiv & INTEGER. Array, DIMENSION at least max \((1, n)\). The ipiv array, as returned by ?gbtrf. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

b
info
Overwritten by the solution matrix $x$.
INTEGER. If info=0, the execution is successful. If info $=-i$, the $i$-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gbtrs interface are as follows:
```

ab Holds the array A of size (2* kl+ku+1,n).
b Holds the matrix B of size ( n, nrhs).
ipiv Holds the vector of length min}(m,n)
kl If omitted, assumed kl = ku.
ku Restored as lda-2*kl-1.
trans Must be 'N', 'C', or 'T'. The default value is 'N'.

```

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations (\(A\)
\(+E) x=b\), where
\(|E| \leq c(k l+k u+1) \varepsilon P|L||U|\)
\(c(k)\) is a modest linear function of \(k\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(k I+k u+1) \operatorname{cond}(A, x) \varepsilon
\]
where cond \((A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{\infty}(A)\).

The approximate number of floating-point operations for one right-hand side vector is \(2 n(k u+2 k l)\) for real flavors. The number of operations for complex flavors is 4 times greater. All these estimates assume that kl and \(k u\) are much less than \(\min (m, n)\).

To estimate the condition number \(\kappa_{\infty}(A)\), call ?gbcon.
To refine the solution and estimate the error, call ?gbrfs.
?gttrs
Solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by ?
gttrf.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgttrs( trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info )
call dgttrs( trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info )
call cgttrs( trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info )
call zgttrs( trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info )

```

\section*{Fortran 95:}
```

call gttrs( dl, d, du, du2, b, ipiv [, trans] [,info] )

```

C:
```

lapack_int LAPACKE_<?>gttrs( int matrix_order, char trans, lapack_int n, lapack_int
nrhs, const <datatype>* dl, const <datatype>* d, const <datatype>* du, const
<datatype>* du2, const lapack_int* ipiv, <datatype>* b, lapack_int ldb );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the following systems of linear equations with multiple right hand sides:
\[
\begin{aligned}
& A * X=B \\
& \text { if trans='N', } \\
& A^{T} * X=B \\
& \text { if trans='T', } \\
& A^{H}{ }_{X}=B \quad \text { if trans }=1 C^{\prime} \text { (for complex matrices only). }
\end{aligned}
\]

Before calling this routine, you must call ? gttrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{trans} & CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & Indicates the form of the equations: \\
\hline & If trans \(=\) ' N ', then \(A * X=B\) is solved for \(X\). \\
\hline & If trans \(=\) ' T', then \(A^{T} * X=B\) is solved for \(X\). \\
\hline & If trans \(=\) ' C', then \(A^{H *} X=B\) is solved for \(X\). \\
\hline \(n\) & INTEGER. The order of \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides, that is, the number of columns in \(B\); nrhs \(\geq 0\). \\
\hline \multirow[t]{6}{*}{\(d 1, d, d u, d u 2, b\)} & REAL for sgttrs \\
\hline & DOUBLE PRECISION for dgttrs \\
\hline & COMPLEX for cgttrs \\
\hline & DOUBLE COMPLEX for zgttrs. \\
\hline & Arrays: \(d l(n-1), d(n), d u(n-1), d u 2(n-2), b(l d b, n r h s)\). \\
\hline & The array \(d l\) contains the \((n-1)\) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\). \\
\hline
\end{tabular}

The array \(d\) contains the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of \(A\).
The array \(d u\) contains the \((n-1)\) elements of the first superdiagonal of \(U\).
The array du2 contains the \((n-2)\) elements of the second superdiagonal of \(U\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
1 db
ipiv
INTEGER. The leading dimension of \(b ; \quad l d b \geq \max (1, n)\). INTEGER. Array, DIMENSION (n). The ipiv array, as returned by ? gttrf.

\section*{Output Parameters}
b
info

Overwritten by the solution matrix \(x\).
INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine gttrs interface are as follows:
\begin{tabular}{ll}
\(d l\) & Holds the vector of length \((n-1)\). \\
\(d\) & Holds the vector of length \(n\). \\
\(d u\) & Holds the vector of length \((n-1)\). \\
\(d u 2\) & Holds the vector of length \((n-2)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
ipiv & Holds the vector of length \(n\). \\
trans & Must be ' \(N^{\prime}, C^{\prime} C^{\prime}\), or ' \(T\) '. The default value is ' \(N^{\prime}\).
\end{tabular}

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations (\(A\) \(+E) x=b\), where
\(|E| \leq c(n) \varepsilon P|L||U|\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\left.\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(x]+\sqrt{\infty}+1\right) \operatorname{cond}(A, x) \varepsilon
\]
where cond \((A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{\infty}(A)\).

The approximate number of floating-point operations for one right-hand side vector \(b\) is \(7 n\) (including \(n\) divisions) for real flavors and \(34 n\) (including \(2 n\) divisions) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?gtcon.
To refine the solution and estimate the error, call ?gtrfs.

\section*{?dttrsb}

Solves a system of linear equations with a diagonally dominant tridiagonal matrix using the LU factorization computed by ?dttrfb.

\section*{Syntax}

\section*{Fortran 77:}
```

call sdttrsb( trans, n, nrhs, dl, d, du, b, ldb, info )
call ddttrsb( trans, n, nrhs, dl, d, du, b, ldb, info )
call cdttrsb( trans, n, nrhs, dl, d, du, b, ldb, info )
call zdttrsb( trans, n, nrhs, dl, d, du, b, ldb, info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ? dttrsb routine solves the following systems of linear equations with multiple right hand sides for \(x\) :
```

A*X=B if trans='N',
A}\mp@subsup{}{}{T*}X=
if trans='T',
A H*X = B if trans='C' (for complex matrices only).

```

Before calling this routine, call ?dttrfb to compute the factorization of \(A\).
Input Parameters
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations solved for \(X\) :
If trans \(=' N\) ', then \(A^{\star} X=B\).
If trans \(=\) 'T', then \(A^{T *} X=B\).
If trans \(=\) ' C', then \(A^{H *} X=B\).
n
INTEGER. The order of \(A ; n \geq 0\).
nrhs INTEGER. The number of right-hand sides, that is, the number of columns in \(B ; n r h s \geq 0\).
\(d l, d, d u, b\)
REAL for sdttrsb
DOUBLE PRECISION for ddttrsb
COMPLEX for cdttrsb
DOUBLE COMPLEX for zdttrsb.
Arrays: \(d l(n-1), d(n), d u(n-1), b(l d b, n r h s)\).
The array \(d l\) contains the \((n-1)\) multipliers that define the matrices \(L_{1}, L_{2}\) from the factorization of \(A\).
The array \(d\) contains the \(n\) diagonal elements of the upper triangular matrix \(U\) from the factorization of \(A\).
The array \(d u\) contains the \((n-1)\) elements of the superdiagonal of \(U\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand
sides for the systems of equations.
INTEGER. The leading dimension of \(b ; I d b \geq \max (1, n)\).

\section*{Output Parameters}
```

b
info

```

Overwritten by the solution matrix \(x\).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{?potrs \\ Solves a system of linear equations with a Choleskyfactored symmetric (Hermitian) positive-definite matrix.}

Syntax

\section*{Fortran 77:}
```

call spotrs( uplo, n, nrhs, a, lda, b, ldb, info )
call dpotrs( uplo, n, nrhs, a, lda, b, ldb, info )
call cpotrs( uplo, n, nrhs, a, lda, b, ldb, info )
call zpotrs( uplo, n, nrhs, a, lda, b, ldb, info )

```

\section*{Fortran 95:}
```

call potrs( a, b [,uplo] [, info] )

```

C:
```

lapack_int LAPACKE_<?>potrs( int matrix_order, char uplo, lapack_int n, lapack_int

```
nrhs, const <datatype>* a, lapack_int lda, <datatype>* b, lapack_int ldb);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the system of linear equations \(A * X=B\) with a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix \(A\), given the Cholesky factorization of \(A\) :
\(A=U^{T} * U\) for real data, \(A=U^{H} * U\) for complex data
if uplo='U'
\(A=L \star L^{T}\) for real data, \(A=L \star L^{H}\) for complex data
if uplo='L'
where \(L\) is a lower triangular matrix and \(U\) is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\).

Before calling this routine, you must call ?potrf to compute the Cholesky factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The order of matrix }A;n\geq0\mathrm{ .
INTEGER. The number of right-hand sides (nrhs \geq 0).
REAL for spotrs
DOUBLE PRECISION for dpotrs
COMPLEX for cpotrs
DOUBLE COMPLEX for zpotrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the factor }U\mathrm{ or L (see uplo).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of a must be at least max (1,n), the second
dimension of b at least max (1, nrhs).
Ida INTEGER. The leading dimension of a; lda \geq max (1, n).
ldb INTEGER. The leading dimension of b; ldb \geq max (1, n).

```

\section*{Output Parameters}
b
info

Overwritten by the solution matrix \(x\).
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine potrs interface are as follows:
```

a Holds the matrix A of size (n,n).
b Holds the matrix B of size ( n, nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

If uplo = 'U', the computed solution for each right-hand side \(b\) is the exact solution of a perturbed system of equations \((A+E) x=b\), where

\section*{\(|E| \leq C(n) \varepsilon\left|U^{H}\right||U|\)}
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo \(=\) 'L'. If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty s}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|\left\|_{\infty} /\right\| x\left\|_{\infty} \leq\right\| A^{-1}\left\|_{\infty}\right\| A \|_{\infty}=\kappa_{\infty}(A)\).

Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\). The approximate number of floating-point operations for one right-hand side vector \(b\) is \(2 n^{2}\) for real flavors and \(8 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?pocon.
To refine the solution and estimate the error, call ?porfs.
?pftrs
Solves a system of linear equations with a Choleskyfactored symmetric (Hermitian) positive-definite matrix using the Rectangular Full Packed (RFP) format.

Syntax

\section*{Fortran 77:}
```

call spftrs( transr, uplo, n, nrhs, a, b, ldb, info )
call dpftrs( transr, uplo, n, nrhs, a, b, ldb, info )
call cpftrs( transr, uplo, n, nrhs, a, b, ldb, info )
call zpftrs( transr, uplo, n, nrhs, a, b, ldb, info )

```

C:
```

lapack_int LAPACKE_<?>pftrs( int matrix_order, char transr, char uplo, lapack_int n,

```
lapack_int nrhs, const <datatype>* a, <datatype>* b, lapack_int ldb);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves a system of linear equations \(A * X=B\) with a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix \(A\) using the Cholesky factorization of \(A\) :
\[
\begin{array}{ll}
A=U^{T} \star U \text { for real data, } A=U^{H \star U} \text { for complex data } & \text { if uplo='U' } \\
A=L^{\star} L^{T} \text { for real data, } A=L^{\star} L^{H} \text { for complex data } & \text { if uplo='L' }
\end{array}
\]
computed by ?pftrf. L stands for a lower triangular matrix and \(U\) - for an upper triangular matrix.
The matrix \(A\) is in the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline transr & CHARACTER*1. Must be 'N', 'T' (for real data) or 'C' (for complex data). \\
\hline & If transr \(=\) ' N ', the Normal transr of RFP \(A\) is stored. \\
\hline & If transr \(=\) ' \(T\) ', the Transpose transr of RFP \(A\) is stored. \\
\hline & If transr = ' \({ }^{\text {' }}\), the Conjugate-Transpose transr of RFP \(A\) is stored. \\
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. \\
\hline
\end{tabular}

Indicates whether the upper or lower triangular part of the RFP matrix \(A\) is stored:
If uplo = 'U', the array a stores the upper triangular part of the matrix \(A\).
If uplo = 'L', the array a stores the lower triangular part of the matrix \(A\).

INTEGER. The order of the matrix \(A ; n \geq 0\).
INTEGER. The number of right-hand sides, that is, the number of columns of the matrix \(B\); nrhs \(\geq 0\).
\(a, b\)

1 db

\section*{Output Parameters}
b

The solution matrix \(x\).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{?pptrs}

Solves a system of linear equations with a packed
Cholesky-factored symmetric (Hermitian) positive-
definite matrix.
Syntax

\section*{Fortran 77:}
```

call spptrs( uplo, n, nrhs, ap, b, ldb, info )
call dpptrs( uplo, n, nrhs, ap, b, ldb, info )
call cpptrs( uplo, n, nrhs, ap, b, ldb, info)
call zpptrs( uplo, n, nrhs, ap, b, ldb, info )

```

\section*{Fortran 95:}
```

call pptrs( ap, b [,uplo] [,info] )

```

C:
```

lapack_int LAPACKE_<?>pptrs( int matrix_order, char uplo, lapack_int n, lapack_int
nrhs, const <datatype>* ap, <datatype>* b, lapack_int ldb );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(X\) the system of linear equations \(A * X=B\) with a packed symmetric positive-definite or, for complex data, Hermitian positive-definite matrix \(A\), given the Cholesky factorization of \(A\) :
\(A=U^{T} * U\) for real data, \(A=U^{H} * U\) for complex data
if uplo='U'
\(A=L \star L^{T}\) for real data, \(A=L \star L^{H}\) for complex data
if uplo='L'
where \(L\) is a lower triangular matrix and \(U\) is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\).

Before calling this routine, you must call ?pptrf to compute the Cholesky factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
n
nrhs
ap,b
ldb

```

\section*{Output Parameters}
b
info
Overwritten by the solution matrix \(x\).
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pptrs interface are as follows:
```

ap Holds the array A of size ( }n*(n+1)/2)
b Holds the matrix B of size ( n, nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

If uplo = 'U', the computed solution for each right-hand side \(b\) is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\(|E| \leq c(n) \varepsilon\left|U^{H}\right||U|\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo = 'L'.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty s}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon
\]
where cond \((A, x)=\left\|\left|A^{-1}\|A| | x \mid\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|\left\|_{\infty}\right\| A \|_{\infty}=\kappa_{\infty}(A)\right.\right.\).
Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The approximate number of floating-point operations for one right-hand side vector \(b\) is \(2 n^{2}\) for real flavors and \(8 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?ppcon.
To refine the solution and estimate the error, call ?pprfs.

\section*{?pbtrs}

Solves a system of linear equations with a Choleskyfactored symmetric (Hermitian) positive-definite band matrix.

Syntax

\section*{Fortran 77:}
```

call spbtrs( uplo, n, kd, nrhs, ab, ldab, b, ldb, info )
call dpbtrs( uplo, n, kd, nrhs, ab, ldab, b, ldb, info )
call cpbtrs( uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call zpbtrs( uplo, n, kd, nrhs, ab, ldab, b, ldb, info )

```

\section*{Fortran 95:}
```

call pbtrs( ab, b [,uplo] [,info] )

```

C:
lapack_int LAPACKE_<?>pbtrs(int matrix_order, char uplo, lapack_int n, lapack_int kd, lapack_int nrhs, const <datatype>* ab, lapack_int ldab, <datatype>* b, lapack_int ldb);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for real data a system of linear equations \(A * X=B\) with a symmetric positive-definite or, for complex data, Hermitian positive-definite band matrix \(A\), given the Cholesky factorization of \(A\) :
\(A=U^{T} * U\) for real data, \(A=U^{H} * U\) for complex data
if uplo='U'
\(A=L \star L^{T}\) for real data, \(A=L \star L^{H}\) for complex data
if uplo='L'
where \(L\) is a lower triangular matrix and \(U\) is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\).

Before calling this routine, you must call ?pbtrf to compute the Cholesky factorization of \(A\) in the band storage form.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the upper triangular factor is stored in ab.
If uplo = 'L', the lower triangular factor is stored in ab.
n
kd
nrhs
ab,b
ldab
ldb
INTEGER. The order of matrix A; n\geq0.
INTEGER. The number of superdiagonals or subdiagonals in the matrix
A; kd \geq0.
INTEGER. The number of right-hand sides; nrhs \geq0.
REAL for spbtrs
DOUBLE PRECISION for dpbtrs
COMPLEX for cpbtrs
DOUBLE COMPLEX for zpbtrs.
Arrays: ab(ldab,*), b(ldb,*).
The array ab contains the Cholesky factor, as returned by the
factorization routine, in band storage form.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of ab must be at least max (1, n), and the
second dimension of b at least max (1,nrhs).
INTEGER. The leading dimension of the array ab; ldab }\geqkd+1
INTEGER. The leading dimension of b; ldb \geq max (1, n).

```

\section*{Output Parameters}
```

b
info

```

Overwritten by the solution matrix \(x\).
INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pbtrs interface are as follows:
\(a b \quad\) Holds the array \(A\) of size \((k d+1, n)\).
\(b \quad\) Holds the matrix \(B\) of size (\(n, n r h s\)).
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations (\(A\) \(+E) x=b\), where
\(|E| \leq c(k d+1) \varepsilon P\left|U^{H}\right||U|\) or \(|E| \leq c(k d+1) \varepsilon P\left|L^{H}\right||L|\)
\(c(k)\) is a modest linear function of \(k\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(k d+1) \operatorname{cond}(A, x) \varepsilon
\]
where cond \((A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The approximate number of floating-point operations for one right-hand side vector is \(4 n^{*} k d\) for real flavors and \(16 n^{*} k d\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?pbcon.
To refine the solution and estimate the error, call ?pbrfs.

\section*{?pttrs}

Solves a system of linear equations with a symmetric (Hermitian) positive-definite tridiagonal matrix using the factorization computed by ?pttrf.

Syntax

\section*{Fortran 77:}
```

call spttrs( n, nrhs, d, e, b, ldb, info )
call dpttrs( n, nrhs, d, e, b, ldb, info )
call cpttrs( uplo, n, nrhs, d, e, b, ldb, info )
call zpttrs( uplo, n, nrhs, d, e, b, ldb, info )

```

\section*{Fortran 95:}
```

call pttrs( d, e, b [,info] )
call pttrs( d, e, b [,uplo] [,info] )

```

C:
```

lapack_int LAPACKE_spttrs( int matrix_order, lapack_int n, lapack_int nrhs, const
float* d, const float* e, float* b, lapack_int ldb );
lapack_int LAPACKE_dpttrs( int matrix_order, lapack_int n, lapack_int nrhs, const
double* d, const double* e, double* b, lapack_int ldb );

```
```

lapack_int LAPACKE_cpttrs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
const float* d, const lapack_complex_float* e, lapack_complex_float* b, lapack_int
ldb );
lapack_int LAPACKE_zpttrs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
const double* d, const lapack_complex_double* e, lapack_complex_double* b, lapack_int
ldb );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) a system of linear equations \(A * X=B\) with a symmetric (Hermitian) positive-definite tridiagonal matrix \(A\). Before calling this routine, call ?pttrf to compute the \(L^{\star} D^{\star} L^{\prime}\) for real data and the \(L^{\star} D^{*} L^{\prime}\) or \(U^{\prime}{ }^{*} D^{*} U\) factorization of \(A\) for complex data.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Used for cpttrs/zpttrs only. Must be 'U' or 'L'. Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix \(A\) is stored and how \(A\) is factored: \\
If uplo = 'U', the array e stores the superdiagonal of \(A\), and \(A\) is factored as \(U^{\prime}{ }^{*} D^{\star} U\). \\
If uplo = 'L', the array e stores the subdiagonal of \(A\), and \(A\) is factored as \(L^{*} D^{\star} L^{\prime}\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides, that is, the number of columns of the matrix \(B ; n r h s \geq 0\). \\
\hline d & \begin{tabular}{l}
REAL for spttrs, cpttrs \\
DOUBLE PRECISION for dpttrs, zpttrs. \\
Array, dimension (\(n\)). Contains the diagonal elements of the diagonal matrix \(D\) from the factorization computed by ?pttrf.
\end{tabular} \\
\hline \(e, b\) & \begin{tabular}{l}
REAL for spttrs \\
DOUBLE PRECISION for dpttrs \\
COMPLEX for cpttrs \\
DOUBLE COMPLEX for zpttrs. \\
Arrays: \(e(n-1), b(l d b, n r h s)\). \\
The array e contains the (\(n-1\)) off-diagonal elements of the unit bidiagonal factor \(U\) or \(L\) from the factorization computed by ?pttrf (see uplo). \\
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
\end{tabular} \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{b}

Overwritten by the solution matrix \(X\).
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pttrs interface are as follows:
```

d Holds the vector of length n.
e Holds the vector of length (n-1).
b Holds the matrix B of size (n, nrhs).
uplo Used in complex flavors only. Must be 'U' or 'L'. The default value is
'U'.

```
?sytrs
Solves a system of linear equations with a UDU- or
LDL-factored symmetric matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call dsytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call csytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call zsytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )

```

\section*{Fortran 95:}
```

call sytrs( a, b, ipiv [,uplo] [,info] )

```

C:
```

lapack_int LAPACKE_<?>sytrs( int matrix_order, char uplo, lapack_int n, lapack_int
nrhs, const <datatype>* a, lapack_int lda, const lapack_int* ipiv, <datatype>* b,
lapack_int ldb );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the system of linear equations \(A * X=B\) with a symmetric matrix \(A\), given the BunchKaufman factorization of \(A\) :
```

if uplo='U', A = P* U*D* UT* 的T
if uplo='L', A = P* L* D* LT* P',

```
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\). You must supply to this routine the factor \(U\) (or \(L\)) and the array ipiv returned by the factorization routine ?sytrf.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the
factorization A = P*U*D* 媓* * P
If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = P* L*D* LT* 故.
INTEGER. The order of matrix A; n\geq0.
INTEGER. The number of right-hand sides; nrhs \geq0.
INTEGER. Array, DIMENSION at least max(1, n). The ipiv array, as
returned by ?sytrf.
REAL for ssytrs
DOUBLE PRECISION for dsytrs
COMPLEX for csytrs
DOUBLE COMPLEX for zsytrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the factor }U\mathrm{ or L (see uplo).
The array b contains the matrix }B\mathrm{ whose columns are the right-hand
sides for the system of equations.
The second dimension of a must be at least max (1,n), and the
second dimension of b at least max (1,nrhs).
INTEGER. The leading dimension of a; lda \geq max (1, n).
INTEGER. The leading dimension of b; ldb \geq max (1, n).

```

\section*{Output Parameters}
```

b Overwritten by the solution matrix }x\mathrm{ .

```
info
INTEGER. If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sytrs interface are as follows:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
ipiv & Holds the vector of length \(n\). \\
uplo & Must be 'U' or 'L'. The default value is ' \(U\) '.
\end{tabular}

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations (\(A\)
\(+E) x=b\), where
\(|E| \leq c(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T}\) or \(|E| \leq c(n) \varepsilon P|L||D|\left|U^{T}\right| P^{T}\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.

If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{con} d(A, x) \varepsilon
\]
where cold \((A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that con \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The total number of floating-point operations for one right-hand side vector is approximately \(2 n^{2}\) for real flavors or \(8 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?sycon.
To refine the solution and estimate the error, call ?syrfs.

\section*{?hers}

Solves a system of linear equations with a UDU- or LDL-factored Hermitian matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call chetrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call zhetrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )

```

Fortran 95:
```

call hetrs( a, b, ipiv [, uplo] [,info] )

```

C:
```

lapack_int LAPACKE_<?>hetrs( int matrix_order, char uplo, lapack_int n, lapack_int

```
nrhs, const <datatype>* a, lapack_int Ida, const lapack_int* ipiv, <datatype>* b,
lapack_int ld);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the system of linear equations \(A * X=B\) with a Hermitian matrix \(A\), given the BunchKaufman factorization of \(A\) :
```

if uplo = 'U' A = P* U* D* U'* 喑
if uplo = 'L' A = P* L* D* LL**P',

```
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\). You must supply to this routine the factor \(U\) (or \(L\)) and the array ipiv returned by the factorization routine ?hetrf.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{ll}
uplo & CHARACTER* 1 . Must be ' \(U\) ' or ' \(L\) '. \\
& Indicates how the input matrix \(A\) has been factored: \\
& If uplo \(=' U\) ', the array a stores the upper triangular factor \(U\) of the \\
& factorization \(A=P \star U^{\star} D^{\star} U^{H \star} P^{T}\).
\end{tabular}

\section*{Output Parameters}
```

b
info

```

Overwritten by the solution matrix \(x\).
INTEGER. If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hetrs interface are as follows:
```

a Holds the matrix A of size (n, n).
b Holds the matrix B of size ( n, nrhs).
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations (\(A\) \(+E) x=b\), where
\(|E| \leq C(n) \varepsilon P|U||D|\left|U^{H}\right| P^{T}\) or \(|E| \leq C(n) \varepsilon P|L||D|\left|L^{H}\right| P^{T}\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.

If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) c
\]
where cond \((A, x)=\left\|\left|A^{-1}\right|\right\| A| | x \mid\left\|_{\infty} /\right\| x\left\|_{\infty} \leq\right\| A^{-1}\left\|_{\infty}\right\| A \|_{\infty}=\kappa_{\infty}(A)\).
Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The total number of floating-point operations for one right-hand side vector is approximately \(8 n^{2}\).
To estimate the condition number \(\kappa_{\infty}(A)\), call ?hecon.
To refine the solution and estimate the error, call ?herfs.
```

?sytrs2
Solves a system of linear equations with a UDU- or
LDL-factored symmetric matrix computed by ?sytrf
and converted by ?syconv.
Syntax
Fortran 77:

```
```

call ssytrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info )

```
call ssytrs2(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info)
call dsytrs2(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info)
call dsytrs2(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info)
call csytrs2(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info)
call csytrs2(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info)
call zsytrs2(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info)
```

call zsytrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info )

```

\section*{Fortran 95:}
```

call sytrs2( a,b,ipiv[,uplo][,info] )

```

C:
lapack_int LAPACKE_<?>sytrs2(int matrix_order, char uplo, lapack_int n, lapack_int nrhs, const <datatype>* a, lapack_int lda, const lapack_int* ipiv, <datatype>* b, lapack_int ldb);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves a system of linear equations \(A * X=B\) with a symmetric matrix \(A\) using the factorization of A:
if uplo='U',
\[
A=U * D * U^{T}
\]
\[
\text { if uplo='L', } \quad A=L^{\star} D^{\star} L^{T}
\]
where
- \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal
- \(D\) is a symmetric block-diagonal matrix.

The factorization is computed by ?sytrf and converted by ?syconv.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.

\section*{Output Parameters}

\section*{b}
info

Overwritten by the solution matrix \(x\).
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine sytrs2 interface are as follows:
```

a Holds the matrix A of size (n,n).
b Holds the matrix B of size (n, nrhs).
ipiv Holds the vector of length n.

```
uplo Indicates how the input matrix \(A\) has been factored. Must be 'U' or 'L'.

\author{
See Also
}
?sytrf
?syconv

\section*{?hetrs2}

Solves a system of linear equations with a UDU- or LDL-factored Hermitian matrix computed by ?hetrf and converted by ?syconv.

\section*{Syntax}

\section*{Fortran 77:}
```

call chetrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info )
call zhetrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info )

```

\section*{Fortran 95:}
```

call hetrs2( a, b, ipiv [,uplo] [,info] )

```

C:
lapack_int LAPACKE_<?>hetrs2(int matrix_order, char uplo, lapack_int n, lapack_int
nrhs, const <datatype>* a, lapack_int lda, const lapack_int* ipiv, <datatype>* b,
lapack_int ldb);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves a system of linear equations \(A * X=B\) with a complex Hermitian matrix \(A\) using the factorization of \(A\) :
if uplo='U',
\(A=U * D^{\star} U^{H}\)
if uplo='L',
\(A=L^{*} D^{\star} L^{H}\)
where
- \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal
- \(D\) is a Hermitian block-diagonal matrix.

The factorization is computed by ?hetrf and converted by ?syconv.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
uplo
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored:
If uplo = 'U', the array a stores the upper triangular factor \(U\) of the factorization \(A=U * D^{\star} U^{H}\).
\begin{tabular}{|c|c|}
\hline & If uplo = 'L', the array a stores the lower triangular factor \(L\) of the factorization \(A=L^{\star} D^{\star} L^{H}\). \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; nrhs \(\geq 0\). \\
\hline \(a, b\) & COMPLEX for chetrs2 \\
\hline & DOUBLE COMPLEX for zhetrs2 \\
\hline & Arrays: \(a(l d a, *), b(l d b, *)\). \\
\hline & The array a contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?hetrf. The array \(b\) contains the right-hand side matrix \(B\). \\
\hline & The second dimension of \(a\) must be at least \(\max (1, n)\), and the second dimension of \(b\) at least max (\(1, n r h s\)). \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\) \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline ipiv & INTEGER. Array of DIMENSION \(n\). The ipiv array contains details of the interchanges and the block structure of \(D\) as determined by ? hetrf. \\
\hline work & COMPLEX for chetrs2 \\
\hline & DOUBLE COMPLEX for zhetrs2 \\
\hline & Workspace array, DIMENSION \(n\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

b
info

```

Overwritten by the solution matrix \(x\).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hetrs2 interface are as follows:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((n, n)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
ipiv & Holds the vector of length \(n\). \\
uplo & Must be ' \(U\) ' or ' \(L\) '. The default value is ' \(U\) '.
\end{tabular}

\section*{See Also}
?hetrf
?syconv

\section*{?sptrs}

Solves a system of linear equations with a UDU- or LDL-factored symmetric matrix using packed storage.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssptrs( uplo, n, nrhs, ap, ipiv, b, ldb, info )
call dsptrs( uplo, n, nrhs, ap, ipiv, b, ldb, info )

```
```

call csptrs( uplo, n, nrhs, ap, ipiv, b, ldb, info )
call zsptrs( uplo, n, nrhs, ap, ipiv, b, ldb, info )

```

\section*{Fortran 95:}
```

call sptrs( ap, b, ipiv [, uplo] [,info] )

```

C:
```

lapack_int LAPACKE_<?>sptrs( int matrix_order, char uplo, lapack_int n, lapack_int

```
nrhs, const <datatype>* ap, const lapack_int* ipiv, <datatype>* b, lapack_int ldb);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the system of linear equations \(A \star X=B\) with a symmetric matrix \(A\), given the BunchKaufman factorization of \(A\) :
```

if uplo='U', A = PUDUT P'T
if uplo='L', A = PLDL'T P',

```
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower packed triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\). You must supply the factor \(U\) (or \(L\)) and the array ipiv returned by the factorization routine ?sptrf.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates how the input matrix \(A\) has been factored: \\
If uplo = 'U', the array ap stores the packed factor \(U\) of the factorization \(A=P * U^{*} D^{*} U^{T} * P^{T}\). If uplo = 'L', the array ap stores the packed factor \(L\) of the factorization \(A=P{ }^{\star} L^{\star} D^{\star} L^{T}{ }^{*} P^{T}\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; nrhs \(\geq 0\). \\
\hline ipiv & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION at least max \((1, n)\). The ipiv array, as returned by ?sptrf.
\end{tabular} \\
\hline \(a p, b\) & \begin{tabular}{l}
REAL for ssptrs \\
DOUBLE PRECISION for dsptrs \\
COMPLEX for csptrs \\
DOUBLE COMPLEX for zsptrs. \\
Arrays: \(a p(*), b(l d b, *)\). \\
The dimension of \(a p\) must be at least max \((1, n(n+1) / 2)\). The array \(a p\) contains the factor \(U\) or \(L\), as specified by uplo, in packed storage (see Matrix Storage Schemes).
\end{tabular} \\
\hline
\end{tabular}

The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the system of equations. The second dimension of \(b\) must be at least max (1, nrhs).

\section*{Output Parameters}
b
info

Overwritten by the solution matrix \(x\).
INTEGER. If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sptrs interface are as follows:
```

ap Holds the array A of size ( }n*(n+1)/2)
b Holds the matrix B of size ( n, nrhs).
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations (\(A\) \(+E) x=b\), where
\(|E| \leq C(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T}\) or \(|E| \leq C(n) \varepsilon P|L||D|\left|L^{T}\right| P^{T}\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{con} d^{3}(A, x) \varepsilon
\]
where cond \((A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The total number of floating-point operations for one right-hand side vector is approximately \(2 n^{2}\) for real flavors or \(8 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?spcon.
To refine the solution and estimate the error, call ?sprfs.

\section*{?hptrs \\ Solves a system of linear equations with a UDU- or LDL-factored Hermitian matrix using packed storage.}

\section*{Syntax}

\section*{Fortran 77:}
```

call chptrs( uplo, n, nrhs, ap, ipiv, b, ldb, info )
call zhptrs( uplo, n, nrhs, ap, ipiv, b, ldb, info )

```

\section*{Fortran 95:}
```

call hptrs( ap, b, ipiv [,uplo] [,info] )

```

C:
```

lapack_int LAPACKE_<?>hptrs( int matrix_order, char uplo, lapack_int n, lapack_int

```
nrhs, const <datatype>* ap, const lapack_int* ipiv, <datatype>* b, lapack_int ldb);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the system of linear equations \(A * X=B\) with a Hermitian matrix \(A\), given the BunchKaufman factorization of \(A\) :
```

if uplo='U', A = P* U*D* U'H* 的
if uplo='L', A = P* L* D* L'* 靘,

```
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower packed triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\).

You must supply to this routine the arrays ap (containing \(U\) or \(L\)) and ipiv in the form returned by the factorization routine ?hptrf.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & \begin{tabular}{l}
Indicates how the input matrix \(A\) has been factored: \\
If uplo = 'U', the array ap stores the packed factor \(U\) of the factorization \(A=P^{\star} U^{\star} D^{\star} U^{H \star} P^{T}\). If uplo \(=\) 'L', the array ap stores the packed factor \(L\) of the factorization \(A=P^{\star} L \star D \star L^{H} \star P^{T}\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; nrhs \(\geq 0\). \\
\hline ipiv & INTEGER. Array, DIMENSION at least max (1, n). The ipiv array, as returned by ?hptrf. \\
\hline \(a p, b\) & COMPLEX for chptrs \\
\hline & \begin{tabular}{l}
DOUBLE COMPLEX for zhptrs. \\
Arrays: \(a p(*), b(l d b, *)\).
\end{tabular} \\
\hline & The dimension of ap must be at least \(\max (1, n(n+1) / 2)\). The array ap contains the factor \(U\) or \(L\), as specified by uplo, in packed storage (see Matrix Storage Schemes). \\
\hline
\end{tabular}

The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the system of equations. The second dimension of \(b\) must be at least max (1, nrhs).

\section*{Output Parameters}
b
info

Overwritten by the solution matrix \(x\).
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hptrs interface are as follows:
```

ap Holds the array A of size ( }\mp@subsup{n}{}{*}(n+1)/2)
b Holds the matrix B of size ( n, nrhs).
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations (\(A\) \(+E) x=b\), where
\(|E| \leq C(n) \varepsilon P|U||D|\left|U^{H}\right| P^{T}\) or \(|E| \leq C(n) \varepsilon P|L||D|\left|L^{H}\right| P^{T}\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon
\]
where cond \((A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The total number of floating-point operations for one right-hand side vector is approximately \(8 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?hpcon.
To refine the solution and estimate the error, call ?hprfs.
?trtrs
Solves a system of linear equations with a triangular matrix, with multiple right-hand sides.

\section*{Syntax}

\section*{Fortran 77:}
```

call strtrs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, info )
call dtrtrs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, info )
call ctrtrs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, info )
call ztrtrs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, info )

```

\section*{Fortran 95:}
```

call trtrs( a, b [,uplo] [, trans] [,diag] [,info] )

```

C:
```

lapack_int LAPACKE_<?>trtrs( int matrix_order, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const <datatype>* a, lapack_int lda, <datatype>* b,
lapack_int ldb );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the following systems of linear equations with a triangular matrix \(A\), with multiple right-hand sides stored in \(B\) :
```

A*X=B
if trans='N',
AT*X = B
if trans='T',
A H*X = B if trans='C' (for complex matrices only).

```

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether \(A\) is upper or lower triangular: \\
\hline & If uplo = 'U', then \(A\) is upper triangular. \\
\hline & If uplo = 'L', then \(A\) is lower triangular. \\
\hline \multirow[t]{4}{*}{trans} & CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & If trans \(=\) ' N ', then \(A * X=B\) is solved for \(X\). \\
\hline & If trans \(=\) ' T ', then \(A^{T} * X=B\) is solved for \(X\). \\
\hline & If trans \(=\) ' C ', then \(A^{H *} X=B\) is solved for \(X\). \\
\hline \multirow[t]{3}{*}{diag} & CHARACTER*1. Must be 'N' or 'U'. \\
\hline & If diag = ' N ', then \(A\) is not a unit triangular matrix. \\
\hline & If diag \(=\) 'U', then \(A\) is unit triangular: diagonal elements of \(A\) are assumed to be 1 and not referenced in the array \(a\). \\
\hline \(n\) & INTEGER. The order of \(A\); the number of rows in \(B ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; nrhs \(\geq 0\). \\
\hline \(a, b\) & REAL for strtrs \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & DOUBLE PRECISION for dtrtrs \\
\hline & COMPLEX for ctrtrs \\
\hline & DOUBLE COMPLEX for ztrtrs. \\
\hline & Arrays: \(a(l d a, *), ~ b(l d b, *)\). \\
\hline & The array a contains the matrix \(A\). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. \\
\hline & The second dimension of a must be at least max \((1, n)\), the second dimension of \(b\) at least \(\max (1, n r h s)\). \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 \mathrm{db} \geq \max (1, \mathrm{n})\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

b
info

```

Overwritten by the solution matrix \(x\).
INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine trtrs interface are as follows:
```

a Stands for argument ap in FORTRAN 77 interface. Holds the matrix A
of size ( }n* (n+1)/2)
b Holds the matrix B of size ( n, nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.
trans Must be 'N','C', or 'T'. The default value is 'N'.
diag Must be 'N' or 'U'. The default value is 'N'.

```

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations (\(A\) \(+E) x=b\), where
\(|E| \leq C(n) \varepsilon|A|\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon \text { provided } c(n) \operatorname{cond}(A, x) \varepsilon<1
\]
where cond \((A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{\infty}(A)\).
The approximate number of floating-point operations for one right-hand side vector \(b\) is \(n^{2}\) for real flavors and \(4 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?trcon.
To estimate the error in the solution, call ?trrfs.

\section*{?tptrs \\ Solves a system of linear equations with a packed triangular matrix, with multiple right-hand sides.}

\section*{Syntax}

\section*{Fortran 77:}
```

call stptrs( uplo, trans, diag, n, nrhs, ap, b, ldb, info )
call dtptrs( uplo, trans, diag, n, nrhs, ap, b, ldb, info )
call ctptrs( uplo, trans, diag, n, nrhs, ap, b, ldb, info )
call ztptrs( uplo, trans, diag, n, nrhs, ap, b, ldb, info )

```

\section*{Fortran 95:}
```

call tptrs( ap, b [,uplo] [, trans] [,diag] [,info] )

```

C:
```

lapack_int LAPACKE_<?>tptrs( int matrix_order, char uplo, char trans, char diag,

```
lapack_int \(\left.n, ~ l a p a c k _i n t ~ n r h s, ~ c o n s t ~<d a t a t y p e>* ~ a p, ~<d a t a t y p e>* ~ b, ~ l a p a c k _i n t ~ l d b ~\right) ; ~\)

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the following systems of linear equations with a packed triangular matrix \(A\), with multiple right-hand sides stored in \(B\) :
\[
\begin{array}{ll}
A \star X=B & \text { if } \operatorname{tran}==^{\prime} N^{\prime}, \\
A^{T} \star X=B & \text { if } \operatorname{tran}==^{\prime} T, \\
A^{H} \star X=B & \text { if } \operatorname{tran}==^{\prime} C^{\prime} \text { (for complex matrices only). }
\end{array}
\]

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.

\begin{tabular}{|c|c|}
\hline & If diag = 'U', then \(A\) is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array ap. \\
\hline \(n\) & INTEGER. The order of \(A\); the number of rows in \(B ; n \geq 0\). \\
\hline nrhs & Integer. The number of right-hand sides; nrhs \(\geq 0\). \\
\hline \(a p, b\) & REAL for stptrs \\
\hline & DOUBLE PRECISION for dtptrs \\
\hline & COMPLEX for ctptrs \\
\hline & DOUBLE COMPLEX for ztptrs. \\
\hline & Arrays: \(a p(*), b(1 d b, *)\). \\
\hline & The dimension of \(a p\) must be at least \(\max (1, n(n+1) / 2)\). The array \(a p\) contains the matrix A in packed storage (see Matrix Storage Schemes). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the system of equations. The second dimension of \(b\) must be at least max (1, nrhs). \\
\hline 1 db & INTEGER. The leading dimension of \(b ; l d b \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

b
info

```

Overwritten by the solution matrix \(x\).
INTEGER. If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine tptrs interface are as follows:
```

ap Holds the array A of size ( }n*(n+1)/2)
b Holds the matrix B of size (n,nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.
trans Must be 'N','C', or 'T'. The default value is 'N'.
diag Must be 'N' or 'U'. The default value is 'N'.

```

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations (A \(+E) x=b\), where
\(|E| \leq c(n) \varepsilon|A|\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon \text { provided } C(n) \operatorname{cond}(A, x) \varepsilon<1
\]
where cond \((A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|\left\|_{\infty}\right\| A \|_{\infty}=\kappa_{\infty}(A)\).

Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{\infty}(A)\).

The approximate number of floating-point operations for one right-hand side vector \(b\) is \(n^{2}\) for real flavors and \(4 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?tpcon.
To estimate the error in the solution, call ?tprfs.

\section*{?tbtrs}

Solves a system of linear equations with a band
triangular matrix, with multiple right-hand sides.

\section*{Syntax}

\section*{Fortran 77:}
```

call stbtrs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info )
call dtbtrs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info )
call ctbtrs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info )
call ztbtrs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info )

```

\section*{Fortran 95:}
```

call tbtrs( ab, b [,uplo] [, trans] [,diag] [,info] )

```

C:
```

lapack_int LAPACKE_<?>tbtrs( int matrix_order, char uplo, char trans, char diag,
lapack_int n, lapack_int kd, lapack_int nrhs, const <datatype>* ab, lapack_int ldab,
<datatype>* b, lapack_int ldb );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the following systems of linear equations with a band triangular matrix \(A\), with multiple right-hand sides stored in \(B\) :
\[
\begin{array}{ll}
A \star X=B & \text { if } \operatorname{tran} s={ }^{\prime} N^{\prime}, \\
A^{T \star}=B & \text { if } \operatorname{tran} s=' T ', \\
A^{H \star}=B & \text { if } \operatorname{tran}==^{\prime} C^{\prime} \text { (for complex matrices only). }
\end{array}
\]

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether \(A\) is upper or lower triangular:
If uplo = 'U', then \(A\) is upper triangular.
If uplo = 'L', then \(A\) is lower triangular.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{trans} & CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & If trans \(=\) ' N ', then \(A * X=B\) is solved for \(X\). \\
\hline & If trans \(=\) 'T', then \(A^{T} * X=B\) is solved for \(X\). \\
\hline & If trans \(=\) ' C', then \(A^{H *} X=B\) is solved for \(X\). \\
\hline \multirow[t]{3}{*}{diag} & CHARACTER*1. Must be 'N' or 'U'. \\
\hline & If diag = ' N ', then \(A\) is not a unit triangular matrix. \\
\hline & If diag \(=\) ' U ', then \(A\) is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array \(a b\). \\
\hline n & INTEGER. The order of \(A\); the number of rows in \(B ; n \geq 0\). \\
\hline \multirow[t]{2}{*}{kd} & INTEGER. The number of superdiagonals or subdiagonals in the matrix \\
\hline & \(A ; k d \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; nrhs \(\geq 0\). \\
\hline \multirow[t]{8}{*}{\(a b, b\)} & REAL for stbtrs \\
\hline & DOUBLE PRECISION for dtbtrs \\
\hline & COMPLEX for ctbtrs \\
\hline & DOUBLE COMPLEX for ztbtrs. \\
\hline & Arrays: \(a b\) (ldab,*), b(ldb,*). \\
\hline & The array \(a b\) contains the matrix \(A\) in band storage form. \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. \\
\hline & The second dimension of \(a b\) must be at least max \((1, n)\), the second dimension of \(b\) at least max (\(1, n r h s\)). \\
\hline ldab & INTEGER. The leading dimension of \(a b ; 1 d a b \geq k d+1\). \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
b
info

Overwritten by the solution matrix \(x\).
INTEGER. If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine tbtrs interface are as follows:
```

ab Holds the array A of size (kd+1,n)
b Holds the matrix B of size ( n, nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.
trans Must be 'N','C', or 'T'. The default value is 'N'.
diag Must be 'N' or 'U'. The default value is 'N'.

```

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations (\(A\) \(+E) x=b\), where
\(|E| \leq C(n) \varepsilon|A|\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon \text { provided } C(n) \operatorname{cond}(A, x) \varepsilon<1
\]
where cond \((A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{\infty}(A)\).

The approximate number of floating-point operations for one right-hand side vector bis \(2 n^{\star} k d\) for real flavors and \(8 n^{\star} k d\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?t.bcon.
To estimate the error in the solution, call ?tbrfs.

\section*{Routines for Estimating the Condition Number}

This section describes the LAPACK routines for estimating the condition number of a matrix. The condition number is used for analyzing the errors in the solution of a system of linear equations (see Error Analysis). Since the condition number may be arbitrarily large when the matrix is nearly singular, the routines actually compute the reciprocal condition number.

\section*{?gecon}

Estimates the reciprocal of the condition number of a general matrix in the 1-norm or the infinity-norm.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgecon( norm, n, a, lda, anorm, rcond, work, iwork, info )
call dgecon( norm, n, a, lda, anorm, rcond, work, iwork, info )
call cgecon( norm, n, a, lda, anorm, rcond, work, rwork, info )
call zgecon( norm, n, a, lda, anorm, rcond, work, rwork, info )

```

Fortran 95:
```

call gecon( a, anorm, rcond [,norm] [,info] )

```

\section*{C:}
```

lapack_int LAPACKE_sgecon( int matrix_order, char norm, lapack_int n, const float* a,
lapack_int lda, float anorm, float* rcond );
lapack_int LAPACKE_dgecon( int matrix_order, char norm, lapack_int n, const double* a,
lapack_int lda, double anorm, double* rcond );
lapack_int LAPACKE_cgecon( int matrix_order, char norm, lapack_int n, const
lapack_complex_float* a, lapack_int lda, float anorm, float* rcond );
lapack_int LAPACKE_zgecon( int matrix_order, char norm, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double anorm, double* rcond);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the reciprocal of the condition number of a general matrix \(A\) in the 1-norm or infinitynorm:
\(\kappa_{1}(A)=\left\|A\left|\left\|_{1}| | A^{-1} \mid\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right)\right.\right.\)
\(\kappa_{\infty}(A)=\left\|A\left|\left\|_{\infty}| | A^{-1} \mid\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right)\right.\right.\).
Before calling this routine:
- compute anorm (either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\left.||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)\)
- call ? getrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{norm} & CHARACTER*1. Must be '1' or 'O' or 'I'. \\
\hline & If norm \(=\) ' 1 ' or 'O', then the routine estimates the condition \\
\hline & number of matrix \(A\) in 1-norm. \\
\hline & If norm = 'I', then the routine estimates the condition number of matrix \(A\) in infinity-norm. \\
\hline \(n\) & INTEGER. The order of the matrix \(A ; n \geq 0\). \\
\hline \multirow[t]{7}{*}{a, work} & REAL for sgecon \\
\hline & DOUBLE PRECISION for dgecon \\
\hline & COMPLEX for cgecon \\
\hline & DOUBLE COMPLEX for zgecon. Arrays: \({ }^{\text {a (lda,*) , work }}\) (*). \\
\hline & The array a contains the \(L U\)-factored matrix \(A\), as returned by ?getrf. \\
\hline & The second dimension of a must be at least max \((1, n)\). The array work is a workspace for the routine. \\
\hline & The dimension of work must be at least max (\(1,4^{*} n\)) for real flavors and max (1, \(2{ }^{*} n\)) for complex flavors. \\
\hline \multirow[t]{2}{*}{anorm} & REAL for single precision flavors. \\
\hline & DOUBLE PRECISION for double precision flavors. The norm of the original matrix A (see Description). \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least max (1, \(n\)) . \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cgecon \\
\hline & DOUBLE PRECISION for zgecon. \\
\hline & Workspace array, DIMENSION at least max (1, 2*n). \\
\hline
\end{tabular}

\section*{Output Parameters}
rcond
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets \(r\) cond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gecon interface are as follows:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
norm Must be '1', 'O', or 'I'. The default value is '1'.

```

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{\star} X=b\) or \(A^{H \star_{X}}=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 \star_{n}{ }^{2}\) floating-point operations for real flavors and \(8{ }^{2} n^{2}\) for complex flavors.

\section*{?gbcon}

Estimates the reciprocal of the condition number of a band matrix in the 1-norm or the infinity-norm.

Syntax

\section*{Fortran 77:}
```

call sgbcon( norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info )
call dgbcon( norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info )
call cgbcon( norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info )
call zgbcon( norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info )

```

\section*{Fortran 95:}
```

call gbcon( ab, ipiv, anorm, rcond [,kl] [,norm] [,info] )

```

C:
```

lapack_int LAPACKE_sgbcon( int matrix_order, char norm, lapack_int n, lapack_int kl,
lapack_int ku, const float* ab, lapack_int ldab, const lapack_int* ipiv, float anorm,
float* rcond );
lapack_int LAPACKE_dgbcon( int matrix_order, char norm, lapack_int n, lapack_int kl,
lapack_int ku, const double* ab, lapack_int ldab, const lapack_int* ipiv, double
anorm, double* rcond );
lapack_int LAPACKE_cgbcon( int matrix_order, char norm, lapack_int n, lapack_int kl,
lapack_int ku, const lapack_complex_float* ab, lapack_int ldab, const lapack_int* ipiv,
float anorm, float* rcond );
lapack_int LAPACKE_zgbcon( int matrix_order, char norm, lapack_int n, lapack_int kl,
lapack_int ku, const lapack_complex_double* ab, lapack_int ldab, const lapack_int*
ipiv, double anorm, double* rcond );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the reciprocal of the condition number of a general band matrix \(A\) in the 1-norm or infinity-norm:
\(\kappa_{1}(A)=\|A \mid\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right)\)
\(\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1} \mid\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right)\).
Before calling this routine:
- compute anorm (either \(\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\))
- call ? gbtrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline norm & \begin{tabular}{l}
CHARACTER*1. Must be '1' or 'O' or 'I'. \\
If norm \(=\) ' 1 ' or ' \(O\) ', then the routine estimates the condition number of matrix \(A\) in 1-norm. \\
If norm = 'I', then the routine estimates the condition number of matrix \(A\) in infinity-norm.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A ; n \geq 0\). \\
\hline kI & INTEGER. The number of subdiagonals within the band of \(A ; k I \geq 0\). \\
\hline ku & INTEGER. The number of superdiagonals within the band of \(A ; k u \geq 0\). \\
\hline Idab & INTEGER. The leading dimension of the array \(a b\). (ldab \(\geq 2^{*} k l+k u\) +1). \\
\hline ipiv & INTEGER. Array, DIMENSION at least max \((1, n)\). The ipiv array, as returned by ?gbtrf. \\
\hline \multirow[t]{8}{*}{ab, work} & REAL for sgbcon \\
\hline & DOUBLE PRECISION for dgbcon \\
\hline & COMPLEX for cgbcon \\
\hline & DOUBLE COMPLEX for zgbcon. \\
\hline & Arrays: ab(ldab,*), work(*). \\
\hline & The array \(a b\) contains the factored band matrix \(A\), as returned by ? gbtrf. \\
\hline & The second dimension of \(a b\) must be at least max \((1, n)\). The array work is a workspace for the routine. \\
\hline & The dimension of work must be at least max \(\left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2 *_{n}\right)\) for complex flavors. \\
\hline \multirow[t]{3}{*}{anorm} & REAL for single precision flavors. \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & The norm of the original matrix \(A\) (see Description). \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least max (1, \(n\)). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cgbcon \\
\hline & DOUBLE PRECISION for zgbcon. \\
\hline & Workspace array, DIMENSION at least max (1, \(2 * n\)) . \\
\hline
\end{tabular}

\section*{Output Parameters}
rcond
info

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets \(r\) cond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gbcon interface are as follows:
```

ab Holds the array A of size (2* kl+ku+1,n).
ipiv Holds the vector of length n.
norm Must be '1','O', or 'I'. The default value is '1'.
kl If omitted, assumed kl = ku.
ku Restored as ku = lda-2*kl-1.

```

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{\star} X=b\) or \(A^{H \star_{X}}=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n(k u+2 k l)\) floating-point operations for real flavors and \(8 n(k u+2 k l)\) for complex flavors.
?gtcon
Estimates the reciprocal of the condition number of a tridiagonal matrix using the factorization computed by ?gttrf.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgtcon( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info )
call dgtcon( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info )
call cgtcon( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info )
call zgtcon( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info )

```

\section*{Fortran 95:}
```

call gtcon( dl, d, du, du2, ipiv, anorm, rcond [,norm] [,info] )

```
C:
```

lapack_int LAPACKE_sgtcon( char norm, lapack_int n, const float* dl, const float* d,
const float* du, const float* du2, const lapack_int* ipiv, float anorm, float* rcond );

```
```

lapack_int LAPACKE_dgtcon( char norm, lapack_int n, const double* dl, const double* d,
const double* du, const double* du2, const lapack_int* ipiv, double anorm, double*
rcond );
lapack_int LAPACKE_cgtcon( char norm, lapack_int n, const lapack_complex_float* dl,
const lapack_complex_float* d, const lapack_complex_float* du, const
lapack_complex_float* du2, const lapack_int* ipiv, float anorm, float* rcond );
lapack_int LAPACKE_zgtcon( char norm, lapack_int n, const lapack_complex_double* dl,
const lapack_complex_double* d, const lapack_complex_double* du, const
lapack_complex_double* du2, const lapack_int* ipiv, double anorm, double* rcond );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the reciprocal of the condition number of a real or complex tridiagonal matrix \(A\) in the 1-norm or infinity-norm:
\(\kappa_{1}(A)=\|A\|_{1}| | A^{-1} \mid \|_{1}\)
\(\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}\)
An estimate is obtained for \(\left|\left|A^{-1}\right|\right|\), and the reciprocal of the condition number is computed as rcond \(=\) \(1 /\left(||A||| | A^{-1}| |\right)\).
Before calling this routine:
- compute anorm (either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\left.||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)\)
- call ?gttrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

norm
n
dl,d,du,du2
CHARACTER*1. Must be '1' or 'O' or 'I'.
If norm ='1' or ' ' ', then the routine estimates the condition
number of matrix A in 1-norm.
If norm = 'I', then the routine estimates the condition number of
matrix A in infinity-norm.
INTEGER. The order of the matrix A; n\geq0.
REAL for sgtcon
DOUBLE PRECISION for dgtcon
COMPLEX for cgtcon
DOUBLE COMPLEX for zgtcon.
Arrays: dl(n -1),d(n),du(n -1),du2(n -2).
The array dl contains the (n-1) multipliers that define the matrix L
from the LU factorization of A as computed by ?gttrf.
The array d contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of }A\mathrm{ .
The array du contains the (n-1) elements of the first superdiagonal
of }U\mathrm{ .

```
\begin{tabular}{|c|c|}
\hline & The array du2 contains the \((n-2)\) elements of the second superdiagonal of \(U\). \\
\hline ipiv & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION (n). The array of pivot indices, as returned by ? gttrf.
\end{tabular} \\
\hline anorm & \begin{tabular}{l}
REAL for single precision flavors. \\
DOUBLE PRECISION for double precision flavors. The norm of the original matrix \(A\) (see Description).
\end{tabular} \\
\hline work & \begin{tabular}{l}
REAL for sgtcon \\
DOUBLE PRECISION for dgtcon \\
COMPLEX for cgtcon \\
DOUBLE COMPLEX for zgtcon. \\
Workspace array, DIMENSION \(\left(2 *_{n}\right)\).
\end{tabular} \\
\hline iwork & INTEGER. Workspace array, DIMENSION (\(n\)). Used for real flavors on \\
\hline
\end{tabular}

\section*{Output Parameters}
rcond
info
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets \(r\) cond=0 if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gtcon interface are as follows:
```

dl Holds the vector of length (n-1).
d Holds the vector of length n.
du Holds the vector of length (n-1).
du2 Holds the vector of length (n-2).
ipiv Holds the vector of length n.
norm Must be '1','O', or 'I'. The default value is '1'.

```

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{*} x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors and \(8 n^{2}\) for complex flavors.

\section*{?pocon}

Estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call spocon( uplo, n, a, lda, anorm, rcond, work, iwork, info )
call dpocon( uplo, n, a, lda, anorm, rcond, work, iwork, info )
call cpocon( uplo, n, a, lda, anorm, rcond, work, rwork, info )
call zpocon( uplo, n, a, lda, anorm, rcond, work, rwork, info )

```

\section*{Fortran 95:}
```

call pocon( a, anorm, rcond [,uplo] [,info] )

```

C:
```

lapack_int LAPACKE_spocon( int matrix_order, char uplo, lapack_int n, const float* a,
lapack_int lda, float anorm, float* rcond );
lapack_int LAPACKE_dpocon( int matrix_order, char uplo, lapack_int n, const double* a,
lapack_int lda, double anorm, double* rcond );
lapack_int LAPACKE_cpocon( int matrix_order, char uplo, lapack_int n, const
lapack_complex_float* a, lapack_int lda, float anorm, float* rcond );
lapack_int LAPACKE_zpocon( int matrix_order, char uplo, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double anorm, double* rcond );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite matrix \(A\) :
\(\kappa_{1}(A)=\left\|\left.A\right|_{1}| | A^{-1} \mid\right\|_{1}\) (since \(A\) is symmetric or Hermitian, \(\kappa_{\infty}(A)=\kappa_{1}(A)\)).
Before calling this routine:
- compute anorm (either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\left.||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)\)
- call ?potrf to compute the Cholesky factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo
n
a, work
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix $A$ has been factored:
If uplo = 'U', the upper triangle of $A$ is stored.
If uplo = 'L', the lower triangle of $A$ is stored.
INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for spocon
DOUBLE PRECISION for dpocon
COMPLEX for cpocon

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{} & DOUBLE COMPLEX for zpocon. \\
\hline & Arrays: a (lda,*), work(*). \\
\hline & The array a contains the factored matrix \(A\), as returned by ?potrf. \\
\hline & The array work is a workspace for the routine. The dimension of work must be at least max \(\left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2 *_{n}\right)\) for complex flavors. \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{anorm} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & The norm of the original matrix A (see Description). \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least max (1, n). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cpocon \\
\hline & DOUBLE PRECISION for zpocon. \\
\hline & Workspace array, DIMENSION at least max (1, n). \\
\hline
\end{tabular}

\section*{Output Parameters}
rcond
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pocon interface are as follows:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{\star} X=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors and \(8 n^{2}\) for complex flavors.

\section*{?ppcon}

Estimates the reciprocal of the condition number of a packed symmetric (Hermitian) positive-definite matrix.

Syntax

\section*{Fortran 77:}
```

call sppcon( uplo, n, ap, anorm, rcond, work, iwork, info )

```
```

call dppcon( uplo, n, ap, anorm, rcond, work, iwork, info )
call cppcon( uplo, n, ap, anorm, rcond, work, rwork, info )
call zppcon( uplo, n, ap, anorm, rcond, work, rwork, info )

```

\section*{Fortran 95:}
```

call ppcon( ap, anorm, rcond [,uplo] [,info] )

```
C:
lapack_int LAPACKE_sppcon(int matrix_order, char uplo, lapack_int n, const float* ap,
float anorm, float* rcond);
lapack_int LAPACKE_dppcon(int matrix_order, char uplo, lapack_int \(n\), const double* ap,
double anorm, double* rcond);
lapack_int LAPACKE_cppcon(int matrix_order, char uplo, lapack_int \(n\), const
lapack_complex_float* ap, float anorm, float* rcond);
lapack_int LAPACKE_zppcon(int matrix_order, char uplo, lapack_int n, const
lapack_complex_double* ap, double anorm, double* rcond);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the reciprocal of the condition number of a packed symmetric (Hermitian) positivedefinite matrix \(A\) :
\(\kappa_{1}(A)=\|\left. A\right|_{1}| | A^{-1}| |_{1}\) (since \(A\) is symmetric or Hermitian, \(\kappa_{\infty}(A)=\kappa_{1}(A)\)).
Before calling this routine:
- compute anorm (either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\left.||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)\)
- call ?pptrf to compute the Cholesky factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo
n
ap, work
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The order of the matrix A; n\geq0.
REAL for sppcon
DOUBLE PRECISION for dppcon
COMPLEX for cppcon
DOUBLE COMPLEX for zppcon.
Arrays: ap(*), work(*).
The array ap contains the packed factored matrix }A\mathrm{ , as returned by ?
pptrf. The dimension of ap must be at least max(1,n(n+1)/2).

```
\begin{tabular}{ll}
& \begin{tabular}{l}
The array work is a workspace for the routine. The dimension of work \\
must be at least max \((1,3 * n)\) for real flavors and \(\max (1,2 * n)\) for
\end{tabular} \\
anorm & complex flavors. \\
REAL for single precision flavors \\
iwork & DOUBLE PRECISION for double precision flavors. \\
rwork & The norm of the original matrix A (see Description). \\
& INTEGER. Workspace array, DIMENSION at least max \((1, \mathrm{n})\). \\
& REAL for cppcon \\
& DOUBLE PRECISION for zppcon. \\
& Workspace array, DIMENSION at least max \((1, n)\).
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
rcond & REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors. \\
& An estimate of the reciprocal of the condition number. The routine \\
& sets rcond \(=0\) if the estimate underflows; in this case the matrix is \\
singular (to working precision). However, anytime rcond is small \\
info & compared to 1.0, for the working precision, the matrix may be poorly \\
& conditioned or even singular. \\
& INTEGER. If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\)-th parameter had an illegal value.
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ppcon interface are as follows:
ap Holds the array \(A\) of size \(\left(n^{\star}(n+1) / 2\right)\).
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{\star}{ }_{X}=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors and \(8 n^{2}\) for complex flavors.

\section*{?pbcon}

Estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite band matrix.

Syntax

\section*{Fortran 77:}
```

call spbcon( uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info )
call dpbcon( uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info )
call cpbcon( uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info )
call zpbcon( uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info )

```

\section*{Fortran 95:}
```

call pbcon( ab, anorm, rcond [,uplo] [,info] )

```

C:
lapack_int LAPACKE_spbcon(int matrix_order, char uplo, lapack_int n, lapack_int kd, const float* ab, lapack_int ldab, float anorm, float* rcond);
lapack_int LAPACKE_dpbcon(int matrix_order, char uplo, lapack_int n, lapack_int kd, const double* ab, lapack_int ldab, double anorm, double* rcond);
lapack_int LAPACKE_cpbcon(int matrix_order, char uplo, lapack_int n, lapack_int kd, const lapack_complex_float* ab, lapack_int ldab, float anorm, float* rcond);
lapack_int LAPACKE_zpbcon(int matrix_order, char uplo, lapack_int n, lapack_int kd, const lapack_complex_double* ab, lapack_int ldab, double anorm, double* rcond);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite band matrix \(A\) :
\(\kappa_{1}(A)=\|A\|_{1}| | A^{-1} \mid \|_{1}\) (since \(A\) is symmetric or Hermitian, \(\kappa_{\infty}(A)=\kappa_{1}(A)\)).
Before calling this routine:
- compute anorm (either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\))
- call ?pbtrf to compute the Cholesky factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo
n
kd
Idab
ab, work
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo = 'U', the upper triangular factor is stored in ab.
If uplo = 'L', the lower triangular factor is stored in ab.
INTEGER. The order of the matrix }A;n\geq0
INTEGER. The number of superdiagonals or subdiagonals in the matrix
A; kd\geq0.
INTEGER. The leading dimension of the array ab. (ldab \geqkd +1).
REAL for spbcon
DOUBLE PRECISION for dpbcon
COMPLEX for cpbcon
DOUBLE COMPLEX for zpbcon.
Arrays: ab(ldab,*), work(*).
The array ab contains the factored matrix A in band form, as returned
by ?pbtrf. The second dimension of ab must be at least max (1, n).

```

The array work is a workspace for the routine. The dimension of work must be at least max \(\left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2 *_{n}\right)\) for complex flavors.
anorm
iwork
rwork

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).
INTEGER. Workspace array, DIMENSION at least max (1, n).
REAL for cpbcon
DOUBLE PRECISION for zpbcon.
Workspace array, DIMENSION at least max (1, n).

\section*{Output Parameters}
rcond
info

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets \(r\) cond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pbcon interface are as follows:
\(a b \quad\) Holds the array \(A\) of size \((k d+1, n)\).
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{*} X=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(4^{\star} n(k d+1)\) floating-point operations for real flavors and \(16^{*} n(k d+1)\) for complex flavors.

\section*{?ptcon}

Estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite tridiagonal matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call sptcon( n, d, e, anorm, rcond, work, info )
call dptcon( n, d, e, anorm, rcond, work, info )
call cptcon( n, d, e, anorm, rcond, work, info )
call zptcon( n, d, e, anorm, rcond, work, info )

```

\section*{Fortran 95:}
```

call ptcon( d, e, anorm, rcond [,info] )
C:
lapack_int LAPACKE_sptcon( lapack_int n, const float* d, const float* e, float anorm,
float* rcond );
lapack_int LAPACKE_dptcon( lapack_int n, const double* d, const double* e, double
anorm, double* rcond );
lapack_int LAPACKE_cptcon( lapack_int n, const float* d, const lapack_complex_float* e,
float anorm, float* rcond );
lapack_int LAPACKE_zptcon( lapack_int n, const double* d, const lapack_complex_double*
e, double anorm, double* rcond );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the reciprocal of the condition number (in the 1-norm) of a real symmetric or complex Hermitian positive-definite tridiagonal matrix using the factorization \(A=L^{\star} D^{\star} L^{T}\) for real flavors and \(A=\) \(L^{\star} D^{\star} L^{H}\) for complex flavors or \(A=U^{T} D^{\star} U\) for real flavors and \(A=U^{H} \star^{\star} U\) for complex flavors computed by ?pttrf:
\(\kappa_{1}(A)=\|A\|_{1}| | A^{-1} \mid \|_{1}\) (since \(A\) is symmetric or Hermitian, \(\kappa_{\infty}(A)=\kappa_{1}(A)\)).
The norm \(\left|\left|A^{-1}\right|\right|\) is computed by a direct method, and the reciprocal of the condition number is computed as rcond \(=1 /\left(||A||| | A^{-1}| |\right)\).

Before calling this routine:
- compute anorm as \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\)
- call ?pttrf to compute the factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

n
d, work
e
INTEGER. The order of the matrix A; n\geq0.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, dimension (n).
The array d contains the n diagonal elements of the diagonal matrix D
from the factorization of }A\mathrm{ , as computed by ?pttrf ;
work is a workspace array.
REAL for sptcon
DOUBLE PRECISION for dptcon
COMPLEX for cptcon
DOUBLE COMPLEX for zptcon.
Array, DIMENSION (n -1).

```

Contains off-diagonal elements of the unit bidiagonal factor \(U\) or \(L\) from the factorization computed by ?pttrf.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The 1-norm of the original matrix \(A\) (see Description).

\section*{Output Parameters}

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets \(r\) cond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gtcon interface are as follows:
```

d Holds the vector of length n.

```
\(e \quad\) Holds the vector of length \((n-1)\).

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{\star} X=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(4^{*} n(k d+1)\) floating-point operations for real flavors and \(16^{*} n(k d+1)\) for complex flavors.

\section*{?sycon}

Estimates the reciprocal of the condition number of a symmetric matrix.

\section*{Syntax}

Fortran 77:
```

call ssycon( uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info )
call dsycon( uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info )
call csycon( uplo, n, a, lda, ipiv, anorm, rcond, work, info )
call zsycon( uplo, n, a, lda, ipiv, anorm, rcond, work, info )

```

Fortran 95:
```

call sycon( a, ipiv, anorm, rcond [,uplo] [,info] )

```
```

C:
lapack_int LAPACKE_ssycon( int matrix_order, char uplo, lapack_int n, const float* a,
lapack_int lda, const lapack_int* ipiv, float anorm, float* rcond );
lapack_int LAPACKE_dsycon( int matrix_order, char uplo, lapack_int n, const double* a,
lapack_int lda, const lapack_int* ipiv, double anorm, double* rcond );
lapack_int LAPACKE_csycon( int matrix_order, char uplo, lapack_int n, const
lapack_complex_float* a, lapack_int lda, const lapack_int* ipiv, float anorm, float*
rcond );
lapack_int LAPACKE_zsycon( int matrix_order, char uplo, lapack_int n, const
lapack_complex_double* a, lapack_int lda, const lapack_int* ipiv, double anorm, double*
rcond );
Include Files

```
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the reciprocal of the condition number of a symmetric matrix \(A\) :
\(\kappa_{1}(A)=\left\|\left.A\right|_{1}| | A^{-1} \mid\right\|_{1}\) (since \(A\) is symmetric, \(\kappa_{\infty}(A)=\kappa_{1}(A)\)).
Before calling this routine:
- compute anorm (either \(\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\left.\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)\)
- call ?sytrf to compute the factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates how the input matrix \(A\) has been factored: \\
\hline & If uplo = 'U', the array a stores the upper triangular factor \(U\) of the factorization \(A=P^{\star} U^{\star} D^{\star} U^{T} \star P^{T}\). \\
\hline & If uplo = 'L', the array a stores the lower triangular factor \(L\) of the factorization \(A=P \star L \star D * L^{T}{ }^{*} P^{T}\). \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline \multirow[t]{9}{*}{a, work} & REAL for ssycon \\
\hline & DOUBLE PRECISION for dsycon \\
\hline & COMPLEX for csycon \\
\hline & DOUBLE COMPLEX for zsycon. \\
\hline & Arrays: a(lda,*), work (*). \\
\hline & The array a contains the factored matrix \(A\), as returned by ?sytrf. \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & The array work is a workspace for the routine. \\
\hline & The dimension of work must be at least max (1, 2*n). \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline ipiv & INTEGER. Array, DIMENSION at least max (1, n). \\
\hline
\end{tabular}

The array ipiv, as returned by ?sytrf.
anorm
iwork

\section*{Output Parameters}
```

rcond

```
info

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix \(A\) (see Description).
INTEGER. Workspace array, DIMENSION at least max \((1, n)\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine sycon interface are as follows:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
ipiv & Holds the vector of length \(n\). \\
uplo & Must be ' \(U\) ' or ' \(L\) '. The default value is ' \(U\) '.
\end{tabular}

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{*} x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors and \(8 n^{2}\) for complex flavors.

\section*{?syconv}

Converts a symmetric matrix given by a triangular matrix factorization into two matrices and vice versa.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssyconv( uplo, way, n, a, lda, ipiv, work, info )
call dsyconv( uplo, way, n, a, lda, ipiv, work, info )
call csyconv( uplo, way, n, a, lda, ipiv, work, info )
call zsyconv( uplo, way, n, a, lda, ipiv, work, info )

```

\section*{Fortran 95:}
```

call sycon( a[,uplo][,way][,ipiv][,info] )

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine converts matrix \(A\), which results from a triangular matrix factorization, into matrices \(L\) and \(D\) and vice versa. The routine gets non-diagonalized elements of \(D\) returned in the workspace and applies or reverses permutation done with the triangular matrix factorization.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & \begin{tabular}{l}
Indicates whether the details of the factorization are stored as an upper or lower triangular matrix: \\
If uplo = 'U': the upper triangular, \(A=U \star D * U^{T}\). \\
If uplo = 'L': the lower triangular, \(A=L^{\star} D^{\star} L^{T}\).
\end{tabular} \\
\hline \multirow[t]{3}{*}{way} & CHARACTER*1. Must be 'C' or 'R'. \\
\hline & Indicates whether the routine converts or reverts the matrix: way = 'C' means conversion. \\
\hline & way \(=\) 'R' means reversion. \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline \multirow[t]{6}{*}{a} & REAL for ssyconv \\
\hline & DOUBLE PRECISION for dsyconv \\
\hline & COMPLEX for csyconv \\
\hline & DOUBLE COMPLEX for zsyconv \\
\hline & Array of DIMENSION (1 da, \(n\)). \\
\hline & The block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or L as computed by ?sytrf. \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{ipiv} & INTEGER. Array, DIMENSION at least max (\(1, n\)). \\
\hline & Details of the interchanges and the block structure of \(D\), as returned by ?sytrf. \\
\hline work & INTEGER. Workspace array, DIMENSION at least max (1, n). \\
\hline
\end{tabular}

\section*{Output Parameters}
info
INTEGER. If info \(=0\), the execution is successful. If info < 0, the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine syconv interface are as follows:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
uplo & Must be 'U' or 'L'. \\
way & Must be 'C' or 'R'. \\
ipiv & Holds the vector of length \(n\).
\end{tabular}

See Also
?sytrf

\section*{?hecon}

Estimates the reciprocal of the condition number of a
Hermitian matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call checon( uplo, n, a, lda, ipiv, anorm, rcond, work, info )
call zhecon( uplo, n, a, lda, ipiv, anorm, rcond, work, info )

```

Fortran 95:
```

call hecon( a, ipiv, anorm, rcond [,uplo] [,info] )

```

\section*{C:}
```

lapack_int LAPACKE_checon( int matrix_order, char uplo, lapack_int n, const
lapack_complex_float* a, lapack_int lda, const lapack_int* ipiv, float anorm, float*
rcond );
lapack_int LAPACKE_zhecon( int matrix_order, char uplo, lapack_int n, const
lapack_complex_double* a, lapack_int lda, const lapack_int* ipiv, double anorm, double*
rcond );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the reciprocal of the condition number of a Hermitian matrix \(A\) :
\(\kappa_{1}(A)=\left\|A| |_{1}| | A^{-1} \mid\right\|_{1}\) (since \(A\) is Hermitian, \(\left.\kappa_{\infty}(A)=\kappa_{1}(A)\right)\).
Before calling this routine:
- compute anorm (either \(\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\left.\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)\)
- call ?hetrf to compute the factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the
factorization A = P*U*D* UH* * P
If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = P* L*D* L'H* P}\mp@subsup{}{}{T}\mathrm{ .
n
a, work
INTEGER. The order of matrix }A;n\geq0
COMPLEX for checon
DOUBLE COMPLEX for zhecon.
Arrays: a(lda,*),work(*).

```
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
The array a contains the factored matrix \(A\), as returned by ?hetrf. \\
The second dimension of a must be at least \(\max (1, n)\). \\
The array work is a workspace for the routine. \\
The dimension of work must be at least max \(\left(1,2 *_{n}\right)\).
\end{tabular} \\
\hline Ida & INTEGER. The leading dimension of \(a\); 1 da \(\geq \max (1, n)\). \\
\hline ipiv & INTEGER. Array, DIMENSION at least max \((1, n)\). The array ipiv, as returned by ?hetrf. \\
\hline anorm & REAL for single precision flavors DOUBLE PRECISION for double precision flavors. The norm of the original matrix \(A\) (see Description). \\
\hline
\end{tabular}

\section*{Output Parameters}
rcond
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets \(r\) cond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.
info INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hecon interface are as follows:
a Holds the matrix \(A\) of size \((n, n)\).
ipiv Holds the vector of length \(n\).
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{*} x=b\); the number is usually 5 and never more than 11 . Each solution requires approximately \(8 n^{2}\) floating-point operations.
?spcon
Estimates the reciprocal of the condition number of a packed symmetric matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call sspcon( uplo, n, ap, ipiv, anorm, rcond, work, iwork, info )
call dspcon( uplo, n, ap, ipiv, anorm, rcond, work, iwork, info )
call cspcon( uplo, n, ap, ipiv, anorm, rcond, work, info )
call zspcon( uplo, n, ap, ipiv, anorm, rcond, work, info )

```

\section*{Fortran 95:}
```

call spcon( ap, ipiv, anorm, rcond [,uplo] [,info] )

```

C:
```

lapack_int LAPACKE_sspcon( int matrix_order, char uplo, lapack_int n, const float* ap,

```
const lapack_int* ipiv, float anorm, float* rcond);
lapack_int LAPACKE_dspcon(int matrix_order, char uplo, lapack_int \(n\), const double* ap,
const lapack_int* ipiv, double anorm, double* rcond);
lapack_int LAPACKE_cspcon(int matrix_order, char uplo, lapack_int n, const
lapack_complex_float* ap, const lapack_int* ipiv, float anorm, float* rcond);
lapack_int LAPACKE_zspcon(int matrix_order, char uplo, lapack_int n, const
lapack_complex_double* ap, const lapack_int* ipiv, double anorm, double* rcond);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the reciprocal of the condition number of a packed symmetric matrix \(A\) :
\(\kappa_{1}(A)=\left\|\left.A\right|_{1}| | A^{-1} \mid\right\|_{1}\) (since \(A\) is symmetric, \(\left.\kappa_{\infty}(A)=\kappa_{1}(A)\right)\).
Before calling this routine:
- compute anorm (either \(\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\left\|A\left|\|_{\infty}=\max _{i} \Sigma_{j}\right| a_{i j} \mid\right)\)
- call ?sptrf to compute the factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{ll}
uplo & CHARACTER*I. Must be ' \(U\) ' or ' \(L\) '. \\
& Indicates how the input matrix \(A\) has been factored: \\
& If uplo \(=~ U '\), the array \(a p\) stores the packed upper triangular factor \\
& \(U\) of the factorization \(A=P^{\star} U^{\star} D^{\star} U^{T} \star P^{T}\).
\end{tabular}
```

anorm
iwork
REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. The norm of the original matrix $A$ (see Description).
iwork
INTEGER. Workspace array, DIMENSION at least max $(1, n)$.

```

\section*{Output Parameters}

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets \(r\) cond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine spcon interface are as follows:
```

ap Holds the array A of size ( }n* (n+1)/2)
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{*} x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors and \(8 n^{2}\) for complex flavors.

\section*{?hpcon}

Estimates the reciprocal of the condition number of a packed Hermitian matrix.

\section*{Syntax}

Fortran 77:
```

call chpcon( uplo, n, ap, ipiv, anorm, rcond, work, info )
call zhpcon( uplo, n, ap, ipiv, anorm, rcond, work, info )

```

\section*{Fortran 95:}
```

call hpcon( ap, ipiv, anorm, rcond [,uplo] [,info] )

```

C:
```

lapack_int LAPACKE_chpcon( int matrix_order, char uplo, lapack_int n, const
lapack_complex_float* ap, const lapack_int* ipiv, float anorm, float* rcond );
lapack_int LAPACKE_zhpcon( int matrix_order, char uplo, lapack_int n, const
lapack_complex_double* ap, const lapack_int* ipiv, double anorm, double* rcond );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the reciprocal of the condition number of a Hermitian matrix \(A\) :
\(\kappa_{1}(A)=\left\|A| |_{1}| | A^{-1} \mid\right\|_{1}\) (since \(A\) is Hermitian, \(\left.\kappa_{\infty}(A)=\mathrm{k}_{1}(A)\right)\).
Before calling this routine:
- compute anorm (either \(\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\))
- call ?hptrf to compute the factorization of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{ll}
uplo & CHARACTER*I. Must be ' \(U\) ' or ' \(L\) '. \\
& Indicates how the input matrix \(A\) has been factored: \\
& If uplo \(=' U\) ', the array \(a p\) stores the packed upper triangular factor \\
& \(U\) of the factorization \(A=P^{\star} U^{\star} D^{\star} U^{T} \star P^{T}\).
\end{tabular}

\section*{Output Parameters}
rcond
info

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hbcon interface are as follows:
ap Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\).
ipiv Holds the vector of length \(n\).

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{\star} X=b\); the number is usually 5 and never more than 11 . Each solution requires approximately \(8 n^{2}\) floating-point operations.

\section*{?trcon}

Estimates the reciprocal of the condition number of a triangular matrix.

Syntax

\section*{Fortran 77:}
```

call strcon( norm, uplo, diag, n, a, lda, rcond, work, iwork, info )
call dtrcon( norm, uplo, diag, n, a, lda, rcond, work, iwork, info )
call ctrcon( norm, uplo, diag, n, a, lda, rcond, work, rwork, info )
call ztrcon( norm, uplo, diag, n, a, lda, rcond, work, rwork, info )

```

\section*{Fortran 95:}
```

call trcon( a, rcond [,uplo] [,diag] [,norm] [,info] )

```
C:
lapack_int LAPACKE_strcon(int matrix_order, char norm, char uplo, char diag,
lapack_int \(n\), const float* \(\left.a, ~ l a p a c k _i n t ~ l d a, ~ f l o a t * ~ r c o n d\right) ; ~\)
lapack_int LAPACKE_dtrcon(int matrix_order, char norm, char uplo, char diag,
lapack_int \(n\), const double* \(\left.a, ~ l a p a c k _i n t ~ l d a, ~ d o u b l e * ~ r c o n d ~\right) ; ~\)
lapack_int LAPACKE_ctrcon(int matrix_order, char norm, char uplo, char diag,
lapack_int \(n\), const lapack_complex_float* a, lapack_int lda, float* rcond);
lapack_int LAPACKE_ztrcon(int matrix_order, char norm, char uplo, char diag,
lapack_int \(n\), const lapack_complex_double* a, lapack_int lda, double* rcond);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the reciprocal of the condition number of a triangular matrix \(A\) in either the 1-norm or infinity-norm:
\(\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right)\)
\(\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\mathrm{k}_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right)\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{norm} & CHARACTER*1. Must be '1' or '0' or 'I'. \\
\hline & If norm \(=\) ' 1 ' or ' \(O\) ', then the routine estimates the condition number of matrix \(A\) in 1 -norm. \\
\hline & If norm = 'I', then the routine estimates the condition number of matrix \(A\) in infinity-norm. \\
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether \(A\) is upper or lower triangular: \\
\hline & If uplo = 'U', the array a stores the upper triangle of \(A\), other array elements are not referenced. \\
\hline & If uplo = 'L', the array a stores the lower triangle of \(A\), other array elements are not referenced. \\
\hline \multirow[t]{4}{*}{diag} & CHARACTER*1. Must be 'N' or 'U'. \\
\hline & If diag \(=\) ' \(N\) ', then \(A\) is not a unit triangular matrix. \\
\hline & If diag = 'U', then \(A\) is unit triangular: diagonal elements are \\
\hline & assumed to be 1 and not referenced in the array \(a\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A ; n \geq 0\). \\
\hline \multirow[t]{7}{*}{a, work} & REAL for strcon \\
\hline & DOUBLE PRECISION for dtrcon \\
\hline & COMPLEX for ctrcon \\
\hline & DOUBLE COMPLEX for ztrcon. \\
\hline & Arrays: a(lda,*), work(*). \\
\hline & The array a contains the matrix \(A\). The second dimension of a must be at least max \((1, n)\). \\
\hline & The array work is a workspace for the routine. The dimension of work must be at least max \(\left(1,3 *_{n}\right)\) for real flavors and max \(\left(1,2 *_{n}\right)\) for complex flavors. \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least max (1, \(n\)). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for ctrcon \\
\hline & DOUBLE PRECISION for ztrcon. \\
\hline & Workspace array, DIMENSION at least max (1, n) . \\
\hline
\end{tabular}

\section*{Output Parameters}
rcond
info
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets \(r\) cond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine trcon interface are as follows:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
norm Must be '1','O', or 'I'. The default value is '1'.
uplo Must be 'U' or 'L'. The default value is 'U'.
diag Must be 'N' or 'U'. The default value is 'N'.

```

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{\star} x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(n^{2}\) floating-point operations for real flavors and \(4 n^{2}\) operations for complex flavors.

\section*{?tpcon}

Estimates the reciprocal of the condition number of a packed triangular matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call stpcon( norm, uplo, diag, n, ap, rcond, work, iwork, info )
call dtpcon( norm, uplo, diag, n, ap, rcond, work, iwork, info )
call ctpcon( norm, uplo, diag, n, ap, rcond, work, rwork, info )
call ztpcon( norm, uplo, diag, n, ap, rcond, work, rwork, info )

```

\section*{Fortran 95:}
```

call tpcon( ap, rcond [,uplo] [,diag] [,norm] [,info] )

```

C:
```

lapack_int LAPACKE_stpcon( int matrix_order, char norm, char uplo, char diag,
lapack_int n, const float* ap, float* rcond );
lapack_int LAPACKE_dtpcon( int matrix_order, char norm, char uplo, char diag,
lapack_int n, const double* ap, double* rcond );
lapack_int LAPACKE_ctpcon( int matrix_order, char norm, char uplo, char diag,
lapack_int n, const lapack_complex_float* ap, float* rcond );
lapack_int LAPACKE_ztpcon( int matrix_order, char norm, char uplo, char diag,
lapack_int n, const lapack_complex_double* ap, double* rcond );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine estimates the reciprocal of the condition number of a packed triangular matrix \(A\) in either the 1norm or infinity-norm:
\(\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right)\)
\(\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right)\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline norm & \begin{tabular}{l}
CHARACTER*1. Must be '1' or 'O' or 'I'. \\
If norm \(=\) ' 1 ' or ' \(O\) ', then the routine estimates the condition number of matrix \(A\) in 1-norm. \\
If norm = 'I', then the routine estimates the condition number of matrix \(A\) in infinity-norm.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. Indicates whether \(A\) is upper or lower triangular: \\
If uplo = 'U', the array ap stores the upper triangle of \(A\) in packed form. \\
If uplo = 'L', the array ap stores the lower triangle of \(A\) in packed form.
\end{tabular} \\
\hline diag & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'U'. \\
If diag \(=\) ' \(N\) ', then \(A\) is not a unit triangular matrix. \\
If diag \(=\) 'U', then \(A\) is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array ap.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A ; n \geq 0\). \\
\hline ap, work & \begin{tabular}{l}
REAL for stpcon \\
DOUBLE PRECISION for dtpcon \\
COMPLEX for ctpcon \\
DOUBLE COMPLEX for ztpcon. \\
Arrays: ap(*), work(*). \\
The array ap contains the packed matrix \(A\). The dimension of ap must be at least \(\max (1, n(n+1) / 2)\). The array work is a workspace for the routine. \\
The dimension of work must be at least max \(\left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2 \star_{n}\right)\) for complex flavors.
\end{tabular} \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least max (1, \(n\)). \\
\hline rwork & \begin{tabular}{l}
REAL for ctpcon \\
DOUBLE PRECISION for ztpcon. \\
Workspace array, DIMENSION at least max (1, n).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
rcond
info
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
INTEGER. If info \(=0\), the execution is successful.

If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine tpcon interface are as follows:
```

ap Holds the array A of size (n* (n+1)/2).
norm Must be '1', 'O', or 'I'. The default value is '1'.
uplo Must be 'U' or 'L'. The default value is 'U'.
diag Must be 'N' or 'U'. The default value is 'N'.

```

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{*} x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(n^{2}\) floating-point operations for real flavors and \(4 n^{2}\) operations for complex flavors.

\section*{?tbcon}

Estimates the reciprocal of the condition number of a triangular band matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call stbcon( norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info )
call dtbcon( norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info )
call ctbcon( norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info )
call ztbcon( norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info )

```

\section*{Fortran 95:}
```

call tbcon( ab, rcond [,uplo] [,diag] [,norm] [,info] )

```
C:
lapack_int LAPACKE_stbcon(int matrix_order, char norm, char uplo, char diag,
lapack_int \(n\), lapack_int \(k d\), const float* \(a b\), lapack_int ldab, float* rcond);
lapack_int LAPACKE_dtbcon(int matrix_order, char norm, char uplo, char diag,
lapack_int \(n\), lapack_int \(k d\), const double* ab, lapack_int ldab, double* rcond);
lapack_int LAPACKE_ctbcon(int matrix_order, char norm, char uplo, char diag,

rcond);
lapack_int LAPACKE_ztbcon(int matrix_order, char norm, char uplo, char diag,
lapack_int \(n\), lapack_int \(k d\), const lapack_complex_double* ab, lapack_int ldab, double*
rcond);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the reciprocal of the condition number of a triangular band matrix \(A\) in either the 1norm or infinity-norm:
\(\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right)\)
\(\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right)\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{ll}
norm & CHARACTER* 1 . Must be ' 1 ' or ' \(O\) ' or ' \(I\) '. \\
& If norm \(=\) ' 1 ' or ' \(O\) ', then the routine estimates the condition \\
number of matrix \(A\) in 1 -norm.
\end{tabular}

\section*{Output Parameters}
rcond

DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets \(r\) cond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine tbcon interface are as follows:
\(a b \quad\) Holds the array \(A\) of size \((k d+1, n)\).
norm Must be '1', 'O', or 'I'. The default value is '1'.
uplo Must be 'U' or 'L'. The default value is 'U'.
diag Must be 'N' or 'U'. The default value is 'N'.

\section*{Application Notes}

The computed rcond is never less than \(r\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 r\). A call to this routine involves solving a number of systems of linear equations \(A^{\star} X=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2{ }^{*} n(k d+1)\) floating-point operations for real flavors and \(8{ }^{*} n(k d+1)\) operations for complex flavors.

\section*{Refining the Solution and Estimating Its Error}

This section describes the LAPACK routines for refining the computed solution of a system of linear equations and estimating the solution error. You can call these routines after factorizing the matrix of the system of equations and computing the solution (see Routines for Matrix Factorization and Routines for Solving Systems of Linear Equations).

\section*{?gerfs}

Refines the solution of a system of linear equations with a general matrix and estimates its error.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgerfs( trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
iwork, info )
call dgerfs( trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
iwork, info )
call cgerfs( trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info )
call zgerfs( trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info )

```

\section*{Fortran 95:}
```

call gerfs( a, af, ipiv, b, x [,trans] [,ferr] [,berr] [,info] )

```

C:
lapack_int LAPACKE_sgerfs(int matrix_order, char trans, lapack_int n, lapack_int nrhs, const float* a, lapack_int lda, const float* af, lapack_int ldaf, const lapack_int* ipiv, const float* b, lapack_int ldb, float* x, lapack_int ldx, float* ferr, float* berr);
lapack_int LAPACKE_dgerfs(int matrix_order, char trans, lapack_int n, lapack_int nrhs,
 ipiv, const double* b, lapack_int ldb, double* \(x\), lapack_int ldx, double* ferr, double* berr);
lapack_int LAPACKE_cgerfs(int matrix_order, char trans, lapack_int n, lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, const lapack_complex_float* af, lapack_int ldaf, const lapack_int* ipiv, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* \(x\), lapack_int ldx, float* ferr, float* berr);
lapack_int LAPACKE_zgerfs(int matrix_order, char trans, lapack_int n, lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, const lapack_complex_double* af, lapack_int ldaf, const lapack_int* ipiv, const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx, double* ferr, double* berr);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine performs an iterative refinement of the solution to a system of linear equations \(A * X=B\) or \(A^{T} * X\) \(=B\) or \(A^{H}{ }^{*} X=B\) with a general matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{e}\right|\right|_{\infty} / \|\) \(x\left|\left.\right|_{\infty}\right.\) (here \(x_{e}\) is the exact solution).
Before calling this routine:
- call the factorization routine ?getrf
- call the solver routine ?getrs.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

trans CHARACTER*1.Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form A*X = B.
If trans = 'T', the system has the form AT*X = B.

```

```

n
nrhs
INTEGER. The order of the matrix A; n\geq0.
INTEGER. The number of right-hand sides; nrhs $\geq 0$.

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{11}{*}{\(a, a f, b, x, w o r k\)} & REAL for sgerfs \\
\hline & DOUBLE PRECISION for dgerfs \\
\hline & COMPLEX for cgerfs \\
\hline & DOUBLE COMPLEX for zgerfs. \\
\hline & Arrays: \\
\hline & a(lda,*) contains the original matrix \(A\), as supplied to ? getrf. \\
\hline & af (ldaf,*) contains the factored matrix \(A\), as returned by ? getrf. \\
\hline & \(b(I d b, *)\) contains the right-hand side matrix \(B\). \\
\hline & \(x(I d x, *)\) contains the solution matrix \(x\). \\
\hline & work (*) is a workspace array. \\
\hline & The second dimension of \(a\) and \(a f\) must be at least max \((1, n)\); the second dimension of \(b\) and \(x\) must be at least max (\(1, n r h s\)) ; the dimension of work must be at least max \(\left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2 *_{n}\right)\) for complex flavors. \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline Idaf & INTEGER. The leading dimension of \(a f ; 1 \mathrm{daf} \geq \mathrm{max}(1, n)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline \(1 d x\) & INTEGER. The leading dimension of \(x ; 1 d x \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION at least max (1, \(n\)). \\
\hline & The ipiv array, as returned by ?getrf. \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least max (1, n). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cgerfs \\
\hline & DOUBLE PRECISION for zgerfs. \\
\hline & Workspace array, DIMENSION at least max (1, \(n\)) \\
\hline
\end{tabular}

\section*{Output Parameters}
```

X

```
ferr, berr
info
The refined solution matrix \(x\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max (\(1, n r h s\)). Contain the componentwise forward and backward errors, respectively, for each solution vector.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gerfs interface are as follows:
```

a Holds the matrix A of size (n, n).
af Holds the matrix AF of size (n,n).
ipiv Holds the vector of length n.
b Holds the matrix B of size ( n, nrhs).
x Holds the matrix }X\mathrm{ of size (n,nrhs).
ferr Holds the vector of length (nrhs).

```
berr Holds the vector of length (nrhs).
trans Must be 'N', 'C', or 'T'. The default value is 'N'.

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of \(4 n^{2}\) floating-point operations (for real flavors) or \(16 n^{2}\) operations (for complex flavors). In addition, each step of iterative refinement involves \(6 n^{2}\) operations (for real flavors) or \(24 n^{2}\) operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations \(A^{\star} x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors or \(8 n^{2}\) for complex flavors.

\section*{?gerfsx}

Uses extra precise iterative refinement to improve the solution to the system of linear equations with a general matrix \(A\) and provides error bounds and backward error estimates.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgerfsx( trans, equed, n, nrhs, a, lda, af, ldaf, ipiv, r, c, b, ldb, x, ldx,
rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork,
info )
call dgerfsx( trans, equed, n, nrhs, a, lda, af, ldaf, ipiv, r, c, b, ldb, x, ldx,
rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork,
info )
call cgerfsx( trans, equed, n, nrhs, a, lda, af, ldaf, ipiv, r, c, b, ldb, x, ldx,
rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork,
info )
call zgerfsx( trans, equed, n, nrhs, a, lda, af, ldaf, ipiv, r, c, b, ldb, x, ldx,
rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork,
info )

```

\section*{C:}
lapack_int LAPACKE_sgerfsx(int matrix_order, char trans, char equed, lapack_int n, lapack_int nrhs, const float* a, lapack_int lda, const float* af, lapack_int ldaf, const lapack_int* ipiv, const float* \(r\), const float* \(c\), const float* b, lapack_int ldb, float* \(x, ~ l a p a c k _i n t ~ l d x, ~ f l o a t * ~ r c o n d, ~ f l o a t * ~ b e r r, ~ l a p a c k _i n t ~ n _e r r _b n d s, ~\) float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, float* params);
lapack int LAPACKE dgerfsx(int matrix order, char trans, char equed, lapack int \(n\), lapack_int nrhs, const double* a, lapack_int lda, const double* af, lapack_int ldaf, const lapack_int* ipiv, const double* r, const double* c, const double* b, lapack_int ldb, double* \(x, ~ l a p a c k _i n t ~ l d x, ~ d o u b l e * ~ r c o n d, ~ d o u b l e * ~ b e r r, ~ l a p a c k _i n t ~ n _e r r _b n d s, ~\) double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, double* params);
lapack_int LAPACKE_cgerfsx(int matrix_order, char trans, char equed, lapack_int n, lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* af, lapack_int ldaf, const lapack_int* ipiv, const float* r,
```

const float* c, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack_int ldx, float* rcond, float* berr, lapack_int n_err_bnds, float*
err_bnds_norm, float* err_bnds_comp, lapack_int nparams, float* params );
lapack_int LAPACKE_zgerfsx( int matrix_order, char trans, char equed, lapack_int n,
lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* af, lapack_int ldaf, const lapack_int* ipiv, const double* r,
const double* c, const lapack_complex_double* b, lapack_int ldb, lapack_complex_double*
x, lapack_int ldx, double* rcond, double* berr, lapack_int n_err_bnds, double*
err_bnds_norm, double* err_bnds_comp, lapack_int nparams, double* params );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed, \(r\), and \(c\) below. In this case, the solution and error bounds returned are for the original unequilibrated system.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

trans CHARACTER*1.Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans = 'N', the system has the form A* X = B (No transpose).
If trans = 'T', the system has the form A** T* X = B (Transpose).
If trans = 'C', the system has the form A*** H*}X=B\mathrm{ (Conjugate
transpose = Transpose).
equed CHARACTER*1. Must be 'N','R', 'C',or 'B'.
Specifies the form of equilibration that was done to A before calling this
routine.
If equed = 'N', no equilibration was done.
If equed = 'R', row equilibration was done, that is, A has been
premultiplied by diag(r).
If equed = 'C', column equilibration was done, that is, A has been
postmultiplied by diag(c).
If equed = 'B', both row and column equilibration was done, that is, }A\mathrm{ has
been replaced by diag(r)*A*diag(c). The right-hand side }B\mathrm{ has been
changed accordingly.
INTEGER. The number of linear equations; the order of the matrix A; n\geq0.
INTEGER. The number of right-hand sides; the number of columns of the
matrices B and }x;nrhs\geq0
REAL for sgerfsx
DOUBLE PRECISION for dgerfsx

```

COMPLEX for cgerfsx
DOUBLE COMPLEX for zgerfsx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).
The array a contains the original \(n\)-by- \(n\) matrix \(A\).
The array af contains the factored form of the matrix \(A\), that is, the factors \(L\) and \(U\) from the factorization \(A=P^{*} L * U\) as computed by ?getrf.
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max (1, nrhs).
work (*) is a workspace array. The dimension of work must be at least \(\max (1,4 * n)\) for real flavors, and at least \(\max (1,2 * n)\) for complex flavors.
INTEGER. The leading dimension of \(a ; \operatorname{lda} \geq \max (1, n)\).
INTEGER. The leading dimension of \(a f ; \operatorname{ldaf} \geq \max (1, n)\).
INTEGER.
Array, DIMENSION at least max \((1, n)\). Contains the pivot indices as computed by ?getrf; for row \(1 \leq i \leq n\), row \(i\) of the matrix was interchanged with row ipiv(i).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: \(r(n), C(n)\). The array \(r\) contains the row scale factors for \(A\), and the array \(c\) contains the column scale factors for \(A\).
equed \(=\) ' R ' or ' B ', \(A\) is multiplied on the left by \(\operatorname{diag}(r)\); if equed \(=\) ' N ' or 'C', \(r\) is not accessed.
If equed \(=\) ' R ' or ' B ', each element of \(r\) must be positive.
If equed \(=\) ' \(C\) ' or ' B ', \(A\) is multiplied on the right by \(\operatorname{diag}(c)\); if equed \(=\) 'N' or 'R', c is not accessed.
If equed \(=\) ' C ' or ' B ', each element of \(c\) must be positive.
Each element of \(r\) or \(c\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array \(b ; 1 d b \geq \max (1, n)\).
REAL for sgerfsx
DOUBLE PRECISION for dgerfsx
COMPLEX for cgerfsx
DOUBLE COMPLEX for zgerfsx.
Array, DIMENSION (ldx,*).
The solution matrix \(x\) as computed by ? getrs
INTEGER. The leading dimension of the output array \(x ; l d x \geq \max (1, n)\).
INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.
INTEGER. Specifies the number of parameters set in params. If \(\leq 0\), the params array is never referenced and default values are used.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION nparams. Specifies algorithm parameters. If an entry is less than 0.0, that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used
for higher-numbered parameters. If defaults are acceptable, you can pass nparams \(=0\), which prevents the source code from accessing the params argument.
params(la_linrx_itref_i = 1): Whether to perform iterative refinement or not. Default: 1.0
\(=0.0 \quad\) No refinement is performed and no error bounds are computed.
=1.0 Use the double-precision refinement algorithm, possibly with doubled-single computations if the compilation environment does not support DOUBLE PRECISION.
(Other values are reserved for futute use.)
params(la_linrx_ithresh_i = 2) : Maximum number of resudual computations allowed for refinement.
Default 10
Aggressive Set to 100 to permit convergence using approximate factorizations or factorizations other than \(L U\). If the factorization uses a technique other than Gaussian elimination, the quarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params(la_linrx_cwise_i = 3): Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).
iwork
rwork

\section*{Output Parameters}

X
rcond
berr

REAL for sgerfsx
DOUBLE PRECISION for dgerfsx
COMPLEX for cgerfsx
DOUBLE COMPLEX for zgerfsx.
The improved solution matrix \(X\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max (1, nrhs). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.
```

err_bnds_norm

```
err_bnds_comp

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the \(i\)-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
The first index in err_bnds_norm(i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_norm (: ,err) contains the follwoing three fields:
\(\left.\begin{array}{ll}\text { err=1 } & \begin{array}{l}\text { "Trust/don't trust" boolean. Trust the answer if } \\ \text { the reciprocal condition number is less than the }\end{array} \\ \text { threshold } \operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon) \text { for single } \\ \text { precision flavors and } \operatorname{sqrt}(n) * d l a m c h(\varepsilon) \text { for } \\ \text { double precision flavors. }\end{array}\right\}\)

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the \(i\)-th solution vector:

The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) \(=0.0\)), then err_bnds_comp is not accessed. If n_err_bnds \(<3\), then at most the first (: \(n_{-} e r r_{-}\)bnds) entries are returned. The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the follwoing three fields:
err=1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (\(n\)) *slamch (\(\varepsilon\)) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors.
err=2
err=3
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) *\) dlamch (\(\varepsilon\)) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * \operatorname{damch}(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/ \(z\),inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a * \operatorname{diag}(x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1 .

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Output parameter only if the input contains erroneous values, namely, in params (1), params (2), params (3). In such a case, the corresponding elements of params are filled with default values on output.
INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If \(0<i n f o \leq n: U(i n f o, i n f o)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=n+j\) : The solution corresponding to the \(j\)-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides \(k\) with \(k>j\) may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested
params (3) \(=0.0\), then the \(j\)-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest \(j\) such that err_bnds_norm \((j, 1)=0.0\) or err_bnds_comp \((j, 1)=0.0\). See the definition of err_bnds_norm (; 1) and err_bnds_comp (; ,1). To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

\section*{?gbrfs}

Refines the solution of a system of linear equations with a general band matrix and estimates its error.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgbrfs( trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr,
berr, work, iwork, info )
call dgbrfs( trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr,
berr, work, iwork, info )
call cgbrfs( trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info )
call zgbrfs( trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info )

```

Fortran 95:
```

call gbrfs( ab, afb, ipiv, b, x [,kl] [,trans] [,ferr] [,berr] [,info] )

```
C:
```

lapack_int LAPACKE_sgbrfs( int matrix_order, char trans, lapack_int n, lapack_int kl,
lapack_int ku, lapack_int nrhs, const float* ab, lapack_int ldab, const float* afb,
lapack_int ldafb, const lapack_int* ipiv, const float* b, lapack_int ldb, float* x,
lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dgbrfs( int matrix_order, char trans, lapack_int n, lapack_int kl,
lapack_int ku, lapack_int nrhs, const double* ab, lapack_int ldab, const double* afb,
lapack_int ldafb, const lapack_int* ipiv, const double* b, lapack_int ldb, double* x,
lapack_int ldx, double* ferr, double* berr );
lapack_int LAPACKE_cgbrfs( int matrix_order, char trans, lapack_int n, lapack_int kl,
lapack_int ku, lapack_int nrhs, const lapack_complex_float* ab, lapack_int ldab, const
lapack_complex_float* afb, lapack_int ldafb, const lapack_int* ipiv, const
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* ferr, float* berr );
lapack_int LAPACKE_zgbrfs( int matrix_order, char trans, lapack_int n, lapack_int kl,
lapack_int ku, lapack_int nrhs, const lapack_complex_double* ab, lapack_int ldab, const
lapack_complex_double* afb, lapack_int ldafb, const lapack_int* ipiv, const
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx,
double* ferr, double* berr );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine performs an iterative refinement of the solution to a system of linear equations \(A \star X=B\) or \(A^{T} \star X\) \(=B\) or \(A^{H} * X=B\) with a band matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\[
\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right| \text { such that }(A+\delta A) x=(b+\delta b) .
\]

Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{e}\right|\right|_{\infty} / \|\) \(x\left|\left.\right|_{\infty}\right.\) (here \(x_{e}\) is the exact solution).
Before calling this routine:
- call the factorization routine ?gbtrf
- call the solver routine ?gbtrs.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form A*X = B.
If trans = 'T', the system has the form AT*X = B.
If trans = 'C', the system has the form A'*X = B.
INTEGER. The order of the matrix A; n\geq0.
INTEGER. The number of sub-diagonals within the band of A;kI\geq0.
INTEGER. The number of super-diagonals within the band of A; ku\geq0.
INTEGER. The number of right-hand sides; nrhs \geq0.
REAL for sgbrfs
DOUBLE PRECISION for dgbrfs
COMPLEX for cgbrfs
DOUBLE COMPLEX for zgbrfs.

```

\section*{Arrays:}
```

$a b(l d a b, *)$ contains the original band matrix $A$, as supplied to ?
gbtrf, but stored in rows from 1 to $k l+k u+1$.
$a f b(l d a f b, *)$ contains the factored band matrix $A$, as returned by ?
gbtrf.
$b(I d b, *)$ contains the right-hand side matrix $B$.
$x(I d x, *)$ contains the solution matrix $x$.
work (*) is a workspace array.
The second dimension of $a b$ and $a f b$ must be at least max $(1, n)$; the second dimension of $b$ and $x$ must be at least max ( $1, n r h s$ ) ; the dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2{ }^{\star} n\right)$ for complex flavors.
INTEGER. The leading dimension of $a b$.
INTEGER. The leading dimension of $a f b$.
INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of $x ; l d x \geq \max (1, n)$.
INTEGER.

```

Array, DIMENSION at least max \((1, n)\). The ipiv array, as returned by ?gbtrf.
iwork
INTEGER. Workspace array, DIMENSION at least max \((1, n)\).
rwork
REAL for cgbrfs
DOUBLE PRECISION for zgbrfs.
Workspace array, DIMENSION at least max (1, n).

\section*{Output Parameters}
```

X
ferr, berr

```
info

The refined solution matrix \(X\).
REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max (\(1, n r h s\)). Contain the componentwise forward and backward errors, respectively, for each solution vector.
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gbrfs interface are as follows:
```

abb Holds the array A of size (kl+ku+1,n).
afb Holds the array AF of size (2* kl* ku+1,n).
ipiv Holds the vector of length n.
b Holds the matrix B of size (n, nrhs).
x Holds the matrix }x\mathrm{ of size (n,nrhs).
ferr Holds the vector of length (nrhs).
berr Holds the vector of length (nrhs).
trans Must be 'N', 'C', or 'T'. The default value is 'N'.
kl If omitted, assumed kl = ku.
ku Restored as ku = lda-kl-1.

```

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
For each right-hand side, computation of the backward error involves a minimum of \(4 n(k I+k u)\) floatingpoint operations (for real flavors) or \(16 n(k l+k u)\) operations (for complex flavors). In addition, each step of iterative refinement involves \(2 n(4 k l+3 k u)\) operations (for real flavors) or \(8 n(4 k l+3 k u)\) operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations \(A^{\star} X=b\); the number is usually 4 or 5 and never more than 11. Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors or \(8 n^{2}\) for complex flavors.

\section*{?gbrfsx}

Uses extra precise iterative refinement to improve the solution to the system of linear equations with a banded matrix \(A\) and provides error bounds and backward error estimates.

\section*{Syntax}

\section*{Fortran 77:}
call sgbrfsx(trans, equed, \(n, k l, k u, ~ n r h s, ~ a b, ~ l d a b, ~ a f b, ~ l d a f b, ~ i p i v, ~ r, ~ c, ~ b, ~ l d b\), \(x, \quad l d x, ~ r c o n d, ~ b e r r, ~ n _e r r _b n d s, ~ e r r _b n d s _n o r m, ~ e r r _b n d s _c o m p, ~ n p a r a m s, ~ p a r a m s, ~ w o r k, ~\) iwork, info)
call dgbrfsx(trans, equed, \(n, k l, k u, ~ n r h s, ~ a b, ~ l d a b, ~ a f b, ~ l d a f b, ~ i p i v, ~ r, ~ c, ~ b, ~ l d b\), \(x, \quad l d x, r c o n d, b e r r, ~ n_{-} e r r_{-} b n d s, ~ e r r_{-} b n d s _n o r m, ~ e r r _b n d s _c o m p, ~ n p a r a m s, ~ p a r a m s, ~ w o r k\), iwork, info)
call cgbrfsx(trans, equed, \(n, k l, k u, ~ n r h s, ~ a b, ~ l d a b, ~ a f b, ~ l d a f b, ~ i p i v, ~ r, ~ c, ~ b, ~ l d b\), \(x, \quad l d x, ~ r c o n d, ~ b e r r, ~ n _e r r _b n d s, ~ e r r _b n d s _n o r m, ~ e r r _b n d s _c o m p, ~ n p a r a m s, ~ p a r a m s, ~ w o r k, ~\) rwork, info)
call zgbrfsx(trans, equed, \(n, k l, k u, ~ n r h s, ~ a b, ~ l d a b, ~ a f b, ~ l d a f b, ~ i p i v, ~ r, ~ c, ~ b, ~ l d b\), \(x, ~ l d x, ~ r c o n d, ~ b e r r, ~ n _e r r _b n d s, ~ e r r _b n d s _n o r m, ~ e r r _b n d s _c o m p, ~ n p a r a m s, ~ p a r a m s, ~ w o r k, ~\) rwork, info)

\section*{C:}
lapack_int LAPACKE_sgbrfsx(int matrix_order, char trans, char equed, lapack_int n, lapack_int kl, lapack_int ku, lapack_int nrhs, const float* ab, lapack_int ldab, const float* afb, lapack_int ldafb, const lapack_int* ipiv, const float* r, const float* c, const float* \(b, ~ l a p a c k _i n t ~ l d b, ~ f l o a t * ~ x, ~ l a p a c k _i n t ~ l d x, ~ f l o a t * ~ r c o n d, ~ f l o a t * ~ b e r r, ~\) lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, float* params);
lapack_int LAPACKE_dgbrfsx (int matrix_order, char trans, char equed, lapack_int n, lapack_int kl, lapack_int ku, lapack_int nrhs, const double* ab, lapack_int ldab, const double* afb, lapack_int ldafb, const lapack_int* ipiv, const double* r, const double* \(c\), const double* \(b, ~ l a p a c k _i n t ~ l d b, ~ d o u b l e * ~ x, ~ l a p a c k _i n t ~ l d x, ~ d o u b l e * ~ r c o n d, ~\) double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, double* params);
lapack_int LAPACKE_cgbrfsx(int matrix_order, char trans, char equed, lapack_int n, lapack_int kl, lapack_int ku, lapack_int nrhs, const lapack_complex_float* ab, lapack_int ldab, const lapack_complex_float* afb, lapack_int ldafb, const lapack_int* ipiv, const float* r, const float* c, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* \(x\), lapack_int ldx, float* rcond, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, float* params);
lapack_int LAPACKE_zgbrfsx(int matrix_order, char trans, char equed, lapack_int \(n\), lapack_int kl, lapack_int ku, lapack_int nrhs, const lapack_complex_double* ab, lapack_int ldab, const lapack_complex_double* afb, lapack_int ldafb, const lapack_int* ipiv, const double* \(r\), const double* \(c\), const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* \(x\), lapack_int ldx, double* rcond, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, double* params);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed, \(r\), and \(c\) below. In this case, the solution and error bounds returned are for the original unequilibrated system.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

trans
equed CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
n
kl
ku
nrhs
ab, afb, b, work

```
```

CHARACTER*1. Must be 'N','T', or 'C'.

```
CHARACTER*1. Must be 'N','T', or 'C'.
Specifies the form of the system of equations:
Specifies the form of the system of equations:
If trans = 'N', the system has the form A\star X = B (No transpose).
If trans = 'N', the system has the form A\star X = B (No transpose).
If trans = 'T', the system has the form A** T* X = B (Transpose).
If trans = 'T', the system has the form A** T* X = B (Transpose).
If trans = 'C', the system has the form A*** H* X = B (Conjugate
If trans = 'C', the system has the form A*** H* X = B (Conjugate
transpose = Transpose).
transpose = Transpose).
Specifies the form of equilibration that was done to A before calling this
Specifies the form of equilibration that was done to A before calling this
routine.
routine.
If equed = 'N', no equilibration was done.
If equed = 'R', row equilibration was done, that is, A has been
premultiplied by diag(r).
If equed = 'C', column equilibration was done, that is, A has been
postmultiplied by diag(c).
If equed = 'B', both row and column equilibration was done, that is, }A\mathrm{ has
been replaced by diag(r)*A* diag(c). The right-hand side B has been
changed accordingly.
INTEGER. The number of linear equations; the order of the matrix A;n\geq0.
INTEGER. The number of subdiagonals within the band of A; kl\geq0.
INTEGER. The number of superdiagonals within the band of A; ku\geq0.
INTEGER. The number of right-hand sides; the number of columns of the
matrices B and X; nrhs \geq0.
REAL for sgbrfsx
DOUBLE PRECISION for dgbrfsx
COMPLEX for cgbrfsx
DOUBLE COMPLEX for zgbrfsx.
Arrays: ab(ldab,*), afb(ldafb,*), b(ldb,*),work(*).
The array ab contains the original matrix A in band storage, in rows 1 to kl
+ku+1. The j-th column of A is stored in the j}j\mathrm{ -th column of the array ab as
follows:
ab(ku+1+i-j,j) = A(i,j) for max (1,j-ku) \leqi\leqmin(n,j+kl).
```

The array $a f b$ contains details of the LU factorization of the banded matrix $A$ as computed by ?gbtrf. $U$ is stored as an upper triangular banded matrix with $k l+k u$ superdiagonals in rows 1 to $k I+k u+1$. The multipliers used during the factorization are stored in rows $k I+k u+2$ to $2 * k I+k u+1$. The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least $\max (1, n r h s)$.
work (*) is a workspace array. The dimension of work must be at least $\max \left(1,4 *_{n}\right)$ for real flavors, and at least $\max \left(1,2{ }^{\star} n\right)$ for complex flavors.
INTEGER. The leading dimension of the array $a b ; l d a b \geq k l+k u+1$.
INTEGER. The leading dimension of the array $a f b ; l d a f b \geq 2 * k l+k u+1$.
INTEGER.
Array, DIMENSION at least max $(1, n)$. Contains the pivot indices as computed by ?gbtrf; for row $1 \leq i \leq n$, row $i$ of the matrix was interchanged with row ipiv(i).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: $r(n), C(n)$. The array $r$ contains the row scale factors for $A$, and the array $c$ contains the column scale factors for $A$.
If equed $=$ ' $R$ ' or ' $B$ ', $A$ is multiplied on the left by diag $(r)$; if equed = ' $N$ ' or ' $C^{\prime}$, $r$ is not accessed.
If equed $=$ ' $R$ ' or ' $B$ ', each element of $r$ must be positive.
If equed $=$ ' C' or ' B ', $A$ is multiplied on the right by $\operatorname{diag}(c)$; if equed $=$ 'N' or 'R', $c$ is not accessed.
If equed $=$ ' C' or 'B', each element of $c$ must be positive.
Each element of $r$ or $c$ should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.
REAL for sgbrfsx
DOUBLE PRECISION for dgbrfsx
COMPLEX for cgbrfsx
DOUBLE COMPLEX for zgbrfsx.
Array, DIMENSION (ldx,*).
The solution matrix $x$ as computed by sgbtrs/dgbtrs for real flavors or cgbtrs/zgbtrs for complex flavors.
INTEGER. The leading dimension of the output array $x ; I d x \geq \max (1, n)$.
INTEGER. Number of error bounds to return for each right-hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.
INTEGER. Specifies the number of parameters set in params. If $\leq 0$, the params array is never referenced and default values are used.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION nparams. Specifies algorithm parameters. If an entry is less than 0.0 , that entry will be filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used
for higher-numbered parameters. If defaults are acceptable, you can pass nparams $=0$, which prevents the source code from accessing the params argument.
params(la_linrx_itref_i = 1): Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).
$=0.0 \quad$ No refinement is performed and no error bounds are computed.
=1.0 Use the double-precision refinement algorithm, possibly with doubled-single computations if the compilation environment does not support DOUBLE PRECISION.
(Other values are reserved for futute use.)
params(la_linrx_ithresh_i = 2) : Maximum number of resudual computations allowed for refinement.
Default 10
Aggressive Set to 100 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the quarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params(la_linrx_cwise_i = 3): Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).
iwork
rwork

INTEGER. Workspace array, DIMENSION at least max $(1, n)$; used in real flavors only.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max $\left(1,3 *_{n}\right)$; used in complex flavors only.

## Output Parameters

REAL for sgbrfsx
DOUBLE PRECISION for dgbrfsx
COMPLEX for cgbrfsx
DOUBLE COMPLEX for zgbrfsx.
The improved solution matrix $x$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix $A$ after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max ( $1, n r h s$ ). Contains the componentwise relative backward error for each solution vector $x(j)$, that is, the smallest relative change in any element of $A$ or $B$ that makes $x(j)$ an exact solution.

```
err_bnds_norm
```

err_bnds_comp

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the $i$-th solution vector


The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
The first index in err_bnds_norm(i,:) corresponds to the $i$-th right-hand side.
The second index in err_bnds_norm (: ,err) contains the following three fields:

```
err=1
err=2
err=3
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and sqrt \((n) *\) dlamch (\(\varepsilon\)) for double precision flavors.
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/ \(z\),inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1.
```

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the $i$-th solution vector:
$\max _{j} \frac{\left|X t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}$

The array is indexed by the right-hand side $i$, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) $=0.0$ ), then err_bnds_comp is not accessed. If $n_{-}$err_bnds $<3$, then at most the first (: $n_{\_}$err_bnds) entries are returned. The first index in err_bnds_comp (i,: ) corresponds to the $i$-th right-hand side.
The second index in err_bnds_comp (: err) contains the follwoing three fields:
err=1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and sqrt ( $n$ )*dlamch ( $\varepsilon$ ) for double precision flavors.
$e r r=2$
$e r r=3$
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt $(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and sqrt $(n) * \operatorname{dlamch}(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1/(norm (1/
$z, i n f) * n o r m(z, i n f)$ ) for some appropriately scaled matrix $z$.
Let $z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)$, where $x$ is the solution for the current right-hand side and $s$ scales each row of $a^{*}$ diag ( $x$ ) by a power of the radix so all absolute row sums of $z$ are approximately 1 .

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Output parameter only if the input contains erroneous values, namely, in params (1), params (2), params (3). In such a case, the corresponding elements of params are filled with default values on output.
INTEGER. If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, the $i$-th parameter had an illegal value.
If $0<$ info $\leq n: U(\operatorname{info}, i n f o)$ is exactly zero. The factorization has been completed, but the factor $u$ is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=n+j$ : The solution corresponding to the $j$-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides $k$ with $k>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested
params (3) $=0.0$, then the $j$-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest $j$ such that err_bnds_norm $(j, 1)=0.0$ or err_bnds_comp $(j, 1)=0.0$. See the definition of err_bnds_norm(; 1) and err_bnds_comp(; 1). To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

## ?gtrfs

Refines the solution of a system of linear equations with a tridiagonal matrix and estimates its error.

## Syntax

## Fortran 77:

```
call sgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx,
ferr, berr, work, iwork, info)
call dgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx,
ferr, berr, work, iwork, info)
call cgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx,
ferr, berr, work, rwork, info)
call zgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx,
ferr, berr, work, rwork, info)
```


## Fortran 95:

call gtrfs( dl, $d, d u, d l f, d f, d u f, d u 2, ~ i p i v, b, x[, t r a n s]$ [,ferr] [,berr] [,info] )

## C:

lapack_int LAPACKE_sgtrfs( int matrix_order, char trans, lapack_int n, lapack_int nrhs, const float* dl, const float* $d$, const float* du, const float* dlf, const float* df, const float* duf, const float* du2, const lapack_int* ipiv, const float* b, lapack_int

lapack_int LAPACKE_dgtrfs( int matrix_order, char trans, lapack_int n, lapack_int nrhs, const double* $d l$, const double* $d, ~ c o n s t ~ d o u b l e * ~ d u, ~ c o n s t ~ d o u b l e * ~ d l f, ~ c o n s t ~ d o u b l e * ~$ $d f, ~ c o n s t ~ d o u b l e * ~ d u f, ~ c o n s t ~ d o u b l e * ~ d u 2, ~ c o n s t ~ l a p a c k ~ i n t * ~ i p i v, ~ c o n s t ~ d o u b l e * ~ b, ~$

lapack_int LAPACKE_cgtrfs( int matrix_order, char trans, lapack_int n, lapack_int nrhs, const lapack_complex_float* dl, const lapack_complex_float* d, const lapack_complex_float* du, const lapack_complex_float* dlf, const lapack_complex_float*
 ipiv, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_zgtrfs( int matrix_order, char trans, lapack_int n, lapack_int nrhs, const lapack_complex_double* dl, const lapack_complex_double* d, const
lapack_complex_double* du, const lapack_complex_double* dlf, const
lapack_complex_double* df, const lapack_complex_double* duf, const
lapack_complex_double* du2, const lapack_int* ipiv, const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx, double* ferr, double* berr );

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h


## Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ or $A^{T} * X$ $=B$ or $A^{H} * X=B$ with a tridiagonal matrix $A$, with multiple right-hand sides. For each computed solution vector $x$, the routine computes the component-wise backward error $\beta$. This error is the smallest relative perturbation in elements of $A$ and $b$ such that $x$ is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| /\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution \| $\left.\left|x-x_{e}\right|\right|_{\infty} / \| \mid$ $x\left|\left.\right|_{\infty}\right.$ (here $x_{e}$ is the exact solution).

Before calling this routine:

- call the factorization routine ?gttrf
- call the solver routine ?gttrs.


## Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

| trans | CHARACTER*1. Must be 'N' or 'T' or 'C'. |
| :---: | :---: |
|  | Indicates the form of the equations: |
|  | If trans $=$ ' N ', the system has the form $A * X=B$. |
|  | If trans $=$ 'T', the system has the form $A^{T} * X=B$. |
|  | If trans $=$ ' C', the system has the form $A^{H} * X=B$. |
| $n$ | INTEGER. The order of the matrix $A ; n \geq 0$. |
| nrhs | INTEGER. The number of right-hand sides, that is, the number of columns of the matrix $B ; n r h s \geq 0$. |
| $d l, d, d u, d l f$, | REAL for sgtrfs |
| df,duf,du2, | DOUBLE PRECISION for dgtrfs |
| b, x,work | COMPLEX for cgtrfs |
|  | DOUBLE COMPLEX for zgtrfs. |
|  | Arrays: |
|  | $d 1$, dimension ( $n-1$ ), contains the subdiagonal elements of $A$. |
|  | $d u$, dimension ( $n-1$ ), contains the superdiagonal elements of $A$. |
|  | $d l f$, dimension ( $n-1$ ), contains the ( $n-1$ ) multipliers that define the matrix $L$ from the $L U$ factorization of $A$ as computed by ?gttrf. |
|  | $d f$, dimension ( $n$ ), contains the $n$ diagonal elements of the upper triangular matrix $U$ from the $L U$ factorization of $A$. |
|  | duf, dimension ( $n-1$ ), contains the ( $n-1$ ) elements of the first superdiagonal of $U$. |
|  | du2, dimension ( $n-2$ ), contains the ( $n-2$ ) elements of the second superdiagonal of $U$. |
|  | $b(l d b, n r h s)$ contains the right-hand side matrix $B$. |
|  | $x(l d x, n r h s)$ contains the solution matrix $x$, as computed by ?gttrs. |
|  | work (*) is a workspace array; the dimension of work must be at least |
|  | $\max \left(1,3 *^{*}\right)$ for real flavors and max $\left(1,2 *_{n}\right)$ for complex flavors. |
| 1 db | INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$. |
| $1 d x$ | INTEGER. The leading dimension of $x ; 1 d x \geq \max (1, n)$. |



## Output Parameters

X
ferr, berr
info

The refined solution matrix $x$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max ( $1, n r h s$ ). Contain the componentwise forward and backward errors, respectively, for each solution vector.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

## Specific details for the routine $g t r f s$ interface are as follows:

```
dl Holds the vector of length (n-1).
d Holds the vector of length n.
du Holds the vector of length (n-1).
dlf Holds the vector of length (n-1).
df Holds the vector of length n.
duf Holds the vector of length (n-1).
du2 Holds the vector of length (n-2).
ipiv Holds the vector of length n.
b Holds the matrix B of size (n,nrhs).
x Holds the matrix }x\mathrm{ of size (n,nrhs).
ferr Holds the vector of length (nrhs).
berr Holds the vector of length (nrhs).
trans Must be 'N', 'C', or 'T'. The default value is 'N'.
```

?porfs
Refines the solution of a system of linear equations
with a symmetric (Hermitian) positive-definite matrix
and estimates its error.
Syntax

## Fortran 77:

```
call sporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work, iwork,
info)
```

```
call dporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work, iwork,
info)
call cporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work, rwork,
info)
call zporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work, rwork,
info)
```


## Fortran 95:

call porfs( $a, a f, b, x$ [,uplo] [,ferr] [,berr] [,info] )
C:
lapack_int LAPACKE_sporfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs, const float* $a$, lapack_int lda, const float* af, lapack_int ldaf, const float* b,

lapack_int LAPACKE_dporfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs, const double* $a, ~ l a p a c k \_i n t ~ l d a, ~ c o n s t ~ d o u b l e * ~ a f, ~ l a p a c k \_i n t ~ l d a f, ~ c o n s t ~ d o u b l e * ~ b, ~$

lapack_int LAPACKE_cporfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_float* a, lapack_int lda, const lapack_complex_float* af,
lapack_int ldaf, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float*
$x$, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_zporfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_double* a, lapack_int lda, const lapack_complex_double* af,
lapack_int ldaf, const lapack_complex_double* b, lapack_int ldb, lapack_complex_double*
$\left.x, ~ l a p a c k \_i n t ~ l d x, ~ d o u b l e * ~ f e r r, ~ d o u b l e * ~ b e r r ~\right) ; ~$

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h


## Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a symmetric (Hermitian) positive definite matrix $A$, with multiple right-hand sides. For each computed solution vector $x$, the routine computes the component-wise backward error $\beta$. This error is the smallest relative perturbation in elements of $A$ and $b$ such that $x$ is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution \| $\mid x-x_{e}\|\infty /\|$ $x \mid \|_{\infty}$ (here $x_{e}$ is the exact solution).

Before calling this routine:

- call the factorization routine ?potrf
- call the solver routine ?potrs.


## Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
uplo
n
nrhs
a,af,b,x,work
Ida
ldaf
ldb
ldx
iwork
rwork
```


## Output Parameters

```
X
ferr,berr
```

info

The refined solution matrix $x$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max ( $1, n r h s$ ). Contain the componentwise forward and backward errors, respectively, for each solution vector.
INTEGER. If info $=0$, the execution is successful. If info $=-i$, the $i$-th parameter had an illegal value.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine porfs interface are as follows:

| $a$ | Holds the matrix $A$ of size $(n, n)$. |
| :--- | :--- |
| $a f$ | Holds the matrix $A F$ of size $(n, n)$. |
| $b$ | Holds the matrix $B$ of size $(n, n r h s)$. |
| $x$ | Holds the matrix $X$ of size $(n, n r h s)$. |


| ferr | Holds the vector of length (nrhs). |
| :--- | :--- |
| berr | Holds the vector of length (nrhs). |
| uplo | Must be 'U' or 'L'. The default value is 'U'. |

## Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A^{\star}{ }_{x}=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires
approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

## ?porfsx

Uses extra precise iterative refinement to improve the solution to the system of linear equations with a symmetric/Hermitian positive-definite matrix $A$ and provides error bounds and backward error estimates.

## Syntax

## Fortran 77:

call sporfsx( uplo, equed, $n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, s, b, l d b, x, l d x, ~ r c o n d, b e r r$, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info )
call dporfsx( uplo, equed, $n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ s, b, l d b, x, l d x, ~ r c o n d, ~ b e r r$, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info )
call cporfsx( uplo, equed, $n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ s, ~ b, ~ l d b, ~ x, ~ l d x, ~ r c o n d, ~ b e r r, ~$ n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
call zporfsx( uplo, equed, $n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ s, ~ b, ~ l d b, ~ x, ~ l d x, ~ r c o n d, ~ b e r r, ~$ n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
C:
lapack_int LAPACKE_sporfsx( int matrix_order, char uplo, char equed, lapack_int n, lapack_int nrhs, const float* a, lapack_int lda, const float* af, lapack_int ldaf, const float* $s$, const float* b, lapack_int ldb, float* $x, ~ l a p a c k \_i n t ~ l d x, ~ f l o a t * ~$ rcond, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, float* params );
lapack_int LAPACKE_dporfsx( int matrix_order, char uplo, char equed, lapack_int n, lapack_int nrhs, const double* a, lapack_int lda, const double* af, lapack_int ldaf, const double* $s$, const double* $b$, lapack_int ldb, double* $x$, lapack_int ldx, double* rcond, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, double* params );
lapack_int LAPACKE_cporfsx( int matrix_order, char uplo, char equed, lapack_int n, lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* af, lapack_int ldaf, const float* s, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx, float* rcond, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, float* params );

```
lapack_int LAPACKE_zporfsx(int matrix_order, char uplo, char equed, lapack_int n,
lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* af, lapack_int ldaf, const double* s, const
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx,
double* rcond, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double*
err_bnds_comp, lapack_int nparams, double* params);
```


## Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h


## Description

The routine improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed and $s$ below. In this case, the solution and error bounds returned are for the original unequilibrated system.

## Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the $C$ interface data types in the $C$ interface section above. See the $C$ Interface Conventions section for the $C$ interface principal conventions and type definitions.

```
uplo CHARACTER*1.Must be 'U' or 'L'.
 Indicates whether the upper or lower triangular part of A is stored:
 If uplo = 'U', the upper triangle of A is stored.
 If uplo = 'L', the lower triangle of A is stored.
equed
n
nrhs
a, af, b, work
CHARACTER*1. Must be 'N' or 'Y'.
Specifies the form of equilibration that was done to A before calling this
routine.
If equed = 'N', no equilibration was done.
If equed = 'Y', both row and column equilibration was done, that is, A has
been replaced by diag(S)*A* diag(S). The right-hand side B has been
changed accordingly.
INTEGER. The number of linear equations; the order of the matrix A;n\geq0.
INTEGER. The number of right-hand sides; the number of columns of the
matrices B and }x;nrhs\geq0
REAL for sporfsx
DOUBLE PRECISION for dporfsx
COMPLEX for cporfsx
DOUBLE COMPLEX for zporfsx.
Arrays: a(lda,*), af(ldaf,*),b(ldb,*),work(*).
The array a contains the symmetric/Hermitian matrix A as specified by
uplo. If uplo = 'U', the leading n-by-n upper triangular part of a contains
the upper triangular part of the matrix A and the strictly lower triangular
part of a is not referenced. If uplo = 'L', the leading n-by-n lower
```

triangular part of a contains the lower triangular part of the matrix $A$ and the strictly upper triangular part of $a$ is not referenced. The second dimension of a must be at least max $(1, n)$.
The array af contains the triangular factor $L$ or $U$ from the Cholesky factorization $A=U * * T * U$ or $A=L^{*} L^{* *} T$ as computed by spotrf for real flavors or dpotrf for complex flavors.
The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least max (1, nrhs).
work (*) is a workspace array. The dimension of work must be at least $\max (1,4 * n)$ for real flavors, and at least $\max (1,2 * n)$ for complex flavors.
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $a f ; \operatorname{ldaf} \geq \max (1, n)$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION ( $n$ ). The array $s$ contains the scale factors for $A$.
If equed $=$ ' $N$ ', s is not accessed.
If equed $=$ ' $Y$ ', each element of $s$ must be positive.
Each element of $s$ should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
$1 d b$
X
ldx
n_err_bnds
nparams
params
$\operatorname{INTEGER}$. The leading dimension of the array $b ; l d b \geq \max (1, n)$.
REAL for sporfsx
DOUBLE PRECISION for dporfsx
COMPLEX for cporfsx
DOUBLE COMPLEX for zporfsx.
Array, DIMENSION (ldx,*).
The solution matrix $x$ as computed by ?potrs
INTEGER. The leading dimension of the output array $x ; I d x \geq \max (1, n)$.
INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.
INTEGER. Specifies the number of parameters set in params. If $\leq 0$, the params array is never referenced and default values are used.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION nparams. Specifies algorithm parameters. If an entry is less than 0.0, that entry will be filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams $=0$, which prevents the source code from accessing the params argument.
params(la_linrx_itref_i = 1) : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).
$=0.0 \quad$ No refinement is performed and no error bounds are computed.
$=1.0$
Use the double-precision refinement algorithm, possibly with doubled-single computations if the compilation environment does not support
DOUBLE PRECISION.
(Other values are reserved for futute use.) params(la_linrx_ithresh_i = 2) : Maximum number of resudual computations allowed for refinement.
Default 10

Aggressive Set to 100 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the quarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params(la_linrx_cwise_i = 3) : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).
INTEGER. Workspace array, DIMENSION at least max (1, n) ; used in real flavors only.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max ( $1,3{ }^{*} n$ ) ; used in complex flavors only.

## Output Parameters

x
rcond
berr
err_bnds_norm

REAL for sporfsx
DOUBLE PRECISION for dporfsx
COMPLEX for cporfsx
DOUBLE COMPLEX for zporfsx.
The improved solution matrix $x$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix $A$ after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max ( $1, n r h s$ ). Contains the componentwise relative backward error for each solution vector $x(j)$, that is, the smallest relative change in any element of $A$ or $B$ that makes $x(j)$ an exact solution.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION ( $n r h s, n_{-} e r r_{-} b n d s$ ). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the $i$-th solution vector


The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
The first index in err_bnds_norm(i,:) corresponds to the i-th right-hand side.
The second index in err_bnds_norm (: ,err) contains the follwoing three fields:
err=1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors.
err=2
err=3
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n)$ *dlamch ( $\varepsilon$ ) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are $1 /$ (norm(1/ $z$,inf)*norm(z,inf)) for some appropriately scaled matrix $z$.
Let $z=s^{*} a$, where $s$ scales each row by a power of the radix so all absolute row sums of $z$ are approximately 1.

[^0]REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the $i$-th solution vector:
$\max _{j} \frac{\left|X t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}$
The array is indexed by the right-hand side $i$, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) $=0.0$ ), then err_bnds_comp is not accessed. If $n_{-} e r r_{-} b n d s$ $<3$, then at most the first (: , n_err_bnds) entries are returned.

The first index in err_bnds_comp (i,:) corresponds to the $i$-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the follwoing three fields:
err=1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) *$ damch ( $\varepsilon$ ) for double precision flavors.
err=2
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) *$ dlamch ( $\varepsilon$ ) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
err=3 Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * s l a m c h(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are $1 /$ (norm(1/ z,inf)*norm(z,inf)) for some appropriately scaled matrix $z$.
Let $z=S^{*}\left(a^{*} \operatorname{diag}(x)\right)$, where $x$ is the solution for the current right-hand side and $s$ scales each row of $a^{\star} \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of $z$ are approximately 1.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Output parameter only if the input contains erroneous values. namely, in params (1), params (2), params (3). In such a case, the corresponding elements of params are filled with default values on output.

INTEGER. If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, the $i$-th parameter had an illegal value.
If $0<i n f o \leq n: U(i n f o, i n f o)$ is exactly zero. The factorization has been completed, but the factor $U$ is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=n+j$ : The solution corresponding to the $j$-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides $k$ with $k>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) $=0.0$, then the $j$-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest $j$ such that err_bnds_norm $(j, 1)=0.0$ or err_bnds_comp $(j, 1)=0.0$. See the definition of err_bnds_norm(; 1) and err_bnds_comp (; 1). To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

## ?pprfs <br> Refines the solution of a system of linear equations with a packed symmetric (Hermitian) positive-definite matrix and estimates its error.

## Syntax

## Fortran 77:

```
call spprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, iwork, info)
call dpprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, iwork, info)
call cpprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork, info)
call zpprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork, info)
```

Fortran 95:

```
call pprfs(ap, afp, b, x [,uplo] [,ferr] [,berr] [,info])
```

C:
lapack_int LAPACKE_spprfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs, const float* ap, const float* afp, const float* b, lapack_int ldb, float* $x$, lapack_int ldx, float* ferr, float* berr );

```
lapack_int LAPACKE_dpprfs(int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
```

const double* ap, const double* afp, const double* b, lapack_int ldb, double* $x$,
lapack_int $1 d x$, double* ferr, double* berr );
lapack_int LAPACKE_cpprfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_float* ap, const lapack_complex_float* afp, const
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* ferr, float* berr );
lapack_int LAPACKE_zpprfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_double* ap, const lapack_complex_double* afp, const
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* $x, ~ l a p a c k \_i n t ~ l d x, ~$
double* ferr, double* berr );

## Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h


## Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a packed symmetric (Hermitian)positive definite matrix $A$, with multiple right-hand sides. For each computed solution vector $x$, the routine computes the component-wise backward error $\beta$. This error is the smallest relative perturbation in elements of $A$ and $b$ such that $x$ is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution
$\left|\left|x-x_{e}\right|\right|_{\infty} /||x||_{\infty}$
where $x_{e}$ is the exact solution.
Before calling this routine:

- call the factorization routine ?pptrf
- call the solver routine ?pptrs.

Input Parameters
The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the $C$ interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
uplo CHARACTER*1. Must be 'U' or 'L'.
 Indicates how the input matrix }A\mathrm{ has been factored:
 If uplo = 'U', the upper triangle of A is stored.
 If uplo = 'L', the lower triangle of A is stored.
 INTEGER. The order of the matrix }A;n\geq0
 INTEGER. The number of right-hand sides; nrhs \geq0.
REAL for spprfs
DOUBLE PRECISION for dpprfs
COMPLEX for cpprfs
DOUBLE COMPLEX for zpprfs.
Arrays:
 ap(*) contains the original packed matrix }A\mathrm{ , as supplied to ?pptre.
 afp(*) contains the factored packed matrix }A\mathrm{ , as returned by ?
pptrf.
b(Idb,*) contains the right-hand side matrix B.
x(ldx,*) contains the solution matrix }x\mathrm{ .
work(*) is a workspace array.
The dimension of arrays ap and afp must be at least max (1,n(n+1)/
2); the second dimension of b and x must be at least max (1, nrhs);
the dimension of work must be at least max(1, 3* n) for real flavors
and max (1, 2*n) for complex flavors.
 INTEGER. The leading dimension of b; ldb \geq max (1, n).
 INTEGER. The leading dimension of }x;ldx\geq\operatorname{max}(1,n)
 INTEGER. Workspace array, DIMENSION at least max (1, n).
REAL for cpprfs
DOUBLE PRECISION for zpprfs.
Workspace array, DIMENSION at least max (1, n).
```


## Output Parameters

```
X
ferr,berr
```

info

The refined solution matrix $x$.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max ( $1, n r h s$ ). Contain the componentwise forward and backward errors, respectively, for each solution vector.
INTEGER. If info=0, the execution is successful. If info $=-i$, the $i$-th parameter had an illegal value.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pprfs interface are as follows:

| ap | Holds the array $A$ of size $\left(n^{*}(n+1) / 2\right)$. |
| :--- | :--- |
| afp | Holds the array $A F$ of size $(n *(n+1) / 2)$. |
| $b$ | Holds the matrix $B$ of size $(n, n r h s)$. |
| ferr | Holds the matrix $X$ of size $(n, n r h s)$. |
| berr | Holds the vector of length $(n r h s)$. |
| uplo | Holds the vector of length $(n r h s)$. |

## Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 .

Estimating the forward error involves solving a number of systems of linear equations $A^{\star} X=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

## ?pbrfs

Refines the solution of a system of linear equations with a band symmetric (Hermitian) positive-definite matrix and estimates its error.

## Syntax

## Fortran 77:

```
call spbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr,
work, iwork, info)
call dpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr,
work, iwork, info)
call cpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr,
work, rwork, info)
call zpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr,
work, rwork, info)
```


## Fortran 95:

call pbrfs( ab, afb, b, x [,uplo] [,ferr] [,berr] [,info] )
C:
lapack_int LAPACKE_spbrfs( int matrix_order, char uplo, lapack_int n, lapack_int kd,
lapack_int nrhs, const float* ab, lapack_int ldab, const float* afb, lapack_int ldafb,
const float* b, lapack_int ldb, float* $x$, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dpbrfs( int matrix_order, char uplo, lapack_int n, lapack_int kd,
lapack_int nrhs, const double* ab, lapack_int ldab, const double* afb, lapack_int
ldafb, const double* $b$, lapack_int ldb, double* $x$, lapack_int ldx, double* ferr,
double* berr );

```
lapack_int LAPACKE_cpbrfs(int matrix_order, char uplo, lapack_int n, lapack_int kd,
lapack_int nrhs, const lapack_complex_float* ab, lapack_int ldab, const
lapack_complex_float* afb, lapack_int ldafb, const lapack_complex_float* b, lapack_int
ldb, lapack_complex_float* x, lapack_int ldx, float* ferr, float* berr);
lapack_int LAPACKE_zpbrfs(int matrix_order, char uplo, lapack_int n, lapack_int kd,
lapack_int nrhs, const lapack_complex_double* ab, lapack_int ldab, const
lapack_complex_double* afb, lapack_int ldafb, const lapack_complex_double* b,
lapack_int ldb, lapack_complex_double* x, lapack_int ldx, double* ferr, double* berr);
```


## Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h


## Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a symmetric (Hermitian) positive definite band matrix $A$, with multiple right-hand sides. For each computed solution vector $x$, the routine computes the component-wise backward error $\beta$. This error is the smallest relative perturbation in elements of $A$ and $b$ such that $x$ is the exact solution of the perturbed system:

$$
\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right| \text { such that }(A+\delta A) x=(b+\delta b) .
$$

Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} / \|$ $x\left|\left.\right|_{\infty}\right.$ (here $x_{e}$ is the exact solution).
Before calling this routine:

- call the factorization routine ?pbtrf
- call the solver routine ?pbtrs.


## Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the $C$ interface data types in the $C$ interface section above. See the $C$ Interface Conventions section for the $C$ interface principal conventions and type definitions.

```
uplo CHARACTER*1.Must be 'U' or 'L'.
 Indicates how the input matrix }A\mathrm{ has been factored:
 If uplo = 'U', the upper triangle of A is stored.
 If uplo = 'L', the lower triangle of }A\mathrm{ is stored.
n
kd
nrhs
ab,afb,b,x,work
INTEGER. The order of the matrix }A;n\geq0\mathrm{ .
INTEGER. The number of superdiagonals or subdiagonals in the matrix
A; kd \geq0.
INTEGER. The number of right-hand sides; nrhs \geq0.
REAL for spbrfs
DOUBLE PRECISION for dpbrfs
COMPLEX for cpbrfs
DOUBLE COMPLEX for zpbrfs.
Arrays:
ab(ldab,*) contains the original band matrix A, as supplied to ?
pbtrf.
afb(ldafb,*) contains the factored band matrix A, as returned by ?
pbtrf.
```

$b(I d b, *)$ contains the right-hand side matrix $B$.
$x(I d x, *)$ contains the solution matrix $x$.
work(*) is a workspace array.
The second dimension of $a b$ and $a f b$ must be at least max $(1, n)$; the second dimension of $b$ and $x$ must be at least max ( $1, n r h s$ ); the dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max (1,2 * n)$ for complex flavors.
INTEGER. The leading dimension of $a b ; ~ l d a b \geq k d+1$.
INTEGER. The leading dimension of $a f b ; \operatorname{ldafb} \geq k d+1$.
INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of $x ; 1 d x \geq \max (1, n)$.
INTEGER. Workspace array, DIMENSION at least max $(1, n)$.
REAL for cpbrfs
DOUBLE PRECISION for zpbrfs.
Workspace array, DIMENSION at least max $(1, n)$.

## Output Parameters

```
\(x\)
ferr, berr
```

info
The refined solution matrix $x$.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max ( $1, n r h s$ ). Contain the componentwise forward and backward errors, respectively, for each solution vector.
INTEGER. If info $=0$, the execution is successful. If info $=-i$, the $i$-th parameter had an illegal value.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pbrfs interface are as follows:

```
ab Holds the array A of size (kd+1,n).
afb Holds the array AF of size (kd+1,n).
b Holds the matrix B of size (n, nrhs).
x Holds the matrix }X\mathrm{ of size (n,nrhs).
ferr Holds the vector of length (nrhs).
berr Holds the vector of length (nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.
```


## Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $8 n^{\star} k d$ floating-point operations (for real flavors) or $32 n^{\star} k d$ operations (for complex flavors). In addition, each step of iterative refinement involves $12 n^{\star} k d$ operations (for real flavors) or $48 n^{\star} k d$ operations (for complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations $A^{*}{ }_{x}=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $4 n \star k d$ floating-point operations for real flavors or $16 n \star k d$ for complex flavors.

## ?ptrfs

Refines the solution of a system of linear equations with a symmetric (Hermitian) positive-definite tridiagonal matrix and estimates its error.

## Syntax

## Fortran 77:

```
call sptrfs(n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info)
call dptrfs(n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info)
call cptrfs(uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, rwork,
info)
call zptrfs(uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, rwork,
info)
```


## Fortran 95:

```
call ptrfs(d, df, e, ef, b, x [,ferr] [,berr] [,info])
call ptrfs(d, df, e, ef, b, x [,uplo] [,ferr] [,berr] [,info])
```

C:
lapack_int LAPACKE_sptrfs( int matrix_order, lapack_int $n$, lapack_int nrhs, const float* $d$, const float* $e$, const float* df, const float* ef, const float* b, lapack_int
ldb, float* $x$, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dptrfs( int matrix_order, lapack_int $n$, lapack_int nrhs, const
double* $d, ~ c o n s t ~ d o u b l e * ~ e, ~ c o n s t ~ d o u b l e * ~ d f, ~ c o n s t ~ d o u b l e * ~ e f, ~ c o n s t ~ d o u b l e * ~ b, ~$

lapack_int LAPACKE_cptrfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
const float* $d$, const lapack_complex_float* $e$, const float* df, const
lapack_complex_float* ef, const lapack_complex_float* b, lapack_int ldb,

lapack_int LAPACKE_zptrfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
const double* $d$, const lapack_complex_double* e, const double* df, const
lapack_complex_double* ef, const lapack_complex_double* b, lapack_int ldb,


## Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h


## Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a symmetric (Hermitian) positive definite tridiagonal matrix $A$, with multiple right-hand sides. For each computed solution vector $x$, the routine computes the component-wise backward error $\beta$. This error is the smallest relative perturbation in elements of $A$ and $b$ such that $x$ is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
 $x\left|\left.\right|_{\infty}\right.$ (here $x_{e}$ is the exact solution).

Before calling this routine:

- call the factorization routine ?pttrf
- call the solver routine ?pttrs.


## Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the $C$ interface data types in the $C$ interface section above. See the $C$ Interface Conventions section for the $C$ interface principal conventions and type definitions.

| uplo | CHARACTER*1. Used for complex flavors only. Must be 'U' or 'L'. Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix $A$ is stored and how $A$ is factored: <br> If uplo = ' U', the array e stores the superdiagonal of $A$, and $A$ is factored as $U^{H} *_{D}{ }^{*} U$. <br> If uplo = 'L', the array e stores the subdiagonal of $A$, and $A$ is factored as $L^{\star} D^{\star} L^{H}$. |
| :---: | :---: |
| $n$ | INTEGER. The order of the matrix $A ; n \geq 0$. |
| nrhs | INTEGER. The number of right-hand sides; nrhs $\geq 0$. |
| d, df, rwork | REAL for single precision flavors DOUBLE PRECISION for double precision flavors <br> Arrays: $d(n), d f(n), r w o r k(n)$. <br> The array $d$ contains the $n$ diagonal elements of the tridiagonal matrix A. <br> The array $d f$ contains the $n$ diagonal elements of the diagonal matrix $D$ from the factorization of $A$ as computed by ?pttrf. <br> The array rwork is a workspace array used for complex flavors only. |
| $e, e f, b, x$, work | REAL for sptrfs <br> DOUBLE PRECISION for dptrfs <br> COMPLEX for cptrfs <br> DOUBLE COMPLEX for zptrfs. <br> Arrays: e(n-1), ef(n-1),b(ldb,nrhs),x(ldx,nrhs), work(*). <br> The array e contains the $(n-1)$ off-diagonal elements of the tridiagonal matrix $A$ (see uplo). <br> The array ef contains the ( $n-1$ ) off-diagonal elements of the unit bidiagonal factor $U$ or $L$ from the factorization computed by ?pttrf (see uplo). <br> The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. <br> The array $x$ contains the solution matrix $x$ as computed by ?pttrs. <br> The array work is a workspace array. The dimension of work must be at least $2{ }^{*} n$ for real flavors, and at least $n$ for complex flavors. |
| 1 db | INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$. |

$I d x$

## Output Parameters

X
ferr, berr
info

INTEGER. The leading dimension of $x ; l d x \geq \max (1, n)$.

The refined solution matrix $x$.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max ( $1, n r h s$ ). Contain the componentwise forward and backward errors, respectively, for each solution vector.

INTEGER.
If info $=0$, the execution is successful. If info $=-i$, the $i$-th parameter had an illegal value.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ptrfs interface are as follows:

| $d$ | Holds the vector of length $n$. |
| :--- | :--- |
| $d f$ | Holds the vector of length $n$. |
| $e$ | Holds the vector of length $(n-1)$. |
| $e f$ | Holds the vector of length $(n-1)$. |
| $b$ | Holds the matrix $B$ of size $(n, n r h s)$. |
| ferr | Holds the matrix $X$ of size $(n, n r h s)$. |
| berr | Holds the vector of length $(n r h s)$. |
| uplo | Holds the vector of length $(n r h s)$. |
|  | Used in complex flavors only. Must be ' $U^{\prime}$ ' or ' $L$ '. The default value is |

## ?syrfs

Refines the solution of a system of linear equations
with a symmetric matrix and estimates its error.

## Syntax

## Fortran 77:

```
call ssyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
iwork, info)
call dsyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
iwork, info)
call csyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info)
call zsyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info)
```


## Fortran 95:

```
call syrfs(a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info])
```

C:
lapack_int LAPACKE_ssyrfs( int matrix_order, char uplo, lapack_int $n$, lapack_int nrhs,
 ipiv, const float* b, lapack_int ldb, float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dsyrfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs, const double* a, lapack_int lda, const double* af, lapack_int ldaf, const lapack_int* ipiv, const double* b, lapack_int ldb, double* $x$, lapack_int ldx, double* ferr, double* berr );
lapack_int LAPACKE_csyrfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, const lapack_complex_float* af, lapack_int ldaf, const lapack_int* ipiv, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* $x$, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_zsyrfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, const lapack_complex_double* af, lapack_int ldaf, const lapack_int* ipiv, const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx, double* ferr, double* berr );

## Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h


## Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a symmetric full-storage matrix $A$, with multiple right-hand sides. For each computed solution vector $x$, the routine computes the component-wise backward error $\beta$. This error is the smallest relative perturbation in elements of $A$ and $b$ such that $x$ is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} / \|$ $x\left|\left.\right|_{\infty}\right.$ (here $x_{e}$ is the exact solution).

Before calling this routine:

- call the factorization routine ?sytrf
- call the solver routine ?sytrs.


## Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the $C$ interface section above. See the $C$ Interface Conventions section for the $C$ interface principal conventions and type definitions.

```
uplo
n
nrhs
a,af,b,x,work
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The order of the matrix A; n\geq0.
INTEGER. The number of right-hand sides; nrhs }\geq0\mathrm{ .
REAL for ssyrfs
DOUBLE PRECISION for dsyrfs
```

|  | COMPLEX for csyrfs |
| :---: | :---: |
|  | double complex for zsyrfs. |
|  | Arrays: |
|  | a(Ida,*) contains the original matrix $A$, as supplied to ?sytrf. |
|  | af(ldaf,*) contains the factored matrix $A$, as returned by ?sytrf. <br> $b(I d b, *)$ contains the right-hand side matrix $B$. |
|  | $x(I d x, *)$ contains the solution matrix $x$. |
|  | work (*) is a workspace array. |
|  | The second dimension of $a$ and $a f$ must be at least $\max (1, n)$; the second dimension of $b$ and $x$ must be at least $\max (1, n r h s)$; the dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors. |
| 1da | Integer. The leading dimension of $a$; lda $\geq \max (1, n)$. |
| Idaf | INTEGER. The leading dimension of af; ldaf $\geq \max (1, n)$. |
| 1 db | INTEGER. The leading dimension of $b$; $1 d b \geq \max (1, n)$. |
| $1 d x$ | INTEGER. The leading dimension of $x ; 1 d x \geq \max (1, n)$. |
| ipiv | Integer. |
|  | Array, DIMENSION at least max $(1, n)$. The ipiv array, as returned by ?sytrf. |
| iwork | INTEGER. Workspace array, DIMENSION at least max (1, $n$ ) . |
| rwork | REAL for csyrfs |
|  | DOUBLE PRECISION for zsyrfs. |
|  | Workspace array, DIMENSION at least max (1, n). |

## Output Parameters

```
x
ferr, berr
```

info
The refined solution matrix $x$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, dIMENSION at least max ( $1, \mathrm{nrhs}$ ). Contain the componentwise forward and backward errors, respectively, for each solution vector.
INTEGER. If info $=0$, the execution is successful. If info $=-i$, the $i$-th parameter had an illegal value.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine syrfs interface are as follows:

| a | Holds the matrix $A$ of size $(n, n)$. |
| :--- | :--- |
| af | Holds the matrix $A F$ of size $(n, n)$. |
| ipiv | Holds the vector of length $n$. |
| b | Holds the matrix $B$ of size $(n, n r h s)$. |
| ferr | Holds the matrix $X$ of size $(n, n r h s)$. |
| berr | Holds the vector of length $(n r h s)$. |
| uplo | Holds the vector of length $(n r h s)$. |
|  | Must be 'U' or 'L'. The default value is ' $U$ '. |

## Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A^{\star} X=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

## ?syrfsx

Uses extra precise iterative refinement to improve the solution to the system of linear equations with a symmetric indefinite matrix $A$ and provides error bounds and backward error estimates.

## Syntax

## Fortran 77:

call ssyrfsx( uplo, equed, $n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ i p i v, ~ s, b, l d b, x, I d x, ~ r c o n d$, berr, $n_{-} e r r_{\text {_ }}$ bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info ) call dsyrfsx( uplo, equed, $n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ i p i v, ~ s, b, l d b, x, l d x, ~ r c o n d$, berr, $n_{-} e r r_{\text {_ }}$ bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info ) call csyrfsx ( uplo, equed, $n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ i p i v, ~ s, ~ b, ~ l d b, ~ x, ~ l d x, ~ r c o n d$, berr, $\left.n_{-} e r r \_b n d s, ~ e r r \_b n d s \_n o r m, ~ e r r \_b n d s \_c o m p, ~ n p a r a m s, ~ p a r a m s, ~ w o r k, ~ r w o r k, ~ i n f o ~\right)$ call zsyrfsx ( uplo, equed, $n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ i p i v, ~ s, b, l d b, x, l d x, ~ r c o n d$, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )

C:
lapack_int LAPACKE_ssyrfsx( int matrix_order, char uplo, char equed, lapack_int n, lapack_int nrhs, const float* a, lapack_int lda, const float* af, lapack_int ldaf, const lapack_int* ipiv, const float* $s$, const float* $b$, lapack_int ldb, float* $x$, lapack_int ldx, float* rcond, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, float* params );
lapack_int LAPACKE_dsyrfsx( int matrix_order, char uplo, char equed, lapack_int n, lapack_int nrhs, const double* a, lapack_int lda, const double* af, lapack_int ldaf, const lapack_int* ipiv, const double* $s$, const double* b, lapack_int ldb, double* $x$, lapack_int ldx, double* rcond, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, double* params );
lapack_int LAPACKE_csyrfsx( int matrix_order, char uplo, char equed, lapack_int n, lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* af, lapack_int ldaf, const lapack_int* ipiv, const float* s, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx, float* rcond, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, float* params );
lapack_int LAPACKE_zsyrfsx( int matrix_order, char uplo, char equed, lapack_int n, lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* af, lapack_int ldaf, const lapack_int* ipiv, const double* s,

```
const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int
ldx, double* rcond, double* berr, lapack_int n_err_bnds, double* err_bnds_norm,
double* err_bnds_comp, lapack_int nparams, double* params);
```


## Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h


## Description

The routine improves the computed solution to a system of linear equations when the coefficient matrix is symmetric indefinite, and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.
The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed and $s$ below. In this case, the solution and error bounds returned are for the original unequilibrated system.

## Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the $C$ interface data types in the $C$ interface section above. See the $C$ Interface Conventions section for the $C$ interface principal conventions and type definitions.

```
uplo
equed CHARACTER*1. Must be 'N' or 'Y'.
n
nrhs
a, af, b, work
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
 Specifies the form of equilibration that was done to A before calling this
 routine.
 If equed = 'N', no equilibration was done.
 If equed = 'Y', both row and column equilibration was done, that is, A has
 been replaced by diag(s)*A* diag(s). The right-hand side B has been
 changed accordingly.
 INTEGER. The number of linear equations; the order of the matrix A; n\geq0.
 INTEGER. The number of right-hand sides; the number of columns of the
matrices B and X; nrhs \geq0.
```

```
REAL for ssyrfsx
```

REAL for ssyrfsx
DOUBLE PRECISION for dsyrfsx
DOUBLE PRECISION for dsyrfsx
COMPLEX for csyrfsx
COMPLEX for csyrfsx
DOUBLE COMPLEX for zsyrfsx.
DOUBLE COMPLEX for zsyrfsx.
Arrays: a(lda,*), af(ldaf,*),b(Idb,*), work(*).
The array a contains the symmetric/Hermitian matrix A as specified by
uplo. If uplo = 'U', the leading n-by-n upper triangular part of a contains
the upper triangular part of the matrix A and the strictly lower triangular
part of a is not referenced. If uplo = 'L', the leading n-by-n lower
triangular part of a contains the lower triangular part of the matrix A and
the strictly upper triangular part of a is not referenced. The second
dimension of a must be at least max (1,n).

```

The array af contains the triangular factor \(L\) or \(U\) from the Cholesky factorization \(A=U^{\star *} T^{*} U\) or \(A=L^{*} L^{* *} T\) as computed by ssytrf for real flavors or dsytrf for complex flavors.
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least \(\max (1, n r h s)\).
work (*) is a workspace array. The dimension of work must be at least \(\max (1,4 * n)\) for real flavors, and at least \(\max \left(1,2 *_{n}\right)\) for complex flavors.
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of \(a f ; \operatorname{ldaf} \geq \max (1, n)\).
INTEGER.
Array, DIMENSION at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\) as determined by ssytrf for real flavors or dsytrf for complex flavors.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n). The array \(s\) contains the scale factors for \(A\). If equed \(=\) ' \(N\) ', s is not accessed.
If equed \(=\) ' \(Y\) ', each element of \(s\) must be positive.
Each element of \(s\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
\(1 d b\)
X
\(1 d x\)
n_err_bnds
nparams
params

INTEGER. The leading dimension of the array \(b ; l d b \geq \max (1, n)\).
REAL for ssyrfsx
DOUBLE PRECISION for dsyrfsx
COMPLEX for csyrfsx
DOUBLE COMPLEX for zsyrfsx.
Array, DIMENSION (ldx,*).
The solution matrix \(x\) as computed by ?sytrs
INTEGER. The leading dimension of the output array \(x ; I d x \geq \max (1, n)\).
INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.
INTEGER. Specifies the number of parameters set in params. If \(\leq 0\), the params array is never referenced and default values are used.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION nparams. Specifies algorithm parameters. If an entry is less than 0.0, that entry will be filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams \(=0\), which prevents the source code from accessing the params argument.
params(la_linrx_itref_i = 1) : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).
\(\begin{array}{ll}=0.0 & \text { No refinement is performed and no error bounds } \\ \text { are computed. }\end{array}\)
\(=1.0\)
Use the double-precision refinement algorithm, possibly with doubled-single computations if the compilation environment does not support
DOUBLE PRECISION.
(Other values are reserved for futute use.) params(la_linrx_ithresh_i = 2) : Maximum number of resudual computations allowed for refinement.
Default 10

Aggressive Set to 100 to permit convergence using approximate factorizations or factorizations other than \(L U\). If the factorization uses a technique other than Gaussian elimination, the quarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params(la_linrx_cwise_i = 3) : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).
INTEGER. Workspace array, DIMENSION at least max (1, n) ; used in real flavors only.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max (\(1,3{ }^{*} n\)) ; used in complex flavors only.

\section*{Output Parameters}
x
rcond
berr
err_bnds_norm

REAL for ssyrfsx
DOUBLE PRECISION for dsyrfsx
COMPLEX for csyrfsx
DOUBLE COMPLEX for zsyrfsx.
The improved solution matrix \(x\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max (\(1, n r h s\)). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (\(n r h s, n_{-} e r r_{-} b n d s\)). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the \(i\)-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
The first index in err_bnds_norm(i,:) corresponds to the i-th right-hand side.
The second index in err_bnds_norm (: ,err) contains the follwoing three fields:
err=1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors.
err=2
err=3
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n)\) *dlamch (\(\varepsilon\)) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/ \(z\),inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1.

\footnotetext{
err_bnds_comp
}

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the \(i\)-th solution vector:
\(\max _{j} \frac{\left|X t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}\)
The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) \(=0.0\)), then err_bnds_comp is not accessed. If \(n_{-} e r r_{-} b n d s\) \(<3\), then at most the first (: , n_err_bnds) entries are returned.

The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the follwoing three fields:
err=1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) *\) damch (\(\varepsilon\)) for double precision flavors.
err=2
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) *\) dlamch (\(\varepsilon\)) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
err=3 Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * s l a m c h(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/ z,inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=S^{*}\left(a^{*} \operatorname{diag}(x)\right)\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a^{\star} \operatorname{diag}(x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Output parameter only if the input contains erroneous values, namely, in params (1), params (2), params (3). In such a case, the corresponding elements of params are filled with default values on output.

INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If \(0<i n f o \leq n: U(i n f o, i n f o)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=n+j\) : The solution corresponding to the \(j\)-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides \(k\) with \(k>j\) may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) \(=0.0\), then the \(j\)-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest \(j\) such that err_bnds_norm \((j, 1)=0.0\) or err_bnds_comp \((j, 1)=0.0\). See the definition of err_bnds_norm(; 1) and err_bnds_comp (; 1). To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

\section*{?herfs}

Refines the solution of a system of linear equations with a complex Hermitian matrix and estimates its error.

\section*{Syntax}

\section*{Fortran 77:}
```

call cherfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info )
call zherfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info )

```

\section*{Fortran 95:}
```

call herfs( a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info] )

```

C:
```

lapack_int LAPACKE_cherfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs,

```
const lapack_complex_float* a, lapack_int lda, const lapack_complex_float* af,
lapack_int ldaf, const lapack_int* ipiv, const lapack_complex_float* b, lapack_int ldb,

lapack_int LAPACKE_zherfs(int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_double* a, lapack_int lda, const lapack_complex_double* af,
lapack_int ldaf, const lapack_int* ipiv, const lapack_complex_double* b, lapack_int
ldb, lapack_complex_double* \(\left.x, ~ l a p a c k _i n t ~ l d x, ~ d o u b l e * ~ f e r r, ~ d o u b l e * ~ b e r r ~\right) ; ~\)

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine performs an iterative refinement of the solution to a system of linear equations \(A * X=B\) with a complex Hermitian full-storage matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{e}\right| l_{\infty} / \|\right.\) \(x \mid \|_{\infty}\) (here \(x_{e}\) is the exact solution).
Before calling this routine:
- call the factorization routine ?hetrf
- call the solver routine ?hetrs.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
uplo

> CHARACTER*1. Must be 'U' or 'L'.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If uplo = 'U', the upper triangle of \(A\) is stored. \\
If uplo = 'L', the lower triangle of \(A\) is stored.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; nrhs \(\geq 0\). \\
\hline \multirow[t]{8}{*}{\(a, a f, b, x, w o r k\)} & COMPLEX for cherfs \\
\hline & DOUBLE COMPLEX for zherfs. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) contains the original matrix \(A\), as supplied to ?hetrf. \\
\hline & af(ldaf,*) contains the factored matrix \(A\), as returned by ?hetrf. \(b(I d b, *)\) contains the right-hand side matrix \(B\). \\
\hline & \(x(I d x, *)\) contains the solution matrix \(x\). \\
\hline & work(*) is a workspace array. \\
\hline & The second dimension of \(a\) and af must be at least max \((1, n)\); the second dimension of \(b\) and \(x\) must be at least max (\(1, n r h s\)) ; the dimension of work must be at least max (\(1,2 \star_{n}\)). \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline Idaf & INTEGER. The leading dimension of \(a f ; \operatorname{ldaf} \geq \max (1, n)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\) \\
\hline \(1 d x\) & INTEGER. The leading dimension of \(x ; 1 d x \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION at least max \((1, n)\). The ipiv array, as returned by ?hetrf. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cherfs \\
\hline & DOUBLE PRECISION for zherfs. \\
\hline & Workspace array, DIMENSION at least max (1, n) . \\
\hline
\end{tabular}

\section*{Output Parameters}
```

x
ferr,berr

```
info

The refined solution matrix \(x\).
REAL for cherfs
DOUBLE PRECISION for zherfs.
Arrays, DIMENSION at least max (\(1, n r h s\)). Contain the componentwise forward and backward errors, respectively, for each solution vector.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine herfs interface are as follows:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
af & Holds the matrix \(A F\) of size \((n, n)\). \\
\(b\) & Holds the vector of length \(n\). \\
\(x\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
ferr & Holds the matrix \(X\) of size \((n, n r h s)\). \\
& Holds the vector of length \((n r h s)\).
\end{tabular}
berr Holds the vector of length (nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of \(16 n^{2}\) operations. In addition, each step of iterative refinement involves \(24 n^{2}\) operations; the number of iterations may range from 1 to 5 .

Estimating the forward error involves solving a number of systems of linear equations \(A^{*}{ }_{x}=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(8 n^{2}\) floating-point operations.

The real counterpart of this routine is ?ssyrfs/?dsyrfs

\section*{?herfsx}

Uses extra precise iterative refinement to improve the solution to the system of linear equations with a symmetric indefinite matrix \(A\) and provides error bounds and backward error estimates.

\section*{Syntax}

\section*{Fortran 77:}
```

call cherfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond,
berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
call zherfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond,
berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
C:
lapack_int LAPACKE_cherfsx( int matrix_order, char uplo, char equed, lapack_int n,
lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* af, lapack_int ldaf, const lapack_int* ipiv, const float* s,
const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* rcond, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float*
err_bnds_comp, lapack_int nparams, float* params );
lapack_int LAPACKE_zherfsx( int matrix_order, char uplo, char equed, lapack_int n,
lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* af, lapack_int ldaf, const lapack_int* ipiv, const double* s,
const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int
ldx, double* rcond, double* berr, lapack_int n_err_bnds, double* err_bnds_norm,
double* err_bnds_comp, lapack_int nparams, double* params );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian indefinite, and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed and \(s\) below. In this case, the solution and error bounds returned are for the original unequilibrated system.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datat ype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

uplo
equed
n
nrhs
a, af, b, work
lda
ldaf
ipiv
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
CHARACTER*1. Must be 'N' or 'Y'.
Specifies the form of equilibration that was done to A before calling this
routine.
If equed = 'N', no equilibration was done.
If equed = 'Y', both row and column equilibration was done, that is, A has
been replaced by diag(s)*A* diag(s).The right-hand side }B\mathrm{ has been
changed accordingly.
INTEGER. The number of linear equations; the order of the matrix }A;n\geq0
INTEGER. The number of right-hand sides; the number of columns of the
matrices }B\mathrm{ and }X;nrhs\geq0
COMPLEX for cherfsx
DOUBLE COMPLEX for zherfsx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).
The array a contains the Hermitian matrix }A\mathrm{ as specified by uplo. If uplo =
'U', the leading n-by-n upper triangular part of a contains the upper
triangular part of the matrix }A\mathrm{ and the strictly lower triangular part of a is
not referenced. If uplo = 'L', the leading n-by-n lower triangular part of a
contains the lower triangular part of the matrix A and the strictly upper
triangular part of a is not referenced. The second dimension of a must be at
least max (1,n).
The factored form of the matrix A. The array af contains the block diagonal
matrix D and the multipliers used to obtain the factor U or L from the
factorization A = U*D*U**T or A = L*D* LL**T as computed by ssytref for
cherfsx or dsytrf for zherfsx.
The array b contains the matrix B whose columns are the right-hand sides
for the systems of equations. The second dimension of b must be at least
max (1,nrhs).
work (*) is a workspace array. The dimension of work must be at least
max (1,2*n).
INTEGER. The leading dimension of a; lda \geq max (1, n).
INTEGER. The leading dimension of af; ldaf \geq max (1, n).
INTEGER.

```

Array, DIMENSION at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\) as determined by ssytrf for real flavors or dsytrf for complex flavors.

S
params

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, dimension (\(n\)). The array \(s\) contains the scale factors for \(A\).
If equed \(=\) ' N ', \(s\) is not accessed.
If equed \(=\) ' Y ', each element of \(s\) must be positive.
Each element of \(s\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
INTEGER. The leading dimension of the array \(b ; l d b \geq \max (1, n)\).
COMPLEX for cherfsx
DOUBLE COMPLEX for zherfsx.
Array, DIMENSION (ldx,*).
The solution matrix \(x\) as computed by ?hetrs
INTEGER. The leading dimension of the output array \(x ; \operatorname{ldx} \geq \max (1, n)\).
INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.
Integer. Specifies the number of parameters set in params. If \(\leq 0\), the params array is never referenced and default values are used.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION nparams. Specifies algorithm parameters. If an entry is less than 0.0 , that entry will be filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams \(=0\), which prevents the source code from accessing the params argument.
params(la_linrx_itref_i = 1) : Whether to perform iterative refinement or not. Default: 1.0 (for cherfsx), 1.0D+0 (for zherfsx).
\begin{tabular}{ll}
\(=0.0\) & \begin{tabular}{l}
No refinement is performed and no error bounds \\
are computed.
\end{tabular} \\
\(=1.0\) & \begin{tabular}{l}
Use the double-precision refinement algorithm, \\
possibly with doubled-single computations if the \\
compilation environment does not support
\end{tabular} \\
DOUBLE PRECISION.
\end{tabular}
(Other values are reserved for futute use.)
params(la_linrx_ithresh_i = 2) : Maximum number of resudual computations allowed for refinement.

Default
Aggressive

\section*{10}

Set to 100 to permit convergence using approximate factorizations or factorizations other than \(L U\). If the factorization uses a technique other than Gaussian elimination, the quarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params(la_linrx_cwise_i = 3): Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).
rwork
Output Parameters X
rcond
berr
err_bnds_norm
REAL for cherfsx
DOUBLE PRECISION for zherfsx.
Workspace array, DIMENSION at least max (1, 3*n).

COMPLEX for cherfsx
DOUBLE COMPLEX for zherfsx.
The improved solution matrix \(x\).
REAL for cherfsx
DOUBLE PRECISION for zherfsx.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
REAL for cherfsx
DOUBLE PRECISION for zherfsx.
Array, DIMENSION at least max (\(1, n r h s\)). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.
REAL for cherfsx
DOUBLE PRECISION for zherfsx.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the \(i\)-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
The first index in err_bnds_norm(i,:) corresponds to the i-th right-hand side.
The second index in err_bnds_norm (: ,err) contains the follwoing three fields:
\begin{tabular}{|c|c|}
\hline err=1 & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for cherfsx and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for zherfsx. \\
\hline err=2 & "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for cherfsx and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for zherfsx. This error bound should only be trusted if the previous boolean is true. \\
\hline
\end{tabular}
err=3

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold
\(\operatorname{sqrt}(n)\) *slamch(\(\varepsilon\)) for cherfsx and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for zherfsx to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm (1/ \(z, i n f)\) *norm (z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1.

REAL for cherfsx
DOUBLE PRECISION for zherfsx.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the \(i\)-th solution vector:

The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) \(=0.0\)), then err_bnds_comp is not accessed. If \(n_{-} e r r_{-}\)bnds \(<3\), then at most the first (:, \(n_{-} e r r_{-} b n d s\)) entries are returned.
The first index in err_bnds_comp (i,:) corresponds to the i-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the follwoing three fields:
\begin{tabular}{|c|c|}
\hline err=1 & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold \(\operatorname{sqrt}(\mathrm{n}) * \operatorname{slamch}(\varepsilon)\) for cherfsx and sqrt (\(n\)) *dlamch (\(\varepsilon\)) for zherfsx. \\
\hline err=2 & "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for cherfsx and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for zherfsx. This error bound should only be trusted if the previous boolean is true. \\
\hline err=3 & \begin{tabular}{l}
Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold \\
\(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for cherfsx and \(\operatorname{sqrt}(n) *\) dlamch (\(\varepsilon\)) for zherfsx to determine if the error estimate is "guaranteed". These
\end{tabular} \\
\hline
\end{tabular}

Trust/don't trust" boolean. Trust the answer if threshold sqrt(\(n\)) *slamch (\(\varepsilon\)) for cherfsx and sqrt(\(n\)) *dlamch (\(\varepsilon\)) for zherfsx.
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n)\) *slamch \((\varepsilon)\) for cherfsx and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for zherfsx. This error bound should only be trusted if the previous boolean is true.
Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold
\(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for cherfsx and sqrt(\(n\)) *dlamch (\(\varepsilon\)) for zherfsx to determine if the error estimate is "guaranteed". These
reciprocal condition numbers are \(1 /\) (norm (1/ \(z\),inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a^{\star} \operatorname{diag}(x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1 .
params
info
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Output parameter only if the input contains erroneous values, namely, in params (1), params (2), params (3). In such a case, the corresponding elements of params are filled with default values on output.
INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If \(0<i n f o \leq n: U(i n f o, i n f o)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=n+j\) : The solution corresponding to the \(j\)-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides \(k\) with \(k>j\) may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) \(=0.0\), then the \(j\)-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest \(j\) such that err_bnds_norm \((j, 1)=0.0\) or err_bnds_comp \((j, 1)=0.0\). See the definition of err_bnds_norm(; 1) and err_bnds_comp (; 1). To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

\section*{?sprfs}

Refines the solution of a system of linear equations with a packed symmetric matrix and estimates the solution error.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssprfs( uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork,
info )
call dsprfs( uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork,
info )
call csprfs( uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork,
info )
call zsprfs( uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork,
info )

```

\section*{Fortran 95:}
```

call sprfs( ap, afp, ipiv, b, x [,uplo] [,ferr] [,berr] [,info] )

```

C:
lapack_int LAPACKE_ssprfs(int matrix_order, char uplo, lapack_int \(n\), lapack_int nrhs, const float* ap, const float* afp, const lapack_int* ipiv, const float* b, lapack_int ldb, float* \(x\), lapack_int ldx, float* ferr, float* berr);
lapack_int LAPACKE_dsprfs(int matrix_order, char uplo, lapack_int \(n\), lapack_int nrhs, const double* ap, const double* afp, const lapack_int* ipiv, const double* b, lapack_int ldb, double* \(x\), lapack_int ldx, double* ferr, double* berr);
lapack_int LAPACKE_csprfs(int matrix_order, char uplo, lapack_int n, lapack_int nrhs, const lapack_complex_float* ap, const lapack_complex_float* afp, const lapack_int* ipiv, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx, float* ferr, float* berr);
lapack_int LAPACKE_zsprfs(int matrix_order, char uplo, lapack_int n, lapack_int nrhs, const lapack_complex_double* ap, const lapack_complex_double* afp, const lapack_int* ipiv, const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx, double* ferr, double* berr);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine performs an iterative refinement of the solution to a system of linear equations \(A * X=B\) with a packed symmetric matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{e}\right|\left\|_{\infty} /\right\|\right.\) \(x\left|\left.\right|_{\infty}\right.\) (here \(x_{e}\) is the exact solution).
Before calling this routine:
- call the factorization routine ?sptrf
- call the solver routine ?sptrs.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo
n
nrhs
ap,afp,b,x,work

```
```

CHARACTER*1. Must be 'U' or 'L'.

```
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The order of the matrix A; n\geq0.
INTEGER. The order of the matrix A; n\geq0.
INTEGER. The number of right-hand sides; nrhs \geq0.
INTEGER. The number of right-hand sides; nrhs \geq0.
REAL for ssprfs
REAL for ssprfs
DOUBLE PRECISION for dsprfs
DOUBLE PRECISION for dsprfs
COMPLEX for csprfs
COMPLEX for csprfs
DOUBLE COMPLEX for zsprfs.
```

DOUBLE COMPLEX for zsprfs.

```
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Arrays: \\
\(a p(*)\) contains the original packed matrix \(A\), as supplied to ?sptrf. \\
\(\operatorname{afp}(*)\) contains the factored packed matrix \(A\), as returned by ? \\
sptrf. \\
\(b(I d b, *)\) contains the right-hand side matrix \(B\). \\
\(x(l d x, *)\) contains the solution matrix \(x\). \\
work(*) is a workspace array. \\
The dimension of arrays \(a p\) and \(a f p\) must be at least max (\(1, n(n\) \\
\(+1) / 2\)) ; the second dimension of \(b\) and \(x\) must be at least max (1 , nrhs) ; the dimension of work must be at least max (\(1,3 *_{n}\)) for real flavors and max \(\left(1,2 \star_{n}\right)\) for complex flavors.
\end{tabular} \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline \(1 d x\) & INTEGER. The leading dimension of \(x ; 1 d x \geq \max (1, n)\). \\
\hline ipiv & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION at least max \((1, n)\). The ipiv array, as returned by ?sptrf.
\end{tabular} \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least max (1, \(n\)). \\
\hline rwork & \begin{tabular}{l}
REAL for csprfs \\
DOUBLE PRECISION for zsprfs. \\
Workspace array, DIMENSION at least max \((1, n)\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

X
ferr, berr
info
The refined solution matrix \(x\).
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max (\(1, n r h s\)). Contain the componentwise forward and backward errors, respectively, for each solution vector.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine sprfs interface are as follows:
\begin{tabular}{ll}
ap & Holds the array \(A\) of size \(\left(n^{\star}(n+1) / 2\right)\). \\
afp & Holds the array \(A F\) of size \(\left(n^{\star}(n+1) / 2\right)\). \\
ipiv & Holds the vector of length \(n\). \\
b & Holds the matrix \(B\) of size \((n, n r h s)\). \\
ferr & Holds the matrix \(X\) of size \((n, n r h s)\). \\
berr & Holds the vector of length \((n r h s)\). \\
uplo & Holds the vector of length \((n r h s)\). \\
& Must be 'U' or 'L'. The default value is 'U'.
\end{tabular}

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of \(4 n^{2}\) floating-point operations (for real flavors) or \(16 n^{2}\) operations (for complex flavors). In addition, each step of iterative refinement involves \(6 n^{2}\) operations (for real flavors) or \(24 n^{2}\) operations (for complex flavors); the number of iterations may range from 1 to 5 .

Estimating the forward error involves solving a number of systems of linear equations \(A^{*}{ }_{x}=b\); the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors or \(8 n^{2}\) for complex flavors.

\section*{?hprfs}

Refines the solution of a system of linear equations with a packed complex Hermitian matrix and estimates the solution error.

\section*{Syntax}

\section*{Fortran 77:}
```

call chprfs( uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork,
info )
call zhprfs( uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork,
info )

```

\section*{Fortran 95:}
```

call hprfs( ap, afp, ipiv, b, x [,uplo] [,ferr] [,berr] [,info] )

```

C:
```

lapack_int LAPACKE_chprfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_float* ap, const lapack_complex_float* afp, const lapack_int*
ipiv, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_zhprfs( int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_double* ap, const lapack_complex_double* afp, const lapack_int*
ipiv, const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x,
lapack_int ldx, double* ferr, double* berr );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine performs an iterative refinement of the solution to a system of linear equations \(A * X=B\) with a packed complex Hermitian matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{e}\right|\right|_{\infty} / \|\) \(x\left|\left.\right|_{\infty}\right.\) (here \(x_{e}\) is the exact solution).
Before calling this routine:
- call the factorization routine ?hptrf
- call the solver routine ?hptrs.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', the upper triangle of \(A\) is stored. \\
\hline & If uplo = 'L', the lower triangle of \(A\) is stored. \\
\hline \(n\) & INTEGER. The order of the matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; nrhs \(\geq 0\). \\
\hline \multirow[t]{11}{*}{\(a p, a f p, b, x, w o r k\)} & COMPLEX for chprfs \\
\hline & DOUBLE COMPLEX for zhprfs. \\
\hline & Arrays: \\
\hline & \(a p(*)\) contains the original packed matrix \(A\), as supplied to ?hptrf. \(a f p(*)\) contains the factored packed matrix \(A\), as returned by ? \\
\hline & hptrf. \\
\hline & \(b(l d b, *)\) contains the right-hand side matrix \(B\). \\
\hline & \(x(l d x, *)\) contains the solution matrix \(x\). \\
\hline & work(*) is a workspace array. \\
\hline & The dimension of arrays ap and afp must be at least max (1, \(n(n+1) /\) \\
\hline & 2) ; the second dimension of \(b\) and \(x\) must be at least max (\(1, n r h s\)) ; \\
\hline & the dimension of work must be at least max (1, 2*n). \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline \(1 d x\) & INTEGER. The leading dimension of \(x ; 1 d x \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION at least max \((1, n)\). The ipiv array, as returned by ?hptrf. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for chprfs \\
\hline & DOUBLE PRECISION for zhprfs. \\
\hline & Workspace array, DIMENSION at least max (1, n). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(x\)
ferr, berr
info
The refined solution matrix \(x\).
REAL for chprfs.
DOUBLE PRECISION for zhprfs.
Arrays, DIMENSION at least max (1, nrhs). Contain the componentwise forward and backward errors, respectively, for each solution vector.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine hprfs interface are as follows:
\(a p\)
Holds the array \(A\) of size \(\left(n^{\star}(n+1) / 2\right)\).
\begin{tabular}{ll}
afp & Holds the array \(A F\) of size \((n *(n+1) / 2)\). \\
ipiv & Holds the vector of length \(n\). \\
b & Holds the matrix \(B\) of size \((n, n r h s)\). \\
ferr & Holds the matrix \(X\) of size \((n, n r h s)\). \\
berr & Holds the vector of length \((n r h s)\). \\
uplo & Holds the vector of length \((n r h s)\).
\end{tabular}

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of \(16 n^{2}\) operations. In addition, each step of iterative refinement involves \(24 n^{2}\) operations; the number of iterations may range from 1 to 5 .

Estimating the forward error involves solving a number of systems of linear equations \(A^{\star} X=b\); the number is usually 4 or 5 and never more than 11. Each solution requires approximately \(8 n^{2}\) floating-point operations.

The real counterpart of this routine is ?ssprfs/?dsprfs.

\section*{?trrfs}

Estimates the error in the solution of a system of linear equations with a triangular matrix.

Syntax

\section*{Fortran 77:}
```

call strrfs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr, work,
iwork, info )
call dtrrfs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr, work,
iwork, info )
call ctrrfs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr, work,
rwork, info )
call ztrrfs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr, work,
rwork, info )

```

\section*{Fortran 95:}
```

call trrfs( a, b, x [,uplo] [,trans] [,diag] [,ferr] [,berr] [,info] )

```

C:
```

lapack_int LAPACKE_strrfs( int matrix_order, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const float* a, lapack_int lda, const float* b,
lapack int ldb, const float* x, lapack int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dtrrfs( int matrix_order, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const double* a, lapack_int lda, const double* b,
lapack_int ldb, const double* x, lapack_int ldx, double* ferr, double* berr );
lapack_int LAPACKE_ctrrfs( int matrix_order, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* b, lapack_int ldb, const lapack_complex_float* x, lapack_int ldx,
float* ferr, float* berr );

```
```

lapack_int LAPACKE_ztrrfs( int matrix_order, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* b, lapack_int ldb, const lapack_complex_double* x, lapack_int
ldx, double* ferr, double* berr );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the errors in the solution to a system of linear equations \(A * X=B\) or \(A^{T} *_{X}=B\) or \(A^{H} *_{X}\) \(=B\) with a triangular matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
The routine also estimates the component-wise forward error in the computed solution ||x- \(x_{e}| | \infty /| |\) \(x \|_{\infty}\) (here \(x_{e}\) is the exact solution).

Before calling this routine, call the solver routine ?trtrs.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether }A\mathrm{ is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.
trans CHARACTER*1.Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form A*X = B.
If trans = 'T', the system has the form AT*X = B.
If trans = 'C', the system has the form A'* 位= 的
CHARACTER*1. Must be 'N' or 'U'.
If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements of A are
assumed to be 1 and not referenced in the array a.
INTEGER. The order of the matrix A; n\geq0.
INTEGER. The number of right-hand sides; nrhs \geq0.
REAL for strrfs
DOUBLE PRECISION for dtrrfs
COMPLEX for ctrrfs
DOUBLE COMPLEX for ztrrfs.
Arrays:
a(lda,*) contains the upper or lower triangular matrix A, as specified
by uplo.
b(Idb,*) contains the right-hand side matrix B.
x(Idx,*) contains the solution matrix }x\mathrm{ .

```
```

work(*) is a workspace array.
The second dimension of a must be at least max (1,n); the second
dimension of b and x must be at least max (1,nrhs); the dimension of
work must be at least max (1,3*n) for real flavors and max (1,2*n)
for complex flavors.
INTEGER. The leading dimension of a; lda \geq max (1, n).
INTEGER. The leading dimension of b; ldb \geq max (1, n).
INTEGER. The leading dimension of }x;ldx\geqmax(1, n)
INTEGER. Workspace array, DIMENSION at least max (1, n).
REAL for ctrrfs
DOUBLE PRECISION for ztrrfs.
Workspace array, DIMENSION at least max (1, n).

```

\section*{Output Parameters}
```

ferr, berr

```
info

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max (\(1, n r h s\)). Contain the componentwise forward and backward errors, respectively, for each solution vector.
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine trrfs interface are as follows:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((n, n)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
\(x\) & Holds the matrix \(X\) of size \((n, n r h s)\). \\
berr & Holds the vector of length \((n r h s)\). \\
uplo & Holds the vector of length (\(n r h s\)). \\
trans & Must be ' \(U\) ' or 'L'. The default value is ' \(U\) '. \\
diag & Must be 'N', 'C', or 'T'. The default value is 'N'.
\end{tabular}

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear equations \(A^{\star} x\) \(=b\); the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately \(n^{2}\) floating-point operations for real flavors or \(4 n^{2}\) for complex flavors.

\section*{?tprfs}

Estimates the error in the solution of a system of linear equations with a packed triangular matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call stprfs( uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, iwork,
info )
call dtprfs( uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, iwork,
info )
call ctprfs( uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, rwork,
info )
call ztprfs( uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, rwork,
info )

```

\section*{Fortran 95:}
```

call tprfs( ap, b, x [,uplo] [,trans] [,diag] [,ferr] [,berr] [,info] )

```

C:
```

lapack_int LAPACKE_stprfs( int matrix_order, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const float* ap, const float* b, lapack_int ldb, const
float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dtprfs( int matrix_order, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const double* ap, const double* b, lapack_int ldb,
const double* x, lapack_int ldx, double* ferr, double* berr );
lapack_int LAPACKE_ctprfs( int matrix_order, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const lapack_complex_float* ap, const
lapack_complex_float* b, lapack_int ldb, const lapack_complex_float* x, lapack_int ldx,
float* ferr, float* berr );
lapack_int LAPACKE_ztprfs( int matrix_order, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const lapack_complex_double* ap, const
lapack_complex_double* b, lapack_int ldb, const lapack_complex_double* x, lapack_int
ldx, double* ferr, double* berr );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the errors in the solution to a system of linear equations \(A * X=B\) or \(A^{T} * X=B\) or \(A^{H} * X\) \(=B\) with a packed triangular matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
The routine also estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{e}\right|\right|_{\infty} /| |\) \(x\left|\left.\right|_{\infty}\right.\) (here \(x_{e}\) is the exact solution).
Before calling this routine, call the solver routine ?tptrs.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether \(A\) is upper or lower triangular: \\
\hline & If uplo = 'U', then \(A\) is upper triangular. \\
\hline & If uplo = 'L', then \(A\) is lower triangular. \\
\hline \multirow[t]{5}{*}{trans} & CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & Indicates the form of the equations: \\
\hline & If trans \(=\) ' \(N\) ', the system has the form \(A * X=B\). \\
\hline & If trans \(=\) 'T', the system has the form \(A^{T} * X=B\). \\
\hline & If trans \(=\) ' C', the system has the form \(A^{H} * X=B\). \\
\hline \multirow[t]{4}{*}{diag} & CHARACTER*1. Must be 'N' or 'U'. \\
\hline & If diag = 'N', \(A\) is not a unit triangular matrix. \\
\hline & If diag = 'U', \(A\) is unit triangular: diagonal elements of \(A\) are \\
\hline & assumed to be 1 and not referenced in the array ap. \\
\hline \(n\) & INTEGER. The order of the matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; nrhs \(\geq 0\). \\
\hline \multirow[t]{9}{*}{ap, b, x, work} & REAL for stprfs \\
\hline & DOUBLE PRECISION for dtprfs \\
\hline & COMPLEX for ctprfs \\
\hline & DOUBLE COMPLEX for ztprfs. \\
\hline & \begin{tabular}{l}
Arrays: \\
\(a p(*)\) contains the upper or lower triangular matrix \(A\), as specified by uplo.
\end{tabular} \\
\hline & \(b(l d b, *)\) contains the right-hand side matrix \(B\). \\
\hline & \(x(l d x, *)\) contains the solution matrix \(x\). \\
\hline & work(*) is a workspace array. \\
\hline & The dimension of ap must be at least max \((1, n(n+1) / 2)\); the second dimension of \(b\) and \(x\) must be at least max (\(1, n r h s\)) ; the dimension of work must be at least max \(\left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2 *_{n}\right)\) for complex flavors. \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline \(1 d x\) & INTEGER. The leading dimension of \(x ; 1 d x \geq \max (1, n)\). \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least max (\(1, n\)). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for ctprfs \\
\hline & DOUBLE PRECISION for ztprfs. \\
\hline & Workspace array, DIMENSION at least max (1, n) . \\
\hline
\end{tabular}

\section*{Output Parameters}
ferr, berr
info
REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max (\(1, n r h s\)). Contain the componentwise forward and backward errors, respectively, for each solution vector.

INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine tprfs interface are as follows:
```

ap Holds the array A of size ( }n*(n+1)/2)
b Holds the matrix B of size (n,nrhs).
x Holds the matrix }x\mathrm{ of size ( }n,nrhs\mathrm{ ).
ferr Holds the vector of length (nrhs).
berr Holds the vector of length (nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.
trans Must be 'N', 'C', or 'T'. The default value is 'N'.
diag Must be 'N' or 'U'. The default value is 'N'.

```

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear equations \(A^{*} X\) \(=b\); the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately \(n^{2}\) floating-point operations for real flavors or \(4 n^{2}\) for complex flavors.

\section*{?tbrfs}

Estimates the error in the solution of a system of linear equations with a triangular band matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call stbrfs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr, berr,
work, iwork, info )
call dtbrfs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr, berr,
work, iwork, info )
call ctbrfs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr, berr,
work, rwork, info )
call ztbrfs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr, berr,
work, rwork, info )

```

\section*{Fortran 95:}
```

call tbrfs( ab, b, x [,uplo] [,trans] [,diag] [,ferr] [,berr] [,info] )

```
C:
lapack_int LAPACKE_stbrfs(int matrix_order, char uplo, char trans, char diag,
lapack_int \(n\), lapack_int \(k d\), lapack_int nrhs, const float* ab, lapack_int ldab, const
float* b, lapack_int ldb, const float* \(x\), lapack_int ldx, float* ferr, float* berr);
lapack_int LAPACKE_dtbrfs(int matrix_order, char uplo, char trans, char diag,
lapack_int \(n\), lapack_int kd, lapack_int nrhs, const double* ab, lapack_int ldab, const

berr);
```

lapack_int LAPACKE_ctbrfs( int matrix_order, char uplo, char trans, char diag,
lapack_int n, lapack_int kd, lapack_int nrhs, const lapack_complex_float* ab,
lapack_int ldab, const lapack_complex_float* b, lapack_int ldb, const
lapack complex float* x, lapack int ldx, float* ferr, float* berr );
lapack_int LAPACKE_ztbrfs( int matrix_order, char uplo, char trans, char diag,
lapack_int n, lapack_int kd, lapack_int nrhs, const lapack_complex_double* ab,
lapack_int ldab, const lapack_complex_double* b, lapack_int ldb, const
lapack_complex_double* x, lapack_int ldx, double* ferr, double* berr );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates the errors in the solution to a system of linear equations \(A * X=B\) or \(A^{T} \star X=B\) or \(A^{H} \star X\) \(=B\) with a triangular band matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\[
\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right| \text { such that }(A+\delta A) x=(b+\delta b) .
\]

The routine also estimates the component-wise forward error in the computed solution \(\left.\left|\left|x-x_{e}\right|\right|\right|_{\infty} /| |\) \(x\left|\left.\right|_{\infty}\right.\) (here \(x_{e}\) is the exact solution).

Before calling this routine, call the solver routine ? tbtrs.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.
trans
diag
n
kd
nrhs
ab, b, x, work
CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form A*X = B.
If trans = 'T', the system has the form AT*X = B.
If trans = 'C', the system has the form A'* 'X = B.
CHARACTER*1. Must be 'N' or 'U'.
If diag = 'N', A is not a unit triangular matrix.
If diag = 'U', A is unit triangular: diagonal elements of A are
assumed to be 1 and not referenced in the array ab.
INTEGER. The order of the matrix A; n\geq0.
INTEGER. The number of super-diagonals or sub-diagonals in the matrix $A ; k d \geq 0$.
INTEGER. The number of right-hand sides; nrhs $\geq 0$.
REAL for stbrfs
DOUBLE PRECISION for dtbrfs
COMPLEX for ctbrfs

```
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
DOUBLE COMPLEX for zt.brfs. \\
Arrays: \\
ab (Idab, *) contains the upper or lower triangular matrix \(A\), as specified by uplo, in band storage format. \\
\(b(I d b, *)\) contains the right-hand side matrix \(B\). \\
\(x(I d x, *)\) contains the solution matrix \(x\). \\
work (*) is a workspace array. \\
The second dimension of a must be at least max \((1, n)\); the second dimension of \(b\) and \(x\) must be at least max (\(1, n r h s\)). The dimension of work must be at least \(\max \left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2 \star_{n}\right)\) for complex flavors.
\end{tabular} \\
\hline 1 dab & INTEGER. The leading dimension of the array \(a b ; ~ l d a b \geq k d+1\). \\
\hline \(1 d b\) & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline \(1 d x\) & INTEGER. The leading dimension of \(x ; l d x \geq \max (1, n)\). \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least max (1, \(n\)). \\
\hline rwork & \begin{tabular}{l}
REAL for ctbrfs \\
DOUBLE PRECISION for ztbrfs. \\
Workspace array, DIMENSION at least max (\(1, n\)).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
ferr, berr
info

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max (\(1, n r h s\)). Contain the componentwise forward and backward errors, respectively, for each solution vector.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine tbrfs interface are as follows:
```

ab Holds the array A of size (kd+1,n).
b Holds the matrix B of size ( n,nrhs).
x Holds the matrix }x\mathrm{ of size (n,nrhs).
ferr Holds the vector of length (nrhs).
berr Holds the vector of length (nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.
trans Must be 'N','C', or 'T'. The default value is 'N'.
diag Must be 'N' or 'U'. The default value is 'N'.

```

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear equations \(A^{*} X\) \(=b\); the number of systems is usually 4 or 5 and never more than 11. Each solution requires approximately \(2 n^{\star} k d\) floating-point operations for real flavors or \(8 n^{\star} k d\) operations for complex flavors.

\section*{Routines for Matrix Inversion}

It is seldom necessary to compute an explicit inverse of a matrix. In particular, do not attempt to solve a system of equations \(A x=b\) by first computing \(A^{-1}\) and then forming the matrix-vector product \(x=A^{-1} b\). Call a solver routine instead (see Routines for Solving Systems of Linear Equations); this is more efficient and more accurate.

However, matrix inversion routines are provided for the rare occasions when an explicit inverse matrix is needed.

\section*{?getri}

Computes the inverse of an LU-factored general matrix.

\section*{Syntax}

Fortran 77:
```

call sgetri( n, a, lda, ipiv, work, lwork, info )
call dgetri( n, a, lda, ipiv, work, lwork, info )
call cgetri( n, a, lda, ipiv, work, lwork, info )
call zgetri( n, a, lda, ipiv, work, lwork, info )

```

\section*{Fortran 95:}
```

call getri( a, ipiv [,info] )

```

C:
lapack_int LAPACKE_<?>getri(int matrix_order, lapack_int \(n\), <datatype>* a, lapack_int
lda, const lapack_int* ipiv);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (A) of a general matrix \(A\). Before calling this routine, call ? getrf to factorize \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
n
a, work

INTEGER. The order of the matrix \(A ; n \geq 0\).
REAL for sgetri
DOUBLE PRECISION for dgetri
COMPLEX for cgetri

See Application Notes below for the suggested value of 1 work.

\section*{Output Parameters}
```

a Overwritten by the n-by-n matrix inv (A).
work(1)
info INTEGER. If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of the factor }U\mathrm{ is zero, }U\mathrm{ is
singular, and the inversion could not be completed.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine getri interface are as follows:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
ipiv Holds the vector of length n.

```

\section*{Application Notes}

For better performance, try using lwork \(=n \star\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed inverse \(x\) satisfies the following error bound:
```

|XA - I| \leqc(n)\varepsilon| X|P|L||U|,

```
where \(c(n)\) is a modest linear function of \(n ; \varepsilon\) is the machine precision; I denotes the identity matrix; \(P, L\), and \(U\) are the factors of the matrix factorization \(A=P^{\star} L * U\).

The total number of floating-point operations is approximately \((4 / 3) n^{3}\) for real flavors and \((16 / 3) n^{3}\) for complex flavors.

\section*{?potri \\ Computes the inverse of a symmetric (Hermitian) \\ positive-definite matrix.}

Syntax

\section*{Fortran 77:}
```

call spotri( uplo, n, a, lda, info )
call dpotri( uplo, n, a, lda, info )
call cpotri( uplo, n, a, lda, info )
call zpotri( uplo, n, a, lda, info )

```

\section*{Fortran 95:}
```

call potri( a [,uplo] [,info] )

```

C:
lapack_int LAPACKE_<?>potri(int matrix_order, char uplo, lapack_int n, <datatype>* a, lapack_int lda);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (\(A\)) of a symmetric positive definite or, for complex flavors, Hermitian positive-definite matrix \(A\). Before calling this routine, call ?potrf to factorize \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Indicates whether }A\mathrm{ is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.
n
a
INTEGER. The order of the matrix A;n\geq0.
REAL for spotri
DOUBLE PRECISION for dpotri

```
\begin{tabular}{ll}
& COMPLEX for cpotri \\
& DOUBLE COMPLEX for zpotri. \\
& Array \(a(l d a, *)\). Contains the factorization of the matrix \(A\), as \\
& returned by ?potrf. \\
& The second dimension of a must be at least max \((1, n)\). \\
& INTEGER. The leading dimension of \(a ; l d a \geq \max (1, n)\).
\end{tabular}

\section*{Output Parameters}
a
info

Overwritten by the \(n\)-by- \(n\) matrix \(\operatorname{inv}(A)\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(i\)-th diagonal element of the Cholesky factor (and therefore the factor itself) is zero, and the inversion could not be completed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine potri interface are as follows:
```

a Holds the matrix A of size (n,n).
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

The computed inverse \(X\) satisfies the following error bounds:

where \(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision; \(I\) denotes the identity matrix.
The 2-norm \(||A||_{2}\) of a matrix \(A\) is defined by \(||A||_{2}=\max _{x} \cdot x=1(A x \cdot A x)^{1 / 2}\), and the condition number \(\kappa_{2}(A)\) is defined by \(\kappa_{2}(A)=||A||_{2}| | A^{-1}| |_{2}\).

The total number of floating-point operations is approximately \((2 / 3) n^{3}\) for real flavors and \((8 / 3) n^{3}\) for complex flavors.

\section*{?pftri}

Computes the inverse of a symmetric (Hermitian) positive-definite matrix in RFP format using the Cholesky factorization.

\section*{Syntax}

\section*{Fortran 77:}
```

call spftri( transr, uplo, n, a, info )
call dpftri( transr, uplo, n, a, info )
call cpftri( transr, uplo, n, a, info )
call zpftri( transr, uplo, n, a, info )

```
```

C:
lapack_int LAPACKE_<?>pftri( int matrix_order, char transr, char uplo, lapack_int n,
<datatype>* a );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (A) of a symmetric positive definite or, for complex data, Hermitian positive-definite matrix \(A\) using the Cholesky factorization:
\(A=U^{T} * U\) for real data, \(A=U^{H} * U\) for complex data
if uplo='U'
\(A=L \star L^{T}\) for real data, \(A=L \star L^{H}\) for complex data
if uplo='L'

Before calling this routine, call ?pftrf to factorize \(A\).
The matrix \(A\) is in the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the \(C\) interface principal conventions and type definitions.

If info \(=i\), the (\(i, i\)) element of the factor \(U\) or \(L\) is zero, and the inverse could not be computed.

\section*{?pptri \\ Computes the inverse of a packed symmetric (Hermitian) positive-definite matrix}

Syntax

\section*{Fortran 77:}
```

call spptri( uplo, n, ap, info )
call dpptri( uplo, n, ap, info)
call cpptri( uplo, n, ap, info )
call zpptri( uplo, n, ap, info )

```

\section*{Fortran 95:}
```

call pptri( ap [,uplo] [,info] )

```
C:
lapack_int LAPACKE_<?>pptri(int matrix_order, char uplo, lapack_int n, <datatype>*
ap);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (A) of a symmetric positive definite or, for complex flavors, Hermitian positive-definite matrix \(A\) in packed form. Before calling this routine, call ?pptrf to factorize \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
uplo
n
\(a p\)

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular factor is stored in ap:
If uplo = 'U', then the upper triangular factor is stored.
If uplo = ' L ', then the lower triangular factor is stored.
INTEGER. The order of the matrix \(A ; n \geq 0\).
REAL for spptri
DOUBLE PRECISION for dpptri
COMPLEX for cpptri
DOUBLE COMPLEX for zpptri.
Array, DIMENSION at least \(\max (1, n(n+1) / 2)\).
Contains the factorization of the packed matrix \(A\), as returned by ? pptrf.
The dimension \(a p\) must be at least \(\max (1, n(n+1) / 2)\).

\section*{Output Parameters}
ap
info

Overwritten by the packed \(n\)-by-n matrix inv (A).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(i\)-th diagonal element of the Cholesky factor (and therefore the factor itself) is zero, and the inversion could not be completed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pptri interface are as follows:
ap Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\).
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

The computed inverse \(x\) satisfies the following error bounds:
```

||XA - I| | | \leq C(n) \varepsilon\kappa 2 (A), ||AX - I| | | C (n) \&\kappa (A),

```
where \(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision; \(I\) denotes the identity matrix.
The 2-norm \(||A||_{2}\) of a matrix \(A\) is defined by \(||A||_{2}=\max _{x \cdot x=1}(A x \cdot A x)^{1 / 2}\), and the condition number \(\kappa_{2}(A)\) is defined by \(\kappa_{2}(A)=||A||_{2}| | A^{-1}| |_{2}\).

The total number of floating-point operations is approximately \((2 / 3) n^{3}\) for real flavors and \((8 / 3) n^{3}\) for complex flavors.
?sytri
Computes the inverse of a symmetric matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssytri( uplo, n, a, lda, ipiv, work, info )
call dsytri( uplo, n, a, lda, ipiv, work, info )
call csytri( uplo, n, a, lda, ipiv, work, info )
call zsytri( uplo, n, a, lda, ipiv, work, info )

```

\section*{Fortran 95:}
```

call sytri( a, ipiv [,uplo] [,info] )

```

C:
lapack_int LAPACKE_<?>sytri(int matrix_order, char uplo, lapack_int n, <datatype>* a,
lapack_int lda, const lapack_int* ipiv);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (A) of a symmetric matrix A. Before calling this routine, call ?sytrf to factorize \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo = 'U', the array a stores the Bunch-Kaufman factorization A
= P*U* D* U U'* 䣃.
If uplo = 'L', the array a stores the Bunch-Kaufman factorization A
= P* L* D* L'T* P
INTEGER. The order of the matrix A; n\geq0.
REAL for ssytri
DOUBLE PRECISION for dsytri
COMPLEX for csytri
DOUBLE COMPLEX for zsytri.
Arrays:
a(Ida,*) contains the factorization of the matrix A, as returned by ?
sytrf.
The second dimension of a must be at least max (1,n).
work(*) is a workspace array.
The dimension of work must be at least max (1, 2*n).
Ida INTEGER. The leading dimension of a; lda \geq max (1, n).
ipiv
INTEGER.
Array, DIMENSION at least max (1, n).
The ipiv array, as returned by ?sytrf.

```

\section*{Output Parameters}
a
info

Overwritten by the \(n-b y-n\) matrix \(\operatorname{inv}(A)\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(i\)-th diagonal element of \(D\) is zero, \(D\) is singular, and the inversion could not be completed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sytri interface are as follows:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

The computed inverse \(x\) satisfies the following error bounds:
```

|** UT* * P

```
for uplo = 'U', and
```

| * LT* * P

```
for uplo = 'L'. Here \(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision; \(I\) denotes the identity matrix.

The total number of floating-point operations is approximately \((2 / 3) n^{3}\) for real flavors and \((8 / 3) n^{3}\) for complex flavors.

\section*{?hetri}

Computes the inverse of a complex Hermitian matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call chetri( uplo, n, a, lda, ipiv, work, info )
call zhetri( uplo, n, a, lda, ipiv, work, info )

```

\section*{Fortran 95:}
```

call hetri( a, ipiv [,uplo] [,info] )

```

C:
lapack_int LAPACKE_<?>hetri(int matrix_order, char uplo, lapack_int n, <datatype>* a, lapack_int lda, const lapack_int* ipiv);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (A) of a complex Hermitian matrix \(A\). Before calling this routine, call ? hetrf to factorize \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the Bunch-Kaufman factorization A
= P*U* D* * U * * P
If uplo = 'L', the array a stores the Bunch-Kaufman factorization A
= P* L* D* 沽* * P

```
\(n\)
a, work

INTEGER. The order of the matrix \(A ; n \geq 0\).
COMPLEX for chetri
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{} & DOUBLE COMPLEX for zhetri. \\
\hline & Arrays: \\
\hline & a (lda,*) contains the factorization of the matrix \(A\), as returned by ? \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & work (*) is a workspace array. \\
\hline & The dimension of work must be at least max (\(1, n\)). \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{ipiv} & Integer. \\
\hline & Array, DIMENSION at least max \((1, n)\). The ipiv array, as returned by ?hetrf. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
info

Overwritten by the \(n-\) by- \(n\) matrix inv(A).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(i\)-th diagonal element of \(D\) is zero, \(D\) is singular, and the inversion could not be completed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hetri interface are as follows:
```

a Holds the matrix A of size (n,n).
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

The computed inverse \(x\) satisfies the following error bounds:
```

| D* U'\#* P

```
for uplo = 'U', and

for uplo = 'L'. Here \(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision; \(I\) denotes the identity matrix.

The total number of floating-point operations is approximately \((2 / 3) n^{3}\) for real flavors and \((8 / 3) n^{3}\) for complex flavors.

The real counterpart of this routine is ?sytri.
?sytri2
Computes the inverse of a symmetric indefinite matrix through setting the leading dimension of the workspace and calling ?sytri2x.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssytri2( uplo, n, a, lda, ipiv, work, lwork, info )
call dsytri2( uplo, n, a, lda, ipiv, work, lwork, info )
call csytri2( uplo, n, a, lda, ipiv, work, lwork, info )
call zsytri2( uplo, n, a, lda, ipiv, work, lwork, info )

```

\section*{Fortran 95:}
```

call sytri2( a,ipiv[,uplo][,info] )

```

C:
```

lapack_int LAPACKE_<?>sytri2( int matrix_order, char uplo, lapack_int n, <datatype>* a,

```
lapack_int lda, const lapack_int* ipiv);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (\(A\)) of a symmetric indefinite matrix \(A\) using the factorization \(A=\) \(U^{\star} D^{*} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\) computed by ?sytrf.

The ?sytri2 routine sets the leading dimension of the workspace before calling ?sytri2x that actually computes the inverse.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

uplo
n
a,work
lda
ipiv
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix $A$ has been factored:
If uplo = 'U', the array a stores the factorization $A=U \star D^{\star} U^{T}$. If uplo = 'L', the array a stores the factorization $A=L^{\star} D^{\star} L^{T}$.
INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for ssytri2
DOUBLE PRECISION for dsytri2
COMPLEX for csytri2
DOUBLE COMPLEX for zsytri2
Arrays:
$a(l d a, *)$ contains the block diagonal matrix $D$ and the multipliers used to obtain the factor $U$ or $L$ as returned by ?sytrf.
The second dimension of a must be at least max $(1, n)$.
work is a workspace array of $(n+n b+1) *(n b+3)$ dimension.
$\operatorname{INTEGER}$. The leading dimension of $a ; l d a \geq \max (1, n)$.
INTEGER.
Array, DIMENSION at least max ( $1, n$ ).
Details of the interchanges and the block structure of $D$ as returned by ?sytrf.

```

INTEGER. The dimension of the work array.
lwork \(\geq(n+n b+1) *(n b+3)\)
where
\(n b\) is the block size parameter as returned by sytrf.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

\section*{Output Parameters}
a
If info \(=0\), the symmetric inverse of the original matrix.
If info = 'U', the upper triangular part of the inverse is formed and the part of \(A\) below the diagonal is not referenced.
If info = 'L', the lower triangular part of the inverse is formed and the part of \(A\) above the diagonal is not referenced.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, D(i, i)=0 ; D\) is singular and its inversion could not be computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sytri2 interface are as follows:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
ipiv & Holds the vector of length \(n\). \\
uplo & Indicates how the matrix \(A\) has been factored. Must be 'U' or 'L'.
\end{tabular}

See Also
?sytrf
?sytri2x

\section*{?hetri2}

Computes the inverse of a Hermitian indefinite matrix through setting the leading dimension of the
workspace and calling ?hetri2x.

\section*{Syntax}

\section*{Fortran 77:}
```

call chetri2( uplo, n, a, lda, ipiv, work, lwork, info )
call zhetri2( uplo, n, a, lda, ipiv, work, lwork, info )

```

\section*{Fortran 95:}
```

call hetri2( a,ipiv[,uplo][,info] )

```

C:
lapack_int LAPACKE_<?>hetri2(int matrix_order, char uplo, lapack_int \(n\), <datatype>* a, lapack_int lda, const lapack_int* ipiv);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (\(A\)) of a Hermitian indefinite matrix \(A\) using the factorization \(A=\) \(U * D * U^{H}\) or \(A=L * D * L^{H}\) computed by ?hetrf.

The ?hetri2 routine sets the leading dimension of the workspace before calling ?hetri2x that actually computes the inverse.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates how the input matrix \(A\) has been factored: \\
\hline & If uplo = 'U', the array a stores the factorization \(A=U^{\star} D^{*} U^{H}\). \\
\hline & If uplo = 'L', the array a stores the factorization \(A=L^{\star} D^{\star} L^{H}\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A ; n \geq 0\). \\
\hline \multirow[t]{5}{*}{a, work} & COMPLEX for chetri2 \\
\hline & DOUBLE COMPLEX for zhetri2 \\
\hline & Arrays: \\
\hline & \(a(I d a, *)\) contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) as returned by ?sytrf. \\
\hline & The second dimension of a must be at least max \((1, n)\). work is a workspace array of \((n+n b+1) *(n b+3)\) dimension. \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION at least max (\(1, n\)). \\
\hline & Details of the interchanges and the block structure of \(D\) as returned by ?hetrf. \\
\hline \multirow[t]{4}{*}{Iwork} & INTEGER. The dimension of the work array. \\
\hline & \begin{tabular}{l}
\[
\text { lwork } \geq(n+n b+1) *(n b+3)
\] \\
where
\end{tabular} \\
\hline & \(n b\) is the block size parameter as returned by hetrf. \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a\)
info

If info \(=0\), the inverse of the original matrix.
If info = 'U', the upper triangular part of the inverse is formed and the part of \(A\) below the diagonal is not referenced.
If info = 'L', the lower triangular part of the inverse is formed and the part of \(A\) above the diagonal is not referenced.

\footnotetext{
info
}

INTEGER.
If info \(=0\), the execution is successful.

If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, D(i, i)=0 ; D\) is singular and its inversion could not be computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hetri2 interface are as follows:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
ipiv Holds the vector of length n.
uplo Indicates how the input matrix A has been factored. Must be 'U' or
'L'.

```

\section*{See Also}
?hetrf
?hetri2x
?sytri2x
Computes the inverse of a symmetric indefinite matrix
after ?sytri2 sets the leading dimension of the
workspace.
Syntax

\section*{Fortran 77:}
```

call ssytri2x( uplo, n, a, lda, ipiv, work, nb, info )
call dsytri2x( uplo, n, a, lda, ipiv, work, nb, info )
call csytri2x( uplo, n, a, lda, ipiv, work, nb, info )
call zsytri2x( uplo, n, a, lda, ipiv, work, nb, info )

```

\section*{Fortran 95:}
```

call sytri2x( a,ipiv,nb[,uplo][,info] )

```

C:
```

lapack_int LAPACKE_<?>sytri2x( int matrix_order, char uplo, lapack_int n, <datatype>*
a, lapack_int lda, const lapack_int* ipiv, lapack_int nb );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (\(A\)) of a symmetric indefinite matrix \(A\) using the factorization \(A=\) \(U \star D * U^{T}\) or \(A=L \star D * L^{T}\) computed by ?sytrf.

The ?sytri2x actually computes the inverse after the ?sytri2 routine sets the leading dimension of the workspace before calling ?sytri2x.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates how the input matrix \(A\) has been factored: \\
\hline & If uplo = 'U', the array a stores the factorization \(A=U^{\star} D^{\star} U^{T}\). \\
\hline & If uplo = 'L', the array a stores the factorization \(A=L \star D \star L^{T}\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A ; n \geq 0\). \\
\hline \multirow[t]{8}{*}{a, work} & REAL for ssytri2x \\
\hline & DOUBLE PRECISION for dsytri2x \\
\hline & COMPLEX for csytri2x \\
\hline & DOUBLE COMPLEX for zsytri2x \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) contains the nb (block size) diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) as returned by ?sytrf. \\
\hline & The second dimension of a must be at least max \((1, n)\). work is a workspace array of the dimension \((n+n b+1) *(n b+3)\) where \\
\hline & \(n b\) is the block size as set by ?sytrf. \\
\hline Ida & INTEGER. The leading dimension of \(a\); lda \(\geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION at least max (\(1, n\)). \\
\hline & Details of the interchanges and the \(n b\) structure of \(D\) as returned by ? sytrf. \\
\hline n. & INTEGER. Block size. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
info

If info \(=0\), the symmetric inverse of the original matrix.
If info = 'U', the upper triangular part of the inverse is formed and the part of \(A\) below the diagonal is not referenced.
If info = 'L', the lower triangular part of the inverse is formed and the part of \(A\) above the diagonal is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, D_{i i}=0 ; D\) is singular and its inversion could not be computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sytri2x interface are as follows:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
ipiv Holds the vector of length n.
nb Holds the block size.

```
uplo Indicates how the input matrix \(A\) has been factored. Must be 'U' or

\section*{See Also}
?sytrf
?sytri2

\section*{?hetri2x}

Computes the inverse of a Hermitian indefinite matrix after ?hetri2 sets the leading dimension of the workspace.

Syntax

\section*{Fortran 77:}
```

call chetri2x( uplo, n, a, lda, ipiv, work, nb, info )
call zhetri2x( uplo, n, a, lda, ipiv, work, nb, info )

```

\section*{Fortran 95:}
```

call hetri2x( a,ipiv,nb[,uplo][,info] )

```

C:
```

lapack_int LAPACKE_<?>hetri2x( int matrix_order, char uplo, lapack_int n, <datatype>*

```
a, lapack_int lda, const lapack_int* ipiv,lapack_int nb);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (\(A\)) of a Hermitian indefinite matrix \(A\) using the factorization \(A=\) \(U * D * U^{H}\) or \(A=L * D * L^{H}\) computed by ?hetrf.
The ?hetri2x actually computes the inverse after the ?hetri2 routine sets the leading dimension of the workspace before calling ?hetri2x.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo = 'U', the array a stores the factorization A = U*D* U'H}\mathrm{ .
If uplo = 'L', the array a stores the factorization A = L*D* L'H
INTEGER. The order of the matrix A; n \geq0.
COMPLEX for chetri2x
DOUBLE COMPLEX for zhetri2x
Arrays:
a(lda,*) contains the nb (block size) diagonal matrix D and the

```
multipliers used to obtain the factor \(U\) or \(L\) as returned by ?hetrf.

The second dimension of a must be at least max \((1, n)\). work is a workspace array of the dimension \((n+n b+1) *(n b+3)\) where
nb is the block size as set by ?hetrf.
lda
ipiv
nb

\section*{Output Parameters}

INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER.
Array, DIMENSION at least max (\(1, n\)).
Details of the interchanges and the \(n b\) structure of \(D\) as returned by ? hetrf.
INTEGER. Block size.

If info \(=0\), the symmetric inverse of the original matrix. If info = 'U', the upper triangular part of the inverse is formed and the part of \(A\) below the diagonal is not referenced.
If info = 'L', the lower triangular part of the inverse is formed and the part of \(A\) above the diagonal is not referenced.
info
\(a\)

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, D_{i i}=0 ; D\) is singular and its inversion could not be computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine hetri2x interface are as follows:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
ipiv & Holds the vector of length \(n\). \\
\(n b\) & Holds the block size. \\
uplo & Indicates how the input matrix \(A\) has been factored. Must be ' \(U\) ' or
\end{tabular}

\section*{See Also}
?hetrf
?hetri2

\section*{?sptri}

Computes the inverse of a symmetric matrix using
packed storage.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssptri( uplo, n, ap, ipiv, work, info )
call dsptri( uplo, n, ap, ipiv, work, info )
call csptri( uplo, n, ap, ipiv, work, info )
call zsptri( uplo, n, ap, ipiv, work, info )

```

\section*{Fortran 95:}
```

call sptri( ap, ipiv [,uplo] [,info] )

```

C:
lapack_int LAPACKE_<?>sptri(int matrix_order, char uplo, lapack_int n, <datatype>* ap,
const lapack_int* ipiv);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (\(A\)) of a packed symmetric matrix \(A\). Before calling this routine, call ? sptrf to factorize \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates how the input matrix \(A\) has been factored: \\
\hline & If uplo = 'U', the array ap stores the Bunch-Kaufman factorization \(A\) \(=P^{\star} U^{*} D^{\star} U^{T}{ }^{*} P^{T}\). \\
\hline & If uplo = 'L', the array ap stores the Bunch-Kaufman factorization \(A\) \(=P \star L \star D^{\star} L^{T} \star P^{T}\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A ; n \geq 0\). \\
\hline \multirow[t]{9}{*}{ap, work} & REAL for ssptri \\
\hline & DOUBLE PRECISION for dsptri \\
\hline & COMPLEX for csptri \\
\hline & DOUBLE COMPLEX for zsptri. \\
\hline & Arrays: \\
\hline & \(a p(*)\) contains the factorization of the matrix \(A\), as returned by ? \\
\hline & sptrf. \\
\hline & The dimension of ap must be at least max \((1, n(n+1) / 2)\). work(*) is a workspace array. \\
\hline & The dimension of work must be at least max (\(1, n\)). \\
\hline \multirow[t]{2}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION at least max \((1, n)\). The ipiv array, as returned by ?sptrf. \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{ap}
info

Overwritten by the \(n\)-by-n matrix inv (\(A\)) in packed form.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(i\)-th diagonal element of \(D\) is zero, \(D\) is singular, and the inversion could not be completed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sptri interface are as follows:
ap Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\).
ipiv Holds the vector of length \(n\).
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

The computed inverse \(x\) satisfies the following error bounds:
```

| * U U

```
for uplo = 'U', and
```

|D*LT* * P}\mp@subsup{}{}{T}*\mp@subsup{X}{}{*}\mp@subsup{P}{}{*}LL-I|\leqC(n)\varepsilon(|D||\mp@subsup{L}{}{T}|\mp@subsup{P}{}{T}|X|P|L|+|D||\mp@subsup{D}{}{-1}|

```
for uplo = 'L'. Here \(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision; \(I\) denotes the identity matrix.

The total number of floating-point operations is approximately \((2 / 3) n^{3}\) for real flavors and \((8 / 3) n^{3}\) for complex flavors.

\section*{?hptri}

Computes the inverse of a complex Hermitian matrix
using packed storage.

\section*{Syntax}

\section*{Fortran 77:}
```

call chptri( uplo, n, ap, ipiv, work, info )
call zhptri( uplo, n, ap, ipiv, work, info )

```

\section*{Fortran 95:}
```

call hptri( ap, ipiv [,uplo] [,info] )

```

C:
lapack_int LAPACKE_<?>hptri(int matrix_order, char uplo, lapack_int n, <datatype>* ap, const lapack_int* ipiv);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (\(A\)) of a complex Hermitian matrix \(A\) using packed storage. Before calling this routine, call ?hptrf to factorize \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo = 'U', the array ap stores the packed Bunch-Kaufman
factorization }A=P*U*D*\mp@subsup{U}{}{H}*\mp@subsup{P}{}{T}\mathrm{ .
If uplo = 'L', the array ap stores the packed Bunch-Kaufman
factorization A = P* L*D* 焐 H* P
INTEGER. The order of the matrix A;n\geq0.
COMPLEX for chptri
DOUBLE COMPLEX for zhptri.
Arrays:
ap(*) contains the factorization of the matrix }A\mathrm{ , as returned by ?
hptrf.
The dimension of ap must be at least max (1,n(n+1)/2).
work(*) is a workspace array.
The dimension of work must be at least max (1,n).
INTEGER.
Array, DIMENSION at least max (1, n).
The ipiv array, as returned by ?hptrf.

```

\section*{Output Parameters}
```

ap

```
info

Overwritten by the \(n-b y-n\) matrix inv (\(A\)).

\section*{INTEGER.}

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(i\)-th diagonal element of \(D\) is zero, \(D\) is singular, and the inversion could not be completed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hptri interface are as follows:
```

ap Holds the array A of size ( }n*(n+1)/2)
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

The computed inverse \(x\) satisfies the following error bounds:
```

| ** U

```
for uplo = 'U', and

for uplo = 'L'. Here \(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision; \(I\) denotes the identity matrix.

The total number of floating-point operations is approximately \((2 / 3) n^{3}\) for real flavors and \((8 / 3) n^{3}\) for complex flavors.

The real counterpart of this routine is ?sptri.
?trtri
Computes the inverse of a triangular matrix.
Syntax
Fortran 77:
```

call strtri( uplo, diag, n, a, lda, info )
call dtrtri( uplo, diag, n, a, lda, info )
call ctrtri( uplo, diag, n, a, lda, info )
call ztrtri( uplo, diag, n, a, lda, info )

```

\section*{Fortran 95:}
```

call trtri( a [,uplo] [,diag] [,info] )

```

C:
lapack_int LAPACKE_<?>trtri(int matrix_order, char uplo, char diag, lapack_int n, <datatype>* a, lapack_int lda);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (A) of a triangular matrix \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.
CHARACTER*1. Must be 'N' or 'U'.
If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', A is unit triangular: diagonal elements of }A\mathrm{ are
assumed to be 1 and not referenced in the array a.
INTEGER. The order of the matrix A; n \geq0.
REAL for strtri
DOUBLE PRECISION for dtrtri
COMPLEX for ctrtri
DOUBLE COMPLEX for ztrtri.
Array: DIMENSION (,*).

```
\begin{tabular}{ll}
\hline & Contains the matrix \(A\). \\
& The second dimension of a must be at least max \((1, n)\). \\
& INTEGER. The first dimension of \(a ; I d a \geq \max (1, n)\).
\end{tabular}

\section*{Output Parameters}
a

Overwritten by the \(n-b y-n\) matrix inv (\(A\)).
```

INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the i-th diagonal element of A is zero, A is singular, and
the inversion could not be completed.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine trtri interface are as follows:
```

a Holds the matrix A of size ( n, n).
uplo Must be 'U' or 'L'. The default value is 'U'.
diag Must be 'N' or 'U'. The default value is 'N'.

```

\section*{Application Notes}

The computed inverse \(x\) satisfies the following error bounds:
```

|XA - I| \leqC(n)\varepsilon | X| |A|
|A - I| \leqC(n) \varepsilon | A }\mp@subsup{A}{}{-1}||A||X|

```
where \(c(n)\) is a modest linear function of \(n ; \varepsilon\) is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors and \((4 / 3) n^{3}\) for complex flavors.

\section*{?tftri}

Computes the inverse of a triangular matrix stored in the Rectangular Full Packed (RFP) format.

\section*{Syntax}

\section*{Fortran 77:}
```

call stftri( transr, uplo, diag, n, a, info )
call dtftri( transr, uplo, diag, n, a, info )
call ctftri( transr, uplo, diag, n, a, info )
call ztftri( transr, uplo, diag, n, a, info )

```

C:
```

lapack_int LAPACKE_<?>tftri( int matrix_order, char transr, char uplo, char diag,
lapack_int n, <datatype>* a );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

Computes the inverse of a triangular matrix A stored in the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.
This is the block version of the algorithm, calling Level 3 BLAS.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline transr & \begin{tabular}{l}
CHARACTER*1. Must be 'N', 'T' (for real data) or 'C' (for complex data). \\
If transr \(=\) ' \(N\) ', the Normal transr of RFP \(A\) is stored. \\
If transr \(=\) ' \(T\) ', the Transpose transr of RFP \(A\) is stored. \\
If transr \(=\) ' \(C\) ', the Conjugate-Transpose transr of RFP \(A\) is stored.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates whether the upper or lower triangular part of RFP \(A\) is stored: \\
If uplo = 'U', the array a stores the upper triangular part of the matrix \(A\). \\
If uplo = 'L', the array a stores the lower triangular part of the matrix \(A\).
\end{tabular} \\
\hline diag & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'U'. \\
If diag \(=\) ' \(N\) ', then \(A\) is not a unit triangular matrix. \\
If diag \(=\) ' U', A is unit triangular: diagonal elements of \(A\) are assumed to be 1 and not referenced in the array \(a\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A ; n \geq 0\). \\
\hline a & \begin{tabular}{l}
REAL for stftri \\
DOUBLE PRECISION for dtftri \\
COMPLEX for ctftri \\
DOUBLE COMPLEX for ztftri. \\
Array, DIMENSION \(\left(n^{\star}(n+1) / 2\right)\). The array a contains the matrix \(A\) in the RFP format.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
a
info

The (triangular) inverse of the original matrix in the same storage format.

INTEGER. If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, A(i, i)\) is exactly zero. The triangular matrix is singular and its inverse cannot be computed.
?tptri
Computes the inverse of a triangular matrix using
packed storage.

\section*{Syntax}

\section*{Fortran 77:}
```

call stptri( uplo, diag, n, ap, info )
call dtptri( uplo, diag, n, ap, info )
call ctptri( uplo, diag, n, ap, info )
call ztptri( uplo, diag, n, ap, info )

```

\section*{Fortran 95:}
```

call tptri( ap [,uplo] [,diag] [,info] )

```

C:
```

lapack_int LAPACKE_<?>tptri( int matrix_order, char uplo, char diag, lapack_int n,
<datatype>* ap );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the inverse inv (\(A\)) of a packed triangular matrix \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether \(A\) is upper or lower triangular: \\
\hline & If uplo = 'U', then \(A\) is upper triangular. \\
\hline & If uplo = 'L', then \(A\) is lower triangular. \\
\hline \multirow[t]{4}{*}{diag} & CHARACTER*1. Must be 'N' or 'U'. \\
\hline & If diag = 'N', then \(A\) is not a unit triangular matrix. \\
\hline & If diag = 'U', \(A\) is unit triangular: diagonal elements of \(A\) are \\
\hline & assumed to be 1 and not referenced in the array ap. \\
\hline \(n\) & INTEGER. The order of the matrix \(A ; n \geq 0\). \\
\hline \multirow[t]{6}{*}{\(a p\)} & REAL for stptri \\
\hline & DOUBLE PRECISION for dtptri \\
\hline & COMPLEX for ctptri \\
\hline & DOUBLE COMPLEX for ztptri. \\
\hline & Array, DIMENSION at least max (\(1, n(n+1) / 2)\). \\
\hline & Contains the packed triangular matrix A . \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
ap & Overwritten by the packed \(n\)-by- \(n\) matrix inv \((A)\). \\
& INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\)-th parameter had an illegal value.
\end{tabular}

If info \(=i\), the \(i\)-th diagonal element of \(A\) is zero, \(A\) is singular, and the inversion could not be completed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine tptri interface are as follows:
```

ap Holds the array A of size ( }n*(n+1)/2)
uplo Must be 'U' or 'L'. The default value is 'U'.
diag Must be 'N' or 'U'. The default value is 'N'.

```

\section*{Application Notes}

The computed inverse \(x\) satisfies the following error bounds:
```

|A - I| \leqc(n)\varepsilon | X||A|
| - A-1 | \leqc(n)\varepsilon |A-1 | A || | |,

```
where \(c(n)\) is a modest linear function of \(n ; \varepsilon\) is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors and \((4 / 3) n^{3}\) for complex flavors.

\section*{Routines for Matrix Equilibration}

Routines described in this section are used to compute scaling factors needed to equilibrate a matrix. Note that these routines do not actually scale the matrices.

\section*{?geequ}

Computes row and column scaling factors intended to equilibrate a general matrix and reduce its condition number.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgeequ( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
call dgeequ( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
call cgeequ( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
call zgeequ( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )

```

\section*{Fortran 95:}
```

call geequ( a, r, c [,rowcnd] [,colcnd] [,amax] [,info] )

```

C:
```

lapack_int LAPACKE_sgeequ( int matrix_order, lapack_int m, lapack_int n, const float*
a, lapack_int lda, float* r, float* c, float* rowcnd, float* colcnd, float* amax );
lapack_int LAPACKE_dgeequ( int matrix_order, lapack_int m, lapack_int n, const double*
a, lapack_int lda, double* r, double* c, double* rowcnd, double* colcnd, double*
amax );

```
```

lapack_int LAPACKE_cgeequ( int matrix_order, lapack_int m, lapack_int n, const
lapack_complex_float* a, lapack_int lda, float* r, float* c, float* rowcnd, float*
colcnd, float* amax );
lapack_int LAPACKE_zgeequ( int matrix_order, lapack_int m, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double* r, double* c, double* rowcnd,
double* colcnd, double* amax );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes row and column scalings intended to equilibrate an \(m\)-by- \(n\) matrix \(A\) and reduce its condition number. The output array \(r\) returns the row scale factors and the array \(c\) the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix \(B\) with elements \(b_{i j}=r(i) * a_{i j}{ }^{*} c(j)\) have absolute value 1.

See ? laqge auxiliary function that uses scaling factors computed by ? geequ.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

m INTEGER. The number of rows of the matrix }A;m\geq0
n
a
Ida
INTEGER. The number of columns of the matrix }A;n\geq0\mathrm{ .
REAL for sgeequ
DOUBLE PRECISION for dgeequ
COMPLEX for cgeequ
DOUBLE COMPLEX for zgeequ.
Array: DIMENSION (lda,*).
Contains the m-by-n matrix A whose equilibration factors are to be
computed.
The second dimension of a must be at least max (1,n).
INTEGER. The leading dimension of a; lda \geq max (1, m).

```

\section*{Output Parameters}
```

r,C
rowend
colcnd

```

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: \(r(m), c(n)\).
If info \(=0\), or info \(>m\), the array \(r\) contains the row scale factors of the matrix \(A\).
If info \(=0\), the array \(c\) contains the column scale factors of the matrix \(A\).
REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
If info \(=0\) or info \(>m\), rowend contains the ratio of the smallest \(r(i)\) to the largest \(r(i)\).
REAL for single precision flavors
```

DOUBLE PRECISION for double precision flavors.
If info = 0, colcnd contains the ratio of the smallest c(i) to the
largest c(i).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i and
i}\leqm\mathrm{ , the i-th row of A is exactly zero;
i > m, the (i-m)th column of A is exactly zero.

```
info INTEGER.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine geequ interface are as follows:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((m, n)\). \\
\(r\) & Holds the vector of length \((m)\). \\
\(c\) & Holds the vector of length \(n\).
\end{tabular}

\section*{Application Notes}

All the components of \(r\) and \(c\) are restricted to be between SMLNUM \(=\) smallest safe number and BIGNUM= largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of \(A\) but works well in practice.

SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision (real and complex) values of SMLNUM and BIGNUM as follows:
```

SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM

```

If rowend \(\geq 0.1\) and amax is neither too large nor too small, it is not worth scaling by \(r\).
If colcnd \(\geq 0.1\), it is not worth scaling by \(c\).
If amax is very close to overflow or very close to underflow, the matrix \(A\) should be scaled.

\section*{?geequb}

Computes row and column scaling factors restricted to a power of radix to equilibrate a general matrix and reduce its condition number.

Syntax

\section*{Fortran 77:}
```

call sgeequib( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
call dgeequb( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
call cgeequib( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
call zgeequb( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )

```
```

C:
lapack_int LAPACKE_sgeequb( int matrix_order, lapack_int m, lapack_int n, const float*
a, lapack_int lda, float* r, float* c, float* rowcnd, float* colcnd, float* amax );
lapack_int LAPACKE_dgeequb( int matrix_order, lapack_int m, lapack_int n, const double*
a, lapack_int lda, double* r, double* c, double* rowcnd, double* colcnd, double*
amax );
lapack_int LAPACKE_cgeequb( int matrix_order, lapack_int m, lapack_int n, const
lapack_complex_float* a, lapack_int lda, float* r, float* c, float* rowcnd, float*
colcnd, float* amax );
lapack_int LAPACKE_zgeequb( int matrix_order, lapack_int m, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double* r, double* c, double* rowcnd,
double* colcnd, double* amax );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes row and column scalings intended to equilibrate an \(m\)-by- \(n\) general matrix \(A\) and reduce its condition number. The output array \(r\) returns the row scale factors and the array \(c-\) the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix \(B\) with elements \(b(i j)=r(i) * a(i j) * c(j)\) have an absolute value of at most the radix.
\(r(i)\) and \(c(j)\) are restricted to be a power of the radix between SMLNUM = smallest safe number and BIGNUM \(=\) largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of a but works well in practice.

SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision (real and complex) values of SMLNUM and BIGNUM as follows:
```

SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM

```

This routine differs from ? geequ by restricting the scaling factors to a power of the radix. Except for overand underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer equal to approximately 1 but lie between sqrt (radix) and \(1 /\) sqrt (radix).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{ll}
\(m\) & INTEGER. The number of rows of the matrix \(A ; m \geq 0\). \\
\(n\) & INTEGER. The number of columns of the matrix \(A ; n \geq 0\). \\
& REAL for sgeequb \\
& DOUBLE PRECISION for dgeequb \\
& COMPLEX for cgeequb \\
& DOUBLE COMPLEX for zgeequb. \\
& Array: DIMENSION \((I d a, *)\).
\end{tabular}

\section*{Output Parameters}
```

r,c

```
rowend
colcnd
amax
info

Contains the \(m\)-by- \(n\) matrix \(A\) whose equilibration factors are to be computed.
The second dimension of a must be at least max \((1, n)\).
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, m)\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: \(r(m), c(n)\).
If info \(=0\), or info \(>m\), the array \(r\) contains the row scale factors for the matrix \(A\).
If info \(=0\), the array \(c\) contains the column scale factors for the matrix \(A\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info \(=0\) or info \(>m\), rowend contains the ratio of the smallest \(r\) (i) to the largest \(r\) (i). If rowend \(\geq 0.1\), and amax is neither too large nor too small, it is not worth scaling by \(r\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info \(=0\), colcnd contains the ratio of the smallest \(c\) (i) to the largest \(c(i)\). If colcnd \(\geq 0.1\), it is not worth scaling by \(c\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A. If amax is very close to overflow or very close to underflow, the matrix should be scaled.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\) and
\(i \leq m\), the \(i\)-th row of \(A\) is exactly zero;
\(i>m\), the \((i-m)\)-th column of \(A\) is exactly zero.

\section*{?gbequ}

Computes row and column scaling factors intended to equilibrate a banded matrix and reduce its condition number.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgbequ( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
call dgbequ( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
call cgbequ( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
call zgbequ( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )

```

\section*{Fortran 95:}
```

call gbequ( ab, r, c [,kl] [,rowcnd] [,colcnd] [,amax] [,info] )

```
```

C:
lapack_int LAPACKE_sgbequ( int matrix_order, lapack_int m, lapack_int n, lapack_int kl,
lapack_int ku, const float* ab, lapack_int ldab, float* r, float* c, float* rowcnd,
float* colcnd, float* amax );
lapack_int LAPACKE_dgbequ( int matrix_order, lapack_int m, lapack_int n, lapack_int kl,
lapack_int ku, const double* ab, lapack_int ldab, double* r, double* c, double*
rowcnd, double* colcnd, double* amax );
lapack_int LAPACKE_cgbequ( int matrix_order, lapack_int m, lapack_int n, lapack_int kl,
lapack_int ku, const lapack_complex_float* ab, lapack_int ldab, float* r, float* c,
float* rowcnd, float* colcnd, float* amax );
lapack_int LAPACKE_zgbequ( int matrix_order, lapack_int m, lapack_int n, lapack_int kl,
lapack_int ku, const lapack_complex_double* ab, lapack_int ldab, double* r, double* c,
double* rowcnd, double* colcnd, double* amax );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes row and column scalings intended to equilibrate an \(m-b y-n\) band matrix \(A\) and reduce its condition number. The output array \(r\) returns the row scale factors and the array \(c\) the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix \(B\) with elements \(b_{i j}=r(i) * a_{i j}{ }^{*} c(j)\) have absolute value 1.
See ? laqgb auxiliary function that uses scaling factors computed by ?gbequ.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline m & INTEGER. The number of rows of the matrix \(A ; m \geq 0\). \\
\hline \(n\) & INTEGER. The number of columns of the matrix \(A ; n \geq 0\). \\
\hline \(k I\) & INTEGER. The number of subdiagonals within the band of \(A ; k I \geq 0\). \\
\hline ku & INTEGER. The number of superdiagonals within the band of \(A ; k u \geq\) 0. \\
\hline \multirow[t]{7}{*}{\(a b\)} & REAL for sgbequ \\
\hline & DOUBLE PRECISION for dgbequ \\
\hline & COMPLEX for cgbequ \\
\hline & DOUBLE COMPLEX for zgbequ. \\
\hline & Array, DIMENSION (ldab,*). \\
\hline & Contains the original band matrix \(A\) stored in rows from 1 to \(k l+k u\) +1 . \\
\hline & The second dimension of ab must be at least max (1,n). \\
\hline Idab & INTEGER. The leading dimension of \(a b ; 1 d a b \geq k l+k u+1\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\[
r, c
\]
```

DOUBLE PRECISION for double precision flavors.
Arrays: r(m), c(n).
If info = 0, or info > m, the array rcontains the row scale factors
of the matrix }A\mathrm{ .
If info = 0, the array c contains the column scale factors of the
matrix A.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info = 0 or info > m, rowend contains the ratio of the smallest
r(i) to the largest r(i).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info = 0, colcnd contains the ratio of the smallest c(i) to the
largest c(i).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i and
i}\leqm\mathrm{ , the i-th row of }A\mathrm{ is exactly zero;
i > m, the (i-m)th column of A is exactly zero.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine gbequ interface are as follows:
\begin{tabular}{ll}
\(a b\) & Holds the array \(A\) of size \((k l+k u+1, n)\). \\
\(r\) & Holds the vector of length \((m)\). \\
\(c\) & Holds the vector of length \(n\). \\
\(k I\) & If omitted, assumed \(k I=k u\). \\
\(k u\) & Restored as \(k u=l d a-k l-1\).
\end{tabular}

\section*{Application Notes}

All the components of \(r\) and \(c\) are restricted to be between SMLNUM \(=\) smallest safe number and BIGNUM= largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of \(A\) but works well in practice.

SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision (real and complex) values of SMLNUM and BIGNUM as follows:
```

SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM

```

If rowend \(\geq 0.1\) and amax is neither too large nor too small, it is not worth scaling by \(r\).
If colcnd \(\geq 0.1\), it is not worth scaling by \(c\).
If amax is very close to overflow or very close to underflow, the matrix \(A\) should be scaled.
```

?gbequb
Computes row and column scaling factors restricted to
a power of radix to equilibrate a banded matrix and
reduce its condition number.

```

\section*{Syntax}

\section*{Fortran 77:}
```

call sgbequib( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
call dgbequb( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
call cgbequb( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
call zgbequb( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )

```
C:
```

lapack_int LAPACKE_sgbequb( int matrix_order, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, const float* ab, lapack_int ldab, float* r, float* c, float*
rowcnd, float* colcnd, float* amax );
lapack_int LAPACKE_dgbequb( int matrix_order, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, const double* ab, lapack_int ldab, double* r, double* c, double*
rowcnd, double* colcnd, double* amax );
lapack_int LAPACKE_cgbequb( int matrix_order, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, const lapack_complex_float* ab, lapack_int ldab, float* r, float*
c, float* rowcnd, float* colcnd, float* amax );
lapack_int LAPACKE_zgbequb( int matrix_order, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, const lapack_complex_double* ab, lapack_int ldab, double* r,
double* c, double* rowcnd, double* colcnd, double* amax );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes row and column scalings intended to equilibrate an \(m\)-by- \(n\) banded matrix \(A\) and reduce its condition number. The output array \(r\) returns the row scale factors and the array \(c\) - the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix \(B\) with elements \(b(i j)=r(i) * a(i j) * c(j)\) have an absolute value of at most the radix.
\(r\) (i) and \(c(j)\) are restricted to be a power of the radix between SMLNUM \(=\) smallest safe number and BIGNUM \(=\) largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of \(a\) but works well in practice.

SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision (real and complex) values of SMLNUM and BIGNUM as follows:
```

SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM

```

This routine differs from ? gbequ by restricting the scaling factors to a power of the radix. Except for overand underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer equal to approximately 1 but lie between sqrt(radix) and \(1 /\) sqrt (radix).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

m INTEGER. The number of rows of the matrix A; m\geq0.
n
kl
ku
ab
ldab
INTEGER. The number of rows of the matrix $A ; m \geq 0$.
INTEGER. The number of columns of the matrix $A ; n \geq 0$.
INTEGER. The number of subdiagonals within the band of $A ; k I \geq 0$.
INTEGER. The number of superdiagonals within the band of $A ; k u \geq$ 0.
REAL for sgbequb
DOUBLE PRECISION for dgbequb
COMPLEX for cgbequb
DOUBLE COMPLEX for zgbequi.
Array: DIMENSION (Idab,*).
Contains the original banded matrix $A$ stored in rows from 1 to $k l+$ $k u+1$. The $j$-th column of $A$ is stored in the $j$-th column of the array $a b$ as follows:
$a b(k u+1+i-j, j)=a(i, j)$ for max $(1, j-k u) \leq i \leq \min (n, j+k l)$. The second dimension of ab must be at least max $(1, n)$.
INTEGER. The leading dimension of $a ;$ ldab $\geq \max (1, m)$.

```

\section*{Output Parameters}

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: \(r(m), c(n)\).
If info \(=0\), or info \(>m\), the array \(r\) contains the row scale factors for the matrix \(A\).
If info \(=0\), the array \(c\) contains the column scale factors for the matrix \(A\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info \(=0\) or info \(>m\), rowend contains the ratio of the smallest \(r\) (i) to the largest \(r(i)\). If rowend \(\geq 0.1\), and amax is neither too large nor too small, it is not worth scaling by \(r\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info \(=0\), colcnd contains the ratio of the smallest \(c\) (i) to the largest \(c\) (i). If colcnd \(\geq 0.1\), it is not worth scaling by \(c\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix \(A\). If amax is very close to overflow or underflow, the matrix should be scaled.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(i\)-th diagonal element of \(A\) is nonpositive.
\(i \leq m\), the \(i\)-th row of \(A\) is exactly zero;
\(i>m\), the \((i-m)\)-th column of \(A\) is exactly zero.

\section*{?poequ}

Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite matrix and reduce its condition number.

\section*{Syntax}

\section*{Fortran 77:}
```

call spoequ( n, a, lda, s, scond, amax, info )
call dpoequ( n, a, lda, s, scond, amax, info )
call cpoequ( n, a, lda, s, scond, amax, info )
call zpoequ( n, a, lda, s, scond, amax, info )

```

\section*{Fortran 95:}
```

call poequ( a, s [,scond] [,amax] [,info] )

```
C:

lda, float* \(s, f l o a t * ~ s c o n d, ~ f l o a t * ~ a m a x ~) ; ~\)

lda, double* \(s, d o u b l e * ~ s c o n d, ~ d o u b l e * ~ a m a x ~) ; ~\)
lapack_int LAPACKE_cpoequ(int matrix_order, lapack_int \(n\), const lapack_complex_float*
a, lapack_int lda, float* \(s, f l o a t * ~ s c o n d, ~ f l o a t * ~ a m a x ~) ; ~\)
lapack_int LAPACKE_zpoequ(int matrix_order, lapack_int \(n\), const lapack_complex_double*
a, lapack_int lda, double* \(s, d o u b l e * ~ s c o n d, ~ d o u b l e * ~ a m a x ~) ; ~\)

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positivedefinite matrix \(A\) and reduce its condition number (with respect to the two-norm). The output array \(s\) returns scale factors computed as
\[
s(i)=\frac{1}{\sqrt{a_{i, i}}}
\]

These factors are chosen so that the scaled matrix \(B\) with elements \(b_{i j}=s(i) * a_{i j} * S(j)\) has diagonal elements equal to 1.

This choice of \(s\) puts the condition number of \(B\) within a factor \(n\) of the smallest possible condition number over all possible diagonal scalings.

See ? laqsy auxiliary function that uses scaling factors computed by ?poequ.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

n INTEGER. The order of the matrix A; n \geq0.
a
lda

```

\section*{Output Parameters}

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info \(=0\), the array \(s\) contains the scale factors for \(A\).
scond
amax
info
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info \(=0\), scond contains the ratio of the smallest \(s(i)\) to the largest \(s(i)\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix \(A\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(i\)-th diagonal element of \(A\) is nonpositive.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine poequ interface are as follows:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((n, n)\). \\
\(s\) & Holds the vector of length \(n\).
\end{tabular}
\[
\text { Holds the vector of length } n .
\]

\section*{Application Notes}

If scond \(\geq 0.1\) and amax is neither too large nor too small, it is not worth scaling by \(s\).
If amax is very close to overflow or very close to underflow, the matrix \(A\) should be scaled.

\section*{?poequb \\ Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite matrix and reduce its condition number. \\ Syntax}

\section*{Fortran 77:}
```

call spoequb( n, a, lda, s, scond, amax, info )
call dpoequb( n, a, lda, s, scond, amax, info )
call cpoequb( n, a, lda, s, scond, amax, info )
call zpoequb( n, a, lda, s, scond, amax, info )

```

C:
lapack_int LAPACKE_spoequb(int matrix_order, lapack_int n, const float* a, lapack_int
lda, float* \(s, f l o a t * ~ s c o n d, ~ f l o a t * ~ a m a x ~) ; ~\)
lapack_int LAPACKE_dpoequb(int matrix_order, lapack_int n, const double* a, lapack_int
lda, double* s, double* scond, double* amax);
lapack_int LAPACKE_cpoequb(int matrix_order, lapack_int n, const lapack_complex_float*
a, lapack_int lda, float* \(s, f l o a t * ~ s c o n d, ~ f l o a t * ~ a m a x ~) ; ~\)
lapack_int LAPACKE_zpoequb(int matrix_order, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double* s, double* scond, double* amax);

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positivedefinite matrix \(A\) and reduce its condition number (with respect to the two-norm).
These factors are chosen so that the scaled matrix \(B\) with elements \(b(i, j)=s(i) * a(i, j) * s(j)\) has diagonal elements equal to \(1 . s(i)\) is a power of two nearest to, but not exceeding \(1 / \operatorname{sqrt}(A(i, i))\).
This choice of \(s\) puts the condition number of \(B\) within a factor \(n\) of the smallest possible condition number over all possible diagonal scalings.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{ll}
\(n\) & INTEGER. The order of the matrix \(A ; n \geq 0\). \\
& REAL for spoequb \\
& DOUBLE PRECISION for dpoequb \\
& COMPLEX for CPoequb \\
& DOUBLE COMPLEX for zpoequ.. \\
& Array: DIMENSION (Ida,*).
\end{tabular}
lda

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{\(s\)} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Array, DIMENSION (n). \\
\hline & If info \(=0\), the array \(s\) contains the scale factors for \(A\). \\
\hline \multirow[t]{4}{*}{scond} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & If info \(=0\), scond contains the ratio of the smallest \(s(i)\) to the \\
\hline & largest \(s\) (i). If scond \(\geq 0.1\), and amax is neither too large nor too small, it is not worth scaling by \(s\) \\
\hline \multirow[t]{3}{*}{amax} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Absolute value of the largest element of the matrix \(A\). If amax is very close to overflow or underflow, the matrix should be scaled. \\
\hline \multirow[t]{4}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
\hline & If info \(=i\), the \(i\)-th diagonal element of \(A\) is nonpositive. \\
\hline
\end{tabular}

\section*{?ppequ}

Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite matrix in packed storage and reduce its condition number.

\section*{Syntax}

\section*{Fortran 77:}
```

call sppequ( uplo, n, ap, s, scond, amax, info )
call dppequ( uplo, n, ap, s, scond, amax, info )
call cppequ( uplo, n, ap, s, scond, amax, info )
call zppequ( uplo, n, ap, s, scond, amax, info )

```

\section*{Fortran 95:}
```

call ppequ( ap, s [,scond] [,amax] [,uplo] [,info] )

```

C:
```

lapack_int LAPACKE_sppequ( int matrix_order, char uplo, lapack_int n, const float* ap,
float* s, float* scond, float* amax );
lapack_int LAPACKE_dppequ( int matrix_order, char uplo, lapack_int n, const double* ap,
double* s, double* scond, double* amax );
lapack_int LAPACKE_cppequ( int matrix_order, char uplo, lapack_int n, const
lapack_complex_float* ap, float* s, float* scond, float* amax );

```
```

lapack_int LAPACKE_zppequ( int matrix_order, char uplo, lapack_int n, const
lapack_complex_double* ap, double* s, double* scond, double* amax );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positive definite matrix \(A\) in packed storage and reduce its condition number (with respect to the two-norm). The output array \(s\) returns scale factors computed as
\[
s(i)=\frac{1}{\sqrt{a_{i, i}}}
\]

These factors are chosen so that the scaled matrix \(B\) with elements \(b_{i j}=S(i) * a_{i j}{ }^{\star} S(j)\) has diagonal elements equal to 1 .
This choice of \(s\) puts the condition number of \(B\) within a factor \(n\) of the smallest possible condition number over all possible diagonal scalings.

See ? laqsp auxiliary function that uses scaling factors computed by ?ppequ.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

uplo
n
ap
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of $A$ is packed in the array $a p$ :
If uplo = 'U', the array ap stores the upper triangular part of the matrix $A$.
If uplo = 'L', the array ap stores the lower triangular part of the matrix $A$.
INTEGER. The order of matrix $A ; n \geq 0$.
REAL for sppequ
DOUBLE PRECISION for dppequ
COMPLEX for cppequ
DOUBLE COMPLEX for zppequ.
Array, DIMENSION at least max $(1, n(n+1) / 2)$. The array ap contains the upper or the lower triangular part of the matrix $A$ (as specified by uplo) in packed storage (see Matrix Storage Schemes).

```

\section*{Output Parameters}

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (\(n\)).
If info \(=0\), the array \(s\) contains the scale factors for \(A\).
\begin{tabular}{ll}
scond & REAL for single precision flavors \\
& DOUBLE PRECISION for double precision flavors. \\
amax & If info \(=0\), scond contains the ratio of the smallest \(s(i)\) to the \\
& largest \(s(i)\). \\
& REAL for single precision flavors \\
info & DOUBLE PRECISION for double precision flavors. \\
& AbSolute value of the largest element of the matrix \(A\). \\
& INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
& If info \(=i\), the \(i\)-th diagonal element of \(A\) is nonpositive.
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ppequ interface are as follows:
\begin{tabular}{ll}
ap & Holds the array \(A\) of size \(\left(n^{\star}(n+1) / 2\right)\). \\
\(s\) & Holds the vector of length \(n\). \\
uplo & Must be ' U ' or ' L '. The default value is ' U '.
\end{tabular}

\section*{Application Notes}

If scond \(\geq 0.1\) and amax is neither too large nor too small, it is not worth scaling by \(s\).
If amax is very close to overflow or very close to underflow, the matrix \(A\) should be scaled.
```

?pbequ
Computes row and column scaling factors intended to
equilibrate a symmetric (Hermitian) positive-definite
band matrix and reduce its condition number.
Syntax

```

\section*{Fortran 77:}
```

call spbequ( uplo, n, kd, ab, ldab, s, scond, amax, info )
call dpbequ( uplo, n, kd, ab, ldab, s, scond, amax, info )
call cpbequ( uplo, n, kd, ab, ldab, s, scond, amax, info )
call zpbequ( uplo, n, kd, ab, ldab, s, scond, amax, info )

```

\section*{Fortran 95:}
```

call pbequ( ab, s [,scond] [,amax] [,uplo] [,info] )

```
C:
lapack_int LAPACKE_spbequ(int matrix_order, char uplo, lapack_int n, lapack_int kd,
const float* ab, lapack_int ldab, float* s, float* scond, float* amax);
lapack_int LAPACKE_dpbequ(int matrix_order, char uplo, lapack_int n, lapack_int kd,
const double* \(a b\), lapack_int ldab, double* \(s, ~ d o u b l e * ~ s c o n d, ~ d o u b l e * ~ a m a x ~) ; ~\)
lapack_int LAPACKE_cpbequ(int matrix_order, char uplo, lapack_int n, lapack_int kd,
const lapack_complex_float* ab, lapack_int ldab, float* \(s, f l o a t * ~ s c o n d, ~ f l o a t * ~ a m a x ~ l ; ~\)
```

lapack_int LAPACKE_zpbequ( int matrix_order, char uplo, lapack_int n, lapack_int kd,
const lapack_complex_double* ab, lapack_int ldab, double* s, double* scond, double*
amax );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positive definite matrix \(A\) in packed storage and reduce its condition number (with respect to the two-norm). The output array \(s\) returns scale factors computed as
\[
s(i)=\frac{1}{\sqrt{a_{i, i}}}
\]

These factors are chosen so that the scaled matrix \(B\) with elements \(b_{i j}=s(i) * a_{i j}{ }^{*} S(j)\) has diagonal elements equal to 1 . This choice of \(s\) puts the condition number of \(B\) within a factor \(n\) of the smallest possible condition number over all possible diagonal scalings.

See ?laqsb auxiliary function that uses scaling factors computed by ?pbequ.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates whether the upper or lower triangular part of \(A\) is packed in the array \(a b\) : \\
If uplo = 'U', the array \(a b\) stores the upper triangular part of the matrix \(A\). \\
If uplo = 'L', the array \(a b\) stores the lower triangular part of the matrix \(A\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline \(k d\) & INTEGER. The number of superdiagonals or subdiagonals in the matrix \(A ; k d \geq 0\). \\
\hline \(a b\) & \begin{tabular}{l}
REAL for spbequ \\
DOUBLE PRECISION for dpbequ \\
COMPLEX for cpbequ \\
DOUBLE COMPLEX for zpbequ. \\
Array, DIMENSION (ldab,*). \\
The array ap contains either the upper or the lower triangular part of the matrix \(A\) (as specified by uplo) in band storage (see Matrix Storage Schemes). \\
The second dimension of \(a b\) must be at least max \((1, n)\).
\end{tabular} \\
\hline Idab & INTEGER. The leading dimension of the array \(a b ; 1 d a b \geq k d+1\). \\
\hline
\end{tabular}

\section*{Output Parameters}

S
scond
amax
info

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info \(=0\), the array \(s\) contains the scale factors for \(A\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info \(=0\), scond contains the ratio of the smallest \(s(i)\) to the largest \(s(i)\).
REAL for single precision flavors DOUBLE PRECISION for double precision flavors. Absolute value of the largest element of the matrix \(A\).

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(i\)-th diagonal element of \(A\) is nonpositive.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pbequ interface are as follows:
\begin{tabular}{ll}
\(a b\) & Holds the array \(A\) of size \((k d+1, n)\). \\
\(s\) & Holds the vector of length \(n\). \\
uplo & Must be ' \(U\) ' or ' \(L\) '. The default value is ' \(U\) '.
\end{tabular}

\section*{Application Notes}

If scond \(\geq 0.1\) and amax is neither too large nor too small, it is not worth scaling by \(s\).
If amax is very close to overflow or very close to underflow, the matrix \(A\) should be scaled.

\section*{?syequb}

Computes row and column scaling factors intended to equilibrate a symmetric indefinite matrix and reduce its condition number.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssyequb( uplo, n, a, lda, s, scond, amax, work, info )
call dsyequb( uplo, n, a, lda, s, scond, amax, work, info )
call csyequb( uplo, n, a, lda, s, scond, amax, work, info )
call zsyequb( uplo, n, a, lda, s, scond, amax, work, info )

```
C:
lapack_int LAPACKE_ssyequb(int matrix_order, char uplo, lapack_int n, const float* a,
lapack_int lda, float* \(s, f l o a t * ~ s c o n d, ~ f l o a t * ~ a m a x ~) ; ~\)
lapack_int LAPACKE_dsyequb(int matrix_order, char uplo, lapack_int \(n, ~ c o n s t ~ d o u b l e * ~ a, ~\)
lapack_int lda, double* s, double* scond, double* amax);
```

lapack_int LAPACKE_csyequb( int matrix_order, char uplo, lapack_int n, const
lapack_complex_float* a, lapack_int lda, float* s, float* scond, float* amax );
lapack_int LAPACKE_zsyequb( int matrix_order, char uplo, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double* s, double* scond, double* amax );

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes row and column scalings intended to equilibrate a symmetric indefinite matrix \(A\) and reduce its condition number (with respect to the two-norm).

The array \(s\) contains the scale factors, \(s(i)=1 / \operatorname{sqrt}(A(i, i))\). These factors are chosen so that the scaled matrix \(B\) with elements \(b(i, j)=s(i) * a(i, j) * s(j)\) has ones on the diagonal.

This choice of \(s\) puts the condition number of \(B\) within a factor \(n\) of the smallest possible condition number over all possible diagonal scalings.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

uplo
n
a, work
lda

```

\section*{Output Parameters}

REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (\(n\)).
If info \(=0\), the array \(s\) contains the scale factors for \(A\).
scond REAL for single precision flavors
```

DOUBLE PRECISION for double precision flavors.
If info $=0$, scond contains the ratio of the smallest $s(i)$ to the largest $s(i)$. If scond $\geq 0.1$, and amax is neither too large nor too small, it is not worth scaling by $s$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix $A$. If amax is very close to overflow or underflow, the matrix should be scaled.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i$, the $i$-th diagonal element of $A$ is nonpositive.

```
info

\begin{abstract}
?heequb
Computes row and column scaling factors intended to equilibrate a Hermitian indefinite matrix and reduce its condition number.
\end{abstract}

\section*{Syntax}

\section*{Fortran 77:}
```

call cheequb( uplo, n, a, lda, s, scond, amax, work, info )
call zheequb( uplo, n, a, lda, s, scond, amax, work, info )

```
C:
lapack_int LAPACKE_cheequb(int matrix_order, char uplo, lapack_int \(n\), const
lapack_complex_float* \(\left.a, ~ l a p a c k _i n t ~ l d a, ~ f l o a t * ~ s, ~ f l o a t * ~ s c o n d, ~ f l o a t * ~ a m a x ~\right) ; ~\)
lapack_int LAPACKE_zheequb(int matrix_order, char uplo, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double* s, double* scond, double* amax);

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes row and column scalings intended to equilibrate a Hermitian indefinite matrix \(A\) and reduce its condition number (with respect to the two-norm).

The array \(s\) contains the scale factors, \(s(i)=1 / \operatorname{sqrt}(A(i, i))\). These factors are chosen so that the scaled matrix \(B\) with elements \(b(i, j)=s(i) * a(i, j) * s(j)\) has ones on the diagonal.

This choice of \(s\) puts the condition number of \(B\) within a factor \(n\) of the smallest possible condition number over all possible diagonal scalings.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.

\footnotetext{
uplo
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored:
}
n
a, work
lda
Output Parameters
S
scond
amax
info

If uplo = 'U', the array a stores the upper triangular part of the matrix A.
If uplo = 'L', the array a stores the lower triangular part of the matrix \(A\).

INTEGER. The order of the matrix \(A ; n \geq 0\).
COMPLEX for cheequb
DOUBLE COMPLEX for zheequb.
Array a: DIMENSION (lda,*).
Contains the \(n\)-by- \(n\) symmetric indefinite matrix \(A\) whose scaling factors are to be computed. Only the diagonal elements of \(A\) are referenced.
The second dimension of a must be at least max \((1, n)\). work (*) is a workspace array. The dimension of work is at least \(\max (1,3 * n)\).
INTEGER. The leading dimension of \(a ; \operatorname{lda} \geq \max (1, m)\).

REAL for cheequb
DOUBLE PRECISION for zheequb.
Array, DIMENSION (\(n\)).
If info \(=0\), the array \(s\) contains the scale factors for \(A\).
REAL for cheequb
DOUBLE PRECISION for zheequb.
If info \(=0\), scond contains the ratio of the smallest \(s(i)\) to the largest \(s(i)\). If scond \(\geq 0.1\), and amax is neither too large nor too small, it is not worth scaling by \(s\).
REAL for cheequb
DOUBLE PRECISION for zheequb.
Absolute value of the largest element of the matrix \(A\). If amax is very close to overflow or underflow, the matrix should be scaled.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(i\)-th diagonal element of \(A\) is nonpositive.

\section*{Driver Routines}

Table "Driver Routines for Solving Systems of Linear Equations" lists the LAPACK driver routines for solving systems of linear equations with real or complex matrices.
Driver Routines for Solving Systems of Linear Equations
\begin{tabular}{llll}
\hline \begin{tabular}{l}
Matrix type, storage \\
scheme
\end{tabular} & Simple Driver & Expert Driver & \begin{tabular}{l}
Expert Driver using \\
Extra-Precise \\
Interative Refinement
\end{tabular} \\
\hline general & ?gesv & ?gesvx & ?gesvxx \\
general band & \(? g b s v\) & \(? g b s v x\) & ?gbsvxx \\
general tridiagonal & ?gtsv & \(? g t s v x\) &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Matrix type, storage scheme & Simple Driver & Expert Driver & \begin{tabular}{l}
Expert Driver using Extra-Precise \\
Interative Refinement
\end{tabular} \\
\hline diagonally dominant tridiagonal & ?dtsvb & & \\
\hline symmetric/Hermitian positive-definite & ?posv & ?posvx & ? posvxx \\
\hline symmetric/Hermitian positive-definite, storage & ?ppsv & ?ppsvx & \\
\hline symmetric/Hermitian positive-definite, band & ?p.bsv & ?pbsvx & \\
\hline symmetric/Hermitian positive-definite, tridiagonal & ?ptsv & ?ptsvx & \\
\hline symmetric/Hermitian indefinite & ?sysv/?hesv & ?sysvx/?hesvx & ?sysvxx/?hesvxx \\
\hline symmetric/Hermitian indefinite, packed storage & ?spsv/?hpsv & ?spsvx/?hpsvx & \\
\hline complex symmetric & ?sysv & ?sysvx & \\
\hline complex symmetric, packed storage & ? spsv & ?spsvx & \\
\hline
\end{tabular}

In this table ? stands for \(s\) (single precision real), d (double precision real), c (single precision complex), or \(z\) (double precision complex). In the description of ?gesv and ?posv routines, the ? sign stands for combined character codes ds and zc for the mixed precision subroutines.

\section*{?gesv}

Computes the solution to the system of linear equations with a square matrix \(A\) and multiple righthand sides.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgesv( n, nrhs, a, lda, ipiv, b, ldb, info )
call dgesv( n, nrhs, a, lda, ipiv, b, ldb, info )
call cgesv( n, nrhs, a, lda, ipiv, b, ldb, info )
call zgesv( n, nrhs, a, lda, ipiv, b, ldb, info )
call dsgesv( n, nrhs, a, lda, ipiv, b, ldb, x, ldx, work, swork, iter, info )
call zcgesv( n, nrhs, a, lda, ipiv, b, ldb, x, ldx, work, swork, rwork, iter, info )

```

Fortran 95:
```

call gesv( a, b [,ipiv] [,info] )

```
```

C:
lapack_int LAPACKE_<?>gesv( int matrix_order, lapack_int n, lapack_int nrhs,
<datatype>* a, lapack_int lda, lapack_int* ipiv, <datatype>* b, lapack_int ldb );
lapack_int LAPACKE_dsgesv( int matrix_order, lapack_int n, lapack_int nrhs, double* a,
lapack_int lda, lapack_int* ipiv, double* b, lapack_int ldb, double* x, lapack_int
ldx, lapack_int* iter );
lapack_int LAPACKE_zcgesv( int matrix_order, lapack_int n, lapack_int nrhs,
lapack_complex_double* a, lapack_int lda, lapack_int* ipiv, lapack_complex_double* b,
lapack_int ldb, lapack_complex_double* x, lapack_int ldx, lapack_int* iter );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

The \(L U\) decomposition with partial pivoting and row interchanges is used to factor \(A\) as \(A=P^{\star} L \star U\), where \(P\) is a permutation matrix, \(L\) is unit lower triangular, and \(U\) is upper triangular. The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

The dsgesv and zcgesv are mixed precision iterative refinement subroutines for exploiting fast single precision hardware. They first attempt to factorize the matrix in single precision (dsgesv) or single complex precision (zcgesv) and use this factorization within an iterative refinement procedure to produce a solution with double precision (dsgesv) / double complex precision (zcgesv) normwise backward error quality (see below). If the approach fails, the method switches to a double precision or double complex precision factorization respectively and computes the solution.
The iterative refinement is not going to be a winning strategy if the ratio single precision performance over double precision performance is too small. A reasonable strategy should take the number of right-hand sides and the size of the matrix into account. This might be done with a call to ilaenv in the future. At present, iterative refinement is implemented.

The iterative refinement process is stopped if
```

iter > itermax

```
or for all the right-hand sides:
```

rnmr < sqrt(n)*xnrm*anrm*eps*bwdmax

```
where
- iter is the number of the current iteration in the iterativerefinement process
- rnmr is the infinity-norm of the residual
- xnrm is the infinity-norm of the solution
- anrm is the infinity-operator-norm of the matrix \(A\)
- eps is the machine epsilon returned by dlamch ('Epsilon').

The values itermax and bwdmax are fixed to 30 and \(1.0 \mathrm{~d}+00\) respectively.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The number of linear equations, that is, the order of the matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides, that is, the number of columns of the matrix \(B ; n r h s \geq 0\). \\
\hline \multirow[t]{8}{*}{\(a, b\)} & REAL for sgesv \\
\hline & DOUBLE PRECISION for dgesv and dsgesv \\
\hline & COMPLEX for cgesv \\
\hline & DOUBLE COMPLEX for zgesv and zcgesv. \\
\hline & Arrays: \(a(l d a, *), b(l d b, *)\). \\
\hline & The array a contains the \(n\)-by-n coefficient matrix \(A\). \\
\hline & The array \(b\) contains the \(n\)-by-nrhs matrix of right hand side matrix \(B\). \\
\hline & The second dimension of \(a\) must be at least \(\max (1, n)\), the second dimension of \(b\) at least max (\(1, n r h s\)). \\
\hline Ida & INTEGER. The leading dimension of the array \(a ; 1 d a \geq \max (1, n)\). \\
\hline 1 db & INTEGER. The leading dimension of the array \(b ; 1 d b \geq \max (1, n)\). \\
\hline 1 dx & \(\operatorname{INTEGER}\). The leading dimension of the array \(x ; l d x \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{work} & DOUBLE PRECISION for dsgesv \\
\hline & DOUBLE COMPLEX for zcgesv. \\
\hline & Workspace array, DIMENSION at least max (\(1, n^{\star} n r h s\)). This array is used to hold the residual vectors. \\
\hline \multirow[t]{3}{*}{swork} & REAL for dsgesv \\
\hline & COMPLEX for zcgesv. \\
\hline & Workspace array, DIMENSION at least max (\(1, n^{*}(n+n r h s)\)). This array is used to use the single precision matrix and the right-hand sides or solutions in single precision. \\
\hline rwork & DOUBLE PRECISION. Workspace array, DIMENSION at least max (1,n). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
b

X

Overwritten by the factors \(L\) and \(U\) from the factorization of \(A=\) \(P^{\star} L * U\); the unit diagonal elements of \(L\) are not stored.
If iterative refinement has been successfully used (info \(=0\) and iter \(\geq 0\)), then \(A\) is unchanged.
If double precision factorization has been used (info \(=0\) and iter \(<\) 0), then the array \(A\) contains the factors \(L\) and \(U\) from the factorization \(A=P^{\star} L * U\); the unit diagonal elements of \(L\) are not stored.
Overwritten by the solution matrix \(x\) for dgesv, sgesv,zgesv,zgesv. Unchanged for dsgesv and zcgesv.

INTEGER.
Array, DIMENSION at least max \((1, n)\). The pivot indices that define the permutation matrix \(P\); row \(i\) of the matrix was interchanged with row ipiv(i). Corresponds to the single precision factorization (if info \(=0\) and iter \(\geq 0\)) or the double precision factorization (if info= 0 and iter \(<0\)).
DOUBLE PRECISION for dsgesv
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
DOUBLE COMPLEX for zcgesv. \\
Array, DIMENSION (\(1 d x\), nrhs). If info \(=0\), contains the \(n\)-by-nrhs solution matrix \(X\).
\end{tabular} \\
\hline \multirow[t]{3}{*}{iter} & \begin{tabular}{l}
INTEGER. \\
If iter < 0: iterative refinement has failed, double precision factorization has been performed
\end{tabular} \\
\hline & \begin{tabular}{l}
- If iter \(=-1\) : the routine fell back to full precision for implementation- or machine-specific reason \\
- If iter \(=-2\) : narrowing the precision induced an overflow, the routine fell back to full precision \\
- If iter \(=-3\) : failure of sgetrf for dsgesv, or cgetrf for zcgesv \\
- If iter \(=-31\) : stop the iterative refinement after the 30th iteration.
\end{tabular} \\
\hline & If iter > 0: iterative refinement has been successfully used. Returns the number of iterations. \\
\hline info & \begin{tabular}{l}
INTEGER. If info=0, the execution is successful. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
If info \(=i, U(i, i)\) (computed in double precision for mixed precision subroutines) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution could not be computed.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gesv interface are as follows:
```

a Holds the matrix A of size (n,n).
b Holds the matrix B of size ( n,nrhs).
ipiv Holds the vector of length n.

```

-
NOTE Fortran 95 Interface is so far not available for the mixed precision subroutines dsgesv/zcgesv.

\section*{See Also}
ilaenv
?lamch
?getrf

\section*{?gesvx}

Computes the solution to the system of linear equations with a square matrix \(A\) and multiple righthand sides, and provides error bounds on the solution.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgesvx( fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x,
ldx, rcond, ferr, berr, work, iwork, info )

```
```

call dgesvx( fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x,
ldx, rcond, ferr, berr, work, iwork, info )
call cgesvx( fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x,
ldx, rcond, ferr, berr, work, rwork, info )
call zgesvx( fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x,
ldx, rcond, ferr, berr, work, rwork, info )

```

\section*{Fortran 95:}
call gesvx (a, b, x [,af] [, ipiv] [,fact] [,trans] [, equed] [,r] [,c] [,ferr] [,berr] [,rcond] [,rpvgrw] [,info])

\section*{C:}
```

lapack_int LAPACKE_sgesvx( int matrix_order, char fact, char trans, lapack_int n,
lapack_int nrhs, float* a, lapack_int lda, float* af, lapack_int ldaf, lapack_int*
ipiv, char* equed, float* r, float* c, float* b, lapack_int ldb, float* x, lapack_int
ldx, float* rcond, float* ferr, float* berr, float* rpivot );
lapack_int LAPACKE_dgesvx( int matrix_order, char fact, char trans, lapack_int n,
lapack_int nrhs, double* a, lapack_int lda, double* af, lapack_int ldaf, lapack_int*
ipiv, char* equed, double* r, double* c, double* b, lapack_int ldb, double* x,
lapack_int ldx, double* rcond, double* ferr, double* berr, double* rpivot );
lapack_int LAPACKE_cgesvx( int matrix_order, char fact, char trans, lapack_int n,
lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, float* r, float* c,
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* rcond, float* ferr, float* berr, float* rpivot );
lapack_int LAPACKE_zgesvx( int matrix_order, char fact, char trans, lapack_int n,
lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, double* r, double* c,
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx,
double* rcond, double* ferr, double* berr, double* rpivot );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the \(L U\) factorization to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?gesvx performs the following steps:
1. If fact \(=\) ' \(E\) ', real scaling factors \(r\) and \(c\) are computed to equilibrate the system:
```

trans = 'N': diag(r)*A*diag(c)*inv(diag(c))*X = diag(r)*B
trans = 'T':(diag(r)*A*diag(c)) T*inv(diag(r))*X = diag(C)*B
trans = 'C':(diag(r)*A\stardiag(c) )}\mp@subsup{}{}{H\star}\operatorname{inv}(diag(r))*X = diag(C)*B

```

Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by \(\operatorname{diag}(r) * A * \operatorname{diag}(C)\) and \(B\) by \(\operatorname{diag}(r) * B\) (if \(\operatorname{trans}={ }^{\prime} N^{\prime}\)) or diag (\(C\)) * \(B\) (if trans \(=\) 'T' or 'C').
2. If fact \(=\) ' \(N\) ' or ' \(E\) ', the \(L U\) decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) \({ }^{\prime} E^{\prime}\)) as \(A=P^{*} L^{\star} U\), where \(P\) is a permutation matrix, \(L\) is a unit lower triangular matrix, and \(U\) is upper triangular.
3. If some \(U_{i, i}=0\), so that \(U\) is exactly singular, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(x\) and compute error bounds as described below.
4. The system of equations is solved for \(x\) using the factored form of \(A\).
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix \(x\) is premultiplied by diag(c) (if trans = 'N') or diag(r) (if trans \(=\) 'T' or 'C') so that it solves the original system before equilibration.

\section*{Input Parameters}

The data types are given for the Fortran interface, except for rpivot. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

fact
trans
n
nrhs
a, af, b, work
CHARACTER*1. Must be 'F','N', or 'E'.
Specifies whether or not the factored form of the matrix A is supplied
on entry, and if not, whether the matrix A should be equilibrated
before it is factored.
If fact = 'F': on entry, af and ipiv contain the factored form of A.
If equed is not 'N', the matrix A has been equilibrated with scaling
factors given by r and c.
a, af, and ipiv are not modified.
If fact = 'N', the matrix A will be copied to af and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then
copied to af and factored.
CHARACTER*1. Must be 'N','T', or 'C'.
Specifies the form of the system of equations:
If trans = 'N', the system has the form A*X = B (No transpose).
If trans = 'T', the system has the form }\mp@subsup{A}{}{T}*X=B (Transpose).
If trans = 'C', the system has the form A'**X = B (Transpose for
real flavors, conjugate transpose for complex flavors).
INTEGER. The number of linear equations; the order of the matrix A;n
\geq0
INTEGER. The number of right hand sides; the number of columns of
the matrices }B\mathrm{ and }X;nrhs\geq0
REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*),work(*).
The array a contains the matrix A. If fact = 'F' and equed is not
'N', then A must have been equilibrated by the scaling factors in r
and/or c. The second dimension of a must be at least max (1,n).

```

The array \(a f\) is an input argument if fact \(={ }^{\prime} F^{\prime}\). It contains the factored form of the matrix \(A\), that is, the factors \(L\) and \(U\) from the factorization \(A=P^{\star} L \star U\) as computed by ?getrf. If equed is not ' \(N\) ', then \(a f\) is the factored form of the equilibrated matrix \(A\). The second dimension of af must be at least max \((1, n)\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max (1, nrhs).
work (*) is a workspace array. The dimension of work must be at least \(\max (1,4 * n)\) for real flavors, and at least max \(\left(1,2 *_{n}\right)\) for complex flavors.
INTEGER. The leading dimension of \(a ; l d a \geq \max (1, n)\).
INTEGER. The leading dimension of \(a f ; \operatorname{ldaf} \geq \max (1, n)\).
INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\).
INTEGER.
Array, DIMENSION at least max \((1, n)\). The array ipiv is an input argument if fact \(=\) 'F'. It contains the pivot indices from the factorization \(A=P^{\star} L \star U\) as computed by ?getrf; row \(i\) of the matrix was interchanged with row ipiv(i).
equed
r, c

CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact \(={ }^{\prime} \mathrm{F}^{\prime}\). It specifies the form of equilibration that was done:
If equed \(=\) 'N', no equilibration was done (always true if fact \(=\) 'N').
If equed = 'R', row equilibration was done, that is, \(A\) has been premultiplied by \(\operatorname{diag}(r)\).
If equed \(=\) ' \(C\) ', column equilibration was done, that is, \(A\) has been postmultiplied by diag(c).
If equed = 'B', both row and column equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(r) * A * \operatorname{diag}(c)\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: \(r(n), c(n)\). The array \(r\) contains the row scale factors for \(A\), and the array contains the column scale factors for \(A\). These arrays are input arguments if fact \(=\) ' F' only; otherwise they are output arguments.
If equed = 'R' or 'B', A is multiplied on the left by \(\operatorname{diag}(r)\); if equed \(=\) ' \(N\) ' or 'C', \(r\) is not accessed.
If fact \(=\) ' F ' and equed \(=\) 'R' or 'B', each element of \(r\) must be positive.
If equed \(=\) ' C' or ' B ', A is multiplied on the right by \(\operatorname{diag}(c)\); if equed \(=\) ' \(N\) ' or ' \(R\) ', \(c\) is not accessed.
If fact \(=\) ' F ' and equed \(=\) ' C ' or ' B ', each element of \(c\) must be positive.
INTEGER. The leading dimension of the output array \(x ; 1 d x \geq \max (1\), n).

INTEGER. Workspace array, DIMENSION at least max \((1, n)\); used in real flavors only.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Workspace array, DIMENSION at least max \(\left(1,2 *_{n}\right)\); used in complex flavors only.

\section*{Output Parameters}

X
a
\(a f\)
b

REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Array, DIMENSION (Idx,*).
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(x\) to the original system of equations. Note that \(A\) and \(B\) are modified on exit if equed \(\neq\) ' \(N\) ', and the solution to the equilibrated system is:
\(\operatorname{diag}(C)^{-1 \star} X\), if trans \(='^{\prime}\) ' and equed \(='^{\prime} C^{\prime}\) or ' B ';
\(\operatorname{diag}(R)^{-1 *} X\), if trans \(=\) 'T' or 'C' and equed \(=\) 'R' or 'B'. The second dimension of \(x\) must be at least max (\(1, n r h s\)).
Array \(a\) is not modified on exit if fact \(=\) ' \(F^{\prime}\) or ' \(N\) ', or if fact \(=\) 'E' and equed \(=\) 'N'. If equed \(\neq '^{\prime} N^{\prime}, A\) is scaled on exit as follows:
equed \(=' R ': A=\operatorname{diag}(R) * A\)
equed \(='^{\prime}\) ': \(A=A * \operatorname{diag}(C)\)
equed \(=\) ' \(\mathrm{B}^{\prime}: A=\operatorname{diag}(R) * A * \operatorname{diag}(C)\).
If fact \(=\) ' \(N\) ' or 'E', then af is an output argument and on exit returns the factors \(L\) and \(U\) from the factorization \(A=P L U\) of the original matrix \(A\) (if fact \(=' N\) ') or of the equilibrated matrix \(A\) (if fact \(=\) ' \(E\) '). See the description of \(a\) for the form of the equilibrated matrix.
Overwritten by \(\operatorname{diag}(r) * B\) if trans \(=\) 'N' and equed \(=\) 'R'or 'B'; overwritten by \(\operatorname{diag}(C) * B\) if trans \(=\) ' \(T\) ' or ' \(C\) ' and equed \(={ }^{\prime} C\) ' or 'B';
not changed if equed \(=\) ' \(N\) '.
These arrays are output arguments if fact \(\neq{ }^{\prime} F^{\prime}\). See the description of \(r, c\) in Input Arguments section.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max (\(1, n r h s\)). Contains the estimated forward error bound for each solution vector \(x\) (\(j\)) (the \(j\)-th column of the solution matrix \(x\)). If xtrue is the true solution corresponding to \(x(j), f e r r(j)\) is an estimated upper bound for the magnitude of the largest element in \((x(j)-x t r u e)\) divided by the magnitude of the largest element in \(x(j)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Array, DIMENSION at least max (1, nrhs). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.
ipiv
equed
work, rwork, rpivot

If fact \(=\) ' \(N\) ' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization \(A=P^{\star} L * U\) of the original matrix \(A\) (if fact \(=\) 'N') or of the equilibrated matrix \(A\) (if fact \(=\) 'E').

If fact \(\neq\) ' \(F^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
On exit, work (1) for real flavors, or rwork (1) for complex flavors (the Fortran interface) and rpivot (the C interface), contains the reciprocal pivot growth factor norm \((A) /\) norm \((U)\). The "max absolute element" norm is used. If work(1) for real flavors, or rwork(1) for complex flavors is much less than 1 , then the stability of the \(L U\) factorization of the (equilibrated) matrix \(A\) could be poor. This also means that the solution \(x\), condition estimator rcond, and forward error bound ferr could be unreliable. If factorization fails with \(0<\) info \(\leq n\), then work(1) for real flavors, or rwork (1) for complex flavors contains the reciprocal pivot growth factor for the leading info columns of \(A\).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and \(i \leq n\), then \(U(i, i)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=i\), and \(i=n+1\), then \(U\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gesvx interface are as follows:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
\(x\) & Holds the matrix \(X\) of size \((n, n r h s)\). \\
ipiv & Holds the matrix \(A F\) of size \((n, n)\). \\
\(r\) & Holds the vector of length \(n\). \\
\(c\) & Holds the vector of length \(n\). Default value for each element is \(r(i)=\) \\
& \(1.0 _W P\). \\
& Holds the vector of length \(n\). Default value for each element is \(c(i)=\) \\
& \(1.0 _W P\).
\end{tabular}
\begin{tabular}{|c|c|}
\hline ferr & Holds the vector of length (\(n r h s\)). \\
\hline berr & Holds the vector of length (\(n \mathrm{rhs}\)) . \\
\hline fact & Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then both arguments af and ipiv must be present; otherwise, an error is returned. \\
\hline trans & Must be 'N', 'C', or 'T'. The default value is 'N'. \\
\hline equed & Must be 'N', 'B', 'C', or 'R'. The default value is ' \(\mathrm{N}^{\prime}\). \\
\hline rpvgrw & Real value that contains the reciprocal pivot growth factor norm(A)/ norm(\(U\)). \\
\hline
\end{tabular}

\section*{?gesvxx}

Uses extra precise iterative refinement to compute the solution to the system of linear equations with a
square matrix \(A\) and multiple right-hand sides

\section*{Syntax}

\section*{Fortran 77:}
call sgesvxx (fact, trans, \(n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ i p i v, ~ e q u e d, ~ r, ~ c, ~ b, ~ l d b, ~ x, ~\) ldx, rcond, rpvgrw, berr, \(n _e r r _b n d s, ~ e r r _b n d s _n o r m, ~ e r r _b n d s _c o m p, ~ n p a r a m s, ~ p a r a m s\), work, iwork, info)
call dgesvxx (fact, trans, \(n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ i p i v, ~ e q u e d, ~ r, ~ c, ~ b, ~ l d b, ~ x\), ldx, rcond, rpvgrw, berr, \(n _e r r _b n d s, ~ e r r _b n d s _n o r m, ~ e r r _b n d s _c o m p, ~ n p a r a m s, ~ p a r a m s\), work, iwork, info)
call cgesvxx (fact, trans, \(n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ i p i v, ~ e q u e d, ~ r, ~ c, ~ b, ~ l d b, ~ x, ~\) ldx, rcond, rpvgrw, berr, \(n_{2} e r r _b n d s, ~ e r r _b n d s _n o r m, ~ e r r _b n d s _c o m p, ~ n p a r a m s, ~ p a r a m s\), work, rwork, info)
call zgesvxx (fact, trans, \(n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ i p i v, ~ e q u e d, ~ r, ~ c, ~ b, ~ l d b, ~ x\), ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)

C:
lapack_int LAPACKE_sgesvxx(int matrix_order, char fact, char trans, lapack_int n, lapack_int nrhs, float* a, lapack_int lda, float* af, lapack_int ldaf, lapack_int* ipiv, char* equed, float* r, float* c, float* b, lapack_int ldb, float* x, lapack_int ldx, float* rcond, float* rpvgrw, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, const float* params);
lapack_int LAPACKE_dgesvxx(int matrix_order, char fact, char trans, lapack_int n, lapack_int nrhs, double* a, lapack_int lda, double* af, lapack_int ldaf, lapack_int* ipiv, char* equed, double* \(r\), double* \(c\), double* \(b\), lapack_int ldb, double* \(x\), lapack_int ldx, double* rcond, double* rpvgrw, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, const double* params);
lapack_int LAPACKE_cgesvxx(int matrix_order, char fact, char trans, lapack_int n, lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* af, lapack_int ldaf, lapack_int* ipiv, char* equed, float* r, float* c, lapack_complex_float* b, lapack_int ldb, lapack_complex_float* \(x\), lapack_int ldx, float* rcond, float* rpvgrw, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, const float* params);
```

lapack_int LAPACKE_zgesvxx( int matrix_order, char fact, char trans, lapack_int n,
lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, double* r, double* c,
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx,
double* rcond, double* rpvgrw, double* berr, lapack_int n_err_bnds, double*
err_bnds_norm, double* err_bnds_comp, lapack_int nparams, const double* params );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the \(L U\) factorization to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) matrix, the columns of the matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error (O (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.

The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with \(O\) (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.

The routine ? gesvxx performs the following steps:
1. If fact \(=\) ' E ', scaling factors \(r\) and \(c\) are computed to equilibrate the system:
```

trans = 'N':diag(r)*A*diag(c)*inv(diag(c))*X = diag(r)*B
trans = 'T':(diag(r)*A*diag(c)) T*inv(diag(r))*X = diag(c)*B
trans = 'C':(diag(r)*A\stardiag(c)) H\starinv(diag(r))*X = diag(C)*B

```

Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by \(\operatorname{diag}(r){ }^{*} A^{*} \operatorname{diag}(c)\) and \(B\) by \(\operatorname{diag}(r) *_{B}\) (if \(\operatorname{trans}=N^{\prime}\)) or diag(\(C\))*B (if trans = 'T' or 'C').
2. If fact \(=\) ' \(N\) ' or 'E', the \(L U\) decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) ' E ') as \(A=P^{\star} L^{\star} U\), where \(P\) is a permutation matrix, \(L\) is a unit lower triangular matrix, and \(U\) is upper triangular.
3. If some \(U_{i, i}=0\), so that \(U\) is exactly singular, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\) (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for \(x\) and compute error bounds.
4. The system of equations is solved for \(x\) using the factored form of \(A\).
5. By default, unless params (la_linrx_itref_i) is set to zero, the routine applies iterative refinement to improve the computed solution matrix and calculate error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix \(x\) is premultiplied by \(\operatorname{diag}(c)\) (if trans \(=1 N\)) or diag(\(r\)) (if trans \(=\) ' T ' or ' C ') so that it solves the original system before equilibration.

\section*{Input Parameters}

The data types are given for the Fortran interface. \(A<d a t a t y p e>\) placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

fact
trans
n
nrhs
a, af,b, work
lda
ldaf
ipiv
CHARACTER*1. Must be 'F', 'N', or 'E'.
Specifies whether or not the factored form of the matrix $A$ is supplied on entry, and if not, whether the matrix $A$ should be equilibrated before it is factored.
If fact = 'F', on entry, af and ipiv contain the factored form of $A$. If equed is not ' $N$ ', the matrix $A$ has been equilibrated with scaling factors given by $r$ and $c$. Parameters $a, ~ a f$, and ipiv are not modified.
If fact $=$ ' $N$ ', the matrix $A$ will be copied to af and factored.
If fact $=$ ' $E$ ', the matrix $A$ will be equilibrated, if necessary, copied to af and factored.
CHARACTER*1. Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $A^{\star} X=B$ (No transpose).
If trans $=$ ' $\mathrm{T}^{\prime}$, the system has the form $A^{* *^{*} T_{X}}=B$ (Transpose).
If trans $=$ ' C ', the system has the form $A^{*} *_{H^{*}}{ }_{X}=B$ (Conjugate
Transpose $=$ Transpose for real flavors, Conjugate Transpose for complex flavors).
n
nrhs
a, af, b, work
lda
ldaf
ipiv
equed
INTEGER. The number of linear equations; the order of the matrix $A ; n \geq 0$.
INTEGER. The number of right hand sides; the number of columns of the matrices $B$ and $X ; n r h s \geq 0$.
REAL for sgesvxx
DOUBLE PRECISION for dgesvxx
COMPLEX for cgesvxx
DOUBLE COMPLEX for zgesvxx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).
The array a contains the matrix $A$. If fact $=$ ' $F$ ' and equed is not 'N', then $A$ must have been equilibrated by the scaling factors in $r$ and/or $c$. The second dimension of a must be at least max $(1, n)$.
The array af is an input argument if fact $={ }^{\prime} \mathrm{F}^{\prime}$. It contains the factored form of the matrix $A$, that is, the factors $L$ and $U$ from the factorization $A=$ $P^{\star} L^{*} U$ as computed by ?getrf. If equed is not ' $N$ ', then af is the factored form of the equilibrated matrix $A$. The second dimension of af must be at least max $(1, n)$.
The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least max (1, nrhs).
work (*) is a workspace array. The dimension of work must be at least $\max (1,4 * n)$ for real flavors, and at least max $\left(1,2 *_{n}\right)$ for complex flavors.
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $a f ; \operatorname{ldaf} \geq \max (1, n)$.
INTEGER.
Array, DIMENSION at least max ( $1, n$ ). The array ipiv is an input argument
if fact $=$ ' $\mathrm{F}^{\prime}$. It contains the pivot indices from the factorization $A=$ $P^{\star} L^{\star} U$ as computed by ? getrf; row $i$ of the matrix was interchanged with row ipiv(i).
CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.

```
equed is an input argument if fact \(={ }^{\prime} F^{\prime}\). It specifies the form of equilibration that was done:
If equed \(=\) ' \(N\) ', no equilibration was done (always true if fact \(=' N\) '). If equed = 'R', row equilibration was done, that is, \(A\) has been premultiplied by diag(r).
If equed \(=\) ' C', column equilibration was done, that is, \(A\) has been postmultiplied by diag(c).
If equed = 'B', both row and column equilibration was done, that is, \(A\) has been replaced by diag(r)*A*diag(c).
\(1 d b\)
ldx
n_err_bnds
nparams
params

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: \(r(n), C(n)\). The array \(r\) contains the row scale factors for \(A\), and the array \(c\) contains the column scale factors for \(A\). These arrays are input arguments if fact \(=\) ' \(F^{\prime}\) only; otherwise they are output arguments.
If equed \(=\) ' \(R\) ' or ' B ', \(A\) is multiplied on the left by \(\operatorname{diag}(r)\); if equed \(=\) 'N' or 'C', \(r\) is not accessed.
If fact \(=\) ' \(F\) ' and equed \(=\) ' \(R\) ' or ' \(B\) ', each element of \(r\) must be positive.
If equed \(=\) ' C' or ' B ', \(A\) is multiplied on the right by \(\operatorname{diag}(c)\); if equed \(=\) 'N' or 'R', \(c\) is not accessed.
If fact \(=\) ' \(F\) ' and equed \(=\) ' C' or 'B', each element of c must be positive.
Each element of \(r\) or \(c\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
INTEGER. The leading dimension of the array \(b ; 1 d b \geq \max (1, n)\).
INTEGER. The leading dimension of the output array \(x ; I d x \geq \max (1, n)\).
INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.
INTEGER. Specifies the number of parameters set in params. If \(\leq 0\), the params array is never referenced and default values are used.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION nparams. Specifies algorithm parameters. If an entry is less than 0.0 , that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams \(=0\), which prevents the source code from accessing the params argument.
params(la_linrx_itref_i = 1) : Whether to perform iterative refinement or not. Default: 1.0
\(=0.0 \quad\) No refinement is performed and no error bounds are computed.
=1.0 Use the double-precision refinement algorithm, possibly with doubled-single computations if the compilation environment does not support DOUBLE PRECISION.
(Other values are reserved for futute use.)
iwork
rwork

\section*{Output Parameters}

REAL for sgesvxx
DOUBLE PRECISION for dgesvxx
COMPLEX for cgesvxx
DOUBLE COMPLEX for zgesvxx.
Array, DIMENSION (Idx,*).
If info \(=0\), the array \(x\) contains the solution \(n\)-by-nrhs matrix \(x\) to the original system of equations. Note that \(A\) and \(B\) are modified on exit if equed \(\neq\) ' \(N\) ', and the solution to the equilibrated system is:
inv \((\operatorname{diag}(C)) \star X\), if trans \(=\) ' \(N\) ' and equed \(=\) ' \(C\) ' or ' \(B\) '; or \(\operatorname{inv}(\operatorname{diag}(r)) * X\), if trans \(='^{\prime} T\) ' or ' \(C\) ' and equed \(={ }^{\prime} R\) ' or 'B'. The second dimension of \(x\) must be at least max (1, nrhs).
Array \(a\) is not modified on exit if fact \(=\) ' \(\mathrm{F}^{\prime}\) or 'N', or if fact \(=\) 'E' and equed \(=\) 'N'.
If equed \(\neq\) ' \(N\) ', \(A\) is scaled on exit as follows:
equed \(=\) 'R': \(A=\operatorname{diag}(r) * A\)
equed \(='^{\prime} \mathrm{C}^{\prime}: A=A^{*} \operatorname{diag}(C)\)
equed \(=\) ' \(\mathrm{B}^{\prime}: A=\operatorname{diag}(r) \star A \star \operatorname{diag}(c)\).
If fact \(=\) ' \(N\) ' or 'E', then af is an output argument and on exit returns the factors \(L\) and \(U\) from the factorization \(A=P L U\) of the original matrix \(A\) (if fact = 'N') or of the equilibrated matrix \(A\) (if fact = 'E'). See the description of a for the form of the equilibrated matrix.
Overwritten by diag \((r) * B\) if trans \(=\) ' \(N\) ' and equed \(=\) ' \(R\) ' or ' \(\mathrm{B}^{\prime}\); overwritten by trans \(=\) 'T' or 'C' and equed \(=\) ' C ' or ' B '; not changed if equed \(=\) ' \(N\) '.
These arrays are output arguments if fact \(\neq{ }^{\prime} F^{\prime}\). Each element of these arrays is a power of the radix. See the description of \(r, c\) in Input Arguments section.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Contains the reciprocal pivot growth factor norm (A)/norm (\(U\)). The max absolute element norm is used. If this is much less than 1 , the stability of the \(L U\) factorization of the (equlibrated) matrix \(A\) could be poor. This also means that the solution \(x\), estimated condition numbers, and error bounds could be unreliable. If factorization fails with \(0<i n f o \leq n\), this parameter contains the reciprocal pivot growth factor for the leading info columns of A. In ? gesvx, this quantity is returned in work (1).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max (\(1, n r h s\)). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the \(i\)-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
The first index in err_bnds_norm(i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_norm (: ,err) contains the follwoing three fields:
\begin{tabular}{|c|c|}
\hline err=1 & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) *\) damch (\(\varepsilon\)) for double precision flavors. \\
\hline err=2 & "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors. This error bound should only be trusted if the previous boolean is true. \\
\hline err=3 & Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors \\
\hline
\end{tabular}
and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1/(norm(1/
\(z, i n f) *\) norm (z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1.
err_bnds_comp

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the \(i\)-th solution vector:

The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) \(=0.0\)), then err_bnds_comp is not accessed. If \(n_{-} e r r_{-} b n d s\) \(<3\), then at most the first (:, n_err_bnds) entries are returned. The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the follwoing three fields:
\begin{tabular}{|c|c|}
\hline err=1 & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(\(n\)) *slamch (\(\varepsilon\)) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors. \\
\hline err \(=2\) & "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors. This error bound should only be trusted if the previous boolean is true. \\
\hline \(e r r=3\) & \begin{tabular}{l}
Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n)\) *slamch (\(\varepsilon\)) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/ \\
\(z\),inf) *norm(z,inf)) for some appropriately scaled matrix \(z\).
\end{tabular} \\
\hline
\end{tabular}

Let \(z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a^{*} \operatorname{diag}(x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1.
\begin{tabular}{|c|c|}
\hline ipiv & If fact \(=\) 'N' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization \(A=P^{\star} L * U\) of the original matrix \(A\) (if fact \(=' N\) ') or of the equilibrated matrix \(A\) (if fact \(={ }^{\prime} E\) '). \\
\hline equed & If fact \(\neq{ }^{\prime} \mathrm{F}^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section). \\
\hline params & If an entry is less than 0.0, that entry is filled with the default value used for that parameter, otherwise the entry is not modified \\
\hline info & \begin{tabular}{l}
INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
If \(0<i n f o \leq n: U(i n f o, i n f o)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned. \\
If info \(=n+j\) : The solution corresponding to the \(j\)-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides \(k\) with \(k>j\) may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) \(=0.0\), then the \(j\)-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest \(j\) such that err_bnds_norm \((j, 1)=0.0\) or err_bnds_comp \((j, 1)=0.0\). See the definition of err_bnds_norm(; 1) and err_bnds_comp (; , 1). To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.
\end{tabular} \\
\hline
\end{tabular}

\section*{?gbsv}

Computes the solution to the system of linear equations with a band matrix \(A\) and multiple righthand sides.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgbsv( n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
call dgbsv( n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
call cgbsv( n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
call zgbsv( n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )

```

\section*{Fortran 95:}
```

call gbsv( ab, b [,kl] [,ipiv] [,info] )

```

C:
```

lapack_int LAPACKE_<?>gbsv( int matrix_order, lapack_int n, lapack_int kl, lapack_int
ku, lapack_int nrhs, <datatype>* ab, lapack_int ldab, lapack_int* ipiv, <datatype>* b,
lapack_int ldb );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) band matrix with \(k l\) subdiagonals and \(k u\) superdiagonals, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.
The \(L U\) decomposition with partial pivoting and row interchanges is used to factor \(A\) as \(A=L \star U\), where \(L\) is a product of permutation and unit lower triangular matrices with \(k l\) subdiagonals, and \(U\) is upper triangular with \(k l+k u\) superdiagonals. The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The order of \(A\). The number of rows in \(B ; n \geq 0\). \\
\hline kI & INTEGER. The number of subdiagonals within the band of \(A ; k l \geq 0\). \\
\hline ku & INTEGER. The number of superdiagonals within the band of \(A ; k u \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides. The number of columns in B; nrhs \(\geq 0\). \\
\hline \multirow[t]{8}{*}{\(a b, b\)} & REAL for sgbsv \\
\hline & DOUBLE PRECISION for dgbsv \\
\hline & COMPLEX for cgbsv \\
\hline & DOUBLE COMPLEX for zgbsv. \\
\hline & Arrays: \(a b\) (ldab,*), b(ldb,*). \\
\hline & The array \(a b\) contains the matrix \(A\) in band storage (see Matrix \\
\hline & Storage Schemes). The second dimension of \(a b\) must be at least \(\max (1, n)\). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max (\(1, n r h s\)). \\
\hline Idab & INTEGER. The leading dimension of the array \(a b\). (ldab \(\geq 2 k I+k u\) +1) \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

ab
b
ipiv

```
info

Overwritten by \(L\) and \(U\). The diagonal and \(k I+k u\) superdiagonals of \(U\) are stored in the first \(1+k l+k u\) rows of \(a b\). The multipliers used to form \(L\) are stored in the next kl rows.
Overwritten by the solution matrix \(x\).

\section*{INTEGER.}

Array, DIMENSION at least max \((1, n)\). The pivot indices: row \(i\) was interchanged with row ipiv(i).
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

If info \(=i, U(i, i)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution could not be computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gbsv interface are as follows:
```

ab Holds the array A of size (2* kl+ku+1,n).
b Holds the matrix B of size ( n, nrhs).
ipiv Holds the vector of length n.
kl If omitted, assumed kl = ku.
ku Restored as ku = lda-2*kl-1.

```

\section*{?gbsvx}

Computes the solution to the real or complex system of linear equations with a band matrix \(A\) and multiple right-hand sides, and provides error bounds on the solution.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgbsvx( fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info )
call dgbsvx( fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info )
call cgbsvx( fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info )
call zgbsvx( fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info )

```

Fortran 95:
```

call gbsvx( ab, b, x [,kl] [,afb] [,ipiv] [,fact] [,trans] [,equed] [,r] [,c] [,ferr]
[,berr] [,rcond] [,rpvgrw] [,info] )

```

\section*{C:}
```

lapack_int LAPACKE_sgbsvx( int matrix_order, char fact, char trans, lapack_int n,
lapack_int kl, lapack_int ku, lapack_int nrhs, float* ab, lapack_int ldab, float* afb,
lapack_int ldafb, lapack_int* ipiv, char* equed, float* r, float* c, float* b,
lapack_int ldb, float* x, lapack_int ldx, float* rcond, float* ferr, float* berr,
float* rpivot );
lapack_int LAPACKE_dgbsvx( int matrix_order, char fact, char trans, lapack_int n,
lapack_int kl, lapack_int ku, lapack_int nrhs, double* ab, lapack_int ldab, double*
afb, lapack_int ldafb, lapack_int* ipiv, char* equed, double* r, double* c, double* b,
lapack_int ldb, double* x, lapack_int ldx, double* rcond, double* ferr, double* berr,
double* rpivot );

```
```

lapack_int LAPACKE_cgbsvx( int matrix_order, char fact, char trans, lapack_int n,
lapack_int kl, lapack_int ku, lapack_int nrhs, lapack_complex_float* ab, lapack_int
ldab, lapack_complex_float* afb, lapack_int ldafb, lapack_int* ipiv, char* equed,
float* r, float* c, lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack_int ldx, float* rcond, float* ferr, float* berr, float* rpivot );
lapack_int LAPACKE_zgbsvx( int matrix_order, char fact, char trans, lapack_int n,
lapack_int kl, lapack_int ku, lapack_int nrhs, lapack_complex_double* ab, lapack_int
ldab, lapack_complex_double* afb, lapack_int ldafb, lapack_int* ipiv, char* equed,
double* r, double* c, lapack_complex_double* b, lapack_int ldb, lapack_complex_double*
x, lapack_int ldx, double* rcond, double* ferr, double* berr, double* rpivot );

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the \(L U\) factorization to compute the solution to a real or complex system of linear equations \(A * X=B, A^{T} * X=B\), or \(A^{H} * X=B\), where \(A\) is a band matrix of order \(n\) with kl subdiagonals and \(k u\) superdiagonals, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?gbsvx performs the following steps:
1. If fact \(=\) ' \(E\) ', real scaling factors \(r\) and \(c\) are computed to equilibrate the system:
```

trans = 'N':diag(r)*A*diag(c) *inv(diag(c))*X = diag(r)*B
trans = 'T':(diag(r)*A*diag(c)) T *inv(diag(r))*X = diag(c)*B
trans = 'C':(diag(r)*A*diag(C)) H}*inv(diag(r))*X = diag(C)*

```

Whether the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by \(\operatorname{diag}(r) * A * \operatorname{diag}(C)\) and \(B\) by \(\operatorname{diag}(r) * B\) (if \(\operatorname{trans}=N^{\prime}\)) or diag (\(C\)) *B (if trans \(=\) 'T' or 'C').
2. If fact \(=\) ' \(N\) ' or ' \(E\) ', the \(L U\) decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) ' \(E^{\prime}\)) as \(A=L^{*} U\), where \(L\) is a product of permutation and unit lower triangular matrices with kI subdiagonals, and \(U\) is upper triangular with \(k l+k u\) superdiagonals.
3. If some \(U_{i, i}=0\), so that \(U\) is exactly singular, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(x\) and compute error bounds as described below.
4. The system of equations is solved for \(x\) using the factored form of \(A\).
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix \(x\) is premultiplied by \(\operatorname{diag}(c)\) (if trans = 'N') or diag(r) (if trans \(=\) ' \(T\) ' or 'C') so that it solves the original system before equilibration.

\section*{Input Parameters}

The data types are given for the Fortran interface, except for rpivot. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline fact & CHARACTER*1. Must be 'F', 'N', or 'E'. \\
\hline & Specifies whether the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored. \\
\hline & If fact \(=\) ' \(F\) ': on entry, \(a f b\) and ipiv contain the factored form of \(A\). If equed is not ' \(N\) ', the matrix \(A\) is equilibrated with scaling factors given by \(r\) and \(c\). \\
\hline & \(a b, a f b\), and ipiv are not modified. \\
\hline & If fact = 'N', the matrix \(A\) will be copied to \(a \pm b\) and factored. \\
\hline & If fact \(=\) ' \(E\) ', the matrix \(A\) will be equilibrated if necessary, then copied to \(a f b\) and factored. \\
\hline trans & CHARACTER*1. Must be 'N', 'T', or 'C'. \\
\hline & Specifies the form of the system of equations: \\
\hline & If trans \(=\) ' \(N\) ', the system has the form \(A \star X=B\) (No transpose). \\
\hline & If trans \(=\) ' \(T\) ', the system has the form \(A^{T} * X=B\) (Transpose). \\
\hline & If trans \(=\) ' C', the system has the form \(A^{H} \star_{X}=B\) (Transpose for real flavors, conjugate transpose for complex flavors). \\
\hline \(n\) & INTEGER. The number of linear equations, the order of the matrix \(A ; n\) \(\geq 0\). \\
\hline kI & INTEGER. The number of subdiagonals within the band of \(A ; k I \geq 0\). \\
\hline ku & INTEGER. The number of superdiagonals within the band of \(A ; k u \geq 0\). \\
\hline nrhs & INTEGER. The number of right hand sides, the number of columns of the matrices \(B\) and \(x\); nrhs \(\geq 0\). \\
\hline ab, afb, b, work & REAL for sgesvx \\
\hline & DOUBLE PRECISION for dgesvx \\
\hline & COMPLEX for cgesvx \\
\hline & DOUBLE COMPLEX for zgesvx. \\
\hline & Arrays: \(a b\) (ldab,*), \(a f b\) (ldafb,*), b(ldb,*), work(*). \\
\hline & The array ab contains the matrix \(A\) in band storage (see Matrix \\
\hline & Storage Schemes). The second dimension of \(a b\) must be at least \(\max (1, n)\). If fact \(=' F^{\prime}\) and equed is not ' \(N\) ', then \(A\) must have been equilibrated by the scaling factors in \(r\) and/or \(c\). \\
\hline & The array \(a f b\) is an input argument if fact \(='^{\prime} F\) '. The second dimension of \(a f b\) must be at least max \((1, n)\). It contains the factored form of the matrix \(A\), that is, the factors \(L\) and \(U\) from the factorization \\
\hline & \(A=L \star U\) as computed by ?gbtrf. \(U\) is stored as an upper triangular band matrix with \(k l+k u\) superdiagonals in the first \(1+k l+k u\) rows of \(a f b\). The multipliers used during the factorization are stored in the next \(k l\) rows. If equed is not ' \(N\) ', then \(a f b\) is the factored form of the equilibrated matrix \(A\). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max (1, nrhs). \\
\hline & work (*) is a workspace array. The dimension of work must be at least \(\max \left(1,3 *_{n}\right)\) for real flavors, and at least \(\max \left(1,2 *_{n}\right)\) for complex \\
\hline & \\
\hline Idab & INTEGER. The leading dimension of \(a b ; ~ l d a b \geq k l+k u+1\). \\
\hline Idafb & INTEGER. The leading dimension of \(a f b ; 1 d a f b \geq 2 * k l+k u+1\). \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline ipiv & INTEGER. \\
\hline
\end{tabular}

Array, DIMENSION at least max \((1, n)\). The array ipiv is an input argument if fact \(=' F^{\prime}\). It contains the pivot indices from the factorization \(A=L^{*} U\) as computed by ?gbtrf; row \(i\) of the matrix was interchanged with row ipiv(i).
equed
r, c
\(1 d x\)
iwork
rwork

CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact \(={ }^{\prime} \mathrm{F}^{\prime}\). It specifies the form of equilibration that was done:
If equed = 'N', no equilibration was done (always true if fact = 'N').
If equed = 'R', row equilibration was done, that is, \(A\) has been premultiplied by diag(r).
If equed \(=\) ' \(C\) ', column equilibration was done, that is, \(A\) has been postmultiplied by diag(c).
if equed = 'B', both row and column equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(r) * A * \operatorname{diag}(C)\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: \(r(n), c(n)\).
The array \(r\) contains the row scale factors for \(A\), and the array \(C\) contains the column scale factors for \(A\). These arrays are input arguments if fact \(=\) ' F ' only; otherwise they are output arguments. If equed \(=\) ' R ' or ' B ', \(A\) is multiplied on the left by \(\operatorname{diag}(r)\); if equed \(=\) ' \(N\) ' or ' \(C\) ', \(r\) is not accessed.
If fact \(=\) ' F ' and equed \(=\) ' R ' or ' B ', each element of \(r\) must be positive.
If equed \(=\) ' \(C\) ' or ' \(B\) ', \(A\) is multiplied on the right by \(\operatorname{diag}(C)\); if equed \(=\) ' \(N\) ' or ' \(R\) ', \(c\) is not accessed.
If fact \(=\) ' F ' and equed \(=\) ' C ' or ' B ', each element of \(c\) must be positive.
INTEGER. The leading dimension of the output array \(x ; 1 d x \geq \max (1\), n).

INTEGER. Workspace array, DIMENSION at least max (\(1, n\)); used in real flavors only.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max (\(1, n\)) ; used in complex flavors only.

\section*{Output Parameters}

REAL for sgbsvx
DOUBLE PRECISION for dgbsvx
COMPLEX for cgbsvx
DOUBLE COMPLEX for zgbsvx.
Array, DIMENSION (\(1 d x, *\)).
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(x\) to the original system of equations. Note that \(A\) and \(B\) are modified on exit if equed \(\neq\) ' \(N\) ', and the solution to the equilibrated system is: \(\operatorname{inv}(\operatorname{diag}(C)) * X\), if trans \(=\) 'N' and equed \(=\) 'C' or ' \(\mathrm{B}^{\prime}\); \(\operatorname{inv}(\operatorname{diag}(r)) * X\), if trans \(=\) 'T' or 'C' and equed = 'R' or 'B'. The second dimension of \(x\) must be at least max (\(1, n r h s\)).
\begin{tabular}{|c|c|}
\hline \(a b\) & \begin{tabular}{l}
Array \(a b\) is not modified on exit if fact \(=\) ' \(F^{\prime}\) or ' \(N\) ', or if fact \(=\) ' E ' and equed = ' N '. \\
If equed \(\neq\) ' \(N\) ', \(A\) is scaled on exit as follows: \\
equed \(='^{\prime}\) ': \(A=\operatorname{diag}(r) * A\) \\
equed \(='^{\prime}\) ': \(A=A * \operatorname{diag}(C)\) \\
equed \(=\) ' \(\mathrm{B}^{\prime}: A=\operatorname{diag}(r) * A * \operatorname{diag}(C)\).
\end{tabular} \\
\hline \(a f b\) & If fact \(=\) ' \(N\) ' or ' E ', then \(a f b\) is an output argument and on exit returns details of the \(L U\) factorization of the original matrix \(A\) (if fact \(=\) ' \(N\) ') or of the equilibrated matrix \(A\) (if fact \(=' E\) '). See the description of \(a b\) for the form of the equilibrated matrix. \\
\hline b & ```
Overwritten by diag(r)*b if trans = 'N' and equed = 'R' or 'B';
overwritten by diag(c)*b if trans = 'T' or 'C' and equed = 'C'
or 'B';
not changed if equed = 'N'.
``` \\
\hline \(r, c\) & These arrays are output arguments if fact \(\neq '^{\prime} F^{\prime}\). See the description of \(r, c\) in Input Arguments section. \\
\hline rcond & \begin{tabular}{l}
REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors. \\
An estimate of the reciprocal condition number of the matrix \(A\) after equilibration (if done). \\
If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info>0.
\end{tabular} \\
\hline ferr & \begin{tabular}{l}
REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors. \\
Array, DIMENSION at least max ( 1, nrhs). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(x\) ). If xtrue is the true solution corresponding to \(x(j), f e r r(j)\) is an estimated upper bound for the magnitude of the largest element in \((x(j)-x t r u e)\) divided by the magnitude of the largest element in \(x(j)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
\end{tabular} \\
\hline berr & \begin{tabular}{l}
REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors. \\
Array, DIMENSION at least max ( \(1, n r h s\) ). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.
\end{tabular} \\
\hline ipiv & If fact \(=\) 'N' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization \(A=L \star U\) of the original matrix \(A\) (if fact \(=' N\) ') or of the equilibrated matrix A (if fact = 'E'). \\
\hline equed & If fact \(\neq{ }^{\prime} F^{\prime}\) ', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section). \\
\hline work, rwork, rpivot & On exit, work (1) for real flavors, or rwork (1) for complex flavors (the Fortran interface) and rpivot (the C interface), contains the reciprocal pivot growth factor norm(A)/norm(U). The "max absolute element" norm is used. If work (1) for real flavors, or rwork(1) for \\
\hline
\end{tabular}
complex flavors is much less than 1 , then the stability of the \(L U\) factorization of the (equilibrated) matrix \(A\) could be poor. This also means that the solution \(x\), condition estimator rcond, and forward error bound ferr could be unreliable. If factorization fails with \(0<\) info \(\leq n\), then work(1) for real flavors, or rwork(1) for complex flavors contains the reciprocal pivot growth factor for the leading info columns of \(A\).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and \(i \leq n\), then \(U(i, i)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned. If info \(=i\), and \(i=n+1\), then \(U\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine gbsvx interface are as follows:
\begin{tabular}{|c|c|}
\hline \(a b\) & Holds the array \(A\) of size \((k l+k u+1, n)\). \\
\hline b & Holds the matrix \(B\) of size ( \(n, n r h s\) ). \\
\hline \(x\) & Holds the matrix \(x\) of size ( \(n, n r h s\) ). \\
\hline \(a f b\) & Holds the array AF of size ( \(2 * k l+k u+1, n)\). \\
\hline ipiv & Holds the vector of length \(n\). \\
\hline \(r\) & Holds the vector of length \(n\). Default value for each element is \(r(i)=\) 1.0_WP. \\
\hline c & Holds the vector of length \(n\). Default value for each element is \(c(i)=\) 1.0_WP. \\
\hline ferr & Holds the vector of length ( \(n r h s\) ). \\
\hline berr & Holds the vector of length ( \(n r h s\) ). \\
\hline trans & Must be 'N', 'C', or 'T'. The default value is 'N'. \\
\hline equed & Must be 'N', 'B', 'C', or 'R'. The default value is ' \(\mathrm{N}^{\prime}\). \\
\hline fact & Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then both arguments af and ipiv must be present; otherwise, an error is returned. \\
\hline rpvgrw & Real value that contains the reciprocal pivot growth factor norm(A)/ norm( \(U\) ). \\
\hline kI & If omitted, assumed \(k l=k u\). \\
\hline ku & Restored as \(k u=1 d a-k l-1\). \\
\hline
\end{tabular}

\section*{?gbsvxx}

\section*{Uses extra precise iterative refinement to compute the solution to the system of linear equations with a banded matrix A and multiple right-hand sides}

\section*{Syntax}

\section*{Fortran 77:}
call sgbsvxx( fact, trans, \(n, ~ k l, ~ k u, ~ n r h s, ~ a b, ~ l d a b, ~ a f b, ~ l d a f b, ~ i p i v, ~ e q u e d, ~ r, ~ c, ~\) b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info )
call dgbsvxx( fact, trans, \(n, ~ k l, ~ k u, ~ n r h s, ~ a b, ~ l d a b, ~ a f b, ~ l d a f b, ~ i p i v, ~ e q u e d, ~ r, ~ c, ~\) b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info )
call cgbsvxx( fact, trans, \(n, k l, k u, ~ n r h s, ~ a b, ~ l d a b, ~ a f b, ~ l d a f b, ~ i p i v, ~ e q u e d, ~ r, ~ c, ~\) b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
call zgbsvxx ( fact, trans, \(n, ~ k l, ~ k u, ~ n r h s, ~ a b, ~ l d a b, ~ a f b, ~ l d a f b, ~ i p i v, ~ e q u e d, ~ r, ~ c, ~\) b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )

\section*{C:}
lapack_int LAPACKE_sgbsvxx( int matrix_order, char fact, char trans, lapack_int n, lapack_int kl, lapack_int ku, lapack_int nrhs, float* ab, lapack_int ldab, float* afb, lapack_int ldafb, lapack_int* ipiv, char* equed, float* r, float* c, float* b, lapack_int ldb, float* x, lapack_int ldx, float* rcond, float* rpvgrw, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, const float* params );
lapack_int LAPACKE_dgbsvxx( int matrix_order, char fact, char trans, lapack_int n,
 \(a f b, ~ l a p a c k\) _int ldafb, lapack_int* ipiv, char* equed, double* r, double* c, double* b, lapack_int ldb, double* \(x, ~ l a p a c k \_i n t ~ l d x, ~ d o u b l e * ~ r c o n d, ~ d o u b l e * ~ r p v g r w, ~ d o u b l e * ~\) berr, lapack_int n_err_bnds, double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, const double* params );
lapack_int LAPACKE_cgbsvxx( int matrix_order, char fact, char trans, lapack_int n, lapack_int kl, lapack_int ku, lapack_int nrhs, lapack_complex_float* ab, lapack_int ldab, lapack_complex_float* afb, lapack_int ldafb, lapack_int* ipiv, char* equed, float* r, float* c, lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx, float* rcond, float* rpvgrw, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, const float* params );
lapack_int LAPACKE_zgbsvxx( int matrix_order, char fact, char trans, lapack_int n, lapack_int kl, lapack_int ku, lapack_int nrhs, lapack_complex_double* ab, lapack_int ldab, lapack_complex_double* afb, lapack_int ldafb, lapack_int* ipiv, char* equed, double* \(r\), double* \(c\), lapack_complex_double* b, lapack_int ldb, lapack_complex_double* \(x, ~ l a p a c k \_i n t ~ l d x, ~ d o u b l e * ~ r c o n d, ~ d o u b l e * ~ r p v g r w, ~ d o u b l e * ~ b e r r, ~ l a p a c k \_i n t ~ n \_e r r \_b n d s, ~\) double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, const double* params );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the \(L U\) factorization to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) banded matrix, the columns of the matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.
Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error ( O (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.
The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with \(o\) (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.
The routine ?gbsvxx performs the following steps:
1. If fact \(=\) ' \(E\) ', scaling factors \(r\) and \(c\) are computed to equilibrate the system:
trans \(=\) 'N': \(\operatorname{diag}(r) * A * \operatorname{diag}(c) * i n v(\operatorname{diag}(c)) * X=\operatorname{diag}(r) * B\)
trans \(=\) 'T': \((\operatorname{diag}(r) \star A \star \operatorname{diag}(C))^{T \star} \operatorname{inv}(\operatorname{diag}(r)) * X=\operatorname{diag}(c) * B\)

Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by \(\operatorname{diag}(r) * A * \operatorname{diag}(C)\) and \(B\) by \(\operatorname{diag}(r) * B\) (if \(\operatorname{trans}={ }^{\prime} N^{\prime}\) ) or diag( \(C\) )*B (if trans \(=\) 'T' or 'C').
2. If fact \(=\) ' \(N\) ' or ' \(E\) ', the \(L U\) decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) ' \(\mathrm{E}^{\prime}\) ) as \(A=P^{\star} L^{\star} U\), where \(P\) is a permutation matrix, \(L\) is a unit lower triangular matrix, and \(U\) is upper triangular.
3. If some \(U_{i, i}=0\), so that \(U\) is exactly singular, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\) (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for \(x\) and compute error bounds.
4. The system of equations is solved for \(x\) using the factored form of \(A\).
5. By default, unless params (la_linrx_itref_i) is set to zero, the routine applies iterative refinement to improve the computed solution matrix and calculate error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix \(x\) is premultiplied by diag(c) (if trans = 'N') or diag (r) (if trans \(=\) ' T ' or ' C ') so that it solves the original system before equilibration.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.

\footnotetext{
fact
}
```

CHARACTER*1. Must be 'F', 'N', or 'E'.

```

Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored.

If fact \(=\) ' \(F\) ', on entry, afb and ipiv contain the factored form of \(A\). If equed is not ' \(N\) ', the matrix \(A\) has been equilibrated with scaling factors given by \(r\) and \(c\). Parameters \(a b, a f b\), and ipiv are not modified. If fact \(=\) ' \(N\) ', the matrix \(A\) will be copied to \(a f b\) and factored. If fact \(=\) ' \(E\) ', the matrix \(A\) will be equilibrated, if necessary, copied to \(a f b\) and factored.
CHARACTER*1. Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans \(=\) ' \(N\) ', the system has the form \(A \star X=B\) (No transpose).
If trans \(=\) ' \(T\) ', the system has the form \(A^{* *} T^{*} X_{X}=B\) (Transpose).
If trans \(=\) ' C ', the system has the form \(A^{* *_{H}{ }^{*}} X=B\) (Conjugate Transpose \(=\) Transpose for real flavors, Conjugate Transpose for complex flavors).
n
kl
ku
nrhs
ab, afb, b, work

Idab
ldafb
ipiv
equed

INTEGER. The number of linear equations; the order of the matrix \(A ; n \geq 0\).
INTEGER. The number of subdiagonals within the band of \(A ; k I \geq 0\).
INTEGER. The number of superdiagonals within the band of \(A ; k u \geq 0\).
INTEGER. The number of right-hand sides; the number of columns of the matrices \(B\) and \(X ; n r h s \geq 0\).
REAL for sgbsvxx
DOUBLE PRECISION for dgbsvxx
COMPLEX for cgbsvxx
DOUBLE COMPLEX for zgbsvxx.
Arrays: \(a b(l d a b, *), a f b(l d a f b, *), b(l d b, *), w o r k(*)\).
The array \(a b\) contains the matrix \(A\) in band storage, in rows 1 to \(k l+k u+1\).
The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows:
\(a b(k u+1+i-j, j)=A(i, j)\) for \(\max (1, j-k u) \leq i \leq \min (n, j+k l)\).
If fact \(=\) ' \(F\) ' and equed is not ' \(N\) ', then \(A B\) must have been equilibrated by the scaling factors in \(r\) and/or \(c\). The second dimension of \(a\) must be at least \(\max (1, n)\).
The array afb is an input argument if fact \(=\) ' F '. It contains the factored form of the banded matrix \(A\), that is, the factors \(L\) and \(U\) from the factorization \(A=P L^{*} U\) as computed by ?gbtrf. \(U\) is stored as an upper triangular banded matrix with \(k I+k u\) superdiagonals in rows 1 to \(k l+k u\) +1 . The multipliers used during the factorization are stored in rows \(k I+k u\) +2 to \(2 * k I+k u+1\). If equed is not ' \(N\) ', then \(a f b\) is the factored form of the equilibrated matrix \(A\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least \(\max (1, n r h s)\).
work (*) is a workspace array. The dimension of work must be at least \(\max \left(1,4 \star_{n}\right)\) for real flavors, and at least \(\max \left(1,2 \star_{n}\right)\) for complex flavors.
INTEGER. The leading dimension of the array \(a b ; l d a b \geq k l+k u+1 .\).
INTEGER. The leading dimension of the array \(a f b ; l d a f b \geq 2 * k l+k u+1 .\).
INTEGER.
Array, DIMENSION at least max \((1, n)\). The array ipiv is an input argument if fact \(='\) ' ' It contains the pivot indices from the factorization \(A=\) \(P^{\star} L^{\star} U\) as computed by ? gbtrf; row \(i\) of the matrix was interchanged with row ipiv(i).
CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact \(={ }^{\prime} F^{\prime}\). It specifies the form of equilibration that was done:
If equed \(=\) ' \(N\) ', no equilibration was done (always true if fact \(=\) ' \(N\) '). If equed = 'R', row equilibration was done, that is, \(A\) has been premultiplied by \(\operatorname{diag}(r)\).
If equed \(=\) ' C', column equilibration was done, that is, \(A\) has been postmultiplied by diag(c).
If equed \(=\) ' \(B\) ', both row and column equilibration was done, that is, \(A\) has been replaced by diag \((r) \star A \star \operatorname{diag}(C)\).
\(r, c \quad\) REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: \(r(n), C(n)\). The array \(r\) contains the row scale factors for \(A\), and the array \(c\) contains the column scale factors for \(A\). These arrays are input arguments if fact \(=\) ' \(F^{\prime}\) only; otherwise they are output arguments.
If equed \(=\) ' \(R\) ' or ' B ', \(A\) is multiplied on the left by \(\operatorname{diag}(r)\); if equed \(=\) \({ }^{\prime} N^{\prime}\) or ' \(C^{\prime}, r\) is not accessed.
If fact \(=\) ' \(F\) ' and equed \(=\) ' \(R\) ' or ' \(B\) ', each element of \(r\) must be positive.
If equed \(=\) ' C' or ' \(\mathrm{B}^{\prime}\), \(A\) is multiplied on the right by \(\operatorname{diag(c)\text {;ifequed}=~=~=~}\) 'N' or 'R', c is not accessed.
If fact \(=\) ' \(F\) ' and equed \(=\) ' C' or 'B', each element of c must be positive.
Each element of \(r\) or \(c\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
INTEGER. The leading dimension of the array \(b ; 1 d b \geq \max (1, n)\).
INTEGER. The leading dimension of the output array \(x ; 1 d x \geq \max (1, n)\).
INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.
INTEGER. Specifies the number of parameters set in params. If \(\leq 0\), the params array is never referenced and default values are used.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION nparams. Specifies algorithm parameters. If an entry is less than 0.0 , that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams \(=0\), which prevents the source code from accessing the params argument.
params(la_linrx_itref_i = 1) : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).
\begin{tabular}{ll}
\(=0.0\) & No refinement is performed and no error bounds \\
are computed.
\end{tabular}
(Other values are reserved for futute use.)
params(la_linrx_ithresh_i = 2) : Maximum number of resudual computations allowed for fefinement.


Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
rpvgrw
berr
err_bnds_norm

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Contains the reciprocal pivot growth factor norm (A)/norm ( \(U\) ). The max absolute element norm is used. If this is much less than 1 , the stability of the \(L U\) factorization of the (equlibrated) matrix \(A\) could be poor. This also means that the solution \(x\), estimated condition numbers, and error bounds could be unreliable. If factorization fails with \(0<i n f o \leq n\), this parameter contains the reciprocal pivot growth factor for the leading info columns of A. In ? gbsvx, this quantity is returned in work (1).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max ( \(1, n r h s\) ). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION ( \(n r h s, n_{-} e r r_{-}\)bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the \(i\)-th solution vector


The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
The first index in err_bnds_norm(i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_norm (: ,err) contains the follwoing three fields:
\begin{tabular}{|c|c|}
\hline \(e r r=1\) & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors. \\
\hline err=2 & "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt ( \(n\) ) *slamch ( \(\varepsilon\) ) for single precision flavors and sqrt ( \(n\) ) *dlamch ( \(\varepsilon\) ) for double precision flavors. This error bound should only be trusted if the previous boolean is true. \\
\hline \(e r r=3\) & Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) *\) slamch ( \(\varepsilon\) ) for single precision flavors \\
\hline
\end{tabular} thereciprocal threshold sqrt ( \(n\) ) * slamch ( \(\varepsilon\) ) for single precision flavors and sqrt \((n) *\) dlamch ( \(\varepsilon\) ) for double precision flavors.
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n)\) *dlamch ( \(\varepsilon\) ) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors
and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1/(norm(1/
\(z, i n f)\) *norm (z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1.
err_bnds_comp

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the \(i\)-th solution vector:


The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) \(=0.0\) ), then err_bnds_comp is not accessed. If \(n_{-} e r r_{-} b n d s\) \(<3\), then at most the first (:, \(n_{-} e r r_{-} b n d s\) ) entries are returned. The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the follwoing three fields:
\begin{tabular}{|c|c|}
\hline err=1 & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt( \(n\) ) *slamch ( \(\varepsilon\) ) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors. \\
\hline err \(=2\) & "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors. This error bound should only be trusted if the previous boolean is true. \\
\hline \(e r r=3\) & \begin{tabular}{l}
Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n)\) *slamch ( \(\varepsilon\) ) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/ \\
\(z\),inf) *norm(z,inf)) for some appropriately scaled matrix \(z\).
\end{tabular} \\
\hline
\end{tabular}

Let \(z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a * \operatorname{diag}(x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1.
\begin{tabular}{|c|c|}
\hline ipiv & If fact \(=\) 'N' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization \(A=P * L * U\) of the original matrix \(A\) (if fact \(=' N\) ') or of the equilibrated matrix \(A\) (if fact \(=' E '\) ). \\
\hline equed & If fact \(\neq ' \mathrm{~F}\) ', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section). \\
\hline params & If an entry is less than 0.0 , that entry is filled with the default value used for that parameter, otherwise the entry is not modified. \\
\hline info & \begin{tabular}{l}
INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
If \(0<i n f o \leq n: U(i n f o, i n f o)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned. \\
If info \(=n+j\) : The solution corresponding to the \(j\)-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides \(k\) with \(k>j\) may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) \(=0.0\), then the \(j\)-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest \(j\) such that err_bnds_norm \((j, 1)=0.0\) or err_bnds_comp \((j, 1)=0.0\). See the definition of err_bnds_norm(; 1) and err_bnds_comp (; ,1). To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.
\end{tabular} \\
\hline
\end{tabular}

\section*{?gtsv}

Computes the solution to the system of linear equations with a tridiagonal matrix \(A\) and multiple right-hand sides.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgtsv(n, nrhs, dl, d, du, b, ldb, info)
call dgtsv(n, nrhs, dl, d, du, b, ldb, info)
call cgtsv(n, nrhs, dl, d, du, b, ldb, info)
call zgtsv(n, nrhs, dl, d, du, b, ldb, info)

```

\section*{Fortran 95:}
```

call gtsv(dl, d, du, b [,info])

```

C:
```

lapack_int LAPACKE_<?>gtsv(int matrix_order, lapack_int n, lapack_int nrhs,
<datatype>* dl, <datatype>* d, <datatype>* du, <datatype>* b, lapack_int ldb);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the system of linear equations \(A * X=B\), where \(A\) is an \(n-b y-n\) tridiagonal matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions. The routine uses Gaussian elimination with partial pivoting.

Note that the equation \(A^{T}{ }^{*} X=B\) may be solved by interchanging the order of the arguments \(d u\) and \(d I\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The order of \(A\), the number of rows in \(B ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides, the number of columns in B; nrhs \(\geq 0\). \\
\hline \multirow[t]{9}{*}{\(d \mathrm{l}, \mathrm{d}, \mathrm{du}, \mathrm{b}\)} & REAL for sgtsv \\
\hline & DOUBLE PRECISION for dgtsv \\
\hline & COMPLEX for cgtsv \\
\hline & DOUBLE COMPLEX for zgtsv. \\
\hline & Arrays: \(d l(n-1), d(n), d u(n-1), b(l d b, *)\). \\
\hline & The array \(d l\) contains the ( \(n-1\) ) subdiagonal elements of \(A\). \\
\hline & The array \(d\) contains the diagonal elements of \(A\). \\
\hline & The array du contains the ( \(n-1\) ) superdiagonal elements of \(A\). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max (1, nrhs). \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by the ( \(n-2\) ) elements of the second superdiagonal of the upper triangular matrix \(U\) from the \(L U\) factorization of A. These elements are stored in \(d l(1), \ldots, d l(n-2)\).
Overwritten by the \(n\) diagonal elements of \(U\).
Overwritten by the ( \(n-1\) ) elements of the first superdiagonal of \(U\). Overwritten by the solution matrix \(x\).

INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, U(i, i)\) is exactly zero, and the solution has not been computed. The factorization has not been completed unless \(i=n\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gtsv interface are as follows:
dl
d
dl
b

Holds the vector of length \((n-1)\).
Holds the vector of length \(n\).
Holds the vector of length \((n-1)\).
Holds the matrix \(B\) of size ( \(n, n r h s\) ).

\section*{?gtsvx}

Computes the solution to the real or complex system of linear equations with a tridiagonal matrix \(A\) and multiple right-hand sides, and provides error bounds on the solution.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x,
ldx, rcond, ferr, berr, work, iwork, info)
call dgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x,
ldx, rcond, ferr, berr, work, iwork, info)
call cgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x,
ldx, rcond, ferr, berr, work, rwork, info)
call zgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x,
ldx, rcond, ferr, berr, work, rwork, info)

```

\section*{Fortran 95:}
call gtsvx ( dl, \(d\), du, b, x [,dlf] [,df] [,duf] [,du2] [,ipiv] [,fact] [,trans] [,ferr] [,berr] [,rcond] [,info] )

\section*{C:}
lapack_int LAPACKE_sgtsvx( int matrix_order, char fact, char trans, lapack_int n, lapack_int nrhs, const float* dl, const float* d, const float* du, float* dlf, float*


lapack_int LAPACKE_dgtsvx( int matrix_order, char fact, char trans, lapack_int n, lapack_int nrhs, const double* dl, const double* \(d\), const double* du, double* dlf,
 \(\left.l d b, ~ d o u b l e * ~ x, ~ l a p a c k \_i n t ~ l d x, ~ d o u b l e * ~ r c o n d, ~ d o u b l e * ~ f e r r, ~ d o u b l e * ~ b e r r ~\right) ; ~\)
lapack_int LAPACKE_cgtsvx( int matrix_order, char fact, char trans, lapack_int n, lapack_int nrhs, const lapack_complex_float* dl, const lapack_complex_float* d, const lapack_complex_float* du, lapack_complex_float* dlf, lapack_complex_float* df, lapack_complex_float* duf, lapack_complex_float* du2, lapack_int* ipiv, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* \(x, ~ l a p a c k \_i n t ~ l d x, ~\) float* rcond, float* ferr, float* berr);
lapack_int LAPACKE_zgtsvx ( int matrix_order, char fact, char trans, lapack_int n, lapack_int nrhs, const lapack_complex_double* dl, const lapack_complex_double* d, const lapack_complex_double* du, lapack_complex_double* dlf, lapack_complex_double* df, lapack_complex_double* duf, lapack_complex_double* du2, lapack_int* ipiv, const lapack_complex_double* \(b, ~ l a p a c k \_i n t ~ l d b, ~ l a p a c k \_c o m p l e x \_d o u b l e * ~ x, ~ l a p a c k \_i n t ~ l d x, ~\) double* rcond, double* ferr, double* berr );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the \(L U\) factorization to compute the solution to a real or complex system of linear equations \(A * X=B, A^{T} * X=B\), or \(A^{H} * X=B\), where \(A\) is a tridiagonal matrix of order \(n\), the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?gtsvx performs the following steps:
1. If fact \(=\) ' \(N\) ', the \(L U\) decomposition is used to factor the matrix \(A\) as \(A=L * U\), where \(L\) is a product of permutation and unit lower bidiagonal matrices and \(U\) is an upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.
2. If some \(U_{i, i}=0\), so that \(U\) is exactly singular, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(x\) and compute error bounds as described below.
3. The system of equations is solved for \(x\) using the factored form of \(A\).
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{fact} & CHARACTER*1. Must be 'F' or 'N'. \\
\hline & Specifies whether or not the factored form of the matrix \(A\) has been supplied on entry. \\
\hline & If fact \(=\) ' F ': on entry, dlf, df, duf, du2, and ipiv contain the factored form of \(A\); arrays \(d l, d, d u, d l f, d f, d u f, d u 2\), and ipiv will not be modified. \\
\hline & If fact \(=\) ' \(N\) ', the matrix \(A\) will be copied to dlf, df, and duf and factored. \\
\hline \multirow[t]{5}{*}{trans} & CHARACTER*1. Must be 'N', 'T', or 'C'. \\
\hline & Specifies the form of the system of equations: \\
\hline & If trans \(=\) ' N ', the system has the form \(A^{\star} X=B\) ( No transpose). \\
\hline & If trans \(=\) ' \(T\) ', the system has the form \(A^{T} * X=B\) (Transpose). \\
\hline & If trans \(=\) ' C ', the system has the form \(A^{H} *_{X}=B\) (Conjugate transpose). \\
\hline \(n\) & InTEGER. The number of linear equations, the order of the matrix \(A ; n\) \(\geq 0\). \\
\hline nrhs & INTEGER. The number of right hand sides, the number of columns of the matrices \(B\) and \(X ; n r h s \geq 0\). \\
\hline \(d \mathrm{~d}, \mathrm{~d}, d u, d l f, d f, d u f, d u 2, b\), & REAL for sgtsvx \\
\hline \multirow[t]{3}{*}{x,work} & DOUBLE PRECISION for dgtsvx \\
\hline & COMPLEX for cgtsvx \\
\hline & DOUBLE COMPLEX for zgtsvx. \\
\hline
\end{tabular}

Arrays:
dl, DIMENSION ( \(n-1\) ), contains the subdiagonal elements of \(A\). d, DIMENSION ( \(n\) ), contains the diagonal elements of \(A\). \(d u\), DIMENSION ( \(n-1\) ), contains the superdiagonal elements of \(A\). dlf, DIMENSION ( \(n-1\) ). If fact \(=' \mathrm{~F}\) ', then dlf is an input argument and on entry contains the ( \(n-1\) ) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\) as computed by ? gttrf. \(d f\), DIMENSION \((n)\). If fact \(=' F^{\prime}\), then \(d f\) is an input argument and on entry contains the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of \(A\).
duf, DIMENSION ( \(n-1\) ). If fact \(=' F^{\prime}\), then duf is an input argument and on entry contains the ( \(n-1\) ) elements of the first superdiagonal of \(U\).
du2, DIMENSION ( \(n-2\) ). If fact \(=' F^{\prime}\), then du2 is an input argument and on entry contains the ( \(n-2\) ) elements of the second superdiagonal of \(U\).
\(b\) (ldb*) contains the right-hand side matrix \(B\). The second dimension of \(b\) must be at least max ( \(1, n r h s\) ).
\(x\left(I d x^{*}\right)\) contains the solution matrix \(x\). The second dimension of \(x\) must be at least max (1, nrhs).
work (*) is a workspace array.
DIMENSION of work must be at least max \((1,3 * n)\) for real flavors and \(\max \left(1,2 *_{n}\right)\) for complex flavors.

1 db
\(1 d x\)
ipiv
iwork
rwork

\section*{Output Parameters}

X
\(d l f\)
\(d f\)
duf

REAL for sgtsvx
DOUBLE PRECISION for dgtsvx
COMPLEX for cgtsvx
DOUBLE COMPLEX for zgtsvx.
Array, DIMENSION (ldx,*).
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix
\(x\). The second dimension of \(x\) must be at least max ( \(1, n r h s\) ).
If fact \(=\) ' \(N\) ', then dlf is an output argument and on exit contains the \((n-1)\) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\).
If fact \(=\) ' \(N\) ', then \(d f\) is an output argument and on exit contains the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of \(A\).
If fact \(=\) 'N', then duf is an output argument and on exit contains the \((n-1)\) elements of the first superdiagonal of \(U\).
\begin{tabular}{|c|c|}
\hline du2 & If fact \(=\) ' \(N\) ', then \(d u 2\) is an output argument and on exit contains the \((n-2)\) elements of the second superdiagonal of \(U\). \\
\hline ipiv & The array ipiv is an output argument if fact \(=\) ' \(N\) ' and, on exit, contains the pivot indices from the factorization \(A=L^{\star} U\); row \(i\) of the matrix was interchanged with row ipiv(i). The value of ipiv(i) will always be \(i\) or \(i+1\); ipiv( \(i\) )=i indicates a row interchange was not required. \\
\hline \multirow[t]{3}{*}{rcond} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & An estimate of the reciprocal condition number of the matrix \(A\). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info>0. \\
\hline \multirow[t]{4}{*}{ferr} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Array, DIMENSION at least max ( 1, nrhs). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(x\) ). If \(x\) true is the true solution corresponding to \\
\hline & largest element in ( \(x(j)\) - xtrue) divided by the magnitude of the largest element in \(x(j)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error. \\
\hline \multirow[t]{3}{*}{berr} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Array, DIMENSION at least max ( \(1, n r h s\) ). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution. \\
\hline \multirow[t]{4}{*}{info} & INTEGER. If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
\hline & If info \(=i\), and \(i \leq n\), then \(U(i, i)\) is exactly zero. The factorization has not been completed unless \(i=n\), but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; \\
\hline & rcond \(=0\) is returned. If info \(=i\), and \(i=n+1\), then \(U\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest. \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gtsvx interface are as follows:
```

dl Holds the vector of length (n-1).
d Holds the vector of length n.
du Holds the vector of length (n-1).
b Holds the matrix B of size (n,nrhs).

```
\begin{tabular}{|c|c|}
\hline \(x\) & Holds the matrix \(x\) of size ( \(n, n r h s\) ) . \\
\hline dlf & Holds the vector of length ( \(n-1\) ). \\
\hline df & Holds the vector of length \(n\). \\
\hline duf & Holds the vector of length ( \(n-1\) ). \\
\hline du2 & Holds the vector of length ( \(n-2\) ). \\
\hline ipiv & Holds the vector of length \(n\). \\
\hline ferr & Holds the vector of length (nrhs). \\
\hline berr & Holds the vector of length (nrhs). \\
\hline fact & Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then the arguments dlf, df, duf, du2, and ipiv must be present; otherwise, an error is returned. \\
\hline trans & Must be 'N', 'C', or 'T'. The default value is 'N'. \\
\hline
\end{tabular}

\section*{?dtsvb}

Computes the solution to the system of linear equations with a diagonally dominant tridiagonal matrix A and multiple right-hand sides.

\section*{Syntax}

\section*{Fortran 77:}
```

call sdtsvb(n, nrhs, dl, d, du, b, ldb, info)
call ddtsvb(n, nrhs, dl, d, du, b, ldb, info)
call cdtsvb(n, nrhs, dl, d, du, b, ldb, info)
call zdtsvb(n, nrhs, dl, d, du, b, ldb, info)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ? dtsvb routine solves a system of linear equations \(A^{\star} X=B\) for \(X\), where \(A\) is an \(n\)-by- \(n\) diagonally dominant tridiagonal matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions. The routine uses the BABE (Burning At Both Ends) algorithm.
Note that the equation \(A^{T} *_{X}=B\) may be solved by interchanging the order of the arguments \(d u\) and \(d l\).

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. The order of \(A\), the number of rows in \(B ; n \geq 0\). \\
\(n r h s\) & INTEGER. The number of right-hand sides, the number of columns in \\
& \(B ; n r h s \geq 0\). \\
& REAL for \(s d t s v b\) \\
& DOUBLE PRECISION for ddtsvb \\
& COMPLEX for cdtsvb \\
& DOUBLE COMPLEX for \(z d t s v b\). \\
& Arrays: \(d l(n-1), d(n), d u(n-1), b(l d b, *)\). \\
& The array \(d l\) contains the \((n-1)\) subdiagonal elements of \(A\). \\
& The array \(d\) contains the diagonal elements of \(A\).
\end{tabular}

The array \(d u\) contains the \((n-1)\) superdiagonal elements of \(A\). The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max ( \(1, n r h s\) ).

1 db
INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\).

\section*{Output Parameters}
```

dl
d
b
info

```

Overwritten by the ( \(n-1\) ) elements of the subdiagonal of the lower triangular matrices \(L_{1}, L_{2}\) from the factorization of \(A\).

Overwritten by the \(n\) diagonal element reciprocals of \(U\).
Overwritten by the solution matrix \(x\).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, u_{i i}\) is exactly zero, and the solution has not been computed. The factorization has not been completed unless \(i=n\).

\section*{Application Notes}

A diagonally dominant tridiagonal system is defined such that \(\left|d_{i}\right|>\left|d l_{i-1}\right|+\left|d u_{i}\right|\) for any \(i\) :


The underlying BABE algorithm is designed for diagonally dominant systems. Such systems have no numerical stability issue unlike the canonical systems that use elimination with partial pivoting (see ?gtsv). The diagonally dominant systems are much faster than the canonical systems.

\section*{NOTE}
- The current implementation of BABE has a potential accuracy issue on very small or large data close to the underflow or overflow threshold respectively. Scale the matrix before applying the solver in the case of such input data.
- Applying the ?dtsvb factorization to non-diagonally dominant systems may lead to an accuracy loss, or false singularity detected due to no pivoting.

\section*{?posv}

Computes the solution to the system of linear equations with a symmetric or Hermitian positivedefinite matrix A and multiple right-hand sides.

\section*{Syntax}

\section*{Fortran 77:}
```

call sposv(uplo, n, nrhs, a, lda, b, ldb, info)
call dposv(uplo, n, nrhs, a, lda, b, ldb, info)
call cposv(uplo, n, nrhs, a, lda, b, ldb, info)
call zposv(uplo, n, nrhs, a, lda, b, ldb, info)
call dsposv(uplo, n, nrhs, a, lda, b, ldb, x, ldx, work, swork, iter, info)
call zcposv(uplo, n, nrhs, a, lda, b, ldb, x, ldx, work, swork, rwork, iter, info)

```

\section*{Fortran 95:}
```

call posv(a, b [,uplo] [,info])

```

C:
lapack_int LAPACKE_<?>posv( int matrix_order, char uplo, lapack_int n, lapack_int nrhs,

lapack_int LAPACKE_dsposv( int matrix_order, char uplo, lapack_int n, lapack_int nrhs, double* \(a, ~ l a p a c k \_i n t ~ l d a, ~ d o u b l e * ~ b, ~ l a p a c k \_i n t ~ l d b, ~ d o u b l e * ~ x, ~ l a p a c k \_i n t ~ l d x, ~\) lapack_int* iter );
lapack_int LAPACKE_zCposv( int matrix_order, char uplo, lapack_int n, lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb,


\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by-n symmetric/Hermitian positive-definite matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.

The Cholesky decomposition is used to factor \(A\) as
\(A=U^{T} * U\) (real flavors) and \(A=U^{H} * U\) (complex flavors), if uplo \(='^{\prime}\)
or \(A=L^{\star} L^{T}\) (real flavors) and \(A=L^{\star} L^{H}\) (complex flavors), if uplo = 'L',
where \(U\) is an upper triangular matrix and \(L\) is a lower triangular matrix. The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

The dsposv and zcposv are mixed precision iterative refinement subroutines for exploiting fast single precision hardware. They first attempt to factorize the matrix in single precision (dsposv) or single complex precision (zcposv) and use this factorization within an iterative refinement procedure to produce a solution with double precision (dsposv) / double complex precision (zcposv) normwise backward error quality (see below). If the approach fails, the method switches to a double precision or double complex precision factorization respectively and computes the solution.

The iterative refinement is not going to be a winning strategy if the ratio single precision/COMPLEX performance over double precision/DOUBLE COMPLEX performance is too small. A reasonable strategy should take the number of right-hand sides and the size of the matrix into account. This might be done with a call to ilaenv in the future. At present, iterative refinement is implemented.

The iterative refinement process is stopped if
iter > itermax
or for all the right-hand sides:
rnmr < sqrt(n)*xnrm*anrm*eps*bwdmax,
where
- iter is the number of the current iteration in the iterative refinement process
- rnmr is the infinity-norm of the residual
- xnrm is the infinity-norm of the solution
- anrm is the infinity-operator-norm of the matrix \(A\)
- eps is the machine epsilon returned by dlamch ('Epsilon').

The values itermax and bwdmax are fixed to 30 and \(1.0 \mathrm{~d}+00\) respectively.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates whether the upper or lower triangular part of \(A\) is stored: \\
If uplo = 'U', the upper triangle of \(A\) is stored. \\
If uplo = 'L', the lower triangle of \(A\) is stored.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides, the number of columns in B; nrhs \(\geq 0\). \\
\hline \multirow[t]{7}{*}{\(a, b\)} & REAL for sposv \\
\hline & DOUBLE PRECISION for dposv and dsposv. \\
\hline & COMPLEX for cposv \\
\hline & DOUBLE COMPLEX for zposv and zcposv. \\
\hline & Arrays: \(a(l d a, *), b(l d b, *)\). The array \(a\) contains the upper or the lower triangular part of the matrix \(A\) (see uplo). The second dimension of a must be at least max \((1, n)\). \\
\hline & Note that in the case of zcposv the imaginary parts of the diagonal elements need not be set and are assumed to be zero. \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max ( \(1, n r h s\) ). \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline \(1 d x\) & INTEGER. The leading dimension of the array \(x ; 1 d x \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{work} & DOUBLE PRECISION for dsposv \\
\hline & DOUBLE COMPLEX for zcposv. \\
\hline & Workspace array, DIMENSION ( \(n^{\star} n r h s\) ). This array is used to hold the residual vectors. \\
\hline \multirow[t]{3}{*}{swork} & REAL for dsgesv \\
\hline & COMPLEX for zcgesv. \\
\hline & Workspace array, DIMENSION ( \(n^{*}(n+n r h s)\) ). This array is used to use the single precision matrix and the right-hand sides or solutions in single precision. \\
\hline rwork & DOUBLE PRECISION. Workspace array, DIMENSION ( \(n\) ). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
b
ipiv

If info \(=0\), the upper or lower triangular part of \(a\) is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.
If iterative refinement has been successfully used (info \(=0\) and iter \(\geq 0\) ), then \(A\) is unchanged.
If double precision factorization has been used (info= 0 and iter < 0 ), then the array \(A\) contains the factors \(L\) and \(U\) from the Cholesky factorization; the unit diagonal elements of \(L\) are not stored.
Overwritten by the solution matrix \(x\).
INTEGER.

Array, DIMENSION at least max \((1, n)\). The pivot indices that define the permutation matrix \(P\); row \(i\) of the matrix was interchanged with row ipiv(i). Corresponds to the single precision factorization (if info \(=0\) and iter \(\geq 0\) ) or the double precision factorization (if info= 0 and iter \(<0\) ).
x
DOUBLE PRECISION for dsposv
DOUBLE COMPLEX for zcposv.
Array, DIMENSION (Idx, nrhs). If info \(=0\), contains the \(n\)-by-nrhs solution matrix \(X\).

INTEGER.
If iter < 0: iterative refinement has failed, double precision factorization has been performed
- If iter \(=-1\) : the routine fell back to full precision for implementation- or machine-specific reason
- If iter \(=-2\) : narrowing the precision induced an overflow, the routine fell back to full precision
- If iter \(=-3\) : failure of spotrf for dsposv, or cpotrf for zcposv
- If iter \(=-31\) : stop the iterative refinement after the 30th iteration.

If iter > 0: iterative refinement has been successfully used. Returns the number of iterations.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive definite, so the factorization could not be completed, and the solution has not been computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine posv interface are as follows:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((n, n)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
uplo & Must be ' \(U\) ' or ' \(L\) '. The default value is ' \(U\) '.
\end{tabular}
```

?posvx
Uses the Cholesky factorization to compute the
solution to the system of linear equations with a
symmetric or Hermitian positive-definite matrix A, and
provides error bounds on the solution.
Syntax

```

Fortran 77:
```

call sposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
ferr, berr, work, iwork, info)
call dposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
ferr, berr, work, iwork, info)

```
```

call cposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)
call zposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

```

\section*{Fortran 95:}
```

call posvx(a, b, x [,uplo] [,af] [,fact] [, equed] [,s] [,ferr] [,berr] [,rcond]
[,infO])

```

C:
```

lapack_int LAPACKE_sposvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, float* a, lapack_int lda, float* af, lapack_int ldaf, char* equed,
float* s, float* b, lapack_int ldb, float* x, lapack_int ldx, float* rcond, float*
ferr, float* berr);
lapack_int LAPACKE_dposvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, double* a, lapack_int lda, double* af, lapack_int ldaf, char* equed,
double* s, double* b, lapack_int ldb, double* x, lapack_int ldx, double* rcond,
double* ferr, double* berr);
lapack_int LAPACKE_cposvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* af,
lapack_int ldaf, char* equed, float* s, lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* x, lapack_int ldx, float* rcond, float* ferr, float* berr);
lapack_int LAPACKE_zposvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* af,
lapack_int ldaf, char* equed, double* s, lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* x, lapack_int ldx, double* rcond, double* ferr, double* berr);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the Cholesky factorization \(A=U^{T} * U\) (real flavors) / \(A=U^{H} * U\) (complex flavors) or \(A=L^{\star} L^{T}\) (real flavors) / \(A=L^{\star} L^{H}\) (complex flavors) to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is a \(n\)-by-n real symmetric/Hermitian positive definite matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?posvx performs the following steps:
1. If fact \(=\) ' \(E\) ', real scaling factors \(s\) are computed to equilibrate the system:
\(\operatorname{diag}(s){ }^{*} A^{*} \operatorname{diag}(s) * \operatorname{inv}(\operatorname{diag}(s)) * X=\operatorname{diag}(s) * B\).
Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by \(\operatorname{diag}(S) * A * \operatorname{diag}(s)\) and \(B\) by \(\operatorname{diag}(s) * B\).
2. If fact \(=\) ' \(N\) ' or 'E', the Cholesky decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) 'E') as
\(A=U^{T} * U\) (real), \(A=U^{H} * U\) (complex), if uplo = 'U',
or \(A=L * L^{T}\) (real), \(A=L^{*} L^{H}\) (complex), if uplo = 'L',
where \(U\) is an upper triangular matrix and \(L\) is a lower triangular matrix.
3. If the leading \(i\)-by-i principal minor is not positive-definite, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(x\) and compute error bounds as described below.
4. The system of equations is solved for \(x\) using the factored form of \(A\).
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix \(x\) is premultiplied by \(\operatorname{diag}(s)\) so that it solves the original system before equilibration.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline fact & \begin{tabular}{l}
CHARACTER*1. Must be 'F', 'N', or 'E'. \\
Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored. \\
If fact \(=\) ' \(F\) ': on entry, af contains the factored form of \(A\). If equed \(=\) ' \(Y\) ', the matrix \(A\) has been equilibrated with scaling factors given by \(s\). \\
\(a\) and af will not be modified. \\
If fact \(=\) ' \(N\) ', the matrix \(A\) will be copied to af and factored. \\
If fact \(=\) ' \(E\) ', the matrix \(A\) will be equilibrated if necessary, then copied to af and factored.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates whether the upper or lower triangular part of \(A\) is stored: \\
If uplo = 'U', the upper triangle of \(A\) is stored. \\
If uplo = 'L', the lower triangle of \(A\) is stored.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides, the number of columns in B; nrhs \(\geq 0\). \\
\hline \multirow[t]{7}{*}{a, af, b, work} & REAL for sposvx \\
\hline & DOUBLE PRECISION for dposvx \\
\hline & COMPLEX for cposvx \\
\hline & DOUBLE COMPLEX for zposvx. \\
\hline & \begin{tabular}{l}
Arrays: \(a(I d a, *), a f(l d a f, *), b(l d b, *), w o r k(*)\). \\
The array a contains the matrix \(A\) as specified by uplo. If fact \(='^{\prime} \mathrm{F}^{\prime}\) and equed \(=\) 'Y', then \(A\) must have been equilibrated by the scaling factors in \(s\), and a must contain the equilibrated matrix \(\operatorname{diag}(s) * A^{*} \operatorname{diag}(s)\). The second dimension of a must be at least \(\max (1, n)\).
\end{tabular} \\
\hline & The array \(a f\) is an input argument if fact \(='^{\prime}\) '. It contains the triangular factor \(U\) or \(L\) from the Cholesky factorization of \(A\) in the same storage format as \(A\). If equed is not ' \(N\) ', then af is the factored form of the equilibrated matrix \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\). The second dimension of af must be at least max \((1, n)\). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max (1, nrhs). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & work (*) is a workspace array. The dimension of work must be at least \(\max (1,3 * n)\) for real flavors, and at least max \((1,2 * n)\) for complex flavors. \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline Idaf & INTEGER. The leading dimension of \(\mathrm{I}^{\prime} ; 1 \mathrm{daf} \geq \max (1, n)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline equed & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'Y'. \\
equed is an input argument if fact \(={ }^{\prime} \mathrm{F}^{\prime}\). It specifies the form of equilibration that was done: \\
if equed \(=\) 'N', no equilibration was done (always true if fact = 'N'); \\
if equed \(=\) ' \(Y\) ', equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).
\end{tabular} \\
\hline S & \begin{tabular}{l}
REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors. \\
Array, DIMENSION ( \(n\) ). The array \(s\) contains the scale factors for \(A\). \\
This array is an input argument if fact \(={ }^{\prime} \mathrm{F}^{\prime}\) only; otherwise it is an output argument. \\
If equed \(=\) ' \(N\) ', \(s\) is not accessed. \\
If fact \(=\) ' F ' and equed \(=\) ' Y ', each element of \(s\) must be positive.
\end{tabular} \\
\hline \(1 d x\) & INTEGER. The leading dimension of the output array \(x ; 1 d x \geq \max (1\), n). \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least max \((1, n)\); used in real flavors only. \\
\hline rwork & \begin{tabular}{l}
REAL for cposvx \\
DOUBLE PRECISION for zposvx. \\
Workspace array, DIMENSION at least max ( \(1, n\) ) ; used in complex flavors only.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

REAL for sposvx
DOUBLE PRECISION for dposvx
COMPLEX for cposvx
DOUBLE COMPLEX for zposvx.
Array, DIMENSION (ldx,*).
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(x\) to the original system of equations. Note that if equed \(=\) ' \(Y\) ', \(A\) and \(B\) are modified on exit, and the solution to the equilibrated system is inv \((\operatorname{diag}(s)) * X\). The second dimension of \(x\) must be at least max (1, nrhs).
Array \(a\) is not modified on exit if fact \(=\) ' \(\mathrm{F}^{\prime}\) or 'N', or if fact \(=\) ' E ' and equed \(=\) ' \(\mathrm{N}^{\prime}\).
If fact \(=\) ' \(E\) ' and equed \(=\) 'Y', \(A\) is overwritten by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).
If fact \(=\) 'N' or 'E', then af is an output argument and on exit returns the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{\star} \star T^{\star} U\) or \(A=L^{\star} L^{\star *} T\) (real routines), \(A=U^{\star} \star H^{\star} U\) or \(A=L^{\star} L^{\star *} H\) (complex routines) of the original matrix \(A\) (if fact \(='^{\prime} N^{\prime}\) ), or of the equilibrated matrix \(A\) (if fact \(='^{\prime} E^{\prime}\) ). See the description of \(a\) for the form of the equilibrated matrix.
\begin{tabular}{|c|c|}
\hline b & Overwritten by \(\operatorname{diag}(s) * B\), if equed \(=\) ' \(Y\) '; not changed if equed \(=\) 'N'. \\
\hline \(s\) & This array is an output argument if fact \(\neq{ }^{\prime} F^{\prime}\). See the description of \(s\) in Input Arguments section. \\
\hline \multirow[t]{3}{*}{rcond} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & An estimate of the reciprocal condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info>0. \\
\hline \multirow[t]{5}{*}{ferr} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Array, DIMENSION at least max ( \(1, \operatorname{nrhs}\) ). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(x\) ). If xtrue is the true solution corresponding to \\
\hline & \(x(j), f e r r(j)\) is an estimated upper bound for the magnitude of the largest element in \((x(j)-x t r u e)\) divided by the magnitude of the \\
\hline & largest element in \(x(j)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error. \\
\hline \multirow[t]{3}{*}{berr} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Array, DIMENSION at least max ( \(1, n r h s\) ). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution. \\
\hline equed & If fact \(\neq '^{\prime} F^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section). \\
\hline \multirow[t]{3}{*}{info} & \begin{tabular}{l}
INTEGER. If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value.
\end{tabular} \\
\hline & If info \(=i\), and \(i \leq n\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond \(=0\) is returned. \\
\hline & If info \(=i\), and \(i=n+1\), then \(U\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest. \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine posvx interface are as follows:
```

a Holds the matrix A of size (}n,n)\mathrm{ .
b Holds the matrix B of size (n,nrhs).
x
Holds the matrix }X\mathrm{ of size (}n,nrhs)\mathrm{ .

```
af Holds the matrix \(A F\) of size \((n, n)\).

Holds the vector of length \(n\). Default value for each element is \(s(i)=\) 1.0_WP.
ferr Holds the vector of length (nrhs).
berr
Holds the vector of length ( \(n r h s\) ).
uplo
Must be 'U' or 'L'. The default value is 'U'.
fact
Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = ' \(\mathrm{F}^{\prime}\), then af must be present; otherwise, an error is returned.
equed
Must be 'N' or 'Y'. The default value is 'N'.

\section*{?posvxx}

Uses extra precise iterative refinement to compute the solution to the system of linear equations with a symmetric or Hermitian positive-definite matrix \(A\) applying the Cholesky factorization.

\section*{Syntax}

\section*{Fortran 77:}
call sposvxx( fact, uplo, \(n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ e q u e d, ~ s, ~ b, ~ l d b, ~ x, ~ l d x, ~ r c o n d, ~\) rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info )
call dposvxx( fact, uplo, \(n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ e q u e d, ~ s, ~ b, ~ l d b, ~ x, ~ l d x, ~ r c o n d, ~\) rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info )
call cposvxx( fact, uplo, \(n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ e q u e d, ~ s, ~ b, ~ l d b, ~ x, ~ l d x, ~ r c o n d, ~\) rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
call zposvxx( fact, uplo, \(n, ~ n r h s, ~ a, ~ l d a, ~ a f, ~ l d a f, ~ e q u e d, ~ s, ~ b, ~ l d b, ~ x, ~ l d x, ~ r c o n d, ~\) rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )

C:
lapack_int LAPACKE_sposvxx( int matrix_order, char fact, char uplo, lapack_int n, lapack_int nrhs, float* a, lapack_int lda, float* af, lapack_int ldaf, char* equed,
 rpvgrw, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, const float* params );
lapack_int LAPACKE_dposvxx( int matrix_order, char fact, char uplo, lapack_int n, lapack_int nrhs, double* a, lapack_int lda, double* af, lapack_int ldaf, char* equed, double* \(s\), double* \(b, ~ l a p a c k \_i n t ~ l d b, ~ d o u b l e * ~ x, ~ l a p a c k \_i n t ~ l d x, ~ d o u b l e * ~ r c o n d, ~\) double* rpvgrw, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, const double* params );
lapack_int LAPACKE_cposvxx( int matrix_order, char fact, char uplo, lapack_int n, lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* af, lapack_int ldaf, char* equed, float* \(s\), lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx, float* rcond, float* rpvgrw, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, const float* params );
```

lapack_int LAPACKE_zposvxx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* af,
lapack_int ldaf, char* equed, double* s, lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* x, lapack_int ldx, double* rcond, double* rpvgrw, double* berr,
lapack_int n_err_bnds, double* err_bnds_norm, double* err_bnds_comp, lapack_int
nparams, const double* params);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the Cholesky factorization \(A=U^{T} * U\) (real flavors) / \(A=U^{H} * U\) (complex flavors) or \(A=L^{\star} L^{T}\) (real flavors) / \(A=L^{\star} L^{H}\) (complex flavors) to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) real symmetric/Hermitian positive definite matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.

Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error ( O (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.

The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with o (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.

The routine ?posvxx performs the following steps:
1. If fact \(=\) ' \(E\) ', scaling factors are computed to equilibrate the system:
\(\operatorname{diag}(s) * A * \operatorname{diag}(s) * \operatorname{inv}(\operatorname{diag}(s)) * X=\operatorname{diag}(s) * B\)
Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\) and \(B\) by \(\operatorname{diag}(s) * B\).
2. If fact \(=\) ' \(N\) ' or ' \(E\) ', the Cholesky decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) 'E') as
\(A=U^{T} * U\) (real), \(A=U^{H} * U\) (complex), if uplo \(=' U '\),
or \(A=L^{\star} L^{T}\) (real), \(A=L^{\star} L^{H}\) (complex), if uplo \(=\) 'L',
where \(U\) is an upper triangular matrix and \(L\) is a lower triangular matrix.
3. If the leading \(i\)-by- \(i\) principal minor is not positive-definite, the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\) (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for \(x\) and compute error bounds.
4. The system of equations is solved for \(x\) using the factored form of \(A\).
5. By default, unless params (la_linrx_itref_i) is set to zero, the routine applies iterative refinement to get a small error and error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix \(x\) is premultiplied by \(\operatorname{diag}(s)\) so that it solves the original system before equilibration.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

fact CHARACTER*1.Must be 'F','N', or 'E'.

```

Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored.
If fact \(=\) ' \(F\) ', on entry, af contains the factored form of \(A\). If equed is not ' \(N\) ', the matrix \(A\) has been equilibrated with scaling factors given by \(s\). Parameters a and af are not modified.
If fact \(=\) ' \(N\) ', the matrix \(A\) will be copied to \(a f\) and factored.
If fact \(=\) ' \(E\) ', the matrix \(A\) will be equilibrated, if necessary, copied to af and factored.

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored:
If uplo = 'U', the upper triangle of \(A\) is stored.
If uplo = 'L', the lower triangle of \(A\) is stored.
INTEGER. The number of linear equations; the order of the matrix \(A ; n \geq 0\).
INTEGER. The number of right-hand sides; the number of columns of the matrices \(B\) and \(x ; n r h s \geq 0\).

REAL for sposvxx
DOUBLE PRECISION for dposvxx
COMPLEX for cposvxx
DOUBLE COMPLEX for zposvxx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).
The array a contains the matrix \(A\) as specified by uplo. If fact \(={ }^{\prime} F^{\prime}\) and equed = 'Y', then A must have been equilibrated by the scaling factors in \(s\), and a must contain the equilibrated matrix \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\). The second dimension of a must be at least max \((1, n)\).
The array \(a f\) is an input argument if fact \(=' F^{\prime}\). It contains the triangular factor \(U\) or \(L\) from the Cholesky factorization of \(A\) in the same storage format as \(A\). If equed is not ' \(N\) ', then \(a f\) is the factored form of the equilibrated matrix \(\operatorname{diag}(s) * A \star \operatorname{diag}(s)\). The second dimension of af must be at least max \((1, n)\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least
max (1, nrhs).
If equed \(=\) ' \(N\) ', s is not accessed.
If fact \(=\) ' F ' and equed \(=\) 'Y', each element of \(s\) must be positive. work (*) is a workspace array. The dimension of work must be at least \(\max (1,4 * n)\) for real flavors, and at least max \(\left(1,2 *_{n}\right)\) for complex flavors.
INTEGER. The leading dimension of the array \(a ; ~ I d a \geq \max (1, n)\).
INTEGER. The leading dimension of the array af; ldaf \(\geq \max (1, n)\).
CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact \(={ }^{\prime} F^{\prime}\). It specifies the form of equilibration that was done:
If equed \(=\) ' \(N\) ', no equilibration was done (always true if fact \(=\) ' \(N\) '). if equed = 'Y', both row and column equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).


DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max ( \(1,3^{*} n\) ) ; used in complex flavors only.

\section*{Output Parameters}

REAL for sposvxx
DOUBLE PRECISION for dposvxx
COMPLEX for cposvxx
DOUBLE COMPLEX for zposvxx.
Array, DIMENSION (ldx,*).
If info \(=0\), the array \(x\) contains the solution \(n\)-by-nrhs matrix \(x\) to the original system of equations. Note that \(A\) and \(B\) are modified on exit if equed \(\neq\) ' \(N\) ', and the solution to the equilibrated system is:
inv (diag(s)) *X.
Array a is not modified on exit if fact \(='^{\prime} \mathrm{F}^{\prime}\) or 'N', or if fact \(=\) 'E' and equed \(=\) 'N'.
If fact \(=\) ' E ' and equed \(=\) 'Y', \(A\) is overwritten by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).
If fact \(=\) 'N' or 'E', then \(a f\) is an output argument and on exit returns the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{*} * T^{*} U\) or \(A=L^{\star} L^{\star *} T\) (real routines), \(A=U^{* *} H^{\star} U\) or \(A=L^{\star} L^{* *} H\) (complex routines) of the original matrix \(A\) (if fact \(=\) ' \(N\) '), or of the equilibrated matrix \(A\) (if fact \(=\) ' \(E\) '). See the description of \(a\) for the form of the equilibrated matrix.

If equed \(=\) ' \(N\) ', \(B\) is not modified.
If equed \(=\) ' \(Y\) ', \(B\) is overwritten by \(\operatorname{diag}(s) * B\).
This array is an output argument if fact \(\neq\) ' \(F^{\prime}\). Each element of this array is a power of the radix. See the description of \(s\) in Input Arguments section.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Contains the reciprocal pivot growth factor norm (A)/norm ( \(U\) ). The max absolute element norm is used. If this is much less than 1 , the stability of the \(L U\) factorization of the (equlibrated) matrix \(A\) could be poor. This also means that the solution \(X\), estimated condition numbers, and error bounds could be unreliable. If factorization fails with \(0<i n f o \leq n\), this parameter contains the reciprocal pivot growth factor for the leading info columns of A.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max ( \(1, n r h s\) ). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the \(i\)-th solution vector


The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned. The first index in err_bnds_norm(i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_norm (: ,err) contains the follwoing three fields:
err=1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt ( \(n\) ) *slamch ( \(\varepsilon\) ) for single precision flavors and sqrt ( \(n\) ) *dlamch ( \(\varepsilon\) ) for double precision flavors.
err=2 "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n)\) *dlamch ( \(\varepsilon\) ) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
err=3
Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * s l a m c h(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/
\(z\),inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1.
err_bnds_comp
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION ( \(n r h s, n_{-} e r r_{-}\)bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the \(i\)-th solution vector:
\(\max _{j} \frac{\left|X t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}\)

The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) \(=0.0\) ), then err_bnds_comp is not accessed. If n_err_bnds \(<3\), then at most the first (: \(n_{-} e r r_{-}\)bnds) entries are returned. The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the follwoing three fields:
err=1
```

err=2

```
err=3
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt ( \(n\) ) *slamch ( \(\varepsilon\) ) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors.
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n)\) *dlamch ( \(\varepsilon\) ) for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/
z,inf) *norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=S^{\star}\left(a^{\star} \operatorname{diag}(x)\right)\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a^{\star} \operatorname{diag}(x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1 .

If fact \(\neq '^{\prime} F^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
If an entry is less than 0.0 , that entry is filled with the default value used for that parameter, otherwise the entry is not modified.

INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If \(0<i n f o \leq n: U(i n f o, i n f o)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=n+j\) : The solution corresponding to the \(j\)-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides \(k\) with \(k>j\) may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested
params (3) \(=0.0\), then the \(j\)-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest \(j\) such that err_bnds_norm \((j, 1)=0.0\) or err_bnds_comp \((j, 1)=0.0\). See the definition of err_bnds_norm(; 1) and err_bnds_comp(; 1). To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

\section*{?ppsv}

Computes the solution to the system of linear equations with a symmetric (Hermitian) positive definite packed matrix A and multiple right-hand sides.

Syntax

\section*{Fortran 77:}
```

call sppsv(uplo, n, nrhs, ap, b, ldb, info)
call dppsv(uplo, n, nrhs, ap, b, ldb, info)
call cppsv(uplo, n, nrhs, ap, b, ldb, info)
call zppsv(uplo, n, nrhs, ap, b, ldb, info)

```

\section*{Fortran 95:}
```

call ppsv(ap, b [,uplo] [,info])

```

C:
lapack_int LAPACKE_<?>ppsv( int matrix_order, char uplo, lapack_int n, lapack_int nrhs, <datatype>* ap, <datatype>* b, lapack_int ldb );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) real symmetric/Hermitian positive-definite matrix stored in packed format, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.

The Cholesky decomposition is used to factor \(A\) as
\(A=U^{T} * U\) (real flavors) and \(A=U^{H} * U\) (complex flavors), if uplo \(='^{\prime}\)
or \(A=L^{\star} L^{T}\) (real flavors) and \(A=L^{\star} L^{H}\) (complex flavors), if uplo \(=\) ' \(L\) ',
where \(U\) is an upper triangular matrix and \(L\) is a lower triangular matrix. The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.


\section*{Output Parameters}
\(a p\)
b
info

If info \(=0\), the upper or lower triangular part of \(A\) in packed storage is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.
Overwritten by the solution matrix \(x\).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, so the factorization could not be completed, and the solution has not been computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ppsv interface are as follows:
```

ap Holds the array A of size (}n*(n+1)/2)
b Holds the matrix B of size (}n,nrhs)
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{?ppsvx}

Uses the Cholesky factorization to compute the solution to the system of linear equations with a symmetric (Hermitian) positive definite packed matrix
A, and provides error bounds on the solution.

\section*{Syntax}

\section*{Fortran 77:}
```

call sppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx, rcond, ferr,
berr, work, iwork, info)
call dppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx, rcond, ferr,
berr, work, iwork, info)
call cppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx, rcond, ferr,
berr, work, rwork, info)
call zppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx, rcond, ferr,
berr, work, rwork, info)

```

\section*{Fortran 95:}
```

call ppsvx(ap, b, x [,uplo] [,af] [,fact] [,equed] [,s] [,ferr] [,berr] [,rcond]
[,infO])

```

C:
lapack_int LAPACKE_sppsvx( int matrix_order, char fact, char uplo, lapack_int n, lapack_int nrhs, float* ap, float* afp, char* equed, float* s, float* b, lapack_int

lapack_int LAPACKE_dppsvx( int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, double* ap, double* afp, char* equed, double* \(s, d o u b l e * ~ b\),
lapack_int ldb, double* \(\left.x, ~ l a p a c k \_i n t ~ l d x, ~ d o u b l e * ~ r c o n d, ~ d o u b l e * ~ f e r r, ~ d o u b l e * ~ b e r r ~\right) ; ~\)
lapack_int LAPACKE_cppsvx( int matrix_order, char fact, char uplo, lapack_int \(n\),
lapack_int nrhs, lapack_complex_float* ap, lapack_complex_float* afp, char* equed,

ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_zppsvx( int matrix_order, char fact, char uplo, lapack_int \(n\),
lapack_int nrhs, lapack_complex_double* ap, lapack_complex_double* afp, char* equed,

lapack_int \(l d x\), double* rcond, double* ferr, double* berr );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the Cholesky factorization \(A=U^{T} \star U\) (real flavors) / \(A=U^{H} \star U\) (complex flavors) or \(A=L^{\star} L^{T}\) (real flavors) / \(A=L^{\star} L^{H}\) (complex flavors) to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is a \(n-b y-n\) symmetric or Hermitian positive-definite matrix stored in packed format, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?ppsvx performs the following steps:
1. If fact \(=\) ' \(E\) ', real scaling factors \(s\) are computed to equilibrate the system:
\(\operatorname{diag}(s) * A * \operatorname{diag}(s) * \operatorname{inv}(\operatorname{diag}(s)) * X=\operatorname{diag}(s) * B\).
Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\) and \(B\) by \(\operatorname{diag}(s) * B\).
2. If fact \(=\) ' \(N\) ' or ' \(E\) ', the Cholesky decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) 'E') as
\(A=U^{T} * U\) (real), \(A=U^{H} * U\) (complex), if uplo \(=' U '\),
or \(A=L \star L^{T}\) (real), \(A=L^{\star} L^{H}\) (complex), if uplo = 'L',
where \(U\) is an upper triangular matrix and \(L\) is a lower triangular matrix.
3. If the leading \(i\)-by-i principal minor is not positive-definite, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(x\) and compute error bounds as described below.
4. The system of equations is solved for \(x\) using the factored form of \(A\).
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix \(x\) is premultiplied by \(\operatorname{diag}(s)\) so that it solves the original system before equilibration.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{fact} & CHARACTER*1. Must be 'F', 'N', or 'E'. \\
\hline & Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored. \\
\hline & \begin{tabular}{l}
If fact \(=\) ' \(F\) ': on entry, afp contains the factored form of \(A\). If equed = 'Y', the matrix \(A\) has been equilibrated with scaling factors given by \(s\). \\
\(a p\) and \(a f p\) will not be modified.
\end{tabular} \\
\hline & If fact = 'N', the matrix \(A\) will be copied to afp and factored. \\
\hline & If fact \(=\) ' \(E\) ', the matrix \(A\) will be equilibrated if necessary, then copied to afp and factored. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is stored: If uplo = 'U', the upper triangle of \(A\) is stored. \\
\hline & If uplo = 'L', the lower triangle of \(A\) is stored. \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; the number of columns in B; nrhs \(\geq 0\). \\
\hline \multirow[t]{7}{*}{\(a p, a f p, b, w o r k\)} & REAL for sppsvx \\
\hline & DOUBLE PRECISION for dppsvx \\
\hline & COMPLEX for cppsvx \\
\hline & DOUBLE COMPLEX for zppsvx. \\
\hline & Arrays: \(a p(*), a f p(*), b(l d b, *)\), work(*). \\
\hline & The array ap contains the upper or lower triangle of the original symmetric/Hermitian matrix A in packed storage (see Matrix Storage \\
\hline & Schemes). In case when fact \(=\) ' \(F\) ' and equed \(=\) 'Y', ap must contain the equilibrated matrix \(\operatorname{diag}(s) * A \star \operatorname{diag}(s)\). \\
\hline
\end{tabular}

The array afp is an input argument if fact \(={ }^{\prime} \mathrm{F}^{\prime}\) and contains the triangular factor \(U\) or \(L\) from the Cholesky factorization of \(A\) in the same storage format as \(A\). If equed is not ' \(N\) ', then afp is the factored form of the equilibrated matrix \(A\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
work (*) is a workspace array.
The dimension of arrays \(a p\) and \(a f p\) must be at least max \((1, n(n\) \(+1) / 2)\); the second dimension of \(b\) must be at least max ( \(1, n r h s\) ); the dimension of work must be at least max \(\left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2{ }^{*} n\right)\) for complex flavors.
INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\).
CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact \(={ }^{\prime} \mathrm{F}^{\prime}\). It specifies the form of equilibration that was done:
if equed \(=\) 'N', no equilibration was done (always true if fact \(=\) 'N');
if equed = 'Y', equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(s) A^{*} \operatorname{diag}(s)\).

S
\(1 d x\)
iwork
rwork

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION ( \(n\) ). The array \(s\) contains the scale factors for \(A\). This array is an input argument if fact = ' \(F\) ' only; otherwise it is an output argument.
If equed = 'N', s is not accessed.
If fact \(=\) ' F ' and equed \(=\) 'Y', each element of \(s\) must be positive.
INTEGER. The leading dimension of the output array \(x ; I d x \geq \max (1\), n).

INTEGER. Workspace array, DIMENSION at least max \((1, n)\); used in real flavors only.
REAL for cppsvx;
DOUBLE PRECISION for zppsvx.
Workspace array, DIMENSION at least max \((1, n)\); used in complex flavors only.

\section*{Output Parameters}
\(a p\)

REAL for sppsvx
DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx
DOUBLE COMPLEX for zppsvx.
Array, DIMENSION (ldx,*).
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(x\) to the original system of equations. Note that if equed \(={ }^{\prime} Y^{\prime}, A\) and \(B\) are modified on exit, and the solution to the equilibrated system is inv \((\operatorname{diag}(s)) * X\). The second dimension of \(x\) must be at least \(\max (1, n r h s)\).
Array ap is not modified on exit if fact \(='^{\prime} \mathrm{F}^{\prime}\) or ' \(\mathrm{N}^{\prime}\), or if fact = ' \(E\) ' and equed \(=\) ' \(N\) '.
If fact \(=\) ' E ' and equed \(=\) 'Y', \(A\) is overwritten by \(\operatorname{diag}(s) \star A * \operatorname{diag}(s)\).
\begin{tabular}{|c|c|}
\hline \(a f p\) & If fact \(=\) ' \(N\) ' or 'E', then afp is an output argument and on exit returns the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T} \star U\) or \(A=L \star L^{T}\) (real routines), \(A=U^{H} \star U\) or \(A=L \star L^{H}\) (complex routines) of the original matrix \(A\) (if fact \(=' N\) '), or of the equilibrated matrix \(A\) (if fact \(=\) 'E'). See the description of ap for the form of the equilibrated matrix. \\
\hline b & Overwritten by \(\operatorname{diag}(s) * B\), if equed \(=\) ' \(Y\) '; not changed if equed \(=\) 'N'. \\
\hline \(s\) & This array is an output argument if fact \(\neq{ }^{\prime} F^{\prime}\). See the description of \(s\) in Input Arguments section. \\
\hline rcond & \begin{tabular}{l}
REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors. \\
An estimate of the reciprocal condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).
\end{tabular} \\
\hline ferr & \begin{tabular}{l}
REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors. \\
Array, DIMENSION at least max ( 1, nrhs). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(x\) ). If xtrue is the true solution corresponding to \(x(j), f \operatorname{err}(j)\) is an estimated upper bound for the magnitude of the largest element in \((x(j)-x t r u e)\) divided by the magnitude of the largest element in \(x(j)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
\end{tabular} \\
\hline berr & \begin{tabular}{l}
REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors. \\
Array, DIMENSION at least max ( \(1, n r h s\) ). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.
\end{tabular} \\
\hline equed & If fact \(\neq{ }^{\prime} F^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section). \\
\hline info & \begin{tabular}{l}
INTEGER. If info=0, the execution is successful. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
If info \(=i\), and \(i \leq n\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond \(=0\) is returned. \\
If info \(=i\), and \(i=n+1\), then \(U\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ppsvx interface are as follows:
\begin{tabular}{|c|c|}
\hline \(a p\) & Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\). \\
\hline b & Holds the matrix \(B\) of size ( \(n, n r h s\) ). \\
\hline \(x\) & Holds the matrix \(x\) of size ( \(n, n r h s\) ). \\
\hline afp & Holds the matrix AF of size ( \(\left.n^{*}(n+1) / 2\right)\). \\
\hline \(s\) & Holds the vector of length \(n\). Default value for each element is \(s(i)=\) 1.0_WP. \\
\hline ferr & Holds the vector of length ( \(n \mathrm{rhs}\) ) . \\
\hline berr & Holds the vector of length ( \(n \mathrm{rhs}\) ) . \\
\hline uplo & Must be 'U' or 'L'. The default value is 'U'. \\
\hline fact & Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then af must be present; otherwise, an error is returned. \\
\hline equed & Must be ' N ' or ' Y '. The default value is ' N '. \\
\hline
\end{tabular}

\section*{?pbsv}

Computes the solution to the system of linear equations with a symmetric or Hermitian positivedefinite band matrix \(A\) and multiple right-hand sides.

\section*{Syntax}

\section*{Fortran 77:}
```

call spbsv(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call dpbsv(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call cpbsv(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call zpbsv(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

```

\section*{Fortran 95:}
```

call pbsv(ab, b [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_<?>pbsv(int matrix_order, char uplo, lapack_int n, lapack_int kd,

```
lapack_int nrhs, <datatype>* ab, lapack_int ldab, <datatype>* b, lapack_int ldb );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n-b y-n\) symmetric/Hermitian positive definite band matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.

The Cholesky decomposition is used to factor \(A\) as
```

A = UT* (real flavors) and A = U U**U (complex flavors), if uplo = 'U'
or }A=L\star\mp@subsup{L}{}{T}\mathrm{ (real flavors) and }A=L\star\mp@subsup{L}{}{H}\mathrm{ (complex flavors), if uplo = 'L',

```
where \(U\) is an upper triangular band matrix and \(L\) is a lower triangular band matrix, with the same number of superdiagonals or subdiagonals as \(A\). The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & \begin{tabular}{l}
Indicates whether the upper or lower triangular part of \(A\) is stored: \\
If uplo = 'U', the upper triangle of \(A\) is stored. \\
If uplo = 'L', the lower triangle of \(A\) is stored.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline \(k d\) & INTEGER. The number of superdiagonals of the matrix \(A\) if uplo \(=\) 'U', or the number of subdiagonals if uplo = 'L'; \(k d \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides, the number of columns in B; nrhs \(\geq 0\). \\
\hline \multirow[t]{6}{*}{\(a b, b\)} & REAL for spbsv \\
\hline & DOUBLE PRECISION for dpbsv \\
\hline & COMPLEX for cpbsv \\
\hline & DOUBLE COMPLEX for zpbsv. \\
\hline & Arrays: \(a b(I d a b, *), b(l d b, *)\). The array \(a b\) contains the upper or the lower triangular part of the matrix \(A\) (as specified by uplo) in band storage (see Matrix Storage Schemes). The second dimension of \(a b\) must be at least max \((1, n)\). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max ( \(1, n r h s\) ). \\
\hline 1 dab & INTEGER. The leading dimension of the array \(a b ; ~ l d a b \geq k d+1\). \\
\hline \(1 d b\) & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\) \\
\hline
\end{tabular}

\section*{Output Parameters}
ab
b
info

The upper or lower triangular part of \(A\) (in band storage) is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo, in the same storage format as \(A\).

Overwritten by the solution matrix \(x\).
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, so the factorization could not be completed, and the solution has not been computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pbsv interface are as follows:
```

ab Holds the array A of size (kd+1,n).
b Holds the matrix B of size (n,nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{?pbsvx}

Uses the Cholesky factorization to compute the solution to the system of linear equations with a symmetric (Hermitian) positive-definite band matrix
\(A\), and provides error bounds on the solution.

\section*{Syntax}

Fortran 77:
```

call spbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)
call dpbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)
call cpbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)
call zpbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

```

Fortran 95:
```

call pbsvx(ab, b, x [,uplo] [,afb] [,fact] [,equed] [,s] [,ferr] [,berr] [,rcond]
[,info])

```

C:
```

lapack_int LAPACKE_spbsvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int kd, lapack_int nrhs, float* ab, lapack_int ldab, float* afb, lapack_int
ldafb, char* equed, float* s, float* b, lapack_int ldb, float* x, lapack_int ldx,
float* rcond, float* ferr, float* berr);
lapack_int LAPACKE_dpbsvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int kd, lapack_int nrhs, double* ab, lapack_int ldab, double* afb, lapack_int
ldafb, char* equed, double* s, double* b, lapack_int ldb, double* x, lapack_int ldx,
double* rcond, double* ferr, double* berr);
lapack_int LAPACKE_cpbsvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int kd, lapack_int nrhs, lapack_complex_float* ab, lapack_int ldab,
lapack_complex_float* afb, lapack_int ldafb, char* equed, float* s,
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* rcond, float* ferr, float* berr);

```
```

lapack_int LAPACKE_zpbsvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int kd, lapack_int nrhs, lapack_complex_double* ab, lapack_int ldab,
lapack_complex_double* afb, lapack_int ldafb, char* equed, double* s,
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx,
double* rcond, double* ferr, double* berr);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the Cholesky factorization \(A=U^{T} * U\) (real flavors) / \(A=U^{H} * U\) (complex flavors) or \(A=L^{*} L^{T}\) (real flavors) / \(A=L^{\star} L^{H}\) (complex flavors) to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is a \(n\)-by-n symmetric or Hermitian positive definite band matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?pbsvx performs the following steps:
1. If fact \(=\) ' \(E\) ', real scaling factors \(s\) are computed to equilibrate the system:
\(\operatorname{diag}(s) * A^{*} \operatorname{diag}(s) * \operatorname{inv}(\operatorname{diag}(s)) * X=\operatorname{diag}(s) * B\).
Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\) and \(B\) by \(\operatorname{diag}(s) * B\).
2. If fact \(=\) ' \(N\) ' or ' \(E\) ', the Cholesky decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) 'E') as
\(A=U^{T} * U\) (real), \(A=U^{H} * U\) (complex), if uplo = 'U',
or \(A=L^{*} L^{T}\) (real), \(A=L^{\star} L^{H}\) (complex), if uplo = 'L',
where \(U\) is an upper triangular band matrix and \(L\) is a lower triangular band matrix.
3. If the leading \(i\)-by-i principal minor is not positive definite, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(x\) and compute error bounds as described below.
4. The system of equations is solved for \(x\) using the factored form of \(A\).
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix \(x\) is premultiplied by \(\operatorname{diag}(s)\) so that it solves the original system before equilibration.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
fact CHARACTER*1. Must be 'F', 'N', or 'E'.
Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored.

If fact \(=\) ' \(\mathrm{F}^{\prime}\) : on entry, afb contains the factored form of \(A\). If equed \(=\) ' \(Y\) ', the matrix \(A\) has been equilibrated with scaling factors given by \(s\).
\(a b\) and \(a f b\) will not be modified.
If fact = 'N', the matrix \(A\) will be copied to \(a f b\) and factored.
If fact \(=\) ' \(E\) ', the matrix \(A\) will be equilibrated if necessary, then copied to \(a f b\) and factored.
uplo
n
kd
nrhs
ab, afb, b, work
ldab
ldafb
1 db
equed

Indicates whether the upper or lower triangular part of \(A\) is stored:
If uplo = 'U', the upper triangle of \(A\) is stored.
If uplo = 'L', the lower triangle of \(A\) is stored.
INTEGER. The order of matrix \(A ; n \geq 0\).
INTEGER. The number of superdiagonals or subdiagonals in the matrix \(A ; k d \geq 0\).

INTEGER. The number of right-hand sides, the number of columns in B; nrhs \(\geq 0\).
REAL for spbsvx
DOUBLE PRECISION for dpbsvx
COMPLEX for cpbsvx
DOUBLE COMPLEX for zpbsvx.
Arrays: \(a b(l d a b, *)\), \(a f b(l d a b, *), b(l d b, *)\), work(*).
The array \(a b\) contains the upper or lower triangle of the matrix \(A\) in band storage (see Matrix Storage Schemes).
If fact \(=\) ' \(F\) ' and equed \(=\) 'Y', then ab must contain the equilibrated matrix \(\operatorname{diag}(s) * A^{*} \operatorname{diag}(s)\). The second dimension of \(a b\) must be at least max \((1, n)\).
The array \(a f b\) is an input argument if fact \(={ }^{\prime} F^{\prime}\). It contains the triangular factor \(U\) or \(L\) from the Cholesky factorization of the band matrix \(A\) in the same storage format as \(A\). If equed \(=\) ' \(Y\) ', then \(a f b\) is the factored form of the equilibrated matrix \(A\). The second dimension of \(a f b\) must be at least max \((1, n)\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max (1, nrhs).
work (*) is a workspace array.
The dimension of work must be at least max \(\left(1,3 *_{n}\right)\) for real flavors, and at least max \(\left(1,2{ }^{\star} n\right)\) for complex flavors.
INTEGER. The leading dimension of \(a b ; l d a b \geq k d+1\).
INTEGER. The leading dimension of \(a f b ; l d a f b \geq k d+1\).
INTEGER. The leading dimension of \(b ; l d b \geq \max (1, n)\).
CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact \(={ }^{\prime} \mathrm{F}^{\prime}\). It specifies the form of equilibration that was done:
if equed \(=\) 'N', no equilibration was done (always true if fact = 'N')
if equed = 'Y', equilibration was done, that is, A has been replaced by \(\operatorname{diag}(s) * A^{*} \operatorname{diag}(s)\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Array, DIMENSION ( \(n\) ). The array \(s\) contains the scale factors for \(A\). This array is an input argument if fact = ' \(\mathrm{F}^{\prime}\) only; otherwise it is an output argument.
If equed \(=\) ' \(N\) ', \(s\) is not accessed.
If fact \(=\) ' F ' and equed \(=\) ' Y ', each element of \(s\) must be positive.
\(1 d x\)
iwork
rwork

\section*{Output Parameters}

REAL for spbsvx
DOUBLE PRECISION for dpbsvx COMPLEX for cpbsvx
DOUBLE COMPLEX for zpbsvx.
Array, DIMENSION ( \(1 d x, *\) ).
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(x\) to the original system of equations. Note that if equed \(=\) ' \(Y\) ', \(A\) and \(B\) are modified on exit, and the solution to the equilibrated system is inv \((\operatorname{diag}(s)) * X\). The second dimension of \(x\) must be at least \(\max (1, n r h s)\).
On exit, if fact \(=\) 'E' and equed \(=\) 'Y', \(A\) is overwritten by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).
If fact \(=\) 'N' or 'E', then \(a f b\) is an output argument and on exit returns the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T} * U\) or \(A=L^{*} L^{T}\) (real routines), \(A=U^{H} * U\) or \(A=L^{*} L^{H}\) (complex routines) of the original matrix \(A\) (if fact \(=\) ' \(N\) '), or of the equilibrated matrix \(A\) (if fact \(=\) ' \(E\) '). See the description of \(a b\) for the form of the equilibrated matrix.
Overwritten by diag(s)*B, if equed = 'Y'; not changed if equed \(=\) 'N'.
This array is an output argument if fact \(\neq '^{\prime} \mathrm{F}^{\prime}\). See the description of \(s\) in Input Arguments section.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max ( \(1, n r h s\) ). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(x\) ). If xtrue is the true solution corresponding to \(x(j), f e r r(j)\) is an estimated upper bound for the magnitude of the largest element in \((x(j)-x t r u e)\) divided by the magnitude of the
\begin{tabular}{|c|c|}
\hline & largest element in \(x(j)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error. \\
\hline \multirow[t]{3}{*}{berr} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Array, DIMENSION at least max ( \(1, \mathrm{nrhs}\) ). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution. \\
\hline equed & If fact \(\not \mathcal{F}^{\prime} \mathrm{F}^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section). \\
\hline \multirow[t]{8}{*}{info} & INTEGER. If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
\hline & If info \(=i\), and \(i \leq n\), the leading minor of order \(i\) (and therefore \\
\hline & the matrix \(A\) itself) is not positive definite, so the factorization could not be completed, and the solution and error bounds could not be \\
\hline & computed; rcond \(=0\) is returned. If info \(=i\), and \(i=n+1\), then \(U\) \\
\hline & is nonsingular, but rcond is less than machine precision, meaning that \\
\hline & the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of \\
\hline & situations where the computed solution can be more accurate than the \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine pbsvx interface are as follows:
\begin{tabular}{|c|c|}
\hline \(a b\) & Holds the array \(A\) of size ( \(k d+1, n)\). \\
\hline b & Holds the matrix \(B\) of size ( \(n, n r h s\) ). \\
\hline \(x\) & Holds the matrix \(x\) of size ( \(n, n r h s\) ). \\
\hline \(a f b\) & Holds the array AF of size ( \(k d+1, n\) ). \\
\hline \(s\) & Holds the vector with the number of elements \(n\). Default value for each element is \(s(i)=1.0 \_W P\). \\
\hline ferr & Holds the vector with the number of elements nrhs. \\
\hline berr & Holds the vector with the number of elements nrhs. \\
\hline uplo & Must be 'U' or 'L'. The default value is 'U'. \\
\hline fact & Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then af must be present; otherwise, an error is returned. \\
\hline equed & Must be ' N ' or 'Y'. The default value is ' N '. \\
\hline
\end{tabular}

\footnotetext{
?ptsv
Computes the solution to the system of linear equations with a symmetric or Hermitian positive definite tridiagonal matrix \(A\) and multiple right-hand sides.
}

\section*{Syntax}

\section*{Fortran 77:}
```

call sptsv(n, nrhs, d, e, b, ldb, info)
call dptsv(n, nrhs, d, e, b, ldb, info)
call cptsv(n, nrhs, d, e, b, ldb, info)
call zptsv(n, nrhs, d, e, b, ldb, info)

```

\section*{Fortran 95:}
```

call ptsv(d, e, b [,info])

```
C:
```

lapack_int LAPACKE_sptsv(int matrix_order, lapack_int n, lapack_int nrhs, float* d,
float* e, float* b, lapack_int ldb);
lapack_int LAPACKE_dptsv(int matrix_order, lapack_int n, lapack_int nrhs, double* d,
double* e, double* b, lapack_int ldb);
lapack_int LAPACKE_cptsv(int matrix_order, lapack_int n, lapack_int nrhs, float* d,
lapack_complex_float* e, lapack_complex_float* b, lapack_int ldb);
lapack_int LAPACKE_zptsv(int matrix_order, lapack_int n, lapack_int nrhs, double* d,
lapack_complex_double* e, lapack_complex_double* b, lapack_int ldb);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) symmetric/Hermitian positive-definite tridiagonal matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.
\(A\) is factored as \(A=L^{\star} D^{*} L^{T}\) (real flavors) or \(A=L^{*} D^{\star} L^{H}\) (complex flavors), and the factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{ll}
\(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\(n r h s\) & INTEGER. The number of right-hand sides, the number of columns in \\
& \(B ; n r h s \geq 0\). \\
& REAL for single precision flavors \\
& DOUBLE PRECISION for double precision flavors. \\
& Array, dimension at least max \((1, n)\). Contains the diagonal elements \\
& of the tridiagonal matrix \(A\). \\
& REAL for sptsv \\
& DOUBLE PRECISION for dptsv \\
& COMPLEX for cptsv
\end{tabular}

DOUBLE COMPLEX for zptsv.
Arrays: \(e(n-1), b(1 d b, *)\). The array e contains the ( \(n-1\) ) subdiagonal elements of \(A\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max ( 1, nrhs).
1 db
INTEGER. The leading dimension of \(b ; l d b \geq \max (1, n)\).

\section*{Output Parameters}

Overwritten by the \(n\) diagonal elements of the diagonal matrix \(D\) from the \(L \star D^{\star} L^{T}\) (real)/ \(L \star D^{\star} L^{H}\) (complex) factorization of \(A\).
e
b
info
Overwritten by the ( \(n-1\) ) subdiagonal elements of the unit bidiagonal factor \(L\) from the factorization of \(A\).
Overwritten by the solution matrix \(x\).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, and the solution has not been computed. The factorization has not been completed unless \(i=n\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine ptsv interface are as follows:
```

d Holds the vector of length n.
e Holds the vector of length (n-1).
b Holds the matrix B of size (n,nrhs).

```

\section*{?ptsux}

Uses factorization to compute the solution to the system of linear equations with a symmetric
(Hermitian) positive definite tridiagonal matrix A, and provides error bounds on the solution.

\section*{Syntax}

\section*{Fortran 77:}
```

call sptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr, work,
info)
call dptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr, work,
info)
call cptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr, work,
rwork, info)
call zptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr, work,
rwork, info)

```

\section*{Fortran 95:}
```

call ptsvx(d, e, b, x [,df] [,ef] [,fact] [,ferr] [,berr] [,rcond] [,info])

```

\section*{C:}
lapack_int LAPACKE_sptsvx( int matrix_order, char fact, lapack_int n, lapack_int nrhs, const float* \(d\), const float* \(e, f l o a t * ~ d f, ~ f l o a t * ~ e f, ~ c o n s t ~ f l o a t * ~ b, ~ l a p a c k \_i n t ~ l d b, ~\) float* x, lapack_int ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_dptsvx( int matrix_order, char fact, lapack_int n, lapack_int nrhs, const double* \(d\), const double* \(e\), double* \(d f\), double* ef, const double* b, lapack_int

```

lapack_int LAPACKE_cptsvx(int matrix_order, char fact, lapack_int n, lapack_int nrhs,

```
const float* \(d\), const lapack_complex_float* e, float* df, lapack_complex_float* ef,
const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_zptsvx( int matrix_order, char fact, lapack_int n, lapack_int nrhs,
const double* \(d\), const lapack_complex_double* e, double* df, lapack_complex_double* ef,
const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int
ldx, double* rcond, double* ferr, double* berr );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the Cholesky factorization \(A=L^{\star} D^{\star} L^{T}\) (real)/A \(=L^{\star} D^{\star} L^{H}\) (complex) to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is a \(n\)-by-n symmetric or Hermitian positive definite tridiagonal matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?ptsvx performs the following steps:
1. If fact \(=\) ' \(N\) ', the matrix \(A\) is factored as \(A=L \star D^{\star} L^{T}\) (real flavors)/ \(A=L^{\star} D^{\star} L^{H}\) (complex flavors), where \(L\) is a unit lower bidiagonal matrix and \(D\) is diagonal. The factorization can also be regarded as having the form \(A=U^{T} D^{*} U\) (real flavors) \(/ A=U^{H} \star^{*} * U\) (complex flavors).
2. If the leading \(i\)-by-i principal minor is not positive-definite, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(x\) and compute error bounds as described below.
3. The system of equations is solved for \(x\) using the factored form of \(A\).
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
fact
CHARACTER*1. Must be 'F' or 'N'.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Specifies whether or not the factored form of the matrix \(A\) is supplied on entry. \\
If fact \(=\) ' F ': on entry, \(d f\) and ef contain the factored form of \(A\). \\
Arrays \(d, e, d f\), and ef will not be modified. \\
If fact \(=' N\) ', the matrix \(A\) will be copied to \(d f\) and \(e f\), and factored.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides, the number of columns in B; nrhs \(\geq 0\). \\
\hline \multirow[t]{7}{*}{\(d, d f\), rwork} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Arrays: \(d(n), d f(n)\), rwork (n). \\
\hline & The array \(d\) contains the \(n\) diagonal elements of the tridiagonal matrix \\
\hline & A. \\
\hline & The array \(d f\) is an input argument if fact \(={ }^{\prime} F^{\prime}\) and on entry contains the \(n\) diagonal elements of the diagonal matrix \(D\) from the \(L \star D^{\star} L^{T}\) (real)/ \(L \star D^{\star} L^{H}\) (complex) factorization of \(A\). \\
\hline & The array rwork is a workspace array used for complex flavors only. \\
\hline \multirow[t]{8}{*}{e,ef,b,work} & REAL for sptsvx \\
\hline & DOUBLE PRECISION for dptsvx \\
\hline & COMPLEX for cptsvx \\
\hline & DOUBLE COMPLEX for zptsvx. \\
\hline & Arrays: e(n-1), ef(n-1),b(ldb*), work(*). The array e contains the ( \(n-1\) ) subdiagonal elements of the tridiagonal matrix \(A\). \\
\hline & The array ef is an input argument if fact \(='^{\prime} F^{\prime}\) and on entry contains the ( \(n-1\) ) subdiagonal elements of the unit bidiagonal factor \(L\) from the \(L^{\star} D^{\star} L^{T}\) (real)/ \(L^{\star} D^{\star} L^{H}\) (complex) factorization of \(A\). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. \\
\hline & The array work is a workspace array. The dimension of work must be at least \(2 *_{n}\) for real flavors, and at least \(n\) for complex flavors. \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline \(1 d x\) & INTEGER. The leading dimension of \(x ; 1 d x \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(x\)
\(d f, e f\)
rcond
REAL for sptsvx
DOUBLE PRECISION for dptsvx
COMPLEX for cptsvx
DOUBLE COMPLEX for zptsvx.
Array, DIMENSION (ldx,*).
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(x\) to the system of equations. The second dimension of \(x\) must be at least max ( 1, nrhs).
These arrays are output arguments if fact \(={ }^{\prime} N^{\prime}\). See the description of \(d f, e f\) in Input Arguments section.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max ( 1, nrhs). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(x\) ). If \(x\) true is the true solution corresponding to \(x(j)\), ferr \((j)\) is an estimated upper bound for the magnitude of the largest element in \((x(j)-x t r u e)\) divided by the magnitude of the largest element in \(x(j)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max ( 1, nrhs). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.

INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and \(i \leq n\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=i\), and \(i=n+1\), then \(U\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ptsvx interface are as follows:
\begin{tabular}{|c|c|}
\hline d & Holds the vector of length \(n\). \\
\hline e & Holds the vector of length ( \(n-1\) ). \\
\hline b & Holds the matrix \(B\) of size ( \(n, n r h s\) ). \\
\hline \(x\) & Holds the matrix \(x\) of size ( \(n, n r h s\) ). \\
\hline \(d f\) & Holds the vector of length \(n\). \\
\hline ef & Holds the vector of length ( \(n-1\) ). \\
\hline ferr & Holds the vector of length (nrhs). \\
\hline berr & Holds the vector of length ( \(n r h s\) ). \\
\hline fact & Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then both arguments af and ipiv must be present; otherwise, an error is returned. \\
\hline
\end{tabular}

\section*{?sysv \\ Computes the solution to the system of linear equations with a real or complex symmetric matrix \(A\) and multiple right-hand sides.}

Syntax

\section*{Fortran 77:}
```

call ssysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call dsysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call csysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call zsysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

```

\section*{Fortran 95:}
```

call sysv(a, b [,uplo] [,ipiv] [,info])

```

C:
```

lapack_int LAPACKE_<?>sysv(int matrix_order, char uplo, lapack_int n, lapack_int nrhs,

```
<datatype>* a, lapack_int lda, lapack_int* ipiv, <datatype>* b, lapack_int ldb );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) symmetric matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.
The diagonal pivoting method is used to factor \(A\) as \(A=U^{\star} D^{*} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
The factored form of \(A\) is then used to solve the system of equations \(A^{\star} X=B\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
n
nrhs INTEGER. The number of right-hand sides; the number of columns in
B; nrhs \geq0.
a,b,work REAL for ssysv
DOUBLE PRECISION for dsysv

```

COMPLEX for csysv
DOUBLE COMPLEX for zsysv.
Arrays: a(lda,*), b(ldb,*), work(*).
The array a contains the upper or the lower triangular part of the symmetric matrix \(A\) (see uplo). The second dimension of a must be at least max (1, \(n\) ).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max ( \(1, n r h s\) ).
work is a workspace array, dimension at least max ( 1,1 work).
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\).
INTEGER. The size of the work array; lwork \(\geq 1\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes below for details and for the suggested value of lwork.

\section*{Output Parameters}
a
b
work(1)
info

If info \(=0, a\) is overwritten by the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\) ) from the factorization of A as computed by ?sytrf.

\section*{If info \(=0, b\) is overwritten by the solution matrix \(x\).}

INTEGER.
Array, DIMENSION at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\), as determined by ?sytrf. If \(\operatorname{ipiv}(i)=k>0\), then \(d_{i i}\) is a 1-by-1 diagonal block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column. If uplo \(=\) 'U' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by- 2 block in rows/columns \(i\) and \(i-1\), and ( \(i-1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo \(=\) 'L' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2-by- 2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.

INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value. If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular, so the solution could not be computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sysv interface are as follows:
a
Holds the matrix \(A\) of size \((n, n)\).
\begin{tabular}{ll} 
b & Holds the matrix \(B\) of size \((n, n r h s)\). \\
ipiv & Holds the vector of length \(n\). \\
uplo & Must be 'U' or 'L'. The default value is 'U'.
\end{tabular}

\section*{Application Notes}

For better performance, try using lwork \(=n \star\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?sysvx}

Uses the diagonal pivoting factorization to compute
the solution to the system of linear equations with a
real or complex symmetric matrix \(A\), and provides error bounds on the solution.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, lwork, iwork, info)
call dsysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, lwork, iwork, info)
call csysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, lwork, rwork, info)
call zsysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, lwork, rwork, info)

```

\section*{Fortran 95:}
```

call sysvx(a, b, x [,uplo] [,af] [,ipiv] [,fact] [,ferr] [,berr] [,rcond] [,info])

```

C:
```

lapack_int LAPACKE_ssysvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, const float* a, lapack_int lda, float* af, lapack_int ldaf,
lapack_int* ipiv, const float* b, lapack_int ldb, float* x, lapack_int ldx, float*
rcond, float* ferr, float* berr);
lapack_int LAPACKE_dsysvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, const double* a, lapack_int lda, double* af, lapack_int ldaf,
lapack_int* ipiv, const double* b, lapack_int ldb, double* x, lapack_int ldx, double*
rcond, double* ferr, double* berr);

```
```

lapack_int LAPACKE_csysvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, lapack_complex_float*
af, lapack_int ldaf, lapack_int* ipiv, const lapack_complex_float* b, lapack_int ldb,
lapack complex float* x, lapack int ldx, float* rcond, float* ferr, float* berr);
lapack_int LAPACKE_zsysvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, lapack_complex_double*
af, lapack_int ldaf, lapack_int* ipiv, const lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* x, lapack_int ldx, double* rcond, double* ferr, double* berr);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the diagonal pivoting factorization to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is a \(n\)-by- \(n\) symmetric matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?sysvx performs the following steps:
1. If fact \(=\) ' \(N\) ', the diagonal pivoting method is used to factor the matrix \(A\). The form of the factorization is \(A=U{ }^{\star} D^{*} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some \(d_{i, i}=0\), so that \(D\) is exactly singular, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(x\) and compute error bounds as described below.
3. The system of equations is solved for \(x\) using the factored form of \(A\).
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{fact} & CHARACTER*1. Must be 'F' or 'N'. \\
\hline & Specifies whether or not the factored form of the matrix \(A\) has been supplied on entry. \\
\hline & If fact \(=\) ' F': on entry, af and ipiv contain the factored form of \(A\). Arrays \(a_{\text {, }}\) af, and ipiv will not be modified. \\
\hline & If fact \(=\) ' \(N\) ', the matrix \(A\) will be copied to af and factored. \\
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is stored: \\
\hline & If uplo = 'U', the upper triangle of \(A\) is stored. \\
\hline & If uplo = 'L', the lower triangle of \(A\) is stored. \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline \multirow[t]{2}{*}{nrhs} & INTEGER. The number of right-hand sides, the number of columns in \\
\hline & \[
B ; \text { nrhs } \geq 0 \text {. }
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{9}{*}{\(a, ~ a f, b, w o r k\)} & REAL for ssysvx \\
\hline & DOUBLE PRECISION for dsysvx \\
\hline & COMPLEX for csysvx \\
\hline & DOUBLE COMPLEX for zsysvx. \\
\hline & Arrays: \(\mathrm{a}\left(\mathrm{lda} \mathrm{A}^{*}\right)\), af(ldaf,*), b(ldb,*), work(*). \\
\hline & The array a contains the upper or the lower triangular part of the symmetric matrix \(A\) (see uplo). The second dimension of a must be at least max \((1, n)\). \\
\hline & The array af is an input argument if fact \(={ }^{\prime} \mathrm{F}\) '. It contains he block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) from the factorization \(A=U^{\star} D^{\star} U^{\star} * T\) or \(A=L^{\star} D^{\star} L^{\star} * T\) as computed by ?sytrf. The second dimension of af must be at least max \((1, n)\). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max (1, nrhs). \\
\hline & work (*) is a workspace array, dimension at least max (1, lwork). \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline Idaf & INTEGER. The leading dimension of \(a f ; \operatorname{ldaf} \geq \max (1, n)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\) \\
\hline \multirow[t]{7}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION at least max ( \(1, n\) ). The array ipiv is an input argument if fact \(=\) ' F '. It contains details of the interchanges and the block structure of \(D\), as determined by ?sytrf. \\
\hline & If ipiv(i) \(=k>0\), then \(d_{i i}\) is a 1-by-1 diagonal block, and the \(i-\) th row and column of \(A\) was interchanged with the \(k\)-th row and column. \\
\hline & If uplo = 'U' and ipiv(i) = ipiv(i-1) \(=-m<0\), then \(D\) has a \\
\hline & 2-by-2 block in rows/columns \(i\) and \(i-1\), and (i-1)-th row and column of \(A\) was interchanged with the \(m\)-th row and column. \\
\hline & If uplo = 'L' and ipiv(i) \(=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a \\
\hline & 2 -by- 2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column. \\
\hline \(1 d x\) & INTEGER. The leading dimension of the output array \(x ; I d x \geq \max (1\), n). \\
\hline \multirow[t]{2}{*}{lwork} & INTEGER. The size of the work array. \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes below for details and for the suggested value of lwork. \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least max \((1, n)\); used in real flavors only. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for csysvx; \\
\hline & DOUBLE PRECISION for zsysvx. \\
\hline & Workspace array, DIMENSION at least max \((1, n)\); used in complex flavors only. \\
\hline
\end{tabular}

Output Parameters

COMPLEX for csysvx
DOUBLE COMPLEX for zsysvx.
Array, DIMENSION (ldx,*).
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(x\) to the system of equations. The second dimension of \(x\) must be at least max (1, nrhs).
af, ipiv These arrays are output arguments if fact = 'N'.
See the description of af, ipiv in Input Arguments section.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix \(A\). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).
ferr \(\quad\) REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max ( \(1, n r h s\) ). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(x\) ). If xtrue is the true solution corresponding to \(x(j)\), ferr \((j)\) is an estimated upper bound for the magnitude of the largest element in \((x(j)-x t r u e)\) divided by the magnitude of the largest element in \(x(j)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max ( \(1, \mathrm{nrhs}\) ). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.
work(1)
info
If info=0, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and \(i \leq n\), then \(d_{i i}\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=i\), and \(i=n+1\), then \(D\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sysvx interface are as follows:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size ( \(n, n\) ). \\
\hline b & Holds the matrix \(B\) of size ( \(n, n r h s\) ). \\
\hline \(x\) & Holds the matrix \(x\) of size ( \(n, n r h s\) ). \\
\hline af & Holds the matrix AF of size ( \(n, n\) ). \\
\hline ipiv & Holds the vector of length \(n\). \\
\hline ferr & Holds the vector of length ( \(n r h s\) ). \\
\hline berr & Holds the vector of length (nrhs). \\
\hline uplo & Must be 'U' or 'L'. The default value is 'U'. \\
\hline fact & Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then both arguments af and ipiv must be present; otherwise, an error is returned. \\
\hline
\end{tabular}

\section*{Application Notes}

The value of 1 work must be at least \(\max \left(1, m^{*} n\right)\), where for real flavors \(m=3\) and for complex flavors \(m=\) 2. For better performance, try using lwork \(=\max \left(1, m^{\star} n, n^{\star} b l o c k s i z e\right)\), where blocksize is the optimal block size for ?sytrf.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).
If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If you set lwork \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?sysvxx}

Uses extra precise iterative refinement to compute the solution to the system of linear equations with a symmetric indefinite matrix A applying the diagonal pivoting factorization.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssysvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
iwork, info)
call dsysvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
iwork, info)
call csysvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
rwork, info)

```
```

call zsysvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
rwork, info)

```

\section*{C:}
```

lapack_int LAPACKE_ssysvxx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, float* a, lapack_int lda, float* af, lapack_int ldaf, lapack_int*
ipiv, char* equed, float* s, float* b, lapack_int ldb, float* x, lapack_int ldx,
float* rcond, float* rpvgrw, float* berr, lapack_int n_err_bnds, float* err_bnds_norm,
float* err_bnds_comp, lapack_int nparams, const float* params);
lapack_int LAPACKE_dsysvxx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, double* a, lapack_int lda, double* af, lapack_int ldaf, lapack_int*
ipiv, char* equed, double* s, double* b, lapack_int ldb, double* x, lapack_int ldx,
double* rcond, double* rpvgrw, double* berr, lapack_int n_err_bnds, double*
err_bnds_norm, double* err_bnds_comp, lapack_int nparams, const double* params);
lapack_int LAPACKE_csysvxx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, float* s, lapack_complex_float* b,
lapack_int ldb, lapack_complex_float* x, lapack_int ldx, float* rcond, float* rpvgrw,
float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp,
lapack_int nparams, const float* params);
lapack_int LAPACKE_zsysvxx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, double* s, lapack_complex_double* b,
lapack_int ldb, lapack_complex_double* x, lapack_int ldx, double* rcond, double*
rpvgrw, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double*
err_bnds_comp, lapack_int nparams, const double* params);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the diagonal pivoting factorization \(A=U^{T} * U\) (real flavors) / \(A=U^{H} * U\) (complex flavors) or \(A=L^{\star} L^{T}\) (real flavors) / \(A=L^{\star} L^{H}\) (complex flavors) to compute the solution to a real or complex system of linear equations \(A^{*} X=B\), where \(A\) is an \(n\)-by- \(n\) real symmetric/Hermitian matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.

Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error ( O (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.

The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with 0 (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.

The routine ?sysvxx performs the following steps:
1. If fact \(=\) 'E', scaling factors are computed to equilibrate the system:
```

diag(s)*A*diag(s) *inv(diag(s))*X = diag(s)*B

```

Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\) and \(B\) by \(\operatorname{diag}(s) * B\).
2. If fact \(=\) 'N' or 'E', the LU decomposition is used to factor the matrix \(A\) (after equilibration if fact = 'E') as
\(A=U^{\star} D^{\star} U^{T}\), if uplo = 'U',
or \(A=L^{\star} D^{\star} L^{T}\), if uplo = 'L',
where \(U\) or \(L\) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is a symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
3. If some \(D(i, i)=0\), so that \(D\) is exactly singular, the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\) (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for \(x\) and compute error bounds.
4. The system of equations is solved for \(x\) using the factored form of \(A\).
5. By default, unless params (la_linrx_itref_i) is set to zero, the routine applies iterative refinement to get a small error and error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix \(x\) is premultiplied by \(\operatorname{diag}(r)\) so that it solves the original system before equilibration.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline fact & \begin{tabular}{l}
CHARACTER*1. Must be 'F', 'N', or 'E'. \\
Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored. \\
If fact \(=\) ' F ', on entry, \(a f\) and ipiv contain the factored form of \(A\). If equed is not ' \(N\) ', the matrix \(A\) has been equilibrated with scaling factors given by \(s\). Parameters \(a, ~ a f\), and ipiv are not modified. \\
If fact \(=\) ' N', the matrix \(A\) will be copied to af and factored. \\
If fact \(=\) ' \(E\) ', the matrix \(A\) will be equilibrated, if necessary, copied to af and factored.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates whether the upper or lower triangular part of \(A\) is stored: \\
If uplo = 'U', the upper triangle of \(A\) is stored. \\
If uplo = 'L', the lower triangle of \(A\) is stored.
\end{tabular} \\
\hline \(n\) & INTEGER. The number of linear equations; the order of the matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; the number of columns of the matrices \(B\) and \(X ; n r h s \geq 0\). \\
\hline a, af, b, work & REAL for ssysvxx \\
\hline & DOUBLE PRECISION for dsysvxx \\
\hline & COMPLEX for csysvxx \\
\hline & DOUBLE COMPLEX for zsysvxx. \\
\hline & \begin{tabular}{l}
Arrays: \(a(I d a, *), a f(l d a f, *), b(I d b, *)\), work(*). \\
The array a contains the symmetric matrix \(A\) as specified by uplo. If uplo \(=\) 'U', the leading \(n-b y-n\) upper triangular part of a contains the upper triangular part of the matrix \(A\) and the strictly lower triangular part of \(a\) is not referenced. If uplo \(=\) 'L', the leading \(n\)-by- \(n\) lower triangular part of a
\end{tabular} \\
\hline
\end{tabular}
contains the lower triangular part of the matrix \(A\) and the strictly upper triangular part of \(a\) is not referenced. The second dimension of \(a\) must be at least \(\max (1, n)\).
The array \(a f\) is an input argument if fact \(={ }^{\prime} F^{\prime}\). It contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) and \(L\) from the factorization \(A=U^{\star} D^{\star} U^{\star *} T\) or \(A=L^{\star} D^{\star} L^{\star *} T\) as computed by ? sytrf. The second dimension of af must be at least max \((1, n)\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least \(\max (1, n r h s)\).
work (*) is a workspace array. The dimension of work must be at least \(\max \left(1,4 \star_{n}\right)\) for real flavors, and at least \(\max \left(1,2 \star_{n}\right)\) for complex flavors.
INTEGER. The leading dimension of the array \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of the array \(a f ; l \operatorname{daf} \geq \max (1, n)\).
INTEGER.
Array, DIMENSION at least max \((1, n)\). The array ipiv is an input argument if fact \(='\) ' '. It contains details of the interchanges and the block structure of \(D\) as determined by ?sytrf. If ipiv \((k)>0\), rows and columns \(k\) and ipiv(k) were intercanaged and \(D(k, k)\) is a 1-by-1 diagonal block. If ipiv = 'U' and ipiv(k) =ipiv(k-1) < 0, rows and columns \(k-1\) and -ipiv(k) were interchanged and \(D(k-1: k, k-1: k)\) is a 2-by-2 diagonal block.
If ipiv = 'L' and ipiv(k) = ipiv(k+1) < 0, rows and columns \(k+1\) and -ipiv( \(k\) ) were interchanged and \(D(k: k+1, k: k+1)\) is a 2-by-2 diagonal block.

CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact \(=' F\) '. It specifies the form of equilibration that was done:
If equed \(=\) ' \(N\) ', no equilibration was done (always true if fact \(=\) ' \(N\) '). if equed = 'Y', both row and column equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(S) * A * \operatorname{diag}(s)\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION ( \(n\) ). The array \(s\) contains the scale factors for \(A\). If equed \(=' Y\) ', \(A\) is multiplied on the left and right by diag ( \(s\) ).
This array is an input argument if fact = ' \(\mathrm{F}^{\prime}\) ' only; otherwise it is an output argument.
If fact \(=\) ' F ' and equed \(=\) 'Y', each element of \(s\) must be positive. Each element of \(s\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
INTEGER. The leading dimension of the array \(b ; 1 d b \geq \max (1, n)\).
INTEGER. The leading dimension of the output array \(x ; I d x \geq \max (1, n)\).
INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in the Output Arguments section below. INTEGER. Specifies the number of parameters set in params. If \(\leq 0\), the params array is never referenced and default values are used.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION nparams. Specifies algorithm parameters. If an entry is less than 0.0 , that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams \(=0\), which prevents the source code from accessing the params argument.
params(la_linrx_itref_i = 1) : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).
\[
\begin{array}{ll}
=0.0 & \text { No refinement is performed and no error bounds } \\
=1.0 & \text { are computed. }
\end{array}
\]
(Other values are reserved for futute use.)
params(la_linrx_ithresh_i = 2) : Maximum number of resudual computations allowed for fefinement.

Default 10
Aggressive Set to 100 to permit convergence using approximate factorizations or factorizations other than \(L U\). If the factorization uses a technique other than Gaussian elimination, the quarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params(la_linrx_cwise_i = 3) : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).
INTEGER. Workspace array, DIMENSION at least max \((1, n)\); used in real flavors only.
REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max ( \(1,3^{*} n\) ); used in complex flavors only.

\section*{Output Parameters}

REAL for ssysvxx
DOUBLE PRECISION for dsysvxx
COMPLEX for csysvxx
DOUBLE COMPLEX for zsysvxx.
Array, DIMENSION (ldx, nrhs).
If info \(=0\), the array \(x\) contains the solution \(n\)-by-nrhs matrix \(x\) to the original system of equations. Note that \(A\) and \(B\) are modified on exit if equed \(\neq ' N\) ', and the solution to the equilibrated system is:
inv (diag(s)) *X.
If fact \(=\) 'E' and equed \(=\) 'Y', overwritten by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).
If fact \(=\) 'N', af is an output argument and on exit returns the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) from the factorization \(A=U^{\star} D^{\star} U^{\star} * T\) or \(A=L^{\star} D^{\star} L^{\star \star} T\).
If equed \(=' N\) ', \(B\) is not modified.
\begin{tabular}{|c|c|}
\hline & If equed \(=\) 'Y', \(B\) is overwritten by \(\operatorname{diag}(s) * B\). \\
\hline s & This array is an output argument if fact \(\neq{ }^{\prime} \mathrm{F}^{\prime}\). Each element of this array is a power of the radix. See the description of \(s\) in Input Arguments section. \\
\hline \multirow[t]{3}{*}{rcond} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned. \\
\hline \multirow[t]{3}{*}{rpvgrw} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Contains the reciprocal pivot growth factor \(\operatorname{norm}(A) / \operatorname{norm}(U)\). The max absolute element norm is used. If this is much less than 1 , the stability of the \(L U\) factorization of the (equlibrated) matrix \(A\) could be poor. This also means that the solution \(x\), estimated condition numbers, and error bounds could be unreliable. If factorization fails with \(0<\) info \(\leq n\), this parameter contains the reciprocal pivot growth factor for the leading info columns of A. \\
\hline \multirow[t]{3}{*}{berr} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Array, DIMENSION at least max ( \(1, n r h s\) ). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution. \\
\hline \multirow[t]{9}{*}{err_bnds_norm} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the \(i\)-th solution vector \\
\hline & \[
\max _{j}\left|X^{\operatorname{trrue}}{ }_{j i}-X_{j i}\right|
\] \\
\hline & \(\max _{j}\left|X_{j i}\right|\) \\
\hline & The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned. The first index in err_bnds_norm(i,:) corresponds to the i-th right-hand side. \\
\hline & The second index in err_bnds_norm (: err) contains the follwoing three fields: \\
\hline & \begin{tabular}{l}
\[
e r r=1
\] \\
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors.
\end{tabular} \\
\hline & "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt ( \(n\) ) *slamch ( \(\varepsilon\) ) for single precision flavors and \\
\hline
\end{tabular}
\(\operatorname{sqrt}(n) *\) dlamch ( \(\varepsilon\) ) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
err=3
Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * s l a m c h(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/
\(z\),inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1.
err_bnds_comp

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the \(i\)-th solution vector:


The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) \(=0.0\) ), then err_bnds_comp is not accessed. If \(n_{-} e r r_{-} b n d s\) \(<3\), then at most the first (:, n_err_bnds) entries are returned. The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_comp (:,err) contains the follwoing three fields:
\begin{tabular}{|c|c|}
\hline err=1 & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt( \(n\) )*slamch ( \(\varepsilon\) ) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors. \\
\hline err=2 & "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) *\) dlamch ( \(\varepsilon\) ) for double precision flavors. This error bound should only be trusted if the previous boolean is true. \\
\hline err=3 & Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold \\
\hline
\end{tabular}
\(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/ z,inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{\star}\left(a^{*} \operatorname{diag}(x)\right)\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a^{\star} \operatorname{diag}(x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1 .
\begin{tabular}{|c|c|}
\hline ipiv & If fact \(=\) ' N ', ipiv is an output argument and on exit contains details of the interchanges and the block structure \(D\), as determined by ssytrf for single precision flavors and dsytrf for double precision flavors. \\
\hline equed & If fact \(\neq ' \mathrm{~F}\) ', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section). \\
\hline params & If an entry is less than 0.0 , that entry is filled with the default value used for that parameter, otherwise the entry is not modified. \\
\hline info & \begin{tabular}{l}
INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
If \(0<i n f o \leq n: U(i n f o, i n f o)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned. \\
If info \(=n+j\) : The solution corresponding to the \(j\)-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides \(k\) with \(k>j\) may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) \(=0.0\), then the \(j\)-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest \(j\) such that err_bnds_norm \((j, 1)=0.0\) or err_bnds_comp \((j, 1)=0.0\). See the definition of err_bnds_norm(; 1) and err_bnds_comp (; ,1). To get information about all of the right-hand sides, check err_bnds_norm or err bnds comp.
\end{tabular} \\
\hline
\end{tabular}

\section*{?hesv}

Computes the solution to the system of linear equations with a Hermitian matrix \(A\) and multiple right-hand sides.

\section*{Syntax}

\section*{Fortran 77:}
```

call chesv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call zhesv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

```

\section*{Fortran 95:}
```

call hesv(a, b [,uplo] [,ipiv] [,info])

```
```

C:
lapack_int LAPACKE_<?>hesv(int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
<datatype>* a, lapack_int lda, lapack_int* ipiv, <datatype>* b, lapack_int ldb);

```

Include files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) symmetric matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.

The diagonal pivoting method is used to factor \(A\) as \(A=U \star D^{*} U^{H}\) or \(A=L^{\star} D^{*} L^{H}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{ll} 
uplo & CHARACTER* 1 . Must be ' \(U\) ' or ' \(L\) '. \\
& Indicates whether the upper or lower triangular part of \(A\) is stored and \\
& how \(A\) is factored: \\
& If uplo \(=' U\) ', the array a stores the upper triangular part of the \\
& matrix \(A\), and \(A\) is factored as \(U \star D^{*} U^{H}\).
\end{tabular}

If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes below for details and for the suggested value of lwork.

\section*{Output Parameters}
```

a
b
ipiv

```
work(1)
info

If info \(=0, a\) is overwritten by the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\) ) from the factorization of A as computed by ?hetrf.
If info \(=0, b\) is overwritten by the solution matrix \(x\).
INTEGER.
Array, DIMENSION at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\), as determined by ?hetrf. If ipiv(i) \(=k>0\), then \(d_{i i}\) is a 1-by-1 diagonal block, and the \(i\) th row and column of \(A\) was interchanged with the \(k\)-th row and column.
If uplo = 'U' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and ( \(i-1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo \(=\) 'L' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2by -2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) ) -th row and column of \(A\) was interchanged with the \(m\)-th row and column.

If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value. If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular, so the solution could not be computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine hesv interface are as follows:
```

a Holds the matrix A of size (n,n).
b Holds the matrix B of size (n,nrhs).
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

For better performance, try using lwork = \(n *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible 1 work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?hesvx}

Uses the diagonal pivoting factorization to compute the solution to the complex system of linear equations with a Hermitian matrix \(A\), and provides error bounds on the solution.

\section*{Syntax}

\section*{Fortran 77:}
```

call chesvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, lwork, rwork, info)
call zhesvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, lwork, rwork, info)

```

\section*{Fortran 95:}
```

call hesvx(a, b, x [,uplo] [,af] [,ipiv] [,fact] [,ferr] [,berr] [,rcond] [,info])

```
C:
lapack_int LAPACKE_chesvx( int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, lapack_complex_float*
af, lapack_int ldaf, lapack_int* ipiv, const lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* \(x\), lapack_int ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_zhesvx( int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, lapack_complex_double*
af, lapack_int ldaf, lapack_int* ipiv, const lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* \(x\), lapack_int ldx, double* rcond, double* ferr, double* berr );

\section*{Include files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) Hermitian matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?hesvx performs the following steps:
1. If fact \(=\) ' \(N\) ', the diagonal pivoting method is used to factor the matrix \(A\). The form of the factorization is \(A=U^{*} D^{*} U^{H}\) or \(A=L^{*} D^{\star} L^{H}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some \(d_{i, i}=0\), so that \(D\) is exactly singular, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(x\) and compute error bounds as described below.
3. The system of equations is solved for \(x\) using the factored form of \(A\).
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.


Array, DIMENSION at least max \((1, n)\). The array ipiv is an input argument if fact \(=\) ' \(F^{\prime}\). It contains details of the interchanges and the block structure of \(D\), as determined by ?hetrf.
If ipiv(i) \(=k>0\), then \(d_{i i}\) is a 1-by-1 diagonal block, and the \(i\) th row and column of \(A\) was interchanged with the \(k\)-th row and column.
If uplo = 'U' and ipiv(i) \(=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and ( \(i-1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo = 'L' and ipiv(i) \(=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
INTEGER. The leading dimension of the output array \(x ; I d x \geq \max (1\), n).

INTEGER. The size of the work array.
If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes below for details and for the suggested value of lwork.
REAL for chesvx
DOUBLE PRECISION for zhesvx.
Workspace array, DIMENSION at least max (1, n).

\section*{Output Parameters}

X
af, ipiv
rcond
ferr
berr
COMPLEX for chesvx
DOUBLE COMPLEX for zhesvx.
Array, DIMENSION (ldx,*).
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(x\) to the system of equations. The second dimension of \(x\) must be at least max (1, nrhs).
These arrays are output arguments if fact \(={ }^{\prime} N^{\prime}\). See the description of af, ipiv in Input Arguments section.
REAL for chesvx
DOUBLE PRECISION for zhesvx.
An estimate of the reciprocal condition number of the matrix \(A\). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).
REAL for chesvx
DOUBLE PRECISION for zhesvx.
Array, DIMENSION at least max ( \(1, n r h s\) ). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(x\) ). If \(x\) true is the true solution corresponding to \(x(j)\), ferr \((j)\) is an estimated upper bound for the magnitude of the largest element in \((x(j)-x t r u e)\) divided by the magnitude of the largest element in \(x(j)\). The estimate is as reliable as the estimate for rcon, and is almost always a slight overestimate of the true error.
REAL for chesvx
DOUBLE PRECISION for zhesvx.

Array, DIMENSION at least max ( 1, nrhs). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.
work(1)
info
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value. If info \(=i\), and \(i \leq n\), then \(d_{i i}\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=i\), and \(i=n+1\), then \(D\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hesvx interface are as follows:
```

a Holds the matrix A of size (n,n).
b Holds the matrix B of size (n,nrhs).
x Holds the matrix }x\mathrm{ of size (n,nrhs).
af Holds the matrix AF of size (n,n).
ipiv Holds the vector of length n.
ferr Holds the vector of length (nrhs).
berr Holds the vector of length (nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.
fact Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then
both arguments af and ipiv must be present; otherwise, an error is
returned.

```

\section*{Application Notes}

The value of 1 work must be at least \(2 \star n\). For better performance, try using lwork \(=n \star b l o c k s i z e\), where blocksize is the optimal block size for ?hetrf.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?hesvxx}

Uses extra precise iterative refinement to compute the solution to the system of linear equations with a Hermitian indefinite matrix A applying the diagonal pivoting factorization.

\section*{Syntax}

\section*{Fortran 77:}
```

call chesvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
rwork, info)
call zhesvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
rwork, info)

```

C:
```

lapack_int LAPACKE_chesvxx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, float* s, lapack_complex_float* b,
lapack_int ldb, lapack_complex_float* x, lapack_int ldx, float* rcond, float* rpvgrw,
float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp,
lapack_int nparams, const float* params);
lapack_int LAPACKE_zhesvxx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, double* s, lapack_complex_double* b,
lapack_int ldb, lapack_complex_double* x, lapack_int ldx, double* rcond, double*
rpvgrw, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double*
err_bnds_comp, lapack_int nparams, const double* params);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the diagonal pivoting factorization to compute the solution to a complex/double complex system of linear equations \(A * X=B\), where \(A\) is an \(n-b y-n\) Hermitian matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.

Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error ( O (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.

The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with \(O\) (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.

The routine ?hesvxx performs the following steps:
1. If fact \(=\) ' \(E\) ', scaling factors are computed to equilibrate the system:
\(\operatorname{diag}(s) * A * \operatorname{diag}(s) * i n v(\operatorname{diag}(s)) * X=\operatorname{diag}(s) * B\)
Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\) and \(B\) by \(\operatorname{diag}(s){ }^{*} B\).
2. If fact \(=\) ' \(N\) ' or 'E', the LU decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) 'E') as
\(A=U^{\star} D^{\star} U^{T}\), if uplo = 'U',
or \(A=L^{\star} D^{\star} L^{T}\), if uplo = 'L',
where \(U\) or \(L\) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is a symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
3. If some \(D(i, i)=0\), so that \(D\) is exactly singular, the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\) (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for \(x\) and compute error bounds.
4. The system of equations is solved for \(x\) using the factored form of \(A\).
5. By default, unless params (la_linrx_itref_i) is set to zero, the routine applies iterative refinement to get a small error and error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix \(x\) is premultiplied by \(\operatorname{diag}(r)\) so that it solves the original system before equilibration.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline fact & \begin{tabular}{l}
CHARACTER*1. Must be 'F', 'N', or 'E'. \\
Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored. \\
If fact \(=\) ' \(F\) ', on entry, af and ipiv contain the factored form of \(A\). If equed is not ' \(N\) ', the matrix \(A\) has been equilibrated with scaling factors given by \(s\). Parameters \(a, a f\), and ipiv are not modified. \\
If fact \(=\) ' \(N\) ', the matrix \(A\) will be copied to af and factored. \\
If fact \(=\) ' \(E\) ', the matrix \(A\) will be equilibrated, if necessary, copied to af and factored.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates whether the upper or lower triangular part of \(A\) is stored: \\
If uplo = 'U', the upper triangle of \(A\) is stored. \\
If uplo = 'L', the lower triangle of \(A\) is stored.
\end{tabular} \\
\hline \(n\)
\(n r h s\) & INTEGER. The number of linear equations; the order of the matrix \(A ; n \geq 0\). INTEGER. The number of right-hand sides; the number of columns of the matrices \(B\) and \(x ; n r h s \geq 0\). \\
\hline \(a, a f, b, w o r k\) & \begin{tabular}{l}
COMPLEX for chesvxx \\
DOUBLE COMPLEX for zhesvxx. \\
Arrays: \(a(l d a, *), a f(l d a f, *), b(l d b, *), w o r k(*)\).
\end{tabular} \\
\hline
\end{tabular}

The array a contains the Hermitian matrix \(A\) as specified by uplo. If uplo \(=\) 'U', the leading n-by-n upper triangular part of a contains the upper triangular part of the matrix \(A\) and the strictly lower triangular part of \(a\) is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(a\) contains the lower triangular part of the matrix \(A\) and the strictly upper triangular part of \(a\) is not referenced. The second dimension of a must be at least max \((1, n)\).
The array \(a f\) is an input argument if fact \(=' F^{\prime}\). It contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) and \(L\) from the factorization \(A=U^{\star} D^{\star} U^{\star *} T\) or \(A=L^{\star} D^{\star} L^{\star *} T\) as computed by ? hetrf. The second dimension of af must be at least max \((1, n)\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least \(\max (1, n r h s)\).
work (*) is a workspace array. The dimension of work must be at least \(\max \left(1,2 *_{n}\right)\).

INTEGER. The leading dimension of the array \(a ; l d a \geq \max (1, n)\).
INTEGER. The leading dimension of the array \(a f ; l \operatorname{daf} \geq \max (1, n)\).
INTEGER.
Array, DIMENSION at least max \((1, n)\). The array ipiv is an input argument if fact \(=' F^{\prime}\). It contains details of the interchanges and the block structure of \(D\) as determined by ?sytrf. If ipiv \((k)>0\), rows and columns \(k\) and ipiv( \(k\) ) were intercanaged and \(D(k, k)\) is a 1-by-1 diagonal block. If ipiv = 'U' and ipiv(k) =ipiv(k-1) < 0, rows and columns \(k-1\) and -ipiv(k) were interchanged and \(D(k-1: k, k-1: k)\) is a 2-by-2 diagonal block.
If ipiv = 'L' and ipiv(k) = ipiv(k+1) < 0, rows and columns \(k+1\) and -ipiv(k) were interchanged and \(D(k: k+1, k: k+1)\) is a 2-by-2 diagonal block.
equed is an input argument if fact \(=' F\) '. It specifies the form of equilibration that was done:
If equed \(=\) ' \(N\) ', no equilibration was done (always true if fact \(=\) 'N'). if equed = 'Y', both row and column equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(S) * A * \operatorname{diag}(s)\).
REAL for chesvxx
DOUBLE PRECISION for zhesvxx.
Array, DIMENSION ( \(n\) ). The array \(s\) contains the scale factors for \(A\). If equed \(=' Y\) ', \(A\) is multiplied on the left and right by diag \((s)\).
This array is an input argument if fact = ' \(F\) ' only; otherwise it is an output argument.
If fact \(=\) ' \(F\) ' and equed \(=\) 'Y', each element of \(s\) must be positive. Each element of \(s\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
INTEGER. The leading dimension of the array \(b ; l d b \geq \max (1, n)\).
\(\operatorname{INTEGER}\). The leading dimension of the output array \(x ; I d x \geq \max (1, n)\).
```

n_err_bnds
nparams
params
rwork

```

\section*{Output Parameters}

COMPLEX for chesvxx
DOUBLE COMPLEX for zhesvxx.
Array, DIMENSION (ldx, nrhs).
If info \(=0\), the array \(x\) contains the solution \(n\)-by-nrhs matrix \(x\) to the original system of equations. Note that \(A\) and \(B\) are modified on exit if equed \(\neq\) ' \(N\) ', and the solution to the equilibrated system is:
inv(diag(s)) *X.
If fact \(=\) 'E' and equed = 'Y', overwritten by diag(s)*A*diag(s).
If fact \(=\) 'N', af is an output argument and on exit returns the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) from the factorization \(A=U^{\star} D^{\star} U^{\star} * T\) or \(A=L^{\star} D^{\star} L^{\star *} T\).
\begin{tabular}{|c|c|}
\hline b & \begin{tabular}{l}
If equed \(=\) ' \(N\) ', \(B\) is not modified. \\
If equed \(=\) ' \(Y\) ', \(B\) is overwritten by \(\operatorname{diag}(s) * B\).
\end{tabular} \\
\hline s & This array is an output argument if fact \(\neq '^{\prime} F^{\prime}\). Each element of this array is a power of the radix. See the description of \(s\) in Input Arguments section. \\
\hline rcond & \begin{tabular}{l}
REAL for chesvxx \\
DOUBLE PRECISION for zhesvxx. \\
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
\end{tabular} \\
\hline rpvgrw & \begin{tabular}{l}
REAL for chesvxx \\
DOUBLE PRECISION for zhesvxx. \\
Contains the reciprocal pivot growth factor \(\operatorname{norm}(A) / \operatorname{norm}(U)\). The max absolute element norm is used. If this is much less than 1 , the stability of the \(L U\) factorization of the (equlibrated) matrix \(A\) could be poor. This also means that the solution \(x\), estimated condition numbers, and error bounds could be unreliable. If factorization fails with \(0<i n f o \leq n\), this parameter contains the reciprocal pivot growth factor for the leading info columns of A.
\end{tabular} \\
\hline berr & \begin{tabular}{l}
REAL for chesvxx \\
DOUBLE PRECISION for zhesvxx. \\
Array, DIMENSION at least max ( \(1, n r h s\) ). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.
\end{tabular} \\
\hline \multirow[t]{5}{*}{err_bnds_norm} & \begin{tabular}{l}
REAL for chesvxx \\
DOUBLE PRECISION for zhesvxx. \\
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the \(i\)-th solution vector
\end{tabular} \\
\hline & \(\max _{j}\left|X_{j i}\right|\) \\
\hline & \begin{tabular}{l}
The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned. \\
The first index in err_bnds_norm(i,:) corresponds to the \(i\)-th right-hand side. \\
The second index in err_bnds_norm (: ,err) contains the follwoing three fields:
\end{tabular} \\
\hline & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt ( \(n\) ) *slamch ( \(\varepsilon\) ) for chesvxx and \(\operatorname{sqrt}(n) *\) dlamch ( \(\varepsilon\) ) for zhesvxx. \\
\hline & "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for chesvxx and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for zhesvxx. This error bound should only be trusted if the previous boolean is true. \\
\hline
\end{tabular}
err=3

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold
\(\operatorname{sqrt}(n)\) *slamch ( \(\varepsilon\) ) for chesvxx and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for zhesvxx to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm (1/ \(z\),inf) *norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1.

REAL for chesvxx
DOUBLE PRECISION for zhesvxx.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the \(i\)-th solution vector:


The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) \(=0.0\) ), then err_bnds_comp is not accessed. If \(n_{-} e r r_{-} b n d s\) \(<3\), then at most the first ( \(:, n_{-} e r r_{-} b n d s\) ) entries are returned.
The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the follwoing three fields:
\begin{tabular}{|c|c|}
\hline err=1 & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt ( \(n\) ) *slamch ( \(\varepsilon\) ) for chesvxx and sqrt( \(n\) )*dlamch ( \(\varepsilon\) ) for zhesvxx. \\
\hline err \(=2\) & "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt \((n)\) *slamch \((\varepsilon)\) for chesvxx and sqrt ( \(n\) ) *dlamch ( \(\varepsilon\) ) for zhesvxx. This error bound should only be trusted if the previous boolean is true. \\
\hline \(e r r=3\) & \begin{tabular}{l}
Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold \\
\(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for chesvxx and \(\operatorname{sqrt}(n) *\) dlamch ( \(\varepsilon\) ) for zhesvxx to determine if the error estimate is "guaranteed". These
\end{tabular} \\
\hline
\end{tabular}

Trust/don't trust" boolean. Trust the answer if threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for chesvxx and sqrt ( \(n\) ) *dlamch( \(\varepsilon\) ) for zhesvxx.
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for chesvxx and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for zhesvxx. This error bound should only be trusted if the previous boolean is true.
Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for chesvxx and sqrt( \(n\) )*dlamch ( \(\varepsilon\) ) for zhesvxx to determine if the error estimate is "guaranteed". These
reciprocal condition numbers are 1/(norm (1/ \(z, i n f) *\) norm (z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{\star}\left(a^{*} \operatorname{diag}(x)\right)\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a^{*} \operatorname{diag}(x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1 .
\begin{tabular}{|c|c|}
\hline ipiv & If fact \(=\) 'N', ipiv is an output argument and on exit contains details of the interchanges and the block structure \(D\), as determined by ssytrf for single precision flavors and dsytrf for double precision flavors. \\
\hline equed & If fact \(\neq '^{\prime} F^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section). \\
\hline params & If an entry is less than 0.0, that entry is filled with the default value used for that parameter, otherwise the entry is not modified. \\
\hline info & \begin{tabular}{l}
INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
If \(0<i n f o \leq n: U(i n f o, i n f o)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned. \\
If info \(=n+j\) : The solution corresponding to the \(j\)-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides \(k\) with \(k>j\) may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) \(=0.0\), then the \(j\)-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest \(j\) such that err_bnds_norm \((j, 1)=0.0\) or err_bnds_comp \((j, 1)=0.0\). See the definition of err_bnds_norm(; 1) and err_bnds_comp (; ,1). To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.
\end{tabular} \\
\hline
\end{tabular}

\section*{?spsv}

Computes the solution to the system of linear equations with a real or complex symmetric matrix \(A\) stored in packed format, and multiple right-hand sides.

\section*{Syntax}

\section*{Fortran 77:}
```

call sspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)
call dspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)
call cspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)
call zspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

```

\section*{Fortran 95:}
```

call spsv(ap, b [,uplo] [,ipiv] [,info])

```
```

C:
lapack_int LAPACKE_<?>spsv(int matrix_order, char uplo, lapack_int n, lapack_int nrhs,
<datatype>* ap, lapack_int* ipiv, <datatype>* b, lapack_int ldb);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) symmetric matrix stored in packed format, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.

The diagonal pivoting method is used to factor \(A\) as \(A=U^{\star} D^{\star} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of }A\mathrm{ is stored.
INTEGER. The order of matrix A; n\geq0.
INTEGER. The number of right-hand sides, the number of columns in
B; nrhs \geq 0.
REAL for sspsv
DOUBLE PRECISION for dspsv
COMPLEX for cspsv
DOUBLE COMPLEX for zspsv.
Arrays: ap(*), b(ldb,*).
The dimension of ap must be at least max (1,n(n+1)/2). The array ap
contains the factor U or L, as specified by uplo, in packed storage
(see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must
be at least max (1,nrhs).
INTEGER. The leading dimension of b; ldb \geq max (1, n).

```

\section*{Output Parameters}

The block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\) ) from the factorization of \(A\) as computed by ?sptrf, stored as a packed triangular matrix in the same storage format as \(A\).

If info \(=0, b\) is overwritten by the solution matrix \(x\).
INTEGER.

Array, DIMENSION at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\), as determined by ?sptrf. If ipiv(i) \(=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column. If uplo = 'U' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and ( \(i-1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo = 'L' and ipiv(i) \(=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
info
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value. If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular, so the solution could not be computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine spsv interface are as follows:
```

ap Holds the array A of size (n* (n+1)/2).
b Holds the matrix B of size (}n,nrhs\mathrm{).
ipiv Holds the vector with the number of elements n.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{?spsvx}

Uses the diagonal pivoting factorization to compute the solution to the system of linear equations with a real or complex symmetric matrix A stored in packed format, and provides error bounds on the solution.

Syntax

\section*{Fortran 77:}
```

call sspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr, berr,
work, iwork, info)
call dspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr, berr,
work, iwork, info)
call cspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr, berr,
work, rwork, info)
call zspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr, berr,
work, rwork, info)

```

\section*{Fortran 95:}
```

call spsvx(ap, b, x [,uplo] [,afp] [,ipiv] [,fact] [,ferr] [,berr] [,rcond] [,info])

```

C:
```

lapack_int LAPACKE_sspsvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, const float* ap, float* afp, lapack_int* ipiv, const float* b,
lapack_int ldb, float* x, lapack_int ldx, float* rcond, float* ferr, float* berr);
lapack_int LAPACKE_dspsvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, const double* ap, double* afp, lapack_int* ipiv, const double* b,
lapack_int ldb, double* x, lapack_int ldx, double* rcond, double* ferr, double* berr);
lapack_int LAPACKE_cspsvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_float* ap, lapack_complex_float* afp, lapack_int*
ipiv, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack_int ldx, float* rcond, float* ferr, float* berr);
lapack_int LAPACKE_zspsvx(int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_double* ap, lapack_complex_double* afp,
lapack_int* ipiv, const lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* x, lapack_int ldx, double* rcond, double* ferr, double* berr);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the diagonal pivoting factorization to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is a \(n\)-by- \(n\) symmetric matrix stored in packed format, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?spsvx performs the following steps:
1. If fact \(=\) ' \(N\) ', the diagonal pivoting method is used to factor the matrix \(A\). The form of the factorization is \(A=U^{\star} D^{\star} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some \(d_{i, i}=0\), so that \(D\) is exactly singular, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(x\) and compute error bounds as described below.
3. The system of equations is solved for \(x\) using the factored form of \(A\).
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

fact

```

CHARACTER*1. Must be 'F' or 'N'.
Specifies whether or not the factored form of the matrix \(A\) has been supplied on entry.
If fact = 'F': on entry, afp and ipiv contain the factored form of A. Arrays \(a p, a f p\), and ipiv are not modified.
\begin{tabular}{|c|c|}
\hline & If fact \(=\) ' N ', the matrix \(A\) is copied to \(a f p\) and factored. \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored: \\
If uplo = 'U', the array ap stores the upper triangular part of the symmetric matrix \(A\), and \(A\) is factored as \(U^{\star} D^{\star} U^{T}\). \\
If uplo = ' L ', the array \(a p\) stores the lower triangular part of the symmetric matrix \(A ; A\) is factored as \(L^{*} D^{*} L^{T}\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides, the number of columns in B; nrhs \(\geq 0\). \\
\hline \(a p, a f p, b\), work & \begin{tabular}{l}
REAL for sspsvx \\
DOUBLE PRECISION for dspsvx \\
COMPLEX for cspsvx \\
DOUBLE COMPLEX for zspsvx. \\
Arrays: \(a p(*), a f p(*), b(l d b, *)\), work(*). \\
The array ap contains the upper or lower triangle of the symmetric matrix A in packed storage (see Matrix Storage Schemes). \\
The array \(a f p\) is an input argument if fact \(=' F\) '. It contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) from the factorization \(A=U \star D \star U^{T}\) or \(A=L \star D^{\star} L^{T}\) as computed by ?sptrf, in the same storage format as \(A\). \\
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. \\
work (*) is a workspace array. \\
The dimension of arrays \(a p\) and \(a f p\) must be at least max \((1, n(n\) \(+1) / 2\) ) ; the second dimension of \(b\) must be at least max ( \(1, n r h s\) ); the dimension of work must be at least max \(\left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2{ }^{\star} n\right)\) for complex flavors.
\end{tabular} \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline ipiv & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION at least max \((1, n)\). The array ipiv is an input argument if fact \(=\) ' \(F^{\prime}\). It contains details of the interchanges and the block structure of \(D\), as determined by ?sptrf. \\
If ipiv(i) \(=k>0\), then \(d_{i i}\) is a 1-by-1 diagonal block, and the \(i\) th row and column of \(A\) was interchanged with the \(k\)-th row and column. \\
If uplo = 'U' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a \(2-\) by- 2 block in rows/columns \(i\) and \(i-1\), and (i-1)-th row and column of \(A\) was interchanged with the \(m\)-th row and column. \\
If uplo = 'L' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2-by- 2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
\end{tabular} \\
\hline \(1 d x\) & INTEGER. The leading dimension of the output array \(x ; 1 d x \geq \max (1\), n). \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least \(\max (1, n)\); used in real flavors only. \\
\hline rwork & \begin{tabular}{l}
REAL for cspsvx \\
DOUBLE PRECISION for zspsvx.
\end{tabular} \\
\hline
\end{tabular}

Workspace array, DIMENSION at least max \((1, n)\); used in complex flavors only.

\section*{Output Parameters}

REAL for sspsvx
DOUBLE PRECISION for dspsvx
COMPLEX for cspsvx
DOUBLE COMPLEX for zspsvx.
Array, DIMENSION (Idx,*).
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(x\) to the system of equations. The second dimension of \(x\) must be at least max (1, nrhs).
These arrays are output arguments if fact \(=\) 'N'. See the description of afp, ipiv in Input Arguments section.
rcond
ferr, berr
info
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix \(A\). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).

\section*{REAL for single precision flavors}

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max (1, nrhs). Contain the componentwise forward and relative backward errors, respectively, for each solution vector.
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and \(i \leq n\), then \(d_{i i}\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=i\), and \(i=n+1\), then \(D\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine spsvx interface are as follows:
\begin{tabular}{ll} 
ap & Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
\(x\) & Holds the matrix \(X\) of size \((n, n r h s)\). \\
afpiv & Holds the array \(A F\) of size \(\left(n^{\star}(n+1) / 2\right)\). \\
ferr & Holds the vector with the number of elements \(n\). \\
& Holds the vector with the number of elements nrhs.
\end{tabular}
\begin{tabular}{ll} 
berr & Holds the vector with the number of elements nrhs. \\
uplo & Must be 'U' or 'L'. The default value is 'U'. \\
fact & Must be 'N' or 'F'. The default value is 'N'. If fact = ' \(F\) ', then \\
& both arguments af and ipiv must be present; otherwise, an error is \\
& returned.
\end{tabular}

\section*{?hpsv}

Computes the solution to the system of linear equations with a Hermitian matrix A stored in packed format, and multiple right-hand sides.

\section*{Syntax}

\section*{Fortran 77:}
```

call chpsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)
call zhpsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

```

Fortran 95:
```

call hpsv(ap, b [,uplo] [,ipiv] [,info])

```

C:
```

lapack_int LAPACKE_<?>hpsv(int matrix_order, char uplo, lapack_int n, lapack_int nrhs,

```
<datatype>* ap, lapack_int* ipiv, <datatype>* b, lapack_int ldb );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves for \(x\) the system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) Hermitian matrix stored in packed format, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

The diagonal pivoting method is used to factor \(A\) as \(A=U^{*} D^{*} U^{H}\) or \(A=L^{*} D^{*} L^{H}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
n
INTEGER. The order of matrix }A;n\geq0

```
\begin{tabular}{|c|c|}
\hline nrhs & INTEGER. The number of right-hand sides; the number of columns in B; nrhs \(\geq 0\). \\
\hline \(a p, b\) & COMPLEX for chpsv \\
\hline & DOUBLE COMPLEX for zhpsv. \\
\hline & Arrays: \(a p(*), b(l d b, *)\). \\
\hline & The dimension of \(a p\) must be at least \(\max (1, n(n+1) / 2)\). The array ap contains the factor \(U\) or \(L\), as specified by uplo, in packed storage (see Matrix Storage Schemes). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max ( \(1, n r h s\) ). \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
ap
b
info
The block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\) ) from the factorization of \(A\) as computed by ?hptrf, stored as a packed triangular matrix in the same storage format as \(A\).
If info \(=0, b\) is overwritten by the solution matrix \(x\).
INTEGER.
Array, DIMENSION at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\), as determined by ?hptrf. If ipiv(i) \(=k>0\), then \(d_{i i}\) is a 1-by- 1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column. If uplo \(=\) 'U' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by- 2 block in rows/columns \(i\) and \(i-1\), and ( \(i-1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo \(=\) 'L' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value. If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular, so the solution could not be computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hpsv interface are as follows:
```

ap Holds the array A of size (}n* (n+1)/2)
b Holds the matrix B of size (}n,nrhs\mathrm{).
ipiv Holds the vector with the number of elements n.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{?hpsvx \\ Uses the diagonal pivoting factorization to compute the solution to the system of linear equations with a Hermitian matrix A stored in packed format, and provides error bounds on the solution.}

\section*{Syntax}

\section*{Fortran 77:}
```

call chpsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr, berr,
work, rwork, info)
call zhpsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr, berr,
work, rwork, info)

```

\section*{Fortran 95:}
```

call hpsvx(ap, b, x [,uplo] [,afp] [,ipiv] [,fact] [,ferr] [,berr] [,rcond] [,info])

```
C:
lapack_int LAPACKE_chpsvx( int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_float* ap, lapack_complex_float* afp, lapack_int*
ipiv, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack int ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_zhpsvx( int matrix_order, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_double* ap, lapack_complex_double* afp,
lapack_int* ipiv, const lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* x, lapack_int ldx, double* rcond, double* ferr, double* berr );

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations \(A * X=B\), where \(A\) is a \(n\)-by-n Hermitian matrix stored in packed format, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(x\) are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?hpsvx performs the following steps:
1. If fact \(=\) ' \(N\) ', the diagonal pivoting method is used to factor the matrix \(A\). The form of the factorization is \(A=U^{\star} D^{\star} U^{H}\) or \(A=L^{\star} D^{\star} L^{H}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is a Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some \(d_{i, i}=0\), so that \(D\) is exactly singular, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(x\) and compute error bounds as described below.
3. The system of equations is solved for \(x\) using the factored form of \(A\).
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
fact CHARACTER*1. Must be 'F' or 'N'.
Specifies whether or not the factored form of the matrix \(A\) has been supplied on entry.
If fact \(=\) ' F ': on entry, afp and ipiv contain the factored form of A. Arrays ap, afp, and ipiv are not modified.

If fact \(=' N\) ', the matrix \(A\) is copied to afp and factored.
uplo
n
nrhs
\(a p, a f p, b, w o r k\)

1 db
ipiv

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored:
If uplo = 'U', the array ap stores the upper triangular part of the Hermitian matrix \(A\), and \(A\) is factored as \(U^{\star} D^{*} U^{H}\).
If uplo = 'L', the array ap stores the lower triangular part of the Hermitian matrix \(A\), and \(A\) is factored as \(L^{\star} D^{\star} L^{H}\).

INTEGER. The order of matrix \(A ; n \geq 0\).
INTEGER. The number of right-hand sides, the number of columns in B; nrhs \(\geq 0\).

COMPLEX for chpsvx
DOUBLE COMPLEX for zhpsvx.
Arrays: \(a p(*), a f p(*), b(l d b, *)\), work(*).
The array ap contains the upper or lower triangle of the Hermitian matrix A in packed storage (see Matrix Storage Schemes).
The array \(a f p\) is an input argument if fact \(={ }^{\prime} F^{\prime}\) '. It contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) from the factorization \(A=U^{\star} D^{*} U^{H}\) or \(A=L^{\star} D^{\star} L^{H}\) as computed by ?hptrf, in the same storage format as \(A\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
work(*) is a workspace array.
The dimension of arrays \(a p\) and \(a f p\) must be at least max \((1, n(n+1) /\)
\(2)\); the second dimension of \(b\) must be at least max ( \(1, n r h s\) ) ; the dimension of work must be at least max \(\left(1,2 *_{n}\right)\).
INTEGER. The leading dimension of \(b ; \quad l d b \geq \max (1, n)\).
INTEGER.
Array, DIMENSION at least max \((1, n)\). The array ipiv is an input argument if fact \(=\) ' \(F^{\prime}\). It contains details of the interchanges and the block structure of \(D\), as determined by ?hptrf.
If ipiv(i) \(=k>0\), then \(d_{i i}\) is a 1-by-1 diagonal block, and the \(i\) th row and column of \(A\) was interchanged with the \(k\)-th row and column.
If uplo \(=\) 'U' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and ( \(i-1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo \(=\) 'L' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2by -2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
Idx
rwork
Output Parameters

X
afp, ipiv
rcond
ferr
berr
info

INTEGER. The leading dimension of the output array \(x ; 1 d x \geq \max (1\), n).

REAL for chpsvx
DOUBLE PRECISION for zhpsvx.
Workspace array, DIMENSION at least max (1, n).

COMPLEX for chpsvx
DOUBLE COMPLEX for zhpsvx.
Array, DIMENSION (ldx,*).
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(x\) to the system of equations. The second dimension of \(x\) must be at least max ( 1, nrhs).
These arrays are output arguments if fact \(={ }^{\prime} N\) '. See the description of afp, ipiv in Input Arguments section.
REAL for chpsvx
DOUBLE PRECISION for zhpsvx.
An estimate of the reciprocal condition number of the matrix \(A\). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).
REAL for chpsvx
DOUBLE PRECISION for zhpsvx.
Array, DIMENSION at least max ( \(1, n r h s\) ). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(x\) ). If \(x\) true is the true solution corresponding to \(x(j)\), ferr \((j)\) is an estimated upper bound for the magnitude of the largest element in \((x(j)-x t r u e)\) divided by the magnitude of the largest element in \(x(j)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
REAL for chpsvx
DOUBLE PRECISION for zhpsvx.
Array, DIMENSION at least max ( \(1, n r h s\) ). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and \(i \leq n\), then \(d_{i i}\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=i\), and \(i=n+1\), then \(D\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hpsvx interface are as follows:
```

ap Holds the array A of size (n* (n+1)/2).
b
x
afp
ipiv
ferr
berr
uplo
fact
Holds the matrix B of size (}n,nrhs)
Holds the matrix }x\mathrm{ of size (}n,nrhs)
Holds the array AF of size (n* (n+1)/2).
Holds the vector with the number of elements n.
Holds the vector with the number of elements nrhs.
Holds the vector with the number of elements nrhs.
Must be 'U' or 'L'. The default value is 'U'.
Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then
both arguments af and ipiv must be present; otherwise, an error is
returned.

```

\title{
LAPACK Routines: Least Squares and Eigenvalue Problems
}

This chapter describes the Intel \({ }^{\circledR}\) Math Kernel Library implementation of routines from the LAPACK package that are used for solving linear least squares problems, eigenvalue and singular value problems, as well as performing a number of related computational tasks.
Sections in this chapter include descriptions of LAPACK computational routines and driver routines. For full reference on LAPACK routines and related information see [LUG].

Least Squares Problems. A typical least squares problem is as follows: given a matrix \(A\) and a vector \(b\), find the vector \(x\) that minimizes the sum of squares \(\Sigma_{i}\left((A x)_{i}-b_{i}\right)^{2}\) or, equivalently, find the vector \(x\) that minimizes the 2 -norm \(||A x-b||_{2}\).
In the most usual case, \(A\) is an \(m\)-by- \(n\) matrix with \(m \geq n\) and \(\operatorname{rank}(A)=n\). This problem is also referred to as finding the least squares solution to an overdetermined system of linear equations (here we have more equations than unknowns). To solve this problem, you can use the \(Q R\) factorization of the matrix A (see \(Q R\) Factorization).
If \(m<n\) and \(\operatorname{rank}(A)=m\), there exist an infinite number of solutions \(x\) which exactly satisfy \(A x=b\), and thus minimize the norm \(||A x-b||_{2}\). In this case it is often useful to find the unique solution that minimizes \(\left||x|_{2}\right.\). This problem is referred to as finding the minimum-norm solution to an underdetermined system of linear equations (here we have more unknowns than equations). To solve this problem, you can use the \(L Q\) factorization of the matrix \(A\) (see LQ Factorization).
In the general case you may have a rank-deficient least squares problem, with rank \((A)<\min (m, n)\) : find the minimum-norm least squares solution that minimizes both \(||x||_{2}\) and \(||A x-b||^{2}\). In this case (or when the rank of \(A\) is in doubt) you can use the \(Q R\) factorization with pivoting or singular value decomposition (see Singular Value Decomposition).

Eigenvalue Problems. The eigenvalue problems (from German eigen "own") are stated as follows: given a matrix \(A\), find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(z\) that satisfy the equation
```

Az = \lambdaz (right eigenvectors z)

```
or the equation
\(z^{H} A=\lambda z^{H}\) (left eigenvectors \(z\) ).
If \(A\) is a real symmetric or complex Hermitian matrix, the above two equations are equivalent, and the problem is called a symmetric eigenvalue problem. Routines for solving this type of problems are described in the sectionSymmetric Eigenvalue Problems .

Routines for solving eigenvalue problems with nonsymmetric or non-Hermitian matrices are described in the sectionNonsymmetric Eigenvalue Problems.
The library also includes routines that handle generalized symmetric-definite eigenvalue problems: find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(x\) that satisfy one of the following equations:
\(A z=\lambda B z, A B z=\lambda z\), or \(B A z=\lambda z\),
where \(A\) is symmetric or Hermitian, and \(B\) is symmetric positive-definite or Hermitian positive-definite. Routines for reducing these problems to standard symmetric eigenvalue problems are described in the sectionGeneralized Symmetric-Definite Eigenvalue Problems.

To solve a particular problem, you usually call several computational routines. Sometimes you need to combine the routines of this chapter with other LAPACK routines described in Chapter 3 as well as with BLAS routines described in Chapter 2.

For example, to solve a set of least squares problems minimizing \(||A x-b||^{2}\) for all columns \(b\) of a given matrix \(B\) (where \(A\) and \(B\) are real matrices), you can call ?geqrf to form the factorization \(A=Q R\), then call ? ormqr to compute \(C=Q^{H} B\) and finally call the BLAS routine ? trsm to solve for \(X\) the system of equations \(R X\) \(=C\).

Another way is to call an appropriate driver routine that performs several tasks in one call. For example, to solve the least squares problem the driver routine ?gels can be used.

WARNING LAPACK routines assume that input matrices do not contain IEEE 754 special values such as INF or NaN values. Using these special values may cause LAPACK to return unexpected results or become unstable.

Starting from release 8.0, Intel MKL along with the FORTRAN 77 interface to LAPACK computational and driver routines supports also the Fortran 95 interface, which uses simplified routine calls with shorter argument lists. The syntax section of the routine description gives the calling sequence for the Fortran 95 interface, where available, immediately after the FORTRAN 77 calls.

\section*{Routine Naming Conventions}

For each routine in this chapter, when calling it from the FORTRAN 77 program you can use the LAPACK name.

LAPACK names have the structure xyyzzz, which is explained below.
The initial letter \(x\) indicates the data type:
```

s real, single precision
c complex, single precision
d real, double precision
z complex, double precision

```

The second and third letters yy indicate the matrix type and storage scheme:
\begin{tabular}{ll} 
bb & bidiagonal-block matrix \\
bd & bidiagonal matrix \\
ge & general matrix \\
gb & general band matrix \\
hs & upper Hessenberg matrix \\
or & (real) orthogonal matrix \\
op & (real) orthogonal matrix (packed storage) \\
un & (complex) unitary matrix \\
up & (complex) unitary matrix (packed storage) \\
pt & symmetric or Hermitian positive-definite tridiagonal matrix \\
sy & symmetric matrix \\
sp & symmetric matrix (packed storage) \\
sb & (real) symmetric band matrix \\
st & (real) symmetric tridiagonal matrix \\
he & Hermitian matrix \\
hp & Hermitian matrix (packed storage) \\
hb & (complex) Hermitian band matrix \\
tr & triangular or quasi-triangular matrix.
\end{tabular}

The last three letters zzz indicate the computation performed, for example:
\begin{tabular}{ll} 
Grf & form the \(Q R\) factorization \\
lqf & form the \(L Q\) factorization.
\end{tabular}

Thus, the routine sgeqrf forms the \(Q R\) factorization of general real matrices in single precision; the corresponding routine for complex matrices is cgeqrf.

Names of the LAPACK computational and driver routines for the Fortran 95 interface in Intel MKL are the same as the FORTRAN 77 names but without the first letter that indicates the data type. For example, the name of the routine that forms the \(Q R\) factorization of general real matrices in the Fortran 95 interface is geqrf. Handling of different data types is done through defining a specific internal parameter referring to a module block with named constants for single and double precision.
For details on the design of the Fortran 95 interface for LAPACK computational and driver routines in Intel MKL and for the general information on how the optional arguments are reconstructed, see the Fortran 95 Interface Conventions in chapter 3.

\section*{Matrix Storage Schemes}

LAPACK routines use the following matrix storage schemes:
- Full storage: a matrix \(A\) is stored in a two-dimensional array \(a\), with the matrix element \(a_{i j}\) stored in the array element \(a(i, j)\).
- Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more compactly: the upper or lower triangle of the matrix is packed by columns in a one-dimensional array.
- Band storage: an \(m\)-by- \(n\) band matrix with \(k l\) sub-diagonals and \(k u\) super-diagonals is stored compactly in a two-dimensional array \(a b\) with \(k l+k u+1\) rows and \(n\) columns. Columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.

In Chapters 3 and 4, arrays that hold matrices in the packed storage have names ending in \(p\); arrays with matrices in the band storage have names ending in \(b\). For more information on matrix storage schemes, see "Matrix Arguments" in Appendix B .

\section*{Mathematical Notation}

In addition to the mathematical notation used in description of BLAS and LAPACK Linear Equations routines, descriptions of the routines to solve Least Squares and Eigenvalue plroblems use the following notation:
```

\lambdai Eigenvalues of the matrix A (for the definition of eigenvalues, see Eigenvalue
Problems).
\sigma
eigenvalues of 㰪A. (For more information, see Singular Value Decomposition).

```

```

||A|| The 2-norm (or spectral norm) of the matrix A.

```

```

||A||E
q(x, y)
The Euclidean norm of the matrix A: | |A| | E E
Euclidean norm and the 2-norm are equal: ||x| |E = ||x|| |).
The acute angle between vectors }x\mathrm{ and }y\mathrm{ :
cos q(x, y) = |x\cdoty| / (||x|| 2||y||).

```

\section*{Computational Routines}

In the sections that follow, the descriptions of LAPACK computational routines are given. These routines perform distinct computational tasks that can be used for:

\footnotetext{
Orthogonal Factorizations
Singular Value Decomposition
Symmetric Eigenvalue Problems
Generalized Symmetric-Definite Eigenvalue Problems
}

\section*{Generalized Nonsymmetric Eigenvalue Problems}

Generalized Singular Value Decomposition
See also the respective driver routines.

\section*{Orthogonal Factorizations}

This section describes the LAPACK routines for the \(Q R(R Q)\) and \(L Q\) ( \(Q L\) ) factorization of matrices. Routines for the \(R Z\) factorization as well as for generalized \(Q R\) and \(R Q\) factorizations are also included.
QR Factorization. Assume that \(A\) is an \(m-b y-n\) matrix to be factored.
If \(m \geq n\), the \(Q R\) factorization is given by
\[
A=Q\binom{R}{0}=\left(Q_{1}, Q_{2}\right)\binom{R}{0}
\]
where \(R\) is an \(n\)-by- \(n\) upper triangular matrix with real diagonal elements, and \(Q\) is an \(m\)-by- \(m\) orthogonal (or unitary) matrix.
You can use the \(Q R\) factorization for solving the following least squares problem: minimize \(||A x-b||^{2}\) where \(A\) is a full-rank \(m\)-by- \(n\) matrix \((m \geq n)\). After factoring the matrix, compute the solution \(x\) by solving \(R x=\) \(\left(Q_{1}\right)^{T} b\).
If \(m<n\), the \(Q R\) factorization is given by
\(A=Q R=Q\left(R_{1} R_{2}\right)\)
where \(R\) is trapezoidal, \(R_{1}\) is upper triangular and \(R_{2}\) is rectangular.
The LAPACK routines do not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors. Routines are provided to work with \(Q\) in this representation.
LQ Factorization LQ factorization of an \(m-b y-n\) matrix \(A\) is as follows. If \(m \leq n\),
\[
A=(L, 0) Q=(L, 0)\binom{Q_{1}}{Q_{2}}=\left(L Q_{1}\right)
\]
where \(L\) is an \(m\)-by- \(m\) lower triangular matrix with real diagonal elements, and \(Q\) is an \(n-b y-n\) orthogonal (or unitary) matrix.
If \(m>n\), the \(L Q\) factorization is
\[
A=\binom{L_{1}}{I_{2}} Q
\]
where \(L_{1}\) is an \(n\)-by- \(n\) lower triangular matrix, \(L_{2}\) is rectangular, and \(Q\) is an \(n\)-by- \(n\) orthogonal (or unitary) matrix.

You can use the \(L Q\) factorization to find the minimum-norm solution of an underdetermined system of linear equations \(A x=b\) where \(A\) is an \(m\)-by- \(n\) matrix of rank \(m(m<n)\). After factoring the matrix, compute the solution vector \(x\) as follows: solve \(L y=b\) for \(y\), and then compute \(x=\left(Q_{1}\right)^{H} y\).

Table "Computational Routines for Orthogonal Factorization" lists LAPACK routines (FORTRAN 77 interface) that perform orthogonal factorization of matrices. Respective routine names in Fortran 95 interface are without the first symbol (see Routine Naming Conventions).

Computational Routines for Orthogonal Factorization
\begin{tabular}{lllll}
\hline Matrix type, factorization & \begin{tabular}{l} 
Factorize without \\
pivoting
\end{tabular} & \begin{tabular}{l} 
Factorize with \\
pivoting
\end{tabular} & \begin{tabular}{l} 
Generate \\
matrix Q
\end{tabular} & \begin{tabular}{l} 
Apply \\
matrix Q
\end{tabular} \\
\hline general matrices, QR factorization & geqrf & geqpf & orgqr & ormqr \\
geqrfp & geqp3 & ungqr & unmqr \\
general matrices, RQ factorization & gerqf & & orgrq & ungrq
\end{tabular}
?geqrf
Computes the QR factorization of a general m-by-n matrix.

Syntax

\section*{Fortran 77:}
```

call sgeqrf(m, n, a, lda, tau, work, lwork, info)
call dgeqrf(m, n, a, lda, tau, work, lwork, info)
call cgeqrf(m, n, a, lda, tau, work, lwork, info)
call zgeqrf(m, n, a, lda, tau, work, lwork, info)

```

\section*{Fortran 95:}
```

call geqrf(a [, tau] [,info])

```

C:
```

lapack_int LAPACKE_<?>geqrf(int matrix_order, lapack_int m, lapack_int n, <datatype>*
a, lapack_int lda, <datatype>* tau);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine forms the \(Q R\) factorization of a general \(m\)-by- \(n\) matrix A (see Orthogonal Factorizations). No pivoting is performed.

The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of min \((m, n)\) elementary reflectors. Routines are provided to work with \(Q\) in this representation.

NOTE This routine supports the Progress Routine feature. See Progress Function section for details.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

m INTEGER. The number of rows in the matrix A (m\geq0).
n
a, work
lda
lwork
INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
REAL for sgeqrf
DOUBLE PRECISION for dgeqrf
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Arrays: a(lda,*) contains the matrix A. The second dimension of a must be at least $\max (1, n)$.
work is a workspace array, its dimension max (1,1 work).
INTEGER. The leading dimension of a; at least max $(1, m)$.
INTEGER. The size of the work array (lwork $\geq n$).
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

```

\section*{Output Parameters}
a
tau
work(1)
info
Overwritten by the factorization data as follows:
If \(m \geq n\), the elements below the diagonal are overwritten by the details of the unitary matrix \(Q\), and the upper triangle is overwritten by the corresponding elements of the upper triangular matrix \(R\).
If \(m<n\), the strictly lower triangular part is overwritten by the details of the unitary matrix \(Q\), and the remaining elements are overwritten by the corresponding elements of the \(m\)-by- \(n\) upper trapezoidal matrix \(R\).

REAL for sgeqrf
DOUBLE PRECISION for dgeqrf
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Array, DIMENSION at least max \((1, \min (m, n))\). Contains additional information on the matrix \(Q\).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine geqre interface are the following:
```

a Holds the matrix A of size (m,n).
tau Holds the vector of length min(m,n)

```

\section*{Application Notes}

For better performance, try using lwork \(=n *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The computed factorization is the exact factorization of a matrix \(A+E\), where
\(||E||_{2}=O(\varepsilon)| | A| |_{2}\).
The approximate number of floating-point operations for real flavors is
\((4 / 3) n^{3}\)
if \(m=n\),
\((2 / 3) n^{2}(3 m-n)\)
if \(m>n\),
\((2 / 3) m^{2}(3 n-m)\)
if \(m<n\).

The number of operations for complex flavors is 4 times greater.
To solve a set of least squares problems minimizing \(\left|\left|A *_{x}-b\right|\right|_{2}\) for all columns \(b\) of a given matrix \(B\), you can call the following:
?geqre (this routine) to factorize \(A=Q R\);
ormqr to compute \(C=Q^{T} \star_{B}\) (for real matrices);
unmqr to compute \(C=Q^{H} \star_{B}\) (for complex matrices);
trsm (a BLAS routine) to solve \(R \star X=C\).
(The columns of the computed \(x\) are the least squares solution vectors \(x\).)
To compute the elements of \(Q\) explicitly, call
\begin{tabular}{ll} 
orgqr & (for real matrices) \\
ungqr & (for complex matrices).
\end{tabular}

See Also
mkl_progress
```

?geqrfp
Computes the QR factorization of a general m-by-n
matrix with non-negative diagonal elements.
Syntax

```

\section*{Fortran 77:}
```

call sgeqrfp(m, n, a, lda, tau, work, lwork, info)

```
call sgeqrfp(m, n, a, lda, tau, work, lwork, info)
call dgeqrep(m, n, a, lda, tau, work, lwork, info)
call dgeqrep(m, n, a, lda, tau, work, lwork, info)
call cgeqrfp(m, n, a, lda, tau, work, lwork, info)
call cgeqrfp(m, n, a, lda, tau, work, lwork, info)
call zgeqrfp(m, n, a, lda, tau, work, lwork, info)
```

call zgeqrfp(m, n, a, lda, tau, work, lwork, info)

```

C:
```

lapack_int LAPACKE_<?>geqrfp(int matrix_order, lapack_int m, lapack_int n, <datatype>*
a, lapack_int lda, <datatype>* tau);

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- C: mkl_lapacke.h

\section*{Description}

The routine forms the \(Q R\) factorization of a general m-by-n matrix A (see Orthogonal Factorizations). No pivoting is performed.
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors. Routines are provided to work with \(Q\) in this representation.

NOTE This routine supports the Progress Routine feature. See Progress Function section for details.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline m & INTEGER. The number of rows in the matrix \(A(m \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns in \(A(n \geq 0)\). \\
\hline \multirow[t]{6}{*}{a, work} & REAL for sgeqrfp \\
\hline & DOUBLE PRECISION for dgeqrfp \\
\hline & COMPLEX for cgeqrfp \\
\hline & DOUBLE COMPLEX for zgeqrfp. \\
\hline & Arrays: \(a(l d a, *)\) contains the matrix \(A\). The second dimension of a must be at least \(\max (1, n)\). \\
\hline & work is a workspace array, its dimension max (1, lwork). \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, m)\). \\
\hline \multirow[t]{2}{*}{Iwork} & INTEGER. The size of the work array (lwork \(\geq n\) ). \\
\hline & If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. \\
\hline
\end{tabular}

See Application Notes for the suggested value of lwork.

\section*{Output Parameters}
```

a
tau
work(1)
info
Overwritten by the factorization data as follows:
If $m \geq n$, the elements below the diagonal are overwritten by the details of the unitary matrix Q, and the upper triangle is overwritten by the corresponding elements of the upper triangular matrix R.
If $m<n$, the strictly lower triangular part is overwritten by the details of the unitary matrix Q, and the remaining elements are overwritten by the corresponding elements of the m-by- n upper trapezoidal matrix R. The diagonal elements of the matrix R are non-negative.

```
```

REAL for sgeqrfp

```
REAL for sgeqrfp
DOUBLE PRECISION for dgeqrfp
DOUBLE PRECISION for dgeqrfp
COMPLEX for cgeqrfp
COMPLEX for cgeqrfp
DOUBLE COMPLEX for zgeqrfp.
DOUBLE COMPLEX for zgeqrfp.
Array, DIMENSION at least max (1,min(m,n)). Contains additional
information on the matrix }Q\mathrm{ .
If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
```


Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine geqrfp interface are the following:

```
a Holds the matrix A of size (m,n).
tau Holds the vector of length min(m,n)
```


Application Notes

For better performance, try using lwork = n^{*} blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The computed factorization is the exact factorization of a matrix $A+E$, where

```
||E|| | = O(\varepsilon)||A| | .
```

The approximate number of floating-point operations for real flavors is

$(4 / 3) n^{3}$	if $m=n$,
$(2 / 3) n^{2}(3 m-n)$	if $m>n$,
$(2 / 3) m^{2}(3 n-m)$	if $m<n$.

The number of operations for complex flavors is 4 times greater.
To solve a set of least squares problems minimizing $\left|\left|A^{*} X-b\right|\right|_{2}$ for all columns b of a given matrix B, you can call the following:

?geqrfp (this routine)	to factorize $A=Q R ;$
ormqr	to compute $C=Q^{T} \star_{B}$ (for real matrices);
unmqr	to compute $C=Q^{H *}$ (for complex matrices);
trsm (a BLAS routine)	to solve $R \star X=C$.

(The columns of the computed x are the least squares solution vectors x.)
To compute the elements of Q explicitly, call
orgqr (for real matrices)
ungqr (for complex matrices).
See Also
mkl_progress
?geqpf
Computes the QR factorization of a general m-by-n
matrix with pivoting.
Syntax
Fortran 77:

```
call sgeqpf(m, n, a, lda, jpvt, tau, work, info)
call dgeqpf(m, n, a, lda, jpvt, tau, work, info)
call cgeqpf(m, n, a, lda, jpvt, tau, work, rwork, info)
call zgeqpf(m, n, a, lda, jpvt, tau, work, rwork, info)
```


Fortran 95:

```
call geqpf(a, jpvt [,tau] [,info])
```

C:
lapack_int LAPACKE_<?>geqpf(int matrix_order, lapack_int m, lapack_int n, <datatype>* a, lapack_int lda, lapack_int* jpvt, <datatype>* tau);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine is deprecated and has been replaced by routine geqp3.
The routine ? geqpf forms the $Q R$ factorization of a general m-by- n matrix A with column pivoting: $A * P=Q * R$ (see Orthogonal Factorizations). Here P denotes an n-by- n permutation matrix.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
m INTEGER. The number of rows in the matrix A (m\geq0).
n INTEGER. The number of columns in A (n\geq0).
a, work
Ida
jpvt
rwork
```


Output Parameters

a
tau
jpvt
info

Overwritten by the factorization data as follows:
If $m \geq n$, the elements below the diagonal are overwritten by the details of the unitary (orthogonal) matrix Q, and the upper triangle is overwritten by the corresponding elements of the upper triangular matrix R.
If $m<n$, the strictly lower triangular part is overwritten by the details of the matrix Q, and the remaining elements are overwritten by the corresponding elements of the m-by- n upper trapezoidal matrix R.
REAL for sgeqpf
DOUBLE PRECISION for dgeqpf
COMPLEX for cgeqpf
DOUBLE COMPLEX for zgeqpf.
Array, DIMENSION at least max $(1, \min (m, n))$. Contains additional information on the matrix Q.

Overwritten by details of the permutation matrix P in the factorization $A * P$ $=Q * R$. More precisely, the columns of $A * P$ are the columns of A in the following order:
jpvt(1), jpvt(2), ..., jpvt(n).
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine geqpf interface are the following:

a	Holds the matrix A of size (m, n).
jpvt	Holds the vector of length n.
tau	Holds the vector of length $\min (m, n)$

Application Notes

The computed factorization is the exact factorization of a matrix $A+E$, where

```
||E||2 = O(\varepsilon)||A| | .
```

The approximate number of floating-point operations for real flavors is
$(4 / 3) n^{3}$
if $m=n$,
$(2 / 3) n^{2}(3 m-n)$
if $m>n$,
$(2 / 3) m^{2}(3 n-m)$
if $m<n$.

The number of operations for complex flavors is 4 times greater.
To solve a set of least squares problems minimizing $\left|\left|A^{*} X-b\right|\right|_{2}$ for all columns b of a given matrix B, you can call the following:

```
?geqpf (this routine) to factorize A* P = Q*R;
ormqr to compute C = Q Q *B (for real matrices);
unmqr to compute C = 的 * * (for complex matrices);
trsm (a BLAS routine) to solve R*X = C.
```

(The columns of the computed x are the permuted least squares solution vectors x; the output array jpvt specifies the permutation order.)

To compute the elements of Q explicitly, call
orgqr (for real matrices)
ungqr (for complex matrices).
?geqp3
Computes the $Q R$ factorization of a general m-by-n matrix with column pivoting using level 3 BLAS.

Syntax

Fortran 77:

```
call sgeqp3(m, n, a, lda, jpvt, tau, work, lwork, info)
call dgeqp3(m, n, a, lda, jpvt, tau, work, lwork, info)
call cgeqp3(m, n, a, lda, jpvt, tau, work, lwork, rwork, info)
call zgeqp3(m, n, a, lda, jpvt, tau, work, lwork, rwork, info)
```

Fortran 95:

```
call geqp3(a, jpvt [,tau] [,info])
```

```
C:
lapack_int LAPACKE_<?>geqp3( int matrix_order, lapack_int m, lapack_int n, <datatype>*
a, lapack_int lda, lapack_int* jpvt, <datatype>* tau );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine forms the $Q R$ factorization of a general m-by- n matrix A with column pivoting: $A * P=Q \star R$ (see Orthogonal Factorizations) using Level 3 BLAS. Here P denotes an $n-b y-n$ permutation matrix. Use this routine instead of geqpf for better performance.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min (m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

m	INTEGER. The number of rows in the matrix $A(m \geq 0)$.
n	INTEGER. The number of columns in $A(n \geq 0)$.
a, work	REAL for sgeqp3
	DOUBLE PRECISION for dgeqp3
	COMPLEX for cgeqp 3
	DOUBLE COMPLEX for zgeqp3.
	Arrays:
	a (lda,*) contains the matrix A.
	The second dimension of a must be at least max $(1, n)$. work is a workspace array, its dimension max (1, lwork).
Ida	INTEGER. The leading dimension of a; at least max $(1, m)$.
lwork	INTEGER. The size of the work array; must be at least max (1, $3 * n+1$) for real flavors, and at least max ($1, n+1$) for complex flavors.
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes below for details.
jpvt	INTEGER.
	Array, DIMENSION at least max ($1, n$).
	On entry, if jpvt (i) $\neq 0$, the i-th column of A is moved to the beginning of $A P$ before the computation, and fixed in place during the computation. If jpvt (i) $=0$, the i-th column of A is a free column (that is, it may be interchanged during the computation with any other free column).
rwork	REAL for cgeqp3
	DOUBLE PRECISION for zgeqp3.
	A workspace array, DIMENSION at least max $\left(1,2 *_{n}\right)$. Used in complex flavors only.

Output Parameters

 aOverwritten by the factorization data as follows:
If $m \geq n$, the elements below the diagonal are overwritten by the details of the unitary (orthogonal) matrix Q, and the upper triangle is overwritten by the corresponding elements of the upper triangular matrix R.
If $m<n$, the strictly lower triangular part is overwritten by the details of the matrix Q, and the remaining elements are overwritten by the corresponding elements of the m-by- n upper trapezoidal matrix R.
REAL for sgeqp3
DOUBLE PRECISION for dgeqp3
COMPLEX for cgeqp3
DOUBLE COMPLEX for zgeqp3.
Array, DIMENSION at least max $(1, \min (m, n))$. Contains scalar factors of the elementary reflectors for the matrix Q.
jpvt Overwritten by details of the permutation matrix P in the factorization $A * P$ $=Q * R$. More precisely, the columns of $A P$ are the columns of A in the following order:
jpvt(1), jpvt(2), ..., jpvt(n).
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine geqp 3 interface are the following:

```
a Holds the matrix A of size (m,n).
jpvt Holds the vector of length n.
tau Holds the vector of length min (m,n)
```


Application Notes

To solve a set of least squares problems minimizing $\left|\left|A *_{X}-b\right|\right|_{2}$ for all columns b of a given matrix B, you can call the following:

```
?geqp3 (this routine) to factorize A*P = Q*R;
ormqr to compute C = Q Q * (for real matrices);
unmqr to compute C = Q Q **B (for complex matrices);
trsm (a BLAS routine) to solve R*X = C.
```

(The columns of the computed x are the permuted least squares solution vectors x; the output array jpvt specifies the permutation order.)
To compute the elements of Q explicitly, call

orgqr	(for real matrices)
ungqr	(for complex matrices).

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible 1 work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

?orgqr
 Generates the real orthogonal matrix Q of the $Q R$ factorization formed by ?geqre.

Syntax

Fortran 77:

```
call sorgqr(m, n, k, a, lda, tau, work, lwork, info)
call dorgqr(m, n, k, a, lda, tau, work, lwork, info)
```


Fortran 95:

```
call orgqr(a, tau [,info])
```

C:

```
lapack_int LAPACKE_<?>orgqr( int matrix_order, lapack_int m, lapack_int n, lapack_int
```

k, <datatype>* a, lapack_int lda, const <datatype>* tau);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine generates the whole or part of m-by-m orthogonal matrix Q of the $Q R$ factorization formed by the routines geqrf/geqrf or geqpf/geqpf. Use this routine after a call to sgeqrf/dgeqrf or sgeqpf/dgeqpf.

Usually Q is determined from the $Q R$ factorization of an m by p matrix A with $m \geq p$. To compute the whole matrix Q, use:

```
call ?orgqr(m, m, p, a, lda, tau, work, lwork, info)
```

To compute the leading p columns of Q (which form an orthonormal basis in the space spanned by the columns of A):

```
call ?orgqr(m, p, p, a, lda, tau, work, lwork, info)
```

To compute the matrix Q^{k} of the $Q R$ factorization of leading k columns of the matrix A :

```
call ?orgqr(m, m, k, a, lda, tau, work, lwork, info)
```

To compute the leading k columns of Q^{k} (which form an orthonormal basis in the space spanned by leading k columns of the matrix A):

```
call ?orgqr(m, k, k, a, lda, tau, work, lwork, info)
```


Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

m	INTEGER. The order of the orthogonal matrix $Q(m \geq 0)$.
n	INTEGER. The number of columns of Q to be computed ($0 \leq n \leq m$).
k	INTEGER. The number of elementary reflectors whose product defines the matrix $Q(0 \leq k \leq n)$.
a, tau, work	REAL for sorgqr
	DOUBLE PRECISION for dorgqr
	Arrays:
	a(lda,*) and $\operatorname{tau}(*)$ are the arrays returned by sgeqrf / dgeqrf or sgeqpf / dgeqpf.
	The second dimension of a must be at least max $(1, n)$.
	The dimension of tau must be at least max $(1, k)$.
	work is a workspace array, its dimension max (1,1 work) .
Ida	INTEGER. The leading dimension of a; at least max $(1, m)$.
lwork	INTEGER. The size of the work array (lwork $\geq n$).
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
	See Application Notes for the suggested value of lwork.

Output Parameters

a
work(1)
info

Overwritten by n leading columns of the m-by- m orthogonal matrix Q.
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine orgqr interface are the following:

a	Holds the matrix A of size (m, n).
tau	Holds the vector of length (k)

Application Notes

For better performance, try using lwork = $n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed Q differs from an exactly orthogonal matrix by a matrix E such that
$||E||_{2}=O(\varepsilon)|*| A| |_{2}$ where ε is the machine precision.
The total number of floating-point operations is approximately $4 \star m^{\star} n \star k-2 \star(m+n) \star k^{2}+(4 / 3) \star k^{3}$.
If $n=k$, the number is approximately $(2 / 3) * n^{2} *(3 m-n)$.
The complex counterpart of this routine is ungqr.

?ormqr

Multiplies a real matrix by the orthogonal matrix Q of the $Q R$ factorization formed by ?geqre or ?geqpf.

Syntax

Fortran 77:

```
call sormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
```


Fortran 95:

```
call ormqr(a, tau, c [,side] [,trans] [,info])
```


C:

```
lapack_int LAPACKE_<?>ormqr( int matrix_order, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const <datatype>* a, lapack_int lda, const <datatype>*
tau, <datatype>* c, lapack_int ldc );
```

Include files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine multiplies a real matrix C by Q or Q^{T}, where Q is the orthogonal matrix Q of the $Q R$ factorization formed by the routines geqrf/geqrf or geqpf/geqpf.
Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{\star} C, Q^{T \star} C$, $C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result on C).

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

side	CHARACTER*1. Must be either 'L' or 'R'.
	If side ='L', Q or Q^{T} is applied to C from the left.
	If side ='R', Q or Q^{T} is applied to C from the right.
trans	CHARACTER*1. Must be either 'N' or 'T'.
	If trans $=$ ' N ', the routine multiplies C by Q.
	If trans $=$ ' T ', the routine multiplies C by Q^{T}.
m	INTEGER. The number of rows in the matrix $C(m \geq 0)$.
n	INTEGER. The number of columns in $C(n \geq 0)$.
k	INTEGER. The number of elementary reflectors whose product defines the matrix Q. Constraints:
	$0 \leq k \leq m$ if side = 'L';
	$0 \leq k \leq n$ if side $={ }^{\prime} \mathrm{R}^{\prime}$.
a, tau, c, work	REAL for sgeqrf
	DOUBLE PRECISION for dgeqrf.
	Arrays:
	$a(l d a, *)$ and $\operatorname{tau}(*)$ are the arrays returned by sgeqrf / dgeqrf or sgeqpf / dgeqpf. The second dimension of a must be at least max(1, k). The dimension of tau must be at least max $(1, k)$. $c(l d c, *)$ contains the matrix C.
	The second dimension of c must be at least max $(1, n)$ work is a workspace array, its dimension max (1, lwork).
Ida	INTEGER. The leading dimension of a. Constraints:
	Ida $\geq \max (1, m)$ if side $=$ 'L';
	$l d a \geq \max (1, n)$ if side $=$ 'R'.
$1 d c$	INTEGER. The leading dimension of c. Constraint:
	$l d c \geq \max (1, m)$.
lwork	INTEGER. The size of the work array. Constraints:
	lwork $\geq \max (1, n)$ if side = 'L';
	lwork $\geq \max (1, m)$ if side = 'R'.
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

Output Parameters

C
work(1)
info

Overwritten by the product $Q^{\star} C, Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (as specified by side and trans).
If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ormqr interface are the following:

a	Holds the matrix A of size (r, k).
	$r=m$ if side $=$ 'L'.
	$r=n$ if side $=$ 'R'.
tau	Holds the vector of length (k).
c	Holds the matrix C of size (m, n).
side	Must be 'L' or 'R'. The default value is 'L'.
trans	Must be 'N' or 'T'. The default value is 'N'.

Application Notes

For better performance, try using lwork $=n^{\star}$ blocksize (if side $=$ 'L') or lwork $=m^{\star} b l o c k s i z e ~(i f ~$ side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The complex counterpart of this routine is unmqr.
?ungqr
Generates the complex unitary matrix Q of the $Q R$ factorization formed by ?geqrf.

Syntax

Fortran 77:

```
call cungqr(m, n, k, a, lda, tau, work, lwork, info)
call zungqr(m, n, k, a, lda, tau, work, lwork, info)
```

Fortran 95:

```
call ungqr(a, tau [,info])
```

C:

```
lapack_int LAPACKE_<?>ungqr( int matrix_order, lapack_int m, lapack_int n, lapack_int
k, <datatype>* a, lapack_int lda, const <datatype>* tau );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine generates the whole or part of m-by- m unitary matrix Q of the $Q R$ factorization formed by the routines geqrf/geqrf or geqpf/geqpf. Use this routine after a call to cgeqrf/zgeqrf or cgeqpf/zgeqpf.

Usually Q is determined from the $Q R$ factorization of an m by p matrix A with $m \geq p$. To compute the whole matrix Q, use:

```
call ?ungqr(m, m, p, a, lda, tau, work, lwork, info)
```

To compute the leading p columns of Q (which form an orthonormal basis in the space spanned by the columns of A):

```
call ?ungqr(m, p, p, a, lda, tau, work, lwork, info)
```

To compute the matrix Q^{k} of the $Q R$ factorization of the leading k columns of the matrix A :

```
call ?ungqr(m, m, k, a, lda, tau, work, lwork, info)
```

To compute the leading k columns of Q^{k} (which form an orthonormal basis in the space spanned by the leading k columns of the matrix A):

```
call ?ungqr(m, k, k, a, lda, tau, work, lwork, info)
```


Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

m	INTEGER. The order of the unitary matrix $Q(m \geq 0)$.
n	INTEGER. The number of columns of Q to be computed ($0 \leq n \leq m$).
k	INTEGER. The number of elementary reflectors whose product defines the matrix $Q(0 \leq k \leq n)$.
a, tau, work	COMPLEX for cungqr
	DOUBLE COMPLEX for zungqr
	Arrays: $a(l d a, *)$ and $\operatorname{tau}(*)$ are the arrays returned by cgeqrf/zgeqrf or cgeqpf/zgeqpf.
	The second dimension of a must be at least $\max (1, n)$.
	The dimension of tau must be at least max $(1, k)$.
	work is a workspace array, its dimension max (1,1 work).
Ida	INTEGER. The leading dimension of a; at least max $(1, m)$.
lwork	INTEGER. The size of the work array (lwork $\geq n$).
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
	See Application Notes for the suggested value of lwork.

Output Parameters

a
work(1)
info

Overwritten by n leading columns of the m-by- m unitary matrix Q.
If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ungqr interface are the following:

a	Holds the matrix A of size (m, n).
tau	Holds the vector of length (k).

Application Notes

For better performance, try using lwork $=n \star$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed Q differs from an exactly unitary matrix by a matrix E such that $||E||_{2}=O(\varepsilon) *| | A| |_{2}$, where ε is the machine precision.

The total number of floating-point operations is approximately $16{ }^{*} m^{\star} n^{*} k-8 *(m+n) * k 2+(16 / 3) * k^{3}$.
If $n=k$, the number is approximately $(8 / 3) * n^{2} *(3 m-n)$.
The real counterpart of this routine is orgqr.

?unmqr

Multiplies a complex matrix by the unitary matrix Q of the $Q R$ factorization formed by ?geqre.

Syntax
Fortran 77:

```
call cunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call zunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
```


Fortran 95:

call unmqr(a, tau, c [,side] [,trans] [,info])
C:
lapack_int LAPACKE_<?>unmqr(int matrix_order, char side, char trans, lapack_int m,
 tau, <datatype>* c, lapack_int ldc);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine multiplies a rectangular complex matrix C by Q or Q_{H}, where Q is the unitary matrix Q of the $Q R$ factorization formed by the routines geqrf/geqrf or geqpf/geqpf.

Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{\star} C, Q^{H *} C$, $C^{*} Q$, or $C^{*} Q^{H}$ (overwriting the result on C).

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
side CHARACTER*1. Must be either 'L' or 'R'.
    If side = 'L', Q or Q Q is applied to C from the left.
    If side = 'R',Q or }\mp@subsup{Q}{H}{}\mathrm{ is applied to C from the right.
    CHARACTER*1. Must be either 'N' or 'C'.
    If trans = 'N', the routine multiplies C by Q.
    If trans = 'C', the routine multiplies C by Q Q
    INTEGER. The number of rows in the matrix C (m\geq0).
    INTEGER. The number of columns in C ( }n\geq0)\mathrm{ .
    INTEGER. The number of elementary reflectors whose product defines the
    matrix Q. Constraints:
    0 \leq k \leqm if side = 'L';
    0 \leqk\leqn if side = 'R'.
    COMPLEX for cgeqrf
    DOUBLE COMPLEX for zgeqrf.
```


Arrays:

```
a(lda,*) and \(\operatorname{tau}(*)\) are the arrays returned by cgeqrf / zgeqrf or cgeqpf / zgeqpf.
The second dimension of a must be at least max \((1, k)\).
The dimension of tau must be at least \(\max (1, k)\).
\(c(l d c, *)\) contains the matrix \(C\).
The second dimension of \(c\) must be at least max \((1, n)\)
work is a workspace array, its dimension max ( 1,1 work).
INTEGER. The leading dimension of \(a\). Constraints:
lda \(\geq \max (1, m)\) if side \(=\) 'L';
lda \(\geq \max (1, n)\) if side \(=\) 'R'.
```

ldc
lwork
INTEGER. The leading dimension of c. Constraint:
$I d c \geq \max (1, m)$.
INTEGER. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side $=$ 'L';
lwork $\geq \max (1, m)$ if side $=$ 'R'.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application notes for the suggested value of lwork.

Output Parameters

Overwritten by the product $Q^{*} C, Q^{H *} C, C^{*} Q$, or $C^{*} Q^{H}$ (as specified by side and trans).
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs. INTEGER.

If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine unmqr interface are the following:

```
a Holds the matrix A of size (r,k).
    r = mif side = 'L'.
    r = n if side = 'R'.
tau Holds the vector of length (k).
c Holds the matrix c of size (m,n).
side Must be 'L' or 'R'. The default value is 'L'.
trans Must be 'N' or 'C'. The default value is 'N'.
```


Application Notes

 side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of 1 work for the first run, or set 1 work $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The real counterpart of this routine is ormqr.

?gelqf

Computes the $L Q$ factorization of a general m-by-n
matrix.

Syntax

Fortran 77:

```
call sgelqf(m, n, a, lda, tau, work, lwork, info)
call dgelqf(m, n, a, lda, tau, work, lwork, info)
call cgelqf(m, n, a, lda, tau, work, lwork, info)
call zgelqf(m, n, a, lda, tau, work, lwork, info)
```

Fortran 95:

```
call gelqf(a [, tau] [,info])
```

C:
lapack_int LAPACKE_<?>gelqf(int matrix_order, lapack_int m, lapack_int n, <datatype>* a, lapack_int lda, <datatype>* tau);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine forms the $L Q$ factorization of a general m-by- n matrix A (see Orthogonal Factorizations). No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with Q in this representation.

\square
NOTE This routine supports the Progress Routine feature. See Progress Function section for details.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
m INTEGER. The number of rows in the matrix A (m\geq0).
n INTEGER. The number of columns in A ( }n\geq0)\mathrm{ .
a,work REAL for sgelqf
DOUBLE PRECISION for dgelqf
COMPLEX for cgelqf
DOUBLE COMPLEX for zgelqf.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1,n).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least max (1,m).
INTEGER. The size of the work array; at least max(1,m).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.
```

See Application Notes for the suggested value of lwork.

Output Parameters

a
Overwritten by the factorization data as follows:
If $m \leq n$, the elements above the diagonal are overwritten by the details of the unitary (orthogonal) matrix Q, and the lower triangle is overwritten by the corresponding elements of the lower triangular matrix L.
If $m>n$, the strictly upper triangular part is overwritten by the details of the matrix Q, and the remaining elements are overwritten by the corresponding elements of the m-by- n lower trapezoidal matrix L.

tau	REAL for sgelqf
	DOUBLE PRECISION for dgelqf
	COMPLEX for cgelqf
	DOUBLE COMPLEX for zgelqf.
	Array, DIMENSION at least max $(1, \min (m, n))$.
	Contains additional information on the matrix Q.
work(1)	If info $=0$, on exit work (1) contains the minimum value of lwork
	required for optimum performance. Use this lwork for subsequent runs.
	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gelqf interface are the following:

```
a Holds the matrix A of size (m,n).
tau Holds the vector of length min(m,n).
```


Application Notes

For better performance, try using lwork $=m^{\star}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible 1 work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work(1)) for subsequent runs.
If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The computed factorization is the exact factorization of a matrix $A+E$, where
$||E||_{2}=O(\varepsilon) \quad| | A| |_{2}$.
The approximate number of floating-point operations for real flavors is
$(4 / 3) n^{3}$
if $m=n$,
$(2 / 3) n^{2}(3 m-n)$
if $m>n$,
$(2 / 3) m^{2}(3 n-m)$
if $m<n$.

The number of operations for complex flavors is 4 times greater.
To find the minimum-norm solution of an underdetermined least squares problem minimizing $\left|\left|A *_{X}-b\right| l_{2}\right.$ for all columns b of a given matrix B, you can call the following:
?gelqf (this routine)
trsm (a BLAS routine)
ormlq
to factorize $A=L^{\star} Q$;
to solve $L * Y=B$ for Y;
to compute $X=\left(Q_{1}\right)^{T * Y}$ (for real matrices);
(The columns of the computed x are the minimum-norm solution vectors x. Here A is an m-by- n matrix with m $<n ; Q_{1}$ denotes the first m columns of Q).

To compute the elements of Q explicitly, call

```
orglq (for real matrices)
unglq (for complex matrices).
```

```
See Also
mkl_progress
```

?orglq
Generates the real orthogonal matrix Q of the $L Q$ factorization formed by ?gelqf.

Syntax

Fortran 77:

```
call sorglq(m, n, k, a, lda, tau, work, lwork, info)
call dorglq(m, n, k, a, lda, tau, work, lwork, info)
```


Fortran 95:

```
call orglq(a, tau [,info])
```

C:
lapack_int LAPACKE_<?>orglq(int matrix_order, lapack_int m, lapack_int n, lapack_int
k, <datatype>* $a, ~ l a p a c k$ int $I d a, ~ c o n s t ~<d a t a t y p e>* ~ t a u ~) ; ~$

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine generates the whole or part of $n-b y-n$ orthogonal matrix Q of the $L Q$ factorization formed by the routines gelqf/gelqf. Use this routine after a call to sgelqf/dgelqf.

Usually Q is determined from the $L Q$ factorization of an p-by- n matrix A with $n \geq p$. To compute the whole matrix Q, use:

```
call ?orglq(n, n, p, a, lda, tau, work, lwork, info)
```

To compute the leading p rows of Q, which form an orthonormal basis in the space spanned by the rows of A, use:

```
call ?orglq(p, n, p, a, lda, tau, work, lwork, info)
```

To compute the matrix Q^{k} of the $L Q$ factorization of the leading k rows of A, use:

```
call ?orglq(n, n, k, a, lda, tau, work, lwork, info)
```

To compute the leading k rows of Q^{k}, which form an orthonormal basis in the space spanned by the leading k rows of A, use:

```
call ?orgqr(k, n, k, a, lda, tau, work, lwork, info)
```


Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

m	INTEGER. The number of rows of Q to be computed ($0 \leq m \leq n$).
n	INTEGER. The order of the orthogonal matrix $Q(n \geq m)$.
k	INTEGER. The number of elementary reflectors whose product defines the matrix $Q(0 \leq k \leq m)$.
a, tau, work	REAL for sorglq DOUBLE PRECISION for dorglq Arrays: $a(l d a, *)$ and $\operatorname{tau}(*)$ are the arrays returned by sgelqf/dgelqf. The second dimension of a must be at least max $(1, n)$. The dimension of tau must be at least max $(1, k)$. work is a workspace array, its dimension max (1, lwork).
Ida	INTEGER. The leading dimension of a; at least max $(1, m)$.
Iwork	INTEGER. The size of the work array; at least max $(1, m)$. If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes for the suggested value of lwork.

Output Parameters

a

work(1)
info

Overwritten by m leading rows of the n-by- n orthogonal matrix Q.
If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine orglq interface are the following:

```
a Holds the matrix A of size (m,n).
tau Holds the vector of length (k).
```


Application Notes

For better performance, try using lwork $=m^{\star}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed Q differs from an exactly orthogonal matrix by a matrix E such that $\left||E|_{2}=O(\varepsilon)^{*}\right||A|_{2}$, where ε is the machine precision.

The total number of floating-point operations is approximately $4 \star m^{\star} n \star k-2 *(m+n) \star k^{2}+(4 / 3) * k^{3}$.
If $m=k$, the number is approximately $(2 / 3) * m^{2} *(3 n-m)$.
The complex counterpart of this routine is unglq.

?ormlq

Multiplies a real matrix by the orthogonal matrix Q of the $L Q$ factorization formed by ?gelqf.

Syntax

Fortran 77:

```
call sormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call dormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
```


Fortran 95:

```
call ormlq(a, tau, c [,side] [,trans] [,info])
```

C:

```
lapack_int LAPACKE_<?>ormlq( int matrix_order, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const <datatype>* a, lapack_int lda, const <datatype>*
tau, <datatype>* c, lapack_int ldc );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine multiplies a real m-by-n matrix C by Q or Q^{T}, where Q is the orthogonal matrix Q of the $L Q$ factorization formed by the routine gelqf/gelqf.

Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{\star} C, Q^{T \star} C$, $C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result on C).

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

CHARACTER*1. Must be either 'L' or 'R'.

	If side $=$ 'L', Q or Q^{T} is applied to C from the left. If side $=$ 'R', Q or Q^{T} is applied to C from the right.
trans	CHARACTER*1. Must be either 'N' or 'T'. If trans $=$ ' N ', the routine multiplies C by Q. If trans $=$ ' T ', the routine multiplies C by Q^{T}.
m	INTEGER. The number of rows in the matrix C ($m \geq 0$).
n	INTEGER. The number of columns in C ($n \geq 0$).
k	INTEGER. The number of elementary reflectors whose product defines the matrix Q. Constraints: $\begin{aligned} & 0 \leq k \leq m \text { if side }=' L^{\prime} ; \\ & 0 \leq k \leq n \text { if side }=' R ' . \end{aligned}$
a, c, tau, work	REAL for sormlq DOUBLE PRECISION for dormlq. Arrays: a(lda,*) and tau(*) are arrays returned by ?gelqf. The second dimension of a must be: at least $\max (1, m)$ if side $=$ ' L '; at least $\max (1, n)$ if side $=$ ' R '. The dimension of tau must be at least max $(1, k)$. $c(I d c, *)$ contains the matrix c. The second dimension of c must be at least max $(1, n)$ work is a workspace array, its dimension max (1, lwork).
Ida	INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, k)$.
Idc	INTEGER. The leading dimension of c; ldc $\geq \max (1, m)$.
lwork	INTEGER. The size of the work array. Constraints: $\begin{aligned} & \text { lwork } \geq \max (1, n) \text { if side }=\text { 'L'; } \\ & \text { lwork } \geq \max (1, m) \text { if side }=\text { 'R'. } \end{aligned}$ If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

Output Parameters

c
work(1)
info

Overwritten by the product $Q^{\star} C, Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (as specified by side and trans).
If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine ormlq interface are the following:
Holds the matrix A of size (k, m).

```
tau Holds the vector of length (k).
c Holds the matrix c of size (m,n).
side Must be 'L' or 'R'. The default value is 'L'.
trans Must be 'N' or 'T'. The default value is 'N'.
```


Application Notes

For better performance, try using lwork $=n *$ blocksize (if side $=$ 'L') or lwork $=m^{*} b l o c k s i z e ~(i f ~$ side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork= -1 .

If you choose the first option and set any of admissible 1 work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set lwork= -1 , the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The complex counterpart of this routine is unmlq.

?unglq

Generates the complex unitary matrix Q of the $L Q$
factorization formed by ?gelqf.

Syntax

Fortran 77:

```
call cunglq(m, n, k, a, lda, tau, work, lwork, info)
call zunglq(m, n, k, a, lda, tau, work, lwork, info)
```

Fortran 95:

```
call unglq(a, tau [,info])
```

C:

```
lapack_int LAPACKE_<?>unglq( int matrix_order, lapack_int m, lapack_int n, lapack_int
k, <datatype>* a, lapack_int lda, const <datatype>* tau );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine generates the whole or part of n-by- n unitary matrix Q of the $L Q$ factorization formed by the routines gelqf/gelqf. Use this routine after a call to cgelqf/zgelqf.

Usually Q is determined from the $L Q$ factorization of an p-by-n matrix A with $n<p$. To compute the whole matrix Q, use:

```
call ?unglq(n, n, p, a, lda, tau, work, lwork, info)
```

To compute the leading p rows of Q, which form an orthonormal basis in the space spanned by the rows of A, use:

```
call ?unglq(p, n, p, a, lda, tau, work, lwork, info)
```

To compute the matrix Q^{k} of the $L Q$ factorization of the leading k rows of the matrix A, use:

```
call ?unglq(n, n, k, a, lda, tau, work, lwork, info)
```

To compute the leading k rows of Q^{k}, which form an orthonormal basis in the space spanned by the leading k rows of the matrix A, use:

```
call ?ungqr(k, n, k, a, lda, tau, work, lwork, info)
```


Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
m
INTEGER. The number of rows of Q to be computed (0\leqm\leqn).
k INTEGER. The number of elementary reflectors whose product defines the
matrix Q (0\leqk\leqm).
COMPLEX for cunglq
DOUBLE COMPLEX for zunglq
Arrays: a(lda,*) and tau(*) are the arrays returned by sgelqf/dgelqf.
The second dimension of a must be at least max(1,n).
The dimension of tau must be at least max(1,k).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least max (1,m).
INTEGER. The size of the work array; at least max (1,m).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.
See Application Notes for the suggested value of lwork.
```


Output Parameters

a
work(1)
info

Overwritten by m leading rows of the n-by- n unitary matrix Q.
If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs. INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine unglq interface are the following:

```
a Holds the matrix }A\mathrm{ of size (m,n).
tau Holds the vector of length (k).
```


Application Notes

For better performance, try using lwork = m*blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed Q differs from an exactly unitary matrix by a matrix E such that $\left||E|_{2}=O(\varepsilon) *\right||A| I_{2}$, where ε is the machine precision.

The total number of floating-point operations is approximately $16 \star m^{\star} n \star k-8 *(m+n) \star k^{2}+(16 / 3) \star k^{3}$.
If $m=k$, the number is approximately $(8 / 3) * m^{2} *(3 n-m)$.
The real counterpart of this routine is orglq.

?unmlq
 Multiplies a complex matrix by the unitary matrix Q of the $L Q$ factorization formed by ?gelqf.
 Syntax

Fortran 77:

```
call cunmlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call zunmlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
```

Fortran 95:

```
call unmlq(a, tau, c [,side] [,trans] [,info])
```

C:
lapack_int LAPACKE_<?>unmlq(int matrix_order, char side, char trans, lapack_int m, lapack_int n, lapack_int k, const <datatype>* a, lapack_int lda, const <datatype>* tau, <datatype>* c, lapack_int ldc);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine multiplies a real m-by- n matrix C by Q or Q^{H}, where Q is the unitary matrix Q of the $L Q$ factorization formed by the routine gelqf/gelqf.

Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{*} C, Q^{H *} C$, $C^{*} Q$, or $C^{*} Q^{H}$ (overwriting the result on C).

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
side CHARACTER*1. Must be either 'L' or 'R'.
    If side = 'L', Q or Q Q is applied to C from the left.
    If side = 'R', Q or QH
    CHARACTER*1. Must be either 'N' or 'C'.
    If trans = 'N', the routine multiplies C by Q.
    If trans = 'C', the routine multiplies C by }\mp@subsup{Q}{H}{}\mathrm{ .
    INTEGER. The number of rows in the matrix C (m\geq0).
    INTEGER. The number of columns in C ( }n\geq0)\mathrm{ .
    INTEGER. The number of elementary reflectors whose product defines the
    matrix Q. Constraints:
    0 \leq k \leqmif side = 'L';
    0 \leqk\leqn if side = 'R'.
    COMPLEX for cunmlq
DOUBLE COMPLEX for zunmlq.
Arrays:
a(lda,*) and tau(*) are arrays returned by ?gelqf.
The second dimension of a must be:
at least max (1,m) if side = 'L';
at least max(1,n) if side = 'R'.
The dimension of tau must be at least max(1,k).
c(ldc,*) contains the matrix c.
The second dimension of c must be at least max(1,n)
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; Ida \geq max (1, k).
INTEGER. The leading dimension of c; ldc\geqmax(1,m).
INTEGER. The size of the work array. Constraints:
lwork \geq max (1, n) if side = 'L';
lwork \geq max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.
```

See Application Notes for the suggested value of lwork.

Output Parameters

c
work(1)
info

Overwritten by the product $Q^{*} C, Q^{H *} C, C{ }^{*} Q$, or $C{ }^{*} Q^{H}$ (as specified by side and trans).
If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine unmlq interface are the following:

```
a Holds the matrix A of size ( }k,m\mathrm{ ).
tau Holds the vector of length (k).
c Holds the matrix C of size (m,n).
side Must be 'L' or 'R'. The default value is 'L'.
trans Must be 'N' or 'C'. The default value is 'N'.
```


Application Notes

For better performance, try using lwork $=n \star$ blocksize (if side $=$ 'L') or lwork $=m \star b l o c k s i z e ~(i f ~$ side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The real counterpart of this routine is ormlq.

```
?geqlf
Computes the QL factorization of a general m-by-n
matrix.
Syntax
```


Fortran 77:

```
call sgeqlf(m, n, a, lda, tau, work, lwork, info)
```

call sgeqlf(m, n, a, lda, tau, work, lwork, info)
call dgeqlf(m, n, a, lda, tau, work, lwork, info)
call dgeqlf(m, n, a, lda, tau, work, lwork, info)
call cgeqlf(m, n, a, lda, tau, work, lwork, info)
call cgeqlf(m, n, a, lda, tau, work, lwork, info)
call zgeqlf(m, n, a, lda, tau, work, lwork, info)

```
call zgeqlf(m, n, a, lda, tau, work, lwork, info)
```

Fortran 95:

```
call geqlf(a [, tau] [,info])
```

C:

```
lapack_int LAPACKE_<?>geqlf( int matrix_order, lapack_int m, lapack_int n, <datatype>*
a, lapack_int lda, <datatype>* tau );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine forms the $Q L$ factorization of a general m-by-n matrix A. No pivoting is performed.
The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with Q in this representation.

NOTE This routine supports the Progress Routine feature. See Progress Function section for details.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
m INTEGER. The number of rows in the matrix A (m\geq0).
n
a, work
lda
lwork
```


Output Parameters

a
tau
work(1)
info

Overwritten on exit by the factorization data as follows:
if $m \geq n$, the lower triangle of the subarray $a(m-n+1: m, 1: n)$ contains the n -by- n lower triangular matrix L; if $m \leq n$, the elements on and below the (n m)-th superdiagonal contain the m-by-n lower trapezoidal matrix L; in both cases, the remaining elements, with the array tau, represent the orthogonal/unitary matrix Q as a product of elementary reflectors.
REAL for sgeqlf
DOUBLE PRECISION for dgeqle
COMPLEX for cgeqlf
DOUBLE COMPLEX for zgeqlf.
Array, DIMENSION at least $\max (1, \min (m, n))$. Contains scalar factors of the elementary reflectors for the matrix Q.
If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance.
INTEGER.

If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine geqlf interface are the following:

```
a Holds the matrix A of size (m,n).
tau Holds the vector of length min (m,n).
```


Application Notes

For better performance, try using lwork $=n^{\star}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
Related routines include:

```
orgql to generate matrix Q (for real matrices);
ungql to generate matrix Q (for complex matrices);
ormql to apply matrix Q (for real matrices);
unmql to apply matrix Q (for complex matrices).
```

See Also
mkl_progress

?orgql

Generates the real matrix Q of the QL factorization
formed by ?geqle.

Syntax

Fortran 77:

```
call sorgql(m, n, k, a, lda, tau, work, lwork, info)
call dorgql(m, n, k, a, lda, tau, work, lwork, info)
```


Fortran 95:

```
call orgql(a, tau [,info])
```

C:

```
lapack_int LAPACKE_<?>orgql( int matrix_order, lapack_int m, lapack_int n, lapack_int
```

k, <datatype>* a, lapack_int lda, const <datatype>* tau);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine generates an m-by- n real matrix Q with orthonormal columns, which is defined as the last n columns of a product of k elementary reflectors $H(i)$ of order $m: Q=H(k) * \ldots * H(2) * H(1)$ as returned by the routines geqlf/geqlf. Use this routine after a call to sgeqlf/dgeqlf.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
m
n
k
a, tau, work
lda
lwork
```

INTEGER. The number of rows of the matrix $Q(m \geq 0)$.
INTEGER. The number of columns of the matrix $Q(m \geq n \geq 0)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q(n \geq k \geq 0)$.
REAL for sorgql
DOUBLE PRECISION for dorgql
Arrays: a(lda,*), tau(*).
On entry, the $(n-k+i)$ th column of a must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by sgeqlf/dgeqlf in the last k columns of its array argument a; tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by sgeqlf/dgeqlf;
The second dimension of a must be at least max $(1, n)$.
The dimension of tau must be at least max $(1, k)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least $\max (1, m)$.
INTEGER. The size of the work array; at least max $(1, n)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of 1 work.

Overwritten by the m-by- n matrix Q.
If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Output Parameters

a
work(1)
info

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine orgql interface are the following:

a	Holds the matrix A of size (m, n).
tau	Holds the vector of length (k).

Application Notes

For better performance, try using lwork $=n \star$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The complex counterpart of this routine is ungql.

?ungql

Generates the complex matrix Q of the QL factorization formed by ?geqlf.

Syntax

Fortran 77:

```
call cungql(m, n, k, a, lda, tau, work, lwork, info)
call zungql(m, n, k, a, lda, tau, work, lwork, info)
```

Fortran 95:

```
call ungql(a, tau [,info])
```

C:

```
lapack_int LAPACKE_<?>ungql( int matrix_order, lapack_int m, lapack_int n, lapack_int
```

k, <datatype>* a, lapack_int lda, const <datatype>* tau);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine generates an m-by- n complex matrix Q with orthonormal columns, which is defined as the last n columns of a product of k elementary reflectors $H(i)$ of order $m: Q=H(k) * \ldots * H(2) * H(1)$ as returned by the routines geqlf/geqlf. Use this routine after a call to cgeqlf/zgeqlf.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
m INTEGER. The number of rows of the matrix Q (m\geq0).
n INTEGER. The number of columns of the matrix Q (m\geqn\geq0).
k INTEGER. The number of elementary reflectors whose product defines the
matrix Q ( }n\geqk\geq0)
a, tau, work COMPLEX for cungql
DOUBLE COMPLEX for zungql
Arrays: a(lda,*), tau(*), work(lwork).
On entry, the ( n-k +i)th column of a must contain the vector which
defines the elementary reflector }H(i)\mathrm{ , for i = 1,2,_.,k, as returned by
cgeqlf/zgeqlf in the last k columns of its array argument a;
tau(i) must contain the scalar factor of the elementaryreflector }H(i)\mathrm{ , as
returned by cgeqlf/zgeqlf;
The second dimension of a must be at least max(1,n).
The dimension of tau must be at least max(1,k).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
INTEGER. The size of the work array; at least max \((1, n)\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
```

See Application Notes for the suggested value of lwork.

Output Parameters

a
work(1)
info

Overwritten by the m-by- n matrix Q.
If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ungql interface are the following:

```
a Holds the matrix }A\mathrm{ of size (m,n).
tau Holds the vector of length (k).
```


Application Notes

For better performance, try using lwork $=n^{\star}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of 1 work for the first run, or set 1 work $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The real counterpart of this routine is orgql.

?ormql

Multiplies a real matrix by the orthogonal matrix Q of the QL factorization formed by ?geqle.

Syntax
Fortran 77:

```
call sormql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call dormql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
```


Fortran 95:

```
call ormql(a, tau, c [,side] [,trans] [,info])
```

C:
lapack_int LAPACKE_<?>ormql(int matrix_order, char side, char trans, lapack_int m,

tau, <datatype>* c, lapack_int ldc);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine multiplies a real m-by-n matrix C by Q or Q^{T}, where Q is the orthogonal matrix Q of the $Q L$ factorization formed by the routine geqlf/geqlf .

Depending on the parameters side and trans, the routine ormql can form one of the matrix products $Q^{\star} C$, $Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result over C).

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
side CHARACTER*1. Must be either 'L' or 'R'.
    If side = 'L', Q or QT is applied to C from the left.
    If side = 'R',Q or QT is applied to C from the right.
trans
m
CHARACTER*1. Must be either 'N' or 'T'.
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by QT.
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The number of columns in \(C(n \geq 0)\). \\
\hline k & \begin{tabular}{l}
INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints: \\
\(0 \leq k \leq m\) if side \(=\) 'L'; \\
\(0 \leq k \leq n\) if side \(=\) 'R'.
\end{tabular} \\
\hline a, tau, c, work & \begin{tabular}{l}
REAL for sormql \\
DOUBLE PRECISION for dormql. \\
Arrays: a(lda,*), tau(*), c(ldc,*). \\
On entry, the \(i\) th column of a must contain the vector which defines the elementary reflector \(H_{i}\), for \(\mathrm{i}=1,2, \ldots, k\), as returned by sgeqlf/dgeqlf in the last \(k\) columns of its array argument \(a\). \\
The second dimension of a must be at least max \((1, k)\). \\
\(\operatorname{tau}(\mathrm{i})\) must contain the scalar factor of the elementary reflector \(H_{i}\), as returned by sgeqlf/dgeqlf. \\
The dimension of tau must be at least max \((1, k)\). \\
\(c(l d c, *)\) contains the \(m-b y-n\) matrix \(c\). \\
The second dimension of \(c\) must be at least \(\max (1, n)\) \\
work is a workspace array, its dimension max (1, lwork).
\end{tabular} \\
\hline Ida & \begin{tabular}{l}
INTEGER. The leading dimension of a; \\
if side \(=\) 'L', lda \(\geq \max (1, m)\); \\
if side \(=\) 'R', lda \(\geq \max (1, n)\).
\end{tabular} \\
\hline \(1 d \mathrm{C}\) & INTEGER. The leading dimension of \(c ; 1 d c \geq \max (1, m)\). \\
\hline lwork & \begin{tabular}{l}
INTEGER. The size of the work array. Constraints: \\
lwork \(\geq \max (1, n)\) if side \(=\) 'L'; \\
lwork \(\geq \max (1, m)\) if side \(='^{\prime}\) '. \\
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. \\
See Application Notes for the suggested value of lwork.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by the product \(Q^{\star} C, Q^{T \star} C, C^{\star} Q\), or \(C^{\star} Q^{T}\) (as specified by side and trans).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine ormql interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((r, k)\). \\
& \(r=m\) if side \(=' L '\). \\
\(r=n\) if side \(=' R '\). \\
tau & Holds the vector of length \((k)\).
\end{tabular}
\begin{tabular}{ll}
\(C\) & Holds the matrix \(C\) of size \((m, n)\). \\
side & Must be 'L' or 'R'. The default value is 'L'. \\
trans & Must be ' \(N\) ' or ' \(T\) '. The default value is ' \(N\) '.
\end{tabular}

\section*{Application Notes}

For better performance, try using lwork \(=n^{\star}\) blocksize (if side \(=\) 'L') or lwork \(=m^{*} b l o c k s i z e ~(i f ~\) side \(=\) 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The complex counterpart of this routine is unmql.

\section*{?unmql \\ Multiplies a complex matrix by the unitary matrix \(Q\) of the QL factorization formed by ?geqle. \\ Syntax}

\section*{Fortran 77:}
```

call cunmql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call zunmql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

```

\section*{Fortran 95:}
```

call unmql(a, tau, c [,side] [,trans] [,info])

```

C:
lapack_int LAPACKE_<?>unmql( int matrix_order, char side, char trans, lapack_int m,
 tau, <datatype>* \(c\), lapack_int Idc );

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine multiplies a complex m-by-n matrix \(c\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix \(Q\) of the \(Q L\) factorization formed by the routine geqlf/geqlf .

Depending on the parameters side and trans, the routine unmql can form one of the matrix products \(Q * C\), \(Q^{H *} C\), \(C^{*} Q\), or \(C^{*} Q^{H}\) (overwriting the result over \(C\) ).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

side CHARACTER*1. Must be either 'L' or 'R'.
If side = 'L', Q or Q Q is applied to C from the left.
If side = 'R', Q or Q 早 is applied to C from the right.
trans CHARACTER*1. Must be either 'N' or 'C'.
If trans = 'N', the routine multiplies C by Q.
If trans = 'C', the routine multiplies C by Q '.
INTEGER. The number of rows in the matrix C (m\geq0).
INTEGER. The number of columns in c(n\geq0).
INTEGER. The number of elementary reflectors whose product defines the
matrix Q. Constraints:
0 \leq k \leqmif side = 'L';
0 \leq k \leq n if side = 'R'.
COMPLEX for cunmql
DOUBLE COMPLEX for zunmql.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).
On entry, the i-th column of a must contain the vector which defines the
elementary reflector }H(i)\mathrm{ , for i = 1,2,..,k, as returned by cgeqlf/zgeqlf
in the last k columns of its array argument a.
The second dimension of a must be at least max(1,k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as
returned by cgeqlf/zgeqlf.
The dimension of tau must be at least max(1,k).
c(Idc,*) contains the m-by-n matrix c.
The second dimension of c must be at least max(1,n)
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; lda \geq max (1, n).
INTEGER. The leading dimension of c; ldc \geq max (1, m).
INTEGER. The size of the work array. Constraints:
lwork \geq max(1, n) if side = 'L';
lwork \geq max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.

```
See Application Notes for the suggested value of lwork.

\section*{Output Parameters}
work(1)
info

Overwritten by the product \(Q^{*} C, Q^{H *} C, C{ }^{*} Q\), or \(C{ }^{*} Q^{H}\) (as specified by side and trans).
If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine unmql interface are the following:
```

a Holds the matrix A of size (r,k).
r = m if side = 'L'.
r = n if side = 'R'.
tau Holds the vector of length (k).
c Holds the matrix C of size (m,n).
side Must be 'L' or 'L'. The default value is 'L'.
trans Must be 'N' or 'C'. The default value is 'N'.

```

\section*{Application Notes}

For better performance, try using lwork \(=n \star\) blocksize (if side \(=\) 'L') or lwork \(=m \star b l o c k s i z e ~(i f ~\) side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1, then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The real counterpart of this routine is ormql.

\section*{?gerqf \\ Computes the \(R Q\) factorization of a general m-by-n matrix.}

Syntax

\section*{Fortran 77:}
```

call sgerqf(m, n, a, lda, tau, work, lwork, info)
call dgerqf(m, n, a, lda, tau, work, lwork, info)
call cgerqf(m, n, a, lda, tau, work, lwork, info)
call zgerqf(m, n, a, lda, tau, work, lwork, info)

```

Fortran 95:
```

call gerqf(a [, tau] [,info])

```

C:
```

lapack_int LAPACKE_<?>gerqf(int matrix_order, lapack_int m, lapack_int n, <datatype>*
a, lapack_int lda, <datatype>* tau);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine forms the \(R Q\) factorization of a general \(m\)-by- \(n\) matrix \(A\). No pivoting is performed.
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors. Routines are provided to work with \(Q\) in this representation.

NOTE This routine supports the Progress Routine feature. See Progress Function section for details.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

m INTEGER. The number of rows in the matrix A (m\geq0).
n INTEGER. The number of columns in A (n\geq0).
a,work REAL for sgerqf
DOUBLE PRECISION for dgerqf
COMPLEX for cgerqf
DOUBLE COMPLEX for zgerqf.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1,n).
work is a workspace array, its dimension max (1, lwork).
Ida INTEGER. The leading dimension of a; at least max(1,m).
lwork INTEGER. The size of the work array;
lwork \geq max(1, m).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.
See Application Notes for the suggested value of lwork.

```

\section*{Output Parameters}
a
Overwritten on exit by the factorization data as follows:
if \(m \leq n\), the upper triangle of the subarray
\(a(1: m, n-m+1: n)\) contains the \(m\)-by- \(m\) upper triangular matrix \(R\);
if \(m \geq n\), the elements on and above the \((m-n)\) th subdiagonal contain the \(m\) -by- \(n\) upper trapezoidal matrix \(R\);
in both cases, the remaining elements, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of \(\min (m, n)\) elementary reflectors.
tau
REAL for sgerqf
DOUBLE PRECISION for dgerqf
COMPLEX for cgerqf
DOUBLE COMPLEX for zgerqf.

Array, DIMENSION at least max \((1, \min (m, n))\).
Contains scalar factors of the elementary reflectors for the matrix \(Q\).
work(1)
info
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gerqf interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((m, n)\). \\
tau & Holds the vector of length \(\min (m, n)\).
\end{tabular}

\section*{Application Notes}

For better performance, try using lwork \(=m^{\star}\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
Related routines include:
\begin{tabular}{ll} 
orgrq & to generate matrix Q (for real matrices); \\
ungrq & to generate matrix Q (for complex matrices); \\
ormrq & to apply matrix Q (for real matrices); \\
unmrq & to apply matrix Q (for complex matrices).
\end{tabular}

See Also
mkl_progress
?orgrq
Generates the real matrix \(Q\) of the \(R Q\) factorization
formed by ?gerqf.
Syntax

\section*{Fortran 77:}
```

call sorgrq(m, n, k, a, lda, tau, work, lwork, info)
call dorgrq(m, n, k, a, lda, tau, work, lwork, info)

```

\section*{Fortran 95:}
```

call orgrq(a, tau [,info])
C:
lapack_int LAPACKE_<?>orgrq(int matrix_order, lapack_int m, lapack_int n, lapack_int
k, <datatype>* a, lapack_int lda, const <datatype>* tau);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine generates an \(m\)-by-n real matrix \(Q\) with orthonormal rows, which is defined as the last \(m\) rows of a product of \(k\) elementary reflectors \(H(i)\) of order \(n: Q=H(1) * H(2) * \ldots * H(k)\) as returned by the routines gerqf/gerqf. Use this routine after a call to sgerqf/dgerqf.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

m INTEGER. The number of rows of the matrix Q (m\geq0).
n INTEGER. The number of columns of the matrix Q (n\geqm).
k INTEGER. The number of elementary reflectors whose product defines the
matrix Q (m\geqk\geq0).

```
a, tau, work

Ida
lwork
```

INTEGER. The number of rows of the matrix $Q(m \geq 0)$.
INTEGER. The number of columns of the matrix $Q(n \geq m)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q(m \geq k \geq 0)$.
REAL for sorgrq
DOUBLE PRECISION for dorgrq
Arrays: a(lda,*), tau(*).
On entry, the ($m-k+i$)-th row of a must contain the vector which defines the elementary reflector H (i), for $\mathrm{i}=1,2, \ldots, k$, as returned by sgerqf/ dgerqf in the last k rows of its array argument a; $t a u(i)$ must contain the scalar factor of the elementary reflector $H(i)$, as returned by sgerqf/dgerqf;
The second dimension of a must be at least max $(1, n)$. The dimension of tau must be at least $\max (1, k)$.
work is a workspace array, its dimension max ($1, ~ l$ work).
INTEGER. The leading dimension of a; at least max $(1, m)$.
INTEGER. The size of the work array; at least max $(1, m)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

```

See Application Notes for the suggested value of lwork.

\section*{Output Parameters}
a
work(1)

Overwritten by the \(m\)-by- \(n\) matrix \(Q\).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
info \begin{tabular}{ll} 
INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\)-th parameter had an illegal value.
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine orgrq interface are the following:
a Holds the matrix \(A\) of size \((m, n)\).
tau Holds the vector of length (k).

\section*{Application Notes}

For better performance, try using lwork \(=m^{\star}\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible 1 work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The complex counterpart of this routine is ungrq.

\section*{?ungrq}

Generates the complex matrix \(Q\) of the \(R Q\)
factorization formed by ?gerqf.

\section*{Syntax}

\section*{Fortran 77:}
```

call cungrq(m, n, k, a, lda, tau, work, lwork, info)
call zungrq(m, n, k, a, lda, tau, work, lwork, info)

```

\section*{Fortran 95:}
```

call ungrq(a, tau [,info])

```

C:
```

lapack_int LAPACKE_<?>ungrq(int matrix_order, lapack_int m, lapack_int n, lapack_int
k, <datatype>* a, lapack int lda, const <datatype>* tau);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine generates an \(m\)-by- \(n\) complex matrix \(Q\) with orthonormal rows, which is defined as the last \(m\) rows of a product of \(k\) elementary reflectors \(H(i)\) of order \(n\) : \(Q=H(1)^{H_{\star}} H(2)^{H_{\star}} \ldots \star^{\star} H(k)^{H}\) as returned by the routines gerqf/gerqf. Use this routine after a call to sgerqf/dgerqf.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

m INTEGER. The number of rows of the matrix Q (m\geq0).
n INTEGER. The number of columns of the matrix Q (}n\geqm)\mathrm{ .
k INTEGER. The number of elementary reflectors whose product defines the
matrix Q (m\geqk\geq0).
a, tau, work REAL for cungrq
DOUBLE PRECISION for zungrq
Arrays: a(lda,*), tau(*), work(lwork).
On entry, the (m-k+i)th row of a must contain the vector which defines
the elementary reflector }H(i)\mathrm{ , for i = 1,2,..,k, as returned by sgerqf/
dgerqf in the last k rows of its array argument a;
tau(i) must contain the scalar factor of the elementary reflector }H(i)\mathrm{ , as
returned by sgerqf/dgerqf;
The second dimension of a must be at least max(1,n).
The dimension of tau must be at least max(1,k).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least max(1, m).
INTEGER. The size of the work array; at least max(1,m).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.

```
    See Application Notes for the suggested value of 1 work.

\section*{Output Parameters}
a
work(1)
info

Overwritten by the \(m\)-by-n matrix \(Q\).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine ungrq interface are the following:
```

a
Holds the matrix A of size (m,n).
Holds the vector of length (k).

```

\section*{Application Notes}

For better performance, try using lwork \(=m^{\star}\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The real counterpart of this routine is orgrq.

\section*{?ormrq}

Multiplies a real matrix by the orthogonal matrix \(Q\) of the \(R Q\) factorization formed by ?gerqf.

\section*{Syntax}

\section*{Fortran 77:}
```

call sormrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call dormrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

```

Fortran 95:
```

call ormrq(a, tau, c [,side] [,trans] [,info])

```

C:
lapack_int LAPACKE_<?>ormrq( int matrix_order, char side, char trans, lapack_int m,
 tau, <datatype>* c, lapack_int ldc );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine multiplies a real m-by-n matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the real orthogonal matrix defined as a product of \(k\) elementary reflectors \(H_{i}: Q=H_{1} H_{2} \ldots H_{k}\) as returned by the \(R Q\) factorization routine gerqf/ gerqf.

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q^{\star} C, Q^{T \star} C\), \(C^{\star} Q\), or \(C^{\star} Q^{T}\) (overwriting the result over \(C\) ).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{side} & CHARACTER* 1 . Must be either 'L' or 'R'. \\
\hline & If side \(=\) 'L', \(Q\) or \(Q^{T}\) is applied to \(C\) from the left. \\
\hline & If side = 'R', Q or \(Q^{T}\) is applied to \(C\) from the right. \\
\hline \multirow[t]{3}{*}{trans} & CHARACTER*1. Must be either 'N' or 'T'. \\
\hline & If trans \(=\) ' \(N\) ', the routine multiplies \(C\) by \(Q\). \\
\hline & If trans \(=\) ' T ', the routine multiplies \(C\) by \(Q^{T}\). \\
\hline \(m\) & INTEGER. The number of rows in the matrix \(C\) ( \(m \geq 0\) ). \\
\hline \(n\) & INTEGER. The number of columns in \(C\) ( \(n \geq 0\) ). \\
\hline \multirow[t]{3}{*}{\(k\)} & INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints: \\
\hline & \(0 \leq k \leq m\), if side = 'L'; \\
\hline & \(0 \leq k \leq n\), if side \(=\) ' \(\mathrm{R}^{\prime}\). \\
\hline \multirow[t]{7}{*}{a, tau, c, work} & REAL for sormrq \\
\hline & DOUBLE PRECISION for dormrq. \\
\hline & Arrays: \(a(l d a, *), \operatorname{tau}(*), c(l d c, *)\). \\
\hline & On entry, the \(i\) th row of a must contain the vector which defines the elementary reflector \(H_{i}\), for \(\mathrm{i}=1,2, \ldots, k\), as returned by sgerqf/dgerqf in the last \(k\) rows of its array argument \(a\). \\
\hline & \begin{tabular}{l}
The second dimension of \(a\) must be at least \(\max (1, m)\) if side \(=' L\) ', and at least max \((1, n)\) if side \(=\) ' \(R\) '. \\
tau(i) must contain the scalar factor of the elementary reflector \(H_{i}\), as returned by sgerqf/dgerqf.
\end{tabular} \\
\hline & The dimension of tau must be at least max \((1, k)\). \(c(l d c, *)\) contains the \(m-b y-n\) matrix \(C\). \\
\hline & The second dimension of \(c\) must be at least \(\max (1, n)\) work is a workspace array, its dimension max ( \(1, ~ l\) work). \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, k)\). \\
\hline \(1 d c\) & INTEGER. The leading dimension of \(c ; 1 d c \geq \max (1, m)\). \\
\hline \multirow[t]{5}{*}{lwork} & INTEGER. The size of the work array. Constraints: \\
\hline & lwork \(\geq \max (1, n)\) if side \(=1 \mathrm{~L}\) '; \\
\hline & lwork \(\geq \max (1, m)\) if side = 'R'. \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. \\
\hline & See Application Notes for the suggested value of lwork. \\
\hline
\end{tabular}

\section*{Output Parameters}

C
work(1)
info

Overwritten by the product \(Q^{\star} C, Q^{T \star} C, C^{\star} Q\), or \(C^{\star} Q^{T}\) (as specified by side and trans).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ormrq interface are the following:
```

a Holds the matrix A of size (k,m).
tau Holds the vector of length (k).
c Holds the matrix C of size (m,n).
side Must be 'L' or 'R'. The default value is 'L'.
trans Must be 'N' or 'T'. The default value is 'N'.

```

\section*{Application Notes}

For better performance, try using lwork \(=n *\) blocksize (if side \(=\) 'L') or lwork \(=m \star b l o c k s i z e ~(i f ~\) side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The complex counterpart of this routine is unmrq.

\section*{?unmrq \\ Multiplies a complex matrix by the unitary matrix \(Q\) of the \(R Q\) factorization formed by ?gerqf.}

\section*{Syntax}

\section*{Fortran 77:}
```

call cunmrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call zunmrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

```

\section*{Fortran 95:}
call unmrq(a, tau, \(c\) [,side] [,trans] [,info])
C:
```

lapack_int LAPACKE_<?>unmrq(int matrix_order, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const <datatype>* a, lapack_int lda, const <datatype>*
tau, <datatype>* c, lapack_int ldc);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine multiplies a complex m-by-n matrix \(c\) by \(Q\) or \(Q^{H}\), where \(Q\) is the complex unitary matrix defined as a product of \(k\) elementary reflectors \(H(i)\) of order \(n\) : \(Q=H(1) H^{\star} H(2) H^{\star} \ldots \star H(k)\) Has returned by the \(R Q\) factorization routine gerqf/gerqf .
Depending on the parameters side and trans, the routine can form one of the matrix products \(Q^{\star} C, Q^{H *} C\), \(C^{*} Q\), or \(C{ }^{*} Q^{H}\) (overwriting the result over \(C\) ).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{side} & CHARACTER*1. Must be either 'L' or 'R'. \\
\hline & If side \(=\) 'L', \(Q\) or \(Q^{H}\) is applied to \(C\) from the left. \\
\hline & If side = 'R', Q or \(Q^{H}\) is applied to \(C\) from the right. \\
\hline \multirow[t]{3}{*}{trans} & CHARACTER* 1 . Must be either 'N' or 'C'. \\
\hline & If trans \(=\) ' N ', the routine multiplies \(C\) by \(Q\). \\
\hline & If trans \(=\) ' C', the routine multiplies \(C\) by \(Q^{H}\). \\
\hline m & INTEGER. The number of rows in the matrix \(C\) ( \(m \geq 0\) ). \\
\hline \(n\) & INTEGER. The number of columns in \(C\) ( \(n \geq 0\) ). \\
\hline \multirow[t]{3}{*}{k} & INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints: \\
\hline & \(0 \leq k \leq m\), if side = 'L'; \\
\hline & \(0 \leq k \leq n\), if side \(=\) ' \(\mathrm{R}^{\prime}\). \\
\hline \multirow[t]{7}{*}{a, tau, c, work} & COMPLEX for cunmrq \\
\hline & DOUBLE COMPLEX for zunmrq. \\
\hline & Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork). \\
\hline & On entry, the \(i\) th row of a must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by cgerqf/zgerqf in the last \(k\) rows of its array argument \(a\). \\
\hline & \begin{tabular}{l}
The second dimension of \(a\) must be at least \(\max (1, m)\) if side \(=' L\) ', and at least \(\max (1, n)\) if side \(=\) ' \(R\) '. \\
tau(i) must contain the scalar factor of the elementary reflector \(H(i)\), as returned by cgerqf/zgerqf.
\end{tabular} \\
\hline & The dimension of tau must be at least max (1, k). \(c(I d c, *)\) contains the \(m\)-by-n matrix \(c\). \\
\hline & The second dimension of \(c\) must be at least \(\max (1, n)\) work is a workspace array, its dimension max (1, 1 work). \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, k)\) \\
\hline \(1 d c\) & INTEGER. The leading dimension of \(c\); \(1 d c \geq \max (1, m)\). \\
\hline \multirow[t]{5}{*}{Iwork} & INTEGER. The size of the work array. Constraints: \\
\hline & lwork \(\geq \max (1, n)\) if side = 'L'; \\
\hline & lwork \(\geq \max (1, m)\) if side = 'R'. \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. \\
\hline & See Application Notes for the suggested value of lwork. \\
\hline
\end{tabular}

\section*{Output Parameters}

C
work(1)
info

Overwritten by the product \(Q^{*} C, Q^{H *} C, C^{*} Q\), or \(C^{*} Q^{H}\) (as specified by side and trans).
If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine unmrq interface are the following:
```

a Holds the matrix A of size (k,m).
tau Holds the vector of length (k).
c Holds the matrix C of size (m,n).
side Must be 'L' or 'R'. The default value is 'L'.
trans Must be 'N' or 'C'. The default value is 'N'.

```

\section*{Application Notes}

For better performance, try using lwork \(=n \star\) blocksize (if side \(=\) 'L') or lwork \(=m^{\star} b l o c k s i z e ~(i f ~\) side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The real counterpart of this routine is ormrq.

\section*{?tzrzf}

Reduces the upper trapezoidal matrix \(A\) to upper
triangular form.

\section*{Syntax}

\section*{Fortran 77:}
```

call stzrzf(m, n, a, lda, tau, work, lwork, info)
call dtzrzf(m, n, a, lda, tau, work, lwork, info)
call ctzrzf(m, n, a, lda, tau, work, lwork, info)
call ztzrzf(m, n, a, lda, tau, work, lwork, info)

```

\section*{Fortran 95:}
```

call tzrzf(a [, tau] [,info])
C:
lapack_int LAPACKE_<?>tzrzf(int matrix_order, lapack_int m, lapack_int n, <datatype>*
a, lapack_int lda, <datatype>* tau);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces the \(m\)-by- \(n(m \leq n\) ) real/complex upper trapezoidal matrix \(A\) to upper triangular form by means of orthogonal/unitary transformations. The upper trapezoidal matrix \(A\) is factored as

\section*{\(A=\left(\begin{array}{ll}R & 0\end{array}\right) * Z\),}
where \(z\) is an \(n\)-by- \(n\) orthogonal/unitary matrix and \(R\) is an \(m\)-by-m upper triangular matrix.
See larz that applies an elementary reflector returned by ?tzrzf to a general matrix.
The ?tzrzf routine replaces the deprecated ?tzrqf routine.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

m
n
a, work
lda
lwork
INTEGER. The number of rows in the matrix A (m\geq0).
INTEGER. The number of columns in A (}n\geqm)\mathrm{ .
REAL for stzrzf
DOUBLE PRECISION for dtzrzf
COMPLEX for ctzrzf
DOUBLE COMPLEX for ztzrzf.
Arrays: a(lda,*), work(lwork).The leading m-by-n upper trapezoidal part
of the array a contains the matrix }A\mathrm{ to be factorized.
The second dimension of a must be at least max(1,n).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least max (1,m).
INTEGER. The size of the work array;
lwork \geq max(1, m).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.
See Application Notes for the suggested value of lwork.

```

\section*{Output Parameters}
a
Overwritten on exit by the factorization data as follows:
the leading \(m\)-by- \(m\) upper triangular part of a contains the upper triangular matrix \(R\), and elements \(m+1\) to \(n\) of the first \(m\) rows of \(a\), with the array tau, represent the orthogonal matrix \(z\) as a product of \(m\) elementary reflectors.
REAL for stzrzf
DOUBLE PRECISION for dtzrzf
COMPLEX for ctzrzf
DOUBLE COMPLEX for ztzrzf.
Array, DIMENSION at least max \((1, m)\). Contains scalar factors of the elementary reflectors for the matrix \(z\).
work (1)
info
If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine tzrzf interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((m, n)\). \\
tau & Holds the vector of length \((m)\).
\end{tabular}

\section*{Application Notes}

The factorization is obtained by Householder's method. The \(k\)-th transformation matrix, \(z(k)\), which is used to introduce zeros into the \((m-k+1)\)-th row of \(A\), is given in the form
\[
Z(k)=\left[\begin{array}{cc}
I & 0 \\
0 & T(k)
\end{array}\right]
\]
where for real flavors
\[
T(k)=I-t a u^{*} u(k)^{*} u(k)^{T}, \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
\]
and for complex flavors
\[
T(k)=I-t a u^{*} u(k)^{*} u(k)^{H}, \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
\]
tau is a scalar and \(z(k)\) is an l-element vector. tau and \(z(k)\) are chosen to annihilate the elements of the \(k\) th row of \(x\).

The scalar tau is returned in the \(k\)-th element of tau and the vector \(u(k)\) in the \(k\)-th row of \(A\), such that the elements of \(z(k)\) are in \(a(k, m+1), \ldots, a(k, n)\).

The elements of \(r\) are returned in the upper triangular part of \(A\).
\(z\) is given by
\(Z=Z(1) * Z(2) * \ldots * Z(m)\).
For better performance, try using lwork \(=m^{\star}\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if 1 work is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

Related routines include:
```

ormrz to apply matrix Q (for real matrices)
unmrz to apply matrix Q (for complex matrices).

```

\section*{?ormiz}

Multiplies a real matrix by the orthogonal matrix defined from the factorization formed by ?tzrzf.

\section*{Syntax}

\section*{Fortran 77:}
```

call sormrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)
call dormrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)

```

\section*{Fortran 95:}
```

call ormrz(a, tau, c, l [, side] [,trans] [,info])

```

C:
```

lapack_int LAPACKE_<?>ormrz(int matrix_order, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int l, const <datatype>* a, lapack_int lda, const
<datatype>* tau, <datatype>* c, lapack_int ldc);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The ?ormrz routine multiplies a real \(m\)-by- \(n\) matrix \(c\) by \(Q\) or \(Q^{T}\), where \(Q\) is the real orthogonal matrix defined as a product of \(k\) elementary reflectors \(H(i)\) of order \(n\) : \(Q=H(1) * H(2) * \ldots{ }^{*} H(k)\) as returned by the factorization routine tzrzf/tzrzf .

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q^{\star} C, Q^{T *} C\), \(C^{\star} Q\), or \(C^{\star} Q^{T}\) (overwriting the result over \(C\) ).

The matrix \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) 'R'.
The ?ormrz routine replaces the deprecated ?latzm routine.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

side CHARACTER*1. Must be either 'L' or 'R'.
If side = 'L', Q or QT is applied to C from the left.
If side = 'R', Q or QT is applied to C from the right.
CHARACTER*1. Must be either 'N' or 'T'.
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by QT.
INTEGER. The number of rows in the matrix C (m\geq0).
INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
INTEGER. The number of elementary reflectors whose product defines the
matrix Q. Constraints:
0 \leq k \leqm, if side = 'L';
0 \leq k \leq n, if side = 'R'.
I
a, tau, c, work
lda
ldc
l work
INTEGER.
The number of columns of the matrix A containing the meaningful part of the Householder reflectors. Constraints:
$0 \leq 1 \leq m$, if side $=$ 'L';
$0 \leq 1 \leq n$, if side $=$ 'R'.

```
a, tau, c, work
da
ldc
I work
```

CHARACTER*1. Must be either 'L' or 'R'.
If side $=$ 'L', Q or Q^{T} is applied to C from the left.
If side $=$ ' R ', Q or Q^{T} is applied to C from the right.
CHARACTER*1. Must be either 'N' or 'T'.
If trans $=$ ' N ', the routine multiplies C by Q.
If trans $=$ ' T ', the routine multiplies C by Q^{T}.
INTEGER. The number of rows in the matrix $C(m \geq 0)$.
INTEGER. The number of columns in $C(n \geq 0)$.
INTEGER. The number of elementary reflectors whose product defines the matrix Q. Constraints:
$0 \leq k \leq m$, if side $=$ 'L';
$0 \leq k \leq n$, if side $=$ 'R'.
1
REAL for sormrz
DOUBLE PRECISION for dormrz.
Arrays: a(lda,*), tau(*), c(ldc,*).
On entry, the i th row of a must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by stzrzf/dtzrzf in the last k rows of its array argument a.
The second dimension of a must be at least $\max (1, m)$ if side $=' L$ ', and at least $\max (1, n)$ if side $=' R$ '.
$\operatorname{tau}(i)$ must contain the scalar factor of the elementary reflector $H(i)$, as returned by stzrzf/dtzrzf.
The dimension of tau must be at least $\max (1, k)$.
$c(l d c, *)$ contains the m-by-n matrix C.
The second dimension of c must be at least max $(1, n)$
work is a workspace array, its dimension max (1,1 work).
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, k)$.
INTEGER. The leading dimension of $c ; 1 d c \geq \max (1, m)$.
INTEGER. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side $=$ 'L';
lwork $\geq \max (1, m)$ if side $=' R '$.

```

If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to \(l\) work is issued by xerbla.
See Application Notes for the suggested value of lwork.

\section*{Output Parameters}

Overwritten by the product \(Q^{\star} C, Q^{T \star} C, C^{\star} Q\), or \(C^{\star} Q^{T}\) (as specified by side and trans).
work(1)
info
If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ormrz interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((k, m)\). \\
tau & Holds the vector of length \((k)\). \\
\(c\) & Holds the matrix \(C\) of size \((m, n)\). \\
side & Must be 'L' or 'R'. The default value is 'L'. \\
trans & Must be 'N' or 'T'. The default value is ' \(N\) '.
\end{tabular}

\section*{Application Notes}

For better performance, try using lwork \(=n *\) blocksize (if side \(=\) 'L') or lwork \(=m \star\) blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set 1 work to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The complex counterpart of this routine is unmrz.

\section*{?unmiz}

Multiplies a complex matrix by the unitary matrix defined from the factorization formed by ?tzrzf.

\section*{Syntax}

\section*{Fortran 77:}
```

call cunmrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)
call zunmrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)

```

\section*{Fortran 95:}
```

call unmrz(a, tau, c, l [,side] [,trans] [,info])

```

C:
```

lapack_int LAPACKE_<?>unmrz(int matrix_order, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int l, const <datatype>* a, lapack_int lda, const
<datatype>* tau, <datatype>* c, lapack_int ldc);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine multiplies a complex m-by-n matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix defined as a product of \(k\) elementary reflectors \(H(i)\) :
\(Q=H(1)^{H_{\star}} H(2)^{H_{\star}} \ldots{ }^{\star} H(k)^{H}\) as returned by the factorization routine tzrzf/tzrzf .
Depending on the parameters side and trans, the routine can form one of the matrix products \(Q^{*} C, Q^{H}{ }^{*} C\), \(C * Q\), or \(C * Q^{H}\) (overwriting the result over \(C\) ).
The matrix \(Q\) is of order \(m\) if side \(=\) ' L' and of order \(n\) if side \(=\) ' \(R^{\prime}\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

side CHARACTER*1. Must be either 'L' or 'R'.
If side = 'L', Q or Q 直 is applied to C from the left.
If side = 'R',Q or QH}\mathrm{ is applied to C from the right.
trans CHARACTER*1. Must be either 'N' or 'C'.
If trans = 'N', the routine multiplies C by Q.
If trans = 'C', the routine multiplies C by Q '.
INTEGER. The number of rows in the matrix C (m\geq0).
INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
INTEGER. The number of elementary reflectors whose product defines the
matrix Q. Constraints:
0 \leq k \leqm, if side = 'L';
0 \leq k \leq n, if side = 'R'.
I
INTEGER.
The number of columns of the matrix A containing the meaningful part of
the Householder reflectors. Constraints:
0 \leq l \leqm, if side = 'L';
0\leql\leqn, if side = 'R'.

```
```

a, tau, c, work COMPLEX for cunmrz
DOUBLE COMPLEX for zunmrz.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).
On entry, the ith row of a must contain the vector which defines the
elementary reflector H(i), fori=1,2,···,k, as returned by ctzrzf/ztzrzf
in the last k rows of its array argument a.
The second dimension of a must be at least max(1,m) if side = 'L', and
at least max(1,n) if side = 'R'.
tau(i) must contain the scalar factor of the elementary reflector H(i), as
returned by ctzrzf/ztzrzf.
The dimension of tau must be at least max(1,k).
c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1,n)
work is a workspace array, its dimension max(1, lwork).
INTEGER. The leading dimension of a; lda \geq max (1, k).
INTEGER. The leading dimension of c; ldc \geq max (1, m).
INTEGER. The size of the work array. Constraints:
lwork \geq max(1, n) if side = 'L';
lwork \geq max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.

```

See Application Notes for the suggested value of 1 work.

\section*{Output Parameters}
work(1)
info

Overwritten by the product \(Q^{*} C, Q^{H *} C, C^{*} Q\), or \(C^{*} Q^{H}\) (as specified by side and trans).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine unmrz interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((k, m)\). \\
tau & Holds the vector of length \((k)\). \\
\(c\) & Holds the matrix \(C\) of size \((m, n)\). \\
side & Must be 'L' or 'R'. The default value is 'L'. \\
trans & Must be ' \(N^{\prime}\) ' or ' \(C\) '. The default value is ' \(N\) '.
\end{tabular}

\section*{Application Notes}
 side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The real counterpart of this routine is ormrz.

\section*{?ggqrf \\ Computes the generalized \(Q R\) factorization of two matrices.}

Syntax

\section*{Fortran 77:}
```

call sggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)
call dggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)
call cggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)
call zggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

```

\section*{Fortran 95:}
```

call ggqrf(a, b [,taua] [,taub] [,info])

```

C:
```

lapack_int LAPACKE_<?>ggqrf(int matrix_order, lapack_int n, lapack_int m, lapack_int
p, <datatype>* a, lapack_int lda, <datatype>* taua, <datatype>* b, lapack_int ldb,
<datatype>* taub);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine forms the generalized \(Q R\) factorization of an \(n\)-by-m matrix \(A\) and an \(n\)-by-p matrix \(B\) as \(A=Q^{\star} R\), \(B=Q^{*} T^{*} Z\), where \(Q\) is an \(n\)-by-n orthogonal/unitary matrix, \(Z\) is a \(p\)-by- \(p\) orthogonal/unitary matrix, and \(R\) and \(T\) assume one of the forms:
\[
R=\begin{gathered}
m \\
n-m\binom{R_{11}}{0}, \quad \text { if } n \geq m
\end{gathered}
\]
or
\[
R=n \begin{array}{cc}
n & m-n \\
\left(R_{11}\right. & \left.R_{12}\right)
\end{array} \quad, \quad \text { if } n<m
\]
where \(R_{11}\) is upper triangular, and
\[
\begin{gathered}
\left.\quad \begin{array}{c}
p-n \\
T=n \\
(0
\end{array} \quad T_{12}\right), \text { if } n \leq p, \\
T=n-p\left(\begin{array}{l}
p \\
T_{11} \\
T_{21}
\end{array}\right), \quad \text { if } n>p,
\end{gathered}
\]
where \(T_{12}\) or \(T_{21}\) is a \(p\)-by- \(p\) upper triangular matrix.
In particular, if \(B\) is square and nonsingular, the \(G Q R\) factorization of \(A\) and \(B\) implicitly gives the \(Q R\) factorization of \(B^{-1} A\) as:
\(B^{-1 \star} A=Z^{T \star}\left(T^{-1 \star} R\right)\) (for real flavors) or \(B^{-1 \star} A=Z^{H \star}\left(T^{-1 \star} R\right)\) (for complex flavors).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

n INTEGER. The number of rows of the matrices A and B (n\geq0).
m INTEGER. The number of columns in A (m\geq0).
p INTEGER. The number of columns in B (
a,b,work REAL for sggqre
DOUBLE PRECISION for dggqrf
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.
Arrays: a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1,m).
b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, p).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least max(1,n).
INTEGER. The leading dimension of b; at least max(1,n).
INTEGER. The size of the work array; must be at least max(1, n,m,p).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.
See Application Notes for the suggested value of lwork.

```

\section*{Output Parameters}
\(a, b\)
taua, taub
work(1)
info

Overwritten by the factorization data as follows:
on exit, the elements on and above the diagonal of the array a contain the \(\min (n, m)\)-by-m upper trapezoidal matrix \(R\) ( \(R\) is upper triangular if \(n \geq\) \(m\) ); the elements below the diagonal, with the array taua, represent the orthogonal/unitary matrix \(Q\) as a product of \(\min (n, m)\) elementary reflectors ; if \(n \leq p\), the upper triangle of the subarray \(b(1: n, p-n+1: p)\) contains the \(n\) -by-n upper triangular matrix \(T\);
if \(n>p\), the elements on and above the \((n-p)\) th subdiagonal contain the \(n-\) by-p upper trapezoidal matrix \(T\); the remaining elements, with the array taub, represent the orthogonal/unitary matrix \(z\) as a product of elementary reflectors.

REAL for sggqrf
DOUBLE PRECISION for dggqrf
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.
Arrays, DIMENSION at least max \((1, \min (n, m))\) for taua and at least max ( \(1, \min (n, p)\) ) for taub. The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Q\). The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(z\).
If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ggqrf interface are the following:
```

a Holds the matrix A of size (}n,m)\mathrm{ .
b Holds the matrix B of size (}n,p)\mathrm{ .
taua Holds the vector of length min}(n,m)
taub Holds the vector of length min (n,p).

```

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(1) H(2) \ldots H(k)\), where \(k=\min (n, m)\).
Each \(H(i)\) has the form
\(H(i)=I-t^{2 u a}{ }^{\star} V^{\star} V^{T}\) for real flavors, or
\(H(i)=I-\operatorname{taua}^{\star} V^{\star} V^{H}\) for complex flavors,
where taua is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0, v(i)=1\).
On exit, \(v(i+1: n)\) is stored in \(a(i+1: n, i)\) and taua is stored in taua(i).
The matrix \(z\) is represented as a product of elementary reflectors
\(Z=H(1) H(2) \ldots H(k)\), where \(k=\min (\mathrm{n}, \mathrm{p})\).
Each \(H(\mathrm{i})\) has the form
\(H(i)=I-\tan ^{\star} V^{\star} V^{T}\) for real flavors, or
\(H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{H}\) for complex flavors,
where taub is a real/complex scalar, and \(v\) is a real/complex vector with \(v(p-k+i+1: p)=0, v(p-k+i)=\) 1.

On exit, \(v(1: p-k+i-1)\) is stored in \(b(n-k+i, 1: p-k+i-1)\) and taub is stored in taub(i).
For better performance, try using 1 work \(\geq \max (n, m, p){ }^{*} \max (n b 1, n b 2, n b 3)\), where \(n b 1\) is the optimal blocksize for the \(Q R\) factorization of an \(n\)-by-m matrix, \(n b 2\) is the optimal blocksize for the \(R Q\) factorization of an n-by-p matrix, and nb3 is the optimal blocksize for a call of ormqr/unmqr.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set \(l\) work to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?ggrqf \\ Computes the generalized \(R Q\) factorization of two matrices.}

\section*{Syntax}

\section*{Fortran 77:}
```

call sggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
call dggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
call cggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
call zggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

```

Fortran 95:
```

call ggrqf(a, b [,taua] [,taub] [,info])

```

\section*{C:}
lapack_int LAPACKE_<?>ggrqf( int matrix_order, lapack_int m, lapack_int p, lapack_int \(n,<d a t a t y p e>* ~ a, ~ l a p a c k \_i n t ~ l d a, ~<d a t a t y p e>* ~ t a u a, ~<d a t a t y p e>* ~ b, ~ l a p a c k \_i n t ~ l d b, ~\) <datatype>* taub );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine forms the generalized \(R Q\) factorization of an m-by- \(n\) matrix \(A\) and an \(p\)-by- \(n\) matrix \(B\) as \(A=R^{*} Q\), \(B=Z^{*} T^{*} Q\), where \(Q\) is an \(n-b y-n\) orthogonal/unitary matrix, \(Z\) is a \(p\)-by-p orthogonal/unitary matrix, and \(R\) and \(T\) assume one of the forms:
\[
\left.R=\begin{array}{cc}
n-m & m \\
m & (0
\end{array} R_{12}\right) \quad, \quad \text { if } m \leq n,
\]
or
\[
\left.\begin{array}{c}
\text { R } \\
n \\
n
\end{array} \quad \begin{array}{c}
n \\
R_{11} \\
R_{21}
\end{array}\right) \quad, \quad \text { if } m>n
\]
where \(R_{11}\) or \(R_{21}\) is upper triangular, and
\[
T=\begin{gathered}
n \\
p-n\binom{T_{11}}{0} \quad, \quad \text { if } p \geq n, ~
\end{gathered}
\]
or
\[
T=p \begin{array}{cc}
p & n-p \\
\left(T_{11}\right. & \left.T_{12}\right)
\end{array} \quad, \quad \text { if } p<n
\]
where \(T_{11}\) is upper triangular.
In particular, if \(B\) is square and nonsingular, the \(G R Q\) factorization of \(A\) and \(B\) implicitly gives the \(R Q\) factorization of \(A^{*} B^{-1}\) as:
\(A^{\star} B^{-1}=\left(R^{\star} T^{-1}\right) * Z^{T}\) (for real flavors) or \(A^{\star} B^{-1}=\left(R^{\star} T^{-1}\right) * Z^{H}\) (for complex flavors).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
m
p
n
\(a, b\), work
```

INTEGER. The number of rows of the matrix A (}m\geq0)
INTEGER. The number of rows in }B(p\geq0)
INTEGER. The number of columns of the matrices A and B(}n\geq0)\mathrm{ .
REAL for sggrqf
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
DOUBLE COMPLEX for zggrqf.

```

Arrays:
a(lda,*) contains the \(m\)-by-n matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
\(b(I d b, *)\) contains the \(p-b y-n\) matrix \(B\).
The second dimension of \(b\) must be at least \(\max (1, n)\).
work is a workspace array, its dimension max ( 1,1 work).
INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
INTEGER. The leading dimension of \(b\); at least max \((1, p)\).
INTEGER. The size of the work array; must be at least max \((1, n, m, p)\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

\section*{Output Parameters}
\(a, b\)
taua, taub
work(1)
info
Overwritten by the factorization data as follows:
on exit, if \(m \leq n\), the upper triangle of the subarray \(a(1: m, n-m+1: n)\) contains the \(m\)-by-m upper triangular matrix \(R\);
if \(m>n\), the elements on and above the \((m-n)\) th subdiagonal contain the \(m\) -by- \(n\) upper trapezoidal matrix \(R\);
the remaining elements, with the array taua, represent the orthogonal/ unitary matrix \(Q\) as a product of elementary reflectors; the elements on and above the diagonal of the array \(b\) contain the \(\min (p, n)\)-by- \(n\) upper trapezoidal matrix \(T\) ( \(T\) is upper triangular if \(p \geq n\) ); the elements below the diagonal, with the array taub, represent the orthogonal/unitary matrix \(z\) as a product of elementary reflectors.
REAL for sggrqf
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
DOUBLE COMPLEX for zggrqf.
Arrays, DIMENSION at least max \((1, \min (m, n))\) for taua and at least max ( \(1, \min (p, n)\) ) for taub.
The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(\ell\).
The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(z\).
If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ggrqf interface are the following:
```

a Holds the matrix A of size (m,n).
b Holds the matrix A of size (}p,n\mathrm{).

```
taua Holds the vector of length \(\min (m, n)\).
taub Holds the vector of length \(\min (p, n)\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(1) H(2) \ldots H(k)\), where \(k=\min (m, n)\).
Each \(H(\mathrm{i})\) has the form
\(H(i)=I-t a u a^{*} V^{\star} V^{T}\) for real flavors, or
\(H(i)=I\) - taua* \(V^{\star} V^{H}\) for complex flavors,
where taua is a real/complex scalar, and \(v\) is a real/complex vector with \(v(n-k+i+1: n)=0, v(n-k+i)=\) 1.

On exit, \(v(1: n-k+i-1)\) is stored in \(a(m-k+i, 1: n-k+i-1)\) and taua is stored in taua(i).
The matrix \(z\) is represented as a product of elementary reflectors
\(Z=H(1) H(2) \ldots H(k)\), where \(k=\min (\mathrm{p}, \mathrm{n})\).
Each \(H(i)\) has the form
\(H(i)=I-t a u b^{\star} V^{\star} V^{T}\) for real flavors, or
\(H(i)=I-t^{2} b^{*} V^{\star} V^{H}\) for complex flavors,
where taub is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0, v(i)=1\).
On exit, \(v(i+1: p)\) is stored in \(b(i+1: p, i)\) and taub is stored in taub(i).
For better performance, try using
lwork \(\geq \max (n, m, p) * \max (n b 1, n b 2, n b 3)\),
where \(n b 1\) is the optimal blocksize for the \(R Q\) factorization of an \(m\)-by-n matrix, \(n b 2\) is the optimal blocksize for the \(Q R\) factorization of an \(p\)-by-n matrix, and nb3 is the optimal blocksize for a call of ?ormrq/?unmrq.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork= -1 .

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set \(l\) work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{Singular Value Decomposition}

This section describes LAPACK routines for computing the singular value decomposition (SVD) of a general \(m\)-by-n matrix \(A\) :
\(A=U \Sigma V^{H}\).
In this decomposition, \(U\) and \(V\) are unitary (for complex \(A\) ) or orthogonal (for real \(A\) ); \(\Sigma\) is an \(m\)-by- \(n\) diagonal matrix with real diagonal elements \(\sigma_{i}\) :
\(\sigma_{1}<\sigma_{2}<\ldots<\sigma_{\min (m, n)}<0\).

The diagonal elements \(\sigma_{\mathrm{i}}\) are singular values of \(A\). The first min \((m, n)\) columns of the matrices \(U\) and \(V\) are, respectively, left and right singular vectors of \(A\). The singular values and singular vectors satisfy
\(A v_{i}=\sigma_{i} u_{i}\) and \(A^{H} u_{i}=\sigma_{i} v_{i}\)
where \(u_{i}\) and \(v_{i}\) are the \(i\)-th columns of \(U\) and \(V\), respectively.
To find the SVD of a general matrix \(A\), call the LAPACK routine ? gebrd or ? gbbrd for reducing \(A\) to a bidiagonal matrix \(B\) by a unitary (orthogonal) transformation: \(A=Q B P^{H}\). Then call ?bdsqr, which forms the SVD of a bidiagonal matrix: \(B=U_{1} \Sigma V_{1}{ }^{H}\).
Thus, the sought-for SVD of \(A\) is given by \(A=U \Sigma V^{H}=\left(Q U_{1}\right) \Sigma\left(V_{1}{ }^{H} P^{H}\right)\).
Table "Computational Routines for Singular Value Decomposition (SVD)" lists LAPACK routines (FORTRAN 77 interface) that perform singular value decomposition of matrices. Respective routine names in Fortran 95 interface are without the first symbol (see Routine Naming Conventions).
Computational Routines for Singular Value Decomposition (SVD)
\begin{tabular}{lll}
\hline Operation & Real matrices & Complex matrices \\
\hline \begin{tabular}{l} 
Reduce \(A\) to a bidiagonal matrix \(B: A=Q B P^{H}\) \\
(full storage)
\end{tabular} & gebrd & gebrd \\
\begin{tabular}{l} 
Reduce \(A\) to a bidiagonal matrix \(B: A=Q B P^{H}\) \\
(band storage)
\end{tabular} & gbbrd & gbbrd \\
Generate the orthogonal (unitary) matrix \(Q\) or P & orgbr & ungbr \\
Apply the orthogonal (unitary) matrix \(Q\) or P & ormbr & unmbr \\
\begin{tabular}{l} 
Form singular value decomposition of the \\
bidiagonal matrix \(B: B=U \Sigma V^{H}\)
\end{tabular} & bdsqr bdsdc & bdsqr \\
\hline
\end{tabular}

Decision Tree: Singular Value Decomposition


Figure "Decision Tree: Singular Value Decomposition" presents a decision tree that helps you choose the right sequence of routines for SVD, depending on whether you need singular values only or singular vectors as well, whether \(A\) is real or complex, and so on.

You can use the SVD to find a minimum-norm solution to a (possibly) rank-deficient least squares problem of minimizing \(||A x-b||^{2}\). The effective rank \(k\) of the matrix \(A\) can be determined as the number of singular values which exceed a suitable threshold. The minimum-norm solution is
\(x=V_{k}\left(\Sigma_{k}\right)^{-1} C\)
where \(\Sigma_{k}\) is the leading \(k\)-by- \(k\) submatrix of \(\Sigma\), the matrix \(V_{k}\) consists of the first \(k\) columns of \(V=P V_{1}\), and the vector \(c\) consists of the first \(k\) elements of \(U^{H} b=U_{1}{ }^{H} Q^{H} b\).

\section*{?gebrd}

Reduces a general matrix to bidiagonal form.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)
call dgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)
call cgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)
call zgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)

```

\section*{Fortran 95:}
```

call gebrd(a [, d] [,e] [,tauq] [,taup] [,info])

```

C:
lapack_int LAPACKE_sgebrd( int matrix_order, lapack_int m, lapack_int \(n\), float* a,
```

lapack_int lda, float* d, float* e, float* tauq, float* taup);

```
lapack_int LAPACKE_dgebrd( int matrix_order, lapack_int m, lapack_int \(n\), double* a,
lapack_int lda, double* \(d\), double* e, double* tauq, double* taup );
lapack_int LAPACKE_cgebrd( int matrix_order, lapack_int m, lapack_int \(n\),

tauq, lapack_complex_float* taup );
lapack_int LAPACKE_zgebrd( int matrix_order, lapack_int m, lapack_int \(n\),

tauq, lapack_complex_double* taup );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces a general \(m\)-by- \(n\) matrix \(A\) to a bidiagonal matrix \(B\) by an orthogonal (unitary) transformation.

If \(m \geq n\), the reduction is given by
\[
A=Q B P^{H}=Q\binom{B_{1}}{0} P^{H}=Q_{1} B_{1} P^{H},
\]
where \(B_{1}\) is an \(n\)-by- \(n\) upper diagonal matrix, \(Q\) and \(P\) are orthogonal or, for a complex \(A\), unitary matrices; \(Q_{1}\) consists of the first \(n\) columns of \(Q\).

If \(m<n\), the reduction is given by
\[
A=Q^{\star} B^{\star} P^{H}=Q^{\star}\left(B_{1} 0\right) \star P^{H}=Q_{1} \star B_{1} \star P_{1}{ }^{H}
\]
where \(B_{1}\) is an \(m\)-by- \(m\) lower diagonal matrix, \(Q\) and \(P\) are orthogonal or, for a complex \(A\), unitary matrices; \(P_{1}\) consists of the first \(m\) rows of \(P\).

The routine does not form the matrices \(Q\) and \(P\) explicitly, but represents them as products of elementary reflectors. Routines are provided to work with the matrices \(Q\) and \(P\) in this representation:
If the matrix \(A\) is real,
- to compute \(Q\) and \(P\) explicitly, call orgbr.
- to multiply a general matrix by \(Q\) or \(P\), call ormbr.

If the matrix \(A\) is complex,
- to compute \(Q\) and \(P\) explicitly, call ungbr.
- to multiply a general matrix by \(Q\) or \(P\), call unmbr.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

m INTEGER. The number of rows in the matrix A (m\geq0).
n
a, work
lda
lwork
INTEGER. The number of columns in A (}n\geq0)\mathrm{ .
REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max (1, n).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least max (1, m).
INTEGER.
The dimension of work; at least max (1, m, n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.

```
See Application Notes for the suggested value of lwork.

\section*{Output Parameters}
a
d

If \(m \geq n\), the diagonal and first super-diagonal of a are overwritten by the upper bidiagonal matrix \(B\). Elements below the diagonal are overwritten by details of \(Q\), and the remaining elements are overwritten by details of \(P\). If \(m<n\), the diagonal and first sub-diagonal of a are overwritten by the lower bidiagonal matrix \(B\). Elements above the diagonal are overwritten by details of \(P\), and the remaining elements are overwritten by details of \(Q\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

Array, DIMENSION at least max \((1, \min (m, n))\).
Contains the diagonal elements of \(B\).
e
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max \((1, \min (m, n)-1)\). Contains the offdiagonal elements of \(B\).

REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays, DIMENSION at least max \((1, \min (m, n))\). Contain further details of the matrices \(Q\) and \(P\).

If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gebrd interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the matrix A of size \((m, n)\). \\
\(d\) & Holds the vector of length \(\min (m, n)\). \\
\(e\) & Holds the vector of length \(\min (m, n)-1\). \\
tauq & Holds the vector of length \(\min (m, n)\). \\
taup & Holds the vector of length \(\min (m, n)\).
\end{tabular}

\section*{Application Notes}

For better performance, try using lwork \(=(m+n) *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrices \(Q, B\), and \(P\) satisfy \(Q B P^{H}=A+E\), where \(\left.\left||E|_{2}=C(n) \varepsilon\right||A|\right|_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations for real flavors is
\[
(4 / 3) * n^{2} *(3 * m-n) \text { for } m \geq n
\]
\((4 / 3) * m^{2} *(3 * n-m)\) for \(m<n\).
The number of operations for complex flavors is four times greater.
If \(n\) is much less than \(m\), it can be more efficient to first form the \(Q R\) factorization of \(A\) by calling geqrf and then reduce the factor \(R\) to bidiagonal form. This requires approximately \(2 * n^{2} *(m+n)\) floating-point operations.
If \(m\) is much less than \(n\), it can be more efficient to first form the \(L Q\) factorization of \(A\) by calling gelqf and then reduce the factor \(L\) to bidiagonal form. This requires approximately \(2 \star m^{2} *(m+n)\) floating-point operations.

\section*{?gbbrd}

Reduces a general band matrix to bidiagonal form.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc, work,
info)
call dgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc, work,
info)
call cgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc, work,
rwork, info)
call zgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc, work,
rwork, info)

```

\section*{Fortran 95:}
```

call gbbrd(ab [, c] [,d] [,e] [,q] [,pt] [,kl] [,m] [,info])

```

C:
lapack_int LAPACKE_sgbbrd( int matrix_order, char vect, lapack_int m, lapack_int \(n\), lapack_int ncc, lapack_int \(k l, ~ l a p a c k \_i n t ~ k u, ~ f l o a t * ~ a b, ~ l a p a c k \_i n t ~ l d a b, ~ f l o a t * ~ d, ~\) float* e, float* \(q\), lapack_int ldq, float* pt, lapack_int ldpt, float* c, lapack_int Idc );
lapack_int LAPACKE_dgbbrd( int matrix_order, char vect, lapack_int m, lapack_int \(n\), lapack_int ncc, lapack_int \(k l, ~ l a p a c k \_i n t ~ k u, ~ d o u b l e * ~ a b, ~ l a p a c k \_i n t ~ l d a b, ~ d o u b l e * ~ d, ~\) double* e, double* \(q\), lapack_int ldq, double* pt, lapack_int ldpt, double* c, lapack_int Idc );
lapack_int LAPACKE_cgbbrd( int matrix_order, char vect, lapack_int m, lapack_int \(n\),
 ldab, float* \(d, f l o a t * ~ e, ~ l a p a c k \_c o m p l e x \_f l o a t * ~ q, ~ l a p a c k \_i n t ~ l d q, ~\) lapack_complex_float* pt, lapack_int ldpt, lapack_complex_float* c, lapack_int ldc );
lapack_int LAPACKE_zgbbrd( int matrix_order, char vect, lapack_int m, lapack_int \(n\), lapack_int ncc, lapack_int kl, lapack_int ku, lapack_complex_double* ab, lapack_int
 lapack_complex_double* pt, lapack_int ldpt, lapack_complex_double* c, lapack_int ldc );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces an \(m-b y-n\) band matrix \(A\) to upper bidiagonal matrix \(B: A=Q^{\star} B^{\star} P^{H}\). Here the matrices \(Q\) and \(P\) are orthogonal (for real \(A\) ) or unitary (for complex \(A\) ). They are determined as products of Givens rotation matrices, and may be formed explicitly by the routine if required. The routine can also update a matrix \(C\) as follows: \(C=Q^{H *} C\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

vect
m
n
nCc
kl
ku
ab, c, work
ldab
ldq
ldpt
ldc
rwork
CHARACTER*1. Must be 'N' or 'Q' or 'P' or 'B'.
If vect = 'N', neither Q nor P}\mp@subsup{P}{}{H}\mathrm{ is generated.
If vect = 'Q', the routine generates the matrix Q.
If vect = 'P', the routine generates the matrix P P
If vect = 'B', the routine generates both Q and P '
INTEGER. The number of rows in the matrix A (m\geq0).
INTEGER. The number of columns in A (}n\geq0)\mathrm{ .
INTEGER. The number of columns in C (ncc \geq0).
INTEGER. The number of sub-diagonals within the band of A (kI \geq0).
INTEGER. The number of super-diagonals within the band of A (ku\geq0).
REAL for sgbbrd
DOUBLE PRECISION for dgbbrd
COMPLEX for cgbbrd
DOUBLE COMPLEX for zgbbrd.

```

\section*{Arrays:}
```

$a b(l d a b, *)$ contains the matrix A in band storage (see Matrix Storage Schemes).
The second dimension of a must be at least max $(1, n)$.
$c(I d c, *)$ contains an m-by-ncc matrix c.
If $n c c=0$, the array c is not referenced.
The second dimension of c must be at least max(1,ncc).
work(*) is a workspace array.
The dimension of work must be at least $2 * \max (m, n)$ for real flavors, or $\max (m, n)$ for complex flavors.
INTEGER. The leading dimension of the array $a b(l d a b \geq k l+k u+1)$.
INTEGER. The leading dimension of the output array q.
$l d q \geq \max (1, m)$ if vect $=$ ' Q ' or ' B ', $l d q \geq 1$ otherwise.
INTEGER. The leading dimension of the output array $p t$.
ldpt $\geq \max (1, n)$ if vect $=$ ' P ' or ' B ', ldpt ≥ 1 otherwise.
ldc
rwork
INTEGER. The leading dimension of the array c.
$l d c \geq \max (1, m)$ if $n c c>0 ; 1 d c \geq 1$ if $n c c=0$.
REAL for cgbbrd DOUBLE PRECISION for zgbbrd.
A workspace array, DIMENSION at least max (m, n).

```

\section*{Output Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

ab
d
e
q, pt
C
info
Overwritten by values generated during the reduction.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least $\max (1, \min (m, n))$. Contains the diagonal elements of the matrix B.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max (1, min $(m, n)-1)$.
Contains the off-diagonal elements of B.

```
q, pt
c
info

REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays:
\(q(I d q, *)\) contains the output \(m\)-by- \(m\) matrix \(Q\).
The second dimension of \(q\) must be at least max \((1, m)\).
\(p\left(l d p t,{ }^{*}\right)\) contains the output \(n\)-by- \(n\) matrix \(P^{T}\).
The second dimension of pt must be at least max \((1, n)\).
Overwritten by the product \(Q^{H \star} C\).
\(c\) is not referenced if \(n c c=0\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gbbrd interface are the following:
\(a b \quad\) Holds the array \(A\) of size \((k l+k u+1, n)\).
\(c \quad\) Holds the matrix \(C\) of size ( \(m, n c c\) ).
d Holds the vector with the number of elements \(\min (m, n)\).
e Holds the vector with the number fo elements \(\min (m, n)-1\).
\(q \quad\) Holds the matrix \(Q\) of size \((m, m)\).
pt Holds the matrix PT of size \((n, n)\).
\(m \quad\) If omitted, assumed \(m=n\).
\(k l \quad\) If omitted, assumed \(k l=k u\).
ku Restored as \(k u=1 d a-k l-1\).
vect Restored based on the presence of arguments \(q\) and \(p t\) as follows:
vect \(=\) ' \(B\) ', if both \(q\) and \(p t\) are present,
vect \(=\) ' \(Q\) ', if \(q\) is present and \(p t\) omitted, vect \(=\) ' \(P\) ',
if \(q\) is omitted and \(p t\) present, vect \(=\) ' \(N\) ', if both \(q\) and \(p t\) are omitted.

\section*{Application Notes}

The computed matrices \(Q, B\), and \(P\) satisfy \(Q \star B^{\star} P^{H}=A+E\), where \(\left.\left||E|_{2}=C(n) \varepsilon\right||A|\right|_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

If \(m=n\), the total number of floating-point operations for real flavors is approximately the sum of:
```

6* n
3* n}\mp@subsup{}{}{2}*nC\mp@subsup{C}{}{*}(kl + ku - 1)/(kl + ku) if C is updated, and
3* n}\mp@subsup{n}{}{3*}(kl+ku - 1)/(kl + ku) if either Q or P P is generated (double this if both)

```

To estimate the number of operations for complex flavors, use the same formulas with the coefficients 20 and 10 (instead of 6 and 3).
```

?orgbr
Generates the real orthogonal matrix Q or P P
determined by ?gebrd.

```

Syntax

\section*{Fortran 77:}
```

call sorgbr(vect, m, n, k, a, lda, tau, work, lwork, info)
call dorgbr(vect, m, n, k, a, lda, tau, work, lwork, info)

```

\section*{Fortran 95:}
```

call orgbr(a, tau [,vect] [,info])

```

C:
lapack_int LAPACKE_<?>orgbr( int matrix_order, char vect, lapack_int m, lapack_int \(n\), lapack_int \(\left.k,<d a t a t y p e>* ~ a, ~ l a p a c k \_i n t ~ l d a, ~ c o n s t ~<d a t a t y p e>* ~ t a u ~\right) ; ~\)

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine generates the whole or part of the orthogonal matrices \(Q\) and \(P^{T}\) formed by the routines gebrd/ gebrd. Use this routine after a call to sgebrd/dgebrd. All valid combinations of arguments are described in Input parameters. In most cases you need the following:

To compute the whole \(m\)-by-m matrix \(Q\) :
```

call ?orgbr('Q', m, m, n, a ...)

```
(note that the array a must have at least \(m\) columns).
To form the \(n\) leading columns of \(Q\) if \(m>n\) :
```

call ?orgbr('Q', m, n, n, a ...)

```

To compute the whole \(n\)-by- \(n\) matrix \(P^{T}\) :
```

call ?orgbr('P', n, n, m, a ...)

```
(note that the array a must have at least \(n\) rows).
To form the \(m\) leading rows of \(P^{T}\) if \(m<n\) :
```

call ?orgbr('P', m, n, m, a ...)

```

Input Parameters
The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{vect} & CHARACTER*1. Must be 'Q' or 'P'. \\
\hline & If vect \(=\) ' \(Q\) ', the routine generates the matrix \(Q\). \\
\hline & If vect \(=\) ' P ', the routine generates the matrix \(P^{T}\). \\
\hline \multirow[t]{3}{*}{\(m, n\)} & INTEGER. The number of rows \((m)\) and columns \((n)\) in the matrix \(Q\) or \(P^{T}\) to be returned ( \(m \geq 0, n \geq 0\) ). \\
\hline & If vect \(=\) ' Q', m \({ }^{\text {l }}\), \(n \geq \min (m, k)\). \\
\hline & If vect \(=\) ' P', \(n \geq m \geq \min (n, k)\). \\
\hline \multirow[t]{2}{*}{k} & If vect \(=\) ' \(Q\) ', the number of columns in the original \(m\)-by- \(k\) matrix reduced by gebrd. \\
\hline & If vect \(=\) ' P ', the number of rows in the original \(k-\) by \(-n\) matrix reduced by gebrd. \\
\hline \multirow[t]{3}{*}{a} & REAL for sorgbr \\
\hline & DOUBLE PRECISION for dorgbr \\
\hline & The vectors which define the elementary reflectors, as returned by gebrd. \\
\hline Ida & INTEGER. The leading dimension of the array \(a\). 1 da \(\geq \max (1, m)\). \\
\hline \multirow[t]{3}{*}{tau} & REAL for sorgbr \\
\hline & DOUBLE PRECISION for dorgbr \\
\hline & Array, DIMENSION min \((m, k)\) if vect \(=\) ' \(Q\) ', min \((n, k)\) if vect \(=\) ' P'. Scalar factor of the elementary reflector \(H(i)\) or \(G(i)\), which determines \(Q\) and \(P^{T}\) as returned by gebrd in the array tauq or taup. \\
\hline \multirow[t]{3}{*}{work} & REAL for sorgbr \\
\hline & DOUBLE PRECISION for dorgbr \\
\hline & Workspace array, DIMENSION max (1, lwork). \\
\hline \multirow[t]{2}{*}{Iwork} & INTEGER. Dimension of the array work. See Application Notes for the suggested value of lwork. \\
\hline & If 1 work \(=-1\) then the routine performs a workspace query and calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
work(1)
info
Overwritten by the orthogonal matrix \(Q\) or \(P^{T}\) (or the leading rows or columns thereof) as specified by vect, \(m\), and \(n\).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine orgbr interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((m, n)\). \\
& Holds the vector of length \(\min (m, k)\) where \\
\(k=m\), if vect \(=\mathrm{P}^{\prime}\), \\
\(k=n\), if vect \(=' Q '\).
\end{tabular}
vect Must be 'Q' or 'P'. The default value is 'Q'.

\section*{Application Notes}

For better performance, try using lwork \(=\min (m, n) * b l o c k s i z e\), where blocksize is a machinedependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(\left||E| \|_{2}=O(\varepsilon)\right.\).
The approximate numbers of floating-point operations for the cases listed in Description are as follows:
To form the whole of \(Q\) :
```

(4/3)*n* (3m}\mp@subsup{m}{}{2}-3\mp@subsup{m}{}{*}n+\mp@subsup{n}{}{2})\mathrm{ if }m>n
(4/3)* * m}\mathrm{ if m}\leqn\mathrm{ .

```

To form the \(n\) leading columns of \(Q\) when \(m>n\) :
\[
(2 / 3) * n^{2 *}\left(3 m-n^{2}\right) \text { if } m>n .
\]

To form the whole of \(P^{T}\) :
```

$(4 / 3) * n^{3}$ if $m \geq n$;
$(4 / 3) \star m^{\star}\left(3 n^{2}-3 m^{\star} n+m^{2}\right)$ if $m<n$.

```

To form the \(m\) leading columns of \(P^{T}\) when \(m<n\) :
\((2 / 3) * n^{2} *\left(3 m-n^{2}\right)\) if \(m>n\).
The complex counterpart of this routine is ungbr.

\section*{?ormbr \\ Multiplies an arbitrary real matrix by the real \\ orthogonal matrix \(Q\) or \(P^{T}\) determined by ?gebrd.}

\section*{Syntax}

\section*{Fortran 77:}
```

call sormbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call dormbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

```

\section*{Fortran 95:}
```

call ormbr(a, tau, c [,vect] [,side] [,trans] [,info])

```

C:
```

lapack_int LAPACKE_<?>ormbr(int matrix_order, char vect, char side, char trans,
lapack_int m, lapack_int n, lapack_int k, const <datatype>* a, lapack_int lda, const
<datatype>* tau, <datatype>* c, lapack_int ldc);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

Given an arbitrary real matrix \(C\), this routine forms one of the matrix products \(Q^{\star} C, Q^{T}{ }^{*} C, C^{\star} Q, C^{\star} Q, r^{T}, P^{\star} C\), \(P^{T \star} C, C^{\star} P, C^{\star} P^{T}\), where \(Q\) and \(P\) are orthogonal matrices computed by a call to gebrd/gebrd. The routine overwrites the product on \(C\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.

In the descriptions below, \(r\) denotes the order of \(Q\) or \(P^{T}\) :
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{If side = 'L', r = m; if side = 'R', r = n.} \\
\hline vect & CHARACTER*1. Must be 'Q' or 'P'. \\
\hline & If vect = ' \(Q\) ', then \(Q\) or \(Q^{T}\) is applied to \(C\). \\
\hline & If vect \(=\) ' P ', then \(P\) or \(P_{T}\) is applied to \(C\). \\
\hline \multirow[t]{3}{*}{side} & CHARACTER*1. Must be 'L' or 'R'. \\
\hline & If side \(=\) 'L', multipliers are applied to \(C\) from the left. \\
\hline & If side = 'R', they are applied to \(C\) from the right. \\
\hline \multirow[t]{3}{*}{trans} & CHARACTER*1. Must be 'N' or 'T'. \\
\hline & If trans \(=\) ' N ', then \(Q\) or \(P\) is applied to \(C\). \\
\hline & If trans \(=\) ' T ', then \(Q^{T}\) or \(P^{T}\) is applied to \(C\). \\
\hline \(m\) & INTEGER. The number of rows in \(C\). \\
\hline \(n\) & INTEGER. The number of columns in \(C\). \\
\hline \multirow[t]{4}{*}{k} & INTEGER. One of the dimensions of \(A\) in ? gebrd: \\
\hline & If vect = ' 2 ', the number of columns in \(A\); \\
\hline & If vect \(=\) ' P ', the number of rows in \(A\). \\
\hline & Constraints: \(m \geq 0, n \geq 0, k \geq 0\). \\
\hline \multirow[t]{7}{*}{a, c, work} & REAL for sormbr \\
\hline & DOUBLE PRECISION for dormbr. \\
\hline & Arrays: \\
\hline & a(lda,*) is the array a as returned by ? gebrd. \\
\hline & Its second dimension must be at least \(\max (1, \min (r, k))\) for vect \(=\) ' Q ', or \(\max (1, r)\) ) for vect \(=\quad\) ' \(\mathrm{P}^{\prime}\). \\
\hline & \(c(l d c, *)\) holds the matrix \(C\). \\
\hline & Its second dimension must be at least max \((1, n)\). work is a workspace array, its dimension max ( \(1, ~ l\) work). \\
\hline \multirow[t]{3}{*}{Ida} & INTEGER. The leading dimension of a. Constraints: \\
\hline & \(l d a \geq \max (1, r)\) if vect \(=\) 'Q'; \\
\hline & \(l d a \geq \max (1, \min (r, k))\) if vect \(=\) ' \(\mathrm{P}^{\prime}\). \\
\hline \(1 d \mathrm{c}\) & INTEGER. The leading dimension of \(c\); ldc \(\geq \max (1, m)\). \\
\hline \multirow[t]{3}{*}{tau} & REAL for sormbr \\
\hline & DOUBLE PRECISION for dormbr. \\
\hline & Array, DIMENSION at least max (1, min \((r, k)\) ). \\
\hline
\end{tabular}

For vect = 'Q', the array tauq as returned by ?gebrd. For vect = 'P', the array taup as returned by ?gebrd.
lwork INTEGER. The size of the work array. Constraints:
lwork \(\geq \max (1, n)\) if side \(=\) 'L';
lwork \(\geq \max (1, m)\) if side \(=\) 'R'.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of 1 work.

\section*{Output Parameters}
```

C
work(1)
info
Overwritten by the product }\mp@subsup{Q}{}{\star}C,\mp@subsup{Q}{}{T\star}C,\mp@subsup{C}{}{\star}Q,\mp@subsup{C}{}{\star}Q,\mp@subsup{,}{}{T},\mp@subsup{P}{}{\star}C,\mp@subsup{P}{}{T\star}C,\mp@subsup{C}{}{\star}P,\mathrm{ or }\mp@subsup{C}{}{\star}\mp@subsup{P}{}{T}\mathrm{ ,
as specified by vect, side, and trans.
If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ormbr interface are the following:
```

a Holds the matrix A of size (}r,m\operatorname{min}(nq,k))\mathrm{ where
r = nq, if vect = 'Q',
r = min(nq,k), if vect = 'P',
nq=m, if side = 'L',
nq = n, if side = 'R',
k = m, if vect = 'P',
k = n, if vect = 'Q'.
tau Holds the vector of length min(nq,k).
c Holds the matrix C of size (m,n).
vect Must be 'Q' or 'P'. The default value is 'Q'.
side Must be 'L' or 'R'. The default value is 'L'.
trans Must be 'N' or 'T'. The default value is 'N'.

```

\section*{Application Notes}

For better performance, try using
lwork \(=n *\) blocksize for side \(=\) 'L', or
lwork \(=m^{\star}\) blocksize for side = 'R',
where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed product differs from the exact product by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)^{*}| | C| |_{2}\).
The total number of floating-point operations is approximately
```

2* n* k(2*m - k) if side = 'L' and m\geqk;
2*m*k(2*n - k) if side = 'R' and n \geq k;
2* m}\mp@subsup{}{}{2}\mp@subsup{*}{n}{}\mathrm{ if side = 'L' and m<k;
2* n}\mp@subsup{}{}{2}*m\mathrm{ if side = 'R' and n < k

```

The complex counterpart of this routine is unmbr.

\section*{?ungbr}

Generates the complex unitary matrix \(Q\) or \(P^{H}\)
determined by ?gebrd.

\section*{Syntax}

\section*{Fortran 77:}
```

call cungbr(vect, m, n, k, a, lda, tau, work, lwork, info)
call zungbr(vect, m, n, k, a, lda, tau, work, lwork, info)

```

\section*{Fortran 95:}
```

call ungbr(a, tau [,vect] [,info])

```

C:
```

lapack_int LAPACKE_<?>ungbr(int matrix_order, char vect, lapack_int m, lapack_int n,

```
lapack_int \(k\), <datatype>* \(\left.a, ~ l a p a c k \_i n t ~ l d a, ~ c o n s t ~<d a t a t y p e>* ~ t a u ~\right) ; ~\)

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine generates the whole or part of the unitary matrices \(Q\) and \(P^{H}\) formed by the routines gebrd/gebrd. Use this routine after a call to cgebrd/zgebrd. All valid combinations of arguments are described in Input Parameters; in most cases you need the following:

To compute the whole \(m\)-by- \(m\) matrix \(Q\), use:
```

call ?ungbr('Q', m, m, n, a ...)

```
(note that the array a must have at least \(m\) columns).
To form the \(n\) leading columns of \(Q\) if \(m>n\), use:
```

call ?ungbr('Q', m, n, n, a ...)

```

To compute the whole \(n\)-by- \(n\) matrix \(P^{H}\), use:
```

call ?ungbr('P', n, n, m, a ...)

```
(note that the array a must have at least \(n\) rows).
To form the \(m\) leading rows of \(P^{H}\) if \(m<n\), use:
```

call ?ungbr('P', m, n, m, a ...)

```

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline vect & \begin{tabular}{l}
CHARACTER*1. Must be 'Q' or 'P'. \\
If vect \(=\) ' \(Q\) ', the routine generates the matrix \(Q\). \\
If vect \(=\) ' \(\mathrm{P}^{\prime}\), the routine generates the matrix \(P^{H}\).
\end{tabular} \\
\hline m & INTEGER. The number of required rows of Q or \(P^{H}\). \\
\hline \(n\) & INTEGER. The number of required columns of Q or \(P^{H}\). \\
\hline k & \begin{tabular}{l}
INTEGER. One of the dimensions of \(A\) in ? gebrd: \\
If vect \(=\) ' \(Q\) ', the number of columns in \(A\); \\
If vect \(=\) ' P ', the number of rows in \(A\). \\
Constraints: \(m \geq 0, n \geq 0, k \geq 0\). \\
For vect \(=\) ' \(Q\) ': \(k \leq n \leq m\) if \(m>k\), or \(m=n\) if \(m \leq k\). \\
For vect \(=' \mathrm{P}^{\prime}: k \leq m \leq n\) if \(n>k\), or \(m=n\) if \(n \leq k\).
\end{tabular} \\
\hline a, work & \begin{tabular}{l}
COMPLEX for cungbr \\
DOUBLE COMPLEX for zungbr. \\
Arrays: \\
a(lda,*) is the array a as returned by ? gebrd. \\
The second dimension of a must be at least max \((1, n)\). \\
work is a workspace array, its dimension max ( 1,1 work).
\end{tabular} \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, m)\). \\
\hline tau & \begin{tabular}{l}
COMPLEX for cungbr \\
DOUBLE COMPLEX for zungbr. \\
For vect = 'Q', the array tauq as returned by ? gebrd. For vect = 'P', the array taup as returned by ?gebrd. \\
The dimension of \(\operatorname{tau}\) must be at least \(\max (1, \min (m, k))\) for vect \(=' Q\) ', or \(\max (1, \min (m, k))\) for vect \(='^{\prime} \mathrm{P}^{\prime}\).
\end{tabular} \\
\hline Iwork & \begin{tabular}{l}
INTEGER. The size of the work array. \\
Constraint: lwork < max (1, min \((m, n)\) ). \\
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
\end{tabular} \\
\hline
\end{tabular}

See Application Notes for the suggested value of 1 work.

\section*{Output Parameters}
a
work(1)
info

Overwritten by the orthogonal matrix \(Q\) or \(P^{T}\) (or the leading rows or columns thereof) as specified by vect, \(m\), and \(n\).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
```

If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ungbr interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((m, n)\). \\
tau & Holds the vector of length \(\min (m, k)\) where \\
\(k=m\), if vect \(=' P^{\prime}\), \\
vect & \(k=n\), if vect \(=Q^{\prime}\).
\end{tabular}

\section*{Application Notes}

For better performance, try using lwork \(=\min (m, n) * b l o c k s i z e\), where blocksize is a machinedependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if 1 work is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\).
The approximate numbers of possible floating-point operations are listed below:
To compute the whole matrix \(Q\) :
```

(16/3)n(3\mp@subsup{m}{}{2}-3m\starn+\mp@subsup{n}{}{2}) if m>n;
(16/3) m}\mp@subsup{m}{}{3}\mathrm{ if m}\leqn

```

To form the \(n\) leading columns of \(Q\) when \(m>n\) :
```

(8/3) n}\mp@subsup{n}{}{2}(3m-\mp@subsup{n}{}{2})

```

To compute the whole matrix \(P^{H}\) :
```

(16/3) n}\mp@subsup{n}{}{3}\mathrm{ if }m\geqn

```
\((16 / 3) m\left(3 n^{2}-3 m^{\star} n+m^{2}\right)\) if \(m<n\).
To form the \(m\) leading columns of \(P^{H}\) when \(m<n\) :
```

(8/3) n

```

The real counterpart of this routine is orgbr.
?unmbr
Multiplies an arbitrary complex matrix by the unitary matrix \(Q\) or \(P\) determined by ?gebrd.

\section*{Syntax}

\section*{Fortran 77:}
```

call cunmbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call zunmbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

```

\section*{Fortran 95:}
```

call unmbr(a, tau, c [,vect] [,side] [,trans] [,info])

```

C:
```

lapack_int LAPACKE_<?>unmbr(int matrix_order, char vect, char side, char trans,
lapack_int m, lapack_int n, lapack_int k, const <datatype>* a, lapack_int lda, const
<datatype>* tau, <datatype>* c, lapack int ldc);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

Given an arbitrary complex matrix \(C\), this routine forms one of the matrix products \(Q^{*} C, Q^{H *} C, C^{*} Q, C^{*} Q^{H}, P^{*} C\), \(P^{H *} C, C^{*} P\), or \(C^{\star} P^{H}\), where \(Q\) and \(P\) are unitary matrices computed by a call to gebrd/gebrd. The routine overwrites the product on \(C\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
In the descriptions below, \(r\) denotes the order of \(Q\) or \(P^{H}\) :
```

If side = 'L', r = m; if side = 'R', r = n.

vect	CHARACTER*1. Must be 'Q' or 'P'.
	If vect = ' Q ', then Q or Q^{H} is applied to C.
	If vect $=$ ' P ', then P or P^{H} is applied to C.
side	CHARACTER*1. Must be 'L' or 'R'.
	If side = 'L', multipliers are applied to C from the left.
	If side $=$ ' R ', they are applied to C from the right.
trans	CHARACTER*1. Must be 'N' or 'C'.
	If trans $=$ ' N ', then Q or P is applied to C.
	If trans $=$ ' C ', then Q^{H} or P^{H} is applied to C.
m	INTEGER. The number of rows in C.
n	INTEGER. The number of columns in C.
k	INTEGER. One of the dimensions of A in ? gebrd:
	If vect = ' Q ', the number of columns in A;
	If vect $=$ ' P ', the number of rows in A.
	Constraints: $m \geq 0, n \geq 0, k \geq 0$.
a, c, work	COMPLEX for cunmbr
	DOUBLE COMPLEX for zunmbr.
	Arrays:

```
a(lda,*) is the array a as returned by ?gebrd.
Its second dimension must be at least \(\max (1, \min (r, k))\) for vect \(=\) ' \(Q\) ', or \(\max (1, r))\) for vect \(=' \mathrm{P}^{\prime}\).
\(c(l d c, *)\) holds the matrix \(c\).
Its second dimension must be at least \(\max (1, n)\).
work is a workspace array, its dimension max ( 1,1 work).
lda
INTEGER. The leading dimension of \(a\). Constraints:
lda \(\geq \max (1, r)\) if vect \(=\) ' \(Q\) ';
\(I d a \geq \max (1, \min (r, k))\) if vect \(=' P^{\prime}\).
ldc INTEGER. The leading dimension of \(c\); \(I d c \geq \max (1, m)\).
tau
lwork
COMPLEX for cunmbr
DOUBLE COMPLEX for zunmbr.
Array, DIMENSION at least max \((1, \min (r, k))\).
For vect = 'Q', the array tauq as returned by ?gebrd. For vect = 'P', the array taup as returned by ?gebrd.
INTEGER. The size of the work array.
lwork \(\geq \max (1, n)\) if side \(=\) 'L';
lwork \(\geq \max (1, m)\) if side \(=' R '\).
lwork \(\geq 1\) if \(n=0\) or \(m=0\).
For optimum performance 1 work \(\geq \max \left(1, n^{\star} n b\right)\) if side \(=' L\) ', and
lwork \(\geq \max \left(1, m^{\star} n b\right)\) if side \(=' R '\), where \(n b\) is the optimal blocksize. ( \(n b=0\) if \(m=0\) or \(n=0\).)
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

\section*{Output Parameters}

Overwritten by the product \(Q^{*} C, Q^{H *} C, C * Q, C * Q^{H}, P{ }^{*} C, P^{H *} C, C * P\), or \(C * P^{H}\), as specified by vect, side, and trans.
work(1)
info
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine unmbr interface are the following:
Holds the matrix \(A\) of size \((r, \min (n q, k))\) where
```

r = nq, if vect = 'Q',
r = min (nq,k), if vect = 'P',
nq=m, if side = 'L',
nq= n, if side = 'R',
k = m, if vect = 'P',
k = n, if vect = 'Q'.

```
\begin{tabular}{ll} 
tau & Holds the vector of length \(\min (n q, k)\). \\
\(c\) & Holds the matrix \(C\) of size \((m, n)\). \\
vect & Must be ' \(Q\) ' or ' \(P^{\prime}\). The default value is ' \(Q\) '. \\
side & Must be 'L' or ' \(R^{\prime}\). The default value is ' L '. \\
trans & Must be ' \(N\) ' or ' \(C\) '. The default value is ' \(N\) '.
\end{tabular}

\section*{Application Notes}

For better performance, use
lwork = n*blocksize for side = 'L', or
lwork = m*blocksize for side = 'R',
where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The computed product differs from the exact product by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)^{*}| | C| |_{2}\).
The total number of floating-point operations is approximately
```

8* n* k(2*m - k) if side = 'L' and m\geqk;
8*m*k(2*n - k) if side = 'R' and n \geq k;
8* m}\mp@subsup{}{}{2}\mp@subsup{*}{n}{}\mathrm{ if side = 'L' and m<k;
8* n}\mp@subsup{n}{}{2*}m\mathrm{ if side = 'R' and n<k.

```

The real counterpart of this routine is ormbr.

\section*{?bdsqr}

Computes the singular value decomposition of a general matrix that has been reduced to bidiagonal form.

Syntax
Fortran 77:
```

call sbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work, info)
call dbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work, info)
call cbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work, info)
call zbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work, info)

```

Fortran 95:
```

call rbdsqr(d, e [,vt] [,u] [,c] [,uplo] [,info])
call bdsqr(d, e [,vt] [,u] [,c] [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_sbdsqr(int matrix_order, char uplo, lapack_int n, lapack_int ncvt,
lapack_int nru, lapack_int ncc, float* d, float* e, float* vt, lapack_int ldvt, float*
u, lapack_int ldu, float* c, lapack_int ldc);
lapack_int LAPACKE_dbdsqr(int matrix_order, char uplo, lapack_int n, lapack_int ncvt,
lapack_int nru, lapack_int ncc, double* d, double* e, double* vt, lapack_int ldvt,
double* u, lapack_int ldu, double* c, lapack_int ldc);
lapack_int LAPACKE_cbdsqr(int matrix_order, char uplo, lapack_int n, lapack_int ncvt,
lapack_int nru, lapack_int ncc, float* d, float* e, lapack_complex_float* vt,
lapack_int ldvt, lapack_complex_float* u, lapack_int ldu, lapack_complex_float* c,
lapack_int ldc);
lapack_int LAPACKE_zbdsqr(int matrix_order, char uplo, lapack_int n, lapack_int ncvt,
lapack_int nru, lapack_int ncc, double* d, double* e, lapack_complex_double* vt,
lapack_int ldvt, lapack_complex_double* u, lapack_int ldu, lapack_complex_double* c,
lapack_int ldc);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the singular values and, optionally, the right and/or left singular vectors from the Singular Value Decomposition (SVD) of a real \(n\)-by- \(n\) (upper or lower) bidiagonal matrix \(B\) using the implicit zero-shift \(Q R\) algorithm. The SVD of \(B\) has the form \(B=Q^{\star} S^{\star} P^{H}\) where \(S\) is the diagonal matrix of singular values, \(Q\) is an orthogonal matrix of left singular vectors, and \(P\) is an orthogonal matrix of right singular vectors. If left singular vectors are requested, this subroutine actually returns \(U^{*} Q\) instead of \(Q\), and, if right singular vectors are requested, this subroutine returns \(P_{H} * V T\) instead of \(P_{H}\), for given real/complex input matrices \(U\) and \(V T\). When \(U\) and \(V T\) are the orthogonal/unitary matrices that reduce a general matrix \(A\) to bidiagonal form: \(A=U^{\star} B^{\star} V T\), as computed by ?gebrd, then
```

A = (U* Q)* 晶 (}\mp@subsup{P}{}{H*}VT

```
is the SVD of \(A\). Optionally, the subroutine may also compute \(Q_{H} *_{C}\) for a given real/complex input matrix \(C\). See also lasq1, lasq2, lasq3, lasq4, lasq5, lasq6 used by this routine.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', \(B\) is an upper bidiagonal matrix. \\
\hline & If uplo = ' \(L\) ', \(B\) is a lower bidiagonal matrix. \\
\hline \(n\) & INTEGER. The order of the matrix \(B(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{ncvt} & INTEGER. The number of columns of the matrix \(V T\), that is, the number of right singular vectors (ncvt \(\geq 0\) ). \\
\hline & Set ncvt \(=0\) if no right singular vectors are required. \\
\hline nru & INTEGER. The number of rows in \(U\), that is, the number of left singular vectors (nru \(\geq 0\) ). \\
\hline
\end{tabular}

Set nru = 0 if no left singular vectors are required.
\begin{tabular}{|c|c|}
\hline ncc & INTEGER. The number of columns in the matrix \(c\) used for computing the product \(Q^{H *} C(n c c \geq 0)\). Set \(n c c=0\) if no matrix \(C\) is supplied. \\
\hline \multirow[t]{9}{*}{d, e, work} & REAL for single-precision flavors \\
\hline & DOUBLE PRECISION for double-precision flavors. \\
\hline & Arrays: \\
\hline & \(d(*)\) contains the diagonal elements of \(B\). \\
\hline & The dimension of \(d\) must be at least max (1, \(n\) ). \\
\hline & \(e(*)\) contains the ( \(n-1\) ) off-diagonal elements of \(B\). \\
\hline & The dimension of e must be at least max (1, \(n\) ). \\
\hline & work(*) is a workspace array. \\
\hline & The dimension of work must be at least max (1, 4* \(n\) ). \\
\hline \multirow[t]{11}{*}{vt, u, c} & REAL for sbdsqr \\
\hline & DOUBLE PRECISION for dbdsqr \\
\hline & COMPLEX for cbdsqr \\
\hline & DOUBLE COMPLEX for zbdsqr. \\
\hline & Arrays: \\
\hline & \(v t\) (ldvt, *) contains an \(n\)-by-ncvt matrix VT. \\
\hline & The second dimension of \(v t\) must be at least max ( \(1, n c v t\) ). \(v t\) is not referenced if ncvt \(=0\). \\
\hline & \(u(l d u, *)\) contains an nru by \(n\) unit matrix \(U\). \\
\hline & The second dimension of \(u\) must be at least \(\max (1, n)\). \(u\) is not referenced if \(n r u=0\). \\
\hline & \(c(l d c, *)\) contains the matrix \(C\) for computing the product \(Q^{H *} C\). \\
\hline & The second dimension of \(c\) must be at least max \((1, n c c)\). The array is not referenced if \(n c c=0\). \\
\hline \multirow[t]{3}{*}{Idvt} & INTEGER. The leading dimension of vt. Constraints: \\
\hline & \(l d v t \geq \max (1, n)\) if ncvt \(>0\); \\
\hline & \(l d v t \geq 1\) if \(n c v t=0\). \\
\hline \multirow[t]{2}{*}{1 du} & INTEGER. The leading dimension of \(u\). Constraint: \\
\hline & \(l d u \geq \max (1, n r u)\). \\
\hline \multirow[t]{2}{*}{\(1 d c\)} & INTEGER. The leading dimension of \(c\). Constraints: \\
\hline & \(l d c \geq \max (1, n)\) if \(n c c>0 ; 1 d c \geq 1\) otherwise. \\
\hline
\end{tabular}

\section*{Output Parameters}
\(d\)
\(e\)
\(c\)
\(v t\)
\(u\)
info

On exit, if info \(=0\), overwritten by the singular values in decreasing order (see info).
On exit, if info \(=0\), e is destroyed. See also info below.
Overwritten by the product \(Q^{H *} C\).
On exit, this array is overwritten by \(p^{H} *_{V T}\).
On exit, this array is overwritten by \(U^{*} Q\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > i,
If ncvt \(=n r u=n c c=0\),
- \(\operatorname{info}=1\), a split was marked by a positive value in \(e\)
- info \(=2\), the current block of \(z\) not diagonalized after \(30 *_{n}\) iterations (in the inner while loop)
- info \(=3\), termination criterion of the outer while loop is not met (the program created more than \(n\) unreduced blocks).

In all other cases when ncvt \(=n r u=n c c=0\), the algorithm did not converge; \(d\) and \(e\) contain the elements of a bidiagonal matrix that is orthogonally similar to the input matrix \(B\); if info \(=i\), \(i\) elements of \(e\) have not converged to zero.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine bdsqr interface are the following:
\begin{tabular}{ll}
\(d\) & Holds the vector of length \((n)\). \\
\(e\) & Holds the vector of length \((n)\). \\
\(v t\) & Holds the matrix \(V T\) of size \((n, n c v t)\). \\
\(u\) & Holds the matrix \(U\) of size \((n r u, n)\). \\
\(c\) & Holds the matrix \(C\) of size \((n, n c c)\). \\
\(n c v t\) & Must be ' \(U\) ' or ' \(L\) '. The default value is ' \(U\) '. \\
\(n r u\) & If argument \(v t\) is present, then \(n c v t\) is equal to the number of columns in matrix \\
\(V T ;\) otherwise, \(n c v t\) is set to zero. \\
\(n c c\) & \begin{tabular}{l} 
If argument \(u\) is present, then \(n r u\) is equal to the number of rows in matrix \(U ;\) \\
otherwise, \(n r u\) is set to zero.
\end{tabular} \\
& \begin{tabular}{l} 
If argument \(c\) is present, then \(n c c\) \\
otherwise, \(n c c\) is set to zero.
\end{tabular}
\end{tabular}

Note that two variants of Fortran 95 interface for bdsqr routine are needed because of an ambiguous choice between real and complex cases appear when \(v t, u\), and \(c\) are omitted. Thus, the name rbdsqr is used in real cases (single or double precision), and the name bdsqr is used in complex cases (single or double precision).

\section*{Application Notes}

Each singular value and singular vector is computed to high relative accuracy. However, the reduction to bidiagonal form (prior to calling the routine) may decrease the relative accuracy in the small singular values of the original matrix if its singular values vary widely in magnitude.
If \(s_{i}\) is an exact singular value of \(B\), and \(s_{i}\) is the corresponding computed value, then
\(\left|s_{i}-\sigma_{i}\right| \leq p^{\star}(m, n){ }^{\star} \varepsilon^{\star} \sigma_{i}\)
where \(p(m, n)\) is a modestly increasing function of \(m\) and \(n\), and \(\varepsilon\) is the machine precision.
If only singular values are computed, they are computed more accurately than when some singular vectors are also computed (that is, the function \(p(m, n)\) is smaller).

If \(u_{i}\) is the corresponding exact left singular vector of \(B\), and \(w_{i}\) is the corresponding computed left singular vector, then the angle \(\theta\left(u_{i}, w_{i}\right)\) between them is bounded as follows:
\(\theta\left(u_{i}, w_{i}\right) \leq p(m, n) * \varepsilon / \min _{i \neq j}\left(|\sigma i-\sigma j| /\left|\sigma_{i}+\sigma j\right|\right)\).
Here \(\min _{i \neq j}\left(\left|\sigma_{i}-\sigma_{j}\right| /\left|\sigma_{i}+\sigma_{j}\right|\right)\) is the relative gap between \(\sigma_{i}\) and the other singular values. A similar error bound holds for the right singular vectors.

The total number of real floating-point operations is roughly proportional to \(n^{2}\) if only the singular values are computed. About \(6 n^{2}\) * \(n r u\) additional operations ( \(12 n^{2 \star} n r u\) for complex flavors) are required to compute the left singular vectors and about \(6 n^{2 \star} n c v t\) operations ( \(12 n^{2 \star} n c v t\) for complex flavors) to compute the right singular vectors.

\section*{?bdsdc \\ Computes the singular value decomposition of a real \\ bidiagonal matrix using a divide and conquer method. \\ Syntax}

\section*{Fortran 77:}
```

call sbdsdc(uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work, iwork, info)
call dbdsdc(uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work, iwork, info)

```

Fortran 95:
```

call bdsdc(d, e [,u] [,vt] [,q] [,iq] [,uplo] [,info])

```

C:
lapack_int LAPACKE_<?>bdsdc( int matrix_order, char uplo, char compq, lapack_int n,
<datatype>* d, <datatype>* e, <datatype>* u, lapack_int ldu, <datatype>* vt,
lapack_int ldvt, <datatype>* q, lapack_int* iq );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the Singular Value Decomposition (SVD) of a real \(n\)-by- \(n\) (upper or lower) bidiagonal matrix \(B\) : \(B=U^{\star} \Sigma^{\star} V^{T}\), using a divide and conquer method, where \(\Sigma\) is a diagonal matrix with non-negative diagonal elements (the singular values of \(B\) ), and \(U\) and \(V\) are orthogonal matrices of left and right singular vectors, respectively. ?bdsdc can be used to compute all singular values, and optionally, singular vectors or singular vectors in compact form.
This rotuine uses ?lasd0, ?lasd1, ?lasd2, ?lasd3, ?lasd4, ?lasd5, ?lasd6, ?lasd7, ?lasd8, ?lasd9, ? lasda, ?lasdq, ?lasdt.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = ' \(U\) ', \(B\) is an upper bidiagonal matrix. \\
\hline & If uplo = 'L', \(B\) is a lower bidiagonal matrix. \\
\hline \multirow[t]{4}{*}{compq} & CHARACTER*1. Must be 'N', 'P', or 'I'. \\
\hline & If compq = 'N', compute singular values only. \\
\hline & If compq = ' P ', compute singular values and compute singular vectors in compact form. \\
\hline & If compq = 'I', compute singular values and singular vectors. \\
\hline \(n\) & INTEGER. The order of the matrix \(B(n \geq 0)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline d, e, work & \begin{tabular}{l}
REAL for sbdsdc \\
DOUBLE PRECISION for dbdsdc. \\
Arrays: \\
\(d(*)\) contains the \(n\) diagonal elements of the bidiagonal matrix \(B\). \\
The dimension of \(d\) must be at least \(\max (1, n)\). \\
\(e\left({ }^{*}\right)\) contains the off-diagonal elements of the bidiagonal matrix \(B\). \\
The dimension of e must be at least max \((1, n)\). \\
work(*) is a workspace array. \\
The dimension of work must be at least: \\
\(\max \left(1,4 *_{n}\right)\), if compq \(=\mathrm{N}^{\prime}\) '; \\
\(\max \left(1,6^{*}\right)^{\prime}\), if compq \(=\) ' \(\mathrm{P}^{\prime}\); \\
\(\max \left(1,3^{*} n^{2}+4^{*}\right)_{n}\), if compq \(=' I '\).
\end{tabular} \\
\hline Idu & INTEGER. The leading dimension of the output array \(u ; ~ l d u \geq 1\). If singular vectors are desired, then \(I d u \geq \max (1, n)\). \\
\hline Idvt & INTEGER. The leading dimension of the output array \(v t ; ~ l d v t \geq 1\). If singular vectors are desired, then \(1 d v t \geq \max (1, n)\). \\
\hline iwork & INTEGER. Workspace array, dimension at least max \(\left(1,8{ }_{n}\right)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

If info \(=0\), overwritten by the singular values of \(B\).
On exit, e is overwritten.
REAL for sbdsdc
DOUBLE PRECISION for dbdsdc.
Arrays: \(u(l d u, *), v t(l d v t, *), q(*)\).
If compq = 'I', then on exit \(u\) contains the left singular vectors of the bidiagonal matrix \(B\), unless info \(\neq 0\) (seeinfo). For other values of compq, \(u\) is not referenced.
The second dimension of \(u\) must be at least max \((1, n)\).
if compq = 'I', then on exit \(v t^{T}\) contains the right singular vectors of the bidiagonal matrix \(B\), unless info \(\neq 0\) (seeinfo). For other values of compq, \(v t\) is not referenced. The second dimension of \(v t\) must be at least \(\max (1, n)\).
If compq \(=\) ' \(P\) ', then on exit, if info \(=0, q\) and \(i q\) contain the left and right singular vectors in a compact form. Specifically, \(q\) contains all the REAL (for sbdsdc) or DOUBLE PRECISION (for dbdsdc) data for singular vectors. For other values of compq, \(q\) is not referenced. See Application notes for details.

\section*{INTEGER.}

Array: iq(*).
If compq = ' \(P\) ', then on exit, if info \(=0, q\) and \(i q\) contain the left and right singular vectors in a compact form. Specifically, iq contains all the INTEGER data for singular vectors. For other values of compq, iq is not referenced. See Application notes for details.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the algorithm failed to compute a singular value. The update process of divide and conquer failed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine bdsdc interface are the following:
\begin{tabular}{|c|c|}
\hline d & Holds the vector of length \(n\). \\
\hline e & Holds the vector of length \(n\). \\
\hline \(u\) & Holds the matrix \(U\) of size ( \(n, n\) ). \\
\hline vt & Holds the matrix VT of size ( \(n, n\) ). \\
\hline \(q\) & \begin{tabular}{l}
Holds the vector of length ( \(1 d q\) ), where \\
\(l d q \geq n^{*}\left(11+2 *\right.\) smlsiz \(+8 * i n t\left(l_{o g} 2(n /(s m l s i z+1))\right)\) ) and smlsiz is returned by ilaenv and is equal to the maximum size of the subproblems at the bottom of the computation tree (usually about 25).
\end{tabular} \\
\hline compq & \begin{tabular}{l}
Restored based on the presence of arguments \(u, v t, q\), and iq as follows: \\
compq \(=\) ' \(N\) ', if none of \(u, v t, q\), and iq are present, \\
compq = 'I', if both \(u\) and vt are present. Arguments \(u\) and vt must either be both present or both omitted, \\
compq = ' \(\mathrm{P}^{\prime}\), if both \(q\) and iq are present. Arguments \(q\) and iq must either be both present or both omitted. \\
Note that there will be an error condition if all of \(u, v t, q\), and iq arguments are present simultaneously.
\end{tabular} \\
\hline
\end{tabular}

See Also
?lasd0
?lasd1
?lasd2
?lasd3
?lasd4
?lasd5
?lasd6
?lasd7
?lasd8
?lasd9
?lasda
?lasdq
?lasdt

\section*{Symmetric Eigenvalue Problems}

Symmetric eigenvalue problems are posed as follows: given an \(n\)-by- \(n\) real symmetric or complex Hermitian matrix \(A\), find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(z\) that satisfy the equation
\(A z=\lambda z\) (or, equivalently, \(z^{H} A=\lambda z^{H}\) ).
In such eigenvalue problems, all \(n\) eigenvalues are real not only for real symmetric but also for complex Hermitian matrices \(A\), and there exists an orthonormal system of \(n\) eigenvectors. If \(A\) is a symmetric or Hermitian positive-definite matrix, all eigenvalues are positive.
To solve a symmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix to tridiagonal form and then solve the eigenvalue problem with the tridiagonal matrix obtained. LAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or unitary) similarity transformation \(A=\) \(Q T Q^{H}\) as well as for solving tridiagonal symmetric eigenvalue problems. These routines (for FORTRAN 77
interface) are listed in Table "Computational Routines for Solving Symmetric Eigenvalue Problems". Respective routine names in Fortran 95 interface are without the first symbol (see Routine Naming Conventions).
There are different routines for symmetric eigenvalue problems, depending on whether you need all eigenvectors or only some of them or eigenvalues only, whether the matrix \(A\) is positive-definite or not, and so on.
These routines are based on three primary algorithms for computing eigenvalues and eigenvectors of symmetric problems: the divide and conquer algorithm, the QR algorithm, and bisection followed by inverse iteration. The divide and conquer algorithm is generally more efficient and is recommended for computing all eigenvalues and eigenvectors. Furthermore, to solve an eigenvalue problem using the divide and conquer algorithm, you need to call only one routine. In general, more than one routine has to be called if the QR algorithm or bisection followed by inverse iteration is used.
The decision tree in Figure "Decision Tree: Real Symmetric Eigenvalue Problems" will help you choose the right routine or sequence of routines for eigenvalue problems with real symmetric matrices. Figure "Decision Tree: Complex Hermitian Eigenvalue Problems" presents a similar decision tree for complex Hermitian matrices.

\section*{Decision Tree: Real Symmetric Eigenvalue Problems}


\section*{Decision Tree: Complex Hermitian Eigenvalue Problems}


Computational Routines for Solving Symmetric Eigenvalue Problems
\begin{tabular}{lll}
\hline Operation & Real symmetric matrices & \begin{tabular}{l} 
Complex Hermitian \\
matrices
\end{tabular} \\
\hline \begin{tabular}{l} 
Reduce to tridiagonal form \(A=Q T Q^{H}\) (full \\
storage)
\end{tabular} & sytrd syrdb & hetrd herdb \\
\begin{tabular}{l} 
Reduce to tridiagonal form \(A=Q T Q^{H}\) \\
(packed storage)
\end{tabular} & sptrd & hptrd \\
\begin{tabular}{l} 
Reduce to tridiagonal form \(A=Q T Q^{H}\) \\
(band storage).
\end{tabular} & sbtrd & hbtrd \\
Generate matrix \(Q\) (full storage) & orgtr & ungtr \\
Generate matrix \(Q\) (packed storage) & opgtr & upgtr \\
Apply matrix \(Q\) (full storage) & ormtr & unmtr \\
Apply matrix \(Q\) (packed storage) & opmtr & upmtr
\end{tabular}
\begin{tabular}{lll}
\hline Operation & Real symmetric matrices & \begin{tabular}{l} 
Complex Hermitian \\
matrices
\end{tabular} \\
\hline \begin{tabular}{l} 
Find all eigenvalues of a tridiagonal matrix \\
\(T\)
\end{tabular} & sterf & \\
\begin{tabular}{l} 
Find all eigenvalues and eigenvectors of a \\
tridiagonal matrix \(T\)
\end{tabular} & steqr stedc & steqr stedc \\
\begin{tabular}{l} 
Find all eigenvalues and eigenvectors of a \\
tridiagonal positive-definite matrix \(T\).
\end{tabular} & pteqr & pteqr \\
\begin{tabular}{l} 
Find selected eigenvalues of a tridiagonal \\
matrix \(T\)
\end{tabular} & stebz stegr & stegr \\
\begin{tabular}{l} 
Find selected eigenvectors of a tridiagonal \\
matrix \(T\)
\end{tabular} & stein stegr & stein stegr \\
\begin{tabular}{l} 
Find selected eigenvalues and eigenvectors \\
of \(f\) a real symmetric tridiagonal matrix \(T\)
\end{tabular} & stemr & stemr \\
Compute the reciprocal condition numbers & disna & \\
for the eigenvectors & &
\end{tabular}
?sytrd
Reduces a real symmetric matrix to tridiagonal form.
Syntax

\section*{Fortran 77:}
```

call ssytrd(uplo, n, a, lda, d, e, tau, work, lwork, info)
call dsytrd(uplo, n, a, lda, d, e, tau, work, lwork, info)

```

\section*{Fortran 95:}
```

call sytrd(a, tau [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_<?>sytrd(int matrix_order, char uplo, lapack_int n, <datatype>* a,
lapack_int lda, <datatype>* d, <datatype>* e, <datatype>* tau);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces a real symmetric matrix \(A\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation: \(A=Q^{*} T^{*} Q^{T}\). The orthogonal matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided for working with \(Q\) in this representation (see Application Notes below).

This routine calls latrd to reduce a real symmetric matrix to tridiagonal form by an orthogonal similarity transformation.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo
n
a, work
lda
lwork
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.
INTEGER. The order of the matrix A (}n\geq0)\mathrm{ .
REAL for ssytrd
DOUBLE PRECISION for dsytrd.
a(lda,*) is an array containing either upper or lower triangular part of the
matrix A, as specified by uplo. If uplo = 'U', the leading n-by-n upper
triangular part of a contains the upper triangular part of the matrix }A\mathrm{ , and
the strictly lower triangular part of A is not referenced. If uplo = 'L', the
leading n-by-n lower triangular part of a contains the lower triangular part
of the matrix }A\mathrm{ , and the strictly upper triangular part of A is not referenced.
The second dimension of a must be at least max (1, n).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least max(1,n).
INTEGER. The size of the work array (lwork \geqn).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.
See Application Notes for the suggested value of lwork.

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & \begin{tabular}{l}
On exit, \\
if uplo = 'U', the diagonal and first superdiagonal of \(A\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements above the first superdiagonal, with the array tau, represent the orthogonal matrix \(Q\) as a product of elementary reflectors; \\
if uplo = 'L', the diagonal and first subdiagonal of \(A\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements below the first subdiagonal, with the array tau, represent the orthogonal matrix \(Q\) as a product of elementary reflectors.
\end{tabular} \\
\hline d, e, tau & \begin{tabular}{l}
REAL for ssytrd \\
DOUBLE PRECISION for dsytrd. \\
Arrays: \\
\(d\left({ }^{*}\right)\) contains the diagonal elements of the matrix \(T\). \\
The dimension of \(d\) must be at least \(\max (1, n)\). \\
\(e(*)\) contains the off-diagonal elements of \(T\). \\
The dimension of e must be at least \(\max (1, n-1)\). \\
\(\operatorname{tau}(*)\) stores further details of the orthogonal matrix \(Q\) in the first \(n-1\) \\
elements. \(\operatorname{tau}(n)\) is used as workspace. \\
The dimension of tau must be at least max \((1, n)\).
\end{tabular} \\
\hline work(1) & If info=0, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs. \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful.
\end{tabular} \\
\hline
\end{tabular}
\[
\text { If } \text { info }=-i \text {, the } i \text {-th parameter had an illegal value. }
\]

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sytrd interface are the following:
```

a Holds the matrix A of size (}n,n)\mathrm{ .
tau Holds the vector of length (n-1).
uplo Must be 'U' or 'L'. The default value is 'U'.

```

Note that diagonal (d) and off-diagonal (e) elements of the matrix \(T\) are omitted because they are kept in the matrix \(A\) on exit.

\section*{Application Notes}

For better performance, try using lwork \(=n \star\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\left.\left||E|_{2}=C(n) * \varepsilon^{\star}\right||A|\right|_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is \((4 / 3) n^{3}\).
After calling this routine, you can call the following:
```

orgtr to form the computed matrix Q explicitly
ormtr to multiply a real matrix by Q.

```

The complex counterpart of this routine is hetrd.

\section*{?syrdb}

Reduces a real symmetric matrix to tridiagonal form
with Successive Bandwidth Reduction approach.
Syntax
Fortran 77:
```

call ssyrdb(jobz, uplo, n, kd, a, lda, d, e, tau, z, ldz, work, lwork, info)
call dsyrdb(jobz, uplo, n, kd, a, lda, d, e, tau, z, ldz, work, lwork, info)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine reduces a real symmetric matrix \(A\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation: \(A=Q^{\star} T Q^{*}\) and optionally multiplies matrix \(z\) by \(Q\), or simply forms \(Q\).

This routine reduces a full symmetric matrix to the banded symmetric form, and then to the tridiagonal symmetric form with a Successive Bandwidth Reduction approach after Prof. C.Bischof's works (see for instance, [Bischof92]). ?syrdb is functionally close to ?sytrd routine but the tridiagonal form may differ from those obtained by ?sytrd. Unlike ?sytrd, the orthogonal matrix \(Q\) cannot be restored from the details of matrix \(A\) on exit.

\section*{Input Parameters}

\section*{Output Parameters}
a
z
d, e, tau
```

jobz
uplo
n
kd
a,z, work
lda
ldz
lwork
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then only A is reduced to T.
If $j o b z=$ ' V ', then A is reduced to T and A contains Q on exit.
If $j o b z=' U '$, then A is reduced to T and Z contains $Z^{\star} Q$ on exit.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.
INTEGER. The order of the matrix $A(n \geq 0)$.
INTEGER. The bandwidth of the banded matrix $B(k d \geq 1)$.
REAL for ssyrdb.
DOUBLE PRECISION for dsyrdb.
$a(l d a, *)$ is an array containing either upper or lower triangular part of the matrix A, as specified by uplo.
The second dimension of a must be at least max $(1, n)$.
$z(l d z, *)$, the second dimension of z must be at least max $(1, n)$.
If jobz = 'U', then the matrix z is multiplied by Q.
If jobz = 'N' or 'V', then z is not referenced.
work(lwork) is a workspace array.
INTEGER. The leading dimension of a; at least max $(1, n)$.
INTEGER. The leading dimension of z; at least $\max (1, n)$. Not referenced if jobz = 'N'
INTEGER. The size of the work array (1 work $\geq(2 k d+1) n+k d$).
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

```

See Application Notes for the suggested value of lwork.

If \(j o b z=' \mathrm{~V}\) ', then overwritten by \(Q\) matrix.
If jobz = 'N' or 'U', then overwritten by the banded matrix \(B\) and details of the orthogonal matrix \(Q_{B}\) to reduce \(A\) to \(B\) as specified by uplo.
On exit,
if jobz \(=\) 'U', then the matrix \(z\) is overwritten by \(z^{*} Q\).
If jobz = 'N' or ' \(V\) ', then \(z\) is not referenced.
DOUBLE PRECISION.
Arrays:
\(d(*)\) contains the diagonal elements of the matrix \(T\).

The dimension of \(d\) must be at least \(\max (1, n)\). \(e(*)\) contains the off-diagonal elements of \(T\). The dimension of \(e\) must be at least \(\max (1, n-1)\). \(\operatorname{tau}(*)\) stores further details of the orthogonal matrix \(Q\). The dimension of tau must be at least max \((1, n-k d-1)\).
work(1)
If info=0, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using lwork \(=n^{\star}(3 * k d+3)\).
If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

For better performance, try using \(k d\) equal to 40 if \(n \leq 2000\) and 64 otherwise.
Try using ?syrdb instead of ?sytrd on large matrices obtaining only eigenvalues - when no eigenvectors are needed, especially in multi-threaded environment. ?syrdb becomes faster beginning approximately with \(\mathrm{n}=\) 1000, and much faster at larger matrices with a better scalability than ?sytrd.

Avoid applying ?syrdb for computing eigenvectors due to the two-step reduction, that is, the number of operations needed to apply orthogonal transformations to \(z\) is doubled compared to the traditional one-step reduction. In that case it is better to apply ?sytrd and ?ormtr/?orgtr to obtain tridiagonal form along with the orthogonal transformation matrix \(Q\).
?herdb
Reduces a complex Hermitian matrix to tridiagonal
form with Successive Bandwidth Reduction approach.
Syntax

\section*{Fortran 77:}
```

call cherdb(jobz, uplo, n, kd, a, lda, d, e, tau, z, ldz, work, lwork, info)
call zherdb(jobz, uplo, n, kd, a, lda, d, e, tau, z, ldz, work, lwork, info)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine reduces a complex Hermitian matrix \(A\) to symmetric tridiagonal form \(T\) by a unitary similarity transformation: \(A=Q * T^{*} Q^{T}\) and optionally multiplies matrix \(z\) by \(Q\), or simply forms \(Q\).

This routine reduces a full Hermitian matrix to the banded Hermitian form, and then to the tridiagonal symmetric form with a Successive Bandwidth Reduction approach after Prof. C.Bischof's works (see for instance, [Bischof92]). ?herdb is functionally close to ?hetrd routine but the tridiagonal form may differ from those obtained by ?hetrd. Unlike ?hetrd, the orthogonal matrix \(Q\) cannot be restored from the details of matrix \(A\) on exit.

\section*{Input Parameters}
```

jobz CHARACTER*1.Must be 'N' or 'V'.
If jobz = 'N', then only A is reduced to T.
If jobz = 'V', then A is reduced to T and A contains Q on exit.
If jobz = 'U', then A is reduced to T and Z contains Z*Q on exit.
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.
INTEGER. The order of the matrix A (}n\geq0)\mathrm{ .
INTEGER. The bandwidth of the banded matrix B (kd \geq1).
COMPLEX for cherdb.
DOUBLE COMPLEX for zherdb.
a(Ida,*) is an array containing either upper or lower triangular part of the
matrix }A\mathrm{ , as specified by uplo.
The second dimension of a must be at least max (1, n).
z(ldz,*), the second dimension of z must be at least max (1, n).
If jobz = 'U', then the matrix z is multiplied by Q.
If jobz = 'N' or 'V', then z is not referenced.
work(lwork) is a workspace array.
INTEGER. The leading dimension of a; at least max (1, n).
INTEGER. The leading dimension of z; at least max (1, n). Not referenced if
jobz = 'N'
INTEGER. The size of the work array (lwork \geq (2kd+1) n+kd).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.

```
    See Application Notes for the suggested value of 1 work.

\section*{Output Parameters}
a
z
\(d, e\)
If \(j o b z=\) ' \(V\) ', then overwritten by \(Q\) matrix.
If jobz = 'N' or 'U', then overwritten by the banded matrix \(B\) and details of the unitary matrix \(Q_{B}\) to reduce \(A\) to \(B\) as specified by uplo.
On exit,
if \(j o b z=\) 'U', then the matrix \(z\) is overwritten by \(Z^{\star} Q\).
If \(j o b z=\) ' \(N\) ' or ' \(V\) ', then \(z\) is not referenced.
COMPLEX for cherdb.
DOUBLE COMPLEX for zherdb.
Arrays:
\(d(*)\) contains the diagonal elements of the matrix \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e(*)\) contains the off-diagonal elements of \(T\).
The dimension of \(e\) must be at least \(\max (1, n-1)\).
\(\operatorname{tau}(*)\) stores further details of the orthogonal matrix \(Q\).

The dimension of tau must be at least max \((1, n-k d-1)\).
tau
COMPLEX for cherdb.
DOUBLE COMPLEX for zherdb.
Array, DIMENSION at least max \((1, n-1)\)
Stores further details of the unitary matrix \(Q_{B}\). The dimension of tau must be at least \(\max (1, n-k d-1)\).
work(1)
info
If info=0, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using lwork \(=n^{\star}(3 * k d+3)\).
If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

For better performance, try using \(k d\) equal to 40 if \(n \leq 2000\) and 64 otherwise.
Try using ?herdb instead of ?hetrd on large matrices obtaining only eigenvalues - when no eigenvectors are needed, especially in multi-threaded environment. ?herdb becomes faster beginning approximately with \(\mathrm{n}=\) 1000, and much faster at larger matrices with a better scalability than ?hetrd.
Avoid applying ?herdb for computing eigenvectors due to the two-step reduction, that is, the number of operations needed to apply orthogonal transformations to \(z\) is doubled compared to the traditional one-step reduction. In that case it is better to apply ?hetrd and ?unmtr/?ungtr to obtain tridiagonal form along with the unitary transformation matrix \(Q\).

\section*{?orgtr}

Generates the real orthogonal matrix \(Q\) determined
by ?sytrd.

\section*{Syntax}

\section*{Fortran 77:}
```

call sorgtr(uplo, n, a, lda, tau, work, lwork, info)
call dorgtr(uplo, n, a, lda, tau, work, lwork, info)

```

\section*{Fortran 95:}
```

call orgtr(a, tau [,uplo] [,info])

```

C:
lapack_int LAPACKE_<?>orgtr( int matrix_order, char uplo, lapack_int \(n\), <datatype>* a, lapack_int Ida, const <datatype>* tau );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine explicitly generates the \(n\)-by- \(n\) orthogonal matrix \(Q\) formed by sytrd when reducing a real symmetric matrix \(A\) to tridiagonal form: \(A=Q^{*} T^{*} Q^{T}\). Use this routine after a call to ?sytrd.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo
n
a, tau, work
lda
lwork
CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sytrd.
INTEGER. The order of the matrix Q (}n\geq0)\mathrm{ .
REAL for sorgtr
DOUBLE PRECISION for dorgtr.
Arrays:
a(lda,*) is the array a as returned by ?sytrd.
The second dimension of a must be at least max(1,n).
tau(*) is the array tau as returned by ?sytrd.
The dimension of tau must be at least max(1, n-1).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least max(1,n).
INTEGER. The size of the work array (lwork \geqn).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.
See Application Notes for the suggested value of lwork.

```

\section*{Output Parameters}
```

a
work(1)
info
Overwritten by the orthogonal matrix Q.
If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine orgtr interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((n, n)\). \\
tau & Holds the vector of length \((n-1)\).
\end{tabular}
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

For better performance, try using lwork \(=(n-1) *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((4 / 3) n^{3}\).
The complex counterpart of this routine is ungtr.

\section*{?ormtr}

Multiplies a real matrix by the real orthogonal matrix \(Q\) determined by ?sytrd.

Syntax

\section*{Fortran 77:}
```

call sormtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
call dormtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)

```

\section*{Fortran 95:}
```

call ormtr(a, tau, c [,side] [,uplo] [,trans] [,info])

```

C:
```

lapack_int LAPACKE_<?>ormtr(int matrix_order, char side, char uplo, char trans,
lapack_int m, lapack_int n, const <datatype>* a, lapack_int lda, const <datatype>*
tau, <datatype>* c, lapack_int ldc);

```

Include files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine multiplies a real matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the orthogonal matrix \(Q\) formed by sytrd when reducing a real symmetric matrix \(A\) to tridiagonal form: \(A=Q * T^{*} Q^{T}\). Use this routine after a call to ?sytrd. Depending on the parameters side and trans, the routine can form one of the matrix products \(Q^{\star} C, Q^{T \star} C\), \(C^{\star} Q\), or \(C^{\star} Q^{T}\) (overwriting the result on \(C\) ).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
In the descriptions below, \(r\) denotes the order of \(Q\) :
```

If side = 'L', r = m; if side = 'R', r = n.
side CHARACTER*1. Must be either 'L' or 'R'.
If side = 'L', Q or Q Q is applied to C from the left.
If side = 'R',Q or QT is applied to C from the right.
uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sytrd.
CHARACTER*1. Must be either 'N' or 'T'.
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by Q Q
m
n INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
a, c, tau, work
lda
ldc
lwork
INTEGER. The number of rows in the matrix C (m\geq0).
REAL for sormtr
DOUBLE PRECISION for dormtr
a(lda,*) and tau are the arrays returned by ?sytrd.
The second dimension of a must be at least max(1,r).
The dimension of tau must be at least max(1, r-1).
c(ldc,*) contains the matrix c.
The second dimension of c must be at least max(1,n)
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; lda \geq max (1,r).
INTEGER. The leading dimension of c; ldc \geq max (1, n).
INTEGER. The size of the work array. Constraints:
lwork \geq max(1, n) if side = 'L';
lwork \geq max(1, m) if side = 'R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.
See Application Notes for the suggested value of lwork.

```

\section*{Output Parameters}
```

C Overwritten by the product Q Q C, Q ' }\mp@subsup{}{}{T}C,\mp@subsup{C}{}{\star}Q\mathrm{ , or C}\mp@subsup{C}{}{\star}\mp@subsup{Q}{}{T}\mathrm{ (as specified by side
and trans).
work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
```

Specific details for the routine ormtr interface are the following:
a Holds the matrix A of size (r,r).
r = mif side = 'L'.
r = n if side = 'R'.
tau Holds the vector of length (r-1).
c Holds the matrix C of size (m,n).
side Must be 'L' or 'R'. The default value is 'L'.
uplo Must be 'U' or 'L'. The default value is 'U'.
trans Must be 'N' or'T'. The default value is 'N'.

```

\section*{Application Notes}

For better performance, try using lwork \(=n^{\star}\) blocksize for side \(=\) 'L', or lwork \(=m^{\star} b l o c k s i z e ~ f o r ~\) side = 'R', where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed product differs from the exact product by a matrix \(E\) such that \(||E||^{2}=O(\varepsilon)^{*}| | C| |^{2}\).
The total number of floating-point operations is approximately \(2 \star m^{2}{ }^{*} n\), if side \(=\) 'L', or \(2 \star n^{2}{ }^{\star} m\), if side \(=\) 'R'.

The complex counterpart of this routine is unmtr.
?hetrd
Reduces a complex Hermitian matrix to tridiagonal
form.
Syntax

\section*{Fortran 77:}
```

call chetrd(uplo, n, a, lda, d, e, tau, work, lwork, info)
call zhetrd(uplo, n, a, lda, d, e, tau, work, lwork, info)

```

\section*{Fortran 95:}
```

call hetrd(a, tau [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_chetrd(int matrix_order, char uplo, lapack_int n,
lapack_complex_float* a, lapack_int lda, float* d, float* e, lapack_complex_float*
tau);

```
```

lapack_int LAPACKE_zhetrd(int matrix_order, char uplo, lapack_int n,

```

```

tau);

```

Include files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces a complex Hermitian matrix \(A\) to symmetric tridiagonal form \(T\) by a unitary similarity transformation: \(A=Q^{\star} T^{*} Q^{H}\). The unitary matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided to work with \(Q\) in this representation. (They are described later in this section .)

This routine calls latrd to reduce a complex Hermitian matrix \(A\) to Hermitian tridiagonal form by a unitary similarity transformation.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

uplo
n
a,work
lda
lwork
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.
INTEGER. The order of the matrix A (}n\geq0)\mathrm{ .
COMPLEX for chetrd
DOUBLE COMPLEX for zhetrd.
a(Ida,*) is an array containing either upper or lower triangular part of the
matrix }A\mathrm{ , as specified by uplo. If uplo = 'U', the leading n-by-n upper
triangular part of a contains the upper triangular part of the matrix A, and
the strictly lower triangular part of A is not referenced. If uplo = 'L', the
leading n-by-n lower triangular part of a contains the lower triangular part
of the matrix }A\mathrm{ , and the strictly upper triangular part of A is not referenced.
The second dimension of a must be at least max (1,n).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least max(1,n).
INTEGER. The size of the work array (lwork \geqn).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.

```
See Application Notes for the suggested value of 1 work.

\section*{Output Parameters}
a
On exit,
if uplo = 'U', the diagonal and first superdiagonal of \(A\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements above the first superdiagonal, with the array tau, represent the orthogonal matrix \(Q\) as a product of elementary reflectors;
if uplo = 'L', the diagonal and first subdiagonal of \(A\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements below the first subdiagonal, with the array tau, represent the orthogonal matrix \(Q\) as a product of elementary reflectors.
\begin{tabular}{|c|c|}
\hline \multirow[t]{7}{*}{\(d, e\)} & REAL for chetrd \\
\hline & DOUBLE PRECISION for zhetrd. \\
\hline & Arrays: \\
\hline & \(d(*)\) contains the diagonal elements of the matrix \(T\). \\
\hline & The dimension of \(d\) must be at least max \((1, n)\). \\
\hline & \(e(*)\) contains the off-diagonal elements of \(T\). \\
\hline & The dimension of e must be at least max \((1, n-1)\). \\
\hline \multirow[t]{2}{*}{tau} & COMPLEX for chetrd DOUBLE COMPLEX for zhetrd. \\
\hline & Array, DIMENSION at least \(\max (1, n-1)\). Stores further details of the unitary matrix \(Q\). \\
\hline work(1) & If info \(=0\), on exit work(1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hetrd interface are the following:
```

a Holds the matrix A of size (}n,n)\mathrm{ .
tau Holds the vector of length (n-1).
uplo Must be 'U' or 'L'. The default value is 'U'.

```

Note that diagonal (d) and off-diagonal (e) elements of the matrix \(T\) are omitted because they are kept in the matrix \(A\) on exit.

\section*{Application Notes}

For better performance, try using lwork \(=n \star\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\left.\left||E|_{2}=C(n) \star \varepsilon^{\star}\right||A|\right|_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((16 / 3) n^{3}\).

After calling this routine, you can call the following:
```

ungtr to form the computed matrix Q explicitly
unmtr to multiply a complex matrix by Q.

```

The real counterpart of this routine is sytrd.

\section*{?ungtr}

Generates the complex unitary matrix \(Q\) determined
by ?hetrd.

\section*{Syntax}

\section*{Fortran 77:}
```

call cungtr(uplo, n, a, lda, tau, work, lwork, info)
call zungtr(uplo, n, a, lda, tau, work, lwork, info)

```

\section*{Fortran 95:}
```

call ungtr(a, tau [,uplo] [,info])

```

C:
lapack_int LAPACKE_<?>ungtr( int matrix_order, char uplo, lapack_int \(n\), <datatype>* a, lapack_int lda, const <datatype>* tau );

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine explicitly generates the \(n-b y-n\) unitary matrix \(Q\) formed by hetrd when reducing a complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q^{\star} T * Q^{H}\). Use this routine after a call to ?hetrd.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?hetrd.
n
a, tau, work
Ida
lwork INTEGER.The size of the work array (lwork \geqn).

```

If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

\section*{Output Parameters}
```

a
work(1)
info
Overwritten by the unitary matrix Q.
If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ungtr interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((n, n)\). \\
tau & Holds the vector of length \((n-1)\). \\
uplo & Must be ' \(U\) ' or ' L'. The default value is ' \(U\) '.
\end{tabular}

\section*{Application Notes}

For better performance, try using lwork \(=(n-1) *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of 1 work for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix \(Q\) differs from an exactly unitary matrix by a matrix \(E\) such that \(\left||E|_{2}=O(\varepsilon)\right.\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is \((16 / 3) n^{3}\).
The real counterpart of this routine is orgtr.

\section*{?unmtr}

Multiplies a complex matrix by the complex unitary
matrix \(Q\) determined by ?hetrd.
Syntax

\section*{Fortran 77:}

```

call zunmtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)

```

\section*{Fortran 95:}
```

call unmtr(a, tau, c [,side] [,uplo] [,trans] [,info])

```

C:
```

lapack_int LAPACKE_<?>unmtr(int matrix_order, char side, char uplo, char trans,
lapack_int m, lapack_int n, const <datatype>* a, lapack_int lda, const <datatype>*
tau, <datatype>* c, lapack_int ldc);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine multiplies a complex matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix \(Q\) formed by hetrd when reducing a complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q^{\star} T^{\star} Q^{H}\). Use this routine after a call to ? hetrd.

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q^{\star} C\), \(Q^{H}{ }^{*} C\), \(C^{*} Q\), or \(C^{*} Q^{H}\) (overwriting the result on \(C\) ).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the \(C\) interface principal conventions and type definitions.
In the descriptions below, \(r\) denotes the order of \(Q\) :
```

If side = 'L', r = m; if side = 'R', r = n.
side CHARACTER*1. Must be either 'L' or 'R'.
If side = 'L', Q or Q 直 is applied to C from the left.
If side = 'R',Q or Q 早 is applied to C from the right.
uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?hetrd.
CHARACTER*1. Must be either 'N' or 'T'.
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by Q Q
INTEGER. The number of rows in the matrix C (m\geq0).
INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
COMPLEX for cunmtr
DOUBLE COMPLEX for zunmtr.
a(lda,*) and tau are the arrays returned by ?hetrd.
The second dimension of a must be at least max(1,r).
The dimension of tau must be at least max(1, r-1).
c(ldc,*) contains the matrix c.
The second dimension of c must be at least max(1,n)
work is a workspace array, its dimension max (1, lwork).
lda INTEGER. The leading dimension of a; lda \geq max (1, r).
ldc INTEGER. The leading dimension of c; Idc \geq max (1, n).

```

INTEGER. The size of the work array. Constraints:
I work \(\geq \max (1, n)\) if side \(=\) 'L';
lwork \(\geq \max (1, m)\) if \(s i d e=' R '\).
If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

\section*{Output Parameters}

C
work(1)
info
Overwritten by the product \(Q^{*} C, Q^{H}{ }^{*} C, C^{\star} Q\), or \(C^{*} Q^{H}\) (as specified by side and trans).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine unmtr interface are the following:
```

a Holds the matrix A of size (r,r).
r = m if side = 'L'.
r = n if side = 'R'.
tau Holds the vector of length (r-1).
c Holds the matrix C of size (m,n).
side Must be 'L' or 'R'. The default value is 'L'.
uplo Must be 'U' or 'L'. The default value is 'U'.
trans Must be 'N' or 'C'. The default value is 'N'.

```

\section*{Application Notes}

For better performance, try using lwork = n*blocksize (for side = 'L') or lwork = m*blocksize (for side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed product differs from the exact product by a matrix \(E\) such that \(\left.\left||E|_{2}=O(\varepsilon) *\right||C|\right|_{2}\), where \(\varepsilon\) is the machine precision.

The total number of floating-point operations is approximately \(8 * m^{2} * n\) if side \(=\) 'L' or \(8 \star n^{2 \star} m\) if side \(=\) 'R'.

The real counterpart of this routine is ormtr.

\section*{?sptrd}

Reduces a real symmetric matrix to tridiagonal form
using packed storage.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssptrd(uplo, n, ap, d, e, tau, info)
call dsptrd(uplo, n, ap, d, e, tau, info)

```

\section*{Fortran 95:}
```

call sptrd(ap, tau [,uplo] [,info])

```

C:
lapack_int LAPACKE_<?>sptrd( int matrix_order, char uplo, lapack_int n, <datatype>* ap, <datatype>* \(d\), <datatype>* e, <datatype>* tau );

Include files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces a packed real symmetric matrix \(A\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation: \(A=Q^{\star} T^{*} Q^{T}\). The orthogonal matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided for working with \(Q\) in this representation. See Application Notes below for details.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

uplo
n
ap
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangle of A.
If uplo = 'L', ap stores the packed lower triangle of }A\mathrm{ .
INTEGER. The order of the matrix A (}n\geq0)\mathrm{ .
REAL for ssptrd
DOUBLE PRECISION for dsptrd.
Array, DIMENSION at least max(1,n(n+1)/2). Contains either upper or
lower triangle of A (as specified by uplo) in the packed form described in
"Matrix Arguments" in Appendix B .

```

\section*{Output Parameters}
\(a p\)
Overwritten by the tridiagonal matrix \(T\) and details of the orthogonal matrix \(Q\), as specified by uplo.
\begin{tabular}{ll}
\(d, e\), tau & REAL for ssptrd \\
& DOUBLE PRECISION for dsptrd. \\
& Arrays: \\
& \(d(*)\) contains the diagonal elements of the matrix \(T\). \\
& The dimension of \(d\) must be at least max \((1, n)\). \\
& \(e(*)\) contains the off-diagonal elements of \(T\). \\
& The dimension of \(e\) must be at least max \((1, n-1)\). \\
& tau \({ }^{*}\). stores further details of the matrix \(Q\). \\
& The dimension of tau must be at least max \((1, n-1)\). \\
& INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\)-th parameter had an illegal value.
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sptrd interface are the following:
```

ap Holds the array A of size (n* (n+1)/2).
tau Holds the vector with the number of elements n-1.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

Note that diagonal (d) and off-diagonal (e) elements of the matrix \(T\) are omitted because they are kept in the matrix A on exit.

\section*{Application Notes}

The matrix \(Q\) is represented as a product of \(n-1\) elementary reflectors, as follows :
- If uplo = 'U', \(Q=H(n-1) \quad . . . H(2) H(1)\)

Each \(H(\mathrm{i})\) has the form
\(H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{T}\) for real flavors, or
\(H(i)=I-t a u^{\star} V^{\star} V^{H}\) for complex flavors,
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(i+1: n)=0\) and \(v(i)=1\).
On exit, tau is stored in \(\operatorname{tau}(i)\), and \(v(1: i-1)\) is stored in \(A P\), overwriting \(A(1: i-1, i+1)\).
- If uplo = 'L', \(Q=H(1) H(2) \ldots H(n-1)\)

Each \(H(i)\) has the form
\(H(i)=I-t a u^{\star} V^{\star} V^{T}\) for real flavors, or
\(H(i)=I-t a u^{*} V^{\star} V^{H}\) for complex flavors,
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i)=0\) and \(v(i+1)=1\).
On exit, tau is stored in tau(i), and \(v(i+2: n)\) is stored in \(A P\), overwriting \(A(i+2: n, i)\).
The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\left.\left||E|_{I_{2}}=C(n) \star \varepsilon^{\star}\right||A|\right|_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision. The approximate number of floating-point operations is \((4 / 3) n^{3}\).

After calling this routine, you can call the following:
\begin{tabular}{ll} 
opgtr & to form the computed matrix \(Q\) explicitly \\
opmtr & to multiply a real matrix by \(Q\).
\end{tabular}

The complex counterpart of this routine is hptrd.
?opgtr
Generates the real orthogonal matrix \(Q\) determined
by ?sptrd.

\section*{Syntax}

\section*{Fortran 77:}
```

call sopgtr(uplo, n, ap, tau, q, ldq, work, info)
call dopgtr(uplo, n, ap, tau, q, ldq, work, info)

```

\section*{Fortran 95:}
```

call opgtr(ap, tau, q [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_<?>opgtr(int matrix_order, char uplo, lapack_int n, const

```
<datatype>* ap, const <datatype>* tau, <datatype>* q, lapack_int ldq );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine explicitly generates the \(n-b y-n\) orthogonal matrix \(Q\) formed by sptrd when reducing a packed real symmetric matrix \(A\) to tridiagonal form: \(A=Q^{\star} T^{*} Q^{T}\). Use this routine after a call to ?sptrd.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

uplo
n
ap, tau
ldq
work

```

\section*{Output Parameters}

REAL for sopgtr
DOUBLE PRECISION for dopgtr.
Array, DIMENSION ( \(1 d q, *\) ).

Contains the computed matrix \(Q\).
The second dimension of \(q\) must be at least \(\max (1, n)\).
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine opgtr interface are the following:
ap Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\).
tau Holds the vector with the number of elements \(n-1\).
\(q \quad\) Holds the matrix \(Q\) of size \((n, n)\).
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

The computed matrix \(Q\) differs from an exactly orthogonal matrix by matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((4 / 3) n^{3}\).
The complex counterpart of this routine is upgtr.

\section*{?opmtr}

Multiplies a real matrix by the real orthogonal matrix
\(Q\) determined by ?sptrd.

\section*{Syntax}

\section*{Fortran 77:}
```

call sopmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)
call dopmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)

```

Fortran 95:
```

call opmtr(ap, tau, c [,side] [,uplo] [,trans] [,info])

```

C:
```

lapack_int LAPACKE_<?>opmtr(int matrix_order, char side, char uplo, char trans,

```
lapack_int m, lapack_int n, const <datatype>* ap, const <datatype>* tau, <datatype>*
c, lapack_int ldc );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine multiplies a real matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the orthogonal matrix \(Q\) formed by sptrd when reducing a packed real symmetric matrix \(A\) to tridiagonal form: \(A=Q^{\star} T^{\star} Q^{T}\). Use this routine after a call to ? sptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q^{*} C, Q^{T \star} C\), \(C^{\star} Q\), or \(C^{\star} Q^{T}\) (overwriting the result on \(C\) ).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
In the descriptions below, \(r\) denotes the order of \(Q\) :
```

If side = 'L', r = m; if side = 'R', r = n.
side CHARACTER*1. Must be either 'L' or 'R'.
If side = 'L',Q or QT is applied to C from the left.
If side = 'R', Q or QT is applied to C from the right.
CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sptrd.
CHARACTER*1. Must be either 'N' or 'T'.
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by Q Q
INTEGER. The number of rows in the matrix C (m\geq0).
INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
REAL for sopmtr
DOUBLE PRECISION for dopmtr.
ap and tau are the arrays returned by ?sptrd.
The dimension of ap must be at least max(1,r(r+1)/2).
The dimension of tau must be at least max(1, r-1).
c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1,n)
work(*) is a workspace array.
The dimension of work must be at least
max(1,n) if side = 'L';
max(1,m) if side = 'R'.
ldc
INTEGER. The leading dimension of c; ldc \geq max (1, n).

```

\section*{Output Parameters}

Overwritten by the product \(Q^{\star} C, Q^{T \star} C, C^{\star} Q\), or \(C^{\star} Q^{T}\) (as specified by side and trans).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine opmtr interface are the following:
Holds the array \(A\) of size \(\left(r^{*}(r+1) / 2\right)\), where
\(r=m\) if side \(=\) 'L'.
\(r=n\) if side \(=\) 'R'.
tau
Holds the vector with the number of elements \(r-1\).
\begin{tabular}{ll}
\(C\) & Holds the matrix \(C\) of size \((m, n)\). \\
side & Must be 'L' or 'R'. The default value is 'L'. \\
uplo & Must be 'U' or 'L'. The default value is 'U'. \\
trans & Must be 'N', 'C', or 'T'. The default value is 'N'.
\end{tabular}

\section*{Application Notes}

The computed product differs from the exact product by a matrix \(E\) such that \(\left.\left||E| I_{2}=O(\varepsilon)\right||C|\right|_{2}\), where \(\varepsilon\) is the machine precision.
The total number of floating-point operations is approximately \(2 \star m^{2} \star_{n}\) if side \(=\) 'L', or \(2 \star n^{2 \star}\) m if side \(=\) 'R'.

The complex counterpart of this routine is upmtr.

\section*{?hptrd}

Reduces a complex Hermitian matrix to tridiagonal form using packed storage.

Syntax

\section*{Fortran 77:}
```

call chptrd(uplo, n, ap, d, e, tau, info)
call zhptrd(uplo, n, ap, d, e, tau, info)

```

\section*{Fortran 95:}
```

call hptrd(ap, tau [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_chptrd(int matrix_order, char uplo, lapack_int n,
lapack_complex_float* ap, float* d, float* e, lapack_complex_float* tau);
lapack_int LAPACKE_zhptrd(int matrix_order, char uplo, lapack_int n,
lapack_complex_double* ap, double* d, double* e, lapack_complex_double* tau);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces a packed complex Hermitian matrix \(A\) to symmetric tridiagonal form \(T\) by a unitary similarity transformation: \(A=Q * T^{*} Q^{H}\). The unitary matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided for working with \(Q\) in this representation (see Application Notes below).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\[
\begin{array}{ll}
\text { uplo } & \text { CHARACTER*l. Must be 'U' or 'L'. } \\
& \text { If uplo }=\text { 'U', ap stores the packed upper triangle of } A .
\end{array}
\]
\begin{tabular}{|c|c|}
\hline & If uplo = 'L', ap stores the packed lower triangle of \(A\). \\
\hline \(n\) & integer. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{4}{*}{ap} & COMPLEX for chptrd \\
\hline & DOUBLE COMPLEX for zhptrd. \\
\hline & Array, DIMENSION at least max (1, \(n(n+1) / 2)\). Contains either upper or \\
\hline & lower triangle of \(A\) (as specified by uplo) in the packed form described in "Matrix Arguments" in Appendix B . \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \(a p\) & Overwritten by the tridiagonal matrix \(T\) and details of the orthogonal matrix \(Q\), as specified by uplo. \\
\hline \multirow[t]{7}{*}{\(d, e\)} & REAL for chptrd \\
\hline & DOUBLE PRECISION for zhptrd. \\
\hline & Arrays: \\
\hline & \(d(*)\) contains the diagonal elements of the matrix \(T\). \\
\hline & The dimension of \(\alpha\) must be at least max \((1, n)\). \\
\hline & \(e(*)\) contains the off-diagonal elements of \(T\). \\
\hline & The dimension of e must be at least max ( \(1, n-1\) ). \\
\hline \multirow[t]{3}{*}{tau} & COMPLEX for chptrd \\
\hline & DOUBLE COMPLEX for zhptrd. \\
\hline & Arrays, DIMENSION at least \(\max (1, n-1)\). Contains further details of the orthogonal matrix \(Q\). \\
\hline \multirow[t]{3}{*}{info} & Integer. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine hptrd interface are the following:
```

ap Holds the array A of size (n* (n+1)/2).
tau Holds the vector with the number of elements n-1.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

Note that diagonal (d) and off-diagonal (e) elements of the matrix \(T\) are omitted because they are kept in the matrix \(A\) on exit.

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(||E||_{2}=C(n) \star \varepsilon^{\star}| | A \mid I_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((16 / 3) n^{3}\).
After calling this routine, you can call the following:
\(\begin{array}{ll}\text { upgtr } & \text { to form the computed matrix } Q \text { explicitly } \\ \text { upmtr } & \text { to multiply a complex matrix by } Q .\end{array}\)
The real counterpart of this routine is sptrd.

\section*{?upgtr \\ Generates the complex unitary matrix \(Q\) determined \\ by ?hptrd.}

\section*{Syntax}

\section*{Fortran 77:}
```

call cupgtr(uplo, n, ap, tau, q, ldq, work, info)
call zupgtr(uplo, n, ap, tau, q, ldq, work, info)

```

\section*{Fortran 95:}
```

call upgtr(ap, tau, q [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_<?>upgtr(int matrix_order, char uplo, lapack_int n, const

```
<datatype>* ap, const <datatype>* tau, <datatype>* q, lapack_int ldq );

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine explicitly generates the \(n-b y-n\) unitary matrix \(Q\) formed by hptrd when reducing a packed complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q^{\star} T * Q^{H}\). Use this routine after a call to ?hptrd.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

uplo CHARACTER*1. Must be 'U' or 'L'. Use the same uplo as supplied to ?
hptrd.
INTEGER. The order of the matrix Q (}n\geq0)\mathrm{ .
COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Arrays ap and tau, as returned by ?hptrd.
The dimension of ap must be at least max(1, n(n+1)/2).
The dimension of tau must be at least max(1, n-1).
ldq INTEGER. The leading dimension of the output array q;
at least max(1,n).
work COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Workspace array, DIMENSION at least max(1, n-1).

```

\section*{Output Parameters}
\(q\)
COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Array, DIMENSION ( \(1 d q, *\) ).
Contains the computed matrix \(Q\).

The second dimension of \(q\) must be at least max \((1, n)\).
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine upgtr interface are the following:
```

ap Holds the array A of size (n* (n+1)/2).
tau Holds the vector with the number of elements n-1.
q Holds the matrix Q of size (}n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is (16/3)n3.
The real counterpart of this routine is opgtr.

\section*{?upmtr \\ Multiplies a complex matrix by the unitary matrix \(Q\) \\ determined by ?hptrd.}

Syntax
Fortran 77:
```

call cupmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)
call zupmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)

```

Fortran 95:
```

call upmtr(ap, tau, c [,side] [,uplo] [,trans] [,info])

```

C:
```

lapack_int LAPACKE_<?>upmtr(int matrix_order, char side, char uplo, char trans,
lapack_int m, lapack_int n, const <datatype>* ap, const <datatype>* tau, <datatype>*
c, lapack_int ldc);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine multiplies a complex matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix formed by hptrd when reducing a packed complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q * T^{*} Q^{H}\). Use this routine after a call to ?hptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q^{\star} C, Q^{H *} C\), \(C * Q\), or \(C{ }^{*} Q^{H}\) (overwriting the result on \(C\) ).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
In the descriptions below, \(r\) denotes the order of \(Q\) :
```

If side = 'L', r = m; if side = 'R', r = n.
side CHARACTER*1. Must be either 'L' or 'R'.
If side = 'L', Q or Q H
If side = 'R',Q or Q }\mp@subsup{Q}{}{H}\mathrm{ is applied to C from the right.
CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?hptrd.
CHARACTER*1. Must be either 'N' or 'T'.
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by Q Q .
INTEGER. The number of rows in the matrix C (m\geq0).
INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
COMPLEX for cupmtr
DOUBLE COMPLEX for zupmtr.
ap and tau are the arrays returned by ?hptrd.
The dimension of ap must be at least max(1,r(r+1)/2).
The dimension of tau must be at least max(1, r-1).
c(ldc,*) contains the matrix c.
The second dimension of c must be at least max(1,n)
work(*) is a workspace array.
The dimension of work must be at least
max(1, n) if side = 'L';
max(1,m) if side = 'R'.
ldc INTEGER. The leading dimension of c; ldc \geq max (1, n).

```

\section*{Output Parameters}
```

C Overwritten by the product Q*C, Q Q*C, C* Q, or C** Q (as specified by side
and trans).
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine upmtr interface are the following:
Holds the array \(A\) of size \(\left(r^{*}(r+1) / 2\right)\), where
\(r=m\) if side \(=\) 'L'.
\(r=n\) if side \(=\) 'R'.
tau
Holds the vector with the number of elements \(n-1\).
\begin{tabular}{ll}
\(C\) & Holds the matrix \(C\) of size \((m, n)\). \\
side & Must be 'L' or 'R'. The default value is 'L'. \\
uplo & Must be 'U' or 'L'. The default value is 'U'. \\
trans & Must be 'N' or 'C'. The default value is 'N'.
\end{tabular}

\section*{Application Notes}

The computed product differs from the exact product by a matrix \(E\) such that \(\left.\left||E| I_{2}=O(\varepsilon)^{*}\right||C|\right|_{2}\), where \(\varepsilon\) is the machine precision.
The total number of floating-point operations is approximately \(8 \star m^{2 \star} n\) if side \(=\) 'L' or \(8 \star n^{2 \star} m\) if side \(=\) 'R'.

The real counterpart of this routine is opmtr.
?sbtrd
Reduces a real symmetric band matrix to tridiagonal
form.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
call dsbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)

```

\section*{Fortran 95:}
```

call sbtrd(ab[, q] [,vect] [,uplo] [,info])

```

C:
lapack_int LAPACKE_<?>sbtrd( int matrix_order, char vect, char uplo, lapack_int n,
lapack_int \(k d,<d a t a t y p e>* ~ a b, ~ l a p a c k \_i n t ~ l d a b, ~<d a t a t y p e>* ~ d, ~<d a t a t y p e>* ~ e, ~\)
<datatype>* q, lapack_int ldq );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces a real symmetric band matrix \(A\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation: \(A=Q * T * Q^{T}\). The orthogonal matrix \(Q\) is determined as a product of Givens rotations.
If required, the routine can also form the matrix \(Q\) explicitly.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

vect CHARACTER*1. Must be 'V' or 'N'.
If vect = 'V', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', ab stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', ab stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \(k d\) & INTEGER. The number of super- or sub-diagonals in \(A\) ( \(k a \geqq 0\) ). \\
\hline \multirow[t]{8}{*}{ab, q, work} & REAL for ssbtrd \\
\hline & DOUBLE PRECISION for ds.btrd. \\
\hline & \(a b(l d a b, *)\) is an array containing either upper or lower triangular part of the matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of \(a b\) must be at least max \((1, n)\). \(q(l d q, *)\) is an array. \\
\hline & If vect \(=\) ' U', the \(q\) array must contain an \(n\)-by-n matrix \(x\). \\
\hline & If vect \(=\) ' N ' or 'V', the q parameter need not be set. \\
\hline & The second dimension of \(q\) must be at least max \((1, n)\). work(*) is a workspace array. \\
\hline & The dimension of work must be at least max \((1, n)\). \\
\hline Idab & INTEGER. The leading dimension of \(a b\); at least \(k d+1\). \\
\hline \multirow[t]{3}{*}{1 dq} & INTEGER. The leading dimension of \(q\). Constraints: \\
\hline & \(l d q \geq \max (1, n)\) if vect \(=\) 'V'; \\
\hline & \(l d q \geq 1\) if vect \(=\) 'N'. \\
\hline
\end{tabular}

\section*{Output Parameters}
ab
On exit, the diagonal elements of the array \(a b\) are overwritten by the diagonal elements of the tridiagonal matrix \(T\). If \(k d>0\), the elements on the first superdiagonal (if uplo = 'U') or the first subdiagonal (if uplo = 'L') are ovewritten by the off-diagonal elements of \(T\). The rest of \(a b\) is overwritten by values generated during the reduction.
REAL for ssbtrd
DOUBLE PRECISION for dsbtrd.
Arrays:
\(d(*)\) contains the diagonal elements of the matrix \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e(*)\) contains the off-diagonal elements of \(T\).
The dimension of e must be at least \(\max (1, n-1)\).
\(q(l d q, *)\) is not referenced if vect \(=\) ' \(N\) '.
If vect \(=\) ' \(V\) ', \(q\) contains the \(n-b y-n\) matrix \(Q\).
The second dimension of \(q\) must be:
at least \(\max (1, n)\) if vect \(=\) ' \(V\) ';
at least 1 if vect \(=\) ' \(N\) '.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sbtrd interface are the following:
\begin{tabular}{ll} 
ab & Holds the array \(A\) of size \((k d+1, n)\). \\
\(q\) & Holds the matrix \(Q\) of size \((n, n)\). \\
uplo & Must be ' \(U\) ' or ' \(L\) '. The default value is ' \(U\) '. \\
vect & If omitted, this argument is restored based on the presence of argument \(q\) as \\
& follows: vect \(=V^{\prime} V^{\prime}\), if \(q\) is present, vect \(=V^{\prime}\), if \(q\) is omitted. \\
& If present, vect must be equal to ' \(V\) ' or ' \(U\) ' and the argument \(q\) must also be \\
& present. Note that there will be an error condition if vect is present and \(q\) \\
& omitted.
\end{tabular}

Note that diagonal (d) and off-diagonal (e) elements of the matrix \(T\) are omitted because they are kept in the matrix \(A\) on exit.

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\left.\left||E|_{2}=C(n) \star \varepsilon^{\star}\right||A|\right|_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision. The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(\left|\mid E \|_{2}=O(\varepsilon)\right.\).
The total number of floating-point operations is approximately \(6 n^{2} * k d\) if vect \(=\) ' \(N\) ', with \(3 n^{3 *}(k d-1) / k d\) additional operations if vect \(=\) ' V '.

The complex counterpart of this routine is hbtrd.

\section*{?hbtrd}

Reduces a complex Hermitian band matrix to tridiagonal form.

\section*{Syntax}

\section*{Fortran 77:}
```

call chbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
call zhbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)

```

\section*{Fortran 95:}
```

call hbtrd(ab [, q] [,vect] [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_chbtrd(int matrix_order, char vect, char uplo, lapack_int n,
lapack_int kd, lapack_complex_float* ab, lapack_int ldab, float* d, float* e,
lapack_complex_float* q, lapack_int ldq);
lapack_int LAPACKE_zhbtrd(int matrix_order, char vect, char uplo, lapack_int n,
lapack_int kd, lapack_complex_double* ab, lapack_int ldab, double* d, double* e,
lapack_complex_double* q, lapack_int ldq);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces a complex Hermitian band matrix \(A\) to symmetric tridiagonal form \(T\) by a unitary similarity transformation: \(A=Q^{\star} T^{*} Q^{H}\). The unitary matrix \(Q\) is determined as a product of Givens rotations.

If required, the routine can also form the matrix \(Q\) explicitly.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

vect CHARACTER*1.Must be 'V' or 'N'.
If vect = 'V', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.
INTEGER. The order of the matrix A (}n\geq0)\mathrm{ .
INTEGER. The number of super- or sub-diagonals in A
(kd \geq 0).
COMPLEX for chbtrd
DOUBLE COMPLEX for zhbtrd.
ab (ldab,*) is an array containing either upper or lower triangular part of
the matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max (1,n).
work(*) is a workspace array.
The dimension of work must be at least max(1,n).
INTEGER. The leading dimension of ab; at least kd+1.
INTEGER. The leading dimension of q. Constraints:
ldq \geq max (1, n) if vect = 'V';
ldq \geq 1 if vect = 'N'.

```

\section*{Output Parameters}

On exit, the diagonal elements of the array ab are overwritten by the diagonal elements of the tridiagonal matrix \(T\). If \(k d>0\), the elements on the first superdiagonal (if uplo = 'U') or the first subdiagonal (if uplo = 'L') are ovewritten by the off-diagonal elements of \(T\). The rest of \(a b\) is overwritten by values generated during the reduction.
q

REAL for chbtrd
DOUBLE PRECISION for zhbtrd.
Arrays:
\(d(*)\) contains the diagonal elements of the matrix \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e(*)\) contains the off-diagonal elements of \(T\).
The dimension of e must be at least \(\max (1, n-1)\).
COMPLEX for chbtrd
DOUBLE COMPLEX for zhbtrd.
Array, DIMENSION ( \(1 d q, *\) ).
If vect \(=\) ' \(N\) ', \(q\) is not referenced.
If vect \(=\) ' \(V\) ', \(q\) contains the \(n\)-by-n matrix \(Q\).
The second dimension of \(q\) must be:
at least \(\max (1, n)\) if vect \(=\) ' \(V\) ';
at least 1 if vect \(=\) ' \(N\) '.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hbtrd interface are the following:
```

ab Holds the array A of size (kd+1,n).
q Holds the matrix Q of size (}n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.
vect If omitted, this argument is restored based on the presence of argument q as
follows: vect = 'V', if q is present, vect = 'N', if q is omitted.
If present, vect must be equal to 'V' or 'U' and the argument q must also be
present. Note that there will be an error condition if vect is present and q
omitted.

```

Note that diagonal (d) and off-diagonal (e) elements of the matrix \(T\) are omitted because they are kept in the matrix \(A\) on exit.

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\left.\left||E|_{2}=C(n) \star \mathcal{E}^{\star}\right||A|\right|_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision. The computed matrix \(Q\) differs from an exactly unitary matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\).
The total number of floating-point operations is approximately \(20 n^{2} * k d\) if vect \(=' N\) ', with \(10 n^{3 *}(k d-1) /\) \(k d\) additional operations if vect \(=' \mathrm{~V}\) '.
The real counterpart of this routine is sbtrd.

\section*{?sterf}

Computes all eigenvalues of a real symmetric tridiagonal matrix using \(Q R\) algorithm.

Syntax

\section*{Fortran 77:}
```

call ssterf(n, d, e, info)
call dsterf(n, d, e, info)

```

\section*{Fortran 95:}
```

call sterf(d, e [,info])

```

C:
lapack_int LAPACKE_<?>sterf( lapack_int \(n\), <datatype>* d, <datatype>* e );
Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes all the eigenvalues of a real symmetric tridiagonal matrix \(T\) (which can be obtained by reducing a symmetric or Hermitian matrix to tridiagonal form). The routine uses a square-root-free variant of the \(Q R\) algorithm.

If you need not only the eigenvalues but also the eigenvectors, call steqr.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

n INTEGER. The order of the matrix T (n\geq0).
d,e
REAL for ssterf
DOUBLE PRECISION for dsterf.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1,n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

```

\section*{Output Parameters}
d
e
info

The \(n\) eigenvalues in ascending order, unless info \(>0\).
See also info.
On exit, the array is overwritten; see info.
INTEGER.
If info \(=0\), the execution is successful.
If info = \(i\), the algorithm failed to find all the eigenvalues after \(30 n\) iterations:
\(i\) off-diagonal elements have not converged to zero. On exit, \(\alpha\) and \(e\) contain, respectively, the diagonal and off-diagonal elements of a tridiagonal matrix orthogonally similar to \(T\).
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sterf interface are the following:
```

d Holds the vector of length n.
e Holds the vector of length (n-1).

```

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(||E||_{2}=O(\varepsilon) *| | T| |_{2}\), where \(\varepsilon\) is the machine precision.

If \(\lambda_{i}\) is an exact eigenvalue, and \(m_{i}\) is the corresponding computed value, then
```

|\mui - \lambdai| \leqC(n)* ** ||T||

```
where \(c(n)\) is a modestly increasing function of \(n\).
The total number of floating-point operations depends on how rapidly the algorithm converges. Typically, it is about \(14 n^{2}\).
```

?steqr
Computes all eigenvalues and eigenvectors of a
symmetric or Hermitian matrix reduced to tridiagonal
form (QR algorithm).
Syntax

```

\section*{Fortran 77:}
```

call ssteqr(compz, n, d, e, z, ldz, work, info)

```
call ssteqr(compz, n, d, e, z, ldz, work, info)
call dsteqr(compz, n, d, e, z, ldz, work, info)
call dsteqr(compz, n, d, e, z, ldz, work, info)
call csteqr(compz, n, d, e, z, ldz, work, info)
call csteqr(compz, n, d, e, z, ldz, work, info)
call zsteqr(compz, n, d, e, z, ldz, work, info)
```

call zsteqr(compz, n, d, e, z, ldz, work, info)

```

\section*{Fortran 95:}
```

call rsteqr(d, e [,z] [,compz] [,info])
call steqr(d, e [,z] [,compz] [,info])

```
\(C:\)
```

lapack_int LAPACKE_ssteqr(int matrix_order, char compz, lapack_int n, float* d, float*
e, float* z, lapack_int ldz);
lapack_int LAPACKE_dsteqr(int matrix_order, char compz, lapack_int n, double* d,
double* e, double* z, lapack_int ldz);
lapack_int LAPACKE_csteqr(int matrix_order, char compz, lapack_int n, float* d, float*
e, lapack_complex_float* z, lapack_int ldz);
lapack_int LAPACKE_zsteqr(int matrix_order, char compz, lapack_int n, double* d,
double* e, lapack_complex_double* z, lapack_int ldz);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric tridiagonal matrix \(T\). In other words, the routine can compute the spectral factorization: \(T=Z^{\star} \Lambda^{\star} Z^{T}\). Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i} ; z\) is an orthogonal matrix whose columns are eigenvectors. Thus,
```

T* }\mp@subsup{z}{i}{}=\mp@subsup{\lambda}{i}{*}\mp@subsup{z}{i}{}\mathrm{ for i = 1, 2, ..., n.

```

The routine normalizes the eigenvectors so that \(\left|\mid z_{i} \|_{2}=1\right.\).
You can also use the routine for computing the eigenvalues and eigenvectors of an arbitrary real symmetric (or complex Hermitian) matrix \(A\) reduced to tridiagonal form \(T\) : \(A=Q^{*} T^{*} Q^{H}\). In this case, the spectral factorization is as follows: \(A=Q^{*} T^{*} Q^{H}=\left(Q^{*} Z\right)^{*} \Lambda^{*}\left(Q^{*} Z\right)^{H}\). Before calling ? steqr, you must reduce \(A\) to tridiagonal form and generate the explicit matrix \(Q\) by calling the following routines:
\begin{tabular}{lll}
\hline & for real matrices: & for complex matrices: \\
\hline full storage & ?sytrd, ?orgtr & ?hetrd, ?ungtr
\end{tabular}
\begin{tabular}{lll}
\hline & for real matrices: & for complex matrices: \\
\hline packed storage & ?sptrd, ?opgtr & ?hptrd, ?upgtr \\
band storage & ?sbtrd (vect='V') & ?hbtrd (vect='V') \\
\hline
\end{tabular}

If you need eigenvalues only, it's more efficient to call sterf. If \(T\) is positive-definite, pteqr can compute small eigenvalues more accurately than ?steqr.

To solve the problem by a single call, use one of the divide and conquer routines stevd, syevd, spevd, or sbevd for real symmetric matrices or heevd, hpevd, or hbevd for complex Hermitian matrices.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

compz CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz = 'N', the routine computes eigenvalues only.
If compz = 'I', the routine computes the eigenvalues and eigenvectors of
the tridiagonal matrix T.
If compz = 'V', the routine computes the eigenvalues and eigenvectors of
A (and the array z must contain the matrix Q on entry).
INTEGER. The order of the matrix T(}n\geq0)\mathrm{ .
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1,n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1,n-1).
work(*) is a workspace array.
The dimension of work must be:
at least 1 if compz = 'N';
at least max(1, 2*n-2) if compz = 'V' or 'I'.
REAL for ssteqr
DOUBLE PRECISION for dsteqr
COMPLEX for csteqr
DOUBLE COMPLEX for zsteqr.
Array, DIMENSION (Idz, *)
If compz = 'N' or 'I', z need not be set.
If vect = 'V', z must contain the n-by-n matrix Q.
The second dimension of z must be:
at least 1 if compz = 'N';
at least max(1,n) if compz = 'V' or 'I'.
work (lwork) is a workspace array.
INTEGER. The leading dimension of z. Constraints:
Idz \geq1 if compz = 'N';
ldz \geqmax(1, n) if compz = 'V'or''I'.

```

\section*{Output Parameters}

The \(n\) eigenvalues in ascending order, unless info \(>0\).
See also info.
```

e
z
info
On exit, the array is overwritten; see info.
If info $=0$, contains the n orthonormal eigenvectors, stored by columns. (The i-th column corresponds to the i th eigenvalue.)
INTEGER.
If info $=0$, the execution is successful.
If info $=i$, the algorithm failed to find all the eigenvalues after $30 n$ iterations: i off-diagonal elements have not converged to zero. On exit, d and e contain, respectively, the diagonal and off-diagonal elements of a tridiagonal matrix orthogonally similar to T. If info $=-i$, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine steqr interface are the following:
```

d Holds the vector of length n.
e Holds the vector of length (n-1).
z Holds the matrix z of size (}n,n)\mathrm{ .

```
compz If omitted, this argument is restored based on the presence of argument \(z\) as
    follows:
    compz = 'I', if \(z\) is present,
    compz = 'N', if \(z\) is omitted.
    If present, compz must be equal to 'I' or 'V' and the argument \(z\) must also be
    present. Note that there will be an error condition if compz is present and \(z\)
    omitted.
    Note that two variants of Fortran 95 interface for steqr routine are needed
    because of an ambiguous choice between real and complex cases appear when \(z\)
    is omitted. Thus, the name rsteqr is used in real cases (single or double
    precision), and the name steqr is used in complex cases (single or double
    precision).

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(||E||_{2}=O(\varepsilon) *| | T| |_{2}\), where \(\varepsilon\) is the machine precision.
If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
\(\left|\mu_{i}-\lambda_{i}\right| \leq C(n) \star \varepsilon^{\star}| | T| |_{2}\)
where \(c(n)\) is a modestly increasing function of \(n\).
If \(z_{i}\) is the corresponding exact eigenvector, and \(w_{i}\) is the corresponding computed vector, then the angle \(\theta\left(z_{i}, w_{i}\right)\) between them is bounded as follows:
\(\theta\left(z_{i}, W_{i}\right) \leq c(n) \star \varepsilon^{\star}| | T| |_{2} / \min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right|\).
The total number of floating-point operations depends on how rapidly the algorithm converges. Typically, it is about
\(24 n^{2}\) if compz = 'N';
\(7 n^{3}\) (for complex flavors, \(14 n^{3}\) ) if compz = 'V' or 'I'.

\section*{?stemr \\ Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.}

\section*{Syntax}

\section*{Fortran 77:}
```

call sstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, tryrac,
work, lwork, iwork, liwork, info)
call dstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, tryrac,
work, lwork, iwork, liwork, info)
call cstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, tryrac,
work, lwork, iwork, liwork, info)
call zstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, tryrac,
work, lwork, iwork, liwork, info)

```

C:
lapack_int LAPACKE_sstemr( int matrix_order, char jobz, char range, lapack_int n, const float* d, float* e, float vl, float vu, lapack_int il, lapack_int iu, lapack_int* m, float* w, float* z, lapack_int ldz, lapack_int nzc, lapack_int* isuppz,
lapack_logical* tryrac );
lapack_int LAPACKE_dstemr( int matrix_order, char jobz, char range, lapack_int n, const

\(m, ~ d o u b l e * ~ w, ~ d o u b l e * ~ z, ~ l a p a c k \_i n t ~ l d z, ~ l a p a c k \_i n t ~ n z c, ~ l a p a c k \_i n t * ~ i s u p p z, ~\)
lapack_logical* tryrac );
lapack_int LAPACKE_cstemr( int matrix_order, char jobz, char range, lapack_int n, const
float* \(d\), float* e, float vl, float vu, lapack_int il, lapack_int iu, lapack_int* m,
float* w, lapack_complex_float* z, lapack_int ldz, lapack_int nzc, lapack_int* isuppz,
lapack_logical* tryrac );
lapack_int LAPACKE_zstemr ( int matrix_order, char jobz, char range, lapack_int n, const


isuppz, lapack_logical* tryrac );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(T\). Any such unreduced matrix has a well defined set of pairwise different real eigenvalues, the corresponding real eigenvectors are pairwise orthogonal.

The spectrum may be computed either completely or partially by specifying either an interval (vl, vu] or a range of indices il:iu for the desired eigenvalues.

Depending on the number of desired eigenvalues, these are computed either by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are computed by the use of various suitable \(L^{*} D^{\star} L^{T}\) factorizations near clusters of close eigenvalues (referred to as RRRs, Relatively Robust Representations). An informal sketch of the algorithm follows.

For each unreduced block (submatrix) of \(T\),
a. Compute \(T-\) sigma* \(I=L^{\star} D^{\star} L^{T}\), so that \(L\) and \(D\) define all the wanted eigenvalues to high relative accuracy. This means that small relative changes in the entries of \(L\) and \(D\) cause only small relative changes in the eigenvalues and eigenvectors. The standard (unfactored) representation of the tridiagonal matrix \(T\) does not have this property in general.
b. Compute the eigenvalues to suitable accuracy. If the eigenvectors are desired, the algorithm attains full accuracy of the computed eigenvalues only right before the corresponding vectors have to be computed, see steps c and d.
C. For each cluster of close eigenvalues, select a new shift close to the cluster, find a new factorization, and refine the shifted eigenvalues to suitable accuracy.
d. For each eigenvalue with a large enough relative separation compute the corresponding eigenvector by forming a rank revealing twisted factorization. Go back to step c for any clusters that remain.
For more details, see: [Dhillon04], [Dhillon04-02], [Dhillon97]
The routine works only on machines which follow IEEE-754 floating-point standard in their handling of infinities and NaNs (NaN stands for "not a number"). This permits the use of efficient inner loops avoiding a check for zero divisors.

LAPACK routines can be used to reduce a complex Hermitean matrix to real symmetric tridiagonal form.
(Any complex Hermitean tridiagonal matrix has real values on its diagonal and potentially complex numbers on its off-diagonals. By applying a similarity transform with an appropriate diagonal matrix diag (1, \(\mathrm{e}^{\{i}\) \(\left.\left.\left.\backslash p h y \_1\right\}, \ldots, e^{\{i \backslash p h y}\{\mathrm{n}-1\}\right\}\right)\), the complex Hermitean matrix can be transformed into a real symmetric matrix and complex arithmetic can be entirely avoided.) While the eigenvectors of the real symmetric tridiagonal matrix are real, the eigenvectors of original complex Hermitean matrix have complex entries in general. Since LAPACK drivers overwrite the matrix data with the eigenvectors, zstemr accepts complex workspace to facilitate interoperability with zunmtr or zupmtr.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

jobz
range
n
d
e
vl, vu
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes all eigenvalues in the half-open
interval: (vl, vu].
If range = 'I', the routine computes eigenvalues with indices il to iu.
INTEGER. The order of the matrix T (}n\geq0)\mathrm{ .
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
Contains }n\mathrm{ diagonal elements of the tridiagonal matrix }T\mathrm{ .
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n-1).
Contains (}n-1\mathrm{) off-diagonal elements of the tridiagonal matrix }T\mathrm{ in
elements 1 to n-1 of e. e(n) need not be set on input, but is used
internally as workspace.
REAL for single precision flavors

```

DOUBLE PRECISION for double precision flavors.
If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. Constraint: vl<vu.
If range \(=\) 'A' or 'I', vl and \(v u\) are not referenced.
il, iu
\(1 d z\)
nzc
tryrac
liwork

INTEGER.
If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\).
If range \(=\) 'A' or 'V', il and iu are not referenced.
INTEGER. The leading dimension of the output array \(z\).
if jobz = 'V', then \(l d z \geq \max (1, n)\);
\(l d z \geq 1\) otherwise.
INTEGER. The number of eigenvectors to be held in the array \(z\).
If range \(=\) 'A', then \(n z c \geq \max (1, n)\);
If range \(=\) ' \(V\) ', then \(n z c\) is greater than or equal to the number of eigenvalues in the half-open interval: ( \(v 1, v u\) ].
If range \(=\) 'I', then \(n z c \geq i l+i u+1\).
This value is returned as the first entry of the array \(z\), and no error message related to \(n z c\) is issued by the routine xerbla.

LOGICAL.
If tryrac = .TRUE., it indicates that the code should check whether the tridiagonal matrix defines its eigenvalues to high relative accuracy. If so, the code uses relative-accuracy preserving algorithms that might be (a bit) slower depending on the matrix. If the matrix does not define its eigenvalues to high relative accuracy, the code can uses possibly faster algorithms.
If tryrac = .FALSE., the code is not required to guarantee relatively accurate eigenvalues and can use the fastest possible techniques.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION (lwork).
INTEGER.
The dimension of the array work,
lwork \(\geq \max (1,18 * n)\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
INTEGER.
Workspace array, DIMENSION (liwork).
INTEGER.
The dimension of the array iwork.
lwork \(\geq \max \left(1,10{ }^{*} n\right.\) ) if the eigenvectors are desired, and 1 work \(\geq \max (1\), \(8^{*} n\) ) if only the eigenvalues are to be computed.
If liwork=-1, then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued by xerbla.

\section*{Output Parameters}
e
m

W
z
isuppz
tryrac
work(1)
iwork(1)
info

On exit, the array e is overwritten.
INTEGER.
The total number of eigenvalues found, \(0 \leq m \leq n\).
If range \(=\) 'A', then \(m=n\), and if range \(=\) 'I', then \(m=i u-i l+1\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION ( \(n\) ).
The first \(m\) elements contain the selected eigenvalues in ascending order.
REAL for sstemr
DOUBLE PRECISION for dstemr
COMPLEX for cstemr
DOUBLE COMPLEX for zstemr.
Array \(z(l d z, *)\), the second dimension of \(z\) must be at least max \((1, m)\). If jobz \(=\) ' \(V\) ', and info \(=0\), then the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the i-th column of \(z\) holding the eigenvector associated with w(i).
If jobz = 'N', then \(z\) is not referenced.
Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an can be computed with a workspace query by setting \(n z c=-1\), see description of the parameter \(n z c\).
INTEGER.
Array, DIMENSION ( \(2 * \max (1, m)\) ).
The support of the eigenvectors in \(z\), that is the indices indicating the nonzero elements in \(z\). The i-th computed eigenvector is nonzero only in elements isuppz(2*i-1) through isuppz(2*i). This is relevant in the case when the matrix is split. isuppz is only accessed when jobz = 'V' and \(n>0\).
On exit, TRUE. tryrac is set to .FALSE. if the matrix does not define its eigenvalues to high relative accuracy.
On exit, if info \(=0\), then work (1) returns the optimal (and minimal) size of lwork.
On exit, if info \(=0\), then iwork(1) returns the optimal size of liwork.
INTEGER.
If \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1\), internal error in ?larre occurred,
if info \(=2\), internal error in ?larrv occurred.

\section*{?stedc}

Computes all eigenvalues and eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.

\section*{Syntax}

\section*{Fortran 77:}
```

call sstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
call dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
call cstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
call zstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)

```

\section*{Fortran 95:}
```

call rstedc(d, e [,z] [,compz] [,info])
call stedc(d, e [,z] [,compz] [,info])

```

C:
```

lapack_int LAPACKE_sstedc(int matrix_order, char compz, lapack_int n, float* d, float*
e, float* z, lapack_int ldz);
lapack_int LAPACKE_dstedc(int matrix_order, char compz, lapack_int n, double* d,
double* e, double* z, lapack int ldz);
lapack_int LAPACKE_cstedc(int matrix_order, char compz, lapack_int n, float* d, float*
e, lapack_complex_float* z, lapack_int ldz);
lapack_int LAPACKE_zstedc(int matrix_order, char compz, lapack_int n, double* d,
double* e, lapack_complex_double* z, lapack_int ldz);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes all the eigenvalues and (optionally) all the eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method. The eigenvectors of a full or band real symmetric or complex Hermitian matrix can also be found if sytrd/hetrd or sptrd/hptrd or sbtrd/hbtrd has been used to reduce this matrix to tridiagonal form.
See also laed0, laed1, laed2, laed3, laed4, laed5, laed6, laed7, laed8, laed9, and laeda used by this function.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

compz

```
n

CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz \(=\) ' \(N\) ', the routine computes eigenvalues only.
If \(c o m p z=\) 'I', the routine computes the eigenvalues and eigenvectors of the tridiagonal matrix.
If \(c o m p z=' V\) ', the routine computes the eigenvalues and eigenvectors of original symmetric/Hermitian matrix. On entry, the array \(z\) must contain the orthogonal/unitary matrix used to reduce the original matrix to tridiagonal form.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
\(d(*)\) contains the diagonal elements of the tridiagonal matrix.
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e(*)\) contains the subdiagonal elements of the tridiagonal matrix.
The dimension of e must be at least \(\max (1, n-1)\).
rwork is a workspace array, its dimension max (1, lrwork).
REAL for sstedc
DOUBLE PRECISION for dstedc
COMPLEX for cstedc
DOUBLE COMPLEX for zstedc.
Arrays: \(z\left(l d z,{ }^{*}\right)\), work(*).
If compz = 'V', then, on entry, z must contain the orthogonal/unitary matrix used to reduce the original matrix to tridiagonal form.
The second dimension of \(z\) must be at least max \((1, n)\).
work is a workspace array, its dimension max (1, 1work).
INTEGER. The leading dimension of \(z\). Constraints:
\(l d z \geq 1\) if \(c o m p z=' N ' ;\)
\(I d z \geq \max (1, n)\) if \(c o m p z=\) 'V' or 'I'.
INTEGER. The dimension of the array work.
For real functions sstedc and dstedc:
- If compz = 'N'or \(n \leq 1\), lwork must be at least 1 .
- If compz \(=\) ' \(V\) ' and \(n>1\), lwork must be at least \(1+3 *_{n}+\) \(2 \star n^{\star} \log _{2}(n)+4 \star n^{2}\), where \(\log _{2}(n)\) is the smallest integer \(k\) such that \(2^{k} \geq n\).
- If compz \(=\) 'I' and \(n>1\) then lwork must be at least \(1+4 * n+n^{2}\)

Note that for compz = 'I' or 'V' and if \(n\) is less than or equal to the minimum divide size, usually 25 , then 1 work need only be max ( 1 , 2* ( \(n-1\) ) ) .

For complex functions cstedc and zstedc:
- If compz = 'N'or 'I', or \(n \leq 1\), lwork must be at least 1 .
- If compz \(=\) ' \(V\) ' and \(n>1\), lwork must be at least \(n^{2}\).

Note that for compz = ' V ', and if \(n\) is less than or equal to the minimum divide size, usually 25 , then lwork need only be 1 .

If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for the required value of lwork.
INTEGER. The dimension of the array rwork (used for complex flavors only).
If compz \(=\) 'N', or \(n \leq 1\), lrwork must be at least 1 .
If compz \(=\) ' \(V\) ' and \(n>1\), lrwork must be at least \((1+3 * n+2 * n * \lg (n)\)
\(+4{ }^{*} n * n\) ), where \(\lg (n)\) is the smallest integer \(k\) such that \(2 * * k \geq n\).
If compz \(=\) 'I' and \(n>1\), lrwork must be at least \(\left(1+4 * n+2 \star^{*} n^{*} n\right)\).
iwork
liwork

Note that for compz = 'V'or 'I', and if \(n\) is less than or equal to the minimum divide size, usually 25 , then lrwork need only be max (1, 2* \((n-1))\).
If lrwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for the required value of lrwork.
INTEGER. Workspace array, its dimension max (1, liwork).
INTEGER. The dimension of the array iwork.
If compz \(=\) 'N', or \(n \leq 1\), liwork must be at least 1 .
If compz \(=\) ' \(V\) ' and \(n>1\), liwork must be at least ( \(6+6 * n+5 * n * \lg (n)\), where \(\lg (n)\) is the smallest integer \(k\) such that \(2 * * k \geq n\).
If compz = 'I' and \(n>1\), liwork must be at least ( \(3+5 *^{*} n\) ).
Note that for compz = 'V'or 'I', and if \(n\) is less than or equal to the minimum divide size, usually 25 , then liwork need only be 1 .
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for the required value of liwork.

\section*{Output Parameters}
```

d
e

```

Z
work (1)
rwork(1)
iwork(1)
info

The \(n\) eigenvalues in ascending order, unless info \(\neq 0\).
See also info.
On exit, the array is overwritten; see info.
If info \(=0\), then if \(c o m p z=' V\) ', z contains the orthonormal eigenvectors of the original symmetric/Hermitian matrix, and if compz = 'I', z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If compz \(=\) ' \(N\) ', \(z\) is not referenced.
On exit, if info \(=0\), then work (1) returns the optimal lwork.
On exit, if info \(=0\), then rwork (1) returns the optimal lrwork (for complex flavors only).
On exit, if info \(=0\), then iwork (1) returns the optimal liwork.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value. If info \(=i\), the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns \(i /(n+1)\) through \(\bmod (i, n+1)\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine stedc interface are the following:
```

d Holds the vector of length n.
e Holds the vector of length (n-1).
z Holds the matrix z of size (n, n).

```

If omitted, this argument is restored based on the presence of argument \(z\) as follows: compz = 'I', if \(z\) is present, compz \(=\) ' \(N\) ', if \(z\) is omitted.
If present, compz must be equal to 'I' or 'V' and the argument \(z\) must also be present. Note that there will be an error condition if compz is present and \(z\) omitted.

Note that two variants of Fortran 95 interface for stedc routine are needed because of an ambiguous choice between real and complex cases appear when \(z\) and work are omitted. Thus, the name rstedc is used in real cases (single or double precision), and the name stedc is used in complex cases (single or double precision).

\section*{Application Notes}

The required size of workspace arrays must be as follows.
For sstedc/dstedc:
If compz \(=\) ' \(N\) ' or \(n \leq 1\) then lwork must be at least 1 .
If compz \(=\) ' \(V\) ' and \(n>1\) then lwork must be at least \((1+3 n+2 n \cdot \lg n+3 n 2)\), where \(\lg (n)=\) smallest integer \(k\) such that \(2^{k} \geq n\).

If compz \(=\) 'I' and \(n>1\) then lwork must be at least \((1+4 n+n 2)\).
If compz \(=\) ' \(N\) ' or \(n \leq 1\) then liwork must be at least 1 .
If compz \(=\) ' \(V\) ' and \(n>1\) then liwork must be at least \((6+6 n+5 n \cdot \lg n)\).
If compz \(=\) 'I' and \(n>1\) then liwork must be at least \((3+5 n)\).
For cstedc/zstedc:
If compz \(=\) 'N' or'I', or \(n \leq 1\), lwork must be at least 1 .
If compz \(=\) ' \(V\) ' and \(n>1\), lwork must be at least \(n^{2}\).
If compz \(=\) ' \(N\) ' or \(n \leq 1\), lrwork must be at least 1 .
If compz \(=\) ' \(V\) ' and \(n>1\), lrwork must be at least \(\left(1+3 n+2 n \cdot \lg n+3 n^{2}\right)\), where \(\lg (n)=\) smallest integer \(k\) such that \(2^{k} \geq n\).

If compz \(=\) 'I' and \(n>1\), lrwork must be at least \(\left(1+4 n+2 n^{2}\right)\).
The required value of liwork for complex flavors is the same as for real flavors.
If lwork (or liwork or lrwork, if supplied) is equal to -1 , then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.

Note that if lwork (liwork, lrwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?stegr}

Computes selected eigenvalues and eigenvectors of a
real symmetric tridiagonal matrix.
Syntax

\section*{Fortran 77:}
```

call sstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work,
lwork, iwork, liwork, info)

```
```

call dstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work,
lwork, iwork, liwork, info)
call cstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work,
lwork, iwork, liwork, info)
call zstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work,
lwork, iwork, liwork, info)

```

\section*{Fortran 95:}
```

call rstegr(d, e, w [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol] [,info])
call stegr(d, e, w [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol] [,info])

```

C:
lapack_int LAPACKE_sstegr( int matrix_order, char jobz, char range, lapack_int n, float* d, float* e, float vl, float vu, lapack_int il, lapack_int iu, float abstol, lapack_int* m, float* w, float* z, lapack_int ldz, lapack_int* isuppz );
lapack_int LAPACKE_dstegr( int matrix_order, char jobz, char range, lapack_int n, double* \(d\), double* e, double vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int* \(m\), double* w, double* z, lapack_int ldz, lapack_int* isuppz );
lapack_int LAPACKE_cstegr( int matrix_order, char jobz, char range, lapack_int n, float* d, float* e, float vl, float vu, lapack_int il, lapack_int iu, float abstol,
lapack_int* \(m\), float* w, lapack_complex_float* z, lapack_int ldz, lapack_int* isuppz );
lapack_int LAPACKE_zstegr( int matrix_order, char jobz, char range, lapack_int n,
double* \(d\), double* e, double vl, double vu, lapack_int il, lapack_int iu, double
abstol, lapack_int* \(m\), double* \(w\), lapack_complex_double* \(z, ~ l a p a c k \_i n t ~ l d z\),
lapack_int* isuppz );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(T\). Any such unreduced matrix has a well defined set of pairwise different real eigenvalues, the corresponding real eigenvectors are pairwise orthogonal.
The spectrum may be computed either completely or partially by specifying either an interval (vl, vu] or a range of indices il:iu for the desired eigenvalues.
?sregr is a compatibility wrapper around the improved stemr routine. See its description for further details.
Note that the abstol parameter no longer provides any benefit and hence is no longer used.
See also auxiliary lasq2 lasq5, lasq6, used by this routine.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
jobz
CHARACTER*1. Must be 'N' or 'V'. If job \(=\) ' \(N\) ', then only eigenvalues are computed.
\begin{tabular}{|c|c|}
\hline range & If job \(=\) ' V ', then eigenvalues and eigenvectors are computed. \\
\hline & \begin{tabular}{l}
If range \(=\) ' A ', the routine computes all eigenvalues. \\
If range = ' V ', the routine computes eigenvalues lambda(i) in the halfopen interval: \\
vl< lambda(i) \(\leq\) vu. \\
If range \(=\) ' I', the routine computes eigenvalues with indices il to \(i u\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(T(n \geq 0)\). \\
\hline d, e, work & \begin{tabular}{l}
REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors. \\
Arrays: \\
\(d(*)\) contains the diagonal elements of \(T\). \\
The dimension of \(d\) must be at least \(\max (1, n)\). \\
\(e(*)\) contains the subdiagonal elements of \(T\) in elements 1 to \(n-1\); \(e(n)\) need not be set on input, but it is used as a workspace. \\
The dimension of \(e\) must be at least \(\max (1, n)\). \\
work(lwork) is a workspace array.
\end{tabular} \\
\hline v1, vu & \begin{tabular}{l}
REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors. \\
If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
Constraint: vl< vu. \\
If range = 'A' or 'I', vl and vu are not referenced.
\end{tabular} \\
\hline il, iu & \begin{tabular}{l}
INTEGER. \\
If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\). \\
If range \(=\) ' \(A\) ' or ' \(V\) ', il and \(i u\) are not referenced.
\end{tabular} \\
\hline abstol & \begin{tabular}{l}
REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors. \\
Unused. Was the absolute error tolerance for the eigenvalues/ eigenvectors in previous versions.
\end{tabular} \\
\hline \(1 d z\) & \begin{tabular}{l}
INTEGER. The leading dimension of the output array \(z\). Constraints: \\
\(I d z<1\) if jobz = 'N'; \\
\(l d z<\max (1, n) j o b z=V^{\prime}\) ', an.
\end{tabular} \\
\hline lwork & \begin{tabular}{l}
INTEGER. \\
The dimension of the array work, \\
lwork \(\geq\) max \(\left(1,18^{*} n\right)\) if jobz \(=\) ' \(V\) ', and \\
lwork \(\geq \max \left(1,12 \star_{n}\right)\) if jobz \(=' N '\). \\
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes below for details.
\end{tabular} \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION (liwork).
\end{tabular} \\
\hline liwork & \begin{tabular}{l}
INTEGER. \\
The dimension of the array iwork, 1 work \(\geq \max \left(1,10 *_{n}\right)\) if the eigenvectors are desired, and 1 work \(\geq \max \left(1,8^{*} n\right)\) if only the eigenvalues are to be computed..
\end{tabular} \\
\hline
\end{tabular}

If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued by xerbla. See Application Notes below for details.

\section*{Output Parameters}
```

d,e

```
m
w
z
isuppz
work(1)
iwork(1)
info

On exit, \(d\) and e are overwritten.
INTEGER. The total number of eigenvalues found,
\(0 \leq m \leq n\).
If range \(=\) 'A', \(m=n\), and if range \(=\) 'I', \(m=i u-i l+1\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max \((1, n)\).
The selected eigenvalues in ascending order, stored in w(1) to w(m).
REAL for sstegr
DOUBLE PRECISION for dstegr
COMPLEX for cstegr
DOUBLE COMPLEX for zstegr.
Array \(z(I d z, *)\), the second dimension of \(z\) must be at least max \((1, m)\). If jobz \(=\) ' \(V\) ', and if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\).
If jobz = 'N', then \(z\) is not referenced.
Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used. Supplying \(n\) columns is always safe.
INTEGER.
Array, DIMENSION at least \((2 * \max (1, m))\).
The support of the eigenvectors in \(z\), that is the indices indicating the nonzero elements in \(z\). The \(i\)-th computed eigenvector is nonzero only in elements \(i \operatorname{suppz}(2 * i-1)\) through \(i \operatorname{suppz}(2 * i)\). This is relevant in the case when the matrix is split. isuppz is only accessed when jobz = 'V', and \(n>0\).
On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.
On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1 x\), internal error in ?larre occurred, If info \(=2 x\), internal error in ?larrv occurred. Here the digit \(x=\) abs (iinfo) < 10, where iinfo is the non-zero error code returned by ? larre or ?larrv, respectively.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
```

Specific details for the routine stegr interface are the following:
d Holds the vector of length n.
e Holds the vector of length n.
w Holds the vector of length n.
z Holds the matrix z of size (}n,m\mathrm{).
isuppz Holds the vector of length (2*m).
vI Default value for this argument is vl = - HUGE (vl) where HUGE(a) means the
largest machine number of the same precision as argument a.
Default value for this argument is vu = HUGE (vl).
Default value for this argument is il = 1.
Default value for this argument is iu = n.
Default value for this argument is abstol = 0.0_WP.
Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
range
Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present
and at the same time one of or both il and iu are present.

```

Note that two variants of Fortran 95 interface for stegr routine are needed because of an ambiguous choice between real and complex cases appear when \(z\) is omitted. Thus, the name rstegr is used in real cases (single or double precision), and the name stegr is used in complex cases (single or double precision).

\section*{Application Notes}

Currently ?stegr is only set up to find all the \(n\) eigenvalues and eigenvectors of \(T\) in \(O\left(n^{2}\right)\) time, that is, only range = 'A' is supported.
?stegr works only on machines which follow IEEE-754 floating-point standard in their handling of infinities and NaNs. Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not conform to the IEEE-754 standard.
If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run, or set lwork \(=-1\) (liwork \(=-1\) ).

If lwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If 1 work \(=-1\) (liwork \(=-1\) ), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if lwork (liwork) is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
```

?pteqr
Computes all eigenvalues and (optionally) all
eigenvectors of a real symmetric positive-definite
tridiagonal matrix.
Syntax

```

\section*{Fortran 77:}
```

call spteqr(compz, n, d, e, z, ldz, work, info)

```
call spteqr(compz, n, d, e, z, ldz, work, info)
call dpteqr(compz, n, d, e, z, ldz, work, info)
call dpteqr(compz, n, d, e, z, ldz, work, info)
call cpteqr(compz, n, d, e, z, ldz, work, info)
call cpteqr(compz, n, d, e, z, ldz, work, info)
call zpteqr(compz, n, d, e, z, ldz, work, info)
```

call zpteqr(compz, n, d, e, z, ldz, work, info)

```

\section*{Fortran 95:}
```

call rpteqr(d, e [,z] [,compz] [,info])
call pteqr(d, e [,z] [,compz] [,info])

```
c:
```

lapack_int LAPACKE_spteqr(int matrix_order, char compz, lapack_int n, float* d, float*
e, float* z, lapack_int ldz);
lapack_int LAPACKE_dpteqr(int matrix_order, char compz, lapack_int n, double* d,
double* e, double* z, lapack_int ldz);
lapack_int LAPACKE_cpteqr(int matrix_order, char compz, lapack_int n, float* d, float*
e, lapack_complex_float* z, lapack_int ldz);
lapack_int LAPACKE_zpteqr(int matrix_order, char compz, lapack_int n, double* d,
double* e, lapack_complex_double* z, lapack_int ldz);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric positivedefinite tridiagonal matrix \(T\). In other words, the routine can compute the spectral factorization: \(T=\) \(Z \star \Lambda * Z^{T}\).

Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i} ; z\) is an orthogonal matrix whose columns are eigenvectors. Thus,
\(T^{*} z_{i}=\lambda_{i}{ }^{*} z_{i}\) for \(i=1,2, \ldots, n\).
(The routine normalizes the eigenvectors so that \(\left|\left|z_{i}\right|\right|_{2}=1\).)
You can also use the routine for computing the eigenvalues and eigenvectors of real symmetric (or complex Hermitian) positive-definite matrices \(A\) reduced to tridiagonal form \(T: A=Q^{*} T^{*} Q^{H}\). In this case, the spectral factorization is as follows: \(A=Q^{*} T^{*} Q^{H}=(Q Z) * \Lambda^{\star}(Q Z)^{H}\). Before calling ?pteqr, you must reduce \(A\) to tridiagonal form and generate the explicit matrix \(Q\) by calling the following routines:
\begin{tabular}{lll}
\hline \hline & for real matrices: & for complex matrices: \\
\hline full storage & ?sytrd, ?orgtr & ?hetrd, ?ungtr \\
packed storage & ?sptrd, ?opgtr & ?hptrd, ?upgtr \\
band storage & ?sbtrd (vect='V') & ?hbtrd (vect='V') \\
\hline
\end{tabular}

The routine first factorizes \(T\) as \(L^{\star} D^{\star} L^{H}\) where \(L\) is a unit lower bidiagonal matrix, and \(D\) is a diagonal matrix. Then it forms the bidiagonal matrix \(B=L^{*} D^{1 / 2}\) and calls ?bdsqr to compute the singular values of \(B\), which are the same as the eigenvalues of \(T\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

compz
n
d, e, work
z
ldz

```

CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz = ' N ', the routine computes eigenvalues only.
If compz = 'I', the routine computes the eigenvalues and eigenvectors of the tridiagonal matrix \(T\).
If compz = ' \(V\) ', the routine computes the eigenvalues and eigenvectors of \(A\) (and the array \(z\) must contain the matrix \(Q\) on entry).
INTEGER. The order of the matrix \(T(n \geq 0)\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
\(d(*)\) contains the diagonal elements of \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e(*)\) contains the off-diagonal elements of \(T\).
The dimension of \(e\) must be at least \(\max (1, n-1)\).
work (*) is a workspace array.
The dimension of work must be:
at least 1 if compz = ' N ';
at least \(\max \left(1,4 *_{n}-4\right)\) if compz \(=V^{\prime} V^{\prime}\) or 'I'.
REAL for spteqr
DOUBLE PRECISION for dpteqr
COMPLEX for cpteqr
DOUBLE COMPLEX for zpteqr.
Array, DIMENSION ( \(1 d z, *\) )
If compz = 'N' or 'I', z need not be set.
If compz \(=\) ' V ', \(z\) must contain the \(n\)-by- \(n\) matrix \(Q\).
The second dimension of \(z\) must be:
at least 1 if compz \(=\) ' \(\mathrm{N}^{\prime}\);
at least max \((1, n)\) if \(c o m p z=' V\) ' or 'I'.
INTEGER. The leading dimension of \(z\). Constraints:
\(l d z \geq 1\) if \(c o m p z=' N ' ;\)
\(I d z \geq \max (1, n)\) if \(c o m p z=\) 'V' or 'I'.

The \(n\) eigenvalues in descending order, unless info \(>0\).
See also info.

\section*{Output Parameters}
d
```

e On exit, the array is overwritten.
Z
info

```

\section*{On exit, the array is overwritten.}
```

If info $=0$, contains the n orthonormal eigenvectors, stored by columns. (The i-th column corresponds to the i-th eigenvalue.)
INTEGER.
If info $=0$, the execution is successful.
If info $=i$, the leading minor of order i (and hence T itself) is not positive-definite.
If info $=n+i$, the algorithm for computing singular values failed to converge; i off-diagonal elements have not converged to zero. If info $=-i$, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pteqr interface are the following:
```

d Holds the vector of length n.
e Holds the vector of length (n-1).
z Holds the matrix z of size (n,n).

```
compz If omitted, this argument is restored based on the presence of argument \(z\) as follows:
compz = 'I', if \(z\) is present, compz \(=\) ' N ', if \(z\) is omitted.
If present, compz must be equal to 'I' or 'V' and the argument \(z\) must also be present. Note that there will be an error condition if compz is present and \(z\) omitted.

Note that two variants of Fortran 95 interface for pteqr routine are needed because of an ambiguous choice between real and complex cases appear when \(z\) is omitted. Thus, the name rpteqr is used in real cases (single or double precision), and the name pteqr is used in complex cases (single or double precision).

\section*{Application Notes}

If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
```

$\left|\mu_{i}-\lambda_{i}\right| \leq c(n) \star \varepsilon^{\star} K^{\star} \lambda_{i}$

```
where \(c(n)\) is a modestly increasing function of \(n, \varepsilon\) is the machine precision, and \(K=||D T D||_{2}\) * \(|\mid\) \((D T D)^{-1}| |_{2}, D\) is diagonal with \(d_{i i}=t_{i i}^{-1 / 2}\).

If \(z_{i}\) is the corresponding exact eigenvector, and \(w_{i}\) is the corresponding computed vector, then the angle \(\theta\left(z_{i}, w_{i}\right)\) between them is bounded as follows:
\(\theta\left(u_{i}, w_{i}\right) \leq c(n) \varepsilon K / \min _{i \neq j}\left(\left|\lambda_{i}-\lambda_{j}\right| /\left|\lambda_{i}+\lambda_{j}\right|\right)\).
Here \(\min _{i \neq j}\left(\left|\lambda_{i}-\lambda_{j}\right| /\left|\lambda_{i}+\lambda_{j}\right|\right)\) is the relative gap between \(\lambda_{i}\) and the other eigenvalues.
The total number of floating-point operations depends on how rapidly the algorithm converges.
Typically, it is about
\(30 n^{2}\) if compz = 'N';
\(6 n^{3}\) (for complex flavors, \(12 n^{3}\) ) if compz \(=\) 'V' or 'I'.
```

?stebz
Computes selected eigenvalues of a real symmetric
tridiagonal matrix by bisection.
Syntax
Fortran 77:
call sstebz (range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w, iblock,
isplit, work, iwork, info)
call dstebz (range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w, iblock,
isplit, work, iwork, info)

```

\section*{Fortran 95:}
```

call stebz(d, e, m, nsplit, w, iblock, isplit [, order] [,vl] [,vu] [,il] [,iu]
[,abstol] [,info])
C:

```
```

lapack_int LAPACKE_<?>stebz(char range, char order, lapack_int n, <datatype> vl,

```
lapack_int LAPACKE_<?>stebz( char range, char order, lapack_int n, <datatype> vl,
<datatype> vu, lapack_int il, lapack_int iu, <datatype> abstol, const <datatype>* d,
<datatype> vu, lapack_int il, lapack_int iu, <datatype> abstol, const <datatype>* d,
const <datatype>* e, lapack_int* m, lapack_int* nsplit, <datatype>* w, lapack_int*
const <datatype>* e, lapack_int* m, lapack_int* nsplit, <datatype>* w, lapack_int*
iblock, lapack_int* isplit );
```

iblock, lapack_int* isplit);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes some (or all) of the eigenvalues of a real symmetric tridiagonal matrix \(T\) by bisection. The routine searches for zero or negligible off-diagonal elements to see if \(T\) splits into block-diagonal form \(T\) \(=\operatorname{diag}\left(T_{1}, T_{2}, \ldots\right)\). Then it performs bisection on each of the blocks \(T_{i}\) and returns the block index of each computed eigenvalue, so that a subsequent call to stein can also take advantage of the block structure.

See also laebz.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{range} & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' \(V\) ', the routine computes eigenvalues lambda( \(i\) ) in the halfopen interval: vl < lambda(i) \(\leq\) vu. \\
\hline & If range = 'I', the routine computes eigenvalues with indices il to iu. \\
\hline \multirow[t]{3}{*}{order} & CHARACTER*1. Must be 'B' or 'E'. \\
\hline & If order = 'B', the eigenvalues are to be ordered from smallest to largest within each split-off block. \\
\hline & If order = 'E', the eigenvalues for the entire matrix are to be ordered from smallest to largest. \\
\hline \(n\) & INTEGER. The order of the matrix \(T(n \geq 0)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{vl, vu} & REAL for sstebz \\
\hline & DOUBLE PRECISION for dstebz. \\
\hline & If range \(=\) ' \(V\) ', the routine computes eigenvalues \(\operatorname{lambda}(i)\) in the halfopen interval: \\
\hline & vl < lambda (i) \(\leq\) vu. \\
\hline & If range = 'A' or 'I', vl and vu are not referenced. \\
\hline \multirow[t]{4}{*}{il, iu} & INTEGER. Constraint: \(1 \leq i l \leq i u \leq n\). \\
\hline & If range \(=\) 'I', the routine computes eigenvalues lambda(i) such that ils \\
\hline & \(i \leq i u\) (assuming that the eigenvalues lambda(i) are in ascending order). \\
\hline & If range = 'A' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{4}{*}{abstol} & REAL for sstebz \\
\hline & DOUBLE PRECISION for dstebz. \\
\hline & The absolute tolerance to which each eigenvalue is required. An eigenvalue (or cluster) is considered to have converged if it lies in an interval of width abstol. \\
\hline & If abstol \(\leq 0.0\), then the tolerance is taken as eps*|T|, where eps is the machine precision, and \(|T|\) is the 1-norm of the matrix \(T\). \\
\hline \multirow[t]{9}{*}{d, e, work} & REAL for sstebz \\
\hline & DOUBLE PRECISION for dstebz. \\
\hline & Arrays: \\
\hline & \(d(*)\) contains the diagonal elements of \(T\). \\
\hline & The dimension of \(d\) must be at least max (1, \(n\) ). \\
\hline & \(e(*)\) contains the off-diagonal elements of \(T\). \\
\hline & The dimension of e must be at least max \((1, n-1)\). \\
\hline & work(*) is a workspace array. \\
\hline & The dimension of work must be at least max (1, 4n). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. Workspace. \\
\hline & Array, DIMENSION at least max (1, 3n). \\
\hline
\end{tabular}

\section*{Output Parameters}
m
nsplit
w
iblock, isplit
info

INTEGER. The actual number of eigenvalues found.
INTEGER. The number of diagonal blocks detected in \(T\).
REAL for sstebz
DOUBLE PRECISION for dstebz.
Array, DIMENSION at least max \((1, n)\). The computed eigenvalues, stored in \(w(1)\) to \(w(m)\).
INTEGER.
Arrays, DIMENSION at least max \((1, n)\).
A positive value iblock(i) is the block number of the eigenvalue stored in \(w(i)\) (see also info).
The leading nsplit elements of isplit contain points at which \(T\) splits into blocks \(T_{i}\) as follows: the block \(T_{1}\) contains rows/columns 1 to isplit(1); the block \(T_{2}\) contains rows/columns isplit(1)+1 to isplit(2), and so on.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=1\), for range \(=\) ' A ' or 'V', the algorithm failed to compute some of the required eigenvalues to the desired accuracy; iblock(i)<0 indicates that the eigenvalue stored in w(i) failed to converge.

If info \(=2\), for range \(=\) 'I', the algorithm failed to compute some of the required eigenvalues. Try calling the routine again with range \(=\) ' A '. If info = 3: for range \(=\) 'A' or 'V', same as info \(=1\); for range \(=\) 'I', same as info \(=2\).
If info \(=4\), no eigenvalues have been computed. The floating-point arithmetic on the computer is not behaving as expected.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine stebz interface are the following:
\begin{tabular}{|c|c|}
\hline d & Holds the vector of length \(n\). \\
\hline e & Holds the vector of length ( \(n-1\) ). \\
\hline w & Holds the vector of length \(n\). \\
\hline iblock & Holds the vector of length \(n\). \\
\hline isplit & Holds the vector of length \(n\). \\
\hline order & Must be 'B' or 'E'. The default value is ' B '. \\
\hline vI & Default value for this argument is vl \(=\) - HUGE ( \(v 1\) ) where \(\operatorname{HUGE}(a)\) means the largest machine number of the same precision as argument \(a\). \\
\hline vu & Default value for this argument is vu = HUGE (vl). \\
\hline il & Default value for this argument is il \(=1\). \\
\hline iu & Default value for this argument is iu \(=n\). \\
\hline abstol & Default value for this argument is abstol \(=0.0 \_\mathrm{WP}\). \\
\hline range & \begin{tabular}{l}
Restored based on the presence of arguments \(v l, v u, i l, i u\) as follows: \\
range \(=\) ' \(V\) ', if one of or both \(v l\) and \(v u\) are present, \\
range \(=\) 'I', if one of or both il and iu are present, \\
range \(=\) ' \(A\) ', if none of \(v l, v u\), il, \\
iu is present, Note that there will be an error condition if one of or both vl and \(v u\) are present and at the same time one of or both il and iu are present.
\end{tabular} \\
\hline
\end{tabular}

\section*{Application Notes}

The eigenvalues of \(T\) are computed to high relative accuracy which means that if they vary widely in magnitude, then any small eigenvalues will be computed more accurately than, for example, with the standard \(Q R\) method. However, the reduction to tridiagonal form (prior to calling the routine) may exclude the possibility of obtaining high relative accuracy in the small eigenvalues of the original matrix if its eigenvalues vary widely in magnitude.

\section*{?stein}

Computes the eigenvectors corresponding to specified eigenvalues of a real symmetric tridiagonal matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call sstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)
call dstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)

```
```

call cstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)
call zstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)

```

\section*{Fortran 95:}
```

call stein(d, e, w, iblock, isplit, z [,ifailv] [,info])

```

C:
```

lapack_int LAPACKE_sstein(int matrix_order, lapack_int n, const float* d, const float*
e, lapack_int m, const float* w, const lapack_int* iblock, const lapack_int* isplit,
float* z, lapack_int ldz, lapack_int* ifailv);
lapack_int LAPACKE_dstein(int matrix_order, lapack_int n, const double* d, const
double* e, lapack_int m, const double* w, const lapack_int* iblock, const lapack_int*
isplit, double* z, lapack_int ldz, lapack_int* ifailv);
lapack_int LAPACKE_cstein(int matrix_order, lapack_int n, const float* d, const float*
e, lapack_int m, const float* w, const lapack_int* iblock, const lapack_int* isplit,
lapack_complex_float* z, lapack_int ldz, lapack_int* ifailv);
lapack_int LAPACKE_zstein(int matrix_order, lapack_int n, const double* d, const
double* e, lapack_int m, const double* w, const lapack_int* iblock, const lapack_int*
isplit, lapack_complex_double* z, lapack_int ldz, lapack_int* ifailv);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the eigenvectors of a real symmetric tridiagonal matrix \(T\) corresponding to specified eigenvalues, by inverse iteration. It is designed to be used in particular after the specified eigenvalues have been computed by ?stebz with order = 'B', but may also be used when the eigenvalues have been computed by other routines.

If you use this routine after ?stebz, it can take advantage of the block structure by performing inverse iteration on each block \(T_{i}\) separately, which is more efficient than using the whole matrix \(T\).
If \(T\) has been formed by reduction of a full symmetric or Hermitian matrix \(A\) to tridiagonal form, you can transform eigenvectors of \(T\) to eigenvectors of \(A\) by calling ?ormtr or ? opmtr (for real flavors) or by calling ? unmtr or ?upmtr (for complex flavors).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

n INTEGER. The order of the matrix T (n\geq0).
m INTEGER. The number of eigenvectors to be returned.
d, e, w
INTEGER. The order of the matrix $T(n \geq 0)$.
INTEGER. The number of eigenvectors to be returned.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
$d(*)$ contains the diagonal elements of T.
The dimension of d must be at least $\max (1, n)$.
$e\left({ }^{*}\right)$ contains the sub-diagonal elements of T stored in elements 1 to $n-1$

```

The dimension of \(e\) must be at least \(\max (1, n-1)\).
\(w(*)\) contains the eigenvalues of \(T\), stored in \(w(1)\) to \(w(m)\) (as returned by stebz). Eigenvalues of \(T_{1}\) must be supplied first, in non-decreasing order; then those of \(T_{2}\), again in non-decreasing order, and so on. Constraint:
```

if iblock(i) = iblock(i+1),w(i) \leqw(i+1).

```

The dimension of \(w\) must be at least \(\max (1, n)\).
integer.
Arrays, DIMENSION at least max \((1, n)\). The arrays iblock and isplit, as returned by ?stebz with order \(=\) ' \(B\) '.
If you did not call ?stebz with order = 'B', set all elements of iblock to 1, and isplit(1) to \(n\).)
INTEGER. The leading dimension of the output array \(z ; I d z \geq \max (1, n)\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Workspace array, DIMENSION at least max (1,5n).
INTEGER.
Workspace array, DIMENSION at least max \((1, n)\).

\section*{Output Parameters}
z
REAL for sstein
DOUBLE PRECISION for dstein
COMPLEX for cstein
DOUBLE COMPLEX for zstein.
Array, DIMENSION ( \(1 d z, *\) ).
If info \(=0, z\) contains the \(m\) orthonormal eigenvectors, stored by columns. (The \(i\) th column corresponds to the \(i\)-th specified eigenvalue.)
INTEGER.
Array, DIMENSION at least max \((1, m)\).
If info \(=i>0\), the first \(i\) elements of ifailv contain the indices of any eigenvectors that failed to converge.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=i\), then \(i\) eigenvectors (as indicated by the parameter ifailv) each failed to converge in 5 iterations. The current iterates are stored in the corresponding columns of the array \(z\).
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine stein interface are the following:
\begin{tabular}{ll}
\(d\) & Holds the vector of length \(n\). \\
\(e\) & Holds the vector of length \(n\). \\
\(w\) & Holds the vector of length \(n\). \\
iblock & Holds the vector of length \(n\). \\
isplit & Holds the vector of length \(n\). \\
\(z\) & Holds the matrix \(z\) of size \((n, m)\).
\end{tabular}
ifailv Holds the vector of length (m).

\section*{Application Notes}

Each computed eigenvector \(z_{i}\) is an exact eigenvector of a matrix \(T+E_{i}\), where \(\left|\left|E_{i} \|_{2}=O(\varepsilon)^{*}\right|\right| T\left|\left.\right|_{2}\right.\). However, a set of eigenvectors computed by this routine may not be orthogonal to so high a degree of accuracy as those computed by ?steqr.

\section*{?disna}

Computes the reciprocal condition numbers for the eigenvectors of a symmetric/ Hermitian matrix or for the left or right singular vectors of a general matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call sdisna(job, m, n, d, sep, info)
call ddisna(job, m, n, d, sep, info)

```

Fortran 95:
```

call disna(d, sep [,job] [,minmn] [,info])

```

C:
lapack_int LAPACKE_<?>disna( char job, lapack_int m, lapack_int \(n\), const <datatype>* \(d\), <datatype>* sep );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the reciprocal condition numbers for the eigenvectors of a real symmetric or complex Hermitian matrix or for the left or right singular vectors of a general m-by-n matrix.

The reciprocal condition number is the 'gap' between the corresponding eigenvalue or singular value and the nearest other one.

The bound on the error, measured by angle in radians, in the \(i\)-th computed vector is given by
slamch('E')*(anorm/sep(i))
where anorm \(=\|\left. A\right|_{2}=\max (|d(j)|) \cdot \operatorname{sep}(i)\) is not allowed to be smaller than slamch('E')*anorm in order to limit the size of the error bound.
?disna may also be used to compute error bounds for eigenvectors of the generalized symmetric definite eigenproblem.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
job
CHARACTER*1. Must be 'E','L', or 'R'. Specifies for which problem the reciprocal condition numbers should be computed:
job = 'E': for the eigenvectors of a symmetric/Hermitian matrix;
\(j o b=\) 'L': for the left singular vectors of a general matrix;
job = 'R': for the right singular vectors of a general matrix.
INTEGER. The number of rows of the matrix \((m \geq 0)\).
INTEGER.
If job \(=\) 'L', or 'R', the number of columns of the matrix \((n \geq 0)\). Ignored if job = 'E'.
d
REAL for sdisna
DOUBLE PRECISION for ddisna.
Array, dimension at least \(\max (1, m)\) if \(j o b=1 E\) ', and at least max(1, \(\min (m, n))\) if \(j o b=\) 'L' or 'R'.
This array must contain the eigenvalues (if job = 'E') or singular values (if job = 'L' or 'R') of the matrix, in either increasing or decreasing order.
If singular values, they must be non-negative.

\section*{Output Parameters}

REAL for sdisna
DOUBLE PRECISION for ddisna.
Array, dimension at least \(\max (1, m)\) if \(j o b=' E '\), and at least max( 1 , \(\min (m, n)\) ) if job \(=\) 'L' or 'R'. The reciprocal condition numbers of the vectors.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine disna interface are the following:
\begin{tabular}{|c|c|}
\hline d & Holds the vector of length \(\min (m, n)\). \\
\hline sep & Holds the vector of length \(\min (m, n)\). \\
\hline job & Must be 'E', 'L', or 'R'. The default value is 'E'. \\
\hline minmn & \begin{tabular}{l}
Indicates which of the values \(m\) or \(n\) is smaller. Must be either 'M' or 'N', the default is 'M'. \\
If job = 'E', this argument is superfluous, If job = 'L' or 'R', this argument is used by the routine.
\end{tabular} \\
\hline
\end{tabular}

\section*{Generalized Symmetric-Definite Eigenvalue Problems}

Generalized symmetric-definite eigenvalue problems are as follows: find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(z\) that satisfy one of these equations:
\(A z=\lambda B z, A B z=\lambda z\), or \(B A z=\lambda z\),
where \(A\) is an \(n\)-by- \(n\) symmetric or Hermitian matrix, and \(B\) is an \(n-b y-n\) symmetric positive-definite or Hermitian positive-definite matrix.
In these problems, there exist \(n\) real eigenvectors corresponding to real eigenvalues (even for complex Hermitian matrices \(A\) and \(B\) ).

Routines described in this section allow you to reduce the above generalized problems to standard symmetric eigenvalue problem \(C y=\lambda y\), which you can solve by calling LAPACK routines described earlier in this chapter (see Symmetric Eigenvalue Problems).
Different routines allow the matrices to be stored either conventionally or in packed storage. Prior to reduction, the positive-definite matrix \(B\) must first be factorized using either potrf or pptrf.

The reduction routine for the banded matrices \(A\) and \(B\) uses a split Cholesky factorization for which a specific routine pbstf is provided. This refinement halves the amount of work required to form matrix \(C\).

Table "Computational Routines for Reducing Generalized Eigenproblems to Standard Problems" lists LAPACK routines (FORTRAN 77 interface) that can be used to solve generalized symmetric-definite eigenvalue problems. Respective routine names in Fortran 95 interface are without the first symbol (see Routine Naming Conventions).

Computational Routines for Reducing Generalized Eigenproblems to Standard Problems
\begin{tabular}{lllll}
\hline Matrix type & \begin{tabular}{l} 
Reduce to standard \\
problems (full \\
storage)
\end{tabular} & \begin{tabular}{l} 
Reduce to standard \\
problems (packed \\
storage)
\end{tabular} & \begin{tabular}{l} 
Reduce to standard \\
problems (band \\
matrices)
\end{tabular} & \begin{tabular}{l} 
Factorize \\
band \\
matrix
\end{tabular} \\
\hline \begin{tabular}{l} 
real \\
symmetric \\
matrices
\end{tabular} & sygst & spgst & sbgst & pbstf \\
\begin{tabular}{l} 
complex \\
Hermitian \\
matrices
\end{tabular} & hegst & hpgst & hbgst & \\
\hline
\end{tabular}

\section*{?sygst}

Reduces a real symmetric-definite generalized eigenvalue problem to the standard form.

Syntax

\section*{Fortran 77:}
```

call ssygst(itype, uplo, n, a, lda, b, ldb, info)
call dsygst(itype, uplo, n, a, lda, b, ldb, info)

```

\section*{Fortran 95:}
```

call sygst(a, b [,itype] [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_<?>sygst(int matrix_order, lapack_int itype, char uplo, lapack_int
n, <datatype>* a, lapack_int lda, const <datatype>* b, lapack_int ldb);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces real symmetric-definite generalized eigenproblems
```

A* z = \lambda* B}\mp@subsup{B}{}{\star}z, A* B* z = \lambda\star z, or B* A* z = \lambda\star

```
to the standard form \(C^{\star} y=\lambda^{\star} y\). Here \(A\) is a real symmetric matrix, and \(B\) is a real symmetric positivedefinite matrix. Before calling this routine, call ?potrf to compute the Cholesky factorization: \(B=U^{T *} U\) or \(B\) \(=L^{\star} L^{T}\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem is A* Z = lambda* }\mp@subsup{B}{}{*}\mp@subsup{}{Z}{
for uplo = 'U':C = inv(UT)*A*inv(U), z = inv(U)*y;
for uplo = 'L':C = inv(L)*A*inv(L'T), z = inv(LIT)*y.
If itype = 2, the generalized eigenproblem is A\star 焐 }z=lambda\star
for uplo = 'U':C = U* A* U', z = inv(U)*y;
for uplo = 'L':C = L'T\starA* L, z = inv (L'T)*y.
If itype = 3, the generalized eigenproblem is }\mp@subsup{B}{}{\star}\mp@subsup{A}{}{\star}z=lambda\star
for uplo = 'U':C = U\starA\star U', z = UT\star Y;
foruplo = 'L':C = L'* A\star L, z = L* y.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', the array a stores the upper triangle of A; you must supply
B in the factored form B = U U * U .
If uplo = 'L', the array a stores the lower triangle of A; you must supply
B in the factored form B = L* LT
n
a,b
lda
ldb

```

\section*{Output Parameters}
a
info
The upper or lower triangle of \(A\) is overwritten by the upper or lower triangle of \(C\), as specified by the arguments itype and uplo.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sygst interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((n, n)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n)\). \\
itype & Must be 1,2 , or 3 . The default value is 1. \\
uplo & Must be ' \(U\) ' or 'L'. The default value is ' \(U\) '.
\end{tabular}

\section*{Application Notes}

Forming the reduced matrix \(C\) is a stable procedure. However, it involves implicit multiplication by inv ( \(B\) ) (if itype \(=1\) ) or \(B\) (if itype \(=2\) or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is n3.

\section*{?hegst}

Reduces a complex Hermitian-definite generalized eigenvalue problem to the standard form.

\section*{Syntax}

\section*{Fortran 77:}
```

call chegst(itype, uplo, n, a, lda, b, ldb, info)
call zhegst(itype, uplo, n, a, lda, b, ldb, info)

```

Fortran 95:
```

call hegst(a, b [,itype] [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_<?>hegst(int matrix_order, lapack_int itype, char uplo, lapack_int
n, <datatype>* a, lapack_int lda, const <datatype>* b, lapack_int ldb);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces complex Hermitian-definite generalized eigenvalue problems

to the standard form \(C y=\lambda_{y}\). Here the matrix \(A\) is complex Hermitian, and \(B\) is complex Hermitian positivedefinite. Before calling this routine, you must call ?potrf to compute the Cholesky factorization: \(B=U^{H} \star U\) or \(B=L \star L^{H}\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
itype
```

INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem is A* z = lambda\star B* z
for uplo = 'U':C = (U'H}\mp@subsup{)}{}{-1\star}\mp@subsup{A}{}{\star}\mp@subsup{U}{}{-1},z=inv(U)*y
for uplo = 'L':C = L'L^* A* (}\mp@subsup{L}{}{H}\mp@subsup{)}{}{-1},z=(\mp@subsup{L}{}{H}\mp@subsup{)}{}{-1\star}y
If itype = 2, the generalized eigenproblem is }\mp@subsup{A}{}{\star}\mp@subsup{B}{}{\star}z=lambda\star
for uplo = 'U':C = U*A* U'H},z=\mp@subsup{U}{}{-1*}y
for uplo = 'L':C = L'H\starA\star L,z z ((L')
If itype = 3, the generalized eigenproblem is B*A\star }=|=lambda\star
for uplo = 'U':C = U\starA\star U'H},z=\mp@subsup{U}{}{H}\y

```
\begin{tabular}{|c|c|}
\hline & for uplo = 'L': \(C=L^{H \star} A^{\star} L, z=L^{\star} y\). \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', the array a stores the upper triangle of \(A\); you must supply \(B\) in the factored form \(B=U^{H} * U\). \\
\hline & If uplo = 'L', the array a stores the lower triangle of \(A\); you must supply \(B\) in the factored form \(B=L^{\star} L^{H}\). \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \multirow[t]{7}{*}{\(a, b\)} & COMPLEX for chegstDOUBLE COMPLEX for zhegst. \\
\hline & Arrays: \\
\hline & \(a(1 d a, *)\) contains the upper or lower triangle of \(A\). \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & \(b(l d b, *)\) contains the Cholesky-factored matrix \(B\) : \\
\hline & \(B=U^{H *} U\) or \(B=L * L^{H}\) (as returned by ?potrf). \\
\hline & The second dimension of \(b\) must be at least max \((1, n)\). \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b\); at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
info
The upper or lower triangle of \(A\) is overwritten by the upper or lower triangle of \(C\), as specified by the arguments itype and uplo.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hegst interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((n, n)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n)\). \\
itype & Must be 1,2 , or 3 . The default value is 1. \\
uplo & Must be 'U' or 'L'. The default value is ' \(U\) '.
\end{tabular}

\section*{Application Notes}

Forming the reduced matrix \(C\) is a stable procedure. However, it involves implicit multiplication by \(B^{-1}\) (if itype \(=1\) ) or \(B\) (if itype \(=2\) or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is \(n^{3}\).

\section*{?spgst}

Reduces a real symmetric-definite generalized eigenvalue problem to the standard form using packed storage.

\section*{Syntax}

\section*{Fortran 77:}
```

call sspgst(itype, uplo, n, ap, bp, info)
call dspgst(itype, uplo, n, ap, bp, info)

```

\section*{Fortran 95:}
```

call spgst(ap, bp [,itype] [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_<?>spgst(int matrix_order, lapack_int itype, char uplo, lapack_int
n, <datatype>* ap, const <datatype>* bp);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces real symmetric-definite generalized eigenproblems
```

A*}X=\mp@subsup{\lambda}{}{\star}\mp@subsup{B}{}{\star}X,\mp@subsup{A}{}{\star}\mp@subsup{B}{}{\star}X=\mp@subsup{\lambda}{}{\star}X,\mathrm{ or }\mp@subsup{B}{}{\star}\mp@subsup{A}{}{\star}X=\mp@subsup{\lambda}{}{\star}

```
to the standard form \(C^{\star} y=\lambda^{\star} y\), using packed matrix storage. Here \(A\) is a real symmetric matrix, and \(B\) is a real symmetric positive-definite matrix. Before calling this routine, call ?pptrf to compute the Cholesky factorization: \(B=U^{T} * U\) or \(B=L^{\star} L^{T}\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem is A* }Z=lambda* B* Z Z
foruplo = 'U':C = inv(UT)*A*inv(U), z = inv(U)*y;
for uplo = 'L':C = inv(L)*A*inv(}\mp@subsup{L}{}{T}\mathrm{), z = inv(}\mp@subsup{L}{}{T})*y
If itype = 2, the generalized eigenproblem is A\star 焐 }z=lambda\star
for uplo = 'U':C = U* A* UT, z = inv(U)*y;
foruplo = 'L':C = L'T\starA\starL, z = inv (}\mp@subsup{L}{}{T}\mathrm{)* y.
If itype = 3, the generalized eigenproblem is }\mp@subsup{B}{}{\star}\mp@subsup{A}{}{\star}z=lambda\star
for uplo = 'U':C = U**A* UT, z = UT\star y;
foruplo = 'L':C = L'* A*L, z = L*`y.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangle of A;
you must supply B in the factored form B = U UT*U.
If uplo = 'L', ap stores the packed lower triangle of A;
you must supply B in the factored form B = L* LT
INTEGER. The order of the matrices A and B (}n\geq0)\mathrm{ .
REAL for sspgst
DOUBLE PRECISION for dspgst.
Arrays:

```
    \(a p(*)\) contains the packed upper or lower triangle of \(A\).

The dimension of \(a p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
\(b p(*)\) contains the packed Cholesky factor of \(B\) (as returned by ?pptrf with the same uplo value).
The dimension of \(b p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).

\section*{Output Parameters}
\(a p\)
info
The upper or lower triangle of \(A\) is overwritten by the upper or lower triangle of \(C\), as specified by the arguments itype and uplo.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine spgst interface are the following:
ap \(\quad\) Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\).
bp Holds the array \(B\) of size \((n *(n+1) / 2)\).
itype Must be 1, 2, or 3 . The default value is 1 .
uplo Must be 'U' or 'L'. The default value is 'U'.

\section*{Application Notes}

Forming the reduced matrix \(C\) is a stable procedure. However, it involves implicit multiplication by inv ( \(B\) ) (if itype \(=1\) ) or \(B\) (if itype \(=2\) or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is \(n^{3}\).
```

?hpgst
Reduces a complex Hermitian-definite generalized
eigenvalue problem to the standard form using packed
storage.
Syntax

```

Fortran 77:
```

call chpgst(itype, uplo, n, ap, bp, info)
call zhpgst(itype, uplo, n, ap, bp, info)

```

\section*{Fortran 95:}
```

call hpgst(ap, bp [,itype] [,uplo] [,info])

```

C:
lapack_int LAPACKE_<?>hpgst( int matrix_order, lapack_int itype, char uplo, lapack_int n, <datatype>* ap, const <datatype>* bp );

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces real symmetric-definite generalized eigenproblems

to the standard form \(C^{\star} y=\lambda^{\star} y\), using packed matrix storage. Here \(A\) is a real symmetric matrix, and \(B\) is a real symmetric positive-definite matrix. Before calling this routine, you must call ?pptrf to compute the Cholesky factorization: \(B=U^{H} * U\) or \(B=L \star L^{H}\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

itype
uplo CHARACTER*1. Must be 'U' or 'L'.
n
ap,bp

```
```

INTEGER. Must be 1 or 2 or 3.

```
INTEGER. Must be 1 or 2 or 3.
    If itype = 1, the generalized eigenproblem is A*z = lambda*B*z
    If itype = 1, the generalized eigenproblem is A*z = lambda*B*z
    for uplo = 'U':C = inv(UH)*A*inv(U), z = inv(U)*y;
    for uplo = 'U':C = inv(UH)*A*inv(U), z = inv(U)*y;
    for uplo = 'L':C = inv(L)*A*inv(L'H), z = inv(LH)*y.
    for uplo = 'L':C = inv(L)*A*inv(L'H), z = inv(LH)*y.
    If itype = 2, the generalized eigenproblem is A* B\star z = lambda\star z
    If itype = 2, the generalized eigenproblem is A* B\star z = lambda\star z
    for uplo = 'U':C = U* A* U}\mp@subsup{U}{}{H},z=inv(U)*y
    for uplo = 'U':C = U* A* U}\mp@subsup{U}{}{H},z=inv(U)*y
    for uplo = 'L':C = L'H\starA* L, z = inv (L'H)*y.
    for uplo = 'L':C = L'H\starA* L, z = inv (L'H)*y.
    If itype = 3, the generalized eigenproblem is }\mp@subsup{B}{}{*}\mp@subsup{A}{}{\star}z=lambda\star
    If itype = 3, the generalized eigenproblem is }\mp@subsup{B}{}{*}\mp@subsup{A}{}{\star}z=lambda\star
    for uplo = 'U':C = U\star A\star U',},z=\mp@subsup{U}{}{H*}Y\mathrm{ ;
    for uplo = 'U':C = U\star A\star U',},z=\mp@subsup{U}{}{H*}Y\mathrm{ ;
    for uplo = 'L':C = L'H\star}A\star L, z= L*` y.
    for uplo = 'L':C = L'H\star}A\star L, z= L*` y.
    If uplo = 'U', ap stores the packed upper triangle of }A\mathrm{ ; you must supply }
    If uplo = 'U', ap stores the packed upper triangle of }A\mathrm{ ; you must supply }
    in the factored form B = U U * U.
    in the factored form B = U U * U.
    If uplo = 'L', ap stores the packed lower triangle of A; you must supply B
    If uplo = 'L', ap stores the packed lower triangle of A; you must supply B
    in the factored form B = L* L L
    in the factored form B = L* L L
    INTEGER. The order of the matrices A and B ( }n\geq0)\mathrm{ .
    INTEGER. The order of the matrices A and B ( }n\geq0)\mathrm{ .
COMPLEX for chpgstDOUBLE COMPLEX for zhpgst.
COMPLEX for chpgstDOUBLE COMPLEX for zhpgst.
Arrays:
Arrays:
ap(*) contains the packed upper or lower triangle of A.
ap(*) contains the packed upper or lower triangle of A.
The dimension of a must be at least max(1, n* (n+1)/2).
The dimension of a must be at least max(1, n* (n+1)/2).
bp(*) contains the packed Cholesky factor of B (as returned by ?pptrf with
bp(*) contains the packed Cholesky factor of B (as returned by ?pptrf with
the same uplo value).
the same uplo value).
The dimension of b must be at least max(1, n* (n+1)/2).
```

The dimension of b must be at least max(1, n* (n+1)/2).

```

\section*{Output Parameters}
ap
info
The upper or lower triangle of \(A\) is overwritten by the upper or lower triangle of \(C\), as specified by the arguments itype and uplo.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hpgst interface are the following:
\begin{tabular}{ll}
\(a p\) & Holds the array \(A\) of size \((n *(n+1) / 2)\). \\
\(b p\) & Holds the array \(B\) of size \((n *(n+1) / 2)\). \\
itype & Must be 1,2 , or 3 . The default value is 1. \\
uplo & Must be 'U' or 'L'. The default value is ' \(U\) '.
\end{tabular}

\section*{Application Notes}

Forming the reduced matrix \(C\) is a stable procedure. However, it involves implicit multiplication by inv( \(B\) ) (if itype \(=1\) ) or \(B\) (if itype \(=2\) or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is \(n^{3}\).

\section*{?sbgst \\ Reduces a real symmetric-definite generalized eigenproblem for banded matrices to the standard form using the factorization performed by ?pbstf.}

\section*{Syntax}

\section*{Fortran 77:}
```

call ssbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)
call dsbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)

```

Fortran 95:
```

call sbgst(ab, bb [,x] [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_<?>sbgst(int matrix_order, char vect, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, <datatype>* ab, lapack_int ldab, const <datatype>* bb,
lapack_int ldbb, <datatype>* x, lapack_int ldx);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

To reduce the real symmetric-definite generalized eigenproblem \(A^{\star} z=\lambda^{\star} B^{\star} z\) to the standard form \(C^{\star} y=\lambda^{\star} y\), where \(A, B\) and \(C\) are banded, this routine must be preceded by a call to pbstf/pbstf, which computes the split Cholesky factorization of the positive-definite matrix \(B\) : \(B=S^{T \star} S\). The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be approximately halved.
This routine overwrites \(A\) with \(C=X^{T} \star A * X\), where \(X=\operatorname{inv}(S) * Q\) and \(Q\) is an orthogonal matrix chosen (implicitly) to preserve the bandwidth of \(A\). The routine also has an option to allow the accumulation of \(X\), and then, if \(z\) is an eigenvector of \(C, X^{\star} z\) is an eigenvector of the original system.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{vect} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If vect \(=\) ' \(N\) ', then matrix \(X\) is not returned; \\
\hline & If vect \(=\) ' V ', then matrix x is returned. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', ab stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', ab stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ka & INTEGER. The number of super- or sub-diagonals in \(A\) ( \(k a \geq 0\) ). \\
\hline kb & INTEGER. The number of super- or sub-diagonals in \(B\) ( \(k a \geq k b \geq 0\) ). \\
\hline \multirow[t]{5}{*}{ab, bb, work} & REAL for ssbgst \\
\hline & DOUBLE PRECISION for dsbgst \\
\hline & \(a b(1 d a b, *)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of the array \(a b\) must be at least max \((1, n)\). bb ( \(1 \mathrm{dbb}, *\) ) is an array containing the banded split Cholesky factor of \(B\) as specified by uplo, \(n\) and \(k b\) and returned by pbstf/pbstf. \\
\hline & The second dimension of the array bb must be at least max \((1, n)\). work (*) is a workspace array, dimension at least max \(\left(1,2 *_{n}\right)\) \\
\hline Idab & INTEGER. The leading dimension of the array \(a b ;\) must be at least ka+1. \\
\hline Idbb & INTEGER. The leading dimension of the array bb; must be at least kb+1. \\
\hline \(1 d x\) & \begin{tabular}{l}
The leading dimension of the output array \(x\). Constraints: if vect \(={ }^{\prime} N^{\prime}\), then \(I d x \geq 1\); \\
if vect \(=\) 'V', then \(l d x \geq \max (1, n)\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
```

ab
x
On exit, this array is overwritten by the upper or lower triangle of c as specified by uplo.
REAL for ssbgst
DOUBLE PRECISION for dsbgst
Array.
If vect $=' \mathrm{~V}$ ', then $x(I d x, *)$ contains the $n-b y-n$ matrix $X=\operatorname{inv}(S) * Q$.
If vect $=$ ' N ', then x is not referenced.
The second dimension of x must be:
at least $\max (1, n)$, if vect $=' \mathrm{~V}$ ';
at least 1 , if vect $=' \mathrm{~N}$ '.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sbgst interface are the following:
Holds the array \(A\) of size \((k a+1, n)\).
bb
Holds the array \(B\) of size \((k b+1, n)\).
\begin{tabular}{ll}
\(x\) & Holds the matrix \(x\) of size \((n, n)\). \\
uplo & Must be 'U' or 'L'. The default value is ' \(U\) '. \\
vect & Restored based on the presence of the argument \(x\) as follows: \\
& vect \(=' V\) ', if \(x\) is present, \\
& vect \(=' N^{\prime}\), if \(x\) is omitted.
\end{tabular}

\section*{Application Notes}

Forming the reduced matrix \(C\) involves implicit multiplication by inv ( \(B\) ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.

If \(k a\) and \(k b\) are much less than \(n\) then the total number of floating-point operations is approximately \(6 n^{2} * k b\), when vect \(=\) ' \(N\) '. Additional (3/2) \(n^{3 \star}(k b / k a)\) operations are required when vect \(=\) ' \(V\) '.

\section*{?hbgst}

Reduces a complex Hermitian-definite generalized eigenproblem for banded matrices to the standard form using the factorization performed by ?pbste.

\section*{Syntax}

\section*{Fortran 77:}
```

call chbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork, info)
call zhbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork, info)

```

Fortran 95:
```

call hbgst(ab, bb [,x] [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_<?>hbgst(int matrix_order, char vect, char uplo, lapack_int n,

```
lapack_int ka, lapack_int kb, <datatype>* ab, lapack_int ldab, const <datatype>* bb,
lapack_int ldbb, <datatype>* \(\left.x, ~ l a p a c k \_i n t ~ l d x\right) ;\)

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

To reduce the complex Hermitian-definite generalized eigenproblem \(A^{\star} z=\lambda{ }^{\star} B^{\star} z\) to the standard form \(C^{\star}{ }_{X}\) \(=\lambda^{\star} y\), where \(A, B\) and \(C\) are banded, this routine must be preceded by a call to pbstf/pbstf, which computes the split Cholesky factorization of the positive-definite matrix \(B\) : \(B=S^{H *} S\). The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be approximately halved.
This routine overwrites \(A\) with \(C=X^{H} *_{A *}\), where \(X=\operatorname{inv}(S) * Q\), and \(Q\) is a unitary matrix chosen (implicitly) to preserve the bandwidth of \(A\). The routine also has an option to allow the accumulation of \(X\), and then, if \(z\) is an eigenvector of \(C, X^{\star} z\) is an eigenvector of the original system.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{vect} & CHARACTER*1. Must be 'N' or 'V' \\
\hline & If vect = 'N', then matrix X is not returned; \\
\hline & If vect \(=\) ' V ', then matrix x is returned. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', ab stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', ab stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ka & INTEGER. The number of super- or sub-diagonals in \(A\) ( \(k a \geq 0\) ). \\
\hline kb & INTEGER. The number of super- or sub-diagonals in \(B\) ( \(k a \geq k b \geq 0\) ). \\
\hline \multirow[t]{4}{*}{\(a b, b . b\), work} & COMPLEX for chbgstDOUBLE COMPLEX for zhbgst \\
\hline & ab ( 1 dab,*) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of the array \(a b\) must be at least \(\max (1, n)\). bb ( \(1 \mathrm{dbb}, *\) ) is an array containing the banded split Cholesky factor of \(в\) as specified by uplo, \(n\) and \(k b\) and returned by pbstf/pbstf. \\
\hline & The second dimension of the array bb must be at least max \((1, n)\). work (*) is a workspace array, dimension at least max \((1, n)\) \\
\hline Idab & INTEGER. The leading dimension of the array \(a b ;\) must be at least \(k a+1\). \\
\hline 1 dbb & INTEGER. The leading dimension of the array bb; must be at least \(k b+1\). \\
\hline \(1 d x\) & \begin{tabular}{l}
The leading dimension of the output array x . Constraints: \\
if vect \(=\) ' \(N\) ', then \(l d x \geq 1\); \\
if vect \(=\) ' \(V\) ', then \(1 d x \geq \max (1, n)\).
\end{tabular} \\
\hline \multirow[t]{3}{*}{rwork} & REAL for chbgst \\
\hline & DOUBLE PRECISION for zhbgst \\
\hline & Workspace array, dimension at least max (1, n) \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a b\)
\(X\)
info

On exit, this array is overwritten by the upper or lower triangle of \(c\) as specified by uplo.

COMPLEX for chbgst
DOUBLE COMPLEX for zhbgst

\section*{Array.}

If vect \(=\) ' \(V\) ', then \(x(l d x, *)\) contains the \(n-b y-n\) matrix \(X=\operatorname{inv}(S) * Q\). If vect \(=\) ' \(N\) ', then \(x\) is not referenced.
The second dimension of \(x\) must be:
at least \(\max (1, n)\), if vect \(=\quad\) ' \(V\) ';
at least 1 , if vect \(=\) ' \(N\) '.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hbgst interface are the following:
\begin{tabular}{ll}
\(a b\) & Holds the array \(A\) of size \((k a+1, n)\). \\
bb & Holds the array \(B\) of size \((k b+1, n)\). \\
\(x\) & Holds the matrix \(X\) of size \((n, n)\). \\
uplo & Must be 'U' or 'L'. The default value is ' \(U\) '. \\
vect & Restored based on the presence of the argument \(x\) as follows: vect \(=' V '\), if \(x\) \\
& is present, vect \(=' N '\), if \(x\) is omitted.
\end{tabular}

\section*{Application Notes}

Forming the reduced matrix \(C\) involves implicit multiplication by \(\operatorname{inv}(B)\). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion. The total number of floating-point operations is approximately \(20 n^{2} * k b\), when vect \(=\) ' \(N\) '. Additional \(5 n^{3} *(k b / k a)\) operations are required when vect \(=\) ' V '. All these estimates assume that both \(k a\) and \(k b\) are much less than \(n\).

\section*{?pbstf \\ Computes a split Cholesky factorization of a real symmetric or complex Hermitian positive-definite banded matrix used in ?sbgst/?hbgst .}

Syntax

\section*{Fortran 77:}
```

call spbstf(uplo, n, kb, bb, ldbb, info)
call dpbstf(uplo, n, kb, bb, ldbb, info)
call cpbstf(uplo, n, kb, bb, ldbb, info)
call zpbstf(uplo, n, kb, bb, ldbb, info)

```

\section*{Fortran 95:}
```

call pbstf(bb [, uplo] [,info])

```

C:
```

lapack_int LAPACKE_<?>pbstf(int matrix_order, char uplo, lapack_int n, lapack_int kb,
<datatype>* b.b, lapack_int ldbb);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes a split Cholesky factorization of a real symmetric or complex Hermitian positivedefinite band matrix \(B\). It is to be used in conjunction with sbgst/hbgst.
The factorization has the form \(B=S^{T} * S\) (or \(B=S^{H} * S\) for complex flavors), where \(S\) is a band matrix of the same bandwidth as \(B\) and the following structure: \(S\) is upper triangular in the first ( \(n+k b\) )/2 rows and lower triangular in the remaining rows.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', bb stores the upper triangular part of \(\overline{\text { ¢ }}\). \\
\hline & If uplo = 'L', bb stores the lower triangular part of \(B\). \\
\hline \(n\) & INTEGER. The order of the matrix \(B(n \geq 0)\). \\
\hline kb & INTEGER. The number of super- or sub-diagonals in \(B\) ( \(k b \geq 0\) ). \\
\hline \multirow[t]{6}{*}{bb} & REAL for spbstf \\
\hline & DOUBLE PRECISION for dpbstf \\
\hline & COMPLEX for cpbstf \\
\hline & DOUBLE COMPLEX for zpbstf. \\
\hline & bb ( \(1 \mathrm{dbb}, *\) ) is an array containing either upper or lower triangular part of the matrix \(B\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of the array bb must be at least max \((1, n)\). \\
\hline 1 dbb & INTEGER. The leading dimension of \(b b\); must be at least \(k b+1\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

b.b
info
On exit, this array is overwritten by the elements of the split Cholesky factor S.
INTEGER.
If info $=0$, the execution is successful.
If info $=i$, then the factorization could not be completed, because the updated element $b_{i i}$ would be the square root of a negative number; hence the matrix B is not positive-definite.
If info $=-i$, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine pbstf interface are the following:
```

bb Holds the array B of size (kb+1,n).
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

The computed factor \(S\) is the exact factor of a perturbed matrix \(B+E\), where
\[
|E| \leq c(k b+1) \varepsilon\left|S^{H}\right||S|, \quad\left|e_{i j}\right| \leq c(k b+1) \varepsilon \sqrt{b_{i i} b_{j j}}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
The total number of floating-point operations for real flavors is approximately \(n(k b+1)^{2}\). The number of operations for complex flavors is 4 times greater. All these estimates assume that \(k b\) is much less than \(n\).

After calling this routine, you can call sbgst/hbgst to solve the generalized eigenproblem \(A z=\lambda B z\), where \(A\) and \(B\) are banded and \(B\) is positive-definite.

\section*{Nonsymmetric Eigenvalue Problems}

This section describes LAPACK routines for solving nonsymmetric eigenvalue problems, computing the Schur factorization of general matrices, as well as performing a number of related computational tasks.
A nonsymmetric eigenvalue problem is as follows: given a nonsymmetric (or non-Hermitian) matrix \(A\), find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(z\) that satisfy the equation
\(A z=\lambda z\) (right eigenvectors \(z\) )
or the equation
\(z^{H} A=\lambda z^{H}\) (left eigenvectors \(z\) ).
Nonsymmetric eigenvalue problems have the following properties:
- The number of eigenvectors may be less than the matrix order (but is not less than the number of distinct eigenvalues of \(A\) ).
- Eigenvalues may be complex even for a real matrix \(A\).
- If a real nonsymmetric matrix has a complex eigenvalue \(a+b i\) corresponding to an eigenvector \(z\), then \(a-\) \(b i\) is also an eigenvalue. The eigenvalue \(a-b i\) corresponds to the eigenvector whose elements are complex conjugate to the elements of \(z\).

To solve a nonsymmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg matrix obtained. Table "Computational Routines for Solving Nonsymmetric Eigenvalue Problems" lists LAPACK routines (FORTRAN 77 interface) to reduce the matrix to the upper Hessenberg form by an orthogonal (or unitary) similarity transformation \(A=Q H Q^{H}\) as well as routines to solve eigenvalue problems with Hessenberg matrices, forming the Schur factorization of such matrices and computing the corresponding condition numbers. Respective routine names in the Fortran 95 interface are without the first symbol (see Routine Naming Conventions).

The decision tree in Figure "Decision Tree: Real Nonsymmetric Eigenvalue Problems" helps you choose the right routine or sequence of routines for an eigenvalue problem with a real nonsymmetric matrix. If you need to solve an eigenvalue problem with a complex non-Hermitian matrix, use the decision tree shown in Figure "Decision Tree: Complex Non-Hermitian Eigenvalue Problems".
Computational Routines for Solving Nonsymmetric Eigenvalue Problems
\begin{tabular}{lll}
\hline Operation performed & Routines for real matrices & Routines for complex matrices \\
\hline \begin{tabular}{l} 
Reduce to Hessenberg form \\
\(A=Q H Q^{H}\)
\end{tabular} & ?gehrd, & ?gehrd \\
Generate the matrix Q & ?orghr & ?unghr \\
Apply the matrix Q & ?ormhr & ?unmhr \\
Balance matrix & ?gebal & ?gebal \\
\begin{tabular}{l} 
Transform eigenvectors of \\
balanced matrix to those of \\
the original matrix
\end{tabular} & ?gebak & ?gebak \\
\begin{tabular}{l} 
Find eigenvalues and Schur \\
factorization (QR algorithm)
\end{tabular} & ?hseqr & ?hseqr \\
\begin{tabular}{l} 
Find eigenvectors from \\
Hessenberg form (inverse \\
iteration)
\end{tabular} & ?hsein & ?hsein \\
\begin{tabular}{l} 
Find eigenvectors from \\
Schur factorization
\end{tabular} & ?trevc & ?trevc
\end{tabular}
\begin{tabular}{lll}
\hline Operation performed & Routines for real matrices & Routines for complex matrices \\
\hline \begin{tabular}{l} 
Estimate sensitivities of \\
eigenvalues and \\
eigenvectors
\end{tabular} & ?trsna & ?trsna \\
Reorder Schur factorization & ?trexc & ?trexc \\
\begin{tabular}{l} 
Reorder Schur factorization, \\
find the invariant subspace \\
and estimate sensitivities
\end{tabular} & ?trsen & ?trsen \\
Solves Sylvester's equation. & ?trsyl & ?trsyl \\
\hline
\end{tabular}

Decision Tree: Real Nonsymmetric Eigenvalue Problems


\section*{Decision Tree: Complex Non-Hermitian Eigenvalue Problems}

?gehrd
Reduces a general matrix to upper Hessenberg form.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)
call dgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)
call cgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)
call zgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)

```

\section*{Fortran 95:}
```

call gehrd(a [, tau] [,ilo] [,ihi] [,info])

```

C:
```

lapack_int LAPACKE_<?>gehrd(int matrix_order, lapack_int n, lapack_int ilo, lapack_int

```
ihi, <datatype>* a, lapack_int lda, <datatype>* tau );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces a general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal or unitary similarity transformation \(A=Q^{*} H^{*} Q^{H}\). Here \(H\) has real subdiagonal elements.

The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of elementary reflectors. Routines are provided to work with \(Q\) in this representation.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

n INTEGER. The order of the matrix A (n\geq0).
ilo, ihi
a, work
lda
lwork
INTEGER. If A is an output by ?gebal, then ilo and ihi must contain the
values returned by that routine. Otherwise ilo = 1 and ihi = n. (If n >
0, then 1 \leq ilo \leq ihi \leqn; if n = 0, ilo = 1 and ihi = 0.)
REAL for sgehrd
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.

```

\section*{Arrays:}
```

a (lda,*) contains the matrix A.
The second dimension of a must be at least max $(1, n)$.
work (lwork) is a workspace array.
INTEGER. The leading dimension of a; at least max $(1, n)$.
INTEGER. The size of the work array; at least max $(1, n)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

```

See Application Notes for the suggested value of lwork.

\section*{Output Parameters}
a
Overwritten by the upper Hessenberg matrix \(H\) and details of the matrix \(Q\). The subdiagonal elements of \(H\) are real.
REAL for sgehrd
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
Array, DIMENSION at least max ( \(1, n-1\) ).
Contains additional information on the matrix \(Q\).
```

work(1)
info
If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gehrd interface are the following:
```

a Holds the matrix A of size (}n,n)\mathrm{ .
tau Holds the vector of length (n-1).
ilo Default value for this argument is ilo = 1.
ihi Default value for this argument is ihi = n.

```

\section*{Application Notes}

For better performance, try using lwork = \(n \star\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set
lwork \(=-1\).
If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The computed Hessenberg matrix \(H\) is exactly similar to a nearby matrix \(A+E\), where \(||E||_{2}<C(n) \varepsilon| |\) \(A\left|\left.\right|_{2}, C(n)\right.\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations for real flavors is (2/3)* (ihi -ilo) \({ }^{2}(2 i h i+2 i l o\)
\(+3 n\) ) ; for complex flavors it is 4 times greater.

\section*{?orghr}

Generates the real orthogonal matrix \(Q\) determined by ?gehrd.

Syntax

\section*{Fortran 77:}
```

call sorghr(n, ilo, ihi, a, lda, tau, work, lwork, info)
call dorghr(n, ilo, ihi, a, lda, tau, work, lwork, info)

```

Fortran 95:
```

call orghr(a, tau [,ilo] [,ihi] [,info])

```

C:
lapack_int LAPACKE_<?>orghr( int matrix_order, lapack_int n, lapack_int ilo, lapack_int ihi, <datatype>* a, lapack_int lda, const <datatype>* tau );

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine explicitly generates the orthogonal matrix \(Q\) that has been determined by a preceding call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal similarity transformation, \(A=Q^{\star} H^{\star} Q^{T}\), and represents the matrix \(Q\) as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, \(i l o=1\) and \(i h i=n\).)

The matrix \(Q\) generated by ?orghr has the structure:
\[
Q=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & Q_{22} & 0 \\
0 & 0 & I
\end{array}\right]
\]
where \(Q_{22}\) occupies rows and columns ilo to ihi.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The order of the matrix \(Q(n \geq 0)\). \\
\hline ilo, ihi & INTEGER. These must be the same parameters ilo and ihi, respectively, as supplied to ?gehrd. (If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\); if \(n=0\), ilo \(=1\) and \(i\) hi \(=0\).) \\
\hline \multirow[t]{5}{*}{a, tau, work} & REAL for sorghr \\
\hline & DOUBLE PRECISION for dorghr \\
\hline & Arrays: \(a(l d a, *)\) contains details of the vectors which define the elementary reflectors, as returned by ?gehrd. \\
\hline & The second dimension of \(a\) must be at least \(\max (1, n)\). \(\operatorname{tau}(*)\) contains further details of the elementary reflectors, as returned by ? gehrd. \\
\hline & The dimension of tau must be at least max (1, \(n-1\) ). work is a workspace array, its dimension max (1, lwork). \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, n)\). \\
\hline \multirow[t]{2}{*}{Iwork} & INTEGER. The size of the work array; \\
\hline & lwork \(\geq \max (1, ~ i h i-i l o)\). \\
\hline
\end{tabular}

If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to \(l\) work is issued by xerbla.
See Application Notes for the suggested value of lwork.

\section*{Output Parameters}
\(a\)
work(1)
info

Overwritten by the \(n\)-by- \(n\) orthogonal matrix \(Q\).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine orghr interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((n, n)\). \\
tau & Holds the vector of length \((n-1)\). \\
ilo & Default value for this argument is \(i l o=1\). \\
ihi & Default value for this argument is \(i h i=n\).
\end{tabular}

\section*{Application Notes}

For better performance, try using lwork =(ihi-ilo)*blocksize where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(\left||E| I_{2}=O(\varepsilon)\right.\), where \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is (4/3) (ihi-ilo) \({ }^{3}\).
The complex counterpart of this routine is unghr.
?ormhr
Multiplies an arbitrary real matrix C by the real orthogonal matrix Q determined by ?gehrd.

\section*{Syntax}

\section*{Fortran 77:}
```

call sormhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork, info)
call dormhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork, info)

```

\section*{Fortran 95:}
```

call ormhr(a, tau, c [,ilo] [,ihi] [,side] [,trans] [,info])

```

C:
```

lapack_int LAPACKE_<?>ormhr(int matrix_order, char side, char trans, lapack_int m,
lapack_int n, lapack_int ilo, lapack_int ihi, const <datatype>* a, lapack_int lda,
const <datatype>* tau, <datatype>* c, lapack_int ldc);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine multiplies a matrix \(C\) by the orthogonal matrix \(Q\) that has been determined by a preceding call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal similarity transformation, \(A=Q^{\star} H^{\star} Q^{T}\), and represents the matrix \(Q\) as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, \(i l o=1\) and \(i h i=n\).)

With ?ormhr, you can form one of the matrix products \(Q^{\star} C, Q^{T} C_{,} C^{\star} Q\), or \(C^{\star} Q^{T}\), overwriting the result on \(C\) (which may be any real rectangular matrix).

A common application of ?ormhr is to transform a matrix \(V\) of eigenvectors of \(H\) to the matrix \(Q V\) of eigenvectors of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. \(A<d a t a t y p e>\) placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

side
trans
m
n
ilo, ihi
CHARACTER*1. Must be 'L' or 'R'.
If side $=$ 'L', then the routine forms $Q^{\star} C$ or $Q^{T} \star C$. If side $=$ ' R ', then the routine forms $C^{\star} Q$ or $C^{\star} Q^{T}$.
CHARACTER*1. Must be 'N' or 'T'.
If trans $=$ ' N ', then Q is applied to C.
If trans $=$ ' T ', then Q^{T} is applied to C.
m
n
ilo, ihi
INTEGER. The number of rows in $C(m \geq 0)$.
INTEGER. The number of columns in $C(n \geq 0)$.
INTEGER. These must be the same parameters ilo and ihi, respectively, as supplied to ?gehrd.
If $m>0$ and side $=$ 'L', then $1 \leq i l o \leq i h i \leq m$.
If $m=0$ and side $=$ 'L', then ilo $=1$ and ihi $=0$.
If $n>0$ and side $=' R '$, then $1 \leq i l o \leq i h i \leq n$.
If $n=0$ and side $=$ 'R', then ilo $=1$ and ihi $=0$.

```
```

a, tau, c, work REAL for sormhr
DOUBLE PRECISION for dormhr
Arrays:
a(Ida,*) contains details of the vectors which define the elementary
reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1,m) if side = 'L' and
at least max(1,n) if side = 'R'.
tau(*) contains further details of the elementary reflectors, as returned
by ?gehrd.
The dimension of tau must be at least max (1,m-1)
if side = 'L' and at least max (1, n-1) if side = 'R'.
c(Idc,*) contains the m by n matrix c. The second dimension of c must be
at least max(1,n).
work is a workspace array, its dimension max(1, lwork).
INTEGER. The leading dimension of a; at least max(1,m) if side = 'L' and
at least max (}1,n\mathrm{) if side = 'R'.
INTEGER. The leading dimension of c; at least max (1,m).
INTEGER. The size of the work array.
If side = 'L', lwork \geq max(1, n).
If side = 'R', lwork \geqmax(1,m).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.

```
See Application Notes for the suggested value of lwork.

\section*{Output Parameters}
work(1)
info
\(C\) is overwritten by product \(Q^{\star} C, Q^{T *} C, C^{\star} Q\), or \(C^{\star} Q^{T}\) as specified by side and trans.
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ormhr interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size \((r, r)\).
\[
\begin{aligned}
& r=m \text { if side }='^{\prime} . \\
& r=n \text { if side }=R^{\prime} .
\end{aligned}
\] \\
\hline tau & Holds the vector of length ( \(r-1\) ). \\
\hline c & Holds the matrix \(C\) of size ( \(m, n\) ). \\
\hline ilo & Default value for this argument is ilo \(=1\). \\
\hline ihi & Default value for this argument is ihi \(=n\). \\
\hline side & Must be 'L' or 'R'. The default value is 'L' \\
\hline
\end{tabular}
trans Must be 'N' or 'T'. The default value is 'N'.

\section*{Application Notes}

For better performance, lwork should be at least \(n^{*}\) blocksize if side \(=\) 'L' and at least \(m^{*}\) blocksize if side = 'R', where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(\left||E|_{2}=O(\varepsilon)\right|\) *|C|| \(\left.\right|_{2}\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is
```

2n(ihi-ilo)2 if side = 'L';
2m(ihi-ilo)}\mp@subsup{}{}{2}\mathrm{ if side = 'R'.

```

The complex counterpart of this routine is unmhr.

\section*{?unghr}

Generates the complex unitary matrix \(Q\) determined
by ? gehrd.

\section*{Syntax}

\section*{Fortran 77:}
```

call cunghr(n, ilo, ihi, a, lda, tau, work, lwork, info)
call zunghr(n, ilo, ihi, a, lda, tau, work, lwork, info)

```

\section*{Fortran 95:}
```

call unghr(a, tau [,ilo] [,ihi] [,info])

```

C:
```

lapack_int LAPACKE_<?>unghr(int matrix_order, lapack_int n, lapack_int ilo, lapack_int

```
ihi, <datatype>* a, lapack_int lda, const <datatype>* tau );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine is intended to be used following a call to cgehrd/zgehrd, which reduces a complex matrix \(A\) to upper Hessenberg form \(H\) by a unitary similarity transformation: \(A=Q^{\star} H^{*} Q^{H}\). ? gehrd represents the matrix \(Q\) as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined by cgebal/ zgebal when balancing the matrix; if the matrix has not been balanced, ilo \(=1\) and \(i h i=n\).
Use the routine unghr to generate \(Q\) explicitly as a square matrix. The matrix \(Q\) has the structure:
\[
Q=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & Q_{22} & 0 \\
0 & 0 & I
\end{array}\right]
\]
where \(Q_{22}\) occupies rows and columns ilo to ihi.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The order of the matrix \(Q(n \geq 0)\). \\
\hline ilo, ihi & INTEGER. These must be the same parameters ilo and ihi, respectively, as supplied to ?gehrd. (If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\). If \(n=0\), then ilo = 1 and ihi = 0.) \\
\hline \multirow[t]{6}{*}{a, tau, work} & COMPLEX for cunghr \\
\hline & DOUBLE COMPLEX for zunghr. \\
\hline & Arrays: \\
\hline & a(lda,*) contains details of the vectors which define the elementary reflectors, as returned by ?gehrd. \\
\hline & The second dimension of a must be at least max \((1, n)\). \(\operatorname{tau}(*)\) contains further details of the elementary reflectors, as returned by ?gehrd. \\
\hline & The dimension of tau must be at least max (1, \(n-1\) ). work is a workspace array, its dimension max ( \(1, ~ 1\) work). \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, n)\). \\
\hline \multirow[t]{3}{*}{lwork} & INTEGER. The size of the work array; \\
\hline & lwork \(\geq \max (1\), ihi-ilo). \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. \\
\hline
\end{tabular}

See Application Notes for the suggested value of lwork.

\section*{Output Parameters}
```

a
work(1)
info

```

Overwritten by the \(n\)-by- \(n\) unitary matrix \(Q\).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine unghr interface are the following:
```

a Holds the matrix A of size (n,n).
tau Holds the vector of length (n-1).
ilo Default value for this argument is ilo = 1.
ihi Default value for this argument is ihi = n.

```

\section*{Application Notes}

For better performance, try using lwork \(=\) (ihi-ilo)*blocksize, where blocksize is a machinedependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if 1 work is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.

The approximate number of real floating-point operations is \((16 / 3)\) (ihi-ilo) \({ }^{3}\).
The real counterpart of this routine is orghr.

\section*{?unmhr}

Multiplies an arbitrary complex matrix \(C\) by the complex unitary matrix \(Q\) determined by ?gehrd.

\section*{Syntax}

\section*{Fortran 77:}
```

call cunmhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork, info)
call zunmhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork, info)

```

\section*{Fortran 95:}
call unmhr(a, tau, \(c\) [,ilo] [,ihi] [,side] [,trans] [,info])
C:
```

lapack_int LAPACKE_<?>unmhr(int matrix_order, char side, char trans, lapack_int m,
lapack_int n, lapack_int ilo, lapack_int ihi, const <datatype>* a, lapack_int lda,
const <datatype>* tau, <datatype>* c, lapack_int ldc);

```

\section*{Include files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine multiplies a matrix \(C\) by the unitary matrix \(Q\) that has been determined by a preceding call to cgehrd/zgehrd. (The routine ?gehrd reduces a real general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal similarity transformation, \(A=Q^{\star} H^{\star} Q^{H}\), and represents the matrix \(Q\) as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined by cgebal/zgebal when balancing the matrix; if the matrix has not been balanced, ilo \(=1\) and \(i h i=n\).)

With ? unmhr, you can form one of the matrix products \(Q^{*} C, Q^{H *} C, C^{*} Q\), or \(C^{*} Q^{H}\), overwriting the result on \(C\) (which may be any complex rectangular matrix). A common application of this routine is to transform a matrix \(V\) of eigenvectors of \(H\) to the matrix \(Q V\) of eigenvectors of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

side CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then the routine forms Q*C or Q Q *}C\mathrm{ .
If side = 'R', then the routine forms C*Q or C** 古.
CHARACTER*1. Must be 'N' or 'C'.
If trans = 'N', then Q is applied to C.
If trans = 'T', then Q 咅 is applied to C.
INTEGER. The number of rows in C (m\geq0).
INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
INTEGER. These must be the same parameters ilo and ihi, respectively,
as supplied to ?gehrd.
If m > 0 and side = 'L', then 1 silo\leqihi\leqm.
If m = 0 and side = 'L', then ilo = 1 and ihi = 0.
If n > 0 and side = 'R', then 1 \leqilo\leqihi\leqn.
If n = 0 and side = 'R', then ilo =1 and ihi = 0.
a, tau, c, work
lda
ldc
lwork
COMPLEX for cunmhr
DOUBLE COMPLEX for zunmhr.

```

\section*{Arrays:}
```

a (lda,*) contains details of the vectors which define the elementary reflectors, as returned by ?gehrd.
The second dimension of a must be at least $\max (1, m)$ if side $=$ 'L' and at least $\max (1, n)$ if side $=$ ' R^{\prime}.
$\operatorname{tau}(*)$ contains further details of the elementary reflectors, as returned by ?gehrd.
The dimension of tau must be at least max (1, m-1)
if side $=$ 'L' and at least max ($1, n-1$) if side $=$ ' R'.
$c(l d c, *)$ contains the $m-b y-n$ matrix c. The second dimension of c must be at least $\max (1, n)$.
work is a workspace array, its dimension max (1,1 work).
INTEGER. The leading dimension of a; at least $\max (1, m)$ if side $=$ 'L' and at least max $(1, n)$ if side $=$ ' R^{\prime}.
INTEGER. The leading dimension of c; at least max $(1, m)$.
INTEGER. The size of the work array.

```
```

If side $=$ 'L', 1 work $\geq \max (1, n)$.
If side = 'R', lwork $\geq \max (1, m)$.
If lwork $=-1$, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.

```
See Application Notes for the suggested value of lwork.

\section*{Output Parameters}
```

C
work(1)
info
C is overwritten by Q }\mp@subsup{}{}{*}C\mathrm{ , or }\mp@subsup{Q}{}{H*}C\mathrm{ , or C** Q , or C** as specified by side and
trans.
If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine unmhr interface are the following:
```

a Holds the matrix A of size (r,r).
r = m if side = 'L'.
r = n if side = 'R'.
tau Holds the vector of length (r-1).
c Holds the matrix C of size (m,n).
ilo Default value for this argument is ilo = 1.
ihi Default value for this argument is ihi = n.
side Must be 'L' or 'R'. The default value is 'L'.
trans Must be 'N' or 'C'. The default value is 'N'.

```

\section*{Application Notes}

For better performance, lwork should be at least \(n^{*}\) blocksize if side \(=\) 'L' and at least m*blocksize if side = 'R', where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If \(\operatorname{lwork}=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if 1 work is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(\left||E| I_{2}=O(\varepsilon) *\right||C| I_{2}\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is
```

8n(ihi-ilo)2 if side = 'L';
8m(ihi-ilo)}\mp@subsup{}{}{2}\mathrm{ if side = 'R'.

```

The real counterpart of this routine is ormhr.

\section*{?gebal}

Balances a general matrix to improve the accuracy of computed eigenvalues and eigenvectors.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgebal(job, n, a, lda, ilo, ihi, scale, info)
call dgebal(job, n, a, lda, ilo, ihi, scale, info)
call cgebal(job, n, a, lda, ilo, ihi, scale, info)
call zgebal(job, n, a, lda, ilo, ihi, scale, info)

```

\section*{Fortran 95:}
```

call gebal(a [, scale] [,ilo] [,ihi] [,job] [,info])

```

C:
```

lapack_int LAPACKE_sgebal(int matrix_order, char job, lapack_int n, float* a,

```
lapack_int lda, lapack_int* ilo, lapack_int* ihi, float* scale );
lapack_int LAPACKE_dgebal( int matrix_order, char job, lapack_int \(n\), double* \(a\),
lapack_int lda, lapack_int* ilo, lapack_int* ihi, double* scale );
lapack_int LAPACKE_cgebal( int matrix_order, char job, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_int* ilo, lapack_int* ihi, float*
scale );
lapack_int LAPACKE_zgebal( int matrix_order, char job, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_int* ilo, lapack_int* ihi, double*
scale );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine balances a matrix A by performing either or both of the following two similarity transformations:
(1) The routine first attempts to permute \(A\) to block upper triangular form:
\[
P A P^{T}=A^{\prime}=\left[\begin{array}{ccc}
A_{11}^{\prime} & A_{12}^{\prime} & A_{13}^{\prime} \\
0 & A_{22}^{\prime} & A_{23}^{\prime} \\
0 & 0 & A_{33}^{\prime}
\end{array}\right]
\]
where \(P\) is a permutation matrix, and \(A^{\prime} 11\) and \(A^{\prime} 33\) are upper triangular. The diagonal elements of \(A^{\prime} 11\) and \(A\) ' 33 are eigenvalues of \(A\). The rest of the eigenvalues of \(A\) are the eigenvalues of the central diagonal block \(A^{\prime} 22\), in rows and columns ilo to ihi. Subsequent operations to compute the eigenvalues of \(A\) (or its Schur factorization) need only be applied to these rows and columns; this can save a significant amount of work if ilo > 1 and ihi < n.

If no suitable permutation exists (as is often the case), the routine sets ilo = 1 and \(i h i=n\), and \(A^{\prime} 22\) is the whole of \(A\).
(2) The routine applies a diagonal similarity transformation to \(A^{\prime}\) ', to make the rows and columns of \(A\) ' 22 as close in norm as possible:
\[
A^{\prime \prime}=D A^{\prime} D^{-1}=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & D_{22} & 0 \\
0 & 0 & I
\end{array}\right] \times\left[\begin{array}{ccc}
A_{11}^{\prime} & A_{12}^{\prime} & A_{13}^{\prime} \\
0 & A_{22}^{\prime} & A_{23}^{\prime} \\
0 & 0 & A_{33}^{\prime}
\end{array}\right] \times\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & D_{22}^{-1} & 0 \\
0 & 0 & I
\end{array}\right]
\]

This scaling can reduce the norm of the matrix (that is, \(\| A^{\prime}{ }_{2}{ }_{2}| |<\left|\left|A^{\prime}{ }_{22}\right|\right|\) ), and hence reduce the effect of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'.
If job = 'N', then A is neither permuted nor scaled (but ilo, ihi, and
scale get their values).
If job = 'P', then A is permuted but not scaled.
If job = 'S', then A is scaled but not permuted.
If job = 'B', then A is both scaled and permuted.
INTEGER. The order of the matrix A (n\geq0).
REAL for sgebal
DOUBLE PRECISION for dgebal
COMPLEX for cgebal
DOUBLE COMPLEX for zgebal.
Arrays:
a (lda,*) contains the matrix A.
The second dimension of a must be at least max (1,n). a is not referenced if
job = 'N'.
lda INTEGER. The leading dimension of a; at least max(1,n).

```

\section*{Output Parameters}
a
ilo, ihi
scale

Overwritten by the balanced matrix ( \(a\) is not referenced if job = 'N').
INTEGER. The values \(i l o\) and ihi such that on exit \(a(i, j)\) is zero if \(i>j\) and \(1 \leq j<i l o\) or ihi \(<i \leq n\). If job \(=\) 'N' or 'S', then ilo \(=1\) and ihi \(=n\).
REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors
Array, DIMENSION at least max \((1, n)\).

Contains details of the permutations and scaling factors.
More precisely, if \(p_{j}\) is the index of the row and column interchanged with row and column \(j\), and \(d_{j}\) is the scaling factor used to balance row and column \(j\), then
\(\operatorname{scale}(j)=p_{j}\) for \(j=1,2, \ldots\), ilo-1, ihi+1,..., \(n\);
\(\operatorname{scale}(j)=d_{j}\) for \(j=i l o, i l o+1, \ldots, i h i\).
The order in which the interchanges are made is \(n\) to \(i\) hi+1, then 1 to ilo-1.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine gebal interface are the following:
```

a Holds the matrix A of size (}n,n)\mathrm{ .
scale Holds the vector of length n.
ilo Default value for this argument is ilo = 1.
ihi Default value for this argument is ihi = n.
job Must be 'B','S','P', or 'N'. The default value is 'B'.

```

\section*{Application Notes}

The errors are negligible, compared with those in subsequent computations.
If the matrix \(A\) is balanced by this routine, then any eigenvectors computed subsequently are eigenvectors of the matrix \(A^{\prime \prime}\) ' and hence you must call gebak to transform them back to eigenvectors of \(A\).

If the Schur vectors of \(A\) are required, do not call this routine with job = 'S' or 'B', because then the balancing transformation is not orthogonal (not unitary for complex flavors).
If you call this routine with job \(=\) ' \(\mathrm{P}^{\prime}\), then any Schur vectors computed subsequently are Schur vectors of the matrix \(A^{\prime}\) ', and you need to call gebak (with side \(=\) 'R') to transform them back to Schur vectors of \(A\).
The total number of floating-point operations is proportional to \(n^{2}\).

\section*{?gebak}

Transforms eigenvectors of a balanced matrix to those of the original nonsymmetric matrix.

\section*{Syntax}

Fortran 77:
```

call sgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)
call dgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)
call cgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)
call zgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)

```

Fortran 95:
call gebak(v, scale [,ilo] [,ihi] [,job] [,side] [,info])

C:
```

lapack_int LAPACKE_sgebak(int matrix_order, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const float* scale, lapack_int m, float* v, lapack_int
ldv);
lapack_int LAPACKE_dgebak(int matrix_order, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const double* scale, lapack_int m, double* v,
lapack_int ldv);
lapack_int LAPACKE_cgebak(int matrix_order, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const float* scale, lapack_int m, lapack_complex_float*
v, lapack_int ldv);
lapack_int LAPACKE_zgebak(int matrix_order, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const double* scale, lapack_int m,
lapack_complex_double* v, lapack_int ldv);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine is intended to be used after a matrix \(A\) has been balanced by a call to ? gebal, and eigenvectors of the balanced matrix \(A^{\prime}\) ' 22 have subsequently been computed. For a description of balancing, see gebal. The balanced matrix \(A^{\prime} \prime^{\prime}\) is obtained as \(A^{\prime} \prime^{\prime}=D^{\star} P^{\star} A \star P^{T} \star \operatorname{inv}(D)\), where \(P\) is a permutation matrix and \(D\) is a diagonal scaling matrix. This routine transforms the eigenvectors as follows:
if \(x\) is a right eigenvector of \(A^{\prime}\), then \(P^{T} *_{\text {inv }}(D){ }^{*} x\) is a right eigenvector of \(A\); if \(x\) is a left eigenvector of \(A^{\prime} '\), then \(P^{T \star} D^{\star} y\) is a left eigenvector of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline job & CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'. The same parameter job as supplied to ?gebal. \\
\hline side & \begin{tabular}{l}
CHARACTER*1. Must be 'L' or 'R'. \\
If side \(=\) 'L', then left eigenvectors are transformed. \\
If side = 'R', then right eigenvectors are transformed.
\end{tabular} \\
\hline \(n\) & INTEGER. The number of rows of the matrix of eigenvectors ( \(n \geq 0\) ). \\
\hline ilo, ihi & INTEGER. The values ilo and ihi, as returned by ?gebal. (If \(n>0\), then
\[
\begin{aligned}
& 1 \leq i l o \leq i h i \leq n ; \\
& \text { if } n=0 \text {, then } i l o=1 \text { and } \text { ihi }=0 . \text { ) }
\end{aligned}
\] \\
\hline scale & \begin{tabular}{l}
REAL for single-precision flavors \\
DOUBLE PRECISION for double-precision flavors \\
Array, DIMENSION at least max \((1, n)\). \\
Contains details of the permutations and/or the scaling factors used to balance the original general matrix, as returned by ?gebal.
\end{tabular} \\
\hline m
v & INTEGER. The number of columns of the matrix of eigenvectors ( \(m \geq 0\) ). REAL for sgebak \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline & DOUBLE PRECISION for dgebak \\
& COMPLEX for cgebak \\
& DOUBLE COMPLEX for zgebak. \\
& Arrays: \\
& \(v(l d v, *)\) contains the matrix of left or right eigenvectors to be \\
& transformed. \\
& The second dimension of \(v\) must be at least max \((1, m)\). \\
& INTEGER. The leading dimension of \(v ;\) at least max \((1, n)\).
\end{tabular}

\section*{Output Parameters}

V
info

Overwritten by the transformed eigenvectors.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gebak interface are the following:
```

v Holds the matrix }V\mathrm{ of size (}n,m\mathrm{).
scale Holds the vector of length n.
ilo Default value for this argument is ilo = 1.
ihi Default value for this argument is ihi = n.
job Must be 'B','S','P', or 'N'. The default value is 'B'.
side Must be 'L' or 'R'. The default value is 'L'.

```

\section*{Application Notes}

The errors in this routine are negligible.
The approximate number of floating-point operations is approximately proportional to \(m \star n\).
```

?hseqr
Computes all eigenvalues and (optionally) the Schur
factorization of a matrix reduced to Hessenberg form.
Syntax

```

\section*{Fortran 77:}
```

call shseqr(job, compz, n, ilo, ihi, h, ldh, wr, wi, z, ldz, work, lwork, info)
call dhseqr(job, compz, n, ilo, ihi, h, ldh, wr, wi, z, ldz, work, lwork, info)
call chseqr(job, compz, n, ilo, ihi, h, ldh, w, z, ldz, work, lwork, info)
call zhseqr(job, compz, n, ilo, ihi, h, ldh, w, z, ldz, work, lwork, info)

```

\section*{Fortran 95:}
```

call hseqr(h, wr, wi [,ilo] [,ihi] [,z] [,job] [,compz] [,info])
call hseqr(h, w [,ilo] [,ihi] [,z] [,job] [,compz] [,info])

```
```

C:
lapack_int LAPACKE_shseqr(int matrix_order, char job, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, float* h, lapack_int ldh, float* wr, float* wi, float*
z, lapack_int ldz);
lapack_int LAPACKE_dhseqr(int matrix_order, char job, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, double* h, lapack_int ldh, double* wr, double* wi,
double* z, lapack_int ldz);
lapack_int LAPACKE_chseqr(int matrix_order, char job, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, lapack_complex_float* h, lapack_int ldh,
lapack_complex_float* w, lapack_complex_float* z, lapack_int ldz);
lapack_int LAPACKE_zhseqr(int matrix_order, char job, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, lapack_complex_double* h, lapack_int ldh,
lapack_complex_double* w, lapack_complex_double* z, lapack_int ldz);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes all the eigenvalues, and optionally the Schur factorization, of an upper Hessenberg matrix \(H\) : \(H=Z^{\star} T^{*} Z^{H}\), where \(T\) is an upper triangular (or, for real flavors, quasi-triangular) matrix (the Schur form of \(H\) ), and \(z\) is the unitary or orthogonal matrix whose columns are the Schur vectors \(z_{i}\).
You can also use this routine to compute the Schur factorization of a general matrix A which has been reduced to upper Hessenberg form \(H\) :
\(A=Q^{\star} H^{\star} Q^{H}\), where \(Q\) is unitary (orthogonal for real flavors);
\(A=(Q Z)^{*} H^{\star}(Q Z)^{H}\).
In this case, after reducing A to Hessenberg form by gehrd, call orghr to form \(Q\) explicitly and then pass \(Q\) to ?hseqr with compz \(=\) ' V '.
You can also call gebal to balance the original matrix before reducing it to Hessenberg form by ?hseqr, so that the Hessenberg matrix \(H\) will have the structure:
\[
\left[\begin{array}{ccc}
H_{11} & H_{12} & H_{13} \\
0 & H_{22} & H_{23} \\
0 & 0 & H_{33}
\end{array}\right]
\]
where \(H_{11}\) and \(H_{33}\) are upper triangular.
If so, only the central diagonal block \(H_{22}\) (in rows and columns ilo to ihi) needs to be further reduced to Schur form (the blocks \(H_{12}\) and \(H_{23}\) are also affected). Therefore the values of \(i l o\) and \(i\) hi can be supplied to ?hseqr directly. Also, after calling this routine you must call gebak to permute the Schur vectors of the balanced matrix to those of the original matrix.

If ?gebal has not been called, however, then ilo must be set to 1 and ihi to n. Note that if the Schur factorization of \(A\) is required, ? gebal must not be called with job \(=\) 'S' or 'B', because the balancing transformation is not unitary (for real flavors, it is not orthogonal).
?hseqr uses a multishift form of the upper Hessenberg \(Q R\) algorithm. The Schur vectors are normalized so that \(\left|\mid z_{i} \|_{2}=1\right.\), but are determined only to within a complex factor of absolute value 1 (for the real flavors, to within a factor \(\pm 1\) ).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

job CHARACTER*1. Must be 'E' or 'S'.
If job = 'E', then eigenvalues only are required.
If job = 'S', then the Schur form T is required.
CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz = 'N', then no Schur vectors are computed (and the array z is not
referenced).
If compz = 'I', then the Schur vectors of H are computed (and the array z
is initialized by the routine).
If compz = 'V', then the Schur vectors of A are computed (and the array z
must contain the matrix Q on entry).
INTEGER. The order of the matrix H (}n\geq0)\mathrm{ .
INTEGER. If A has been balanced by ?gebal, then ilo and ihi must
contain the values returned by ?gebal. Otherwise, ilo must be set to 1
and ihi to n.
REAL for shseqr
DOUBLE PRECISION for dhseqr
COMPLEX for chseqr
DOUBLE COMPLEX for zhseqr.
Arrays:
h(ldh,*) The n-by-n upper Hessenberg matrix H.
The second dimension of h must be at least max(1,n).
z(ldz,*)
If compz = 'V', then z must contain the matrix Q from the reduction to
Hessenberg form.
If compz = 'I', then z need not be set.
If compz = 'N', then z is not referenced.
The second dimension of z must be
at least max(1,n) if compz = 'V' or 'I';
at least 1 if compz = 'N'.
work(lwork) is a workspace array.
The dimension of work must be at least max (1, n).
INTEGER. The leading dimension of h; at least max(1,n).
INTEGER. The leading dimension of z;
If compz = 'N', then ldz \geq1.
If compz = 'V' or 'I', then Idz \geq max (1, n).

```
lwork

INTEGER. The dimension of the array work.
lwork \(\geq \max (1, n)\) is sufficient and delivers very good and sometimes
optimal performance. However, 1 work as large as \(11{ }^{*} n\) may be required for optimal performance. A workspace query is recommended to determine the optimal workspace size.

If 1 work \(=-1\), then a workspace query is assumed; the routine only estimates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}

W
wr, wi
h

Z
work (1)
info

COMPLEX for chseqr
DOUBLE COMPLEX for zhseqr.
Array, DIMENSION at least max \((1, n)\). Contains the computed eigenvalues, unless info>0. The eigenvalues are stored in the same order as on the diagonal of the Schur form \(T\) (if computed).
REAL for shseqr
DOUBLE PRECISION for dhseqr
Arrays, DIMENSION at least max \((1, n)\) each.
Contain the real and imaginary parts, respectively, of the computed eigenvalues, unless info >0. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first. The eigenvalues are stored in the same order as on the diagonal of the Schur form \(T\) (if computed).
If info \(=0\) and job \(=\) 'S', h contains the upper triangular matrix \(T\) from the Schur decomposition (the Schur form).
If info \(=0\) and job \(=\) 'E', the contents of \(h\) are unspecified on exit. (The output value of \(h\) when info \(>0\) is given under the description of info below.)
If compz \(=\) ' \(V\) ' and info \(=0\), then \(z\) contains \(Q^{\star} Z\).
If compz \(=\) 'I' and info \(=0\), then \(z\) contains the unitary or orthogonal matrix \(z\) of the Schur vectors of \(H\).
If comp \(z=\) ' \(N\) ', then \(z\) is not referenced.
On exit, if info \(=0\), then work (1) returns the optimal lwork.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), elements \(1,2, \ldots, i l o-1\) and \(i+1, i+2, \ldots, n\) of wr and wi contain the real and imaginary parts of those eigenvalues that have been succesively found.
If info > 0 , and job = 'E', then on exit, the remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix rows and columns ilo through info of the final output value of \(H\).
If info \(>0\), and job \(=\) 'S', then on exit (initial value of \(H\) ) \({ }^{*} U=U^{*}\) (final value of \(H\) ), where \(U\) is a unitary matrix. The final value of \(H\) is upper Hessenberg and triangular in rows and columns infoll through ihi. If info \(>0\), and compz \(=\) ' \(V\) ', then on exit (final value of \(z\) ) \(=\) (initial value of \(Z)^{*} U\), where \(U\) is the unitary matrix (regardless of the value of job).
If info \(>0\), and compz = 'I', then on exit (final value of \(z\) ) \(=U\), where \(U\) is the unitary matrix (regardless of the value of job).
If info > 0 , and compz \(=\) 'N', then \(z\) is not accessed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hseqr interface are the following:
```

h Holds the matrix H of size (}n,n)\mathrm{ .
wr Holds the vector of length n. Used in real flavors only.
wi Holds the vector of length n. Used in real flavors only.
w Holds the vector of length n. Used in complex flavors only.
z Holds the matrix z of size (}n,n)\mathrm{ .
job Must be 'E' or 'S'. The default value is 'E'.
compz If omitted, this argument is restored based on the presence of argument z as
follows: compz = 'I', if z is present, compz = 'N', if z is omitted.
If present, compz must be equal to 'I' or 'V' and the argument z must also be
present. Note that there will be an error condition if compz is present and z
omitted.

```

\section*{Application Notes}

The computed Schur factorization is the exact factorization of a nearby matrix \(H+E\), where \(\left|\mid E \|_{2}<O(\varepsilon)\right.\) \(||H||_{2} / s_{i}\), and \(\varepsilon\) is the machine precision.

If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then \(\left|\lambda_{i}-\mu_{i}\right| \leq C(n) \star \varepsilon^{\star}| | H| |_{2} /\) \(s_{i}\), where \(c(n)\) is a modestly increasing function of \(n\), and \(s_{i}\) is the reciprocal condition number of \(\lambda_{i}\). The condition numbers \(s_{i}\) may be computed by calling trsna.

The total number of floating-point operations depends on how rapidly the algorithm converges; typical numbers are as follows.

If only eigenvalues are computed: \(7 n^{3}\) for real flavors
\(25 n^{3}\) for complex flavors.
If the Schur form is computed: \(\quad 10 n^{3}\) for real flavors
\(35 n^{3}\) for complex flavors.
If the full Schur factorization is computed:
\(20 n^{3}\) for real flavors
\(70 n^{3}\) for complex flavors.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?hsein}

Computes selected eigenvectors of an upper Hessenberg matrix that correspond to specified eigenvalues.

\section*{Syntax}

\section*{Fortran 77:}
```

call shsein(job, eigsrc, initv, select, n, h, ldh, wr, wi, vl, ldvl, vr, ldvr, mm, m,
work, ifaill, ifailr, info)
call dhsein(job, eigsrc, initv, select, n, h, ldh, wr, wi, vl, ldvl, vr, ldvr, mm, m,
work, ifaill, ifailr, info)
call chsein(job, eigsrc, initv, select, n, h, ldh, w, vl, ldvl, vr, ldvr, mm, m,
work, rwork, ifaill, ifailr, info)
call zhsein(job, eigsrc, initv, select, n, h, ldh, w, vl, ldvl, vr, ldvr, mm, m,
work, rwork, ifaill, ifailr, info)

```

\section*{Fortran 95:}
call hsein(h, wr, wi, select [, vl] [,vr] [,ifaill] [,ifailr] [rinitv] [, eigsrc] [,m] [, info])
call hsein(h, w, select [,vl] [,vr] [,ifaill] [,ifailr] [, initv] [,eigsrc] [,m] [, info])

\section*{C:}
lapack_int LAPACKE_shsein( int matrix_order, char job, char eigsrc, char initv, lapack_logical* select, lapack_int \(n\), const float* \(h\), lapack_int ldh, float* wr, const float* wi, float* vl, lapack_int ldvl, float* vr, lapack_int ldvr, lapack_int mm, lapack_int* m, lapack_int* ifaill, lapack_int* ifailr );
lapack_int LAPACKE_dhsein( int matrix_order, char job, char eigsrc, char initv, lapack_logical* select, lapack_int \(n, ~ c o n s t ~ d o u b l e * ~ h, ~ l a p a c k \_i n t ~ l d h, ~ d o u b l e * ~ w r, ~\) const double* wi, double* vl, lapack_int ldvl, double* vr, lapack_int ldvr, lapack_int mm, lapack_int* m, lapack_int* ifaill, lapack_int* ifailr );
lapack_int LAPACKE_chsein( int matrix_order, char job, char eigsrc, char initv, const lapack_logical* select, lapack_int \(n\), const lapack_complex_float* h, lapack_int ldh, lapack_complex_float* \(w, ~ l a p a c k \_c o m p l e x \_f l o a t * ~ v l, ~ l a p a c k \_i n t ~ l d v l, ~\) lapack_complex_float* vr, lapack_int ldvr, lapack_int mm, lapack_int* m, lapack_int* ifaill, lapack_int* ifailr);
lapack_int LAPACKE_zhsein( int matrix_order, char job, char eigsrc, char initv, const
 lapack_complex_double* \(w\), lapack_complex_double* \(v l_{\text {, }}\) lapack_int \(l d v l\), lapack_complex_double* vr, lapack_int ldvr, lapack_int mm, lapack_int* m, lapack_int* ifaill, lapack_int* ifailr );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes left and/or right eigenvectors of an upper Hessenberg matrix \(H\), corresponding to selected eigenvalues.

The right eigenvector \(x\) and the left eigenvector \(y\), corresponding to an eigenvalue \(\lambda\), are defined by: \(H^{\star} x=\) \(\lambda^{\star} x\) and \(y^{H \star} H=\lambda^{\star} y^{H}\) (or \(H^{H \star} y=\lambda^{\star} \star y\) ). Here \(\lambda^{\star}\) denotes the conjugate of \(\lambda\).

The eigenvectors are computed by inverse iteration. They are scaled so that, for a real eigenvector \(x, \max \mid\) \(x_{i} \mid=1\), and for a complex eigenvector, max \(\left(\left|\operatorname{Re} x_{i}\right|+\left|\operatorname{Im} x_{i}\right|\right)=1\).

If \(H\) has been formed by reduction of a general matrix \(A\) to upper Hessenberg form, then eigenvectors of \(H\) may be transformed to eigenvectors of \(A\) by ormhr or unmhr.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline job & \begin{tabular}{l}
CHARACTER*1. Must be 'R' or 'L' or 'B'. \\
If job = 'R', then only right eigenvectors are computed. \\
If job = 'L', then only left eigenvectors are computed. \\
If job \(=\) ' \(B\) ', then all eigenvectors are computed.
\end{tabular} \\
\hline eigsrc & \begin{tabular}{l}
CHARACTER*1. Must be ' \(Q\) ' or 'N'. \\
If eigsrc = 'Q', then the eigenvalues of \(H\) were found using hseqr; thus if \(H\) has any zero sub-diagonal elements (and so is block triangular), then the \(j\)-th eigenvalue can be assumed to be an eigenvalue of the block containing the \(j\)-th row/column. This property allows the routine to perform inverse iteration on just one diagonal block. If eigsrc = 'N', then no such assumption is made and the routine performs inverse iteration using the whole matrix.
\end{tabular} \\
\hline initv & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'U'. \\
If initv = 'N', then no initial estimates for the selected eigenvectors are supplied. \\
If initv = 'U', then initial estimates for the selected eigenvectors are supplied in vl and/or vr.
\end{tabular} \\
\hline select & \begin{tabular}{l}
LOGICAL. \\
Array, DIMENSION at least max \((1, n)\). Specifies which eigenvectors are to be computed. \\
For real flavors: \\
To obtain the real eigenvector corresponding to the real eigenvalue \(w r(j)\), set select( \(j\) ) to .TRUE. \\
To select the complex eigenvector corresponding to the complex eigenvalue (wr(j), wi(j)) with complex conjugate (wr(j+1), wi(j+1)), set select( \(j\) ) and/or select \((j+1)\) to .TRUE.; the eigenvector corresponding to the first eigenvalue in the pair is computed. \\
For complex flavors: \\
To select the eigenvector corresponding to the eigenvalue \(w(j)\), set select( \(j\) ) to .TRUE.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(H(n \geq 0)\). \\
\hline h, vl, vr, & \begin{tabular}{l}
REAL for shsein \\
DOUBLE PRECISION for dhsein \\
COMPLEX for chsein \\
DOUBLE COMPLEX for zhsein. \\
Arrays: \\
\(h(l d h, *)\) The \(n\)-by- \(n\) upper Hessenberg matrix \(H\). \\
The second dimension of \(h\) must be at least \(\max (1, n)\).
\[
(l d v l, *)
\]
\end{tabular} \\
\hline
\end{tabular}

If initv \(=\) 'V' and job = 'L' or 'B', then vl must contain starting vectors for inverse iteration for the left eigenvectors. Each starting vector must be stored in the same column or columns as will be used to store the corresponding eigenvector.
If initv = 'N', then vl need not be set.
The second dimension of vl must be at least \(\max (1, \mathrm{~mm})\) if job \(=\) ' L ' or ' B ' and at least 1 if job \(=\) 'R'.
The array \(v l\) is not referenced if job \(=\) ' \(R\) '.
vr(ldvr,*)
If initv \(=\) ' \(V\) ' and job \(=\) ' \(R\) ' or ' B ', then vr must contain starting vectors for inverse iteration for the right eigenvectors. Each starting vector must be stored in the same column or columns as will be used to store the corresponding eigenvector.
If initv = 'N', then vr need not be set.
The second dimension of vr must be at least \(\max (1, \mathrm{~mm})\) if job \(={ }^{\prime} \mathrm{R}^{\prime}\) or ' B ' and at least 1 if job \(=\) 'L'.
The array vr is not referenced if job = ' L '.
work(*) is a workspace array.
DIMENSION at least max \(\left(1, n^{*}(n+2)\right)\) for real flavors and at least max (1, \(n^{*}{ }_{n}\) ) for complex flavors.
INTEGER. The leading dimension of \(h\); at least max \((1, n)\).
COMPLEX for chsein
DOUBLE COMPLEX for zhsein.
Array, DIMENSION at least max \((1, n)\).
Contains the eigenvalues of the matrix \(H\).
If eigsrc = 'Q', the array must be exactly as returned by ?hseqr.
REAL for shsein
DOUBLE PRECISION for dhsein
Arrays, DIMENSION at least max \((1, n)\) each.
Contain the real and imaginary parts, respectively, of the eigenvalues of the matrix \(H\). Complex conjugate pairs of values must be stored in consecutive elements of the arrays. If eigsrc = 'Q', the arrays must be exactly as returned by ?hseqr.
INTEGER. The leading dimension of \(v l\).
If job \(=\) 'L' or 'B', \(l d v I \geq \max (1, n)\).
If job \(=\) 'R', ldvl \(\geq 1\).
INTEGER. The leading dimension of \(v r\).
If job \(=\) ' \(R\) ' or ' \(\mathrm{B}^{\prime}, ~ l d v r \geq \max (1, n)\).
If job \(=\) 'L', ldvr \(\geq 1\).
INTEGER. The number of columns in vl and/or vr.
Must be at least \(m\), the actual number of columns required (see Output Parameters below).
For real flavors, \(m\) is obtained by counting 1 for each selected real
eigenvector and 2 for each selected complex eigenvector (see select).
For complex flavors, \(m\) is the number of selected eigenvectors (see select).
Constraint:
\(0 \leq m m \leq n\).
REAL for chsein
DOUBLE PRECISION for zhsein.
Array, DIMENSION at least max \((1, n)\).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline select & \begin{tabular}{l}
Overwritten for real flavors only. \\
If a complex eigenvector was selected as specified above, then \(\operatorname{select}(j)\) is set to .TRUE. and select \((j+1)\) to . FALSE.
\end{tabular} \\
\hline w & The real parts of some elements of \(w\) may be modified, as close eigenvalues are perturbed slightly in searching for independent eigenvectors. \\
\hline wr & Some elements of wr may be modified, as close eigenvalues are perturbed slightly in searching for independent eigenvectors. \\
\hline vl, vr & \begin{tabular}{l}
If job = 'L' or 'B', vl contains the computed left eigenvectors (as specified by select). \\
If job = 'R' or 'B', vr contains the computed right eigenvectors (as specified by select). \\
The eigenvectors are stored consecutively in the columns of the array, in the same order as their eigenvalues. \\
For real flavors: a real eigenvector corresponding to a selected real eigenvalue occupies one column; a complex eigenvector corresponding to a selected complex eigenvalue occupies two columns: the first column holds the real part and the second column holds the imaginary part.
\end{tabular} \\
\hline m & \begin{tabular}{l}
INTEGER. For real flavors: the number of columns of \(v I\) and/or \(v r\) required to store the selected eigenvectors. \\
For complex flavors: the number of selected eigenvectors.
\end{tabular} \\
\hline ifaill, ifailr & \begin{tabular}{l}
INTEGER. \\
Arrays, DIMENSION at least max(1, mm) each. ifaill(i) \(=0\) if the \(i\) th column of vl converged; ifaill(i) \(=j>0\) if the eigenvector stored in the \(i\)-th column of \(v l\) (corresponding to the \(j\) th eigenvalue) failed to converge. \\
ifailr(i) \(=0\) if the \(i\) th column of \(v r\) converged; \\
ifailr(i) \(=j>0\) if the eigenvector stored in the \(i\)-th column of \(v r\) (corresponding to the \(j\) th eigenvalue) failed to converge. \\
For real flavors: if the \(i\) th and ( \(i+1\) )th columns of \(v l\) contain a selected complex eigenvector, then \(i f a i l l(i)\) and \(i f a i l l(i+1)\) are set to the same value. A similar rule holds for vr and ifailr. \\
The array ifaill is not referenced if job = 'R'. The array ifailr is not referenced if job \(=\) 'L'.
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
If info \(>0\), then \(i\) eigenvectors (as indicated by the parameters ifaill and/or ifailr above) failed to converge. The corresponding columns of \(v l\) and/or vr contain no useful information.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hsein interface are the following:
```

h Holds the matrix H of size (}n,n)\mathrm{ .
wr Holds the vector of length n. Used in real flavors only.
wi Holds the vector of length n. Used in real flavors only.

```
```

w Holds the vector of length n. Used in complex flavors only.
select Holds the vector of length n.
vl Holds the matrix VL of size (}n,mm\mathrm{).
vr Holds the matrix VR of size (}n,mm\mathrm{).
ifaill Holds the vector of length (mm). Note that there will be an error condition if
ifaill is present and vl is omitted.
ifailr Holds the vector of length (mm). Note that there will be an error condition if
ifailr is present and vr is omitted.
initv Must be 'N' or 'U'. The default value is 'N'.
eigsrc Must be 'N' or 'Q'. The default value is 'N'.
job Restored based on the presence of arguments vl and vr as follows:
job = 'B', if both vl and vr are present,
job = 'L',if vl is present and vr omitted,
job = 'R', if vl is omitted and vr present,
Note that there will be an error condition if both vl and vr are omitted.

```

\section*{Application Notes}

Each computed right eigenvector \(x i\) is the exact eigenvector of a nearby matrix \(A+E_{i}\), such that \(\left|\left|E_{i} \|\right|<\right.\) \(O(\varepsilon)||A||\). Hence the residual is small:
```

||A\mp@subsup{x}{i}{}-\mp@subsup{\lambda}{i}{}\mp@subsup{x}{i}{}||=O(\varepsilon)||A||.

```

However, eigenvectors corresponding to close or coincident eigenvalues may not accurately span the relevant subspaces.
Similar remarks apply to computed left eigenvectors.

\section*{?trevc}

Computes selected eigenvectors of an upper (quasi-)
triangular matrix computed by ?hseqr.

\section*{Syntax}

\section*{Fortran 77:}
```

call strevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, info)
call dtrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, info)
call ctrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, rwork,
info)
call ztrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, rwork,
info)

```

\section*{Fortran 95:}
```

call trevc(t [, howmny] [,select] [,vl] [,vr] [,m] [,info])

```
C:
lapack_int LAPACKE_strevc( int matrix_order, char side, char howmy, lapack_logical*
select, lapack_int \(n\), const float* \(t, ~ l a p a c k \_i n t ~ l d t, ~ f l o a t * ~ v l, ~ l a p a c k \_i n t ~ l d v l, ~\)
float* vr, lapack_int ldvr, lapack_int mm, lapack_int* m );
lapack_int LAPACKE_dtrevc( int matrix_order, char side, char howmy, lapack_logical*
select, lapack_int \(n\), const double* \(t\), lapack_int ldt, double* vl, lapack_int ldvl,
double* vr, lapack_int ldvr, lapack_int mm, lapack_int* m );
```

lapack_int LAPACKE_ctrevc(int matrix_order, char side, char howmny, const
lapack_logical* select, lapack_int n, lapack_complex_float* t, lapack_int ldt,
lapack_complex_float* vl, lapack_int ldvl, lapack_complex_float* vr, lapack_int ldvr,
lapack_int mm, lapack_int* m);
lapack_int LAPACKE_ztrevc(int matrix_order, char side, char howmny, const
lapack_logical* select, lapack_int n, lapack_complex_double* t, lapack_int ldt,
lapack_complex_double* vl, lapack_int ldvl, lapack_complex_double* vr, lapack_int ldvr,
lapack_int mm, lapack_int* m);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes some or all of the right and/or left eigenvectors of an upper triangular matrix \(T\) (or, for real flavors, an upper quasi-triangular matrix \(T\) ). Matrices of this type are produced by the Schur factorization of a general matrix: \(A=Q^{\star} T^{*} Q^{H}\), as computed by hseqr.

The right eigenvector \(x\) and the left eigenvector \(y\) of \(T\) corresponding to an eigenvalue \(w\), are defined by: \(T^{\star} x=W^{\star} x, y^{H \star} T=W^{\star} y^{H}\), where \(y^{H}\) denotes the conjugate transpose of \(y\).

The eigenvalues are not input to this routine, but are read directly from the diagonal blocks of \(T\).
This routine returns the matrices \(X\) and/or \(Y\) of right and left eigenvectors of \(T\), or the products \(Q^{*} X\) and/or \(Q \star Y\), where \(Q\) is an input matrix.
If \(Q\) is the orthogonal/unitary factor that reduces a matrix \(A\) to Schur form \(T\), then \(Q^{*} X\) and \(Q^{*} Y\) are the matrices of right and left eigenvectors of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{side} & CHARACTER*1. Must be 'R' or 'L' or 'B'. \\
\hline & If side = 'R', then only right eigenvectors are computed. \\
\hline & If side = 'L', then only left eigenvectors are computed. \\
\hline & If side = 'B', then all eigenvectors are computed. \\
\hline \multirow[t]{5}{*}{howmny} & CHARACTER*1. Must be 'A' or 'B' or 'S'. \\
\hline & If howmny = 'A', then all eigenvectors (as specified by side) are computed. \\
\hline & If howmny = 'B', then all eigenvectors (as specified by side) are \\
\hline & computed and backtransformed by the matrices supplied in vl and vr. \\
\hline & If howmny = 'S', then selected eigenvectors (as specified by side and select) are computed. \\
\hline \multirow[t]{7}{*}{select} & LOGICAL. \\
\hline & Array, DIMENSION at least max (1, \(n\) ). \\
\hline & If howmny = 'S', select specifies which eigenvectors are to be computed. \\
\hline & If howmny = 'A' or 'B', select is not referenced. \\
\hline & For real flavors: \\
\hline & If omega( \(j\) ) is a real eigenvalue, the corresponding real eigenvector is computed if select \((j)\) is .TRUE. . \\
\hline & computed if \(\operatorname{select}(j)\) is .TRUE.. \\
\hline
\end{tabular}

If omega( \(j\) ) and omega( \(j+1\) ) are the real and imaginary parts of a complex eigenvalue, the corresponding complex eigenvector is computed if either select \((j)\) or select \((j+1)\) is .TRUE., and on exit select \((j)\) is set to .TRUE. and select \((j+1)\) is set to .FALSE. .
For complex flavors:
The eigenvector corresponding to the \(j\)-th eigenvalue is computed if
select \((j)\) is .TRUE..

REAL for strevc
DOUBLE PRECISION for dtrevc
COMPLEX for ctrevc
DOUBLE COMPLEX for ztrevc.

\section*{Arrays:}
\(t(l d t, *)\) contains the \(n\)-by-n matrix \(T\) in Schur canonical form. For complex flavors ctrevc and ztrevc, contains the upper triangular matrix \(T\). The second dimension of \(t\) must be at least max \((1, n)\).
vl(ldvl,*)
If howmny \(=\) ' B ' and side \(=\) 'L' or 'B', then vl must contain an n-by-n matrix \(Q\) (usually the matrix of Schur vectors returned by ?hseqr).
If howmny = 'A' or 'S', then vl need not be set.
The second dimension of \(v l\) must be at least \(\max (1, \mathrm{~mm})\) if side \(=\) 'L' or 'B' and at least 1 if side \(=\) 'R'.
The array \(v l\) is not referenced if side \(=\) ' \(\mathrm{R}^{\prime}\).
vr (ldvr,*)
If howmny \(=\) ' \(\mathrm{B}^{\prime}\) and side \(=\) ' R ' or ' B ', then \(v r\) must contain an \(n\)-by- \(n\) matrix \(Q\) (usually the matrix of Schur vectors returned by ?hseqr). .
If howmny = 'A' or 'S', then vr need not be set.
The second dimension of \(v r\) must be at least \(\max (1, \mathrm{~mm})\) if side \(=\) ' \(\mathrm{R}^{\prime}\) or 'B' and at least 1 if side \(=\) 'L'.
The array vr is not referenced if side = 'L'.
work(*) is a workspace array.
DIMENSION at least max \(\left(1,3 *_{n}\right)\) for real flavors and at least max \(\left(1,2 *_{n}\right)\) for complex flavors.
INTEGER. The leading dimension of \(t\); at least max \((1, n)\).
INTEGER. The leading dimension of \(v\).
If side \(=\) 'L' or 'B', ldvl \(\geq n\).
If side = 'R', ldvl \(\geq 1\).
INTEGER. The leading dimension of \(v r\).
If side \(=\) 'R' or 'B', ldvr \(\geq n\).
If side \(=\) 'L', Idvr \(\geq 1\).
INTEGER. The number of columns in the arrays vl and/or vr. Must be at least \(m\) (the precise number of columns required).
If howmny \(=\) 'A' or 'B', \(m=n\).
If howmny = 'S': for real flavors, \(m\) is obtained by counting 1 for each
selected real eigenvector and 2 for each selected complex eigenvector;
for complex flavors, \(m\) is the number of selected eigenvectors (see select).
Constraint: \(0 \leq m \leq n\).
REAL for ctrevc
DOUBLE PRECISION for ztrevc.
Workspace array, DIMENSION at least max (1, n).

\section*{Output Parameters}
```

select
t COMPLEX for ctrevc
DOUBLE COMPLEX for ztrevc.
ctrevc/ztrevc modify the t(ldt,*) array, which is restored on exit.
If side = 'L' or 'B', vl contains the computed left eigenvectors (as
specified by howmny and select).
If side = 'R' or 'B', vr contains the computed right eigenvectors (as
specified by howmny and select).
The eigenvectors are stored consecutively in the columns of the array, in
the same order as their eigenvalues.
For real flavors: corresponding to each real eigenvalue is a real eigenvector,
occupying one column;corresponding to each complex conjugate pair of
eigenvalues is a complex eigenvector, occupying two columns; the first
column holds the real part and the second column holds the imaginary part.
INTEGER.
For complex flavors: the number of selected eigenvectors.
If howmny = 'A' or 'B',m is set to n.
For real flavors: the number of columns of vl and/or vr actually used to
store the selected eigenvectors.
If howmny = 'A' or 'B', m is set to n.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine trevc interface are the following:
```

Holds the matrix T of size (n,n).
select Holds the vector of length n.
vl Holds the matrix VL of size (}n,mm\mathrm{).
vr Holds the matrix VR of size (}n,mm\mathrm{).
side
howmny
Holds the matrix T of size (n, n).
Holds the vector of length n.
Holds the matrix $V L$ of size $(n, m m)$.
Holds the matrix $V R$ of size $(n, m m)$.
If omitted, this argument is restored based on the presence of arguments $v l$ and vr as follows:
side = 'B', if both vl and vr are present,
side $=$ 'L', if vr is omitted,
side $=$ ' R ', if $v l$ is omitted.
Note that there will be an error condition if both vl and vr are omitted.
howmny
If omitted, this argument is restored based on the presence of argument select as follows:
howmny = ' V ', if q is present,
howmny $=$ ' N ', if q is omitted.
If present, vect $=$ 'V' or 'U' and the argument q must also be present.
Note that there will be an error condition if both select and howmny are present.

```

\section*{Application Notes}

If \(x i\) is an exact right eigenvector and \(y_{i}\) is the corresponding computed eigenvector, then the angle \(\theta\) ( \(y_{i}\), \(x_{i}\) ) between them is bounded as follows: \(\theta\left(y_{i}, x_{i}\right) \leq\left(c(n) \varepsilon| | T| |_{2}\right) / \operatorname{sep}_{i}\) where \(\operatorname{sep}_{i}\) is the reciprocal condition number of \(x_{i}\). The condition number \(\operatorname{sep}_{i}\) may be computed by calling ?trsna.

\section*{?trsna}

Estimates condition numbers for specified eigenvalues and right eigenvectors of an upper (quasi-) triangular matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call strsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm, m, work,
ldwork, iwork, info)
call dtrsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm, m, work,
ldwork, iwork, info)
call ctrsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm, m, work,
ldwork, rwork, info)
call ztrsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm, m, work,
ldwork, rwork, info)

```

\section*{Fortran 95:}
```

call trsna(t [, s] [,sep] [,vl] [,vr] [,select] [,m] [,info])

```

C:
```

lapack_int LAPACKE_strsna(int matrix_order, char job, char howmny, const
lapack_logical* select, lapack_int n, const float* t, lapack_int ldt, const float* vl,
lapack_int ldvl, const float* vr, lapack_int ldvr, float* s, float* sep, lapack_int
mm, lapack_int* m);
lapack_int LAPACKE_dtrsna(int matrix_order, char job, char howmny, const
lapack_logical* select, lapack_int n, const double* t, lapack_int ldt, const double*
vl, lapack_int ldvl, const double* vr, lapack_int ldvr, double* s, double* sep,
lapack_int mm, lapack_int* m);
lapack_int LAPACKE_ctrsna(int matrix_order, char job, char howmny, const
lapack_logical* select, lapack_int n, const lapack_complex_float* t, lapack_int ldt,
const lapack_complex_float* vl, lapack_int ldvl, const lapack_complex_float* vr,
lapack_int ldvr, float* s, float* sep, lapack_int mm, lapack_int* m);
lapack_int LAPACKE_ztrsna(int matrix_order, char job, char howmny, const
lapack_logical* select, lapack_int n, const lapack_complex_double* t, lapack_int ldt,
const lapack_complex_double* vl, lapack_int ldvl, const lapack_complex_double* vr,
lapack_int ldvr, double* s, double* sep, lapack_int mm, lapack_int* m);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine estimates condition numbers for specified eigenvalues and/or right eigenvectors of an upper triangular matrix \(T\) (or, for real flavors, upper quasi-triangular matrix \(T\) in canonical Schur form). These are the same as the condition numbers of the eigenvalues and right eigenvectors of an original matrix \(A=\) \(Z \star T * Z^{H}\) (with unitary or, for real flavors, orthogonal \(Z\) ), from which \(T\) may have been derived.

The routine computes the reciprocal of the condition number of an eigenvalue lambda(i) as \(s_{i}=\left|v^{T} \star u\right| /\) \(\left(||u||_{E}| | v| |_{E}\right)\) for real flavors and \(s_{i}=\left|v^{H \star} u\right| /\left(||u||_{E}| | v| |_{E}\right)\) for complex flavors,
where:
- \(u\) and \(v\) are the right and left eigenvectors of \(T\), respectively, corresponding to lambda(i).
- \(v^{T} / v^{H}\) denote transpose/conjugate transpose of \(v\), respectively.

This reciprocal condition number always lies between zero (ill-conditioned) and one (well-conditioned).
An approximate error estimate for a computed eigenvalue lambda(i) is then given by \(\varepsilon^{\star}| | T| | / s_{i}\), where \(\varepsilon\) is the machine precision.
To estimate the reciprocal of the condition number of the right eigenvector corresponding to lambda(i), the routine first calls trexc to reorder the eigenvalues so that lambda(i) is in the leading position:
\[
T=Q\left[\begin{array}{cc}
\hat{h}_{i} & C^{H} \\
0 & T_{22}
\end{array}\right] \square^{H}
\]

The reciprocal condition number of the eigenvector is then estimated as sep \({ }_{i}\), the smallest singular value of the matrix \(T_{22}-\operatorname{lambda}(i) * I\). This number ranges from zero (ill-conditioned) to very large (wellconditioned).

An approximate error estimate for a computed right eigenvector u corresponding to lambda(i) is then given by \(\varepsilon^{\star}| | T| | / \operatorname{sep}_{i}\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

job
howmny CHARACTER*1. Must be 'A' or 'S'.
select
CHARACTER*1. Must be 'E' or 'V' or 'B'.
If job = 'E', then condition numbers for eigenvalues only are computed.
If job = 'V', then condition numbers for eigenvectors only are computed.
If job = 'B', then condition numbers for both eigenvalues and
eigenvectors are computed.
If howmny = 'A', then the condition numbers for all eigenpairs are
computed.
If howmny = 'S', then condition numbers for selected eigenpairs (as
specified by select) are computed.
LOGICAL.
Array, DIMENSION at least max $(1, n)$ if howmny $=$ ' S ' and at least 1 otherwise.
Specifies the eigenpairs for which condition numbers are to be computed if howmy= 'S'.
For real flavors:
To select condition numbers for the eigenpair corresponding to the real eigenvalue lambda(j), select(j) must be set.TRUE.;

```
to select condition numbers for the eigenpair corresponding to a complex conjugate pair of eigenvalues lambda \((j)\) and lambda \((j+1)\), select \((j)\) and/ or select \((j+1)\) must be set . TRUE.

\section*{For complex flavors}

To select condition numbers for the eigenpair corresponding to the eigenvalue lambda( \(j\) ), select \((j)\) must be set .TRUE. select is not referenced if howmny \(=\) ' A '.

INTEGER. The order of the matrix \(T(n \geq 0)\).
REAL for strsna
DOUBLE PRECISION for dtrsna
COMPLEX for ctrsna
DOUBLE COMPLEX for ztrsna.

\section*{Arrays:}
\(t(l d t, *)\) contains the \(n-b y-n\) matrix \(T\).
The second dimension of \(t\) must be at least max \((1, n)\).
vl(ldvl,*)
If job \(=\) ' \(E\) ' or ' \(\mathrm{B}^{\prime}\), then \(v\) l must contain the left eigenvectors of \(T\) (or of any matrix \(Q^{\star} T^{*} Q^{H}\) with \(Q\) unitary or orthogonal) corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of vl, as returned by trevc or hsein.
The second dimension of vl must be at least \(\max (1, \mathrm{~mm})\) if job \(=\) ' E ' or
' B ' and at least 1 if job \(=\) 'V'.
The array \(v l\) is not referenced if job \(=\) ' \(V\) '.
vr(ldvr,*)
If job = 'E' or 'B', then vr must contain the right eigenvectors of \(T\) (or of any matrix \(Q^{*} T * Q^{H}\) with \(Q\) unitary or orthogonal) corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of \(v r\), as returned by trevc or hsein.
The second dimension of vr must be at least \(\max (1, \mathrm{~mm})\) if job \(='^{\prime} \mathrm{E}^{\prime}\) or ' B ' and at least 1 if job \(=\) ' V '.
The array \(v r\) is not referenced if job \(=' \mathrm{~V}\) '.
work is a workspace array, its dimension (ldwork, \(n+6\) ).
The array work is not referenced if job = 'E'.
INTEGER. The leading dimension of \(t\); at least max \((1, n)\).
INTEGER. The leading dimension of \(v 1\).
If job \(=\) 'E' or 'B', ldvl \(\geq \max (1, n)\).
If job = 'V', ldvl \(\geq 1\).
INTEGER. The leading dimension of \(v r\).
If job \(=\) ' \(E\) ' or ' \(B\) ', \(\operatorname{ldvr} \geq \max (1, n)\).
If job \(=\) 'R', ldvr \(\geq 1\).
INTEGER. The number of elements in the arrays \(s\) and sep, and the number of columns in \(v I\) and \(v r\) (if used). Must be at least \(m\) (the precise number required).
If howmny = 'A', m = n;
if howmny = ' \(S\) ', for real flavors \(m\) is obtained by counting 1 for each selected real eigenvalue and 2 for each selected complex conjugate pair of eigenvalues.
for complex flavors \(m\) is the number of selected eigenpairs (see select).
Constraint:
\(0 \leq m \leq n\).
INTEGER. The leading dimension of work.


\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine trsna interface are the following:
\(t \quad\) Holds the matrix \(T\) of size \((n, n)\).
\(s \quad\) Holds the vector of length ( mm ).
\begin{tabular}{|c|c|}
\hline sep & Holds the vector of length (mm). \\
\hline vl & Holds the matrix VL of size ( \(n, m m\) ) . \\
\hline vr & Holds the matrix \(V R\) of size ( \(n, m m\) ) . \\
\hline select & Holds the vector of length \(n\). \\
\hline job & \begin{tabular}{l}
Restored based on the presence of arguments \(s\) and sep as follows: \\
job = 'B', if both \(s\) and sep are present, \\
job \(=\) ' E', if \(s\) is present and sep omitted, \\
job \(=\) ' \(V\) ', if \(s\) is omitted and sep present. \\
Note an error condition if both \(s\) and sep are omitted.
\end{tabular} \\
\hline howmny & \begin{tabular}{l}
Restored based on the presence of the argument select as follows: \\
howmny = 'S', if select is present, \\
howmny = 'A', if select is omitted.
\end{tabular} \\
\hline
\end{tabular}

Note that the arguments \(s, v 1\), and vr must either be all present or all omitted.
Otherwise, an error condition is observed.

\section*{Application Notes}

The computed values \(s e p_{i}\) may overestimate the true value, but seldom by a factor of more than 3.

\section*{?trexc}

Reorders the Schur factorization of a general matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call strexc(compq, n, t, ldt, q, ldq, ifst, ilst, work, info)
call dtrexc(compq, n, t, ldt, q, ldq, ifst, ilst, work, info)
call ctrexc(compq, n, t, ldt, q, ldq, ifst, ilst, info)
call ztrexc(compq, n, t, ldt, q, ldq, ifst, ilst, info)

```

\section*{Fortran 95:}
call trexc(t, ifst, ilst [,q] [,info])
C:
```

lapack_int LAPACKE_strexc(int matrix_order, char compq, lapack_int n, float* t,
lapack_int ldt, float* q, lapack_int ldq, lapack_int* ifst, lapack_int* ilst);
lapack_int LAPACKE_dtrexc(int matrix_order, char compq, lapack_int n, double* t,
lapack_int ldt, double* q, lapack_int ldq, lapack_int* ifst, lapack_int* ilst);
lapack_int LAPACKE_ctrexc(int matrix_order, char compq, lapack_int n,
lapack_complex_float* t, lapack_int ldt, lapack_complex_float* q, lapack_int ldq,
lapack_int ifst, lapack_int ilst);
lapack_int LAPACKE_ztrexc(int matrix_order, char compq, lapack_int n,
lapack_complex_double* t, lapack_int ldt, lapack_complex_double* q, lapack_int ldq,
lapack_int ifst, lapack_int ilst);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reorders the Schur factorization of a general matrix \(A=Q^{*} T * Q^{H}\), so that the diagonal element or block of \(T\) with row index ifst is moved to row ilst.

The reordered Schur form \(S\) is computed by an unitary (or, for real flavors, orthogonal) similarity transformation: \(S=Z^{H} T^{\star} Z\). Optionally the updated matrix \(P\) of Schur vectors is computed as \(P=Q^{\star} Z\), giving \(A=P \star S^{\star} P^{H}\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

compq CHARACTER*1. Must be 'V' or 'N'.
If compq = 'V', then the Schur vectors (Q) are updated.
If compq = 'N', then no Schur vectors are updated.
n
t,q
ldt
ldq
ifst, ilst
work
INTEGER. The order of the matrix T (}n\geq0)\mathrm{ .
REAL for strexc
DOUBLE PRECISION for dtrexc
COMPLEX for ctrexc
DOUBLE COMPLEX for ztrexc.
Arrays:
t(ldt,*) contains the n-by-n matrix T.
The second dimension of t must be at least max (1,n).
q(ldq,*)
If compq = 'V', then q must contain Q (Schur vectors).
If compq = 'N', then q is not referenced.
The second dimension of q must be at least max (1,n)
if compq = 'V' and at least 1 if compq = 'N'.
INTEGER. The leading dimension of t; at least max(1,n).
INTEGER. The leading dimension of q;
If compq = 'N', then ldq\geq 1.
If compq = 'V', then ldq\geq max(1, n).
INTEGER. 1 \leq ifst \leq n; 1 \leq ilst \leq n.
Must specify the reordering of the diagonal elements (or blocks, which is
possible for real flavors) of the matrix T. The element (or block) with row
index ifst is moved to row ilst by a sequence of exchanges between
adjacent elements (or blocks).
REAL for strexc
DOUBLE PRECISION for dtrexc.
Array, DIMENSION at least max (1,n).

```

\section*{Output Parameters}
\(t\)
\(q\)
ifst, ilst
info
Overwritten by the updated matrix \(S\).
If compq \(=\) ' \(V\) ', \(q\) contains the updated matrix of Schur vectors.
Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on entry, it is changed to point to the first row; ilst always points to the first row of the block in its final position (which may differ from its input value by \(\pm 1\) ).
INTEGER.
If info \(=0\), the execution is successful.
\[
\text { If } \text { info }=-i \text {, the } i \text {-th parameter had an illegal value. }
\]

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine trexc interface are the following:
\begin{tabular}{ll}
\(t\) & Holds the matrix \(T\) of size \((n, n)\). \\
\(q\) & Holds the matrix \(Q\) of size \((n, n)\). \\
compq & Restored based on the presence of the argument \(q\) as follows: \\
& compq \(=' \mathrm{~V}\) ', if \(q\) is present, \\
& compq \(=^{\prime} \mathrm{N}^{\prime}\), if \(q\) is omitted.
\end{tabular}

\section*{Application Notes}

The computed matrix \(S\) is exactly similar to a matrix \(T+E\), where \(\left.\left||E|_{I_{2}}=O(\varepsilon) *\right||T|\right|_{2}\), and \(\varepsilon\) is the machine precision.
Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are in general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of complex eigenvalues to become purely real.

The values of eigenvalues however are never changed by the re-ordering.
The approximate number of floating-point operations is
\[
\begin{array}{ll}
\text { for real flavors: } & 6 n(\text { ifst-ilst) if compq }=' \mathrm{~N} ' ; \\
& 12 n(\text { ifst-ilst) if compq }=' \mathrm{~V} ' ; \\
\text { for complex flavors: } & 20 n(\text { ifst-ilst) if compq }=' \mathrm{~N} ' ; \\
& 40 n(\text { ifst-ilst) if compq }=' \mathrm{~V} ' .
\end{array}
\]

\section*{?trsen}

Reorders the Schur factorization of a matrix and (optionally) computes the reciprocal condition numbers and invariant subspace for the selected cluster of eigenvalues.

\section*{Syntax}

\section*{Fortran 77:}
```

call strsen(job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s, sep, work, lwork,
iwork, liwork, info)
call dtrsen(job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s, sep, work, lwork,
iwork, liwork, info)
call ctrsen(job, compq, select, n, t, ldt, q, ldq, w, m, s, sep, work, lwork, info)
call ztrsen(job, compq, select, n, t, ldt, q, ldq, w, m, s, sep, work, lwork, info)

```

Fortran 95:
```

call trsen(t, select [,wr] [,wi] [,m] [,s] [,sep] [,q] [,info])
call trsen(t, select [,w] [,m] [,s] [,sep] [,q] [,info])

```
```

C:
lapack_int LAPACKE_strsen(int matrix_order, char job, char compq, const
lapack_logical* select, lapack_int n, float* t, lapack_int ldt, float* q, lapack_int
ldq, float* wr, float* wi, lapack_int* m, float* s, float* sep);
lapack_int LAPACKE_dtrsen(int matrix_order, char job, char compq, const
lapack_logical* select, lapack_int n, double* t, lapack_int ldt, double* q, lapack_int
ldq, double* wr, double* wi, lapack_int* m, double* s, double* sep);
lapack_int LAPACKE_ctrsen(int matrix_order, char job, char compq, const
lapack_logical* select, lapack_int n, lapack_complex_float* t, lapack_int ldt,
lapack_complex_float* q, lapack_int ldq, lapack_complex_float* w, lapack_int* m, float*
s, float* sep);
lapack_int LAPACKE_ztrsen(int matrix_order, char job, char compq, const
lapack_logical* select, lapack_int n, lapack_complex_double* t, lapack_int ldt,
lapack_complex_double* q, lapack_int ldq, lapack_complex_double* w, lapack_int* m,
double* s, double* sep);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reorders the Schur factorization of a general matrix \(A=Q^{*} T^{*} Q^{T}\) (for real flavors) or \(A=Q^{\star} T^{*} Q^{H}\) (for complex flavors) so that a selected cluster of eigenvalues appears in the leading diagonal elements (or, for real flavors, diagonal blocks) of the Schur form. The reordered Schur form \(R\) is computed by a unitary (orthogonal) similarity transformation: \(R=Z^{H * T * Z}\). Optionally the updated matrix \(P\) of Schur vectors is computed as \(P=Q^{*} Z\), giving \(A=P * R * P^{H}\).
Let
\[
R=\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{13}
\end{array}\right]
\]
where the selected eigenvalues are precisely the eigenvalues of the leading \(m\)-by-m submatrix \(T_{11}\). Let \(P\) be correspondingly partitioned as ( \(Q_{1} Q_{2}\) ) where \(Q_{1}\) consists of the first \(m\) columns of \(Q\). Then \(A^{*} Q_{1}=Q_{1} * T_{11}\), and so the \(m\) columns of \(Q_{1}\) form an orthonormal basis for the invariant subspace corresponding to the selected cluster of eigenvalues.

Optionally the routine also computes estimates of the reciprocal condition numbers of the average of the cluster of eigenvalues and of the invariant subspace.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.

> job

> CHARACTER* 1 . Must be 'N' or 'E' or 'V' or ' \(\mathrm{B}^{\prime}\) '. If job \(=~ ' N '\), then no condition numbers are required.

If job = 'E', then only the condition number for the cluster of eigenvalues is computed.
If job \(=\) ' \(V\) ', then only the condition number for the invariant subspace is computed.
If job = 'B', then condition numbers for both the cluster and the invariant subspace are computed.
compq
```

select

```
n
t, q, work
ldt
\(l d q\)
lwork
iwork
liwork

CHARACTER*1. Must be 'V' or 'N'.
If compq \(=\) ' \(V\) ', then \(Q\) of the Schur vectors is updated. If compq = 'N', then no Schur vectors are updated.
LOGICAL.
Array, DIMENSION at least max \((1, n)\).
Specifies the eigenvalues in the selected cluster. To select an eigenvalue lambda( \(j\) ), select \((j)\) must be .TRUE.
For real flavors: to select a complex conjugate pair of eigenvalues
lambda( \(j\) ) and lambda( \(j+1\) ) (corresponding 2 by 2 diagonal block), select \((j)\) and/or select \((j+1)\) must be .TRUE.; the complex conjugate lambda( \(j\) ) and lambda \((j+1)\) must be either both included in the cluster or both excluded.
INTEGER. The order of the matrix \(T(n \geq 0)\).
REAL for strsen
DOUBLE PRECISION for dtrsen
COMPLEX for ctrsen
DOUBLE COMPLEX for ztrsen.
Arrays:
\(t\) (ldt,*) The \(n\)-by- \(n T\).
The second dimension of \(t\) must be at least max \((1, n)\).
\(q\) (ldq,*)
If compq \(=\) ' \(V\) ', then \(q\) must contain \(Q\) of Schur vectors.
If compq = ' \(N\) ', then \(q\) is not referenced.
The second dimension of \(q\) must be at least \(\max (1, n)\) if compq \(=' V\) ' and at least 1 if compq = ' N '.
work is a workspace array, its dimension max ( \(1, ~ l\) work).
INTEGER. The leading dimension of \(t\); at least max \((1, n)\).
INTEGER. The leading dimension of \(q\);
If compq \(=\) ' \(N\) ', then \(l d q \geq 1\).
If compq \(=' \mathrm{~V}\) ', then \(l d q \geq \max (1, n)\).
INTEGER. The dimension of the array work.
If job \(=\) 'V' or ' \(\mathrm{B}^{\prime}, 1\) work \(\geq \max \left(1,2 * m^{*}(n-m)\right.\) ).
If job \(=\) 'E', then 1 work \(\geq \max \left(1, m^{\star}(n-m)\right.\) )
If job \(=\) ' \(N\) ', then 1 work \(\geq 1\) for complex flavors and 1 work \(\geq \max (1, n)\) for real flavors.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes for details.
INTEGER.iwork(liwork) is a workspace array. The array iwork is not referenced if job \(=\) ' \(N\) ' or 'E'.
The actual amount of workspace required cannot exceed \(n^{2} / 2\) if job \(=' V^{\prime}\) or 'B'.
INTEGER.
The dimension of the array iwork.
```

If job = 'V' or 'B', liwork \geq max(1,2m(n-m)).
If job = 'E' or 'E', liwork \geq 1.
If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the first
entry of the iwork array, and no error message related to liwork is issued
by xerbla. See Application Notes for details.

```

\section*{Output Parameters}
t

Overwritten by the updated matrix \(R\).
If compq = 'V', q contains the updated matrix of Schur vectors; the first m columns of the \(Q\) form an orthogonal basis for the specified invariant subspace.
COMPLEX for ctrsen
DOUBLE COMPLEX for ztrsen.
Array, DIMENSION at least max \((1, n)\). The recorded eigenvalues of \(R\). The eigenvalues are stored in the same order as on the diagonal of \(R\).
REAL for strsen
DOUBLE PRECISION for dtrsen
Arrays, DIMENSION at least max \((1, n)\). Contain the real and imaginary parts, respectively, of the reordered eigenvalues of \(R\). The eigenvalues are stored in the same order as on the diagonal of \(R\). Note that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly from its value before reordering.

\section*{INTEGER.}

For complex flavors: the number of the specified invariant subspaces, which is the same as the number of selected eigenvalues (see select).
For real flavors: the dimension of the specified invariant subspace. The value of \(m\) is obtained by counting 1 for each selected real eigenvalue and 2 for each selected complex conjugate pair of eigenvalues (see select).
Constraint: \(0 \leq m \leq n\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
If job \(=\) ' \(E\) ' or ' \(B\) ', \(s\) is a lower bound on the reciprocal condition number of the average of the selected cluster of eigenvalues.
If \(m=0\) or \(n\), then \(s=1\).
For real flavors: if info \(=1\), then \(s\) is set to zero.s is not referenced if job \(=\) 'N' or 'V'.
REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors.
If job \(=\) 'V' or ' \(B\) ', sep is the estimated reciprocal condition number of the specified invariant subspace.
If \(m=0\) or \(n\), then \(\operatorname{sep}=|T|\).
For real flavors: if info \(=1\), then sep is set to zero.
sep is not referenced if job \(=\) ' \(N\) ' or 'E'.
On exit, if info \(=0\), then work (1) returns the optimal size of lwork.
On exit, if info \(=0\), then iwork (1) returns the optimal size of liwork.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine trsen interface are the following:
```

t Holds the matrix T of size (}n,n)\mathrm{ .
select Holds the vector of length n.
wr Holds the vector of length n. Used in real flavors only.
wi Holds the vector of length n. Used in real flavors only.
w Holds the vector of length n. Used in complex flavors only.
q Holds the matrix Q of size (}n,n)\mathrm{ .
compq Restored based on the presence of the argument q as follows:compq = 'V', if q
is present, compq = 'N', if q is omitted.
job Restored based on the presence of arguments s and sep as follows:
job = 'B', if both s and sep are present,
job = 'E', if s is present and sep omitted,
job = 'V', if s is omitted and sep present,
job = 'N', if both s and sep are omitted.

```

\section*{Application Notes}

The computed matrix \(R\) is exactly similar to a matrix \(T+E\), where \(\left.\left||E|_{I_{2}}=O(\varepsilon) *\right||T|\right|_{2}\), and \(\varepsilon\) is the machine precision. The computed \(s\) cannot underestimate the true reciprocal condition number by more than a factor of \((\min (m, n-m))_{1 / 2}\); sep may differ from the true value by \(\left(m^{*} n-m^{2}\right)_{1 / 2}\). The angle between the computed invariant subspace and the true subspace is \(O(\varepsilon) *||A||_{2} /\) sep. Note that if a 2-by-2 diagonal block is involved in the re-ordering, its off-diagonal elements are in general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2-by-2 block to break into two 1-by-1 blocks, that is, for a pair of complex eigenvalues to become purely real. The values of eigenvalues however are never changed by the re-ordering.

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run or set lwork = -1 (liwork = -1).

If lwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If lwork \(=-1\) (liwork \(=-1\) ), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if lwork (liwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?trsyl}

Solves Sylvester equation for real quasi-triangular or complex triangular matrices.

Syntax

\section*{Fortran 77:}
call strsyl(trana, tranb, isgn, \(m, n, a, l d a, ~ b, ~ l d b, ~ c, ~ l d c, ~ s c a l e, ~ i n f o) ~\)
```

call dtrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)
call ctrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)
call ztrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)

```

\section*{Fortran 95:}
```

call trsyl(a, b, c, scale [, trana] [,tranb] [,isgn] [,info])

```

\section*{C:}
lapack_int LAPACKE_strsyl( int matrix_order, char trana, char tranb, lapack_int isgn,
 ldb, float* c, lapack_int ldc, float* scale );
lapack_int LAPACKE_dtrsyl( int matrix_order, char trana, char tranb, lapack_int isgn, lapack_int \(m\), lapack_int \(n\), const double* a, lapack_int lda, const double* b, lapack_int ldb, double* c, lapack_int ldc, double* scale );
lapack_int LAPACKE_ctrsyl( int matrix_order, char trana, char tranb, lapack_int isgn, lapack_int \(m\), lapack_int \(n\), const lapack_complex_float* a, lapack_int lda, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* c, lapack_int ldc, float* scale );
lapack_int LAPACKE_ztrsyl( int matrix_order, char trana, char tranb, lapack_int isgn, lapack_int \(m\), lapack_int \(n\), const lapack_complex_double* a, lapack_int lda, const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* c, lapack_int ldc, double* scale );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves the Sylvester matrix equation op \((A) * X \pm X^{\star} \circ p(B)=\alpha^{\star} C\), where op \((A)=A\) or \(A^{H}\), and the matrices \(A\) and \(B\) are upper triangular (or, for real flavors, upper quasi-triangular in canonical Schur form); \(\alpha \leq 1\) is a scale factor determined by the routine to avoid overflow in \(x ; A\) is \(m\)-by- \(m, B\) is \(n\)-by- \(n\), and \(C\) and \(x\) are both \(m-b y-n\). The matrix \(x\) is obtained by a straightforward process of back substitution.

The equation has a unique solution if and only if \(\alpha_{i} \pm \beta_{i} \neq 0\), where \(\left\{\alpha_{i}\right\}\) and \(\left\{\beta_{i}\right\}\) are the eigenvalues of \(A\) and \(B\), respectively, and the sign (+ or - ) is the same as that used in the equation to be solved.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{trana} & CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & If trana \(=\) ' N ', then op \((A)=A\). \\
\hline & If trana \(=\) 'T', then op \((A)=A^{T}\) (real flavors only). \\
\hline & If trana \(=\) ' C' then op \((A)=A^{H}\). \\
\hline \multirow[t]{4}{*}{tranb} & CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & If tranb \(=\) ' \(\mathrm{N}^{\prime}\), then op \((B)=B\). \\
\hline & If tranb \(=\) 'T', then op \((B)=B^{T}\) (real flavors only). \\
\hline & If tranb \(=\) ' C', then op \((B)=B^{H}\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline isgn & \begin{tabular}{l}
INTEGER. Indicates the form of the Sylvester equation. \\
If isgn \(=+1\), op \((A) \star X+X^{*} \mathrm{op}(B)=\) alpha* \(C\). \\
If isgn \(=-1\), op \((A) * X-X^{*}\) op \((B)=\) alpha* \(C\).
\end{tabular} \\
\hline m & INTEGER. The order of \(A\), and the number of rows in \(X\) and \(C\) ( \(m \geq 0\) ). \\
\hline \(n\) & INTEGER. The order of \(B\), and the number of columns in \(x\) and \(C(n \geq 0)\). \\
\hline \(a, b, c\) & REAL for strsyl \\
\hline & DOUBLE PRECISION for dtrsyl \\
\hline & COMPLEX for ctrsyl \\
\hline & DOUBLE COMPLEX for ztrsyl. \\
\hline & \begin{tabular}{l}
Arrays: \\
a(lda,*) contains the matrix \(A\).
\end{tabular} \\
\hline & The second dimension of a must be at least max \((1, m)\). \\
\hline & \(b(1 d b, *)\) contains the matrix \(B\). \\
\hline & The second dimension of \(b\) must be at least \(\max (1, n)\). \\
\hline & The second dimension of \(c\) must be at least \(\max (1, n)\). \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, m)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b\); at least max \((1, n)\). \\
\hline Idc & INTEGER. The leading dimension of \(c\); at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

C
scale
info

Overwritten by the solution matrix \(x\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
The value of the scale factor \(\alpha\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1, A\) and \(B\) have common or close eigenvalues perturbed values were used to solve the equation.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine trsyl interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size ( \(m, m\) ). \\
\hline b & Holds the matrix \(B\) of size ( \(n, n\) ). \\
\hline c & Holds the matrix \(C\) of size ( \(m, n\) ). \\
\hline trana & Must be 'N', 'C', or 'T'. The default value is 'N'. \\
\hline tranb & Must be 'N', 'C', or 'T'. The default value is 'N'. \\
\hline isgn & Must be +1 or -1 . The default value is +1 . \\
\hline
\end{tabular}

\section*{Application Notes}

Let \(X\) be the exact, \(Y\) the corresponding computed solution, and \(R\) the residual matrix: \(R=C-(A Y \pm Y B)\). Then the residual is always small:
\[
||R||_{F}=O(\varepsilon) *\left(| | A| |_{F}+||B||_{F}\right) *| | Y| |_{F}
\]

However, \(Y\) is not necessarily the exact solution of a slightly perturbed equation; in other words, the solution is not backwards stable.

For the forward error, the following bound holds:
\(||Y-X||_{F} \leq||R||_{F} / \operatorname{sep}(A, B)\)
but this may be a considerable overestimate. See [Golub96] for a definition of \(\operatorname{sep}(A, B)\).
The approximate number of floating-point operations for real flavors is \(m^{\star} n^{\star}(m+n)\). For complex flavors it is 4 times greater.

\section*{Generalized Nonsymmetric Eigenvalue Problems}

This section describes LAPACK routines for solving generalized nonsymmetric eigenvalue problems, reordering the generalized Schur factorization of a pair of matrices, as well as performing a number of related computational tasks.
A generalized nonsymmetric eigenvalue problem is as follows: given a pair of nonsymmetric (or nonHermitian) \(n\)-by- \(n\) matrices \(A\) and \(B\), find the generalized eigenvalues \(\lambda\) and the corresponding generalized eigenvectors \(x\) and \(y\) that satisfy the equations
\(A x=\lambda B x\) (right generalized eigenvectors \(x\) )
and
\(y^{H} A=\lambda y^{H} B\) (left generalized eigenvectors \(y\) ).
Table "Computational Routines for Solving Generalized Nonsymmetric Eigenvalue Problems" lists LAPACK routines (FORTRAN 77 interface) used to solve the generalized nonsymmetric eigenvalue problems and the generalized Sylvester equation. Respective routine names in Fortran 95 interface are without the first symbol (see Routine Naming Conventions).
Computational Routines for Solving Generalized Nonsymmetric Eigenvalue Problems
\begin{tabular}{ll}
\begin{tabular}{l} 
Routine \\
name
\end{tabular} & Operation performed \\
gghrd & \begin{tabular}{l} 
Reduces a pair of matrices to generalized upper Hessenberg form using orthogonal/ \\
unitary transformations.
\end{tabular} \\
ggbal & \begin{tabular}{l} 
Balances a pair of general real or complex matrices.
\end{tabular} \\
ggbak & \begin{tabular}{l} 
Forms the right or left eigenvectors of a generalized eigenvalue problem. \\
Implements the QZ method for finding the generalized eigenvalues of the matrix pair
\end{tabular} \\
tgevc & \begin{tabular}{l} 
Computes some or all of the right and/or left generalized eigenvectors of a pair of upper \\
triangular matrices
\end{tabular} \\
tgexc & \begin{tabular}{l} 
Reorders the generalized Schur decomposition of a pair of matrices (A,B) so that one \\
diagonal block of (A,B) moves to another row index.
\end{tabular} \\
tgsen & \begin{tabular}{l} 
Reorders the generalized Schur decomposition of a pair of matrices (A,B) so that a \\
selected cluster of eigenvalues appears in the leading diagonal blocks of (A,B). \\
tgsyl
\end{tabular} \\
Solves the generalized Sylvester equation.
\end{tabular}

\section*{?gghrd}

Reduces a pair of matrices to generalized upper
Hessenberg form using orthogonal/unitary transformations.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)
call dgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)
call cgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)
call zgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)

```

\section*{Fortran 95:}
```

call gghrd(a, b [,ilo] [,ihi] [,q] [,z] [,compq] [,compz] [,info])

```

C:
```

lapack_int LAPACKE_<?>gghrd(int matrix_order, char compq, char compz, lapack_int n,

```
lapack_int ilo, lapack_int ihi, <datatype>* a, lapack_int lda, <datatype>* b,
lapack_int ldb, <datatype>* q, lapack_int ldq, <datatype>* z, lapack_int ldz );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reduces a pair of real/complex matrices \((A, B)\) to generalized upper Hessenberg form using orthogonal/unitary transformations, where \(A\) is a general matrix and \(B\) is upper triangular. The form of the generalized eigenvalue problem is \(A^{\star} x=\lambda^{\star} B^{\star} x\), and \(B\) is typically made upper triangular by computing its \(Q R\) factorization and moving the orthogonal matrix \(Q\) to the left side of the equation.

This routine simultaneously reduces \(A\) to a Hessenberg matrix \(H\) :
\[
Q^{H \star A \star} Z=H
\]
and transforms \(B\) to another upper triangular matrix \(T\) :
\[
Q^{H \star} B^{\star} Z=T
\]
in order to reduce the problem to its standard form \(H^{\star} y=\lambda \star T^{\star} y\), where \(y=Z^{H_{\star}}{ }_{x}\).
The orthogonal/unitary matrices \(Q\) and \(z\) are determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices \(Q_{1}\) and \(Z_{1}\), so that
\(Q_{1}{ }^{\star} A^{\star} Z_{1}{ }^{H}=\left(Q_{1} * Q\right) \star H^{\star}\left(Z_{1} \star Z\right)^{H}\)
\(Q_{1}{ }^{\star} B^{\star} Z_{1}{ }^{H}=\left(Q_{1}{ }^{*} Q\right) * T^{\star}\left(Z_{1} \star Z\right)^{H}\)
If \(Q_{1}\) is the orthogonal/unitary matrix from the \(Q R\) factorization of \(B\) in the original equation \(A^{\star} X^{\prime}=\lambda^{\star} B^{\star} X_{X}\), then the routine ?gghrd reduces the original problem to generalized Hessenberg form.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline compq & \begin{tabular}{l}
CHARACTER*1. Must be 'N', 'I', or 'V'. \\
If compq \(=\) ' \(N\) ', matrix \(Q\) is not computed. \\
If compq = 'I', \(Q\) is initialized to the unit matrix, and the orthogonal/ \\
unitary matrix \(Q\) is returned; \\
If compq = 'V', \(Q\) must contain an orthogonal/unitary matrix \(Q_{1}\) on entry, and the product \(Q_{1}{ }_{Q}\) is returned.
\end{tabular} \\
\hline compz & \begin{tabular}{l}
CHARACTER*1. Must be 'N', 'I', or 'V'. \\
If compz \(=\) ' \(N\) ', matrix \(z\) is not computed. \\
If compz = 'I', \(z\) is initialized to the unit matrix, and the orthogonal/ unitary matrix \(z\) is returned; \\
If compz \(=\) ' V ', \(z\) must contain an orthogonal/unitary matrix \(z_{1}\) on entry, and the product \(z_{1}{ }^{*} Z\) is returned.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ilo, ihi & \begin{tabular}{l}
INTEGER. ilo and ihi mark the rows and columns of \(A\) which are to be reduced. It is assumed that \(A\) is already upper triangular in rows and columns 1:ilo-1 and ihi+1:n. Values of ilo and ihi are normally set by a previous call to ggbal; otherwise they should be set to 1 and \(n\) respectively. Constraint: \\
If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\); \\
if \(n=0\), then ilo \(=1\) and ihi \(=0\).
\end{tabular} \\
\hline \(a, b, q, z\) & \begin{tabular}{l}
REAL for sgghrd \\
DOUBLE PRECISION for dgghrd \\
COMPLEX for cgghrd \\
DOUBLE COMPLEX for zgghrd. \\
Arrays: \\
\(a(l d a, *)\) contains the \(n-b y-n\) general matrix \(A\). The second dimension of a must be at least \(\max (1, n)\). \\
\(b(I d b, *)\) contains the \(n\)-by- \(n\) upper triangular matrix \(B\). \\
The second dimension of \(b\) must be at least \(\max (1, n)\). \\
\(q(1 d q, *)\) \\
If compq = ' \(N\) ', then \(q\) is not referenced. \\
If compq \(=\) ' \(V\) ', then \(q\) must contain the orthogonal/unitary matrix \(Q_{1}\), typically from the \(Q R\) factorization of \(B\). \\
The second dimension of \(q\) must be at least \(\max (1, n)\).
\[
z(I d z, *)
\] \\
If compz \(=\) ' \(N\) ', then \(z\) is not referenced. \\
If compz \(=\) ' V ', then \(z\) must contain the orthogonal/unitary matrix \(z_{1}\). \\
The second dimension of \(z\) must be at least \(\max (1, n)\).
\end{tabular} \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b\); at least max \((1, n)\). \\
\hline \(1 d q\) & \begin{tabular}{l}
INTEGER. The leading dimension of \(q\); \\
If compq \(=\) ' \(N\) ', then \(l d q \geq 1\). \\
If compq \(=\) 'I'or ' \(V\) ', then \(I d q \geq \max (1, n)\).
\end{tabular} \\
\hline \(1 d z\) & \begin{tabular}{l}
INTEGER. The leading dimension of \(z\); \\
If compz \(=\) ' \(N\) ', then \(l d z \geq 1\). \\
If compz \(=\) 'I'or ' V ', then \(1 \mathrm{dz} \geq \max (1, n)\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, the upper triangle and the first subdiagonal of \(A\) are overwritten with the upper Hessenberg matrix \(H\), and the rest is set to zero.
\begin{tabular}{|c|c|}
\hline b & On exit, overwritten by the upper triangular matrix \(T=Q^{H *} B^{*} Z\). The elements below the diagonal are set to zero. \\
\hline q & \begin{tabular}{l}
If compq = 'I', then \(q\) contains the orthogonal/unitary matrix \(Q_{1}\); \\
If compq \(=\) ' \(V\) ', then \(q\) is overwritten by the product \(Q_{1}{ }^{*} Q\).
\end{tabular} \\
\hline \(z\) & \begin{tabular}{l}
If compz \(=\) ' I', then \(z\) contains the orthogonal/unitary matrix \(z\); \\
If compz \(=\) ' \(V\) ', then \(z\) is overwritten by the product \(z_{1} *_{z}\).
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine gghrd interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size ( \(n, n\) ). \\
\hline b & Holds the matrix \(B\) of size ( \(n, n\) ). \\
\hline q & Holds the matrix \(Q\) of size ( \(n, n\) ). \\
\hline \(z\) & Holds the matrix \(z\) of size ( \(n, n\) ). \\
\hline ilo & Default value for this argument is ilo \(=1\). \\
\hline ihi & Default value for this argument is ihi \(=n\). \\
\hline compq & If omitted, this argument is restored based on the presence of argument \(q\) as follows: compq = 'I', if \(q\) is present, compq = 'N', if \(q\) is omitted. If present, compq must be equal to 'I' or 'V' and the argument q must also be present. Note that there will be an error condition if compq is present and \(q\) omitted. \\
\hline compz & If omitted, this argument is restored based on the presence of argument \(z\) as follows: \(\operatorname{compz}=\) 'I', if \(z\) is present, compz \(=\) 'N', if \(z\) is omitted. If present, compz must be equal to 'I' or 'V' and the argument \(z\) must also be present. Note that there will be an error condition if compz is present and \(z\) omitted. \\
\hline
\end{tabular}

\section*{?ggbal}

Balances a pair of general real or complex matrices.

\section*{Syntax}

Fortran 77:
```

call sggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)
call dggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)
call cggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)
call zggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)

```

\section*{Fortran 95:}
```

call ggbal(a, b [,ilo] [,ihi] [,lscale] [,rscale] [,job] [,info])

```
```

C:
lapack_int LAPACKE_sggbal(int matrix_order, char job, lapack_int n, float* a,
lapack_int lda, float* b, lapack_int ldb, lapack_int* ilo, lapack_int* ihi, float*
lscale, float* rscale);
lapack_int LAPACKE_dggbal(int matrix_order, char job, lapack_int n, double* a,
lapack_int lda, double* b, lapack_int ldb, lapack_int* ilo, lapack_int* ihi, double*
lscale, double* rscale);
lapack_int LAPACKE_cggbal(int matrix_order, char job, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb,
lapack_int* ilo, lapack_int* ihi, float* lscale, float* rscale);
lapack_int LAPACKE_zggbal(int matrix_order, char job, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb,
lapack_int* ilo, lapack_int* ihi, double* lscale, double* rscale);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine balances a pair of general real/complex matrices \((A, B)\). This involves, first, permuting \(A\) and \(B\) by similarity transformations to isolate eigenvalues in the first 1 to ilo-1 and last ihi+1 to \(n\) elements on the diagonal;and second, applying a diagonal similarity transformation to rows and columns ilo to ihi to make the rows and columns as close in norm as possible. Both steps are optional. Balancing may reduce the 1norm of the matrices, and improve the accuracy of the computed eigenvalues and/or eigenvectors in the generalized eigenvalue problem \(A^{\star} x=\lambda \star B^{\star}{ }_{x}\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

job
n
a,b
CHARACTER*1. Specifies the operations to be performed on A and B. Must
be 'N' or 'P' or 'S' or 'B'.
If job = 'N ', then no operations are done; simply set ilo =1, ihi=n,
lscale(i) =1.0 and rscale(i)=1.0 for
i = 1,..., n.
If job = 'P', then permute only.
If job = 'S', then scale only.
If job = 'B', then both permute and scale.
INTEGER. The order of the matrices A and B (}n\geq0)\mathrm{ .
REAL for sggbal
DOUBLE PRECISION for dggbal
COMPLEX for cggbal
DOUBLE COMPLEX for zggbal.
Arrays:
a(lda,*) contains the matrix A. The second dimension of a must be at least
max(1, n).
b}(ldb,*) contains the matrix B. The second dimension of b must be at leas
max(1, n).

```
\begin{tabular}{|c|c|}
\hline & If job = 'N', a and b are not referenced. \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b\); at least max \((1, n)\). \\
\hline work & \begin{tabular}{l}
REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors. \\
Workspace array, DIMENSION at least max (1, \(6 n\) ) when job = 'S'or 'B', or at least 1 when job \(=\) 'N'or 'P'.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
```

a,b
ilo, ihi

```
lscale, rscale

Overwritten by the balanced matrices \(A\) and \(B\), respectively.
INTEGER. ilo and ihi are set to integers such that on exit \(a(i, j)=0\) and \(b(i, j)=0\) if \(i>j\) and \(j=1, \ldots, i l o-1\) or \(i=i h i+1, \ldots, n\). If job = 'N'or'S', then ilo = 1 and ihi \(=n\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max \((1, n)\).
lscale contains details of the permutations and scaling factors applied to the left side of \(A\) and \(B\).
If \(P_{j}\) is the index of the row interchanged with row \(j\), and \(D_{j}\) is the scaling factor applied to row \(j\), then
lscale(j) \(=P_{j}\), for \(j=1, \ldots\), ilo-1
\(=D_{j}\), for \(j=i l o, \ldots, i h i\)
\(=P_{j}\), for \(j=i h i+1, \ldots, n\).
rscale contains details of the permutations and scaling factors applied to the right side of \(A\) and \(B\).
If \(P_{j}\) is the index of the column interchanged with column \(j\), and \(D_{j}\) is the scaling factor applied to column \(j\), then
rscale( \(j\) ) \(=P_{j}\), for \(j=1, \ldots\) ilo-1
\(=D_{j}\), for \(j=i l o, \ldots, i h i\)
\(=P_{j}\), for \(j=i h i+1, \ldots, n\)
The order in which the interchanges are made is \(n\) to \(i h i+1\), then 1 to ilo-1.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ggbal interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((n, n)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n)\). \\
lscale & Holds the vector of length \((n)\). \\
rscale & Holds the vector of length \((n)\). \\
ilo & Default value for this argument is \(i l o=1\). \\
ihi & Default value for this argument is \(i h i=n\). \\
job & Must be 'B', 'S', ' \(P^{\prime}\), or \({ }^{\prime} N^{\prime}\). The default value is ' \(B^{\prime}\).
\end{tabular}

\section*{?ggbak}

Forms the right or left eigenvectors of a generalized eigenvalue problem.

\section*{Syntax}

\section*{Fortran 77:}
```

call sggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
call dggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
call cggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
call zggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

```

\section*{Fortran 95:}
```

call ggbak(v [, ilo] [,ihi] [,lscale] [,rscale] [,job] [,info])

```

C:
lapack_int LAPACKE_sggbak( int matrix_order, char job, char side, lapack_int n, lapack_int ilo, lapack_int ihi, const float* lscale, const float* rscale, lapack_int \(m\), float* \(v\), lapack_int \(l d v\) );
lapack_int LAPACKE_dggbak( int matrix_order, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const double* lscale, const double* rscale, lapack_int
\(m\), double* \(v\), lapack_int \(l d v\) );
lapack_int LAPACKE_cggbak( int matrix_order, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const float* lscale, const float* rscale, lapack_int
\(m\), lapack_complex_float* \(v\), lapack_int ldv );
lapack_int LAPACKE_zggbak( int matrix_order, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const double* lscale, const double* rscale, lapack_int
\(\left.m, ~ l a p a c k \_c o m p l e x \_d o u b l e * ~ v, ~ l a p a c k \_i n t ~ l d v\right) ; ~\)

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine forms the right or left eigenvectors of a real/complex generalized eigenvalue problem
\[
A^{\star} X=\lambda \star B^{\star} X
\]
by backward transformation on the computed eigenvectors of the balanced pair of matrices output by ggbal.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
job
CHARACTER*1. Specifies the type of backward transformation required.
Must be 'N', 'P', 'S', or 'B'.
If job = 'N', then no operations are done; return.
If job = 'P', then do backward transformation for permutation only.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If job \(=\) 'S', then do backward transformation for scaling only. \\
If job = 'B', then do backward transformation for both permutation and scaling. This argument must be the same as the argument job supplied to ?ggbal.
\end{tabular} \\
\hline side & \begin{tabular}{l}
CHARACTER*1. Must be 'L' or 'R'. \\
If side \(=\) ' \(L\) ', then \(v\) contains left eigenvectors. \\
If side \(=\) 'R', then \(v\) contains right eigenvectors.
\end{tabular} \\
\hline \(n\) & INTEGER. The number of rows of the matrix \(V(n \geq 0)\). \\
\hline ilo, ihi & \begin{tabular}{l}
INTEGER. The integers ilo and ihi determined by ?gebal. Constraint: \\
If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\); \\
if \(n=0\), then ilo \(=1\) and ihi \(=0\).
\end{tabular} \\
\hline Iscale, rscale & \begin{tabular}{l}
REAL for single precision flavors \\
DOUBLE PRECISION for double precision flavors. \\
Arrays, DIMENSION at least max \((1, n)\). \\
The array lscale contains details of the permutations and/or scaling factors applied to the left side of \(A\) and \(B\), as returned by ?ggbal. \\
The array rscale contains details of the permutations and/or scaling factors applied to the right side of \(A\) and \(B\), as returned by ?ggbal.
\end{tabular} \\
\hline m & INTEGER. The number of columns of the matrix \(V\) ( \(m \geq 0\) ). \\
\hline v & REAL for sggbak \\
\hline & DOUBLE PRECISION for dggbak \\
\hline & COMPLEX for cggbak \\
\hline & DOUBLE COMPLEX for zggbak. \\
\hline & \begin{tabular}{l}
Array \(\mathrm{v}(I d v, *)\). Contains the matrix of right or left eigenvectors to be transformed, as returned by tgevc. \\
The second dimension of \(v\) must be at least max \((1, m)\).
\end{tabular} \\
\hline \(I d v\) & INTEGER. The leading dimension of \(v\); at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
V
info

Overwritten by the transformed eigenvectors
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ggbak interface are the following:
```

v Holds the matrix V of size (}n,m\mathrm{).
Iscale Holds the vector of length n.
rscale Holds the vector of length n.
ilo Default value for this argument is ilo = 1.
ihi Default value for this argument is ihi = n.
job Must be 'B','S','P', or 'N'. The default value is 'B'.
side If omitted, this argument is restored based on the presence of arguments lscale
and rscale as follows:

```
side \(=\) 'L', if lscale is present and rscale omitted, side \(=\) 'R', if lscale is omitted and rscale present.
Note that there will be an error condition if both lscale and rscale are present or if they both are omitted.

\section*{?hgeqz}

Implements the QZ method for finding the generalized eigenvalues of the matrix pair \((H, T)\).

\section*{Syntax}

\section*{Fortran 77:}
```

call shgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar, alphai, beta, q,
ldq, z, ldz, work, lwork, info)
call dhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar, alphai, beta, q,
ldq, z, ldz, work, lwork, info)
call chgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha, beta, q, ldq, z,
ldz, work, lwork, rwork, info)
call zhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha, beta, q, ldq, z,
ldz, work, lwork, rwork, info)

```

\section*{Fortran 95:}
call hgeqz(h, t [,ilo] [,ihi] [,alphar] [, alphai] [,beta] [,q] [,z] [,job] [,compq] [, compz] [,info])
call hgeqz(h, t [, ilo] [,ihi] [, alpha] [,beta] [,q] [,z] [,job] [,compq] [, compz] [, info])

\section*{C:}
lapack_int LAPACKE_shgeqz( int matrix_order, char job, char compq, char compz,
lapack_int \(n\), lapack_int ilo, lapack_int ihi, float* h, lapack_int ldh, float* \(t\), lapack_int ldt, float* alphar, float* alphai, float* beta, float* q, lapack_int ldq, float* z, lapack_int ldz );
lapack_int LAPACKE_dhgeqz( int matrix_order, char job, char compq, char compz, lapack_int \(n\), lapack_int ilo, lapack_int ihi, double* h, lapack_int ldh, double* t, lapack_int ldt, double* alphar, double* alphai, double* beta, double* q, lapack_int ldq, double* \(\left.z, ~ l a p a c k \_i n t ~ l d z ~\right) ; ~\)
lapack_int LAPACKE_chgeqz( int matrix_order, char job, char compq, char compz, lapack_int \(n\), lapack_int ilo, lapack_int ihi, lapack_complex_float* h, lapack_int ldh, lapack_complex_float* t, lapack_int ldt, lapack_complex_float* alpha, lapack_complex_float* beta, lapack_complex_float* q, lapack_int ldq, lapack_complex_float* \(\left.z, ~ l a p a c k \_i n t ~ l d z ~\right) ; ~\)
lapack_int LAPACKE_zhgeqz( int matrix_order, char job, char compq, char compz, lapack_int \(n\), lapack_int ilo, lapack_int ihi, lapack_complex_double* h, lapack_int ldh, lapack_complex_double* t, lapack_int ldt, lapack_complex_double* alpha, lapack_complex_double* beta, lapack_complex_double* q, lapack_int ldq, lapack_complex_double* z, lapack_int ldz );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the eigenvalues of a real/complex matrix pair ( \(H, T\) ), where \(H\) is an upper Hessenberg matrix and \(T\) is upper triangular, using the double-shift version (for real flavors) or single-shift version (for complex flavors) of the \(Q Z\) method. Matrix pairs of this type are produced by the reduction to generalized upper Hessenberg form of a real/complex matrix pair \((A, B)\) :

\section*{\(A=Q_{1} \star H^{\star} Z_{1}{ }^{H}, B=Q_{1} * T^{*} Z_{1}{ }^{H}\),}
as computed by ?gghrd.

\section*{For real flavors:}

If job = 'S', then the Hessenberg-triangular pair \((H, T)\) is also reduced to generalized Schur form,
\(H=Q^{\star} S^{\star} Z^{T}, T=Q^{\star} P^{\star} Z^{T}\),
where \(Q\) and \(Z\) are orthogonal matrices, \(P\) is an upper triangular matrix, and \(S\) is a quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal blocks. The 1-by-1 blocks correspond to real eigenvalues of the matrix pair ( \(H, T\) ) and the 2-by-2 blocks correspond to complex conjugate pairs of eigenvalues.

Additionally, the 2-by-2 upper triangular diagonal blocks of \(P\) corresponding to 2-by-2 blocks of \(S\) are reduced to positive diagonal form, that is, if \(S(\mathbf{j}+1, \mathbf{j})\) is non-zero, then \(P(j+1, j)=P(j, j+1)=0, P(j, j)\) \(>0\), and \(P(j+1, j+1)>0\).

For complex flavors:
If job = 'S', then the Hessenberg-triangular pair \((H, T)\) is also reduced to generalized Schur form,
\(H=Q^{\star} S^{\star} Z^{H}, T=Q^{\star} P^{\star} Z^{H}\),
where \(Q\) and \(z\) are unitary matrices, and \(S\) and \(P\) are upper triangular.

\section*{For all function flavors:}

Optionally, the orthogonal/unitary matrix \(Q\) from the generalized Schur factorization may be postmultiplied into an input matrix \(Q_{1}\), and the orthogonal/unitary matrix \(z\) may be postmultiplied into an input matrix \(z_{1}\).

If \(Q_{1}\) and \(z_{1}\) are the orthogonal/unitary matrices from ? gghrd that reduced the matrix pair \((A, B)\) to generalized upper Hessenberg form, then the output matrices \(Q_{1} Q\) and \(Z 1 Z\) are the orthogonal/unitary factors from the generalized Schur factorization of \((A, B)\) :
\(A=\left(Q_{1} Q\right) * S *\left(Z_{1} Z\right)^{H}, B=\left(Q_{1} Q\right) * P^{\star}\left(Z_{1} Z\right)^{H}\).
To avoid overflow, eigenvalues of the matrix pair \((H, T)\) (equivalently, of \((A, B)\) ) are computed as a pair of values (alpha,beta). For chgeqz/zhgeqz, alpha and beta are complex, and for shgeqz/dhgeqz, alpha is complex and beta real. If beta is nonzero, \(\lambda=a l p h a / b e t a\) is an eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)
\(A^{\star} X=\lambda \star B^{\star} X^{x}\)
and if alpha is nonzero, \(\mu=\) betalalpha is an eigenvalue of the alternate form of the GNEP
\(\mu^{\star} A^{\star} y=B^{\star} y\).
Real eigenvalues (for real flavors) or the values of alpha and beta for the i-th eigenvalue (for complex flavors) can be read directly from the generalized Schur form:
alpha \(=S(i, i)\), beta \(=P(i, i)\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{job} & CHARACTER*1. Specifies the operations to be performed. Must be 'E' or 'S'. \\
\hline & If job = 'E', then compute eigenvalues only; \\
\hline & If job = 'S', then compute eigenvalues and the Schur form. \\
\hline \multirow[t]{5}{*}{compq} & CHARACTER*1. Must be 'N', 'I', or 'V'. \\
\hline & If compq = 'N', left Schur vectors ( \(q\) ) are not computed; \\
\hline & If compq = 'I', \(q\) is initialized to the unit matrix and the matrix of left \\
\hline & Schur vectors of ( \(H, T\) ) is returned; \\
\hline & If compq \(=\) ' \(V\) ', \(q\) must contain an orthogonal/unitary matrix \(Q_{1}\) on entry and the product \(Q_{1}{ }^{*} Q\) is returned. \\
\hline \multirow[t]{5}{*}{compz} & CHARACTER*1. Must be 'N', 'I', or 'V'. \\
\hline & If compz \(=\) ' N ', right Schur vectors ( \(z\) ) are not computed; \\
\hline & If compz = 'I', \(z\) is initialized to the unit matrix and the matrix of right \\
\hline & Schur vectors of \((H, T)\) is returned; \\
\hline & If compz = ' V ', \(z\) must contain an orthogonal/unitary matrix \(z_{1}\) on entry and the product \(z_{1} \star z\) is returned. \\
\hline \(n\) & INTEGER. The order of the matrices \(H, T, Q\), and \(Z\) ( \(n \geq 0\) ). \\
\hline \multirow[t]{5}{*}{ilo, ihi} & INTEGER. ilo and ihi mark the rows and columns of \(H\) which are in \\
\hline & Hessenberg form. It is assumed that \(H\) is already upper triangular in rows and columns 1:ilo-1 and ihi+1:n. \\
\hline & Constraint: \\
\hline & If \(n>0\), then \(1 \leq i l o \leq i h i \leq n ;\) \\
\hline & if \(n=0\), then ilo \(=1\) and \(i\) hi \(=0\). \\
\hline \multirow[t]{14}{*}{\(h, t, q, z\) work} & REAL for shgeqz \\
\hline & DOUBLE PRECISION for dhgeqz \\
\hline & COMPLEX for chgeqz \\
\hline & DOUBLE COMPLEX for zhgeqz. \\
\hline & Arrays: \\
\hline & On entry, \(h(l d h, *)\) contains the \(n\)-by-n upper Hessenberg matrix \(H\). \\
\hline & The second dimension of \(h\) must be at least max \((1, n)\). \\
\hline & On entry, \(t(l d t, *)\) contains the \(n\)-by-n upper triangular matrix \(T\). \\
\hline & The second dimension of \(t\) must be at least \(\max (1, n)\). \(q\) (ldq,*): \\
\hline & On entry, if compq \(=\) ' \(V\) ', this array contains the orthogonal/unitary matrix \\
\hline & \(Q_{1}\) used in the reduction of \((A, B)\) to generalized Hessenberg form. If compq \(=\) ' \(N\) ', then \(q\) is not referenced. \\
\hline & The second dimension of \(q\) must be at least \(\max (1, n)\).
\[
z(l d z, *):
\] \\
\hline & \begin{tabular}{l}
On entry, if compz = ' \(V\) ', this array contains the orthogonal/unitary matrix \(z_{1}\) used in the reduction of \((A, B)\) to generalized Hessenberg form. \\
If compz = 'N', then \(z\) is not referenced.
\end{tabular} \\
\hline & The second dimension of \(z\) must be at least \(\max (1, n)\). work is a workspace array, its dimension max ( 1,1 work) . \\
\hline 1 dh & INTEGER. The leading dimension of \(h\); at least max \((1, n)\). \\
\hline ldt & INTEGER. The leading dimension of \(t\); at least max \((1, n)\). \\
\hline \multirow[t]{3}{*}{\(1 d q\)} & INTEGER. The leading dimension of \(q\); \\
\hline & If compq \(=\) ' N ', then \(1 d q \geq 1\). \\
\hline & If compq \(=\) 'I'or 'V', then 1 dq \(\geq \max (1, n)\). \\
\hline \(1 d z\) & INTEGER. The leading dimension of \(z\); \\
\hline
\end{tabular}
```

If compq = 'N', then ldz \geq 1.
If compq = 'I'or 'V', then ldz \geq max(1, n).

```
l work
rwork

INTEGER. The dimension of the array work.
l work \(\geq \max (1, n)\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes for details.

REAL for chgeqz
DOUBLE PRECISION for zhgeqz.
Workspace array, DIMENSION at least max \((1, n)\). Used in complex flavors only.

\section*{Output Parameters}
h
\(t\)
alphar, alphai
alpha
beta

\section*{For real flavors:}

If job \(=\) ' \(S\) ', then on exit \(h\) contains the upper quasi-triangular matrix \(S\) from the generalized Schur factorization.
If job \(=\) ' \(E\) ', then on exit the diagonal blocks of \(h\) match those of \(S\), but the rest of \(h\) is unspecified.
For complex flavors:
If job = 'S', then, on exit, \(h\) contains the upper triangular matrix \(S\) from the generalized Schur factorization.
If job \(=\) ' \(E\) ', then on exit the diagonal of \(h\) matches that of \(S\), but the rest of \(h\) is unspecified.
If job \(=\) ' S', then, on exit, \(t\) contains the upper triangular matrix \(P\) from the generalized Schur factorization.
For real flavors:
2-by-2 diagonal blocks of \(P\) corresponding to 2-by-2 blocks of \(S\) are reduced to positive diagonal form, that is, if \(h(j+1, j)\) is non-zero, then \(t(j\)
\(+1, j)=t(j, j+1)=0\) and \(t(j, j)\) and \(t(j+1, j+1)\) will be positive.
If job \(=\) ' \(E\) ', then on exit the diagonal blocks of \(t\) match those of \(P\), but the rest of \(t\) is unspecified.
For complex flavors:
if job \(=\) ' \(E\) ', then on exit the diagonal of \(t\) matches that of \(P\), but the rest of \(t\) is unspecified.

REAL for shgeqz;
DOUBLE PRECISION for dhgeqz.
Arrays, DIMENSION at least max \((1, n)\). The real and imaginary parts, respectively, of each scalar alpha defining an eigenvalue of GNEP.
If alphai( j\()\) is zero, then the j -th eigenvalue is real; if positive, then the j -
th and ( \(j+1\) )-th eigenvalues are a complex conjugate pair, with
alphai(j+1) = -alphai(j).
COMPLEX for chgeqz;
DOUBLE COMPLEX for zhgeqz.
Array, DIMENSION at least max \((1, n)\).
The complex scalars alpha that define the eigenvalues of GNEP. alphai(i)
\(=S(i, i)\) in the generalized Schur factorization.
REAL for shgeqz

DOUBLE PRECISION for dhgeqz
COMPLEX for chgeqz
DOUBLE COMPLEX for zhgeqz.

Array, DIMENSION at least max \((1, n)\).
For real flavors:
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha \(=(\operatorname{alphar}(j), \operatorname{alphai}(j))\) and beta = beta \((j)\) represent the \(j\)-th eigenvalue of the matrix pair \((A, B)\), in one of the forms lambda \(=\) alpha/beta or \(m u=\) beta/alpha. Since either lambda or mu may overflow, they should not, in general, be computed. For complex flavors:
The real non-negative scalars beta that define the eigenvalues of GNEP. beta(i) \(=P(i, i)\) in the generalized Schur factorization. Together, the quantities alpha \(=\) alpha( \(j\) ) and beta \(=\operatorname{beta}(j)\) represent the \(j\)-th eigenvalue of the matrix pair \((A, B)\), in one of the forms lambda \(=a l p h a l\) beta or \(m u=\) beta/alpha. Since either lambda or mu may overflow, they should not, in general, be computed.
q
On exit, if compq = 'I', q is overwritten by the orthogonal/unitary matrix of left Schur vectors of the pair \((H, T)\), and if compq \(=\) ' \(V\) ', \(q\) is overwritten by the orthogonal/unitary matrix of left Schur vectors of \((A, B)\).
On exit, if compz = 'I', \(z\) is overwritten by the orthogonal/unitary matrix of right Schur vectors of the pair \((H, T)\), and if compz = 'V', \(z\) is overwritten by the orthogonal/unitary matrix of right Schur vectors of \((A, B)\).
If info \(\geq 0\), on exit, work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1, \ldots, n\), the \(Q Z\) iteration did not converge.
( \(H, T\) ) is not in Schur form, but alphar(i), alphai(i) (for real flavors), alpha(i) (for complex flavors), and beta(i), i=infot1,..., \(n\) should be correct.
If info \(=n+1, \ldots, 2 n\), the shift calculation failed.
( \(H, T\) ) is not in Schur form, but alphar(i), alphai(i) (for real flavors), alpha(i) (for complex flavors), and beta(i), i =info-n+1,..., \(n\) should be correct.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine hgeqz interface are the following:
\begin{tabular}{ll}
\(h\) & Holds the matrix \(H\) of size \((n, n)\). \\
\(t\) & Holds the matrix \(T\) of size \((n, n)\). \\
alphar & Holds the vector of length \(n\). Used in real flavors only. \\
alphai & Holds the vector of length \(n\). Used in real flavors only. \\
alpha & Holds the vector of length \(n\). Used in complex flavors only. \\
beta & Holds the vector of length \(n\). \\
\(q\) & Holds the matrix \(Q\) of size \((n, n)\). \\
\(z\) & Holds the matrix \(z\) of size \((n, n)\). \\
\(i l o\) & Default value for this argument is \(i l o=1\). \\
ihi & Default value for this argument is \(i h i=n\).
\end{tabular}
job Must be 'E' or 'S'. The default value is 'E'.
compq
compz follows:
compq = 'I', if \(q\) is present, compq \(=\) ' N ', if \(q\) is omitted. present.

If omitted, this argument is restored based on the presence of argument \(q\) as

If present, compq must be equal to 'I' or 'V' and the argument q must also be

Note that there will be an error condition if compq is present and q omitted.
If omitted, this argument is restored based on the presence of argument \(z\) as follows:
compz = 'I', if \(z\) is present, compz \(=\) ' N ', if \(z\) is omitted.
If present, compz must be equal to 'I' or 'V' and the argument \(z\) must also be present.
Note an error condition if compz is present and \(z\) is omitted.

\section*{Application Notes}

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
```

?tgevc
Computes some or all of the right and/or left
generalized eigenvectors of a pair of upper triangular
matrices.

```

Syntax
Fortran 77:
```

call stgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work,
info)
call dtgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work,
info)
call ctgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work,
rwork, info)
call ztgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work,
rwork, info)

```

\section*{Fortran 95:}
```

call tgevc(s, p [,howmny] [,select] [,vl] [,vr] [,m] [,info])

```
```

C:
lapack_int LAPACKE_<?>tgevc(int matrix_order, char side, char howmny, const
lapack_logical* select, lapack_int n, const <datatype>* s, lapack_int lds, const
<datatype>* p, lapack_int ldp, <datatype>* vl, lapack_int ldvl, <datatype>* vr,
lapack_int ldvr, lapack_int mm, lapack_int* m);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes some or all of the right and/or left eigenvectors of a pair of real/complex matrices \((S, P)\), where \(S\) is quasi-triangular (for real flavors) or upper triangular (for complex flavors) and \(P\) is upper triangular.

Matrix pairs of this type are produced by the generalized Schur factorization of a real/complex matrix pair \((A, B)\) :
\(A=Q^{\star} S^{\star} Z^{H}, B=Q^{\star} P^{\star} Z^{H}\)
as computed by ?gghrd plus ?hgeqz.
The right eigenvector \(x\) and the left eigenvector \(y\) of \((S, P)\) corresponding to an eigenvalue \(w\) are defined by:
```

S*}x=\mp@subsup{w}{}{\star}\mp@subsup{P}{}{\star}x, y, y H\star S = w* ' y H* P

```

The eigenvalues are not input to this routine, but are computed directly from the diagonal blocks or diagonal elements of \(S\) and \(P\).
This routine returns the matrices \(X\) and/or \(Y\) of right and left eigenvectors of ( \(S, P\) ), or the products \(Z^{*} X\) and/ or \(Q^{*} Y\), where \(Z\) and \(Q\) are input matrices.

If \(Q\) and \(z\) are the orthogonal/unitary factors from the generalized Schur factorization of a matrix pair \((A, B)\), then \(Z^{*} X\) and \(Q^{*} Y\) are the matrices of right and left eigenvectors of \((A, B)\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{side} & CHARACTER*1. Must be 'R', 'L', or 'B'. \\
\hline & If side = 'R', compute right eigenvectors only. \\
\hline & If side = 'L', compute left eigenvectors only. \\
\hline & If side \(=\) ' B ', compute both right and left eigenvectors. \\
\hline \multirow[t]{4}{*}{howmny} & CHARACTER*1. Must be 'A', 'B', or 'S'. \\
\hline & If howmny = 'A', compute all right and/or left eigenvectors. \\
\hline & If howmny \(=\) ' B ', compute all right and/or left eigenvectors, backtransformed by the matrices in vr and/or vl. \\
\hline & If howmny = 'S', compute selected right and/or left eigenvectors, specified by the logical array select. \\
\hline \multirow[t]{5}{*}{select} & LOGICAL. \\
\hline & Array, DIMENSION at least max (1, \(n\) ). \\
\hline & If howmny = 'S', select specifies the eigenvectors to be computed. \\
\hline & If howmny = 'A'or 'B', select is not referenced. \\
\hline & For real flavors: \\
\hline
\end{tabular}

If omega( \(j\) ) is a real eigenvalue, the corresponding real eigenvector is computed if select \((j)\) is .TRUE..
If omega( \(j\) ) and omega( \(j+1\) ) are the real and imaginary parts of a complex eigenvalue, the corresponding complex eigenvector is computed if either select \((j)\) or select \((j+1)\) is .TRUE., and on exit \(\operatorname{select}(j)\) is set to .TRUE. and select \((j+1)\) is set to .FALSE. .
For complex flavors:
The eigenvector corresponding to the \(j\)-th eigenvalue is computed if select( \(j\) ) is .TRUE..
n
s, p, vl, vr, work
lds
\(1 d p\)
ldvl
ldvr
mm
rwork

INTEGER. The order of the matrices \(S\) and \(P(n \geq 0)\).
REAL for stgevc
DOUBLE PRECISION for dtgevc
COMPLEX for ctgevc
DOUBLE COMPLEX for ztgevc.

\section*{Arrays:}
\(s(l d s, *)\) contains the matrix \(S\) from a generalized Schur factorization as computed by ?hgeqz. This matrix is upper quasi-triangular for real flavors, and upper triangular for complex flavors.
The second dimension of \(s\) must be at least \(\max (1, n)\).
\(p(l d p, *)\) contains the upper triangular matrix \(P\) from a generalized Schur factorization as computed by ?hgeqz.
For real flavors, 2-by-2 diagonal blocks of \(P\) corresponding to 2-by-2 blocks of \(S\) must be in positive diagonal form.
For complex flavors, \(P\) must have real diagonal elements. The second dimension of \(p\) must be at least \(\max (1, n)\).
If side \(=\) 'L' or 'B' and howmny = 'B', vl(ldvl,*) must contain an n-by-n matrix \(Q\) (usually the orthogonal/unitary matrix \(Q\) of left Schur vectors returned by ?hgeqz). The second dimension of \(v l\) must be at least max(1, mm ).
If side = 'R' , vl is not referenced.
If side \(=\) 'R' or 'B' and howmny \(=\) 'B', vr(ldvr,*) must contain an n-by- \(n\) matrix \(z\) (usually the orthogonal/unitary matrix \(z\) of right Schur vectors returned by ?hgeqz). The second dimension of vr must be at least \(\max (1, m m)\).
If side = 'L', vr is not referenced.
work(*) is a workspace array.
DIMENSION at least max \(\left(1,6 *_{n}\right)\) for real flavors and at least max \(\left(1,2 *_{n}\right)\) for complex flavors.
INTEGER. The leading dimension of \(s\); at least max \((1, n)\).
INTEGER. The leading dimension of \(p\); at least max \((1, n)\).
INTEGER. The leading dimension of \(v I\);
If side \(=\) 'L' or ' \(B\) ', then \(l d v l \geq n\).
If side \(=\) ' R ', then \(I d v I \geq 1\).
INTEGER. The leading dimension of vr;
If side \(=\) ' \(R\) ' or ' \(B\) ', then \(l d v r \geq n\).
If side = 'L', then \(I d v r \geq 1\).
INTEGER. The number of columns in the arrays vi and/or vr ( \(m m \geq m\) ).
REAL for ctgevc DOUBLE PRECISION for ztgevc. Workspace array, DIMENSION at least max \(\left(1,2 *_{n}\right)\). Used in complex flavors only.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline vl & \begin{tabular}{l}
On exit, if side = 'L' or 'B', vl contains: \\
if howmny = 'A', the matrix \(Y\) of left eigenvectors of \((S, P)\); \\
if howmny \(=\) ' B ', the matrix \(Q^{*} Y\); \\
if howmny = 'S', the left eigenvectors of \((S, P)\) specified by select, stored consecutively in the columns of \(v 1\), in the same order as their eigenvalues. For real flavors: \\
A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part, and the second the imaginary part.
\end{tabular} \\
\hline vr & \begin{tabular}{l}
On exit, if side = 'R' or 'B', vr contains: \\
if howmny \(=\) ' \(A\) ', the matrix \(X\) of right eigenvectors of \((S, P)\); \\
if howmny \(=\) ' B ', the matrix \(z^{*} X\); \\
if howmny \(=\) ' S ', the right eigenvectors of \((S, P)\) specified by select, stored consecutively in the columns of \(v r\), in the same order as their eigenvalues. \\
For real flavors: \\
A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part, and the second the imaginary part.
\end{tabular} \\
\hline \(m\) & \begin{tabular}{l}
INTEGER. The number of columns in the arrays vl and/or vr actually used to store the eigenvectors. \\
If howmny = 'A' or ' B ', \(m\) is set to \(n\). \\
For real flavors: \\
Each selected real eigenvector occupies one column and each selected complex eigenvector occupies two columns. \\
For complex flavors: \\
Each selected eigenvector occupies one column.
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
For real flavors: \\
if info \(=i>0\), the 2-by-2 block \((i: i+1)\) does not have a complex eigenvalue.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine tgevc interface are the following:
\begin{tabular}{ll}
\(s\) & Holds the matrix \(S\) of size \((n, n)\). \\
\(p\) & Holds the matrix \(P\) of size \((n, n)\). \\
select & Holds the vector of length \(n\). \\
\(v r\) & Holds the matrix VL of size \((n, m m)\). \\
side & Holds the matrix \(V R\) of size \((n, m m)\). \\
& Restored based on the presence of arguments \(v l\) and vr as follows: \\
& side \(=^{\prime} \mathrm{B}^{\prime}\), if both \(v l\) and \(v r\) are present, \\
& side \(=' L '\), if \(v l\) is present and \(v r\) omitted, \\
& side \(=' R '\), if \(v l\) is omitted and \(v r\) present, \\
& Note that there will be an error condition if both \(v l\) and \(v r\) are omitted.
\end{tabular}

If omitted, this argument is restored based on the presence of argument select as follows:
howmny = 'S', if select is present,
howmny = 'A', if select is omitted.
If present, howmny must be equal to 'A' or 'B' and the argument select must be omitted.
Note that there will be an error condition if both howmny and select are present.

\section*{?tgexc}

Reorders the generalized Schur decomposition of a pair of matrices \((A, B)\) so that one diagonal block of \((A, B)\) moves to another row index.

\section*{Syntax}

\section*{Fortran 77:}
```

call stgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, work, lwork,
info)
call dtgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, work, lwork,
info)
call ctgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)
call ztgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)

```

\section*{Fortran 95:}
```

call tgexc(a, b [,ifst] [,ilst] [,z] [,q] [,info])

```

C:
lapack_int LAPACKE_<?>tgexc( int matrix_order, lapack_logical wantq, lapack_logical
wantz, lapack_int \(n, ~<d a t a t y p e>* ~ a, ~ l a p a c k \_i n t ~ l d a, ~<d a t a t y p e>* ~ b, ~ l a p a c k \_i n t ~ l d b, ~\)
<datatype>* q, lapack_int ldq, <datatype>* \(z, ~ l a p a c k \_i n t ~ l d z, ~ l a p a c k \_i n t * ~ i f s t, ~\)
lapack_int* ilst );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix pair \((A, B)\) using an orthogonal/unitary equivalence transformation
\[
(A, B)=Q^{\star}(A, B) \star Z^{H},
\]
so that the diagonal block of \((A, B)\) with row index ifst is moved to row ilst. Matrix pair \((A, B)\) must be in a generalized real-Schur/Schur canonical form (as returned by gges), that is, A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks and \(B\) is upper triangular. Optionally, the matrices \(Q\) and \(z\) of generalized Schur vectors are updated.
```

Q(in)*A(in)*Z(in)' = Q(out)*A(out)*Z(out)'
Q(in)*B(in)*Z(in)'=Q(out)*B(out)*Z(out)'.

```

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline wantq, wantz & \begin{tabular}{l}
LOGICAL. \\
If wantq \(=\).TRUE., update the left transformation matrix \(Q\); \\
If wantq \(=\).FALSE., do not update \(Q\); \\
If wantz = .TRUE., update the right transformation matrix \(z\); \\
If wantz \(=\).FALSE., do not update \(z\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \(a, b, q, z\) & \begin{tabular}{l}
REAL for stgexc \\
DOUBLE PRECISION for dtgexc \\
COMPLEX for ctgexc \\
DOUBLE COMPLEX for ztgexc. \\
Arrays: \\
a(lda,*) contains the matrix \(A\). \\
The second dimension of a must be at least max \((1, n)\). \\
\(b(I d b, *)\) contains the matrix \(B\). The second dimension of \(b\) must be at least \(\max (1, n)\). \\
\(q(1 d q, *)\) \\
If want \(q=\).FALSE., then \(q\) is not referenced. \\
If want \(q=\).TRUE., then \(q\) must contain the orthogonal/unitary matrix \(Q\). \\
The second dimension of \(q\) must be at least \(\max (1, n)\).
\[
z(l d z, *)
\] \\
If want \(z=\).FALSE., then \(z\) is not referenced. \\
If want \(z=\).TRUE., then \(z\) must contain the orthogonal/unitary matrix \(z\). \\
The second dimension of \(z\) must be at least max \((1, n)\).
\end{tabular} \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b\); at least max \((1, n)\). \\
\hline \(1 d q\) & \begin{tabular}{l}
INTEGER. The leading dimension of \(q\); \\
If want \(q=\).FALSE., then \(l d q \geq 1\). \\
If want \(q=\). TRUE., then \(I d q \geq \max (1, n)\).
\end{tabular} \\
\hline \(1 d z\) & \begin{tabular}{l}
INTEGER. The leading dimension of \(z\); \\
If wantz \(=\).FALSE., then \(l d z \geq 1\). \\
If wantz \(=\).TRUE., then \(I d z \geq \max (1, n)\).
\end{tabular} \\
\hline ifst, ilst & INTEGER. Specify the reordering of the diagonal blocks of \((A, B)\). The block with row index ifst is moved to row ilst, by a sequence of swapping between adjacent blocks. Constraint: \(1 \leq i f s t, i l s t \leq n\). \\
\hline work & \begin{tabular}{l}
REAL for stgexc; \\
DOUBLE PRECISION for dtgexc. \\
Workspace array, DIMENSION (lwork). Used in real flavors only.
\end{tabular} \\
\hline Iwork & \begin{tabular}{l}
INTEGER. The dimension of work; must be at least \(4 n+16\). \\
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes for details.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by the updated matrices \(A, B, Q\), and \(z\) respectively.
```

ifst,ilst Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on entry, it is changed
to point to the first row; ilst always points to the first row of the block in
its final position (which may differ from its input value by }\pm1\mathrm{).
info
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = 1, the transformed matrix pair (A,B) would be too far from
generalized Schur form; the problem is ill-conditioned. (}A,B\mathrm{) may have
been partially reordered, and ilst points to the first row of the current
position of the block being moved.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine tgexc interface are the following:
```

a Holds the matrix A of size (n,n).
b Holds the matrix B of size (}n,n)\mathrm{ .
z Holds the matrix z of size (}n,n)\mathrm{ .
q Holds the matrix Q of size (}n,n)\mathrm{ .
wantq Restored based on the presence of the argument q as follows:
wantq = .TRUE, if q is present,
wantq = . FALSE, if q is omitted.

```
wantz Restored based on the presence of the argument \(z\) as follows:
want \(z=\).TRUE, if \(z\) is present,
want \(z=\). FALSE, if \(z\) is omitted.

\section*{Application Notes}

If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1, then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?tgsen}

Reorders the generalized Schur decomposition of a pair of matrices \((A, B)\) so that a selected cluster of eigenvalues appears in the leading diagonal blocks of ( \(A, B\) ).

Syntax
Fortran 77:
```

call stgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar, alphai, beta, q,
ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)

```
```

call dtgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar, alphai, beta, q,
ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)
call ctgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha, beta, q, ldq, z,
ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)
call ztgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha, beta, q, ldq, z,
ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)

```

\section*{Fortran 95:}
```

call tgsen(a, b, select [,alphar] [,alphai] [,beta] [,ijob] [,q] [,z] [,pl] [,pr] [,dif]
[,m] [,info])
call tgsen(a, b, select [,alpha] [,beta] [,ijob] [,q] [,z] [,pl] [,pr] [, dif] [,m]
[,infO])

```
C:
lapack_int LAPACKE_stgsen( int matrix_order, lapack_int ijob, lapack_logical wantq,
lapack_logical wantz, const lapack_logical* select, lapack_int n, float* a, lapack_int
lda, float* b, lapack_int ldb, float* alphar, float* alphai, float* beta, float* q,

dif );
lapack_int LAPACKE_dtgsen( int matrix_order, lapack_int ijob, lapack_logical wantq,
lapack_logical wantz, const lapack_logical* select, lapack_int n, double* a, lapack_int
lda, double* b, lapack_int ldb, double* alphar, double* alphai, double* beta, double*
q, lapack_int ldq, double* \(z, ~ l a p a c k \_i n t ~ l d z, ~ l a p a c k \_i n t * ~ m, ~ d o u b l e * ~ p l, ~ d o u b l e * ~ p r, ~\)
double* dif );
lapack_int LAPACKE_ctgsen( int matrix_order, lapack_int ijob, lapack_logical wantq,
lapack_logical wantz, const lapack_logical* select, lapack_int n, lapack_complex_float*
a, lapack_int lda, lapack_complex_float* b, lapack_int ldb, lapack_complex_float*
alpha, lapack_complex_float* beta, lapack_complex_float* \(q\), lapack_int ldq,

dif ) ;
lapack_int LAPACKE_ztgsen( int matrix_order, lapack_int ijob, lapack_logical wantq,
lapack_logical wantz, const lapack_logical* select, lapack_int \(n\),
lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* alpha, lapack_complex_double* beta, lapack_complex_double* q,
lapack_int ldq, lapack_complex_double* z, lapack_int ldz, lapack_int* m, double* pl,
double* pr, double* dif );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix pair \((A, B\) ) (in terms of an orthogonal/unitary equivalence transformation \(Q^{T \star}(A, B) * Z\) for real flavors or \(Q^{H \star}(A, B) * Z\) for complex flavors), so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the pair \((A, B)\). The leading columns of \(Q\) and \(z\) form orthonormal/unitary bases of the corresponding left and right eigenspaces (deflating subspaces).
\((A, B)\) must be in generalized real-Schur/Schur canonical form (as returned by gges), that is, \(A\) and \(B\) are both upper triangular.
?tgsen also computes the generalized eigenvalues
\(\omega_{j}=(\operatorname{alphar}(j)+\operatorname{alphai}(j) * i) / \operatorname{beta}(j)\) (for real flavors)
\(\omega_{j}=\operatorname{alpha}(j) /\) beta \((j)\) (for complex flavors)
of the reordered matrix pair \((A, B)\).
Optionally, the routine computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces. These are \(\operatorname{Difu}\left[\left(A_{11}, B_{11}\right)\right.\), \(\left.\left(A_{22}, B_{22}\right)\right]\) and \(\operatorname{Difl}\left[\left(A_{11}, B_{11}\right),\left(A_{22}, B_{22}\right)\right]\), that is, the separation(s) between the matrix pairs \(\left(A_{11}, B_{11}\right)\) and ( \(A_{22}, B_{22}\) ) that correspond to the selected cluster and the eigenvalues outside the cluster, respectively, and norms of "projections" onto left and right eigenspaces with respect to the selected cluster in the \((1,1)\)-block.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

ijob
wantq, wantz
select
n
a, b, q, z, work

```
wantq, wantz
select
n
a, b, q, z, work

INTEGER. Specifies whether condition numbers are required for the cluster of eigenvalues ( \(p l\) and \(p r\) ) or the deflating subspaces Difu and Difl. If ijob \(=0\), only reorder with respect to select; If ijob \(=1\), reciprocal of norms of "projections" onto left and right eigenspaces with respect to the selected cluster ( \(p 1\) and \(p r\) );
If ijob \(=2\), compute upper bounds on Difu and Difl, using F-norm-based estimate (dif (1:2));
If ijob \(=3\), compute estimate of Difu and Difl, sing 1-norm-based estimate (dif (1:2)). This option is about 5 times as expensive as ijob \(=2\);
If ijob \(=4\), >compute pl, pr and dif (i.e., options 0,1 and 2 above). This is an economic version to get it all;
If ijob \(=5\), compute \(p l\), pr and dif (i.e., options 0,1 and 3 above).
```

LOGICAL.

```
If wantq = .TRUE., update the left transformation matrix \(Q\);
If wantq \(=\).FALSE., do not update \(Q\);
If wantz = .TRUE., update the right transformation matrix \(z\);
If wantz \(=\).FALSE., do not update \(z\).

LOGICAL.
Array, DIMENSION at least max \((1, n)\). Specifies the eigenvalues in the selected cluster.
To select an eigenvalue omega( \(j\) ), select \((j)\) must be .TRUE. For real flavors: to select a complex conjugate pair of eigenvalues omega( \(j\) ) and omega( \(j+1\) ) (corresponding 2 by 2 diagonal block), select( \(j\) ) and/or select \((j+1)\) must be set to .TRUE.; the complex conjugate omega( \(j\) ) and omega( \(j+1\) ) must be either both included in the cluster or both excluded.
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
REAL for stgsen
DOUBLE PRECISION for dtgsen
COMPLEX for ctgsen
DOUBLE COMPLEX for ztgsen.
Arrays:
a(lda,*) contains the matrix A.
For real flavors: \(A\) is upper quasi-triangular, with \((A, B)\) in generalized real Schur canonical form.

For complex flavors: A is upper triangular, in generalized Schur canonical form.
The second dimension of a must be at least max \((1, n)\).
\(b(I d b, *)\) contains the matrix \(B\).
For real flavors: \(B\) is upper triangular, with \((A, B)\) in generalized real Schur canonical form.
For complex flavors: \(B\) is upper triangular, in generalized Schur canonical form. The second dimension of \(b\) must be at least \(\max (1, n)\).
\(q\) ( \(l d q, *\) )
If want \(q=\).TRUE., then \(q\) is an \(n\)-by- \(n\) matrix;
If want \(q=\).FALSE., then \(q\) is not referenced.
The second dimension of \(q\) must be at least max \((1, n)\).
\(z(l d z, *)\)
If wantz = .TRUE., then \(z\) is an \(n\)-by- \(n\) matrix;
If want \(z=\).FALSE., then \(z\) is not referenced.
The second dimension of \(z\) must be at least \(\max (1, n)\).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of \(a\); at least \(\max (1, n)\).
INTEGER. The leading dimension of \(b\); at least max \((1, n)\).
INTEGER. The leading dimension of \(q ; 1 d q \geq 1\).
If want \(q=\). TRUE. , then \(I d q \geq \max (1, n)\).
INTEGER. The leading dimension of \(z ; l d z \geq 1\).
If wantz \(=\).TRUE., then \(l d z \geq \max (1, n)\).
lwork
iwork
liwork

INTEGER. The dimension of the array work.
For real flavors:
If ijob \(=1,2\), or 4 , 1 work \(\geq \max (4 n+16,2 m(n-m))\).
If ijob \(=3\) or 5 , lwork \(\geq \max (4 n+16,4 m(n-m))\).
For complex flavors:
If ijob \(=1,2\), or 4 , 1 work \(\geq \max (1,2 m(n-m))\).
If \(i\) job \(=3\) or 5 , lwork \(\geq \max (1,4 m(n-m)\) ).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes for details.
INTEGER. Workspace array, its dimension max (1, liwork).
INTEGER. The dimension of the array iwork.
For real flavors:
If ijob \(=1,2\), or 4 , liwork \(\geq n+6\).
If ijob \(=3\) or 5 , liwork \(\geq \max (n+6,2 m(n-m))\).
For complex flavors:
If ijob \(=1,2\), or 4 , liwork \(\geq n+2\).
If ijob \(=3\) or 5 , liwork \(\geq \max (n+2,2 m(n-m))\).
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}
```

a,b
alphar, alphai

```

Overwritten by the reordered matrices \(A\) and \(B\), respectively.
REAL for stgsen;

DOUBLE PRECISION for dtgsen.
Arrays, DIMENSION at least max \((1, n)\). Contain values that form generalized eigenvalues in real flavors.
See beta.
alpha
beta
q

Z
m
pl, pr
dif

COMPLEX for ctgsen;
DOUBLE COMPLEX for ztgsen.
Array, DIMENSION at least max \((1, n)\). Contain values that form generalized eigenvalues in complex flavors.
See beta.
REAL for stgsen
DOUBLE PRECISION for dtgsen
COMPLEX for ctgsen
DOUBLE COMPLEX for ztgsen.
Array, DIMENSION at least max(1, \(n\) ).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), \(j=1, \ldots, n\), will be the generalized eigenvalues.
alphar(j) + alphai(j)*i and beta(j), \(j=1, \ldots, n\) are the diagonals of the complex Schur form \((S, T)\) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of \((A, B)\) were further reduced to triangular form using complex unitary transformations.
If alphai(j) is zero, then the \(j\)-th eigenvalue is real; if positive, then the \(j\) th and ( \(j+1\) )-st eigenvalues are a complex conjugate pair, with alphai ( \(j\) +1) negative.
For complex flavors:
The diagonal elements of \(A\) and \(B\), respectively, when the pair \((A, B)\) has been reduced to generalized Schur form. alpha(i)/beta(i), \(i=1, \ldots, n\) are the generalized eigenvalues.
If wantq =. TRUE., then, on exit, \(Q\) has been postmultiplied by the left orthogonal transformation matrix which reorder \((A, B)\). The leading \(m\) columns of \(Q\) form orthonormal bases for the specified pair of left eigenspaces (deflating subspaces).
If wantz =. TRUE., then, on exit, \(z\) has been postmultiplied by the left orthogonal transformation matrix which reorder \((A, B)\). The leading \(m\) columns of \(z\) form orthonormal bases for the specified pair of left eigenspaces (deflating subspaces).
INTEGER.
The dimension of the specified pair of left and right eigen-spaces (deflating subspaces); \(0 \leq m \leq n\).

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If ijob \(=1,4\), or \(5, p l\) and pr are lower bounds on the reciprocal of the norm of "projections" onto left and right eigenspaces with respect to the selected cluster.
\(0<p l, p r \leq 1\). If \(m=0\) or \(m=n, p l=p r=1\).
If \(i\) job \(=0,2\) or \(3, p l\) and \(p r\) are not referenced
REAL for single precision flavors;DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (2).
If \(i j o b \geq 2, \operatorname{dif}(1: 2)\) store the estimates of Difu and Difl.

If ijob \(=2\) or 4 , \(\operatorname{dif}(1: 2)\) are F-norm-based upper bounds on Difu and Difl.
If \(i\) job \(=3\) or 5 , dif(1:2) are 1-norm-based estimates of Difu and Difl. If \(m=0\) or \(n\), \(\operatorname{dif}(1: 2)=\mathrm{F}-\operatorname{norm}([A, B])\). If \(i\) job \(=0\) or 1 , dif is not referenced.
work(1)
iwork(1)
info

If ijob is not 0 and info \(=0\), on exit, work(1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
If ijob is not 0 and info \(=0\), on exit, iwork(1) contains the minimum value of liwork required for optimum performance. Use this liwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1\), Reordering of \((A, B)\) failed because the transformed matrix pair \((A, B)\) would be too far from generalized Schur form; the problem is very ill-conditioned. \((A, B)\) may have been partially reordered.
If requested, 0 is returned in \(\operatorname{dif}\left({ }^{*}\right), p l\) and \(p r\).

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine tgsen interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size ( \(n, n\) ). \\
\hline b & Holds the matrix \(B\) of size ( \(n, n\) ). \\
\hline select & Holds the vector of length \(n\). \\
\hline alphar & Holds the vector of length \(n\). Used in real flavors only. \\
\hline alphai & Holds the vector of length \(n\). Used in real flavors only. \\
\hline alpha & Holds the vector of length \(n\). Used in complex flavors only. \\
\hline beta & Holds the vector of length \(n\). \\
\hline q & Holds the matrix \(Q\) of size ( \(n, n\) ). \\
\hline \(z\) & Holds the matrix \(z\) of size ( \(n, n\) ). \\
\hline dif & Holds the vector of length (2). \\
\hline ijob & Must be \(0,1,2,3,4\) or 5 . The default value is 0 . \\
\hline wantq & \begin{tabular}{l}
Restored based on the presence of the argument \(q\) as follows: want \(q=\). TRUE, if \(q\) is present, \\
want \(q=\). FALSE, if \(q\) is omitted.
\end{tabular} \\
\hline wantz & \begin{tabular}{l}
Restored based on the presence of the argument \(z\) as follows: want \(z=\).TRUE, if \(z\) is present, \\
want \(z=\). FALSE, if \(z\) is omitted.
\end{tabular} \\
\hline
\end{tabular}

\section*{Application Notes}

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run or set lwork \(=-1\) (liwork \(=-1\) ).

If lwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If 1 work \(=-1\) (liwork \(=-1\) ), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if lwork (liwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?tgsyl}

Solves the generalized Sylvester equation.

\section*{Syntax}

\section*{Fortran 77:}
```

call stgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale,
dif, work, lwork, iwork, info)
call dtgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale,
dif, work, lwork, iwork, info)
call ctgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale,
dif, work, lwork, iwork, infol
call ztgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale,
dif, work, lwork, iwork, info)

```

Fortran 95:
call tgsyl(a, b, c, d, e, f [,ijob] [,trans] [,scale] [,dif] [,info])

\section*{C:}
lapack_int LAPACKE_stgsyl( int matrix_order, char trans, lapack_int ijob, lapack_int m,
 c, lapack_int ldc, const float* \(d, ~ l a p a c k \_i n t ~ l d d, ~ c o n s t ~ f l o a t * ~ e, ~ l a p a c k \_i n t ~ l d e, ~\) float* f, lapack_int ldf, float* scale, float* dif );
lapack_int LAPACKE_dtgsyl( int matrix_order, char trans, lapack_int ijob, lapack_int m, lapack_int \(n\), const double* \(a, ~ l a p a c k \_i n t ~ l d a, ~ c o n s t ~ d o u b l e * ~ b, ~ l a p a c k \_i n t ~ l d b, ~\) double* \(c\), lapack_int ldc, const double* \(d\), lapack_int ldd, const double* e, lapack_int lde, double* f, lapack_int ldf, double* scale, double* dif );
lapack_int LAPACKE_ctgsyl( int matrix_order, char trans, lapack_int ijob, lapack_int m, lapack_int \(n\), const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* c, lapack_int ldc, const lapack_complex_float* \(d\), lapack_int ldd, const lapack_complex_float* e, lapack_int lde, lapack_complex_float* f, lapack_int ldf, float* scale, float* dif );
lapack_int LAPACKE_ztgsyl( int matrix_order, char trans, lapack_int ijob, lapack_int m, lapack_int \(n\), const lapack_complex_double* \(a\), lapack_int lda, const
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* c, lapack_int ldc,
const lapack_complex_double* d, lapack_int ldd, const lapack_complex_double* e,
lapack_int lde, lapack_complex_double* f, lapack_int ldf, double* scale, double* dif );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves the generalized Sylvester equation:
```

A*}R-\mp@subsup{L}{}{\star}B=scale\star

```
\(D^{\star} R-L^{\star} E=s c a l e^{\star} F\)
where \(R\) and \(L\) are unknown \(m\)-by- \(n\) matrices, \((A, D),(B, E)\) and ( \(C, F\) ) are given matrix pairs of size \(m\)-by- \(m, n-\) by- \(n\) and \(m\)-by- \(n\), respectively, with real/complex entries. ( \(A, D\) ) and ( \(B, E\) ) must be in generalized real-Schur/ Schur canonical form, that is, \(A, B\) are upper quasi-triangular/triangular and \(D, E\) are upper triangular.

The solution ( \(R, L\) ) overwrites \((C, F)\). The factor scale, \(0 \leq s c a l e \leq 1\), is an output scaling factor chosen to avoid overflow.
In matrix notation the above equation is equivalent to the following: solve \(Z^{*} X=\operatorname{scale}{ }^{*} b\), where \(z\) is defined as
\[
Z=\binom{\operatorname{kron}\left(I_{n}, A\right)-\operatorname{kron}\left(B^{T}, I_{m}\right)}{\operatorname{kron}\left(I_{n}, D\right)-\operatorname{kron}\left(E^{T}, I_{m}\right)}
\]

Here \(I_{k}\) is the identity matrix of size \(k\) and \(X^{\prime}\) is the transpose/conjugate-transpose of \(X . k r o n(X, Y)\) is the Kronecker product between the matrices \(X\) and \(Y\).

If trans = 'T' (for real flavors), or trans = 'C' (for complex flavors), the routine ?tgsyl solves the transposed/conjugate-transposed system \(Z^{\prime *} y=s c a l e^{\star} b\), which is equivalent to solve for \(R\) and \(L\) in
\(A^{\prime} * R+D^{\prime *} L=\) scale*C
\(R^{\star} B^{\prime}+L^{\star} E^{\prime}=\operatorname{scale}(-F)\)
This case (trans = 'T' for stgsyl/dtgsyl or trans = 'C' for ctgsyl/ztgsyl) is used to compute an one-norm-based estimate of \(\operatorname{Dif}[(A, D),(B, E)]\), the separation between the matrix pairs \((A, D)\) and ( \(B, E\) ), using lacon/lacon.

If ijob \(\geq 1\), ? tgsyl computes a Frobenius norm-based estimate of \(\operatorname{Dif}[(A, D),(B, E)]\). That is, the reciprocal of a lower bound on the reciprocal of the smallest singular value of \(z\). This is a level 3 BLAS algorithm.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{trans} & CHARACTER*1. Must be 'N', 'T', or 'C'. \\
\hline & If trans \(=\) ' N ', solve the generalized Sylvester equation. \\
\hline & If trans = 'T', solve the 'transposed' system (for real flavors only). \\
\hline & If trans \(=\) 'C', solve the ' conjugate transposed' system (for complex \\
\hline \multirow[t]{4}{*}{ijob} & INTEGER. Specifies what kind of functionality to be performed: \\
\hline & If \(i\) job \(=0\), solve the generalized Sylvester equation only; \\
\hline & If \(i\) job \(=1\), perform the functionality of \(i j o b=0\) and ijob \(=3\); \\
\hline & If \(i j o b=2\), perform the functionality of \(i j o b=0\) and ijob \(=4\); \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If \(i\) job \(=3\), only an estimate of \(\operatorname{Dif}[(A, D),(B, E)]\) is computed (look ahead strategy is used); \\
If \(i\) job \(=4\), only an estimate of \(\operatorname{Dif}[(A, D),(B, E)]\) is computed (?gecon on sub-systems is used). If trans \(=\) ' \(T\) ' or ' \(C\) ', ijob is not referenced.
\end{tabular} \\
\hline m & INTEGER. The order of the matrices \(A\) and \(D\), and the row dimension of the matrices \(C, F, R\) and \(L\). \\
\hline \(n\) & INTEGER. The order of the matrices \(B\) and \(E\), and the column dimension of the matrices \(C, F, R\) and \(L\). \\
\hline \multirow[t]{13}{*}{\(a, b, c, d, e, f, w o r k\)} & REAL for stgsyl \\
\hline & DOUBLE PRECISION for dtgsyl \\
\hline & COMPLEX for ctgsyl \\
\hline & DOUBLE COMPLEX for ztgsyl. \\
\hline & Arrays: \\
\hline & a(lda,*) contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix \(A\). \\
\hline & The second dimension of a must be at least max \((1, m)\). \\
\hline & \(b(l d b, *)\) contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix \(B\). The second dimension of \(b\) must be at least \(\max (1, n)\). \\
\hline & \(c\) ( \(I d c, *\) ) contains the right-hand-side of the first matrix equation in the generalized Sylvester equation (as defined by trans) \\
\hline & The second dimension of \(c\) must be at least max \((1, n)\). \(d(I d d, *)\) contains the upper triangular matrix \(D\). \\
\hline & The second dimension of \(d\) must be at least max \((1, m)\). \(e(l d e, *)\) contains the upper triangular matrix \(E\). \\
\hline & The second dimension of \(e\) must be at least \(\max (1, n)\). \(f(I d f, *)\) contains the right-hand-side of the second matrix equation in the generalized Sylvester equation (as defined by trans) \\
\hline & The second dimension of \(f\) must be at least \(\max (1, n)\). work is a workspace array, its dimension max (1, lwork). \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, m)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b\); at least max \((1, n)\). \\
\hline \(1 d c\) & INTEGER. The leading dimension of \(c\); at least max \((1, m)\). \\
\hline \(1 d d\) & INTEGER. The leading dimension of \(d\); at least max \((1, m)\). \\
\hline Ide & INTEGER. The leading dimension of \(e\); at least max \((1, n)\). \\
\hline ldf & INTEGER. The leading dimension of \(f\); at least max \((1, m)\). \\
\hline \multirow[t]{4}{*}{lwork} & INTEGER. \\
\hline & The dimension of the array work. lwork \(\geq 1\). \\
\hline & If \(i\) job \(=1\) or 2 and trans \(=\) ' \({ }^{\prime}\) ', lwork \(\geq \max (1,2 \star m \star n)\). \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes for details. \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least ( \(m+n+6\) ) for real flavors, and at least ( \(m+n+2\) ) for complex flavors. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline f & \begin{tabular}{l}
If ijob=0, 1 , or 2 , overwritten by the solution \(L\). \\
If ijob=3 or 4 and trans \(=' N\) ', \(f\) holds \(L\), the solution achieved during the computation of the Dif-estimate.
\end{tabular} \\
\hline dif & \begin{tabular}{l}
REAL for single-precision flavors \\
DOUBLE PRECISION for double-precision flavors. \\
On exit, dif is the reciprocal of a lower bound of the reciprocal of the Diffunction, that is, dif is an upper bound of \(\operatorname{Dif}[(A, D),(B, E)]=\) sigma_min ( \(Z\) ), where \(Z\) as in (2). \\
If \(i\) job \(=0\), or trans \(=\) 'T' (for real flavors), or trans \(=\) ' C' (for complex flavors), dif is not touched.
\end{tabular} \\
\hline scale & \begin{tabular}{l}
REAL for single-precision flavors \\
DOUBLE PRECISION for double-precision flavors. \\
On exit, scale is the scaling factor in the generalized Sylvester equation. If \(0<\) scale \(<1\), \(c\) and \(f\) hold the solutions \(R\) and \(L\), respectively, to a slightly perturbed system but the input matrices \(A, B, D\) and \(E\) have not been changed. \\
If scale \(=0, c\) and \(f\) hold the solutions \(R\) and \(L\), respectively, to the homogeneous system with \(C=F=0\). Normally, scale \(=1\).
\end{tabular} \\
\hline work(1) & If info \(=0\), work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs. \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
If info > \(0,(A, D)\) and \((B, E)\) have common or close eigenvalues.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine tgsyl interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((m, m)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n)\). \\
\(c\) & Holds the matrix \(C\) of size \((m, n)\). \\
\(d\) & Holds the matrix \(D\) of size \((m, m)\). \\
\(e\) & Holds the matrix \(E\) of size \((n, n)\). \\
\(i j o b\) & Holds the matrix \(F\) of size \((m, n)\). \\
trans & Must be \(0,1,2,3\), or 4. The default value is 0. \\
& Must be ' \(N^{\prime}\) or ' \(T\) '. The default value is ' \(\mathrm{N}^{\prime}\).
\end{tabular}

\section*{Application Notes}

If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?tgsna \\ Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a pair of matrices in generalized real Schur canonical form. \\ Syntax}

\section*{Fortran 77:}
```

call stgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, ldvr, s, dif, mm,
m, work, lwork, iwork, info)
call dtgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, ldvr, s, dif, mm,
m, work, lwork, iwork, info)
call ctgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, ldvr, s, dif, mm,
m, work, lwork, iwork, infol
call ztgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, ldvr, s, dif, mm,
m, work, lwork, iwork, info)

```

\section*{Fortran 95:}
```

call tgsna(a, b [,s] [,dif] [,vl] [,vr] [,select] [,m] [,info])

```

C:
```

lapack_int LAPACKE_stgsna(int matrix_order, char job, char howmny, const
lapack_logical* select, lapack_int n, const float* a, lapack_int lda, const float* b,
lapack int ldb, const float* vl, lapack int ldvl, const float* vr, lapack int ldvr,
float* s, float* dif, lapack_int mm, lapack_int* m);
lapack int LAPACKE dtgsna(int matrix order, char job, char howmny, const
lapack_logical* select, lapack_int n, const double* a, lapack_int lda, const double*
b, lapack_int ldb, const double* vl, lapack_int ldvl, const double* vr, lapack_int
ldvr, double* s, double* dif, lapack_int mm, lapack_int* m);
lapack_int LAPACKE_ctgsna(int matrix_order, char job, char howmny, const
lapack_logical* select, lapack_int n, const lapack_complex_float* a, lapack_int lda,
const lapack_complex_float* b, lapack_int ldb, const lapack_complex_float* vl,
lapack_int ldvl, const lapack_complex_float* vr, lapack_int ldvr, float* s, float*
dif, lapack_int mm, lapack_int* m);
lapack_int LAPACKE_ztgsna(int matrix_order, char job, char howmny, const
lapack_logical* select, lapack_int n, const lapack_complex_double* a, lapack_int lda,
const lapack_complex_double* b, lapack_int ldb, const lapack_complex_double* vl,
lapack_int ldvl, const lapack_complex_double* vr, lapack_int ldvr, double* s, double*
dif, lapack_int mm, lapack_int* m);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The real flavors stgsna/dtgsna of this routine estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair ( \(A, B\) ) in generalized real Schur canonical form (or of any matrix pair \(\left(Q^{*} A \star Z^{T}, Q^{\star} B^{\star} Z^{T}\right)\) with orthogonal matrices \(Q\) and \(Z\).
( \(A, B\) ) must be in generalized real Schur form (as returned by gges/gges), that is, \(A\) is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. \(B\) is upper triangular.

The complex flavors ctgsna/ztgsna estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair \((A, B) .(A, B)\) must be in generalized Schur canonical form, that is, \(A\) and \(B\) are both upper triangular.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline job & \begin{tabular}{l}
CHARACTER*1. Specifies whether condition numbers are required for eigenvalues or eigenvectors. Must be 'E' or 'V' or 'B'. \\
If job = ' \(E\) ', for eigenvalues only (compute \(s\) ). \\
If job \(=\) ' \(V\) ', for eigenvectors only (compute dif). \\
If job \(=\) ' \(B\) ', for both eigenvalues and eigenvectors (compute both \(s\) and dif).
\end{tabular} \\
\hline howmny & \begin{tabular}{l}
CHARACTER*1. Must be 'A' or 'S'. \\
If howmny \(=\) ' A ', compute condition numbers for all eigenpairs. \\
If howmny = 'S', compute condition numbers for selected eigenpairs specified by the logical array select.
\end{tabular} \\
\hline select & \begin{tabular}{l}
LOGICAL. \\
Array, DIMENSION at least max ( \(1, n\) ). \\
If howmny = 'S', select specifies the eigenpairs for which condition numbers are required. \\
If howmny = 'A', select is not referenced. \\
For real flavors: \\
To select condition numbers for the eigenpair corresponding to a real eigenvalue omega( \(j\) ), select \((j)\) must be set to .TRUE.; to select condition numbers corresponding to a complex conjugate pair of eigenvalues omega( \(j\) ) and omega( \(j+1\) ), either \(\operatorname{select}(j)\) or \(\operatorname{select}(j+1)\) must be set to .TRUE. \\
For complex flavors: \\
To select condition numbers for the corresponding \(j\)-th eigenvalue and/or eigenvector, select( \(j\) ) must be set to .TRUE..
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the square matrix pair \((A, B)\)
\[
(n \geq 0)
\] \\
\hline \(a, b, v l, v r, w o r k\) & \begin{tabular}{l}
REAL for stgsna \\
DOUBLE PRECISION for dtgsna \\
COMPLEX for ctgsna \\
DOUBLE COMPLEX for ztgsna. \\
Arrays: \\
a(lda,*) contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix \(A\) in the pair \((A, B)\). \\
The second dimension of \(a\) must be at least \(\max (1, n)\). \\
\(b(I d b, *)\) contains the upper triangular matrix \(B\) in the pair \((A, B)\). The second dimension of \(b\) must be at least \(\max (1, n)\).
\end{tabular} \\
\hline
\end{tabular}

If job = 'E' or 'B', vl(ldvl,*) must contain left eigenvectors of \((A, B)\), corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of vl, as returned by ? tgevc.
If job \(=\) ' \(V\) ', vl is not referenced. The second dimension of \(v 1\) must be at least \(\max (1, m)\).
If job = 'E' or 'B', vr(ldvr,*) must contain right eigenvectors of \((A, B)\), corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of vr, as returned by ? tgevc.
If job = 'V', vr is not referenced. The second dimension of vr must be at least \(\max (1, m)\).
work is a workspace array, its dimension max (1, lwork).
If job = 'E', work is not referenced.
lda
INTEGER. The leading dimension of \(a\); at least max \((1, n)\).
1 db
ldvl
ldvr
mm
lwork
iwork

\section*{Output Parameters}

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION (mm ).
If job = 'E' or 'B', contains the reciprocal condition numbers of the selected eigenvalues, stored in consecutive elements of the array.
If job = 'V', s is not referenced.
For real flavors:
For a complex conjugate pair of eigenvalues two consecutive elements of \(s\) are set to the same value. Thus, \(s(j), \operatorname{dif}(j)\), and the \(j\)-th columns of \(v i\) and vr all correspond to the same eigenpair (but not in general the j-th eigenpair, unless all eigenpairs are selected).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION (mm ).
If job \(=\) 'V' or 'B', contains the estimated reciprocal condition numbers of the selected eigenvectors, stored in consecutive elements of the array.

If the eigenvalues cannot be reordered to compute \(\operatorname{dif}(\mathrm{j})\), \(\operatorname{dif}(\mathrm{j})\) is set to 0 ; this can only occur when the true value would be very small anyway. If job \(=\) ' E ', dif is not referenced.
For real flavors:
For a complex eigenvector, two consecutive elements of dif are set to the same value.
For complex flavors:
For each eigenvalue/vector specified by select, dif stores a Frobenius norm-based estimate of Difl.
m
INTEGER. The number of elements in the arrays \(s\) and dif used to store the specified condition numbers; for each selected eigenvalue one element is used.
If howmny = 'A', \(m\) is set to \(n\).
work(1)
If job is not 'E' and info \(=0\), on exit, work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine tgsna interface are the following:
```

a Holds the matrix A of size (n,n).
b Holds the matrix B of size (n,n).
s Holds the vector of length (mm).
dif Holds the vector of length (mm).
vl Holds the matrix VL of size (}n,mm)\mathrm{ .
vr Holds the matrix VR of size (}n,mm\mathrm{).
select Holds the vector of length n.
howmny Restored based on the presence of the argument select as follows: howmny =
'S', if select is present, howmny = 'A', if select is omitted.
job Restored based on the presence of arguments s and dif as follows: job = 'B',
if both s and dif are present, job = 'E', if s is present and dif omitted, job =
'V', if s is omitted and dif present, Note that there will be an error condition if
both s and dif are omitted.

```

\section*{Application Notes}

If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if 1 work is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{Generalized Singular Value Decomposition}

This section describes LAPACK computational routines used for finding the generalized singular value decomposition (GSVD) of two matrices \(A\) and \(B\) as
```

UH}AQ=\mp@subsup{D}{1}{*}(0R)
V H}BQ=\mp@subsup{D}{2}{*}($$
\begin{array}{ll}{0}&{R}\end{array}
$$)

```
where \(U, V\), and \(Q\) are orthogonal/unitary matrices, \(R\) is a nonsingular upper triangular matrix, and \(D_{1}, D_{2}\) are "diagonal" matrices of the structure detailed in the routines description section.

Table "Computational Routines for Generalized Singular Value Decomposition" lists LAPACK routines (FORTRAN 77 interface) that perform generalized singular value decomposition of matrices. Respective routine names in Fortran 95 interface are without the first symbol (see Routine Naming Conventions).

Computational Routines for Generalized Singular Value Decomposition
\begin{tabular}{ll}
\hline Routine name & Operation performed \\
\hline ggsvp & Computes the preprocessing decomposition for the generalized SVD \\
tgsja & \begin{tabular}{l} 
Computes the generalized SVD of two upper triangular or trapezoidal \\
matrices
\end{tabular} \\
\hline
\end{tabular}

You can use routines listed in the above table as well as the driver routine ggsvd to find the GSVD of a pair of general rectangular matrices.

\section*{?ggsvp}

Computes the preprocessing decomposition for the generalized SVD.

\section*{Syntax}

\section*{Fortran 77:}
```

call sggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v,
ldv, q, ldq, iwork, tau, work, info)
call dggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v,
ldv, q, ldq, iwork, tau, work, info)
call cggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v,
ldv, q, ldq, iwork, rwork, tau, work, info)
call zggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v,
ldv, q, ldq, iwork, rwork, tau, work, info)

```

\section*{Fortran 95:}
```

call ggsvp(a, b, tola, tolb [, k] [,l] [,u] [,v] [,q] [,info])

```
C:
```

lapack_int LAPACKE_sggsvp(int matrix_order, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int n, float* a, lapack_int lda, float* b,
lapack_int ldb, float tola, float tolb, lapack_int* k, lapack_int* l, float* u,
lapack_int ldu, float* v, lapack_int ldv, float* q, lapack_int ldq);

```
```

lapack_int LAPACKE_dggsvp(int matrix_order, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int n, double* a, lapack_int lda, double* b,
lapack_int ldb, double tola, double tolb, lapack_int* k, lapack_int* l, double* u,
lapack_int ldu, double* v, lapack_int ldv, double* q, lapack_int ldq);
lapack_int LAPACKE_cggsvp(int matrix_order, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int n, lapack_complex_float* a, lapack_int lda,
lapack_complex_float* b, lapack_int ldb, float tola, float tolb, lapack_int* k,
lapack_int* l, lapack_complex_float* u, lapack_int ldu, lapack_complex_float* v,
lapack_int ldv, lapack_complex_float* q, lapack_int ldq);
lapack_int LAPACKE_zggsvp(int matrix_order, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int n, lapack_complex_double* a, lapack_int lda,
lapack_complex_double* b, lapack_int ldb, double tola, double tolb, lapack_int* k,
lapack_int* l, lapack_complex_double* u, lapack_int ldu, lapack_complex_double* v,
lapack_int ldv, lapack_complex_double* q, lapack_int ldq);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes orthogonal matrices \(U, V\) and \(Q\) such that
\[
\begin{aligned}
& n-k-1 \quad k \quad 1 \\
& U^{H} A Q=\begin{array}{r}
k\left(\begin{array}{ccc}
0 & A_{12} & A_{13} \\
M-k-I\left(\begin{array}{ll} 
\\
0 & 0
\end{array}\right. & A_{23} \\
0 & 0 & 0
\end{array}\right), \quad \text { if } m-k-I \geq 0
\end{array} \\
& n-k-1 \quad k \quad 1 \\
& =\begin{array}{r}
k \\
m-k
\end{array}\left(\begin{array}{ccc}
0 & A_{12} & A_{13} \\
0 & 0 & A_{23}
\end{array}\right), \quad \text { if } m-k-1<0 \\
& n-k-1 \quad k \quad l \\
& V^{H} B Q=\begin{array}{r}
I \\
p-I
\end{array}\left(\begin{array}{lll}
0 & 0 & B_{13} \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
\]
where the \(k\)-by- \(k\) matrix \(A_{12}\) and \(l\)-by- 1 matrix \(B_{13}\) are nonsingular upper triangular; \(A_{23}\) is 1 -by- 1 upper triangular if \(m-k-1 \geq 0\), otherwise \(A_{23}\) is ( \(m-k\) )-by- 1 upper trapezoidal. The sum \(k+1\) is equal to the effective numerical rank of the \((m+p)\)-by-n matrix \(\left(A^{H}, B^{H}\right)^{H}\).

This decomposition is the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see subroutine ggsvp.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline jobu & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'N'. \\
If jobu = 'U', orthogonal/unitary matrix \(U\) is computed. \\
If jobu = 'N', \(U\) is not computed.
\end{tabular} \\
\hline jobv & \begin{tabular}{l}
CHARACTER*1. Must be 'V' or 'N'. \\
If jobv \(=\) ' V ', orthogonal/unitary matrix \(V\) is computed. \\
If jobv = 'N', \(v\) is not computed.
\end{tabular} \\
\hline jobq & \begin{tabular}{l}
CHARACTER*1. Must be ' \(Q\) ' or 'N'. \\
If jobq = ' \(Q\) ', orthogonal/unitary matrix \(Q\) is computed. \\
If jobq = 'N', Q is not computed.
\end{tabular} \\
\hline m & INTEGER. The number of rows of the matrix \(A(m \geq 0)\). \\
\hline \(p\) & INTEGER. The number of rows of the matrix \(B(p \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline a, b, tau, work & \begin{tabular}{l}
REAL for sggsvp \\
DOUBLE PRECISION for dggsvp \\
COMPLEX for cggsvp \\
DOUBLE COMPLEX for zggsvp. \\
Arrays: \\
a(lda,*) contains the \(m\)-by- \(n\) matrix \(A\). \\
The second dimension of a must be at least max \((1, n)\). \\
\(b(l d b, *)\) contains the \(p-b y-n\) matrix \(B\). \\
The second dimension of \(b\) must be at least \(\max (1, n)\). \\
tau(*) is a workspace array. \\
The dimension of tau must be at least \(\max (1, n)\). \\
work(*) is a workspace array. \\
The dimension of work must be at least max \((1,3 n, m, p)\).
\end{tabular} \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, m)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b\); at least max \((1, p)\). \\
\hline tola, tolb & \begin{tabular}{l}
REAL for single-precision flavors \\
DOUBLE PRECISION for double-precision flavors. \\
tola and tolb are the thresholds to determine the effective numerical rank of matrix \(B\) and a subblock of \(A\). Generally, they are set to
\[
\begin{aligned}
& \text { tola }=\max (m, n) *| | A| | * \operatorname{MACHEPS}, \\
& \text { tolb }=\max (p, n) *| | B| | * \operatorname{MACHEPS} .
\end{aligned}
\] \\
The size of tola and tolb may affect the size of backward errors of the decomposition.
\end{tabular} \\
\hline \(1 d u\) & INTEGER. The leading dimension of the output array \(u . I d u \geq \max (1, m)\) if jobu = 'U'; ldu \(\geq 1\) otherwise. \\
\hline \(I d v\) & INTEGER. The leading dimension of the output array \(v . l d v \geq \max (1, p)\) if jobv = 'V'; ldv \(\geq 1\) otherwise. \\
\hline \(1 d q\) & INTEGER. The leading dimension of the output array \(q\). \(I d q \geq \max (1, n)\) if jobq = 'Q'; ldq \(\geq 1\) otherwise. \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least max \((1, n)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{rwork} & REAL for cggsvp \\
\hline & DOUBLE PRECISION for zggsvp. \\
\hline & Workspace array, DIMENSION at least max \((1,2 n)\). Used in complex flavors only. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline a & Overwritten by the triangular (or trapezoidal) matrix described in the Description section. \\
\hline \(b\) & Overwritten by the triangular matrix described in the Description section. \\
\hline \(k, 1\) & INTEGER. On exit, \(k\) and \(l\) specify the dimension of subblocks. The sum \(k+\) \(l\) is equal to effective numerical rank of \(\left(A^{H}, B^{H}\right)^{H}\). \\
\hline \multirow[t]{13}{*}{\(u, v, q\)} & REAL for sggsvp \\
\hline & DOUBLE PRECISION for dggsvp \\
\hline & COMPLEX for cggsvp \\
\hline & DOUBLE COMPLEX for zggsvp. \\
\hline & Arrays: \\
\hline & If jobu = 'U', \(u(l d u, *)\) contains the orthogonal/unitary matrix \(U\). \\
\hline & The second dimension of \(u\) must be at least \(\max (1, m)\). \\
\hline & If jobv \(=\) ' \(\mathrm{V}^{\prime}, \mathrm{v}(I d v, *)\) contains the orthogonal/unitary matrix V . \\
\hline & The second dimension of \(v\) must be at least max \((1, m)\). \\
\hline & If jobv = 'N', v is not referenced. \\
\hline & If jobq = 'Q', \(q(1 d q, *)\) contains the orthogonal/unitary matrix \(Q\). \\
\hline & The second dimension of \(q\) must be at least max \((1, n)\). \\
\hline & If jobq = 'N', q is not referenced. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine ggsvp interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size ( \(m, n\) ). \\
\hline b & Holds the matrix \(B\) of size ( \(p, n\) ). \\
\hline \(u\) & Holds the matrix \(U\) of size ( \(m, m\) ). \\
\hline v & Holds the matrix \(V\) of size ( \(p, m\) ). \\
\hline q & Holds the matrix \(Q\) of size ( \(n, n\) ). \\
\hline jobu & \begin{tabular}{l}
Restored based on the presence of the argument \(u\) as follows: \\
jobu = 'U', if \(u\) is present, \\
jobu = 'N', if \(u\) is omitted.
\end{tabular} \\
\hline jobv & \begin{tabular}{l}
Restored based on the presence of the argument \(v\) as follows: \\
jobz \(=\) 'V', if \(v\) is present, \\
\(j o b z=\) ' \(N\) ', if \(v\) is omitted.
\end{tabular} \\
\hline jobq & \begin{tabular}{l}
Restored based on the presence of the argument \(q\) as follows: \\
\(j o b z=\) ' \(Q\) ', if \(q\) is present, \\
\(j o b z=' N '\), if \(q\) is omitted.
\end{tabular} \\
\hline
\end{tabular}

\section*{?tgsja}

Computes the generalized SVD of two upper triangular or trapezoidal matrices.

\section*{Syntax}

\section*{Fortran 77:}
call stgsja(jobu, jobv, jobq, \(m, p, n, k, l, a, l d a, b, l d b, t o l a, ~ t o l b, ~ a l p h a, ~ b e t a, ~\) \(u, ~ l d u, ~ v, ~ l d v, ~ q, ~ l d q, ~ w o r k, ~ n c y c l e, ~ i n f o) ~\)
call dtgsja(jobu, jobv, jobq, \(m, p, n, k, l, a, l d a, b, l d b, t o l a, ~ t o l b, ~ a l p h a, ~ b e t a, ~\) \(u, ~ l d u, ~ v, ~ l d v, ~ q, ~ l d q, ~ w o r k, ~ n c y c l e, ~ i n f o) ~\)
call ctgsja(jobu, jobv, jobq, \(m, p, n, k, l, a, ~ l d a, b, l d b, t o l a, ~ t o l b, ~ a l p h a, ~ b e t a, ~\) \(u, ~ l d u, ~ v, ~ l d v, ~ q, ~ l d q, ~ w o r k, ~ n c y c l e, ~ i n f o) ~\)
call ztgsja(jobu, jobv, jobq, \(m, p, n, k, l, a, l d a, b, l d b, t o l a, ~ t o l b, ~ a l p h a, ~ b e t a, ~\) \(u, ~ l d u, ~ v, ~ l d v, ~ q, ~ l d q, ~ w o r k, ~ n c y c l e, ~ i n f o)\)

\section*{Fortran 95:}
call tgsja(a, b, tola, tolb, \(k, \quad\) [,u] [,v] [,q] [,jobu] [,jobv] [,jobq] [,alpha] [,beta] [,ncycle] [,info])

C:
lapack_int LAPACKE_stgsja( int matrix_order, char jobu, char jobv, char jobq,
 lapack_int lda, float* b, lapack_int ldb, float tola, float tolb, float* alpha, float*
 lapack_int* ncycle );
lapack_int LAPACKE_dtgsja( int matrix_order, char jobu, char jobv, char jobq, lapack_int \(m\), lapack_int \(p, \quad\) lapack_int \(n, ~ l a p a c k \_i n t ~ k, ~ l a p a c k \_i n t ~ l, ~ d o u b l e * ~ a, ~\) lapack_int lda, double* b, lapack_int ldb, double tola, double tolb, double* alpha, double* beta, double* \(u, ~ l a p a c k \_i n t ~ l d u, ~ d o u b l e * ~ v, ~ l a p a c k \_i n t ~ l d v, ~ d o u b l e * ~ q, ~\) lapack_int ldq, lapack_int* ncycle );
lapack_int LAPACKE_ctgsja( int matrix_order, char jobu, char jobv, char jobq,

 tola, float tolb, float* alpha, float* beta, lapack_complex_float* u, lapack_int ldu, lapack_complex_float* \(v\), lapack_int ldv, lapack_complex_float* q, lapack_int ldq, lapack_int* ncycle );
lapack_int LAPACKE_ztgsja( int matrix_order, char jobu, char jobv, char jobq,
 lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb, double tola, double tolb, double* alpha, double* beta, lapack_complex_double* u, lapack_int ldu, lapack_complex_double* \(v\), lapack_int ldv, lapack_complex_double* q, lapack_int ldq, lapack_int* ncycle );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the generalized singular value decomposition (GSVD) of two real/complex upper triangular (or trapezoidal) matrices \(A\) and \(B\). On entry, it is assumed that matrices \(A\) and \(B\) have the following forms, which may be obtained by the preprocessing subroutine ggsvp from a general \(m\)-by- \(n\) matrix \(A\) and \(p\) -by- \(n\) matrix \(B\) :
\[
\begin{aligned}
& \left.A=\begin{array}{ccc}
n-k-l & k & l \\
k\left(\begin{array}{c}
0 \\
\\
m-k-I \\
0
\end{array}\right. & A_{12} & A_{13} \\
0 & 0 & A_{23} \\
0
\end{array}\right), \quad \text { if } m-k-I \geq 0 \\
& n-k-1 \quad k \quad 1 \\
& =m\left(\begin{array}{ccc}
0 & A_{12} & A_{13} \\
0 & 0 & A_{23}
\end{array}\right), \quad \text { if } m-k-I<0 \\
& n-k-1 \quad k \quad I \\
& B=p-I\left(\begin{array}{ccc}
I^{0} & 0 & B_{13} \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
\]
where the \(k\)-by-k matrix \(A_{12}\) and l-by-l matrix \(B_{13}\) are nonsingular upper triangular; \(A_{23}\) is l-by-l upper triangular if \(m-k-1 \geq 0\), otherwise \(A_{23}\) is \((m-k)\)-by-l upper trapezoidal.

On exit,
\(U^{H \star} A \star Q=D_{1}^{*}\left(\begin{array}{ll}0 & R\end{array}\right), V^{H \star} B^{\star} Q=D_{2}^{*}\left(\begin{array}{ll}0 & R\end{array}\right)\),
where \(U, V\) and \(Q\) are orthogonal/unitary matrices, \(R\) is a nonsingular upper triangular matrix, and \(D_{1}\) and \(D_{2}\) are "diagonal" matrices, which are of the following structures:

If \(m-k-1 \geq 0\),
\[
\left.D_{1}=\begin{array}{r}
k\left(\begin{array}{c}
k \\
0 \\
l \\
m-k-l \\
0 \\
0
\end{array}\right. \\
C \\
0
\end{array}\right)
\]
\[
\begin{aligned}
& k \quad I
\end{aligned}
\]
\[
\begin{aligned}
& n-k-1 \quad k \quad 1 \\
& (0 R)=\begin{array}{l}
k \\
I
\end{array}\left(\begin{array}{ccc}
0 & R_{11} & R_{12} \\
0 & 0 & R_{22}
\end{array}\right)
\end{aligned}
\]
where
```

C = diag(alpha(k+1),...,alpha(k+l))
S = diag(beta(k+1),...,beta(k+1))
C

```
\(R\) is stored in \(a(1: k+1, n-k-1+1: n)\) on exit.
If \(m-k-1<0\),
\[
\begin{aligned}
& k m-1 k+1-m \\
& D_{1}=\begin{array}{r}
k\left(\begin{array}{lll}
I & 0 & 0 \\
0 & C & 0
\end{array}\right)
\end{array} \\
& k \quad m-k \quad k+1-m \\
& D_{2}=k+1-m\left(\begin{array}{lll}
m-k & S & 0 \\
p-I \\
0 & 0 & I \\
0 & 0 & 0
\end{array}\right) \\
& n-k-1 \quad k \quad m-k \quad k+1-m
\end{aligned}
\]
where
```

$C=\operatorname{diag}(a l p h a(K+1), \ldots, a l p h a(m))$,
$S=\operatorname{diag}(\operatorname{beta}(K+1), \ldots, \operatorname{beta}(m))$,
$C^{2}+S^{2}=I$

```

On exit, \(\left(\begin{array}{ccc}R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23}\end{array}\right)\) is stored in \(a(1: m, n-k-1+1: n)\) and \(R_{33}\) is stored
in \(b(m-k+1: 1, n+m-k-1+1: n)\).
The computation of the orthogonal/unitary transformation matrices \(U, V\) or \(Q\) is optional. These matrices may either be formed explicitly, or they may be postmultiplied into input matrices \(U_{1}, V_{1}\), or \(Q_{1}\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

jobu CHARACTER*1.Must be 'U', 'I', or 'N'.
If jobu = 'U', u must contain an orthogonal/unitary matrix U U on entry.
If jobu = 'I', u is initialized to the unit matrix.
If jobu = 'N', u is not computed.
jobv CHARACTER*1.Must be 'V','I', or 'N'.
If jobv = 'V',v must contain an orthogonal/unitary matrix v vi on entry.
If jobv = 'I',v is initialized to the unit matrix.
If jobv = 'N',v is not computed.
CHARACTER*1. Must be 'Q', 'I', or 'N'.
If jobq = 'Q', q must contain an orthogonal/unitary matrix }\mp@subsup{Q}{1}{}\mathrm{ on entry.
If jobq= 'I',q is initialized to the unit matrix.
If jobq = 'N', q is not computed.
INTEGER. The number of rows of the matrix A (m\geq0).
INTEGER. The number of rows of the matrix }B(p\geq0)\mathrm{ .
INTEGER. The number of columns of the matrices A and B (n\geq0).
INTEGER. Specify the subblocks in the input matrices }A\mathrm{ and }B\mathrm{ , whose GSVD
is computed.
REAL for stgsja
DOUBLE PRECISION for dtgsja
COMPLEX for ctgsja
DOUBLE COMPLEX for ztgsja.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max (1,n).
b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1,n).
If jobu = 'U', u(Idu,*) must contain a matrix }\mp@subsup{U}{1}{}\mathrm{ (usually the orthogonal/
unitary matrix returned by ?ggsvp).
The second dimension of u must be at least max (1,m).
If jobv = 'V',v(ldv,*) must contain a matrix }\mp@subsup{v}{1}{}\mathrm{ (usually the orthogonal/
unitary matrix returned by ?ggsvp).
The second dimension of v must be at least max(1, p).

```

If jobq = ' \(Q\) ', \(q\left(l d q^{*}\right)\) must contain a matrix \(Q_{1}\) (usually the orthogonal/ unitary matrix returned by ? ggsvp).
The second dimension of \(q\) must be at least \(\max (1, n)\). work (*) is a workspace array.
The dimension of work must be at least max \((1,2 n)\).
lda
\(1 d b\)
Idu
\(l d v\)
\(1 d q\)
tola, tolb

INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
INTEGER. The leading dimension of \(b\); at least max \((1, p)\).
INTEGER. The leading dimension of the array \(u\).
\(I d u \geq \max (1, m)\) if jobu \(=' U ' ; I d u \geq 1\) otherwise.
INTEGER. The leading dimension of the array \(v\).
\(l d v \geq \max (1, p)\) if jobv \(=\) ' \(V\) '; \(l d v \geq 1\) otherwise.
INTEGER. The leading dimension of the array \(q\).
\(l d q \geq \max (1, n)\) if \(j o b q=\) ' \(Q\) '; \(l d q \geq 1\) otherwise.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz
iteration procedure. Generally, they are the same as used in ?ggsvp:
tola \(=\max (m, n) *|A| *\) MACHEPS,
tolb \(=\max (p, n) *|B| *\) MACHEPS.

\section*{Output Parameters}
a
b
alpha, beta
u

V
\(q\)

On exit, \(a(n-k+1: n, 1: \min (k+1, m))\) contains the triangular matrix \(R\) or part of \(R\).
On exit, if necessary, \(b(m-k+1: 1, n+m-k-1+1: n))\) contains a part of \(R\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least \(\max (1, n)\). Contain the generalized singular value pairs of \(A\) and \(B\) :
```

alpha(1:k) = 1,
beta(1:k) = 0,
and if m-k-1 \geq0,
alpha(k+1:k+l) = diag(C),
beta(k+1:k+l) = diag(S),
or if m-k-1 < 0,
alpha(k+1:m)= C, alpha(m+1:k+l)=0
beta(K+1:M) = S,
beta(m+1:k+l) = 1.

```
Furthermore, if \(k+1<n\),
alpha \((k+1+1: n)=0\) and
\(\operatorname{beta}(k+1+1: n)=0\).

If jobu = 'I', u contains the orthogonal/unitary matrix \(U\).
If jobu \(=\) ' \(U\) ', \(u\) contains the product \(U_{1} * U\).
If jobu = 'N', \(u\) is not referenced.
If jobv = 'I', v contains the orthogonal/unitary matrix \(U\).
If jobv \(=\) ' V ', v contains the product \(\mathrm{V}_{1} \star \mathrm{~V}\).
If jobv = 'N', vis not referenced.
If jobq = 'I', q contains the orthogonal/unitary matrix \(u\).
If jobq \(=\) ' \(Q\) ', q contains the product \(Q_{1} \star\).
If \(j o b q=\) ' \(N\) ', \(q\) is not referenced.
ncycle
info

INTEGER. The number of cycles required for convergence.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1\), the procedure does not converge after MAXIT cycles.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine tgsja interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size ( \(m, n\) ). \\
\hline b & Holds the matrix \(B\) of size ( \(p, n\) ). \\
\hline u & Holds the matrix \(U\) of size ( \(m, m\) ). \\
\hline v & Holds the matrix \(V\) of size ( \(p, p\) ). \\
\hline \(q\) & Holds the matrix \(Q\) of size ( \(n, n\) ). \\
\hline alpha & Holds the vector of length \(n\). \\
\hline beta & Holds the vector of length \(n\). \\
\hline jobu & \begin{tabular}{l}
If omitted, this argument is restored based on the presence of argument \(u\) as follows: \\
jobu = 'U', if \(u\) is present, \\
jobu = 'N', if \(u\) is omitted. \\
If present, jobu must be equal to 'I' or 'U' and the argument u must also be present. \\
Note that there will be an error condition if jobu is present and \(u\) omitted.
\end{tabular} \\
\hline jobv & \begin{tabular}{l}
If omitted, this argument is restored based on the presence of argument \(v\) as follows: \\
jobv = 'V', if \(v\) is present, \\
jobv \(=\) 'N', if \(v\) is omitted. \\
If present, jobv must be equal to 'I' or 'V' and the argument \(v\) must also be present. \\
Note that there will be an error condition if jobv is present and \(v\) omitted.
\end{tabular} \\
\hline jobq & \begin{tabular}{l}
If omitted, this argument is restored based on the presence of argument \(q\) as follows: \\
jobq = 'Q', if q is present, \\
\(j o b q=\) ' N', if \(q\) is omitted. \\
If present, jobq must be equal to 'I' or 'Q' and the argument q must also be present. \\
Note that there will be an error condition if jobq is present and \(q\) omitted.
\end{tabular} \\
\hline
\end{tabular}

\section*{Cosine-Sine Decomposition}

This section describes LAPACK computational routines for computing the cosine-sine decomposition (CS decomposition) of a partitioned unitary/orthogonal matrix. The algorithm computes a complete 2-by-2 CS decomposition, which requires simultaneous diagonalization of all the four blocks of a unitary/orthogonal matrix partitioned into a 2-by-2 block structure.

The computation has the following phases:
1. The matrix is reduced to a bidiagonal block form.
2. The blocks are simultaneously diagonalized using techniques from the bidiagonal SVD algorithms.

Table "Computational Routines for Cosine-Sine Decomposition (CSD)" lists LAPACK routines (FORTRAN 77 interface) that perform CS decomposition of matrices. Respective routine names in Fortran 95 interface are without the first symbol (see Routine Naming Conventions).
Computational Routines for Cosine-Sine Decomposition (CSD)
\begin{tabular}{lll}
\hline Operation & Real matrices & Complex matrices \\
\hline \begin{tabular}{l} 
Compute the CS decomposition of an \\
orthogonal/unitary matrix in bidiagonal-block \\
form
\end{tabular} & bbcsd/bbcsd & bbcsd/bbcsd \\
\begin{tabular}{l} 
Simultaneously bidiagonalize the blocks of a \\
partitioned orthogonal matrix
\end{tabular} & orbdb unbdb & \\
\begin{tabular}{l} 
Simultaneously bidiagonalize the blocks of a \\
partitioned unitary matrix
\end{tabular} & orbdb unbdb \\
\hline
\end{tabular}

\section*{See Also}

Cosine-Sine Decomposition
?bbcsd
Computes the CS decomposition of an orthogonal/
unitary matrix in bidiagonal-block form.

\section*{Syntax}

\section*{Fortran 77:}
call sbbcsd( jobu1, jobu2, jobv1t, jobv2t, trans, m, \(p, q\), theta, phi, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, b11d, b11e, b12d, b12e, b21d, b21e, b21e, b22e, work, lwork, info )
call dbbcsd( jobu1, jobu2, jobv1t, jobv2t, trans, m, \(p, q\), theta, phi, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, b11d, b11e, b12d, b12e, b21d, b21e, b21e, b22e, work, lwork, info )
call cbbcsd( jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q, theta, phi, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, b11d, b11e, b12d, b12e, b21d, b21e, b21e, b22e, rwork, rlwork, info )
call zbbcsd( jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q, theta, phi, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, b11d, b11e, b12d, b12e, b21d, b21e, b21e, b22e, rwork, rlwork, info )

\section*{Fortran 95:}
```

call bbcsd(theta,phi,u1,u2,v1t,v2t[,b11d][,b11e][,b12d][,b12e][,b21d][,b21e][,b22d]
[,b22e][,jobu1][,jobu2][,jobv1t][,jobv2t][,trans][,info])

```

\section*{C:}
lapack_int LAPACKE_sbbcsd( int matrix_order, char jobu1, char jobu2, char jobv1t, char jobv2t, char trans, lapack_int m, lapack_int \(p\), lapack_int \(q\), float* theta, float* phi, float* ul, lapack_int ldu1, float* u2, lapack_int ldu2, float* v1t, lapack_int ldv1t, float* v2t, lapack int ldv2t, float* blld, float* blle, float* b12d, float* b12e, float* b21d, float* b21e, float* b22d, float* b22e );
lapack_int LAPACKE_dbbcsd( int matrix_order, char jobu1, char jobu2, char jobv1t, char jobv2t, char trans, lapack_int \(m\), lapack_int \(p\), lapack_int \(q\), double* theta, double* phi, double* u1, lapack_int ldu1, double* u2, lapack_int ldu2, double* v1t, lapack_int ldv1t, double* v2t, lapack_int ldv2t, double* b11d, double* b11e, double* b12d, double* b12e, double* b21d, double* b21e, double* b22d, double* b22e );
```

lapack_int LAPACKE_cbbcsd(int matrix_order, char jobul, char jobu2, char jobv1t, char
jobv2t, char trans, lapack_int m, lapack_int p, lapack_int q, float* theta, float*
phi, lapack_complex_float* u1, lapack_int ldul, lapack_complex_float* u2, lapack_int
ldu2, lapack_complex_float* v1t, lapack_int ldvlt, lapack_complex_float* v2t,
lapack_int ldv2t, float* blld, float* blle, float* b12d, float* b12e, float* b21d,
float* b21e, float* b22d, float* b22e);
lapack_int LAPACKE_zbbcsd(int matrix_order, char jobul, char jobu2, char jobv1t, char
jobv2t, char trans, lapack_int m, lapack_int p, lapack_int q, double* theta, double*
phi, lapack_complex_double* u1, lapack_int ldu1, lapack_complex_double* u2, lapack_int
ldu2, lapack_complex_double* v1t, lapack_int ldv1t, lapack_complex_double* v2t,
lapack_int ldv2t, double* b11d, double* b11e, double* b12d, double* b12e, double*
b21d, double* b21e, double* b22d, double* b22e);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}
 bidiagonal-block form:
\[
X=\left(\begin{array}{ccc}
b_{11} \mid b_{12} & 0 & 0 \\
0| | 0 & -I & 0 \\
b_{21} \mid b_{22} & 0 & 0 \\
0 \mid 0 & 0 & I
\end{array}\right)=\left(\begin{array}{ll}
u_{1} \mid & \\
\mid & u_{2}
\end{array}\right)\left(\begin{array}{c|ccc}
C \mid-S & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline S \mid C & 0 & 0 \\
0 \mid 0 & 0 & I
\end{array}\right)\left(\begin{array}{lll}
v_{1} & \mid \\
\hline & \mid & v_{2}
\end{array}\right)^{T}
\]
or
\[
X=\left(\begin{array}{ccc}
b_{11} \mid b_{12} & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline b_{21} \mid b_{22} & 0 & 0 \\
0 \mid 0 & 0 & I
\end{array}\right)=\left(\begin{array}{lll}
u_{1} & \mid \\
\hline & \mid & u_{2}
\end{array}\right)\left(\begin{array}{c|ccc}
C \mid-S & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline S \mid C & 0 & 0 \\
0 & 0 & 0 & I
\end{array}\right)\left(\begin{array}{lll}
v_{1} \mid & \\
\hline & \mid & v_{2}
\end{array}\right)^{H}
\]
respectively.
\(x\) is \(m\)-by- \(m\) with the top-left block \(p\)-by- \(q\). Note that \(q\) must not be larger than \(p, m-p, o r m-q\). If \(q\) is not the smallest index, x must be transposed and/or permuted in constant time using the trans option. See ? orcsd/?uncsd for details.
The bidiagonal matrices \(b_{11}, b_{12}, b_{21}\), and \(b_{22}\) are represented implicitly by angles theta(1:q) and phi(1:q-1).
The orthogonal/unitary matrices \(u_{1}, u_{2}, v_{1}{ }^{t}\), and \(v_{2}{ }^{t}\) are input/output. The input matrices are pre- or postmultiplied by the appropriate singular vector matrices.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

jobu1
jobu2
jobv1t
jobv2t
trans
m
p
q
theta
phi
u1
ldu1
u2
Idu2
v1t
ldv1t
CHARACTER. If equals Y, then }\mp@subsup{u}{1}{}\mathrm{ is updated. Otherwise, }\mp@subsup{u}{1}{}\mathrm{ is not updated.
CHARACTER. If equals Y, then }\mp@subsup{u}{2}{}\mathrm{ is updated. Otherwise, }\mp@subsup{u}{2}{}\mathrm{ is not updated.
CHARACTER. If equals Y, then v}\mp@subsup{v}{1}{}\mp@subsup{}{}{t}\mathrm{ is updated. Otherwise, v}\mp@subsup{v}{1}{}\mp@subsup{}{}{t}\mathrm{ is not updated.
CHARACTER. If equals Y, then v2}\mp@subsup{v}{2}{t}\mathrm{ is updated. Otherwise, v2}\mp@subsup{}{2}{t}\mathrm{ is not updated.
CHARACTER
= 'T': }\quadx,\mp@subsup{u}{1}{},\mp@subsup{u}{2}{},\mp@subsup{v}{1}{}\mp@subsup{}{}{t},\mp@subsup{v}{2}{t}\mathrm{ are stored in row-major order.
otherwise }\quadx,\mp@subsup{u}{1}{},\mp@subsup{u}{2}{},\mp@subsup{v}{1}{}\mp@subsup{}{}{t},\mp@subsup{v}{2}{t}\mathrm{ are stored in column-major
order.
INTEGER. The number of rows and columns of the orthogonal/unitary matrix x in bidiagonal-block form.
INTEGER. The number of rows in the top-left block of $x .0$? p ? m.
INTEGER. The number of columns in the top-left block of $x .0$? q ?
$\min (p, m-p, m-q)$.
REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
Array, DIMENSION (q).
On entry, the angles theta(1), ..., theta(q) that, along with phi(1), ..., phi (q-1), define the matrix in bidiagonal-block form.
REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
Array, DIMENSION (q-1).
The angles phi(1), ..., phi(q-1) that, along with theta(1), ..., theta (q), define the matrix in bidiagonal-block form.
REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
Array, DIMENSION (ldu1,p).
On entry, an ldu1-by-p matrix.
INTEGER. The leading dimension of the array u_{1}.
REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
Array, DIMENSION (ldu2,m-p).
On entry, an ldu2-by-($m-p$) matrix.
INTEGER. The leading dimension of the array u_{2}.
REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
Array, DIMENSION ($1 d v 1 t, q$).
On entry, an ldvIt-by-q matrix.
ldv1t
INTEGER. The leading dimension of the array $v 1 t$.

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{v2t} & REAL for sbbcsd \\
\hline & DOUBLE PRECISION for dbbcsd \\
\hline & COMPLEX for cbbcsd \\
\hline & DOUBLE COMPLEX for zb.bcsd \\
\hline & Array, DIMENSION ( \(1 d v 2 t, m-q)\). \\
\hline & On entry, an 1 dv2t-by-( \(m-q)\) matrix. \\
\hline \(\operatorname{ldv} 2 t\) & INTEGER. The leading dimension of the array \(v 2 t\). \\
\hline \multirow[t]{5}{*}{work} & REAL for sbbcsd \\
\hline & DOUBLE PRECISION for dbbcsd \\
\hline & COMPLEX for cbbcsd \\
\hline & DOUBLE COMPLEX for zbbcsd \\
\hline & Workspace array, DIMENSION (max ( 1,1 work) ) \\
\hline \multirow[t]{2}{*}{lwork} & INTEGER. The size of the work array. lwork ? max (1, 8* \(q\) ) \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. \\
\hline
\end{tabular}

\section*{Output Parameters}
theta
u1
\(u 2\)
v1t
```

REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd

```

On exit, the angles whose cosines and sines define th edaigonal blocks in the CS decomposition.
REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
On exit, \(u 1\) is postmultiplied by the left singular vector matrix common to [ b11 ; 0 ] and [ b12 00 ; \(0-I 00\) ].

REAL for sbbcsd DOUBLE PRECISION for dbbcsd COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
On exit, u2 is postmultiplied by the left singular vector matrix common to [ b21 ; 0 ] and [ b22 00 ; 00 I ]. REAL for sbbcsd DOUBLE PRECISION for dbbcsd COMPLEX for cbbcsd DOUBLE COMPLEX for zbbcsd
Array, DIMENSION (q).
On exit, v1t is premultiplied by the transpose of the right singular vector matrix common to [ b11 ; 0 ] and [ b21 ; 0 ].

REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
On exit, \(v 2 t\) is premultiplied by the transpose of the right singular vector matrix common to [ b12 00 ; 0 -I 0 ] and [ b22 00 ; 0 I ].
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{b11d} & REAL for sbbcsd \\
\hline & DOUBLE PRECISION for dbbcsd \\
\hline & COMPLEX for cbbcsd \\
\hline & DOUBLE COMPLEX for zbbcsd \\
\hline & Array, DIMENSION (q). \\
\hline & When ? bbcsd converges, b11d contains the cosines of theta(1), ..., theta \((q)\). If ?bbcsd fails to converge, b11d contains the diagonal of the partially reduced top left block. \\
\hline \multirow[t]{6}{*}{b11e} & REAL for sbbcsd \\
\hline & DOUBLE PRECISION for dbbcsd \\
\hline & COMPLEX for cbbcsd \\
\hline & DOUBLE COMPLEX for z.bbcsd \\
\hline & Array, DIMENSION ( \(q-1\) ). \\
\hline & When ?bbcsd converges, blle contains zeros. If ?bbcsd fails to converge, blle contains the superdiagonal of the partially reduced top left block. \\
\hline \multirow[t]{6}{*}{b12d} & REAL for sbbcsd \\
\hline & DOUBLE PRECISION for dbbcsd \\
\hline & COMPLEX for cbbcsd \\
\hline & DOUBLE COMPLEX for zbbcsd \\
\hline & Array, DIMENSION (q). \\
\hline & When ? bbcsd converges, b12d contains the negative sines of theta(1), ..., theta(q). If ?bbcsd fails to converge, b12d contains the diagonal of the partially reduced top right block. \\
\hline \multirow[t]{6}{*}{b12e} & REAL for sbbcsd \\
\hline & DOUBLE PRECISION for dbbcsd \\
\hline & COMPLEX for cbbcsd \\
\hline & DOUBLE COMPLEX for zbbcsd \\
\hline & Array, DIMENSION ( \(q-1\) ). \\
\hline & When ?bbcsd converges, b12e contains zeros. If ?bbcsd fails to converge, blle contains the superdiagonal of the partially reduced top right block. \\
\hline \multirow[t]{5}{*}{info} & INTEGER. \\
\hline & = 0: successful exit \\
\hline & < 0: if info \(=-i\), the \(i\)-th argument has an illegal value \\
\hline & \(>0\) : if ?bbcsd did not converge, info specifies the number of nonzero \\
\hline & entries in phi, and b11d, b11e, etc. and contains the partially reduced matrix. \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ? bbcsd interface are as follows:
\begin{tabular}{ll} 
theta & Holds the vector of length \(q\). \\
phi & Holds the vector of length \(q-1\). \\
\(u 1\) & Holds the matrix of size \((p, p)\). \\
\(u 2\) & Holds the matrix of size \((m-p, m-p)\). \\
\(v 1 t\) & Holds the matrix of size \((q, q)\). \\
\(v 2 t\) & Holds the matrix of size \((m-q, m-q)\). \\
\(b 11 d\) & Holds the vector of length \(q\).
\end{tabular}
\begin{tabular}{ll} 
b11e & Holds the vector of length \(q-1\). \\
\(b 12 d\) & Holds the vector of length \(q\). \\
\(b 12 e\) & Holds the vector of length \(q-1\). \\
\(b 21 d\) & Holds the vector of length \(q\). \\
\(b 21 e\) & Holds the vector of length \(q-1\). \\
\(b 22 d\) & Holds the vector of length \(q\). \\
\(b 22 e\) & Holds the vector of length \(q-1\). \\
jobsul & Indicates whether \(u_{1}\) is computed. Must be 'Y' or 'O'. \\
jobsu2 & Indicates whether \(u_{2}\) is computed. Must be 'Y' or 'O'. \\
jobv1t & Indicates whether \(v_{1} t\) is computed. Must be 'Y' or 'O'. \\
jobv2t & Indicates whether \(v_{2}^{t}\) is computed. Must be 'Y' or 'O'. \\
trans & Must be 'N' or 'T'.
\end{tabular}

\section*{See Also}
?orcsd/?uncsd
xerbla

\section*{?orbdb/?unbdb}

Simultaneously bidiagonalizes the blocks of a partitioned orthogonal/unitary matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call sorbdb(trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22,
theta, phi, taup1, taup2, tauq1, tauq2, work, lwork, info)
call dorbdb(trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22,
theta, phi, taup1, taup2, tauq1, tauq2, work, lwork, info)
call cunbdb(trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22,
theta, phi, taup1, taup2, tauq1, tauq2, work, lwork, info)
call zunbdb(trans, signs, m, p, q, xl1, ldx11, x12, ldx12, x21, ldx21, x22, ldx22,
theta, phi, taup1, taup2, tauq1, tauq2, work, lwork, info)

```

\section*{Fortran 95:}
call orbdb( x11, x12, x21, x22, theta, phi, taup1, taup2, tauq1, tauq2[,trans][,signs][,info] ) call unbdb( x11, x12, x21, x22, theta, phi, taup1, taup2, tauq1, tauq2[,trans][,signs][,info] )

\section*{C:}
```

lapack_int LAPACKE_sorbdb(int matrix_order, char trans, char signs, lapack_int m,
lapack_int p, lapack_int q, float* xl1, lapack_int ldx11, float* x12, lapack_int
ldx12, float* x21, lapack_int ldx21, float* x22, lapack_int ldx22, float* theta,
float* phi, float* taup1, float* taup2, float* tauq1, float* tauq2);
lapack_int LAPACKE_dorbdb(int matrix_order, char trans, char signs, lapack_int m,
lapack_int p, lapack_int q, double* x11, lapack_int ldx11, double* x12, lapack_int
ldx12, double* x21, lapack_int ldx21, double* x22, lapack_int ldx22, double* theta,
double* phi, double* taup1, double* taup2, double* tauq1, double* tauq);
lapack_int LAPACKE_cunbdb(int matrix_order, char trans, char signs, lapack_int m,
lapack_int p, lapack_int q, lapack_complex_float* xll, lapack_int ldx11,
lapack_complex_float* x12, lapack_int ldx12, lapack_complex_float* x21, lapack_int

```
```

ldx21, lapack_complex_float* x22, lapack_int ldx22, float* theta, float* phi,
lapack_complex_float* taup1, lapack_complex_float* taup2, lapack_complex_float* tauq1,
lapack_complex_float* tauq2);
lapack_int LAPACKE_zunbdb(int matrix_order, char trans, char signs, lapack_int m,
lapack_int p, lapack_int q, lapack_complex_double* xll, lapack_int ldxll,
lapack_complex_double* x12, lapack_int ldx12, lapack_complex_double* x21, lapack_int
ldx21, lapack_complex_double* x22, lapack_int ldx22, double* theta, double* phi,
lapack_complex_double* taup1, lapack_complex_double* taup2, lapack_complex_double*
tauq1, lapack_complex_double* tauq2);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routines ?orbdb/?unbdb simultaneously bidiagonalizes the blocks of an \(m\)-by- \(m\) partitioned orthogonal matrix \(x\) :
\[
X=\left(\begin{array}{lll}
x_{11} & x_{12} \\
\hline x_{21} & \mid & x_{22}
\end{array}\right)=\left(\begin{array}{ll}
p_{1} & \mid \\
\hline & \mid
\end{array} p_{2}\right)\left(\begin{array}{ccc}
b_{11} \mid b_{12} & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline b_{21} \mid b_{22} & 0 & 0 \\
0 \mid 0 & 0 & I
\end{array}\right)\left(\begin{array}{ll}
q_{1} & \\
\hline & \mid q_{2}
\end{array}\right)^{T}
\]
or unitary matrix:
\[
X=\left(\begin{array}{lll}
x_{11} & x_{12} \\
\hline x_{21} & x_{22}
\end{array}\right)=\left(\begin{array}{lll}
p_{1} & \mid \\
\hline & \mid & p_{2}
\end{array}\right)\left(\begin{array}{cccc}
b_{11} \mid b_{12} & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline b_{21} \mid b_{22} & 0 & 0 \\
0 \mid 0 & 0 & I
\end{array}\right)\left(\begin{array}{lll}
q_{1} & \mid \\
\hline & \mid & q_{2}
\end{array}\right)^{H}
\]
\(x_{11}\) is \(p\)-by- \(q\). \(q\) must not be larger than \(p, m-p\), or \(m-q\). Otherwise, \(x\) must be transposed and/or permuted in constant time using the trans and signs options. See ?orcsd/?uncsd for details.

The orthogonal/unitary matrices \(p_{1}, p_{2}, q_{1}\), and \(q_{2}\) are \(p\)-by- \(p,(m-p)\)-by- \((m-p), q\)-by- \(q,(m-q)\)-by- \((m-q)\), respectively. They are represented implicitly by Housholder vectors.

The bidiagonal matrices \(b_{11}, b_{12}, b_{21}\), and \(b_{22}\) are \(q\)-by- \(q\) bidiagonal matrices represented implicitly by angles theta(1), ..., theta(q) and phi(1),.. , phi \((q-1) . b_{11}\) and \(b_{12}\) are upper bidiagonal, while \(b_{21}\) and \(b_{22}\) are lower bidiagonal. Every entry in each bidiagonal band is a product of a sine or cosine of theta with a sine or cosine of phi. See [Sutton09] or description of ?orcsd/?uncsd for details.
\(p_{1}, p_{2}, q_{1}\), and \(q_{2}\) are represented as products of elementary reflectors. See description of ?orcsd/?uncsd for details on generating \(p_{1}, p_{2}, q_{1}\), and \(q_{2}\) using ?orgqr and ?orglq.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{trans} & CHARACTER \\
\hline & \begin{tabular}{ll}
\(=' T ':\) & \(x, u_{1}, u_{2}, v_{1}{ }^{t}, v_{2}{ }^{t}\) are stored in row-major order. \\
otherwise & \begin{tabular}{l}
\(x, u_{1}, u_{2}, v_{1}{ }^{t}, v_{2}{ }^{t}\) are stored in column-major \\
\\
order.
\end{tabular}
\end{tabular} \\
\hline \multirow[t]{3}{*}{signs} & CHARACTER \\
\hline & \[
\begin{array}{ll}
= & \circ \text { ': } \\
& \text { The lower-left block is made nonpositive (the } \\
\text { "other" convention). }
\end{array}
\] \\
\hline & otherwise The upper-right block is made nonpositive (the "default" convention). \\
\hline m & INTEGER. The number of rows and columns of the matrix \(x\). \\
\hline \(p\) & INTEGER. The number of rows in \(x_{11}\) and \(x_{12} .0 \leq p \leq m\). \\
\hline q & INTEGER. The number of columns in \(x_{11}\) and \(x_{21} .0 \leq q \leq \min (p, m-p, m-\) q) . \\
\hline \multirow[t]{6}{*}{x11} & REAL for sorbdb \\
\hline & DOUBLE PRECISION for dorbdb \\
\hline & COMPLEX for cunbdb \\
\hline & DOUBLE COMPLEX for zunbdb \\
\hline & Array, DIMENSION ( 1 dx11,q). \\
\hline & On entry, the top-left block of the orthogonal/unitary matrix to be reduced. \\
\hline \(1 d \times 11\) & INTEGER. The leading dimension of the array \(X_{11}\). If trans \(=\) ' \(T\) ', \(1 d x 11 \geq\) p. Otherwise, \(1 d \times 11 \geq q\). \\
\hline \multirow[t]{6}{*}{x12} & REAL for sorbdb \\
\hline & DOUBLE PRECISION for dorbdb \\
\hline & COMPLEX for cunbdb \\
\hline & DOUBLE COMPLEX for zunbdb \\
\hline & Array, DIMENSION ( 1 dx12,m-q). \\
\hline & On entry, the top-right block of the orthogonal/unitary matrix to be reduced. \\
\hline \(1 d x 12\) & INTEGER. The leading dimension of the array \(X_{12}\). If trans \(=\) ' N ', \(I d \times 12 \geq\) \(p\). Otherwise, \(1 d x 12 \geq m-q\). \\
\hline \multirow[t]{6}{*}{x21} & REAL for sorbdb \\
\hline & DOUBLE PRECISION for dorbdb \\
\hline & COMPLEX for cunbdb \\
\hline & DOUBLE COMPLEX for zunbdb \\
\hline & Array, DIMENSION ( \(1 \mathrm{dx} 21, q\) ). \\
\hline & On entry, the bottom-left block of the orthogonal/unitary matrix to be reduced. \\
\hline \(1 d \times 21\) & INTEGER. The leading dimension of the array \(X_{21}\). If trans \(=\) ' N ', \(I d \times 21 \geq\) \(m-p\). Otherwise, \(1 d \times 21 \geq q\). \\
\hline \multirow[t]{6}{*}{x22} & REAL for sorbdb \\
\hline & DOUBLE PRECISION for dorbdb \\
\hline & COMPLEX for cunbdb \\
\hline & DOUBLE COMPLEX for zunbdb \\
\hline & Array, DIMENSION ( 1 dx22,m-q). \\
\hline & On entry, the bottom-right block of the orthogonal/unitary matrix to be reduced. \\
\hline \(1 d \times 22\) & INTEGER. The leading dimension of the array \(X_{21}\). If trans \(=\) ' N ', \(\operatorname{ldx} 22 \geq\) \(m-p\). Otherwise, \(1 d \times 22 \geq m-q\). \\
\hline
\end{tabular}
```

work REAL for sorbdb
DOUBLE PRECISION for dorbdb
COMPLEX for cunbdb
DOUBLE COMPLEX for zunbdb
Workspace array, DIMENSION (lwork).
lwork INTEGER. The size of the work array. lwork \geqm-q
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.

```

\section*{Output Parameters}

On exit, the form depends on trans:
If \(\operatorname{trans}=\) ' N ', the columns of tril( \(\mathrm{xl1}\) ) specify reflectors for \(p_{1}\), the rows of triu \((x 11,1)\) specify reflectors for \(q_{1}\)
otherwise the rows of triu (x11) specify reflectors for \(p_{1}\), the trans='T', columns of tril \((x 11,-1)\) specify reflectors for \(q_{1}\)

On exit, the form depends on trans:
\begin{tabular}{ll} 
If \(\operatorname{trans}=\) ' N ', & the columns of \(\operatorname{triu}(x 12)\) specify the first \(p\) reflectors \\
& for \(q_{2}\) \\
otherwise & the columns of tril (x12) specify the first \(p\) reflectors \\
\(\operatorname{trans}=\) ' T ', & for \(q_{2}\)
\end{tabular}

On exit, the form depends on trans:
If \(\operatorname{trans}=\) ' N ', the columns of tril (x21) specify the reflectors for \(p_{2}\) otherwise the columns of triu(x21) specify the reflectors for \(p_{2}\) trans='T',

On exit, the form depends on trans:
\begin{tabular}{ll} 
If \(\operatorname{trans}=' \mathrm{~N} '\), & the rows of \(\operatorname{triu}(x 22(q+1: m-p, p+1: m-q))\) specify the \\
& last \(m-p-q\) reflectors for \(q_{2}\)
\end{tabular}

REAL for sorbdb
DOUBLE PRECISION for dorbdb
COMPLEX for cunbdb
DOUBLE COMPLEX for zunbdb
Array, DIMENSION ( \(q\) ). The entries of bidiagonal blocks \(b_{11}, b_{12}, b_{21}\), and \(b_{22}\) can be computed from the angles theta and phi. See the Description section for details.

REAL for sorbdb
DOUBLE PRECISION for dorbdb
COMPLEX for cunbdb
DOUBLE COMPLEX for zunbdb
Array, DIMENSION ( \(q-1\) ). The entries of bidiagonal blocks \(b_{11}, b_{12}, b_{21}\), and \(b_{22}\) can be computed from the angles theta and phi. See the Description section for details.

REAL for sorbdb
DOUBLE PRECISION for dorbdb


\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ?orbdb/?unbdb interface are as follows:
\begin{tabular}{ll}
\(x 11\) & Holds the block of matrix \(x\) of size \((p, q)\). \\
\(x 12\) & Holds the block of matrix \(x\) of size \((p, m-q)\). \\
\(x 21\) & Holds the block of matrix \(x\) of size \((m-p, q)\). \\
\(x 22\) & Holds the block of matrix \(x\) of size \((m-p, m-q)\). \\
theta & Holds the vector of length \(q\). \\
phi & Holds the vector of length \(q\)-1. \\
taup1 & Holds the vector of length \(p\). \\
taup2 & Holds the vector of length \(m-p\). \\
tauq1 & Holds the vector of length \(q\). \\
trans 2 & Holds the vector of length \(m-q\). \\
signs & Must be 'N' or ' \(T\) '
\end{tabular}

\section*{See Also}
?orcsd/?uncsd
?orgqr
?ungqr
?orglq
?unglq
xerbla

\section*{Driver Routines}

Each of the LAPACK driver routines solves a complete problem. To arrive at the solution, driver routines typically call a sequence of appropriate computational routines.

Driver routines are described in the following sections:
Linear Least Squares (LLS) Problems
Generalized LLS Problems
Symmetric Eigenproblems
Nonsymmetric Eigenproblems
Singular Value Decomposition
Cosine-Sine Decomposition
Generalized Symmetric Definite Eigenproblems
Generalized Nonsymmetric Eigenproblems

\section*{Linear Least Squares (LLS) Problems}

This section describes LAPACK driver routines used for solving linear least squares problems. Table "Driver Routines for Solving LLS Problems" lists all such routines for the FORTRAN 77 interface. Respective routine names in the Fortran 95 interface are without the first symbol (see Routine Naming Conventions).

Driver Routines for Solving LLS Problems
\begin{tabular}{ll}
\hline Routine Name & Operation performed \\
\hline gels & \begin{tabular}{l} 
Uses QR or LQ factorization to solve a overdetermined or underdetermined linear \\
system with full rank matrix.
\end{tabular} \\
gelsy & \begin{tabular}{l} 
Computes the minimum-norm solution to a linear least squares problem using a \\
complete orthogonal factorization of \(A\).
\end{tabular} \\
gelsd & \begin{tabular}{l} 
Computes the minimum-norm solution to a linear least squares problem using the \\
singular value decomposition of \(A\).
\end{tabular} \\
\hline
\end{tabular}

\section*{?gels}

Uses \(Q R\) or \(L Q\) factorization to solve a overdetermined or underdetermined linear system with full rank matrix.

Syntax

\section*{Fortran 77:}
```

call sgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call dgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call cgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call zgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

```

\section*{Fortran 95:}
```

call gels(a, b [,trans] [,info])

```

C:
lapack_int LAPACKE_<?>gels( int matrix_order, char trans, lapack_int m, lapack_int \(n\), lapack_int nrhs, <datatype>* a, lapack_int lda, <datatype>* b, lapack_int ldb );

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves overdetermined or underdetermined real/ complex linear systems involving an m-by-n matrix \(A\), or its transpose/ conjugate-transpose, using a \(Q R\) or \(L Q\) factorization of \(A\). It is assumed that \(A\) has full rank.

The following options are provided:
1. If trans \(=\) ' \(N\) ' and \(m \geq n\) : find the least squares solution of an overdetermined system, that is, solve the least squares problem
minimize \(\left|\left|b-A^{\star} X\right|\right|_{2}\)
2. If trans \(=\) ' \(N\) ' and \(m<n\) : find the minimum norm solution of an underdetermined system \(A \star X=B\).
3. If trans \(=\) 'T' or 'C' and \(m \geq n\) : find the minimum norm solution of an undetermined system \(A_{H} * X=\) B.
4. If trans \(=\) ' \(T\) ' or ' \(C\) ' and \(m<n\) : find the least squares solution of an overdetermined system, that is, solve the least squares problem
minimize ||b \(-A^{H_{\star}} x| |_{2}\)
Several right hand side vectors \(b\) and solution vectors \(x\) can be handled in a single call; they are stored as the columns of the m-by-nrhs right hand side matrix \(B\) and the \(n\)-by-nrh solution matrix \(x\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

trans
m
n
nrhs
a,b, work

```

COMPLEX for cgels
DOUBLE COMPLEX for zgels.

\section*{Arrays:}
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max \((1, n)\).
\(b(I d b, *)\) contains the matrix \(B\) of right hand side vectors, stored
columnwise; \(B\) is m-by-nrhs if trans \(=\) ' \(N\) ', or \(n\)-by-nrhs if trans \(=\) ' \(T\) ' or 'C'.
The second dimension of \(b\) must be at least max(1, nrhs).
work is a workspace array, its dimension max ( 1,1 work).
INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
INTEGER. The leading dimension of \(b\); must be at least max \((1, m, n)\).
INTEGER. The size of the work array; must be at least \(\min (m, n)+\max (1, m\), n, nrhs).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

\section*{Output Parameters}
a
On exit, overwritten by the factorization data as follows:
if \(m \geq n\), array a contains the details of the \(Q R\) factorization of the matrix \(A\) as returned by ?geqrf;
if \(m<n\), array a contains the details of the \(L Q\) factorization of the matrix \(A\) as returned by ?gelqf.
b
work(1)
info
If info \(=0, b\) overwritten by the solution vectors, stored columnwise:
if trans \(=\) ' \(N\) ' and \(m \geq n\), rows 1 to \(n\) of \(b\) contain the least squares
solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of modulus of elements \(n+1\) to \(m\) in that column;
if trans \(=\) ' \(N\) ' and \(m<n\), rows 1 to \(n\) of \(b\) contain the minimum norm solution vectors;
if trans \(=\) ' \(T\) ' or ' \(C\) ' and \(m \geq n\), rows 1 to \(m\) of \(b\) contain the minimum norm solution vectors; if trans \(=\) ' \(T\) ' or ' \(C\) ' and \(m<n\), rows 1 to \(m\) of \(b\) contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of modulus of elements \(m+1\) to \(n\) in that column.
If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(i\)-th diagonal element of the triangular factor of \(A\) is zero, so that \(A\) does not have full rank; the least squares solution could not be computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
```

Specific details for the routine gels interface are the following:
a Holds the matrix A of size (m,n).
b Holds the matrix of size max (m,n)-by-nrhs.
If trans = 'N', then, on entry, the size of b is m-by-nrhs,
If trans = 'T', then, on entry, the size of b is n-by-nrhs,
trans Must be 'N' or 'T'. The default value is 'N'.

```

\section*{Application Notes}

For better performance, try using 1 work \(=\min (m, n)+\max (1, m, n, n r h s) * b l o c k s i z e\), where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?gelsy}

Computes the minimum-norm solution to a linear least squares problem using a complete orthogonal factorization of \(A\).

Syntax

\section*{Fortran 77:}
```

call sgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, info)
call dgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, info)
call cgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, rwork, info)
call zgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, rwork, info)

```

\section*{Fortran 95:}
```

call gelsy(a, b [,rank] [,jpvt] [,rcond] [,info])

```

C:
```

lapack_int LAPACKE_sgelsy(int matrix_order, lapack_int m, lapack_int n, lapack_int
nrhs, float* a, lapack_int lda, float* b, lapack_int ldb, lapack_int* jpvt, float
rcond, lapack_int* rank);
lapack_int LAPACKE_dgelsy(int matrix_order, lapack_int m, lapack_int n, lapack_int
nrhs, double* a, lapack_int lda, double* b, lapack_int ldb, lapack_int* jpvt, double
rcond, lapack_int* rank);
lapack_int LAPACKE_cgelsy(int matrix_order, lapack_int m, lapack_int n, lapack_int
nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int
ldb, lapack_int* jpvt, float rcond, lapack_int* rank);

```
lapack_int LAPACKE_zgelsy( int matrix_order, lapack_int m, lapack_int \(n\), lapack_int
nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int
ldb, lapack_int* jpvt, double rcond, lapack_int* rank );

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The ?gelsy routine computes the minimum-norm solution to a real/complex linear least squares problem:
```

minimize ||b - A*X||

```
using a complete orthogonal factorization of \(A\). A is an m-by-n matrix which may be rank-deficient. Several right hand side vectors \(b\) and solution vectors \(x\) can be handled in a single call; they are stored as the columns of the m-by-nrhs right hand side matrix \(B\) and the \(n\)-by-nrhs solution matrix \(x\).

The routine first computes a \(Q R\) factorization with column pivoting:
\[
A P=Q\left(\begin{array}{cc}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right)
\]
with \(R_{11}\) defined as the largest leading submatrix whose estimated condition number is less than \(1 / r c o n d\). The order of \(R_{11}\), rank, is the effective rank of \(A\). Then, \(R_{22}\) is considered to be negligible, and \(R_{12}\) is annihilated by orthogonal/unitary transformations from the right, arriving at the complete orthogonal factorization:
\[
A P=Q\left(\begin{array}{cc}
T_{11} & 0 \\
0 & 0
\end{array}\right) z
\]

The minimum-norm solution is then
\[
\begin{aligned}
& X=P Z^{T}\left(\begin{array}{cc}
T_{11}^{-1} & Q_{1}^{T} b \\
0 & 0
\end{array}\right) \text { for real flavors and } \\
& X=P Z^{H}\left(\begin{array}{cc}
T_{11}^{-1} & Q_{1}^{H} b \\
0 & 0
\end{array}\right) \text { for complex flavors, }
\end{aligned}
\]
where \(Q_{1}\) consists of the first rank columns of \(Q\).
The ?gelsy routine is identical to the original deprecated ?gelsx routine except for the following differences:
- The call to the subroutine ?geqpf has been substituted by the call to the subroutine ?geqp3, which is a BLAS-3 version of the \(Q R\) factorization with column pivoting.
- The matrix \(B\) (the right hand side) is updated with BLAS-3.
- The permutation of the matrix \(B\) (the right hand side) is faster and more simple.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

m INTEGER. The number of rows of the matrix A (m\geq0).
n
nrhs
a,b, work
lda
ldb
jpvt
rcond
lwork
rwork

```

INTEGER. The number of rows of the matrix \(A(m \geq 0)\).
INTEGER. The number of columns of the matrix \(A\) ( \(n \geq 0\) ).
INTEGER. The number of right-hand sides; the number of columns in \(B\) (nrhs \(\geq 0\) ).
REAL for sgelsy
DOUBLE PRECISION for dgelsy
COMPLEX for cgelsy
DOUBLE COMPLEX for zgelsy.
Arrays:
a(lda,*) contains the \(m\)-by-n matrix \(A\).
The second dimension of \(a\) must be at least max \((1, n)\).
\(b(l d b, *)\) contains the \(m\)-by- \(n r h s\) right hand side matrix \(B\).
The second dimension of \(b\) must be at least \(\max (1, n r h s)\).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
INTEGER. The leading dimension of \(b\); must be at least max \((1, m, n)\).
INTEGER.
Array, DIMENSION at least max \((1, n)\).
On entry, if \(j p v t(i) \neq 0\), the \(i\)-th column of \(A\) is permuted to the front of \(A P\), otherwise the \(i\)-th column of \(A\) is a free column.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
rcond is used to determine the effective rank of \(A\), which is defined as the order of the largest leading triangular submatrix \(R_{11}\) in the \(Q R\) factorization with pivoting of \(A\), whose estimated condition number \(<1 /\) rcond.
INTEGER. The size of the work array.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes for the suggested value of lwork.
REAL for cgelsy DOUBLE PRECISION for zgelsy. Workspace array, DIMENSION at least max \((1,2 n)\). Used in complex flavors only.

On exit, overwritten by the details of the complete orthogonal factorization of \(A\).
Overwritten by the \(n\)-by-nrhs solution matrix \(x\).
On exit, if \(j p v t(i)=k\), then the \(i\)-th column of \(A P\) was the \(k\)-th column of \(A\).
INTEGER. The effective rank of \(A\), that is, the order of the submatrix \(R_{11}\). This is the same as the order of the submatrix \(T_{11}\) in the complete orthogonal factorization of \(A\).
INTEGER.
If info \(=0\), the execution is successful.

\section*{Output Parameters}
\(a\)
b
jpvt
rank
info
\[
\text { If info }=-i \text {, the } i \text {-th parameter had an illegal value. }
\]

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gelsy interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((m, n)\). \\
\(b\) & Holds the matrix of size \(\max (m, n)\)-by- \(n r h s\). On entry, contains the \(m\)-by- \(n r h s\) \\
right hand side matrix \(B, O n\) exit, overwritten by the \(n\)-by- \(n r h s\) solution matrix \(x\).
\end{tabular}

\section*{Application Notes}

\section*{For real flavors:}

The unblocked strategy requires that:
lwork \(\geq \max (m n+3 n+1,2 * m n+n r h s)\),
where \(m n=\min (m, n)\).
The block algorithm requires that:
```

lwork \geq max(mn+2n+nb*(n+1), 2*mn+nb*nrhs),

```
where \(n b\) is an upper bound on the blocksize returned by ilaenv for the routines sgeqp3/dgeqp3, stzrzf/ dtzrzf, stzrqf/dtzrqf, sormqr/dormqr, and sormrz/dormrz.

For complex flavors:
The unblocked strategy requires that:
lwork \(\geq m n+\max (2 * m n, n+1, m n+n r h s)\),
where \(m n=\min (m, n)\).
The block algorithm requires that:
lwork < mn \(+\max \left(2 * m n, n b^{*}(n+1), m n+m n * n b, m n+n b^{*} n r h s\right)\),
where \(n b\) is an upper bound on the blocksize returned by ilaenv for the routines cgeqp \(3 / z g e q p 3\), ctzrzf/ ztzrzf, ctzrqf/ztzrqf, cunmqr/zunmqr, and cunmrz/zunmrz.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?gelss \\ Computes the minimum-norm solution to a linear least squares problem using the singular value decomposition of \(A\).}

\section*{Syntax}

\section*{Fortran 77:}
```

call sgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, info)
call dgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, info)
call cgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, info)
call zgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, info)

```

Fortran 95:
```

call gelss(a, b [,rank] [,s] [,rcond] [,info])

```

C:
```

lapack_int LAPACKE_sgelss(int matrix_order, lapack_int m, lapack_int n, lapack_int
nrhs, float* a, lapack_int lda, float* b, lapack_int ldb, float* s, float rcond,
lapack_int* rank);
lapack_int LAPACKE_dgelss(int matrix_order, lapack_int m, lapack_int n, lapack_int
nrhs, double* a, lapack_int lda, double* b, lapack_int ldb, double* s, double rcond,
lapack_int* rank);
lapack_int LAPACKE_cgelss(int matrix_order, lapack_int m, lapack_int n, lapack_int
nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int
ldb, float* s, float rcond, lapack_int* rank);
lapack_int LAPACKE_zgelss(int matrix_order, lapack_int m, lapack_int n, lapack_int
nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int
ldb, double* s, double rcond, lapack_int* rank);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the minimum norm solution to a real linear least squares problem:
```

minimize ||b - A*X||

```
using the singular value decomposition (SVD) of \(A\). \(A\) is an m-by-n matrix which may be rank-deficient. Several right hand side vectors \(b\) and solution vectors \(x\) can be handled in a single call; they are stored as the columns of the \(m\)-by-nrhs right hand side matrix \(B\) and the \(n\)-by-nrhs solution matrix \(x\). The effective rank of \(A\) is determined by treating as zero those singular values which are less than rcond times the largest singular value.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \(m\) & INTEGER. The number of rows of the matrix \(A(m \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns of the matrix \(A\) ( \(n \geq 0\) ). \\
\hline nrhs & INTEGER. The number of right-hand sides; the number of columns in \(B\) (nrhs \(\geq 0\) ). \\
\hline \multirow[t]{9}{*}{\(a, b, w o r k\)} & REAL for sgelss \\
\hline & DOUBLE PRECISION for dgelss \\
\hline & COMPLEX for cgelss \\
\hline & DOUBLE COMPLEX for zgelss. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) contains the m-by-n matrix \(A\). \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & \(b(1 d b, *)\) contains the m-by-nrhs right hand side matrix \(B\). \\
\hline & The second dimension of \(b\) must be at least max(1, nrhs). work is a workspace array, its dimension max (1, lwork). \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, m)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b\); must be at least max \((1, m, n)\). \\
\hline \multirow[t]{4}{*}{rcond} & REAL for single-precision flavors \\
\hline & DOUBLE PRECISION for double-precision flavors. \\
\hline & rcond is used to determine the effective rank of \(A\). Singular values \(s(i) \leq\) rcond \(*_{s}(1)\) are treated as zero. \\
\hline & If rcond \(<0\), machine precision is used instead. \\
\hline \multirow[t]{3}{*}{Iwork} & INTEGER. The size of the work array; lwork \(\geq 1\). \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. \\
\hline & See Application Notes for the suggested value of lwork. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cgelss \\
\hline & DOUBLE PRECISION for zgelss. \\
\hline & Workspace array used in complex flavors only. DIMENSION at least max (1, \(5 * \min (m, n))\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
b

S
rank
work(1)

On exit, the first \(\min (m, n)\) rows of \(A\) are overwritten with its right singular vectors, stored row-wise.
Overwritten by the \(n\)-by- \(n r h s\) solution matrix \(x\).
If \(m \geq n\) and rank \(=n\), the residual sum-of-squares for the solution in the \(i\) th column is given by the sum of squares of modulus of elements \(n+1: m\) in that column.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least \(\max (1, \min (m, n))\). The singular values of \(A\) in decreasing order. The condition number of \(A\) in the 2-norm is
\(k_{2}(A)=s(1) / s(\min (m, n))\).
INTEGER. The effective rank of \(A\), that is, the number of singular values which are greater than rcond \({ }^{*} s(1)\).
If info \(=0\), on exit, work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
\begin{tabular}{ll} 
info & INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
& If info \(=i\), then the algorithm for computing the SVD failed to converge; \\
& indicates the number of off-diagonal elements of an intermediate \\
& bidiagonal form which did not converge to zero.
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gelss interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((m, n)\). \\
\(b\) & \begin{tabular}{l} 
Holds the matrix of size \(\max (m, n)\)-by- \(n r h s\). On entry, contains the \(m\)-by- \(n r h s\) \\
right hand side matrix \(B, O n\) exit, overwritten by the \(n\)-by- \(n r h s\) solution matrix \(x\).
\end{tabular} \\
\(s\) & \begin{tabular}{l} 
Holds the vector of length \(\min (m, n)\).
\end{tabular} \\
rcond & Default value for this element is \(r \operatorname{cond}=100 * E P S I L O N\left(1.0 \_W P\right)\).
\end{tabular}

\section*{Application Notes}

For real flavors:
lwork \(\geq 3 * \min (m, n)+\max (2 * \min (m, n), \max (m, n), \quad n r h s)\)
For complex flavors:
```

lwork \geq 2*min(m,n)+\operatorname{max}(m,n, nrhs)

```

For good performance, lwork should generally be larger.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?gelsd}

Computes the minimum-norm solution to a linear least squares problem using the singular value decomposition of \(A\) and a divide and conquer method.

Syntax

\section*{Fortran 77:}
```

call sgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info)
call dgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info)
call cgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork,
info)

```
```

call zgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork,
info)

```

\section*{Fortran 95:}
```

call gelsd(a, b [,rank] [,s] [,rcond] [,info])

```

\section*{C:}
```

lapack_int LAPACKE_sgelsd(int matrix_order, lapack_int m, lapack_int n, lapack_int
nrhs, float* a, lapack_int lda, float* b, lapack_int ldb, float* s, float rcond,
lapack_int* rank);
lapack_int LAPACKE_dgelsd(int matrix_order, lapack_int m, lapack_int n, lapack_int
nrhs, double* a, lapack_int lda, double* b, lapack_int ldb, double* s, double rcond,
lapack_int* rank);
lapack_int LAPACKE_cgelsd(int matrix_order, lapack_int m, lapack_int n, lapack_int
nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int
ldb, float* s, float rcond, lapack_int* rank);
lapack_int LAPACKE_zgelsd(int matrix_order, lapack_int m, lapack_int n, lapack_int
nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int
ldb, double* s, double rcond, lapack_int* rank);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes the minimum-norm solution to a real linear least squares problem:
minimize \(\left|\left|b-A^{*} x\right|\right|_{2}\)
using the singular value decomposition (SVD) of \(A\). \(A\) is an \(m\)-by-n matrix which may be rank-deficient.
Several right hand side vectors \(b\) and solution vectors \(x\) can be handled in a single call; they are stored as the columns of the \(m\)-by-nrhs right hand side matrix \(B\) and the \(n\)-by-nrhs solution matrix \(x\).

The problem is solved in three steps:
1. Reduce the coefficient matrix \(A\) to bidiagonal form with Householder transformations, reducing the original problem into a "bidiagonal least squares problem" (BLS).
2. Solve the BLS using a divide and conquer approach.
3. Apply back all the Householder transformations to solve the original least squares problem.

The effective rank of \(A\) is determined by treating as zero those singular values which are less than rcond times the largest singular value.

The routine uses auxiliary routines lals0 and lalsa.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
m
INTEGER. The number of rows of the matrix \(A(m \geq 0)\).
INTEGER. The number of columns of the matrix \(A\)
( \(n \geq 0\) ).
\begin{tabular}{|c|c|}
\hline nrhs & INTEGER. The number of right-hand sides; the number of columns in \(B\) (nrhs \(\geq 0\) ). \\
\hline \multirow[t]{9}{*}{\(a, b, w o r k\)} & REAL for sgelsd \\
\hline & DOUBLE PRECISION for dgelsd \\
\hline & COMPLEX for cgelsd \\
\hline & DOUBLE COMPLEX for zgelsd. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) contains the m-by-n matrix \(A\). \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & \(b(l d b, *)\) contains the m-by-nrhs right hand side matrix \(B\). \\
\hline & The second dimension of \(b\) must be at least max ( \(1, n r h s\) ). work is a workspace array, its dimension max (1, lwork). \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, m)\). \\
\hline 1 db & INTEGER. The leading dimension of \(b\); must be at least max \((1, m, n)\). \\
\hline \multirow[t]{4}{*}{rcond} & REAL for single-precision flavors \\
\hline & DOUBLE PRECISION for double-precision flavors. \\
\hline & rcond is used to determine the effective rank of \(A\). Singular values \(s(i) \leq\) \\
\hline & rcond \(*_{s}(1)\) are treated as zero. If rcond \(\leq 0\), machine precision is used instead. \\
\hline \multirow[t]{3}{*}{Iwork} & INTEGER. The size of the work array; lwork \(\geq 1\). \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the array work and the minimum sizes of the arrays rwork and iwork, and returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork is issued by xerbla. \\
\hline & See Application Notes for the suggested value of lwork. \\
\hline iwork & integer. Workspace array. See Application Notes for the suggested dimension of iwork. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cgelsd \\
\hline & DOUBLE PRECISION for zgelsd. \\
\hline & Workspace array, used in complex flavors only. See Application Notes for the suggested dimension of rwork. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
b

S
rank
work(1)
On exit, A has been overwritten.
Overwritten by the \(n\)-by- \(n r h s\) solution matrix \(x\).
If \(m \geq n\) and rank \(=n\), the residual sum-of-squares for the solution in the \(i\)-th column is given by the sum of squares of modulus of elements \(n+1: m\) in that column.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least \(\max (1, \min (m, n))\). The singular values of \(A\) in decreasing order. The condition number of \(A\) in the 2 -norm is
\(k^{2}(A)=s(1) / s(\min (m, n))\).
INTEGER. The effective rank of \(A\), that is, the number of singular values which are greater than rcond \({ }^{s} s(1)\).
If info \(=0\), on exit, work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
```

rwork(1) If info = 0, on exit, rwork(1) returns the minimum size of the workspace
array iwork required for optimum performance.
iwork(1)
info INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then the algorithm for computing the SVD failed to converge;
i indicates the number of off-diagonal elements of an intermediate
bidiagonal form that did not converge to zero.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gelsd interface are the following:
```

a Holds the matrix A of size (m,n).
b Holds the matrix of size max (m,n)-by-nrhs. On entry, contains the m-by-nrhs
right hand side matrix B, On exit, overwritten by the n-by-nrhs solution matrix }x\mathrm{ .
s Holds the vector of length min (m,n).
rcond Default value for this element is rcond = 100*EPSILON(1.0_WP).

```

\section*{Application Notes}

The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

The exact minimum amount of workspace needed depends on \(m, n\) and \(n r h s\). The size lwork of the workspace array work must be as given below.

For real flavors:
If \(m \geq n\),
```

lwork \geq 12n + 2n*smlsiz + 8n*nlvl + n*nrhs + (smlsiz+1)}\mp@subsup{}{}{2}

```

If \(m<n\),
```

lwork \geq 12m + 2m*smlsiz + 8m^nlvl + m*nrhs + (smlsiz+1)}\mp@subsup{}{}{2}

```

For complex flavors:
If \(m \geq n\),
lwork< \(2 n+n * n r h s ;\)
If \(m<n\),
lwork \(\geq 2 m+m^{\star} n r h s ;\)
where smlsiz is returned by ilaenv and is equal to the maximum size of the subproblems at the bottom of the computation tree (usually about 25), and
\(n l v l=\operatorname{INT}\left(\log _{2}(\min (m, n) /(\operatorname{smlsiz}+1))\right)+1\).
For good performance, lwork should generally be larger.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set
lwork \(=-1\).

If you choose the first option and set any of admissible 1 work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The dimension of the workspace array iwork must be at least
```

3*min(m, n)*nlvl + 11*min(m, n).

```

The dimension of the workspace array iwork (for complex flavors) must be at least max (1, Irwork).
```

lrwork \geq 10n + 2n*smlsiz + 8n*nlvl + 3*smlsiz*nrhs + (smlsiz+1)2 if m \geqn, and
lrwork \geq 10m + 2m*smlsiz + 8m*nlvl + 3*smlsiz*nrhs + (smlsiz+1)}\mp@subsup{}{}{2}\mathrm{ if m < n.

```

\section*{Generalized LLS Problems}

This section describes LAPACK driver routines used for solving generalized linear least squares problems. Table "Driver Routines for Solving Generalized LLS Problems" lists all such routines for the FORTRAN 77 interface. Respective routine names in the Fortran 95 interface are without the first symbol (see Routine Naming Conventions).

\section*{Driver Routines for Solving Generalized LLS Problems}
\begin{tabular}{ll}
\hline Routine Name & Operation performed \\
\hline gglse & \begin{tabular}{l} 
Solves the linear equality-constrained least squares problem using a generalized RQ \\
factorization.
\end{tabular} \\
ggglm & \begin{tabular}{l} 
Solves a general Gauss-Markov linear model problem using a generalized QR \\
factorization.
\end{tabular} \\
\hline
\end{tabular}

\section*{?gglse}

Solves the linear equality-constrained least squares problem using a generalized \(R Q\) factorization.

Syntax

\section*{Fortran 77:}
```

call sgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)
call dgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)
call cgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)
call zgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

```

\section*{Fortran 95:}
```

call gglse(a, b, c, d, x [,info])

```

C:
```

lapack_int LAPACKE_<?>gglse(int matrix_order, lapack_int m, lapack_int n, lapack_int
p, <datatype>* a, lapack_int lda, <datatype>* b, lapack_int ldb, <datatype>* c,
<datatype>* d, <datatype>* x);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves the linear equality-constrained least squares (LSE) problem:
minimize \(\left|\left|C-A^{\star} X\right|\right|^{2}\) subject to \(B^{\star} X=d\)
where \(A\) is an \(m\)-by- \(n\) matrix, \(B\) is a \(p\)-by- \(n\) matrix, \(c\) is a given \(d\) is a given \(p\)-vector. It is assumed that \(p \leq n\) \(\leq m+p\), and
\[
\operatorname{rank}(B)=p \text { and } \operatorname{rank}\binom{A}{B}=n
\]

These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized \(R Q\) factorization of the matrices ( \(B, A\) ) given by
```

B=(0

```

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

m
n
p
a,b,c,d,work
lda
l db
l work

```
```

INTEGER. The number of rows of the matrix A (m\geq0).

```
INTEGER. The number of rows of the matrix A (m\geq0).
INTEGER. The number of columns of the matrices A and B ( }n\geq0)\mathrm{ .
INTEGER. The number of columns of the matrices A and B ( }n\geq0)\mathrm{ .
INTEGER. The number of rows of the matrix }
INTEGER. The number of rows of the matrix }
(0\leqp\leqn\leqm+p).
(0\leqp\leqn\leqm+p).
REAL for sgglse
REAL for sgglse
DOUBLE PRECISION for dgglse
DOUBLE PRECISION for dgglse
COMPLEX for cgglse
COMPLEX for cgglse
DOUBLE COMPLEX for zgglse.
DOUBLE COMPLEX for zgglse.
Arrays:
Arrays:
a(lda,*) contains the m-by-n matrix A.
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1,n).
The second dimension of a must be at least max(1,n).
b(ldb,*) contains the p-by-n matrix B.
b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1,n).
The second dimension of b must be at least max(1,n).
c(*), dimension at least max(1,m), contains the right hand side vector for
c(*), dimension at least max(1,m), contains the right hand side vector for
the least squares part of the LSE problem.
the least squares part of the LSE problem.
d(*), dimension at least max(1, p), contains the right hand side vector for
d(*), dimension at least max(1, p), contains the right hand side vector for
the constrained equation.
the constrained equation.
work is a workspace array, its dimension max (1, lwork).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least max (1,m).
INTEGER. The leading dimension of a; at least max (1,m).
INTEGER. The leading dimension of b; at least max(1, p).
INTEGER. The leading dimension of b; at least max(1, p).
INTEGER. The size of the work array;
INTEGER. The size of the work array;
lwork \geq max(1, m+n+p).
```

lwork \geq max(1, m+n+p).

```

If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to \(l\) work is issued by xerbla.
See Application Notes for the suggested value of lwork.

\section*{Output Parameters}
x
b
\(d\)
c
work(1)
info

REAL for sgglse
On exit, the upper triangle of the subarray \(b(1: p, n-p+1: n)\) contains the \(p\)-by-p upper triangular matrix \(R\).
On exit, \(d\) is destroyed.
On exit, the residual sum-of-squares for the solution is given by the sum of squares of elements \(n-p+1\) to \(m\) of vector \(c\).
If info \(=0\), on exit, work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1\), the upper triangular factor \(R\) associated with \(B\) in the generalized RQ factorization of the pair ( \(B, A\) ) is singular, so that rank ( \(B\) ) < \(P\); the least squares solution could not be computed.
If info \(=2\), the \((n-p)\)-by- \((n-p)\) part of the upper trapezoidal factor \(T\) associated with \(A\) in the generalized RQ factorization of the pair \((B, A)\) is singular, so that
\[
\operatorname{rank}\binom{A}{B}<n
\]
; the least squares solution could not be computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine gglse interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((m, n)\). \\
\(b\) & Holds the matrix \(B\) of size \((p, n)\). \\
\(c\) & Holds the vector of length \((m)\). \\
\(d\) & Holds the vector of length \((p)\). \\
\(x\) & Holds the vector of length \(n\).
\end{tabular}

\section*{Application Notes}

For optimum performance, use
```

lwork}\geqp+\operatorname{min}(m,n)+\operatorname{max}(m,n)*nb

```
where \(n b\) is an upper bound for the optimal blocksizes for ? geqrf, ?gerqf, ?ormqr/?unmqr and ?ormrq/? unmrq.

You may set lwork to -1 . The routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?ggglm \\ Solves a general Gauss-Markov linear model problem using a generalized \(Q R\) factorization.}

\section*{Syntax}

\section*{Fortran 77:}
```

call sggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)
call dggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)
call cggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)
call zggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

```

\section*{Fortran 95:}
```

call ggglm(a, b, d, x, y [,info])

```

C:
lapack_int LAPACKE_<?>ggglm( int matrix_order, lapack_int \(n\), lapack_int m, lapack_int
\(p,<d a t a t y p e>^{*} a, ~ l a p a c k \_i n t \operatorname{lda},<d a t a t y p e>* b, \quad l a p a c k \_i n t \operatorname{ldb},<d a t a t y p e>* d\),
<datatype>* \(x,<d a t a t y p e>* ~ y ~) ;\)

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine solves a general Gauss-Markov linear model (GLM) problem:
```

minimizex | |y|| | subject to d = A*x + B* y

```
where \(A\) is an \(n\)-by- \(m\) matrix, \(B\) is an \(n\)-by- \(p\) matrix, and \(d\) is a given \(n\)-vector. It is assumed that \(m \leq n \leq m\) \(+p\), and \(\operatorname{rank}(A)=m\) and \(\operatorname{rank}(A B)=n\).

Under these assumptions, the constrained equation is always consistent, and there is a unique solution \(x\) and a minimal 2-norm solution \(y\), which is obtained using a generalized \(Q R\) factorization of the matrices ( \(A, B\) ) given by
\[
A=Q\binom{R}{0} ; \quad B=Q * T * Z
\]

In particular, if matrix \(B\) is square nonsingular, then the problem GLM is equivalent to the following weighted linear least squares problem
minimize \({ }_{x}| | B^{-1}\left(d-A^{\star} X\right)| |_{2}\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.

\section*{Output Parameters}
```

x,y

```
a
\(b\)
\(d\)
```

work(1)

```
info
```

n INTEGER. The number of rows of the matrices A and B (}n\geq0)\mathrm{ .
m
p
a,b, d, work
lda
ldb
lwork
INTEGER. The number of rows of the matrices A and $B(n \geq 0)$.
INTEGER. The number of columns in $A(m \geq 0)$.
INTEGER. The number of columns in $B(p \geq n-m)$.
REAL for sggglm
DOUBLE PRECISION for dggglm
COMPLEX for cggglm
DOUBLE COMPLEX for zggglm.
Arrays:
a(lda,*) contains the n-by-m matrix A.
The second dimension of a must be at least max $(1, m)$.
$b(l d b, *)$ contains the n-by- p matrix B.
The second dimension of b must be at least max $(1, p)$.
$d(*)$, dimension at least $\max (1, n)$, contains the left hand side of the GLM equation.
work is a workspace array, its dimension max ($1, ~ 1$ work).
INTEGER. The leading dimension of a; at least max $(1, n)$.
INTEGER. The leading dimension of b; at least max $(1, n)$.
INTEGER. The size of the work array; 1 work $\geq \max (1, n+m+p)$.
If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

```

See Application Notes for the suggested value of lwork.

REAL for sggglm
DOUBLE PRECISION for dggglm
COMPLEX for cggglm
DOUBLE COMPLEX for zggglm.
Arrays \(x(*), y(*)\). DIMENSION at least max \((1, m)\) for \(x\) and at least max(1, p) for \(y\).

On exit, \(x\) and \(y\) are the solutions of the GLM problem.
On exit, the upper triangular part of the array a contains the m-by-m upper triangular matrix \(R\).
On exit, if \(n \leq p\), the upper triangle of the subarray \(b(1: n, p-n+1: p)\) contains the \(n\)-by- \(n\) upper triangular matrix \(T\); if \(n>p\), the elements on and above the \((n-p)\)-th subdiagonal contain the \(n\)-by- \(p\) upper trapezoidal matrix \(T\).
On exit, \(d\) is destroyed
If info \(=0\), on exit, work (1) contains the minimum value of 1 work required for optimum performance.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

If info \(=1\), the upper triangular factor \(R\) associated with \(A\) in the generalized QR factorization of the pair \((A, B)\) is singular, so that rank ( \(A\) ) \(<m\); the least squares solution could not be computed. If info \(=2\), the bottom \((n-m)\)-by- ( \(n-m\) ) part of the upper trapezoidal factor \(T\) associated with \(B\) in the generalized \(Q R\) factorization of the pair ( \(A\), \(B\) ) is singular, so that rank \(\left(\begin{array}{ll}A & B\end{array}\right)<n\); the least squares solution could not be computed.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine \(g g g 1 m\) interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((n, m)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, p)\). \\
\(d\) & Holds the vector of length \(n\). \\
\(x\) & Holds the vector of length \((m)\). \\
\(y\) & Holds the vector of length \((p)\).
\end{tabular}

\section*{Application Notes}

For optimum performance, use
lwork \(\geq m+\min (n, p)+\max (n, p) * n b\),
where \(n b\) is an upper bound for the optimal blocksizes for ? geqrf, ?gerqf, ?ormqr/?unmqr and ?ormrq/? unmrq.

You may set lwork to -1 . The routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{Symmetric Eigenproblems}

This section describes LAPACK driver routines used for solving symmetric eigenvalue problems. See also computational routines that can be called to solve these problems. Table "Driver Routines for Solving Symmetric Eigenproblems" lists all such driver routines for the FORTRAN 77 interface. Respective routine names in the Fortran 95 interface are without the first symbol (see Routine Naming Conventions).

\section*{Driver Routines for Solving Symmetric Eigenproblems}
\begin{tabular}{ll}
\hline Routine Name & Operation performed \\
\hline syev/heev & \begin{tabular}{l} 
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / \\
Hermitian matrix.
\end{tabular} \\
syevd/heevd & \begin{tabular}{l} 
Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric / \\
Hermitian matrix using divide and conquer algorithm.
\end{tabular} \\
syevx/heevx & \begin{tabular}{l} 
Computes selected eigenvalues and, optionally, eigenvectors of a symmetric / \\
Hermitian matrix.
\end{tabular} \\
syevr/heevr & \begin{tabular}{l} 
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric / \\
Hermitian matrix using the Relatively Robust Representations.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
\hline \hline Routine Name & Operation performed \\
\hline spev/hpev & \begin{tabular}{l} 
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / \\
Hermitian matrix in packed storage.
\end{tabular} \\
spevd/hpevd & \begin{tabular}{l} 
Uses divide and conquer algorithm to compute all eigenvalues and (optionally) all \\
eigenvectors of a real symmetric / Hermitian matrix held in packed storage. \\
spevx/hpevx
\end{tabular} \\
\begin{tabular}{l} 
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric / \\
Hermitian matrix in packed storage.
\end{tabular} \\
sbev /hbev & \begin{tabular}{l} 
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / \\
Hermitian band matrix.
\end{tabular} \\
sbevd/hbevd & \begin{tabular}{l} 
Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric / \\
Hermitian band matrix using divide and conquer algorithm. \\
Stev
\end{tabular} \\
Hermitian band matrix. \\
stevd & \begin{tabular}{l} 
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric \\
tridiagonal matrix. \\
Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric
\end{tabular} \\
stevx & \begin{tabular}{l} 
tridiagonal matrix using divide and conquer algorithm. \\
Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal \\
matrix.
\end{tabular} \\
\hline
\end{tabular}
?syev
Computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssyev(jobz, uplo, n, a, lda, w, work, lwork, info)
call dsyev(jobz, uplo, n, a, lda, w, work, lwork, info)

```

\section*{Fortran 95:}
```

call syev(a, w [,jobz] [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_<?>syev(int matrix_order, char jobz, char uplo, lapack_int n,

```
<datatype>* a, lapack_int lda, <datatype>* w );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\).
Note that for most cases of real symmetric eigenvalue problems the default choice should be syevr function as its underlying algorithm is faster and uses less workspace.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.
INTEGER. The order of the matrix A (n\geq0).
REAL for ssyev
DOUBLE PRECISION for dsyev
Arrays:
a(lda,*) is an array containing either upper or lower triangular part of the
symmetric matrix }A\mathrm{ , as specified by uplo.
The second dimension of a must be at least max(1,n).
work is a workspace array, its dimension max(1, lwork).
INTEGER. The leading dimension of the array a.
Must be at least max(1,n).
INTEGER.
The dimension of the array work.
Constraint: lwork \geq max(1, 3n-1).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.
See Application Notes for the suggested value of lwork.

```

\section*{Output Parameters}
a
w
work(1)
info
On exit, if jobz = 'V', then if info \(=0\), array a contains the orthonormal eigenvectors of the matrix \(A\).
If jobz = 'N', then on exit the lower triangle
(if uplo = 'L') or the upper triangle (if uplo = 'U') of \(A\), including the diagonal, is overwritten.
REAL for ssyev
DOUBLE PRECISION for dsyev
Array, DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order.
On exit, if 1 work \(>0\), then work (1) returns the required minimal size of lwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine syev interface are the following:
```

a Holds the matrix A of size (}n,n)\mathrm{ .
w Holds the vector of length n.
job Must be 'N' or 'V'. The default value is 'N'.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

For optimum performance set 1 work \(\geq(n b+2) * n\), where \(n b\) is the blocksize for ?sytrd returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible 1 work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork \(=-1\).

If lwork has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array work. This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?heev}

Computes all eigenvalues and, optionally, eigenvectors of a Hermitian matrix.

Syntax
Fortran 77:
```

call cheev(jobz, uplo, n, a, lda, w, work, lwork, rwork, info)
call zheev(jobz, uplo, n, a, lda, w, work, lwork, rwork, info)

```

\section*{Fortran 95:}
```

call heev(a, w [,jobz] [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_cheev(int matrix_order, char jobz, char uplo, lapack_int n,
lapack_complex_float* a, lapack_int lda, float* w);
lapack_int LAPACKE_zheev(int matrix_order, char jobz, char uplo, lapack_int n,
lapack_complex_double* a, lapack_int lda, double* w);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\).
Note that for most cases of complex Hermitian eigenvalue problems the default choice should be heevr function as its underlying algorithm is faster and uses less workspace.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobz = 'N', then only eigenvalues are computed. \\
\hline & If jobz = 'V', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{6}{*}{a, work} & COMPLEX for cheev \\
\hline & DOUBLE COMPLEX for zheev \\
\hline & Arrays: \\
\hline & a(lda,*) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\), as specified by uplo. \\
\hline & The second dimension of a must be at least \(\max (1, n)\) \\
\hline & work is a workspace array, its dimension max ( 1,1 work) . \\
\hline Ida & INTEGER. The leading dimension of the array \(a\). Must be at least max \((1, n)\). \\
\hline \multirow[t]{4}{*}{Iwork} & INTEGER. \\
\hline & The dimension of the array work. C onstraint: 1 work \(\geq \max (1,2 n-1)\). \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. \\
\hline & See Application Notes for the suggested value of lwork. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cheev \\
\hline & DOUBLE PRECISION for zheev. \\
\hline & Workspace array, DIMENSION at least max(1, 3n-2). \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & \begin{tabular}{l}
On exit, if jobz \(=\) ' \(V\) ', then if info \(=0\), array a contains the orthonormal eigenvectors of the matrix \(A\). \\
If jobz = 'N', then on exit the lower triangle \\
(if uplo = 'L') or the upper triangle (if uplo = 'U') of \(A\), including the diagonal, is overwritten.
\end{tabular} \\
\hline w & \begin{tabular}{l}
REAL for cheev \\
DOUBLE PRECISION for zheev \\
Array, DIMENSION at least max \((1, n)\). \\
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order.
\end{tabular} \\
\hline work(1) & On exit, if 1 work \(>0\), then work (1) returns the required minimal size of lwork. \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine heev interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((n, n)\). \\
w & Holds the vector of length \(n\). \\
job & Must be 'N' or 'V'. The default value is ' \(N\) '. \\
uplo & Must be 'U' or 'L'. The default value is ' U '.
\end{tabular}

\section*{Application Notes}

For optimum performance use
lwork \(\geq(n b+1) * n\),
where \(n b\) is the blocksize for ?hetrd returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
```

?syevd
Computes all eigenvalues and (optionally) all
eigenvectors of a real symmetric matrix using divide
and conquer algorithm.
Syntax

```

\section*{Fortran 77:}
```

call ssyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)

```
call ssyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
call dsyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
```

call dsyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)

```

\section*{Fortran 95:}
```

call syevd(a, w [,jobz] [,uplo] [,info])

```

C:
```

lapack_int LAPACKE_<?>syevd(int matrix_order, char jobz, char uplo, lapack_int n,
<datatype>* a, lapack_int lda, <datatype>* w);

```

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric matrix \(A\). In other words, it can compute the spectral factorization of \(A\) as: \(A=Z^{\star} \Lambda^{\star} Z^{T}\).

Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(z\) is the orthogonal matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\(A^{\star} z_{i}=\lambda_{i}{ }^{*} z_{i}\) for \(i=1,2, \ldots, n\).
If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

Note that for most cases of real symmetric eigenvalue problems the default choice should be syevr function as its underlying algorithm is faster and uses less workspace. ?syevd requires more workspace but is faster in some cases, especially for large matrices.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of }A\mathrm{ .
INTEGER. The order of the matrix A (}n\geq0)\mathrm{ .
REAL for ssyevd

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{} & DOUBLE PRECISION for dsyevd \\
\hline & Array, DIMENSION (lda, *). \\
\hline & \(a(l d a, *)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\), as specified by uplo. \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline Ida & INTEGER. The leading dimension of the array \(a\). \\
\hline & Must be at least max \((1, n)\). \\
\hline \multirow[t]{3}{*}{work} & REAL for ssyevd \\
\hline & DOUBLE PRECISION for dsyevd. \\
\hline & Workspace array, DIMENSION at least lwork. \\
\hline \multirow[t]{7}{*}{Iwork} & INTEGER. \\
\hline & The dimension of the array work. \\
\hline & Constraints: \\
\hline & if \(n \leq 1\), then 1 work \(\geq 1\); \\
\hline & if jobz \(=\) 'N' and \(n>1\), then lwork \(\geq 2 *_{n}+1\); \\
\hline & if jobz \(=\) 'V' and \(n>1\), then lwork \(\geq 2 * n^{2}+6 * n+1\). \\
\hline & If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details. \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, its dimension max (1, liwork). \\
\hline \multirow[t]{7}{*}{liwork} & INTEGER. \\
\hline & The dimension of the array iwork. \\
\hline & Constraints: \\
\hline & if \(n \leq 1\), then liwork \(\geq 1\); \\
\hline & if jobz \(=\) ' N' and \(n>1\), then liwork \(\geq 1\); \\
\hline & if jobz \(=\) 'V' and \(n>1\), then liwork \(\geq 5 *^{*} n+3\). \\
\hline & If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details. \\
\hline
\end{tabular}

\section*{Output Parameters}

\author{
w \\ a \\ work(1) \\ iwork(1) \\ info
}

REAL for ssyevd
DOUBLE PRECISION for dsyevd
Array, DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order.
See also info.
If jobz = 'V', then on exit this array is overwritten by the orthogonal matrix \(Z\) which contains the eigenvectors of \(A\).
On exit, if 1 work \(>0\), then work (1) returns the required minimal size of lwork.

On exit, if liwork \(>0\), then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful.

If info = \(i\), and \(j o b z=\) ' \(N\) ', then the algorithm failed to converge; \(i\) indicates the number of off-diagonal elements of an intermediate tridiagonal form which did not converge to zero.
If info \(=i\), and \(j o b z=' V\) ', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns infol \((n+1)\) through mod (info, \(n+1)\). If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine syevd interface are the following:
```

a Holds the matrix A of size (}n,n)\mathrm{ .
w Holds the vector of length n.
jobz Must be 'N' or 'V'. The default value is 'N'.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(||E||_{2}=O(\varepsilon) *| | T| |_{2}\), where \(\varepsilon\) is the machine precision.

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run, or set lwork \(=-1\) (liwork \(=-1\) ).

If lwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If 1 work \(=-1\) (liwork \(=-1\) ), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if lwork (liwork) is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The complex analogue of this routine is heevd

\section*{?heevd \\ Computes all eigenvalues and (optionally) all eigenvectors of a complex Hermitian matrix using divide and conquer algorithm.}

\section*{Syntax}

\section*{Fortran 77:}
```

call cheevd(jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork, info)
call zheevd(jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork, info)

```

Fortran 95:
```

call heevd(a, w [,job] [,uplo] [,info])

```
```

C:
lapack_int LAPACKE_cheevd(int matrix_order, char jobz, char uplo, lapack_int n,
lapack_complex_float* a, lapack_int lda, float* w);
lapack_int LAPACKE_zheevd(int matrix_order, char jobz, char uplo, lapack_int n,
lapack_complex_double* a, lapack_int lda, double* w);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix \(A\). In other words, it can compute the spectral factorization of \(A\) as: \(A=Z^{\star} \Lambda^{\star} Z^{H}\).

Here \(\Lambda\) is a real diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(z\) is the (complex) unitary matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\(A^{\star} z_{i}=\lambda_{i}{ }^{\star} z_{i}\) for \(i=1,2, \ldots, n\).
If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

Note that for most cases of complex Hermetian eigenvalue problems the default choice should be heevr function as its underlying algorithm is faster and uses less workspace. ?heevd requires more workspace but is faster in some cases, especially for large matrices.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

jobz
uplo CHARACTER*1. Must be 'U' or 'L'.
n
a
lda
work
lwork
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.
INTEGER. The order of the matrix A (}n\geq0)\mathrm{ .
COMPLEX for cheevd
DOUBLE COMPLEX for zheevd
Array, DIMENSION (lda, *).
a(lda,*) is an array containing either upper or lower triangular part of the
Hermitian matrix }A\mathrm{ , as specified by uplo.
The second dimension of a must be at least max(1,n).
INTEGER. The leading dimension of the array a. Must be at least max(1, n).
COMPLEX for cheevd
DOUBLE COMPLEX for zheevd.
Workspace array, DIMENSION max(1, lwork).
INTEGER.
The dimension of the array work. Constraints:

```
if \(n \leq 1\), then lwork \(\geq 1\);
if jobz \(=\) ' \(N\) ' and \(n>1\), then lwork \(\geq n+1\);
if jobz \(=\) ' \(V\) ' and \(n>1\), then lwork \(\geq n^{2}+2 * n\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.
rwork
lrwork
iwork
liwork

REAL for cheevd
DOUBLE PRECISION for zheevd
Workspace array, DIMENSION at least lrwork.
INTEGER.
The dimension of the array rwork. Constraints:
if \(n \leq 1\), then lrwork \(\geq 1\);
if job \(=\) ' \(N\) ' and \(n>1\), then lrwork \(\geq n\);
if job \(=\) 'V' and \(n>1\), then lrwork \(\geq 2 \star n^{2}+5 \star_{n}+1\).
If lrwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.
INTEGER. Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array iwork. Constraints: if \(n \leq 1\), then liwork \(\geq 1\); if jobz \(=\) 'N' and \(n>1\), then liwork \(\geq 1\);
if jobz \(=\) 'V' and \(n>1\), then liwork \(\geq 5{ }^{*} n+3\).
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}

REAL for cheevd
DOUBLE PRECISION for zheevd
Array, DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order.
See also info.
If jobz \(=\) ' \(V\) ', then on exit this array is overwritten by the unitary matrix \(z\) which contains the eigenvectors of \(A\).
On exit, if 1 work \(>0\), then the real part of work (1) returns the required minimal size of lwork.

On exit, if lrwork \(>0\), then rwork \((1)\) returns the required minimal size of lrwork.
On exit, if liwork > 0, then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful.

If info \(=i\), and jobz \(={ }^{\prime} N^{\prime}\) ', then the algorithm failed to converge; \(i\) offdiagonal elements of an intermediate tridiagonal form did not converge to zero;
if info \(=i\), and \(j o b z=\) ' \(V\) ', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns infol \((n+1)\) through mod (info, \(n+1)\). If \(i n f o=-i\), the \(i\)-th parameter had an illegal value.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine heevd interface are the following:
```

a Holds the matrix A of size (}n,n)\mathrm{ .
w Holds the vector of length (n).
jobz Must be 'N' or 'V'. The default value is 'N'.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(A+E\) such that \(||E||_{2}=O(\varepsilon) *| | A| |_{2}\), where \(\varepsilon\) is the machine precision.
If you are in doubt how much workspace to supply, use a generous value of lwork (liwork or lrwork) for the first run or set lwork \(=-1\) (liwork \(=-1\), lrwork \(=-1\) ).
If you choose the first option and set any of admissible lwork (liwork or lrwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork) on exit. Use this value (work (1), iwork(1), rwork (1)) for subsequent runs.
If you set lwork \(=-1\) (liwork \(=-1\), lrwork \(=-1\) ), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.
Note that if you set lwork (liwork, lrwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The real analogue of this routine is syevd. See also hpevd for matrices held in packed storage, and hbevd for banded matrices.

\section*{?syevx}

Computes selected eigenvalues and, optionally, eigenvectors of a symmetric matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work,
lwork, iwork, ifail, info)
call dsyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work,
lwork, iwork, ifail, info)

```

\section*{Fortran 95:}
```

call syevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol] [,info])

```
C:
lapack_int LAPACKE_<?>syevx( int matrix_order, char jobz, char range, char uplo,

il, lapack_int iu, <datatype> abstol, lapack_int* \(m\), <datatype>* \(w,<d a t a t y p e>* ~ z\),
lapack_int ldz, lapack_int* ifail );

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Note that for most cases of real symmetric eigenvalue problems the default choice should be syevr function as its underlying algorithm is faster and uses less workspace. ?syevx is faster for a few selected eigenvalues.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'V'. \\
If jobz = ' N ', then only eigenvalues are computed. \\
If \(j o b z=' \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed.
\end{tabular} \\
\hline range & \begin{tabular}{l}
CHARACTER*1. Must be 'A', 'V', or 'I'. \\
If range \(=\) ' A ', all eigenvalues will be found. \\
If range \(=\) ' V ', all eigenvalues in the half-open interval ( \(\mathrm{vl}, \mathrm{vu}\) ] will be found. \\
If range \(=\) ' \(I\) ', the eigenvalues with indices il through iu will be found.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo = 'U', a stores the upper triangular part of \(A\). \\
If uplo = 'L', a stores the lower triangular part of \(A\).
\end{tabular} \\
\hline \(n\) & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline a, work & \begin{tabular}{l}
REAL for ssyevx \\
DOUBLE PRECISION for dsyevx. \\
Arrays: \\
a(lda,*) is an array containing either upper or lower triangular part of the symmetric matrix \(A\), as specified by uplo. \\
The second dimension of a must be at least max \((1, n)\). \\
work is a workspace array, its dimension max ( \(1, \quad 1\) work).
\end{tabular} \\
\hline lda & Integer. The leading dimension of the array \(a\). Must be at least max \((1, n)\). \\
\hline vl, vu & \begin{tabular}{l}
REAL for ssyevx \\
DOUBLE PRECISION for dsyevx.
\end{tabular} \\
\hline
\end{tabular}

If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues; \(v I \leq v u\). Not referenced if range = 'A'or 'I'.

\section*{Output Parameters}

INTEGER.
If range = 'I', the indices of the smallest and largest eigenvalues to be returned.
Constraints: \(1 \leq i l \leq i u \leq n\), if \(n>0\);
\(i l=1\) and \(i u=0\), if \(n=0\).
Not referenced if range \(=\) 'A'or 'V'.
REAL for ssyevx
DOUBLE PRECISION for dsyevx.
The absolute error tolerance for the eigenvalues. See Application Notes for more information.
INTEGER. The leading dimension of the output array \(z ; I d z \geq 1\). If \(j o b z=\) ' \(V\) ', then \(l d z \geq \max (1, n)\).
INTEGER.
The dimension of the array work.
If \(n \leq 1\) then 1 work \(\geq 1\), otherwise 1 work \(=8{ }^{*} n\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.
INTEGER. Workspace array, DIMENSION at least max \((1,5 n)\).

On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = ' \(U\) ') of \(A\), including the diagonal, is overwritten.
INTEGER. The total number of eigenvalues found;
\(0 \leq m \leq n\).
If range \(=\) 'A', \(m=n\), and if range \(=\) 'I', \(m=i u-i l+1\).
REAL for ssyevx
DOUBLE PRECISION for dsyevx
Array, DIMENSION at least max \((1, n)\). The first \(m\) elements contain the selected eigenvalues of the matrix \(A\) in ascending order.
REAL for ssyevx
DOUBLE PRECISION for dsyevx.
Array \(z(I d z, *)\) contains eigenvectors.
The second dimension of \(z\) must be at least max \((1, m)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w(i).
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz = 'N', then \(z\) is not referenced.
Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.
\begin{tabular}{|c|c|}
\hline work(1) & On exit, if lwork > 0, then work (1) returns the required minimal size of lwork. \\
\hline ifail & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION at least max \((1, n)\). \\
If jobz = 'V', then if info \(=0\), the first \(m\) elements of ifail are zero; if info \(>0\), then ifail contains the indices of the eigenvectors that failed to converge. \\
If jobz = 'V', then ifail is not referenced.
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
If info \(=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine syevx interface are the following:
```

a Holds the matrix A of size (}n,n)\mathrm{ .
w Holds the vector of length n.
a Holds the matrix A of size (m,n).
ifail Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.
vl Default value for this element is vl = -HUGE(vl).
vu Default value for this element is vu = HUGE(vl).
il Default value for this argument is il = 1.
iu Default value for this argument is iu = n.
abstol Default value for this element is abstol = 0.0_WP.

```
jobz
range
Restored based on the presence of the argument \(z\) as follows: jobz \(=\) ' \(V\) ', if \(z\) is present, jobz \(={ }^{\prime} \mathrm{N}^{\prime}\), if \(z\) is omitted Note that there will be an error condition if ifail is present and \(z\) is omitted.

Restored based on the presence of arguments \(v i, v u\), \(i l\), \(i u\) as follows: range \(=\) ' V ', if one of or both \(v l\) and \(v u\) are present, range \(=\) 'I', if one of or both il and \(i u\) are present, range \(=\) ' \(A\) ', if none of \(v l, v u, i l, i u\) is present, Note that there will be an error condition if one of or both \(v l\) and \(v u\) are present and at the same time one of or both il and iu are present.

\section*{Application Notes}

For optimum performance use 1 work \(\geq(n b+3) * n\), where \(n b\) is the maximum of the blocksize for ?sytrd and ?ormtr returned by ilaenv.

If it is not clear how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If lwork has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array work. This operation is called a workspace query.

Note that if 1 work is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.
If abstol is less than or equal to zero, then \(\varepsilon^{\star}|T|\) is used as tolerance, where| \(T \mid\) is the 1 -norm of the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold \(2^{*}\) slamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*slamch('S').

\section*{?heevx}

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call cheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work,
lwork, rwork, iwork, ifail, info)
call zheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work,
lwork, rwork, iwork, ifail, info)

```

\section*{Fortran 95:}
```

call heevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol] [,info])

```
C:
```

lapack_int LAPACKE_cheevx(int matrix_order, char jobz, char range, char uplo,
lapack_int n, lapack_complex_float* a, lapack_int lda, float vl, float vu, lapack_int
il, lapack_int iu, float abstol, lapack_int* m, float* w, lapack_complex_float* z,
lapack_int ldz, lapack_int* ifail);
lapack_int LAPACKE_zheevx(int matrix_order, char jobz, char range, char uplo,
lapack_int n, lapack_complex_double* a, lapack_int lda, double vl, double vu,
lapack_int il, lapack_int iu, double abstol, lapack_int* m, double* w,
lapack_complex_double* z, lapack_int ldz, lapack_int* ifail);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Note that for most cases of complex Hermetian eigenvalue problems the default choice should be heevr function as its underlying algorithm is faster and uses less workspace. ?heevx is faster for a few selected eigenvalues.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobz = ' N ', then only eigenvalues are computed. \\
\hline & If jobz \(=\) ' V', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{5}{*}{range} & CHARACTER*1. Must be 'A', 'V', or 'I'. \\
\hline & If range \(=\) 'A', all eigenvalues will be found. \\
\hline & If range \(=\) 'V', all eigenvalues in the half-open interval (vl, vu] will be \\
\hline & found. \\
\hline & If range \(=\) 'I', the eigenvalues with indices il through iu will be found. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo \(=\) 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo \(=\) 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{7}{*}{a, work} & COMPLEX for cheevx \\
\hline & DOUBLE COMPLEX for zheevx. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) is an array containing either upper or lower triangular part of the \\
\hline & Hermitian matrix \(A\), as specified by uplo. \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & work is a workspace array, its dimension max ( 1,1 work). \\
\hline Ida & INTEGER. The leading dimension of the array \(a\). Must be at least max \((1, n)\). \\
\hline \multirow[t]{4}{*}{vl, vu} & REAL for cheevx \\
\hline & DOUBLE PRECISION for zheevx. \\
\hline & If range \(=\) ' V ', the lower and upper bounds of the interval to be searched \\
\hline & for eigenvalues; vl \(\leq v u\). Not referenced if range = 'A'or 'I'. \\
\hline \multirow[t]{4}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) 'I', the indices of the smallest and largest eigenvalues to be \\
\hline & \(1 \leq i l \leq i u<n\), if \(n>0\);il \(=1\) and \(i u=0\), if \(n=0\). Not referenced if \\
\hline & range \(=\) 'A'or 'V'. \\
\hline \multirow[t]{2}{*}{abstol} & REAL for cheevx \\
\hline & DOUBLE PRECISION for zheevx. The absolute error tolerance for the eigenvalues. See Application Notes for more information. \\
\hline \multirow[t]{2}{*}{\(1 d z\)} & INTEGER. The leading dimension of the output array \(z ; 1 d z \geq 1\). \\
\hline & If jobz \(=\) 'V', then \(1 d z \geq \max (1, n)\). \\
\hline \multirow[t]{7}{*}{1 work} & INTEGER. \\
\hline & The dimension of the array work. \\
\hline & 1 work \(\geq 1\) if \(n \leq 1\); otherwise at least \(2 * n\). \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; the routine only \\
\hline & calculates the optimal size of the work array, returns this value as the first \\
\hline & entry of the work array, and no error message related to lwork is issued by xerbla. \\
\hline & See Application Notes for the suggested value of lwork. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cheevx \\
\hline & DOUBLE PRECISION for zheevx. \\
\hline & Workspace array, DIMENSION at least max (1, \(7 n\) ). \\
\hline
\end{tabular}
iwork

\section*{Output Parameters}
\(a\)
m

W
z
work(1)
ifail
info

INTEGER. Workspace array, DIMENSION at least max \((1,5 n)\).

On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = ' \(U\) ') of \(A\), including the diagonal, is overwritten.
INTEGER. The total number of eigenvalues found; \(0 \leq m \leq n\).
If range \(=\) 'A', \(m=n\), and if range \(=\) 'I', \(m=i u-i l+1\).
REAL for cheevx
DOUBLE PRECISION for zheevx
Array, DIMENSION at least \(\max (1, n)\). The first \(m\) elements contain the selected eigenvalues of the matrix \(A\) in ascending order.
COMPLEX for cheevx
DOUBLE COMPLEX for zheevx.
Array \(z(l d z, *)\) contains eigenvectors.
The second dimension of \(z\) must be at least max \((1, m)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the i-th column of \(z\) holding the eigenvector associated with w(i).
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz = 'N', then \(z\) is not referenced. Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=' V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.
On exit, if 1 work \(>0\), then work (1) returns the required minimal size of lwork.
INTEGER.
Array, DIMENSION at least max \((1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0, then ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'V', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine heevx interface are the following:
```

a Holds the matrix A of size (}n,n)\mathrm{ .
w Holds the vector of length n.
z Holds the matrix z of size (}n,n)\mathrm{ .
ifail Holds the vector of length n.

```
\begin{tabular}{|c|c|}
\hline uplo & Must be 'U' or 'L'. The default value is 'U'. \\
\hline vl & Default value for this element is \(\mathrm{vl}=-\operatorname{HUGE}(\mathrm{vl})\). \\
\hline vu & Default value for this element is \(v u=\operatorname{HUGE}(\mathrm{vl})\). \\
\hline il & Default value for this argument is il \(=1\). \\
\hline iu & Default value for this argument is iu \(=n\). \\
\hline abstol & Default value for this element is abstol \(=0.0 \_W P\). \\
\hline jobz & Restored based on the presence of the argument \(z\) as follows: jobz \(=\) ' \(V\) ', if \(z\) is present, \(j o b z=' N\) ', if \(z\) is omitted Note that there will be an error condition if ifail is present and \(z\) is omitted. \\
\hline range & Restored based on the presence of arguments \(v 1, v u\), \(i l\), iu as follows: range \(=\) 'V', if one of or both \(v l\) and \(v u\) are present, range \(=\) 'I', if one of or both il and iu are present, range = 'A', if none of vl, vu, il, iu is present, Note that there will be an error condition if one of or both \(v l\) and \(v u\) are present and at the same time one of or both il and \(i u\) are present. \\
\hline
\end{tabular}

\section*{Application Notes}

For optimum performance use 1 work \(\geq(n b+1) * n\), where \(n b\) is the maximum of the blocksize for ?hetrd and ?unmtr returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If abstol is less than or equal to zero, then \(\varepsilon^{\star}|T|\) will be used in its place, where \(|T|\) is the 1 -norm of the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) slamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*slamch('S').

\section*{?syevr \\ Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix using the Relatively Robust Representations.}

\section*{Syntax}

\section*{Fortran 77:}
```

call ssyevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz,
isuppz, work, lwork, iwork, liwork, info)
call dsyevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz,
isuppz, work, lwork, iwork, liwork, info)

```

\section*{Fortran 95:}
```

call syevr(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol] [,info])

```

\section*{C:}
lapack_int LAPACKE_<?>syevr( int matrix_order, char jobz, char range, char uplo,
 il, lapack_int iu, <datatype> abstol, lapack_int* m, <datatype>* \(w,<d a t a t y p e>* ~ z, ~\) lapack_int ldz, lapack_int* isuppz );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

The routine first reduces the matrix \(A\) to tridiagonal form \(T\) with a call to sytrd. Then, whenever possible, ? syevr calls stemr to compute the eigenspectrum using Relatively Robust Representations. stemr computes eigenvalues by the dqds algorithm, while orthogonal eigenvectors are computed from various "good" \(L * D * L^{T}\) representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the each unreduced block of \(T\) :
a. Compute \(T-\sigma^{\star} I=L^{\star} D^{\star} L^{T}\), so that \(L\) and \(D\) define all the wanted eigenvalues to high relative accuracy. This means that small relative changes in the entries of \(D\) and \(L\) cause only small relative changes in the eigenvalues and eigenvectors. The standard (unfactored) representation of the tridiagonal matrix \(T\) does not have this property in general.
b. Compute the eigenvalues to suitable accuracy. If the eigenvectors are desired, the algorithm attains full accuracy of the computed eigenvalues only right before the corresponding vectors have to be computed, see Steps c) and d).
c. For each cluster of close eigenvalues, select a new shift close to the cluster, find a new factorization, and refine the shifted eigenvalues to suitable accuracy.
d. For each eigenvalue with a large enough relative separation, compute the corresponding eigenvector by forming a rank revealing twisted factorization. Go back to Step c) for any clusters that remain.

The desired accuracy of the output can be specified by the input parameter abstol.
The routine ?syevr calls stemr when the full spectrum is requested on machines that conform to the IEEE-754 floating point standard. ?syevr calls stebz and stein on non-IEEE machines and when partial spectrum requests are made.
Note that ?syevr is preferable for most cases of real symmetric eigenvalue problems as its underlying algorithm is fast and uses less workspace.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
jobz
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If \(j o b z=' \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed.
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{range} & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline & If range = 'A', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' \(V\) ', the routine computes eigenvalues \(\operatorname{lambda}(i)\) in the halfopen interval: \\
\hline & \(v l\) < lambda (i) \(\leq\) vu. \\
\hline & If range = 'I', the routine computes eigenvalues with indices il to iu. \\
\hline & For range \(=\) 'V'or 'I' and iu-il < n-1, sstebz/dstebz and sstein/ dstein are called. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{a, work} & REAL for ssyevr \\
\hline & DOUBLE PRECISION for dsyevr. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\), as specified by uplo. \\
\hline & The second dimension of a must be at least max \((1, n)\). work is a workspace array, its dimension max ( 1,1 work) . \\
\hline Ida & INTEGER. The leading dimension of the array \(a\). Must be at least max \((1, n)\). \\
\hline \multirow[t]{5}{*}{vl, vu} & REAL for ssyevr \\
\hline & DOUBLE PRECISION for dsyevr. \\
\hline & If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range = 'A' or 'I', vl and vu are not referenced. \\
\hline \multirow[t]{6}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \\
\hline & \[
1 \leq i l \leq i u \leq n \text {, if } n>0 \text {; }
\] \\
\hline & il=1 and \(i u=0\), if \(n=0\). \\
\hline & If range \(=\) 'A' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{5}{*}{abstol} & REAL for ssyevr \\
\hline & DOUBLE PRECISION for dsyevr. The absolute error tolerance to which each eigenvalue/eigenvector is required. \\
\hline & If jobz = 'V', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by abstol. \\
\hline & If abstol < \(n * e p s *|T|\), then \(n * e p s *|T|\) is used instead, where eps is the machine precision, and \(|T|\) is the 1-norm of the matrix \(T\). The eigenvalues are computed to an accuracy of eps*|T| irrespective of abstol. \\
\hline & If high relative accuracy is important, set abstol to ? lamch('S'). \\
\hline \multirow[t]{4}{*}{\(1 d z\)} & INTEGER. The leading dimension of the output array \(z\). \\
\hline & Constraints: \\
\hline & \(l d z \geq 1\) and \\
\hline & \(l d z \geq \max (1, n)\) if jobz = 'V'. \\
\hline \multirow[t]{2}{*}{Iwork} & INTEGER. \\
\hline & The dimension of the array work. \\
\hline
\end{tabular}

Constraint: 1 work \(\geq \max (1,26 n)\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.
iwork
liwork
INTEGER. Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array iwork, 1 work \(\geq \max (1,10 n)\).
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued by xerbla.

\section*{Output Parameters}
\(a\)
m

W, Z
isuppz
work(1)
iwork(1)
info

On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = 'U') of \(A\), including the diagonal, is overwritten.
INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) 'A', \(m=n\), and if range \(=\) 'I', \(m=i u-i l+1\).
REAL for ssyevr
DOUBLE PRECISION for dsyevr.

\section*{Arrays:}
\(w(*)\), DIMENSION at least max \((1, n)\), contains the selected eigenvalues in ascending order, stored in w(1) to w(m);
\(z(l d z, *)\), the second dimension of \(z\) must be at least max \((1, m)\).
If jobz \(=\) 'V', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\).
If jobz = 'N', then \(z\) is not referenced. Note that you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=' \mathrm{~V}\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

INTEGER.
Array, DIMENSION at least 2 *max \((1, m)\).
The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The \(i\)-th eigenvector is nonzero only in elements
isuppz ( \(2 i-1\) ) through isuppz ( \(2 i\) ). Referenced only if eigenvectors are needed \((j o b z=' V ')\) and all eigenvalues are needed, that is, range \(=\)
'A' or range = 'I' and il=1 and \(i u=n\).
On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.
On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), an internal error has occurred.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine syevr interface are the following:
```

a Holds the matrix A of size (}n,n)\mathrm{ .
w Holds the vector of length n.
z Holds the matrix z of size (}n,n)\mathrm{ , where the values n and m}\mathrm{ are significant.
isuppz Holds the vector of length (2*m), where the values (2*m) are significant.
uplo Must be 'U' or 'L'. The default value is 'U'.
vl Default value for this element is vl = - HUGE(vl).
vu Default value for this element is vu = HUGE(vl).
il Default value for this argument is il = 1.
iu Default value for this argument is iu = n.
abstol Default value for this element is abstol = 0.0_WP.
jobz
range
Holds the matrix A of size (n, n).
Holds the vector of length n.
Holds the matrix z of size (n, n), where the values n and m are significant. Holds the vector of length $\left(2 *_{m}\right)$, where the values ($2 *_{m}$) are significant.
Must be 'U' or 'L'. The default value is 'U'.
Default value for this element is $v l=-\operatorname{HUGE}(v l)$.
Default value for this element is $v u=\operatorname{HUGE}(v I)$.
Default value for this argument is il $=1$.
Default value for this argument is iu $=n$.
Default value for this element is abstol $=0.0 _$WP.
Restored based on the presence of the argument z as follows: jobz $=$ ' V^{\prime}, if z is present, $j \circ b z=$ ' N ', if z is omitted Note that there will be an error condition if isuppz is present and z is omitted.
Restored based on the presence of arguments vl, vu, il, iu as follows: range = ' V ', if one of or both $v l$ and $v u$ are present, range $=$ 'I', if one of or both il and $i u$ are present, range $=$ 'A', if none of $v l, v u, i l, i u$ is present, Note that there will be an error condition if one of or both $v l$ and $v u$ are present and at the same time one of or both il and $i u$ are present.

```

\section*{Application Notes}

For optimum performance use 1 work \(\geq(n b+6) * n\), where \(n b\) is the maximum of the blocksize for ?sytrd and ?ormtr returned by ilaenv.

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run or set lwork = -1 (liwork = -1).

If lwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If lwork \(=-1\) (liwork \(=-1\) ), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if lwork (liwork) is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the IEEE standard default manner.

\section*{?heevr}

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix using the Relatively Robust Representations.

\section*{Syntax}

\section*{Fortran 77:}
```

call cheevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz,
isuppz, work, lwork, rwork, lrwork, iwork, liwork, info)
call zheevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz,
isuppz, work, lwork, rwork, lrwork, iwork, liwork, info)

```

\section*{Fortran 95:}
```

call heevr(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol] [,info])

```
C:
lapack_int LAPACKE_cheevr( int matrix_order, char jobz, char range, char uplo,

il, lapack_int iu, float abstol, lapack_int* m, float* \(w, ~ l a p a c k \_c o m p l e x \_f l o a t * ~ z, ~\)
lapack_int ldz, lapack_int* isuppz );
lapack_int LAPACKE_zheevr( int matrix_order, char jobz, char range, char uplo,
lapack_int \(n, ~ l a p a c k \_c o m p l e x \_d o u b l e * ~ a, ~ l a p a c k \_i n t ~ l d a, ~ d o u b l e ~ v l, ~ d o u b l e ~ v u, ~\)
lapack_int il, lapack_int iu, double abstol, lapack_int* m, double* \(w\),
lapack_complex_double* \(\left.z, ~ l a p a c k \_i n t ~ l d z, ~ l a p a c k \_i n t * ~ i s u p p z ~\right) ; ~\)

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.
The routine first reduces the matrix \(A\) to tridiagonal form \(T\) with a call to hetrd. Then, whenever possible, ? heevr calls stegr to compute the eigenspectrum using Relatively Robust Representations. ?stegr computes eigenvalues by the dqds algorithm, while orthogonal eigenvectors are computed from various "good" \(L * D^{*} L^{T}\) representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For each unreduced block (submatrix) of \(T\) :
a. Compute \(T-\sigma^{\star} I=L^{\star} D^{\star} L^{T}\), so that \(L\) and \(D\) define all the wanted eigenvalues to high relative accuracy. This means that small relative changes in the entries of \(D\) and \(L\) cause only small relative changes in the eigenvalues and eigenvectors. The standard (unfactored) representation of the tridiagonal matrix \(T\) does not have this property in general.
b. Compute the eigenvalues to suitable accuracy. If the eigenvectors are desired, the algorithm attains full accuracy of the computed eigenvalues only right before the corresponding vectors have to be computed, see Steps c) and d).
C. For each cluster of close eigenvalues, select a new shift close to the cluster, find a new factorization, and refine the shifted eigenvalues to suitable accuracy.
d. For each eigenvalue with a large enough relative separation, compute the corresponding eigenvector by forming a rank revealing twisted factorization. Go back to Step c) for any clusters that remain.

The desired accuracy of the output can be specified by the input parameter abstol.

The routine ?heevr calls stemr when the full spectrum is requested on machines which conform to the IEEE-754 floating point standard, or stebz and stein on non-IEEE machines and when partial spectrum requests are made.

Note that the routine ? heevr is preferable for most cases of complex Hermitian eigenvalue problems as its underlying algorithm is fast and uses less workspace.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If job = 'N', then only eigenvalues are computed. \\
\hline & If job \(=\) 'V', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{5}{*}{range} & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' \(V\) ', the routine computes eigenvalues lambda \((i)\) in the halfopen interval: vl< lambda(i) \(\leq\) vu. \\
\hline & If range = 'I', the routine computes eigenvalues with indices il to iu. \\
\hline & For range \(=\) 'V'or 'I', sstebz/dstebz and cstein/zstein are called. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{6}{*}{a, work} & COMPLEX for cheevr \\
\hline & DOUBLE COMPLEX for zheevr. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) is an array containing either upper or lower triangular part of the \\
\hline & Hermitian matrix \(A\), as specified by uplo. \\
\hline & The second dimension of a must be at least max \((1, n)\). work is a workspace array, its dimension max ( \(1, ~ l\) work ). \\
\hline \multirow[t]{2}{*}{Ida} & INTEGER. The leading dimension of the array a. \\
\hline & Must be at least max \((1, n)\). \\
\hline \multirow[t]{5}{*}{vl, vu} & REAL for cheevr \\
\hline & DOUBLE PRECISION for zheevr. \\
\hline & If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range = 'A' or 'I', vl and vu are not referenced. \\
\hline \multirow[t]{4}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) if \(n=0\). \\
\hline & If range \(=\) 'A' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{4}{*}{abstol} & REAL for cheevr \\
\hline & DOUBLE PRECISION for zheevr. \\
\hline & The absolute error tolerance to which each eigenvalue/eigenvector is required. \\
\hline & If jobz = 'V', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different \\
\hline
\end{tabular}

If abstol < \(n\) *eps*| \(T \mid\), then \(n *{ }^{*}{ }^{*}|T|\) will be used in its place, where eps is the machine precision, and \(|T|\) is the 1 -norm of the matrix \(T\). The eigenvalues are computed to an accuracy of eps \(*|T|\) irrespective of abstol.
If high relative accuracy is important, set abstol to ?lamch('S').
INTEGER. The leading dimension of the output array \(z\). Constraints:
\(l d z \geq 1\) if jobz = 'N';
\(l d z \geq \max (1, n)\) if \(j o b z='^{\prime}\) '.
INTEGER.
The dimension of the array work.
Constraint: 1 work \(\geq \max (1,2 n)\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for the suggested value of 1 work.

REAL for cheevr
DOUBLE PRECISION for zheevr.
Workspace array, DIMENSION max (1, lwork).
INTEGER.
The dimension of the array rwork;
lwork \(\geq \max (1,24 n)\).
If lrwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla.
INTEGER. Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array \(i\) work,
lwork \(\geq \max (1,10 \mathrm{n})\).
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla.

\section*{Output Parameters}
z

On exit, the lower triangle (if uplo = ' L') or the upper triangle (if uplo = ' \(U\) ') of \(A\), including the diagonal, is overwritten.
INTEGER. The total number of eigenvalues found,
\(0 \leq m \leq n\).
If range \(=\) 'A', \(m=n\), and if range \(=\) 'I', \(m=i u-i l+1\).
REAL for cheevr
DOUBLE PRECISION for zheevr.
Array, DIMENSION at least max \((1, n)\), contains the selected eigenvalues in ascending order, stored in \(w(1)\) to \(w(m)\).
COMPLEX for cheevr
double complex for zheevr.
Array \(z(I d z, *)\); the second dimension of \(z\) must be at least max \((1, m)\).

If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w(i).
If jobz = ' \(N\) ', then \(z\) is not referenced.
Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.
work(1)
rwork (1)
iwork(1)
info
INTEGER.
Array, DIMENSION at least 2 *max \((1, m)\).
The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The \(i\)-th eigenvector is nonzero only in elements isuppz(2i-1) through isuppz(2i). Referenced only if eigenvectors are needed \((j o b z=' V ')\) and all eigenvalues are needed, that is, range \(=\) 'A' or range = 'I' and il=1 and \(i u=n\).
On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.
On exit, if info \(=0\), then rwork (1) returns the required minimal size of lrwork.

On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value. If info \(=i\), an internal error has occurred.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine heevr interface are the following:
```

a Holds the matrix A of size (}n,n)\mathrm{ .
w Holds the vector of length n.
z Holds the matrix z of size (}n,n)\mathrm{ , where the values n and m}\mathrm{ are significant.
isuppz Holds the vector of length (2*n), where the values (2**) are significant.
uplo Must be 'U' or 'L'. The default value is 'U'.
vl Default value for this element is vl = -HUGE(vl).
vu Default value for this element is vu = HUGE(vl).
il Default value for this argument is il = 1.
iu Default value for this argument is iu = n.
abstol Default value for this element is abstol = 0.0_WP.
jobz
Holds the matrix A of size (n, n).
Holds the vector of length n.
Holds the matrix z of size (n, n), where the values n and m are significant.
Holds the vector of length $\left(2 *_{n}\right)$, where the values $\left(2 *_{m}\right)$ are significant.
Must be 'U' or 'L'. The default value is 'U'.
Default value for this element is $v l=-\operatorname{HUGE}(v l)$.
Default value for this element is $v u=\operatorname{HUGE}(v I)$.
Default value for this argument is il $=1$.
Default value for this argument is $i u=n$.
Default value for this element is abstol = 0.0_WP.
Restored based on the presence of the argument z as follows: jobz $=$ ' V ', if z is present, jobz $=$ ' N ', if z is omitted Note that there will be an error condition if isuppz is present and z is omitted.

``` ' V ', if one of or both \(v l\) and \(v u\) are present, range \(=\) 'I', if one of or both il and \(i u\) are present, range \(=\) ' \(A\) ', if none of \(v l, v u, i l, i u\) is present, Note that there will be an error condition if one of or both \(v l\) and \(v u\) are present and at the same time one of or both il and iu are present.

\section*{Application Notes}

For optimum performance use 1 work \(\geq(n b+1) \star n\), where \(n b\) is the maximum of the blocksize for ?hetrd and ?unmtr returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of lwork (or lrwork, or liwork) for the first run or set lwork \(=-1\) (lrwork \(=-1\), liwork \(=-1\) ).
If you choose the first option and set any of admissible lwork (or lrwork, liwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, rwork, iwork) on exit. Use this value (work(1), rwork(1), iwork (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, rwork, iwork). This operation is called a workspace query.

Note that if you set lwork (lrwork, liwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the IEEE standard default manner.

\section*{?spev}

Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix in packed storage.

\section*{Syntax}

\section*{Fortran 77:}
```

call sspev(jobz, uplo, n, ap, w, z, ldz, work, info)
call dspev(jobz, uplo, n, ap, w, z, ldz, work, info)

```

\section*{Fortran 95:}
```

call spev(ap, w [,uplo] [,z] [,info])

```

C:
lapack_int LAPACKE_<?>spev( int matrix_order, char jobz, char uplo, lapack_int n, <datatype>* ap, <datatype>* \(\left.w, ~<d a t a t y p e>* ~ z, ~ l a p a c k \_i n t ~ l d z ~\right) ; ~\)

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) in packed storage.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

jobz CHARACTER*1. Must be 'N' or 'V'.
If job = 'N', then only eigenvalues are computed.
If job =' 'V', then eigenvalues and eigenvectors are computed.
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular part of A.
If uplo = 'L', ap stores the packed lower triangular part of A.
INTEGER. The order of the matrix A (n\geq0).
REAL for sspev
DOUBLE PRECISION for dspev
Arrays:
ap (*) contains the packed upper or lower triangle of symmetric matrix A,
as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
work
ldz
INTEGER. The leading dimension of the output array z. Constraints:
if jobz = 'N', then ldz \geq 1;
if jobz = 'V', then ldz \geq max(1, n).

```

\section*{Output Parameters}

REAL for sspev
DOUBLE PRECISION for dspev
Arrays:
\(w(*)\), DIMENSION at least \(\max (1, n)\).
If info \(=0, w\) contains the eigenvalues of the matrix \(A\) in ascending order.
\(z(I d z, *)\). The second dimension of \(z\) must be at least max \((1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with w(i).
If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine spev interface are the following:
\begin{tabular}{ll}
\(a p\) & Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\). \\
\(w\) & Holds the vector with the number of elements \(n\). \\
\(z\) & Holds the matrix \(z\) of size \((n, n)\). \\
uplo & Must be 'U' or 'L'. The default value is ' \(U^{\prime}\). \\
jobz & \begin{tabular}{l} 
Restored based on the presence of the argument \(z\) as follows: jobz \(=' V ', ~ i f ~\) \\
is present, jobz \(=' N ', ~ i f ~\) \\
\(z\)
\end{tabular} \\
& is omitted.
\end{tabular}

\section*{?hpev}

Computes all eigenvalues and, optionally,
eigenvectors of a Hermitian matrix in packed storage.

\section*{Syntax}

\section*{Fortran 77:}
```

call chpev(jobz, uplo, n, ap, w, z, ldz, work, rwork, info)
call zhpev(jobz, uplo, n, ap, w, z, ldz, work, rwork, info)

```

\section*{Fortran 95:}
```

call hpev(ap, w [,uplo] [,z] [,info])

```

C:
lapack_int LAPACKE_chpev( int matrix_order, char jobz, char uplo, lapack_int n,
lapack_complex_float* ap, float* \(\left.w, ~ l a p a c k \_c o m p l e x \_f l o a t * ~ z, ~ l a p a c k \_i n t ~ l d z ~\right) ; ~\)
lapack_int LAPACKE_zhpev( int matrix_order, char jobz, char uplo, lapack_int n,
lapack_complex_double* ap, double* w, lapack_complex_double* z, lapack_int ldz );

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\) in packed storage.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

jobz
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular part of A.
If uplo = 'L', ap stores the packed lower triangular part of A.
n
ap, work COMPLEX for chpev
DOUBLE COMPLEX for zhpev.

```
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Arrays: \\
\(a p(*)\) contains the packed upper or lower triangle of Hermitian matrix A, as specified by uplo. \\
The dimension of \(a p\) must be at least max \(\left(1, n^{*}(n+1) / 2\right)\).
\end{tabular} \\
\hline work & \(\left(^{*}\right)\) is a workspace array, DIMENSION at least max \((1,2 n-1)\). \\
\hline \(1 d z\) & \begin{tabular}{l}
INTEGER. The leading dimension of the output array \(z\). Constraints: \\
if jobz = 'N', then \(l d z \geq 1\); \\
if \(j o b z=' V\) ', then \(l d z \geq \max (1, n)\).
\end{tabular} \\
\hline rwork & \begin{tabular}{l}
REAL for chpev \\
DOUBLE PRECISION for zhpev. \\
Workspace array, DIMENSION at least max(1, 3n-2).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
```

w REAL for chpev
DOUBLE PRECISION for zhpev.
Array, DIMENSION at least max(1, n).
If info = 0,w contains the eigenvalues of the matrix }A\mathrm{ in ascending order.
z
COMPLEX for chpev
DOUBLE COMPLEX for zhpev.
Array z(ldz,*).
The second dimension of z must be at least max (1,n).
If jobz = 'V', then if info = 0, z contains the orthonormal eigenvectors
of the matrix A, with the i-th column of z holding the eigenvector
associated with w(i).
If jobz = 'N', then z is not referenced.
On exit, this array is overwritten by the values generated during the
reduction to tridiagonal form. The elements of the diagonal and the off-
diagonal of the tridiagonal matrix overwrite the corresponding elements of
A.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, then the algorithm failed to converge; i indicates the number
of elements of an intermediate tridiagonal form which did not converge to
zero.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hpev interface are the following:
```

ap Holds the array A of size (n* (n+1)/2).
w Holds the vector with the number of elements n.
z Holds the matrix z of size (}n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.
jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

```
```

?spevd
Uses divide and conquer algorithm to compute all
eigenvalues and (optionally) all eigenvectors of a real
symmetric matrix held in packed storage.

```

\section*{Syntax}

\section*{Fortran 77:}
```

call sspevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)

```
call sspevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)
call dspevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)
```

call dspevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)

```

\section*{Fortran 95:}
```

call spevd(ap, W [,uplo] [,z] [,info])

```

C:
```

lapack_int LAPACKE_<?>spevd(int matrix_order, char jobz, char uplo, lapack_int n,

```
<datatype>* ap, <datatype>* w, <datatype>* \(z\), lapack_int ldz );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric matrix \(A\) (held in packed storage). In other words, it can compute the spectral factorization of \(A\) as:
\(A=Z^{\star} \Lambda^{\star} Z^{T}\).
Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(z\) is the orthogonal matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\(A^{\star} z_{i}=\lambda_{i}{ }^{\star} z_{i}\) for \(i=1,2, \ldots, n\).
If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

jobz CHARACTER*1.Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
uplo CHARACTER*1.Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular part of A.
If uplo = 'L', ap stores the packed lower triangular part of A.
n
ap, work REAL for sspevd
DOUBLE PRECISION for dspevd
Arrays:

```
\(a p(*)\) contains the packed upper or lower triangle of symmetric matrix A, as specified by uplo.
The dimension of ap must be \(\max \left(1, n^{*}(n+1) / 2\right)\)
work is a workspace array, its dimension max ( 1,1 work).
\(1 d z\)
lwork
iwork
liwork
INTEGER. The leading dimension of the output array \(z\).
Constraints:
if jobz = 'N', then \(l d z \geq 1\);
if jobz \(=\) 'V', then \(l d z \geq \max (1, n)\).
INTEGER.
The dimension of the array work.
Constraints:
if \(n \leq 1\), then lwork \(\geq 1\);
if jobz \(=\) ' \(N\) ' and \(n>1\), then 1 work \(\geq 2 *_{n}\);
if jobz = 'V' and \(n>1\), then
lwork \(\geq n^{2}+6 * n+1\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.

INTEGER. Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array iwork.
Constraints:
if \(n \leq 1\), then liwork \(\geq 1\);
if jobz \(=\) 'N' and \(n>1\), then liwork \(\geq 1\);
if jobz \(=\) ' \(V\) ' and \(n>1\), then liwork \(\geq 5 \star^{*} n+3\).
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}
W, z
ap
work (1)

REAL for sspevd
DOUBLE PRECISION for dspevd
Arrays:
\(w(*)\), DIMENSION at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order.
See also info.
z(ldz,*).
The second dimension of \(z\) must be: at least 1 if jobz \(=\) ' \(N\) '; at least \(\max (1, n)\) if \(j o b z=' V '\).
If jobz = 'V', then this array is overwritten by the orthogonal matrix \(z\) which contains the eigenvectors of \(A\). If \(j \circ b z={ }^{\prime} N\) ', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

On exit, if info \(=0\), then work (1) returns the required lwork.
```

iwork(1)
info
On exit, if info $=0$, then iwork(1) returns the required liwork.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=i$, then the algorithm failed to converge; i indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
If info $=-i$, the i-th parameter had an illegal value.

```

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine spevd interface are the following:
```

ap Holds the array A of size (n* (n+1)/2).
w Holds the vector with the number of elements n.
z Holds the matrix z of size (}n,n)\mathrm{ .
uplo Must be 'U' or'L'.The default value is 'U'.
jobz Restored based on the presence of the argument z as follows:
jobz = 'V',if z is present,
jobz = 'N', if z is omitted.

```

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(\left.\left||E|_{2}=O(\varepsilon) *\right||T|\right|_{2}\), where \(\varepsilon\) is the machine precision.

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run or set 1 work \(=-1\) (liwork \(=-1\) ).

If lwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If 1 work \(=-1\) (liwork \(=-1\) ), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if lwork (liwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The complex analogue of this routine is hpevd.
See also syevd for matrices held in full storage, and sbevd for banded matrices.
```

?hpevd
Uses divide and conquer algorithm to compute all
eigenvalues and (optionally) all eigenvectors of a
complex Hermitian matrix held in packed storage.
Syntax

```

Fortran 77:
call chpevd(jobz, uplo, \(n, ~ a p, ~ w, ~ z, ~ l d z, ~ w o r k, ~ l w o r k, ~ r w o r k, ~ l r w o r k, ~ i w o r k, ~ l i w o r k, ~\) info)
```

call zhpevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork,
info)

```

\section*{Fortran 95:}
```

call hpevd(ap, w [,uplo] [,z] [,info])

```

C:
```

lapack_int LAPACKE_chpevd(int matrix_order, char jobz, char uplo, lapack_int n,

```
lapack_complex_float* ap, float* w, lapack_complex_float* z, lapack_int ldz );
lapack_int LAPACKE_zhpevd( int matrix_order, char jobz, char uplo, lapack_int n,
lapack_complex_double* ap, double* w, lapack_complex_double* z, lapack_int ldz );

\section*{Include Files}
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix \(A\) (held in packed storage). In other words, it can compute the spectral factorization of \(A\) as: \(A=Z^{\star} \Lambda^{\star} Z^{H}\).

Here \(\Lambda\) is a real diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(z\) is the (complex) unitary matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\(A^{\star} z_{i}=\lambda_{i}{ }^{\star} z_{i}\) for \(i=1,2, \ldots, n\).
If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
```

jobz CHARACTER*1.Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular part of A.
If uplo = 'L', ap stores the packed lower triangular part of A.
INTEGER. The order of the matrix A (}n\geq0)\mathrm{ .
COMPLEX for chpevd
DOUBLE COMPLEX for zhpevd
Arrays:
ap (*) contains the packed upper or lower triangle of Hermitian matrix A, as
specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of the output array z.
Constraints:
if jobz = 'N', then ldz \geq 1;
if jobz = 'V', then ldz \geq max(1, n).

```


\section*{Output Parameters}
z
REAL for chpevd
DOUBLE PRECISION for zhpevd
Array, DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order.
See also info.
COMPLEX for chpevd
DOUBLE COMPLEX for zhpevd
Array, DIMENSION ( \(1 d z, *\) ).
The second dimension of \(z\) must be:
at least 1 if jobz = 'N';
at least \(\max (1, n)\) if \(j o b z=V^{\prime} V^{\prime}\).
If jobz = 'V', then this array is overwritten by the unitary matrix \(z\) which contains the eigenvectors of \(A\).

If jobz = 'N', then \(z\) is not referenced.
\begin{tabular}{|c|c|}
\hline ap & On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A. \\
\hline work(1) & On exit, if info \(=0\), then work (1) returns the required minimal size of lwork. \\
\hline rwork(1) & On exit, if info \(=0\), then rwork (1) returns the required minimal size of lrwork. \\
\hline iwork(1) & On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork. \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hpevd interface are the following:
```

ap Holds the array A of size (n* (n+1)/2).
w Holds the vector with the number of elements n.
z Holds the matrix z of size (}n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.
jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

```

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(||E||_{2}=O(\varepsilon) *| | T| |_{2}\), where \(\varepsilon\) is the machine precision.
If you are in doubt how much workspace to supply, use a generous value of lwork (liwork or lrwork) for the first run or set lwork \(=-1\) (liwork \(=-1\), lrwork \(=-1\) ).

If you choose the first option and set any of admissible lwork (liwork or lrwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork) on exit. Use this value (work(1), iwork(1), rwork (1)) for subsequent runs.

If you set lwork \(=-1\) (liwork \(=-1\), lrwork \(=-1\) ), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.

Note that if you set lwork (liwork, lrwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The real analogue of this routine is spevd.

See also heevd for matrices held in full storage, and hbevd for banded matrices.
?spevx
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix in packed storage.

\section*{Syntax}

\section*{Fortran 77:}
```

call sspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work,
iwork, ifail, info)
call dspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work,
iwork, ifail, info)

```

\section*{Fortran 95:}
call spevx(ap, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol] [,info])
C:
```

lapack_int LAPACKE_<?>spevx(int matrix_order, char jobz, char range, char uplo,
lapack_int n, <datatype>* ap, <datatype> vl, <datatype> vu, lapack_int il, lapack_int
iu, <datatype> abstol, lapack_int* m, <datatype>* w, <datatype>* z, lapack_int ldz,
lapack_int* ifail);

```

Include Files
- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type definitions.
```

jobz CHARACTER*1.Must be 'N' or 'V'.
If job = 'N', then only eigenvalues are computed.
If job = 'V', then eigenvalues and eigenvectors are computed.
range
uplo
uplo

CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular part of A. If uplo = 'L', ap stores the packed lower triangular part of A.
INTEGER. The order of the matrix $A(n \geq 0)$.

```
ap, work REAL for sspevx
DOUBLE PRECISION for dspevx
Arrays:
ap(*) contains the packed upper or lower triangle of the symmetric matrix
A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
work(*) is a workspace array, DIMENSION at least max(1, 8n).
REAL for sspevx
DOUBLE PRECISION for dspevx
If range = 'V', the lower and upper bounds of the interval to be searched
for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I',vl and vu are not referenced.
INTEGER.
If range = 'I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 \leq il \leqiu \leq n, if n > 0; il=1 and iu=0
if n = 0.
If range = 'A' or'V', il and iu are not referenced.
REAL for sspevx
DOUBLE PRECISION for dspevx
The absolute error tolerance to which each eigenvalue is required. See
Application notes for details on error tolerance.
ldz
iwork
INTEGER. Workspace array, DIMENSION at least max(1, 5n).
```


Output Parameters

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

INTEGER. The total number of eigenvalues found,
$0 \leq m \leq n$. If range $=$ 'A', $m=n$, and if range $=$ 'I', $m=i u-i l+1$.
REAL for sspevx
DOUBLE PRECISION for dspevx

Arrays:

$w(*)$, DIMENSION at least $\max (1, n)$.
If info $=0$, contains the selected eigenvalues of the matrix A in ascending order.
$z(l d z, *)$.
The second dimension of z must be at least max $(1, m)$.
If jobz $=$ ' V ', then if info $=0$, the first m columns of z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with w(i).
If an eigenvector fails to converge, then that column of z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

	If $j o b z=$ ' N ', then z is not referenced. Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array z; if range $=$ ' V ', the exact value of m is not known in advance and an upper bound must be used.
ifail	INTEGER. Array, DIMENSION at least max $(1, n)$. If jobz = 'V', then if info $=0$, the first m elements of ifail are zero; if info > 0, the ifail contains the indices the eigenvectors that failed to converge. If jobz = 'N', then ifail is not referenced.
info	INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i-th parameter had an illegal value. If info $=i$, then i eigenvectors failed to converge; their indices are stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine spevx interface are the following:

ap	Holds the array A of size ($n *(n+1) / 2)$.
w	Holds the vector with the number of elements n.
z	Holds the matrix z of size (n, n), where the values n and m are significant.
ifail	Holds the vector with the number of elements n.
uplo	Must be 'U' or 'L'. The default value is 'U'.
vl	Default value for this element is $\mathrm{vl}=-\mathrm{HUGE}(\mathrm{vl})$.
vu	Default value for this element is $v u=$ HUGE (vl).
il	Default value for this argument is il $=1$.
iu	Default value for this argument is iu $=n$.
abstol	Default value for this element is abstol $=0.0{ }^{\text {a }} \mathrm{WP}$.
jobz	Restored based on the presence of the argument z as follows: jobz = 'V', if z is present, jobz $=$ 'N', if z is omitted Note that there will be an error condition if ifail is present and z is omitted.
range	Restored based on the presence of arguments $v l, v u, i l, i u$ as follows: range $=$ ' V ', if one of or both $v l$ and $v u$ are present, range $=$ 'I', if one of both il and iu are present, range $=$ ' A ', if none of $v l, v u, i l, i u$ is present, Note that there will be an error condition if one of or both $v l$ and $v u$ are present and at the same time one of or both $i l$ and $i u$ are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to $a b s t o l+\varepsilon^{\star} \max (|a|,|b|)$, where ε is the machine precision.

If abstol is less than or equal to zero, then $\varepsilon^{\star}| | T| |_{1}$ will be used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero.

If this routine returns with info >0, indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

?hpevx
 Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix in packed storage.
 Syntax

Fortran 77:

```
call chpevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work,
rwork, iwork, ifail, info)
call zhpevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work,
rwork, iwork, ifail, info)
```


Fortran 95:

```
call hpevx(ap, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol] [,info])
```

C:

```
lapack_int LAPACKE_chpevx( int matrix_order, char jobz, char range, char uplo,
lapack_int n, lapack_complex_float* ap, float vl, float vu, lapack_int il, lapack_int
iu, float abstol, lapack_int* m, float* w, lapack_complex_float* z, lapack_int ldz,
lapack_int* ifail );
lapack_int LAPACKE_zhpevx( int matrix_order, char jobz, char range, char uplo,
lapack_int n, lapack_complex_double* ap, double vl, double vu, lapack_int il,
lapack_int iu, double abstol, lapack_int* m, double* w, lapack_complex_double* z,
lapack_int ldz, lapack_int* ifail );
```

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobz
range
CHARACTER*1. Must be 'N' or 'V'.
If job = 'N', then only eigenvalues are computed.
If job = 'V', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues lambda(i) in the half-
open interval: vl<lambda(i) \leq vu.
If range = 'I', the routine computes eigenvalues with indices il to iu.
```

uplo	CHARACTER*1. Must be 'U' or 'L'.
	If uplo = 'U', ap stores the packed upper triangular part of A.
	If uplo = 'L', ap stores the packed lower triangular part of A.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
ap, work	COMPLEX for chpevx
	DOUBLE COMPLEX for zhpevx
	Arrays:
	$a p(*)$ contains the packed upper or lower triangle of the Hermitian matrix
	A, as specified by uplo.
	The dimension of ap must be at least max $\left(1, n^{*}(n+1) / 2\right)$. work (*) is a workspace array, DIMENSION at least max $(1,2 n)$.
vl, vu	REAL for chpevx
	DOUBLE PRECISION for zhpevx
	If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues.
	Constraint: vl< vu.
	If range = 'A' or 'I', vl and vu are not referenced.
il, iu	INTEGER.
	If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
	Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; ill=1 and $i u=0$ if $n=0$.
	If range = 'A' or 'V', il and iu are not referenced.
abstol	REAL for chpevx
	DOUBLE PRECISION for zhpevx
	The absolute error tolerance to which each eigenvalue is required. See
	Application notes for details on error tolerance.
$1 d z$	INTEGER. The leading dimension of the output array z.
	Constraints:
	if jobz = 'N', then $1 \mathrm{dz} \geq 1$;
	if jobz = 'V', then $1 d z \geq \max (1, n)$.
rwork	REAL for chpevx
	DOUBLE PRECISION for zhpevx
	Workspace array, DIMENSION at least max (1, $7 n$).
iwork	INTEGER. Workspace array, DIMENSION at least max $(1,5 n)$.

Output Parameters

Z

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

INTEGER. The total number of eigenvalues found, $0 \leq m \leq n$.
If range $=$ 'A', $m=n$, and if range = 'I', m = iu-il+1.
REAL for chpevx
DOUBLE PRECISION for zhpevx
Array, DIMENSION at least max $(1, n)$.
If info $=0$, contains the selected eigenvalues of the matrix A in ascending order.
COMPLEX for chpevx
DOUBLE COMPLEX for zhpevx
Array $z(l d z, *)$.

The second dimension of z must be at least max $(1, m)$.
If jobz $=$ ' V ', then if info $=0$, the first m columns of z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with w(i).
If an eigenvector fails to converge, then that column of z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz = 'N', then z is not referenced.
Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array z; if range $=$ ' V ', the exact value of m is not known in advance and an upper bound must be used.
ifail
info
INTEGER.
Array, DIMENSION at least max $(1, n)$.
If jobz = ' V ', then if info $=0$, the first m elements of ifail are zero; if info > 0 , the ifail contains the indices the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hpevx interface are the following:
ap Holds the array A of size $\left(n^{*}(n+1) / 2\right)$.
$w \quad$ Holds the vector with the number of elements n.
$z \quad$ Holds the matrix z of size (n, n), where the values n and m are significant.
ifail
uplo
vl
vu
il
iu
abstol
jobz
range

Holds the vector with the number of elements n.
Must be 'U' or 'L'. The default value is 'U'.
Default value for this element is $v 1=-\operatorname{HUGE}(v 1)$.
Default value for this element is $v u=\operatorname{HUGE}(v I)$.
Default value for this argument is $i l=1$.
Default value for this argument is iu $=n$.
Default value for this element is abstol $=0.0 _W P$.
Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if ifail is present and z is omitted.
Restored based on the presence of arguments $v l, v u, i l, i u$ as follows:
range $=$ ' V ', if one of or both $v l$ and $v u$ are present,
range $=$ 'I', if one of or both il and $i u$ are present,
range $=$ ' A ', if none of $v l, v u, i l, i u$ is present,

Note that there will be an error condition if one of or both $v l$ and $v u$ are present and at the same time one of or both il and $i u$ are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ $\varepsilon^{\star} \max (|a|,|b|)$, where ε is the machine precision.

If abstol is less than or equal to zero, then $\varepsilon^{\star}| | T| |_{1}$ will be used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

?sbev

Computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix.

Syntax

Fortran 77:

```
call ssbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)
call dsbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)
```


Fortran 95:

```
call sbev(ab, w [,uplo] [,z] [,info])
```

C:

```
lapack_int LAPACKE_<?>sbev( int matrix_order, char jobz, char uplo, lapack_int n,
lapack_int kd, <datatype>* ab, lapack_int ldab, <datatype>* w, <datatype>* z,
lapack_int ldz );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobz CHARACTER*1.Must be 'N' or 'V'.
    If jobz = 'N', then only eigenvalues are computed.
    If jobz = 'V', then eigenvalues and eigenvectors are computed.
uplo CHARACTER*1.Must be 'U' or 'L'.
    If uplo = 'U', ab stores the upper triangular part of A.
    If uplo = 'L', ab stores the lower triangular part of A.
    INTEGER. The order of the matrix A (n\geq0).
```


Output Parameters

```
w, z
ab
info
```

```
kd
ab, work
ldab
ldz
INTEGER. The number of super- or sub-diagonals in \(A\)
( \(k d \geq 0\) ).
REAL for ssbev
DOUBLE PRECISION for dsbev.
```


Arrays:

```
\(a b\left(1 d a b,{ }^{*}\right)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format.
The second dimension of ab must be at least max \((1, n)\).
work (*) is a workspace array.
The dimension of work must be at least max (1, 3n-2).
INTEGER. The leading dimension of \(a b\); must be at least \(k d+1\).
INTEGER. The leading dimension of the output array \(z\). Constraints:
if jobz \(=\) ' \(N\) ', then \(l d z \geq 1\);
if jobz \(=\) ' \(V\) ', then \(l d z \geq \max (1, n)\).
```

REAL for ssbev
DOUBLE PRECISION for dsbev
Arrays:
w (*), DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues of the matrix A in ascending order.
$z(l d z, *)$.
The second dimension of z must be at least max $(1, n)$.
If jobz = 'V', then if info $=0, z$ contains the orthonormal eigenvectors of the matrix A, with the i-th column of z holding the eigenvector associated with w(i).
If jobz = 'N', then z is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form.
If uplo = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows $k d$ and $k d+1$ of $a b$, and if uplo = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of $a b$.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, then the algorithm failed to converge; i indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sbev interface are the following:

$a b$	Holds the array A of size $(k d+1, n)$.
w	Holds the vector with the number of elements n.
z	Holds the matrix Z of size (n, n).
uplo	Must be ' U ' or 'L'. The default value is ' U '.

jobz	Restored based on the presence of the argument z as follows:
	$j o b z=' \mathrm{~V}$ ', if z is present,
	$j o b z=' N^{\prime}$, if z is omitted.

?hbev

Computes all eigenvalues and, optionally, eigenvectors of a Hermitian band matrix.

Syntax

Fortran 77:

```
call chbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)
call zhbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)
```

Fortran 95:

```
call hbev(ab, w [,uplo] [,z] [,info])
```

C:
lapack_int LAPACKE_chbev(int matrix_order, char jobz, char uplo, lapack_int n,
lapack_int $k d$, lapack_complex_float* ab, lapack_int ldab, float* w,
lapack_complex_float* $\left.z, ~ l a p a c k _i n t ~ l d z ~\right) ; ~$
lapack_int LAPACKE_zhbev(int matrix_order, char jobz, char uplo, lapack_int n,
lapack_int kd, lapack_complex_double* ab, lapack_int ldab, double* w,
lapack_complex_double* $\left.z, ~ l a p a c k _i n t ~ l d z ~\right) ; ~$

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobz CHARACTER*1. Must be 'N' or 'V'.
    If jobz = 'N', then only eigenvalues are computed.
    If jobz = 'V', then eigenvalues and eigenvectors are computed.
uplo CHARACTER*1.Must be 'U' or 'L'.
    If uplo = 'U', ab stores the upper triangular part of A.
    If uplo = 'L', ab stores the lower triangular part of A.
    INTEGER. The order of the matrix A ( }n\geq0)\mathrm{ .
    INTEGER. The number of super- or sub-diagonals in A
    (kd \geq 0).
    COMPLEX for chbev
    DOUBLE COMPLEX for zhbev.
    Arrays:
```

ab ($1 \mathrm{dab}, *$) is an array containing either upper or lower triangular part of the Hermitian matrix A (as specified by uplo) in band storage format. The second dimension of ab must be at least max $(1, n)$. work (*) is a workspace array.
The dimension of work must be at least max $(1, n)$.
ldab
INTEGER. The leading dimension of $a b ;$ must be at least $k d+1$.
INTEGER. The leading dimension of the output array z.
Constraints:
if jobz $=$ ' N ', then $l d z \geq 1$;
if jobz $=$ ' V ', then $l d z \geq \max (1, n)$.
REAL for chbev
DOUBLE PRECISION for zhbev
Workspace array, DIMENSION at least max(1, $3 n-2$).

Output Parameters

REAL for chbev
DOUBLE PRECISION for zhbev
Array, DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues in ascending order.
z
COMPLEX for chbev
DOUBLE COMPLEX for zhbev.
Array $z(I d z, *)$.
The second dimension of z must be at least max $(1, n)$.
If jobz $=$ 'V', then if info $=0, z$ contains the orthonormal eigenvectors of the matrix A, with the i-th column of z holding the eigenvector associated with w(i).
If jobz $=$ ' N ', then z is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form.
If uplo = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows $k d$ and $k d+1$ of $a b$, and if uplo $=$ 'L', the diagonal and first subdiagonal of T are returned in the first two rows of $a b$.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If info $=i$, then the algorithm failed to converge;
i indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hbev interface are the following:

```
ab Holds the array A of size (kd+1,n).
W Holds the vector with the number of elements n.
z Holds the matrix z of size (n,n).
uplo Must be 'U' or 'L'. The default value is 'U'.
jobz Restored based on the presence of the argument z as follows:
```

```
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
```

?sbevd
Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric band matrix using divide and conquer algorithm.

Syntax

Fortran 77:

```
call ssbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
call dsbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
```

Fortran 95:

```
call sbevd(ab, w [,uplo] [,z] [,info])
```


C:

```
lapack_int LAPACKE_<?>sbevd( int matrix_order, char jobz, char uplo, lapack_int n,
lapack_int kd, <datatype>* ab, lapack_int ldab, <datatype>* w, <datatype>* z,
lapack_int ldz );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric band matrix A. In other words, it can compute the spectral factorization of A as:

$$
A=Z^{\star} \Lambda^{\star} Z^{T}
$$

Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ_{i}, and z is the orthogonal matrix whose columns are the eigenvectors z_{i}. Thus,
$A^{\star} z_{i}=\lambda_{i}{ }^{\star} z_{i}$ for $i=1,2, \ldots, n$.
If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the $Q L$ or $Q R$ algorithm.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobz
uplo
CHARACTER*1. Must be 'N' or 'V'.
    If jobz = 'N', then only eigenvalues are computed.
    If jobz = 'V', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.
```

n	INTEGER. The order of the matrix $A(n \geq 0)$.
$k d$	INTEGER. The number of super- or sub-diagonals in A ($k d \geq 0$).
ab, work	REAL for ssbevd DOUBLE PRECISION for dsbevd. Arrays: ab ($1 \mathrm{dab}, *$) is an array containing either upper or lower triangular part of the symmetric matrix A (as specified by uplo) in band storage format. The second dimension of ab must be at least max $(1, n)$. work is a workspace array, its dimension max (1, lwork).
Idab	INTEGER. The leading dimension of $a b ;$ must be at least $k d+1$.
$1 d z$	INTEGER. The leading dimension of the output array z. Constraints: if jobz = 'N', then $l d z \geq 1$; if $j o b z=' V$ ', then $l d z \geq \max (1, n)$.
lwork	INTEGER. The dimension of the array work. Constraints: if $n \leq 1$, then lwork ≥ 1; if jobz = 'N' and $n>1$, then lwork $\geq 2 n$; if jobz $=$ 'V' and $n>1$, then lwork $\geq 2 \star^{*} n^{2}+5 \star n+1$. If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.
iwork	INTEGER. Workspace array, its dimension max (1, liwork).
liwork	INTEGER. The dimension of the array iwork. Constraints: if $n \leq 1$, then liwork <1; if job = 'N' and $n>1$, then liwork < 1; if job = 'V' and $n>1$, then liwork < $5{ }^{*} n+3$. If liwork = -1 , then a workspace query is assumed; the routine only calculates the optimal size of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.

Output Parameters

```
w, z
```

REAL for ssbevd
DOUBLE PRECISION for dsbevd
Arrays:
w (*), DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues of the matrix A in ascending order.
See also info.
$z(l d z, *)$.
The second dimension of z must be:
at least 1 if job = ' N ';
at least $\max (1, n)$ if job $=' \mathrm{~V}$ '.

	If job = 'V', then this array is overwritten by the orthogonal matrix z which contains the eigenvectors of A. The i-th column of z contains the eigenvector which corresponds to the eigenvalue w(i). If job = 'N', then z is not referenced.
$a b$	On exit, this array is overwritten by the values generated during the reduction to tridiagonal form.
work (1)	On exit, if lwork > 0 , then work (1) returns the required minimal size of lwork.
iwork(1)	On exit, if liwork > 0, then iwork (1) returns the required minimal size of liwork.
info	INTEGER. If info $=0$, the execution is successful. If info $=i$, then the algorithm failed to converge; i indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sbevd interface are the following:

```
ab Holds the array A of size (kd+1,n).
w Holds the vector with the number of elements n.
z Holds the matrix z of size ( }n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.
jobz Restored based on the presence of the argument z as follows:
jobz = 'V',if z is present,
jobz = 'N', if z is omitted.
```


Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix $T+E$ such that $||E||_{2}=O(\varepsilon) *| | T| |_{2}$, where ε is the machine precision.

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run or set lwork = -1 (liwork = -1).

If any of admissible lwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork(1)) for subsequent runs.

If lwork $=-1$ (liwork $=-1$), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if work (liwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The complex analogue of this routine is hbevd.
See also syevd for matrices held in full storage, and spevd for matrices held in packed storage.

?hbevd

Computes all eigenvalues and (optionally) all eigenvectors of a complex Hermitian band matrix using divide and conquer algorithm.

Syntax

Fortran 77:

```
call chbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, rwork, lrwork, iwork,
liwork, info)
call zhbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, rwork, lrwork, iwork,
liwork, info)
```

Fortran 95:
call hbevd(ab, w [, uplo] [,z] [,info])

C:

```
lapack_int LAPACKE_chbevd( int matrix_order, char jobz, char uplo, lapack_int n,
lapack_int kd, lapack_complex_float* ab, lapack_int ldab, float* w,
lapack_complex_float* z, lapack_int ldz );
lapack_int LAPACKE_zhbevd( int matrix_order, char jobz, char uplo, lapack_int n,
lapack_int kd, lapack_complex_double* ab, lapack_int ldab, double* w,
lapack_complex_double* z, lapack_int ldz );
```

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian band matrix A. In other words, it can compute the spectral factorization of A as: $A=Z^{\star} \Lambda^{\star} Z^{H}$.

Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λ_{i}, and z is the (complex) unitary matrix whose columns are the eigenvectors z_{i}. Thus,
$A * z_{i}=\lambda_{i}{ }^{*} z_{i}$ for $i=1,2, \ldots, n$.
If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the $Q L$ or $Q R$ algorithm.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobz
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
uplo
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.
```

n	INTEGER. The order of the matrix $A(n \geq 0)$.
kd	INTEGER. The number of super- or sub-diagonals in A ($k d \geq 0$).
ab, work	COMPLEX for chbevd DOUBLE COMPLEX for zhbevd. Arrays: ab ($1 \mathrm{dab}, *$) is an array containing either upper or lower triangular part of the Hermitian matrix A (as specified by uplo) in band storage format. The second dimension of ab must be at least max $(1, n)$. work (*) is a workspace array, its dimension max ($1, \quad 1$ work).
1 dab	INTEGER. The leading dimension of $a b ;$ must be at least $k d+1$.
$l d z$	INTEGER. The leading dimension of the output array z. Constraints: if jobz = 'N', then $l d z \geq 1$; if $j o b z=' V$ ', then $l d z \geq \max (1, n)$.
lwork	INTEGER. The dimension of the array work. Constraints: if $n \leq 1$, then lwork ≥ 1; if jobz $=$ ' N ' and $n>1$, then lwork $\geq n$; if jobz $=$ 'V' and $n>1$, then lwork $\geq 2 * n^{2}$. If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.
rwork	REAL for chbevd DOUBLE PRECISION for zhbevd Workspace array, DIMENSION at least lrwork.
lrwork	INTEGER. The dimension of the array rwork. Constraints: if $n \leq 1$, then lrwork ≥ 1; if jobz $=$ ' N ' and $n>1$, then lrwork $\geq n$; if jobz $=$ ' V ' and $n>1$, then lrwork $\geq 2 \star n^{2}+5^{\star} n+1$. If lrwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.
iwork	INTEGER. Workspace array, DIMENSION max (1, liwork).
liwork	INTEGER. The dimension of the array iwork. Constraints: if jobz = 'N' or $n \leq 1$, then liwork ≥ 1; if jobz $=$ ' V ' and $n>1$, then liwork $\geq 5^{*} n+3$.

If liwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.

Output Parameters

```
W
REAL for chbevd
DOUBLE PRECISION for zhbevd
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix }A\mathrm{ in ascending order.
See also info.
z COMPLEX for chbevd
DOUBLE COMPLEX for zh.bevd
Array, DIMENSION (ldz,*).
The second dimension of z must be:
at least 1 if jobz = 'N';
at least max (1,n) if jobz = 'V'.
If jobz = 'V', then this array is overwritten by the unitary matrix z which
contains the eigenvectors of A. The i-th column of z contains the
eigenvector which corresponds to the eigenvalue w(i).
If jobz = 'N', then z is not referenced.
ab
work(1)
rwork(1)
iwork(1)
info
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form.
On exit, if 1 work \(>0\), then the real part of work (1) returns the required minimal size of 1 work.
On exit, if lrwork > 0 , then rwork (1) returns the required minimal size of lrwork.
On exit, if liwork > 0, then iwork(1) returns the required minimal size of liwork.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
```


Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hbevd interface are the following:

```
ab Holds the array A of size (kd+1,n).
w Holds the vector with the number of elements n.
z Holds the matrix z of size ( }n,n)\mathrm{ .
uplo
jobz Restored based on the presence of the argument z as follows:
jobz = 'V',if z is present,
jobz = 'N', if z is omitted.
```


Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix $T+E$ such that $\left|\left|E \|_{2}=O(\varepsilon)\right|\right| T \mid I_{2}$, where ε is the machine precision.
If you are in doubt how much workspace to supply, use a generous value of 1 work (liwork or 1 rwork) for the first run or set lwork $=-1$ (liwork $=-1$, lrwork $=-1$).
If you choose the first option and set any of admissible lwork (liwork or lrwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork) on exit. Use this value (work (1), iwork(1), rwork (1)) for subsequent runs.
If you set 1 work $=-1$ (liwork $=-1$, lrwork $=-1$), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.
Note that if you set lwork (liwork, lrwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The real analogue of this routine is sbevd.
See also heevd for matrices held in full storage, and hpevd for matrices held in packed storage.

?sbevx

Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix.

Syntax

Fortran 77:

```
call ssbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol, m, w,
z, ldz, work, iwork, ifail, info)
call dsbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol, m, w,
z, ldz, work, iwork, ifail, info)
```


Fortran 95:

```
call sbevx(ab, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q] [,abstol]
[,info])
```

C:

```
lapack_int LAPACKE_<?>sbevx( int matrix_order, char jobz, char range, char uplo,
lapack_int n, lapack_int kd, <datatype>* ab, lapack_int ldab, <datatype>* q,
lapack_int ldq, <datatype> vl, <datatype> vu, lapack_int il, lapack_int iu, <datatype>
abstol, lapack_int* m, <datatype>* w, <datatype>* z, lapack_int ldz, lapack_int*
ifail );
```

Include files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

jobz	CHARACTER*1. Must be 'N' or 'V'. If jobz = 'N', then only eigenvalues are computed. If $j o b z=' \mathrm{~V}$ ', then eigenvalues and eigenvectors are computed.
range	CHARACTER*1. Must be 'A' or 'V' or 'I'. If range $=$ ' A ', the routine computes all eigenvalues. If range $=$ ' V ', the routine computes eigenvalues lambda (i) in the halfopen interval: vl<lambda(i) $\leq v u$. If range $=$ 'I', the routine computes eigenvalues in range il to iu.
uplo	CHARACTER*1. Must be 'U' or 'L'. If uplo = 'U', ab stores the upper triangular part of A. If uplo = 'L', ab stores the lower triangular part of A.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
kd	INTEGER. The number of super- or sub-diagonals in A ($k d \geq 0$).
ab, work	REAL for ssbevx DOUBLE PRECISION for dsbevx. Arrays: ab ($1 \mathrm{dab}, *$) is an array containing either upper or lower triangular part of the symmetric matrix A (as specified by uplo) in band storage format. The second dimension of $a b$ must be at least max $(1, n)$. work (*) is a workspace array. The dimension of work must be at least max $(1,7 n)$.
Idab	INTEGER. The leading dimension of $a b ;$ must be at least $k d+1$.
vl, vu	REAL for ssbevx DOUBLE PRECISION for dsbevx. If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. Constraint: vl< vu. If range $=$ 'A' or 'I', vl and $v u$ are not referenced.
il, iu	INTEGER. If range = 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; il=1 and $i u=0$ if $n=0$. If range $=$ ' A ' or 'V', il and $i u$ are not referenced.
abstol	REAL for chpevx DOUBLE PRECISION for zhpevx The absolute error tolerance to which each eigenvalue is required. See Application notes for details on error tolerance.
$1 d q, 1 d z$	INTEGER. The leading dimensions of the output arrays q and z, respectively. Constraints:

	$I d q \geq 1, \quad l d z \geq 1$ If $j o b z=' V '$, then $l d q \geq \max (1, n)$ and $l d z \geq \max (1, n)$.
iwork	INTEGER. Workspace array, DIMENSION at least max $(1,5 n)$.
Output Parameters	
q	REAL for ssbevx DOUBLE PRECISION for dsbevx. Array, DIMENSION ($1 d z, n$). If jobz = 'V', the n-by-n orthogonal matrix is used in the reduction to tridiagonal form. If jobz = ' N ', the array q is not referenced.
m	INTEGER. The total number of eigenvalues found, $0 \leq m \leq n$. If range = 'A', $m=n$, and if range = 'I', m = iu-il+1.
W, z	REAL for ssbevx DOUBLE PRECISION for dsbevx Arrays: $\left.w^{*}{ }^{*}\right)$, DIMENSION at least $\max (1, n)$. The first m elements of w contain the selected eigenvalues of the matrix A in ascending order. $z(l d z, *)$. The second dimension of z must be at least max $(1, m)$. If jobz $=$ ' V ', then if info $=0$, the first m columns of z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with w(i). If an eigenvector fails to converge, then that column of z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail. If jobz = 'N', then z is not referenced. Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array z; if range $=$ ' V ', the exact value of m is not known in advance and an upper bound must be used.
$a b$	On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. If uplo = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows $k d$ and $k d+1$ of $a b$, and if uplo = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of $a b$.
ifail	INTEGER. Array, DIMENSION at least max $(1, n)$. If jobz $=$ ' V ', then if info $=0$, the first m elements of ifail are zero; if info > 0, the ifail contains the indices the eigenvectors that failed to converge. If jobz = 'N', then ifail is not referenced.
info	INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i-th parameter had an illegal value. If info $=i$, then i eigenvectors failed to converge; their indices are stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

```
Specific details for the routine sbevx interface are the following:
ab Holds the array A of size (kd+1,n).
w Holds the vector with the number of elements n.
z Holds the matrix z of size (n,n), where the values n and m}\mathrm{ are significant.
ifail Holds the vector with the number of elements n.
q Holds the matrix Q of size (n,n).
uplo Must be 'U' or 'L'. The default value is 'U'.
v1 Default value for this element is vl = -HUGE(v1).
vu Default value for this element is vu = HUGE(vl).
il Default value for this argument is il = 1.
iu Default value for this argument is iu = n.
abstol Default value for this element is abstol = 0.0_WP.
jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if either ifail or q is present and z is
omitted.
range Restored based on the presence of arguments vl, vu,il,iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl,vu,il,iu is present,
Note that there will be an error condition if one of or both vl and vu are present
and at the same time one of or both il and iu are present.
```


Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol $\varepsilon^{\star} \max (|a|,|b|)$, where ε is the machine precision.

If abstol is less than or equal to zero, then $\varepsilon^{\star}| | T| |_{1}$ is used as tolerance, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? 1 amch('S'), not zero.
If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

?hbevx

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian band matrix.

Syntax

Fortran 77:

```
call chbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol, m, w,
z, ldz, work, rwork, iwork, ifail, info)
call zhbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol, m, w,
z, ldz, work, rwork, iwork, ifail, info)
```

Fortran 95:

```
call hbevx(ab, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q] [,abstol]
[,infO])
```

```
C:
lapack_int LAPACKE_chbevx( int matrix_order, char jobz, char range, char uplo,
lapack_int n, lapack_int kd, lapack_complex_float* ab, lapack_int ldab,
lapack_complex_float* q, lapack_int ldq, float vl, float vu, lapack_int il, lapack_int
iu, float abstol, lapack_int* m, float* w, lapack_complex_float* z, lapack_int ldz,
lapack_int* ifail );
lapack_int LAPACKE_zhbevx( int matrix_order, char jobz, char range, char uplo,
lapack_int n, lapack_int kd, lapack_complex_double* ab, lapack_int ldab,
lapack_complex_double* q, lapack_int ldq, double vl, double vu, lapack_int il,
lapack_int iu, double abstol, lapack_int* m, double* w, lapack_complex_double* z,
lapack_int ldz, lapack_int* ifail );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobz
    CHARACTER*1. Must be 'N' or 'V'.
    If job = 'N', then only eigenvalues are computed.
    If job = 'V', then eigenvalues and eigenvectors are computed.
range CHARACTER*1.Must be 'A' or 'V' or 'I'.
    If range = 'A', the routine computes all eigenvalues.
    If range = 'V', the routine computes eigenvalues lambda(i) in the half-
    open interval: vl< lambda(i) \leq vu.
    If range = 'I', the routine computes eigenvalues with indices il to iu.
uplo CHARACTER*1.Must be 'U' or 'L'.
    If uplo = 'U', ab stores the upper triangular part of A.
    If uplo = 'L', ab stores the lower triangular part of A.
n INTEGER. The order of the matrix A ( }n\geq0)\mathrm{ .
kd INTEGER. The number of super- or sub-diagonals in A
(kd \geq 0).
COMPLEX for chbevx
DOUBLE COMPLEX for zhbevx.
```


Arrays:

```
ab (ldab,*) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format.
The second dimension of ab must be at least max \((1, n)\).
work (*) is a workspace array.
The dimension of work must be at least max \((1, n)\).
```

```
Idab INTEGER. The leading dimension of ab; must be at least kd +1.
vl, vu
il, iu
abstol
ldq, ldz
rwork
iwork
```


Output Parameters

DOUBLE COMPLEX for zhbevx.
Array z(Idz,*).
The second dimension of z must be at least max $(1, m)$.
If jobz $=$ ' V ', then if info $=0$, the first m columns of z contain the
orthonormal eigenvectors of the matrix A corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector associated
with $w(i)$.
If an eigenvector fails to converge, then that column of z contains the latest
approximation to the eigenvector, and the index of the eigenvector is
returned in ifail.

If jobz $={ }^{\prime} N$ ', then z is not referenced.
Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array z; if range $=$ ' V ', the exact value of m is not known in advance and an upper bound must be used.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form.
If uplo = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows $k d$ and $k d+1$ of $a b$, and if uplo = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of $a b$.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
If jobz $=$ ' V ', then if info $=0$, the first m elements of ifail are zero; if info > 0, the ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, then i eigenvectors failed to converge; their indices are stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine hbevx interface are the following:

$a b$	Holds the array A of size ($k d+1, n)$.
w	Holds the vector with the number of elements n.
z	Holds the matrix z of size (n, n), where the values n and m are significant.
ifail	Holds the vector with the number of elements n.
q	Holds the matrix Q of size (n, n).
uplo	Must be 'U' or 'L'. The default value is 'U'.
vl	Default value for this element is $\mathrm{vl}=-\operatorname{HUGE}(\mathrm{vl})$.
vu	Default value for this element is $v u=\operatorname{HUGE}(\mathrm{vl})$.
il	Default value for this argument is il $=1$.
iu	Default value for this argument is iu $=n$.
abstol	Default value for this element is abstol $=0.0 _\mathrm{WP}$.
jobz	Restored based on the presence of the argument z as follows: jobz $=$ 'V', if z is present, jobz $=$ 'N', if z is omitted Note that there will be an error condition if either ifail or q is present and z is omitted.
range	Restored based on the presence of arguments $v l, v u, i l, i u$ as follows: range $=$ ' V ', if one of or both $v l$ and $v u$ are present, range $=$ 'I', if one of or both il and iu are present, range $=$ ' A ', if none of $v l, v u, i l, i u$ is present, Note that there will be an error condition if one of or both $v l$ and $v u$ are present and at the same time one of or both $i l$ and $i u$ are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol $+\varepsilon * \max (|a|,|b|)$, where ε is the machine precision.

If abstol is less than or equal to zero, then $\varepsilon^{\star}| | T| |_{1}$ will be used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero.

If this routine returns with info >0, indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').
?stev
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix.

Syntax

Fortran 77:

```
call sstev(jobz, n, d, e, z, ldz, work, info)
call dstev(jobz, n, d, e, z, ldz, work, info)
```

Fortran 95:

```
call stev(d, e [,z] [,info])
```

C:

```
lapack_int LAPACKE_<?>stev( int matrix_order, char jobz, lapack_int n, <datatype>* d,
<datatype>* e, <datatype>* z, lapack_int ldz );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobz CHARACTER*1.Must be 'N' or 'V'.
    If jobz = 'N', then only eigenvalues are computed.
    If jobz = 'V', then eigenvalues and eigenvectors are computed.
n
d, e, work
INTEGER. The order of the matrix A ( }n\geq0)\mathrm{ .
REAL for sstev
DOUBLE PRECISION for dstev.
Arrays:
d(*) contains the n diagonal elements of the tridiagonal matrix A.
The dimension of d must be at least max(1,n).
e(*) contains the n-1 subdiagonal elements of the tridiagonal matrix A.
```

The dimension of e must be at least $\max (1, n-1)$. The n-th element of this array is used as workspace.
work (*) is a workspace array.
The dimension of work must be at least max (1, $2 n-2$).
If jobz = 'N', work is not referenced.
$l d z \quad$ INTEGER. The leading dimension of the output array $z ; 1 d z \geq 1$. If $j o b z=$ 'V' then $l d z \geq \max (1, n)$.

Output Parameters

d	On exit, if info $=0$, contains the eigenvalues of the matrix A in ascending order.
z	REAL for sstev
	DOUBLE PRECISION for dstev
	Array, DIMENSION ($1 d z, *$).
	The second dimension of z must be at least max $(1, n)$.
	If jobz $=$ ' V ', then if info $=0, z$ contains the orthonormal eigenvectors of the matrix A, with the i-th column of z holding the eigenvector associated with the eigenvalue returned in $d(i)$.
	If job = 'N', then z is not referenced.
e	On exit, this array is overwritten with intermediate results.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i-th parameter had an illegal value.
	If info $=i$, then the algorithm failed to converge;

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine stev interface are the following:

```
d Holds the vector of length n.
e Holds the vector of length n.
z Holds the matrix z of size ( }n,n)\mathrm{ .
jobz Restored based on the presence of the argument z as follows:
    jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
```


?stevd

Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric tridiagonal matrix using divide and conquer algorithm.
Syntax

Fortran 77:

```
call sstevd(jobz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
call dstevd(jobz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
```


Fortran 95:

```
call stevd(d, e [,z] [,info])
```

C:

```
lapack_int LAPACKE_<?>stevd( int matrix_order, char jobz, lapack_int n, <datatype>* d,
```

<datatype>* e, <datatype>* z, lapack_int ldz);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric tridiagonal matrix T. In other words, the routine can compute the spectral factorization of T as: $T=Z^{\star} \Lambda^{\star} Z^{T}$.

Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ_{i}, and z is the orthogonal matrix whose columns are the eigenvectors z_{i}. Thus,
$T^{\star} z_{i}=\lambda_{i}{ }^{\star} z_{i}$ for $i=1,2, \ldots, n$.
If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the $Q L$ or $Q R$ algorithm.

There is no complex analogue of this routine.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobz CHARACTER*1. Must be 'N' or 'V'.
    If jobz = 'N', then only eigenvalues are computed.
    If jobz = 'V', then eigenvalues and eigenvectors are computed.
n
d, e, work
ldz
lwork
INTEGER. The order of the matrix T ( }n\geq0)\mathrm{ .
REAL for sstevd
DOUBLE PRECISION for dstevd.
```


Arrays:

```
\(d(*)\) contains the \(n\) diagonal elements of the tridiagonal matrix \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e(*)\) contains the \(n-1\) off-diagonal elements of \(T\).
The dimension of \(e\) must be at least \(\max (1, n-1)\). The \(n\)-th element of this array is used as workspace.
work(*) is a workspace array.
The dimension of work must be at least lwork.
ldz INTEGER. The leading dimension of the output array \(z\). Constraints:
\(l d z \geq 1\) if job = 'N';
\(l d z<\max (1, n)\) if job \(=' \mathrm{~V}\) '.
lwork
INTEGER.
The dimension of the array work.
Constraints:
if jobz \(=\) 'N' or \(n \leq 1\), then lwork \(\geq 1\);
```

	if jobz $=$ ' V ' and $n>1$, then 1 work $\geq n^{2}+4 * n+1$. If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.
iwork	INTEGER. Workspace array, its dimension max (1, liwork).
liwork	INTEGER. The dimension of the array iwork. Constraints: if jobz = 'N' or $n \leq 1$, then liwork ≥ 1; if jobz $=$ 'V' and $n>1$, then liwork $\geq 5 *_{n+3}$. If liwork $=-1$, then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.

Output Parameters

On exit, if info $=0$, contains the eigenvalues of the matrix T in ascending order.
See also info.
REAL for sstevd
DOUBLE PRECISION for dstevd
Array, DIMENSION ($l d z, *$).
The second dimension of z must be:
at least 1 if $j o b z=$ 'N';
at least $\max (1, n)$ if $j o b z=' V '$.
If jobz = ' V ', then this array is overwritten by the orthogonal matrix z which contains the eigenvectors of T.
If jobz $=$ ' N ', then z is not referenced.
On exit, this array is overwritten with intermediate results.
On exit, if 1 work >0, then work (1) returns the required minimal size of lwork.
On exit, if liwork > 0, then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=i$, then the algorithm failed to converge; i indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
If info $=-i$, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine stevd interface are the following:
d
Holds the vector of length n.

```
e Holds the vector of length n.
z Holds the matrix z of size ( }n,n)\mathrm{ .
jobz Restored based on the presence of the argument z as follows:
jobz = 'V',if z is present,
jobz = 'N', if z is omitted.
```


Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix $T+E$ such that $\left.\left||E|_{2}=O(\varepsilon) *\right||T|\right|_{2}$, where ε is the machine precision.

If λ_{i} is an exact eigenvalue, and m_{i} is the corresponding computed value, then
$\left|\mu_{i}-\lambda_{i}\right| \leq C(n) * \varepsilon^{\star}| | T| |_{2}$
where $c(n)$ is a modestly increasing function of n.
If z_{i} is the corresponding exact eigenvector, and w_{i} is the corresponding computed vector, then the angle $\theta\left(z_{i}, w_{i}\right)$ between them is bounded as follows:
$\theta\left(z_{i}, w_{i}\right) \leq c(n) \star \varepsilon^{\star}| | T| |_{2} / \min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right|$.
Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the other eigenvalues.

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run, or set lwork $=-1$ (liwork $=-1$).

If lwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If $\operatorname{lwork}=-1$ (liwork $=-1$), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if lwork (liwork) is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

?stevx

Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.

Syntax

Fortran 77:

```
call sstevx(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info)
call dstevx(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info)
```

Fortran 95:

```
call stevx(d, e, w [, z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol] [,info])
```

```
C:
lapack_int LAPACKE_<?>stevx( int matrix_order, char jobz, char range, lapack_int n,
<datatype>* d, <datatype>* e, <datatype> vl, <datatype> vu, lapack_int il, lapack_int
iu, <datatype> abstol, lapack_int* m, <datatype>* w, <datatype>* z, lapack_int ldz,
lapack_int* ifail );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

jobz	CHARACTER*1. Must be 'N' or 'V'.
	If job = ' N ', then only eigenvalues are computed.
	If job $=$ 'V', then eigenvalues and eigenvectors are computed.
range	CHARACTER*1. Must be 'A' or 'V' or 'I'.
	If range $=$ ' A ', the routine computes all eigenvalues.
	If range $=$ ' V ', the routine computes eigenvalues $\operatorname{lambda}(i)$ in the halfopen interval: vl<lambda(i) $\leq v u$.
	If range = 'I', the routine computes eigenvalues with indices il to iu.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
d, e, work	REAL for sstevx
	DOUBLE PRECISION for dstevx.
	Arrays:
	$d\left({ }^{*}\right)$ contains the n diagonal elements of the tridiagonal matrix A.
	The dimension of d must be at least max $(1, n)$.
	The dimension of e must be at least $\max (1, n-1)$. The n-th element of this array is used as workspace. work(*) is a workspace array.
	The dimension of work must be at least max(1,5n).
vl, vu	REAL for sstevx
	DOUBLE PRECISION for dstevx.
	If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues.
	Constraint: vl< vu.
	If range $=$ 'A' or 'I', vl and vu are not referenced.
il, iu	INTEGER.
	If range = 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
	Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; il=1 and $i u=0$ if $n=0$.

	If range $=$ ' A ' or 'V', il and $i u$ are not referenced.
abstol	REAL for sstevx
	DOUBLE PRECISION for dstevx. The absolute error tolerance to which each eigenvalue is required. See Application notes for details on error tolerance.
$1 d z$	INTEGER. The leading dimensions of the output array $z ; I d z \geq 1$. If jobz $=' \mathrm{~V}$ ', then $l d z \geq \max (1, n)$.
iwork	INTEGER. Workspace array, DIMENSION at least max(1, $5 n$).

Output Parameters

m
INTEGER. The total number of eigenvalues found,
$0 \leq m \leq n$.
If range $=$ 'A', $m=n$, and if range $=$ 'I', $m=i u-i l+1$.
REAL for sstevx
DOUBLE PRECISION for dstevx.
Arrays:
$w(*)$, DIMENSION at least $\max (1, n)$.
The first m elements of w contain the selected eigenvalues of the matrix A in ascending order.
$z(I d z, *)$.
The second dimension of z must be at least max $(1, m)$.
If jobz $=$ ' V ', then if info $=0$, the first m columns of z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with $w(i)$.
If an eigenvector fails to converge, then that column of z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz $=$ ' N ', then z is not referenced.
Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array z; if range $=$ ' V ', the exact value of m is not known in advance and an upper bound must be used.
On exit, these arrays may be multiplied by a constant factor chosen to avoid overflow or underflow in computing the eigenvalues.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
If jobz = 'V', then if info $=0$, the first m elements of ifail are zero; if info >0, the ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, then i eigenvectors failed to converge; their indices are stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine stevx interface are the following:

d	Holds the vector of length n.
e	Holds the vector of length n.
w	Holds the vector of length n.
z	Holds the matrix z of size (n, n), where the values n and m are significant.
ifail	Holds the vector of length n.
vl	Default value for this element is $\mathrm{vl}=-\operatorname{HUGE}(\mathrm{vl})$.
vu	Default value for this element is $v u=\operatorname{HUGE}(\mathrm{vl})$.
il	Default value for this argument is il $=1$.
iu	Default value for this argument is iu $=n$.
abstol	Default value for this element is abstol $=0.0{ }^{\text {a }} \mathrm{WP}$.
jobz	Restored based on the presence of the argument z as follows: jobz = 'V', if z is present, jobz $=$ 'N', if z is omitted Note that there will be an error condition if ifail is present and z is omitted.
range	Restored based on the presence of arguments $v l, v u, i l, i u$ as follows: range $=$ ' V ', if one of or both $v l$ and vu are present, range $=$ 'I', if one of or both il and iu are present, range $=$ ' A ', if none of $v l, v u, i l, i u$ is present, Note that there will be an error condition if one of or both $v l$ and $v u$ are present and at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ $\varepsilon^{\star} \max (|a|,|b|)$, where ε is the machine precision.

If abstol is less than or equal to zero, then $\varepsilon^{\star}| | A| |^{1}$ is used instead. Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold 2^{*} ? lamch('S'), not zero.

If this routine returns with info >0, indicating that some eigenvectors did not converge, set abstol to 2 *? lamch('S').

```
?stevr
Computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric tridiagonal matrix
using the Relatively Robust Representations.
Syntax
```

Fortran 77:

```
call sstevr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work,
lwork, iwork, liwork, info)
call dstevr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work,
lwork, iwork, liwork, info)
```


Fortran 95:

```
call stevr(d, e, w [, z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol] [,info])
```

```
C:
lapack_int LAPACKE_<?>stevr( int matrix_order, char jobz, char range, lapack_int n,
<datatype>* d, <datatype>* e, <datatype> vl, <datatype> vu, lapack_int il, lapack_int
iu, <datatype> abstol, lapack_int* m, <datatype>* w, <datatype>* z, lapack_int ldz,
lapack_int* isuppz );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Whenever possible, the routine calls stemr to compute the eigenspectrum using Relatively Robust Representations. stegr computes eigenvalues by the dqds algorithm, while orthogonal eigenvectors are computed from various "good" $L * D^{\star} L^{T}$ representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of T :
a. Compute $T-\sigma_{i}=L_{i} * D_{i} * L_{i}{ }^{T}$, such that $L_{i} * D_{i} * L_{i}{ }^{T}$ is a relatively robust representation.
b. Compute the eigenvalues, λ_{j}, of $L_{i} \star D_{i} \star L_{i}{ }^{T}$ to high relative accuracy by the dqds algorithm.
C. If there is a cluster of close eigenvalues, "choose" σ_{i} close to the cluster, and go to Step (a).
d. Given the approximate eigenvalue λ_{j} of $L_{i}{ }^{*} D_{i}{ }^{*} L_{i}{ }^{T}$, compute the corresponding eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.
The routine ?stevr calls stemr when the full spectrum is requested on machines which conform to the IEEE-754 floating point standard. ?stevr calls stebz and stein on non-IEEE machines and when partial spectrum requests are made.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

jobz	CHARACTER*1. Must be 'N' or 'V'.
	If jobz = 'N', then only eigenvalues are computed.
	If jobz = 'V', then eigenvalues and eigenvectors are computed.
range	CHARACTER*1. Must be 'A' or 'V' or 'I'.
	If range $=$ ' A ', the routine computes all eigenvalues.
	If range = ' V ', the routine computes eigenvalues $\operatorname{lambda(i)}$ in the halfopen interval:
	vl<lambda (i) \leq vu.
	If range = 'I', the routine computes eigenvalues with indices il to iu.
	For range $=$ 'V'or 'I' and $i u-i l<n-1$, sstebz/dstebz and sstein/ dstein are called.
n	INTEGER. The order of the matrix $T(n \geq 0)$.
d, e, work	REAL for sstevr
	DOUBLE PRECISION for dstevr.

Arrays:
$d(*)$ contains the n diagonal elements of the tridiagonal matrix T. The dimension of d must be at least $\max (1, n)$.
$e(*)$ contains the $n-1$ subdiagonal elements of A.
The dimension of e must be at least $\max (1, n-1)$. The n-th element of this array is used as workspace.
work is a workspace array, its dimension max (1, lwork).
REAL for sstevr
DOUBLE PRECISION for dstevr.
If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.
INTEGER.
If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; il=1 and iu=0 if $n=0$. If range $=$ 'A' or 'V', il and iu are not referenced.
REAL for sstevr
DOUBLE PRECISION for dstevr.
The absolute error tolerance to which each eigenvalue/eigenvector is required.
If jobz = ' V ', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by abstol. If abstol < n *eps*|T|, then n *eps*|T| will be used in its place, where eps is the machine precision, and $|T|$ is the 1 -norm of the matrix T. The eigenvalues are computed to an accuracy of eps* $|T|$ irrespective of abstol.
If high relative accuracy is important, set abstol to ?lamch('S').
INTEGER. The leading dimension of the output array z.
Constraints:
$l d z \geq 1$ if $j o b z=' N ' ;$
$l d z \geq \max (1, n)$ if jobz = 'V'.
INTEGER.
The dimension of the array work. Constraint:
lwork $\geq \max (1,20 * n)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.

INTEGER.
Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array iwork,
lwork $\geq \max (1,10 * n)$.
If liwork $=-1$, then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.

Output Parameters

m
d, e
isuppz
work(1)
iwork(1)
info

INTEGER. The total number of eigenvalues found,
$0 \leq m \leq n$. If range $=$ 'A', $m=n$, and if range $=$ 'I', $m=i u-i l+1$.
REAL for sstevr
DOUBLE PRECISION for dstevr.

Arrays:

w (*), DIMENSION at least max $(1, n)$.
The first m elements of w contain the selected eigenvalues of the matrix T in ascending order.
$z(l d z, *)$.
The second dimension of z must be at least max $(1, m)$.
If jobz $=$ ' V ', then if info $=0$, the first m columns of z contain the orthonormal eigenvectors of the matrix T corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with w(i).
If jobz = 'N', then z is not referenced.
Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array z; if range $=$ ' V ', the exact value of m is not known in advance and an upper bound must be used.
On exit, these arrays may be multiplied by a constant factor chosen to avoid overflow or underflow in computing the eigenvalues.

INTEGER.
Array, DIMENSION at least 2 *max $(1, m)$.
The support of the eigenvectors in z, i.e., the indices indicating the nonzero elements in z. The i-th eigenvector is nonzero only in elements isuppz ($2 i-1$) through isuppz ($2 i$).
Implemented only for range $=$ 'A' or 'I' and iu-il $=n-1$.
On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
On exit, if info $=0$, then iwork(1) returns the required minimal size of liwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, an internal error has occurred.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine stevr interface are the following:

d	Holds the vector of length n.
e	Holds the vector of length n.
w	Holds the vector of length n.
z	Holds the matrix z of size (n, n), where the values n and m are significant.
$i s u p p z$	Holds the vector of length $\left(2 *_{n}\right)$, where the values $\left(2 *_{m}\right)$ are significant.
$v l$	Default value for this element is $v l=-\operatorname{HUGE}(v l)$.
$v u$	Default value for this element is $v u=\operatorname{HUGE}(v l)$.

il	Default value for this argument is il $=1$.
iu	Default value for this argument is iu $=n$.
abstol	Default value for this element is abstol $=0.0{ }_{\text {l }} \mathrm{WP}$.
jobz	Restored based on the presence of the argument z as follows: jobz $=$ 'V', if z is present, jobz $=$ 'N', if z is omitted Note that there will be an error condition if ifail is present and z is omitted.
range	Restored based on the presence of arguments $v l, v u, i l, i u$ as follows: range $=$ ' V ', if one of or both $v l$ and vu are present, range $=$ 'I', if one of or both il and iu are present, range $=$ ' A ', if none of $v l, v u, i l, i u$ is present, Note that there will be an error condition if one of or both $v l$ and $v u$ are present and at the same time one of or both $i l$ and $i u$ are present.

Application Notes

Normal execution of the routine ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the IEEE standard default manner.
If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run, or set lwork $=-1$ (liwork $=-1$).

If lwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If $\operatorname{lwork}=-1$ (liwork $=-1$), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if lwork (liwork) is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

Nonsymmetric Eigenproblems

This section describes LAPACK driver routines used for solving nonsymmetric eigenproblems. See also computational routines that can be called to solve these problems.

Table "Driver Routines for Solving Nonsymmetric Eigenproblems" lists all such driver routines for the FORTRAN 77 interface. Respective routine names in the Fortran 95 interface are without the first symbol (see Routine Naming Conventions).

Driver Routines for Solving Nonsymmetric Eigenproblems

Routine Name	Operation performed
gees	Computes the eigenvalues and Schur factorization of a general matrix, and orders the factorization so that selected eigenvalues are at the top left of the Schur form.
geesx	Computes the eigenvalues and Schur factorization of a general matrix, orders the factorization and computes reciprocal condition numbers.
geev	Computes the eigenvalues and left and right eigenvectors of a general matrix.

Routine Name	Operation performed
geevx	Computes the eigenvalues and left and right eigenvectors of a general matrix, with preliminary matrix balancing, and computes reciprocal condition numbers for the eigenvalues and right eigenvectors.

?gees

Computes the eigenvalues and Schur factorization of a general matrix, and orders the factorization so that selected eigenvalues are at the top left of the Schur form.

Syntax

Fortran 77:

```
call sgees(jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs, work, lwork, bwork,
info)
call dgees(jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs, work, lwork, bwork,
info)
call cgees(jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs, work, lwork, rwork,
bwork, info)
call zgees(jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs, work, lwork, rwork,
bwork, info)
```


Fortran 95:

```
call gees(a, wr, wi [,vs] [,select] [,sdim] [,info])
call gees(a, w [,vs] [,select] [,sdim] [,info])
```

C:

```
lapack_int LAPACKE_sgees( int matrix_order, char jobvs, char sort, LAPACK_S_SELECT2
select, lapack_int n, float* a, lapack_int lda, lapack_int* sdim, float* wr, float*
wi, float* vs, lapack_int ldvs );
lapack_int LAPACKE_dgees( int matrix_order, char jobvs, char sort, LAPACK_D_SELECT2
select, lapack_int n, double* a, lapack_int lda, lapack_int* sdim, double* wr, double*
wi, double* vS, lapack_int ldvs );
lapack_int LAPACKE_cgees( int matrix_order, char jobvs, char sort, LAPACK_C_SELECT1
select, lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_int* sdim,
lapack_complex_float* w, lapack_complex_float* vs, lapack_int ldvs );
lapack_int LAPACKE_zgees( int matrix_order, char jobvs, char sort, LAPACK_Z_SELECT1
select, lapack_int n, lapack_complex_double* a, lapack_int lda, lapack_int* sdim,
lapack_complex_double* w, lapack_complex_double* vS, lapack_int ldvs );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes for an n-by-n real/complex nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the matrix of Schur vectors Z. This gives the Schur factorization $A=Z^{\star} T^{\star} Z^{H}$.

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that selected eigenvalues are at the top left. The leading columns of z then form an orthonormal basis for the invariant subspace corresponding to the selected eigenvalues.
A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form

$$
\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right)
$$

where $b^{\star} c<0$. The eigenvalues of such a block are $a \pm \sqrt{b c}$
A complex matrix is in Schur form if it is upper triangular.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobvs
sort
select
n
a, work
If jobvs = 'N', then Schur vectors are not computed. If jobvs \(=\) ' \(V\) ', then Schur vectors are computed.
CHARACTER*1. Must be 'N' or 'S'. Specifies whether or not to order the eigenvalues on the diagonal of the Schur form.
If sort \(=' \mathrm{~N}\) ', then eigenvalues are not ordered.
If sort = 'S', eigenvalues are ordered (see select).
LOGICAL FUNCTION of two REAL arguments for real flavors.
LOGICAL FUNCTION of one COMPLEX argument for complex flavors. select must be declared EXTERNAL in the calling subroutine.
If sort \(=\) 'S', select is used to select eigenvalues to sort to the top left of the Schur form.
If sort = 'N', select is not referenced.
For real flavors:
An eigenvalue \(w r(\mathbf{j})+\operatorname{sqrt}(-1){ }^{*} w i(\mathrm{j})\) is selected if \(\operatorname{select}(w r(\mathbf{j}), w i(\mathrm{j}))\) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.
Note that a selected complex eigenvalue may no longer satisfy \(\operatorname{select}(w r(j), w i(j))=\).TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is illconditioned); in this case info may be set to \(n+2\) (see info below). For complex flavors:
An eigenvalue \(w(j)\) is selected if \(\operatorname{select}(w(j))\) is true.
INTEGER. The order of the matrix \(A(n \geq 0)\).
REAL for sgees
DOUBLE PRECISION for dgees
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Arrays:
a(lda,*) is an array containing the \(n\)-by-n matrix \(A\). The second dimension of a must be at least max \((1, n)\).
```

	work is a workspace array, its dimension max (1, lwork).
Ida	INTEGER. The leading dimension of the array a. Must be at least max $1, n$).
Idvs	INTEGER. The leading dimension of the output array vs. Constraints: ```ldvs \geq 1; ldvs \geq max(1, n) if jobvs = 'V'.```
lwork	INTEGER. The dimension of the array work. Constraint: lwork $\geq \max (1,3 n)$ for real flavors; lwork $\geq \max (1,2 n)$ for complex flavors. If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
rwork	REAL for cgees DOUBLE PRECISION for zgees Workspace array, DIMENSION at least max $(1, n)$. Used in complex flavors only.
bwork	LOGICAL. Workspace array, DIMENSION at least max $(1, n)$. Not referenced if sort = 'N'.

Output Parameters

a sdim
wr, wi
w
vs

On exit, this array is overwritten by the real-Schur/Schur form T.
INTEGER.
If sort $=$ 'N', sdim= 0 .
If sort $=$ ' S ', sdim is equal to the number of eigenvalues (after sorting)
for which select is true.
Note that for real flavors complex conjugate pairs for which select is true for either eigenvalue count as 2 .

REAL for sgees
DOUBLE PRECISION for dgees
Arrays, DIMENSION at least max $(1, n)$ each. Contain the real and imaginary parts, respectively, of the computed eigenvalues, in the same order that they appear on the diagonal of the output real-Schur form T. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Array, DIMENSION at least max $(1, n)$. Contains the computed eigenvalues. The eigenvalues are stored in the same order as they appear on the diagonal of the output Schur form T.

REAL for sgees
DOUBLE PRECISION for dgees
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Array vs(ldvs,*);the second dimension of vs must be at least max(1, n). If jobvs = 'V', vs contains the orthogonal/unitary matrix z of Schur vectors.
If jobvs = 'N', vs is not referenced.

work(1)	On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i th parameter had an illegal value.
	If info $=i$, and
	$i \leq n$:
	the $Q R$ algorithm failed to compute all the eigenvalues; elements 1:ilo-1 and $i+1: n$ of $w r$ and wi (for real flavors) or w (for complex flavors) contain those eigenvalues which have converged; if jobvs = 'V', vs contains the matrix which reduces A to its partially converged Schur form;
	$i=n+1$:
	the eigenvalues could not be reordered because some eigenvalues were too close to separate (the problem is very ill-conditioned); $i=n+2 \text { : }$
	after reordering, round-off changed values of some complex eigenvalues so that leading eigenvalues in the Schur form no longer satisfy
	$=$. TRUE.. This could also be caused by underflow due to scaling.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine gees interface are the following:

a	Holds the matrix A of size (n, n).
$w r$	Holds the vector of length n. Used in real flavors only.
$w i$	Holds the vector of length n. Used in real flavors only.
w	Holds the vector of length n. Used in complex flavors only.
$v s$	Holds the matrix vs of size (n, n).
jobvs	Restored based on the presence of the argument vs as follows: jobvs $=' \mathrm{~V} ', ~ i f ~ v s ~ i s ~ p r e s e n t, ~$
jobvs $=' N ', ~ i f ~ v s ~ i s ~ o m i t t e d . ~$	

sort Restored based on the presence of the argument select as follows:
sort = 'S', if select is present,
sort $=$ ' N ', if select is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set l work to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

?geesx

Computes the eigenvalues and Schur factorization of a general matrix, orders the factorization and computes reciprocal condition numbers.

Syntax

Fortran 77:

```
call sgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs, ldvs, rconde,
rcondv, work, lwork, iwork, liwork, bwork, info)
call dgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs, ldvs, rconde,
rcondv, work, lwork, iwork, liwork, bwork, info)
call cgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs, ldvs, rconde, rcondv,
work, lwork, rwork, bwork, info)
call zgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs, ldvs, rconde, rcondv,
work, lwork, rwork, bwork, info)
```

Fortran 95:

```
call geesx(a, wr, wi [,vs] [,select] [,sdim] [,rconde] [,rcondev] [,info])
call geesx(a, w [,vs] [,select] [,sdim] [,rconde] [,rcondev] [,info])
```

C:
lapack_int LAPACKE_sgeesx(int matrix_order, char jobvs, char sort, LAPACK_S_SELECT2

wr, float* wi, float* vs, lapack_int ldvs, float* rconde, float* rcondv);
lapack_int LAPACKE_dgeesx(int matrix_order, char jobvs, char sort, LAPACK_D_SELECT2

wr, double* wi, double* vs, lapack_int ldvs, double* rconde, double* rcondv);
lapack_int LAPACKE_cgeesx(int matrix_order, char jobvs, char sort, LAPACK_C_SELECT1
select, char sense, lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_int*

rconde, float* rcondv);
lapack_int LAPACKE_zgeesx (int matrix_order, char jobvs, char sort, LAPACK_Z_SELECT1
select, char sense, lapack_int n, lapack_complex_double* a, lapack_int lda,
lapack_int* sdim, lapack_complex_double* w, lapack_complex_double* vs, lapack_int ldvs,
double* rconde, double* rcondv);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes for an n-by- n real/complex nonsymmetric matrix A, the eigenvalues, the real-Schur/ Schur form T, and, optionally, the matrix of Schur vectors Z. This gives the Schur factorization $A=Z^{\star} T^{\star} Z^{H}$.

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that selected eigenvalues are at the top left; computes a reciprocal condition number for the average of the selected eigenvalues (rconde); and computes a reciprocal condition number for the right invariant subspace corresponding to the selected eigenvalues (rcondv). The leading columns of z form an orthonormal basis for this invariant subspace.

For further explanation of the reciprocal condition numbers rconde and rcondv, see [LUG], Section 4.10 (where these quantities are called s and sep respectively).
A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form

$$
\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right)
$$

where $b^{*} c<0$. The eigenvalues of such a block are $a \pm \sqrt{b C}$
A complex matrix is in Schur form if it is upper triangular.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

jobvs	CHARACTER*1. Must be 'N' or 'V'.
	If jobvs = 'N', then Schur vectors are not computed.
	If jobvs = 'V', then Schur vectors are computed.
sort	CHARACTER*1. Must be 'N' or 'S'. Specifies whether or not to order the eigenvalues on the diagonal of the Schur form. If sort $=$ ' N ', then eigenvalues are not ordered. If sort $=$ 'S', eigenvalues are ordered (see select).
select	LOGICAL FUNCTION of two REAL arguments for real flavors.
	LOGICAL FUNCTION of one COMPLEX argument for complex flavors. select must be declared EXTERNAL in the calling subroutine.
	If sort = 'S', select is used to select eigenvalues to sort to the top left of the Schur form.
	If sort = 'N', select is not referenced.
	For real flavors:
	An eigenvalue $w r(\mathbf{j})+\operatorname{sqrt}(-1){ }^{*} w i(\mathbf{j})$ is selected if $\operatorname{select}(w r(\mathbf{j}), w i(\mathbf{j}))$ is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.
	Note that a selected complex eigenvalue may no longer satisfy select $(w r(j), w i(j))=$.TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is illconditioned); in this case info may be set to $n+2$ (see info below).
	For complex flavors:
	An eigenvalue $w(j)$ is selected if $\operatorname{select}(w(j))$ is true.
sense	CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed.
	If sense = 'N', none are computed;
	If sense = 'E', computed for average of selected eigenvalues only;

	If sense $=$ ' V ', computed for selected right invariant subspace only; If sense $=$ ' B ', computed for both. If sense is 'E', 'V', or 'B', then sort must equal 'S'.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
a, work	REAL for sgeesx
	DOUBLE PRECISION for dgeesx
	COMPLEX for cgeesx
	DOUBLE COMPLEX for zgeesx.
	Arrays:
	$a(l d a, *)$ is an array containing the n-by-n matrix A.
	The second dimension of a must be at least $\max (1, n)$. work is a workspace array, its dimension max (1, lwork)
Ida	INTEGER. The leading dimension of the array a. Must be at least max ($1, n$).
ldvs	INTEGER. The leading dimension of the output array vs. Constraints:
	Idvs $\geq 1 ;$
	Idvs $\geq \max (1, n)$ if jobvs = 'V'.
Iwork	INTEGER.
	The dimension of the array work. Constraint:
	lwork $\geq \max (1,3 n)$ for real flavors;
	1 work $\geq \max (1,2 n)$ for complex flavors.
	Also, if sense = 'E', 'V', or 'B', then
	lwork $\geq n+2 *$ sdim* (n-sdim) for real flavors;
	lwork $\geq 2{ }^{*}$ sdim* (n-sdim) for complex flavors; $^{\text {s }}$ where sdim is the number of selected eigenvalues computed by this routine.
	Note that $2 * \operatorname{sdim}^{\star}(n-s d i m) \leq n^{\star} n / 2$. Note also that an error is only returned if 1 work<max $(1,2 * n)$, but if sense $=' E$ ', or ' V ', or ' B^{\prime} this may not be large enough.
	For good performance, lwork must generally be larger.
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates upper bound on the optimal size of the array work, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
iwork	INTEGER.
	Workspace array, DIMENSION (liwork). Used in real flavors only. Not referenced if sense = 'N' or 'E'.
liwork	INTEGER.
	The dimension of the array iwork. Used in real flavors only.
	Constraint:
	liwork $\geq 1 ;$
	if sense $=$ 'V' or 'B', liwork $\geq \operatorname{sdim}$ (n-sdim).
rwork	REAL for cgeesx
	DOUBLE PRECISION for zgeesx
	Workspace array, DIMENSION at least max $(1, n)$. Used in complex flavors only.
bwork	LOGICAL. Workspace array, DIMENSION at least max $(1, n)$. Not referenced if sort $=$ 'N'.

Output Parameters

sdim	INTEGER.
	If sort = 'N', sdim=0.
	If sort = 'S', sdim is equal to the number of eigenvalues (after sorting) for which select is true.
	Note that for real flavors complex conjugate pairs for which select is true for either eigenvalue count as 2.
wr, wi	REAL for sgeesx
	DOUBLE PRECISION for dgeesx
	Arrays, DIMENSION at least max $(1, n)$ each. Contain the real and imaginary parts, respectively, of the computed eigenvalues, in the same order that they appear on the diagonal of the output real-Schur form τ. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.
w	COMPLEX for cgeesx
	DOUBLE COMPLEX for zgeesx.
	Array, DIMENSION at least max (1, n). Contains the computed eigenvalues.
	The eigenvalues are stored in the same order as they appear on the diagonal of the output Schur form T.
vs	REAL for sgeesx
	DOUBLE PRECISION for dgeesx
	COMPLEX for cgeesx
	DOUBLE COMPLEX for zgeesx.
	Array vs(ldvs,*); the second dimension of vs must be at least max(1, n).
	If jobvs = 'V', vs contains the orthogonal/unitary matrix z of Schur vectors.
	If jobvs = 'N', vs is not referenced.
rconde, rcondv	REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
	If sense = 'E' or 'B', rconde contains the reciprocal condition number for the average of the selected eigenvalues. If sense $=$ ' N ' or ' V ', rconde is not referenced.
	If sense $=$ ' V ' or ' B ', rcondv contains the reciprocal condition number for the selected right invariant subspace.
	If sense = 'N' or 'E', rcondv is not referenced.
work(1)	On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i th parameter had an illegal value.
	If info $=i$, and
	$i \leq n$:
	the $Q R$ algorithm failed to compute all the eigenvalues; elements 1:ilo-1 and $i+1$:n of wr and wi (for real flavors) or w (for complex flavors) contain those eigenvalues which have converged; if jobvs = 'V', vs contains the transformation which reduces A to its partially converged Schur form; $i=n+1$:
	the eigenvalues could not be reordered because some eigenvalues were too close to separate (the problem is very ill-conditioned);
	$i=n+2$:
	after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the Schur form no longer satisfy select
	= . TRUE . . This could also be caused by underflow due to scaling.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine geesx interface are the following:

```
a Holds the matrix A of size ( }n,n)\mathrm{ .
wr Holds the vector of length (n). Used in real flavors only.
wi Holds the vector of length (n). Used in real flavors only.
w Holds the vector of length (n). Used in complex flavors only.
VS Holds the matrix VS of size ( }n,n)\mathrm{ .
jobvs Restored based on the presence of the argument vs as follows:
jobvs = 'V',if vs is present,
jobvs = 'N', if vs is omitted.
sort Restored based on the presence of the argument select as follows:
sort = 'S', if select is present,
sort = 'N', if select is omitted.
sense Restored based on the presence of arguments rconde and rcondv as follows:
sense = 'B', if both rconde and rcondv are present,
sense = 'E', if rconde is present and rcondv omitted,
sense = 'V', if rconde is omitted and rcondv present,
sense = 'N', if both rconde and rcondv are omitted.
```


Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork) for the first run or set lwork $=-1$ (liwork $=-1$).

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if you set lwork (liwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

?geev

Computes the eigenvalues and left and right
eigenvectors of a general matrix.

Syntax

Fortran 77:

```
call sgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork, info)
call dgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork, info)
call cgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork, info)
call zgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork, info)
```


Fortran 95:

```
call geev(a, wr, wi [,vl] [,vr] [,info])
```

```
call geev(a, w [,vl] [,vr] [,info])
```


C:

```
lapack_int LAPACKE_sgeev( int matrix_order, char jobvl, char jobvr, lapack_int n,
float* a, lapack_int lda, float* wr, float* wi, float* vl, lapack_int ldvl, float* vr,
lapack_int ldvr );
lapack_int LAPACKE_dgeev( int matrix_order, char jobvl, char jobvr, lapack_int n,
double* a, lapack_int lda, double* wr, double* wi, double* vl, lapack_int ldvl,
double* vr, lapack_int ldvr );
lapack_int LAPACKE_cgeev( int matrix_order, char jobvl, char jobvr, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* w, lapack_complex_float*
vl, lapack_int ldvl, lapack_complex_float* vr, lapack_int ldvr );
lapack_int LAPACKE_zgeev( int matrix_order, char jobvl, char jobvr, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* w,
lapack_complex_double* vl, lapack_int ldvl, lapack_complex_double* vr, lapack_int
ldvr );
```

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes for an n-by- n real/complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector $\mathrm{v}(\mathrm{j})$ of A satisfies
$A^{*} V(j)=\lambda(j){ }^{*} V(j)$
where $\lambda(j)$ is its eigenvalue.
The left eigenvector $u(\mathrm{j})$ of A satisfies
$u(j)^{T \star} A=\lambda(j) * u(j)^{T}$
where $u(\mathrm{j})^{T}$ denotes the transpose of $u(\mathrm{j})$. The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobvl
CHARACTER*1. Must be 'N' or 'V'.
    If jobvl = 'N', then left eigenvectors of A are not computed.
    If jobvl = 'V', then left eigenvectors of A are computed.
jobvr CHARACTER*1. Must be 'N' or 'V'.
    If jobvr = 'N', then right eigenvectors of A are not computed.
    If jobvr = 'V', then right eigenvectors of }A\mathrm{ are computed.
n
a, work
INTEGER. The order of the matrix A ( }n\geq0)\mathrm{ .
REAL for sgeev
DOUBLE PRECISION for dgeev
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
```

Arrays:
$a(I d a, *)$ is an array containing the $n-b y-n$ matrix A.
The second dimension of a must be at least max $(1, n)$.
work is a workspace array, its dimension max (1,1 work).
lda
ldvl, ldvr

I work
rwork

Output Parameters

```
wr, wi
```

w
vl, vr

On exit, this array is overwritten by intermediate results.
REAL for sgeev
DOUBLE PRECISION for dgeev
Arrays, DIMENSION at least max $(1, n)$ each.
Contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.

```
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
```

Array, DIMENSION at least max $(1, n)$.
Contains the computed eigenvalues.
REAL for sgeev
DOUBLE PRECISION for dgeev
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Arrays:
vl(ldvl,*); the second dimension of vl must be at least max $(1, n)$.
If jobvl = ' V ', the left eigenvectors $u(j)$ are stored one after another in the columns of $v l$, in the same order as their eigenvalues.
If jobvl = 'N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then $u(j)=v l(:, j)$, the j-th column of $v l$.

If the j-th and $(j+1)$-st eigenvalues form a complex conjugate pair, then $u(j)=v l(:, j)+i * v l(:, j+1)$ and $u(j+1)=v l(:, j)-i * v l(:, j$ $+1)$, where $i=\operatorname{sqrt}(-1)$.
For complex flavors:
$u(j)=v I(:, j)$, the j-th column of $v l$.
$v r\left(l d v r,{ }^{*}\right)$; the second dimension of $v r$ must be at least $\max (1, n)$.
If jobvr = ' V ', the right eigenvectors $\mathrm{v}(\mathrm{j})$ are stored one after another in the columns of $v r$, in the same order as their eigenvalues.
If jobvr = 'N', vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, then $v(j)=v r(:, j)$, the j-th column of $v r$. If the j-th and $(j+1)$-st eigenvalues form a complex conjugate pair, then $v(j)=v r(:, j)+i * v r(:, j+1)$ and $v(j+1)=v r(:, j)-i * v r(:, j$ $+1)$, where $i=\operatorname{sqrt}(-1)$.
For complex flavors:
$v(j)=v r(:, j)$, the j-th column of $v r$.
work(1)
info
On exit, if info $=0$, then work (1) returns the required minimal size of
lwork.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If info $=i$, the $Q R$ algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements $i+1: n$ of wr and wi (for real flavors) or w (for complex flavors) contain those eigenvalues which have converged.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine geev interface are the following:

```
a Holds the matrix A of size ( }n,n)\mathrm{ .
wr Holds the vector of length n. Used in real flavors only.
wi Holds the vector of length n. Used in real flavors only.
w Holds the vector of length n. Used in complex flavors only.
vl Holds the matrix VL of size ( }n,n)\mathrm{ .
vr Holds the matrix VR of size ( }n,n)\mathrm{ .
jobvl Restored based on the presence of the argument vl as follows:
    jobvl = 'V', if vl is present,
    jobvl = 'N', if vl is omitted.
```

jobvr Restored based on the presence of the argument vr as follows:
jobvr = 'V', if vr is present,
jobvr = 'N', if $v r$ is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

?geevx

Computes the eigenvalues and left and right eigenvectors of a general matrix, with preliminary matrix balancing, and computes reciprocal condition numbers for the eigenvalues and right eigenvectors.

Syntax

Fortran 77:

```
call sgeevx(balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, ilo,
ihi, scale, abnrm, rconde, rcondv, work, lwork, iwork, info)
call dgeevx(balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, ilo,
ihi, scale, abnrm, rconde, rcondv, work, lwork, iwork, info)
call cgeevx(balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl, vr, ldvr, ilo, ihi,
scale, abnrm, rconde, rcondv, work, lwork, rwork, info)
call zgeevx(balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl, vr, ldvr, ilo, ihi,
scale, abnrm, rconde, rcondv, work, lwork, rwork, info)
```


Fortran 95:

```
call geevx(a, wr, wi [,vl] [,vr] [,balanc] [,ilo] [,ihi] [,scale] [,abnrm] [, rconde]
[,rcondv] [,info])
call geevx(a, w [,vl] [,vr] [,balanc] [,ilo] [,ihi] [,scale] [,abnrm] [,rconde] [,
rcondv] [,info])
```

C:

```
lapack_int LAPACKE_sgeevx( int matrix_order, char balanc, char jobvl, char jobvr, char
sense, lapack_int n, float* a, lapack_int lda, float* wr, float* wi, float* vl,
lapack_int ldvl, float* vr, lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, float*
scale, float* abnrm, float* rconde, float* rcondv );
lapack_int LAPACKE dgeevx( int matrix_order, char balanc, char jobvl, char jobvr, char
sense, lapack_int n, double* a, lapack_int lda, double* wr, double* wi, double* vl,
lapack_int ldvl, double* vr, lapack_int ldvr, lapack_int* ilo, lapack_int* ihi,
double* scale, double* abnrm, double* rconde, double* rcondv );
lapack_int LAPACKE_cgeevx( int matrix_order, char balanc, char jobvl, char jobvr, char
sense, lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_complex_float* w,
lapack_complex_float* vl, lapack_int ldvl, lapack_complex_float* vr, lapack_int ldvr,
lapack_int* ilo, lapack_int* ihi, float* scale, float* abnrm, float* rconde, float*
rcondv );
```

```
lapack_int LAPACKE_zgeevx( int matrix_order, char balanc, char jobvl, char jobvr, char
sense, lapack_int n, lapack_complex_double* a, lapack_int lda, lapack_complex_double*
w, lapack_complex_double* vl, lapack_int ldvl, lapack_complex_double* vr, lapack_int
ldvr, lapack_int* ilo, lapack_int* ihi, double* scale, double* abnrm, double* rconde,
double* rcondv );
```

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes for an n-by- n real/complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ilo, ihi, scale, and abnrm), reciprocal condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).

The right eigenvector $v(j)$ of A satisfies
$A^{*} V(j)=\lambda(j) * V(j)$
where $\lambda(j)$ is its eigenvalue.
The left eigenvector $u(j)$ of A satisfies
$u(j)^{T \star} A=\lambda(j)^{*} u(j)^{T}$
where $u(j)^{T}$ denotes the transpose of $u(j)$. The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
Balancing a matrix means permuting the rows and columns to make it more nearly upper triangular, and applying a diagonal similarity transformation $D^{*} A^{*} \operatorname{inv}(D)$, where D is a diagonal matrix, to make its rows and columns closer in norm and the condition numbers of its eigenvalues and eigenvectors smaller. The computed reciprocal condition numbers correspond to the balanced matrix. Permuting rows and columns will not change the condition numbers in exact arithmetic) but diagonal scaling will. For further explanation of balancing, see [LUG], Section 4.10.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
balanc

> CHARACTER* 1 . Must be ' $\mathrm{N}^{\prime},{ }^{\prime} \mathrm{P}^{\prime}, \mathrm{S}^{\prime}$, or ${ }^{\prime} \mathrm{B}^{\prime}$. Indicates how the input matrix should be diagonally scaled and/or permuted to improve the conditioning of its eigenvalues.
> If balanc $={ }^{\prime} \mathrm{N}^{\prime}$, do not diagonally scale or permute;
> If balanc $={ }^{\prime} \mathrm{P}^{\prime}$, perform permutations to make the matrix more nearly upper triangular. Do not diagonally scale;
> If balanc $=' S^{\prime}$, diagonally scale the matrix, i.e. replace A by $D^{*} A^{*}$ inv (D), where D is a diagonal matrix chosen to make the rows and columns of A more equal in norm. Do not permute;
> If balanc $=' B^{\prime}$, both diagonally scale and permute A.
> Computed reciprocal condition numbers will be for the matrix after balancing and/or permuting. Permuting does not change condition numbers (in exact arithmetic), but balancing does.

jobvl	CHARACTER*1. Must be 'N' or 'V'.
	If jobvl = 'N', left eigenvectors of A are not computed;
	If jobvl $=$ ' V ', left eigenvectors of A are computed.
	If sense = 'E' or 'B', then jobvl must be 'V'.
jobvr	CHARACTER*1. Must be 'N' or 'V'.
	If jobvr = ' N ', right eigenvectors of A are not computed;
	If jobvr = 'V', right eigenvectors of A are computed.
	If sense = 'E' or 'B', then jobvr must be 'V'.
sense	CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed.
	If sense = 'N', none are computed;
	If sense = 'E', computed for eigenvalues only;
	If sense $=$ 'V', computed for right eigenvectors only;
	If sense = 'B', computed for eigenvalues and right eigenvectors.
	If sense is 'E' or 'B', both left and right eigenvectors must also be computed (jobvl = 'V' and jobvr = 'V').
n	INTEGER. The order of the matrix $A(n \geq 0)$.
a, work	REAL for sgeevx
	DOUBLE PRECISION for dgeevx
	COMPLEX for cgeevx
	DOUBLE COMPLEX for zgeevx.
	Arrays:
	$a(l d a, *)$ is an array containing the n-by-n matrix A.
	The second dimension of a must be at least $\max (1, n)$. work is a workspace array, its dimension max (1, lwork)
Ida	INTEGER. The leading dimension of the array a. Must be at least max $(1, n)$.
$1 d v 1,1 d v r$	INTEGER. The leading dimensions of the output arrays $v l$ and $v r$, respectively.
	Constraints:
	$l d v l \geq 1 ; ~ l d v r \geq 1$.
	If jobvl = 'V', ldvl $\geq \max (1, n)$;
	If jobvr = 'V', ldvr $\geq \max (1, n)$.
Iwork	INTEGER.
	The dimension of the array work.
	For real flavors:
	If sense $=$ 'N' or 'E', lwork $\geq \max (1,2 n)$, and if jobvl $=$ 'V' or jobvr = 'V', lwork > 3n;
	If sense $=$ 'V' or 'B', lwork $\geq n^{*}(n+6)$.
	For good performance, lwork must generally be larger.
	For complex flavors:
	If sense = 'N'or 'E', lwork $\geq \max (1,2 n)$;
	If sense $=$ 'V' or 'B', lwork $\geq n^{2}+2 n$. For good performance, Iwork must generally be larger.
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
rwork	REAL for cgeevx
	DOUBLE PRECISION for zgeevx
	Workspace array, DIMENSION at least max $(1,2 n)$. Used in complex flavors only.

Workspace array, DIMENSION at least max $(1,2 n-2)$. Used in real flavors only. Not referenced if sense $=$ 'N' or 'E'.

Output Parameters

a
wr, wi

W
vl, vr
ilo, ihi
scale

On exit, this array is overwritten.
If jobvl = 'V' or jobvr = 'V', it contains the real-Schur/Schur form of the balanced version of the input matrix A.
REAL for sgeevx
DOUBLE PRECISION for dgeevx
Arrays, DIMENSION at least max $(1, n)$ each. Contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.
COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.
Array, DIMENSION at least max $(1, n)$. Contains the computed eigenvalues.
REAL for sgeevx
DOUBLE PRECISION for dgeevx
COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.
Arrays:
$v l(l d v I, *)$; the second dimension of $v l$ must be at least max $(1, n)$.
If jobvl = ' V ', the left eigenvectors $u(\mathrm{j})$ are stored one after another in the columns of $v l$, in the same order as their eigenvalues.
If jobvl = 'N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then $u(j)=v I(:, j)$, the j-th column of $v I$. If the j-th and $(j+1)$-st eigenvalues form a complex conjugate pair, then $u(j)=v l(:, j)+i * v l(:, j+1)$ and $(j+1)=v l(:, j)-i * v l(:, j$ $+1)$, where $i=\operatorname{sqrt}(-1)$.
For complex flavors:
$u(j)=v l(:, j)$, the j-th column of $v l$.
$v r(l d v r, *)$; the second dimension of $v r$ must be at least max $(1, n)$.
If jobvr = ' V ', the right eigenvectors $\mathrm{v}(\mathrm{j})$ are stored one after another in the columns of $v r$, in the same order as their eigenvalues.
If jobvr = 'N', vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, then $v(j)=v r(:, j)$, the j-th column of $v r$. If the j-th and $(j+1)$-st eigenvalues form a complex conjugate pair, then $v(j)=\operatorname{vr}(:, j)+i * v r(:, j+1)$ and $v(j+1)=\operatorname{vr}(:, j)-i * v r(:, j$ $+1)$, where $i=\operatorname{sqrt}(-1)$.
For complex flavors:
$v(j)=v r(:, j)$, the j-th column of $v r$.
INTEGER. ilo and ihi are integer values determined when A was balanced.
The balanced $A(i, j)=0$ if $i>j$ and $j=1, \ldots, i l o-1$ or $i=i h i$
+1,..., n.
If balanc $=$ 'N' or 'S', ilo $=1$ and ihi $=n$.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

Array, DIMENSION at least max $(1, n)$. Details of the permutations and scaling factors applied when balancing A.
If $P(\mathrm{j})$ is the index of the row and column interchanged with row and column \mathbf{j}, and $D(\mathbf{j})$ is the scaling factor applied to row and column \mathbf{j}, then
scale(j) $=P(j)$, for $j=1, \ldots, i l o-1$
$=D(j), f o r j=i l o, \ldots, i h i$
$=P(j)$ for $j=i h i+1, \ldots, n$.
The order in which the interchanges are made is n to ihi+1, then 1 to ilo-1.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
The one-norm of the balanced matrix (the maximum of the sum of absolute values of elements of any column).

REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max $(1, n)$ each.
rconde(j) is the reciprocal condition number of the j-th eigenvalue.
$r \operatorname{condv}(\mathrm{j})$ is the reciprocal condition number of the j -th right eigenvector.
work(1)
info
On exit, if info $=0$, then work (1) returns the required minimal size of
lwork.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If info $=i$, the $Q R$ algorithm failed to compute all the eigenvalues, and no eigenvectors or condition numbers have been computed; elements 1:ilo-1 and $i+1$:n of wr and wi (for real flavors) or w (for complex flavors) contain eigenvalues which have converged.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine geevx interface are the following:

a	Holds the matrix A of size (n, n).
wr	Holds the vector of length n. Used in real flavors only.
wi	Holds the vector of length n. Used in real flavors only.
w	Holds the vector of length n. Used in complex flavors only.
vl	Holds the matrix VL of size (n, n).
vr	Holds the matrix VR of size (n, n).
scale	Holds the vector of length n.
rconde	Holds the vector of length n.
rcondv	Holds the vector of length n.
balanc	Must be 'N', 'B', 'P' or 'S'. The default value is 'N'.
jobvl	Restored based on the presence of the argument $v l$ as follows: jobvl = 'V', if vl is present, jobvl = 'N', if vl is omitted.

jobvr Restored based on the presence of the argument vr as follows:
jobvr = 'V', if $v r$ is present,

```
jobvr = 'N', if vr is omitted.
```

sense

```
Restored based on the presence of arguments rconde and rcondv as follows:
sense = 'B', if both rconde and rcondv are present,
sense = ' E', if rconde is present and rcondv omitted,
sense = 'V', if rconde is omitted and rcondv present,
sense = 'N', if both rconde and rcondv are omitted.
```


Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

Singular Value Decomposition

This section describes LAPACK driver routines used for solving singular value problems. See also computational routines that can be called to solve these problems. Table "Driver Routines for Singular Value Decomposition" lists all such driver routines for the FORTRAN 77 interface. Respective routine names in the Fortran 95 interface are without the first symbol (see Routine Naming Conventions).
Driver Routines for Singular Value Decomposition

Routine Name	Operation performed
gesvd	Computes the singular value decomposition of a general rectangular matrix.
gesdd	Computes the singular value decomposition of a general rectangular matrix using a divide and conquer method.
gejsv	Computes the singular value decomposition of a real matrix using a preconditioned Jacobi SVD method.
ggsvd	Computes the singular value decomposition of a real matrix using Jacobi plane rotations. Computes the generalized singular value decomposition of a pair of general rectangular matrices.

?gesvd
 Computes the singular value decomposition of a general rectangular matrix.

Syntax

Fortran 77:

```
call sgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, info)
call dgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, info)
call cgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, info)
```

```
call zgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, info)
```


Fortran 95:

```
call gesvd(a, s [,u] [,vt] [,ww] [,job] [,info])
```

C:

```
lapack_int LAPACKE_sgesvd( int matrix_order, char jobu, char jobvt, lapack_int m,
lapack_int n, float* a, lapack_int lda, float* s, float* u, lapack_int ldu, float* vt,
lapack_int ldvt, float* superb );
lapack_int LAPACKE_dgesvd( int matrix_order, char jobu, char jobvt, lapack_int m,
lapack_int n, double* a, lapack_int lda, double* s, double* u, lapack_int ldu, double*
vt, lapack_int ldvt, double* superb );
lapack_int LAPACKE_cgesvd( int matrix_order, char jobu, char jobvt, lapack_int m,
lapack_int n, lapack_complex_float* a, lapack_int lda, float* s, lapack_complex_float*
u, lapack_int ldu, lapack_complex_float* vt, lapack_int ldvt, float* superb );
lapack_int LAPACKE_zgesvd( int matrix_order, char jobu, char jobvt, lapack_int m,
lapack_int n, lapack_complex_double* a, lapack_int lda, double* s,
lapack_complex_double* u, lapack_int ldu, lapack_complex_double* vt, lapack_int ldvt,
double* superb );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes the singular value decomposition (SVD) of a real/complex m-by-n matrix A, optionally computing the left and/or right singular vectors. The SVD is written as
$A=U^{\star} \Sigma^{\star} V^{T}$ for real routines
$A=U^{\star} \Sigma^{\star} V^{H}$ for complex routines
where Σ is an m-by- n matrix which is zero except for its $\min (m, n)$ diagonal elements, U is an m-by- m orthogonal/unitary matrix, and V is an $n-b y-n$ orthogonal/unitary matrix. The diagonal elements of Σ are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m, n) columns of U and V are the left and right singular vectors of A.

Note that the routine returns V^{T} (for real flavors) or V^{H} (for complex flavors), not V.

Input Parameters

The data types are given for the Fortran interface, except for superb. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
jobu

> CHARACTER* 1 . Must be 'A', 'S', 'O', or 'N'. Specifies options for computing all or part of the matrix U.
> If jobu $=$ 'A', all m columns of U are returned in the array u;
> if jobu $=$ ' S ', the first $\min (m, n)$ columns of U (the left singular vectors)
> are returned in the array u;
> if jobu $=' O^{\prime}$, the first $\min (m, n)$ columns of U (the left singular vectors)
> are overwritten on the array $a ;$
> if jobu $=' N^{\prime}$, no columns of U (no left singular vectors) are computed.

jobvt	CHARACTER*1. Must be 'A', 'S', 'O', or 'N'. Specifies options for computing all or part of the matrix V^{T} / V^{H}. If jobvt = ' A ', all n rows of V^{T} / V^{H} are returned in the array $v t$; if jobvt $=$ ' S ', the first $\min (m, n)$ rows of V^{T} / V^{H} (the right singular vectors) are returned in the array vt; if jobvt $=' O^{\prime}$, the first $\min (m, n)$ rows of V^{T} / V^{H}) (the right singular vectors) are overwritten on the array a; if jobvt = 'N', no rows of V^{T} / V^{H} (no right singular vectors) are computed. jobvt and jobu cannot both be 'O'.
m	INTEGER. The number of rows of the matrix $A(m \geq 0)$.
n	INTEGER. The number of columns in $A(n \geq 0)$.
a, work	REAL for sgesvd DOUBLE PRECISION for dgesvd COMPLEX for cgesvd DOUBLE COMPLEX for zgesvd. Arrays: $a\left(I d a,^{*}\right)$ is an array containing the m-by- n matrix A. The second dimension of a must be at least max $(1, n)$. work is a workspace array, its dimension max (1, lwork).
Ida	INTEGER. The leading dimension of the array a. Must be at least max $(1, m)$.
ldu, ldvt	INTEGER. The leading dimensions of the output arrays u and $v t$, respectively. Constraints: $l d u \geq 1 ; ~ l d v t \geq 1$. If jobu = 'S' or 'A', $I d u \geq m$; If jobvt = 'A', ldvt $\geq n$; If jobvt $=$ 'S', ldvt $\geq \min (m, n)$.
lwork	INTEGER. The dimension of the array work. Constraints: lwork ≥ 1 lwork $\geq \max \left(3 * \min (m, n)+\max (m, n), 5{ }^{\min (m, n)}\right.$) (for real flavors); lwork $\geq 2 \star_{\min (m, n)+\max (m, n) \text { (for complex flavors). }}^{\text {m }}$. For good performance, lwork must generally be larger. If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes for details.
rwork	REAL for cgesvd DOUBLE PRECISION for zgesvd Workspace array, DIMENSION at least max $\left(1,5^{*} \min (m, n)\right)$. Used in complex flavors only.

Output Parameters

a
On exit,
If jobu = 'O', a is overwritten with the first $\min (m, n)$ columns of U (the left singular vectors stored columnwise);
If jobvt $=' O^{\prime}$, a is overwritten with the first $\min (m, n)$ rows of V^{T} / V^{H} (the right singular vectors stored rowwise);
If jobuキ'O' and jobvtキ'O', the contents of a are destroyed.

s	REAL for single precision flavors DOUBLE PRECISION for double precision flavors. Array, DIMENSION at least max $(1, \min (m, n))$. Contains the singular values of A sorted so that $s(i) \geq s(i+1)$.
$u, v t$	REAL for sgesvd
	DOUBLE PRECISION for dgesvd
	COMPLEX for cgesvd
	DOUBLE COMPLEX for zgesvd.
	Arrays:
	$u(I d u, *)$; the second dimension of u must be at least $\max (1, m)$ if jobu $=$ 'A', and at least $\max (1, \min (m, n))$ if jobu $=$ 'S'.
	If jobu = 'A', u contains the m-by-m orthogonal/unitary matrix U.
	If jobu = 'S', u contains the first $\min (m, n)$ columns of U (the left singular vectors stored column-wise).
	If jobu = 'N' or 'O', u is not referenced.
	$v t(l d v t, *)$; the second dimension of vt must be at least max $(1, n)$.
	If jobvt = 'A', vt contains the n-by-n orthogonal/unitary matrix V^{T} / V^{H}.
	If jobvt $=$ 'S', vt contains the first $\min (m, n)$ rows of V^{T} / V^{H} (the right singular vectors stored row-wise).
work	On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
	For real flavors:
	If info > 0 , $\operatorname{work}(2: \min (m, n))$ contains the unconverged superdiagonal elements of an upper bidiagonal matrix B whose diagonal is in s (not necessarily sorted). B satisfies $A=u^{\star} B^{\star} v t$, so it has the same singular values as A, and singular vectors related by u and $v t$.
rwork	On exit (for complex flavors), if info $>0, \operatorname{rwork}(1: \min (m, n)-1)$ contains the unconverged superdiagonal elements of an upper bidiagonal matrix B whose diagonal is in s (not necessarily sorted). B satisfies $A=$ $u^{\star} B^{\star} v t$, so it has the same singular values as A, and singular vectors related by u and $v t$.
superb (C interface)	On exit, superb ($0: \min (m, n)-2)$ contains the unconverged superdiagonal elements of an upper bidiagonal matrix B whose diagonal is in s (not necessarily sorted). B satisfies $A=u^{\star} B^{\star} v t$, so it has the same singular values as A, and singular vectors related by u and $v t$.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i-th parameter had an illegal value.
	If info $=i$, then if ?bdsqr did not converge, i specifies how many superdiagonals of the intermediate bidiagonal form B did not converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gesvd interface are the following:

```
a Holds the matrix A of size (m,n).
s Holds the vector of length min}(m,n)\mathrm{ .
```

```
\(u\)
If present and is a square \(m\)-by- \(m\) matrix, on exit contains the \(m\)-by- \(m\) orthogonal/ unitary matrix \(U\).
Otherwise, if present, on exit contains the first \(\min (m, n)\) columns of the matrix \(U\) (left singular vectors stored column-wise).
\(v t\)
If present and is a square \(n\)-by- \(n\) matrix, on exit contains the \(n\)-by- \(n\) orthogonal/ unitary matrix \(V^{\prime} T / V^{H}\).
Otherwise, if present, on exit contains the first \(\min (m, n)\) rows of the matrix \(V^{\prime} T /\) \(V^{\prime H}\) (right singular vectors stored row-wise).
Holds the vector of length \(\min (m, n)-1\). ww contains the unconverged superdiagonal elements of an upper bidiagonal matrix \(B\) whose diagonal is in \(s\) (not necessarily sorted). \(B\) satisfies \(A=U^{\star} B^{\star} V T\), so it has the same singular values as \(A\), and singular vectors related by \(U\) and \(V T\).
Must be either ' N ', or ' U ', or ' V '. The default value is ' N '. If job = 'U', and \(u\) is not present, then \(u\) is returned in the array \(a\). If \(j o b=\) ' \(v\) ', and \(v t\) is not present, then \(v t\) is returned in the array \(a\).
```


Application Notes

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run or set Iwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set lwork = -1, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

?gesdd
 Computes the singular value decomposition of a general rectangular matrix using a divide and conquer method.

Syntax

Fortran 77:

```
call sgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, iwork, info)
call dgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, iwork, info)
call cgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork, info)
call zgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork, info)
```


Fortran 95:

```
call gesdd(a, s [,u] [,vt] [,jobz] [,info])
```

C:
lapack_int LAPACKE_sgesdd(int matrix_order, char jobz, lapack_int m, lapack_int n,

ldvt);

```
lapack_int LAPACKE_dgesdd( int matrix_order, char jobz, lapack_int m, lapack_int n,
double* a, lapack_int lda, double* s, double* u, lapack_int ldu, double* vt,
lapack_int ldvt );
lapack_int LAPACKE_cgesdd( int matrix_order, char jobz, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, float* s, lapack_complex_float* u, lapack_int
ldu, lapack_complex_float* vt, lapack_int ldvt );
lapack_int LAPACKE_zgesdd( int matrix_order, char jobz, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, double* s, lapack_complex_double* u,
lapack_int ldu, lapack_complex_double* vt, lapack_int ldvt );
```

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes the singular value decomposition (SVD) of a real/complex m-by- n matrix A, optionally computing the left and/or right singular vectors.

If singular vectors are desired, it uses a divide-and-conquer algorithm. The SVD is written
$A=U^{\star} \Sigma * V^{\prime}$ for real routines,
$A=U^{\star} \Sigma \star \operatorname{conjg}\left(V^{\prime}\right)$ for complex routines,
where Σ is an m-by- n matrix which is zero except for its $\min (m, n)$ diagonal elements, U is an m-by- m orthogonal/unitary matrix, and v is an n-by- n orthogonal/unitary matrix. The diagonal elements of Σ are the singular values of A; they are real and non-negative, and are returned in descending order. The first $\min (m$, n) columns of U and v are the left and right singular vectors of A.

Note that the routine returns $v t=V^{\prime}$ (for real flavors) or $v t=\operatorname{conjg}\left(v^{\prime}\right)$ (for complex flavors), not v.

Input Parameters

The data types are given for the Fortran interface. A <datat ype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobz
m
n
a, work
CHARACTER*1. Must be 'A','S','O', or 'N'.
Specifies options for computing all or part of the matrix U.
If jobz = 'A', all m columns of }u\mathrm{ and all n rows of v'/conjg(v') are
returned in the arrays u and vt;
if jobz = 'S', the first min (m,n) columns of U and the first min (m,n) rows
of }\mp@subsup{v}{}{\prime}/conjg(\mp@subsup{v}{}{\prime})\mathrm{ are returned in the arrays }u\mathrm{ and vt;
if jobz = 'O', then
if m\geqn, the first n columns of U are overwritten in the array a and all rows
of \mp@subsup{v}{}{\prime}/conjg(V') are returned in the array vt;
if }m<n\mathrm{ , all columns of }U\mathrm{ are returned in the array }u\mathrm{ and the first m rows of
v}/\textrm{conjg}(\mp@subsup{V}{}{\prime})\mathrm{ are overwritten in the array a;
if jobz = 'N', no columns of U or rows of v'/conjg(v') are computed.
INTEGER. The number of rows of the matrix A ( }m\geq0)\mathrm{ .
INTEGER. The number of columns in A ( }n\geq0)\mathrm{ .
REAL for sgesdd
DOUBLE PRECISION for dgesdd
```

	COMPLEX for cgesdd
	DOUBLE COMPLEX for zgesdd.
	Arrays: $a(l d a, *)$ is an array containing the m-by-n matrix A.
	The second dimension of a must be at least max $(1, n)$.
	work is a workspace array, its dimension max (1,1 work).
Ida	INTEGER. The leading dimension of the array a. Must be at least max ($1, m$).
$1 d u, 1 d v t$	INTEGER. The leading dimensions of the output arrays u and $v t$,
	respectively.
	Constraints:
	Idu ≥ 1; ldvt ≥ 1.
	If jobz = 'S' or 'A', or jobz = 'O' and m<n,
	then $l d u \geq m ;$
	If jobz = 'A' or jobz = 'O' and m m , ${ }^{\text {, }}$
	then ldvt $\geq \mathrm{n}$;
	If jobz = 'S', ldvt $\geq \min (m, n)$.
lwork	INTEGER.
	The dimension of the array work; lwork ≥ 1.
	If 1 work $=-1$, then a workspace query is assumed; the routine only
	calculates the optimal size of the work array, returns this value as the
	work (1), and no error message related to lwork is issued by xerbla.
	See Application Notes for the suggested value of lwork.
rwork	REAL for cgesdd
	DOUBLE PRECISION for zgesdd
	Workspace array, DIMENSION at least max (1, $5 * \min (m, n)$) if jobz $=$
	'N'.
	Otherwise, the dimension of rwork must be at least
	$\max (1, \min (m, n) * \max (5 * \min (m, n)+7,2 * \max (m, n)+2 * \min (m, n)+1)$).
	This array is used in complex flavors only.
iwork	INTEGER. Workspace array, DIMENSION at least max (1, $8 \times \min (m, n)$).

Output Parameters

a

S
$u, v t$
On exit:
If jobz = ' 0 ', then if $m \geq n$, a is overwritten with the first n columns of U (the left singular vectors, stored columnwise). If $m<n$, a is overwritten with the first m rows of V^{T} (the right singular vectors, stored rowwise);
If jobz $\neq{ }^{\prime} \circ^{\prime}$, the contents of a are destroyed.
REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least $\max (1, \min (m, n))$. Contains the singular values of A sorted so that $s(i) \geq s(i+1)$.
REAL for sgesdd
DOUBLE PRECISION for dgesdd
COMPLEX for cgesdd
DOUBLE COMPLEX for zgesdd.

Arrays:

$u(I d u, *)$; the second dimension of u must be at least $\max (1, m)$ if $j o b z=$ 'A' or jobz = 'O' and $m<n$.
If $j 0 b z=' S$ ', the second dimension of u must be at least $\max (1, \min (m$, n)).

```
If jobz = 'A'or jobz = 'O' and \(m<n\), u contains the \(m\)-by- \(m\) orthogonal/
unitary matrix \(U\).
If jobz = 'S', u contains the first \(\min (m, n)\) columns of \(U\) (the left singular
vectors, stored columnwise).
If jobz = 'O' and \(m \geq n\), or jobz = ' \(N\) ', \(u\) is not referenced.
\(v t(l d v t, *)\); the second dimension of \(v t\) must be at least max \((1, n)\).
If jobz = 'A' or jobz = 'O' and \(m \geq n\), vt contains the \(n\)-by- \(n\) orthogonal/
unitary matrix \(V^{T}\).
If jobz = 'S', vt contains the first \(\min (m, n)\) rows of \(V^{T}\) (the right singular
vectors, stored rowwise).
If jobz = 'O' and \(m<n\), or jobz = 'N', vt is not referenced.
On exit, if info \(=0\), then work (1) returns the required minimal size of
lwork.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then ?bdsdc did not converge, updating process failed.
```

work (1)
info

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gesdd interface are the following:

a	Holds the matrix A of $\operatorname{size}(m, n)$.
s	Holds the vector of length $\min (m, n)$.
u	Holds the matrix U of size

- (m, m) if jobz='A' or jobz='O' and $m<n$
- $(m, \min (m, n))$ if jobz $=$ ' S^{\prime}
u is not referenced if jobz is not supplied or if jobz='N' or jobz='O' and $m \geq$ n.
vt
Holds the matrix $V T$ of size
- (n, n) if jobz='A' or jobz='O' and $m \geq n$
- $(\min (m, n), n)$ if jobz='S'
$v t$ is not referenced if $j o b z$ is not supplied or if $j o b z=' N$ ' or $j o b z=' 0$ ' and $m<$ n.
job Must be 'N','A','S', or 'O'. The default value is 'N'.

Application Notes

For real flavors:

```
If jobz = 'N',lwork \geq 3*min(m, n) + max (max (m,n), 6*min(m, n));
If jobz = 'O',lwork \geq 3* (min (m,n))}\mp@subsup{}{}{2}+\operatorname{max}(\operatorname{max}(m,n), 5*(min(m,n)\mp@subsup{)}{}{2}+4*\operatorname{min}(m,n))
If jobz = 'S' or 'A',lwork \geq 3* (min (m,n) )}\mp@subsup{}{}{2}+\operatorname{max}(\operatorname{max}(m,n), 4* (min (m,n) ) 2 + 4*min (m
n))
```

For complex flavors:
If jobz = 'N', lwork $\geq 2 * \min (m, n)+\max (m, n)$;

If jobz $=' O^{\prime}, \operatorname{lwork} \geq 2 *(\min (m, n))^{2}+\max (m, n)+2 \star \min (m, n)$;
If jobz $=$ 'S' or 'A', lwork $\geq(\min (m, n))^{2}+\max (m, n)+2 \star \min (m, n)$;
For good performance, lwork should generally be larger.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

?gejsv
 Computes the singular value decomposition of a real matrix using a preconditioned Jacobi SVD method.
 Syntax

Fortran 77:

```
call sgejsv(joba, jobu, jobv, jobr, jobt, jobp, m, n, a, lda, sva, u, ldu, v, ldv,
work, lwork, iwork, info)
call dgejsv(joba, jobu, jobv, jobr, jobt, jobp, m, n, a, lda, sva, u, ldu, v, ldv,
work, lwork, iwork, infol
C:
lapack_int LAPACKE_<?>gejsv( int matrix_order, char joba, char jobu, char jobv, char
jobr, char jobt, char jobp, lapack_int m, lapack_int n, const <datatype>* a,
lapack_int lda, <datatype>* sva, <datatype>* u, lapack_int ldu, <datatype>* v,
lapack_int ldv, <datatype>* stat, lapack_int* istat );
```


Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- C: mkl_lapacke.h

Description

The routine computes the singular value decomposition (SVD) of a real m-by- n matrix A, where $m \geq n$.
The SVD is written as
$A=U^{\star} \Sigma^{\star} V^{T}$,
where Σ is an m-by- n matrix which is zero except for its n diagonal elements, U is an m-by- n (or m-by- m) orthonormal matrix, and v is an n-by- n orthogonal matrix. The diagonal elements of Σ are the singular values of A; the columns of U and V are the left and right singular vectors of A, respectively. The matrices U and V are computed and stored in the arrays u and v, respectively. The diagonal of Σ is computed and stored in the array sva.

The routine implements a preconditioned Jacobi SVD algorithm. It uses ?geqp3, ?geqrf, and ?gelqf as preprocessors and preconditioners. Optionally, an additional row pivoting can be used as a preprocessor, which in some cases results in much higher accuracy. An example is matrix A with the structure $A=D 1 * C$

* D2, where D1, D2 are arbitrarily ill-conditioned diagonal matrices and C is a well-conditioned matrix. In that case, complete pivoting in the first QR factorizations provides accuracy dependent on the condition number of C , and independent of D1, D2. Such higher accuracy is not completely understood theoretically, but it works well in practice.

If A can be written as $A=B * D$, with well-conditioned B and some diagonal D, then the high accuracy is guaranteed, both theoretically and in software independent of D. For more details see [Drmac08-1], [Drmac08-2].

The computational range for the singular values can be the full range (UNDERFLOW,OVERFLOW), provided that the machine arithmetic and the BLAS and LAPACK routines called by ?gejsv are implemented to work in that range. If that is not the case, the restriction for safe computation with the singular values in the range of normalized IEEE numbers is that the spectral condition number kappa (A) =sigma_max (A) /sigma_min (A) does not overflow. This code (?gejsv) is best used in this restricted range, meaning that singular values of magnitude below ||A|।_2 / slamch('O') (for single precision) or ||A|I_2 / dlamch('O') (for double precision) are returned as zeros. See jobr for details on this.

This implementation is slower than the one described in [Drmac08-1], [Drmac08-2] due to replacement of some non-LAPACK components, and because the choice of some tuning parameters in the iterative part (? gesvj) is left to the implementer on a particular machine.

The rank revealing QR factorization (in this code: ?geqp3) should be implemented as in [Drmac08-3].
If m is much larger than n, it is obvious that the inital QRF with column pivoting can be preprocessed by the QRF without pivoting. That well known trick is not used in ?gejsv because in some cases heavy row weighting can be treated with complete pivoting. The overhead in cases much larger than n is then only due to pivoting, but the benefits in accuracy have prevailed. You can incorporate this extra QRF step easily and also improve data movement (matrix transpose, matrix copy, matrix transposed copy) - this implementation of ?gejsv uses only the simplest, naive data movement.

Input Parameters

The data types are given for the Fortran interface, except for istat. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
joba
CHARACTER*1. Must be 'C', 'E', 'F', 'G', 'A', or 'R'.
Specifies the level of accuracy:
If joba $=$ ' C', high relative accuracy is achieved if $A=B^{\star} D$ with well-
conditioned B and arbitrary diagonal matrix D. The accuracy cannot be
spoiled by column scaling. The accuracy of the computed output depends
on the condition of B, and the procedure aims at the best theoretical
accuracy. The relative error max_\{i=1:N\}|d sigma_i| / sigma_i is
bounded by $f(\mathrm{M}, \mathrm{N})$ *epsilon* cond (B), independent of D. The input
matrix is preprocessed with the QRF with column pivoting. This initial
preprocessing and preconditioning by a rank revealing QR factorization is
common for all values of joba. Additional actions are specified as follows:
If joba = 'E', computation as with 'C' with an additional estimate of the
condition number of B. It provides a realistic error bound.
If joba $=$ ' F ', accuracy higher than in the ' C ' option is achieved, if $A=$
$D 1 * C^{\star} D 2$ with ill-conditioned diagonal scalings $D 1, D 2$, and a well-
conditioned matrix C. This option is advisable, if the structure of the input
matrix is not known and relative accuracy is desirable. The input matrix A is
preprocessed with QR factorization with full (row and column) pivoting.
If joba = 'G', computation as with 'F' with an additional estimate of the
condition number of B, where $A=B^{\star} D$. If A has heavily weighted rows,
using this condition number gives too pessimistic error bound.

If joba $=$ ' A ', small singular values are the noise and the matrix is treated as numerically rank defficient. The error in the computed singular values is bounded by $f(m, n)$ *epsilon*||A||. The computed SVD A $=$ $\mathrm{U} * \mathrm{~S} * \mathrm{~V} * *$ t restores A up to $f(m, n) *$ epsilon*||A||. This enables the procedure to set all singular values below $n * e p s i l o n *||A||$ to zero. If joba $=$ ' R ', the procedure is similar to the ' A ' option. Rank revealing property of the initial QR factorization is used to reveal (using triangular factor) a gap sigma_\{r+1\} < epsilon * sigma_r, in which case the numerical rank is declared to be r. The SVD is computed with absolute error bounds, but more accurately than with 'A'.
CHARACTER*1. Must be 'U', 'F', 'W', or 'N'.
Specifies whether to compute the columns of the matrix U :
If jobu $=$ ' U ', n columns of U are returned in the array u
If jobu = ' F ', a full set of m left singular vectors is returned in the array u. If jobu = 'w', u may be used as workspace of length $m^{*} n$. See the description of u.
If jobu = 'N', u is not computed.
CHARACTER*1. Must be 'V', 'J', 'W', or 'N'.
Specifies whether to compute the matrix v :
If jobv $=$ ' v ', n columns of v are returned in the array v; Jacobi rotations are not explicitly accumulated.
If jobv = 'J', n columns of v are returned in the array v but they are computed as the product of Jacobi rotations. This option is allowed only if jobu $\neq n$
If jobv = 'w', v may be used as workspace of length $n * n$. See the description of v.
If jobv = 'N', v is not computed.
jobr
jobt
CHARACTER*1. Must be 'N' or 'R'.
Specifies the range for the singular values. If small positive singular values are outside the specified range, they may be set to zero. If A is scaled so that the largest singular value of the scaled matrix is around sqrt (big), big = ?lamch('O'), the function can remove columns of A whose norm in the scaled matrix is less than sqrt (?lamch('S')) (for jobr = 'R'), or less than small = ?lamch('S')/?lamch('E').
If jobr = 'N', the function does not remove small columns of the scaled matrix. This option assumes that BLAS and QR factorizations and triangular solvers are implemented to work in that range. If the condition of A if greater that big, use ?gesvj.
If jobr = 'R', restricted range for singular values of the scaled matrix A is [sqrt(?lamch('S'), sqrt(big)], roughly as described above. This option is recommended.
For computing the singular values in the full range [?lamch('S'),big], use ?gesvj.
CHARACTER*1. Must be 'T' or 'N'.
If the matrix is square, the procedure may determine to use a transposed A if $A^{* *}$ t seems to be better with respect to convergence. If the matrix is not square, jobt is ignored. This is subject to changes in the future.
The decision is based on two values of entropy over the adjoint orbit of $A^{* *} t$ * A. See the descriptions of work (6) and work (7).
If jobt = 'T', the function perfomrs transpositon if the entropy test indicates possibly faster convergence of the Jacobi process, if A is taken as input. If A is replaced with $A^{\star *} \mathrm{t}$, the row pivoting is included automatically.

If jobt $=$ ' N ', the functions attempts no speculations. This option can be used to compute only the singular values, or the full SVD (u, sigma, and v). For only one set of singular vectors (u or v), the caller should provide both u and v, as one of the matrices is used as workspace if the matrix A is transposed. The implementer can easily remove this constraint and make the code more complicated. See the descriptions of u and v.

CHARACTER*1. Must be 'P' or 'N'.
Enables structured perturbations of denormalized numbers. This option should be active if the denormals are poorly implemented, causing slow computation, especially in cases of fast convergence. For details, see [Drmac08-1], [Drmac08-2] . For simplicity, such perturbations are included only when the full SVD or only the singular values are requested. You can add the perturbation for the cases of computing one set of singular vectors. If jobp = ' P ', the function introduces perturbation. If jobp = 'N', the function introduces no perturbation.
INTEGER. The number of rows of the input matrix $A ; m \geq 0$.
INTEGER. The number of columns in the input matrix $A ; n \geq 0$.
REAL for sgejsv
DOUBLE PRECISION for dgejsv.
Array $a(I d a, *)$ is an array containing the $m-b y-n$ matrix A. The second dimension of a must be at least $\max (1, n)$.
work is a workspace array, its dimension max ($1, ~ l$ work). sva is a workspace array, its dimension is n.
u is a workspace array, its dimension is (ldu,*); the second dimension of u must be at least $\max (1, n)$.
v is a workspace array, its dimension is $(1 d v, *)$; the second dimension of u must be at least max $(1, n)$.
INTEGER. The leading dimension of the array a. Must be at least max (1, m).

INTEGER. The leading dimension of the array $u ; 1 d u \geq 1$.
jobu $=$ 'U' or 'F' or 'W', ldu $\geq m$.
INTEGER. The leading dimension of the array $v ; l d v \geq 1$.
jobv = 'V' or 'J' or 'W', ldv $\geq n$.
INTEGER.
Length of work to confirm proper allocation of work space. lwork depends on the task performed:
If only sigma is needed (jobu $=$ 'N', jobv $=$ 'N') and

- ... no scaled condition estimate is required, then 1 work $\geq \max (2 * m+n$, $4 * n+1,7)$. This is the minimal requirement. For optimal performance (blocked code) the optimal value is 1 work $\geq \max (2 * m+n, 3 * n+(n$ $+1) \star n b, 7)$. Here $n b$ is the optimal block size for ? geqp3/?geqrf.

In general, the optimal length lwork is computed as

[^1]- ... an estimate of the scaled condition number of A is required (joba = ' E ', ' G'). In this case, lwork is the maximum of the above and $n \star n$ $+4 \star n$, that is, 1 work $\geq \max (2 \star m+n, n \star n+4 \star n, 7)$. For optimal performance (blocked code) the optimal value is 1 work $\geq \max (2 \star m+n$, $3 * n+(n+1) * n b, \quad n * n+4 * n, 7)$.

In general, the optimal length lwork is computed as

```
lwork \geq max(2*m+n,n+lwork(sgeqp3),n+lwork(sgeqrf),n+n*n
+lwork(spocon, 7) for sgejsv
lwork \geq max(2*m+n,n+lwork(dgeqp3),n+lwork(dgeqrf),n+n*n
+lwork(dpocon, 7) for dgejsv
```

If sigma and the right singular vectors are needed (jobv = ' V^{\prime}),

- the minimal requirement is 1 work $\geq \max (2 * m+n, 4 * n+1,7)$.
- for optimal performance, lwork $\geq \max (2 * m+n, 3 * n+(n+1) * n b, 7)$, where $n b$ is the optimal block size for ? geqp3, ? geqrf, ?gelqf, ?ormlq. In general, the optimal length lwork is computed as

```
lwork \geq max(2*m+n, n+lwork(sgeqp3), n+lwork(spocon), n
+lwork(sgelqf), 2*n+lwork(sgeqrf), n+lwork(sormlq) for
sgejsv
lwork \geq max(2*m+n, n+lwork(dgeqp3), n+lwork(dpocon), n
+lwork(dgelqf), 2*n+lwork(dgeqrf), n+lwork(dormlq) for
dgejsv
```

If sigma and the left singular vectors are needed

- the minimal requirement is 1 work $\geq \max (2 * n+m, 4 * n+1,7)$.
- for optimal performance,

```
if jobu = 'U' :: lwork \geq max(2*m+n,3*n+(n+1)*nb, 7),
if jobu = 'F' :: lwork \geq max (2*m+n, 3* n+(n+1)*nb, n+m*nb, 7),
```

where $n b$ is the optimal block size for ?geqp3, ?geqrf, ?ormlq. In general, the optimal length lwork is computed as
lwork $\geq \max (2 * m+n, n+l w o r k(s g e q p 3), n+l w o r k(s p o c o n), 2 * n$ +lwork(sgeqrf), n+lwork(sormlq) for sgejsv
lwork $\geq \max (2 * m+n, n+l$ work (dgeqp3), $n+l$ work (dpocon), $2 * n$
+lwork(dgeqrf), n+lwork(dormlq) for dgejsv
Here lwork(?ormlq) equals $n \star n b$ (for jobu $=$ 'U') or $m \star n b$ (for jobu = 'F')

If full SVD is needed (jobu = 'U' or 'F') and

- if jobv = 'V',
the minimal requirement is 1 work $\geq \max (2 \star m+n, 6 \star n+2 \star n \star n)$
- if jobv = 'J',
the minimal requirement is 1 work $\geq \max (2 * m+n, 4 * n+n \star n, 2 * n+n \star n$ +6)
- For optimal performance, lwork should be additionally larger than n $+m^{\star} n b$, where $n b$ is the optimal block size for ?ormlq.

```
iwork INTEGER. Workspace array, DIMENSION max (3, m+3*n).
```


Output Parameters

u

V
work

On exit:
For work (1)/work (2) = one: the singular values of A. During the computation sva contains Euclidean column norms of the iterated matrices in the array a.
For work (1) \#work (2): the singular values of A are (work (1)/work (2)) * $\operatorname{sva}(1: n)$. This factored form is used if sigma_max (A) overflows or if small singular values have been saved from underflow by scaling the input matrix A.
jobr = 'R', some of the singular values may be returned as exact zeros obtained by 'setting to zero' because they are below the numerical rank threshold or are denormalized numbers.

On exit:
If jobu = 'U', contains the m-by-n matrix of the left singular vectors.
If jobu = ' F ', contains the m-by-m matrix of the left singular vectors, including an orthonormal basis of the orthogonal complement of the range of A.
If jobu = 'W' and jobv = 'V', jobt = 'T', and $m=n$, then u is used
as workspace if the procedure replaces A with $A * * t$. In that case, v is computed in u as left singular vectors of $A * * t$ and copied back to the v array. This ' W ' option is just a reminder to the caller that in this case u is reserved as workspace of length $n * n$.
If jobu = 'N', u is not referenced.
On exit:
If jobv = 'V' or 'J', contains the n-by-n matrix of the right singular vectors.
If jobv = 'W' and jobv = 'U', jobt = 'T', and $m=n$, then v is used as workspace if the procedure replaces A with $A * * t$. In that case, u is computed in v as right singular vectors of $A * * t$ and copied back to the u array. This ' W ' option is just a reminder to the caller that in this case v is reserved as workspace of length $n^{*} n$.
If jobv = 'N', v is not referenced.
On exit,
work (1) $=$ scale $=\operatorname{work}(2) / \operatorname{work}(1)$ is the scaling factor such that scale*sva(1:n) are the computed singular values of A. See the description of sva().
work (2) = see the description of work (1).
work (3) $=$ sconda is an estimate for the condition number of column equilibrated A. If joba $=$ ' E ' or ' G ', sconda is an estimate of sqrt (|| $(R * * t * R) * *(-1)\left|\mid _1\right)$. It is computed using ?pocon. It holds $n^{* *}(-1 / 4)$ * sconda $\leq||R * *(-1)|| _2 \leq n^{* *}(1 / 4) *$ sconda, where R is the triangular factor from the QRF of A. However, if R is truncated and the numerical rank is determined to be strictly smaller than n, sconda is returned as -1 , indicating that the smallest singular values might be lost. If full SVD is needed, the following two condition numbers are useful for the analysis of the algorithm. They are provied for a user who is familiar with the details of the method.
work (4) = an estimate of the scaled condition number of the triangular factor in the first QR factorization.

	work (5) = an estimate of the scaled condition number of the triangular factor in the second QR factorization. The following two parameters are computed if jobt = 'T'. They are provided for a user who is familiar with the details of the method. work (6) = the entropy of $A * * t * A::$ this is the Shannon entropy of $\operatorname{diag}\left(A^{* *} t * A\right) / \operatorname{Trace}\left(A^{* *} t^{\star} A\right)$ taken as point in the probability simplex. work (7) = the entropy of $A^{\star} A^{\star *}$ t.
iwork (Fortran), istat (C)	INTEGER. On exit, iwork (1)/istat[0] = the numerical rank determined after the initial QR factorization with pivoting. See the descriptions of joba and jobr. iwork(2)/istat[1] = the number of the computed nonzero singular value. iwork(3)/istat[2] = if nonzero, a warning message. If iwork (3)/ istat [2]=1, some of the column norms of A were denormalized floats. The requested high accuracy is not warranted by the data.
info	INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i-th parameter had an illegal value. If info >0, the function did not converge in the maximal number of sweeps. The computed values may be inaccurate.

```
See Also
?geqp3
?geqrf
?gelqf
?gesvj
?lamch
?pocon
?ormlq
?gesvj
Computes the singular value decomposition of a real
matrix using Jacobi plane rotations.
```

Syntax

Fortran 77:

```
call sgesvj(joba, jobu, jobv, m, n, a, lda, sva, mv, v, ldv, work, lwork, info)
call dgesvj(joba, jobu, jobv, m, n, a, lda, sva, mv, v, ldv, work, lwork, info)
```

C:

```
lapack_int LAPACKE_<?>gesvj( int matrix_order, char joba, char jobu, char jobv,
lapack_int m, lapack_int n, <datatype>* a, lapack_int lda, <datatype>* sva, lapack_int
mv, <datatype>* v, lapack_int ldv, <datatype>* stat );
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- C: mkl_lapacke.h

Description

The routine computes the singular value decomposition (SVD) of a real m-by- n matrix A, where $m \geq n$.

The SVD of A is written as

```
A = U* \Sigma\Sigma* V',
```

where Σ is an m-by- n diagonal matrix, U is an $m-b y-n$ orthonormal matrix, and V is an $n-b y-n$ orthogonal matrix. The diagonal elements of Σ are the singular values of A; the columns of U and V are the left and right singular vectors of A, respectively. The matrices U and V are computed and stored in the arrays u and v, respectively. The diagonal of Σ is computed and stored in the array sva.

The n-by- n orthogonal matrix v is obtained as a product of Jacobi plane rotations. The rotations are implemented as fast scaled rotations of Anda and Park [AndaPark94]. In the case of underflow of the Jacobi angle, a modified Jacobi transformation of Drmac ([Drmac08-4]) is used. Pivot strategy uses column interchanges of de Rijk ([deRijk98]). The relative accuracy of the computed singular values and the accuracy of the computed singular vectors (in angle metric) is as guaranteed by the theory of Demmel and Veselic [Demmel92]. The condition number that determines the accuracy in the full rank case is essentially

```
(\mp@subsup{\operatorname{min}}{i}{}\mp@subsup{\boldsymbol{d}}{ij}{})\cdot\kappa(A\cdotD)
```

where $\kappa($.$) is the spectral condition number. The best performance of this Jacobi SVD procedure is achieved if$ used in an accelerated version of Drmac and Veselic [Drmac08-1], [Drmac08-2]. Some tunning parameters (marked with TP) are available for the implementer.

The computational range for the nonzero singular values is the machine number interval (UNDERFLOW,OVERFLOW). In extreme cases, even denormalized singular values can be computed with the corresponding gradual loss of accurate digit.

Input Parameters

The data types are given for the Fortran interface, except for stat. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
joba
jobu
```

jobv

```
CHARACTER*1. Must be 'L', 'U' or 'G'.
Specifies the structure of }A\mathrm{ :
If joba = 'L', the input matrix A is lower triangular.
If joba = 'U', the input matrix A is upper triangular.
If joba = 'G', the input matrix }A\mathrm{ is a general m-by-n,m}\geqn\mathrm{ .
CHARACTER*1. Must be 'U', 'C' or 'N'.
```

Specifies whether to compute the left singular vectors (columns of U):
If jobu = 'U', the left singular vectors corresponding to the nonzero
singular values are computed and returned in the leading columns of A. See
more details in the description of a. The default numerical orthogonality
threshold is set to approximately TOL=CTOL*EPS, CTOL=sqrt (m), EPS
= ?lamch('E')
If jobu = 'C', analogous to jobu = 'U', except that you can control the
level of numerical orthogonality of the computed left singular vectors. TOL
can be set to TOL=CTOL*EPS, where CTOL is given on input in the array
work. No CTOL smaller than ONE is allowed. CTOL greater than $1 /$ EPS is
meaningless. The option ' C ' can be used if m^{\star} EPS is satisfactory
orthogonality of the computed left singular vectors, so CTOL=m could save a
few sweeps of Jacobi rotations. See the descriptions of a and work (1).
If jobu $=$ ' N ', u is not computed. However, see the description of a.
CHARACTER*1. Must be 'V', 'A' or 'N'.
Specifies whether to compute the right singular vectors, that is, the matrix
v:

If jobv $=$ ' V ', the matrix V is computed and returned in the array v. If jobv = 'A', the Jacobi rotations are applied to the $m v$-by n array v. In other words, the right singular vector matrix v is not computed explicitly, instead it is applied to an $m v$-by n matrix initially stored in the first mv rows of V.
If jobv $=$ ' N ', the matrix v is not computed and the array v is not referenced.
INTEGER. The number of rows of the input matrix A.
$1 /$ slamch ('E') $>m \geq 0$ for sgesvj.
1/dlamch('E')> $m \geq 0$ for dgesvj.
n
a, work, sva, v

Ida
mV

I Work

Output Parameters

On exit:

```
If jobu = 'U' or jobu = 'C':
```

- if info $=0$, the leading columns of A contain left singular vectors corresponding to the computed singular values of a that are above the underflow threshold ?lamch('S'), that is, non-zero singular values. The number of the computed non-zero singular values is returned in work (2). Also see the descriptions of sva and work. The computed columns of u are mutually numerically orthogonal up to approximately TOL=sqrt (m)*EPS (default); or TOL=CTOL*EPS jobu = 'C', see the description of jobu.
- if info > 0 , the procedure ? gesvj did not converge in the given number of iterations (sweeps). In that case, the computed columns of u may not be orthogonal up to TOL. The output u (stored in a), sigma
(given by the computed singular values in $\operatorname{sva}(1: n)$) and v is still a decomposition of the input matrix A in the sense that the residual ||ascale*u*sigma*v**t||_2 / ||a||_2 is small.

If jobu = 'N':

- if info $=0$, note that the left singular vectors are 'for free' in the onesided Jacobi SVD algorithm. However, if only the singular values are needed, the level of numerical orthogonality of u is not an issue and iterations are stopped when the columns of the iterated matrix are numerically orthogonal up to approximately m^{\star} EPS. Thus, on exit, a contains the columns of u scaled with the corresponding singular values.
- if info > 0, the procedure ?gesvj did not converge in the given number of iterations (sweeps).

On exit:
If info $=0$, depending on the value scale $=$ work (1), where scale is the scaling factor:

- if scale $=1$, $\operatorname{sva}(1: n)$ contains the computed singular values of a. During the computation, sva contains the Euclidean column norms of the iterated matrices in the array a.
- if scale $\neq 1$, the singular values of a are scale*sva(1:n), and this factored representation is due to the fact that some of the singular values of a might underflow or overflow.

If info > 0, the procedure ?gesvj did not converge in the given number of iterations (sweeps) and scale*sva(1:n) may not be accurate.

On exit:
If jobv = 'V', contains the n-by-n matrix of the right singular vectors. If jobv = 'A', then v contains the product of the computed right singular vector matrix and the initial matrix in the array v. If jobv = 'N', v is not referenced.
On exit,
work (1)/stat[0] = scale is the scaling factor such that scale*sva(1:n) are the computed singular values of A. See the description of sva().
work (2)/stat [1] is the number of the computed nonzero singular value. work (3)/stat [2] is the number of the computed singular values that are larger than the underflow threshold.
work (4)/stat [3] is the number of sweeps of Jacobi rotations needed for numerical convergence.
work (5)/stat[4] = max_\{i.NE.j\} |COS (A(:,i),A(:,j))| in the last sweep. This is useful information in cases when ?gesvj did not converge, as it can be used to estimate whether the output is still useful and for post festum analysis.
work (6)/stat [5] is the largest absolute value over all sines of the Jacobi rotation angles in the last sweep. It can be useful in a post festum analysis.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info > 0 , the function did not converge in the maximal number (30) of sweeps. The output may still be useful. See the description of work.

See Also
?lamch

?ggsvd
 Computes the generalized singular value decomposition of a pair of general rectangular matrices.

Syntax

Fortran 77:

call sggsvd(jobu, jobv, jobq, $m, n, p, k, l, a, l d a, b, l d b, a l p h a, b e t a, ~ u, ~ l d u, ~ v$, ldv, q, ldq, work, iwork, info)
call dggsvd(jobu, jobv, jobq, $m, n, p, k, l, a, l d a, b, l d b, a l p h a, b e t a, ~ u, ~ l d u, ~ v$, ldv, q, ldq, work, iwork, info)
call cggsvd(jobu, jobv, jobq, $m, n, p, k, l, a, ~ l d a, b, l d b, ~ a l p h a, ~ b e t a, ~ u, ~ l d u, ~ v$, ldv, q, ldq, work, rwork, iwork, info)
call zggsvd(jobu, jobv, jobq, $m, n, p, k, l, a, ~ l d a, b, l d b, ~ a l p h a, ~ b e t a, ~ u, ~ l d u, ~ v$, ldv, q, ldq, work, rwork, iwork, info)

Fortran 95:
call ggsvd(a, b, alpha, beta $[, k][, l][, u][, v][, q]$ [,iwork] [,info])

C:

lapack_int LAPACKE_sggsvd(int matrix_order, char jobu, char jobv, char jobq, lapack_int m, lapack_int $n, ~ l a p a c k _i n t ~ p, ~ l a p a c k _i n t * ~ k, ~ l a p a c k _i n t * ~ l, ~ f l o a t * ~ a, ~$ lapack_int lda, float* b, lapack_int ldb, float* alpha, float* beta, float* u, lapack_int ldu, float* v, lapack_int ldv, float* q, lapack_int ldq, lapack_int* iwork);
lapack_int LAPACKE_dggsvd(int matrix_order, char jobu, char jobv, char jobq, lapack_int m, lapack_int $n, ~ l a p a c k _i n t ~ p, ~ l a p a c k _i n t * ~ k, ~ l a p a c k _i n t * ~ l, ~ d o u b l e * ~ a, ~$ lapack_int lda, double* b, lapack_int ldb, double* alpha, double* beta, double* u,
 iwork);
lapack_int LAPACKE_cggsvd(int matrix_order, char jobu, char jobv, char jobq,
 lapack_complex_float* $a, ~ l a p a c k _i n t ~ l d a, ~ l a p a c k _c o m p l e x _f l o a t * ~ b, ~ l a p a c k _i n t ~ l d b, ~$ float* alpha, float* beta, lapack_complex_float* u, lapack_int ldu, lapack_complex_float* $v, ~ l a p a c k _i n t ~ l d v, ~ l a p a c k _c o m p l e x _f l o a t * ~ q, ~ l a p a c k _i n t ~ l d q, ~$ lapack_int* iwork);
lapack_int LAPACKE_zggsvd(int matrix_order, char jobu, char jobv, char jobq,
 lapack_complex_double* $a, ~ l a p a c k _i n t ~ l d a, ~ l a p a c k _c o m p l e x _d o u b l e * ~ b, ~ l a p a c k _i n t ~ l d b, ~$ double* alpha, double* beta, lapack_complex_double* $u, ~ l a p a c k _i n t ~ l d u, ~$ lapack_complex_double* $v, ~ l a p a c k _i n t ~ l d v, ~ l a p a c k _c o m p l e x _d o u b l e * ~ q, ~ l a p a c k _i n t ~ l d q, ~$ lapack_int* iwork);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes the generalized singular value decomposition (GSVD) of an m-by-n real/complex matrix A and p-by- n real/complex matrix B :
$U^{\prime \star} A^{\star} Q=D_{1}^{*}(0 R), V^{\prime \star} B^{\star} Q=D_{2}^{*}\left(\begin{array}{ll}0 & R\end{array}\right)$,
where U, V and Q are orthogonal/unitary matrices and U^{\prime}, V^{\prime} mean transpose/conjugate transpose of U and V respectively.

Let $k+l=$ the effective numerical rank of the matrix ($\left.A^{\prime}, B^{\prime}\right)^{\prime}$, then R is a $(k+l)$-by- $(k+l)$ nonsingular upper triangular matrix, D_{1} and D_{2} are m-by- $(k+1)$ and $p-b y-(k+1)$ "diagonal" matrices and of the following structures, respectively:

If $m-k-1 \geq 0$,

$$
\begin{aligned}
& \left.D_{1}=\begin{array}{r}
k \\
m-k-I \\
I
\end{array} \begin{array}{c}
\begin{array}{l}
k \\
I \\
0 \\
0
\end{array} \\
0 \\
0
\end{array}\right) \\
& D_{2}=\quad \rho-I\left(\begin{array}{ll}
k & 1 \\
0 & S \\
0 & 0
\end{array}\right) \\
& n-k-1 \quad k \quad 1 \\
& \left.\left(\begin{array}{ll}
0 & R
\end{array}\right)=\begin{array}{ccc}
k \\
I
\end{array}\left(\begin{array}{cc}
0 & R_{11} \\
0 & 0
\end{array}\right) R_{12}\right) \text {, }
\end{aligned}
$$

where
$C=\operatorname{diag}(a l p h a(K+1), \ldots$, alpha($K+1))$
$S=\operatorname{diag}(\operatorname{beta}(K+1), \ldots, \operatorname{beta}(K+1))$
$C^{2}+S^{2}=I$
R is stored in $a(1: k+1, n-k-1+1: n)$ on exit.
If $m-k-1<0$,

$$
\begin{aligned}
& k \quad m-k \quad k+I-m \\
& D_{1}=m\left(\begin{array}{lll}
I & 0 & 0 \\
0 & C & 0
\end{array}\right) \\
& k \quad m-k \quad k+I-m \\
& D_{2}=k+I-m\left(\begin{array}{lll}
m-k & S & 0 \\
p-I
\end{array}\binom{0}{0}\right. \\
& \left.\begin{array}{r}
n-k-1 \\
(0 R
\end{array}\right)=\begin{array}{r}
k \\
k-k \\
m+1
\end{array}\left(\begin{array}{cccc}
0 & R_{11} & R_{12} & R_{13} \\
0 & 0 & R_{22} & R_{23} \\
0 & 0 & 0 & R_{33}
\end{array}\right)
\end{aligned}
$$

where

```
C = diag(alpha(K+1),..., alpha(m)),
S = diag(beta(K+1),...,beta(m)),
C2}+\mp@subsup{S}{2}{}=
```

On exit,

is stored in $a(1: m, n-k-1+1: n)$ and R_{33} is stored in $b(m-k+1: 1, n+m-k-1$ $+1: n$).

The routine computes C, S, R, and optionally the orthogonal/unitary transformation matrices U, V and Q. In particular, if B is an n-by- n nonsingular matrix, then the GSVD of A and B implicitly gives the SVD of $A^{*} B^{-1}$: $A^{\star} B^{-1}=U^{\star}\left(D_{1} * D_{2}^{-1}\right) * V^{\prime}$.
If (A^{\prime}, B^{\prime})' has orthonormal columns, then the GSVD of A and B is also equal to the CS decomposition of A and B. Furthermore, the GSVD can be used to derive the solution of the eigenvalue problem:

$$
A^{\prime \star \star} A^{\star} X=\lambda^{\star} B^{\prime \star} B^{\star} X
$$

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
jobu
ChARACTER*1. Must be 'U' or 'N'.
If jobu = 'U', orthogonal/unitary matrix U is computed.
If jobu = 'N', U is not computed.

jobv	CHARACTER*1. Must be 'V' or 'N'.
	If jobv = ' V ', orthogonal/unitary matrix v is computed.
	If jobv = ' N ', V is not computed.
jobq	CHARACTER*1. Must be 'Q' or 'N'.
	If jobq = ' Q ', orthogonal/unitary matrix Q is computed.
	If jobq = 'N', Q is not computed.
m	INTEGER. The number of rows of the matrix $A(m \geq 0)$.
n	INTEGER. The number of columns of the matrices A and $B(n \geq 0)$.
p	INTEGER. The number of rows of the matrix $B(p \geq 0)$.
a, b, work	REAL for sggsvd
	DOUBLE PRECISION for dggsvd
	COMPLEX for cggsvd
	DOUBLE COMPLEX for zggsvd.
	Arrays:
	$a(l d a, *)$ contains the m-by-n matrix A.
	The second dimension of a must be at least max $(1, n)$.
	$b(1 d b, *)$ contains the p-by-n matrix B.
	The second dimension of b must be at least $\max (1, n)$. work(*) is a workspace array
	The dimension of work must be at least max $3 n, m, p)+n$.
Ida	INTEGER. The leading dimension of a; at least max $(1, m)$.
1 db	INTEGER. The leading dimension of b; at least max $(1, p)$.
Idu	INTEGER. The leading dimension of the array u.
	$l d u \geq \max (1, m)$ if jobu = 'U'; $l d u \geq 1$ otherwise.
$1 d v$	INTEGER. The leading dimension of the array v.
	$l d v \geq \max (1, p)$ if jobv = 'V'; $l d v \geq 1$ otherwise.
$1 d q$	INTEGER. The leading dimension of the array q.
	$l d q \geq \max (1, n)$ if $j o b q=$ ' Q '; $l d q \geq 1$ otherwise.
iwork	INTEGER.
	Workspace array, DIMENSION at least max $(1, n)$.
rwork	REAL for cggsvd DOUBLE PRECISION for zggsvd.
	Workspace array, DIMENSION at least max $(1,2 n)$. Used in complex flavors only.

Output Parameters

k, 1
a
b
alpha, beta

INTEGER. On exit, k and 1 specify the dimension of the subblocks. The sum $k+1$ is equal to the effective numerical rank of (A^{\prime}, B^{\prime})'.
On exit, a contains the triangular matrix R or part of R.
On exit, b contains part of the triangular matrix \mathbf{R} if $m-k-l<0$.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max $(1, n)$ each.
Contain the generalized singular value pairs of A and B :

```
alpha(1:k) = 1,
beta(1:k) = 0,
and if m-k-1 \geq 0,
alpha(k+1:k+l) = C,
beta(k+1:k+l) = S,
```

	or if $m-k-1<0$,
	alpha $(k+1: m)=C, \operatorname{lpha}(m+1: k+1)=0$
	$\operatorname{beta}(k+1: m)=S, \operatorname{beta}(m+1: k+1)=1$
	and
	alpha $(k+1+1: n)=0$
	beta $(k+1+1: n)=0$.
u, v, q	REAL for sggsvd
	DOUBLE PRECISION for dggsvd
	COMPLEX for cggsvd
	DOUBLE COMPLEX for zggsvd.
	Arrays:
	$u(l d u, *)$; the second dimension of u must be at least max $(1, m)$.
	If jobu = 'U', u contains the m-by-m orthogonal/unitary matrix U.
	If jobu = 'N', u is not referenced.
	$v(l d v, *)$; the second dimension of v must be at least max $(1, p)$.
	If jobv = 'V', v contains the p-by-p orthogonal/unitary matrix v .
	If jobv = 'N', v is not referenced.
	$q(l d q, *)$; the second dimension of q must be at least max $(1, n)$.
	If jobq = ' Q ', q contains the n-by-n orthogonal/unitary matrix Q.
	If jobq = 'N', q is not referenced.
iwork	On exit, iwork stores the sorting information.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i-th parameter had an illegal value.
	If info $=1$, the Jacobi-type procedure failed to converge. For further details, see subroutine tgsja.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ggsvd interface are the following:

a	Holds the matrix A of size (m, n).
b	Holds the matrix B of size (p, n).
alpha	Holds the vector of length n.
beta	Holds the vector of length n.
v	Holds the matrix U of size (m, m).
q	Holds the matrix V of size (p, p).
iwork	Holds the matrix Q of size (n, n).
jobu	Holds the vector of length n.
jobv	Restored based on the presence of the argument u as follows:
	jobu $=' U '$, if u is present, jobu $=' N^{\prime}$, if u is omitted.
	Restored based on the presence of the argument v as follows:
jobz $=' V '$, if v is present,	
jobq	jobz $=' N^{\prime}$, if v is omitted.
	Restored based on the presence of the argument q as follows:
	$j o b z=' Q '$, if q is present,
	$j o b z=' N '$, if q is omitted.

Cosine-Sine Decomposition

This section describes LAPACK driver routines for computing the cosine-sine decomposition (CS decomposition). You can also call the corresponding computational routines to perform the same task.
The computation has the following phases:

1. The matrix is reduced to a bidiagonal block form.
2. The blocks are simultaneously diagonalized using techniques from the bidiagonal SVD algorithms.

Table "Driver Routines for Cosine-Sine Decomposition (CSD)" lists LAPACK routines (FORTRAN 77 interface) that perform CS decomposition of matrices. Respective routine names in Fortran 95 interface are without the first symbol (see Routine Naming Conventions).
Computational Routines for Cosine-Sine Decomposition (CSD)

Operation	Real matrices	Complex matrices
Compute the CS decomposition of a block- partitioned orthogonal matrix	orcsd uncsd	
Compute the CS decomposition of a block- partitioned unitary matrix		orcsd uncsd

See Also
Cosine-Sine Decomposition

?orcsd/?uncsd

Computes the CS decomposition of a block-partitioned orthogonal/unitary matrix.

Syntax

Fortran 77:

```
call sorcsd( jobul, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, xll, ldxll, xl2,
ldx12, x21, ldx21, x22, ldx22, theta, ul, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t,
work, lwork, iwork, info )
call dorcsd( jobul, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, xl2,
ldx12, x21, ldx21, x22, ldx22, theta, ul, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t,
work, lwork, iwork, info )
call cuncsd( jobul, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, xll, ldxll, xl2,
ldx12, x21, ldx21, x22, ldx22, theta, ul, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t,
work, lwork, rwork, lrwork, iwork, info )
call zuncsd( jobul, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12,
Idx12, x21, Idx21, x22, Idx22, theta, ul, Idu1, u2, Idu2, v1t, Idv1t, v2t, Idv2t,
work, lwork, rwork, lrwork, iwork, info )
```

Fortran 95:

```
call orcsd( x11,x12,x21,x22,theta,u1,u2,v1t,v2t[,jobu1][,jobu2][,jobv1t][,jobv2t]
[,trans][,signs][,info] )
call uncsd( x11,x12,x21,x22,theta,u1,u2,v1t,v2t[,jobu1][,jobu2][,jobv1t][,jobv2t]
[,trans][,signs][,info] )
```

C:
lapack_int LAPACKE_sorcsd(int matrix_order, char jobul, char jobu2, char jobvit, char jobv2t, char trans, char signs, lapack_int m, lapack_int p, lapack_int q, float* xll, lapack_int ldx11, float* x12, lapack_int ldx12, float* x21, lapack_int ldx21, float* x22, lapack_int ldx22, float* theta, float* u1, lapack_int ldu1, float* u2, lapack_int ldu2, float* v1t, lapack_int ldv1t, float* v2t, lapack_int ldv2t);
lapack_int LAPACKE_dorcsd(int matrix_order, char jobul, char jobu2, char jobvit, char jobv2t, char trans, char signs, lapack_int m, lapack_int p, lapack_int q, double* x11, lapack_int ldx11, double* x12, lapack_int ldx12, double* x21, lapack_int ldx21, double* x22, lapack_int ldx22, double* theta, double* u1, lapack_int ldu1, double* u2, lapack_int ldu2, double* v1t, lapack_int ldv1t, double* v2t, lapack_int ldv2t);
lapack_int LAPACKE_cuncsd(int matrix_order, char jobul, char jobu2, char jobvit, char jobv2t, char trans, char signs, lapack_int m, lapack_int p, lapack_int q, lapack_complex_float* x11, lapack_int ldx11, lapack_complex_float* x12, lapack_int ldx12, lapack_complex_float* x21, lapack_int ldx21, lapack_complex_float* x22, lapack_int ldx22, float* theta, lapack_complex_float* ul, lapack_int ldul, lapack_complex_float* u2, lapack_int ldu2, lapack_complex_float* v1t, lapack_int ldv1t, lapack_complex_float* v2t, lapack_int ldv2t);
lapack_int LAPACKE_zuncsd(int matrix_order, char jobul, char jobu2, char jobvit, char jobv2t, char trans, char signs, lapack_int m, lapack_int p, lapack_int q, lapack_complex_double* x11, lapack_int ldx11, lapack_complex_double* x12, lapack_int ldx12, lapack_complex_double* x21, lapack_int ldx21, lapack_complex_double* x22, lapack_int ldx22, double* theta, lapack_complex_double* ul, lapack_int ldul, lapack_complex_double* u2, lapack_int ldu2, lapack_complex_double* v1t, lapack_int ldv1t, lapack_complex_double* v2t, lapack_int ldv2t);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routines ?orcsd/?uncsd compute the CS decomposition of an m-by-m partitioned orthogonal matrix x :

$$
X=\left(\begin{array}{lll}
x_{11} & x_{12} \\
\hline x_{21} & x_{22}
\end{array}\right)=\left(\begin{array}{ll}
u_{1} & \mid \\
\hline & \mid
\end{array} u_{2}\right)\left(\begin{array}{ccccc}
I & 0 & 0 \mid 0 & 0 & 0 \\
0 & C & 0 \mid 0 & -S & 0 \\
0 & 0 & 0 \mid 0 & 0 & -I \\
0 & 0 & 0 \mid I & 0 & 0 \\
0 & S & 0 \mid 0 & C & 0 \\
0 & 0 & I \mid 0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
v_{1} & \mid \\
\hline & \mid & v_{2}
\end{array}\right)^{T}
$$

or unitary matrix:

$$
X=\left(\begin{array}{l|l}
x_{11} & x_{12} \\
\hline x_{21} & x_{22}
\end{array}\right)=\left(\begin{array}{ll}
u_{1} & \mid \\
\hline & \mid \\
u_{2}
\end{array}\right)\left(\begin{array}{ccccc}
I & 0 & 0 \mid 0 & 0 & 0 \\
0 & C & 0 \mid 0 & -S & 0 \\
0 & 0 & 0 \mid 0 & 0 & -I \\
\hline 0 & 0 & 0 \mid I & 0 & 0 \\
0 & S & 0 \mid 0 & C & 0 \\
0 & 0 & I \mid 0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
v_{1} & \mid \\
\hline & \mid & v_{2}
\end{array}\right)^{H}
$$

x_{11} is p-by- q. The orthogonal/unitary matrices u_{1}, u_{2}, v_{1}, and v_{2} are $p-b y-p,(m-p)-$ by- $(m-p)$, q-by- q, ($m-$ q) -by- $(m-q)$, respectively. C and S are r-by- r nonnegative diagonal matrices satisfying $C^{2}+S^{2}=I$, in which $r=\min (p, m-p, q, m-q)$.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobul CHARACTER. If equals }Y\mathrm{ , then }\mp@subsup{u}{1}{}\mathrm{ is computed. Otherwise, }\mp@subsup{u}{1}{}\mathrm{ is not
    computed.
jobu2 CHARACTER. If equals Y, then u2 is computed. Otherwise, u}\mp@subsup{u}{2}{}\mathrm{ is not
    computed.
jobv1t
jobv2t
trans
signs
m
p
q
x
ldx
INTEGER. The number of rows and columns of the matrix \(x\).
INTEGER. The number of rows in \(x_{11}\) and \(x_{12} .0 \leq p \leq m\).
INTEGER. The number of columns in \(x_{11}\) and \(x_{21} .0 \leq q \leq m\).
REAL for sorcsd
DOUBLE PRECISION for dorcsd
COMPLEX for cuncsd
DOUBLE COMPLEX for zuncsd
Array, DIMENSION ( \(1 d x, m\) ).
On entry, the orthogonal/unitary matrix whose CSD is desired.
\(1 d x\)
INTEGER. The leading dimension of the array \(x . l d x \geq \max (1, m)\).
```

IduI	INTEGER. The leading dimension of the array u_{1}. If jobul $=$ ' Y ', 1 du1 \geq $\max (1, p)$.
Idu2	INTEGER. The leading dimension of the array u_{2}. If jobu2 $=$ ' Y ', 1 du $2 \geq$ $\max (1, m-p)$.
IdvIt	INTEGER. The leading dimension of the array vit. If jobvit $=$ ' $Y^{\prime}, \operatorname{ldv} 1 t \geq$ $\max (1, q)$.
Idv2t	INTEGER. The leading dimension of the array $v 2 t$. If jobv2t $=$ ' $Y^{\prime}, \operatorname{ldv} 2 t \geq$ $\max (1, m-q)$.
work	REAL for sorcsd
	DOUBLE PRECISION for dorcsd
	COMPLEX for cuncsd
	DOUBLE COMPLEX for zuncsd
	Workspace array, DIMENSION (max (1, lwork)).
Iwork	INTEGER. The size of the work array. Constraints:
	If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
rwork	REAL for cuncsd
	DOUBLE PRECISION for zuncsd
	Workspace array, DIMENSION (max (1, lrwork)).
Irwork	INTEGER. The size of the rwork array. Constraints:
	If lrwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the rwork array, returns this value as the first entry of the rwork array, and no error message related to lrwork is issued by xerbla.
iwork	INTEGER. Workspace array, dimension m.

Output Parameters

	DOUBLE PRECISION for dorcsd
	COMPLEX for cuncsd
	DOUBLE COMPLEX for zuncsd
	Array, DIMENSION (ldvlt,q).
	If jobvit $=$ ' Y^{\prime}, v1t contains the q-by- q orthogonal matrix $v_{1}{ }^{T}$ or unitary matrix $v_{1}{ }^{H}$.
v2t	REAL for sorcsd
	DOUBLE PRECISION for dorcsd
	COMPLEX for cuncsd
	DOUBLE COMPLEX for zuncsd
	Array, DIMENSION ($1 d v 2 t, m-q$).
	If jobv $2 t=$ ' Y ', $v 2 t$ contains the $(m-q)$-by- $(m-q)$ orthogonal matrix $v_{2}{ }^{T}$ or unitary matrix $\mathrm{V}_{2}{ }^{H}$.
work	On exit,
	If info $=0, \quad$ work (1) returns the optimal lwork.
	If info > 0, work (2:r) contains the values phi (1), ...,
	phi (r-1) that, together with theta(1), ...,
	theta (r) define the matrix in intermediate bidiagonal-block form remaining after nonconvergence. info specifies the number of nonzero phi's.
rwork	On exit,
	If info $=0, \quad$ rwork (1) returns the optimal lrwork.
	If info > 0, rwork (2:r) contains the values phi (1), ...,
	phi (r-1) that, together with theta(1), ..., theta (r) define the matrix in intermediate bidiagonal-block form remaining after nonconvergence. info specifies the number of nonzero phi's.
info	INTEGER.
	= 0: successful exit
	< 0: if info $=-i$, the i-th argument has an illegal value
	> 0: ? bbcsd did not converge. See the description of work above for details.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ?orcsd/?uncsd interface are as follows:

```
x11 Holds the block of matrix }x\mathrm{ of size ( p,q).
x12 Holds the block of matrix }x\mathrm{ of size ( p,m-q).
x21 Holds the block of matrix }x\mathrm{ of size (m-p,q).
x22 Holds the block of matrix }x\mathrm{ of size (m-p,m-q).
theta Holds the vector of length r = min ( p,m-p,q,m-q).
u1 Holds the matrix of size ( }p,p\mathrm{ ).
u2 Holds the matrix of size (m-p,m-p).
```

v1t	Holds the matrix of size (q, q).
$v 2 t$	Holds the matrix of size $(m-q, m-q)$.
jobsul	Indicates whether u_{1} is computed. Must be 'Y' or 'O'.
jobsu2	Indicates whether u_{2} is computed. Must be 'Y' or 'O'.
jobv1t	Indicates whether $v_{1}{ }^{t}$ is computed. Must be 'Y' or 'O'.
jobv2t	Indicates whether $V_{2}{ }^{t}$ is computed. Must be 'Y' or 'O'.
trans	Must be 'N' or 'T'.
signs	Must be 'O' or ' D^{\prime}.

See Also
?bbcsd
xerbla

Generalized Symmetric Definite Eigenproblems

This section describes LAPACK driver routines used for solving generalized symmetric definite eigenproblems. See also computational routines that can be called to solve these problems. Table "Driver Routines for Solving Generalized Symmetric Definite Eigenproblems" lists all such driver routines for the FORTRAN 77 interface. Respective routine names in the Fortran 95 interface are without the first symbol (see Routine Naming Conventions).
Driver Routines for Solving Generalized Symmetric Definite Eigenproblems

Routine Name	Operation performed
sygv/hegv	Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem.
sygvd/hegvd	Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem. If eigenvectors are desired, it uses a divide and conquer method.
sygvx/hegvx	Computes selected eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem.
spgv/hpgv	Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem with matrices in packed storage.
spgvd/hpgvd	Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem with matrices in packed storage. If eigenvectors are desired, it uses a divide and conquer method.
spgvx/hpgvx	Computes selected eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric/Hermitian definite eigenproblem with matrices in packed storage.
sbgv/hbgv	Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem with banded matrices.
sbgvd/hbgvd	Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem with banded matrices. If eigenvectors are desired, it uses a divide and conquer method.
sbgvx/hbgvx	Computes selected eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem with banded matrices.

?sygv
 Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem.

Syntax

Fortran 77:

```
call ssygv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)
call dsygv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)
```


Fortran 95:

```
call sygv(a, b, w [,itype] [,jobz] [,uplo] [,info])
```

C:

```
lapack_int LAPACKE_<?>sygv( int matrix_order, lapack_int itype, char jobz, char uplo,
lapack_int n, <datatype>* a, lapack_int lda, <datatype>* b, lapack_int ldb,
<datatype>* w );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form

Here A and B are assumed to be symmetric and B is also positive definite.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
itype INTEGER. Must be 1 or 2 or 3.
    Specifies the problem type to be solved:
    if itype = 1, the problem type is A**X = lambda* B* *;
    if itype = 2, the problem type is A* 的积= lambda**;
    if itype = 3, the problem type is B*A* x = lambda*}x
jobz CHARACTER*1.Must be 'N' or 'V'.
    If jobz = 'N', then compute eigenvalues only.
    If jobz = 'V', then compute eigenvalues and eigenvectors.
uplo CHARACTER*1. Must be 'U' or 'L'.
    If uplo = 'U', arrays a and b store the upper triangles of A and B;
    If uplo = 'L', arrays a and b store the lower triangles of }A\mathrm{ and }B\mathrm{ .
n
a,b, work
INTEGER. The order of the matrices A and B ( }n\geq0)\mathrm{ .
REAL for ssygv
DOUBLE PRECISION for dsygv.
Arrays:
```

a(lda,*) contains the upper or lower triangle of the symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max $(1, n)$.
$b(I d b, *)$ contains the upper or lower triangle of the symmetric positive definite matrix B, as specified by uplo.
The second dimension of b must be at least $\max (1, n)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least max $(1, n)$.
INTEGER. The leading dimension of b; at least $\max (1, n)$.
INTEGER.
The dimension of the array work;
lwork $\geq \max (1,3 n-1)$.
If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

a
On exit, if $j o b z=' V$ ', then if info $=0$, a contains the matrix z of eigenvectors. The eigenvectors are normalized as follows:
if itype $=1$ or $2, Z^{T \star} B^{\star} Z=I$;
if itype $=3, Z^{T}$ inv $(B) * Z=I$;
If $j o b z=$ 'N', then on exit the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of A, including the diagonal, is destroyed.
b
w
work (1)
info
On exit, if info $\leq n$, the part of b containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization $B=U^{T} * U$ or $B=$ $L^{\star} L^{T}$.
REAL for ssygv
DOUBLE PRECISION for dsygv.
Array, DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues in ascending order.
On exit, if info $=0$, then work (1) returns the required minimal size of
lwork.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyev/dsyev returned an error code:
If info $=i \leq n$, ssyev/dsyev failed to converge, and i off-diagonal elements of an intermediate tridiagonal did not converge to zero;
If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order i of B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine sygv interface are the following:
a
Holds the matrix A of size (n, n).

b	Holds the matrix B of size (n, n).
w	Holds the vector of length n.
itype	Must be 1,2 , or 3 . The default value is 1.
jobz	Must be 'N' or 'V'. The default value is ' N '.
uplo	Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For optimum performance use 1 work $\geq(n b+2){ }^{*} n$, where $n b$ is the blocksize for ssytrd/dsytrd returned by ilaenv.

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run or set lwork $=-1$ (liwork $=-1$).

If lwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If $\operatorname{lwork}=-1$ (liwork $=-1$), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if work (liwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

?hegv
 Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem.

Syntax

Fortran 77:

```
call chegv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, info)
call zhegv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, info)
```


Fortran 95:

```
call hegv(a, b, W [,itype] [,jobz] [,uplo] [,info])
```

C:

```
lapack_int LAPACKE_chegv( int matrix_order, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b,
lapack_int ldb, float* W );
lapack_int LAPACKE_zhegv( int matrix_order, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b,
lapack int ldb, double* w );
```

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form

Here A and B are assumed to be Hermitian and B is also positive definite.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

itype	Integer. Must be 1 or 2 or 3 . Specifies the problem type to be solved: if itype $=1$, the problem type is $A^{*}{ }_{X}=\operatorname{lambda}{ }^{\star} B^{\star}{ }^{*}$; if itype $=2$, the problem type is $A{ }^{*} B^{*}{ }^{*}=$ lambda* ${ }^{\text {; }}$; if itype $=3$, the problem type is $B^{\star} A^{*}{ }_{X}=$ lambda ${ }^{\star} x$.
jobz	CHARACTER*1. Must be 'N' or 'V'. If jobz = ' N ', then compute eigenvalues only. If $j o b z=$ ' V ', then compute eigenvalues and eigenvectors.
uplo	CHARACTER*1. Must be 'U' or 'L'. If uplo = 'U', arrays a and b store the upper triangles of A and B; If uplo $=$ 'L', arrays a and b store the lower triangles of A and B.
n	INTEGER. The order of the matrices A and $B(n \geq 0)$.
a, b, work	COMPLEX for chegv DOUBLE COMPLEX for zhegv. Arrays: a(lda,*) contains the upper or lower triangle of the Hermitian matrix A, as specified by uplo. The second dimension of a must be at least max $(1, n)$. $b(l \mathrm{db}, *)$ contains the upper or lower triangle of the Hermitian positive definite matrix B, as specified by uplo. The second dimension of b must be at least $\max (1, n)$. work is a workspace array, its dimension max (1,1 work).
Ida	INTEGER. The leading dimension of a; at least max $(1, n)$.
1 db	INTEGER. The leading dimension of b; at least max $(1, n)$.
lwork	INTEGER. The dimension of the array work; lwork $\geq \max (1,2 n-1)$. If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes for the suggested value of lwork.
rwork	REAL for chegv DOUBLE PRECISION for zhegv. Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

a
On exit, if $j o b z=' V$ ', then if info $=0$, a contains the matrix z of
eigenvectors. The eigenvectors are normalized as follows:
if itype $=1$ or $2, Z^{H \star} B^{\star} Z=1$;
if itype $=3, Z^{H \star} \operatorname{inv}(B) * Z=I$;

If jobz = 'N', then on exit the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of A, including the diagonal, is destroyed.

b	On exit, if info $\leq n$, the part of b containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization $B=U^{H \star} U$ or $B=$ $L^{\star} L^{H}$.
w	REAL for chegv
	DOUBLE PRECISION for zhegv.
	Array, DIMENSION at least max $(1, n)$.
	If info $=0$, contains the eigenvalues in ascending order.
work(1)	On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i-th argument has an illegal value.
	If info > 0, cpotrf/zpotrf and cheev/zheev return an error code:
	If info $=i \leq n$, cheev/zheev fails to converge, and i off-diagonal elements of an intermediate tridiagonal do not converge to zero;
	If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order i of B is not positive-definite. The factorization of B can not be completed and no eigenvalues or eigenvectors are computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hegv interface are the following:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size (n, n).
w	Holds the vector of length n.
itype	Must be 1,2 , or 3 . The default value is 1.
jobz	Must be 'N' or 'V'. The default value is ' N '.
uplo	Must be 'U' or 'L'. The default value is ' U '.

Application Notes

For optimum performance use 1 work $\geq(n b+1) *_{n}$, where $n b$ is the blocksize for chetrd/zhetrd returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

?sygvd
Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem. If eigenvectors are desired, it uses a divide and conquer method.

Syntax

Fortran 77:

```
call ssygvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, iwork, liwork, info)
call dsygvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, iwork, liwork, info)
```

Fortran 95:

```
call sygvd(a, b, w [,itype] [,jobz] [,uplo] [,info])
```

C:

```
lapack_int LAPACKE_<?>sygvd( int matrix_order, lapack_int itype, char jobz, char uplo,
```

lapack_int n, <datatype>* $a, ~ l a p a c k _i n t ~ l d a, ~<d a t a t y p e>* ~ b, ~ l a p a c k _i n t ~ I d b, ~$
<datatype>* w);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form

```
A\star}X=\lambda*\mp@subsup{B}{}{\star}x,\quad\mp@subsup{A}{}{\star}\mp@subsup{B}{}{\star}X=\mp@subsup{\lambda}{}{\star}X,\quad\mathrm{ or }\mp@subsup{B}{}{\star}\mp@subsup{A}{}{\star}X=\mp@subsup{\lambda}{}{\star}X
```

Here A and B are assumed to be symmetric and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
itype INTEGER. Must be 1 or 2 or 3. Specifies the problem type to be solved:
    if itype = 1, the problem type is A** = lambda* B*x;
    if itype = 2, the problem type is A*B}\mp@subsup{A}{}{*}\mp@subsup{|}{x}{}= lambda**;
    if itype = 3, the problem type is B*A*x = lambda*x.
jobz CHARACTER*1.Must be 'N' or 'V'.
    If jobz = 'N', then compute eigenvalues only.
    If jobz = 'V', then compute eigenvalues and eigenvectors.
uplo CHARACTER*1. Must be 'U' or 'L'.
    If uplo = 'U', arrays a and b store the upper triangles of A and B;
    If uplo = 'L', arrays a and b store the lower triangles of }A\mathrm{ and }B\mathrm{ .
n
a,b,work
INTEGER. The order of the matrices A and B (n\geq0).
REAL for ssygvd
DOUBLE PRECISION for dsygvd.
```

Arrays:
a(Ida,*) contains the upper or lower triangle of the symmetric matrix A, as specified by uplo.
The second dimension of a must be at least $\max (1, n)$.
$b(I d b, *)$ contains the upper or lower triangle of the symmetric positive definite matrix B, as specified by uplo.
The second dimension of b must be at least max $(1, n)$.
work is a workspace array, its dimension max ($1, ~ l$ work).
lda
ldb
lwork
iwork
liwork
INTEGER. The leading dimension of a; at least max $(1, n)$.
INTEGER. The leading dimension of b; at least $\max (1, n)$.
INTEGER.
The dimension of the array work.
Constraints:
If $n \leq 1$, lwork ≥ 1;
If jobz $=$ 'N' and $n>1$, lwork $<2 n+1$;
If jobz $=$ 'V' and $n>1$, lwork $<2 n^{2}+6 n+1$.
If lwork $=-1$, then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.

INTEGER.
Workspace array, its dimension max (1, lwork).
INTEGER.
The dimension of the array iwork.
Constraints:
If $n \leq 1$, liwork ≥ 1;
If jobz = 'N' and $n>1$, liwork ≥ 1;
If jobz $=$ ' V ' and $n>1$, liwork $\geq 5 n+3$.
If liwork $=-1$, then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.

Output Parameters

a
b
w

On exit, if jobz = 'V', then if info $=0$, a contains the matrix z of eigenvectors. The eigenvectors are normalized as follows:
if itype $=1$ or $2, Z^{T \star} B^{\star} Z=I$;
if itype $=3, Z^{T *} \operatorname{inv}(B) * Z=I$;
If jobz = 'N', then on exit the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of A, including the diagonal, is destroyed.
On exit, if info $\leq n$, the part of b containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization $B=U^{T} * U$ or $B=$ $L^{\star} L^{T}$.
REAL for ssygvd
DOUBLE PRECISION for dsygvd.
Array, DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues in ascending order.

```
work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.
iwork(1)
info
On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.
iwork(1)
info
On exit, if info \(=0\), then iwork(1) returns the required minimal size of liwork.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0, an error code is returned as specified below.
- For infóN:
```

- If info = i, with $i \leq n$, and $j o b z=' N$ ', then the algorithm falied to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero.
- If $j o b z=$ ' V ', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns infol (n $+1)$ through $\bmod (i n f o, n+1)$.
- For info > N:
- If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order i of B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sygvd interface are the following:

```
a Holds the matrix A of size ( }n,n)\mathrm{ .
b Holds the matrix B of size ( }n,n)\mathrm{ .
w Holds the vector of length n.
itype Must be 1, 2, or 3. The default value is 1.
jobz Must be 'N' or 'V'. The default value is 'N'.
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run or set lwork $=-1$ (liwork $=-1$).

If lwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.
If $\operatorname{lwork}=-1$ (liwork $=-1$), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if work (liwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

?hegvd
 Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem. If eigenvectors are desired, it uses a divide and conquer method.

Syntax

Fortran 77:

```
call chegvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, lrwork,
iwork, liwork, info)
call zhegvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, lrwork,
iwork, liwork, info)
```


Fortran 95:

```
call hegvd(a, b, w [,itype] [,jobz] [,uplo] [,info])
```

C:
lapack_int LAPACKE_chegvd(int matrix_order, lapack_int itype, char jobz, char uplo,
lapack_int $n, ~ l a p a c k _c o m p l e x _f l o a t * ~ a, ~ l a p a c k _i n t ~ l d a, ~ l a p a c k _c o m p l e x _f l o a t * ~ b, ~$
lapack_int ldb, float* w);
lapack_int LAPACKE_zhegvd(int matrix_order, lapack_int itype, char jobz, char uplo,
lapack_int $n, ~ l a p a c k _c o m p l e x _d o u b l e * ~ a, ~ l a p a c k _i n t ~ l d a, ~ l a p a c k _c o m p l e x _d o u b l e * ~ b, ~$
lapack_int ldb, double* w);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form

Here A and B are assumed to be Hermitian and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

itype	INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved: if itype $=1$, the problem type is $A^{*} X=\operatorname{lambda}{ }^{\star} B^{\star} X$; if itype $=2$, the problem type is $A \star^{*} \star^{*}=$ lambda* X; if itype $=3$, the problem type is $B^{\star} A^{\star} X_{X}=$ lambda${ }^{\star} x$.
jobz	CHARACTER*1. Must be 'N' or 'V'. If jobz = 'N', then compute eigenvalues only. If $j o b z=$ ' V ', then compute eigenvalues and eigenvectors.
uplo	CHARACTER*1. Must be 'U' or 'L'.

	If uplo = 'U', arrays a and b store the upper triangles of A and B; If uplo = 'L', arrays a and b store the lower triangles of A and B.
n	INTEGER. The order of the matrices A and $B(n \geq 0)$.
a, b, work	COMPLEX for chegvd
	DOUBLE COMPLEX for zhegvd.
	Arrays:
	$a(I d a, *)$ contains the upper or lower triangle of the Hermitian matrix A, as specified by uplo.
	The second dimension of a must be at least max $(1, n)$.
	$b(I d b, *)$ contains the upper or lower triangle of the Hermitian positive definite matrix B, as specified by uplo.
	The second dimension of b must be at least $\max (1, n)$. work is a workspace array, its dimension max (1,1 work).
Ida	INTEGER. The leading dimension of a; at least max $(1, n)$.
1 db	INTEGER. The leading dimension of b; at least max $(1, n)$.
Iwork	INTEGER.
	The dimension of the array work.
	Constraints:
	If $n \leq 1$, 1 work ≥ 1;
	If jobz = 'N' and $n>1$, lwork $\geq \mathrm{n}+1$;
	If jobz $=$ 'V' and $n>1,1$ work $\geq n^{2}+2 n$.
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.
rwork	REAL for chegvd
	DOUBLE PRECISION for zhegvd.
	Workspace array, DIMENSION max (1, lrwork).
lrwork	INTEGER.
	The dimension of the array rwork.
	Constraints:
	If $n \leq 1$, lrwork ≥ 1;
	If jobz = 'N' and $n>1$, lrwork $\geq n$;
	If jobz $=$ 'V' and $n>1$, lrwork $\geq 2 n^{2}+5 n+1$.
	If lrwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.
iwork	INTEGER.
	Workspace array, DIMENSION max (1, liwork).
liwork	INTEGER.
	The dimension of the array iwork.
	Constraints:
	If $n \leq 1$, liwork ≥ 1;
	If jobz = 'N' and $n>1$, liwork ≥ 1;
	If jobz = 'V' and $n>1$, liwork $\geq 5 n+3$.

If liwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.

Output Parameters

a
b

W
work(1)
rwork(1)
iwork(1)
info

On exit, if jobz = 'V', then if info $=0$, a contains the matrix z of eigenvectors. The eigenvectors are normalized as follows:
if itype $=1$ or $2, Z^{H \star} B^{\star} Z=I$;
if itype $=3, Z^{H *} \operatorname{inv}(B) * Z=I$;
If $j o b z=$ 'N', then on exit the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of A, including the diagonal, is destroyed.
On exit, if info $\leq n$, the part of b containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization $B=U^{H \star} U$ or $B=$ $L^{\star} L^{H}$.

REAL for chegvd
DOUBLE PRECISION for zhegvd.
Array, DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues in ascending order.
On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
On exit, if info $=0$, then rwork (1) returns the required minimal size of lrwork.

On exit, if info $=0$, then iwork(1) returns the required minimal size of liwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th argument had an illegal value.
If info $=i$, and jobz $=$ ' N ', then the algorithm failed to converge; i offdiagonal elements of an intermediate tridiagonal form did not converge to zero;
if info $=i$, and $j o b z=' V$ ', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns infol $(n+1)$ through mod (info, $n+1)$.
If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order i of B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hegvd interface are the following:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size (n, n).
w	Holds the vector of length n.
itype	Must be 1,2 , or 3. The default value is 1.
jobz	Must be ' N^{\prime} or ' V '. The default value is ' N^{\prime}.

```
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (liwork or lrwork) for the first run or set lwork $=-1$ (liwork $=-1$, lrwork $=-1$).

If you choose the first option and set any of admissible lwork (liwork or lrwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork) on exit. Use this value (work(1), iwork(1), rwork(1)) for subsequent runs.

If you set lwork $=-1$ (liwork $=-1$, lrwork $=-1$), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.

Note that if you set lwork (liwork, lrwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

?sygvx

Computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem.

Syntax

Fortran 77:

```
call ssygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m,
w, z, ldz, work, lwork, iwork, ifail, info)
call dsygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m,
w, z, ldz, work, lwork, iwork, ifail, info)
```


Fortran 95:

```
call sygvx(a, b, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol]
[,info])
```

C:

```
lapack_int LAPACKE_<?>sygvx( int matrix_order, lapack_int itype, char jobz, char range,
char uplo, lapack_int n, <datatype>* a, lapack_int lda, <datatype>* b, lapack_int ldb,
<datatype> vl, <datatype> vu, lapack_int il, lapack_int iu, <datatype> abstol,
lapack_int* m, <datatype>* w, <datatype>* z, lapack_int ldz, lapack_int* ifail );
```

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form

Here A and B are assumed to be symmetric and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

itype	INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved: if itype $=1$, the problem type is $A^{*}{ }_{X}=\operatorname{lambda}{ }^{*} B^{*}{ }^{*}$; if itype $=2$, the problem type is $A^{*} B^{*}{ }_{x}=1$ ambda* ${ }^{*}$; if itype $=3$, the problem type is $B^{\star} A^{\star} \mathrm{X}=$ lambda${ }^{\star} X$.
jobz	CHARACTER*1. Must be 'N' or 'V'. If jobz $=$ ' N ', then compute eigenvalues only. If jobz = ' V ', then compute eigenvalues and eigenvectors.
range	CHARACTER*1. Must be 'A' or 'V' or 'I'. If range $=$ ' A ', the routine computes all eigenvalues. If range $=$ ' V ', the routine computes eigenvalues lambda(i) in the halfopen interval: $v l<l a m b d a(i) \leq v u$. If range = 'I', the routine computes eigenvalues with indices il to iu.
uplo	CHARACTER*1. Must be 'U' or 'L'. If uplo $=$ ' U ', arrays a and b store the upper triangles of A and B; If uplo = 'L', arrays a and b store the lower triangles of A and B.
n	INTEGER. The order of the matrices A and $B(n \geq 0)$.
a, b, work	REAL for ssygvx DOUBLE PRECISION for dsygvx. Arrays: $a(I d a, *)$ contains the upper or lower triangle of the symmetric matrix A, as specified by uplo. The second dimension of a must be at least max $(1, n)$. $b(l d b, *)$ contains the upper or lower triangle of the symmetric positive definite matrix B, as specified by uplo. The second dimension of b must be at least max $(1, n)$. work is a workspace array, its dimension max ($1, ~ l$ work).
Ida	INTEGER. The leading dimension of a; at least max $(1, n)$.
1 db	INTEGER. The leading dimension of b; at least max $(1, n)$.
vl, vu	REAL for ssygvx DOUBLE PRECISION for dsygvx. If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. Constraint: vl< vu. If range $=$ ' A ' or 'I', vl and $v u$ are not referenced.
il, iu	INTEGER. If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; il=1 and $i u=0$ if $n=0$. If range $=$ ' A ' or 'V', il and $i u$ are not referenced.
abstol	REAL for ssygvx


```
If jobz = 'V', then if info \(=0\), the first \(m\) elements of ifail are zero; if
info > 0 , the ifail contains the indices of the eigenvectors that failed to
converge.
If jobz = 'N', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyevx/dsyevx returned an error code:
If info \(=i \leq n\), ssyevx/dsyevx failed to converge, and \(i\) eigenvectors
failed to converge. Their indices are stored in the array ifail;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is
not positive-definite. The factorization of \(B\) could not be completed and no
eigenvalues or eigenvectors were computed.
```

info

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sygvx interface are the following:

```
a Holds the matrix A of size ( }n,n)\mathrm{ .
b Holds the matrix B of size ( }n,n)\mathrm{ .
w Holds the vector of length n.
z Holds the matrix z of size ( n, n), where the values n and m}\mathrm{ are significant.
ifail Holds the vector of length n.
itype Must be 1, 2, or 3. The default value is 1.
uplo Must be 'U' or'L'.The default value is 'U'.
vl Default value for this element is vl = -HUGE(vl).
vu Default value for this element is vu = HUGE(vl).
il Default value for this argument is il = 1.
iu Default value for this argument is iu = n.
abstol Default value for this element is abstol = 0.0_WP.
jobz Restored based on the presence of the argument z as follows:
    jobz = 'V',if z is present,
    jobz = 'N', if z is omitted.
    Note that there will be an error condition if ifail is present and z is omitted.
range Restored based on the presence of arguments vl, vu, il, iu as follows:
    range = 'V', if one of or both vl and vu are present,
    range = 'I', if one of or both il and iu are present,
    range = 'A', if none of vl, vu, il, iu is present,
    Note that there will be an error condition if one of or both vl and vu are present
    and at the same time one of or both il and iu are present.
```


Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol $+\varepsilon^{\star} \max (|a|,|b|)$, where ε is the machine precision.

If abstol is less than or equal to zero, then $\varepsilon^{\star}| | T| |_{1}$ is used as tolerance, where T is the tridiagonal matrix obtained by reducing c to tridiagonal form, where C is the symmetric matrix of the standard symmetric problem to which the generalized problem is transformed. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2 *? lamch('S'), not zero.

If this routine returns with info >0, indicating that some eigenvectors did not converge, set abstol to 2 *? lamch('S').

For optimum performance use 1 work $\geq(n b+3) *_{n}$, where $n b$ is the blocksize for ssytrd/dsytrd returned by ilaenv.

If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if lwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
?hegvx
Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem.

Syntax

Fortran 77:

```
call chegvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m,
w, z, ldz, work, lwork, rwork, iwork, ifail, infol
call zhegvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m,
w, z, ldz, work, lwork, rwork, iwork, ifail, info)
```


Fortran 95:

```
call hegvx(a, b, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol]
[,infO])
C:
lapack_int LAPACKE_chegvx( int matrix_order, lapack_int itype, char jobz, char range,
char uplo, lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_complex_float*
b, lapack_int ldb, float vl, float vu, lapack_int il, lapack_int iu, float abstol,
lapack_int* m, float* w, lapack_complex_float* z, lapack_int ldz, lapack_int* ifail );
lapack_int LAPACKE_zhegvx( int matrix_order, lapack_int itype, char jobz, char range,
char uplo, lapack_int n, lapack_complex_double* a, lapack_int lda,
lapack_complex_double* b, lapack_int ldb, double vl, double vu, lapack_int il,
lapack_int iu, double abstol, lapack_int* m, double* w, lapack_complex_double* z,
lapack_int ldz, lapack_int* ifail );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form
$A^{\star} X=\lambda{ }^{\star} B^{\star} X, \quad A^{\star} B^{\star} X=\lambda^{\star} X$, or $B^{\star} A^{\star} X=\lambda^{\star} X$.
Here A and B are assumed to be Hermitian and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

itype	INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved: if itype $=1$, the problem type is $A \star_{X}=\operatorname{lambda}{ }^{\star} B^{\star} X_{\text {; }}$; if itype $=2$, the problem type is $A \star^{*} \star_{X}=$ lambda* ${ }^{2}$; if itype $=3$, the problem type is $B^{\star} A^{\star} X=$ lambda* ${ }^{*}$.
jobz	CHARACTER*1. Must be 'N' or 'V'. If $j o b z=$ ' N ', then compute eigenvalues only. If jobz = ' V ', then compute eigenvalues and eigenvectors.
range	CHARACTER*1. Must be 'A' or 'V' or 'I'. If range $=$ ' A ', the routine computes all eigenvalues. If range $=$ ' V ', the routine computes eigenvalues $\operatorname{lambda}(i)$ in the halfopen interval: vl<lambda(i) $\leq v u$. If range = 'I', the routine computes eigenvalues with indices il to iu.
uplo	CHARACTER*1. Must be 'U' or 'L'. If uplo = 'U', arrays a and b store the upper triangles of A and B; If uplo = 'L', arrays a and b store the lower triangles of A and B.
n	INTEGER. The order of the matrices A and $B(n \geq 0)$.
a, b, work	COMPLEX for chegvx DOUBLE COMPLEX for zhegvx. Arrays: a(lda,*) contains the upper or lower triangle of the Hermitian matrix A, as specified by uplo. The second dimension of a must be at least max $(1, n)$. $b(I d b, *)$ contains the upper or lower triangle of the Hermitian positive definite matrix B, as specified by uplo. The second dimension of b must be at least $\max (1, n)$. work is a workspace array, its dimension max ($1, ~ l$ work).
Ida	INTEGER. The leading dimension of a; at least max $(1, n)$.
1 db	INTEGER. The leading dimension of b; at least max $(1, n)$.
vl, vu	REAL for chegvx DOUBLE PRECISION for zhegvx. If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. Constraint: vl< vu. If range $=$ 'A' or 'I', vl and vu are not referenced.
il, iu	INTEGER.

If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; il=1 and $i u=0$
if $n=0$.
If range $=$ ' A ' or ' V ', il and $i u$ are not referenced.
abstol
$I d z$
lwork
rwork
iwork

Output Parameters

REAL for chegvx
DOUBLE PRECISION for zhegvx.
The absolute error tolerance for the eigenvalues. See Application Notes for more information.
INTEGER. The leading dimension of the output array z. Constraints:
$l d z \geq 1$; if $j o b z=' V ', l d z \geq \max (1, n)$.
INTEGER.
The dimension of the array work; lwork $\geq \max (1,2 n)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of lwork.
REAL for chegvx
DOUBLE PRECISION for zhegvx.
Workspace array, DIMENSION at least max(1, 7n).
INTEGER.
Workspace array, DIMENSION at least max(1,5n).

On exit, the upper triangle (if uplo = 'U') or the lower triangle (if uplo = ' L') of A, including the diagonal, is overwritten.
On exit, if info $\leq n$, the part of b containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization $B=U^{H} * U$ or $B=$ $L^{\star} L^{H}$.
INTEGER. The total number of eigenvalues found,
$0 \leq m \leq n$. If range $=$ 'A', $m=n$, and if range $=$ 'I',
$m=i u-i l+1$.
REAL for chegvx
DOUBLE PRECISION for zhegvx.
Array, DIMENSION at least max $(1, n)$.
The first m elements of w contain the selected eigenvalues in ascending order.
COMPLEX for chegvx
DOUBLE COMPLEX for zhegvx.
Array $z(l d z, *)$. The second dimension of z must be at least max $(1, m)$. If jobz $=$ ' V ', then if info $=0$, the first m columns of z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with $w(i)$. The eigenvectors are normalized as follows:
if itype $=1$ or $2, Z^{H} \star B^{\star} Z=I$;
if itype $=3, Z^{H \star} \operatorname{inv}(B) * Z=I$;
If $j o b z=$ ' N ', then z is not referenced.

If an eigenvector fails to converge, then that column of z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array z; if range $=$ ' V ', the exact value of m is not known in advance and an upper bound must be used.
work(1)
ifail
info

On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
If jobz $=$ ' V ', then if info $=0$, the first m elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th argument had an illegal value.
If info > 0, cpotrf/zpotrf and cheevx/zheevx returned an error code:
If info $=i \leq n$, cheevx/zheevx failed to converge, and i eigenvectors failed to converge. Their indices are stored in the array ifail;
If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order i of B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine hegvx interface are the following:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size (n, n).
w	Holds the vector of length n.
z	Holds the matrix z of size (n, n), where the values n and m are significant.
ifail	Holds the vector of length n.
itype	Must be 1,2 , or 3 . The default value is 1 .
uplo	Must be 'U' or 'L'. The default value is 'U'.
vl	Default value for this element is $\mathrm{vl}=-\operatorname{HUGE}(\mathrm{vl})$.
vu	Default value for this element is $v u=\operatorname{HUGE}(\mathrm{vl})$.
il	Default value for this argument is il $=1$.
iu	Default value for this argument is iu $=n$.
abstol	Default value for this element is abstol $=0.0 _W P$.
jobz	Restored based on the presence of the argument z as follows: jobz = 'V', if z is present, jobz $=$ ' N ', if z is omitted. Note that there will be an error condition if ifail is present and z is omitted.
range	Restored based on the presence of arguments $v 1, v u, i l, i u$ as follows: range = 'V', if one of or both vl and vu are present, range $=$ 'I', if one of or both il and iu are present,

range $=$ 'A', if none of $v l, v u, i l$, $i u$ is present, Note that there will be an error condition if one of or both $v l$ and $v u$ are present and at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ $\varepsilon^{\star} \max (|a|,|b|)$, where ε is the machine precision.

If abstol is less than or equal to zero, then $\varepsilon^{\star}| | T| |_{1}$ will be used in its place, where T is the tridiagonal matrix obtained by reducing c to tridiagonal form, where C is the symmetric matrix of the standard symmetric problem to which the generalized problem is transformed. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2^{*} ? lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

For optimum performance use 1 work $\geq(n b+1) *_{n}$, where $n b$ is the blocksize for chetrd/zhetrd returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

```
?spgv
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem with matrices in packed storage.
Syntax
```


Fortran 77:

```
call sspgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)
```

call sspgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)
call dspgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)

```
call dspgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)
```


Fortran 95:

```
call spgv(ap, bp, w [,itype] [,uplo] [,z] [,info])
```

C:
lapack_int LAPACKE_<?>spgv(int matrix_order, lapack_int itype, char jobz, char uplo, lapack_int n, <datatype>* ap, <datatype>* bp, <datatype>* w, <datatype>* z, lapack_int ldz);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues，and optionally，the eigenvectors of a real generalized symmetric－ definite eigenproblem，of the form
$A^{\star} X=\lambda^{\star} B^{\star} X, A^{\star} B^{\star} X=\lambda^{\star} X$ ，or $B^{\star} A^{\star} X=\lambda^{\star} X$ ．
Here A and B are assumed to be symmetric，stored in packed format，and B is also positive definite．

Input Parameters

The data types are given for the Fortran interface．A＜datatype＞placeholder，if present，is used for the C interface data types in the C interface section above．See the C Interface Conventions section for the C interface principal conventions and type definitions．

```
itype INTEGER. Must be 1 or 2 or 3. Specifies the problem type to be solved:
    if itype = 1, the problem type is A* *}= lambda* 倹;
    if itype = 2, the problem type is A* 故稆= lambda**;
    if itype = 3, the problem type is B*A* x = lambda*x.
jobz CHARACTER*1.Must be 'N' or 'V'.
    If jobz = 'N', then compute eigenvalues only.
    If jobz = 'V', then compute eigenvalues and eigenvectors.
    CHARACTER*1. Must be 'U' or 'L'.
    If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
    If uplo = 'L', arrays ap and bp store the lower triangles of A and B.
    INTEGER. The order of the matrices A and B (n\geq0).
REAL for sspgv
DOUBLE PRECISION for dspgv.
Arrays:
```

 \(a p(*)\) contains the packed upper or lower triangle of the symmetric matrix
 A, as specified by uplo.
 The dimension of ap must be at least max(1, \(\left.n^{*}(n+1) / 2\right)\).
 \(b p(*)\) contains the packed upper or lower triangle of the symmetric matrix
 \(B\), as specified by uplo.
 The dimension of \(b p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
 work (*) is a workspace array, DIMENSION at least max \((1,3 n)\).
 INTEGER. The leading dimension of the output array \(z ; 1 d z \geq 1\). If jobz \(=\)
 'V', ldz \(\geq \max (1, n)\).

Output Parameters

```
ap
bp
W, z
```

On exit，the contents of ap are overwritten．
On exit，contains the triangular factor U or L from the Cholesky factorization $B=U^{T} * U$ or $B=L^{*} L^{T}$ ，in the same storage format as B ．

REAL for sspgv
DOUBLE PRECISION for dspgv．
Arrays：
$w(*)$ ，DIMENSION at least $\max (1, n)$ ．
If info $=0$ ，contains the eigenvalues in ascending order．
z（ldz，＊）．
The second dimension of z must be at least max $(1, n)$ ．
If jobz＝＇V＇，then if info $=0, z$ contains the matrix z of eigenvectors．
The eigenvectors are normalized as follows：
if itype $=1$ or $2, Z^{T} \star B^{\star} Z=1$ ；

	if itype $=3, Z^{T}$ *inv $(B) * Z=I$; If jobz = ' N ', then z is not referenced.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i-th argument had an illegal value.
	If info > 0, spptrf/dpptrf and sspev/dspev returned an error code:
	If info $=i \leq n$, sspev/dspev failed to converge, and i off-diagonal elements of an intermediate tridiagonal did not converge to zero;
	If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order i of B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine spgv interface are the following:

ap	Holds the array A of size ($n *(n+1) / 2)$.
bp	Holds the array B of size ($\left.n^{*}(n+1) / 2\right)$.
w	Holds the vector with the number of elements n.
z	Holds the matrix z of size (n, n).
itype	Must be 1,2 , or 3 . The default value is 1 .
uplo	Must be 'U' or 'L'. The default value is 'U'.
jobz	Restored based on the presence of the argument z as follows: jobz $=$ 'V', if z is present, $j o b z=$ 'N', if z is omitted.

?hpgv

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with matrices in packed storage.

Syntax

Fortran 77:

```
call chpgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork, info)
call zhpgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork, info)
```


Fortran 95:

```
call hpgv(ap, bp, w [,itype] [,uplo] [,z] [,info])
```

C:

```
lapack_int LAPACKE_chpgv( int matrix_order, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_float* ap, lapack_complex_float* bp, float* w,
lapack_complex_float* z, lapack_int ldz );
lapack_int LAPACKE_zhpgv( int matrix_order, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_double* ap, lapack_complex_double* bp, double* w,
lapack_complex_double* z, lapack_int ldz );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form

Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive definite.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
itype
jobz
uplo
n
ap,bp, work
ldz
rwork
```


Output Parameters

$a p$
bp
w

On exit, the contents of ap are overwritten.
On exit, contains the triangular factor U or L from the Cholesky factorization $B=U^{H *} U$ or $B=L^{\star} L^{H}$, in the same storage format as B.

REAL for chpgv

z	DOUBLE PRECISION for zhpgv.
	Array, DIMENSION at least max $(1, n)$.
	If info $=0$, contains the eigenvalues in ascending order.
	COMPLEX for chpgv
	DOUBLE COMPLEX for zhpgv.
	Array z(ldz,*).
	The second dimension of z must be at least max $(1, n)$.
	If jobz = ' V ', then if info $=0, z$ contains the matrix z of eigenvectors.
	The eigenvectors are normalized as follows:
	if itype $=1$ or $2, Z^{H \star} B^{\star} Z=1$;
	if itype $=3, Z^{H \star} \operatorname{inv}(B) * Z=I$;
	If jobz = ' N ', then z is not referenced.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i-th argument had an illegal value.
	If info > 0, cpptrf/zpptrf and chpev/zhpev returned an error code:
	If info $=i \leq n$, chpev/zhpev failed to converge, and i off-diagonal elements of an intermediate tridiagonal did not converge to zero;
	If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order i of B is not positive-definite. The factorization of B could not be completed and no
	eigenvalues or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine hpgv interface are the following:

```
ap Holds the array A of size (n* (n+1)/2).
bp Holds the array B of size (n* (n+1)/2).
w Holds the vector with the number of elements n.
z Holds the matrix z of size ( }n,n)\mathrm{ .
itype Must be 1, 2, or 3. The default value is 1.
uplo Must be 'U' or 'L'. The default value is 'U'.
jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
```


?spgvd Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with matrices in packed storage. If eigenvectors are desired, it uses a divide and conquer method.

Syntax

Fortran 77:

```
call sspgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, iwork, liwork, info)
call dspgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, iwork, liwork, info)
```


Fortran 95:

```
call spgvd(ap, bp, w [,itype] [,uplo] [,z] [,info])
```

C:
lapack_int LAPACKE_<?>spgvd(int matrix_order, lapack_int itype, char jobz, char uplo, lapack_int n, <datatype>* ap, <datatype>* bp, <datatype>* w, <datatype>* z, lapack_int ldz);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form

Here A and B are assumed to be symmetric, stored in packed format, and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

itype	INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved: if itype $=1$, the problem type is $A *_{X}=$ lambda ${ }^{*}{ }^{*}{ }_{X}$; if itype $=2$, the problem type is $A^{*} B^{*}{ }_{x}=\operatorname{lambda}{ }_{x}$; if itype $=3$, the problem type is $B^{\star} A^{\star} \mathrm{X}=$ lambda* ${ }^{2}$.
jobz	CHARACTER*1. Must be 'N' or 'V'. If jobz = 'N', then compute eigenvalues only. If jobz = ' V ', then compute eigenvalues and eigenvectors.
uplo	CHARACTER*1. Must be 'U' or 'L'. If uplo = 'U', arrays ap and bp store the upper triangles of A and B; If uplo = 'L', arrays $a p$ and $b p$ store the lower triangles of A and B.
n	INTEGER. The order of the matrices A and $B(n \geq 0)$.
ap, bp, work	REAL for sspgvd DOUBLE PRECISION for dspgvd. Arrays: $a p(*)$ contains the packed upper or lower triangle of the symmetric matrix A, as specified by uplo. The dimension of ap must be at least max $\left(1, n^{*}(n+1) / 2\right)$. $b p(*)$ contains the packed upper or lower triangle of the symmetric matrix B, as specified by uplo. The dimension of $b p$ must be at least $\max \left(1, n^{*}(n+1) / 2\right)$. work is a workspace array, its dimension max ($1, ~ l w o r k$).
$1 d z$	INTEGER. The leading dimension of the output array $z ; I d z \geq 1$. If jobz $=$ 'V', $1 d z \geq \max (1, n)$.
Iwork	INTEGER.

The dimension of the array work.
Constraints:
If $n \leq 1$, lwork ≥ 1;
If jobz $=$ ' N ' and $n>1$, lwork $\geq 2 n$;
If jobz $=$ 'V' and $n>1$, lwork $\geq 2 n^{2}+6 n+1$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.
iwork
liwork
INTEGER.
Workspace array, dimension max (1, I work).
INTEGER.
The dimension of the array iwork.
Constraints:
If $n \leq 1$, liwork ≥ 1;
If jobz $=$ ' N ' and $n>1$, liwork ≥ 1;
If jobz $=$ 'V' and $n>1$, liwork $\geq 5 n+3$.
If liwork $=-1$, then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.

Output Parameters

ap
bp

W, Z
work(1)
iwork(1)
info

On exit, the contents of ap are overwritten.
On exit, contains the triangular factor U or L from the Cholesky factorization $B=U^{T} \star U$ or $B=L^{\star} L^{T}$, in the same storage format as B.
REAL for sspgv
DOUBLE PRECISION for dspgv.
Arrays:
$w(*)$, DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues in ascending order.
$z(l d z, *)$.
The second dimension of z must be at least max $(1, n)$.
If jobz $=$ ' V ', then if info $=0, z$ contains the matrix z of eigenvectors. The eigenvectors are normalized as follows:
if itype $=1$ or $2, Z^{T \star} B^{\star} Z=1$;
if itype $=3, Z^{T \star} \operatorname{inv}(B) * Z=I$;
If $j o b z=$ ' N ', then z is not referenced.
On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
On exit, if info $=0$, then iwork (1) returns the required minimal size of liwork.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th argument had an illegal value.
If info > 0, spptrf/dpptrf and sspevd/dspevd returned an error code:
If info $=i \leq n$, sspevd/dspevd failed to converge, and i off-diagonal elements of an intermediate tridiagonal did not converge to zero;

If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order i of B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine spgvd interface are the following:

```
ap Holds the array A of size (n* (n+1)/2).
bp Holds the array B of size (n* (n+1)/2).
w Holds the vector with the number of elements n.
z Holds the matrix z of size ( }n,n)\mathrm{ .
itype Must be 1, 2, or 3. The default value is 1.
uplo Must be 'U' or 'L'. The default value is 'U'.
jobz Restored based on the presence of the argument z as follows:
    jobz = 'V',if z is present,
    jobz = 'N', if z is omitted.
```


Application Notes

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run, or set lwork $=-1$ (liwork $=-1$).

If lwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If lwork $=-1$ (liwork $=-1$), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if lwork (liwork) is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

?hpgvd

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with matrices in packed storage. If eigenvectors are desired, it uses a divide and conquer method.

Syntax

Fortran 77:

```
call chpgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork, info)
call zhpgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork, info)
```


Fortran 95:

```
call hpgvd(ap, bp, w [,itype] [,uplo] [,z] [,info])
```

```
C:
lapack_int LAPACKE_chpgvd( int matrix_order, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_float* ap, lapack_complex_float* bp, float* w,
lapack_complex_float* z, lapack_int ldz );
lapack_int LAPACKE_zhpgvd( int matrix_order, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_double* ap, lapack_complex_double* bp, double* w,
lapack_complex_double* z, lapack_int ldz );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form
$A^{\star} X=\lambda{ }^{\star} B^{\star} X, A^{\star} B^{\star} X=\lambda{ }^{\star} X$, or $B^{\star} A^{\star} X=\lambda{ }^{\star} X$.
Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
itype
jobz
uplo
n
ap,bp, work
ldz
INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved:
```



```
    if itype = 2, the problem type is A* B* X = lambda*x;
    if itype = 3, the problem type is B}\mp@subsup{B}{}{\star}A\mp@subsup{}{}{*}x=lambda*x
    CHARACTER*1. Must be 'N' or 'V'.
    If jobz = 'N', then compute eigenvalues only.
    If jobz = 'V', then compute eigenvalues and eigenvectors.
    CHARACTER*1. Must be 'U' or 'L'.
    If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
    If uplo = 'L', arrays ap and bp store the lower triangles of A and B.
    INTEGER. The order of the matrices A and B (n\geq0).
COMPLEX for chpgvd
DOUBLE COMPLEX for zhpgvd.
Arrays:
    ap (*) contains the packed upper or lower triangle of the Hermitian matrix
A, as specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
bp (*) contains the packed upper or lower triangle of the Hermitian matrix
B, as specified by uplo.
The dimension of bp must be at least max(1, n*(n+1)/2).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of the output array z; ldz \geq1. If jobz =
'V', ldz \geq max(1, n).
```

I work	INTEGER. The dimension of the array work. Constraints: If $n \leq 1$, lwork ≥ 1; If jobz = 'N' and $n>1$, lwork $\geq n$; If jobz $=$ ' V ' and $n>1$, lwork $\geq 2 n$. If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.
rwork	REAL for chpgvd DOUBLE PRECISION for zhpgvd. Workspace array, its dimension max (1, lrwork).
lrwork	INTEGER. The dimension of the array rwork. Constraints: If $n \leq 1$, lrwork ≥ 1; If jobz = 'N' and $n>1$, lrwork $\geq n$; If jobz $=$ 'V' and $n>1$, lrwork $\geq 2 n^{2}+5 n+1$. If lrwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.
iwork	INTEGER. Workspace array, its dimension max (1, liwork).
liwork	INTEGER. The dimension of the array iwork. Constraints: If $n \leq 1$, liwork ≥ 1; If jobz $=$ 'N' and $n>1$, liwork ≥ 1; If jobz $=$ ' V ' and $n>1$, liwork $\geq 5 n+3$. If liwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.

Output Parameters

ap
bp

W

Z

On exit, the contents of ap are overwritten.
On exit, contains the triangular factor U or L from the Cholesky factorization $B=U^{H \star} U$ or $B=L^{\star} L^{H}$, in the same storage format as B.

REAL for chpgvd
DOUBLE PRECISION for zhpgvd.
Array, DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues in ascending order.
COMPLEX for chpgvd
DOUBLE COMPLEX for zhpgvd.
Array $z(l d z, *)$.

The second dimension of z must be at least max $(1, n)$.
If jobz $=$ ' V ', then if info $=0, z$ contains the matrix z of eigenvectors. The eigenvectors are normalized as follows:
if itype $=1$ or $2, Z^{H \star} B^{\star} Z=I$;
if itype $=3, Z^{H \star} \operatorname{inv}(B) * Z=I$;
If $j o b z=$ ' N ', then z is not referenced.
work(1)
rwork(1)
iwork(1)
info

On exit, if info $=0$, then work (1) returns the required minimal size of l work.
On exit, if info $=0$, then rwork (1) returns the required minimal size of lrwork.
On exit, if info $=0$, then iwork (1) returns the required minimal size of liwork.

INTEGER.

If info $=0$, the execution is successful.
If info $=-i$, the i-th argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevd/zhpevd returned an error code:
If info $=i \leq n$, chpevd/zhpevd failed to converge, and i off-diagonal elements of an intermediate tridiagonal did not converge to zero;
If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order i of B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine hpgvd interface are the following:

ap	Holds the array A of size ($n *(n+1) / 2)$.
bp	Holds the array B of size ($n *(n+1) / 2)$.
w	Holds the vector with the number of elements n.
z	Holds the matrix z of size (n, n).
itype	Must be 1,2 , or 3 . The default value is 1 .
uplo	Must be 'U' or 'L'. The default value is 'U'.
jobz	Restored based on the presence of the argument z as follows: jobz = 'V', if z is present, $j o b z=$ 'N', if z is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (liwork or lrwork) for the first run or set lwork $=-1$ (liwork $=-1$, lrwork $=-1$).
If you choose the first option and set any of admissible lwork (liwork or lrwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork) on exit. Use this value (work(1), iwork(1), rwork (1)) for subsequent runs.

If you set lwork $=-1$ (liwork $=-1$, lrwork $=-1$), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.

Note that if you set lwork (liwork, lrwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
?spgvx
Computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with matrices in packed storage.

Syntax

Fortran 77:

```
call sspgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info)
call dspgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info)
```


Fortran 95:

```
call spgvx(ap, bp, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail]
[,abstol] [,info])
```


C:

```
lapack_int LAPACKE_<?>spgvx( int matrix_order, lapack_int itype, char jobz, char range,
char uplo, lapack_int n, <datatype>* ap, <datatype>* bp, <datatype> vl, <datatype> vu,
lapack_int il, lapack_int iu, <datatype> abstol, lapack_int* m, <datatype>* w,
<datatype>* z, lapack_int ldz, lapack_int* ifail );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form

Here A and B are assumed to be symmetric, stored in packed format, and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

	If $j o b z=$ ' V ', then compute eigenvalues and eigenvectors.
range	CHARACTER*1. Must be 'A' or 'V' or 'I'. If range $=$ ' A ', the routine computes all eigenvalues. If range = ' V ', the routine computes eigenvalues lambda (i) in the half- open interval: vl<lambda(i) \leq vu. If range = 'I', the routine computes eigenvalues with indices il to $i u$.
uplo	CHARACTER*1. Must be 'U' or 'L'. If uplo = ' U ', arrays $a p$ and $b p$ store the upper triangles of A and B; If uplo = 'L', arrays $a p$ and $b p$ store the lower triangles of A and B.
n	Integer. The order of the matrices A and $B(n \geq 0)$.
$a p, b p$, work	REAL for sspgvx DOUBLE PRECISION for dspgvx. Arrays: $a p(*)$ contains the packed upper or lower triangle of the symmetric matrix A, as specified by uplo. The dimension of ap must be at least max $\left(1, n^{*}(n+1) / 2\right)$. $b p(*)$ contains the packed upper or lower triangle of the symmetric matrix B, as specified by uplo. The dimension of $b p$ must be at least max $\left(1, n^{*}(n+1) / 2\right)$. work (*) is a workspace array, DIMENSION at least $\max (1,8 n)$.
v1, vu	REAL for sspgvx DOUBLE PRECISION for dspgvx. If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. Constraint: vl< vu. If range = 'A' or 'I', vl and vu are not referenced.
il, iu	INTEGER. If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; il=1 and $i u=0$ if $n=0$. If range $=$ ' A ' or ' V ', il and $i u$ are not referenced.
abstol	REAL for sspgvx DOUBLE PRECISION for dspgvx. The absolute error tolerance for the eigenvalues. See Application Notes for more information.
$1 d z$	INTEGER. The leading dimension of the output array z. Constraints: $l d z \geq 1 \text {; if } j o b z=' V ', l d z \geq \max (1, n) .$
iwork	INTEGER. Workspace array, DIMENSION at least max $(1,5 n)$.

Output Parameters

ap
bp
m

On exit, the contents of $a p$ are overwritten.
On exit, contains the triangular factor U or L from the Cholesky factorization $B=U^{T} * U$ or $B=L * L^{T}$, in the same storage format as B.
INTEGER. The total number of eigenvalues found, $0 \leq m \leq n$. If range $=$ ' A ', $m=n$, and if range $=$ 'I', $m=i u-i l+1$.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine spgvx interface are the following:

```
ap Holds the array A of size (n* (n+1)/2).
bp Holds the array B of size (n* (n+1)/2).
w Holds the vector with the number of elements n.
z Holds the matrix z of size ( }n,n\mathrm{ ), where the values n and m}\mathrm{ are significant.
ifail Holds the vector with the number of elements n.
itype Must be 1, 2, or 3. The default value is 1.
uplo Must be 'U' or 'L'. The default value is 'U'.
vl Default value for this element is vl = - HUGE(vl).
```

vu	Default value for this element is $v u=\operatorname{HUGE}(\mathrm{vl})$.
il	Default value for this argument is il $=1$.
iu	Default value for this argument is iu $=n$.
abstol	Default value for this element is abstol $=0.0{ }^{\text {a }} \mathrm{WP}$.
jobz	Restored based on the presence of the argument z as follows: jobz = 'V', if z is present, $j o b z=$ 'N', if z is omitted. Note that there will be an error condition if ifail is present and z is omitted.
range	Restored based on the presence of arguments $v l, v u, i l, i u$ as follows: range $=$ ' V ', if one of or both $v l$ and vu are present, range $=$ 'I', if one of or both il and iu are present, range $=$ 'A', if none of $v l, v u, i l, i u$ is present, Note that there will be an error condition if one of or both $v l$ and $v u$ are present and at the same time one of or both $i l$ and $i u$ are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to $a b s t o l+\varepsilon^{\star} \max (|a|,|b|)$, where ε is the machine precision.

If abstol is less than or equal to zero, then $\varepsilon^{\star}| | T| |_{1}$ is used instead, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold 2^{*} ? lamch('S'), not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, set abstol to 2*? lamch('S').

?hpgvx
 Computes selected eigenvalues and, optionally, eigenvectors of a generalized Hermitian definite eigenproblem with matrices in packed storage.

Syntax

Fortran 77:

```
call chpgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z,
ldz, work, rwork, iwork, ifail, info)
call zhpgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z,
ldz, work, rwork, iwork, ifail, info)
```


Fortran 95:

```
call hpgvx(ap, bp, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail]
[,abstol] [,info])
```

C:
lapack_int LAPACKE_chpgvx(int matrix_order, lapack_int itype, char jobz, char range, char uplo, lapack_int $n, ~ l a p a c k _c o m p l e x _f l o a t * ~ a p, ~ l a p a c k _c o m p l e x ~ f l o a t * ~ b p, ~ f l o a t ~ v l, ~$ float vu, lapack_int il, lapack_int iu, float abstol, lapack_int* m, float* w,

lapack_int LAPACKE_zhpgvx(int matrix_order, lapack_int itype, char jobz, char range, char uplo, lapack_int n, lapack_complex_double* ap, lapack_complex_double* bp, double vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int* m, double* w, lapack_complex_double* z, lapack_int ldz, lapack_int* ifail);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form
$A^{\star} X=\lambda^{\star} B^{\star} X, A^{\star} B^{\star} X=\lambda^{\star} X$, or $B^{\star} A^{\star} X=\lambda^{\star} X$.
Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

itype	INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved: if itype $=1$, the problem type is $A \star_{X}=\operatorname{lambda}{ }^{\star} B^{\star} x$; if itype $=2$, the problem type is $A \star^{*} \star^{*} X=$ lambda* x; if itype $=3$, the problem type is $B^{\star} A^{*} X=$ lambda* ${ }^{*}$.
jobz	CHARACTER*1. Must be 'N' or 'V'. If jobz = 'N', then compute eigenvalues only. If $j o b z=$ ' V ', then compute eigenvalues and eigenvectors.
range	CHARACTER*1. Must be 'A' or 'V' or 'I'. If range $=$ ' A ', the routine computes all eigenvalues. If range $=$ ' V ', the routine computes eigenvalues $\operatorname{lambda}(i)$ in the halfopen interval: vl< lambda(i) $\leq v u$. If range = 'I', the routine computes eigenvalues with indices il to iu.
uplo	CHARACTER*1. Must be 'U' or 'L'. If uplo = 'U', arrays ap and bp store the upper triangles of A and B; If uplo = 'L', arrays ap and bp store the lower triangles of A and B.
n	INTEGER. The order of the matrices A and $B(n \geq 0)$.
ap, bp, work	COMPLEX for chpgvx DOUBLE COMPLEX for zhpgvx. Arrays: $a p(*)$ contains the packed upper or lower triangle of the Hermitian matrix A, as specified by uplo. The dimension of ap must be at least max $\left(1, n^{*}(n+1) / 2\right)$. $b p(*)$ contains the packed upper or lower triangle of the Hermitian matrix B, as specified by uplo. The dimension of $b p$ must be at least $\max \left(1, n^{*}(n+1) / 2\right)$. work (*) is a workspace array, DIMENSION at least max $(1,2 n)$.
vl, vu	REAL for chpgvx DOUBLE PRECISION for zhpgvx. If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. Constraint: vl< vu.

	If range = 'A' or 'I', vl and vu are not referenced.
il, iu	INTEGER. If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; il=1 and $i u=0$ if $n=0$. If range $=$ ' A ' or 'V', il and iu are not referenced.
abstol	REAL for chpgvx DOUBLE PRECISION for zhpgvx. The absolute error tolerance for the eigenvalues. See Application Notes for more information.
$1 d z$	INTEGER. The leading dimension of the output array $z ; I d z \geq 1$. If jobz $=$ 'V', ldz $\geq \max (1, n)$.
rwork	REAL for chpgvx DOUBLE PRECISION for zhpgvx. Workspace array, DIMENSION at least max ($1,7 n$).
iwork	INTEGER. Workspace array, DIMENSION at least max(1, $5 n$).
Output	
ap	On exit, the contents of ap are overwritten.
bp	On exit, contains the triangular factor U or L from the Cholesky factorization $B=U^{H \star} U$ or $B=L^{\star} L^{H}$, in the same storage format as B.
m	INTEGER. The total number of eigenvalues found, $\begin{aligned} & 0 \leq m \leq n . \text { If range }=' A ', m=n, \text { and if range }=' I ', \\ & m=i u-i l+1 . \end{aligned}$
W	REAL for chpgvx DOUBLE PRECISION for zhpgvx. Array, DIMENSION at least max $(1, n)$. If info $=0$, contains the eigenvalues in ascending order.
z	COMPLEX for chpgvx DOUBLE COMPLEX for zhpgvx. Array $z(l d z, *)$. The second dimension of z must be at least $\max (1, n)$. If jobz $=$ ' V ', then if info $=0$, the first m columns of z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with $w(i)$. The eigenvectors are normalized as follows: if itype $=1$ or $2, Z^{H \star} B^{\star} Z=1$; if itype $=3, Z^{H *} \operatorname{inv}(B) * Z=I$; If jobz $=$ ' N ', then z is not referenced. If an eigenvector fails to converge, then that column of z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail. Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array z; if range $=$ ' V ', the exact value of m is not known in advance and an upper bound must be used.
ifail	INTEGER. Array, DIMENSION at least max $(1, n)$.

```
If jobz = 'V', then if info \(=0\), the first \(m\) elements of ifail are zero; if
info > 0 , the ifail contains the indices of the eigenvectors that failed to
converge.
If jobz = 'N', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevx/zhpevx returned an error code:
If info \(=i \leq n\), chpevx/zhpevx failed to converge, and \(i\) eigenvectors
failed to converge. Their indices are stored in the array ifail;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is
not positive-definite. The factorization of \(B\) could not be completed and no
eigenvalues or eigenvectors were computed.
```

info

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hpgvx interface are the following:

```
ap Holds the array A of size (n* (n+1)/2).
bp Holds the array B of size (n* (n+1)/2).
w Holds the vector with the number of elements n.
z Holds the matrix z of size ( }n,n)\mathrm{ , where the values n and m}\mathrm{ are significant.
ifail Holds the vector with the number of elements n.
itype Must be 1, 2, or 3. The default value is 1.
uplo Must be 'U' or 'L'. The default value is 'U'.
vl Default value for this element is vl = - HUGE(vl).
vu Default value for this element is vu = HUGE(vl).
il Default value for this argument is il = 1.
iu Default value for this argument is iu = n.
abstol Default value for this element is abstol = 0.0_WP.
jobz Restored based on the presence of the argument z as follows:
    jobz = 'V', if z is present,
    jobz = 'N', if z is omitted.
    Note that there will be an error condition if ifail is present and z is omitted.
range Restored based on the presence of arguments vl, vu,il, iu as follows:
    range = 'V', if one of or both vl and vu are present,
    range = 'I', if one of or both il and iu are present,
    range = 'A', if none of vl, vu, il, iu is present,
    Note that there will be an error condition if one of or both vl and vu are present
    and at the same time one of or both il and iu are present.
```


Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $[\mathrm{a}, \mathrm{b}]$ of width less than or equal to abstol $\varepsilon^{\star} \max (|a|,|b|)$, where ε is the machine precision.

If abstol is less than or equal to zero, then $\varepsilon^{\star}| | T| |_{1}$ is used as tolerance, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2^{*} ? lamch('S').
?sbgv
Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with banded matrices.

Syntax

Fortran 77:

```
call ssbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, info)
call dsbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, info)
```


Fortran 95:

```
call sbgv(ab, bb, w [,uplo] [,z] [,info])
```

C:

```
lapack_int LAPACKE_<?>sbgv( int matrix_order, char jobz, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, <datatype>* ab, lapack_int ldab, <datatype>* bb,
lapack_int ldbb, <datatype>* w, <datatype>* z, lapack_int ldz );
```

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite banded eigenproblem, of the form $A^{\star} X=\lambda{ }^{\star} B^{\star}{ }_{x}$. Here A and B are assumed to be symmetric and banded, and B is also positive definite.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobz CHARACTER*1.Must be 'N' or 'V'.
    If jobz = 'N', then compute eigenvalues only.
    If jobz = 'V', then compute eigenvalues and eigenvectors.
uplo CHARACTER*I.Must be 'U' or 'L'. 
uplo CHARACTER*I. Must be 'U' or 'L'. 
uplo CHARACTER*I.Must be 'U' or 'L'. 
n
ka
kb
ab, bb, work
INTEGER. The order of the matrices A and B (n\geq0).
INTEGER. The number of super- or sub-diagonals in A
(ka \geq 0).
INTEGER. The number of super- or sub-diagonals in B (kb\geq0).
REAL for ssbgv
DOUBLE PRECISION for dsbgv
Arrays:
```

Idab
ldbb
$1 d z$

Output Parameters

$a b(I d a b, *)$ is an array containing either upper or lower triangular part of the symmetric matrix A (as specified by uplo) in band storage format. The second dimension of the array $a b$ must be at least max $(1, n)$. $b b(l d b b, *)$ is an array containing either upper or lower triangular part of the symmetric matrix B (as specified by uplo) in band storage format. The second dimension of the array bb must be at least max $(1, n)$. work (*) is a workspace array, dimension at least max $(1,3 n)$
INTEGER. The leading dimension of the array $a b ;$ must be at least $k a+1$.
INTEGER. The leading dimension of the array $b b ;$ must be at least $k b+1$.
INTEGER. The leading dimension of the output array $z ; l d z \geq 1$. If jobz $=$ 'V', ldz $\geq \max (1, n)$.

On exit, the contents of $a b$ are overwritten.
On exit, contains the factor S from the split Cholesky factorization $B=$ $S^{T} * S$, as returned by pbstf/pbstf.
REAL for ssbgv
DOUBLE PRECISION for dsbgv

Arrays:

w(*), DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues in ascending order.
$z(l d z, *)$.
The second dimension of z must be at least max $(1, n)$.
If jobz $=$ ' V ', then if info $=0, z$ contains the matrix z of eigenvectors, with the i-th column of z holding the eigenvector associated with $w(i)$. The eigenvectors are normalized so that $Z^{T}{ }^{*} B^{\star} Z=I$.
If jobz = 'N', then z is not referenced.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th argument had an illegal value.
If info > 0 , and
if $i \leq n$, the algorithm failed to converge, and i off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info $=n+i$, for $1 \leq i \leq n$, then pbstf/pbstf returned info $=i$ and B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sbgv interface are the following:

$a b$	Holds the array A of size $(k a+1, n)$.
$b b$	Holds the array B of size $(k b+1, n)$.
w	Holds the vector with the number of elements n.
z	Holds the matrix Z of size (n, n).
uplo $j o b z$	Must be 'U' or 'L'. The default value is 'U'.

```
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
```


?hbgv

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with banded matrices.

Syntax

Fortran 77:

```
call chbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, rwork, info)
call zhbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, rwork, info)
```


Fortran 95:

```
call hbgv(ab, bb, w [,uplo] [,z] [,info])
```

C:

```
lapack_int LAPACKE_chbgv( int matrix_order, char jobz, char uplo, lapack_int n,
```

lapack_int ka, lapack_int kb, lapack_complex_float* ab, lapack_int ldab,
lapack_complex_float* bb, lapack_int ldbb, float* w, lapack_complex_float* z,
lapack_int ldz);
lapack_int LAPACKE_zhbgv(int matrix_order, char jobz, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, lapack_complex_double* ab, lapack_int ldab,
lapack_complex_double* bb, lapack_int ldbb, double* w, lapack_complex_double* z,
lapack_int ldz);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form $A^{\star} X=\lambda^{\star} B^{\star} x$. Here A and B are Hermitian and banded matrices, and matrix B is also positive definite.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobz CHARACTER*1. Must be 'N' or 'V'.
    If jobz = 'N', then compute eigenvalues only.
    If jobz = 'V', then compute eigenvalues and eigenvectors.
uplo CHARACTER*1.Must be 'U' or 'L'.
    If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
    If uplo = 'L', arrays ab and bb store the lower triangles of A and B.
n
INTEGER. The order of the matrices A and B (n\geq0).
INTEGER. The number of super- or sub-diagonals in A
```


Output Parameters

ab
b.b

W

Z
info

On exit, the contents of ab are overwritten.
On exit, contains the factor S from the split Cholesky factorization $B=$ $S^{H *}{ }^{*}$, as returned by pbstf/pbstf.
REAL for chbgv
DOUBLE PRECISION for zhbgv.
Array, DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues in ascending order.
COMPLEX for chbgv
DOUBLE COMPLEX for zhbgv
Array $z(l d z, *)$.
The second dimension of z must be at least max $(1, n)$.
If jobz $=$ ' V ', then if info $=0, z$ contains the matrix z of eigenvectors, with the i-th column of z holding the eigenvector associated with $w(i)$. The eigenvectors are normalized so that $Z^{H \star} B^{\star} Z=I$.
If $j o b z=$ ' N ', then z is not referenced.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th argument had an illegal value.
If info > 0, and
if $i \leq n$, the algorithm failed to converge, and i off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info $=n+i$, for $1 \leq i \leq n$, then pbstf/pbstf returned info $=i$ and B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

```
Specific details for the routine hbgv interface are the following:
ab Holds the array A of size (ka+1,n).
bb Holds the array B of size (kb+1,n).
w Holds the vector with the number of elements n.
z Holds the matrix z of size ( }n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.
jobz Restored based on the presence of the argument z as follows:
jobz = 'V',if z is present,
jobz = 'N', if z is omitted.
```


?sbgvd

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with banded matrices. If eigenvectors are desired, it uses a divide and conquer method.

Syntax

Fortran 77:

```
call ssbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork, iwork,
liwork, info)
call dsbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork, iwork,
liwork, info)
```


Fortran 95:

```
call sbgvd(ab, bb, w [,uplo] [,z] [,info])
```

C:

```
lapack_int LAPACKE_<?>sbgvd( int matrix_order, char jobz, char uplo, lapack_int n,
```

lapack_int ka, lapack_int kb, <datatype>* ab, lapack_int ldab, <datatype>* bb,
lapack_int ldbb, <datatype>* w, <datatype>* z, lapack_int ldz);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite banded eigenproblem, of the form $A^{\star} X=\lambda{ }^{\star} B^{\star} x$. Here A and B are assumed to be symmetric and banded, and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
jobz
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.

	If jobz = 'V', then compute eigenvalues and eigenvectors.
uplo	CHARACTER*1. Must be 'U' or 'L'. If uplo = 'U', arrays $a b$ and $b b$ store the upper triangles of A and B; If uplo = 'L', arrays $a b$ and $b b$ store the lower triangles of A and B.
n	INTEGER. The order of the matrices A and $B(n \geq 0)$.
ka	INTEGER. The number of super- or sub-diagonals in A ($k a \geq 0$).
kb	INTEGER. The number of super- or sub-diagonals in $B(k b \geq 0)$.
$a b, b . b$, work	REAL for ssbgvd DOUBLE PRECISION for dsbgvd Arrays: ab ($1 \mathrm{dab}, *$) is an array containing either upper or lower triangular part of the symmetric matrix A (as specified by uplo) in band storage format. The second dimension of the array ab must be at least max $(1, n)$. $b b(I d b b, *)$ is an array containing either upper or lower triangular part of the symmetric matrix B (as specified by uplo) in band storage format. The second dimension of the array bb must be at least max $(1, n)$. work is a workspace array, its dimension max (1, lwork).
Idab	INTEGER. The leading dimension of the array $a b ;$ must be at least ka+1.
Idbb	INTEGER. The leading dimension of the array bb; must be at least kb+1.
$l d z$	INTEGER. The leading dimension of the output array $z ; 1 d z \geq 1$. If jobz $=$ 'V', ldz $\geq \max (1, n)$.
lwork	INTEGER. The dimension of the array work. Constraints: If $n \leq 1$, lwork ≥ 1; If jobz $=$ 'N' and $n>1$, lwork $\geq 3 n$; If jobz $=$ 'V' and $n>1$, lwork $\geq 2 n^{2}+5 n+1$. If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.
iwork	INTEGER. Workspace array, its dimension max (1, liwork).
liwork	INTEGER. The dimension of the array iwork. Constraints: If $n \leq 1$, liwork ≥ 1; If jobz = 'N' and n>1, liwork ≥ 1; If jobz $=$ ' V ' and $n>1$, liwork $\geq 5 n+3$. If liwork = -1 , then a workspace query is assumed; the routine only calculates the optimal size of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.

Output Parameters

b.b	On exit, contains the factor S from the split Cholesky factorization $B=$ $S^{T} * S$, as returned by pbstf/pbstf.
W, z	REAL for ss.bgvd
	DOUBLE PRECISION for dsbgvd
	Arrays:
	$w(*)$, DIMENSION at least max $(1, n)$.
	If info $=0$, contains the eigenvalues in ascending order.
	$z(l d z, *)$.
	The second dimension of z must be at least max $(1, n)$.
	If jobz $=$ ' V ', then if info $=0, z$ contains the matrix z of eigenvectors, with the i-th column of z holding the eigenvector associated with $w(i)$. The eigenvectors are normalized so that $Z^{T}{ }^{*} B^{*} Z=I$.
	If jobz = 'N', then z is not referenced.
work(1)	On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
iwork(1)	On exit, if info $=0$, then iwork (1) returns the required minimal size of liwork.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i-th argument had an illegal value.
	If info > 0, and
	if $i \leq n$, the algorithm failed to converge, and i off-diagonal elements of an intermediate tridiagonal did not converge to zero;
	if info $=n+i$, for $1 \leq i \leq n$, then pbstf/pbstf returned info $=i$ and B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sbgvd interface are the following:

$a b$	Holds the array A of size $(k a+1, n)$.
$b b$	Holds the array B of size $(k b+1, n)$.
w	Holds the vector with the number of elements n.
z	Holds the matrix z of size (n, n).
uplojobz Must be 'U' or 'L'. The default value is 'U'. Restored based on the presence of the argument z as follows: jobz $=' \mathrm{~V}$ ', if z is present, jobz $=' \mathrm{~N}^{\prime}$, if z is omitted.	

Application Notes

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run or set lwork $=-1$ (liwork $=-1$).
If lwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork(1)) for subsequent runs.

If 1 work $=-1$ (liwork $=-1$), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if work (liwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

```
?hbgvd
Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with banded matrices. If eigenvectors are desired, it uses a divide and conquer method.
```


Syntax

Fortran 77:

```
call chbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork, rwork,
lrwork, iwork, liwork, info)
call zhbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork, rwork,
lrwork, iwork, liwork, info)
```


Fortran 95:

```
call hbgvd(ab, bb, w [,uplo] [,z] [,info])
```

C:
lapack_int LAPACKE_chbgvd(int matrix_order, char jobz, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, lapack_complex_float* ab, lapack_int ldab,
lapack_complex_float* bb, lapack_int ldbb, float* w, lapack_complex_float* z,
lapack_int ldz);
lapack_int LAPACKE_zhbgvd(int matrix_order, char jobz, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, lapack_complex_double* ab, lapack_int ldab,
lapack_complex_double* bb, lapack_int ldbb, double* w, lapack_complex_double* z,
lapack_int ldz);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form $A^{\star} X=\lambda{ }^{\star} B^{\star} X$. Here A and B are assumed to be Hermitian and banded, and B is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.
jobz
CHARACTER*1. Must be 'N' or 'V'. If jobz = 'N', then compute eigenvalues only.

	If $\mathrm{jobz}=$ ' V ', then compute eigenvalues and eigenvectors.
uplo	CHARACTER*1. Must be 'U' or 'L'. If uplo = 'U', arrays $a b$ and $b b$ store the upper triangles of A and B; If uplo = 'L', arrays $a b$ and $b b$ store the lower triangles of A and B.
n	INTEGER. The order of the matrices A and $B(n \geq 0)$.
ka	INTEGER. The number of super- or sub-diagonals in A ($k a \geq 0$).
kb	INTEGER. The number of super- or sub-diagonals in $B(k b \geq 0)$.
ab, bb, work	COMPLEX for chbgvd DOUBLE COMPLEX for zhbgvd Arrays: ab (ldab,*) is an array containing either upper or lower triangular part of the Hermitian matrix A (as specified by uplo) in band storage format. The second dimension of the array $a b$ must be at least max $(1, n)$. $b b(l d b b, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix B (as specified by uplo) in band storage format. The second dimension of the array bb must be at least max $(1, n)$. work is a workspace array, its dimension max (1,1 work).
Idab	INTEGER. The leading dimension of the array $a b ;$ must be at least $k a+1$.
Idbb	INTEGER. The leading dimension of the array bb; must be at least $k b+1$.
$1 d z$	INTEGER. The leading dimension of the output array $z ; 1 d z \geq 1$. If jobz $=$ 'V', ldz $\geq \max (1, n)$.
lwork	INTEGER. The dimension of the array work. Constraints: If $n \leq 1$, lwork ≥ 1; If jobz $=$ 'N' and $n>1$, lwork $\geq n$; If jobz $=$ 'V' and $n>1$, lwork $\geq 2 n^{2}$. If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.
rwork	REAL for chbgvd DOUBLE PRECISION for zhbgvd. Workspace array, DIMENSION max (1, lrwork).
Irwork	INTEGER. The dimension of the array rwork. Constraints: If $n \leq 1$, lrwork ≥ 1; If jobz = 'N' and $n>1$, lrwork $\geq n$; If jobz $=$ ' V ' and $n>1$, lrwork $\geq 2 n^{2}+5 n+1$. If lrwork = -1 , then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.
iwork	INTEGER. Workspace array, DIMENSION max (1, liwork).

liwork INTEGER.
The dimension of the array iwork.
Constraints:
If $n \leq 1$, 1 work ≥ 1;
If jobz = 'N' and $n>1$, liwork ≥ 1;
If jobz $=$ 'V' and $n>1$, liwork $\geq 5 n+3$.
If liwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or lrwork or liwork is issued by xerbla. See Application Notes for details.

Output Parameters

```
ab
bb
W
z
work(1)
rwork(1)
iwork(1)
info
On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=\) \(S^{H *} *\), as returned by pbstf/pbstf.
REAL for chbgvd
DOUBLE PRECISION for zhbgvd.
Array, DIMENSION at least max( \(1, n\) ) .
If info \(=0\), contains the eigenvalues in ascending order.
COMPLEX for chbgvd
DOUBLE COMPLEX for zhbgvd
Array z(ldz,*).
The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz = 'V', then if info \(=0, z\) contains the matrix \(z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{H * B^{\star}} Z=I\).
If jobz = 'N', then \(z\) is not referenced.
On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.
On exit, if info \(=0\), then rwork (1) returns the required minimal size of lrwork.
On exit, if info \(=0\), then \(i w o r k(1)\) returns the required minimal size of liwork.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0 , and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.
```


Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hbgvd interface are the following:

$a b$	Holds the array A of size $(k a+1, n)$.
$b . b$	Holds the array B of size $(k b+1, n)$.
w	Holds the vector with the number of elements n.
z	Holds the matrix z of size (n, n).
jobz \quad	Must be 'U' or 'L'. The default value is 'U'.
	Restored based on the presence of the argument z as follows:
	$j o b z=' V '$, if z is present,
	$j o b z=' N '$, if z is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (liwork or lrwork) for the first run or set lwork $=-1$ (liwork $=-1$, lrwork $=-1$).

If you choose the first option and set any of admissible lwork (liwork or lrwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork) on exit. Use this value (work(1), iwork(1), rwork (1)) for subsequent runs.

If you set lwork $=-1$ (liwork $=-1$, lrwork $=-1$), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.
Note that if you set lwork (liwork, lrwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

?sbgvx

Computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with banded matrices.

Syntax

Fortran 77:

```
call ssbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu, il, iu,
abstol, m, w, z, ldz, work, iwork, ifail, info)
call dsbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu, il, iu,
abstol, m, w, z, ldz, work, iwork, ifail, info)
```


Fortran 95:

```
call sbgvx(ab, bb, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q] [,abstol]
[,info])
```

C:

```
lapack_int LAPACKE_<?>sbgvx( int matrix_order, char jobz, char range, char uplo,
lapack_int n, lapack_int ka, lapack_int kb, <datatype>* ab, lapack_int ldab,
<datatype>* bb, lapack_int ldbb, <datatype>* q, lapack_int ldq, <datatype> vl,
<datatype> vu, lapack_int il, lapack_int iu, <datatype> abstol, lapack_int* m,
<datatype>* w, <datatype>* z, lapack_int ldz, lapack_int* ifail );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite banded eigenproblem, of the form $A^{\star} x=\lambda{ }^{\star} B^{\star} x$. Here A and B are assumed to be symmetric and banded, and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobz CHARACTER*1. Must be 'N' or 'V'.
    If jobz = 'N', then compute eigenvalues only.
    If jobz = 'V', then compute eigenvalues and eigenvectors.
    CHARACTER*1. Must be 'A' or 'V' or 'I'.
    If range = 'A', the routine computes all eigenvalues.
    If range = 'V', the routine computes eigenvalues lambda(i) in the half-
    open interval:
vl<lambda(i)\leq vu.
If range = 'I', the routine computes eigenvalues in range il to iu.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.
INTEGER. The order of the matrices A and B ( }n\geq0)\mathrm{ .
INTEGER. The number of super- or sub-diagonals in A
(ka \geq 0).
INTEGER. The number of super- or sub-diagonals in B (kb\geq0).
REAL for ssbgvx
DOUBLE PRECISION for dsbgvx
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part of
the symmetric matrix A (as specified by uplo) in band storage format.
The second dimension of the array ab must be at least max(1, n).
bb(ldbb,*) is an array containing either upper or lower triangular part of
the symmetric matrix B (as specified by uplo) in band storage format.
The second dimension of the array bb must be at least max(1,n).
work(*) is a workspace array, DIMENSION (7*n).
INTEGER. The leading dimension of the array ab; must be at least ka+1.
INTEGER. The leading dimension of the array bb; must be at least kb+1.
REAL for ssbgvx
DOUBLE PRECISION for dsbgvx.
If range = 'V', the lower and upper bounds of the interval to be searched
for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I',vl and vu are not referenced.
INTEGER.
```

	If range = 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; il=1 and $i u=0$ if $n=0$. If range = 'A' or 'V', il and $i u$ are not referenced.
abstol	REAL for ssbgvx DOUBLE PRECISION for dsbgvx. The absolute error tolerance for the eigenvalues. See Application Notes for more information.
$1 d z$	InTEGER. The leading dimension of the output array $z ; 1 d z \geq 1$. If $j o b z=$ 'V', $I d z \geq \max (1, n)$.
$1 d q$	INTEGER. The leading dimension of the output array $q ; 1 d q<1$. If $j o b z=V^{\prime}$ ', $1 d q<\max (1, n)$.
iwork	INTEGER. Workspace array, DIMENSION $\left(5 *_{n}\right)$.

Output Parameters

$a b$
bb
m
w, z, q
ifail
info

On exit, the contents of $a b$ are overwritten.
On exit, contains the factor S from the split Cholesky factorization $B=$ $S^{T} * S$, as returned by pbstf/pbstf.
INTEGER. The total number of eigenvalues found,
$0 \leq m \leq n$. If range $=$ 'A', $m=n$, and if range $=$ 'I', $m=i u-i l+1$.

REAL for ssbgvx
DOUBLE PRECISION for dsbgvx
Arrays:
$w(*)$, DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues in ascending order.
$z(l d z, *)$.
The second dimension of z must be at least max $(1, n)$.
If jobz $=$ ' V ', then if info $=0, z$ contains the matrix z of eigenvectors, with the i-th column of z holding the eigenvector associated with $w(i)$. The eigenvectors are normalized so that $Z^{T}{ }^{*} B^{\star} Z=I$.
If $j o b z=$ ' N ', then z is not referenced.
$q(l d q, *)$.
The second dimension of q must be at least max $(1, n)$.
If jobz $=$ ' V ', then q contains the n-by- n matrix used in the reduction of $A^{\star} X=\operatorname{lambda}{ }^{\star} B^{\star} X$ to standard form, that is, $C^{\star} X=\operatorname{lambda}{ }^{\star} X$ and consequently C to tridiagonal form.
If jobz $=$ ' N ', then q is not referenced.
INTEGER.
Array, DIMENSION (m).
If jobz = 'V', then if info $=0$, the first m elements of ifail are zero; if info > 0, the ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th argument had an illegal value.
If info > 0, and
if $i \leq n$, the algorithm failed to converge, and i off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info $=n+i$, for $1 \leq i \leq n$, then pbstf/pbstf returned info $=i$ and B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine sbgvx interface are the following:

$a b$	Holds the array A of size ($k a+1, n)$.
bb	Holds the array B of size ($k b+1, n)$.
w	Holds the vector with the number of elements n.
z	Holds the matrix z of size (n, n).
ifail	Holds the vector with the number of elements n.
q	Holds the matrix Q of size (n, n).
uplo	Must be 'U' or 'L'. The default value is 'U'.
vl	Default value for this element is $\mathrm{vl}=-\mathrm{HUGE}(\mathrm{vl})$.
vu	Default value for this element is $v u=\operatorname{HUGE}(\mathrm{vl})$.
il	Default value for this argument is il $=1$.
iu	Default value for this argument is $i u=n$.
abstol	Default value for this element is abstol $=0.0 _\mathrm{WP}$.
jobz	Restored based on the presence of the argument z as follows: $j o b z=' V$ ', if z is present, $j o b z=$ ' N ', if z is omitted. Note that there will be an error condition if ifail or q is present and z is omitted.
range	Restored based on the presence of arguments $v l, v u, i l, i u$ as follows: range $=$ ' V ', if one of or both $v l$ and $v u$ are present, range $=$ 'I', if one of or both il and iu are present, range $=$ ' A ', if none of $v l, v u, i l, i u$ is present, Note that there will be an error condition if one of or both $v l$ and $v u$ are present and at the same time one of or both $i l$ and $i u$ are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to $a b s t o l+\varepsilon^{\star} \max (|a|,|b|)$, where ε is the machine precision.

If abstol is less than or equal to zero, then $\varepsilon^{\star}| | T| |_{1}$ is used as tolerance, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero.
If this routine returns with info >0, indicating that some eigenvectors did not converge, try setting abstol to 2^{*} ? lamch('S').
?hbgvx
Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with banded matrices.

Syntax

Fortran 77:

```
call chbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu, il, iu,
abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
call zhbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu, il, iu,
abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
```


Fortran 95:

call h.bgvx(ab, bb, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q] [,abstol]
[,info])

C:

```
lapack_int LAPACKE_chbgvx( int matrix_order, char jobz, char range, char uplo,
lapack_int n, lapack_int ka, lapack_int kb, lapack_complex_float* ab, lapack_int ldab,
lapack_complex_float* bb, lapack_int ldbb, lapack_complex_float* q, lapack_int ldq,
float vl, float vu, lapack_int il, lapack_int iu, float abstol, lapack_int* m, float*
w, lapack_complex_float* z, lapack_int ldz, lapack_int* ifail );
lapack_int LAPACKE_zhbgvx( int matrix_order, char jobz, char range, char uplo,
lapack_int n, lapack_int ka, lapack_int kb, lapack_complex_double* ab, lapack_int
ldab, lapack_complex_double* bb, lapack_int ldbb, lapack_complex_double* q, lapack_int
ldq, double vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int* m,
double* w, lapack_complex_double* z, lapack_int ldz, lapack_int* ifail );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form $A^{\star} X=\lambda{ }^{\star} B^{\star} X$. Here A and B are assumed to be Hermitian and banded, and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

jobz	CHARACTER*1. Must be 'N' or 'V'.
	If jobz = ' N ', then compute eigenvalues only.
	If $j 0 b z=$ ' V ', then compute eigenvalues and eigenvectors.
range	CHARACTER*1. Must be 'A' or 'V' or 'I'.
	If range $=$ ' A ', the routine computes all eigenvalues.

If range $=$ ' V ', the routine computes eigenvalues lambda (i) in the halfopen interval:
vl< lambda(i) $\leq v u$.
If range $=$ 'I', the routine computes eigenvalues with indices il to iu.
uplo
n
$k a$
$k b$
$a b, b b$, work

Idab
1 dbb
vl, vu
il, iu
abstol
$I d z$
$l d q$
rwork
iwork

CHARACTER*1. Must be 'U' or 'L'.
If uplo $=$ ' U', arrays $a b$ and $b b$ store the upper triangles of A and B;
If uplo = 'L', arrays $a b$ and $b b$ store the lower triangles of A and B.
INTEGER. The order of the matrices A and $B(n \geq 0)$.
INTEGER. The number of super- or sub-diagonals in A
($k a \geq 0$).
INTEGER. The number of super- or sub-diagonals in $B(k b \geq 0)$.
COMPLEX for chbgvx
DOUBLE COMPLEX for zhbgvx
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part of the Hermitian matrix A (as specified by uplo) in band storage format. The second dimension of the array $a b$ must be at least max $(1, n)$.
$b b(1 \mathrm{dbb}, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix B (as specified by uplo) in band storage format. The second dimension of the array bb must be at least max $(1, n)$. work (*) is a workspace array, DIMENSION at least max $(1, n)$.
INTEGER. The leading dimension of the array $a b ;$ must be at least $k a+1$.
INTEGER. The leading dimension of the array $b b ;$ must be at least $k b+1$.
REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl< vu.
If range $=$ ' A ' or 'I', vl and $v u$ are not referenced.
INTEGER.
If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; il=1 and $i u=0$
if $n=0$.
If range $=$ ' A ' or 'V', il and $i u$ are not referenced.
REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
The absolute error tolerance for the eigenvalues. See Application Notes for more information.
INTEGER. The leading dimension of the output array $z ; I d z \geq 1$. If jobz $=$ 'V', $I d z \geq \max (1, n)$.

INTEGER. The leading dimension of the output array $q ; 1 d q \geq 1$. If jobz $=$ 'V', ldq $\geq \max (1, n)$.
REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
Workspace array, DIMENSION at least max $(1,7 n)$.
INTEGER.
Workspace array, DIMENSION at least max $(1,5 n)$.

Output Parameters

```
ab
bb
m
w
z,q
ifail
info
On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=\) \(S^{H} * S\), as returned by pbstf/pbstf.
INTEGER. The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=\) 'A', \(m=n\), and if range \(=\) 'I', \(m=i u-i l+1\).
REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
Array \(w(*)\), DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
COMPLEX for chbgvx
DOUBLE COMPLEX for zhbgvx
Arrays:
z(ldz,*).
The second dimension of \(z\) must be at least max \((1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{H \star} B^{\star} Z=I\).
If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.
\(q(l d q, *)\).
The second dimension of \(q\) must be at least \(\max (1, n)\).
If jobz = ' \(V\) ', then \(q\) contains the \(n\)-by-n matrix used in the reduction of \(A x=\lambda B x\) to standard form, that is, \(C x=\lambda x\) and consequently \(C\) to tridiagonal form.
If jobz = 'N', then \(q\) is not referenced.
INTEGER.
Array, DIMENSION at least max \((1, n)\).
If jobz = ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0, the ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0, and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.
```


Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine hbgvx interface are the following:
ab
Holds the array A of size $(k a+1, n)$.
bb
Holds the array B of size $(k b+1, n)$.

```
w Holds the vector with the number of elements n.
z Holds the matrix z of size ( }n,n)\mathrm{ .
ifail Holds the vector with the number of elements n.
q Holds the matrix Q of size ( }n,n)\mathrm{ .
uplo
vl Default value for this element is vl = -HUGE(vl).
vu
il
iu
abstol
jobz
range
Holds the vector with the number of elements \(n\).
Holds the matrix \(z\) of size \((n, n)\).
Holds the vector with the number of elements \(n\).
Holds the matrix \(Q\) of size \((n, n)\).
Must be 'U' or 'L'. The default value is 'U'.
Default value for this element is \(v 1=-\operatorname{HUGE}(\mathrm{vl})\).
Default value for this element is \(v u=\operatorname{HUGE}(v I)\).
Default value for this argument is il \(=1\).
Default value for this argument is \(i u=n\).
Default value for this element is abstol \(=0.0 \_\mathrm{WP}\).
Restored based on the presence of the argument \(z\) as follows:
jobz = 'V', if \(z\) is present,
jobz = 'N', if \(z\) is omitted.
Note that there will be an error condition if ifail or \(q\) is present and \(z\) is omitted.
Restored based on the presence of arguments \(v l, v u, i l, i u\) as follows:
range \(=\) ' \(V\) ', if one of or both \(v l\) and \(v u\) are present,
range \(=\) 'I', if one of or both il and \(i u\) are present,
range \(=\) ' \(A\) ', if none of \(v l, v u, i l, i u\) is present,
Note that there will be an error condition if one of or both \(v l\) and \(v u\) are present and at the same time one of or both il and \(i u\) are present.
```


Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to $a b s t o l+\varepsilon^{\star} \max (|a|,|b|)$, where ε is the machine precision.

If abstol is less than or equal to zero, then $\varepsilon^{\star}| | T| |_{1}$ will be used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero.

If this routine returns with info >0, indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

Generalized Nonsymmetric Eigenproblems

This section describes LAPACK driver routines used for solving generalized nonsymmetric eigenproblems. See also computational routines that can be called to solve these problems. Table "Driver Routines for Solving Generalized Nonsymmetric Eigenproblems" lists all such driver routines for the FORTRAN 77 interface. Respective routine names in the Fortran 95 interface are without the first symbol (see Routine Naming Conventions).
Driver Routines for Solving Generalized Nonsymmetric Eigenproblems

Routine Name	Operation performed
gges	Computes the generalized eigenvalues, Schur form, and the left and/or right Schur vectors for a pair of nonsymmetric matrices.
ggesx	Computes the generalized eigenvalues, Schur form, and, optionally, the left and/or right matrices of Schur vectors.
	Computes the generalized eigenvalues, and the left and/or right generalized eigenvectors for a pair of nonsymmetric matrices.

Routine Name	Operation performed
ggevx	Computes the generalized eigenvalues, and, optionally, the left and/or right generalized eigenvectors.

?gges

Computes the generalized eigenvalues, Schur form, and the left and/or right Schur vectors for a pair of nonsymmetric matrices.

Syntax

Fortran 77:

call sgges(jobvsl, jobvsr, sort, selctg, $n, a, \quad l d a, b, l d b$, sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info)
call dgges(jobvsl, jobvsr, sort, selctg, $n, a, \quad l d a, b, l d b, ~ s d i m, ~ a l p h a r, ~ a l p h a i, ~$ beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info)
call cgges(jobvsl, jobvsr, sort, selctg, $n, a, ~ l d a, b, l d b, ~ s d i m, ~ a l p h a, ~ b e t a, ~ v s l, ~$ ldvsl, vsr, ldvsr, work, lwork, rwork, bwork, info)
call zgges(jobvsl, jobvsr, sort, selctg, $n, a, ~ l d a, b, l d b, ~ s d i m, ~ a l p h a, ~ b e t a, ~ v s l, ~$ Idvsl, vSr, Idvsr, work, lwork, rwork, bwork, info)

Fortran 95:

```
call gges(a, b, alphar, alphai, beta [,vsl] [,vsr] [,select] [,sdim] [,info])
call gges(a, b, alpha, beta [, vsl] [,vsr] [,select] [,sdim] [,info])
```

C:
lapack_int LAPACKE_sgges(int matrix_order, char jobvsl, char jobvsr, char sort, LAPACK_S_SELECT3 select, lapack_int n, float* a, lapack_int lda, float* b, lapack_int ldb, lapack_int* sdim, float* alphar, float* alphai, float* beta, float* vsl, lapack_int ldvsl, float* vsr, lapack_int ldvsr);
lapack_int LAPACKE_dgges(int matrix_order, char jobvsl, char jobvsr, char sort, LAPACK_D_SELECT3 select, lapack_int n, double* $a, ~ l a p a c k _i n t ~ l d a, ~ d o u b l e * ~ b, ~$ lapack_int ldb, lapack_int* sdim, double* alphar, double* alphai, double* beta, double* vsl, lapack_int ldvsl, double* vsr, lapack_int ldvsr);
lapack_int LAPACKE_cgges(int matrix_order, char jobvsl, char jobvsr, char sort, LAPACK_C_SELECT2 select, lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb, lapack_int* sdim, lapack_complex_float* alpha, lapack_complex_float* beta, lapack_complex_float* vsl, lapack_int ldvsl, lapack_complex_float* vsr, lapack_int ldvsr);
lapack_int LAPACKE_zgges(int matrix_order, char jobvsl, char jobvsr, char sort, LAPACK_Z_SELECT2 select, lapack_int n, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb, lapack_int* sdim, lapack_complex_double* alpha, lapack_complex_double* beta, lapack_complex_double* vsl, lapack_int ldvsl, lapack_complex_double* vsr, lapack_int ldvsr);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The ?gges routine computes the generalized eigenvalues, the generalized real/complex Schur form (S, T), optionally, the left and/or right matrices of Schur vectors (vsl and vsr) for a pair of n-by-n real/complex nonsymmetric matrices (A, B). This gives the generalized Schur factorization
$(A, B)=\left(v s l^{*} S{ }^{*} V S r^{H}, \operatorname{Vsl}{ }^{*} T^{*} V S r^{H}\right)$
Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix S and the upper triangular matrix T. The leading columns of vsl and vsr then form an orthonormal/unitary basis for the corresponding left and right eigenspaces (deflating subspaces).

If only the generalized eigenvalues are needed, use the driver ggev instead, which is faster.
A generalized eigenvalue for a pair of matrices (A, B) is a scalar w or a ratio alpha / beta $=w$, such that $A-$ $w^{\star} B$ is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta $=0$ or for both being zero. A pair of matrices (S, T) is in the generalized real Schur form if T is upper triangular with non-negative diagonal and S is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of S are "standardized" by making the corresponding elements of T have the form:

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
$$

and the pair of corresponding 2-by-2 blocks in S and T will have a complex conjugate pair of generalized eigenvalues. A pair of matrices (S, T) is in generalized complex Schur form if S and T are upper triangular and, in addition, the diagonal of T are non-negative real numbers.

The ?gges routine replaces the deprecated ?gegs routine.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobvsl
CHARACTER*1. Must be 'N' or 'V'.
If jobvsl = 'N', then the left Schur vectors are not computed.
If jobvsl = 'V', then the left Schur vectors are computed.
jobvsr
sort
selctg
CHARACTER*1. Must be 'N' or 'V'.
If jobvsr = 'N', then the right Schur vectors are not computed.
If jobvsr = 'V', then the right Schur vectors are computed.
```

sort

CHARACTER*1. Must be 'N' or 'V'.
If jobvsl = 'N', then the left Schur vectors are not computed. If jobvsl = 'V', then the left Schur vectors are computed.
CHARACTER*1. Must be 'N' or 'V'. If jobvsr $=$ ' N ', then the right Schur vectors are not computed. If jobvsr = 'V', then the right Schur vectors are computed.
CHARACTER*1. Must be 'N' or 'S'. Specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form.
If sort $=$ ' N ', then eigenvalues are not ordered.
If sort = 'S', eigenvalues are ordered (see selctg).
LOGICAL FUNCTION of three REAL arguments for real flavors.
LOGICAL FUNCTION of two COMPLEX arguments for complex flavors.
selctg must be declared EXTERNAL in the calling subroutine.
If sort = 'S', selctg is used to select eigenvalues to sort to the top left of the Schur form.
If sort = 'N', selctg is not referenced.
For real flavors:

An eigenvalue (alphar(j$)+\operatorname{alphai}(\mathrm{j})) / \operatorname{beta}(\mathrm{j})$ is selected if $\operatorname{selctg}(\operatorname{alphar}(\mathrm{j})$, alphai (j), beta $(\mathrm{j}))$ is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex eigenvalue may no longer satisfy selctg(alphar(j), alphai(j), beta(j)) = .TRUE. after ordering. In this case info is set to $n+2$.
For complex flavors:
An eigenvalue alpha(j$) / \operatorname{beta}(\mathrm{j})$ is selected if selctg(alpha(j), beta(j$)$) is true.
Note that a selected complex eigenvalue may no longer satisfy selctg(alpha(j), beta(j)) = .TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to $n+2$ (see info below).
n
a, b, work

Ida
1 db
ldvsl, ldvsr
l work
rwork
bwork

INTEGER. The order of the matrices A, B, vsl, and $\operatorname{vsr}(n \geq 0)$.
REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.
Arrays:
$a(I d a, *)$ is an array containing the $n-b y-n$ matrix A (first of the pair of matrices).
The second dimension of a must be at least max $(1, n)$.
$b(I d b, *)$ is an array containing the n-by- n matrix B (second of the pair of matrices).
The second dimension of b must be at least $\max (1, n)$.
work is a workspace array, its dimension max ($1, ~ l$ work).
INTEGER. The leading dimension of the array a. Must be at least max $(1, n)$.
INTEGER. The leading dimension of the array b. Must be at least max $(1, n)$.
INTEGER. The leading dimensions of the output matrices vsl and vsr, respectively. Constraints:
$\operatorname{ldvsl} \geq 1$. If jobvsl $=' \mathrm{~V}$ ', ldvsl $\geq \max (1, n)$.
$\operatorname{ldvsr} \geq 1$. If jobvsr $=' \mathrm{~V}$ ', ldvsr $\geq \max (1, n)$.
INTEGER.
The dimension of the array work.
lwork $\geq \max (1,8 n+16)$ for real flavors;
lwork $\geq \max (1,2 n$) for complex flavors.
For good performance, lwork must generally be larger.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
REAL for cgges
DOUBLE PRECISION for zgges
Workspace array, DIMENSION at least max $(1,8 n)$.
This array is used in complex flavors only.
LOGICAL.
Workspace array, DIMENSION at least max $(1, n)$.
Not referenced if sort $=$ ' N '.

Output Parameters

```
a
b
sdim
```

alphar, alphai
alpha
beta
vsl, vsr
work(1)

On exit, this array has been overwritten by its generalized Schur form S. On exit, this array has been overwritten by its generalized Schur form T.

INTEGER.
If sort $=$ ' N ', sdim $=0$.
If sort = 'S', sdim is equal to the number of eigenvalues (after sorting) for which selctg is true.
Note that for real flavors complex conjugate pairs for which selctg is true for either eigenvalue count as 2.
REAL for sgges;
DOUBLE PRECISION for dgges.
Arrays, DIMENSION at least max $(1, n)$ each. Contain values that form generalized eigenvalues in real flavors.
See beta.
COMPLEX for cgges;
DOUBLE COMPLEX for zgges.
Array, DIMENSION at least max $(1, n)$. Contain values that form generalized eigenvalues in complex flavors. See beta.

REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.
Array, DIMENSION at least max $(1, n)$.
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), $j=1, \ldots, n$, will be the generalized eigenvalues.
alphar $(\mathrm{j})+\operatorname{alphai}(\mathrm{j}) * \mathrm{i}$ and beta(j$), \mathrm{j}=1, \ldots, \mathrm{n}$ are the diagonals of the complex Schur form (S, T) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of (A, B) were further reduced to triangular form using complex unitary transformations. If alphai(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th and ($j+1$)-st eigenvalues are a complex conjugate pair, with alphai($j+1$) negative.
For complex flavors:
On exit, alpha(j$) /$ beta(j$), \mathrm{j}=1, \ldots, n$, will be the generalized eigenvalues.
alpha(j$), \mathrm{j}=1, \ldots, n$, and beta(j$), \mathrm{j}=1, \ldots, n$ are the diagonals of the complex Schur form (S, T) output by cgges/zgges. The beta(j) will be non-negative real.
See also Application Notes below.
REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.

Arrays:

$\operatorname{vsl}(\operatorname{ldvsl}, *)$, the second dimension of vsl must be at least max $(1, n)$. If jobvsl $=$ 'V', this array will contain the left Schur vectors. If jobvsl $=$ 'N', vsl is not referenced.
$\operatorname{vsr}(\operatorname{ldvsr}, *)$, the second dimension of vsr must be at least max $(1, n)$. If jobvsr = 'V', this array will contain the right Schur vectors. If jobvsr = 'N', vsr is not referenced.
On exit, if info $=0$, then work (1) returns the required minimal size of lwork.

```
info
INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and
i \leq n:
the QZ iteration failed. (A,B) is not in Schur form, but alphar(j), alphai(j)
(for real flavors), or alpha(j) (for complex flavors), and beta(j), j=info
+1,..., n should be correct.
i > n: errors that usually indicate LAPACK problems:
i = n+1: other than QZ iteration failed in hgeqz;
i = n+2: after reordering, roundoff changed values of some complex
eigenvalues so that leading eigenvalues in the generalized Schur form no
longer satisfy selctg = .TRUE.. This could also be caused due to scaling;
i = n+3: reordering failed in tgsen.
```


Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gges interface are the following:

```
a Holds the matrix A of size ( }n,n)\mathrm{ .
b Holds the matrix B of size ( }n,n)\mathrm{ .
alphar Holds the vector of length n. Used in real flavors only.
alphai Holds the vector of length n. Used in real flavors only.
alpha Holds the vector of length n. Used in complex flavors only.
beta Holds the vector of length n.
VSI Holds the matrix VSL of size ( }n,n)\mathrm{ .
vsr Holds the matrix VSR of size ( }n,n)\mathrm{ .
jobvsl Restored based on the presence of the argument vsl as follows:
jobvsl = 'V',if vsl is present,
jobvsl = 'N', if vsl is omitted.
jobvsr Restored based on the presence of the argument vsr as follows:
jobvsr = 'V', if vsr is present,
jobvsr = 'N', if vsr is omitted.
sort Restored based on the presence of the argument select as follows:
sort = 'S',if select is present,
sort = 'N', if select is omitted.
```


Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If you set lwork $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The quotients alphar(j$) /$ beta(j) and alphai(j$) /$ beta (j) may easily over- or underflow, and beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai will be always less than and usually comparable with norm(A) in magnitude, and beta always less than and usually comparable with norm (B).

?ggesx

Computes the generalized eigenvalues, Schur form, and, optionally, the left and/or right matrices of Schur vectors.

Syntax

Fortran 77:

call sggesx (jobvsl, jobvsr, sort, selctg, sense, $n, ~ a, ~ l d a, ~ b, ~ l d b, ~ s d i m, ~ a l p h a r, ~$ alphai, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)
call dggesx (jobvsl, jobvsr, sort, selctg, sense, $n, ~ a, ~ l d a, ~ b, ~ l d b, ~ s d i m, ~ a l p h a r, ~$ alphai, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)
call cggesx (jobvsl, jobvsr, sort, selctg, sense, $n, ~ a, ~ l d a, ~ b, ~ l d b, ~ s d i m, ~ a l p h a, ~$ beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, rwork, iwork, liwork, bwork, info)
call zggesx (jobvsl, jobvsr, sort, selctg, sense, $n, ~ a, ~ l d a, ~ b, ~ l d b, ~ s d i m, ~ a l p h a, ~$ beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, rwork, iwork, liwork, bwork, info)

Fortran 95:

call ggesx(a, b, alphar, alphai, beta [,vsl] [,vsr] [,select] [,sdim] [,rconde] [, rcondv] [,info])
call ggesx(a, b, alpha, beta [, vsl] [,vsr] [,select] [,sdim] [,rconde] [,rcondv] [, infol)

C:
lapack_int LAPACKE_sggesx (int matrix_order, char jobvsl, char jobvsr, char sort, LAPACK_S_SELECT3 select, char sense, lapack_int n, float* a, lapack_int lda, float* b, lapack_int ldb, lapack_int* sdim, float* alphar, float* alphai, float* beta, float* vsl, lapack_int ldvsl, float* vsr, lapack_int ldvsr, float* rconde, float* rcondv);
lapack_int LAPACKE_dggesx(int matrix_order, char jobvsl, char jobvsr, char sort, LAPACK_D_SELECT3 select, char sense, lapack_int n, double* a, lapack_int lda, double* b, lapack_int ldb, lapack_int* sdim, double* alphar, double* alphai, double* beta, double* vsl, lapack_int ldvsl, double* vsr, lapack_int ldvsr, double* rconde, double* rcondv);
lapack_int LAPACKE_cggesx (int matrix_order, char jobvsl, char jobvsr, char sort, LAPACK_C_SELECT2 select, char sense, lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb, lapack_int* sdim, lapack_complex_float* alpha, lapack_complex_float* beta, lapack_complex_float* vsl, lapack_int ldvsl, lapack_complex_float* vsr, lapack_int ldvsr, float* rconde, float* rcondv);

```
lapack_int LAPACKE_zggesx( int matrix_order, char jobvsl, char jobvsr, char sort,
LAPACK_Z_SELECT2 select, char sense, lapack_int n, lapack_complex_double* a, lapack_int
lda, lapack_complex_double* b, lapack_int ldb, lapack_int* sdim, lapack_complex_double*
alpha, lapack_complex_double* beta, lapack_complex_double* vsl, lapack_int ldvsl,
lapack_complex_double* vsr, lapack_int ldvsr, double* rconde, double* rcondv );
Include Files
```

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes for a pair of n-by-n real/complex nonsymmetric matrices (A, B), the generalized eigenvalues, the generalized real/complex Schur form (S, T), optionally, the left and/or right matrices of Schur vectors (vsl and vsr). This gives the generalized Schur factorization

```
(A,B) = ( vsl*S *Vsrr', vsl*T*Vsrr
```

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix S and the upper triangular matrix t; computes a reciprocal condition number for the average of the selected eigenvalues (rconde); and computes a reciprocal condition number for the right and left deflating subspaces corresponding to the selected eigenvalues (r condv). The leading columns of vsl and vsr then form an orthonormal/unitary basis for the corresponding left and right eigenspaces (deflating subspaces).

A generalized eigenvalue for a pair of matrices (A, B) is a scalar w or a ratio alpha / beta $=w$, such that A - $w^{\star} B$ is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta $=0$ or for both being zero. A pair of matrices (S, T) is in generalized real Schur form if T is upper triangular with non-negative diagonal and S is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of S will be "standardized" by making the corresponding elements of T have the form:

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
$$

and the pair of corresponding 2-by-2 blocks in S and T will have a complex conjugate pair of generalized eigenvalues. A pair of matrices (S, T) is in generalized complex Schur form if S and T are upper triangular and, in addition, the diagonal of T are non-negative real numbers.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobvsl
```

CHARACTER*1. Must be 'N' or 'V'.
If jobvsl = 'N', then the left Schur vectors are not computed. If jobvsl $=$ ' V ', then the left Schur vectors are computed.
jobvsr
CHARACTER*1. Must be 'N' or 'V'.
If jobvsr = 'N', then the right Schur vectors are not computed. If jobvsr $=$ ' V ', then the right Schur vectors are computed.

sort	CHARACTER*1. Must be 'N' or 'S'. Specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form. If sort $=$ ' N ', then eigenvalues are not ordered. If sort $=$ 'S', eigenvalues are ordered (see selctg).
selctg	LOGICAL FUNCTION of three REAL arguments for real flavors.
	LOGICAL FUNCTION of two COMPLEX arguments for complex flavors. selctg must be declared EXTERNAL in the calling subroutine.
	If sort = 'S', selctg is used to select eigenvalues to sort to the top left of the Schur form.
	If sort = 'N', selctg is not referenced.
	For real flavors:
	An eigenvalue (alphar $(\mathrm{j})+\operatorname{alphai}(\mathrm{j})) /$ beta (j) is selected if $\operatorname{selctg}(\operatorname{alphar}(\mathrm{j})$, alphai (j), beta $(\mathrm{j}))$ is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.
	Note that in the ill-conditioned case, a selected complex eigenvalue may no longer satisfy selctg(alphar(j), alphai(j), beta(j)) = .TRUE. after ordering. In this case info is set to $n+2$.
	For complex flavors:
	An eigenvalue alpha(j$) / \operatorname{beta}(\mathrm{j})$ is selected if $\operatorname{selctg}(\operatorname{alpha}(\mathrm{j})$, beta $(\mathrm{j}))$ is true.
	Note that a selected complex eigenvalue may no longer satisfy selctg(alpha(j), beta(j)) = .TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to $n+2$ (see info below).
sense	CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed.
	If sense = 'N', none are computed;
	If sense $=$ ' E ', computed for average of selected eigenvalues only;
	If sense $=$ 'V', computed for selected deflating subspaces only;
	If sense $=$ ' B ', computed for both.
	If sense is 'E', 'V', or 'B', then sort must equal 'S'.
n	INTEGER. The order of the matrices A, B, vsl, and $\operatorname{vsr}(n \geq 0)$.
a, b, work	REAL for sggesx
	DOUBLE PRECISION for dggesx
	COMPLEX for cggesx
	DOUBLE COMPLEX for zggesx.
	Arrays:
	$a(I d a, *)$ is an array containing the $n-b y-n$ matrix A (first of the pair of matrices).
	The second dimension of a must be at least max $(1, n)$.
	$b(I d b, *)$ is an array containing the n-by- n matrix B (second of the pair of matrices).
	The second dimension of b must be at least max $(1, n)$. work is a workspace array, its dimension max ($1, ~ l$ work).
Ida	INTEGER. The leading dimension of the array a. Must be at least $\max (1, n)$.
1 db	INTEGER. The leading dimension of the array b.
	Must be at least max $(1, n)$.
Idvsl, Idvsr	INTEGER. The leading dimensions of the output matrices vsl and vsr, respectively. Constraints:
	$l d v s l \geq 1 . ~ I f ~ j o b v s l ~=~ ' V ', ~ l d v s l ~ \geq ~ m a x ~(1, ~ n) . ~$

	$\operatorname{ldvsr} \geq 1$. If jobvsr $=$ 'V', ldvsr $\geq \max (1, n)$.
Iwork	INTEGER. The dimension of the array work. For real flavors: If $n=0$ then 1 wor $k \geq 1$. If $n>0$ and sense $=' N '$, then 1 work $\geq \max (8 * n, 6 * n+16)$. If $n>0$ and sense $=' E ', ' V '$, or ' B^{\prime} ', then 1 work $\geq \max (8 * n, 6 * n+16$, 2*sdim*(n-sdim)); For complex flavors: If $n=0$ then 1 wor $k \geq 1$. If $n>0$ and sense $=' N$ ', then 1 work $\geq \max \left(1,2 *_{n}\right)$; If $n>0$ and sense $=' E ', ' V '$, or 'B', then 1 work $\geq \max (1,2 * n$, $2 * \operatorname{sdim}^{*}(n-s d i m)$). Note that $2 * \operatorname{sdim}^{\star}(n-$ sdim $) \leq n^{\star} n / 2$. An error is only returned if 1 work < max $\left(8{ }^{*} n, 6 * n+16\right)$ for real flavors, and 1 work $<\max (1,2 * n)$ for complex flavors, but if sense $=' E ', V^{\prime}$, or 'B', this may not be large enough. If 1 work=-1, then a workspace query is assumed; the routine only calculates the bound on the optimal size of the work array and the minimum size of the iwork array, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla.
rwork	REAL for cggesx DOUBLE PRECISION for zggesx Workspace array, DIMENSION at least max $(1,8 n)$. This array is used in complex flavors only.
iwork	INTEGER. Workspace array, DIMENSION max (1, liwork).
liwork	INTEGER. The dimension of the array iwork. If sense $=$ 'N', or $n=0$, then liwork ≥ 1, otherwise liwork $\geq(n+6)$ for real flavors, and liwork $\geq(n+2)$ for complex flavors. If liwork=-1, then a workspace query is assumed; the routine only calculates the bound on the optimal size of the work array and the minimum size of the iwork array, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla.
bwork	LOGICAL. Workspace array, DIMENSION at least max $(1, n)$. Not referenced if sort $=$ ' N '.

Output Parameters

a
b
sdim
On exit, this array has been overwritten by its generalized Schur form S. On exit, this array has been overwritten by its generalized Schur form T.
INTEGER.
If sort $=$ ' N ', sdim= 0 .
If sort $=$ 'S', sdim is equal to the number of eigenvalues (after sorting) for which selctg is true.

Note that for real flavors complex conjugate pairs for which selctg is true for either eigenvalue count as 2.

```
alphar, alphai
```

alpha
beta

REAL for sggesx;
DOUBLE PRECISION for dggesx.
Arrays, DIMENSION at least max $(1, n)$ each. Contain values that form generalized eigenvalues in real flavors.
See beta.
COMPLEX for cggesx;
DOUBLE COMPLEX for zggesx.
Array, DIMENSION at least max $(1, n)$. Contain values that form generalized eigenvalues in complex flavors. See beta.
REAL for sggesx
DOUBLE PRECISION for dggesx
COMPLEX for cggesx
DOUBLE COMPLEX for zggesx.
Array, DIMENSION at least max $(1, n)$.
For real flavors:
On exit, (alphar $\left.(\mathrm{j})+\operatorname{alphai}(\mathrm{j}){ }^{*} \mathrm{i}\right) / \operatorname{beta}(\mathrm{j}), \mathrm{j}=1, \ldots, n$ will be the generalized eigenvalues.
alphar $(\mathrm{j})+\operatorname{alphai}(\mathrm{j}) * \mathrm{i}$ and beta $(\mathrm{j}), \mathrm{j}=1, \ldots, n$ are the diagonals of the complex Schur form (S, T) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of (A, B) were further reduced to triangular form using complex unitary transformations. If alphai (j) is zero, then the j-th eigenvalue is real; if positive, then the j-th and ($j+1$)-st eigenvalues are a complex conjugate pair, with alphai($\mathrm{j}+1$) negative.
For complex flavors:
On exit, alpha(j)/beta(j), $j=1, \ldots, n$ will be the generalized eigenvalues. alpha(j$), \mathrm{j}=1, \ldots, n$, and beta $(\mathrm{j}), \mathrm{j}=1, \ldots, n$ are the diagonals of the complex Schur form (S, T) output by cggesx/zggesx. The beta(j) will be nonnegative real.
See also Application Notes below.
REAL for sggesx
DOUBLE PRECISION for dggesx
COMPLEX for cggesx
DOUBLE COMPLEX for zggesx.

Arrays:

vsl(ldvsl,*), the second dimension of vsl must be at least max(1, n). If jobvsl = 'V', this array will contain the left Schur vectors.
If jobvsl = 'N', vsl is not referenced.
$\operatorname{vsr}(\operatorname{ldvsr}, *)$, the second dimension of vsr must be at least max $(1, n)$.
If jobvsr = ' V ', this array will contain the right Schur vectors.
If jobvsr = 'N', vsr is not referenced.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION (2) each
If sense $=$ 'E' or 'B', rconde(1) and rconde(2) contain the reciprocal condition numbers for the average of the selected eigenvalues.
Not referenced if sense $=$ 'N' or 'V'.
If sense $=$ 'V' or 'B', rcondv(1) and $r \operatorname{condv}(2)$ contain the reciprocal condition numbers for the selected deflating subspaces.
Not referenced if sense $=$ 'N' or 'E'.

```
work(1)
iwork(1)
info
On exit, if info = 0, then work (1) returns the required minimal size of
lwork.
On exit, if info = 0, then iwork(1) returns the required minimal size of
liwork.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and
i < n:
the QZ iteration failed. (A,B) is not in Schur form, but alphar(j), alphai(j)
(for real flavors), or alpha(j) (for complex flavors), and beta(j), j=info
+1,..., n should be correct.
i > n: errors that usually indicate LAPACK problems:
i = n+1: other than QZ iteration failed in ?hgeqz;
i = n+2: after reordering, roundoff changed values of some complex
eigenvalues so that leading eigenvalues in the generalized Schur form no
longer satisfy selctg = .TRUE.. This could also be caused due to scaling;
i = n+3: reordering failed in tgsen.
```


Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ggesx interface are the following:

```
a Holds the matrix A of size ( }n,n)\mathrm{ .
b Holds the matrix B of size ( }n,n)\mathrm{ .
alphar Holds the vector of length n. Used in real flavors only.
alphai Holds the vector of length n. Used in real flavors only.
alpha Holds the vector of length n. Used in complex flavors only.
beta Holds the vector of length n.
vSl Holds the matrix VSL of size ( }n,n)\mathrm{ .
vSr Holds the matrix VSR of size ( }n,n)\mathrm{ .
rconde Holds the vector of length (2).
rcondv Holds the vector of length (2).
jobvsl Restored based on the presence of the argument vsl as follows:
jobvsl = 'V',if vsl is present,
jobvsl = 'N', if vsl is omitted.
jobvsr Restored based on the presence of the argument vsr as follows:
jobvsr = 'V',if vsr is present,
jobvsr = 'N', if vsr is omitted.
sort Restored based on the presence of the argument select as follows:
sort = 'S', if select is present,
sort = 'N', if select is omitted.
Restored based on the presence of arguments rconde and rcondv as follows:
sense = 'B', if both rconde and rcondv are present,
sense = 'E', if rconde is present and rcondv omitted,
sense = 'V', if rconde is omitted and rcondv present,
sense = 'N', if both rconde and rcondv are omitted.
```

Note that there will be an error condition if rconde or rcondv are present and select is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork (or liwork) for the first run or set lwork $=-1$ (liwork $=-1$).
If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If you set l work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if you set lwork (liwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The quotients alphar $(\mathrm{j}) /$ beta (j) and $a l p h a i(\mathrm{j}) /$ beta (j) may easily over- or underflow, and beta (j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai will be always less than and usually comparable with norm(A) in magnitude, and beta always less than and usually comparable with norm (B).

?ggev

Computes the generalized eigenvalues, and the left and/or right generalized eigenvectors for a pair of nonsymmetric matrices.

Syntax

Fortran 77:

```
call sggev(jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr,
work, lwork, info)
call dggev(jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr,
work, lwork, info)
call cggev(jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)
call zggev(jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)
```


Fortran 95:

```
call ggev(a, b, alphar, alphai, beta [,vl] [,vr] [,info])
call ggev(a, b, alpha, beta [, vl] [,vr] [,info])
```

C:
lapack_int LAPACKE_sggev(int matrix_order, char jobvl, char jobvr, lapack_int n,
float* a, lapack_int lda, float* b, lapack_int ldb, float* alphar, float* alphai,
float* beta, float* vl, lapack_int ldvl, float* vr, lapack_int ldvr);
lapack_int LAPACKE_dggev(int matrix_order, char jobvl, char jobvr, lapack_int n,
double* $a, ~ l a p a c k _i n t ~ l d a, ~ d o u b l e * ~ b, ~ l a p a c k _i n t ~ l d b, ~ d o u b l e * ~ a l p h a r, ~ d o u b l e * ~ a l p h a i, ~$
double* beta, double* vl, lapack_int ldvl, double* vr, lapack_int ldvr);

```
lapack_int LAPACKE_cggev( int matrix_order, char jobvl, char jobvr, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* alpha, lapack_complex_float* beta, lapack_complex_float* vl,
lapack_int ldvl, lapack_complex_float* vr, lapack_int ldvr );
lapack_int LAPACKE_zggev( int matrix_order, char jobvl, char jobvr, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* alpha, lapack_complex_double* beta, lapack_complex_double* vl,
lapack_int ldvl, lapack_complex_double* vr, lapack_int ldvr );
```


Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The ? ggev routine computes the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors for a pair of n-by- n real/complex nonsymmetric matrices (A, B).

A generalized eigenvalue for a pair of matrices (A, B) is a scalar λ or a ratio alpha / beta $=\lambda$, such that $A-$ $\lambda \star B$ is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta $=0$ and even for both being zero.

The right generalized eigenvector $v(j)$ corresponding to the generalized eigenvalue $\lambda(j)$ of (A, B) satisfies
$A^{\star} V(j)=\lambda(j){ }^{*} B^{\star} V(j)$.
The left generalized eigenvector $u(j)$ corresponding to the generalized eigenvalue $\lambda(j)$ of (A, B) satisfies
$u(j)^{{ }^{H *} A} A=\lambda(j){ }^{*} u(j)^{H_{\star} B}$
where $u(j)^{H}$ denotes the conjugate transpose of $u(j)$.
The ?ggev routine replaces the deprecated ?gegv routine.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

```
jobvl CHARACTER*1. Must be 'N' or 'V'.
    If jobvl = 'N', the left generalized eigenvectors are not computed;
    If jobvl = 'V', the left generalized eigenvectors are computed.
jobvr CHARACTER*1.Must be 'N' or 'V'.
    If jobvr = 'N', the right generalized eigenvectors are not computed;
    If jobvr = 'V', the right generalized eigenvectors are computed.
    INTEGER. The order of the matrices A,B,vl, and vr (n\geq0).
REAL for sggev
DOUBLE PRECISION for dggev
COMPLEX for cggev
DOUBLE COMPLEX for zggev.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A (first of the pair of
matrices).
The second dimension of a must be at least max(1,n).
```

	$b(l d b, *)$ is an array containing the n-by- n matrix B (second of the pair of matrices). The second dimension of b must be at least max $(1, n)$. work is a workspace array, its dimension max ($1, ~ l$ work).
Ida	INTEGER. The leading dimension of the array a. Must be at least max $(1, n)$.
1 db	INTEGER. The leading dimension of the array b. Must be at least max $(1, n)$.
ldvl, Idvr	INTEGER. The leading dimensions of the output matrices $v l$ and $v r$, respectively. Constraints: $\begin{aligned} & \operatorname{ldvl} \geq 1 . \text { If jobvl }=' \mathrm{~V} ', l d v I \geq \max (1, n) . \\ & l d v r \geq 1 . \text { If jobvr }=' V^{\prime}, l d v r \geq \max (1, n) . \end{aligned}$
Iwork	INTEGER. The dimension of the array work. lwork $\geq \max (1,8 n+16)$ for real flavors; lwork $\geq \max (1,2 n)$ for complex flavors. For good performance, lwork must generally be larger. If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
rwork	REAL for cggev DOUBLE PRECISION for zggev Workspace array, DIMENSION at least max($1,8 n$). This array is used in complex flavors only.

Output Parameters

```
\(a, b\)
alphar, alphai
```

alpha
beta

On exit, these arrays have been overwritten.
REAL for sggev;
DOUBLE PRECISION for dggev.
Arrays, DIMENSION at least max $(1, n)$ each. Contain values that form generalized eigenvalues in real flavors.
See beta.
COMPLEX for cggev;
DOUBLE COMPLEX for zggev.
Array, DIMENSION at least max $(1, n)$. Contain values that form generalized eigenvalues in complex flavors. See beta.
REAL for sggev
DOUBLE PRECISION for dggev
COMPLEX for cggev
DOUBLE COMPLEX for zggev.
Array, DIMENSION at least max $(1, n)$.
For real flavors:
On exit, (alphar $(\mathrm{j})+$ alphai $(\mathrm{j}) * \mathrm{i}) /$ beta $(\mathrm{j}), \mathrm{j}=1, \ldots, n$, are the generalized eigenvalues.
If alphai(j$)$ is zero, then the j -th eigenvalue is real; if positive, then the j th and ($j+1$)-st eigenvalues are a complex conjugate pair, with alphai($j+1$) negative.
For complex flavors:
On exit, alpha(j)/beta(j), $j=1, \ldots, n$, are the generalized eigenvalues.
See also Application Notes below.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ggev interface are the following:

```
a Holds the matrix A of size ( }n,n)\mathrm{ .
b Holds the matrix B of size ( }n,n)\mathrm{ .
```

alphar	Holds the vector of length n. Used in real flavors only.
alphai	Holds the vector of length n. Used in real flavors only.
alpha	Holds the vector of length n. Used in complex flavors only.
beta	Holds the vector of length n.
vl	Holds the matrix VL of size (n, n).
vr	Holds the matrix VR of size (n, n).
jobvl	Restored based on the presence of the argument $v l$ as follows: jobvl = 'V', if $v l$ is present, jobvl = 'N', if $v l$ is omitted.
jobvr	Restored based on the presence of the argument $v r$ as follows: jobvr = 'V', if $v r$ is present, jobvr = ' N ', if vr is omitted.

Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The quotients alphar $(\mathrm{j}) /$ beta (j) and alphai $(\mathrm{j}) /$ beta (j) may easily over- or underflow, and beta (j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually comparable with norm(A) in magnitude, and beta always less than and usually comparable with norm(B).

?ggevx

Computes the generalized eigenvalues, and, optionally, the left and/or right generalized eigenvectors.

Syntax

Fortran 77:

```
call sggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alphar, alphai, beta, vl,
ldvl, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, rcondv, work, lwork,
iwork, bwork, info)
call dggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alphar, alphai, beta, vl,
ldvl, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, rcondv, work, lwork,
iwork, bwork, info)
call cggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr,
ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, rcondv, work, lwork, rwork,
iwork, bwork, info)
```

```
call zggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr,
ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, rcondv, work, lwork, rwork,
iwork, bwork, info)
```


Fortran 95:

call ggevx(a, b, alphar, alphai, beta [,vl] [,vr] [,balanc] [,ilo] [,ihi] [, lscale] [,rscale] [, abnrm] [,bbnrm] [,rconde] [,rcondv] [,info])
call ggevx(a, b, alpha, beta [, vl] [,vr] [,balanc] [,ilo] [,ihi] [,lscale] [, rscale] [, abnrm] [,bbnrm] [,rconde] [,rcondv] [,info])

C:
lapack_int LAPACKE_sggevx(int matrix_order, char balanc, char jobvl, char jobvr, char
 alphar, float* alphai, float* beta, float* vl, lapack_int ldvl, float* vr, lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, float* lscale, float* rscale, float* abnrm, float* bbnrm, float* rconde, float* rcondv);
lapack_int LAPACKE_dggevx(int matrix_order, char balanc, char jobvl, char jobvr, char sense, lapack_int n, double* a, lapack_int lda, double* b, lapack_int ldb, double* alphar, double* alphai, double* beta, double* vl, lapack_int ldvl, double* vr, lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, double* lscale, double* rscale, double* abnrm, double* bbnrm, double* rconde, double* rcondv);
lapack_int LAPACKE_cggevx(int matrix_order, char balanc, char jobvl, char jobvr, char sense, lapack_int $n, ~ l a p a c k _c o m p l e x _f l o a t * ~ a, ~ l a p a c k _i n t ~ l d a, ~ l a p a c k _c o m p l e x _f l o a t * ~ b, ~$ lapack_int ldb, lapack_complex_float* alpha, lapack_complex_float* beta,
lapack_complex_float* vl, lapack_int ldvl, lapack_complex_float* vr, lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, float* lscale, float* rscale, float* abnrm, float* bbnrm, float* rconde, float* rcondv);
lapack_int LAPACKE_zggevx(int matrix_order, char balanc, char jobvl, char jobvr, char
 b, lapack_int ldb, lapack_complex_double* alpha, lapack_complex_double* beta, lapack_complex_double* vl, lapack_int ldvl, lapack_complex_double* vr, lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, double* lscale, double* rscale, double* abnrm, double* bbnrm, double* rconde, double* rcondv);

Include Files

- Fortran: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90
- C: mkl_lapacke.h

Description

The routine computes for a pair of n-by- n real/complex nonsymmetric matrices (A, B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ilo, ihi, lscale, rscale, abnrm, and bbnrm), reciprocal condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).
A generalized eigenvalue for a pair of matrices (A, B) is a scalar λ or a ratio alpha/beta $=\lambda$, such that $A-$ $\lambda \star B$ is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta=0 and even for both being zero. The right generalized eigenvector $v(j)$ corresponding to the generalized eigenvalue $\lambda(j)$ of (A, B) satisfies

```
A*V(j) = \lambda(j)* **V(j).
```

The left generalized eigenvector $u(j)$ corresponding to the generalized eigenvalue $\lambda(j)$ of (A, B) satisfies $u(j)^{H_{*}} A=\lambda(j){ }^{*} u(j)^{H_{*}} B$
where $u(j)^{H}$ denotes the conjugate transpose of $u(j)$.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type definitions.

balanc	CHARACTER*1. Must be 'N', 'P', 'S', or 'B'. Specifies the balance option to be performed. If balanc $=$ 'N', do not diagonally scale or permute; If balanc = 'P', permute only; If balanc = 'S', scale only; If balanc = 'B', both permute and scale. Computed reciprocal condition numbers will be for the matrices after balancing and/or permuting. Permuting does not change condition numbers (in exact arithmetic), but balancing does.
jobvl	CHARACTER*1. Must be 'N' or 'V'. If jobvl = 'N', the left generalized eigenvectors are not computed; If jobvl = 'V', the left generalized eigenvectors are computed.
jobvr	CHARACTER*1. Must be 'N' or 'V'. If jobvr = ' N ', the right generalized eigenvectors are not computed; If jobvr = ' V ', the right generalized eigenvectors are computed.
sense	CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed. If sense $=$ 'N', none are computed; If sense $=$ ' E ', computed for eigenvalues only; If sense $=$ 'V', computed for eigenvectors only; If sense $=$ 'B', computed for eigenvalues and eigenvectors.
n	INTEGER. The order of the matrices A, B, vl, and $\operatorname{vr}(n \geq 0)$.
a, b, work	REAL for sggevx DOUBLE PRECISION for dggevx COMPLEX for cggevx DOUBLE COMPLEX for zggevx. Arrays: $a(l d a, *)$ is an array containing the $n-b y-n$ matrix A (first of the pair of matrices). The second dimension of a must be at least max $(1, n)$. $b(l d b, *)$ is an array containing the n-by- n matrix B (second of the pair of matrices). The second dimension of b must be at least $\max (1, n)$. work is a workspace array, its dimension max (1, lwork).
Ida	INTEGER. The leading dimension of the array a. Must be at least max $(1, n)$.
1 db	INTEGER. The leading dimension of the array b. Must be at least max (1, n).
IdvI, Idvr	INTEGER. The leading dimensions of the output matrices $v l$ and $v r$, respectively.

	Constraints:
	$l d v l \geq 1 . ~ I f ~ j o b v l ~=~ ' V ', ~ l d v l ~ \geq ~ m a x ~(1, ~ n) . ~$
	$l d v r \geq 1$. If jobvr $=$ ' V ', $\operatorname{ldvr} \geq \max (1, n)$
Iwork	INTEGER.
	The dimension of the array work. 1 work $\geq \max \left(1,2 *^{\prime}\right.$) ;
	For real flavors:
	If balanc = 'S', or 'B', or jobvl = 'V', or jobvr = 'V', then lwork $\geq \max (1,6 * n)$;
	if sense $=$ 'E', or 'B', then lwork $\geq \max \left(1,10 *_{n}\right)$;
	if sense $=$ 'V', or 'B', lwork $\geq\left(2 n^{2}+8^{\star} n+16\right)$.
	For complex flavors:
	if sense $=$ 'E', lwork $\geq \max (1,4 * n)$;
	if sense $=$ 'V', or 'B', lwork $\geq \max \left(1,2 * n^{2}+2 * n\right)$.
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
rwork	REAL for cggevx
	DOUBLE PRECISION for zggevx
	Workspace array, DIMENSION at least max (1, $6^{*} n$) if balanc $=$ 'S', or 'B', and at least max $(1,2 * n)$ otherwise.
	This array is used in complex flavors only.
iwork	INTEGER.
	Workspace array, DIMENSION at least $(n+6)$ for real flavors and at least (n
	$+2)$ for complex flavors.
bwork	LOGICAL. Workspace array, DIMENSION at least max $(1, n)$.
	Not referenced if sense $=$ ' N '.

Output Parameters

a, b
alphar, alphai
alpha
beta

On exit, these arrays have been overwritten.
If jobvl = 'V' or jobvr = 'V' or both, then a contains the first part of the real Schur form of the "balanced" versions of the input A and B, and b contains its second part.
REAL for sggevx;
DOUBLE PRECISION for dggevx.
Arrays, DIMENSION at least max $(1, n)$ each. Contain values that form generalized eigenvalues in real flavors.
See beta.
COMPLEX for cggevx;
DOUBLE COMPLEX for zggevx.
Array, DIMENSION at least max $(1, n)$. Contain values that form generalized eigenvalues in complex flavors. See beta.
REAL for sggevx
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.
Array, DIMENSION at least max $(1, n)$.
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), $j=1, \ldots, n$, will be the generalized eigenvalues.

If alphai(j$)$ is zero, then the j -th eigenvalue is real; if positive, then the j th and ($j+1$)-st eigenvalues are a complex conjugate pair, with alphai $(j+1)$ negative.
For complex flavors:
On exit, alpha(j$) / \operatorname{bet} a(\mathrm{j}), \mathrm{j}=1, \ldots, n$, will be the generalized eigenvalues.
See also Application Notes below.
vl, vr
ilo, ihi
lscale, rscale

REAL for sggevx
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.

Arrays:

$v l(l d v l, *)$; the second dimension of $v l$ must be at least max $(1, n)$.
If jobvl = 'V', the left generalized eigenvectors $u(j)$ are stored one after another in the columns of $v 1$, in the same order as their eigenvalues. Each eigenvector will be scaled so the largest component have abs(Re) + $\operatorname{abs}(\operatorname{Im})=1$.
If jobvl = 'N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then $u(j)=v l(:, j)$, the j-th column of $v l$. If the j-th and $(j+1)$-st eigenvalues form a complex conjugate pair, then $u(j)=v l(:, j)+i * v l(:, j+1)$ and $u(j+1)=v l(:, j)-i * v l(:, j$ $+1)$, where $i=\operatorname{sqrt}(-1)$.
For complex flavors:
$u(j)=v l(:, j)$, the j-th column of $v l$.
$\operatorname{vr}\left(I d v r,{ }^{*}\right)$; the second dimension of $v r$ must be at least max $(1, n)$.
If jobvr = ' V ', the right generalized eigenvectors $v(\mathrm{j})$ are stored one after another in the columns of $v r$, in the same order as their eigenvalues.
Each eigenvector will be scaled so the largest component have abs(Re) + $\operatorname{abs}(\operatorname{Im})=1$.
If jobvr = 'N', vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, then $v(j)=v r(:, j)$, the j-th column of $v r$. If the j-th and $(j+1)$-st eigenvalues form a complex conjugate pair, then $v(j)=v r(:, j)+i * v r(:, j+1)$ and $v(j+1)=\operatorname{vr}(:, j)-i * v r(:, j$ +1).
For complex flavors:
$v(j)=v r(:, j)$, the j-th column of $v r$.
INTEGER. ilo and ihi are integer values such that on exit $A(i, j)=0$ and $B(i, j)=0$ if $i>j$ and $j=1, \ldots, i l o-1$ or $i=i h i+1, \ldots, n$. If balanc $=$ 'N' or 'S', ilo $=1$ and ihi $=n$.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max $(1, n)$ each.
lscale contains details of the permutations and scaling factors applied to the left side of A and B.
If $P L(j)$ is the index of the row interchanged with row \mathbf{j}, and $D L(j)$ is the scaling factor applied to row j, then
lscale(j) $=P L(j)$, for $j=1, \ldots, i l o-1$
$=D L(j)$, for $j=i l o, \ldots, i h i$
$=P L(j)$ for $j=i h i+1, \ldots, n$.
The order in which the interchanges are made is n to $i h i+1$, then 1 to ilo-1.
rscale contains details of the permutations and scaling factors applied to the right side of A and B.
If $P R(j)$ is the index of the column interchanged with column \mathbf{j}, and $D R(j)$ is the scaling factor applied to column j, then

```
rscale(j) = PR(j),for j = 1,..., ilo-1
```

$=D R(j)$, for $j=i l o, \ldots, i h i$
$=P R(j)$ for $j=i h i+1, \ldots, n$.
The order in which the interchanges are made is n to $i h i+1$, then 1 to ilo-1.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
The one-norms of the balanced matrices A and B, respectively.
REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max $(1, n)$ each.
If sense $=$ ' E ', or ' B ', rconde contains the reciprocal condition numbers of the eigenvalues, stored in consecutive elements of the array. For a complex conjugate pair of eigenvalues two consecutive elements of rconde are set to the same value. Thus rconde $(\mathrm{j}), r \operatorname{condv}(\mathrm{j})$, and the j-th columns of $v l$ and $v r$ all correspond to the same eigenpair (but not in general the j th eigenpair, unless all eigenpairs are selected).
If sense $=$ ' N ', or ' V ', rconde is not referenced.
If sense $=$ ' V ', or ' B ', rcondv contains the estimated reciprocal condition numbers of the eigenvectors, stored in consecutive elements of the array.
For a complex eigenvector two consecutive elements of rcondv are set to the same value.
If the eigenvalues cannot be reordered to compute $\operatorname{rcondv}(\mathrm{j}), r \operatorname{condv}(\mathrm{j})$ is set to 0 ; this can only occur when the true value would be very small anyway.
If sense = 'N', or 'E', rcondv is not referenced.
On exit, if info $=0$, then work (1) returns the required minimal size of
lwork.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, and
$i \leq n$:
the $Q Z$ iteration failed. No eigenvectors have been calculated, but alphar(j), alphai(j) (for real flavors), or alpha(j) (for complex flavors), and beta(j),
$j=i n f o+1, \ldots, n$ should be correct.
$i>n$: errors that usually indicate LAPACK problems:
$i=n+1$: other than $Q Z$ iteration failed in hgeqz;
$i=n+2$: error return from tgevc.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine ggevx interface are the following:

```
a Holds the matrix A of size (n,n).
b Holds the matrix B of size ( }n,n)\mathrm{ .
```

```
alphar Holds the vector of length n. Used in real flavors only.
alphai Holds the vector of length n. Used in real flavors only.
alpha Holds the vector of length n. Used in complex flavors only.
beta Holds the vector of length n.
vl Holds the matrix VL of size ( }n,n)\mathrm{ .
vr Holds the matrix VR of size ( }n,n)\mathrm{ .
lscale Holds the vector of length n.
rscale Holds the vector of length n.
rconde Holds the vector of length n.
rcondv Holds the vector of length n.
balanc Must be 'N','B', or 'P'. The default value is 'N'.
jobvl Restored based on the presence of the argument vl as follows:
jobvl = 'V', if vl is present,
jobvl = 'N', if vl is omitted.
jobvr Restored based on the presence of the argument vr as follows:
jobvr = 'V', if vr is present,
jobvr = 'N', if vr is omitted.
sense
Restored based on the presence of arguments rconde and rcondv as follows:
sense \(=\) ' \(\mathrm{B}^{\prime}\), if both rconde and rcondv are present,
sense = 'E', if rconde is present and rcondv omitted,
sense = 'V', if rconde is omitted and rcondv present,
sense = 'N', if both rconde and rcondv are omitted.
```


Application Notes

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible 1 work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The quotients alphar $(\mathrm{j}) /$ beta (j) and $\operatorname{alphai}(\mathrm{j}) /$ beta (j) may easily over- or underflow, and beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually comparable with norm(A) in magnitude, and beta always less than and usually comparable with norm(B).

LAPACK Auxiliary and Utility Routines

This chapter describes the Intel ${ }^{\circledR}$ Math Kernel Library implementation of LAPACK auxiliary and utility routines. The library includes auxiliary routines for both real and complex data.

Auxiliary Routines

Routine naming conventions, mathematical notation, and matrix storage schemes used for LAPACK auxiliary routines are the same as for the driver and computational routines described in previous chapters.

The table below summarizes information about the available LAPACK auxiliary routines.

Routine Name	Data Types	Description
?lacgv	C, z	Conjugates a complex vector.
? lacrm	C, z	Multiplies a complex matrix by a square real matrix.
?lacrt	C, z	Performs a linear transformation of a pair of complex vectors.
?laesy	C, z	Computes the eigenvalues and eigenvectors of a 2-by-2 complex symmetric matrix.
?rot	C, z	Applies a plane rotation with real cosine and complex sine to a pair of complex vectors.
? spmv	C, z	Computes a matrix-vector product for complex vectors using a complex symmetric packed matrix
?spr	C, z	Performs the symmetrical rank-1 update of a complex symmetric packed matrix.
?symv	C, z	Computes a matrix-vector product for a complex symmetric matrix.
?syr	C, z	Performs the symmetric rank-1 update of a complex symmetric matrix.
i?max1	C, z	Finds the index of the vector element whose real part has maximum absolute value.
? sum1	sc, dz	Forms the 1 -norm of the complex vector using the true absolute value.
? 9 btf 2	s, d, c, z	Computes the LU factorization of a general band matrix using the unblocked version of the algorithm.
? gebd2	s, d, c, z	Reduces a general matrix to bidiagonal form using an unblocked algorithm.
? gehd2	s, d, c, z	Reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
? gelq 2	s, d, c, z	Computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.

Routine Name	Data Types	Description
? geq 12	s, d, c, z	Computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
? geqr 2	s, d, c, z	Computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
? geqr 2 p	s, d, c, z	Computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.
? gerq 2	s, d, c, z	Computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
?gesc2	s, d, c, z	Solves a system of linear equations using the LU factorization with complete pivoting computed by ?getc2.
?getc2	s, d, c, z	Computes the LU factorization with complete pivoting of the general n-by-n matrix.
?getf2	s, d, c, z	Computes the LU factorization of a general m-by- n matrix using partial pivoting with row interchanges (unblocked algorithm).
?gtts2	s, d, c, z	Solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by ?gttrf.
?isnan	s, d,	Tests input for NaN.
?laisnan	s, d,	Tests input for NaN by comparing itwo arguments for inequality.
? 1 abrd	s, d, c, z	Reduces the first nb rows and columns of a general matrix to a bidiagonal form.
?lacn2	s, d, c, z	Estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.
?lacon	s, d, c, z	Estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.
?lacpy	s, d, c, z	Copies all or part of one two-dimensional array to another.
?ladiv	s, d, c, z	Performs complex division in real arithmetic, avoiding unnecessary overflow.
? 1ae2	s, d	Computes the eigenvalues of a 2-by-2 symmetric matrix.
? 1 aebz	s, d	Computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine ?stebz.
?laedo	s, d, c, z	Used by ?stedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
?laed1	s, d	Used by sstedc/dstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal.
?laed2	s, d	Used by sstedc/dstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal.

Routine Name	Data Types	Description
?laed3	s, d	Used by sstedc/dstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal.
?laed4	s, d	Used by sstedc/dstedc. Finds a single root of the secular equation.
?laed5	s, d	Used by sstedc/dstedc. Solves the 2-by-2 secular equation.
?laed6	s, d	Used by sstedc/dstedc. Computes one Newton step in solution of the secular equation.
?laed7	s, d, c, z	Used by ?stedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.
?laed8	s, d, c, z	Used by ?stedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
?laed9	s, d	Used by sstedc/dstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is dense.
?laeda	s, d	Used by ?stedc. Computes the z vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense.
?laein	s, d, c, z	Computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.
?laev2	s, d, c, z	Computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
? 1 aexc	s, d	Swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonical form, by an orthogonal similarity transformation.
? lag2	s, d	Computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow.
?lags2	s, d	Computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel.
? lagtf	s, d	Computes an LU factorization of a matrix $T-\lambda I$, where T is a general tridiagonal matrix, and λ a scalar, using partial pivoting with row interchanges.
?lagtm	s, d, c, z	Performs a matrix-matrix product of the form $C=\alpha a b+\beta C$, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0,1 , or -1 .
?lagts	s, d	Solves the system of equations $(T-\lambda I)_{x}=y$ or $(T-\lambda I)^{T} X_{X}=y$, where T is a general tridiagonal matrix and λ a scalar, using the LU factorization computed by ?lagtf.
? lagv2	s, d	Computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A, B) where B is upper triangular.

Routine Name	Data Types	Description
? 1 ahqr	s, d, c, z	Computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.
? lahrd	s, d, c, z	Reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
?lahr2	s, d, c, z	Reduces the specified number of first columns of a general rectangular matrix A so that elements below thespecified subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
?laic1	s, d, c, z	Applies one step of incremental condition estimation.
?laln2	s, d	Solves a 1-by-1 or 2-by-2 linear system of equations of the specified form.
?lals0	s, d, c, z	Applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by ?gelsd.
?lalsa	s, d, c, z	Computes the SVD of the coefficient matrix in compact form. Used by ?gelsd.
?lalsd	s, d, c, z	Uses the singular value decomposition of A to solve the least squares problem.
? 1 amrg	s, d	Creates a permutation list to merge the entries of two independently sorted sets into a single set sorted in ascending order.
? laneg	s, d	Computes the Sturm count.
? langb	s, d, c, z	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
? lange	s, d, c, z	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
? langt	s, d, c, z	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.
?lanhs	s, d, c, z	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
? lansb	s, d, c, z	Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.
? lanhb	c, z	Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.
?lansp	s, d, c, z	Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.

Routine Name	Data Types	Description
? lanhp	C, z	Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.
?lanst/?lanht	$s, d / c, z$	Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric or complex Hermitian tridiagonal matrix.
?lansy	s, d, c, z	Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/ complex symmetric matrix.
? lanhe	C, z	Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
? lantb	s, d, c, z	Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
?lantp	s, d, c, z	Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form.
? lantr	s, d, c, z	Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
? 1 anv2	s, d	Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form.
? lapll	s, d, c, z	Measures the linear dependence of two vectors.
? lapmr	s, d, c, z	Rearranges rows of a matrix as specified by a permutation vector.
? lapmt	s, d, c, z	Performs a forward or backward permutation of the columns of a matrix.
? 1 apy2	s, d	Returns sqrt ($x^{2}+y^{2}$).
? lapy3	s, d	Returns sqrt($x^{2}+y^{2}+z^{2}$).
? laqgb	s, d, c, z	Scales a general band matrix, using row and column scaling factors computed by ?gbequ.
?laqge	s, d, c, z	Scales a general rectangular matrix, using row and column scaling factors computed by ?geequ.
? laqhb	C, z	Scales a Hermetian band matrix, using scaling factors computed by ?pbequ.
? laqp2	s, d, c, z	Computes a QR factorization with column pivoting of the matrix block.
?laqps	s, d, c, z	Computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3.
?laqr0	s, d, c, z	Computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
?laqr1	s, d, c, z	Sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts.

Routine Name	Data Types	Description
?laqr2	s, d, c, z	Performs the orthogonal/unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
? laqr3	s, d, c, z	Performs the orthogonal/unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
?laqr4	s, d, c, z	Computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
?laqr5	s, d, c, z	Performs a single small-bulge multi-shift QR sweep.
? laqsb	s, d, c, z	Scales a symmetric/Hermitian band matrix, using scaling factors computed by ?pbequ.
?laqsp	s, d, c, z	Scales a symmetric/Hermitian matrix in packed storage, using scaling factors computed by ?ppequ.
?laqsy	s, d, c, z	Scales a symmetric/Hermitian matrix, using scaling factors computed by ?poequ.
?laqtr	s, d	Solves a real quasi-triangular system of equations, or a complex quasi-triangular system of special form, in real arithmetic.
?lar1v	s, d, c, z	Computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix $1 d L^{T}-\sigma I$.
?lar2v	s, d, c, z	Applies a vector of plane rotations with real cosines and real/ complex sines from both sides to a sequence of 2-by-2 symmetric/ Hermitian matrices.
?larf	s, d, c, z	Applies an elementary reflector to a general rectangular matrix.
?larfb	s, d, c, z	Applies a block reflector or its transpose/conjugate-transpose to a general rectangular matrix.
?larfg	s, d, c, z	Generates an elementary reflector (Householder matrix).
?larfgp	s, d, c, z	Generates an elementary reflector (Householder matrix) with nonnegatibe beta.
?larft	s, d, c, z	Forms the triangular factor T of a block reflector $H=I-v t v^{H}$
?larfx	s, d, c, z	Applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order ≤ 10.
?largv	s, d, c, z	Generates a vector of plane rotations with real cosines and real/ complex sines.
?larnv	s, d, c, z	Returns a vector of random numbers from a uniform or normal distribution.
?larra	s, d	Computes the splitting points with the specified threshold.
? larrb	s, d	Provides limited bisection to locate eigenvalues for more accuracy.
? 1 arrc	s, d	Computes the number of eigenvalues of the symmetric tridiagonal matrix.

Routine Name	Data Types	Description
?larrd	s, d	Computes the eigenvalues of a symmetric tridiagonal matrix to suitable accuracy.
?larre	s, d	Given the tridiagonal matrix T, sets small off-diagonal elements to zero and for each unreduced block T_{i}, finds base representations and eigenvalues.
?larrf	s, d	Finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated.
?larrj	s, d	Performs refinement of the initial estimates of the eigenvalues of the matrix T.
?larrk	s, d	Computes one eigenvalue of a symmetric tridiagonal matrix T to suitable accuracy.
? 1 arrr	s, d	Performs tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues.
?larrv	s, d, c, z	Computes the eigenvectors of the tridiagonal matrix $T=L D L^{T}$ given L, D and the eigenvalues of $L D L^{T}$.
?lartg	s, d, c, z	Generates a plane rotation with real cosine and real/complex sine.
? lartgp	s, d	Generates a plane rotation so that the diagonal is nonnegative.
?lartgs	s, d	Generates a plane rotation designed to introduce a bulge in implicit QR iteration for the bidiagonal SVD problem.
?lartv	s, d, c, z	Applies a vector of plane rotations with real cosines and real/ complex sines to the elements of a pair of vectors.
?laruv	s, d	Returns a vector of n random real numbers from a uniform distribution.
?larz	s, d, c, z	Applies an elementary reflector (as returned by ?tzrzf) to a general matrix.
?larzb	s, d, c, z	Applies a block reflector or its transpose/conjugate-transpose to a general matrix.
?larzt	s, d, c, z	Forms the triangular factor T of a block reflector $H=I-v t v^{H}$.
?las2	s, d	Computes singular values of a 2-by-2 triangular matrix.
?lascl	s, d, c, z	Multiplies a general rectangular matrix by a real scalar defined as $c_{\text {to }} / c_{\text {from }}$.
?lasd0	s, d	Computes the singular values of a real upper bidiagonal n-by-m matrix B with diagonal d and off-diagonal e. Used by ?bdsdc.
?lasd1	s, d	Computes the SVD of an upper bidiagonal matrix B of the specified size. Used by ?bdsdc.
?lasd2	s, d	Merges the two sets of singular values together into a single sorted set. Used by ?bdsdc.
?lasd3	s, d	Finds all square roots of the roots of the secular equation, as defined by the values in D and z, and then updates the singular vectors by matrix multiplication. Used by ?bdsdc.

Routine Name	Data Types	Description
?lasd4	s, d	Computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by ?bdsdc.
?lasd5	s, d	Computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix.Used by ?bdsdc.
?lasd6	s, d	Computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller ones by appending a row. Used by ? bdsdc.
?lasd7	s, d	Merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. Used by ?bdsdc.
?lasd8	s, d	Finds the square roots of the roots of the secular equation, and stores, for each element in D, the distance to its two nearest poles. Used by ?bdsdc.
?lasd9	s, d	Finds the square roots of the roots of the secular equation, and stores, for each element in D, the distance to its two nearest poles. Used by ?bdsdc.
? lasda	s, d	Computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal d and off-diagonal e. Used by ? bdsdc.
? lasdq	s, d	Computes the SVD of a real bidiagonal matrix with diagonal d and off-diagonal e. Used by ?bdsdc.
? lasdt	s, d	Creates a tree of subproblems for bidiagonal divide and conquer. Used by ?bdsdc.
?laset	s, d, c, z	Initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
?lasq1	s, d	Computes the singular values of a real square bidiagonal matrix. Used by ?bdsqr.
?lasq2	s, d	Computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd Array z to high relative accuracy. Used by ?bdsqr and ?stegr.
?lasq3	s, d	Checks for deflation, computes a shift and calls dqds. Used by ? bdsqr.
?lasq4	s, d	Computes an approximation to the smallest eigenvalue using values of d from the previous transform. Used by ?bdsqr.
?lasq5	s, d	Computes one dqds transform in ping-pong form. Used by ?bdsqr and ?stegr.
?lasq6	s, d	Computes one dqd transform in ping-pong form. Used by ?bdsqr and ?stegr.
?lasr	s, d, c, z	Applies a sequence of plane rotations to a general rectangular matrix.
?lasrt	s, d	Sorts numbers in increasing or decreasing order.

Routine Name	Data Types	Description
?lassq	s, d, c, z	Updates a sum of squares represented in scaled form.
?lasv2	s, d	Computes the singular value decomposition of a 2-by-2 triangular matrix.
?laswp	s, d, c, z	Performs a series of row interchanges on a general rectangular matrix.
?lasy2	s, d	Solves the Sylvester matrix equation where the matrices are of order 1 or 2.
?lasyf	s, d, c, z	Computes a partial factorization of a real/complex symmetric matrix, using the diagonal pivoting method.
?lahef	C, z	Computes a partial factorization of a complex Hermitian indefinite matrix, using the diagonal pivoting method.
?latbs	s, d, c, z	Solves a triangular banded system of equations.
?latdf	s, d, c, z	Uses the LU factorization of the n-by-n matrix computed by ? getc2 and computes a contribution to the reciprocal Dif-estimate.
?latps	s, d, c, z	Solves a triangular system of equations with the matrix held in packed storage.
? latrd	s, d, c, z	Reduces the first $n b$ rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal/unitary similarity transformation.
?latrs	s, d, c, z	Solves a triangular system of equations with the scale factor set to prevent overflow.
?latrz	s, d, c, z	Factors an upper trapezoidal matrix by means of orthogonal/ unitary transformations.
?lauu2	s, d, c, z	Computes the product $U U^{H}$ or $L^{H} L$, where U and L are upper or lower triangular matrices (unblocked algorithm).
?lauum	s, d, c, z	Computes the product $U U^{H}$ or $L^{H} L$, where U and L are upper or lower triangular matrices (blocked algorithm).
?org2l/?ung2l	$s, d / c, z$	Generates all or part of the orthogonal/unitary matrix Q from a QL factorization determined by ?geqlf (unblocked algorithm).
?org2r/?ung2r	$s, d / c, z$	Generates all or part of the orthogonal/unitary matrix Q from a QR factorization determined by ?geqrf (unblocked algorithm).
?orgl2/?ungl2	$s, d / c, z$	Generates all or part of the orthogonal/unitary matrix Q from an LQ factorization determined by ?gelqf (unblocked algorithm).
?orgr2/?ungr2	$s, d / c, z$	Generates all or part of the orthogonal/unitary matrix Q from an RQ factorization determined by ?gerqf (unblocked algorithm).
? orm2l/?unm2l	$s, d / c, z$	Multiplies a general matrix by the orthogonal/unitary matrix from a QL factorization determined by ?geqlf (unblocked algorithm).
?orm2r/?unm2r	s, d/c, z	Multiplies a general matrix by the orthogonal/unitary matrix from a QR factorization determined by ?geqrf (unblocked algorithm).
? orml2/?unml2	$s, d / c, z$	Multiplies a general matrix by the orthogonal/unitary matrix from a LQ factorization determined by ?gelqf (unblocked algorithm).

Routine Name	Data Types	Description
?ormr2/?unmr2	s, d/c, z	Multiplies a general matrix by the orthogonal/unitary matrix from a RQ factorization determined by ?gerqf (unblocked algorithm).
? ormr3/? unmr3	s, d/c, z	Multiplies a general matrix by the orthogonal/unitary matrix from a RZ factorization determined by ?tzrzf (unblocked algorithm).
? pbtf2	s, d, c, z	Computes the Cholesky factorization of a symmetric/ Hermitian positive definite band matrix (unblocked algorithm).
?potf2	s, d, c, z	Computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).
?ptts2	s, d, c, z	Solves a tridiagonal system of the form $A X=B$ using the $L D L^{H}$ factorization computed by ?pttrf.
?rscl	$\begin{aligned} & s, d, c s, \\ & z d \end{aligned}$	Multiplies a vector by the reciprocal of a real scalar.
?syswapr	s, d, c, z	Applies an elementary permutation on the rows and columns of a symmetric matrix.
?heswapr	C, z	Applies an elementary permutation on the rows and columns of a Hermitian matrix.
?sygs2/?hegs2	s, d/c, z	Reduces a symmetric/Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from ? potrf (unblocked algorithm).
?sytd2/?hetd2	$s, d / c, z$	Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation (unblocked algorithm).
?sytf2	s, d, c, z	Computes the factorization of a real/complex symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm).
?hetf2	C, z	Computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (unblocked algorithm).
?tgex2	s, d, c, z	Swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogonal/unitary equivalence transformation.
?tgsy2	s, d, c, z	Solves the generalized Sylvester equation (unblocked algorithm).
?trti2	s, d, c, z	Computes the inverse of a triangular matrix (unblocked algorithm).
clag2z	$\mathrm{c} \rightarrow \mathrm{z}$	Converts a complex single precision matrix to a complex double precision matrix.
dlag2s	$d \rightarrow s$	Converts a double precision matrix to a single precision matrix.
slag2d	$s \rightarrow \mathrm{~d}$	Converts a single precision matrix to a double precision matrix.
zlag2c	$z \rightarrow C$	Converts a complex double precision matrix to a complex single precision matrix.
?larfp	s, d, c, z	Generates a real or complex elementary reflector.
ila?lc	s, d, c, z	Scans a matrix for its last non-zero column.
ila?lr	s, d, c, z	Scans a matrix for its last non-zero row.

Routine Name	Data Types	Description
? gsvj0	s, d	Pre-processor for the routine ? gesvj.
? 9 svj1	s, d	Pre-processor for the routine ?gesvj, applies Jacobi rotations targeting only particular pivots.
?sfrk	s, d	Performs a symmetric rank-k operation for matrix in RFP format.
?hfrk	C, z	Performs a Hermitian rank-k operation for matrix in RFP format.
? tfsm	s, d, c, z	Solves a matrix equation (one operand is a triangular matrix in RFP format).
?lansf	s, d	Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix in RFP format.
? lanhf	C, z	Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian matrix in RFP format.
? tfttp	s, d, c, z	Copies a triangular matrix from the rectangular full packed format (TF) to the standard packed format (TP).
?tfttr	s, d, c, z	Copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR).
?tpttf	s, d, c, z	Copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF).
?tpttr	s, d, c, z	Copies a triangular matrix from the standard packed format (TP) to the standard full format (TR).
?trttf	s, d, c, z	Copies a triangular matrix from the standard full format (TR) to the rectangular full packed format (TF).
?trttp	s, d, c, z	Copies a triangular matrix from the standard full format (TR) to the standard packed format (TP).
?pstf2	s, d, c, z	Computes the Cholesky factorization with complete pivoting of a real symmetric or complex Hermitian positive semi-definite matrix.
dlat2s	$d \rightarrow s$	Converts a double-precision triangular matrix to a single-precision triangular matrix.
zlat2c	$z \rightarrow \mathrm{c}$	Converts a double complex triangular matrix to a complex triangular matrix.
? 1acp2	C, z	Copies all or part of a real two-dimensional array to a complex array.
?la_gbamv	s, d, c, z	Performs a matrix-vector operation to calculate error bounds.
?la_gbrcond	s, d	Estimates the Skeel condition number for a general banded matrix.
?la_gbrcond_c	C, z	Computes the infinity norm condition number of $o p(A) * \operatorname{inv}(\operatorname{diag}(c))$ for general banded matrices.
?la_gbrcond_x	C, z	Computes the infinity norm condition number of op(A)*diag(x) for general banded matrices.

Routine Name	Data Types	Description
? la_gbrfsx_extended	s, d, c, z	Improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
?la_gbrpvgrw	s, d, c, z	Computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.
?la_geamv	s, d, c, z	Computes a matrix-vector product using a general matrix to calculate error bounds.
?la_gercond	s, d	Estimates the Skeel condition number for a general matrix.
?la_gercond_c	C, z	Computes the infinity norm condition number of $o p(A) * \operatorname{inv}(\operatorname{diag}(c))$ for general matrices.
?la_gercond_x	C, z	Computes the infinity norm condition number of op(A)*diag(x) for general matrices.
$\begin{aligned} & \text { ? } \\ & \text { la_gerfsx_extended } \end{aligned}$	s, d	Improves the computed solution to a system of linear equations for general matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
?la_heamv	C, z	Computes a matrix-vector product using a Hermitian indefinite matrix to calculate error bounds.
?la_hercond_c	C, z	Computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefinite matrices.
?la_hercond_x	C, z	Computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.
```? la_herfsx_extended```	C, z	Improves the computed solution to a system of linear equations for Hermitian indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
?la_lin_berr	$s, d, c, z$	Computes a component-wise relative backward error.
?la_porcond	$s, d$	Estimates the Skeel condition number for a symmetric positivedefinite matrix.
?la_porcond_c	C, z	Computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positive-definite matrices.
?la_porcond_x	C, z	Computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices.
?   la_porfsx_extended	$s, d, c, z$	Improves the computed solution to a system of linear equations for symmetric or Hermitian positive-definite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
?la_porpvgrw	$s, d, c, z$	Computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
?laqhe	C, z	Scales a Hermitian matrix.
? laqhp	C, z	Scales a Hermitian matrix stored in packed form.
?larcm	C, z	Copies all or part of a real two-dimensional array to a complex array.


Routine Name	Data Types	Description
? 1 a _rpvgrw	c, z	Multiplies a square real matrix by a complex matrix.
?larscl2	$s, d, c, z$	Performs reciprocal diagonal scaling on a vector.
?lascl2	$s, d, c, z$	Performs diagonal scaling on a vector.
?la_syamv	$s, d, c, z$	Computes a matrix-vector product using a symmetric indefinite matrix to calculate error bounds.
?la_syrcond	$s, d$	Estimates the Skeel condition number for a symmetric indefinite matrix.
?la_syrcond_c	C, z	Computes the infinity norm condition number of $o p(A) * \operatorname{inv}(\operatorname{diag}(c))$ for symmetric indefinite matrices.
?la_syrcond_x	C, z	Computes the infinity norm condition number of op(A)*diag(x) for symmetric indefinite matrices.
$\begin{aligned} & \text { ? } \\ & \text { la_syrfsx_extended } \end{aligned}$	$s, d, c, z$	Improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
?la_syrpvgrw	$s, d, c, z$	Computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.
? ${ }^{\text {a }}$ _wwaddw	$s, d, c, z$	Adds a vector into a doubled-single vector.

## ?lacgv

Conjugates a complex vector.

## Syntax

```
call clacgv(n, x, incx)
call zlacgv(n, x, incx)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine conjugates a complex vector $x$ of length $n$ and increment incx (see "Vector Arguments in BLAS" in Appendix B).

## Input Parameters

```
n INTEGER. The length of the vector x (n\geq0).
x COMPLEX for clacgv
DOUBLE COMPLEX for zlacgv.
Array, dimension (1+(n-1)* |incx|).
Contains the vector of length n to be conjugated.
incx INTEGER. The spacing between successive elements of x.
```


## Output Parameters

$x$
On exit, overwritten with conjg(x).

## ?lacrm

Multiplies a complex matrix by a square real matrix.
Syntax

```
call clacrm(m, n, a, lda, b, ldb, c, ldc, rwork)
call zlacrm(m, n, a, lda, b, ldb, c, ldc, rwork)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine performs a simple matrix-matrix multiplication of the form

```
C = A* B,
```

where $A$ is $m-$ by-n and complex, $B$ is $n-$ by- $n$ and real, $C$ is $m-$ by- $n$ and complex.

## Input Parameters

```
m
n
a
lda
b
ldb
ldc
rwork
```


## Output Parameters

```
C
COMPLEX for clacrm
DOUBLE COMPLEX for zlacrm
Array, DIMENSION (Idc,n). Contains the m-by-n matrix C.
```


## ?lacrt

Performs a linear transformation of a pair of complex vectors.

## Syntax

```
call clacrt(n, cx, incx, cy, incy, c, s)
call zlacrt(n, cx, incx, cy, incy, c, s)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine performs the following transformation

$$
\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)\binom{x}{y} \Rightarrow\binom{x}{y}
$$

where $c, s$ are complex scalars and $x, y$ are complex vectors.

## Input Parameters

$n$
Cx, Cy
incx
incy
$C, S$

INTEGER. The number of elements in the vectors $c x$ and $c y(n \geq 0)$.
COMPLEX for clacrt
DOUBLE COMPLEX for zlacrt
Arrays, dimension ( $n$ ).
Contain input vectors $x$ and $y$, respectively.
INTEGER. The increment between successive elements of $c x$.
INTEGER. The increment between successive elements of cy.
COMPLEX for clacrt
DOUBLE COMPLEX for zlacrt
Complex scalars that define the transform matrix

$$
\left[\begin{array}{cc}
\mathrm{C} & \mathrm{~S} \\
-\mathrm{S} & \mathrm{C}
\end{array}\right]
$$

## Output Parameters

$c x$	On exit, overwritten with $c^{\star} x+s^{\star} y$.
$c y$	On exit, overwritten with $-s^{\star} x+c^{\star} y$.

## ?laesy

Computes the eigenvalues and eigenvectors of a 2-
by-2 complex symmetric matrix, and checks that the norm of the matrix of eigenvectors is larger than a threshold value.

Syntax

```
call claesy(a, b, c, rt1, rt2, evscal, cs1, sn1)
call zlaesy(a, b, c, rt1, rt2, evscal, cs1, sn1)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine performs the eigendecomposition of a 2-by-2 symmetric matrix

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

provided the norm of the matrix of eigenvectors is larger than some threshold value.
$r t 1$ is the eigenvalue of larger absolute value, and $r t 2$ of smaller absolute value. If the eigenvectors are computed, then on return (cs1, sn1) is the unit eigenvector for rt1, hence

$$
\left[\begin{array}{cc}
\operatorname{cs1} & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{cs} 1
\end{array}\right] \cdot\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \cdot\left[\begin{array}{cc}
\operatorname{cs1} & -\operatorname{sn} 1 \\
\operatorname{sn} 1 & \operatorname{cs1}
\end{array}\right]=\left[\begin{array}{cc}
r \pm 1 & 0 \\
0 & r \pm 2
\end{array}\right]
$$

## Input Parameters

$a, b, c$
COMPLEX for claesy
DOUBLE COMPLEX for zlaesy
Elements of the input matrix.

## Output Parameters

```
rt1,rt2
evscal COMPLEX for claesy
cs1,sn1
COMPLEX for claesy
DOUBLE COMPLEX for zlaesy
 Eigenvalues of larger and smaller modulus, respectively.
 DOUBLE COMPLEX for zlaesy
 The complex value by which the eigenvector matrix was scaled to make it
 orthonormal. If evscal is zero, the eigenvectors were not computed. This
 means one of two things: the 2-by-2 matrix could not be diagonalized, or
 the norm of the matrix of eigenvectors before scaling was larger than the
 threshold value thresh (set to 0.1E0).
 COMPLEX for claesy
 DOUBLE COMPLEX for zlaesy
 If evscal is not zero, then (cs1,sn1) is the unit right eigenvector for rt1.
```


## ?rot

Applies a plane rotation with real cosine and complex sine to a pair of complex vectors.

Syntax

```
call crot(n, cx, incx, cy, incy, c, s)
call zrot(n, cx, incx, cy, incy, c, s)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine applies a plane rotation, where the cosine (c) is real and the sine (s) is complex, and the vectors $c x$ and $c y$ are complex. This routine has its real equivalents in BLAS (see ?rot in Chapter 2).

## Input Parameters

$n$
Cx, Cy
incx
incy
C

S

INTEGER. The number of elements in the vectors $c x$ and $c y$.
REAL for srot
DOUBLE PRECISION for drot
COMPLEX for crot
DOUBLE COMPLEX for zrot
Arrays of dimension ( $n$ ), contain input vectors $x$ and $y$, respectively.
INTEGER. The increment between successive elements of $c x$.
INTEGER. The increment between successive elements of cy.
REAL for crot
DOUBLE PRECISION for zrot
REAL for srot
DOUBLE PRECISION for drot
COMPLEX for crot
DOUBLE COMPLEX for zrot
Values that define a rotation

$$
\left[\begin{array}{cc}
c & s \\
-\operatorname{conjg}(s) & c
\end{array}\right]
$$

where $c^{\star} c+s^{\star} \operatorname{conjg}(s)=1.0$.

## Output Parameters

```
Cx
```

cy On exit, overwritten with -conjg(s)*x $+c^{\star} y$.

## ?spmv

Computes a matrix-vector product for complex vectors using a complex symmetric packed matrix.

Syntax

```
call cspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
call zspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The ?spmv routines perform a matrix-vector operation defined as

```
y := alpha*a*x + beta* y,
```

where:
alpha and beta are complex scalars,
$x$ and $y$ are $n$-element complex vectors
$a$ is an $n$-by- $n$ complex symmetric matrix, supplied in packed form.
These routines have their real equivalents in BLAS (see ?spmv in Chapter 2 ).
Input Parameters
uplo
n
alpha, beta
ap

X
incx

Y
incy

## Output Parameters

CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix $a$ is supplied in the packed array ap.
If uplo = 'U' or 'u', the upper triangular part of the matrix $a$ is supplied in the array ap.
If uplo = 'L' or 'l', the lower triangular part of the matrix $a$ is supplied in the array ap.

INTEGER.
Specifies the order of the matrix $a$.
The value of $n$ must be at least zero.
COMPLEX for cspmv
DOUBLE COMPLEX for zspmv
Specify complex scalars alpha and beta. When beta is supplied as zero, then $y$ need not be set on input.
COMPLEX for cspmv
DOUBLE COMPLEX for zspmv
Array, DIMENSION at least $\left(\left(n^{*}(n+1)\right) / 2\right)$. Before entry, with uplo $=$ 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that ap(1) contains $A(1,1), a p(2)$ and $a p(3)$ contain $A(1,2)$ and $A(2,2)$
respectively, and so on. Before entry, with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1)$, ap (2) and $a p(3)$ contain $a(2,1)$ and $a(3,1)$ respectively, and so on.
COMPLEX for cspmv
DOUBLE COMPLEX for zspmv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array $x$ must contain the $n$-element vector $x$.
INTEGER. Specifies the increment for the elements of $x$. The value of incx must not be zero.
COMPLEX for cspmv
DOUBLE COMPLEX for zspmv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the $n$-element vector $y$.
INTEGER. Specifies the increment for the elements of $y$. The value of incy must not be zero.

## ?spr <br> Performs the symmetrical rank-1 update of a complex symmetric packed matrix.

Syntax

```
call cspr(uplo, n, alpha, x, incx, ap)
call zspr(uplo, n, alpha, x, incx, ap)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The ?spr routines perform a matrix-vector operation defined as

$$
a:=a l p h a^{\star} X^{\star} x^{H}+a,
$$

where:
alpha is a complex scalar
$x$ is an $n$-element complex vector
a is an $n-b y-n$ complex symmetric matrix, supplied in packed form.
These routines have their real equivalents in BLAS (see ?spr in Chapter 2).

## Input Parameters

uplo
n
alpha

X
incx
$a p$

CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix $a$ is supplied in the packed array $a p$, as follows:
If uplo = 'U' or 'u', the upper triangular part of the matrix $a$ is supplied in the array $a p$.
If uplo = 'L' or 'l', the lower triangular part of the matrix a is supplied in the array ap.
INTEGER.
Specifies the order of the matrix $a$.
The value of $n$ must be at least zero.
COMPLEX for cspr
DOUBLE COMPLEX for zspr
Specifies the scalar alpha.
COMPLEX for cspr
DOUBLE COMPLEX for zspr
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array $x$ must contain the $n$-element vector $x$.
INTEGER. Specifies the increment for the elements of $x$. The value of incx must not be zero.
COMPLEX for cspr
DOUBLE COMPLEX for zspr
Array, DIMENSION at least $\left(\left(n^{\star}(n+1)\right) / 2\right)$. Before entry, with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that ap(1) contains $A(1,1), a p(2)$ and $a p(3)$ contain $A(1,2)$ and $A(2,2)$ respectively, and so on.

Before entry, with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2,1)$ and $a(3,1)$ respectively, and so on.
Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero.

## Output Parameters

With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.

## ?symv

Computes a matrix-vector product for a complex symmetric matrix.

## Syntax

```
call csymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call zsymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine performs the matrix-vector operation defined as

```
y := alpha*a*x + beta*y,
```

where:
alpha and beta are complex scalars
$x$ and $y$ are $n$-element complex vectors
$a$ is an $n$-by- $n$ symmetric complex matrix.
These routines have their real equivalents in BLAS (see ?symv in Chapter 2).
Input Parameters

uplo	CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is used:   If uplo = 'U' or 'u', then the upper triangular part of the array $a$ is used.   If uplo = 'L' or 'l', then the lower triangular part of the array a is used.
$n$	INTEGER. Specifies the order of the matrix $a$. The value of $n$ must be at least zero.
alpha, beta	COMPLEX for csymv   DOUBLE COMPLEX for zsymv   Specify the scalars alpha and beta. When beta is supplied as zero, then $y$ need not be set on input.
a	COMPLEX for csymv
	DOUBLE COMPLEX for zsymv

Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading $n-b y-n$ upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of $a$ is not referenced. Before entry with uplo = 'L' or 'l', the leading $n$ -by- $n$ lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of $a$ is not referenced.

lda	INTEGER. Specifies the leading dimension of $A$ as declared in the calling (sub)program. The value of 1 da must be at least max $(1, n)$.
$x$	COMPLEX for csymv
	DOUBLE COMPLEX for zsymv
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array $x$ must contain the $n$-element vector $x$.
incx	INTEGER. Specifies the increment for the elements of $x$. The value of incx must not be zero.
Y	COMPLEX for csymv
	DOUBLE COMPLEX for zsymv
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array $y$ must contain the $n$-element vector $y$.
incy	INTEGER. Specifies the increment for the elements of $y$. The value of incy must not be zero.

## Output Parameters

y
Overwritten by the updated vector $y$.
?syr
Performs the symmetric rank-1 update of a complex symmetric matrix.

## Syntax

```
call csyr(uplo, n, alpha, x, incx, a, lda)
call zsyr(uplo, n, alpha, x, incx, a, lda)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine performs the symmetric rank 1 operation defined as

```
a := alpha* \mp@subsup{x}{}{\star}\mp@subsup{x}{}{H}+a,
```

where:

- alpha is a complex scalar.
- $x$ is an $n$-element complex vector.
- $a$ is an $n$-by- $n$ complex symmetric matrix.

These routines have their real equivalents in BLAS (see ?syr in Chapter 2).

## Input Parameters

uplo
n
alpha

X
incx
a
lda

CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is used:
If uplo = 'U' or 'u', then the upper triangular part of the array $a$ is used.
If uplo = 'L' or 'l', then the lower triangular part of the array $a$ is used.
INTEGER. Specifies the order of the matrix $a$. The value of $n$ must be at least zero.

COMPLEX for csyr
DOUBLE COMPLEX for zsyr
Specifies the scalar alpha.
COMPLEX for csyr
DOUBLE COMPLEX for zsyr
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array $x$ must contain the $n$-element vector x .
INTEGER. Specifies the increment for the elements of $x$. The value of incx must not be zero.
COMPLEX for csyr
DOUBLE COMPLEX for zsyr
Array, DIMENSION (lda, n). Before entry with uplo = 'U' or 'u', the leading $n-b y-n$ upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of $a$ is not referenced.
Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of a is not referenced.
INTEGER. Specifies the leading dimension of a declared in the calling (sub)program. The value of 1 da must be at least max $(1, n)$.

## Output Parameters

a
With uplo = 'U' or 'u', the upper triangular part of the array $a$ is overwritten by the upper triangular part of the updated matrix. With uplo = 'L' or 'l', the lower triangular part of the array $a$ is overwritten by the lower triangular part of the updated matrix.

## i?max 1

Finds the index of the vector element whose real part has maximum absolute value.

## Syntax

```
index = icmax1(n, cx, incx)
index = izmaxl(n, cx, incx)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

Description

Given a complex vector $c x$, the i?maxi functions return the index of the vector element whose real part has maximum absolute value. These functions are based on the BLAS functions icamax/izamax, but using the absolute value of the real part. They are designed for use with clacon/zlacon.

## Input Parameters

```
n INTEGER. Specifies the number of elements in the vector cx.
Cx COMPLEX for icmax1
 DOUBLE COMPLEX for izmax1
 Array, DIMENSION at least (1+(n-1)*abs (incx)).
 Contains the input vector.
incx INTEGER. Specifies the spacing between successive elements of cx.
```


## Output Parameters

index
INTEGER. Contains the index of the vector element whose real part has maximum absolute value.

## ?sum 1

Forms the 1-norm of the complex vector using the true absolute value.

## Syntax

```
res = scsum1(n, cx, incx)
res = dzsum1(n, cx, incx)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

Given a complex vector $c x, \operatorname{scsum1/dzsum1~functions~take~the~sum~of~the~absolute~values~of~vector~elements~}$ and return a single/double precision result, respectively. These functions are based on scasum/dzasum from Level 1 BLAS, but use the true absolute value and were designed for use with clacon/zlacon.

## Input Parameters

```
n INTEGER. Specifies the number of elements in the vector cx.
CX COMPLEX for scsum1
 DOUBLE COMPLEX for dzsum1
 Array, DIMENSION at least (1+(n-1)*abs (incx)).
 Contains the input vector whose elements will be summed.
incx INTEGER. Specifies the spacing between successive elements of cx (incx >
 0).
```


## Output Parameters

## ?gbtf2

Computes the LU factorization of a general band matrix using the unblocked version of the algorithm.

## Syntax

```
call sgbtf2(m, n, kl, ku, ab, ldab, ipiv, info)
call dgbtf2(m, n, kl, ku, ab, ldab, ipiv, info)
call cgbtf2(m, n, kl, ku, ab, ldab, ipiv, info)
call zgbtf2(m, n, kl, ku, ab, ldab, ipiv, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine forms the $L U$ factorization of a general real/complex $m-b y-n$ band matrix $A$ with $k l$ sub-diagonals and $k u$ super-diagonals. The routine uses partial pivoting with row interchanges and implements the unblocked version of the algorithm, calling Level 2 BLAS. See also ?gbtrf.

## Input Parameters

```
m INTEGER. The number of rows of the matrix A (m\geq0).
n
kl
ku
ab
Idab
```


## Output Parameters

$a b$	Overwritten by details of the factorization. The diagonal and $k I+k u$ superdiagonals of $U$ are stored in the first $1+k l+k u$ rows of $a b$. The multipliers used during the factorization are stored in the next kl rows.
ipiv	INTEGER.   Array, DIMENSION at least $\max (1, \min (m, n))$.   The pivot indices: row i was interchanged with row ipiv(i).
info	INTEGER. If info $=0$, the execution is successful.   If info $=-i$, the $i$-th parameter had an illegal value.   If info $=i, u_{i i}$ is 0 . The factorization has been completed, but $U$ is exactly singular. Division by 0 will occur if you use the factor $U$ for solving a system of linear equations.

## ?gebd2

Reduces a general matrix to bidiagonal form using an unblocked algorithm.

## Syntax

```
call sgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
call dgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
call cgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
call zgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine reduces a general $m$-by- $n$ matrix $A$ to upper or lower bidiagonal form $B$ by an orthogonal (unitary) transformation: $Q^{T \star} A^{\star} P=B$ (for real flavors) or $Q^{H \star} A^{\star} P=B$ (for complex flavors).
If $m \geq n, B$ is upper bidiagonal; if $m<n, B$ is lower bidiagonal.
The routine does not form the matrices $Q$ and $P$ explicitly, but represents them as products of elementary reflectors. if $m \geq n$,

```
Q =H(1)*H(2)*\ldots*H(n), and P = G(1)*G(2)*\ldots*G(n-1)
```

if $m<n$,
$Q=H(1) * H(2) * \ldots{ }^{*} H(m-1)$, and $P=G(1) * G(2) * \ldots{ }^{*} G(m)$
Each $H(i)$ and $G(i)$ has the form
$H(i)=I-\operatorname{tauq}^{\star} V^{\star} V^{T}$ and $G(i)=I-\operatorname{taup} u^{\star} u^{T}$ for real flavors, or
$H(i)=I-t a u q^{\star} v^{\star} v^{H}$ and $G(i)=I-\operatorname{taup}^{\star} u^{\star} u^{H}$ for complex flavors
where tauq and taup are scalars (real for sgebd2/dgebd2, complex for cgebd2/zgebd2), and $v$ and $u$ are vectors (real for sgebd2/dgebd2, complex for cgebd2/zgebd2).

## Input Parameters

m
$n$
a, work

Ida

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
REAL for sgebd2
DOUBLE PRECISION for dgebd2
COMPLEX for cgebd2
DOUBLE COMPLEX for zgebd2.
Arrays:
a(lda, *) contains the $m$-by-n general matrix $A$ to be reduced. The second dimension of a must be at least max $(1, n)$.
work(*) is a workspace array, the dimension of work must be at least $\max (1, m, n)$.

INTEGER. The leading dimension of $a$; at least max $(1, m)$.

## Output Parameters

a
$d$
e
tauq, taup
info
if $m \geq n$, the diagonal and first super-diagonal of a are overwritten with the upper bidiagonal matrix $B$. Elements below the diagonal, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors, and elements above the first superdiagonal, with the array taup, represent the orthogonal/unitary matrix $p$ as a product of elementary reflectors.
if $m<n$, the diagonal and first sub-diagonal of a are overwritten by the lower bidiagonal matrix $B$. Elements below the first subdiagonal, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors, and elements above the diagonal, with the array taup, represent the orthogonal/unitary matrix $p$ as a product of elementary reflectors.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max $(1, \min (m, n))$.
Contains the diagonal elements of the bidiagonal matrix $B$ : $d(i)=a(i$, i).

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least $\max (1, \min (m, n)-1)$.
Contains the off-diagonal elements of the bidiagonal matrix $B$ :
if $m \geq n, e(i)=a(i, i+1)$ for $i=1,2, \ldots, n-1$;
if $m<n, e(i)=a(i+1, i)$ for $i=1,2, \ldots, m-1$.
REAL for sgebd2
DOUBLE PRECISION for dgebd2
COMPLEX for cgebd2
DOUBLE COMPLEX for zgebd2.
Arrays, DIMENSION at least max $(1, \min (m, n))$.
Contain scalar factors of the elementary reflectors which represent orthogonal/unitary matrices $Q$ and $p$, respectively.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## ?gehd2

Reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.

## Syntax

```
call sgehd2(n, ilo, ihi, a, lda, tau, work, info)
call dgehd2(n, ilo, ihi, a, lda, tau, work, info)
call cgehd2(n, ilo, ihi, a, lda, tau, work, info)
call zgehd2(n, ilo, ihi, a, lda, tau, work, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine reduces a real/complex general matrix $A$ to upper Hessenberg form $H$ by an orthogonal or unitary similarity transformation $Q^{T \star} A^{\star} Q=H$ (for real flavors) or $Q^{H \star} A \star Q=H$ (for complex flavors).

The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of elementary reflectors.

## Input Parameters

```
n INTEGER The order of the matrix A (}n\geq0)\mathrm{ .
ilo, ihi INTEGER. It is assumed that A is already upper triangular in rows and
 columns 1:ilo -1 and ihi+1:n.
 If A has been output by ?gebal, then
 ilo and ihi must contain the values returned by that routine. Otherwise
 they should be set to ilo = 1 and ihi = n. Constraint: 1 \leq ilo \leq ihi\leq
 max (1, n).
a, work
lda
 REAL for sgehd2
 DOUBLE PRECISION for dgehd2
 COMPLEX for cgehd2
 DOUBLE COMPLEX for zgehd2.
 Arrays:
 a (lda,*) contains the n-by-n matrix A to be reduced. The second
 dimension of a must be at least max (1, n).
 work (n) is a workspace array.
 INTEGER. The leading dimension of a; at least max (1, n).
```


## Output Parameters

a	On exit, the upper triangle and the first subdiagonal of $A$ are overwritten with the upper Hessenberg matrix $H$ and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors. See Application Notes below.
tau	REAL for sgehd2
	DOUBLE PRECISION for dgehd2
	COMPLEX for cgehd2
	DOUBLE COMPLEX for zgehd2.
	Array, DIMENSION at least max ( $1, n-1$ ).
	Contains the scalar factors of elementary reflectors. See Application Notes below.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the $i$-th parameter had an illegal value.

## Application Notes

The matrix $Q$ is represented as a product of (ihi - ilo) elementary reflectors
$Q=H(i l o) * H(i l o+1) * \ldots * H(i h i-1)$
Each $H(i)$ has the form
$H(i)=I-t a u^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-t a u^{\star} v^{\star} v^{H}$ for complex flavors
where tau is a real/complex scalar, and $v$ is a real/complex vector with $v(1: i)=0, v(i+1)=1$ and $v(i h i+1: n)=0$.

On exit, $v(i+2: i h i)$ is stored in $a(i+2: i h i, i)$ and tau in tau(i).
The contents of a are illustrated by the following example, with $n=7$, ilo $=2$ and $i$ in $=6$ :

## on entry

$\left[\begin{array}{lllllll}a & a & a & a & a & a & a \\ & a & a & a & a & a & a \\ & a & a & a & a & a & a \\ a & a & a & a & a & a \\ a & a & a & a & a & a \\ a & a & a & a & a & a \\ & & & & & & a\end{array}\right]$

## on exit

$\left[\begin{array}{lllllll}a & a & h & h & h & h & a \\ & a & h & h & h & h & a \\ & h & h & h & h & h & h \\ & v_{2} & h & h & h & h & h \\ v_{2} & v_{3} & h & h & h & h \\ & v_{2} & v_{3} & v_{4} & h & h & h \\ & & & & & a\end{array}\right]$
where a denotes an element of the original matrix $A, h$ denotes a modified element of the upper Hessenberg matrix $H$, and $v_{i}$ denotes an element of the vector defining $H(i)$.

## ?gelq2

Computes the $L Q$ factorization of a general rectangular matrix using an unblocked algorithm.

Syntax

```
call sgelq2(m, n, a, lda, tau, work, info)
call dgelq2(m, n, a, lda, tau, work, info)
call cgelq2(m, n, a, lda, tau, work, info)
call zgelq2(m, n, a, lda, tau, work, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes an $L Q$ factorization of a real/complex m-by-n matrix $A$ as $A=L^{\star} Q$.
The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors :
$Q=H(k) \ldots H(2) H(1)\left(\operatorname{or} Q=H(k)^{H} \ldots H(2)^{H} H(1)^{H}\right.$ for complex flavors), where $k=\min (m, n)$
Each $H(i)$ has the form
$H(i)=I-\tan V^{\star} V^{T}$ for real flavors, or
$H(i)=I-\operatorname{ta} u^{\star} V^{\star} v^{H}$ for complex flavors,
where $\operatorname{tau}$ is a real/complex scalar stored in $\operatorname{tau}(i)$, and $v$ is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1$.

On exit, $v(i+1: n)$ (for real functions) and conjgv(i+1:n) (for complex functions) are stored in a(i, i +1:n).

## Input Parameters

```
m
n
a, work
```

Ida

## Output Parameters

a
tau
info

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
REAL for sgelq2
DOUBLE PRECISION for dgelq2
COMPLEX for cgelq2
DOUBLE COMPLEX for zgelq2.
Arrays: $a(l d a, *)$ contains the $m$-by-n matrix $A$. The second dimension of $a$ must be at least max $(1, n)$.
work ( $m$ ) is a workspace array.
INTEGER. The leading dimension of $a$; at least max $(1, m)$.

Overwritten by the factorization data as follows:
on exit, the elements on and below the diagonal of the array a contain the m-by-min $(n, m)$ lower trapezoidal matrix $L$ ( $L$ is lower triangular if $n \geq m$ ); the elements above the diagonal, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of $\min (n, m)$ elementary reflectors.

```
REAL for sgelq2
DOUBLE PRECISION for dgelq2
COMPLEX for cgelq2
DOUBLE COMPLEX for zgelq2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
```


## ?geql2

Computes the QL factorization of a general rectangular matrix using an unblocked algorithm.

## Syntax

```
call sgeql2(m, n, a, lda, tau, work, info)
call dgeql2(m, n, a, lda, tau, work, info)
call cgeql2(m, n, a, lda, tau, work, info)
call zgeql2(m, n, a, lda, tau, work, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes a $Q L$ factorization of a real/complex m-by-n matrix $A$ as $A=Q^{\star} L$.

The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors :

```
Q =H(k)* ... *H(2)*H(1), where k = min (m, n).
```

Each $H(i)$ has the form
$H(i)=I-\tan ^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-t a u^{\star} V^{\star} V^{H}$ for complex flavors
where $t a u$ is a real/complex scalar stored in $\operatorname{tau}(i)$, and $v$ is a real/complex vector with $v(m-k+i+1: m)=0$ and $v(m-k+i)=1$.

On exit, $v(1: m-k+i-1)$ is stored in $a(1: m-k+i-1, n-k+i)$.

## Input Parameters

m
n
a, work

Ida

## Output Parameters

a	Overwritten by the factorization data as follows: on exit, if $m \geq n$, the lower triangle of the subarray $a(m-n+1: m, 1: n$ ) contains the $n$-by- $n$ lower triangular matrix $L$; if $m<n$, the elements on and below the $(n-m)$ th superdiagonal contain the $m$-by- $n$ lower trapezoidal matrix $L$; the remaining elements, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors.
tau	REAL for sgeql2
	DOUBLE PRECISION for dgeql2
	COMPLEX for cgeql2
	DOUBLE COMPLEX for zgeql2.
	Array, DIMENSION at least max (1, min $m, n)$ ).
	Contains scalar factors of the elementary reflectors.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the $i$-th parameter had an illegal value.

?geqr2
Computes the $Q R$ factorization of a general
rectangular matrix using an unblocked algorithm.

## Syntax

```
call sgeqr2(m, n, a, lda, tau, work, info)
call dgeqr2(m, n, a, lda, tau, work, info)
```

```
call cgeqr2(m, n, a, lda, tau, work, info)
call zgeqr2(m, n, a, lda, tau, work, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes a $Q R$ factorization of a real/complex m-by-n matrix $A$ as $A=Q^{\star} R$.
The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors :
$Q=H(1)^{\star} H(2) \star \ldots \star H(k)$, where $k=\min (m, n)$
Each $H(i)$ has the form
$H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-\operatorname{tau^{\star }} V^{\star} V^{H}$ for complex flavors
where $t a u$ is a real/complex scalar stored in $\operatorname{tau}(i)$, and $v$ is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1$.

On exit, $v(i+1: m)$ is stored in $a(i+1: m, i)$.

## Input Parameters

```
m
n
a, work
lda
INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgeqr2
DOUBLE PRECISION for dgeqr2
COMPLEX for cgeqr2
DOUBLE COMPLEX for zgeqr2.
Arrays:
a(lda,*) contains the \(m\)-by- \(n\) matrix \(A\).
The second dimension of a must be at least max \((1, n)\). work(\(n\)) is a workspace array.
INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
```


## Output Parameters

a	Overwritten by the factorization data as follows: on exit, the elements on and above the diagonal of the array a contain the $\min (n, m)$-by- $n$ upper trapezoidal matrix $R$ ( $R$ is upper triangular if $m \geq n$ ); the elements below the diagonal, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors.
tau	REAL for sgeqr2
	DOUBLE PRECISION for dgeqr2
	COMPLEX for cgeqr2
	DOUBLE COMPLEX for zgeqr2.
	Array, DIMENSION at least max (1, min $(m, n))$.
	Contains scalar factors of the elementary reflectors.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the $i$-th parameter had an illegal value.

## ?geqr2p

Computes the $Q R$ factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.

Syntax

```
call sgeqr2p(m, n, a, lda, tau, work, info)
call dgeqr2p(m, n, a, lda, tau, work, info)
call cgeqr2p(m, n, a, lda, tau, work, info)
call zgeqr2p(m, n, a, lda, tau, work, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes a $Q R$ factorization of a real/complex m-by-n matrix $A$ as $A=Q^{\star} R$.
The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors :

```
Q =H(1)*H(2)* ... *H(k), where k = min (m, n)
```

Each $H(i)$ has the form
$H(i)=I-t a u^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-t a u^{\star} V^{\star} v^{H}$ for complex flavors
where $t a u$ is a real/complex scalar stored in $\operatorname{tau}(i)$, and $v$ is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1$.

On exit, $v(i+1: m)$ is stored in $a(i+1: m, i)$.

## Input Parameters

m
n
a, work

Ida

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
REAL for sgeqr2p
DOUBLE PRECISION for d
COMPLEX for cgeqr2p
DOUBLE COMPLEX for zgeqr2p.
Arrays:
a(lda,*) contains the $m$-by-n matrix $A$.
The second dimension of a must be at least max $(1, n)$. work $(n)$ is a workspace array.
INTEGER. The leading dimension of $a$; at least max $(1, m)$.

## Output Parameters

a
Overwritten by the factorization data as follows:
on exit, the elements on and above the diagonal of the array a contain the $\min (n, m)$-by- $n$ upper trapezoidal matrix $R$ ( $R$ is upper triangular if $m \geq n$ ); the elements below the diagonal, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors.

The diagonal elements of the matrix $R$ are non-negative.

```
tau
info
REAL for sgeqr2p
DOUBLE PRECISION for dgeqr2p
COMPLEX for cgeqr2p
DOUBLE COMPLEX for zgeqr2p.
Array, DIMENSION at least max (1, min (m, n)).
Contains scalar factors of the elementary reflectors.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
```


## ?gerq2

Computes the $R Q$ factorization of a general
rectangular matrix using an unblocked algorithm.

## Syntax

```
call sgerq2(m, n, a, lda, tau, work, info)
call dgerq2(m, n, a, lda, tau, work, info)
call cgerq2(m, n, a, lda, tau, work, info)
call zgerq2(m, n, a, lda, tau, work, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes a $R Q$ factorization of a real/complex m-by-n matrix $A$ as $A=R^{\star} Q$.
The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors :
$Q=H(1){ }^{\star} H(2) \star \ldots{ }^{*} H(k)$ for real flavors, or
$Q=H(1)^{H \star} H(2)^{H \star} \ldots \star_{H}(\mathrm{k})^{H}$ for complex flavors
where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-\operatorname{tau^{\star }} V^{\star} V^{H}$ for complex flavors
where tau is a real/complex scalar stored in tau(i), and $v$ is a real/complex vector with $v(n-k+i+1: n)=0$ and $v(n-k+i)=1$.

On exit, $v(1: n-k+i-1)$ is stored in $a(m-k+i, 1: n-k+i-1)$.

## Input Parameters

m
n
a, work

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
REAL for sgerq2
DOUBLE PRECISION for dgerq2
COMPLEX for cgerq2

```
DOUBLE COMPLEX for zgerq2.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max (1, n).
work(m) is a workspace array.
Ida INTEGER. The leading dimension of a; at least max (1, m).
```


## Output Parameters

a

tau
info

Overwritten by the factorization data as follows:
on exit, if $m \leq n$, the upper triangle of the subarray $a(1: m, n-m+1: n)$ contains the $m$-by- $m$ upper triangular matrix $R$; if $m>n$, the elements on and above the $(m-n)$-th subdiagonal contain the $m$-by- $n$ upper trapezoidal matrix $R$; the remaining elements, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors.

```
REAL for sgerq2
DOUBLE PRECISION for dgerq2
COMPLEX for cgerq2
DOUBLE COMPLEX for zgerq2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
```

?gesc2
Solves a system of linear equations using the LU
factorization with complete pivoting computed by ?
getc2.

## Syntax

```
call sgesc2(n, a, lda, rhs, ipiv, jpiv, scale)
call dgesc2(n, a, lda, rhs, ipiv, jpiv, scale)
call cgesc2(n, a, lda, rhs, ipiv, jpiv, scale)
call zgesc2(n, a, lda, rhs, ipiv, jpiv, scale)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine solves a system of linear equations

```
A*X = scale*RHS
```

with a general $n$-by- $n$ matrix $A$ using the $L U$ factorization with complete pivoting computed by ?getc 2 .
Input Parameters

```
n INTEGER. The order of the matrix A.
a, rhs REAL for sgesc2
```

	DOUBLE PRECISION for dgesc2
	COMPLEX for cgesc2
	DOUBLE COMPLEX for zgesc2.
	Arrays:
	a(lda,*) contains the $L U$ part of the factorization of the $n-b y-n$ matrix $A$ computed by ?getc2:
	$A=P^{*} L{ }^{*} U^{\star} Q$.
	The second dimension of a must be at least max (1, $n$ );
	$r h s(n)$ contains on entry the right hand side vector for the system of equations.
Ida	INTEGER. The leading dimension of $a$; at least max ( $1, n$ ).
ipiv	INTEGER.
	Array, DIMENSION at least max ( $1, n$ ).
	The pivot indices: for $1 \leq i \leq n$, row $i$ of the matrix has been
jpiv	INTEGER.
	Array, DIMENSION at least max ( $1, n$ ).
	The pivot indices: for $1 \leq j \leq n$, column $j$ of the matrix has been interchanged with column jpiv(j).

## Output Parameters

```
rhs On exit, overwritten with the solution vector }X\mathrm{ .
scale REAL for sgesc2/cgesc2
DOUBLE PRECISION for dgesc2/zgesc2
Contains the scale factor. scale is chosen in the range 0 s scale \leq 1 to
prevent overflow in the solution.
```


## ?getc2

Computes the LU factorization with complete pivoting of the general n-by-n matrix.

Syntax

```
call sgetc2(n, a, lda, ipiv, jpiv, info)
call dgetc2(n, a, lda, ipiv, jpiv, info)
call cgetc2(n, a, lda, ipiv, jpiv, info)
call zgetc2(n, a, lda, ipiv, jpiv, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes an $L U$ factorization with complete pivoting of the $n$-by- $n$ matrix $A$. The factorization has the form $A=P^{\star} L^{\star} U^{\star} Q$, where $P$ and $Q$ are permutation matrices, $L$ is lower triangular with unit diagonal elements and $U$ is upper triangular.
The LU factorization computed by this routine is used by ?latdf to compute a contribution to the reciprocal Dif-estimate.

## Input Parameters

n
a
lda

## Output Parameters

a
info

INTEGER. The order of the matrix $A(n \geq 0)$.
REAL for sgetc2
DOUBLE PRECISION for dgetc2
COMPLEX for cgetc2
DOUBLE COMPLEX for zgetc2.
Array a(lda, *) contains the $n$-by- $n$ matrix $A$ to be factored. The second dimension of a must be at least max ( $1, n$ ) ;
INTEGER. The leading dimension of $a$; at least max $(1, n)$.

On exit, the factors $L$ and $U$ from the factorization $A=P^{\star} L^{\star} U^{\star} Q$; the unit diagonal elements of $L$ are not stored. If $U(k, k)$ appears to be less than $\operatorname{smin}, U(k, k)$ is given the value of smin, that is giving a nonsingular perturbed system.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
The pivot indices: for $1 \leq i \leq n$, row i of the matrix has been interchanged with row ipiv(i).
INTEGER.
Array, DIMENSION at least max $(1, n)$.
The pivot indices: for $1 \leq j \leq n$, column $j$ of the matrix has been interchanged with column jpiv(j).
INTEGER.
If info $=0$, the execution is successful.
If info $=k>0, U(k, k)$ is likely to produce overflow if we try to solve for $x$ in $A *_{X}=b$. So $U$ is perturbed to avoid the overflow.

## ?getf2

Computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm).

## Syntax

```
call sgetf2(m, n, a, lda, ipiv, info)
call dgetf2(m, n, a, lda, ipiv, info)
call cgetf2(m, n, a, lda, ipiv, info)
call zgetf2(m, n, a, lda, ipiv, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

Description
The routine computes the $L U$ factorization of a general $m$-by- $n$ matrix $A$ using partial pivoting with row interchanges. The factorization has the form

```
A = P*}\mp@subsup{P}{}{\star}
```

where $p$ is a permutation matrix, $L$ is lower triangular with unit diagonal elements (lower trapezoidal if $m>$ $n$ ) and $U$ is upper triangular (upper trapezoidal if $m<n$ ).

## Input Parameters

m
n
a

Ida

## Output Parameters

a
ipiv
info

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
REAL for sgetf2
DOUBLE PRECISION for dgetf2
COMPLEX for cgetf2
DOUBLE COMPLEX for zgetf2.
Array, DIMENSION ( $1 d a, *$ ). Contains the matrix $A$ to be factored. The second dimension of a must be at least max $(1, n)$.
INTEGER. The leading dimension of $a$; at least max $(1, m)$.

Overwritten by $L$ and $U$. The unit diagonal elements of $L$ are not stored.
INTEGER.
Array, DIMENSION at least max $(1, \min (m, n))$.
The pivot indices: for $1 \leq i \leq n$, row $i$ was interchanged with row ipiv(i).
INTEGER. If info=0, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i>0, u_{i i}$ is 0 . The factorization has been completed, but $U$ is
exactly singular. Division by 0 will occur if you use the factor $U$ for solving a system of linear equations.

## ?gtts2

Solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by ?
gttrf.

## Syntax

```
call sgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
call dgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
call cgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
call zgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine solves for $x$ one of the following systems of linear equations with multiple right hand sides:
$A * X=B, A^{T} * X=B$, or $A^{H} * X=B$ (for complex matrices only), with a tridiagonal matrix $A$ using the $L U$ factorization computed by ? gttrf.

## Input Parameters

itrans	Integer. Must be 0, 1, or 2.
	Indicates the form of the equations to be solved:
	If itrans $=0$, then $A * X=B$ (no transpose).
	If itrans $=1$, then $A^{T} * X=B$ (transpose).
	If itrans $=2$, then $A^{H} * X=B$ (conjugate transpose).
$n$	INTEGER. The order of the matrix $A(n \geq 0)$.
nrhs	INTEGER. The number of right-hand sides, i.e., the number of columns in $B$ (nrhs $\geq 0$ ).
$d 1, d, d u, d u 2, b$	REAL for sgtts2
	DOUBLE PRECISION for dgtts2
	COMPLEX for cgtts2
	DOUBLE COMPLEX for zgtts2.
	Arrays: $d l(n-1), d(n)$, $d u(n-1), d u 2(n-2), b(l d b, n r h s)$.
	The array $d l$ contains the $(n-1)$ multipliers that define the matrix $L$ from the $L U$ factorization of $A$.
	The array $d$ contains the $n$ diagonal elements of the upper triangular matrix $U$ from the $L U$ factorization of $A$.
	The array du contains the ( $n-1$ ) elements of the first super-diagonal of $U$.
	The array du2 contains the $(n-2)$ elements of the second super-diagonal of U.
	The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.
1 db	$\operatorname{INTEGER}$. The leading dimension of $b$; must be $1 \mathrm{db} \geq \mathrm{max}(1, n)$.
ipiv	INTEGER.
	Array, DIMENSION ( $n$ ).
	The pivot indices array, as returned by ? gttrf.

## Output Parameters

b
Overwritten by the solution matrix $x$.

## ?isnan

Tests input for NaN.

## Syntax

```
val = sisnan(sin)
val = disnan(din)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

This logical routine returns .TRUE. if its argument is NaN, and .FALSE. otherwise.

## Input Parameters

sin	REAL for sisnan
	Input to test for NaN.


din	DOUBLE PRECISION for disnan
	Input to test for NaN.

## Output Parameters

Logical. Result of the test.

## ?laisnan

Tests input for NaN.

## Syntax

```
val = slaisnan(sin1, sin2)
val = dlaisnan(din1, din2)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

This logical routine checks for NaNs (NaN stands for 'Not A Number') by comparing its two arguments for inequality. NaN is the only floating-point value where NaN $\neq$ NaN returns. TRUE. To check for NaNs, pass the same variable as both arguments.

This routine is not for general use. It exists solely to avoid over-optimization in ?isnan.

## Input Parameters

```
sin1,sin2
din2, din2 DOUBLE PRECISION for disnan
 Two numbers to compare for inequality.
```


## Output Parameters

val Logical. Result of the comparison.

## ?labrd <br> Reduces the first nb rows and columns of a general matrix to a bidiagonal form.

## Syntax

```
call slabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
call dlabrd(m, n, n.b, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
call clabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
call zlabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine reduces the first $n b$ rows and columns of a general $m-b y-n$ matrix $A$ to upper or lower bidiagonal form by an orthogonal/unitary transformation $Q^{\prime} *_{A} *_{P}$, and returns the matrices $X$ and $Y$ which are needed to apply the transformation to the unreduced part of $A$.
if $m \geq n, A$ is reduced to upper bidiagonal form; if $m<n$, to lower bidiagonal form.
The matrices $Q$ and $P$ are represented as products of elementary reflectors: $Q=H(1) *(2) * \ldots * H(n b)$, and $P=G(1) * G(2) * \ldots * G(n b)$

Each $H(\mathrm{i})$ and $G(\mathrm{i})$ has the form

```
H(i) = I - tauq* V* V' and G(i) = I - taup* u* u'
```

where tauq and taup are scalars, and $v$ and $u$ are vectors.
The elements of the vectors $v$ and $u$ together form the $m$-by-nb matrix $v$ and the $n b-b y-n$ matrix $U^{\prime}$ which are needed, with $X$ and $Y$, to apply the transformation to the unreduced part of the matrix, using a block update of the form: $A:=A-V^{\star} Y^{\prime}-X^{\star} U^{\prime}$.

This is an auxiliary routine called by ?gebrd.
Input Parameters

```
m
n
n.b
a
lda
ldx
ldy
```


## Output Parameters

a
$d, e$
,

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
INTEGER. The number of leading rows and columns of $A$ to be reduced.
REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
DOUBLE COMPLEX for zlabrd.
Array $a(l d a, *)$ contains the matrix $A$ to be reduced. The second dimension of a must be at least max $(1, n)$.

INTEGER. The leading dimension of $a$; at least max $(1, m)$.
INTEGER. The leading dimension of the output array $x$; must beat least max (1, m).

INTEGER. The leading dimension of the output array $y$; must beat least $\max (1, n)$.

On exit, the first nb rows and columns of the matrix are overwritten; the rest of the array is unchanged.
if $m \geq n$, elements on and below the diagonal in the first $n b$ columns, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors; and elements above the diagonal in the first nb rows, with the array taup, represent the orthogonal/unitary matrix $p$ as a product of elementary reflectors.
if $m<n$, elements below the diagonal in the first $n b$ columns, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors, and elements on and above the diagonal in the first nb rows, with the array taup, represent the orthogonal/unitary matrix $p$ as a product of elementary reflectors.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Arrays, DIMENSION ( $n b$ ) each. The array $d$ contains the diagonal elements of the first nb rows and columns of the reduced matrix:


## Application Notes

if $m \geq n$, then for the elementary reflectors $H(i)$ and $G(i)$,
$v(1: i-1)=0, v(i)=1$, and $v(i: m)$ is stored on exit in $a(i: m, i) ; u(1: i)=0, u(i+1)=1$, and $u(i$ $+1: n$ ) is stored on exit in a(i, $i+1: n)$;
tauq is stored in tauq(i) and taup in taup(i).
if $m<n$,
$v(1: i)=0, v(i+1)=1$, and $v(i+1: m)$ is stored on exit in $a(i+2: m, i) ; u(1: i-1)=0, u(i)=1$, and $u(i: n)$ is stored on exit in $a(i, i+1: n)$; tauq is stored in tauq(i) and taup in taup(i).
The contents of $a$ on exit are illustrated by the following examples with $n b=2$ :

$$
m=6, n=5(m>n)
$$

$$
m=5, n=6(m<n)
$$

$\left[\begin{array}{ccccc}1 & 1 & u_{1} & u_{1} & u_{1} \\ v_{1} & 1 & 1 & u_{2} & u_{2} \\ v_{1} & v_{2} & a & a & a \\ v_{1} & v_{2} & a & a & a \\ v_{1} & v_{2} & a & a & a \\ v_{1} & v_{2} & a & a & a\end{array}\right]$
$\left[\begin{array}{cccccc}1 & u_{1} & u_{1} & u_{1} & u_{1} & u_{1} \\ 1 & 1 & u_{2} & u_{2} & u_{2} & u_{2} \\ v_{1} & 1 & a & a & a & a \\ v_{1} & v_{2} & a & a & a & a \\ v_{1} & v_{2} & a & a & a & a\end{array}\right]$
where a denotes an element of the original matrix which is unchanged, $v_{i}$ denotes an element of the vector defining $H(\mathrm{i})$, and $u_{i}$ an element of the vector defining $G(i)$.

## ?lacn2

Estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.

Syntax

```
call slacn2(n, v, x, isgn, est, kase, isave)
call dlacn2(n, v, x, isgn, est, kase, isave)
call clacn2(n, v, x, est, kase, isave)
call zlacn2(n, v, x, est, kase, isave)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine estimates the 1-norm of a square, real or complex matrix $A$. Reverse communication is used for evaluating matrix-vector products.

## Input Parameters

n

V, $x$
isgn
est
isave

INTEGER. The order of the matrix $A(n \geq 1)$.
REAL for slacn2
DOUBLE PRECISION for dlacn2
COMPLEX for clacn2
DOUBLE COMPLEX for zlacn2.
Arrays, DIMENSION ( $n$ ) each.
$v$ is a workspace array.
$x$ is used as input after an intermediate return.
INTEGER.
Workspace array, DIMENSION ( $n$ ), used with real flavors only.
REAL for slacn2/clacn2
DOUBLE PRECISION for dlacn2/zlacn2
On entry with kase set to 1 or 2, and isave(1) = 1, est must be unchanged from the previous call to the routine.
INTEGER.
On the initial call to the routine, kase must be set to 0 .
INTEGER. Array, DIMENSION (3).
Contains variables from the previous call to the routine.

## Output Parameters

```
est
```

kase
v
x

An estimate (a lower bound) for norm( $A$ ).
On an intermediate return, kase is set to 1 or 2 , indicating whether $x$ is overwritten by $A^{*} X$ or $A^{T *_{X}}$ for real flavors and $A^{*_{X}}$ or $A^{H *_{X}}$ for complex flavors.
On the final return, kase is set to 0 .
On the final return, $v=A^{*} w$, where est $=\operatorname{norm}(v) / n o r m(w)$ ( $w$ is not returned).
On an intermediate return, $x$ is overwritten by

```
\(A^{*}{ }^{\prime}\), if kase \(=1\),
\(A^{T \star} x\), if kase \(=2\) (for real flavors),
\(A^{H \star} x\), if kase \(=2\) (for complex flavors),
and the routine must be re-called with all the other parameters unchanged.
This parameter is used to save variables between calls to the routine.
```

isave

## ?lacon

Estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.

## Syntax

```
call slacon(n, v, x, isgn, est, kase)
call dlacon(n, v, x, isgn, est, kase)
call clacon(n, v, x, est, kase)
call zlacon(n, v, x, est, kase)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine estimates the 1-norm of a square, real/complex matrix $A$. Reverse communication is used for evaluating matrix-vector products.

WARNING The ?lacon routine is not thread-safe. It is deprecated and retained for the backward compatibility only. Use the thread-safe ?lacn2 routine instead.

## Input Parameters

n
$V, X$
isgn
est
kase

INTEGER. The order of the matrix $A(n \geq 1)$.
REAL for slacon
DOUBLE PRECISION for dlacon
COMPLEX for clacon
DOUBLE COMPLEX for zlacon.
Arrays, DIMENSION ( $n$ ) each.
$v$ is a workspace array.
$x$ is used as input after an intermediate return.
INTEGER.
Workspace array, DIMENSION ( $n$ ), used with real flavors only.
REAL for slacon/clacon
DOUBLE PRECISION for dlacon/zlacon
An estimate that with kase=1 or 2 should be unchanged from the previous call to ?lacon.

INTEGER.
On the initial call to ?lacon, kase should be 0 .

## Output Parameters

est	REAL for slacon/clacon
	DOUBLE PRECISION for dlacon/zlacon
	An estimate (a lower bound) for norm( $A$ ).
kase	On an intermediate return, kase will be 1 or 2 , indicating whether $x$ should be overwritten by $A^{*}{ }_{x}$ or $A^{T *_{X}}$ for real flavors and $A^{*} x_{x}$ or $A^{H *_{X}}$ for complex flavors. On the final return from ?lacon, kase will again be 0 .
V	On the final return, $v=A^{\star} w$, where est $=\operatorname{norm}(v) / n o r m(w)$ (w is not returned).
X	On an intermediate return, x should be overwritten by
	$A^{*}{ }^{\prime}$, if kase $=1$,
	$A^{T \star} x$, if kase $=2$ (for real flavors),
	$A^{H \star} x$, if kase $=2$ (for complex flavors),
	and ? lacon must be re-called with all the other parameters unchanged.

## ?lacpy

Copies all or part of one two-dimensional array to another.

## Syntax

```
call slacpy(uplo, m, n, a, lda, b, ldb)
call dlacpy(uplo, m, n, a, lda, b, ldb)
call clacpy(uplo, m, n, a, lda, b, ldb)
call zlacpy(uplo, m, n, a, lda, b, ldb)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine copies all or part of a two-dimensional matrix $A$ to another matrix $B$.

## Input Parameters

```
uplo
m
n
a
```


## CHARACTER*1.

Specifies the part of the matrix $A$ to be copied to $B$.
If uplo = 'U', the upper triangular part of $A$;
if uplo = 'L', the lower triangular part of $A$.
Otherwise, all of the matrix $A$ is copied.
INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
REAL for slacpy
DOUBLE PRECISION for dlacpy
COMPLEX for clacpy
DOUBLE COMPLEX for zlacpy.
Array a (lda,*), contains the m-by-n matrix A.
The second dimension of a must be at least max $(1, n)$.

	If $u p l o=' U '$, only the upper triangle or trapezoid is accessed; if uplo $=$
	'L', only the lower triangle or trapezoid is accessed.
$I d a$	INTEGER. The leading dimension of $a ; l d a \geq \max (1, m)$.
$l d b$	INTEGER. The leading dimension of the output array $b ; l d b \geq \max (1, m)$.

## Output Parameters

b

```
REAL for slacpy
DOUBLE PRECISION for dlacpy
COMPLEX for clacpy
DOUBLE COMPLEX for zlacpy.
```

Array $b(l d b, *)$, contains the $m$-by-n matrix $B$.
The second dimension of $b$ must be at least max $(1, n)$.
On exit, $B=A$ in the locations specified by uplo.

## ?ladiv

Performs complex division in real arithmetic, avoiding unnecessary overflow.

## Syntax

```
call sladiv(a, b, c, d, p, q)
call dladiv(a, b, c, d, p, q)
res = cladiv(x, y)
res = zladiv(x, y)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routines sladiv/dladiv perform complex division in real arithmetic as

$$
p+i q=\frac{a+i b}{c+i d}
$$

Complex functions cladiv/zladiv compute the result as

$$
\text { res }=x / y
$$

where $x$ and $y$ are complex. The computation of $x / y$ will not overflow on an intermediary step unless the results overflows.

## Input Parameters

```
a,b,c,d
 REAL for sladiv
 DOUBLE PRECISION for dladiv
 The scalars a,b,c, and d in the above expression (for real flavors only).
x,y COMPLEX for cladiv
 DOUBLE COMPLEX for zladiv
 The complex scalars x and y (for complex flavors only).
```


## Output Parameters

```
p,q REAL for sladiv
 DOUBLE PRECISION for dladiv
 The scalars p and q in the above expression (for real flavors only).
res COMPLEX for cladiv
DOUBLE COMPLEX for zladiv
Contains the result of division x/y.
```


## ?lae2 <br> Computes the eigenvalues of a 2-by-2 symmetric matrix.

Syntax

```
call slae2(a, b, c, rt1, rt2)
call dlae2(a, b, c, rt1, rt2)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routines sla2/dlae2 compute the eigenvalues of a 2-by-2 symmetric matrix

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

On return, $r t 1$ is the eigenvalue of larger absolute value, and $r t 1$ is the eigenvalue of smaller absolute value.

Input Parameters

```
a,b,c
REAL for slae2
DOUBLE PRECISION for dlae2
The elements a,b, and c of the 2-by-2 matrix above.
```


## Output Parameters

REAL for slae2
DOUBLE PRECISION for dlae2
The computed eigenvalues of larger and smaller absolute value, respectively.

## Application Notes

$r t 1$ is accurate to a few ulps barring over/underflow. rt2 may be inaccurate if there is massive cancellation in the determinant $a^{*} c^{-b^{*}}$ b; higher precision or correctly rounded or correctly truncated arithmetic would be needed to compute rt2 accurately in all cases.

Overflow is possible only if rt1 is within a factor of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds
underflow_threshold / macheps.

## ?laebz <br> Computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine ?stebz.

## Syntax

```
call slaebz(ijob, nitmax, n, mmax, minp, nbmin, abstol, reltol, pivmin, d, e, e2,
nval, ab, c, mout, nab, work, iwork, info)
call dlaebz(ijob, nitmax, n, mmax, minp, nbmin, abstol, reltol, pivmin, d, e, e2,
nval, ab, c, mout, nab, work, iwork, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? laebz contains the iteration loops which compute and use the function $n(w)$, which is the count of eigenvalues of a symmetric tridiagonal matrix $T$ less than or equal to its argument $w$. It performs a choice of two types of loops:

```
ijob =1, followed by
ijob =2: It takes as input a list of intervals and returns a list of sufficiently small
 intervals whose union contains the same eigenvalues as the union of the original
 intervals. The input intervals are (ab(j,1),ab(j,2)], j=1,\ldots,minp. The
 output interval (ab(j,1),ab(j,2)] will contain eigenvalues nab(j,
 1)+1,\ldots., nab(j,2),where 1 \leq j \leq mout.
ijob =3: It performs a binary search in each input interval (ab(j,1),ab(j, 2)] for a
 point w(j) such that n(w(j))=nval(j), and uses c(j) as the starting point of
 the search. If such a w(j) is found, then on output ab (j,1)=ab (j,2)=w. If no
 such w(j) is found, then on output (ab(j,1),ab(j,2)] will be a small interval
 containing the point where n(w) jumps through nval(j), unless that point lies
 outside the initial interval.
```

Note that the intervals are in all cases half-open intervals, that is, of the form $(a, b]$, which includes $b$ but not a.
To avoid underflow, the matrix should be scaled so that its largest element is no greater than overflow ${ }^{1 / 2}$ * overflow ${ }^{1 / 4}$ in absolute value. To assure the most accurate computation of small eigenvalues, the matrix should be scaled to be not much smaller than that, either.

NOTE In general, the arguments are not checked for unreasonable values.

## Input Parameters

ijob	INTEGER. Specifies what is to be done:
	$=1:$ Compute nab for the initial intervals.
	$=2:$ Perform bisection iteration to find eigenvalues of $T$.
	$=3:$ Perform bisection iteration to invert $n(w)$, i.e., to find a point which has
	a specified number of eigenvalues of $T$ to its left. Other values will cause ?
	laebz to return with info=-1.


nitmax	INTEGER. The maximum number of "levels" of bisection to be performed, i.e., an interval of width $w$ will not be made smaller than $2^{-n i t m a x *} W$. If not all intervals have converged after nitmax iterations, then info is set to the number of non-converged intervals.
$n$	INTEGER. The dimension $n$ of the tridiagonal matrix $T$. It must be at least 1 .
mmax	INTEGER. The maximum number of intervals. If more than mmax intervals are generated, then ?laebz will quit with info=mmax +1 .
minp	INTEGER. The initial number of intervals. It may not be greater than mmax.
nbmin	INTEGER. The smallest number of intervals that should be processed using a vector loop. If zero, then only the scalar loop will be used.
abstol	REAL for slaebz   DOUBLE PRECISION for dlaebz.   The minimum (absolute) width of an interval. When an interval is narrower than abstol, or than reltol times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, i.e., converged. This must be at least zero.
reltol	REAL for slaebz   DOUBLE PRECISION for dlaebz.   The minimum relative width of an interval. When an interval is narrower than abstol, or than reltol times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, i.e., converged. Note: this should always be at least radix*machine epsilon.
pivmin	REAL for slaebz   DOUBLE PRECISION for dlaebz.   The minimum absolute value of a "pivot" in the Sturm sequence loop. This value must be at least (max $\left.\|e(j) * * 2\| * s a f e _m i n\right)$ and at least safe_min, where safe_min is at least the smallest number that can divide one without overflow.
$d, e, e 2$	REAL for slaebz   DOUBLE PRECISION for dlaebz.   Arrays, dimension ( $n$ ) each. The array $d$ contains the diagonal elements of the tridiagonal matrix $T$.   The array e contains the off-diagonal elements of the tridiagonal matrix $T$ in positions 1 through $n-1$. e( $n$ )vis arbitrary.   The array e2 contains the squares of the off-diagonal elements of the tridiagonal matrix $T$. e2(n) is ignored.
nval	INTEGER.   Array, dimension (minp).   If $i j o b=1$ or 2 , not referenced.   If $i j o b=3$, the desired values of $n(w)$.
$a b$	REAL for slaebz   DOUBLE PRECISION for dlaebz.   Array, dimension (mmax 2 ) The endpoints of the intervals. $\operatorname{ab}(\mathrm{j}, 1)$ is $a(j)$, the left endpoint of the $j$-th interval, and $a b(j, 2)$ is $b(j)$, the right endpoint of the $j$-th interval.
c	REAL for slaebz   DOUBLE PRECISION for dlaebz.   Array, dimension (mmax)   If ijob=1, ignored.   If ijob=2, workspace.


	If $i j o b=3$, then on input $c(j)$ should be initialized to the first search point in the binary search.
nab	INTEGER.
	Array, dimension (mmax, 2 )
	If $i j o b=2$, then on input, $n a b(i, j)$ should be set. It must satisfy the condition:
	$n(a b(i, 1)) \leq n a b(i, 1) \leq n a b(i, 2) \leq n(a b(i, 2))$, which means that in interval $i$ only eigenvalues $n a b(i, 1)+1, \ldots, \operatorname{nab}(i, 2)$ are considered. Usually, $n a b(i, j)=n(a b(i, j))$, from a previous call to ? laebz with
	ijob=1.
	If $i j o b=3$, normally, nab should be set to some distinctive value(s) before ? laebz is called.
work	REAL for slaebz
	DOUBLE PRECISION for dlaebz.
	Workspace array, dimension (mmax).
iwork	INTEGER.
	Workspace array, dimension (mmax).

## Output Parameters

nval
$a b$
mout
nab
info

The elements of nval will be reordered to correspond with the intervals in ab. Thus, nval( $j$ ) on output will not, in general be the same as nval( $j$ ) on input, but it will correspond with the interval $(a b(j, 1), a b(j, 2)]$ on output.
The input intervals will, in general, be modified, split, and reordered by the calculation.
INTEGER.
If $i$ job $=1$, the number of eigenvalues in the intervals.
If $i j o b=2$ or 3 , the number of intervals output.
If $i j o b=3$, mout will equal minp.
If $i j o b=1$, then on output $n a b(i, j)$ will be set to $N(a b(i, j))$.
If $i j o b=2$, then on output, $n a b(i, j)$ will contain $\max (n a(k, \min (n b(k)$, $N(a b(i, j))))$, where $k$ is the index of the input interval that the output interval $(a b(j, 1), a b(j, 2)]$ came from, and $n a(k)$ and $n b(k)$ are the input values of $\operatorname{nab}(k, 1)$ and $n a b(k, 2)$.
If $i$ job $=3$, then on output, $n a b(i, j)$ contains $N(a b(i, j))$, unless $N(w)>n v a l(i)$ for all search points $w$, in which case nab( $\mathbf{i}, 1$ ) will not be modified, i.e., the output value will be the same as the input value (modulo reorderings, see nval and ab), or unless $N(w)$ < nval(i) for all search points $w$, in which case nab( $\mathrm{i}, 2$ ) will not be modified.

INTEGER.
If info $=0$ - all intervals converged
If info $=1--$ mmax - the last info interval did not converge.
If info $=$ mmax +1 - more than mmax intervals were generated

## Application Notes

This routine is intended to be called only by other LAPACK routines, thus the interface is less user-friendly. It is intended for two purposes:
(a) finding eigenvalues. In this case, ?laebz should have one or more initial intervals set up in $a b$, and ? laebz should be called with $i j o b=1$. This sets up nab, and also counts the eigenvalues. Intervals with no eigenvalues would usually be thrown out at this point. Also, if not all the eigenvalues in an interval $i$ are
desired, nab(i,1) can be increased or nab(i,2) decreased. For example, set nab(i,1)=nab(i,2)-1 to get the largest eigenvalue. ? laebz is then called with $i j o b=2$ and max no smaller than the value of mout returned by the call with $i j o b=1$. After this ( $i j o b=2$ ) call, eigenvalues nab( $\mathrm{i}, 1)+1$ through nab( $\mathrm{i}, 2$ ) are approximately $a b(i, 1)$ (or $a b(i, 2)$ ) to the tolerance specified by abstol and reltol.
(b) finding an interval ( $\left.a^{\prime}, b^{\prime}\right]$ containing eigenvalues $w(f), \ldots, w(1)$. In this case, start with a Gershgorin interval $(a, b)$. Set up ab to contain 2 search intervals, both initially $(a, b)$. One nval element should contain f-1 and the other should contain I, while $c$ should contain $a$ and $b$, respectively. nab( $i, 1$ ) should be -1 and nab( $i, 2$ ) should be $n+1$, to flag an error if the desired interval does not lie in $(a, b)$. ? laebz is then called with ijob=3. On exit, if $w(f-1)<w(f)$, then one of the intervals -- $j--$ will have $a b(j, 1)=a b(j, 2)$ and $\operatorname{nab}(j, 1)=\operatorname{nab}(j, 2)=f-1$, while if, to the specified tolerance, $w(f-k)=\ldots=w(f+r), k>0$ and $r \geq 0$, then the interval will have $n(a b(j, 1))=n a b(j, 1)=f-k$ and $n(a b(j, 2))=n a b(j, 2)=f+r$. The cases $w(1)<w(1$ $+1)$ and $w(1-r)=\ldots=w(1+k)$ are handled similarly.

## ?laed0 <br> Used by ?stedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.

## Syntax

```
call slaed0(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs, work, iwork, info)
call dlaed0(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs, work, iwork, info)
call claed0(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork, iwork, info)
call zlaed0(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork, iwork, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

Real flavors of this routine compute all eigenvalues and (optionally) corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.

Complex flavors claed0/zlaed0 compute all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix.

## Input Parameters

icompq
qsiz

INTEGER. Used with real flavors only.
If icompq $=0$, compute eigenvalues only.
If icompq = 1, compute eigenvectors of original dense symmetric matrix also.
On entry, the array q must contain the orthogonal matrix used to reduce the original matrix to tridiagonal form.
If icompq $=2$, compute eigenvalues and eigenvectors of the tridiagonal matrix.

INTEGER.
The dimension of the orthogonal/unitary matrix used to reduce the full matrix to tridiagonal form; qsiz $\geq n$ (for real flavors, qsiz $\geq n$ if icompq $=1$ ).

```
n
d, e, rwork
```

q, qstore
$1 d q$
ldqs
work
iwork

INTEGER. The dimension of the symmetric tridiagonal matrix ( $n \geq 0$ ).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Arrays:
$d(*)$ contains the main diagonal of the tridiagonal matrix. The dimension of $d$ must be at least max $(1, n)$.
$e$ (*) contains the off-diagonal elements of the tridiagonal matrix. The * dimension of e must be at least max ( $1, n-1$ ).
rwork(*) is a workspace array used in complex flavors only. The dimension of rwork must be at least $\left(1+3 n+2 n \lg (n)+3 n^{2}\right)$, where $\lg (n)=$ smallest integer $k$ such that $2^{k} \geq n$.

REAL for slaed0
DOUBLE PRECISION for dlaedO
COMPLEX for claed0
DOUBLE COMPLEX for zlaed0.
Arrays: $q\left(l d q,{ }^{*}\right)$, qstore( $\left.l d q s, *\right)$. The second dimension of these arrays must be at least max $(1, n)$.
For real flavors:
If $i$ compq $=0$, array $q$ is not referenced.
If $i c o m p q=1$, on entry, $q$ is a subset of the columns of the orthogonal matrix used to reduce the full matrix to tridiagonal form corresponding to the subset of the full matrix which is being decomposed at this time.
If icompq $=2$, on entry, $q$ will be the identity matrix. The array qstore is a workspace array referenced only when icompq $=1$. Used to store parts of the eigenvector matrix when the updating matrix multiplies take place. For complex flavors:
On entry, q must contain an qsiz-by-n matrix whose columns are unitarily orthonormal. It is a part of the unitary matrix that reduces the full dense Hermitian matrix to a (reducible) symmetric tridiagonal matrix. The array qstore is a workspace array used to store parts of the eigenvector matrix when the updating matrix multiplies take place.

INTEGER. The leading dimension of the array $q ; 1 d q \geq \max (1, n)$.
INTEGER. The leading dimension of the array qstore; $1 d q s \geq \max (1, n)$.
REAL for slaed0
DOUBLE PRECISION for dlaed0.
Workspace array, used in real flavors only.
If icompq $=0$ or 1 , the dimension of work must be at least ( $1+3 n$
$+2 n l g(n)+3 n^{2}$ ), where $\lg (n)=$ smallest integer $k$ such that $2^{k} \geq n$. If icompq $=2$, the dimension of work must be at least $\left(4 n+n^{2}\right)$.

INTEGER.
Workspace array.
For real flavors, if icompq $=0$ or 1 , and for complex flavors, the dimension of $i w o r k$ must be at least $(6+6 n+5 n l g(n))$.
For real flavors, if icompq $=2$, the dimension of $i w o r k$ must be at least $(3+5 n)$.

## Output Parameters

```
d
e
q
info
```

On exit, contains eigenvalues in ascending order.
On exit, the array is destroyed.
If icompq $=2$, on exit, $q$ contains the eigenvectors of the tridiagonal matrix. INTEGER.

If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i>0$, the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns i/ (n+1) through $\bmod (i, n+1)$.


#### Abstract

?laed 1 Used by sstedc/dstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal.


## Syntax

```
call slaed1(n, d, q, ldq, indxq, rho, cutpnt, work, iwork, info)
call dlaed1(n, d, q, ldq, indxq, rho, cutpnt, work, iwork, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? laedl computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all eigenvalues and eigenvectors of a tridiagonal matrix. ? laed7 handles the case in which eigenvalues only or eigenvalues and eigenvectors of a full symmetric matrix (which was reduced to tridiagonal form) are desired.

```
T = Q(in)*(D(in)+rho* Z* Z)
```

where $z=Q^{T} u, u$ is a vector of length $n$ with ones in the cutpnt and (cutpnt+1) -th elements and zeros elsewhere. The eigenvectors of the original matrix are stored in $Q$, and the eigenvalues are in $D$. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem when there are multiple eigenvalues or if there is a zero in the $z$ vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ? laed2.

The second stage consists of calculating the updated eigenvalues. This is done by finding the roots of the secular equation via the routine ?laed4 (as called by ?laed3). This routine also calculates the eigenvectors of the current problem.

The final stage consists of computing the updated eigenvectors directly using the updated eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from the overall problem.

## Input Parameters

```
n
d, q, work
```

INTEGER. The dimension of the symmetric tridiagonal matrix ( $n \geq 0$ ).
REAL for slaed1
DOUBLE PRECISION for dlaed.

## Arrays:

$d(*)$ contains the eigenvalues of the rank-1-perturbed matrix. The dimension of $d$ must be at least max $(1, n)$.
$q(l d q, *)$ contains the eigenvectors of the rank-1-perturbed matrix. The second dimension of $q$ must be at least $\max (1, n)$.
$\operatorname{work}(*)$ is a workspace array, dimension at least $\left(4 n+n^{2}\right)$.

$l d q$	INTEGER. The leading dimension of the array $q ; l d q \geq \max (1, n)$.
indxq	INTEGER. Array, dimension $(n)$.
rho	On entry, the permutation which separately sorts the two subproblems in $d$
	into ascending order.
	REAL for slaed1
	DOUBLE PRECISION for dlaed1.
	The subdiagonal entry used to create the rank-1 modification. This
cutpnt	parameter can be modified by ?laed2, where it is input/output.
	INTEGER.
	The location of the last eigenvalue in the leading sub-matrix. min $(1, n) \leq$
	cutpnt $\leq n / 2$.
iwork	INTEGER.
	Workspace array, dimension $(4 n)$.

## Output Parameters

d
q
indxq
info

On exit, contains the eigenvalues of the repaired matrix.
On exit, $q$ contains the eigenvectors of the repaired tridiagonal matrix.
On exit, contains the permutation which will reintegrate the subproblems back into sorted order, that is, $d($ indxq(i $=1, n)$ ) will be in ascending order.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value. If info $=1$, an eigenvalue did not converge.

## ?laed2

Used by sstedc/dstedc. Merges eigenvalues and
deflates secular equation. Used when the original
matrix is tridiagonal.

## Syntax

```
call slaed2(k, n, n1, d, q, ldq, indxq, rho, z, dlamda, w, q2, indx, indxc, indxp,
coltyp, info)
call dlaed2(k, n, n1, d, q, ldq, indxq, rho, z, dlamda, w, q2, indx, indxc, indxp,
coltyp, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?laed2 merges the two sets of eigenvalues together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more eigenvalues are close together or if there is a tiny entry in the $z$ vector. For each such occurrence the order of the related secular equation problem is reduced by one.

## Input Parameters

 related secular equation ( $0 \leq k \leq n$ ).| $n$ | INTEGER. The dimension of the symmetric tridiagonal matrix ( $n \geq 0$ ). |
| :---: | :---: |
| n1 | INTEGER. The location of the last eigenvalue in the leading sub-matrix; $\min (1, n) \leq n 1 \leq n / 2$. |
| $d, q, z$ | REAL for slaed2 |
|  | DOUBLE PRECISION for dlaed2. |
|  | Arrays: |
|  | $d(*)$ contains the eigenvalues of the two submatrices to be combined. The dimension of $d$ must be at least max $(1, n)$. |
|  | $q(I d q, *)$ contains the eigenvectors of the two submatrices in the two square blocks with corners at $(1,1),(n 1, n 1)$ and $(n 1+1, n 1+1),(n, n)$. The second dimension of $q$ must be at least max $(1, n)$. |
|  | $z(*)$ contains the updating vector (the last row of the first sub-eigenvector matrix and the first row of the second sub-eigenvector matrix). |
| $1 d q$ | INTEGER. The leading dimension of the array $q ; 1 d q \geq \max (1, n)$. |
| indxq | INTEGER. Array, dimension ( $n$ ). |
|  | On entry, the permutation which separately sorts the two subproblems in $d$ into ascending order. Note that elements in the second half of this permutation must first have $n 1$ added to their values. |
| rho | REAL for slaed2 |
|  | DOUBLE PRECISION for dlaed2. |
|  | On entry, the off-diagonal element associated with the rank-1 cut which originally split the two submatrices which are now being recombined. |
| indx, indxp | INTEGER. |
|  | Workspace arrays, dimension ( $n$ ) each. Array indx contains the permutation used to sort the contents of dlamda into ascending order. |
|  | Array indxp contains the permutation used to place deflated values of $d$ at the end of the array. |
|  | indxp $(1: k)$ points to the nondeflated $\alpha$-values and $\operatorname{indxp}(k+1: n)$ points to the deflated eigenvalues. |
| coltyp | INTEGER. |
|  | Workspace array, dimension ( $n$ ). |
|  | During execution, a label which will indicate which of the following types a column in the q2 matrix is: |
|  | 1: non-zero in the upper half only; |
|  | 2 : dense; |
|  | 3 : non-zero in the lower half only; |
|  | 4 : deflated. |

## Output Parameters

```
d
q
z
indxq
rho
dlamda, w, q2
```

On exit, $d$ contains the trailing ( $n-k$ ) updated eigenvalues (those which were deflated) sorted into increasing order.
On exit, $q$ contains the trailing $(n-k)$ updated eigenvectors (those which were deflated) in its last $n-k$ columns.

On exit, z content is destroyed by the updating process.
Destroyed on exit.
On exit, rho has been modified to the value required by ?laed3.
REAL for slaed2
DOUBLE PRECISION for dlaed2.
Arrays: dlamda $(n), w(n), q 2\left(n 1^{2}+(n-n 1)^{2}\right)$.

The array dlamda contains a copy of the first $k$ eigenvalues which is used by ?laed 3 to form the secular equation.
The array $w$ contains the first $k$ values of the final deflation-altered $z$-vector which is passed to ?laed3.
The array $q 2$ contains a copy of the first $k$ eigenvectors which is used by ? laed3 in a matrix multiply (sgemm/dgemm) to solve for the new eigenvectors.
INTEGER. Array, dimension ( $n$ ).
The permutation used to arrange the columns of the deflated $q$ matrix into three groups: the first group contains non-zero elements only at and above $n 1$, the second contains non-zero elements only belown1, and the third is dense.
coltyp
info
On exit, coltyp( $i$ ) is the number of columns of type $i$, for $i=1$ to 4 only (see the definition of types in the description of coltyp in Input Parameters).
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## ?laed3

Used by sstedc/dstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal.

## Syntax

```
call slaed3(k, n, n1, d, q, ldq, rho, dlamda, q2, indx, ctot, w, s, info)
call dlaed3(k, n, n1, d, q, ldq, rho, dlamda, q2, indx, ctot, w, s, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? laed3 finds the roots of the secular equation, as defined by the values in $d$, $w$, and rho, between 1 and $k$.
It makes the appropriate calls to ?laed 4 and then updates the eigenvectors by multiplying the matrix of eigenvectors of the pair of eigensystems being combined by the matrix of eigenvectors of the $k$-by- $k$ system which is solved here.

This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but none are known.

## Input Parameters

k
n
n1

INTEGER. The number of terms in the rational function to be solved by ? laed4 ( $k \geq 0$ ).
INTEGER. The number of rows and columns in the $q$ matrix. $n \geq k$ (deflation may result in $n>k$ ).
integer. The location of the last eigenvalue in the leading sub-matrix; $\min (1, n) \leq n 1 \leq n / 2$.

q	REAL for slaed3
	DOUBLE PRECISION for dlaed3.   Array $q(l d q, *)$. The second dimension of $q$ must be at least max $(1, n)$. Initially, the first $k$ columns of this array are used as workspace.
$1 d q$	INTEGER. The leading dimension of the array $q ; ~ I d q \geq \max (1, n)$.
rho	REAL for slaed3
	DOUBLE PRECISION for dlaed3.
	The value of the parameter in the rank one update equation. rho $\geq 0$ required.
dlamda, q2, w	REAL for slaed3
	DOUBLE PRECISION for dlaed3.
	Arrays: dlamda (k), q2(ldq2, *), w(k).
	The first $k$ elements of the array dlamda contain the old roots of the deflated updating problem. These are the poles of the secular equation. The first $k$ columns of the array $q 2$ contain the non-deflated eigenvectors for the split problem. The second dimension of q2 must be at least max (1,
	$n)$.
	The first $k$ elements of the array $w$ contain the components of the deflationadjusted updating vector.
indx	INTEGER. Array, dimension (n).
	The permutation used to arrange the columns of the deflated $q$ matrix into three groups (see ?laed2).
	The rows of the eigenvectors found by ?laed4 must be likewise permuted before the matrix multiply can take place.
ctot	INTEGER. Array, dimension (4).
	A count of the total number of the various types of columns in $q$, as described in indx. The fourth column type is any column which has been deflated.
$s$	REAL for slaed3
	DOUBLE PRECISION for dlaed3.
	Workspace array, dimension ( $n 1+1)^{*} k$.
	Will contain the eigenvectors of the repaired matrix which will be multiplied by the previously accumulated eigenvectors to update the system.

## Output Parameters

d
q
dlamda
w
info

REAL for slaed3
DOUBLE PRECISION for dlaed3.
Array, dimension at least max $(1, n)$.
$d$ (i) contains the updated eigenvalues for $1 \leq i \leq k$.
On exit, the columns 1 to $k$ of $q$ contain the updated eigenvectors.
May be changed on output by having lowest order bit set to zero on Cray XMP, Cray Y-MP, Cray-2, or Cray C-90, as described above.
Destroyed on exit.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=1$, an eigenvalue did not converge.

## ?laed4

Used by sstedc/dstedc. Finds a single root of the secular equation.

## Syntax

```
call slaed4(n, i, d, z, delta, rho, dlam, info)
call dlaed4(n, i, d, z, delta, rho, dlam, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

This routine computes the $i$-th updated eigenvalue of a symmetric rank-one modification to a diagonal matrix whose elements are given in the array $d$, and that

```
D(i) < D(j) for i < j
```

and that rho $>0$. This is arranged by the calling routine, and is no loss in generality. The rank-one modified system is thus

```
diag(D) + rho*Z * transpose(Z).
```

where we assume the Euclidean norm of $z$ is 1 .
The method consists of approximating the rational functions in the secular equation by simpler interpolating rational functions.

## Input Parameters

n
i d, $z$
rho

## Output Parameters

```
delta
dlam
info
```

INTEGER. The length of all arrays.
INTEGER. The index of the eigenvalue to be computed; $1 \leq i \leq n$.
REAL for slaed4
DOUBLE PRECISION for dlaed4
Arrays, dimension ( $n$ ) each. The array $d$ contains the original eigenvalues.
It is assumed that they are in order, $d(i)<d(j)$ for $i<j$.
The array $z$ contains the components of the updating vector $z$.
REAL for slaed4
DOUBLE PRECISION for dlaed4
The scalar in the symmetric updating formula.

REAL for slaed4
DOUBLE PRECISION for dlaed4
Array, dimension ( $n$ ).
If $n \neq 1$, delta contains $\left(d(j)-l a m b d a_{-} i\right)$ in its $j$-th component. If $n=$ 1 , then delta(1) = 1 . The vector delta contains the information necessary to construct the eigenvectors.
REAL for slaed4
DOUBLE PRECISION for dlaed4
The computed lambda_i, the $i$-th updated eigenvalue.
INTEGER.
If info $=0$, the execution is successful.

$$
\text { If info }=1 \text {, the updating process failed. }
$$

```
?laed5
Used by sstedc/dstedc. Solves the 2-by-2 secular
equation.
Syntax
```

```
call slaed5(i, d, z, delta, rho, dlam)
```

call slaed5( i, d, z, delta, rho, dlam )
call dlaed5( i, d, z, delta, rho, dlam )

```
call dlaed5(i, d, z, delta, rho, dlam)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes the $i$-th eigenvalue of a symmetric rank-one modification of a 2-by-2 diagonal matrix diag(D) + rho*Z * transpose(Z).

The diagonal elements in the array $D$ are assumed to satisfy

```
D(i) < D(j) for i < j .
```

We also assume rho $>0$ and that the Euclidean norm of the vector $z$ is one.

## Input Parameters

```
i INTEGER. The index of the eigenvalue to be computed;
d,z REAL for slaed5
DOUBLE PRECISION for dlaed5
Arrays, dimension (2) each. The array d contains the original eigenvalues.
It is assumed that d(1) < d(2).
The array z contains the components of the updating vector.
rho
REAL for slaed5
DOUBLE PRECISION for dlaed5
The scalar in the symmetric updating formula.
```


## Output Parameters

```
delta
dlam
```

DOUBLE PRECISION for dlaed5

```
```

REAL for slaed5

```
REAL for slaed5
Array, dimension (2).
eigenvectors.
REAL for slaed5
DOUBLE PRECISION for dlaed5
```


## ?laed6

```
Used by sstedc/dstedc. Computes one Newton step in solution of the secular equation.
```

The vector delta contains the information necessary to construct the
The computed lambda_i, the $i$-th updated eigenvalue.

## Syntax

```
call slaed6(kniter, orgati, rho, d, z, finit, tau, info)
call dlaed6(kniter, orgati, rho, d, z, finit, tau, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes the positive or negative root (closest to the origin) of

$$
f(x)=r h o+\frac{z(1)}{d(1)-x}+\frac{z(2)}{d(2)-x}+\frac{z(3)}{d(3)-x}
$$

It is assumed that if orgati $=$.TRUE. the root is between $d(2)$ and $d(3)$;otherwise it is between $d(1)$ and $d(2)$ This routine is called by ?laed4 when necessary. In most cases, the root sought is the smallest in magnitude, though it might not be in some extremely rare situations.

Input Parameters

kniter	INTEGER.
orgati	Refer to ?laed4 for its significance.
	LOGICAL.
rho	If orgati $=$.TRUE., the needed root is between $d(2)$ and $d(3)$; otherwise
	it is between $d(1)$ and $d(2)$. See ?laed4 for further details.
	REAL for slaed6
	DOUBLE PRECISION for dlaed 6
	Refer to the equation for $f(x)$ above.
$d, z$	REAL for slaed6
	DOUBLE PRECISION for dlaed6
	Arrays, dimension (3) each.
	The array $d$ satisfies $d(1)<d(2)<d(3)$.
	Each of the elements in the array $z$ must be positive.
finit	REAL for slaed6
	DOUBLE PRECISION for dlaed6
	The value of $f(x)$ at 0 . It is more accurate than the one evaluated inside
	this routine (if someone wants to do so).

## Output Parameters

```
tau REAL for slaed6
 DOUBLE PRECISION for dlaed6
 The root of the equation for }f(x)\mathrm{ .
 INTEGER.
 If info = 0, the execution is successful.
 If info = 1, failure to converge.
```


## ?laed7

Used by ?stedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.

## Syntax

```
call slaed7(icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq, indxq, rho, cutpnt,
qstore, qptr, prmptr, perm, givptr, givcol, givnum, work, iwork, info)
call dlaed7(icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq, indxq, rho, cutpnt,
qstore, qptr, prmptr, perm, givptr, givcol, givnum, work, iwork, info)
call claed7(n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho, indxq, qstore,
qptr, prmptr, perm, givptr, givcol, givnum, work, rwork, iwork, info)
call zlaed7(n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho, indxq, qstore,
qptr, prmptr, perm, givptr, givcol, givnum, work, rwork, iwork, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? laed7 computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all eigenvalues and optionally eigenvectors of a dense symmetric/Hermitian matrix that has been reduced to tridiagonal form. For real flavors, slaedi/dlaed1 handles the case in which all eigenvalues and eigenvectors of a symmetric tridiagonal matrix are desired.

```
T = Q(in)*(D(in)+rho* Z* ZT)* QT(in) = Q(out)*D(out)* *T (out) for real flavors, or
T = Q(in)* (D(in)+rho* Z* Z H})*\mp@subsup{Q}{}{H}(\textrm{in})=Q(out)*D(out)* Q (out) for complex flavor
```

where $z=Q^{T \star} u$ for real flavors and $z=Q^{H *} u$ for complex flavors, $u$ is a vector of length $n$ with ones in the cutpnt and (cutpnt +1 ) -th elements and zeros elsewhere. The eigenvectors of the original matrix are stored in $Q$, and the eigenvalues are in $D$. The algorithm consists of three stages:

The first stage consists of deflating the size of the problem when there are multiple eigenvalues or if there is a zero in the $z$ vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine slaed8/dlaed8 (for real flavors) or by the routine slaed2/ dlaed2 (for complex flavors).

The second stage consists of calculating the updated eigenvalues. This is done by finding the roots of the secular equation via the routine ?laed4 (as called by ?laed9 or ?laed3). This routine also calculates the eigenvectors of the current problem.

The final stage consists of computing the updated eigenvectors directly using the updated eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from the overall problem.

Input Parameters
icompq
INTEGER. Used with real flavors only.
If $i$ compq $=0$, compute eigenvalues only.
If icompq $=1$, compute eigenvectors of original dense symmetric matrix also. On entry, the array $q$ must contain the orthogonal matrix used to reduce the original matrix to tridiagonal form.

$n$	INTEGER. The dimension of the symmetric tridiagonal matrix ( $n \geq 0$ )
cutpnt	INTEGER. The location of the last eigenvalue in the leading sub-matrix. $\min (1, n) \leq$ cutpnt $\leq n$.
qsiz	INTEGER.   The dimension of the orthogonal/unitary matrix used to reduce the full matrix to tridiagonal form; qsiz $\geq n$ (for real flavors, qsiz $\geq n$ if icompq $=1$ ).
tlvls	INTEGER. The total number of merging levels in the overall divide and conquer tree.
curlvl	INTEGER. The current level in the overall merge routine, $0 \leq$ curlvi $\leq$ tlvls.
curpbm	INTEGER. The current problem in the current level in the overall merge routine (counting from upper left to lower right).
d	REAL for slaed7/claed7   DOUBLE PRECISION for dlaed7/zlaed7.   Array, dimension at least max $(1, n)$.   Array $d(*)$ contains the eigenvalues of the rank-1-perturbed matrix.
q, work	REAL for slaed7   DOUBLE PRECISION for dlaed7   COMPLEX for claed7   DOUBLE COMPLEX for zlaed7.   Arrays:   $q(I d q, *)$ contains the eigenvectors of the rank-1-perturbed matrix. The second dimension of $q$ must be at least max $(1, n)$. work $(*)$ is a workspace array, dimension at least $\left(3 n+2 * q s i z^{\star} n\right)$ for real flavors and at least ( $q$ siz* $n$ ) for complex flavors.
$1 d q$	INTEGER. The leading dimension of the array $q ; 1 d q \geq \max (1, n)$.
indxq	INTEGER. Array, dimension (n).   Contains the permutation that separately sorts the two sub-problems in $d$ into ascending order.
rho	REAL for slaed7 /claed7   DOUBLE PRECISION for dlaed7/zlaed7.   The subdiagonal element used to create the rank-1 modification.
qstore	REAL for slaed7/claed7   DOUBLE PRECISION for dlaed7/zlaed7.   Array, dimension $\left(n^{2}+1\right)$. Serves also as output parameter.   Stores eigenvectors of submatrices encountered during divide and conquer, packed together. qptr points to beginning of the submatrices.
qptr	INTEGER. Array, dimension ( $n+2$ ). Serves also as output parameter. List of indices pointing to beginning of submatrices stored in qstore. The submatrices are numbered starting at the bottom left of the divide and conquer tree, from left to right and bottom to top.
prmptr, perm, givptr	INTEGER. Arrays, dimension $\left(n \lg _{n}\right)$ each.   The array prmptr $\left(^{*}\right.$ ) contains a list of pointers which indicate where in perm a level's permutation is stored. prmptr(i+1) - prmptr(i) indicates the size of the permutation and also the size of the full, non-deflated problem. The array perm(*) contains the permutations (from deflation and sorting) to be applied to each eigenblock. This parameter can be modified by ?laed8, where it is output.

```
givcol
givnum
iwork
rwork
```


## Output Parameters

```
d On exit, contains the eigenvalues of the repaired matrix.
q
indxq
rho
prmptr, perm, givptr
givcol
givnum
info
On exit, contains the eigenvalues of the repaired matrix.
On exit, \(q\) contains the eigenvectors of the repaired tridiagonal matrix.
INTEGER. Array, dimension (n).
Contains the permutation that reintegrates the subproblems back into a sorted order, that is,
\(d(\) indxq(i \(=1, n)\)) will be in the ascending order.
This parameter can be modified by ?laed8, where it is input/output.
INTEGER. Arrays, dimension \((n \lg n\)) each.
The array prmptr contains an updated list of pointers.
The array perm contains an updated permutation.
The array givptr contains an updated list of pointers.
This parameter can be modified by ?laed8, where it is output.
This parameter can be modified by ?laed8, where it is output.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1\), an eigenvalue did not converge.
```


## ?laed8

Used by ?stedc. Merges eigenvalues and deflates
secular equation. Used when the original matrix is
dense.

## Syntax

```
call slaed8(icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z, dlamda, q2, ldq2,
w, perm, givptr, givcol, givnum, indxp, indx, info)
call dlaed8(icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z, dlamda, q2, ldq2,
w, perm, givptr, givcol, givnum, indxp, indx, info)
call claed8(k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2, ldq2, w, indxp, indx,
indxq, perm, givptr, givcol, givnum, info)
```

call zlaed8 ( $k, n, q s i z, ~ q, ~ l d q, ~ d, ~ r h o, ~ c u t p n t, ~ z, ~ d l a m d a, ~ q 2, ~ l d q 2, ~ w, ~ i n d x p, ~ i n d x, ~$ indxq, perm, givptr, givcol, givnum, info)

## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine merges the two sets of eigenvalues together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more eigenvalues are close together or if there is a tiny element in the $z$ vector. For each such occurrence the order of the related secular equation problem is reduced by one.

## Input Parameters

icompq	INTEGER. Used with real flavors only.   If $i$ compq $=0$, compute eigenvalues only.   If icompq $=1$, compute eigenvectors of original dense symmetric matrix also.   On entry, the array $q$ must contain the orthogonal matrix used to reduce the original matrix to tridiagonal form.
$n$	INTEGER. The dimension of the symmetric tridiagonal matrix ( $n \geq 0$ ).
cutpnt	INTEGER. The location of the last eigenvalue in the leading sub-matrix. $\min (1, n) \leq$ cutpnt $\leq n$.
qsiz	INTEGER.   The dimension of the orthogonal/unitary matrix used to reduce the full matrix to tridiagonal form; qsiz $\geq n$ (for real flavors, qsiz $\geq n$ if icompq = 1) 。
$d, z$	REAL for slaed8/claed8   DOUBLE PRECISION for dlaed8/zlaed8.   Arrays, dimension at least max $(1, n)$ each. The array $d(*)$ contains the eigenvalues of the two submatrices to be combined.   On entry, $z\left({ }^{*}\right)$ contains the updating vector (the last row of the first subeigenvector matrix and the first row of the second sub-eigenvector matrix). The contents of $z$ are destroyed by the updating process.
q	REAL for slaed8   DOUBLE PRECISION for dlaed8   COMPLEX for claed8   DOUBLE COMPLEX for zlaed8.   Array   $q(l d q, *)$. The second dimension of $q$ must be at least max $(1, n)$. On entry, $q$ contains the eigenvectors of the partially solved system which has been previously updated in matrix multiplies with other partially solved eigensystems.   For real flavors, If icompq $=0, q$ is not referenced.
$1 d q$	INTEGER. The leading dimension of the array $q ; 1 d q \geq \max (1, n)$.
1 dq 2	INTEGER. The leading dimension of the output array $q 2 ; 1 d q 2 \geq \max (1$, n).
indxq	INTEGER. Array, dimension ( $n$ ).   The permutation that separately sorts the two sub-problems in $d$ into ascending order. Note that elements in the second half of this permutation must first have cutpnt added to their values in order to be accurate.

```
rho REAL for slaed8/claed8
```

DOUBLE PRECISION for dlaed8/zlaed8.

On entry, the off-diagonal element associated with the rank-1 cut which originally split the two submatrices which are now being recombined.

## Output Parameters

```
k
d
```

z
q
indxq
rho
dlamda, w
q2
indxp, indx
perm
givptr
givcol
givnum

INTEGER. The number of non-deflated eigenvalues, and the order of the related secular equation.

On exit, contains the trailing ( $n-k$ ) updated eigenvalues (those which were deflated) sorted into increasing order.
On exit, the updating process destroys the contents of $z$.
On exit, $q$ contains the trailing ( $n-k$ ) updated eigenvectors (those which were deflated) in its last ( $n-k$ ) columns.
INTEGER. Array, dimension ( $n$ ).
The permutation of merged eigenvalues set.
On exit, rho has been modified to the value required by ?laed3.
REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
Arrays, dimension ( $n$ ) each. The array dlamda(*) contains a copy of the first $k$ eigenvalues which will be used by ?laed3 to form the secular equation. The array $w\left({ }^{*}\right)$ will hold the first $k$ values of the final deflation-altered $z$ vector and will be passed to ?laed3.

REAL for slaed8
DOUBLE PRECISION for dlaed8
COMPLEX for claed8
DOUBLE COMPLEX for zlaed8.
Array
$q 2(l d q 2, *)$. The second dimension of q2 must be at least max $(1, n)$. Contains a copy of the first $k$ eigenvectors which will be used by slaed7/ dlaed7 in a matrix multiply (sgemm/dgemm) to update the new eigenvectors. For real flavors, If icompq $=0, q 2$ is not referenced.

INTEGER. Workspace arrays, dimension ( $n$ ) each.
The array indxp(*) will contain the permutation used to place deflated values of $d$ at the end of the array. On output, indxp $(1: k)$ points to the nondeflated $d$-values and $\operatorname{indxp}(k+1: n)$ points to the deflated eigenvalues. The array indx (*) will contain the permutation used to sort the contents of d into ascending order.

INTEGER. Array, dimension (n ).
Contains the permutations (from deflation and sorting) to be applied to each eigenblock.
INTEGER. Contains the number of Givens rotations which took place in this subproblem.
INTEGER. Array, dimension ( $2, n$ ).
Each pair of numbers indicates a pair of columns to take place in a Givens rotation.

REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
Array, dimension (2, n).
Each number indicates the $s$ value to be used in the corresponding Givens rotation.

info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the $i$-th parameter had an illegal value.

## ?laed9

Used by sstedc/dstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is dense.

## Syntax

```
call slaed9(k, kstart, kstop, n, d, q, ldq, rho, dlamda, w, s, lds, info)
call dlaed9(k, kstart, kstop, n, d, q, ldq, rho, dlamda, w, s, lds, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine finds the roots of the secular equation, as defined by the values in $d, z$, and rho, between kstart and kstop. It makes the appropriate calls to slaed4/dlaed4 and then stores the new matrix of eigenvectors for use in calculating the next level of $z$ vectors.

## Input Parameters

k
kstart, kstop
n
q
$1 d q$
rho
dlamda, w
lds

INTEGER. The number of terms in the rational function to be solved by slaed4/dlaed4 ( $k \geq 0$ ).
INTEGER. The updated eigenvalues lambda(i), kstart $\leq i \leq k s t o p$ are to be computed.
$1 \leq k s t a r t \leq k s t o p \leq k$.
INTEGER. The number of rows and columns in the $Q$ matrix. $n \geq k$ (deflation may result in $n>k$ ).
REAL for slaed9
DOUBLE PRECISION for dlaed9.
Workspace array, dimension ( 1 dq, *).
The second dimension of $q$ must be at least max $(1, n)$.
INTEGER. The leading dimension of the array $q ; ~ I d q \geq \max (1, n)$.
REAL for slaed9
DOUBLE PRECISION for dlaed9
The value of the parameter in the rank one update equation. rho $\geq 0$ required.
REAL for slaed9
DOUBLE PRECISION for dlaed9
Arrays, dimension ( $k$ ) each. The first $k$ elements of the array dlamda(*) contain the old roots of the deflated updating problem. These are the poles of the secular equation.
The first $k$ elements of the array $w(*)$ contain the components of the deflation-adjusted updating vector.
INTEGER. The leading dimension of the output array $s ; I d s \geq \max (1, k)$.

## Output Parameters

d	REAL for slaed9
	DOUBLE PRECISION for dlaed9
	Array, dimension ( $n$ ). Elements in $d$ (i) are not referenced for $1 \leq i<$ kstart or kstop < i $\leq n$.
s	REAL for slaed9
	DOUBLE PRECISION for dlaed9.
	Array, dimension ( $1 d s, *$ ) .
	The second dimension of $s$ must be at least max $(1, k)$. Will contain the eigenvectors of the repaired matrix which will be stored for subsequent $z$ vector calculation and multiplied by the previously accumulated eigenvectors to update the system.
dlamda	On exit, the value is modified to make sure all dlamda(i) - dlamda(j) can be computed with high relative accuracy, barring overflow and underflow.
w	Destroyed on exit.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the $i$-th parameter had an illegal value. If info $=1$, the eigenvalue did not converge.

## ?laeda

Used by ?stedc. Computes the $Z$ vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense.

## Syntax

```
call slaeda(n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol, givnum, q, qptr,
z, ztemp, info)
call dlaeda(n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol, givnum, q, qptr,
z, ztemp, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?laeda computes the $z$ vector corresponding to the merge step in the curlvl-th step of the merge process with tlvls steps for the curpbm-th problem.

## Input Parameters

```
n INTEGER. The dimension of the symmetric tridiagonal matrix (}n\geq0)\mathrm{ .
tlvls
curlvl
curpbm
INTEGER. The dimension of the symmetric tridiagonal matrix (\(n \geq 0\)). INTEGER. The total number of merging levels in the overall divide and conquer tree.
INTEGER. The current level in the overall merge routine, \(0 \leq\) curlvl \(\leq\) tlvls.
INTEGER. The current problem in the current level in the overall merge routine (counting from upper left to lower right).
```

mptr, perm, givptr	INTEGER. Arrays, dimension ( $n \lg _{n}$ ) each.
	The array prmptr$\left(^{*}\right)$ contains a list of pointers which indicate where in perm a level's permutation is stored. prmptr(i+1) - prmptr(i) indicates the size of the permutation and also the size of the full, non-deflated problem. The array perm(*) contains the permutations (from deflation and sorting) to be applied to each eigenblock.   The array givptr (*) contains a list of pointers which indicate where in givcol a level's Givens rotations are stored. givptr(i+1) - givptr(i) indicates the number of Givens rotations.
givcol	INTEGER. Array, dimension (2, $n \lg n$ ).   Each pair of numbers indicates a pair of columns to take place in a Givens rotation.
givnum	REAL for slaeda   DOUBLE PRECISION for dlaeda.   Array, dimension (2, $n \operatorname{Ig}_{n}$ ).   Each number indicates the $s$ value to be used in the corresponding Givens rotation.
q	REAL for slaeda   DOUBLE PRECISION for dlaeda.   Array, dimension ( $n^{2}$ ).   Contains the square eigenblocks from previous levels, the starting positions for blocks are given by qptr.
qptr	INTEGER. Array, dimension ( $n+2$ ). Contains a list of pointers which indicate where in $q$ an eigenblock is stored. sqrt( $q p t r(i+1)$ - qptr(i)) indicates the size of the block.
z temp	REAL for slaeda   DOUBLE PRECISION for dlaeda.   Workspace array, dimension ( $n$ ).

## Output Parameters

$z$
info

REAL for slaeda
DOUBLE PRECISION for dlaeda.
Array, dimension ( $n$ ). Contains the updating vector (the last row of the first sub-eigenvector matrix and the first row of the second sub-eigenvector matrix).
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## ?laein

Computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.

## Syntax

```
call slaein(rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb, work, eps3, smlnum,
bignum, info)
call dlaein(rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb, work, eps3, smlnum,
bignum, info)
call claein(rightv, noinit, n, h, ldh, w, v, b, ldb, rwork, eps3, smlnum, info)
```

```
call zlaein(rightv, noinit, n, h, ldh, w, v, b, ldb, rwork, eps3, smlnum, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? laein uses inverse iteration to find a right or left eigenvector corresponding to the eigenvalue ( $w r, w i$ ) of a real upper Hessenberg matrix $H$ (for real flavors slaein/dlaein) or to the eigenvalue $w$ of a complex upper Hessenberg matrix $H$ (for complex flavors claein/zlaein).

## Input Parameters

rightv	LOGICAL.   If rightv = .TRUE., compute right eigenvector;   if rightv = .FALSE., compute left eigenvector.
noinit	LOGICAL.   If noinit = .TRUE., no initial vector is supplied in (vr,vi) or in $v$ (for complex flavors);   if noinit $=$.FALSE., initial vector is supplied in (vr,vi) or in $v$ (for complex flavors).
$n$	INTEGER. The order of the matrix $H(n \geq 0)$.
h	REAL for slaein   DOUBLE PRECISION for daein   COMPLEX for claein   DOUBLE COMPLEX for zlaein.   Array $h(l d h, *)$.   The second dimension of $h$ must be at least max $(1, n)$. Contains the upper Hessenberg matrix $H$.
1 dh	INTEGER. The leading dimension of the array $h ; 1 d h \geq \max (1, n)$.
wr, wi	REAL for slaein   DOUBLE PRECISION for dlaein.   The real and imaginary parts of the eigenvalue of $H$ whose corresponding right or left eigenvector is to be computed (for real flavors of the routine).
w	COMPLEX for claein   DOUBLE COMPLEX for zlaein.   The eigenvalue of $H$ whose corresponding right or left eigenvector is to be computed (for complex flavors of the routine).
vr, vi	REAL for slaein   DOUBLE PRECISION for dlaein.   Arrays, dimension ( $n$ ) each. Used for real flavors only. On entry, if noinit $=$.FALSE . and $w i=0.0$, vr must contain a real starting vector for inverse iteration using the real eigenvalue wr;   if noinit $=$.FALSE. and wi $\neq 0.0$, vr and vi must contain the real and imaginary parts of a complex starting vector for inverse iteration using the complex eigenvalue (wr,wi);otherwise vr and vi need not be set.
v	COMPLEX for claein   DOUBLE COMPLEX for zlaein.   Array, dimension ( $n$ ). Used for complex flavors only. On entry, if noinit $=$.FALSE., $v$ must contain a starting vector for inverse iteration; otherwise $v$ need not be set.


$b$	REAL for slaein
	DOUBLE PRECISION for dlaein
	COMPLEX for claein
	DOUBLE COMPLEX for zlaein.
	Workspace array $b(I d b, *)$. The second dimension of $b$ must be at least $\max (1, n)$.
1 db	INTEGER. The leading dimension of the array b;
	$1 d b \geq n+1$ for real flavors;
	$1 \mathrm{db} \geq \max (1, n)$ for complex flavors.
work	REAL for slaein
	DOUBLE PRECISION for dlaein.
	Workspace array, dimension (n).
	Used for real flavors only.
rwork	REAL for claein
	DOUBLE PRECISION for zlaein.
	Workspace array, dimension (n).
	Used for complex flavors only.
eps3, smlnum	REAL for slaein/claein
	DOUBLE PRECISION for dlaein/zlaein.
	eps 3 is a small machine-dependent value which is used to perturb close
	eigenvalues, and to replace zero pivots.   smlnum is a machine-dependent value close to underflow threshold. A
	suggested value for smlnum is slamch('s') * ( $n / s l a m c h(' p$ ') for
	slaein/claein or dlamch('s') * (n/dlamch('p') for dlaein/zlaein.
	See lamch.
bignum	REAL for slaein
	DOUBLE PRECISION for dlaein.
	bignum is a machine-dependent value close to overflow threshold. Used for real flavors only. A suggested value for bignum is 1 / slamch ('s') for
	slaein/claein or 1 / dlamch('s') for dlaein/zlaein.

## Output Parameters

vr, vi

V
info

On exit, if wi = 0.0 (real eigenvalue), vr contains the computed real eigenvector; if wi $\neq 0.0$ (complex eigenvalue), vr and vi contain the real and imaginary parts of the computed complex eigenvector. The eigenvector is normalized so that the component of largest magnitude has magnitude 1; here the magnitude of a complex number $(x, y)$ is taken to be $|x|+|y|$. $v i$ is not referenced if $w i=0.0$.
On exit, v contains the computed eigenvector, normalized so that the component of largest magnitude has magnitude 1; here the magnitude of a complex number $(x, y)$ is taken to be $|x|+|y|$.
INTEGER.
If info $=0$, the execution is successful.
If info = 1, inverse iteration did not converge. For real flavors, vr is set to the last iterate, and so is $v i$, if $w i \neq 0.0$. For complex flavors, $v$ is set to the last iterate.

## ?laev2

Computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.

## Syntax

```
call slaev2(a, b, c, rt1, rt2, cs1, snl)
call dlaev2(a, b, c, rt1, rt2, csl, snl)
call claev2(a, b, c, rt1, rt2, cs1, sn1)
call zlaev2(a, b, c, rt1, rt2, cs1, sn1)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine performs the eigendecomposition of a 2-by-2 symmetric matrix

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \text { (for slaev2/dlaev2) or Hermitian matrix }\left[\begin{array}{cc}
a & b \\
\operatorname{conjg}(b) & c
\end{array}\right]
$$

(for claev2/zlaev2).
On return, rt1 is the eigenvalue of larger absolute value, $r t 2$ of smaller absolute value, and (csi, sni) is the unit right eigenvector for rt1, giving the decomposition

$$
\left[\begin{array}{cc}
\operatorname{cs1} & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{cs1}
\end{array}\right] \cdot\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \cdot\left[\begin{array}{cc}
\operatorname{cs1} & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{cs1}
\end{array}\right]=\left[\begin{array}{cc}
r \pm 1 & 0 \\
0 & r \pm 2
\end{array}\right]
$$

(for slaev2/dlaev2),
or

$$
\left[\begin{array}{cc}
c s 1 & \operatorname{conjg}(s n 1) \\
-s n 1 & c s 1
\end{array}\right] \cdot\left[\begin{array}{cc}
a & b \\
\operatorname{conjg}(b) & c
\end{array}\right] \cdot\left[\begin{array}{cc}
\operatorname{cs1} & -\operatorname{conjg}(\operatorname{sn} 1) \\
\operatorname{sn} 1 & \operatorname{cs} 1
\end{array}\right]=\left[\begin{array}{cc}
r t 1 & 0 \\
0 & r t 2
\end{array}\right]
$$

(for claev2/zlaev2).

## Input Parameters

```
a,b,c
REAL for slaev2
 DOUBLE PRECISION for dlaev2
 COMPLEX for claev2
 DOUBLE COMPLEX for zlaev2.
 Elements of the input matrix.
```


## Output Parameters

```
rt1,rt2
cs1 REAL for slaev2/claev2
sn1
REAL for slaev2/claev2
DOUBLE PRECISION for dlaev2/zlaev2.
Eigenvalues of larger and smaller absolute value, respectively.
DOUBLE PRECISION for dlaev2/zlaev2.
REAL for slaev2
DOUBLE PRECISION for dlaev2
COMPLEX for claev2
DOUBLE COMPLEX for zlaev2.
The vector (cs1,sn1) is the unit right eigenvector for rt1.
```


## Application Notes

rt1 is accurate to a few ulps barring over/underflow. rt2 may be inaccurate if there is massive cancellation in the determinant $a^{*} c-b^{\star}$; higher precision or correctly rounded or correctly truncated arithmetic would be needed to compute $\mathrm{rt2}$ accurately in all cases. csi and sn1 are accurate to a few ulps barring over/ underflow. Overflow is possible only if $r t 1$ is within a factor of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds underflow_threshold / macheps.

## ?laexc

Swaps adjacent diagonal blocks of a real upper quasitriangular matrix in Schur canonical form, by an orthogonal similarity transformation.

## Syntax

```
call slaexc(wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)
call dlaexc(wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine swaps adjacent diagonal blocks $T_{11}$ and $T_{22}$ of order 1 or 2 in an upper quasi-triangular matrix $T$ by an orthogonal similarity transformation.
$T$ must be in Schur canonical form, that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements of opposite sign.

Input Parameters

```
wantq
n
t,q
LOGICAL.
If wantq = .TRUE., accumulate the transformation in the matrix Q;
If wantq = .FALSE., do not accumulate the transformation.
INTEGER. The order of the matrix T (}n\geq0)\mathrm{ .
REAL for slaexc
DOUBLE PRECISION for dlaexc
Arrays:
t(ldt,*) contains on entry the upper quasi-triangular matrix T, in Schur
canonical form.
```

	The second dimension of $t$ must be at least max $(1, n)$. $q(I d q, *)$ contains on entry, if want $q=$.TRUE., the orthogonal matrix $Q$. If want $q=$.FALSE., $q$ is not referenced. The second dimension of $q$ must be at least $\max (1, n)$.
$1 d t$	INTEGER. The leading dimension of $t$; at least max ( $1, n$ ).
$1 d q$	INTEGER. The leading dimension of $q$;   If wantq $=$.FALSE., then $l d q \geq 1$.   If wantq $=$. TRUE., then $1 d q \geq \max (1, n)$.
j1	INTEGER. The index of the first row of the first block $T_{11}$.
n1	INTEGER. The order of the first block $T_{11}$ ( $n 1=0,1$, or 2 ).
n2	INTEGER. The order of the second block $T_{22}$ ( $n 2=0,1$, or 2 ).
work	REAL for slaexc;   DOUBLE PRECISION for dlaexc.   Workspace array, DIMENSION (n).

## Output Parameters

```
t On exit, the updated matrix T, again in Schur canonical form.
q
info
On exit, the updated matrix \(T\), again in Schur canonical form.
On exit, if wantq = .TRUE., the updated matrix \(Q\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=1\), the transformed matrix \(T\) would be too far from Schur form; the blocks are not swapped and \(T\) and \(Q\) are unchanged.
```

```
?lag2
Computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow.
```


## Syntax

```
call slag2(a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)
```

call slag2( a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi )
call dlag2( a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi )

```
call dlag2(a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes the eigenvalues of a $2 \times 2$ generalized eigenvalue problem $A-w * B$, with scaling as necessary to avoid over-/underflow. The scaling factor, $s$, results in a modified eigenvalue equation

```
s*A - w* B,
```

where $s$ is a non-negative scaling factor chosen so that $w, w^{*} B$, and $s^{*} A$ do not overflow and, if possible, do not underflow, either.

Input Parameters

$$
a, b
$$

REAL for slag2

DOUBLE PRECISION for dlag2
Arrays:
a(lda, 2) contains, on entry, the $2 \times 2$ matrix $A$. It is assumed that its 1norm is less than $1 /$ safmin. Entries less than sqrt (safmin)*norm (A) are subject to being treated as zero.
$b(l d b, 2)$ contains, on entry, the $2 \times 2$ upper triangular matrix $B$. It is assumed that the one-norm of $B$ is less than $1 /$ safmin. The diagonals should be at least sqrt(safmin) times the largest element of $B$ (in absolute value); if a diagonal is smaller than that, then $+/-\operatorname{sqrt}(\operatorname{safmin})$ will be used instead of that diagonal.
INTEGER. The leading dimension of $a ; 1 d a \geq 2$.
INTEGER. The leading dimension of $b ; 1 d b \geq 2$.
REAL for slag2;
DOUBLE PRECISION for dlag2.
The smallest positive number such that $1 /$ safmin does not overflow. (This should always be ?lamch('S') - it is an argument in order to avoid having to call ? lamch frequently.)

## Output Parameters

scalel
scale2

REAL for slag2;
DOUBLE PRECISION for dlag2.
A scaling factor used to avoid over-/underflow in the eigenvalue equation which defines the first eigenvalue. If the eigenvalues are complex, then the eigenvalues are (wrl +/-wii)/scale1 (which may lie outside the exponent range of the machine), scale1=scale2, and scale1 will always be positive.
If the eigenvalues are real, then the first (real) eigenvalue is wrl/scale1, but this may overflow or underflow, and in fact, scale1 may be zero or less than the underflow threshhold if the exact eigenvalue is sufficiently large.
REAL for slag2;
DOUBLE PRECISION for dlag2.
A scaling factor used to avoid over-/underflow in the eigenvalue equation which defines the second eigenvalue. If the eigenvalues are complex, then scale2=scale1. If the eigenvalues are real, then the second (real) eigenvalue is wr2/scale2, but this may overflow or underflow, and in fact, scale 2 may be zero or less than the underflow threshold if the exact eigenvalue is sufficiently large.
REAL for slag2;
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then wrl is scalel times the eigenvalue closest to the $(2,2)$ element of $A * i n v(B)$.
If the eigenvalue is complex, then wrl=wr2 is scale1 times the real part of the eigenvalues.

REAL for slag2;
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then wr2 is scale2 times the other eigenvalue. If the eigenvalue is complex, then wrl=wr2 is scale1 times the real part of the eigenvalues.
REAL for slag2;
DOUBLE PRECISION for dlag2.

If the eigenvalue is real, then wi is zero. If the eigenvalue is complex, then wi is scalel times the imaginary part of the eigenvalues. wi will always be non-negative.

## ?lags2

Computes 2-by-2 orthogonal matrices $U, V$, and $Q$, and applies them to matrices $A$ and $B$ such that the rows of the transformed $A$ and $B$ are parallel.

## Syntax

```
call slags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)
call dlags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)
call clags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)
call zlags2(upper, al, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

For real flavors, the routine computes 2-by-2 orthogonal matrices $U, V$ and $Q$, such that if upper =.TRUE., then

$$
U^{T} * A^{*} Q=U^{T} *\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right] * Q=\left[\begin{array}{ll}
\mathrm{x} & 0 \\
\mathrm{x} & \mathrm{x}
\end{array}\right]
$$

and

$$
V^{T} *_{B^{*} Q}=V^{T} *\left[\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & 0 \\
\mathrm{x} & \mathrm{x}
\end{array}\right]
$$

or if upper $=$.FALSE., then

$$
U^{T} * A^{*} Q=U^{T} *\left[\begin{array}{cc}
A_{1} & 0 \\
A_{2} & A_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & \mathrm{x} \\
0 & \mathrm{x}
\end{array}\right]
$$

and

$$
V^{T} * B^{*} Q=V^{T *}\left[\begin{array}{cc}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & \mathrm{x} \\
0 & \mathrm{x}
\end{array}\right]
$$

The rows of the transformed $A$ and $B$ are parallel, where

$$
U=\left[\begin{array}{cc}
\operatorname{csu} & s n u \\
-\operatorname{snu} & c s u
\end{array}\right], V=\left[\begin{array}{cc}
c s v & s n v \\
-s n v & c s v
\end{array}\right], Q=\left[\begin{array}{cc}
\operatorname{ssq} & \operatorname{snq} \\
-\operatorname{snq} & \operatorname{csq}
\end{array}\right]
$$

Here $z^{T}$ denotes the transpose of $z$.
For complex flavors, the routine computes 2-by-2 unitary matrices $U$, $v$ and $Q$, such that if upper $=$. TRUE., then

$$
U^{H} * A^{*} Q=U^{H} *\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & 0 \\
\mathrm{x} & \mathrm{x}
\end{array}\right]
$$

and

$$
V^{H^{*}} B^{*} Q=V^{H} *\left[\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{3}
\end{array}\right] * Q=\left[\begin{array}{ll}
\mathbf{x} & 0 \\
\mathbf{x} & \mathbf{x}
\end{array}\right]
$$

or if upper $=$.FALSE., then

$$
U^{H} * A^{*} Q=U^{H *}\left[\begin{array}{cc}
A_{1} & 0 \\
A_{2} & A_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & \mathrm{x} \\
0 & \mathrm{x}
\end{array}\right]
$$

and

$$
V^{H^{*}} B^{*} Q=V^{H} *\left[\begin{array}{cc}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathbf{x} & \mathrm{x} \\
0 & \mathrm{x}
\end{array}\right]
$$

The rows of the transformed $A$ and $B$ are parallel, where

$$
U=\left[\begin{array}{cc}
\operatorname{csu} & s n u \\
-s^{H} & c s u
\end{array}\right], V=\left[\begin{array}{cc}
\operatorname{csv} & \operatorname{snv} \\
-\sin ^{H} & \operatorname{csv}
\end{array}\right], Q=\left[\begin{array}{cc}
\operatorname{csq} q & \operatorname{snq} \\
-\operatorname{snq}{ }^{H} & c s q
\end{array}\right]
$$

Input Parameters

LOGICAL.
If upper $=$.TRUE., the input matrices $A$ and $B$ are upper triangular; If upper $=$.FALSE., the input matrices $A$ and $B$ are lower triangular.

```
a1,a3 REAL for slags2 and clags2
 DOUBLE PRECISION for dlags2 and zlags2
a2
REAL for slags2
DOUBLE PRECISION for dlags2
COMPLEX for clags2
COMPLEX*16 for zlags2
On entry, a1, a2 and a3 are elements of the input 2-by-2 upper (lower)
triangular matrix A.
b1,b3 REAL for slags2 and clags2
DOUBLE PRECISION for dlags2 and zlags2
REAL for slags2
DOUBLE PRECISION for dlags2
COMPLEX for clags2
COMPLEX*16 for zlags2
On entry,b1, b2 and b3 are elements of the input 2-by-2 upper (lower)
triangular matrix B.
```


## Output Parameters

csu	REAL for slags2 and clags2
	DOUBLE PRECISION for dlags2 and zlags2
	Element of the desired orthogonal matrix $U$.
snu	REAL for slags2
	DOUBLE PRECISION for dlags2
	Element of the desired orthogonal matrix $U$. COMPLEX for clags2
	COMPLEX*16 for zlags2
CSV	REAL for slags2 and clags2
	DOUBLE PRECISION for dlags2 and zlags2
	Element of the desired orthogonal matrix $v$.
snv	REAL for slags2
	DOUBLE PRECISION for dlags2
	COMPLEX for clags2
	COMPLEX*16 for zlags2
	Element of the desired orthogonal matrix $V$.
csq	REAL for slags2 and clags2
	DOUBLE PRECISION for dlags2 and zlags2
	Element of the desired orthogonal matrix $Q$.
snq	REAL for slags2
	DOUBLE PRECISION for dlags2
	Element of the desired orthogonal matrix $Q$.
	COMPLEX for clags2
	COMPLEX*16 for zlags2

## ?lagtf

Computes an LU factorization of a matrix $T-\lambda * I$, where $T$ is a general tridiagonal matrix, and $\lambda$ is a scalar, using partial pivoting with row interchanges.

## Syntax

```
call slagtf(n, a, lambda, b, c, tol, d, in, info)
```

```
call dlagtf(n, a, lambda, b, c, tol, d, in, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine factorizes the matrix ( $T-\operatorname{lambda}$ * $I$, where $T$ is an $n$-by- $n$ tridiagonal matrix and lambda is a scalar, as

```
T - lambda* I = P* L* U,
```

where $P$ is a permutation matrix, $L$ is a unit lower tridiagonal matrix with at most one non-zero sub-diagonal elements per column and $U$ is an upper triangular matrix with at most two non-zero super-diagonal elements per column. The factorization is obtained by Gaussian elimination with partial pivoting and implicit row scaling. The parameter lambda is included in the routine so that ? lagtf may be used, in conjunction with ? lagts, to obtain eigenvectors of $T$ by inverse iteration.

## Input Parameters

$n$
$a, b, c$
tol

INTEGER. The order of the matrix $T(n \geq 0)$.
REAL for slagtf
DOUBLE PRECISION for dlagtf
Arrays, dimension $a(n), b(n-1), c(n-1)$ :
On entry, $a(*)$ must contain the diagonal elements of the matrix $T$.
On entry, $b\left(^{*}\right)$ must contain the ( $n-1$ ) super-diagonal elements of $T$.
On entry, $c\left(^{*}\right)$ must contain the ( $n-1$ ) sub-diagonal elements of $T$.
REAL for slagtf
DOUBLE PRECISION for dlagtf
On entry, a relative tolerance used to indicate whether or not the matrix ( $T$ - lambda*I) is nearly singular. tol should normally be chose as approximately the largest relative error in the elements of $T$. For example, if the elements of $T$ are correct to about 4 significant figures, then tol should be set to about $5 * 10^{-4}$. If tol is supplied as less than eps, where eps is the relative machine precision, then the value eps is used in place of tol.

## Output Parameters

a
$b$

C
$d$
in

On exit, $a$ is overwritten by the $n$ diagonal elements of the upper triangular matrix $U$ of the factorization of $T$.
On exit, $b$ is overwritten by the $n-1$ super-diagonal elements of the matrix $U$ of the factorization of $T$.
On exit, $c$ is overwritten by the $n-1$ sub-diagonal elements of the matrix $L$ of the factorization of $T$.
REAL for slagtf
DOUBLE PRECISION for dlagtf
Array, dimension ( $n-2$ ).
On exit, $d$ is overwritten by the $n-2$ second super-diagonal elements of the matrix $U$ of the factorization of $T$.

INTEGER.
Array, dimension ( $n$ ).

On exit, in contains details of the permutation matrix $p$. If an interchange occurred at the $k$-th step of the elimination, then $i n(k)=1$, otherwise $\operatorname{in}(k)=0$. The element $i n(n)$ returns the smallest positive integer $j$ such that
$\operatorname{abs}(u(j, j)) \leq \operatorname{norm}((T-\operatorname{lambda*I)(j))*tol,~}$
where norm $(A(j))$ denotes the sum of the absolute values of the $j$-th row of the matrix $A$.
If no such $j$ exists then $\operatorname{in}(n)$ is returned as zero. If $i n(n)$ is returned as positive, then a diagonal element of $U$ is small, indicating that ( $T$ lambda*I) is singular or nearly singular.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-k$, the $k$-th parameter had an illegal value.


#### Abstract

?lagtm Performs a matrix-matrix product of the form $C=$ alpha ${ }^{*} A{ }^{*} B+b e t a{ }^{*} C$, where $A$ is a tridiagonal matrix, $B$ and $C$ are rectangular matrices, and alpha and beta are scalars, which may be 0,1 , or -1 .


## Syntax

```
call slagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
call dlagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
call clagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
call zlagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
```

Include files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine performs a matrix-vector product of the form:

```
B := alpha*A* X + beta*B
```

where $A$ is a tridiagonal matrix of order $n, B$ and $X$ are $n$-by- $n r h s$ matrices, and alpha and beta are real scalars, each of which may be $0 ., 1 .$, or -1 .

## Input Parameters

trans	CHARACTER*1. Must be 'N' or 'T' or 'C'.
	Indicates the form of the equations:
	If trans $=$ ' $N$ ', then $B:=a l p h a \star A \star X+\operatorname{beta} B$ (no transpose);
	If trans $=$ 'T', then $B:=$ alpha* $A^{T *} X+$ beta* $B$ (transpose);
	If trans $=$ ' C', then $B:=a l p h a \star ~ A^{H \star} X+$ beta* $B$ (conjugate transpose)
$n$	INTEGER. The order of the matrix $A(n \geq 0)$.
nrhs	INTEGER. The number of right-hand sides, i.e., the number of columns in $X$ and $B$ (nrhs $\geq 0$ ).
alpha, beta	REAL for slagtm/clagtm
	DOUBLE PRECISION for dlagtm/zlagtm


	Specify the scalars alpha and beta respectively. alpha must be 0., 1., or -1 .; otherwise, it is assumed to be 0 . beta must be $0 ., 1$., or -1 .; otherwise, it is assumed to be 1.
$d 1, d, d u$	REAL for slagtm
	DOUBLE PRECISION for dlagtm
	COMPLEX for clagtm
	DOUBLE COMPLEX for zlagtm.
	Arrays: $d l(n-1), d(n), d u(n-1)$.
	The array dl contains the ( $n-1$ ) sub-diagonal elements of $T$.
	The array $d$ contains the $n$ diagonal elements of $T$.
	The array du contains the ( $n-1$ ) super-diagonal elements of $T$.
$x, b$	REAL for slagtm
	DOUBLE PRECISION for dlagtm
	COMPLEX for clagtm
	DOUBLE COMPLEX for zlagtm.
	Arrays:
	$x(I d x, *)$ contains the $n$-by-nrhs matrix $x$. The second dimension of $x$ must be at least max ( $1, n r h s$ ).
	$b(I d b, *)$ contains the $n$-by-nrhs matrix $B$. The second dimension of $b$ must be at least max (1, nrhs).
$1 d x$	INTEGER. The leading dimension of the array $x ; l d x \geq \max (1, n)$.
1 db	INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.

## Output Parameters

b
Overwritten by the matrix expression $B:=a l p h a \star A \star X+b e t a \star B$

## ?lagts

Solves the system of equations $\left(T-\operatorname{lambda}^{2}\right)^{2} *_{X}=y$ or $(T-\text { lambda* })^{T *_{X}}=y$, where $T$ is a general tridiagonal matrix and lambda is a scalar, using the LU factorization computed by ?lagt.

## Syntax

```
call slagts(job, n, a, b, c, d, in, y, tol, info)
call dlagts(job, n, a, b, c, d, in, y, tol, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine may be used to solve for $x$ one of the systems of equations:

```
(T - lambda* I)*x = y or (T - lambda*I) }\mp@subsup{}{}{T*}x=y
```

where $T$ is an $n-b y-n$ tridiagonal matrix, following the factorization of $\left(T-\operatorname{lambda}{ }^{\star} I\right)$ as

```
T - lambda* I = P* L* U,
```

computed by the routine ?lagtf.

The choice of equation to be solved is controlled by the argument job, and in each case there is an option to perturb zero or very small diagonal elements of $U$, this option being intended for use in applications such as inverse iteration.

## Input Parameters

INTEGER. Specifies the job to be performed by ?lagts as follows:
= 1: The equations ( $T-\operatorname{lambda\star } I$ ) $x=y$ are to be solved, but diagonal elements of $U$ are not to be perturbed.
$=-1$ : The equations ( $T$ - lambda*I) $x=y$ are to be solved and, if overflow would otherwise occur, the diagonal elements of $U$ are to be perturbed. See argument tol below.
= 2: The equations $(T-\operatorname{lambda} I)^{T} X=y$ are to be solved, but diagonal elements of $U$ are not to be perturbed.
$=-2$ : The equations $\left(T-\operatorname{lambda}{ }^{\star} I\right)^{T} T_{X}=y$ are to be solved and, if overflow would otherwise occur, the diagonal elements of $U$ are to be perturbed. See argument tol below.

INTEGER. The order of the matrix $T(n \geq 0)$.
REAL for slagts
DOUBLE PRECISION for dlagts
Arrays, dimension $a(n), b(n-1), c(n-1), a(n-2)$ :
On entry, $a(*)$ must contain the diagonal elements of $U$ as returned from ?
lagtf.
On entry, $b(*)$ must contain the first super-diagonal elements of $U$ as returned from ?lagtf.
On entry, $c(*)$ must contain the sub-diagonal elements of $L$ as returned from ?lagtf.
On entry, $d$ (*) must contain the second super-diagonal elements of $U$ as returned from ?lagtf.
INTEGER.
Array, dimension ( $n$ ).
On entry, in(*) must contain details of the matrix $p$ as returned from ?
lagtf.
REAL for slagts
DOUBLE PRECISION for dlagts
Array, dimension ( $n$ ). On entry, the right hand side vector $y$.
REAL for slagtf
DOUBLE PRECISION for dlagtf.
On entry, with job < 0, tol should be the minimum perturbation to be made to very small diagonal elements of $U$. tol should normally be chosen as about eps*norm ( $U$ ), where eps is the relative machine precision, but if tol is supplied as non-positive, then it is reset to eps*max ( abs ( u(i,j))). If job > 0 then tol is not referenced.

## Output Parameters

y
tol
info

On exit, $y$ is overwritten by the solution vector $x$.
On exit, tol is changed as described in Input Parameters section above, only if tol is non-positive on entry. Otherwise tol is unchanged.

INTEGER.
If info $=0$, the execution is successful.

If info $=-i$, the $i$-th parameter had an illegal value. If info $=i>0$, overflow would occur when computing the $i$ th element of the solution vector $x$. This can only occur when job is supplied as positive and either means that a diagonal element of $U$ is very small, or that the elements of the right-hand side vector $y$ are very large.

## ?lagv2

Computes the Generalized Schur factorization of a real
2-by-2 matrix pencil ( $A, B$ ) where $B$ is upper triangular.

## Syntax

```
call slagv2(a, lda, b, ldb, alphar, alphai, beta, csl, snl, csr, snr)
call dlagv2(a, lda, b, ldb, alphar, alphai, beta, csl, snl, csr, snr)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes the Generalized Schur factorization of a real 2-by-2 matrix pencil $(A, B)$ where $B$ is upper triangular. The routine computes orthogonal (rotation) matrices given by csl, snl and csr, snr such that:

1) if the pencil $(A, B)$ has two real eigenvalues (include $0 / 0$ or $1 / 0$ types), then

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{11} \\
0 & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{cs1} & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{cs} 1
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{cs} r & -\operatorname{sn} r \\
\operatorname{sn} r & \csc \gamma
\end{array}\right]} \\
& {\left[\begin{array}{ll}
b_{11} & b_{11} \\
0 & b_{22}
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{cs} 1 & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{cs} 1
\end{array}\right]\left[\begin{array}{cc}
b_{11} & b_{12} \\
0 & b_{22}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{cs} r & -\operatorname{sn} r \\
\operatorname{snr} & \operatorname{cs} r
\end{array}\right]}
\end{aligned}
$$

2) if the pencil $(A, B)$ has a pair of complex conjugate eigenvalues, then

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{11} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{cs1} & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{cs} 1
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
\operatorname{cs} r & -\operatorname{sn} r \\
\operatorname{snr} & \operatorname{csr} r
\end{array}\right]} \\
& {\left[\begin{array}{cc}
b_{11} & 0 \\
0 & b_{22}
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{cs1} & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{cs} 1
\end{array}\right]\left[\begin{array}{cc}
b_{11} & b_{12} \\
0 & b_{22}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{csr} & -\operatorname{sn} r \\
\operatorname{snr} & \csc r
\end{array}\right]}
\end{aligned}
$$

where $b_{11} \geq b_{22}>0$.

## Input Parameters

```
a,b
 REAL for slagv2
 DOUBLE PRECISION for dlagv2
 Arrays:
 a(lda,2) contains the 2-by-2 matrix A;
 b}(1db,2) contains the upper triangular 2-by-2 matrix B.
 INTEGER. The leading dimension of the array a;
 lda \geq 2.
 INTEGER. The leading dimension of the array b;
 ldb }\geq2
```


## Output Parameters

```
a
b
alphar, alphai, beta
csl,snl
csr, snr
csr, snr
```

On exit, a is overwritten by the "A-part" of the generalized Schur form.
On exit, $b$ is overwritten by the " $B$-part" of the generalized Schur form.
REAL for slagv2
DOUBLE PRECISION for dlagv2.
Arrays, dimension (2) each.
(alphar(k) + i*alphai(k))/beta(k) are the eigenvalues of the pencil
$(A, B), k=1,2$ and $i=\operatorname{sqrt}(-1)$.
Note that beta(k) may be zero.
REAL for slagv2
DOUBLE PRECISION for dlagv2
The cosine and sine of the left rotation matrix, respectively.
REAL for slagv2
DOUBLE PRECISION for dlagv2
The cosine and sine of the right rotation matrix, respectively.

## ?lahqr

Computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/ single-shift QR algorithm.

## Syntax

```
call slahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, info)
call dlahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, info)
call clahqr(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info)
call zlahqr(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

Description
The routine is an auxiliary routine called by ?hseqr to update the eigenvalues and Schur decomposition already computed by ?hseqr, by dealing with the Hessenberg submatrix in rows and columns ilo to ihi.

Input Parameters

## Output Parameters

h
wr, wi

```
wantt
wantz
n
ilo, ihi
h, z
ldh
ldz
iloz, ihiz
LOGICAL.
If wantt \(=\).TRUE., the full Schur form \(T\) is required;
If wantt \(=\).FALSE., eigenvalues only are required.
LOGICAL.
If want \(z=\).TRUE., the matrix of Schur vectors \(z\) is required;
If wantz = .FALSE., Schur vectors are not required.
INTEGER. The order of the matrix \(H(n \geq 0)\).
INTEGER.
It is assumed that \(h\) is already upper quasi-triangular in rows and columns \(i h i+1: n\), and that \(h(i l o, i l o-1)=0\) (unless ilo = 1). The routine ? lahqr works primarily with the Hessenberg submatrix in rows and columns ilo to ihi, but applies transformations to all of \(h\) if wantt \(=\). TRUE..
Constraints:
\(1 \leq i l o \leq \max (1, i h i) ;\) ihi \(\leq n\).
REAL for slahqr
DOUBLE PRECISION for dlahqr
COMPLEX for clahqr
DOUBLE COMPLEX for zlahqr.
```


## Arrays:

```
\(h(l d h, *)\) contains the upper Hessenberg matrix \(h\).
The second dimension of \(h\) must be at least max \((1, n)\).
\(z(I d z, *)\)
If wantz = .TRUE., then, on entry, \(z\) must contain the current matrix \(z\) of transformations accumulated by ?hseqr.
If wantz =.FALSE., then \(z\) is not referenced. The second dimension of \(z\) must be at least max \((1, n)\).
INTEGER. The leading dimension of \(h\); at least max \((1, n)\).
INTEGER. The leading dimension of \(z\); at least max \((1, n)\).
INTEGER. Specify the rows of \(z\) to which transformations must be applied if wantz = .TRUE..
\(1 \leq i l o z \leq i l o ; i h i \leq i h i z \leq n\).
```

On exit, if info $=0$ and wantt $=$. TRUE., then,

- for slahqr/dlahqr, $h$ is upper quasi-triangular in rows and columns ilo:ihi with any 2-by-2 diagonal blocks in standard form.
- for clahqr/zlahqr, h is upper triangular in rows and columns ilo:ihi.

If info $=0$ and wantt $=$.FALSE., the contents of $h$ are unspecified on exit. If info is positive, see description of info for the output state of $h$.
REAL for slahqr
DOUBLE PRECISION for dlahqr
Arrays, DIMENSION at least max $(1, n)$ each. Used with real flavors only. The real and imaginary parts, respectively, of the computed eigenvalues ilo to ihi are stored in the corresponding elements of wr and wi. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of wr and wi, say the $i$-th and (i+1)-th, with wi (i) > 0 and wi(i+1) < 0 .


## ?lahrd

Reduces the first no columns of a general rectangular matrix $A$ so that elements below the $k$-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of $A$.

## Syntax

```
call slahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)
call dlahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)
call clahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)
call zlahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine reduces the first $n b$ columns of a real/complex general $n$-by- $(n-k+1)$ matrix $A$ so that elements below the $k$-th subdiagonal are zero. The reduction is performed by an orthogonal/unitary similarity transformation $Q^{T *_{A}{ }^{*}}$, for real flavors, or $Q^{H *_{A}{ }_{Q}}$ for complex flavors. The routine returns the matrices $V$ and $T$ which determine $Q$ as a block reflector $I-V^{*} T^{*} V^{T}$ (for real flavors) or $I-V^{*} T^{*} V^{H}$ (for complex flavors), and also the matrix $Y=A^{*} V^{*} T$.

The matrix $Q$ is represented as products of nb elementary reflectors:
$Q=H(1) * H(2) * \ldots * H(n b)$
Each $H(i)$ has the form
$H(i)=I-t a u^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-t a u^{\star} V^{\star} V^{H}$ for complex flavors, or
where $t a u$ is a real/complex scalar, and $v$ is a real/complex vector.
This is an obsolete auxiliary routine. Please use the new routine ? lahr2 instead.

## Input Parameters

```
n
k
n.b
a
lda
ldt
ldy
INTEGER. The order of the matrix \(A(n \geq 0)\).
INTEGER. The offset for the reduction. Elements below the \(k\)-th subdiagonal in the first \(n b\) columns are reduced to zero.
INTEGER. The number of columns to be reduced.
REAL for slahrd
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
DOUBLE COMPLEX for zlahrd.
Array \(a(l d a, n-k+1)\) contains the \(n-b y-(n-k+1)\) general matrix \(A\) to be reduced.
INTEGER. The leading dimension of \(a\); at least max \((1, n)\).
INTEGER. The leading dimension of the output array \(t\); must be at least \(\max (1, n b)\).
INTEGER. The leading dimension of the output array \(y\); must be at least \(\max (1, n)\).
```


## Output Parameters

a
tau
$t, y$

a	On exit, the elements on and above the $k$-th subdiagonal in the first $n b$ columns are overwritten with the corresponding elements of the reduced matrix; the elements below the $k$-th subdiagonal, with the array tau, represent the matrix $Q$ as a product of elementary reflectors. The other columns of a are unchanged. See Application Notes below.
tau	REAL for slahrd
	DOUBLE PRECISION for dlahrd
	COMPLEX for clahrd
	DOUBLE COMPLEX for zlahrd.
	Array, DIMENSION ( $n b$ ).
	Contains scalar factors of the elementary reflectors.
$t, y$	REAL for slahrd
	DOUBLE PRECISION for dlahrd
	COMPLEX for clahrd
	DOUBLE COMPLEX for zlahrd.
	Arrays, dimension $t(l d t, n b), y(l d y, n b)$.

The array $t$ contains upper triangular matrix $T$.
The array $y$ contains the $n$-by- $n b$ matrix $Y$.

## Application Notes

For the elementary reflector $H(i)$,
$v(1: i+k-1)=0, v(i+k)=1 ; v(i+k+1: n)$ is stored on exit in $a(i+k+1: n, i)$ and tau is stored in $\operatorname{tau}(i)$.
The elements of the vectors $v$ together form the $(n-k+1)$-by- $n b$ matrix $V$ which is needed, with $T$ and $Y$, to apply the transformation to the unreduced part of the matrix, using an update of the form:
$A:=\left(I-V^{\star} T^{\star} V^{T}\right) *\left(A-Y^{\star} V^{T}\right)$ for real flavors, or
$A:=\left(I-V^{\star} T^{\star} V^{H}\right) \star\left(A-Y^{\star} V^{H}\right)$ for complex flavors.
The contents of $A$ on exit are illustrated by the following example with $n=7, k=3$ and $n b=2$ :
$\left[\begin{array}{lllll}a & h & a & a & a \\ a & h & a & a & a \\ a & h & a & a & a \\ h & h & a & a & a \\ v_{1} & h & a & a & a \\ v_{1} & v_{2} & a & a & a \\ v_{1} & v_{2} & a & a & a\end{array}\right]$
where a denotes an element of the original matrix $A, h$ denotes a modified element of the upper Hessenberg matrix $H$, and $v_{i}$ denotes an element of the vector defining $H(i)$.

## See Also

?lahr2

## ?lahr2

Reduces the specified number of first columns of a general rectangular matrix A so that elements below the specified subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of $A$.

## Syntax

```
call slahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)
call dlahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)
call clahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)
call zlahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine reduces the first $n b$ columns of a real/complex general $n-b y-(n-k+1)$ matrix $A$ so that elements below the $k$-th subdiagonal are zero. The reduction is performed by an orthogonal/unitary similarity transformation $Q^{T *_{A}{ }^{*} Q}$ for real flavors, or $Q^{H *_{A}}{ }_{Q}$ for complex flavors. The routine returns the matrices $V$ and $T$ which determine $Q$ as a block reflector $I-V^{*} T^{*} V^{T}$ (for real flavors) or $I-V^{*} T^{*} V^{H}$ (for real flavors), and also the matrix $Y=A^{*} V^{*} T$.

The matrix $Q$ is represented as products of $n b$ elementary reflectors:
$Q=H(1) \star H(2) \star \ldots{ }^{\star} H(n b)$
Each $H(i)$ has the form
$H(i)=I-\tan V^{\star} V^{T}$ for real flavors, or
$H(i)=I-\operatorname{tau}{ }^{\star} V^{\star} V^{H}$ for complex flavors
where $t a u$ is a real/complex scalar, and $v$ is a real/complex vector.
This is an auxiliary routine called by ?gehrd.

## Input Parameters

```
n
k
n.b
a
lda
ldt
ldy
```


## Output Parameters

```
Ida
ldt
ldy
```

a
tau
$t, y$
$t, y$

INTEGER. The order of the matrix $A(n \geq 0)$.
INTEGER. The offset for the reduction. Elements below the $k$-th subdiagonal in the first $n b$ columns are reduced to zero $(k<n)$.
INTEGER. The number of columns to be reduced.
REAL for slahr2
DOUBLE PRECISION for dlahr2
COMPLEX for clahr2
DOUBLE COMPLEX for zlahr2.
Array, DIMENSION ( $1 d a, n-k+1$ ) contains the $n$-by- $(n-k+1)$ general matrix $A$ to be reduced.

INTEGER. The leading dimension of the array $a ; \operatorname{lda} \geq \max (1, n)$.
INTEGER. The leading dimension of the output array $t ; 1 d t \geq n b$.
INTEGER. The leading dimension of the output array $y ; I d y \geq n$.

On exit, the elements on and above the $k$-th subdiagonal in the first $n b$ columns are overwritten with the corresponding elements of the reduced matrix; the elements below the $k$-th subdiagonal, with the array tau, represent the matrix $Q$ as a product of elementary reflectors. The other columns of a are unchanged. See Application Notes below.
REAL for slahr2
DOUBLE PRECISION for dlahr2
COMPLEX for clahr2
DOUBLE COMPLEX for zlahr2.
Array, DIMENSION (nb).
Contains scalar factors of the elementary reflectors.

DOUBLE PRECISION for dlahr2
COMPLEX for clahr2
DOUBLE COMPLEX for zlahr2.
Arrays, dimension $t(l d t, n b), y(l d y, n b)$.

The array $t$ contains upper triangular matrix $T$. The array $y$ contains the $n$-by-nb matrix $Y$.

## Application Notes

For the elementary reflector $H(i)$,
$v(1: i+k-1)=0, v(i+k)=1 ; v(i+k+1: n)$ is stored on exit in $a(i+k+1: n$, i) and tau is stored in tau(i).

The elements of the vectors $v$ together form the $(n-k+1)$-by- $n b$ matrix $V$ which is needed, with $T$ and $Y$, to apply the transformation to the unreduced part of the matrix, using an update of the form:
$A:=\left(I-V^{\star} T^{\star} V^{T}\right) *\left(A-Y^{\star} V^{T}\right)$ for real flavors, or
$A:=\left(I-V^{\star} T^{\star} V^{H}\right) \star\left(A-Y^{\star} V^{H}\right)$ for complex flavors.
The contents of $A$ on exit are illustrated by the following example with $n=7, k=3$ and $n b=2$ :

$$
\left[\begin{array}{lllll}
a & a & a & a & a \\
a & a & a & a & a \\
a & a & a & a & a \\
h & h & a & a & a \\
v_{1} & h & a & a & a \\
v_{1} & v_{2} & a & a & a \\
v_{1} & v_{2} & a & a & a
\end{array}\right]
$$

where a denotes an element of the original matrix $A, h$ denotes a modified element of the upper Hessenberg matrix $H$, and $v_{i}$ denotes an element of the vector defining $H(i)$.

## ?laic1

Applies one step of incremental condition estimation.
Syntax

```
call slaicl(job, j, x, sest, w, gamma, sestpr, s, c)
call dlaicl(job, j, x, sest, w, gamma, sestpr, s, c)
call claicl(job, j, x, sest, w, gamma, sestpr, s, C)
call zlaicl(job, j, x, sest, w, gamma, sestpr, s, C)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?laic1 applies one step of incremental condition estimation in its simplest version.
Let $x,||x||_{2}=1$ (where $||a||_{2}$ denotes the 2-norm of $a$ ), be an approximate singular vector of an $j$-by- $j$ lower triangular matrix $L$, such that
$\left|\left|L^{*} x\right|\right|_{2}=$ sest
Then ?laic1 computes sestpr, s, c such that the vector
xhat $=\left[\begin{array}{c}s^{*} \mathrm{x} \\ c\end{array}\right]$
is an approximate singular vector of
Lhat $=\left[\begin{array}{cc}L & 0 \\ w^{M} & \text { gamma }\end{array}\right]$ (for complex flavors), or
Lhat $=\left[\begin{array}{cc}L & 0 \\ w^{T} & \text { gamma }\end{array}\right]$ (for real flavors), in the sense that
||Lhat*xhat|| $\left.\right|_{2}$ = sestpr.
Depending on job, an estimate for the largest or smallest singular value is computed.
For real flavors, $[s c]^{T}$ and sestpr ${ }^{2}$ is an eigenpair of the system
where alpha $=x^{T} *_{w}$.
For complex flavors, $\left[\begin{array}{ll}s & c\end{array}\right]^{H}$ and sestpr $r^{2}$ is an eigenpair of the system

$$
\operatorname{diag}(\text { sest*sest, } 0)+[\text { alpha ganma }] *\left[\begin{array}{c}
\operatorname{conjg(alpha)} \\
\operatorname{conjg(gamma)}
\end{array}\right]
$$

where alpha $=x^{H \star}$ w.
Input Parameters

job	INTEGER.
	If job $=1$, an estimate for the largest singular value is computed;
	If job $=2$, an estimate for the smallest singular value is computed;
j	INTEGER. Length of $x$ and $w$.
$x, w$	REAL for slaic1
	DOUBLE PRECISION for dlaic1
	COMPLEX for claic1
	DOUBLE COMPLEX for zlaic1.
	Arrays, dimension ( $j$ ) each. Contain vectors $x$ and $w$, respectively.
sest	REAL for slaicl/claic1;
	DOUBLE PRECISION for dlaic1/zlaic1.
	Estimated singular value of $j$-by-j matrix $L$.
gamma	REAL for slaic1
	DOUBLE PRECISION for dlaic1
	COMPLEX for claic1
	DOUBLE COMPLEX for zlaic1.
	The diagonal element gamma.

## Output Parameters

```
sestpr
S,C
REAL for slaic1/claicl;
DOUBLE PRECISION for dlaic1/zlaic1.
Estimated singular value of (j+1)-by-(j+1) matrix Lhat.
REAL for slaicl
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
DOUBLE COMPLEX for zlaic1.
Sine and cosine needed in forming xhat.
```


## ?laln2

Solves a 1-by-1 or 2-by-2 linear system of equations of the specified form.

## Syntax

```
call slaln2(ltrans, na, nw, smin, ca, a, lda, dl, d2, b, ldb, wr, wi, x, ldx, scale,
xnorm, info)
call dlaln2(ltrans, na, nw, smin, ca, a, lda, dl, d2, b, ldb, wr, wi, x, ldx, scale,
xnorm, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine solves a system of the form

```
(ca*A - w* D)*X = s*B, or (ca*AT - w* D)*X = s*B
```

with possible scaling ( $s$ ) and perturbation of $A$.
$A$ is an na-by-na real matrix, ca is a real scalar, $D$ is an na-by-na real diagonal matrix, wis a real or complex value, and $X$ and $B$ are na-by- 1 matrices: real if $w$ is real, complex if $w$ is complex. The parameter na may be 1 or 2.
If $w$ is complex, $x$ and $B$ are represented as na-by- 2 matrices, the first column of each being the real part and the second being the imaginary part.
The routine computes the scaling factor $s(\leq 1)$ so chosen that $x$ can be computed without overflow. $x$ is further scaled if necessary to assure that norm ( $c a^{\star} A-W^{\star} D$ ) ${ }^{\text {norm }}(X)$ is less than overflow.
If both singular values of $\left(c a^{*} A-w^{*} D\right)$ are less than $\operatorname{smin}, \operatorname{smin}^{*} I$ (where $I$ stands for identity) will be used instead of $\left(c a^{*} A-w^{*} D\right)$. If only one singular value is less than $\operatorname{smin}$, one element of ( $c a^{*} A-w^{*} D$ ) will be perturbed enough to make the smallest singular value roughly smin.

If both singular values are at least $\operatorname{smin},\left(c a^{\star} A-w^{\star} D\right)$ will not be perturbed. In any case, the perturbation will be at most some small multiple of max (smin, ulp*norm ( $\left.c a^{\star} A-w^{\star} D\right)$ ).
The singular values are computed by infinity-norm approximations, and thus will only be correct to a factor of 2 or so.

NOTE All input quantities are assumed to be smaller than overflow by a reasonable factor (see bignum).

Input Parameters
trans
na
nw
smin
ca
a

Ida
$d 1, d 2$
b

1 db
wr, wi

Idx

## Output Parameters

X
scale

LOGICAL.
If trans = .TRUE., A- transpose will be used.
If trans = .FALSE., A will be used (not transposed.)
INTEGER. The size of the matrix $A$, possible values 1 or 2 .
integer. This parameter must be 1 if $w$ is real, and 2 if $w$ is complex. Possible values 1 or 2.
REAL for slaln2
DOUBLE PRECISION for dlaln2.
The desired lower bound on the singular values of $A$.
This should be a safe distance away from underflow or overflow, for example, between (underflow/machine_precision) and (machine_precision * overflow). (See bignum and ulp).
REAL for slaln2
DOUBLE PRECISION for dlaln2.
The coefficient by which $A$ is multiplied.
REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION (lda,na).
The na-by-na matrix $A$.
integer. The leading dimension of $a$. Must be at least na.
REAL for slaln2
DOUBLE PRECISION for dlaln2.
The $(1,1)$ and $(2,2)$ elements in the diagonal matrix $D$, respectively. $d 2$ is not used if $n w=1$.
REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION ( $1 d b, n w$ ). The na-by-nw matrix $B$ (right-hand side). If $n w$ $=2$ ( $w$ is complex), column 1 contains the real part of $B$ and column 2 contains the imaginary part.
INTEGER. The leading dimension of $b$. Must be at least na.
REAL for slaln2
DOUBLE PRECISION for dlaln2.
The real and imaginary part of the scalar $w$, respectively. wi is not used if $n w=1$.
INTEGER. The leading dimension of the output array $x$. Must be at least na.

REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION ( $I d x, n w$ ). The na-by-nw matrix $x$ (unknowns), as computed by the routine. If $n w=2$ ( $w$ is complex), on exit, column 1 will contain the real part of $x$ and column 2 will contain the imaginary part.
REAL for slaln2
DOUBLE PRECISION for dlaln2.
The scale factor that $B$ must be multiplied by to insure that overflow does not occur when computing $x$. Thus ( $\left.c a^{\star} A-w^{\star} D\right) \quad X$ will be scale* $B_{B}$, not $B$ (ignoring perturbations of $A$.) It will be at most 1 .

```
xnorm REAL for slaln2
DOUBLE PRECISION for dlaln2.
The infinity-norm of }x\mathrm{ , when }x\mathrm{ is regarded as an na-by-nw real matrix.
INTEGER.
An error flag. It will be zero if no error occurs, a negative number if an
argument is in error, or a positive number if (ca\starA - w^D) had to be
perturbed. The possible values are:
If info = 0: no error occurred, and (ca^A - w* D) did not have to be
perturbed.
If info = 1:(ca*A - w* D) had to be perturbed to make its smallest (or
only) singular value greater than smin.
```

NOTE For higher speed, this routine does not check the inputs for errors.

## ?lals0 <br> Applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by ?gelsd.

## Syntax

```
call slals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr, givcol,
ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, info)
call dlals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr, givcol,
ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, info)
call clals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr, givcol,
ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, rwork, info)
call zlals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr, givcol,
ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, rwork, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
Description

The routine applies back the multiplying factors of either the left or right singular vector matrix of a diagonal matrix appended by a row to the right hand side matrix $B$ in solving the least squares problem using the divide-and-conquer SVD approach.

For the left singular vector matrix, three types of orthogonal matrices are involved:
(1L) Givens rotations: the number of such rotations is givptr; the pairs of columns/rows they were applied to are stored in givcol;and the $c$ - and $s$-values of these rotations are stored in givnum.
(2L) Permutation. The ( $n l+1$ )-st row of $B$ is to be moved to the first row, and for $j=2: n$, perm $(j)$-th row of $B$ is to be moved to the $j$-th row.
(3L) The left singular vector matrix of the remaining matrix.
For the right singular vector matrix, four types of orthogonal matrices are involved:
(1R) The right singular vector matrix of the remaining matrix.
$(2 R)$ If sqre $=1$, one extra Givens rotation to generate the right null space.
(3R) The inverse transformation of (2L).
(4R) The inverse transformation of (1L).

## Input Parameters

icompq	INTEGER. Specifies whether singular vectors are to be computed in factored form:   If $\mathrm{icompq}=0$ : Left singular vector matrix.   If $i c o m p q=1$ : Right singular vector matrix.
n1	INTEGER. The row dimension of the upper block. $n l \geq 1$.
$n r$	INTEGER. The row dimension of the lower block. $n r \geq 1$.
sqre	INTEGER.   If sqre $=0$ : the lower block is an $n r$-by-nr square matrix.   If sqre $=1$ : the lower block is an $n r$-by- $(n r+1)$ rectangular matrix. The bidiagonal matrix has row dimension $n=n l+n r+1$, and column dimension $m=n+$ sqre.
nrhs	INTEGER. The number of columns of $B$ and $b x$. Must be at least 1.
b	REAL for slals0   DOUBLE PRECISION for dlals0   COMPLEX for clals0   DOUBLE COMPLEX for zlals0.   Array, DIMENSION ( ldb, nrhs ).   Contains the right hand sides of the least squares problem in rows 1 through $m$.
1 db	INTEGER. The leading dimension of $b$. Must be at least max $(1, \max (m, n))$.
$b x$	REAL for slals0   DOUBLE PRECISION for dlals0   COMPLEX for clals0   DOUBLE COMPLEX for zlals0.   Workspace array, DIMENSION ( Idbx, nrhs ).
1 dbx	INTEGER. The leading dimension of bx.
perm	INTEGER. Array, DIMENSION ( $n$ ).   The permutations (from deflation and sorting) applied to the two blocks.
givptr	INTEGER. The number of Givens rotations which took place in this subproblem.
givcol	INTEGER. Array, DIMENSION ( $1 d g c o l, 2$ ). Each pair of numbers indicates a pair of rows/columns involved in a Givens rotation.
Idgcol	INTEGER. The leading dimension of givcol, must be at least $n$.
givnum	REAL for slals0/clals0   DOUBLE PRECISION for dlals0/zlals0   Array, DIMENSION ( Idgnum, 2 ). Each number indicates the c or $s$ value used in the corresponding Givens rotation.
Idgnum	INTEGER. The leading dimension of arrays difr, poles and givnum, must be at least $k$.
poles	REAL for slals0/clals0 DOUBLE PRECISION for dlals0/zlals0

```
Array, DIMENSION (ldgnum, 2). On entry, poles(\(1: k, 1\)) contains the new singular values obtained from solving the secular equation, and poles \((1: k\), \(2)\) is an array containing the poles in the secular equation.
difl REAL for slals0/clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (k). On entry, difl(i) is the distance between i-th
updated (undeflated) singular value and the i-th (undeflated) old singular value.
REAL for slals0/clals0 DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (Idgnum, 2). On entry, \(\operatorname{difr}(i, 1)\) contains the distances between \(i\)-th updated (undeflated) singular value and the \(i+1\)-th (undeflated) old singular value. And \(\operatorname{difr}(i, 2)\) is the normalizing factor for the \(i\)-th right singular vector.
z
REAL for slals0/clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (\(k\)). Contains the components of the deflation-adjusted updating row vector.
K INTEGER. Contains the dimension of the non-deflated matrix. This is the order of the related secular equation. \(1 \leq k \leq n\).
C
REAL for slals0/clals0
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre \(=0\) and the \(c\) value of a Givens rotation related to the right null space if sqre \(=1\).
S
REAL for slals0/clals0
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre \(=0\) and the \(s\) value of a Givens rotation related to the right null space if sqre \(=1\).
work
REAL for slals0
DOUBLE PRECISION for dlals0
Workspace array, DIMENSION (\(k\)). Used with real flavors only.
rwork
REAL for clals0
DOUBLE PRECISION for zlals0
Workspace array, DIMENSION \(\left(k^{*}(1+n r h s)+2^{*} n r h s\right)\). Used with complex flavors only.
```


## Output Parameters

```
b
info
On exit, contains the solution \(x\) in rows 1 through \(n\).
INTEGER.
If info \(=0\) : successful exit.
If info \(=-i<0\), the \(i\)-th argument had an illegal value.
```


## ?lalsa

Computes the SVD of the coefficient matrix in compact form. Used by ?gelsd.

## Syntax

```
call slalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl, difr, z,
poles, givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info)
```

```
call dlalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl, difr, z,
poles, givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info)
call clalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl, difr, z,
poles, givptr, givcol, ldgcol, perm, givnum, c, s, rwork, iwork, info)
call zlalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl, difr, z,
poles, givptr, givcol, ldgcol, perm, givnum, c, s, rwork, iwork, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

Description
The routine is an intermediate step in solving the least squares problem by computing the SVD of the coefficient matrix in compact form. The singular vectors are computed as products of simple orthogonal matrices.

If $i \operatorname{compq}=0$, ? lalsa applies the inverse of the left singular vector matrix of an upper bidiagonal matrix to the right hand side; and if $i c o m p q=1$, the routine applies the right singular vector matrix to the right hand side. The singular vector matrices were generated in the compact form by ?lalsa.

## Input Parameters

icompq	INTEGER. Specifies whether the left or the right singular vector matrix is involved. If icompq $=0$ : left singular vector matrix is used   If icompq = 1: right singular vector matrix is used.
smlsiz	INTEGER. The maximum size of the subproblems at the bottom of the computation tree.
$n$	INTEGER. The row and column dimensions of the upper bidiagonal matrix.
nrhs	INTEGER. The number of columns of $b$ and $b x$. Must be at least 1 .
b	REAL for slalsa
	DOUBLE PRECISION for dlalsa
	COMPLEX for clalsa
	DOUBLE COMPLEX for zlalsa
	Array, DIMENSION ( $1 \mathrm{db}, \mathrm{nrhs}$ ). Contains the right hand sides of the least squares problem in rows 1 through $m$.
1 db	INTEGER. The leading dimension of $b$ in the calling subprogram. Must be at least max (1, max ( $m, n$ ) ).
1 dbx	INTEGER. The leading dimension of the output array bx.
$u$	REAL for slalsa/clalsa
	DOUBLE PRECISION for dlalsa/zlalsa
	Array, DIMENSION ( $1 d u$, smlsiz). On entry, u contains the left singular vector matrices of all subproblems at the bottom level.
$1 d u$	INTEGER, $I d u \geq n$. The leading dimension of arrays $u$, vt, difl, difr, poles, givnum, and $z$.
vt	REAL for slalsa/clalsa
	DOUBLE PRECISION for dlalsa/zlalsa
	Array, DIMENSION (ldu, smlsiz +1). On entry, vt ${ }^{T}$ (for real flavors) or $v t^{H}$ (for complex flavors) contains the right singular vector matrices of all subproblems at the bottom level.
k	INTEGER array, DIMENSION ( $n$ ).
difl	REAL for slalsa/clalsa


	DOUBLE PRECISION for dlalsa/zlalsa   Array, DIMENSION (ldu, nlvl), where nlvl $=\operatorname{int}\left(\log _{2}(n /(s m l s i z\right.$ +1)) +1 .
difr	REAL for slalsa/clalsa   DOUBLE PRECISION for dlalsa/zlalsa   Array, DIMENSION (ldu, $2 * n l v l)$. On entry, $\operatorname{difl}(*, i)$ and difr $(*, 2 i$   -1 ) record distances between singular values on the $i$-th level and singular values on the ( $i-1$ )-th level, and $\operatorname{difr}(*, 2 i)$ record the normalizing factors of the right singular vectors matrices of subproblems on $i$-th level.
$z$	REAL for slalsa/clalsa   DOUBLE PRECISION for dlalsa/zlalsa   Array, DIMENSION (ldu, nlvl. On entry, $z(1, i)$ contains the components of the deflation- adjusted updating the row vector for subproblems on the $i$-th level.
poles	REAL for slalsa/clalsa   DOUBLE PRECISION for dlalsa/zlalsa   Array, DIMENSION ( $1 d u, 2 *_{n l v l) .}$   On entry, poles(*, $2 i-1: 2 i$ ) contains the new and old singular values involved in the secular equations on the $i$-th level.
givptr	INTEGER. Array, DIMENSION ( $n$ ).   On entry, givptr( i ) records the number of Givens rotations performed on the $i$-th problem on the computation tree.
givcol	INTEGER. Array, DIMENSION ( $1 d g c o l, 2 *_{n} l v l$ ). On entry, for each $i$, givcol(*, $2 i-1: 2 i)$ records the locations of Givens rotations performed on the $i$-th level on the computation tree.
1 dgcol	INTEGER, $1 d g c o l \geq n$. The leading dimension of arrays givcol and perm.
perm	INTEGER. Array, DIMENSION ( $1 d g c o l, n l v l)$ ) On entry, perm (*, i) records permutations done on the $i$-th level of the computation tree.
givnum	REAL for slalsa/clalsa   DOUBLE PRECISION for dlalsa/zlalsa   Array, DIMENSION ( $1 d u, 2 *_{n l v l}$ ). On entry, givnum(*, $2 i-1: 2 i$ ) records the $c$ and $s$ values of Givens rotations performed on the $i$-th level on the computation tree.
C	REAL for slalsa/clalsa   DOUBLE PRECISION for dlalsa/zlalsa   Array, DIMENSION ( $n$ ). On entry, if the $i$-th subproblem is not square, $c$ (i) contains the $c$ value of a Givens rotation related to the right null space of the $i$-th subproblem.
$s$	REAL for slalsa/clalsa   DOUBLE PRECISION for dlalsa/zlalsa   Array, DIMENSION ( $n$ ). On entry, if the $i$-th subproblem is not square, $s$ ( i ) contains the $s$-value of a Givens rotation related to the right null space of the $i$-th subproblem.
work	REAL for slalsa   DOUBLE PRECISION for dlalsa   Workspace array, DIMENSION at least ( $n$ ). Used with real flavors only.
rwork	REAL for clalsa   DOUBLE PRECISION for zlalsa   Workspace array, DIMENSION at least max ( $n,(s m l s z+1) * n r h s * 3)$. Used with complex flavors only.


iwork	INTEGER.
	Workspace array, DIMENSION at least (3n).

## Output Parameters

```
b On exit, contains the solution }x\mathrm{ in rows 1 through n.
bx REAL for slalsa
 DOUBLE PRECISION for dlalsa
COMPLEX for clalsa
DOUBLE COMPLEX for zlalsa
Array, DIMENSION (Idbx, nrhs). On exit, the result of applying the left or
right singular vector matrix to b.
info INTEGER. If info = 0: successful exit
If info = -i < 0, the i-th argument had an illegal value.
```


## ?lalsd

Uses the singular value decomposition of $A$ to solve the least squares problem.

## Syntax

```
call slalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, iwork, info)
call dlalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, iwork, info)
call clalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, rwork, iwork,
info)
call zlalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, rwork, iwork,
info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine uses the singular value decomposition of $A$ to solve the least squares problem of finding $x$ to minimize the Euclidean norm of each column of $A * X-B$, where $A$ is $n$-by- $n$ upper bidiagonal, and $X$ and $B$ are $n$-by-nrhs. The solution $x$ overwrites $B$.

The singular values of A smaller than rcond times the largest singular value are treated as zero in solving the least squares problem; in this case a minimum norm solution is returned. The actual singular values are returned in $d$ in ascending order.

This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

## Input Parameters

uplo
CHARACTER*1.
If uplo = 'U', d and e define an upper bidiagonal matrix.
If uplo = 'L', $d$ and $e$ define a lower bidiagonal matrix.

smlsiz	INTEGER. The maximum size of the subproblems at the bottom of the computation tree.
$n$	INTEGER. The dimension of the bidiagonal matrix. $n \geq 0$.
nrhs	INTEGER. The number of columns of $B$. Must be at least 1 .
d	REAL for slalsd/clalsd   DOUBLE PRECISION for dlalsd/zlalsd   Array, DIMENSION ( $n$ ). On entry, $d$ contains the main diagonal of the bidiagonal matrix.
e	REAL for slalsd/clalsd   DOUBLE PRECISION for dlalsd/zlalsd   Array, DIMENSION ( $n-1$ ). Contains the super-diagonal entries of the bidiagonal matrix. On exit, $e$ is destroyed.
b	REAL for slalsd   DOUBLE PRECISION for dlalsd   COMPLEX for clalsd   DOUBLE COMPLEX for zlalsd   Array, DIMENSION ( $1 \mathrm{db}, \mathrm{nrhs}$ ).   On input, $b$ contains the right hand sides of the least squares problem. On output, $b$ contains the solution $X$.
1 db	INTEGER. The leading dimension of $b$ in the calling subprogram. Must be at least $\max (1, n)$.
rcond	REAL for slalsd/clalsd   DOUBLE PRECISION for dlalsd/zlalsd   The singular values of $A$ less than or equal to rcond times the largest singular value are treated as zero in solving the least squares problem. If rcond is negative, machine precision is used instead. For example, for the least squares problem diag $(S) * X=B$, where diag $(S)$ is a diagonal matrix of singular values, the solution is $X(i)=B(i) / S(i)$ if $S(i)$ is greater than rcond $* \max (S)$, and $X(i)=0$ if $S(i)$ is less than or equal to rcond ${ }^{*} \max (S)$.
rank	INTEGER. The number of singular values of $A$ greater than rcond times the largest singular value.
work	REAL for slalsd   DOUBLE PRECISION for dlalsd   COMPLEX for clalsd   DOUBLE COMPLEX for zlalsd   Workspace array.   DIMENSION for real flavors at least $\left(9 n+2 n^{\star} \operatorname{smlsiz}+8 n^{\star} n l v l+n^{\star} n r h s+(s m l s i z+1)^{2}\right),$   where   $n l v l=\max \left(0, \operatorname{int}\left(\log _{2}(n /(s m l s i z+1))\right)+1\right)$. DIMENSION for complex flavors is ( $n * n r h s$ ).
rwork	REAL for clalsd   DOUBLE PRECISION for zlalsd   Workspace array, used with complex flavors only.   DIMENSION at least ( $9 n+2 n^{\star} s m l s i z+8 n^{\star} n l v l+3 * m l s i z \star n r h s+$ $\left.(s m l s i z+1)^{2}\right),$   where $n l v l=\max \left(0, \operatorname{int}\left(\log _{2}(\min (m, n) /(\operatorname{smlsiz}+1))\right)+1\right) .$


iwork	INTEGER.
	Workspace array of DIMENSION $\left(3 n^{\star} n l v l+11 n\right)$.

## Output Parameters

```
d
e
b
info
```

On exit, if info $=0, d$ contains singular values of the bidiagonal matrix. On exit, destroyed.
On exit, $b$ contains the solution $x$.
INTEGER.
If info $=0$ : successful exit.
If info $=-i<0$, the $i$-th argument had an illegal value.
If info > 0 : The algorithm failed to compute a singular value while working on the submatrix lying in rows and columns infol ( $n+1$ ) through $\bmod (i n f o, n+1)$.

```
?lamrg
Creates a permutation list to merge the entries of two independently sorted sets into a single set sorted in acsending order.
Syntax
```

```
call slamrg(n1, n2, a, strd1, strd2, index)
```

call slamrg( n1, n2, a, strd1, strd2, index )
call dlamrg( n1, n2, a, strd1, strd2, index )

```
call dlamrg(n1, n2, a, strd1, strd2, index)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine creates a permutation list which will merge the elements of a (which is composed of two independently sorted sets) into a single set which is sorted in ascending order.

## Input Parameters

```
n1, n2
a
strd1, strd2
INTEGER. These arguments contain the respective lengths of the two sorted lists to be merged.
REAL for slamrg
DOUBLE PRECISION for dlamrg.
Array, DIMENSION (\(n 1+n 2\)).
The first \(n 1\) elements of a contain a list of numbers which are sorted in either ascending or descending order. Likewise for the final \(n 2\) elements.
INTEGER.
These are the strides to be taken through the array a. Allowable strides are 1 and -1 . They indicate whether a subset of \(a\) is sorted in ascending (strdx \(=1\)) or descending (strdx \(=-1\)) order.
```


## Output Parameters

index
INTEGER. Array, DIMENSION ( $n 1+n 2$ ).
On exit, this array will contain a permutation such that if $b(i)=$ $a$ (index(i)) for $i=1, n 1+n 2$, then $b$ will be sorted in ascending order.

```
?laneg
Computes the Sturm count, the number of negative pivots encountered while factoring tridiagonal \(T\) sigma* \(I^{*} *_{D} L^{T}\).
```


## Syntax

```
value = slaneg(n, d, lld, sigma, pivmin, r)
```

value = slaneg( n, d, lld, sigma, pivmin, r )
value = dlaneg( n, d, lld, sigma, pivmin, r )

```
value = dlaneg(n, d, lld, sigma, pivmin, r)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes the Sturm count, the number of negative pivots encountered while factoring tridiagonal $T$-sigma* $I=L^{*} D^{*} L^{T}$. This implementation works directly on the factors without forming the tridiagonal matrix $T$. The Sturm count is also the number of eigenvalues of $T$ less than sigma. This routine is called from ?larb. The current routine does not use the pivmin parameter but rather requires IEEE-754 propagation of infinities and NaNs (NaN stands for 'Not A Number'). This routine also has no input range restrictions but does require default exception handling such that $x / 0$ produces $\operatorname{Inf}$ when $x$ is non-zero, and Inf/Inf produces NaN. (For more information see [Marques06]).

## Input Parameters

```
n
d REAL for slaneg
 DOUBLE PRECISION for dlaneg
 Array, DIMENSION (n).
 Contains n diagonal elements of the matrix D.
 lld REAL for slaneg
 DOUBLE PRECISION for dlaneg
 Array, DIMENSION (}n-1\mathrm{).
 Contains (n-1) elements L(i)*L(i)*D(i).
sigma
pivmin
r
```


## Output Parameters

value
INTEGER. The number of negative pivots encountered while factoring.

```
?langb
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element of general band matrix.
Syntax
```

```
val = slangb(norm, n, kl, ku, ab, ldab, work)
```

val = slangb( norm, n, kl, ku, ab, ldab, work )
val = dlangb( norm, n, kl, ku, ab, ldab, work )
val = dlangb( norm, n, kl, ku, ab, ldab, work )
val = clangb( norm, n, kl, ku, ab, ldab, work )
val = clangb( norm, n, kl, ku, ab, ldab, work )
val = zlangb( norm, n, kl, ku, ab, ldab, work )

```
val = zlangb(norm, n, kl, ku, ab, ldab, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an $n-$ by- $n$ band matrix $A$, with $k l$ sub-diagonals and $k u$ super-diagonals.

## Input Parameters

norm
n
$k I$
ku
$a b$

I dab
work

CHARACTER*1. Specifies the value to be returned by the routine: $=' M^{\prime}$ or 'm': val $=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)$, largest absolute value of the matrix A. $=$ '1' or 'O' or 'O': val = norm1 (A), 1-norm of the matrix $A$
(maximum column sum),
$=$ 'I' or 'i': val = normI (A), infinity norm of the matrix $A$ (maximum row sum),
$=$ 'F', 'f', 'E' or 'e': val = normF (A), Frobenius norm of the matrix $A$ (square root of sum of squares).
INTEGER. The order of the matrix $A . n \geq 0$. When $n=0$, ? langb is set to zero.
INTEGER. The number of sub-diagonals of the matrix $A . k l \geq 0$.
INTEGER. The number of super-diagonals of the matrix $A . k u \geq 0$.
REAL for slangb
DOUBLE PRECISION for dlangb
COMPLEX for clangb
DOUBLE COMPLEX for zlangb
Array, DIMENSION (Idab, $n$ ).
The band matrix $A$, stored in rows 1 to $k l+k u+1$. The $j$-th column of $A$ is stored in the $j$-th column of the array $a b$ as follows:

```
ab(ku+1+i-j,j) = a(i,j)
for max(1,j-ku) \leqi\leqmin(n,j+kl).
```

INTEGER. The leading dimension of the array $a b$.
ldab $\geq k I+k u+1$.
REAL for slangb/clangb
DOUBLE PRECISION for dlangb/zlangb
Workspace array, DIMENSION (max ( 1,1 work) ), where
lwork $\geq n$ when norm $=$ 'I'; otherwise, work is not referenced.

## Output Parameters

```
val REAL for slangb/clangb
 DOUBLE PRECISION for dlangb/zlangb
 Value returned by the function.
```


## ?lange

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.

## Syntax

```
val = slange(norm, m, n, a, lda, work)
val = dlange(norm, m, n, a, lda, work)
val = clange(norm, m, n, a, lda, work)
val = zlange(norm, m, n, a, lda, work)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The function ? lange returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex matrix $A$.

## Input Parameters

```
norm
m
n
a
lda
work
CHARACTER*1. Specifies the value to be returned by the routine:
\(=' M^{\prime}\) or 'm': val = max \(\left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix
A.
= '1' or 'O' or 'o': val = norm1 (A), 1-norm of the matrix \(A\)
(maximum column sum),
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
= 'F', 'f','E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).
INTEGER. The number of rows of the matrix \(A\).
\(m \geq 0\). When \(m=0\), ? lange is set to zero.
INTEGER. The number of columns of the matrix \(A\).
\(n \geq 0\). When \(n=0\), ? lange is set to zero.
REAL for slange
DOUBLE PRECISION for dlange
COMPLEX for clange
DOUBLE COMPLEX for zlange
Array, DIMENSION (lda,n).
The m-by-n matrix \(A\).
Ida INTEGER. The leading dimension of the array a.
lda \(\geq \max (m, 1)\).
REAL for slange and clange.
DOUBLE PRECISION for dlange and zlange.
```

Workspace array, DIMENSION max (1, lwork), where 1 work $\geq m$ when norm $=$ 'I'; otherwise, work is not referenced.

## Output Parameters

```
val REAL for slange/clange
 DOUBLE PRECISION for dlange/zlange
 Value returned by the function.
```


## ?langt

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.

## Syntax

```
val = slangt(norm, n, dl, d, du)
val = dlangt(norm, n, dl, d, du)
val = clangt(norm, n, dl, d, du)
val = zlangt(norm, n, dl, d, du)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex tridiagonal matrix $A$.

## Input Parameters

```
norm
n
dl, d, du
 CHARACTER*1. Specifies the value to be returned by the routine:
 = 'M' or 'm': val = max(abs(}\mp@subsup{A}{ij}{\prime}))\mathrm{ , largest absolute value of the matrix A.
 = '1' or 'O' or 'O': val = norm1(A), 1-norm of the matrix A (maximum
 column sum),
 = 'I' or 'i': val = normI(A), infinity norm of the matrix A (maximum
 row sum),
 = 'F','f','E' or 'e': val = normF(A), Frobenius norm of the matrix A
 (square root of sum of squares).
 INTEGER. The order of the matrix A. n \geq0. When n = 0, ?langt is set to
 zero.
 REAL for slangt
 DOUBLE PRECISION for dlangt
 COMPLEX for clangt
 DOUBLE COMPLEX for zlangt
 Arrays: dl (n-1), d (n), du (n-1).
 The array dl contains the (n-1) sub-diagonal elements of A.
 The array d contains the diagonal elements of A.
 The array du contains the (}n-1\mathrm{) super-diagonal elements of A.
```

Output Parameters

DOUBLE PRECISION for dlangt/zlangt
Value returned by the function.

## ?lanhs

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.

## Syntax

```
val = slanhs(norm, n, a, lda, work)
val = dlanhs(norm, n, a, lda, work)
val = clanhs(norm, n, a, lda, work)
val = zlanhs(norm, n, a, lda, work)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The function ? lanhs returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hessenberg matrix $A$.

The value val returned by the function is:

```
val = max(abs((A ij)), if norm = 'M' or 'm'
= norm1(A), if norm = '1' or 'O' or 'O'
= normI(A), if norm = 'I' or 'i'
= normF(A), if norm = 'F','f','E' or 'e'
```

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max (abs $\left(A_{i j}\right)$ ) is not a consistent matrix norm.

## Input Parameters

norm	CHARACTER*1. Specifies the value to be returned by the routine as described above.
$n$	INTEGER. The order of the matrix $A$. $n \geq 0$. When $n=0$, ?lanhs is set to zero.
a	REAL for slanhs
	DOUBLE PRECISION for dlanhs
	COMPLEX for clanhs
	DOUBLE COMPLEX for zlanhs
	Array, DIMENSION (lda, $n$ ). The $n$-by-n upper Hessenberg matrix $A$; the part of $A$ below the first sub-diagonal is not referenced.
Ida	INTEGER. The leading dimension of the array $a$.
	$I d a \geq \max (n, 1)$.
work	REAL for slanhs and clanhs.
	DOUBLE PRECISION for dlange and zlange.

Workspace array, DIMENSION (max (1, lwork)), where lwork $\geq n$ when norm = 'I'; otherwise, work is not referenced.

## Output Parameters

```
val REAL for slanhs/clanhs
 DOUBLE PRECISION for dlanhs/zlanhs
 Value returned by the function.
```


## ?lansb

Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.

## Syntax

```
val = slansb(norm, uplo, n, k, ab, ldab, work)
val = dlansb(norm, uplo, n, k, ab, ldab, work)
val = clansb(norm, uplo, n, k, ab, ldab, work)
val = zlansb(norm, uplo, n, k, ab, ldab, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The function ?lansb returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an $n-b y-n$ real/complex symmetric band matrix $A$, with $k$ superdiagonals.

## Input Parameters

norm	CHARACTER*1. Specifies the value to be returned by the routine:   $=$ 'M' or 'm': val $=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)$, largest absolute value of the matrix $A$.   $=$ '1' or 'O' or 'O': val $=\operatorname{norm1}(A)$, 1-norm of the matrix $A$ (maximum column sum),   $=$ 'I' or 'i': val $=\operatorname{normI}(A)$, infinity norm of the matrix $A$ (maximum row sum),   = 'F', 'f', 'E' or 'e': val = normF(A), Frobenius norm of the matrix $A$ (square root of sum of squares).
uplo	CHARACTER*1.   Specifies whether the upper or lower triangular part of the band matrix $A$ is supplied. If uplo = 'U': upper triangular part is supplied; If uplo = 'L': lower triangular part is supplied.
$n$	INTEGER. The order of the matrix $A . n \geq 0$. When $n=0$, ?lansb is set to zero.
k	INTEGER. The number of super-diagonals or sub-diagonals of the band matrix $A . k \geq 0$.
$a b$	REAL for slansb
	DOUBLE PRECISION for dlansb COMPLEX for clansb



## Output Parameters

```
val
```

REAL for slansb/clansb
DOUBLE PRECISION for dlansb/zlansb
Value returned by the function.

## ?lanhb

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.

## Syntax

```
val = clanhb(norm, uplo, n, k, ab, ldab, work)
val = zlanhb(norm, uplo, n, k, ab, ldab, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an $n-b y-n$ Hermitian band matrix $A$, with $k$ super-diagonals.

## Input Parameters

norm	CHARACTER*1. Specifies the value to be returned by the routine:   $=' M$ ' or 'm': val $=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)$, largest absolute value of the matrix $A$. $=$ '1' or 'O' or 'O': val = norm1(A), 1-norm of the matrix $A$ (maximum column sum),   $=$ 'I' or 'i': val $=$ normI(A), infinity norm of the matrix $A$ (maximum row sum),   $={ }^{\prime} F^{\prime}, f^{\prime} \mathrm{f}^{\prime}, \mathrm{E}^{\prime}$ or 'e': val = normF(A), Frobenius norm of the matrix $A$ (square root of sum of squares).
uplo	CHARACTER*1.   Specifies whether the upper or lower triangular part of the band matrix $A$ is supplied.


	If uplo = 'U': upper triangular part is supplied;   If uplo = 'L': lower triangular part is supplied.
$n$	INTEGER. The order of the matrix $A . n \geq 0$. When $n=0$, ? lanhb is set to zero.
k	INTEGER. The number of super-diagonals or sub-diagonals of the band matrix $A$. $k \geq 0$
ab	COMPLEX for clanhb.   DOUBLE COMPLEX for zlanhb.   Array, DIMENSION (IdaB, $n$ ). The upper or lower triangle of the Hermitian band matrix $A$, stored in the first $k+1$ rows of $a b$. The $j$-th column of $A$ is stored in the $j$-th column of the array ab as follows:   if uplo = 'U', ab $(k+1+i-j, j)=a(i, j)$   for max $(1, j-k) \leq i \leq j$;   if uplo = 'L', ab $(1+i-j, j)=a(i, j)$ for $j \leq i \leq \min (n, j+k)$.   Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero.
Idab	INTEGER. The leading dimension of the array $a b . l d a b \geq k+1$.
work	REAL for clanhb.   DOUBLE PRECISION for zlanhb.   Workspace array, DIMENSION max (1, lwork), where   lwork $\geq n$ when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.

## Output Parameters

Val	REAL for slanhb/clanhb
	DOUBLE PRECISION for dlanhb/zlanhb
	Value returned by the function.

## ?lansp

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.

## Syntax

```
val = slansp(norm, uplo, n, ap, work)
val = dlansp(norm, uplo, n, ap, work)
val = clansp(norm, uplo, n, ap, work)
val = zlansp(norm, uplo, n, ap, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

Description
The function ?lansp returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix $A$, supplied in packed form.

## Input Parameters

norm
uplo
n
$a p$
work

CHARACTER*1. Specifies the value to be returned by the routine:
$=' M^{\prime}$ or 'm': val $=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)$, largest absolute value of the matrix $A$. $=$ '1' or 'O' or 'O': val = norm1(A), 1-norm of the matrix $A$ (maximum column sum), $=$ 'I' or 'i': val $=$ normI( $A$ ), infinity norm of the matrix $A$ (maximum row sum),
= 'F', 'f','E' or 'e': val = normF(A), Frobenius norm of the matrix $A$ (square root of sum of squares).
CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix $A$ is supplied.
If uplo = 'U': Upper triangular part of $A$ is supplied
If uplo = 'L': Lower triangular part of $A$ is supplied.
INTEGER. The order of the matrix $A . n \geq 0$. When $n=0$, ?lansp is set to zero.

REAL for slansp
DOUBLE PRECISION for dlansp
COMPLEX for clansp
DOUBLE COMPLEX for zlansp
Array, DIMENSION ( $n(n+1) / 2$ ).
The upper or lower triangle of the symmetric matrix $A$, packed columnwise in a linear array. The $j$-th column of $A$ is stored in the array ap as follows:
if uplo = 'U', ap $(i+(j-1) j / 2)=A(i, j)$ for $1 \leq i \leq j$; if uplo = 'L', ap $(i+(j-1)(2 n-j) / 2)=A(i, j)$ for $j \leq i \leq n$.

REAL for slansp and clansp.
DOUBLE PRECISION for dlansp and zlansp.
Workspace array, DIMENSION (max ( 1,1 work) ), where
lwork $\geq n$ when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.

## Output Parameters

```
val
```

REAL for slansp/clansp
DOUBLE PRECISION for dlansp/zlansp

Value returned by the function.

## ?lanhp

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.

## Syntax

```
val = clanhp(norm, uplo, n, ap, work)
val = zlanhp(norm, uplo, n, ap, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The function ?lanhp returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix $A$, supplied in packed form.

## Input Parameters

```
norm CHARACTER*1. Specifies the value to be returned by the routine:
 = 'M' or 'm': val = max(abs (}\mp@subsup{A}{ij}{\prime})\mathrm{), largest absolute value of the matrix A.
 = '1' or 'O' or 'O': val = norm1(A), 1-norm of the matrix A (maximum
 column sum),
 = 'I' or 'i': val = normI(A), infinity norm of the matrix A (maximum
 row sum),
 = 'F','f','E' or 'e': val = normF(A), Frobenius norm of the matrix A
 (square root of sum of squares).
uplo
n
ap
work
CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian matrix
A is supplied.
If uplo = 'U': Upper triangular part of A is supplied
If uplo = 'L': Lower triangular part of A is supplied.
 INTEGER. The order of the matrix A.
 n\geq0. When n = 0, ?lanhp is set to zero.
 COMPLEX for clanhp.
 DOUBLE COMPLEX for zlanhp.
 Array, DIMENSION (n(n+1)/2). The upper or lower triangle of the Hermitian
 matrix }A\mathrm{ , packed columnwise in a linear array. The j-th column of A is
 stored in the array ap as follows:
 if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1 \leqi\leq j;
 if uplo = 'L',ap(i + (j-1) (2n-j)/2) = A(i,j) for j \leqi\leqn.
REAL for clanhp.
DOUBLE PRECISION for zlanhp.
Workspace array, DIMENSION (max(1,lwork)), where
lwork \geq n when norm = 'I' or '1' or 'O'; otherwise, work is not
referenced.
```


## Output Parameters

```
val
```

REAL for clanhp.
DOUBLE PRECISION for zlanhp.
Value returned by the function.

## ?lanst/?lanht

Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a real symmetric or complex
Hermitian tridiagonal matrix.

## Syntax

```
val = slanst(norm, n, d, e)
val = dlanst(norm, n, d, e)
val = clanht(norm, n, d, e)
```

```
val = zlanht(norm, n, d, e)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

Description
The functions ?lanst/?lanht return the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric or a complex Hermitian tridiagonal matrix $A$.

Input Parameters

```
norm CHARACTER*1. Specifies the value to be returned by the routine:
= 'M' or 'm': val = max (abs (}\mp@subsup{A}{ij}{})\mathrm{), largest absolute value of the matrix
A.
= '1' or 'O' or 'O': val = norm1 (A), 1-norm of the matrix A
(maximum column sum),
= 'I' or 'i': val = normI (A), infinity norm of the matrix A (maximum
row sum),
= 'F','f','E' or 'e': val = normF (A), Frobenius norm of the matrix }
(square root of sum of squares).
n INTEGER. The order of the matrix \(A\).
n\geq0.When n = 0, ?lanst/?lanht is set to zero.
REAL for slanst/clanht
DOUBLE PRECISION for dlanst/zlanht
Array, DIMENSION (n). The diagonal elements of A.
e
REAL for slanst
DOUBLE PRECISION for dlanst
COMPLEX for clanht
DOUBLE COMPLEX for zlanht
Array, DIMENSION (\(n-1\)).
The (\(n-1\)) sub-diagonal or super-diagonal elements of \(A\).
```


## Output Parameters

```
val REAL for slanst/clanht
 DOUBLE PRECISION for dlanst/zlanht
 Value returned by the function.
```


## ?lansy

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix.

## Syntax

```
val = slansy(norm, uplo, n, a, lda, work)
val = dlansy(norm, uplo, n, a, lda, work)
val = clansy(norm, uplo, n, a, lda, work)
val = zlansy(norm, uplo, n, a, lda, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The function ? lansy returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix $A$.

Input Parameters

```
norm CHARACTER*1. Specifies the value to be returned by the routine:
= 'M' or'm': val = max (abs (}\mp@subsup{A}{ij}{\prime})\mathrm{), largest absolute value of the matrix
A.
= '1' or 'O' or 'O': val = norm1(A), 1-norm of the matrix A
(maximum column sum),
= 'I' or 'i': val = normI(A), infinity norm of the matrix A (maximum
row sum),
= 'F','f','E' or 'e': val = normF(A), Frobenius norm of the matrix A
(square root of sum of squares).
CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is to be referenced.
\(=\) ' U': Upper triangular part of \(A\) is referenced.
= 'L': Lower triangular part of \(A\) is referenced
```

n
a
lda
work
INTEGER. The order of the matrix $A . n \geq 0$. When $n=0$, ? lansy is set to zero.
REAL for slansy
DOUBLE PRECISION for dlansy
COMPLEX for clansy
DOUBLE COMPLEX for zlansy
Array, DIMENSION (lda, $n$ ). The symmetric matrix $A$.
If uplo = 'U', the leading $n-b y-n$ upper triangular part of a contains the upper triangular part of the matrix $A$, and the strictly lower triangular part of $a$ is not referenced.
If uplo = 'L', the leading $n$-by- $n$ lower triangular part of a contains the lower triangular part of the matrix $A$, and the strictly upper triangular part of $a$ is not referenced.

INTEGER. The leading dimension of the array $a$.
$l d a \geq \max (n, 1)$.
REAL for slansy and clansy.
DOUBLE PRECISION for dlansy and zlansy.
Workspace array, DIMENSION (max ( 1,1 work) ), where
lwork $\geq n$ when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.

## Output Parameters

```
val REAL for slansy/clansy
DOUBLE PRECISION for dlansy/zlansy
Value returned by the function.
```


## ?lanhe

Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.

## Syntax

```
val = clanhe(norm, uplo, n, a, lda, work)
val = zlanhe(norm, uplo, n, a, lda, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The function ?lanhe returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix $A$.

Input Parameters
norm
uplo
n
a

Ida
work

CHARACTER*1. Specifies the value to be returned by the routine:
$=' M '$ or 'm': val $=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)$, largest absolute value of the matrix $A$. $=$ '1' or 'O' or 'O': val $=\operatorname{norm1}(A)$, 1 -norm of the matrix $A$ (maximum column sum),
$=$ 'I' or 'i': val $=$ normI $(A)$, infinity norm of the matrix $A$ (maximum row sum),
$=' F^{\prime}, ' f ', E^{\prime}$ or 'e': val = normF(A), Frobenius norm of the matrix $A$ (square root of sum of squares).
CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian matrix $A$ is to be referenced.
$=$ ' U': Upper triangular part of $A$ is referenced.
$=$ ' L': Lower triangular part of $A$ is referenced
INTEGER. The order of the matrix $A$. $n \geq 0$. When $n=0$, ? lanhe is set to zero.
COMPLEX for clanhe.
DOUBLE COMPLEX for zlanhe.
Array, DIMENSION ( $1 d a, n$ ). The Hermitian matrix $A$.
If uplo = 'U', the leading $n$-by- $n$ upper triangular part of a contains the upper triangular part of the matrix $A$, and the strictly lower triangular part of $a$ is not referenced.
If uplo = 'L', the leading $n$-by- $n$ lower triangular part of a contains the lower triangular part of the matrix $A$, and the strictly upper triangular part of $a$ is not referenced.

INTEGER. The leading dimension of the array a.
$l d a \geq \max (n, 1)$.
REAL for clanhe.
DOUBLE PRECISION for zlanhe.
Workspace array, DIMENSION (max ( 1, lwork) ), where
lwork $\geq n$ when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.

## Output Parameters

```
val
REAL for clanhe.
DOUBLE PRECISION for zlanhe.
Value returned by the function.
```

```
?lantb
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a triangular band matrix.
Syntax
val = slantb(norm, uplo, diag, n, k, ab, ldab, work)
val = dlantb(norm, uplo, diag, n, k, ab, ldab, work)
val = clantb(norm, uplo, diag, n, k, ab, ldab, work)
val = zlantb(norm, uplo, diag, n, k, ab, ldab, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The function ? lantb returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an $n$-by- $n$ triangular band matrix $A$, with ( $k+1$ ) diagonals.

## Input Parameters

```
norm
 uplo
diag
n
k
ab
 CHARACTER*1. Specifies the value to be returned by the routine:
 = 'M' or 'm': val = max (abs (}\mp@subsup{A}{ij}{\prime})\mathrm{), largest absolute value of the matrix
 A.
= '1' or 'O' or 'O': val = norm1(A), 1-norm of the matrix A
(maximum column sum),
= 'I' or 'i': val = normI(A), infinity norm of the matrix A (maximum
row sum),
= 'F','f','E' or 'e': val = normF(A), Frobenius norm of the matrix A
(square root of sum of squares).
```

CHARACTER*1. Specifies the value to be returned by the routine: $=$ 'M' or 'm': val $=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)$, largest absolute value of the matrix A.
$=$ '1' or 'O' or 'O': val = norm1 (A), 1-norm of the matrix $A$
(maximum column sum),
$=$ 'I' or 'i': val = normI (A), infinity norm of the matrix $A$ (maximum row sum),
$=$ ' $\mathrm{F}^{\prime}, \mathrm{f}^{\prime}$, 'E' or 'e': val $=$ normF (A), Frobenius norm of the matrix $A$
(square root of sum of squares).
CHARACTER*1.
Specifies whether the matrix $A$ is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular.
CHARACTER*1.
Specifies whether or not the matrix $A$ is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular.
INTEGER. The order of the matrix $A . n \geq 0$. When $n=0$, ? lantb is set to zero.
INTEGER. The number of super-diagonals of the matrix $A$ if uplo = 'U', or the number of sub-diagonals of the matrix $A$ if uplo $=$ 'L'. $k \geq 0$.
REAL for slantb
DOUBLE PRECISION for dlantb
COMPLEX for clantb
DOUBLE COMPLEX for zlantb
Array, DIMENSION ( $I d a b, n$ ). The upper or lower triangular band matrix $A$, stored in the first $k+1$ rows of $a b$.
The $j$-th column of $A$ is stored in the $j$-th column of the array $a b$ as follows: if uplo $=' U ', a b(k+1+i-j, j)=a(i, j)$ for $\max (1, j-k) \leq i \leq j$;

	if uplo = 'L', ab(1+i-j,j) = a(i,j) for $j \leq i \leq \min (n, j+k)$.
	Note that when diag = 'U', the elements of the array ab corresponding to the diagonal elements of the matrix $A$ are not referenced, but are assumed to be one.
Idab	INTEGER. The leading dimension of the array $a b$. Idab $\geq k+1$.
work	REAL for slantb and clantb.
	DOUBLE PRECISION for dlantb and zlantb.
	Workspace array, DIMENSION (max (1, lwork)), where
	lwork $\geq \mathrm{n}$ when norm $=$ 'I' ; otherwise, work is not referenced.

## Output Parameters

```
val
```

REAL for slantb/clantb.
DOUBLE PRECISION for dlantb/zlant.b.
Value returned by the function.

```
?lantp
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a triangular matrix supplied in
packed form.
Syntax
```

```
val = slantp(norm, uplo, diag, n, ap, work)
```

val = slantp( norm, uplo, diag, n, ap, work )
val = dlantp( norm, uplo, diag, n, ap, work )
val = dlantp( norm, uplo, diag, n, ap, work )
val = clantp( norm, uplo, diag, n, ap, work )
val = clantp( norm, uplo, diag, n, ap, work )
val = zlantp( norm, uplo, diag, n, ap, work )

```
val = zlantp(norm, uplo, diag, n, ap, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The function ? lantp returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix $A$, supplied in packed form.

Input Parameters

norm	CHARACTER*1. Specifies the value to be returned by the routine:   $=$ ' $M^{\prime}$ or 'm': val $=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)$, largest absolute value of the matrix   A.   $=$ '1' or 'O' or 'o': val $=\operatorname{norm1}(A)$, 1-norm of the matrix $A$   (maximum column sum),   = 'I' or 'i': val = normI (A), infinity norm of the matrix $A$ (maximum row sum),   = 'F', 'f','E' or 'e': val = normF (A), Frobenius norm of the matrix $A$   (square root of sum of squares).
uplo	CHARACTER*1.   Specifies whether the matrix $A$ is upper or lower triangular. = 'U': Upper triangular


	= 'L': Lower triangular.
diag	CHARACTER*1.
	Specifies whether or not the matrix $A$ is unit triangular.
	$=$ 'N': Non-unit triangular
	= 'U': Unit triangular.
$n$	INTEGER. The order of the matrix $A$.
	$n \geq 0$. When $n=0$, ? lantp is set to zero.
ap	REAL for slantp
	DOUBLE PRECISION for dlantp
	COMPLEX for clantp
	DOUBLE COMPLEX for zlantp
	Array, DIMENSION ( $n(n+1$ )/2).
	The upper or lower triangular matrix $A$, packed columnwise in a linear array.
	The $j$-th column of $A$ is stored in the array ap as follows:
	if uplo = 'L', ap(i $+(j-1)(2 n-j) / 2)=a(i, j)$ for $j \leq i \leq n$.
	Note that when diag = 'U', the elements of the array ap corresponding to the diagonal elements of the matrix $A$ are not referenced, but are assumed to be one.
work	REAL for slantp and clantp.
	DOUBLE PRECISION for dlantp and zlantp.
	Workspace array, DIMENSION (max (1, lwork)), where lwork $\geq n$ when norm = 'I'; otherwise, work is not referenced.

## Output Parameters

```
val REAL for slantp/clantp.
 DOUBLE PRECISION for dlantp/zlantp.
 Value returned by the function.
```


## ?lantr

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.

## Syntax

```
val = slantr(norm, uplo, diag, m, n, a, lda, work)
val = dlantr(norm, uplo, diag, m, n, a, lda, work)
val = clantr(norm, uplo, diag, m, n, a, lda, work)
val = zlantr(norm, uplo, diag, m, n, a, lda, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The function ? lantr returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix $A$.

## Input Parameters

norm
uplo
diag
m
n
work

CHARACTER*1. Specifies the value to be returned by the routine:
$=' M^{\prime}$ or 'm': val $=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)$, largest absolute value of the matrix
A.
$=$ '1' or 'O' or 'o': val = norm1 (A), 1-norm of the matrix $A$
(maximum column sum),
$=$ 'I' or 'i': val $=$ normI ( $A$ ), infinity norm of the matrix $A$ (maximum row sum),
= 'F', 'f', 'E' or 'e': val = normF (A), Frobenius norm of the matrix $A$
(square root of sum of squares).
CHARACTER*1.
Specifies whether the matrix $A$ is upper or lower trapezoidal.
= 'U': Upper trapezoidal
$=$ 'L': Lower trapezoidal.
Note that $A$ is triangular instead of trapezoidal if $m=n$.
CHARACTER*1.
Specifies whether or not the matrix $A$ has unit diagonal.
= 'N': Non-unit diagonal
= 'U': Unit diagonal.
INTEGER. The number of rows of the matrix $A . m \geq 0$, and if uplo = 'U', m $\leq n$.
When $m=0$, ?lantr is set to zero.
INTEGER. The number of columns of the matrix $A . n \geq 0$, and if uplo $=$ 'L', $n \leq m$.
When $n=0$, ?lantr is set to zero.
REAL for slantr
DOUBLE PRECISION for dlantr
COMPLEX for clantr
DOUBLE COMPLEX for zlantr
Array, DIMENSION ( 1 da, $n$ ).
The trapezoidal matrix $A$ ( $A$ is triangular if $m=n$ ).
If uplo = 'U', the leading $m$-by-n upper trapezoidal part of the array a contains the upper trapezoidal matrix, and the strictly lower triangular part of $A$ is not referenced.
If uplo = 'L', the leading m-by-n lower trapezoidal part of the array a contains the lower trapezoidal matrix, and the strictly upper triangular part of $A$ is not referenced. Note that when $\operatorname{diag}=$ ' U', the diagonal elements of $A$ are not referenced and are assumed to be one.

INTEGER. The leading dimension of the array $a$.
$l d a \geq \max (m, 1)$.
REAL for slantr/clantrp.
DOUBLE PRECISION for dlantr/zlantr.
Workspace array, DIMENSION (max (1, lwork)), where
lwork $\geq m$ when norm = 'I' ; otherwise, work is not referenced.

## Output Parameters

val

REAL for slantr/clantrp.
DOUBLE PRECISION for dlantr/zlantr.
Value returned by the function.

## ?lanv2

Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form.

## Syntax

```
call slanv2(a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn)
call dlanv2(a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
c s & -s n \\
s n & c s
\end{array}\right]\left[\begin{array}{cc}
a a & b b \\
a c & d d
\end{array}\right]\left[\begin{array}{cc}
c s & s n \\
-s n & c s
\end{array}\right]
$$

where either

1. $c c=0$ so that aa and $d d$ are real eigenvalues of the matrix, or
2. $a a=d d$ and $b b^{*} c c<0$, so that $a a \pm \operatorname{sqrt}\left(b b^{*} c c\right.$ ) are complex conjugate eigenvalues.

The routine was adjusted to reduce the risk of cancellation errors, when computing real eigenvalues, and to ensure, if possible, that abs $(r t 1 r) \geq a b s(r t 2 r)$.

Input Parameters

```
a,b,c,d
REAL for slanv2
DOUBLE PRECISION for dlanv2.
On entry, elements of the input matrix.
```


## Output Parameters

```
a,b,c,d
rt1r,rt1i,rt2r,rt2i
cs, sn
On exit, overwritten by the elements of the standardized Schur form.
REAL for slanv2
DOUBLE PRECISION for dlanv2.
The real and imaginary parts of the eigenvalues.
If the eigenvalues are a complex conjugate pair, rt1i>0.
cs, sn
REAL for slanv2
DOUBLE PRECISION for dlanv2.
Parameters of the rotation matrix.
```


## ?lapll

Measures the linear dependence of two vectors.

## Syntax

```
call slapll(n, x, incx, Y, incy, ssmin)
call dlapll(n, x, incx, Y, incy, ssmin)
```

```
call clapll(n, x, incx, Y, incy, ssmin)
call zlapll(n, x, incx, Y, incy, ssmin)
```


## Include Files

```
- FORTRAN 77:mkl_lapack.fi and mkl_lapack.h
```


## Description

Given two column vectors $x$ and $y$ of length $n$, let
$A=\left(\begin{array}{ll}x & y\end{array}\right)$ be the $n$-by- 2 matrix.
The routine ? lapll first computes the $Q R$ factorization of $A$ as $A=Q \star R$ and then computes the SVD of the 2-by-2 upper triangular matrix $R$. The smaller singular value of $R$ is returned in ssmin, which is used as the measurement of the linear dependency of the vectors $x$ and $y$.

## Input Parameters

```
n
x REAL for slapll
 DOUBLE PRECISION for dlapll
 COMPLEX for clapll
 DOUBLE COMPLEX for zlapll
 Array, DIMENSION (1+(n-1) incx).
 On entry, x contains the n-vector x.
y REAL for slapll
 DOUBLE PRECISION for dlapll
 COMPLEX for clapll
 DOUBLE COMPLEX for zlapll
 Array, DIMENSION (1+(n-1)incy).
 On entry, y contains the n-vector y.
incx INTEGER. The increment between successive elements of x; incx > 0.
incy INTEGER. The increment between successive elements of y; incy > 0.
```


## Output Parameters

```
x On exit, x is overwritten.
y On exit, y is overwritten.
ssmin REAL for slapll/clapll
 DOUBLE PRECISION for dlapll/zlapll
 The smallest singular value of the n-by-2 matrix A = (xy).
```


## ?lapmr

Rearranges rows of a matrix as specified by a permutation vector.

## Syntax

## Fortran 77:

```
call slapmr(forwrd, m, n, x, ldx, k)
call dlapmr(forwrd, m, n, x, ldx, k)
call clapmr(forwrd, m, n, x, ldx, k)
```

call zlapmr( forwrd, $m, n, x, l d x, k$ )

## Fortran 95:

```
call lapmr(x,k[,forwrd])
```


## Include files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The ?lapmr routine rearranges the rows of the $m$-by- $n$ matrix $x$ as specified by the permutation $k(1), k(2), \ldots, k(m)$ of the integers $1, \ldots, m$.

If forwrd $=$.TRUE., forward permutation:
$X(k(i, *))$ is moved to $X(i, *)$ for $i=1,2, \ldots, m$.
If forwrd $=$.FALSE., backward permutation:
$X(i, *)$ is moved to $X(k(i, *))$ for $i=1,2, \ldots, m$.

## Input Parameters

```
forwrd
 LOGICAL.
 If forwrd = .TRUE., forward permutation
 If forwrd = .FALSE., backward permutation
 INTEGER. The number of rows of the matrix }x.m\geq0
 INTEGER. The number of columns of the matrix }x.n\geq0
 REAL for slapmr
 DOUBLE PRECISION for dlapmr
 COMPLEX for clapmr
 DOUBLE COMPLEX for zlapmr
 Array, DIMENSION (ldx,n). On entry, the m-by-n matrix }X\mathrm{ .
ldx INTEGER. The leading dimension of the array }X,Idx\geqmax(1,m)
k
INTEGER. Array, DIMENSION (m). On entry, k contains the permutation
vector and is used as internal workspace.
```


## Output Parameters

```
x On exit, x contains the permuted matrix x.
k On exit, k is reset to its original value.
```


## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine ? lapmr interface are as follows:

```
x Holds the matrix }X\mathrm{ of size (}n,n)\mathrm{ .
k Holds the vector of length m.
forwrd Specifies the permutation. Must be '.TRUE.' or '.FALSE.'.
```


## See Also

?lapmt

## ?lapmt <br> Performs a forward or backward permutation of the columns of a matrix.

## Syntax

```
call slapmt(forwrd, m, n, x, ldx, k)
call dlapmt(forwrd, m, n, x, ldx, k)
call clapmt(forwrd, m, n, x, ldx, k)
call zlapmt(forwrd, m, n, x, ldx, k)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? lapmt rearranges the columns of the $m$-by-n matrix $x$ as specified by the permutation $k(1), k(2), \ldots, k(n)$ of the integers $1, \ldots, n$.

If forwrd = .TRUE., forward permutation:
$X(*, k(j))$ is moved to $X(*, j)$ for $j=1,2, \ldots, n$.
If forwrd = .FALSE., backward permutation:
$X(*, j)$ is moved to $X(*, k(j))$ for $j=1,2, \ldots, n$.
Input Parameters

```
forwrd LOGICAL.
 If forwrd = .TRUE., forward permutation
 If forwrd = .FALSE., backward permutation
m
n
x
```



```
INTEGER. The number of rows of the matrix }x.m\geq0\mathrm{ .
INTEGER. The number of columns of the matrix }x.n\geq0\mathrm{ .
REAL for slapmt
DOUBLE PRECISION for dlapmt
COMPLEX for clapmt
DOUBLE COMPLEX for zlapmt
Array, DIMENSION (Idx,n). On entry, the m-by-n matrix }x\mathrm{ .
ldx
k
```


## Output Parameters

```
x
On exit, \(x\) contains the permuted matrix \(x\).
On exit, \(k\) is reset to its original value.
```


## See Also

?lapmr
?lapy2
Returns sqrt $\left(x^{2}+y^{2}\right)$.

Syntax

```
val = slapy2(x, y)
val = dlapy2(x, y)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The function ? lapy2 returns sqrt $\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$, avoiding unnecessary overflow or harmful underflow.

## Input Parameters

```
x,y REAL for slapy2
 DOUBLE PRECISION for dlapy2
 Specify the input values }x\mathrm{ and }y\mathrm{ .
```


## Output Parameters

```
val REAL for slapy2
 DOUBLE PRECISION for dlapy2.
 Value returned by the function.
```


## ?lapy3

Returns sqrt $\left(x^{2}+y^{2}+z^{2}\right)$.

## Syntax

```
val = slapy3(x, y, z)
val = dlapy3(x, y, z)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The function ?lapy3 returns sqrt $\left(x^{2}+y^{2}+z^{2}\right)$, avoiding unnecessary overflow or harmful underflow.

## Input Parameters

$x, y, z \quad$| REAL for slapy3 |
| :--- |
|  |
| DOUBLE PRECISION for dlapy3 |
|  |
| Specify the input values $x, y$ and $z$. |

## Output Parameters

```
val
REAL for slapy3
DOUBLE PRECISION for dlapy3.
Value returned by the function.
```


## ?laqgb

Scales a general band matrix, using row and column scaling factors computed by ? gbequ.

## Syntax

```
call slaqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)
call dlaqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)
call claqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)
call zlaqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine equilibrates a general $m$-by- $n$ band matrix $A$ with $k l$ subdiagonals and $k u$ superdiagonals using the row and column scaling factors in the vectors $r$ and $c$.

## Input Parameters



## Output Parameters

```
ab
equed
On exit, the equilibrated matrix, in the same storage format as \(A\). See equed for the form of the equilibrated matrix.
CHARACTER*1.
Specifies the form of equilibration that was done.
If equed \(=\) ' \(N\) ': No equilibration
If equed = 'R': Row equilibration, that is, \(A\) has been premultiplied by \(\operatorname{diag}(r)\).
If equed \(=\) ' C': Column equilibration, that is, \(A\) has been postmultiplied by diag(c).
If equed = 'B': Both row and column equilibration, that is, \(A\) has been replaced by diag (r)*A*diag(c).
```


## Application Notes

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if row or column scaling should be done based on the ratio of the row or column scaling factors. If rowend < thresh, row scaling is done, and if colcnd < thresh, column scaling is done. large and small are threshold values used to decide if row scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, row scaling is done.

## ?laqge

Scales a general rectangular matrix, using row and column scaling factors computed by ?geequ.

## Syntax

```
call slaqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)
call dlaqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)
call claqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)
call zlaqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine equilibrates a general $m$-by- $n$ matrix $A$ using the row and column scaling factors in the vectors $r$ and $c$.

## Input Parameters

```
m INTEGER. The number of rows of the matrix A.
m}\geq0
INTEGER. The number of columns of the matrix A.
n}\geq0
REAL for slaqge
DOUBLE PRECISION for dlaqge
COMPLEX for claqge
DOUBLE COMPLEX for zlaqge
Array, DIMENSION (Ida,n). On entry, the m-by-n matrix A.
```

Ida	INTEGER. The leading dimension of the array $a$. lda $\geq \max (m, 1)$.
$r$	REAL for slanqge/claqge   DOUBLE PRECISION for dlaqge/zlaqge   Array, DIMENSION ( $m$ ). The row scale factors for A.
c	REAL for slanqge/claqge   DOUBLE PRECISION for dlaqge/zlaqge   Array, DIMENSION (n). The column scale factors for A.
rowend	REAL for slanqge/claqge   DOUBLE PRECISION for dlaqge/zlaqge   Ratio of the smallest $r(i)$ to the largest $r(i)$.
colcnd	REAL for slanqge/claqge   DOUBLE PRECISION for dlaqge/zlaqge   Ratio of the smallest $c(i)$ to the largest $c(i)$.
amax	REAL for slanqge/claqge   DOUBLE PRECISION for dlaqge/zlaqge   Absolute value of largest matrix entry.

## Output Parameters

a
equed

On exit, the equilibrated matrix.
See equed for the form of the equilibrated matrix.
CHARACTER*1.
Specifies the form of equilibration that was done.
If equed = 'N': No equilibration
If equed = 'R': Row equilibration, that is, $A$ has been premultiplied by $\operatorname{diag}(r)$.
If equed $=$ ' C': Column equilibration, that is, $A$ has been postmultiplied by diag(c).
If equed $=$ ' $B$ ': Both row and column equilibration, that is, $A$ has been replaced by diag ( $r$ ) *A*diag(c).

## Application Notes

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if row or column scaling should be done based on the ratio of the row or column scaling factors. If rowend < thresh, row scaling is done, and if colcnd < thresh, column scaling is done. large and small are threshold values used to decide if row scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, row scaling is done.

## ?laqhb

Scales a Hermetian band matrix, using scaling factors computed by ?pbequ.

## Syntax

```
call claqhb(uplo, n, kd, ab, ldab, s, scond, amax, equed)
call zlaqhb(uplo, n, kd, ab, ldab, s, scond, amax, equed)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine equilibrates a Hermetian band matrix $A$ using the scaling factors in the vector $s$.

## Input Parameters

uplo	CHARACTER*1.
	Specifies whether the upper or lower triangular part of the band matrix $A$ is stored.   If uplo = 'U': upper triangular.   If uplo = 'L': lower triangular.
$n$	INTEGER. The order of the matrix $A$. $n \geq 0$.
$k d$	INTEGER. The number of super-diagonals of the matrix $A$ if uplo = 'U', or the number of sub-diagonals if uplo = 'L'. $k d \geq 0$.
$a . b$	COMPLEX for claqhb
	DOUBLE COMPLEX for zlaqhb
	Array, DIMENSION ( $1 \mathrm{dab}, n$ ). On entry, the upper or lower triangle of the band matrix $A$, stored in the first $k d+1$ rows of the array. The $j$-th column of $A$ is stored in the $j$-th column of the array $a b$ as follows:   if uplo $=' U ', a b(k d+1+i-j, j)=A(i, j)$ for $\max (1, j-k d) \leq i \leq j$;   if uplo $=$ 'L', ab $(1+i-j, j)=A(i, j)$ for $j \leq i \leq \min (n, j+k d)$.
Idab	INTEGER. The leading dimension of the array $a b$. $1 d a b \geq k d+1$.
scond	REAL for claqsb
	DOUBLE PRECISION for zlaqsb
	Ratio of the smallest $s(i)$ to the largest $s(i)$.
$\operatorname{amax}$	REAL for claqsb
	DOUBLE PRECISION for zlaqsb
	Absolute value of largest matrix entry.

## Output Parameters

ab

S
equed

On exit, if info $=0$, the triangular factor $U$ or $L$ from the Cholesky factorization $A=U^{H \star} U$ or $A=L^{\star} L^{H}$ of the band matrix $A$, in the same storage format as $A$.

REAL for claqsb
DOUBLE PRECISION for zlaqsb
Array, DIMENSION ( $n$ ). The scale factors for A.
CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed $=$ ' $Y$ ': Equilibration was done, that is, $A$ has been replaced by $\operatorname{diag}(s) * A^{\star} \operatorname{diag}(s)$.

## Application Notes

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond < thresh, scaling is done.

The values large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

## ?laqp2

Computes a $Q R$ factorization with column pivoting of the matrix block.

## Syntax

```
call slaqp2(m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
call dlaqp2(m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
call claqp2(m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
call zlaqp2(m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes a $Q R$ factorization with column pivoting of the block $A(o f f s e t+1: m, 1: n)$. The block $A(1:$ offset, $1: n)$ is accordingly pivoted, but not factorized.

## Input Parameters

```
m
n
offset
a
lda
jpvt
vn1, vn2
work
INTEGER. The number of rows of the matrix \(A . m \geq 0\).
INTEGER. The number of columns of the matrix \(A . n \geq 0\).
INTEGER. The number of rows of the matrix \(A\) that must be pivoted but no factorized. offset \(\geq 0\).
REAL for slaqp2
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
DOUBLE COMPLEX for zlaqp2
Array, DIMENSION (1 da, \(n\)). On entry, the \(m\)-by-n matrix \(A\).
INTEGER. The leading dimension of the array \(a\). 1 da \(\geq \max (1, m)\).
INTEGER.
Array, DIMENSION (\(n\)).
On entry, if jpvt(i) \(\neq 0\), the \(i\)-th column of \(A\) is permuted to the front of \(A^{*} P\) (a leading column); if jpvt(i) \(=0\), the \(i\)-th column of \(A\) is a free column.
REAL for slaqp2/claqp2
DOUBLE PRECISION for dlaqp2/zlaqp2
Arrays, DIMENSION (\(n\)) each. Contain the vectors with the partial and exact column norms, respectively.
work
REAL for slaqp2
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
DOUBLE COMPLEX for zlaqp2 Workspace array, DIMENSION (\(n\)).
```


## Output Parameters

```
a
On exit, the upper triangle of block \(A(o f f s e t+1: m, 1: n)\) is the triangular factor obtained; the elements in block \(A(o f f s e t+1: m, 1: n\)) below the diagonal, together with the array tau, represent the orthogonal matrix \(Q\) as a product of elementary reflectors. Block \(A(1\) : offset, \(1: n)\) has been accordingly pivoted, but not factorized.
jpvt
tau
On exit, if jpvt (i) \(=k\), then the \(i\)-th column of \(A^{*} P\) was the \(k\)-th column of \(A\).
REAL for slaqp2
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
DOUBLE COMPLEX for zlaqp2
Array, DIMENSION (min \((m, n)\)).
The scalar factors of the elementary reflectors.
vn1, vn2
Contain the vectors with the partial and exact column norms, respectively.
```


## ?laqps

Computes a step of $Q R$ factorization with column pivoting of a real m-by-n matrix $A$ by using BLAS level
3.

## Syntax

```
call slaqps(m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf)
call dlaqps(m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf)
call claqps(m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf)
call zlaqps(m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes a step of $Q R$ factorization with column pivoting of a real $m$-by-n matrix A by using BLAS level 3. The routine tries to factorize $N B$ columns from $A$ starting from the row offset +1 , and updates all of the matrix with BLAS level 3 routine ?gemm.
In some cases, due to catastrophic cancellations, ?laqps cannot factorize $N B$ columns. Hence, the actual number of factorized columns is returned in $k b$.
Block $A(1:$ offset, $1: n)$ is accordingly pivoted, but not factorized.

## Input Parameters

```
m
n
offset
```

nb
a

INTEGER. The number of rows of the matrix $A . m \geq 0$.
INTEGER. The number of columns of the matrix $A . n \geq 0$.
INTEGER. The number of rows of $A$ that have been factorized in previous steps.
INTEGER. The number of columns to factorize.
REAL for slaqps

	DOUBLE PRECISION for dlaqps
	COMPLEX for claqps
	DOUBLE COMPLEX for zlaqps
	Array, DIMENSION ( 1 da, $n$ ).
	On entry, the m-by-n matrix $A$.
Ida	INTEGER. The leading dimension of the array a. lda $\geq \max (1, m)$.
jpvt	INTEGER. Array, DIMENSION ( $n$ ).
	If jpvt(I) $=k$ then column $k$ of the full matrix $A$ has been permuted into position $i$ in AP.
vn1, vn2	REAL for slaqps/claqps
	DOUBLE PRECISION for dlaqps/zlaqps
	Arrays, DIMENSION ( $n$ ) each. Contain the vectors with the partial and exact column norms, respectively.
auxv	REAL for slaqps
	DOUBLE PRECISION for dlaqps
	COMPLEX for claqps
	DOUBLE COMPLEX for zlaqps
	Array, DIMENSION ( $n b$ ). Auxiliary vector.
f	REAL for slaqps
	DOUBLE PRECISION for dlaqps
	COMPLEX for claqps
	DOUBLE COMPLEX for zlaqps
	Array, DIMENSION (Idf,nb). For real flavors, matrix $F^{T}=L^{*} Y^{T} A_{A}$. For complex flavors, matrix $F^{H}=L^{*} Y^{H *} A$.
Idf	INTEGER. The leading dimension of the array $f$.
	$\operatorname{ldf} \geq \max (1, n) .$

## Output Parameters

kb	INTEGER. The number of columns actually factorized.
a	On exit, block $A(o f f s e t+1: m, 1: k b)$ is the triangular factor obtained and block $A(1:$ offset, $1: n)$ has been accordingly pivoted, but no factorized. The rest of the matrix, block $A(o f f s e t+1: m, k b+1: n)$ has been updated.
jpvt	INTEGER array, DIMENSION ( $n$ ). If jpvt (I) $=k$ then column $k$ of the full matrix $A$ has been permuted into position $i$ in AP.
tau	REAL for slaqps
	DOUBLE PRECISION for dlaqps
	COMPLEX for claqps
	DOUBLE COMPLEX for zlaqps
	Array, DIMENSION ( $k b$ ). The scalar factors of the elementary reflectors.
vn1, vn2	The vectors with the partial and exact column norms, respectively.
auxv	Auxiliary vector.
$f$	Matrix $F^{\prime}=L^{*} Y^{\prime} *_{A}$.

## ?laqr0

Computes the eigenvalues of a Hessenberg matrix, and optionally the marixes from the Schur decomposition.

## Syntax

```
call slaqr0(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, work,
lwork, info)
call dlaqr0(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, work,
lwork, info)
call claqr0(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork,
info)
call zlaqr0(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork,
info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes the eigenvalues of a Hessenberg matrix $H$, and, optionally, the matrices $T$ and $z$ from the Schur decomposition $H=Z^{\star} T^{*} Z^{H}$, where $T$ is an upper quasi-triangular/triangular matrix (the Schur form), and $z$ is the orthogonal/unitary matrix of Schur vectors.
Optionally z may be postmultiplied into an input orthogonal/unitary matrix $Q$ so that this routine can give the Schur factorization of a matrix $A$ which has been reduced to the Hessenberg form $H$ by the orthogonal/unitary matrix $Q$ : $A=Q^{\star} H^{\star} Q^{H}=(Q Z)^{*} H^{\star}(Q Z)^{H}$.

## Input Parameters

wantt	LOGICAL.
	If wantt = .TRUE., the full Schur form T is required;
	If wantt = .FALSE., only eigenvalues are required.
wantz	LOGICAL.
	If wantz = .TRUE., the matrix of Schur vectors $z$ is required;
	If wantz = .FALSE., Schur vectors are not required.
$n$	INTEGER. The order of the Hessenberg matrix $H$. ( $n \geq 0$ ).
ilo, ihi	INTEGER.
	It is assumed that $H$ is already upper triangular in rows and columns
	$1: i l o-1$ and ihi+1:n, and if ilo > 1 then $H(i l o, i l o-1)=0$.
	ilo and ihi are normally set by a previous call to cgebal, and then
	passed to cgehrd when the matrix output by cgebal is reduced to
	Hessenberg form. Otherwise, ilo and ihi should be set to 1 and $n$, respectively.
	If $n=0$, then ilo=1 and ihi=0
$h$	REAL for slaqr0
	DOUBLE PRECISION for dlaqr0
	COMPLEX for claqr0
	DOUBLE COMPLEX for zlaqr0.
	Array, DIMENSION ( $1 d h, n$ ), contains the upper Hessenberg matrix $H$.
1 dh	INTEGER. The leading dimension of the array $h$. $1 d h \geq \max (1, n)$.
iloz, ihiz	INTEGER. Specify the rows of $z$ to which transformations must be applied if wantz is. TRUE., $1 \leq i l o z \leq i l o ; ~ i h i \leq i h i z \leq n$.
$z$	REAL for slaqr0

DOUBLE PRECISION for dlaqr0
COMPLEX for claqr0
DOUBLE COMPLEX for zlaqr0.
Array, DIMENSION ( $l d z$, ihi), contains the matrix $z$ if wantz is .TRUE.. If wantz is .FALSE., $z$ is not referenced.
$l d z \quad$ INTEGER. The leading dimension of the array $z$.
If wantz is. TRUE., then $l d z \geq \max (1$, ihiz). Otherwise, $l d z \geq 1$.
work
lwork
REAL for slaqr0
DOUBLE PRECISION for dlaqr0
COMPLEX for claqr0
DOUBLE COMPLEX for zlaqr0.
Workspace array with dimension lwork.
INTEGER. The dimension of the array work.
$l$ work $\geq \max (1, n)$ is sufficient, but for the optimal performance a greater workspace may be required, typically as large as 6* $n$.
It is recommended to use the workspace query to determine the optimal workspace size. If 1 work=-1, then the routine performs a workspace query: it estimates the optimal workspace size for the given values of the input parameters $n$, ilo, and ihi. The estimate is returned in work(1). No error messages related to the lwork is issued by xerbla. Neither $H$ nor $z$ are accessed.

## Output Parameters

h
work(1)

W
wr, wi
If info=0, and wantt is .TRUE., then $h$ contains the upper quasitriangular/triangular matrix $T$ from the Schur decomposition (the Schur form).
If infole , and wantt is.FALSE., then the contents of $h$ are unspecified on exit.
(The output values of $h$ when info $>0$ are given under the description of the info parameter below.)
The routine may explicitly set $h(i, j)$ for $i>j$ and $j=1,2, \ldots i l o-1$ or $j=i h i+1$, ihi+2, ...n.
On exit work (1) contains the minimum value of lwork required for optimum performance.
COMPLEX for claqr0
DOUBLE COMPLEX for zlaqr0.
Arrays, DIMENSION(n). The computed eigenvalues of $h(i l o: i h i, i l o: i h i)$ are stored in w(ilo:ihi). If wantt is .TRUE., then the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in $h$, with w(i) = h(i,i).
REAL for slaqr0
DOUBLE PRECISION for dlaqr0
Arrays, DIMENSION(ihi) each. The real and imaginary parts, respectively, of the computed eigenvalues of $h(i l o: i h i, i l o: i h i)$ are stored in wr(ilo:ihi) and wi(ilo:ihi). If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of wr and wi, say the $i$-th and $(i+1)$-th, with wi(i)> 0 and $w i(i+1)<0$. If wantt is . TRUE., then the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in $h$, with wr(i) $=h(i, i)$, and if $h(i: i+1, i: i+1)$ is a 2-by-2 diagonal block, then wi(i)=sqrt(-h(i $+1, i) * h(i, i+1)$ ).
z
If wantz is .TRUE., then $z$ (ilo:ihi, iloz:ihiz) is replaced by $z(i l o: i h i, ~ i l o z: i h i z) * U, ~ w h e r e ~ U ~ i s ~ t h e ~ o r t h o g o n a l / u n i t a r y ~ S c h u r ~ f a c t o r ~$ of h(ilo:ihi, ilo:ihi).
If wantz is .FALSE., $z$ is not referenced.
(The output values of $z$ when info $>0$ are given under the description of the info parameter below.)
info
INTEGER.
$=0$ : the execution is successful.
$>0$ : if info $=i$, then the routine failed to compute all the eigenvalues. Elements 1:ilo-1 and $i+1: n$ of wr and wi contain those eigenvalues which have been successfully computed.
$>0$ : if wantt is.FALSE., then the remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix rows and columns ilo through info of the final output value of $h$.
$>0$ : if wantt is .TRUE., then (initial value of $h$ ) $* U=U^{\star}$ (final value of $h$, where $U$ is an orthogonal/unitary matrix. The final value of $h$ is upper Hessenberg and quasi-triangular/triangular in rows and columns info+1 through ihi.
> 0 : if wantz is .TRUE., then (final value of $z(i l o: i h i$, iloz:ihiz) ) =(initial value of $z(i l o$ :ihi, iloz:ihiz)*U, where $U$ is the orthogonal/unitary matrix in the previous expression (regardless of the value of want $t$ ).
> 0 : if wantz is .FALSE., then $z$ is not accessed.

## ?laqr 1

Sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix $H$ and specified shifts.

## Syntax

```
call slaqr1(n, h, ldh, srl, sil, sr2, si2, v)
call dlaqr1(n, h, ldh, sr1, si1, sr2, si2, v)
call claqrl(n, h, ldh, s1, s2, v)
call zlaqrl(n, h, ldh, s1, s2, v)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

Given a 2-by-2 or 3-by-3 matrix $H$, this routine sets $v$ to a scalar multiple of the first column of the product

```
K=(H-sI*I)* (H-s2*I), or K=(H-(srI + i*siI)*I)*(H-(sr2 + i*si2)*I)
```

scaling to avoid overflows and most underflows.
It is assumed that either 1 ) srl $=\operatorname{sr2}$ and $\operatorname{sil}=-\operatorname{si2}$, or 2 ) $\operatorname{sil}=\operatorname{si2}=0$.
This is useful for starting double implicit shift bulges in the QR algorithm.

## Input Parameters

The order of the matrix $H$. n must be equal to 2 or 3 .

```
sr1, si2, sr2, si2
sr1, si2, sr2, si2
```

s1, s2
h
ldh
s1, s2

REAL for slaqr1 DOUBLE PRECISION for dlaqr1
Shift values that define $k$ in the formula above.
COMPLEX for claqr1
DOUBLE COMPLEX for zlaqr1.
Shift values that define $K$ in the formula above.
REAL for slaqr1
DOUBLE PRECISION for dlaqr1
COMPLEX for claqr1
DOUBLE COMPLEX for zlaqr1.
Array, DIMENSION ( $1 d h, n$ ), contains 2-by-2 or 3-by-3 matrix $H$ in the formula above.

INTEGER.
The leading dimension of the array $h$ just as declared in the calling routine. $l d h \geq n$.

## Output Parameters

v

```
REAL for slaqr1
DOUBLE PRECISION for dlaqr1
COMPLEX for claqr1
DOUBLE COMPLEX for zlaqr1.
Array with dimension (\(n\)).
```

A scalar multiple of the first column of the matrix $K$ in the formula above.

## ?laqr2

Performs the orthogonal/unitary similarity
transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).

## Syntax

```
call slaqr2(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sr,
si, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
call dlaqr2(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sr,
si, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
call claqr2(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sh,
v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
call zlaqr2(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sh,
v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

Description

The routine accepts as input an upper Hessenberg matrix $H$ and performs an orthogonal/unitary similarity transformation designed to detect and deflate fully converged eigenvalues from a trailing principal submatrix. On output $H$ has been overwritten by a new Hessenberg matrix that is a perturbation of an orthogonal/ unitary similarity transformation of $H$. It is to be hoped that the final version of $H$ has many zero subdiagonal entries.

This subroutine is identical to ?laqr3 except that it avoids recursion by calling ? lahqr instead of ?laqr 4.

## Input Parameters

wantt	LOGICAL.   If wantt $=$.TRUE., then the Hessenberg matrix $H$ is fully updated so that the quasi-triangular/triangular Schur factor may be computed (in cooperation with the calling subroutine).   If wantt $=$.FALSE., then only enough of $H$ is updated to preserve the eigenvalues.
wantz	LOGICAL.   If wantz = .TRUE., then the orthogonal/unitary matrix $z$ is updated so that the orthogonal/unitary Schur factor may be computed (in cooperation with the calling subroutine).   If wantz = .FALSE., then $z$ is not referenced.
$n$	INTEGER. The order of the Hessenberg matrix $H$ and (if wantz =.TRUE.) the order of the orthogonal/unitary matrix $z$.
ktop	INTEGER.   It is assumed that either $k t o p=1$ or $h(k t o p, k t o p-1)=0$. ktop and $k b o t$ together determine an isolated block along the diagonal of the Hessenberg matrix.
kbot	INTEGER.   It is assumed without a check that either $k b \circ t=n$ or $h(k b \circ t+1, k b \circ t)=0$. $k$ top and kbot together determine an isolated block along the diagonal of the Hessenberg matrix.
nw	INTEGER.   Size of the deflation window. $1 \leq n w \leq(k b \circ t-k t o p+1)$.
h	REAL for slaqr2   DOUBLE PRECISION for dlaqr2   COMPLEX for claqr2   DOUBLE COMPLEX for zlaqr2.   Array, DIMENSION ( $1 d h, n$ ), on input the initial $n$-by- $n$ section of $h$ stores the Hessenberg matrix $H$ undergoing aggressive early deflation.
1 dh	INTEGER. The leading dimension of the array $h$ just as declared in the calling subroutine. $1 d h \geq n$.
iloz, ihiz	INTEGER. Specify the rows of $z$ to which transformations must be applied if wantz is.TRUE.. $1 \leq i l o z \leq i h i z \leq n$.
$z$	REAL for slaqr2
	DOUBLE PRECISION for dlaqr2   COMPLEX for claqr2   DOUBLE COMPLEX for zlaqr2.   Array, DIMENSION ( $1 d z, n$ ), contains the matrix $z$ if wantz is .TRUE.. If wantz is .FALSE., then $z$ is not referenced.
$I d z$	INTEGER. The leading dimension of the array $z$ just as declared in the calling subroutine. $1 d z \geq 1$.
v	REAL for slaqr2


	DOUBLE PRECISION for dlaqr2
	COMPLEX for claqr2
	DOUBLE COMPLEX for zlaqr2.
	Workspace array with dimension (ldv, nw). An $n w$-by-nw work array.
$l d v$	INTEGER. The leading dimension of the array $v$ just as declared in the calling subroutine. $I d v \geq n w$.
$n h$	INTEGER. The number of column of $t$. $n h \geq n w$.
$t$	REAL for slaqr2
	DOUBLE PRECISION for dlaqr2
	COMPLEX for claqr2
	DOUBLE COMPLEX for zlaqr2.
	Workspace array with dimension (ldt, nw).
$1 d t$	INTEGER. The leading dimension of the array $t$ just as declared in the calling subroutine. Idt $\geq n w$.
nv	INTEGER. The number of rows of work array wv available for workspace. $n v>n w$.
wV	REAL for slaqr2
	DOUBLE PRECISION for dlaqr2
	COMPLEX for claqr2
	DOUBLE COMPLEX for zlaqr2.
	Workspace array with dimension (ldwv, nw).
Idwv	INTEGER. The leading dimension of the array wv just as declared in the calling subroutine. $1 d w v \geqq n w$.
work	REAL for slaqr2
	DOUBLE PRECISION for dlaqr2
	COMPLEX for claqr2
	DOUBLE COMPLEX for zlaqr2.
	Workspace array with dimension lwork.
lwork	INTEGER. The dimension of the array work.
	lwork $=2{ }^{*} n \mathrm{w}$ ) is sufficient, but for the optimal performance a greater workspace may be required.
	If 1 work=-1, then the routine performs a workspace query: it estimates the optimal workspace size for the given values of the input parameters $n, n w$, $k t o p$, and kbot. The estimate is returned in work (1). No error messages related to the lwork is issued by xerbla. Neither $H$ nor $z$ are accessed.

## Output Parameters

h
work(1)

Z
nd
ns

On output $h$ has been transformed by an orthogonal/unitary similarity transformation, perturbed, and the returned to Hessenberg form that (it is to be hoped) has some zero subdiagonal entries.
On exit work (1) is set to an estimate of the optimal value of lwork for the given values of the input parameters $n, n w$, ktop, and kbot.
If wantz is .TRUE., then the orthogonal/unitary similarity transformation is accumulated into $z$ (iloz:ihiz, ilo:ihi) from the right.
If wantz is .FALSE., then $z$ is unreferenced.
INTEGER. The number of converged eigenvalues uncovered by the routine.
INTEGER. The number of unconverged, that is approximate eigenvalues returned in sr, si or in sh that may be used as shifts by the calling subroutine.

```
sh
COMPLEX for claqr2
DOUBLE COMPLEX for zlaqr2.
Arrays, DIMENSION (kbot).
The approximate eigenvalues that may be used for shifts are stored in the
sh(kbot-nd-ns+1) through the sh(kbot-nd).
The converged eigenvalues are stored in the sh(kbot-nd+1) through the
sh(kbot).
sr, si
REAL for slaqr2
DOUBLE PRECISION for dlaqr2
Arrays, DIMENSION (kbot) each.
The real and imaginary parts of the approximate eigenvalues that may be
used for shifts are stored in the sr(kbot-nd-ns+1) through the sr(kbot-
nd), and si(kbot-nd-ns+1) through the si(kbot-nd), respectively.
The real and imaginary parts of converged eigenvalues are stored in the
sr(kbot-nd+1) through the sr(kbot), and si(kbot-nd+1) through the
si(kbot), respectively.
```


## ?laqr3

Performs the orthogonal/unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).

## Syntax

```
call slaqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sr,
si, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
call dlaqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sr,
si, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
call claqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sh,
v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
call zlaqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sh,
v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

Description
The routine accepts as input an upper Hessenberg matrix $H$ and performs an orthogonal/unitary similarity transformation designed to detect and deflate fully converged eigenvalues from a trailing principal submatrix. On output $H$ has been overwritten by a new Hessenberg matrix that is a perturbation of an orthogonal/ unitary similarity transformation of $H$. It is to be hoped that the final version of $H$ has many zero subdiagonal entries.

## Input Parameters

wantt
LOGICAL.
If wantt = .TRUE., then the Hessenberg matrix $H$ is fully updated so that the quasi-triangular/triangular Schur factor may be computed (in cooperation with the calling subroutine).

	If wantt = .FALSE., then only enough of $H$ is updated to preserve the eigenvalues.
wantz	LOGICAL.   If wantz = .TRUE., then the orthogonal/unitary matrix $z$ is updated so that the orthogonal/unitary Schur factor may be computed (in cooperation with the calling subroutine).   If wantz = .FALSE., then $z$ is not referenced.
$n$	INTEGER. The order of the Hessenberg matrix $H$ and (if wantz =.TRUE.) the order of the orthogonal/unitary matrix $z$.
ktop	INTEGER.   It is assumed that either $k t o p=1$ or $h(k t o p, k t o p-1)=0 . k t o p$ and $k b o t$ together determine an isolated block along the diagonal of the Hessenberg matrix.
kbot	INTEGER.   It is assumed without a check that either $k b \circ t=n$ or $h(k b \circ t+1, k b \circ t)=0$. $k$ top and kbot together determine an isolated block along the diagonal of the Hessenberg matrix.
nw	INTEGER.   Size of the deflation window. $1 \leq n w \leq(k b \circ t-k t o p+1)$.
h	REAL for slaqr3   DOUBLE PRECISION for dlaqr3   COMPLEX for claqr3   DOUBLE COMPLEX for zlaqr3.   Array, DIMENSION ( $1 d h, n$ ), on input the initial $n$-by- $n$ section of $h$ stores the Hessenberg matrix $H$ undergoing aggressive early deflation.
1 dh	INTEGER. The leading dimension of the array $h$ just as declared in the calling subroutine. $I d h \geq n$.
iloz, ihiz	INTEGER. Specify the rows of $z$ to which transformations must be applied if wantz is .TRUE.. $1 \leq i l o z \leq i h i z \leq n$.
$z$	REAL for slaqr3
	DOUBLE PRECISION for dlaqr3
	COMPLEX for claqr3
	DOUBLE COMPLEX for zlaqr3.   Array, DIMENSION ( $1 d z, n$ ), contains the matrix $z$ if wantz is .TRUE.. If wantz is . FALSE., then $z$ is not referenced.
$1 d z$	INTEGER. The leading dimension of the array $z$ just as declared in the calling subroutine. $1 d z \geq 1$.
v	REAL for slaqr3
	DOUBLE PRECISION for dlaqr3
	COMPLEX for claqr3
	DOUBLE COMPLEX for zlaqr3.
	Workspace array with dimension (ldv, nw). An nw-by-nw work array.
$1 d v$	INTEGER. The leading dimension of the array $v$ just as declared in the calling subroutine. $I d v \geq n w$.
nh	INTEGER. The number of column of $t$. $n h \geq n w$.
$t$	REAL for slaqr3
	DOUBLE PRECISION for dlaqr3
	COMPLEX for claqr3
	DOUBLE COMPLEX for zlaqr3.


	Workspace array with dimension (ldt, nw).
$1 d t$	INTEGER. The leading dimension of the array $t$ just as declared in the calling subroutine. $1 d t \geq n w$.
nv	INTEGER. The number of rows of work array wv available for workspace. $n v \geq n w$.
wv	REAL for slaqr3
	DOUBLE PRECISION for dlaqr3
	COMPLEX for claqr3
	DOUBLE COMPLEX for zlaqr3.
	Workspace array with dimension (ldwv, nw).
IdwV	INTEGER. The leading dimension of the array wv just as declared in the calling subroutine. $1 d w v \geq n w$.
work	REAL for slaqr3
	DOUBLE PRECISION for dlaqr3
	COMPLEX for claqr3
	DOUBLE COMPLEX for zlaqr3.
	Workspace array with dimension lwork.
Iwork	INTEGER. The dimension of the array work.
	lwork $=2^{*} n w$ ) is sufficient, but for the optimal performance a greater workspace may be required.
	If 1 work $=-1$, then the routine performs a workspace query: it estimates the optimal workspace size for the given values of the input parameters $n, n w$, ktop, and kbot. The estimate is returned in work (1). No error messages related to the lwork is issued by xerbla. Neither $H$ nor $z$ are accessed.

## Output Parameters

h
work(1)
z
nd
$n s$
sh
sr, si

On output $h$ has been transformed by an orthogonal/unitary similarity transformation, perturbed, and the returned to Hessenberg form that (it is to be hoped) has some zero subdiagonal entries.
On exit work (1) is set to an estimate of the optimal value of lwork for the given values of the input parameters $n, n w, k t o p$, and $k b o t$.
If wantz is .TRUE., then the orthogonal/unitary similarity transformation is accumulated into $z$ (iloz:ihiz, ilo:ihi) from the right.
If wantz is . FALSE., then $z$ is unreferenced.
INTEGER. The number of converged eigenvalues uncovered by the routine.
INTEGER. The number of unconverged, that is approximate eigenvalues returned in sr, si or in sh that may be used as shifts by the calling subroutine.
COMPLEX for claqr3
DOUBLE COMPLEX for zlaqr3.
Arrays, DIMENSION (kbot).
The approximate eigenvalues that may be used for shifts are stored in the $\operatorname{sh}(k b \circ t-n d-n s+1)$ through the $\operatorname{sh}(k b \circ t-n d)$.
The converged eigenvalues are stored in the $\operatorname{sh}(k b \circ t-n d+1)$ through the sh(kbot).
REAL for slaqr3
DOUBLE PRECISION for dlaqr3
Arrays, DIMENSION (kbot) each.

The real and imaginary parts of the approximate eigenvalues that may be used for shifts are stored in the $s r(k b \circ t-n d-n s+1)$ through the $s r(k b o t-$ $n d)$, and $s i(k b \circ t-n d-n s+1)$ through the $s i(k b \circ t-n d)$, respectively. The real and imaginary parts of converged eigenvalues are stored in the $s r(k b \circ t-n d+1)$ through the $s r(k b \circ t)$, and $s i(k b \circ t-n d+1)$ through the si(kbot), respectively.

```
?laqr4
Computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
```


## Syntax

```
call slaqr4(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, work,
lwork, info)
call dlaqr4(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, work,
lwork, info)
call claqr4(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork,
info)
call zlaqr4(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork,
info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes the eigenvalues of a Hessenberg matrix $H$, and, optionally, the matrices $T$ and $Z$ from the Schur decomposition $H=Z^{\star} T^{\star} Z^{H}$, where $T$ is an upper quasi-triangular/triangular matrix (the Schur form), and $z$ is the orthogonal/unitary matrix of Schur vectors.
Optionally z may be postmultiplied into an input orthogonal/unitary matrix $Q$ so that this routine can give the Schur factorization of a matrix $A$ which has been reduced to the Hessenberg form $H$ by the orthogonal/unitary matrix $Q: A=Q^{\star} H^{\star} Q^{H}=(Q Z){ }^{*} H^{\star}(Q Z)^{H}$.
This routine implements one level of recursion for ?laqr0. It is a complete implementation of the small bulge multi-shift QR algorithm. It may be called by ?laqr0 and, for large enough deflation window size, it may be called by ?laqr3. This routine is identical to ? laqr0 except that it calls ?laqr2 instead of ?laqr3.

## Input Parameters

```
wantt
wantz
n
ilo, ihi
```

LOGICAL.
If wantt $=$.TRUE., the full Schur form $T$ is required;
If wantt $=$.FALSE., only eigenvalues are required.
LOGICAL.
If wantz $=$.TRUE., the matrix of Schur vectors $Z$ is required;
If want $z=$.FALSE., Schur vectors are not required.
INTEGER. The order of the Hessenberg matrix $H$. ( $n \geq 0$ ).
INTEGER.
It is assumed that $H$ is already upper triangular in rows and columns
$1: i l o-1$ and $i h i+1: n$, and if $i l o>1$ then $h(i l o, i l o-1)=0$.
ilo and ihi are normally set by a previous call to cgebal, and then passed to cgehrd when the matrix output by cgebal is reduced to Hessenberg form. Otherwise, ilo and ihi should be set to 1 and $n$, respectively.
If $n>0$, then $1 \leq i l o \leq i h i \leq n$.
If $n=0$, then ilo=1 and ihi=0
$h$
$I d h$
iloz, ihiz
z
$I d z$
work
lwork

REAL for slaqr4
DOUBLE PRECISION for dlaqr4
COMPLEX for claqr4
DOUBLE COMPLEX for zlaqr4.
Array, DIMENSION ( $1 d h, n$ ), contains the upper Hessenberg matrix $H$.
INTEGER. The leading dimension of the array $h$. $1 d h \geq \max (1, n)$.
INTEGER. Specify the rows of $z$ to which transformations must be applied if wantz is. TRUE., $1 \leq i l o z \leq i l o ; ~ i h i \leq i h i z \leq n$.
REAL for slaqr4
DOUBLE PRECISION for dlaqr4
COMPLEX for claqr 4
DOUBLE COMPLEX for zlaqr4.
Array, DIMENSION ( $l d z$, ihi), contains the matrix $z$ if wantz is .TRUE.. If wantz is.FALSE., $z$ is not referenced.
INTEGER. The leading dimension of the array $z$.
If wantz is .TRUE., then $l d z \geq \max (1, i h i z)$. Otherwise, $l d z \geq 1$.
REAL for slaqr4
DOUBLE PRECISION for dlaqr4
COMPLEX for claqr 4
DOUBLE COMPLEX for zlaqr4.
Workspace array with dimension lwork.
INTEGER. The dimension of the array work.
$l$ work $\geq \max (1, n)$ is sufficient, but for the optimal performance a greater workspace may be required, typically as large as $6 \star n$.
It is recommended to use the workspace query to determine the optimal workspace size. If $I$ work $=-1$, then the routine performs a workspace query: it estimates the optimal workspace size for the given values of the input parameters $n, i l o$, and ihi. The estimate is returned in work(1). No error messages related to the lwork is issued by xerbla. Neither $H$ nor $z$ are accessed.

## Output Parameters

$h$
work(1)

W
If info=0, and wantt is .TRUE., then $h$ contains the upper quasitriangular/triangular matrix $T$ from the Schur decomposition (the Schur form).
If infolo, and wantt is.FALSE., then the contents of $h$ are unspecified on exit.
(The output values of $h$ when info $>0$ are given under the description of the info parameter below.)
The routines may explicitly set $h(i, j)$ for $i>j$ and $j=1,2, \ldots i l o-1$ or $j=i h i+1$, ihi+2, ...n.
On exit work (1) contains the minimum value of lwork required for optimum performance.
COMPLEX for claqr 4

DOUBLE COMPLEX for zlaqr 4.
Arrays, DIMENSION(n). The computed eigenvalues of $h(i l o: i h i, i l o: i h i)$ are stored in w(ilo:ihi). If wantt is .TRUE., then the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in $h$, with $w(i)=h(i, i)$.
REAL for slaqr4
DOUBLE PRECISION for dlaqr4
Arrays, DIMENSION(ihi) each. The real and imaginary parts, respectively, of the computed eigenvalues of $h(i l o: i h i, i l o: i h i)$ are stored in the $w r(i l o: i h i)$ and wi(ilo:ihi). If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of $w r$ and $w i$, say the $i$-th and ( $i+1$ )-th, with $w i(i)>0$ and $w i(i+1)<0$. If wantt is .TRUE., then the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in $h$, with $w r(i)=h(i, i)$, and if $h(i: i+1, i: i+1)$ is a 2-by-2 diagonal block, then wi(i)=sqrt(-h(i $+1, i) * h(i, i+1)$ ).
z
If wantz is .TRUE., then $z$ (ilo:ihi, iloz:ihiz) is replaced by $z(i l o: i h i, ~ i l o z: i h i z) * U$, where $U$ is the orthogonal/unitary Schur factor of $h(i l o: i h i, ~ i l o: i h i) . ~$
If wantz is .FALSE., $z$ is not referenced.
(The output values of $z$ when info $>0$ are given under the description of the info parameter below.)
info
INTEGER.
$=0$ : the execution is successful.
$>0$ : if info $=i$, then the routine failed to compute all the eigenvalues.
Elements 1:ilo-1 and $i+1: n$ of wr and wi contain those eigenvalues which have been successfully computed.
$>0$ : if wantt is .FALSE., then the remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix rows and columns ilo through info of the final output value of $h$.
$>0$ : if wantt is .TRUE., then (initial value of $h$ ) $* U=U^{\star}$ (final value of $h$, where $U$ is an orthogonal/unitary matrix. The final value of $h$ is upper Hessenberg and quasi-triangular/triangular in rows and columns info +1 through ihi.
$>0$ : if wantz is .TRUE., then (final value of $z(i l o: i h i$, iloz: ihiz) $)=($ initial value of $z(i l o: i h i, ~ i l o z: i h i z) * U, ~ w h e r e ~ U ~ i s ~ t h e ~$ orthogonal/unitary matrix in the previous expression (regardless of the value of want $t$ ).
$>0$ : if wantz is .FALSE., then $z$ is not accessed.

## ?laqr5

Performs a single small-bulge multi-shift QR sweep.

## Syntax

```
call slaqr5(wantt, wantz, kacc22, n, ktop, kbot, nshfts, sr, si, h, ldh, iloz, ihiz,
z, ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh)
call dlaqr5(wantt, wantz, kacc22, n, ktop, kbot, nshfts, sr, si, h, ldh, iloz, ihiz,
z, ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh)
call claqr5(wantt, wantz, kacc22, n, ktop, kbot, nshfts, s, h, ldh, iloz, ihiz, z,
ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh)
```

```
call zlaqr5(wantt, wantz, kacc22, n, ktop, kbot, nshfts, s, h, ldh, iloz, ihiz, z,
ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh)
```

Include files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

This auxiliary routine called by ?laqr0 performs a single small-bulge multi-shift QR sweep.

## Input Parameters

wantt	LOGICAL.   wantt $=$.TRUE. if the quasi-triangular/triangular Schur factor is computed.   wantt is set to .FALSE. otherwise.
wantz	LOGICAL.   wantz = .TRUE. if the orthogonal/unitary Schur factor is computed. wantz is set to .FALSE. otherwise.
kacc22	INTEGER. Possible values are 0,1 , or 2.   Specifies the computation mode of far-from-diagonal orthogonal updates.   $=0$ : the routine does not accumulate reflections and does not use matrixmatrix multiply to update far-from-diagonal matrix entries.   $=1$ : the routine accumulates reflections and uses matrix-matrix multiply to update the far-from-diagonal matrix entries.   $=2$ : the routine accumulates reflections, uses matrix-matrix multiply to update the far-from-diagonal matrix entries, and takes advantage of 2-by-2 block structure during matrix multiplies.
$n$	INTEGER. The order of the Hessenberg matrix $H$ upon which the routine operates.
ktop, kbot	INTEGER.   It is assumed without a check that either $k$ top $=1$ or $h(k t o p, k t o p-1)=0$, and either $k b o t=n$ or $h(k b o t+1, k b \circ t)=0$.
nshfts	INTEGER.   Number of simultaneous shifts, must be positive and even.
sr, si	REAL for slaqr5   DOUBLE PRECISION for dlaqr5   Arrays, DIMENSION (nshfts) each.   sr contains the real parts and si contains the imaginary parts of the nshfts shifts of origin that define the multi-shift QR sweep.
s	COMPLEX for claqr5   DOUBLE COMPLEX for zlaqr5.   Arrays, DIMENSION (nshfts).   $s$ contains the shifts of origin that define the multi-shift QR sweep.
h	REAL for slaqr5   DOUBLE PRECISION for dlaqr5   COMPLEX for claqr5   DOUBLE COMPLEX for zlaqr5.   Array, DIMENSION ( $1 d h, n$ ), on input contains the Hessenberg matrix.
1 dh	INTEGER. The leading dimension of the array $h$ just as declared in the calling routine. $l d h \geq \max (1, n)$.

```
iloz, ihiz
z
ldz
v
IdV
u
ldu
nh
wh
nV
WV
INTEGER. Specify the rows of \(z\) to which transformations must be applied if wantz is .TRUE.. \(1 \leq i l o z \leq i h i z \leq n\).
REAL for slaqr5
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
DOUBLE COMPLEX for zlaqr5.
Array, DIMENSION (\(1 d z, i h i\)), contains the matrix \(z\) if wantz is .TRUE.. If wantz is. FALSE., then \(z\) is not referenced.
INTEGER. The leading dimension of the array \(z\) just as declared in the calling routine. \(l d z \geq n\).
REAL for slaqr5
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
DOUBLE COMPLEX for zlaqr5.
Workspace array with dimension (ldv, nshfts/2).
INTEGER. The leading dimension of the array \(v\) just as declared in the calling routine. \(l d v \geq 3\).
REAL for slaqr5
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
DOUBLE COMPLEX for zlaqr5.
Workspace array with dimension (Idu, 3*nshfts-3).
INTEGER. The leading dimension of the array \(u\) just as declared in the calling routine. \(1 d u \geq 3 * n s h f t s-3\).
INTEGER. The number of column in the array wh available for workspace. nh \(\geq 1\).
REAL for slaqr5
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
DOUBLE COMPLEX for zlaqr5.
Workspace array with dimension (Idwh, nh)
INTEGER. The leading dimension of the array wh just as declared in the calling routine. \(1 d w h \geq 3 * n s h f t s-3\)
INTEGER. The number of rows of the array wv available for workspace. nv \(\geq\) 1.
REAL for slaqr5
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
DOUBLE COMPLEX for zlaqr5.
Workspace array with dimension (ldwv, 3*nshfts-3).
ldwv
INTEGER. The leading dimension of the array wv just as declared in the calling routine. ldwv \(\geq n v\).
```


## Output Parameters

sr, si
$h$

On output, may be reordered.
On output a multi-shift QR Sweep with shifts $s r(j)+i * s i(j)$ or $s(j)$ is applied to the isolated diagonal block in rows and columns ktop through kbot.
z
If wantz is . TRUE., then the QR Sweep orthogonal/unitary similarity transformation is accumulated into z(iloz:ihiz, ilo:ihi) from the right.
If want $z$ is .FALSE., then $z$ is unreferenced.

## ?laqsb <br> Scales a symmetric band matrix, using scaling factors computed by ?pbequ.

## Syntax

```
call slaqsb(uplo, n, kd, ab, ldab, s, scond, amax, equed)
call dlaqsb(uplo, n, kd, ab, ldab, s, scond, amax, equed)
call claqsb(uplo, n, kd, ab, ldab, s, scond, amax, equed)
call zlaqsb(uplo, n, kd, ab, ldab, s, scond, amax, equed)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine equilibrates a symmetric band matrix $A$ using the scaling factors in the vector $s$.

## Input Parameters

uplo	CHARACTER*1.
	Specifies whether the upper or lower triangular part of the symmetric matrix $A$ is stored.   If uplo = 'U': upper triangular.   If uplo = 'L': lower triangular.
$n$	INTEGER. The order of the matrix $A$. $n \geq 0$.
kd	INTEGER. The number of super-diagonals of the matrix $A$ if uplo = 'U', or the number of sub-diagonals if uplo = 'L'. $k d \geq 0$
$a b$	REAL for slaqsb
	DOUBLE PRECISION for dlaqsb
	COMPLEX for claqsb
	DOUBLE COMPLEX for zlaqsb
	Array, DIMENSION ( $1 \mathrm{dab}, n$ ). On entry, the upper or lower triangle of the symmetric band matrix $A$, stored in the first $k d+1$ rows of the array. The $j$ th column of $A$ is stored in the $j$-th column of the array $a b$ as follows:   if uplo $=' U ', a b(k d+1+i-j, j)=A(i, j)$ for $\max (1, j-k d) \leq i \leq j$;   if uplo $=$ 'L', $a b(1+i-j, j)=A(i, j)$ for $j \leq i \leq \min (n, j+k d)$.
Idab	Integer. The leading dimension of the array $a b$. $l d a b \geq k d+1$.
$s$	REAL for slaqsb/claqsb
	DOUBLE PRECISION for dlaqsb/zlaqsb
	Array, DIMENSION ( $n$ ). The scale factors for A.
scond	REAL for slaqsb/claqsb


	DOUBLE PRECISION for dlaqsb/zlaqsb
amax	Ratio of the smallest $s(i)$ to the largest $s(i)$.
	REAL for slaqsb/claqsb
	DOUBLE PRECISION for dlaqsb/zlaqsb
	Absolute value of largest matrix entry.

## Output Parameters

## ab


equed

On exit, if info $=0$, the triangular factor $U$ or $L$ from the Cholesky factorization of the band matrix $A$ that can be $A=U^{T} \star U$ or $A=L^{\star} L^{T}$ for real flavors and $A=U^{H \star} U$ or $A=L^{\star} L^{H}$ for complex flavors, in the same storage format as $A$. CHARACTER*1.
Specifies whether or not equilibration was done.
If equed $=$ ' $N$ ': No equilibration.
If equed $=$ ' $Y$ ': Equilibration was done, that is, $A$ has been replaced by $\operatorname{diag}(s) \star A^{\star} \operatorname{diag}(s)$.

## Application Notes

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond < thresh, scaling is done. large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

## ?laqsp

Scales a symmetric/Hermitian matrix in packed storage, using scaling factors computed by ?ppequ.

## Syntax

```
call slaqsp(uplo, n, ap, s, scond, amax, equed)
call dlaqsp(uplo, n, ap, s, scond, amax, equed)
call claqsp(uplo, n, ap, s, scond, amax, equed)
call zlaqsp(uplo, n, ap, s, scond, amax, equed)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? laqsp equilibrates a symmetric matrix $A$ using the scaling factors in the vector $s$.

## Input Parameters

```
uplo CHARACTER*1.
 Specifies whether the upper or lower triangular part of the symmetric
 matrix }A\mathrm{ is stored.
 If uplo = 'U': upper triangular.
 If uplo = 'L': lower triangular.
 n INTEGER. The order of the matrix A. n\geq0.
```

```
ap REAL for slaqsp
DOUBLE PRECISION for dlaqsp
COMPLEX for claqsp
DOUBLE COMPLEX for zlaqsp
Array, DIMENSION (n(n+1)/2).
On entry, the upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored in the array ap
as follows:
if uplo = 'U',ap(i + (j-1)j/2) = A(i,j) for 1\leqi\leq j;
if uplo = 'L',ap(i + (j-1)(2n-j)/2) = A(i,j) for j\leqi\leqn.
REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Array, DIMENSION (}n\mathrm{). The scale factors for A.
REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Ratio of the smallest s(i) to the largest s(i).
-
REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Absolute value of largest matrix entry.
```


## Output Parameters

On exit, the equilibrated matrix: diag $(s){ }^{*} A^{\star} \operatorname{diag}(s)$, in the same storage format as $A$.
equed
CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed $=$ ' $Y$ ': Equilibration was done, that is, $A$ has been replaced by $\operatorname{diag}(s) \star A \star \operatorname{diag}(s)$.

## Application Notes

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond < thresh, scaling is done. large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

## ?laqsy

Scales a symmetric/Hermitian matrix, using scaling factors computed by ?poequ.

## Syntax

```
call slaqsy(uplo, n, a, lda, s, scond, amax, equed)
call dlaqsy(uplo, n, a, lda, s, scond, amax, equed)
call claqsy(uplo, n, a, lda, s, scond, amax, equed)
call zlaqsy(uplo, n, a, lda, s, scond, amax, equed)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine equilibrates a symmetric matrix $A$ using the scaling factors in the vector $s$.

## Input Parameters

```
uplo
n
a
Ida
S
scond
amax
```


## Output Parameters

```
a
equed
```

On exit, if equed $=$ ' $Y$ ', the equilibrated matrix: $\operatorname{diag}(s){ }^{\star} A \star \operatorname{diag}(s)$.

```
CHARACTER*1.
```

Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed = 'Y': Equilibration was done, i.e., $A$ has been replaced by
diag(s)*A*diag(s).

## Application Notes

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond < thresh, scaling is done. large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

```
?laqtr
Solves a real quasi-triangular system of equations, or
a complex quasi-triangular system of special form, in
real arithmetic.
Syntax
```

```
call slaqtr(ltran, lreal, n, t, ldt, b, w, scale, x, work, info)
```

call slaqtr( ltran, lreal, n, t, ldt, b, w, scale, x, work, info )
call dlaqtr( ltran, lreal, n, t, ldt, b, w, scale, x, work, info )

```
call dlaqtr(ltran, lreal, n, t, ldt, b, w, scale, x, work, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? laqtr solves the real quasi-triangular system
$o p(T) * p=s c a l e^{*} c$, if lreal = .TRUE.
or the complex quasi-triangular systems
$o p(T+i B)^{*}(p+i q)=s c a l e^{*}(c+i d)$, if lreal $=$.FALSE.
in real arithmetic, where $T$ is upper quasi-triangular.
If lreal $=$.FALSE., then the first diagonal block of $T$ must be 1-by-1, $B$ is the specially structured matrix

$$
B=\left[\begin{array}{ccccc}
b_{1} & b_{2} & \ldots & \ldots & b_{n} \\
& W & & & \\
& & W & & \\
& & & \cdots & \\
& & & & W
\end{array}\right]
$$

op $(A)=A$ or $A^{T}, A^{T}$ denotes the transpose of matrix $A$.
On input,

$$
x=\left[\begin{array}{l}
c \\
d
\end{array}\right] \text {, on output } x=\left[\begin{array}{l}
P \\
q
\end{array}\right]
$$

This routine is designed for the condition number estimation in routine ?trsna.

## Input Parameters

Itran LOGICAL.
On entry, ltran specifies the option of conjugate transpose:

$$
\begin{aligned}
& =. \text { FALSE., op }(T+i B)=T+i B, \\
& =. \operatorname{TRUE} ., \text { op }(T+i B)=(T+i B)^{T} .
\end{aligned}
$$

```
lreal LOGICAL.
 On entry, lreal specifies the input matrix structure:
 = .FALSE., the input is complex
 = .TRUE., the input is real.
 INTEGER.
 On entry, n specifies the order of T + iB. n\geq0.
 REAL for slaqtr
 DOUBLE PRECISION for dlaqtr
 Array, dimension (ldt,n). On entry, t contains a matrix in Schur canonical
 form. If lreal = .FALSE., then the first diagonal block of t must be 1-
 by-1.
 INTEGER. The leading dimension of the matrix T.
 ldt \geq max(1,n).
 REAL for slaqtr
 DOUBLE PRECISION for dlaqtr
 Array, dimension (n). On entry, b contains the elements to form the matrix
 B as described above. If lreal = .TRUE., b is not referenced.
W
X
work
REAL for slaqtr
DOUBLE PRECISION for dlaqtr
On entry, w is the diagonal element of the matrix B.
If lreal = .TRUE., w is not referenced.
REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension (2n). On entry, x contains the right hand side of the
system.
REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Workspace array, dimension (n).
```


## Output Parameters

scale

X
info

REAL for slaqtr
DOUBLE PRECISION for dlagtr
On exit, scale is the scale factor.
On exit, $x$ is overwritten by the solution.
INTEGER.
If info = 0: successful exit.
If info $=1$ : the some diagonal 1-by-1 block has been perturbed by a small number smin to keep nonsingularity.
If info $=2$ : the some diagonal 2-by-2 block has been perturbed by a small number in ?laln2 to keep nonsingularity.

I
NOTE For higher speed, this routine does not check the inputs for errors.

## ?lar1v

Computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of tridiagonal matrix.

## Syntax

```
call slarlv(n, bl, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz,
mingma, r, isuppz, nrminv, resid, rqcorr, work)
call dlarlv(n, bl, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz,
mingma, r, isuppz, nrminv, resid, rqcorr, work)
call clarlv(n, bl, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz,
mingma, r, isuppz, nrminv, resid, rqcorr, work)
call zlarlv(n, bl, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz,
mingma, r, isuppz, nrminv, resid, rqcorr, work)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?lar1v computes the (scaled) r-th column of the inverse of the submatrix in rows bl through bn of the tridiagonal matrix $L^{\star} D^{\star} L^{T}-\lambda \star I$. When $\lambda$ is close to an eigenvalue, the computed vector is an accurate eigenvector. Usually, $r$ corresponds to the index where the eigenvector is largest in magnitude.

The following steps accomplish this computation :

- Stationary $q d$ transform, $L \star D^{*} L^{T}-\lambda \star I=L(+) \star D(+) \star L(+)^{T}$
- Progressive qd transform, $L \star D^{\star} L^{T}-\lambda \star I=U(-) * D(-) * U(-)^{T}$,
- Computation of the diagonal elements of the inverse of $L^{*} D^{\star} L^{T}-\lambda^{\star} I$ by combining the above transforms, and choosing $r$ as the index where the diagonal of the inverse is (one of the) largest in magnitude.
- Computation of the (scaled) r-th column of the inverse using the twisted factorization obtained by combining the top part of the stationary and the bottom part of the progressive transform.


## Input Parameters

n
bl
bn
lambda

1
$d$

Id

INTEGER. The order of the matrix $L \star D^{\star} L^{T}$.
INTEGER. First index of the submatrix of $L \star D^{*} L^{T}$.
INTEGER. Last index of the submatrix of $L{ }^{*} D^{\star} L^{T}$.
REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The shift. To compute an accurate eigenvector, lambda should be a good approximation to an eigenvalue of $L \star D^{\star} L^{T}$.
REAL for slarlv/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION ( $n-1$ ).
The ( $n-1$ ) subdiagonal elements of the unit bidiagonal matrix $L$, in elements 1 to $n-1$.
REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION ( $n$ ).
The $n$ diagonal elements of the diagonal matrix $D$.
REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION ( $n-1$ ).
The $n-1$ elements $L_{i}{ }^{*} D_{i}$.

Ild	REAL for slarlv/clarlv
	DOUBLE PRECISION for dlar1v/zlar1v
	Array, DIMENSION ( $n-1$ ).
	The $n-1$ elements $L_{i} *_{L_{i}} *_{D_{i}}$.
pivmin	REAL for slarlv/clarlv
	DOUBLE PRECISION for dlarlv/zlarlv
	The minimum pivot in the Sturm sequence.
gaptol	REAL for slarlv/clarlv
	DOUBLE PRECISION for dlar1v/zlar1v
	Tolerance that indicates when eigenvector entries are negligible with respect to their contribution to the residual.
$z$	REAL for slar1v
	DOUBLE PRECISION for dlarlv
	COMPLEX for clarlv
	DOUBLE COMPLEX for zlarlv
	Array, DIMENSION ( $n$ ). All entries of $z$ must be set to 0 .
wantnc	LOGICAL.
	Specifies whether negcnt has to be computed.
$r$	INTEGER.
	The twist index for the twisted factorization used to compute $z$. On input, 0 $\leq r \leq n$. If $r$ is input as $0, r$ is set to the index where ( $L^{*} D^{*} L^{T}-$
	lambda* $I)^{-1}$ is largest in magnitude. If $1 \leq r \leq n, r$ is unchanged.
work	REAL for slarlv/clarlv
	DOUBLE PRECISION for dlar1v/zlarlv
	Workspace array, DIMENSION ( $4 *_{n}$ ).

## Output Parameters

Z
negcnt
z七z
mingma
r
isuppz
nrminv

REAL for slarlv
DOUBLE PRECISION for dlarlv
COMPLEX for clar1v
DOUBLE COMPLEX for zlar1v
Array, DIMENSION $(n)$. The (scaled) r-th column of the inverse. $z(r)$ is returned to be 1 .
INTEGER. If wantnc is .TRUE. then negent $=$ the number of pivots < pivmin in the matrix factorization $L^{\star} D^{\star} L^{T}$, and negcnt $=-1$ otherwise.
REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The square of the 2 -norm of $z$.
REAL for slarlv/clarlv
DOUBLE PRECISION for dlar1v/zlar1v
The reciprocal of the largest (in magnitude) diagonal element of the inverse of $L{ }^{\star} D^{*} L^{T}-\operatorname{lambda}$. .
On output, $r$ is the twist index used to compute $z$. Ideally, $r$ designates the position of the maximum entry in the eigenvector.
INTEGER. Array, DIMENSION (2). The support of the vector in $z$, that is, the vector $z$ is nonzero only in elements isuppz(1) through isuppz(2).
REAL for slar1v/clar1v DOUBLE PRECISION for dlar1v/zlar1v
Equals $1 /$ sqrt ( $z t z)$.

resid	REAL for slarlv/clarlv
	DOUBLE PRECISION for dlarlv/zlarlv
	The residual of the FP vector.
recorr	resid = ABS ( mingma )/sqrt ( ztz ).
	REAL for slarlv/clarlv
	DOUBLE PRECISION for dlarlv/zlarlv
	The Rayleigh Quotient correction to lambda.
	rqcorr $=$ mingma/ztz.

## ?lar2v

Applies a vector of plane rotations with real cosines and real/complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.

## Syntax

```
call slar2v(n, x, y, z, incx, c, s, incc)
call dlar2v(n, x, y, z, incx, c, s, incc)
call clar2v(n, x, y, z, incx, c, s, incc)
call zlar2v(n, x, y, z, incx, c, s, incc)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? lar2v applies a vector of real/complex plane rotations with real cosines from both sides to a sequence of $2-$ by- 2 real symmetric or complex Hermitian matrices, defined by the elements of the vectors $x$, $y$ and $z$. For $i=1,2, \ldots, n$

$$
\left[\begin{array}{cc}
x_{1} & z_{1} \\
\operatorname{conjg}\left(z_{J}\right) & y_{1}
\end{array}\right]:=\left[\begin{array}{cc}
c(i) & \text { conjg }(s(i)) \\
-s(i) & c(i)
\end{array}\right]\left[\begin{array}{cc}
x_{1} & z_{1} \\
\operatorname{conjg}\left(z_{1}\right) & y_{1}
\end{array}\right]\left[\begin{array}{cc}
c(i) & -\operatorname{conjg}(s(i)) \\
s(i) & c(i)
\end{array}\right]
$$

## Input Parameters

$n$
$x, y, z$
incx
c

S

INTEGER. The number of plane rotations to be applied.
REAL for slar2v
DOUBLE PRECISION for dlar2v
COMPLEX for clar2v
DOUBLE COMPLEX for zlar2v
Arrays, DIMENSION $\left(1+(n-1) *_{i n c x}\right)$ each. Contain the vectors $x, y$ and $z$, respectively. For all flavors of ? lar2v, elements of $x$ and $y$ are assumed to be real.
INTEGER. The increment between elements of $x, y$, and $z$. incx $>0$.
REAL for slar2v/clar2v DOUBLE PRECISION for dlar2v/zlar2v
Array, DIMENSION $(1+(n-1) *$ incc $)$. The cosines of the plane rotations.
REAL for slar2v

	DOUBLE PRECISION for dlar2v
	COMPLEX for clar2v
incc	DOUBLE COMPLEX for zlar2v
	Array, DIMENSION $\left(1+(n-1) *_{i n c c}\right)$. The sines of the plane rotations.
	INTEGER. The increment between elements of $c$ and $s$. incc $>0$.

## Output Parameters

$x, y, z$
Vectors $x, y$ and $z$, containing the results of transform.

```
?larf
Applies an elementary reflector to a general
rectangular matrix.
Syntax
```

```
call slarf(side, m, n, v, incv, tau, c, ldc, work)
```

call slarf( side, m, n, v, incv, tau, c, ldc, work )
call dlarf( side, m, n, v, incv, tau, c, ldc, work )
call dlarf( side, m, n, v, incv, tau, c, ldc, work )
call clarf( side, m, n, v, incv, tau, c, ldc, work )
call clarf( side, m, n, v, incv, tau, c, ldc, work )
call zlarf( side, m, n, v, incv, tau, c, ldc, work )

```
call zlarf(side, m, n, v, incv, tau, c, ldc, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine applies a real/complex elementary reflector $H$ to a real/complex $m$-by- $n$ matrix $C$, from either the left or the right. $H$ is represented in one of the following forms:

- $H=I$ - $\operatorname{tau} u^{\star} V^{\star} V^{T}$
where $t a u$ is a real scalar and $v$ is a real vector.
If $\operatorname{tau}=0$, then $H$ is taken to be the unit matrix.
- $H=I$ - tau* $V^{\star} V^{H}$
where tau is a complex scalar and $v$ is a complex vector.
If $\operatorname{tau}=0$, then $H$ is taken to be the unit matrix. For clarf/zlarf, to apply $H^{H}$ (the conjugate transpose of $H$ ), supply conjg(tau) instead of tau.

Input Parameters

side	CHARACTER*1.
	If side $=$ 'L': form $H^{*} C$
	If side $=$ 'R': form $C^{*} H$.

m
n
v

```
If side = 'R': form C*H.
```

INTEGER. The number of rows of the matrix $C$.
INTEGER. The number of columns of the matrix $C$.
REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
DOUBLE COMPLEX for zlarf
Array, DIMENSION
$(1+(m-1) * a b s(i n c v))$ if side $=$ 'L' or

	$(1+(n-1) * \operatorname{abs}(i n c v))$ if side $=' R$ '. The vector $v$ in the representation of $H . v$ is not used if $t a u=0$.
incv	INTEGER. The increment between elements of $v$. incv $\neq 0$.
tau	REAL for slarf
	DOUBLE PRECISION for dlarf
	COMPLEX for clarf
	DOUBLE COMPLEX for zlarf
	The value tau in the representation of $H$.
c	REAL for slarf
	DOUBLE PRECISION for dlarf
	COMPLEX for clarf
	DOUBLE COMPLEX for zlarf
	Array, DIMENSION ( $1 \mathrm{dc}, \mathrm{n}$ ).
	On entry, the m-by-n matrix $C$.
$1 d \mathrm{c}$	INTEGER. The leading dimension of the array $c$. $I d c \geq \max (1, m)$.
work	REAL for slarf
	DOUBLE PRECISION for dlarf
	COMPLEX for clarf
	DOUBLE COMPLEX for zlarf
	Workspace array, DIMENSION
	(n) if side = 'L' or
	(m) if side = 'R'.

## Output Parameters

C On exit, $C$ is overwritten by the matrix $H^{*} C$ if $s i d e=$ 'L', or $C^{*} H$ if side = 'R'.

## ?larfb <br> Applies a block reflector or its transpose/conjugatetranspose to a general rectangular matrix.

## Syntax

```
call slarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work,
ldwork)
call dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work,
ldwork)
call clarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work,
ldwork)
call zlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work,
ldwork)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The real flavors of the routine ?larfb apply a real block reflector $H$ or its transpose $H^{T}$ to a real m-by-n matrix $c$ from either left or right.

The complex flavors of the routine ?larfb apply a complex block reflector $H$ or its conjugate transpose $H^{H}$ to a complex $m$-by- $n$ matrix $c$ from either left or right.

Input Parameters

side	CHARACTER*1.
	If side = 'L': apply $H$ or $H^{T}$ for real flavors and $H$ or $H^{H}$ for complex flavors from the left.
	If side = 'R': apply $H$ or $H^{T}$ for real flavors and $H$ or $H^{H}$ for complex flavors from the right.
trans	CHARACTER*1.
	If trans = 'N': apply H ( No transpose).
	If trans $=$ 'C': apply $H^{H}$ (Conjugate transpose).
	If trans = 'T': apply $H^{T}$ (Transpose).
direct	CHARACTER*1.
	Indicates how $H$ is formed from a product of elementary reflectors
	If direct $=$ 'B': H = H(k)* . . H 2 )* $H(1)$ (backward)
storev	CHARACTER*1.
	Indicates how the vectors which define the elementary reflectors are stored:
	If storev = 'C': Column-wise
	If storev = 'R': Row-wise
m	INTEGER. The number of rows of the matrix $C$.
$n$	INTEGER. The number of columns of the matrix $C$.
k	INTEGER. The order of the matrix $T$ (equal to the number of elementary reflectors whose product defines the block reflector).
v	REAL for slarfb
	DOUBLE PRECISION for dlarfb
	COMPLEX for clarfb
	DOUBLE COMPLEX for zlarfb
	Array, DIMENSION
	$(l d v, k)$ if storev $='^{\prime} C^{\prime}$
	$(l d v, m)$ if storev $=$ 'R' and side = 'L'
	$(l d v, n)$ if storev $=$ 'R' and side = 'R'
	The matrix v. See Application Notes below.
$1 d v$	INTEGER. The leading dimension of the array v .
	If storev $=$ 'C' and side = 'L', ldv $\geq$ max $(1, m)$;
	if storev $=$ 'C' and side = 'R', ldv $\geq$ max $(1, n)$;
	if storev = 'R', ldv $\geq k$.
t	REAL for slarfb
	DOUBLE PRECISION for dlarfb
	COMPLEX for clarfb
	DOUBLE COMPLEX for zlarfb
	Array, DIMENSION (ldt,k).
	Contains the triangular $k-\mathrm{by}-k$ matrix $T$ in the representation of the block reflector.
$1 d t$	INTEGER. The leading dimension of the array $t$.
	$l d t \geq k$.
c	REAL for slarfb
	DOUBLE PRECISION for dlarfb

DOUBLE PRECISION for dlarfb

	COMPLEX for clarfb
	DOUBLE COMPLEX for zlarfb
	Array, DIMENSION ( $1 \mathrm{dc}, \mathrm{n}$ ).
	On entry, the m-by-n matrix $C$.
ldc	INTEGER. The leading dimension of the array $c$. $l d c \geq \max (1, m)$.
work	REAL for slarfb
	DOUBLE PRECISION for dlarfb
	COMPLEX for clarfb
	DOUBLE COMPLEX for zlarfb
	Workspace array, DIMENSION (ldwork, k).
ldwork	INTEGER. The leading dimension of the array work.   If side $=$ 'L', ldwork $\geq \max (1, n)$;   if side $=$ 'R', Idwork $\geq \max (1, m)$.

## Output Parameters

On exit, $c$ is overwritten by the product of the following:

- $H^{*} C$, or $H^{T *} C$, or $C^{*} H$, or $C^{*} H^{T}$ for real flavors
- $H^{*} C$, or $H^{H *} C$, or $C^{*} H$, or $C^{*} H^{H}$ for complex flavors


## Application Notes

The shape of the matrix $v$ and the storage of the vectors which define the $H(i)$ is best illustrated by the following example with $n=5$ and $k=3$. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.

$$
\begin{aligned}
& \text { direct }=\text { ' } \mathrm{F}^{\prime} \text { and storev }=\text { 'C': } \\
& {\left[\begin{array}{ccc}
1 & & \\
\mathrm{~V}_{1} & 1 & \\
\mathrm{~V}_{1} & \mathrm{~V}_{2} & 1 \\
\mathrm{~V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3} \\
\mathrm{~V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3}
\end{array}\right]}
\end{aligned}
$$

$$
\text { direct }=\text { ' } \mathrm{B}^{\prime} \text { and storev }=\text { 'C': direct }=\text { ' } \mathrm{B}^{\prime} \text { and storev }=\text { ' } \mathrm{R} \text { ': }
$$

$$
\left[\begin{array}{ccc}
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3} \\
1 & v_{2} & v_{3} \\
& 1 & v_{3} \\
& & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc}
\mathrm{v}_{1} & \mathrm{v}_{1} & 1 & & \\
\mathrm{v}_{2} & \mathrm{v}_{2} & \mathrm{v}_{2} & 1 & \\
\mathrm{v}_{3} & \mathrm{v}_{3} & \mathrm{v}_{3} & \mathrm{v}_{3} & 1
\end{array}\right]
$$

## ?larfg

Generates an elementary reflector (Householder matrix).

## Syntax

```
call slarfg(n, alpha, x, incx, tau)
call dlarfg(n, alpha, x, incx, tau)
call clarfg(n, alpha, x, incx, tau)
call zlarfg(n, alpha, x, incx, tau)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? larfg generates a real/complex elementary reflector $H$ of order $n$, such that

$$
H^{*}\left[\begin{array}{c}
a l p h a \\
x
\end{array}\right]=\left[\begin{array}{c}
\text { bet } a \\
0
\end{array}\right], H^{T}{ }^{T} H=I, \quad \text { for real flavors and }
$$

$$
H^{K} *\left[\begin{array}{c}
a l p h a \\
x
\end{array}\right]=\left[\begin{array}{c}
\text { beta } \\
0
\end{array}\right], H^{X_{H}} *_{H}=I, \quad \text { for complex flavors, }
$$

where alpha and beta are scalars (with beta real for all flavors), and $x$ is an ( $n-1$ )-element real/complex vector. $H$ is represented in the form
$H=I-t a u^{*}\left[\begin{array}{l}1 \\ v\end{array}\right] *\left[\begin{array}{ll}1 & v^{T}\end{array}\right] \quad$ for real flavors and
$H=I-\tan ^{*}\left[\begin{array}{l}1 \\ v\end{array}\right] *\left[\begin{array}{ll}1 & v^{\prime}\end{array}\right]$ for complex flavors,
where $t a u$ is a real/complex scalar and $v$ is a real/complex ( $n-1$ )-element vector, respectively. Note that for clarfg/zlarfg, $H$ is not Hermitian.

If the elements of $x$ are all zero (and, for complex flavors, alpha is real), then $t a u=0$ and $H$ is taken to be the unit matrix.

Otherwise, $1 \leq$ tau $\leq 2$ (for real flavors), or
$1 \leq \operatorname{Re}(t a u) \leq 2$ and $\operatorname{abs}(t a u-1) \leq 1$ (for complex flavors).

## Input Parameters

```
n
alpha
```

INTEGER. The order of the elementary reflector.
REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
DOUBLE COMPLEX for zlarfg On entry, the value alpha.
$x$
incx

## Output Parameters

```
alpha
x
tau
```

REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
DOUBLE COMPLEX for zlarfg
Array, DIMENSION (1+(n-2)*abs(incx)).
On entry, the vector $x$.
INTEGER.
The increment between elements of $x$. incx >0.

alpha	On exit, it is overwritten with the value beta.
$x$	On exit, it is overwritten with the vector $v$.
tau	REAL for slarfg
	DOUBLE PRECISION for dlarfg
	COMPLEX for clarfg
	DOUBLE COMPLEX for zlarfg The value tau.

## ?larfgp

Generates an elementary reflector (Householder matrix) with non-negative beta .

## Syntax

```
call slarfgp(n, alpha, x, incx, tau)
call dlarfgp(n, alpha, x, incx, tau)
call clarfgp(n, alpha, x, incx, tau)
call zlarfgp(n, alpha, x, incx, tau)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?larfgp generates a real/complex elementary reflector $H$ of order $n$, such that
$H^{*}\left[\begin{array}{c}a l p h a \\ x\end{array}\right]=\left[\begin{array}{c}\text { bet } a \\ 0\end{array}\right], H^{T} * H=I, \quad$ for real flavors and
$H^{X} *\left[\begin{array}{c}a l p h a \\ x\end{array}\right]=\left[\begin{array}{c}\text { bet } a \\ 0\end{array}\right], H^{M} * H=I, \quad r \quad{ }^{\text {for complex flavors, }}$
where alpha and beta are scalars (with beta real and non-negative for all flavors), and $x$ is an ( $n-1$ )element real/complex vector. $H$ is represented in the form

$$
\begin{aligned}
& H=I-t a u^{*}\left[\begin{array}{l}
1 \\
v
\end{array}\right] *\left[\begin{array}{ll}
1 & v^{T}
\end{array}\right] \text { for real flavors and } \\
& H=I-\tan ^{*}\left[\begin{array}{l}
1 \\
v
\end{array}\right] *\left[\begin{array}{ll}
1 & v^{\prime}
\end{array}\right] \text { for complex flavors, }
\end{aligned}
$$

where $t a u$ is a real/complex scalar and $v$ is a real/complex ( $n-1$ )-element vector. Note that for c/zlarfgp, $H$ is not Hermitian.

If the elements of $x$ are all zero (and, for complex flavors, alpha is real), then $\operatorname{tau}=0$ and $H$ is taken to be the unit matrix.

Otherwise, $1 \leq \operatorname{tau} \leq 2$ (for real flavors), or
$1 \leq \operatorname{Re}(t a u) \leq 2$ and $\operatorname{abs}(t a u-1) \leq 1$ (for complex flavors).

## Input Parameters

```
n
alpha
x
incx
INTEGER. The order of the elementary reflector.
alpha
REAL for slarfgp
DOUBLE PRECISION for dlarfgp
COMPLEX for clarfgp
DOUBLE COMPLEX for zlarfgp
On entry, the value alpha.
x
REAL for s
DOUBLE PRECISION for dlarfgp
COMPLEX for clarfgp
DOUBLE COMPLEX for zlarfgp
Array, DIMENSION (\(1+(n-2)^{*}\) abs(incx)).
On entry, the vector \(x\).
INTEGER.
The increment between elements of \(x\). incx \(>0\).
```


## Output Parameters

alpha	On exit, it is overwritten with the value beta.
$x$	On exit, it is overwritten with the vector $v$.
tau	REAL for slarfgp
	DOUBLE PRECISION for dlarfgp
	COMPLEX for clarfgp
	DOUBLE COMPLEX for zlarfgp
	The value tau.

## ?larft

Forms the triangular factor $T$ of a block reflector $H=I$

- $V^{*}{ }_{T}{ }^{*} V^{*}{ }_{H}$.

Syntax

```
call slarft(direct, storev, n, k, v, ldv, tau, t, ldt)
call dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
call clarft(direct, storev, n, k, v, ldv, tau, t, ldt)
call zlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? larft forms the triangular factor $T$ of a real/complex block reflector $H$ of order $n$, which is defined as a product of $k$ elementary reflectors.
If direct $=' F^{\prime}, H=H(1) * H(2) * . . . * H(k)$ and $T$ is upper triangular;
If direct $=$ ' $\mathbf{B}^{\prime}, H=H(k) * . \quad .{ }^{*} H(2) * H(1)$ and $T$ is lower triangular.
If storev $=$ ' C', the vector which defines the elementary reflector $H(i)$ is stored in the $i$-th column of the array $v$, and $H=I-V^{\star} T^{\star} V^{T}$ (for real flavors) or $H=I-V^{\star} T^{\star} V^{H}$ (for complex flavors).
If storev = 'R', the vector which defines the elementary reflector $H(i)$ is stored in the $i$-th row of the array $v$, and $H=I-V^{T} \star T^{\star} V$ (for real flavors) or $H=I-V^{H \star} T^{\star} V$ (for complex flavors).

## Input Parameters

```
direct
storev
n
k
V
Idv
tau
ldt
```


## Output Parameters

```
t
```

```
REAL for slarft
```

REAL for slarft
DOUBLE PRECISION for dlarft
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX for clarft
DOUBLE COMPLEX for zlarft

```
DOUBLE COMPLEX for zlarft
```

Array, DIMENSION ( $I d t, k$ ). The $k$-by- $k$ triangular factor $T$ of the block reflector. If direct $=$ ' $F^{\prime}, T$ is upper triangular; if direct $=$ ' $B^{\prime}, T$ is lower triangular. The rest of the array is not used.
v The matrix $v$.

## Application Notes

The shape of the matrix $V$ and the storage of the vectors which define the $H(i)$ is best illustrated by the following example with $n=5$ and $k=3$. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.

$$
\begin{aligned}
& \text { direct }=\text { ' } \mathrm{F}^{\prime} \text { and storev }=\text { 'C': } \\
& {\left[\begin{array}{ccc}
1 & & \\
\mathrm{~V}_{1} & 1 & \\
\mathrm{~V}_{1} & \mathrm{~V}_{2} & 1 \\
\mathrm{~V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3} \\
\mathrm{~V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3}
\end{array}\right]}
\end{aligned}
$$

$$
\text { direct }=\text { ' } \mathrm{B}^{\prime} \text { and storev }=\text { 'C': direct }=\text { ' } \mathrm{B} \text { ' and storev }=\text { ' } \mathrm{R} \text { ': }
$$

$$
\left[\begin{array}{ccc}
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3} \\
1 & v_{2} & v_{3} \\
& 1 & v_{3} \\
& & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc}
v_{1} & v_{1} & 1 & & \\
v_{2} & v_{2} & v_{2} & 1 & \\
v_{3} & v_{3} & v_{3} & v_{3} & 1
\end{array}\right]
$$

## ?larfx

Applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order less than or equal to 10.

## Syntax

```
call slarfx(side, m, n, v, tau, c, ldc, work)
call dlarfx(side, m, n, v, tau, c, ldc, work)
call clarfx(side, m, n, v, tau, c, ldc, work)
call zlarfx(side, m, n, v, tau, c, ldc, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? larfx applies a real/complex elementary reflector $H$ to a real/complex m-by- $n$ matrix $C$, from either the left or the right.
$H$ is represented in the following forms:

- $H=I$ - $\operatorname{tau}^{\star} V^{\star} V^{T}$, where tau is a real scalar and $v$ is a real vector.

If $\operatorname{tau}=0$, then $H$ is taken to be the unit matrix.


## Input Parameters

```
side
m
n
c
ldc
work
```

CHARACTER*1.

```
CHARACTER*1.
If side = 'L': form H*C
If side = 'L': form H*C
If side = 'R': form C*H.
If side = 'R': form C*H.
INTEGER. The number of rows of the matrix C.
INTEGER. The number of columns of the matrix C.
REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
DOUBLE COMPLEX for zlarfx
Array, DIMENSION
(m) if side = 'L' or
(n) if side = 'R'.
The vector v in the representation of }H\mathrm{ .
REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
DOUBLE COMPLEX for zlarfx
The value tau in the representation of }H\mathrm{ .
REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
DOUBLE COMPLEX for zlarfx
Array, DIMENSION (Idc,n). On entry, the m-by-n matrix C.
INTEGER. The leading dimension of the array c. Ida \geq (1,m).
REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
DOUBLE COMPLEX for zlarfx
Workspace array, DIMENSION
(n) if side = 'L' or
(m) if side = 'R'.
work is not referenced if }H\mathrm{ has order < 11.
```


## Output Parameters

On exit, C is overwritten by the matrix $H^{\star} C$ if side $=$ 'L', or $C^{\star} H$ if side $=$ 'R'.

## ?largv

Generates a vector of plane rotations with real cosines and real/complex sines.

## Syntax

```
call slargv(n, x, incx, y, incy, c, incc)
call dlargv(n, x, incx, y, incy, c, incc)
call clargv(n, x, incx, y, incy, c, incc)
call zlargv(n, x, incx, y, incy, c, incc)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine generates a vector of real/complex plane rotations with real cosines, determined by elements of the real/complex vectors $x$ and $y$.
For slargv/dlargv:

$$
\left[\begin{array}{cc}
c(i) & s(i) \\
-s(i) & c(i)
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]=\left[\begin{array}{c}
a_{i} \\
0
\end{array}\right], \text { for } i=1,2, \ldots, n
$$

For clargv/zlargv:

$$
\left[\begin{array}{cc}
c(i) & s(i) \\
-\operatorname{conjg}(s(i)) & c(i)
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{i} \\
y_{i}
\end{array}\right]=\left[\begin{array}{c}
r_{i} \\
0
\end{array}\right] \text {, for } i=1,2, \ldots, n
$$

where $c(i)^{2}+\operatorname{abs}(s(i))^{2}=1$ and the following conventions are used (these are the same as in clartg/ zlartg but differ from the BLAS Level 1 routine crotg/zrotg):

If $y_{i}=0$, then $c(i)=1$ and $s(i)=0$;
If $x_{i}=0$, then $c(i)=0$ and $s(i)$ is chosen so that $r_{i}$ is real.

## Input Parameters

n

$$
x, y
$$

incx
incy INTEGER. The increment between elements of $y$.

```
incy > 0.
incc INTEGER. The increment between elements of the output array c. incc >
0.
```


## Output Parameters

X
On exit, $x(i)$ is overwritten by $a_{i}$ (for real flavors), or by $r_{i}$ (for complex flavors), for $i=1, \ldots, n$.
On exit, the sines $s(i)$ of the plane rotations.
REAL for slargv/clargv
DOUBLE PRECISION for dlargv/zlargv
Array, DIMENSION $\left(1+(n-1){ }^{*}\right.$ incc $)$. The cosines of the plane rotations.

## ?larnv

Returns a vector of random numbers from a uniform or normal distribution.

## Syntax

```
call slarnv(idist, iseed, n, x)
call dlarnv(idist, iseed, n, x)
call clarnv(idist, iseed, n, x)
call zlarnv(idist, iseed, n, x)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?larnv returns a vector of $n$ random real/complex numbers from a uniform or normal distribution.

This routine calls the auxiliary routine ?laruv to generate random real numbers from a uniform ( 0,1 ) distribution, in batches of up to 128 using vectorisable code. The Box-Muller method is used to transform numbers from a uniform to a normal distribution.

## Input Parameters

idist
iseed

INTEGER. Specifies the distribution of the random numbers: for slarnv and dlanrv:
$=1$ : uniform $(0,1)$
$=2:$ uniform $(-1,1)$
= 3: normal $(0,1)$.
for clarnv and zlanrv:
$=1$ : real and imaginary parts each uniform $(0,1)$
$=2$ : real and imaginary parts each uniform $(-1,1)$
$=3$ : real and imaginary parts each normal $(0,1)$
= 4: uniformly distributed on the disc abs(z) $<1$
$=5$ : uniformly distributed on the circle $\operatorname{abs}(z)=1$
INTEGER. Array, DIMENSION (4).
On entry, the seed of the random number generator; the array elements must be between 0 and 4095, and iseed(4) must be odd.

INTEGER. The number of random numbers to be generated.

## Output Parameters

REAL for slarnv
DOUBLE PRECISION for dlarnv
COMPLEX for clarnv
DOUBLE COMPLEX for zlarnv
Array, DIMENSION ( $n$ ). The generated random numbers.
iseed On exit, the seed is updated.

## ?larra

Computes the splitting points with the specified threshold.

## Syntax

```
call slarra(n, d, e, e2, spltol, tnrm, nsplit, isplit, info)
call dlarra(n, d, e, e2, spltol, tnrm, nsplit, isplit, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes the splitting points with the specified threshold and sets any "small" off-diagonal elements to zero.

## Input Parameters

```
n
d REAL for slarra
DOUBLE PRECISION for dlarra
Array, DIMENSION (n).
Contains }n\mathrm{ diagonal elements of the tridiagonal matrix T.
e
e2
spltol
tnrm
INTEGER. The order of the matrix (}n>1\mathrm{).
e
REAL for slarra
DOUBLE PRECISION for dlarra
Array, DIMENSION (\(n\)).
First (\(n-1\)) entries contain the subdiagonal elements of the tridiagonal matrix \(T\); \(e(n)\) need not be set.
REAL for slarra
DOUBLE PRECISION for dlarra
Array, DIMENSION (\(n\)).
First \((n-1)\) entries contain the squares of the subdiagonal elements of the tridiagonal matrix \(T\); e2(\(n\)) need not be set.
```

spltol
tnrm

REAL for slarra
DOUBLE PRECISION for dlarra
The threshold for splitting. Two criteria can be used: spltol<0 : criterion based on absolute off-diagonal value; spltol>0: criterion that preserves relative accuracy.
REAL for slarra
DOUBLE PRECISION for dlarra

The norm of the matrix.

## Output Parameters

e	On exit, the entries e(isplit(i)), $1 \leq i \leq n s p l i t$, are set to zero, the other entries of $e$ are untouched.
e2	On exit, the entries e2(isplit(i)), $1 \leq i \leq n s p l i t$, are set to zero.
nsplit	INTEGER.
	The number of blocks the matrix $T$ splits into. $1 \leq n s p l i t \leq n$
isplit	INTEGER.
	Array, DIMENSION ( $n$ ).
	The splitting points, at which $T$ breaks up into blocks. The first block consists of rows/columns 1 to isplit(1), the second of rows/columns
	isplit(1)+1 through isplit(2), and so on, and the nsplit-th consists of rows/columns isplit(nsplit-1)+1 through isplit(nsplit)=n.
info	INTEGER.
	$=0$ : successful exit.

## ?larrb

Provides limited bisection to locate eigenvalues for more accuracy.

## Syntax

```
call slarrb(n, d, lld, ifirst, ilast, rtoll, rtol2, offset, w, wgap, werr, work,
iwork, pivmin, spdiam, twist, info)
call dlarrb(n, d, lld, ifirst, ilast, rtoll, rtol2, offset, w, wgap, werr, work,
iwork, pivmin, spdiam, twist, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

Given the relatively robust representation (RRR) $L^{\star} D^{\star} L^{T}$, the routine does "limited" bisection to refine the eigenvalues of $L^{*} D^{*} L^{T}, w($ ifirst-offset ) through w(ilast-offset ), to more accuracy. Initial guesses for these eigenvalues are input in w. The corresponding estimate of the error in these guesses and their gaps are input in werr and wgap, respectively. During bisection, intervals [left, right] are maintained by storing their mid-points and semi-widths in the arrays $w$ and werr respectively.

## Input Parameters

```
n INTEGER. The order of the matrix.
d REAL for slarrb
 DOUBLE PRECISION for dlarrb
 Array, DIMENSION (n). The n diagonal elements of the diagonal matrix D.
lld
 REAL for slarrb
 DOUBLE PRECISION for dlarrb
 Array, DIMENSION (}n-1\mathrm{).
 The n-1 elements L}\mp@subsup{L}{i}{*}\mp@subsup{L}{i}{*}*\mp@subsup{D}{i}{}
```

ifirst	INTEGER. The index of the first eigenvalue to be computed.		
ilast	INTEGER. The index of the last eigenvalue to be computed.		
rtoll, rtol2	REAL for slarrb		
	DOUBLE PRECISION for dlarrb		
	Tolerance for the convergence of the bisection intervals. An interval [left, right] has converged if RIGHT-LEFT.LT.MAX (rtoll*gap, rtol2*max (\|		
	left\|,	right	) ), where gap is the (estimated) distance to the nearest eigenvalue.
offset	INTEGER. Offset for the arrays $w$, wgap and werr, that is, the ifirstoffset through ilast-offset elements of these arrays are to be used.		
W	REAL for slarrb		
	DOUBLE PRECISION for dlarrb		
	Array, DIMENSION (n). On input, w( ifirst-offset ) through w( ilastoffset ) are estimates of the eigenvalues of $L^{\star} D^{\star} L^{T}$ indexed ifirst through ilast.		
wgap	REAL for slarrb		
	DOUBLE PRECISION for dlarrb		
	Array, DIMENSION ( $n-1$ ). The estimated gaps between consecutive eigenvalues of $L^{*} D^{*} L^{T}$, that is, wgap( $i$-offset) is the gap between eigenvalues $i$ and $i+1$. Note that if IFIRST.EQ. ILAST then wgap(ifirstoffset) must be set to 0 .		
werr	REAL for slarrb		
	DOUBLE PRECISION for dlarrb		
	Array, DIMENSION (n). On input, werr(ifirst-offset) through werr(ilast-offset) are the errors in the estimates of the corresponding elements in $w$.		
work	REAL for slarrb		
	DOUBLE PRECISION for dlarrb		
	Workspace array, DIMENSION ( $2 *_{n}$ ).		
pivmin	REAL for slarrb		
	DOUBLE PRECISION for dlarrb		
	The minimum pivot in the Sturm sequence.		
spdiam	REAL for slarrb		
	DOUBLE PRECISION for dlarrb		
	The spectral diameter of the matrix.		
twist	INTEGER. The twist index for the twisted factorization that is used for the negcount.		
	twist $=n$ : Compute negcount from $L^{\star} D^{\star} L^{T}-\operatorname{lambda} i=L+\star D+\star L$ $t^{T}$		
	twist $=n$ : Compute negcount from $L^{\star} D^{\star} L^{T}-\operatorname{lambda*} i=U-\star D-\star U-T^{T}$		
	twist $=n$ : Compute negcount from $L^{\star} D^{\star} L^{T}-\operatorname{lambda}{ }^{\text {a }}$ i $=N_{r}{ }^{\star} D r^{\star} N_{r}$		
iwork	INTEGER.		
	Workspace array, DIMENSION ( $2 *_{n}$ ).		

## Output Parameters

W
wgap
werr

On output, the estimates of the eigenvalues are "refined".
On output, the gaps are refined.
On output, "refined" errors in the estimates of w .
info $\quad$ INTEGER.

## ?larrc

Computes the number of eigenvalues of the symmetric tridiagonal matrix.

## Syntax

```
call slarrc(jobt, n, vl, vu, d, e, pivmin, eigcnt, lcnt, rcnt, info)
call dlarrc(jobt, n, vl, vu, d, e, pivmin, eigcnt, lcnt, rcnt, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine finds the number of eigenvalues of the symmetric tridiagonal matrix $T$ or of its factorization $L^{\star} D^{\star} L^{T}$ in the specified interval.

## Input Parameters

```
jobt CHARACTER*1.
 = 'T': computes Sturm count for matrix T.
 = 'L': computes Sturm count for matrix L\star D\star LT
 INTEGER.
 The order of the matrix. (}n>1)\mathrm{ .
 REAL for slarrc
 DOUBLE PRECISION for dlarrc
 The lower and upper bounds for the eigenvalues.
d
```

e
pivmin

## Output Parameters

```
eigcnt
lcnt,rcnt
```

INTEGER.
The number of eigenvalues of the symmetric tridiagonal matrix $T$ that are in the half-open interval ( $v i, v u$ ].
INTEGER.
The left and right negcounts of the interval.

info $\quad$| INTEGER. |  |
| :--- | :--- |
|  | Now it is not used and always is set to 0. |

## ?larrd <br> Computes the eigenvalues of a symmetric tridiagonal matrix to suitable accuracy.

## Syntax

```
call slarrd(range, order, n, vl, vu, il, iu, gers, reltol, d, e, e2, pivmin, nsplit,
isplit, m, w, werr, wl, wu, iblock, indexw, work, iwork, info)
call dlarrd(range, order, n, vl, vu, il, iu, gers, reltol, d, e, e2, pivmin, nsplit,
isplit, m, w, werr, wl, wu, iblock, indexw, work, iwork, info)
```

Include files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes the eigenvalues of a symmetric tridiagonal matrix $T$ to suitable accuracy. This is an auxiliary code to be called from ?stemr. The user may ask for all eigenvalues, all eigenvalues in the halfopen interval ( $v l, v u$ ], or the il-th through iu-th eigenvalues.
To avoid overflow, the matrix must be scaled so that its largest element is no greater than (overflow ${ }^{1 / 2 \star}$ underflow ${ }^{1 / 4}$ ) in absolute value, and for greatest accuracy, it should not be much smaller than that. (For more details see [Kahan66].

## Input Parameters



gers	REAL for slarrd
	DOUBLE PRECISION for dlarrd
	Array, DIMENSION ( $2 * n$ ).
	The $n$ Gerschgorin intervals (the $i$-th Gerschgorin interval is (gers(2*i-1), gers(2*i)).
reltol	REAL for slarrd
	DOUBLE PRECISION for dlarrd
	The minimum relative width of an interval. When an interval is narrower than reltol times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, that is converged. Note: this should always be at least radix*machine epsilon.
d	REAL for slarrd
	DOUBLE PRECISION for dlarrd
	Array, DIMENSION ( $n$ ).
	Contains $n$ diagonal elements of the tridiagonal matrix $T$.
e	REAL for slarrd
	DOUBLE PRECISION for dlarrd
	Array, DIMENSION ( $n-1$ ).
	Contains ( $n-1$ ) off-diagonal elements of the tridiagonal matrix $T$.
e2	REAL for slarrd
	DOUBLE PRECISION for dlarrd
	Array, DIMENSION ( $n-1$ ).
	Contains ( $n-1$ ) squared off-diagonal elements of the tridiagonal matrix $T$.
pivmin	REAL for slarrd
	DOUBLE PRECISION for dlarrd
	The minimum pivot in the Sturm sequence for the matrix $T$.
nsplit	INTEGER.
	The number of diagonal blocks the matrix $T .1 \leq n s p l i t \leq n$
isplit	INTEGER.
	Arrays, DIMENSION ( $n$ ).
	The splitting points, at which $T$ breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit(1), the second of rows/ columns isplit(1)+1 through isplit(2), and so on, and the nsplit-th consists of rows/columns isplit(nsplit-1) +1 through
	isplit(nsplit)=n.
	(Only the first nsplit elements actually is used, but since the user cannot know a priori value of nsplit, $n$ words must be reserved for isplit.)
work	REAL for slarrd
	DOUBLE PRECISION for dlarrd
	Workspace array, DIMENSION ( $4 * n$ ).
iwork	INTEGER.
	Workspace array, DIMENSION ( $4 * n$ ).

## Output Parameters

INTEGER.
The actual number of eigenvalues found. $0 \leq m \leq n$. (See also the description of info=2,3.)
REAL for slarrd
DOUBLE PRECISION for dlarrd
Array, DIMENSION ( $n$ ).

	The first $m$ elements of $w$ contain the eigenvalue approximations. ?laprd computes an interval $I_{j}=\left(a_{j}, b_{j}\right]$ that includes eigenvalue $j$. The eigenvalue approximation is given as the interval midpoint w(j) $=\left(a_{j}+b_{j}\right) /$ 2. The corresponding error is bounded by werr $(j)=a b s\left(a_{j}-b_{j}\right) / 2$.
werr	REAL for slarrd
	DOUBLE PRECISION for dlarrd
	Array, DIMENSION ( $n$ ).
	The error bound on the corresponding eigenvalue approximation in w .
wl, wu	REAL for slarrd
	DOUBLE PRECISION for dlarrd
	The interval (wl, wu contains all the wanted eigenvalues.
	If range $=$ 'V': then wl=vl and wu=vu.
	If range $=$ 'A': then wl and wu are the global Gerschgorin bounds on the spectrum.
	If range = 'I': then wl and wu are computed by ?laebz from the index range specified.
iblock	INTEGER.
	Array, DIMENSION ( $n$ ).
	At each row/column j where $e(j)$ is zero or small, the matrix $T$ is considered to split into a block diagonal matrix.
	If info $=0$, then iblock (i) specifies to which block (from 1 to the number of blocks) the eigenvalue $w(i)$ belongs. (The routine may use the remaining $n-m$ elements as workspace.)
indexw	INTEGER.
	Array, DIMENSION ( $n$ ).
	The indices of the eigenvalues within each block (submatrix); for example, indexw(i) = jand iblock(i)=k imply that the i-th eigenvalue $w(i)$ is the $j$-th eigenvalue in block $k$.
info	INTEGER.
	$=0$ : successful exit.
	< 0: if info = -i, the i-th argument has an illegal value
	$>0$ : some or all of the eigenvalues fail to converge or are not computed:
	$=1$ or 3 : bisection fail to converge for some eigenvalues; these eigenvalues are flagged by a negative block number. The effect is that the eigenvalues may not be as accurate as the absolute and relative tolerances.
	$=2$ or 3 : range='I' only: not all of the eigenvalues il:iu are found.
	=4: range= ' 1 ', and the Gershgorin interval initially used is too small. No eigenvalues are computed.

## ?larre

Given the tridiagonal matrix $T$, sets small off-diagonal elements to zero and for each unreduced block $T_{i}$, finds base representations and eigenvalues.

## Syntax

```
call slarre(range, n, vl, vu, il, iu, d, e, e2, rtoll, rtol2, spltol, nsplit, isplit,
m, w, werr, wgap, iblock, indexw, gers, pivmin, work, iwork, info)
call dlarre(range, n, vl, vu, il, iu, d, e, e2, rtoll, rtol2, spltol, nsplit, isplit,
m, w, werr, wgap, iblock, indexw, gers, pivmin, work, iwork, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

To find the desired eigenvalues of a given real symmetric tridiagonal matrix $T$, the routine sets any "small" off-diagonal elements to zero, and for each unreduced block $T_{i}$, it finds

- a suitable shift at one end of the block spectrum
- the base representation, $T_{i}-\sigma_{i} * I=L_{i} * D_{i} * L_{i}{ }^{T}$, and
- eigenvalues of each $L_{i} * D_{i} * L_{i}{ }^{T}$.

The representations and eigenvalues found are then used by ?stemr to compute the eigenvectors of a symmetric tridiagonal matrix. The accuracy varies depending on whether bisection is used to find a few eigenvalues or the dqds algorithm (subroutine ?lasq2) to compute all and discard any unwanted one. As an added benefit, ? larre also outputs the $n$ Gerschgorin intervals for the matrices $L_{i}{ }^{*} D_{i}{ }^{*} L_{i}{ }^{T}$.

## Input Parameters

range	CHARACTER.   = 'A': ("All") all eigenvalues will be found.   = 'V': ("Value") all eigenvalues in the half-open interval ( $v 1, v u$ ] will be found.   = 'I': ("Index") the il-th through iu-th eigenvalues of the entire matrix will be found.			
$n$	INTEGER. The order of the matrix. $n>0$.			
vl, vu	REAL for slarre   DOUBLE PRECISION for dlarre   If range $=$ ' $V$ ', the lower and upper bounds for the eigenvalues.   Eigenvalues less than or equal to $v l$, or greater than $v u$, are not returned. vl < vu.			
il, iu	INTEGER.   If range= 'I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned. $1 \leq i l \leq i u \leq n$.			
d	REAL for slarre   DOUBLE PRECISION for dlarre   Array, DIMENSION (n).   The $n$ diagonal elements of the diagonal matrices $T$.			
e	REAL for slarre   DOUBLE PRECISION for dlarre   Array, DIMENSION ( $n$ ). The first ( $n-1$ ) entries contain the subdiagonal elements of the tridiagonal matrix $T ; e(n)$ need not be set.			
e2	REAL for slarre   DOUBLE PRECISION for dlarre   Array, DIMENSION ( $n$ ). The first ( $n-1$ ) entries contain the squares of the subdiagonal elements of the tridiagonal matrix $T$; e2( $n$ ) need not be set.			
rtoll, rtol2	REAL for slarre   DOUBLE PRECISION for dlarre   Parameters for bisection. An interval [LEFT,RIGHT] has converged if RIGHT-LEFT.LT.MAX ( rtoll*gap, rtol2*max (\|LEFT	,	RIGHT	) ).
spltol	REAL for slarre   DOUBLE PRECISION for dlarre			

The threshold for splitting.

work	REAL for slarre
	DOUBLE PRECISION for dlarre
iwork	Workspace array, DIMENSION $\left(6 *_{n}\right)$.
	INTEGER.
	Workspace array, DIMENSION $\left(5 *_{n}\right)$.

## Output Parameters

```
vl, vu
d
e
e2
nsplit
isplit
```

m
w
werr
wgap
iblock
indexw
gers

On exit, if range='I' or ='A', contain the bounds on the desired part of the spectrum.
On exit, the $n$ diagonal elements of the diagonal matrices $D_{i}$.
On exit, the subdiagonal elements of the unit bidiagonal matrices $L_{i}$. The entries e( isplit(i)), $1 \leq i \leq n s p l i t$, contain the base points sigma ${ }_{i}$ on output.
On exit, the entries e2( isplit(i)), $1 \leq i \leq n s p l i t$, have been set to zero.
INTEGER. The number of blocks $T$ splits into. $1 \leq n s p l i t \leq n$.
INTEGER. Array, DIMENSION ( $n$ ). The splitting points, at which $T$ breaks up into blocks. The first block consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), etc., and the nsplit-th consists of rows/columns isplit(nsplit-1)+1 through isplit(nsplit)=n.
INTEGER. The total number of eigenvalues (of all the $L_{i}{ }^{*} D_{i}{ }^{*} L_{i}{ }^{T}$ ) found.
REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION ( $n$ ). The first $m$ elements contain the eigenvalues. The eigenvalues of each of the blocks, $L_{i}{ }^{*} D_{i}{ }^{*} L_{i}{ }^{T}$, are sorted in ascending order. The routine may use the remaining $n-m$ elements as workspace.

REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION ( $n$ ). The error bound on the corresponding eigenvalue in w.

REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION ( $n$ ). The separation from the right neighbor eigenvalue in w. The gap is only with respect to the eigenvalues of the same block as each block has its own representation tree. Exception: at the right end of a block the left gap is stored.
INTEGER. Array, DIMENSION ( $n$ ).
The indices of the blocks (submatrices) associated with the corresponding eigenvalues in w; iblock (i)=1 if eigenvalue $w(i)$ belongs to the first block from the top, $=2$ if $w(i)$ belongs to the second block, etc.

INTEGER. Array, DIMENSION ( $n$ ).
The indices of the eigenvalues within each block (submatrix); for example, indexw(i)= 10 and $\operatorname{iblock}(i)=2$ imply that the $i$-th eigenvalue $w(i)$ is the 10 -th eigenvalue in the second block.
REAL for slarre
DOUBLE PRECISION for dlarre
pivmin

Array, DIMENSION $\left(2 *_{n}\right)$. The $n$ Gerschgorin intervals (the $i$-th Gerschgorin interval is (gers(2*i-1), gers(2*i)).

REAL for slarre
DOUBLE PRECISION for dlarre
The minimum pivot in the Sturm sequence for $T$.
INTEGER.
If info $=0$ : successful exit
If info > 0: A problem occured in ?larre. If info $=5$, the Rayleigh Quotient Iteration failed to converge to full accuracy.
If info < 0 : One of the called subroutines signaled an internal problem. Inspection of the corresponding parameter info for further information is required.

- If info $=-1$, there is a problem in ?larrd
- If info $=-2$, no base representation could be found in maxtry iterations. Increasing maxtry and recompilation might be a remedy.
- If info $=-3$, there is a problem in ? larrb when computing the refined root representation for ?lasq2.
- If info $=-4$, there is a problem in ?larrb when preforming bisection on the desired part of the spectrum.
- If info $=-5$, there is a problem in ?lasq2.
- If info $=-6$, there is a problem in ?lasq2.


## See Also

?stemr
?lasq2
?larrb
?larrd

## ?larrf

Finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated.

## Syntax

```
call slarrf(n, d, l, ld, clstrt, clend, w, wgap, werr, spdiam, clgapl, clgapr,
pivmin, sigma, dplus, lplus, work, info)
call dlarrf(n, d, l, ld, clstrt, clend, w, wgap, werr, spdiam, clgapl, clgapr,
pivmin, sigma, dplus, lplus, work, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

Given the initial representation $L^{\star} D^{\star} L^{T}$ and its cluster of close eigenvalues (in a relative measure), $w(c l s t r t), w(c l s t r t+1), \ldots w(c l e n d)$, the routine ? larrf finds a new relatively robust representation $L \star D \star L^{T}-\sigma_{i} \star I=L(+) * D(+) * L(+)^{T}$
such that at least one of the eigenvalues of $L(+)^{*}{ }^{*}(+)^{*} L^{(+)^{T}}$ is relatively isolated.

Input Parameters	
$n$	INTEGER. The order of the matrix (subblock, if the matrix is splitted).
d	REAL for slarrf   DOUBLE PRECISION for dlarrf   Array, DIMENSION ( $n$ ). The $n$ diagonal elements of the diagonal matrix $D$.
1	REAL for slarrf   DOUBLE PRECISION for dlarrf   Array, DIMENSION ( $n-1$ ).   The ( $n-1$ ) subdiagonal elements of the unit bidiagonal matrix $L$.
$1 d$	REAL for slarrf   DOUBLE PRECISION for dlarrf   Array, DIMENSION ( $n-1$ ).   The $n-1$ elements $L_{i}{ }^{*} D_{i}$.
clstrt	INTEGER. The index of the first eigenvalue in the cluster.
clend	INTEGER. The index of the last eigenvalue in the cluster.
W	REAL for slarrf   DOUBLE PRECISION for dlarrf   Array, DIMENSION $\geq$ (clend-clstrt+1). The eigenvalue approximations of $L^{\star} D^{\star} L^{T}$ in ascending order. w(clstrt) through w(clend) form the cluster of relatively close eigenvalues.
wgap	REAL for slarrf   DOUBLE PRECISION for dlarrf   Array, DIMENSION $\geq$ (clend-clstrt +1 ). The separation from the right neighbor eigenvalue in $w$.
werr	REAL for slarrf   DOUBLE PRECISION for dlarrf   Array, DIMENSION $\geq$ (clend-clstrt+1). On input, werr contains the semiwidth of the uncertainty interval of the corresponding eigenvalue approximation in w.
spdiam	REAL for slarrf   DOUBLE PRECISION for dlarrf   Estimate of the spectral diameter obtained from the Gerschgorin intervals.
clgapl, clgapr	REAL for slarrf   DOUBLE PRECISION for dlarrf   Absolute gap on each end of the cluster. Set by the calling routine to protect against shifts too close to eigenvalues outside the cluster.
pivmin	REAL for slarrf   DOUBLE PRECISION for dlarrf   The minimum pivot allowed in the Sturm sequence.
work	REAL for slarrf   DOUBLE PRECISION for dlarrf   Workspace array, DIMENSION ( $2 *_{n}$ ).

## Output Parameters

```
wgap
sigma
```

On output, the gaps are refined.
REAL for slarrf
DOUBLE PRECISION for dlarrf
The shift used to form $L(+)^{*}{ }^{*}(+)^{*} L_{(+)^{T}}$.

dplus	REAL for slarrf
	DOUBLE PRECISION for dlarrf
	Array, DIMENSION $(n)$. The $n$ diagonal elements of the diagonal matrix
	$D(+)$.
	REAL for slarrf
	DOUBLE PRECISION for dlarrf
	Array, DIMENSION $(n)$. The first $(n-1)$ elements of $l p l u s$ contain the
	subdiagonal elements of the unit bidiagonal matrix $L(+)$.

## ?larrj <br> Performs refinement of the initial estimates of the eigenvalues of the matrix $т$.

## Syntax

```
call slarrj(n, d, e2, ifirst, ilast, rtol, offset, w, werr, work, iwork, pivmin,
spdiam, info)
call dlarrj(n, d, e2, ifirst, ilast, rtol, offset, w, werr, work, iwork, pivmin,
spdiam, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

Given the initial eigenvalue approximations of $T$, this routine does bisection to refine the eigenvalues of $T$, $w(i f i r s t-o f f s e t)$ through w(ilast-offset), to more accuracy. Initial guesses for these eigenvalues are input in w, the corresponding estimate of the error in these guesses in werr. During bisection, intervals $[a, b]$ are maintained by storing their mid-points and semi-widths in the arrays $w$ and werr respectively.

## Input Parameters

$n$	INTEGER. The order of the matrix $T$.
d	REAL for slarrj
	DOUBLE PRECISION for dlarrj
	Array, DIMENSION ( $n$ ).
	Contains $n$ diagonal elements of the matrix $T$.
e2	REAL for slarrj
	DOUBLE PRECISION for dlarrj
	Array, DIMENSION ( $n-1$ ).
	Contains ( $n-1$ ) squared sub-diagonal elements of the $T$.
ifirst	INTEGER.
	The index of the first eigenvalue to be computed.
ilast	INTEGER.
	The index of the last eigenvalue to be computed.
rtol	REAL for slarrj
	DOUBLE PRECISION for dlarrj
	Tolerance for the convergence of the bisection intervals. An interval [a, b] is considered to be converged if $(b-a) \leq r t o l * \max (\|a\|,\|b\|)$.
offset	INTEGER.


	Offset for the arrays w and werr, that is the ifirst-offset through ilast-offset elements of these arrays are to be used.
W	REAL for slarrj
	DOUBLE PRECISION for dlarrj
	Array, DIMENSION ( $n$ ).
	On input, w(ifirst-offset) through w(ilast-offset) are estimates of the eigenvalues of $L^{\star} D^{\star} L^{T}$ indexed ifirst through ilast.
werr	REAL for slarrj
	DOUBLE PRECISION for dlarrj
	Array, DIMENSION ( $n$ ).
	On input, werr(ifirst-offset) through werr(ilast-offset) are the errors in the estimates of the corresponding elements in $w$.
work	REAL for slarrj
	DOUBLE PRECISION for dlarrj
	Workspace array, DIMENSION ( $2 * n$ ).
iwork	INTEGER.
	Workspace array, DIMENSION ( $2 * n$ ).
pivmin	REAL for slarrj
	DOUBLE PRECISION for dlarrj
	The minimum pivot in the Sturm sequence for the matrix $T$.
spdiam	REAL for slarrj
	DOUBLE PRECISION for dlarrj
	The spectral diameter of the matrix $T$.

## Output Parameters

W
werr
info

On exit, contains the refined estimates of the eigenvalues.
On exit, contains the refined errors in the estimates of the corresponding elements in w.

INTEGER.
Now it is not used and always is set to 0 .

## ?larrk

Computes one eigenvalue of a symmetric tridiagonal matrix $T$ to suitable accuracy.

## Syntax

```
call slarrk(n, iw, gl, gu, d, e2, pivmin, reltol, w, werr, info)
call dlarrk(n, iw, gl, gu, d, e2, pivmin, reltol, w, werr, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes one eigenvalue of a symmetric tridiagonal matrix $T$ to suitable accuracy. This is an auxiliary code to be called from ?stemr.

To avoid overflow, the matrix must be scaled so that its largest element is no greater than (overflow ${ }^{1 / 2 \star}$ underflow ${ }^{1 / 4}$ ) in absolute value, and for greatest accuracy, it should not be much smaller than that. For more details see [Kahan66].

Input Parameters	
$n$	INTEGER. The order of the matrix T. $(n \geq 1)$.
iw	INTEGER.   The index of the eigenvalue to be returned.
gl, gu	REAL for slarrk   DOUBLE PRECISION for dlarrk   An upper and a lower bound on the eigenvalue.
d	REAL for slarrk   DOUBLE PRECISION for dlarrk   Array, DIMENSION ( $n$ ).   Contains $n$ diagonal elements of the matrix $T$.
e2	REAL for slarrk   DOUBLE PRECISION for dlarrk   Array, DIMENSION ( $n-1$ ).   Contains ( $n-1$ ) squared off-diagonal elements of the $T$.
pivmin	REAL for slarrk   DOUBLE PRECISION for dlarrk   The minimum pivot in the Sturm sequence for the matrix $T$.
reltol	REAL for slarrk   DOUBLE PRECISION for dlarrk   The minimum relative width of an interval. When an interval is narrower than reltol times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, that is converged. Note: this should always be at least radix*machine epsilon.

## Output Parameters

w	REAL for slarrk
werr	DOUBLE PRECISION for dlarrk
	Contains the eigenvalue approximation.
	REAL for slarrk
info	DOUBLE PRECISION for dlarrk
	Contains the error bound on the corresponding eigenvalue approximation in
	w.
	INTEGER.
	$=0:$ Eigenvalue converges
	$=-1:$ Eigenvalue does not converge

## ?larrr

Performs tests to decide whether the symmetric tridiagonal matrix $T$ warrants expensive computations which guarantee high relative accuracy in the eigenvalues.

## Syntax

```
call slarrr(n, d, e, info)
call dlarrr(n, d, e, info)
```

Include files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine performs tests to decide whether the symmetric tridiagonal matrix $T$ warrants expensive computations which guarantee high relative accuracy in the eigenvalues.

## Input Parameters

$n$ d
e

## Output Parameters

info

INTEGER. The order of the matrix $T$. $(n>0)$.
REAL for slarrr
DOUBLE PRECISION for dlarrr
Array, DIMENSION ( $n$ ).
Contains $n$ diagonal elements of the matrix $T$.
REAL for slarrr
DOUBLE PRECISION for dlarrr
Array, DIMENSION (n).
The first ( $n-1$ ) entries contain sub-diagonal elements of the tridiagonal matrix $T ; e(n)$ is set to 0 .

INTEGER.
$=0$ : the matrix warrants computations preserving relative accuracy (default value).
$=-1$ : the matrix warrants computations guaranteeing only absolute accuracy.

## ?larrv <br> Computes the eigenvectors of the tridiagonal matrix $T$ <br> $=L^{\star} D^{\star} L^{T}$ given $L, D$ and the eigenvalues of $L^{\star} D^{\star} L^{T}$.

## Syntax

```
call slarrv(n, vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtoll, rtol2, w,
werr, wgap, iblock, indexw, gers, z, ldz, isuppz, work, iwork, info)
call dlarrv(n, vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtoll, rtol2, w,
werr, wgap, iblock, indexw, gers, z, ldz, isuppz, work, iwork, info)
call clarrv(n, vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtoll, rtol2, w,
werr, wgap, iblock, indexw, gers, z, ldz, isuppz, work, iwork, info)
call zlarrv(n, vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtoll, rtol2, w,
werr, wgap, iblock, indexw, gers, z, ldz, isuppz, work, iwork, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? larrv computes the eigenvectors of the tridiagonal matrix $T=L^{*} D^{\star} L^{T}$ given $L$, $D$ and approximations to the eigenvalues of $L^{\star} D^{\star} L^{T}$.

The input eigenvalues should have been computed by slarre for real flavors (slarrv/clarrv) and by dlarre for double precision flavors (dlarre/zlarre).

Input Parameters
n
vl, vu
$d$

1
pivmin
isplit
m
dol, dou
minrgp, rtoll, rtol2

W
werr

INTEGER. The order of the matrix. $n \geq 0$.
REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Lower and upper bounds respectively of the interval that contains the desired eigenvalues. $v I<v u$. Needed to compute gaps on the left or right end of the extremal eigenvalues in the desired range.
REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION ( $n$ ). On entry, the $n$ diagonal elements of the diagonal matrix $D$.
REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION ( $n$ ).
On entry, the ( $n-1$ ) subdiagonal elements of the unit bidiagonal matrix $L$ are contained in elements 1 to $n-1$ of $L$ if the matrix is not splitted. At the end of each block the corresponding shift is stored as given by slarre for real flavors and by dlarre for double precision flavors.
REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
The minimum pivot allowed in the Sturm sequence.
INTEGER. Array, DIMENSION ( $n$ ).
The splitting points, at which $T$ breaks up into blocks. The first block consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), etc.
INTEGER. The total number of eigenvalues found.
$0 \leq m \leq n$. If range $=$ 'A', $m=n$, and if range $=' I ', m=i u-i l$ +1 .

INTEGER.
If you want to compute only selected eigenvectors from all the eigenvalues supplied, specify an index range dol:dou. Or else apply the setting dol=1, dou $=m$. Note that dol and dou refer to the order in which the eigenvalues are stored in $w$.
If you want to compute only selected eigenpairs, then the columns dol-1 to dou +1 of the eigenvector space $z$ contain the computed eigenvectors. All other columns of $z$ are set to zero.

REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Parameters for bisection. An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX ( rtoll*gap, rtol2*max (|LEFT|,|RIGHT|) ).
REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION ( $n$ ). The first $m$ elements of $w$ contain the approximate eigenvalues for which eigenvectors are to be computed. The eigenvalues should be grouped by split-off block and ordered from smallest to largest within the block (the output array w from ?larre is expected here). These eigenvalues are set with respect to the shift of the corresponding root representation for their block.
REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv

	Array, DIMENSION $(n)$. The first $m$ elements contain the semiwidth of the
uncertainty interval of the corresponding eigenvalue in $w$.	

## Output Parameters

d
1
W
werr
wgap

Z
isuppz

On exit, d may be overwritten.
On exit, 1 is overwritten.
On exit, wholds the eigenvalues of the unshifted matrix.
On exit, werr contains refined values of its input approximations.
On exit, wgap contains refined values of its input approximations. Very small gaps are changed.
REAL for slarrv
DOUBLE PRECISION for dlarrv
COMPLEX for clarrv
DOUBLE COMPLEX for zlarrv
Array, DIMENSION ( $1 d z, \max (1, m)$ ).
If info $=0$, the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix $T$ corresponding to the input eigenvalues, with the $i$-th column of $z$ holding the eigenvector associated with $w(i)$.

NOTE The user must ensure that at least $\max (1, m)$ columns are supplied in the array $z$.

Array, DIMENSION $(2 * \max (1, m))$. The support of the eigenvectors in $z_{\text {, }}$ that is, the indices indicating the nonzero elements in $z$. The $i$-th eigenvector is nonzero only in elements isuppz(2i-1) through isuppz(2i).
INTEGER.
If info $=0$ : successful exit
If info > 0: A problem occured in ?larrv. If info = 5, the Rayleigh Quotient Iteration failed to converge to full accuracy.
If info < 0: One of the called subroutines signaled an internal problem. Inspection of the corresponding parameter info for further information is required.

- If info $=-1$, there is a problem in ?larrb when refining a child eigenvalue;
- If info $=-2$, there is a problem in ?larrf when computing the relatively robust representation (RRR) of a child. When a child is inside a tight cluster, it can be difficult to find an RRR. A partial remedy from the user's point of view is to make the parameter minrgp smaller and recompile. However, as the orthogonality of the computed vectors is proportional to $1 /$ minrgp, you should be aware that you might be trading in precision when you decrease minrgp.
- If info $=-3$, there is a problem in ?larrb when refining a single eigenvalue after the Rayleigh correction was rejected.

See Also
?larrb
?larre
?larrf

## ?lartg

Generates a plane rotation with real cosine and real/ complex sine.

## Syntax

```
call slartg(f, g, cs, sn, r)
call dlartg(f, g, cS, sn, r)
call clartg(f, g, cS, sn, r)
call zlartg(f, g, cS, sn, r)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine generates a plane rotation so that

$$
\left[\begin{array}{cc}
c s & s n \\
-\operatorname{con} j g(\operatorname{sn}) & c s
\end{array}\right] \cdot\left[\begin{array}{l}
E \\
g
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right]
$$

where $c s^{2}+|s n|^{2}=1$

This is a slower, more accurate version of the BLAS Level 1 routine ?rotg, except for the following differences.

For slartg/dlartg:
$f$ and $g$ are unchanged on return;
If $g=0$, then $c s=1$ and $s n=0$;
If $f=0$ and $g \neq 0$, then $c s=0$ and $s n=1$ without doing any floating point operations (saves work in ?bdsqr when there are zeros on the diagonal);

If $f$ exceeds $g$ in magnitude, cs will be positive.
For clartg/zlartg:
$f$ and $g$ are unchanged on return;
If $g=0$, then $c s=1$ and $s n=0$;
If $f=0$, then $c s=0$ and $s n$ is chosen so that $r$ is real.

## Input Parameters

```
f,g
REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
DOUBLE COMPLEX for zlartg
The first and second component of vector to be rotated.
```


## Output Parameters

REAL for slartg/clartg
DOUBLE PRECISION for dlartg/zlartg
The cosine of the rotation.
REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
DOUBLE COMPLEX for zlartg
The sine of the rotation.
$r$
REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
DOUBLE COMPLEX for zlartg
The nonzero component of the rotated vector.

## ?lartgp

Generates a plane rotation so that the diagonal is nonnegative.

## Syntax

## Fortran 77:

```
call slartgp(f, g, cs, sn, r)
call dlartgp(f, g, cs, sn, r)
```


## Fortran 95:

```
call lartgp(f,g,cs,sn,r)
```


## Include files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine generates a plane rotation so that

$$
\left[\begin{array}{cc}
c s & \operatorname{sn} \\
-\operatorname{sn} & c s
\end{array}\right] \cdot\left[\begin{array}{l}
f \\
g
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right]
$$

where $c s^{2}+s n^{2}=1$
This is a slower, more accurate version of the BLAS Level 1 routine ?rotg, except for the following differences:

- $f$ and $g$ are unchanged on return.
- If $g=0$, then $c s=(+/-) 1$ and $s n=0$.
- If $f=0$ and $g \neq 0$, then $c s=0$ and $s n=(+/-) 1$.

The sign is chosen so that $r \geq 0$.

## Input Parameters

```
f,g REAL for slartgp
 DOUBLE PRECISION for dlartgp
 The first and second component of the vector to be rotated.
```


## Output Parameters

CS REAL for slartgp
DOUBLE PRECISION for dlartgp
The cosine of the rotation.
REAL for slartgp
DOUBLE PRECISION for dlartgp
The sine of the rotation.
$r$
REAL for slartgp
DOUBLE PRECISION for dlartgp
The nonzero component of the rotated vector.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine ?lartgp interface are as follows:

$f$	Holds the first component of the vector to be rotated.
$g$	Holds the second component of the vector to be rotated.
$C S$	Holds the cosine of the rotation.
$S n$	Holds the sine of the rotation.
$r$	Holds the nonzero component of the rotated vector.

## See Also

?rotg

```
?lartg
?lartgs
```


## ?lartgs

Generates a plane rotation designed to introduce a bulge in implicit QR iteration for the bidiagonal SVD problem.

## Syntax

## Fortran 77:

```
call slartgs(x, y, sigma, cs, sn)
call dlartgs(x, y, sigma, cs, sn)
```


## Fortran 95:

```
call lartgs(x,y,sigma,cs,sn)
```

Include files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine generates a plane rotation designed to introduce a bulge in Golub-Reinsch-style implicit QR iteration for the bidiagonal SVD problem. $x$ and $y$ are the top-row entries, and sigma is the shift. The computed $c s$ and $s n$ define a plane rotation that satisfies the following:

$$
\left[\begin{array}{cc}
c s & s n \\
-s n & c s
\end{array}\right] \cdot\left[\begin{array}{c}
x^{2}-\operatorname{sigma} \\
x * y
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right]
$$

with $r$ nonnegative.
If $x^{2}$ - sigma and $x$ * $y$ are 0 , the rotation is by $\pi / 2$

## Input Parameters

```
x,y
sigma
REAL for slartgs
DOUBLE PRECISION for dlartgs
The (1,1) and (1,2) entries of an upper bidiagonal matrix, respectively.
REAL for slartgs
DOUBLE PRECISION for dlartgs
Shift
```


## Output Parameters

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ?lartgs interface are as follows:

$x$	Holds the $(1,1)$ entry of an upper diagonal matrix.
$y$	Holds the $(1,2)$ entry of an upper diagonal matrix.
sigma	Holds the shift.
cs	Holds the cosine of the rotation.
sn	Holds the sine of the rotation.

See Also
?lartg
?lartgp

## ?lartv

Applies a vector of plane rotations with real cosines and real/complex sines to the elements of a pair of vectors.

## Syntax

```
call slartv(n, x, incx, y, incy, c, s, incc)
call dlartv(n, x, incx, y, incy, c, s, incc)
call clartv(n, x, incx, y, incy, c, s, incc)
call zlartv(n, x, incx, y, incy, c, s, incc)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine applies a vector of real/complex plane rotations with real cosines to elements of the real/complex vectors $x$ and $y$. For $i=1,2, \ldots, n$

$$
\left[\begin{array}{l}
\mathrm{x}_{i} \\
y_{i}
\end{array}\right]:=\left[\begin{array}{cc}
c(i) & s(i) \\
-\operatorname{conjg}(s(i)) & c(i)
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{i} \\
y_{i}
\end{array}\right]
$$

## Input Parameters

$n$
$x, y$

INTEGER. The number of plane rotations to be applied.
REAL for slartv
DOUBLE PRECISION for dlartv
COMPLEX for clartv
DOUBLE COMPLEX for zlartv
Arrays, DIMENSION $\left(1+(n-1) *_{\text {incx }}\right)$ and $\left(1+(n-1) *_{\text {incy }}\right)$, respectively. The input vectors $x$ and $y$.

```
incx INTEGER. The increment between elements of x. incx > 0.
incy INTEGER. The increment between elements of y. incy > 0.
c REAL for slartv/clartv
DOUBLE PRECISION for dlartv/zlartv
Array, DIMENSION (1+(n-1)*incc).
The cosines of the plane rotations.
S
REAL for slartv
DOUBLE PRECISION for dlartv
COMPLEX for clartv
DOUBLE COMPLEX for zlartv
Array, DIMENSION (1+(n-1)*incc).
The sines of the plane rotations.
incc INTEGER. The increment between elements of c and s. incc > 0.
```


## Output Parameters

```
x, y
The rotated vectors }x\mathrm{ and }y\mathrm{ .
```


## ?laruv

Returns a vector of $n$ random real numbers from a uniform distribution.

## Syntax

```
call slaruv(iseed, n, x)
call dlaruv(iseed, n, x)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? laruv returns a vector of $n$ random real numbers from a uniform $(0,1)$ distribution ( $n \leq 128$ ).
This is an auxiliary routine called by ?larnv.

## Input Parameters

iseed
$n$

## Output Parameters

X
seed

REAL for slaruv
DOUBLE PRECISION for dlaruv
Array, DIMENSION ( $n$ ). The generated random numbers.
INTEGER. Array, DIMENSION (4). On entry, the seed of the random number generator; the array elements must be between 0 and 4095, and iseed(4) must be odd.
INTEGER. The number of random numbers to be generated. $n \leq 128$.

On exit, the seed is updated.

## ?larz

Applies an elementary reflector (as returned by ? tzrzf) to a general matrix.

## Syntax

```
call slarz(side, m, n, l, v, incv, tau, c, ldc, work)
call dlarz(side, m, n, l, v, incv, tau, c, ldc, work)
call clarz(side, m, n, l, v, incv, tau, c, ldc, work)
call zlarz(side, m, n, l, v, incv, tau, c, ldc, work)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? larz applies a real/complex elementary reflector $H$ to a real/complex $m$-by- $n$ matrix $C$, from either the left or the right. $H$ is represented in the forms
$H=I-\operatorname{ta} u^{\star} V^{\star} V^{T}$ for real flavors and $H=I$ - $\operatorname{tau} u^{\star} V^{\star} V^{H}$ for complex flavors, where $t a u$ is a real/complex scalar and $v$ is a real/complex vector, respectively.
If $\operatorname{tau}=0$, then $H$ is taken to be the unit matrix.
For complex flavors, to apply $H^{H}$ (the conjugate transpose of $H$ ), supply conjg ( $\operatorname{tau}$ ) instead of tau.
$H$ is a product of $k$ elementary reflectors as returned by ?tzrzf.

## Input Parameters

```
side CHARACTER*1.
 If side = 'L': form H*C
 If side = 'R': form C*H
m
n
I
v
 incV
tau
INTEGER. The number of rows of the matrix C.
INTEGER. The number of columns of the matrix C.
INTEGER. The number of entries of the vector v containing the meaningful
part of the Householder vectors.
If side = 'L',m\geqL\geq0,
if side = 'R', n \geq L \geq 0.
REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
DOUBLE COMPLEX for zlarz
Array, DIMENSION (1+(1-1)*abs(incv)).
The vector v in the representation of H as returned by ?tzrzf.
v \mp@code { i s ~ n o t ~ u s e d ~ i f ~ t a u ~ = ~ 0 . }
INTEGER. The increment between elements of v.
incv # = 0.
REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
DOUBLE COMPLEX for zlarz
```

	The value tau in the representation of $H$.
C	REAL for slarz
	DOUBLE PRECISION for dlarz
	COMPLEX for clarz
	DOUBLE COMPLEX for zlarz
	Array, DIMENSION (ldc, $n$ ).
	On entry, the m-by-n matrix $C$.
$1 d c$	INTEGER. The leading dimension of the array $c$. $l d c \geq \max (1, m)$.
work	REAL for slarz
	DOUBLE PRECISION for dlarz
	COMPLEX for clarz
	DOUBLE COMPLEX for zlarz
	Workspace array, DIMENSION
	$(n)$ if side $=$ 'L' or
	$(m)$ if side $=$ ' $\mathrm{R}^{\prime}$.

## Output Parameters

On exit, $C$ is overwritten by the matrix $H^{*} C$ if side $=$ ' L', or $C^{*} H$ if side $=$ 'R'.

## ?larzb

Applies a block reflector or its transpose/conjugatetranspose to a general matrix.

## Syntax

```
call slarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work,
ldwork)
call dlarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work,
ldwork)
call clarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work,
ldwork)
call zlarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work,
ldwork)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine applies a real/complex block reflector $H$ or its transpose $H^{T}$ (or the conjugate transpose $H^{H}$ for complex flavors) to a real/complex distributed $m-b y-n$ matrix $c$ from the left or the right. Currently, only storev $=$ 'R' and direct $=$ 'B' are supported.

## Input Parameters

side	CHARACTER*1.
If side $=$ 'L': apply $H$ or $H^{T} / H^{H}$ from the left	
	If side $=$ 'R': apply $H$ or $H^{T} / H^{H}$ from the right


trans	CHARACTER*1.
	If trans = 'N': apply $H$ (No transpose)
	If trans='C': apply $H^{H}$ (conjugate transpose)
	If trans='T': apply $H^{T}$ (transpose transpose)
direct	CHARACTER*1.
	Indicates how $H$ is formed from a product of elementary reflectors
	$='^{\prime}: H=H(1) * H(2) * \ldots{ }^{*} H(k)$ (forward, not supported)
	$={ }^{\prime} \mathrm{B}^{\prime}: H=H(k) * \ldots * H(2) * H(1)$ (backward)
storev	CHARACTER*1.
	Indicates how the vectors which define the elementary reflectors are stored:
	= 'C': Column-wise (not supported)
	= 'R': Row-wise.
$m$	INTEGER. The number of rows of the matrix $C$.
$n$	INTEGER. The number of columns of the matrix $C$.
k	INTEGER. The order of the matrix $T$ (equal to the number of elementary reflectors whose product defines the block reflector).
1	INTEGER. The number of columns of the matrix $V$ containing the meaningful part of the Householder reflectors.   If side $=$ 'L', $m \geq 1 \geq 0$, if side $=$ 'R', $n \geq 1 \geq 0$.
v	REAL for slarzb
	DOUBLE PRECISION for dlarzb
	COMPLEX for clarzb
	DOUBLE COMPLEX for zlarzb
	Array, DIMENSION (ldv, nv).
	If storev = 'C', nv = k;
	if storev = 'R', nv = 1 .
$1 d v$	INTEGER. The leading dimension of the array $v$.
	If storev = 'C', ldv $\geq 1$; if storev = 'R', ldv $\geq \mathrm{k}$.
t	REAL for slarzb
	DOUBLE PRECISION for dlarzb
	COMPLEX for clarzb
	DOUBLE COMPLEX for zlarzb
	Array, DIMENSION ( $I d t, k$ ). The triangular $k$-by- $k$ matrix $T$ in the representation of the block reflector.
$1 d t$	INTEGER. The leading dimension of the array $t$.
	$l d t \geq k$.
c	REAL for slarzb
	DOUBLE PRECISION for dlarzb
	COMPLEX for clarzb
	DOUBLE COMPLEX for zlarzb
	Array, DIMENSION ( $1 d c, n$ ). On entry, the m-by-n matrix $C$.
$1 d c$	INTEGER. The leading dimension of the array $c$.
	$I d c \geq \max (1, m) .$
work	REAL for slarzb
	DOUBLE PRECISION for dlarzb
	COMPLEX for clarzb
	DOUBLE COMPLEX for zlarzb
	Workspace array, DIMENSION ( 1 dwork, k).

INTEGER. The leading dimension of the array work.
If side $=$ 'L', Idwork $\geq \max (1, n)$;
if side $=$ 'R', ldwork $\geq \max (1, m)$.

## Output Parameters

c
On exit, $C$ is overwritten by $H^{*} C$, or $H^{T} / H^{H *} C$, or $C^{*} H$, or $C^{*} H^{T} / H^{H}$.

## ?larzt <br> Forms the triangular factor $T$ of a block reflector $H=I$

- $V * T * V^{H}$.


## Syntax

```
call slarzt(direct, storev, n, k, v, ldv, tau, t, ldt)
call dlarzt(direct, storev, n, k, v, ldv, tau, t, ldt)
call clarzt(direct, storev, n, k, v, ldv, tau, t, ldt)
call zlarzt(direct, storev, n, k, v, ldv, tau, t, ldt)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine forms the triangular factor $T$ of a real/complex block reflector $H$ of order $>n$, which is defined as a product of $k$ elementary reflectors.
If direct $=' F^{\prime}, H=H(1) *_{H}(2){ }^{*} \ldots{ }^{*} H(k)$, and $T$ is upper triangular.
If direct $=' \mathrm{~B}^{\prime}, H=H(k) * \ldots{ }^{\star} H(2) \star H(1)$, and $T$ is lower triangular.
If storev $=$ ' C', the vector which defines the elementary reflector $H(i)$ is stored in the $i$-th column of the array $V$, and $H=I-V^{\star} T^{\star} V^{T}$ (for real flavors) or $H=I-V^{\star} T^{\star} V^{H}$ (for complex flavors).

If storev = 'R', the vector which defines the elementary reflector $H(i)$ is stored in the $i$-th row of the array $v$, and $H=I-V^{T} T^{\star} V$ (for real flavors) or $H=I-V^{H \star} T^{\star} V$ (for complex flavors).

Currently, only storev $=$ 'R' and direct $=$ 'B' are supported.
Input Parameters

direct	CHARACTER*1.
	Specifies the order in which the elementary reflectors are multiplied to form the block reflector:
	If direct $='^{\prime \prime}$ ': $H=H(1) * H(2) * \ldots{ }^{*} \ldots(k)$ (forward, not supported)
	If direct $=$ 'B': H = H(k)*...*H(2)*H(1) (backward)
storev	CHARACTER*1.
	Specifies how the vectors which define the elementary reflectors are stored (see also Application Notes below):
	If storev = 'C': column-wise (not supported)
	If storev = 'R': row-wise
$n$	INTEGER. The order of the block reflector $H$. $n \geq 0$.
k	INTEGER. The order of the triangular factor $T$ (equal to the number of elementary reflectors). $k \geq 1$.

```
v REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
DOUBLE COMPLEX for zlarzt
Array, DIMENSION
(Idv,k) if storev = 'C'
(ldv, n) if storev = 'R' The matrix v.
ldv INTEGER. The leading dimension of the array v.
If storev = 'C', ldv \geq max (}1,n)\mathrm{ ;
if storev = 'R', Idv \geqk.
REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
DOUBLE COMPLEX for zlarzt
Array, DIMENSION (k). tau(i) must contain the scalar factor of the
elementary reflector H(i).
ldt INTEGER. The leading dimension of the output array t.
ldt \geqk.
```


## Output Parameters

$t$
REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
DOUBLE COMPLEX for zlarzt
Array, DIMENSION ( $I d t, k$ ). The $k$-by- $k$ triangular factor $T$ of the block reflector. If direct $='^{\prime} \mathrm{F}^{\prime}, T$ is upper triangular; if direct $=' B^{\prime}, T$ is lower triangular. The rest of the array is not used.
$V \quad$ The matrix $V$. See Application Notes below.

## Application Notes

The shape of the matrix $V$ and the storage of the vectors which define the $H(\mathrm{i})$ is best illustrated by the following example with $n=5$ and $k=3$. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.

$$
\text { direct }=\text { ' } \mathrm{F}^{\prime} \text { and storev }=' \mathrm{C} \text { ': } \quad \text { direct }=\text { ' } \mathrm{F}^{\prime} \text { and storev }=\text { ' } \mathrm{R} \text { ': }
$$

$$
\begin{aligned}
& v=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right]
\end{aligned}
$$

1

1

1
direct $=$ ' B ' and storev $=$ ' C ': direct $=$ ' B ' and storev = ' R ':

$$
\begin{aligned}
& \ldots \mathrm{V} \\
& 11 \\
& 1 \\
& 1 \\
& 1 \\
& {\left[\begin{array}{cccccccccc}
1 & \cdot & \cdot & \cdot & \cdot & v_{1} & v_{1} & v_{1} & v_{1} & v_{1} \\
\cdot & 1 & \cdot & \cdot & \cdot & v_{2} & v_{2} & v_{2} & v_{2} & v_{2} \\
\cdot & \cdot & 1 & \cdot & \cdot & v_{3} & v_{3} & v_{3} & v_{3} & v_{3}
\end{array}\right]} \\
& v=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right]
\end{aligned}
$$

## ?las2 <br> Computes singular values of a 2-by-2 triangular matrix.

Syntax
call slas2( f, $g$, $h$, ssmin, ssmax )
call dlas2 ( $f, g, h, s s m i n, ~ s s m a x ~) ~$

## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?las2 computes the singular values of the 2-by-2 matrix

$$
\left[\begin{array}{ll}
f & g \\
0 & h
\end{array}\right]
$$

On return, ssmin is the smaller singular value and $\operatorname{SSMAX}$ is the larger singular value.

## Input Parameters

```
f,g,h REAL for slas2
 DOUBLE PRECISION for dlas2
 The (1,1),(1,2) and (2,2) elements of the 2-by-2 matrix, respectively.
```


## Output Parameters

```
ssmin, ssmax REAL for slas2
```

    DOUBLE PRECISION for dlas2
    The smaller and the larger singular values, respectively.

## Application Notes

Barring over/underflow, all output quantities are correct to within a few units in the last place (ulps), even in the absence of a guard digit in addition/subtraction. In ieee arithmetic, the code works correctly if one matrix element is infinite. Overflow will not occur unless the largest singular value itself overflows, or is within a few ulps of overflow. (On machines with partial overflow, like the Cray, overflow may occur if the largest singular value is within a factor of 2 of overflow.) Underflow is harmless if underflow is gradual. Otherwise, results may correspond to a matrix modified by perturbations of size near the underflow threshold.

## ?lascl

Multiplies a general rectangular matrix by a real scalar defined as $c_{t o} / c_{\text {from }}$.

Syntax

```
call slascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
call dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
call clascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
call zlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
```

Include files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

Description
The routine ? lascl multiplies the m-by-n real/complex matrix $A$ by the real scalar $C_{\text {to }} / C_{f r o m}$. The operation is performed without over/underflow as long as the final result $C_{\text {to }} \star A(i, j) / C_{f r o m}$ does not over/underflow.
type specifies that A may be full, upper triangular, lower triangular, upper Hessenberg, or banded.

## Input Parameters

type	CHARACTER*1. This parameter specifies the storage type of the input matrix.   $={ }^{\prime} \mathrm{G}^{\prime}: A$ is a full matrix.   $=$ 'L': A is a lower triangular matrix.   = 'U': A is an upper triangular matrix.   $=' H^{\prime}: A$ is an upper Hessenberg matrix.   $=$ ' $\mathrm{B}^{\prime}$ : A is a symmetric band matrix with lower bandwidth kl and upper bandwidth $k u$ and with the only the lower half stored   $=$ ' Q ': A is a symmetric band matrix with lower bandwidth kl and upper bandwidth $k u$ and with the only the upper half stored.   = ' Z': A is a band matrix with lower bandwidth kl and upper bandwidth $k u$. See description of the ?gbtrf function for storage details.
kl	INTEGER. The lower bandwidth of $A$. Referenced only if type = 'B', 'Q' or 'Z'.
ku	INTEGER. The upper bandwidth of $A$. Referenced only if type $=$ ' $\mathrm{B}^{\prime}$, ' Q ' or 'Z'.
cfrom, cto	REAL for slascl/clascl   DOUBLE PRECISION for dlascl/zlascl   The matrix $A$ is multiplied by cto/cfrom. $A(i, j)$ is computed without over/ underflow if the final result $c t 0^{\star} A(i, j) / c f r o m$ can be represented without over/underflow. cfrom must be nonzero.
m	INTEGER. The number of rows of the matrix $A . m \geq 0$.
$n$	INTEGER. The number of columns of the matrix $A . n \geq 0$.
a	REAL for slascl
	DOUBLE PRECISION for dlascl
	COMPLEX for clascl
	DOUBLE COMPLEX for zlascl
	Array, DIMENSION (Ida, n). The matrix to be multiplied by cto/cfrom. See type for the storage type.
Ida	INTEGER. The leading dimension of the array a. lda $\geq \max (1, m)$.

## Output Parameters

```
a
info
```

The multiplied matrix $A$.
INTEGER.
If info $=0$ - successful exit
If info $=-i<0$, the $i$-th argument had an illegal value.
See Also
?gbtrf

## ?lasd0

Computes the singular values of a real upper
bidiagonal n-by-m matrix $B$ with diagonal $d$ and off-
diagonal e. Used by ?bdsdc.

## Syntax

```
call slasd0(n, sqre, d, e, u, ldu, vt, ldvt, smlsiz, iwork, work, info)
call dlasd0(n, sqre, d, e, u, ldu, vt, ldvt, smlsiz, iwork, work, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

Using a divide and conquer approach, the routine ?lasd0 computes the singular value decomposition (SVD) of a real upper bidiagonal $n$-by- $m$ matrix $B$ with diagonal $d$ and offdiagonal $e$, where $m=n+s$ qre.
The algorithm computes orthogonal matrices $U$ and $V T$ such that $B=U^{\star} S^{\star} V T$. The singular values $S$ are overwritten on $d$.
The related subroutine ?lasda computes only the singular values, and optionally, the singular vectors in compact form.

## Input Parameters

$n$	INTEGER. On entry, the row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array $d$.
sqre	INTEGER. Specifies the column dimension of the bidiagonal matrix.   If sqre $=0$ : the bidiagonal matrix has column dimension $m=n$.   If sqre $=1$ : the bidiagonal matrix has column dimension $m=n+1$.
d	REAL for slasdo   DOUBLE PRECISION for dlasd0   Array, DIMENSION ( $n$ ). On entry, d contains the main diagonal of the bidiagonal matrix.
$e$	REAL for slasd0   DOUBLE PRECISION for dlasd0   Array, DIMENSION ( $m-1$ ). Contains the subdiagonal entries of the bidiagonal matrix. On exit, e is destroyed.
$1 d u$	INTEGER. On entry, leading dimension of the output array $u$.
ldvt	INTEGER. On entry, leading dimension of the output array vt.
smlsiz	INTEGER. On entry, maximum size of the subproblems at the bottom of the computation tree.
iwork	INTEGER.   Workspace array, dimension must be at least ( $8 n$ ).
work	REAL for slasdo   DOUBLE PRECISION for dlasd0   Workspace array, dimension must be at least $\left(3 m^{2}+2 m\right)$.

## Output Parameters

d
u
$v t$

On exit $d$, If info $=0$, contains singular values of the bidiagonal matrix.
REAL for slasdo
DOUBLE PRECISION for dlasd0
Array, DIMENSION at least ( $I d q, n$ ). On exit, u contains the left singular vectors.
REAL for slasdo
DOUBLE PRECISION for dlasdO

	Array, DIMENSION at least $(l d v t, m)$. On exit, $v t^{T}$ contains the
vectors.	
info	INTEGER.
	If info $=0:$ successful exit.
	If info $=-i<0$, the $i$-th argument had an illegal value.
	If info $=1, a$ singular value did not converge.

## ?lasd1

Computes the SVD of an upper bidiagonal matrix $B$ of the specified size. Used by ?bdsdc.

## Syntax

```
call slasdl(nl, nr, sqre, d, alpha, beta, u, ldu, vt, ldvt, idxq, iwork, work, info)
call dlasdl(nl, nr, sqre, d, alpha, beta, u, ldu, vt, ldvt, idxq, iwork, work, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes the SVD of an upper bidiagonal $n$-by-m matrix $B$, where $n=n l+n r+1$ and $m=n$ + sqre.

The routine ?lasd1 is called from ?lasd0.
A related subroutine ?lasd7 handles the case in which the singular values (and the singular vectors in factored form) are desired.
?lasd1 computes the SVD as follows:

$$
V T=U(i n)^{*}\left[\begin{array}{cccc}
D 1(i n) & 0 & 0 & 0 \\
z 1^{T} & a & z 2^{T} & b \\
0 & 0 & D 2(i n) & 0
\end{array}\right] * \mathrm{VT}(i n)
$$

$=U($ out $) *(D$ (out) 0$) * V T($ out $)$
where $Z^{T}=\left(\begin{array}{lll}Z I^{T} & \text { a } Z 2^{T} \text { b }\end{array}\right)=u^{T \star} V T^{T}$, and $u$ is a vector of dimension $m$ with alpha and beta in the nl+1 and $n l+2$-th entries and zeros elsewhere; and the entry $b$ is empty if sqre $=0$.

The left singular vectors of the original matrix are stored in $u$, and the transpose of the right singular vectors are stored in vt, and the singular values are in $d$. The algorithm consists of three stages:

1. The first stage consists of deflating the size of the problem when there are multiple singular values or when there are zeros in the $z$ vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ?lasd2.
2. The second stage consists of calculating the updated singular values. This is done by finding the square roots of the roots of the secular equation via the routine ?lasd4 (as called by ?lasd3). This routine also calculates the singular vectors of the current problem.
3. The final stage consists of computing the updated singular vectors directly using the updated singular values. The singular vectors for the current problem are multiplied with the singular vectors from the overall problem.

Input Parameters

nl	INTEGER. The row dimension of the upper block. $n l \geq 1$.
$n r$	INTEGER. The row dimension of the lower block. $n r \geq 1$.
sqre	INTEGER.   If sqre $=0$ : the lower block is an $n r$-by- $n r$ square matrix.   If sqre $=1$ : the lower block is an $n r-b y-(n r+1)$ rectangular matrix. The bidiagonal matrix has row dimension $n=n l+n r+1$, and column dimension $m=n+$ sqre.
d	REAL for slasd1   DOUBLE PRECISION for dlasd1   Array, DIMENSION $(n l+n r+1) . n=n l+n r+1$. On entry $d(1: n l, 1: n l)$ contains the singular values of the upper block; and $d(n l+2: n)$ contains the singular values of the lower block.
alpha	REAL for slasd1   DOUBLE PRECISION for dlasd1   Contains the diagonal element associated with the added row.
beta	REAL for slasd1   DOUBLE PRECISION for dlasd1   Contains the off-diagonal element associated with the added row.
$u$	REAL for slasd1   DOUBLE PRECISION for dlasd1   Array, DIMENSION ( $1 d u, n$ ). On entry $u(1: n l, 1: n l$ ) contains the left singular vectors of the upper block; $u(n l+2: n, n l+2: n)$ contains the left singular vectors of the lower block.
$1 d u$	INTEGER. The leading dimension of the array $u$. $l d u \geq \max (1, n)$.
$v t$	REAL for slasd1   DOUBLE PRECISION for dlasd1   Array, DIMENSION (ldvt, $m$ ), where $m=n+$ sqre.   On entry $v t(1: n 1+1, \quad 1: n 1+1)^{T}$ contains the right singular vectors of the upper block; vt $(n l+2: m, n l+2: m)^{T}$ contains the right singular vectors of the lower block.
Idvt	INTEGER. The leading dimension of the array vt. ldvt $\geq \max (1, M)$.
iwork	INTEGER.   Workspace array, DIMENSION (4n).
work	REAL for slasd1   DOUBLE PRECISION for dlasd1   Workspace array, DIMENSION $\left(3 m_{2}+2 m\right)$.

## Output Parameters

d
alpha
beta

On exit $d(1: n)$ contains the singular values of the modified matrix.
On exit, the diagonal element associated with the added row deflated by max ( abs( alpha ), abs(beta), abs( D(I) ) ), I = 1, n.

On exit, the off-diagonal element associated with the added row deflated by max( abs( alpha), abs( beta ), abs( D(I) ) ), I = 1, n.

$u$	On exit $u$ contains the left singular vectors of the bidiagonal matrix.
$v t$	On exit $v t^{T}$ contains the right singular vectors of the bidiagonal matrix.
$i d x q$	INTEGER
	Array, DIMENSION $(n)$. Contains the permutation which will reintegrate the
	subproblem just solved back into sorted order, that is, $d(i d x q(i=1$,
	$n))$ will be in ascending order.
info	INTEGER.
	If info $=0:$ successful exit.
	If info $=-i<0$, the $i$-th argument had an illegal value.
	If info $=1$, a singular value did not converge.

## ?lasd2

Merges the two sets of singular values together into a
single sorted set. Used by ?bdsdc.

## Syntax

```
call slasd2(nl, nr, sqre, k, d, z, alpha, beta, u, ldu, vt, ldvt, dsigma, u2, ldu2,
vt2, ldvt2, idxp, idx, idxp, idxq, coltyp, info)
call dlasd2(nl, nr, sqre, k, d, z, alpha, beta, u, ldu, vt, ldvt, dsigma, u2, ldu2,
vt2, ldvt2, idxp, idx, idxp, idxq, coltyp, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? lasd2 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more singular values are close together or if there is a tiny entry in the $z$ vector. For each such occurrence the order of the related secular equation problem is reduced by one.

The routine ?lasd2 is called from ?lasd1.

## Input Parameters

$n l$	
$n r$	INTEGER. The row dimension of the upper block.
	$n l \geq 1$.

Contains the diagonal element associated with the added row.

beta	REAL for slasd2
	DOUBLE PRECISION for dlasd2
	Contains the off-diagonal element associated with the added row.
$u$	REAL for slasd2
	DOUBLE PRECISION for dlasd2
	Array, DIMENSION ( $I d u, n$ ). On entry $u$ contains the left singular vectors of two submatrices in the two square blocks with corners at $(1,1),(n l, n l)$, and $(n l+2, n l+2),(n, n)$.
$1 d u$	INTEGER. The leading dimension of the array $u$.
	$l d u \geq n$.
Idu2	INTEGER. The leading dimension of the output array u2. 1 du2 $\geq \mathrm{n}$.
vt	REAL for slasd2
	DOUBLE PRECISION for dlasd2
	Array, DIMENSION ( $1 d v t, m$ ). On entry, $v t^{T}$ contains the right singular vectors of two submatrices in the two square blocks with corners at $(1,1)$, $(n l+1, n l+1)$, and ( $n l+2, n l+2$ ), $(m, m)$.
$l d v t$	INTEGER. The leading dimension of the array vt. ldvt $\geq \mathrm{m}$.
ldvt2	INTEGER. The leading dimension of the output array vt2. 1 dvt $2 \geq \mathrm{m}$.
idxp	INTEGER.
	Workspace array, DIMENSION ( $n$ ). This will contain the permutation used to place deflated values of $D$ at the end of the array. On output idxp(2: $k$ ) points to the nondeflated $d$-values and $\operatorname{idxp}(k+1: n)$ points to the deflated singular values.
$i d x$	INTEGER.
	Workspace array, DIMENSION ( $n$ ). This will contain the permutation used to sort the contents of $d$ into ascending order.
coltyp	INTEGER.
	Workspace array, DIMENSION ( $n$ ). As workspace, this array contains a label that indicates which of the following types a column in the $u 2$ matrix or a row in the vt2 matrix is:
	$1:$ non-zero in the upper half only
	2 : non-zero in the lower half only
	3 : dense
	4 : deflated.
$i d x q$	INTEGER. Array, DIMENSION (n). This parameter contains the permutation that separately sorts the two sub-problems in $D$ in the ascending order. Note that entries in the first half of this permutation must first be moved one position backwards and entries in the second half must have $n l+1$ added to their values.

## Output Parameters

k
$d$
u
z

INTEGER. Contains the dimension of the non-deflated matrix, This is the order of the related secular equation. $1 \leq k \leq n$.
On exit $D$ contains the trailing ( $n-k$ ) updated singular values (those which were deflated) sorted into increasing order.
On exit $u$ contains the trailing $(n-k)$ updated left singular vectors (those which were deflated) in its last $n-k$ columns.
REAL for slasd2

	DOUBLE PRECISION for dlasd2
	Array, DIMENSION ( $n$ ). On exit, $z$ contains the updating row vector in the secular equation.
dsigma	REAL for slasd2
	DOUBLE PRECISION for dlasd2
	Array, DIMENSION ( $n$ ). Contains a copy of the diagonal elements ( $k-1$ singular values and one zero) in the secular equation.
u2	REAL for slasd2
	DOUBLE PRECISION for dlasd2
	Array, DIMENSION (ldu2, n). Contains a copy of the first $k-1$ left singular vectors which will be used by ?lasd3 in a matrix multiply (?gemm) to solve for the new left singular vectors. u2 is arranged into four blocks. The first block contains a column with 1 at $n l+1$ and zero everywhere else; the second block contains non-zero entries only at and above $n 1$; the third contains non-zero entries only below $n l+1$; and the fourth is dense.
$v t$	On exit, vt $t^{T}$ contains the trailing ( $n-k$ ) updated right singular vectors (those which were deflated) in its last $n-k$ columns. In case sqre $=1$, the last row of $v t$ spans the right null space.
vt2	REAL for slasd2
	DOUBLE PRECISION for dlasd2
	Array, DIMENSION (ldvt2, n). vt $2^{T}$ contains a copy of the first $k$ right singular vectors which will be used by ?lasd3 in a matrix multiply (?gemm) to solve for the new right singular vectors. vt2 is arranged into three blocks. The first block contains a row that corresponds to the special 0 diagonal element in sigma; the second block contains non-zeros only at and before $n l+1$; the third block contains non-zeros only at and after $n l+2$.
idxC	INTEGER. Array, DIMENSION ( $n$ ). This will contain the permutation used to arrange the columns of the deflated $u$ matrix into three groups: the first group contains non-zero entries only at and above nl, the second contains non-zero entries only below nl+2, and the third is dense.
coltyp	On exit, it is an array of dimension 4, with coltyp(i) being the dimension of the $i$-th type columns.
info	INTEGER.
	If info = 0): successful exit
	If info $=-i<0$, the $i$-th argument had an illegal value.

## ?lasd3

Finds all square roots of the roots of the secular equation, as defined by the values in $D$ and $Z$, and then updates the singular vectors by matrix multiplication. Used by ?bdsdc.

## Syntax

```
call slasd3(nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu, u2, ldu2, vt, ldvt, vt2,
ldvt2, idxc, ctot, z, info)
call dlasd3(nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu, u2, ldu2, vt, ldvt, vt2,
ldvt2, idxc, ctot, z, info)
```

Include files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? lasd3 finds all the square roots of the roots of the secular equation, as defined by the values in $D$ and $z$.
It makes the appropriate calls to ?lasd4 and then updates the singular vectors by matrix multiplication.
The routine ?lasd3 is called from ?lasd1.
Input Parameters

nl	INTEGER. The row dimension of the upper block. $n 1 \geq 1$.
$n r$	INTEGER. The row dimension of the lower block. $n r \geq 1$.
sqre	INTEGER.   If sqre $=0$ ): the lower block is an $n r$-by- $n r$ square matrix.   If sqre $=1$ ): the lower block is an $n r$-by- $(n r+1)$ rectangular matrix. The bidiagonal matrix has $n=n l+n r+1$ rows and $m=n+$ sqre $\geq n$ columns.
k	INTEGER. The size of the secular equation, $1 \leq k \leq n$.
q	REAL for slasd3   DOUBLE PRECISION for dlasd3   Workspace array, DIMENSION at least ( $l d q, k$ ).
$1 d q$	INTEGER. The leading dimension of the array $Q$. $l d q \geq k$.
dsigma	REAL for slasd3   DOUBLE PRECISION for dlasd3   Array, DIMENSION (k). The first $k$ elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation.
$1 d u$	INTEGER. The leading dimension of the array $u$. $l d u \geq n$.
u2	REAL for slasd3   DOUBLE PRECISION for dlasd3   Array, DIMENSION (Idu2, n).   The first $k$ columns of this matrix contain the non-deflated left singular vectors for the split problem.
Idu2	INTEGER. The leading dimension of the array u2. Idu2 $\geq \mathrm{n}$.
Idvt	INTEGER. The leading dimension of the array $v t$. $l d v t \geq n$.
vt2	REAL for slasd3   DOUBLE PRECISION for dlasd3   Array, DIMENSION (ldvt2, n).   The first $k$ columns of $v t 2^{\prime}$ contain the non-deflated right singular vectors for the split problem.
Idvt2	INTEGER. The leading dimension of the array vt2. ldvt2 $\geq$ n.
idxc	INTEGER. Array, DIMENSION ( $n$ ).

The permutation used to arrange the columns of $u$ (and rows of $v t$ ) into three groups: the first group contains non-zero entries only at and above (or before) $n l+1$; the second contains non-zero entries only at and below (or after) $n l+2$; and the third is dense. The first column of $u$ and the row of $v t$ are treated separately, however. The rows of the singular vectors found by ?lasd 4 must be likewise permuted before the matrix multiplies can take place.
ctot INTEGER. Array, DIMENSION (4). A count of the total number of the various types of columns in $u$ (or rows in $v t$ ), as described in idxc. The fourth column type is any column which has been deflated.
z
REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION ( $k$ ). The first $k$ elements of this array contain the components of the deflation-adjusted updating row vector.

## Output Parameters

d	REAL for slasd3
	DOUBLE PRECISION for dlasd3
	Array, DIMENSION ( $k$ ). On exit the square roots of the roots of the secular equation, in ascending order.
$u$	REAL for slasd3
	DOUBLE PRECISION for dlasd3
	Array, DIMENSION ( $1 d u, n$ ).
	The last $n-k$ columns of this matrix contain the deflated left singular vectors.
$v t$	REAL for slasd3
	DOUBLE PRECISION for dlasd3
	Array, DIMENSION (ldvt, m).
	The last $m-k$ columns of $v t^{\prime}$ contain the deflated right singular vectors.
vt2	Destroyed on exit.
$z$	Destroyed on exit.
info	INTEGER.
	If info = 0): successful exit.
	If info $=-i<0$, the $i$-th argument had an illegal value.
	If info $=1$, an singular value did not converge.

## Application Notes

This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

## ?lasd4

Computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by ?
bdsdc.

## Syntax

```
call slasd4(n, i, d, z, delta, rho, sigma, work, info)
```

```
call dlasd4(n, i, d, z, delta, rho, sigma, work, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes the square root of the $i$-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix whose entries are given as the squares of the corresponding entries in the array $d$, and that $0 \leq d(i)<d(j)$ for $i<j$ and that rho $>0$. This is arranged by the calling routine, and is no loss in generality. The rank-one modified system is thus

```
diag(d)*diag(d) + rho* Z* Z }\mp@subsup{Z}{}{T}\mathrm{ ,
```

where the Euclidean norm of $z$ is equal to 1 . The method consists of approximating the rational functions in the secular equation by simpler interpolating rational functions.

## Input Parameters

```
n
i
d
z
rho
work
```

Output Parameters

```
delta
```

sigma
info
REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION ( $n$ ).
If $n \neq 1$, delta contains $(d(j)$ - sigma_i) in its $j$-th component.
If $n=1$, then delta (1) $=1$. The vector delta contains the information
necessary to construct the (singular) eigenvectors.
REAL for slasd4
DOUBLE PRECISION for dlasd4
The computed sigma_i, the $i$-th updated eigenvalue.
INTEGER.
$=0$ : successful exit
$>0$ : If info $=1$, the updating process failed.

## ?lasd5

Computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix.Used by ?bdsdc.

## Syntax

```
call slasd5(i, d, z, delta, rho, dsigma, work)
call dlasd5(i, d, z, delta, rho, dsigma, work)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes the square root of the $i$-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix diag $(d) * \operatorname{diag}(d)+r h o * Z^{\star} Z^{T}$

The diagonal entries in the array $d$ must satisfy $0 \leq d(i)<d(j)$ for $i<i$, rho mustbe greater than 0 , and that the Euclidean norm of the vector $z$ is equal to 1 .

## Input Parameters

```
i INTEGER.The index of the eigenvalue to be computed. i = 1 or i = 2.
d REAL for slasd5
 DOUBLE PRECISION for dlasd5
 Array, dimension (2).
 The original eigenvalues, 0\leqd(1)<d(2).
z
rho
work
 REAL for slasd5
 DOUBLE PRECISION for dlasd5
 Array, dimension (2).
 The components of the updating vector.
 REAL for slasd5
 DOUBLE PRECISION for dlasd5
 The scalar in the symmetric updating formula.
REAL for slasd5
DOUBLE PRECISION for dlasd5.
Workspace array, dimension(2).Contains(d(j) + sigma_i) in its j-th
component.
```


## Output Parameters



REAL for slasd5
DOUBLE PRECISION for dlasd5.
Array, dimension ( 2 ).
Contains ( $d(j)$ - sigma_i) in its $j$-th component. The vector delta contains the information necessary to construct the eigenvectors.
REAL for slasd5
DOUBLE PRECISION for dlasd5.
The computed sigma_i, the $i$-th updated eigenvalue.

## ?lasd6

Computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller ones by appending a row. Used by ?bdsdc.

## Syntax

```
call slasd6(icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, perm, givptr, givcol,
ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, iwork, info)
call dlasd6(icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, perm, givptr, givcol,
ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, iwork, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?lasd6 computes the SVD of an updated upper bidiagonal matrix $B$ obtained by merging two smaller ones by appending a row. This routine is used only for the problem which requires all singular values and optionally singular vector matrices in factored form. $B$ is an $n$-by-m matrix with $n=n l+n r+1$ and $m$ $=n+$ sqre. A related subroutine, ? lasd1, handles the case in which all singular values and singular vectors of the bidiagonal matrix are desired. ?lasd6 computes the SVD as follows:

$$
B=U(i n)^{*}\left[\begin{array}{cccc}
D 1(i n) & 0 & 0 & 0 \\
z 1^{\prime} & a & z 2^{\prime} & b \\
0 & 0 & D 2(i n) & 0
\end{array}\right] * V T(i n)
$$

$=U$ (out) ${ }^{(D}(D$ (out) $) V T$ (out)
where $Z^{\prime}=\left(Z I^{\prime}\right.$ a $\left.Z 2^{\prime} \quad b\right)=u^{\prime} * V T^{\prime}$, and $u$ is a vector of dimension $m$ with alpha and beta in the nl+1 and nl+2-th entries and zeros elsewhere; and the entry $b$ is empty if sqre $=0$.
The singular values of $B$ can be computed using $D 1, D 2$, the first components of all the right singular vectors of the lower block, and the last components of all the right singular vectors of the upper block. These components are stored and updated in $v f$ and $v l$, respectively, in ? lasd6. Hence $U$ and $V T$ are not explicitly referenced.
The singular values are stored in $D$. The algorithm consists of two stages:

1. The first stage consists of deflating the size of the problem when there are multiple singular values or if there is a zero in the $z$ vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ?lasd7.
2. The second stage consists of calculating the updated singular values. This is done by finding the roots of the secular equation via the routine ? lasd4 (as called by ?lasd8). This routine also updates vf and vl and computes the distances between the updated singular values and the old singular values. ?lasd6 is called from ?lasda.

## Input Parameters

icompq

INTEGER. Specifies whether singular vectors are to be computed in factored form:
$=0$ : Compute singular values only
$=1$ : Compute singular vectors in factored form as well.

n1	INTEGER. The row dimension of the upper block. $n l \geq 1$.
nr	INTEGER. The row dimension of the lower block. $n r \geq 1$.
sqre	INTEGER.   $=0$ : the lower block is an $n r-b y-n r$ square matrix.   $=1$ : the lower block is an $n r-b y-(n r+1)$ rectangular matrix.   The bidiagonal matrix has row dimension $n=n l+n r+1$, and column dimension $m=n+$ sqre.
d	REAL for slasd6   DOUBLE PRECISION for dlasd6   Array, dimension ( $n l+n r+1$ ). On entry $d(1: n 1,1: n l)$ contains the singular values of the upper block, and $d(n l+2: n)$ contains the singular values of the lower block.
vf	REAL for slasd6   DOUBLE PRECISION for dlasd6   Array, dimension ( $m$ ).   On entry, $v f(1: n l+1)$ contains the first components of all right singular vectors of the upper block; and $v f(n I+2: m)$   contains the first components of all right singular vectors of the lower block.
vI	REAL for slasd6   DOUBLE PRECISION for dlasd6   Array, dimension ( $m$ ).   On entry, $v l(1: n l+1)$ contains the last components of all right singular vectors of the upper block; and $v l(n l+2: m)$ contains the last components of all right singular vectors of the lower block.
alpha	REAL for slasd6   DOUBLE PRECISION for dlasd6   Contains the diagonal element associated with the added row.
beta	REAL for slasd6   DOUBLE PRECISION for dlasd6   Contains the off-diagonal element associated with the added row.
Idgcol	INTEGER. The leading dimension of the output array givcol, must be at least $n$.
Idgnum	INTEGER.   The leading dimension of the output arrays givnum and poles, must be at least $n$.
work	REAL for slasd6   DOUBLE PRECISION for dlasd6   Workspace array, dimension ( $4 m$ ).
iwork	INTEGER.   Workspace array, dimension ( $3 n$ ).

## Output Parameters

```
d
vf
vl
```

On exit $d(1: n)$ contains the singular values of the modified matrix.
On exit, vf contains the first components of all right singular vectors of the bidiagonal matrix.
On exit, vl contains the last components of all right singular vectors of the bidiagonal matrix.

alpha	On exit, the diagonal element associated with the added row deflated by max (abs(alpha), abs(beta), abs(D(I))), I = 1,n.
beta	On exit, the off-diagonal element associated with the added row deflated by max(abs(alpha), abs(beta), abs(D(I))), I = 1,n.
$i d x q$	INTEGER.   Array, dimension ( $n$ ). This contains the permutation which will reintegrate the subproblem just solved back into sorted order, that is, $d$ ( idxq( $i=$ $1, n$ ) will be in ascending order.
perm	INTEGER.   Array, dimension ( $n$ ). The permutations (from deflation and sorting) to be applied to each block. Not referenced if $i c o m p q=0$.
givptr	INTEGER. The number of Givens rotations which took place in this subproblem. Not referenced if icompq $=0$.
givcol	INTEGER.   Array, dimension ( 1 dgcol, 2 ). Each pair of numbers indicates a pair of columns to take place in a Givens rotation. Not referenced if icompq $=0$.
givnum	REAL for slasd6   DOUBLE PRECISION for dlasd6   Array, dimension ( Idgnum, 2 ). Each number indicates the $C$ or $S$ value to be used in the corresponding Givens rotation. Not referenced if icompq = 0.
poles	REAL for slasd6   DOUBLE PRECISION for dlasd6   Array, dimension ( ldgnum, 2 ). On exit, poles( $1, *$ ) is an array containing the new singular values obtained from solving the secular equation, and poles( $2, *$ ) is an array containing the poles in the secular equation. Not referenced if $i c o m p q=0$.
difl	REAL for slasd6   DOUBLE PRECISION for dlasd6   Array, dimension ( $n$ ). On exit, difl(i) is the distance between $i$-th updated (undeflated) singular value and the $i$-th (undeflated) old singular value.
difr	REAL for slasd6   DOUBLE PRECISION for dlasd6   Array, dimension (ldgnum, 2 ) if icompq $=1$ and dimension $(n)$ if icompq $=0$.   On exit, $\operatorname{difr}(i, 1)$ is the distance between $i$-th updated (undeflated) singular value and the $i+1$-th (undeflated) old singular value. If $i$ compq $=$ $1, \operatorname{difr}(1: k, 2)$ is an array containing the normalizing factors for the right singular vector matrix.   See ?lasd8 for details on difl and difr.
$z$	REAL for slasd6   DOUBLE PRECISION for dlasd6   Array, dimension ( $m$ ).   The first elements of this array contain the components of the deflationadjusted updating row vector.
k	INTEGER. Contains the dimension of the non-deflated matrix. This is the order of the related secular equation. $1 \leq k \leq n$.
C	REAL for slasd6

DOUBLE PRECISION for dlasd6
c contains garbage if sqre $=0$ and the $c$-value of a Givens rotation related to the right null space if sqre $=1$.

S<br>info

REAL for slasd6
DOUBLE PRECISION for dlasd6
$s$ contains garbage if sqre $=0$ and the $s$-value of a Givens rotation related to the right null space if sqre $=1$.

INTEGER.
= 0: successful exit.
< 0: if info $=-i$, the $i$-th argument had an illegal value.
>0: if info $=1$, an singular value did not converge

## ?lasd7

Merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. Used by ?bdsdc.

## Syntax

```
call slasd7(icompq, nl, nr, sqre, k, d, z, zw, vf, vfw, vl, vlw, alpha, beta, dsigma,
idx, idxp, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, c, s, info)
call dlasd7(icompq, nl, nr, sqre, k, d, z, zw, vf, vfw, vl, vlw, alpha, beta, dsigma,
idx, idxp, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, c, s, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? lasd7 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more singular values are close together or if there is a tiny entry in the $z$ vector. For each such occurrence the order of the related secular equation problem is reduced by one. ?lasd7 is called from ?lasd6.

## Input Parameters

```
icompq
n1
nr
sqre
d
INTEGER. Specifies whether singular vectors are to be computed in compact form, as follows:
= 0: Compute singular values only.
\(=1\) : Compute singular vectors of upper bidiagonal matrix in compact form.
INTEGER. The row dimension of the upper block.
\(n>\geq 1\).
INTEGER. The row dimension of the lower block.
\(n r \geq 1\).
INTEGER.
\(=0\) : the lower block is an \(n r-b y-n r\) square matrix.
\(=1\) : the lower block is an \(n r-b y-(n r+1)\) rectangular matrix. The bidiagonal matrix has \(n=n l+n r+1\) rows and \(m=n+\) sqre \(\geq n\) columns.
REAL for slasd7
DOUBLE PRECISION for dlasd7
```

	Array, DIMENSION ( $n$ ). On entry $a$ contains the singular values of the two submatrices to be combined.
$z$ w	REAL for slasd7
	DOUBLE PRECISION for dlasd7
	Array, DIMENSION ( m ) .
	Workspace for z.
vf	REAL for slasd7
	DOUBLE PRECISION for dlasd7
	Array, DIMENSION ( $m$ ). On entry, $v f(1: n l+1)$ contains the first components of all right singular vectors of the upper block; and $v f(n I$
	$+2: m$ ) contains the first components of all right singular vectors of the lower block.
$v f_{W}$	REAL for slasd7
	DOUBLE PRECISION for dlasd7
	Array, DIMENSION ( m ) .
	Workspace for vf.
v1	REAL for slasd7
	DOUBLE PRECISION for dlasd7
	Array, DIMENSION ( m ) .
	On entry, $v l(1: n l+1)$ contains the last components of all right singular vectors of the upper block; and $v l(n l+2: m)$ contains the last components of all right singular vectors of the lower block.
VLW	REAL for slasd7
	DOUBLE PRECISION for dlasd7
	Array, DIMENSION ( m ) .
	Workspace for VL.
alpha	REAL for slasd7
	DOUBLE PRECISION for dlasd7.
	Contains the diagonal element associated with the added row.
beta	REAL for slasd7
	DOUBLE PRECISION for dlasd7
	Contains the off-diagonal element associated with the added row.
$i d x$	INTEGER.
	Workspace array, DIMENSION ( $n$ ). This will contain the permutation used to sort the contents of $d$ into ascending order.
idxp	INTEGER.
	Workspace array, DIMENSION ( $n$ ). This will contain the permutation used to place deflated values of $d$ at the end of the array.
$i d x q$	INTEGER.
	Array, DIMENSION (n).
	This contains the permutation which separately sorts the two sub-problems in $d$ into ascending order. Note that entries in the first half of this permutation must first be moved one position backward; and entries in the second half must first have $n l+1$ added to their values.
Idgcol	INTEGER. The leading dimension of the output array givcol, must be at least $n$.
Idgnum	INTEGER. The leading dimension of the output array givnum, must be at least $n$.

## Output Parameters

k
d
z
$v f$
vI
dsigma
idxp
perm
givptr
givcol
givnum
c

S
info

INTEGER. Contains the dimension of the non-deflated matrix, this is the order of the related secular equation.
$1 \leq k \leq n$.
On exit, d contains the trailing ( $n-k$ ) updated singular values (those which were deflated) sorted into increasing order.
REAL for slasd7
DOUBLE PRECISION for dlasd7.
Array, DIMENSION ( $m$ ).
On exit, z contains the updating row vector in the secular equation.
On exit, vf contains the first components of all right singular vectors of the bidiagonal matrix.
On exit, vl contains the last components of all right singular vectors of the bidiagonal matrix.
REAL for slasd7
DOUBLE PRECISION for dlasd7.
Array, DIMENSION ( $n$ ). Contains a copy of the diagonal elements ( $k-1$ singular values and one zero) in the secular equation.
On output, $i d x p(2: k)$ points to the nondeflated $d$-values and $i d x p(k+1: n)$ points to the deflated singular values.
INTEGER.
Array, DIMENSION ( $n$ ).
The permutations (from deflation and sorting) to be applied to each singular block. Not referenced if icompq $=0$.
INTEGER.
The number of Givens rotations which took place in this subproblem. Not referenced if $i c o m p q=0$.
INTEGER.
Array, DIMENSION ( 1 dgcol, 2 ). Each pair of numbers indicates a pair of columns to take place in a Givens rotation. Not referenced if icompq $=0$.
REAL for slasd7
DOUBLE PRECISION for dlasd7.
Array, DIMENSION ( Idgnum, 2 ). Each number indicates the $C$ or $S$ value to be used in the corresponding Givens rotation. Not referenced if icompq $=$ 0.

REAL for slasd7.
DOUBLE PRECISION for dlasd7.
If sqre $=0$, then $c$ contains garbage, and if sqre $=1$, then $c$ contains $c$ value of a Givens rotation related to the right null space.
REAL for slasd7.
DOUBLE PRECISION for dlasd7.
If sqre $=0$, then $s$ contains garbage, and if sqre $=1$, then $s$ contains $s$ value of a Givens rotation related to the right null space.
INTEGER.
$=0$ : successful exit.
< 0 : if info $=-i$, the $i$-th argument had an illegal value.

## ?lasd8

Finds the square roots of the roots of the secular equation, and stores, for each element in $D$, the distance to its two nearest poles. Used by ?bdsdc.

## Syntax

```
call slasd8(icompq, k, d, z, vf, vl, difl, difr, lddifr, dsigma, work, info)
call dlasd8(icompq, k, d, z, vf, vl, difl, difr, lddifr, dsigma, work, info)
```

Include files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?lasd8 finds the square roots of the roots of the secular equation, as defined by the values in dsigma and $z$. It makes the appropriate calls to ?lasd4, and stores, for each element in $d$, the distance to its two nearest poles (elements in dsigma). It also updates the arrays $v f$ and $v l$, the first and last components of all the right singular vectors of the original bidiagonal matrix. ? lasd8 is called from ?lasd6.

## Input Parameters

icompq	INTEGER. Specifies whether singular vectors are to be computed in factored form in the calling routine:   $=0$ : Compute singular values only.   = 1: Compute singular vectors in factored form as well.
k	INTEGER. The number of terms in the rational function to be solved by ? lasd4. $k \geq 1$.
$z$	REAL for slasd8   DOUBLE PRECISION for dlasd8.   Array, DIMENSION ( $k$ ).   The first $k$ elements of this array contain the components of the deflationadjusted updating row vector.
vf	REAL for slasd8   DOUBLE PRECISION for dlasd8.   Array, DIMENSION ( $k$ ).   On entry, vf contains information passed through dbede8.
vI	REAL for slasd8   DOUBLE PRECISION for dlasd8.   Array, DIMENSION ( $k$ ). On entry, vl contains information passed through dbede8.
Iddifr	INTEGER. The leading dimension of the output array difr, must be at least k.
dsigma	REAL for slasd8   DOUBLE PRECISION for dlasd8.   Array, DIMENSION ( $k$ ).   The first $k$ elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation.
work	REAL for slasd8   DOUBLE PRECISION for dlasd8.   Workspace array, DIMENSION at least (3k).

## Output Parameters

d	REAL for slasd8
	DOUBLE PRECISION for dlasd8.
	Array, DIMENSION ( $k$ ).
	On output, D contains the updated singular values.
$z$	Updated on exit.
vf	On exit, vf contains the first $k$ components of the first components of all right singular vectors of the bidiagonal matrix.
vl	On exit, vl contains the first $k$ components of the last components of all right singular vectors of the bidiagonal matrix.
difl	REAL for slasd8
	DOUBLE PRECISION for dlasd8.
	Array, DIMENSION ( $k$ ). On exit, difl(i) = d(i) - dsigma(i).
difr	REAL for slasd8
	DOUBLE PRECISION for dlasd8.
	Array,
	DIMENSION ( lddifr, 2 ) if icompq = 1 and
	DIMENSION ( $k$ ) if icompq $=0$.
	On exit, $\operatorname{difr}(i, 1)=d(i)-d s i g m a(i+1), \operatorname{difr}(k, 1)$ is not defined and will not be referenced. If icompq $=1$, $\operatorname{difr}(1: k, 2)$ is an array containing the normalizing factors for the right singular vector matrix.
dsigma	The elements of this array may be very slightly altered in value.
info	INTEGER.
	$=0$ : successful exit.
	< 0: if info $=-i$, the $i$-th argument had an illegal value.
	> 0: If info = 1, an singular value did not converge.

## ?lasd9

Finds the square roots of the roots of the secular equation, and stores, for each element in $D$, the distance to its two nearest poles. Used by ?bdsdc.

## Syntax

```
call slasd9(icompq, ldu, k, d, z, vf, vl, difl, difr, dsigma, work, info)
call dlasd9(icompq, ldu, k, d, z, vf, vl, difl, difr, dsigma, work, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?lasd9 finds the square roots of the roots of the secular equation, as defined by the values in dsigma and $z$. It makes the appropriate calls to ?lasd4, and stores, for each element in $d$, the distance to its two nearest poles (elements in dsigma). It also updates the arrays $v f$ and $v 1$, the first and last components of all the right singular vectors of the original bidiagonal matrix. ? lasd9 is called from ?lasd7.

Input Parameters
icompq
k
dsigma
z
$v f$
vl
work

## Output Parameters

d
$v f$
VI
difl
difr

INTEGER. Specifies whether singular vectors are to be computed in factored form in the calling routine:
If icompq $=0$, compute singular values only;
If icompq $=1$, compute singular vector matrices in factored form also.
INTEGER. The number of terms in the rational function to be solved by
slasd4. $k \geq 1$.
REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION( $k$ ).
The first $k$ elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation.
REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION ( $k$ ). The first $k$ elements of this array contain the components of the deflation-adjusted updating row vector.
REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION $(k)$. On entry, vf contains information passed through sbede 8.
REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION( $k$ ). On entry, vl contains information passed through sbede 8.
REAL for slasd9
DOUBLE PRECISION for dlasd9.
Workspace array, DIMENSION at least (3k).

REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION $(k) . d(i)$ contains the updated singular values.
On exit, vf contains the first $k$ components of the first components of all right singular vectors of the bidiagonal matrix.
On exit, vl contains the first $k$ components of the last components of all right singular vectors of the bidiagonal matrix.
REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION ( $k$ ).
On exit, difl(i) = d(i) - dsigma(i).
REAL for slasd9
DOUBLE PRECISION for dlasd9.

## Array,

DIMENSION (ldu, 2) if icompq $=1$ and
DIMENSION ( $k$ ) if icompq $=0$.
On exit, difr(i, 1$)=d(i)-d s i g m a(i+1), \operatorname{difr}(k, 1)$ is not defined and will not be referenced.
If icompq $=1$, $\operatorname{difr}(1: k, 2)$ is an array containing the normalizing factors for the right singular vector matrix.

```
info INTEGER.
 = 0: successful exit.
 < 0: if info = -i, the i-th argument had an illegal value.
>0}\mathrm{ : If info = 1, an singular value did not converge
```


#### Abstract

?lasda Computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal d and offdiagonal e. Used by ?bdsdc.


## Syntax

```
call slasda(icompq, smlsiz, n, sqre, d, e, u, ldu, vt, k, difl, difr, z, poles,
givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info)
call dlasda(icompq, smlsiz, n, sqre, d, e, u, ldu, vt, k, difl, difr, z, poles,
givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

Using a divide and conquer approach, ?lasda computes the singular value decomposition (SVD) of a real upper bidiagonal $n$-by- $m$ matrix $B$ with diagonal $d$ and off-diagonal $e$, where $m=n+$ sqre.

The algorithm computes the singular values in the $S V D B=U^{\star} S^{\star} V T$. The orthogonal matrices $U$ and $V T$ are optionally computed in compact form. A related subroutine ? lasdo computes the singular values and the singular vectors in explicit form.

## Input Parameters

icompq	INTEGER.
	Specifies whether singular vectors are to be computed in compact form, as follows:   $=0$ : Compute singular values only.   $=1$ : Compute singular vectors of upper bidiagonal matrix in compact form.
smlsiz	INTEGER.
	The maximum size of the subproblems at the bottom of the computation tree.
$n$	INTEGER. The row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array $d$.
sqre	INTEGER. Specifies the column dimension of the bidiagonal matrix.   If sqre $=0$ : the bidiagonal matrix has column dimension $m=n$   If sqre $=1$ : the bidiagonal matrix has column dimension $m=n+1$.
d	REAL for slasda
	DOUBLE PRECISION for dlasda.
	Array, DIMENSION ( $n$ ). On entry, $d$ contains the main diagonal of the bidiagonal matrix.
e	REAL for slasda
	DOUBLE PRECISION for dlasda.
	Array, DIMENSION ( $m-1$ ). Contains the subdiagonal entries of the bidiagonal matrix. On exit, $e$ is destroyed.

INTEGER.
Specifies whether singular vectors are to be computed in compact form, as follows:
= 0: Compute singular values only.
Compute singular vectors of upper bidiagonal matrix in compact form

The maximum size of the subproblems at the bottom of the computation tree.

INTEGER. The row dimension of the upper bidiagonal matrix. This is also the diansion of the main diagonal a.

INTEGER. Specifies the column dimension of the bidiagonal matrix.
If sqre $=0$ : the bidiagonal matrix has column dimension $m=n$
If sqre $=1$ : the bidiagonal matrix has column dimension $m=n+1$.
REAL for slasda
OUBLE PRECISION for dlasda.
Aray, DIMENSION ( $n$ ). On entry, d contains the main diagonal of the bidiagonal matrix.

REAL for slasda
DOUBLE PRECISION for dlasda. bidiagonal matrix. On exit, e is destroyed.

ldu	INTEGER. The leading dimension of arrays $u, v t$, difl, difr, poles,
givnum, and $z . l d u \geq n$.	
ldgcol	INTEGER. The leading dimension of arrays givcol and perm. $l d g c o l \geq n$.
	REAL for slasda
iwork	DOUBLE PRECISION for dlasda.
	Workspace array, DIMENSION $\left(6 n+(\operatorname{smlsiz}+1)^{2}\right)$.
	INTEGER.
	Workspace array, Dimension must be at least $(7 n)$.

## Output Parameters

$d$
u
$v t$
k
difl
On exit $d_{\text {, }}$ if info $=0$, contains the singular values of the bidiagonal matrix.
REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (ldu, smlsiz) if icompq $=1$.
Not referenced if $i c o m p q=0$.
If $i$ compq $=1$, on exit, $u$ contains the left singular vector matrices of all subproblems at the bottom level.
REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION ( $1 d u$, smlsiz+1 ) if icompq $=1$, and not referenced if $i$ compq $=0$. If $i$ compq $=1$, on exit, $v t^{\prime}$ contains the right singular vector matrices of all subproblems at the bottom level.

## INTEGER.

Array, DIMENSION ( $n$ ) if icompq $=1$ and DIMENSION (1) if icompq $=0$.
If $i$ compq $=1$, on exit, $k(i)$ is the dimension of the $i$-th secular equation on the computation tree.
difr
z
poles


REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION ( $1 d u, n l v l)$, where nlvl $=$ floor $\left(\log _{2}(n /\right.$ smlsiz) $)$.
REAL for slasda
DOUBLE PRECISION for dlasda.

## Array,

DIMENSION ( 1 du, 2 nlvl) if icompq $=1$ and
DIMENSION ( $n$ ) if icompq $=0$.
If $i c o m p q=1$, on exit, $\operatorname{difl}(1: n, i)$ and $\operatorname{difr}(1: n, 2 i-1)$ record distances between singular values on the $i$-th level and singular values on the ( $i-1$ )th level, and $\operatorname{difr}(1: n, 2 i)$ contains the normalizing factors for the right singular vector matrix. See ?lasd8 for details.
REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION ( $l d u, n l v l)$ if $i c o m p q=1$ and
DIMENSION $(n)$ if icompq $=0$. The first $k$ elements of $z(1, i)$ contain the components of the deflation-adjusted updating row vector for subproblems on the $i$-th level.
REAL for slasda
DOUBLE PRECISION for dlasda

	Array, DIMENSION (ldu, $2 *_{n l v l)}$   if $i c o m p q=1$, and not referenced if $i c o m p q=0$. If $i c o m p q=1$, on exit, poles(1, $2 i-1$ ) and poles $(1,2 i)$ contain the new and old singular values involved in the secular equations on the $i$-th level.
givptr	INTEGER. Array, DIMENSION ( $n$ ) if icompq $=1$, and not referenced if icompq $=0$. If $i c o m p q=1$, on exit, givptr( $i$ ) records the number of Givens rotations performed on the $i$-th problem on the computation tree.
givcol	INTEGER.   Array, DIMENSION (ldgcol, $2 \star_{n l v l}$ ) if $i c o m p q=1$, and not referenced if icompq $=0$. If $i c o m p q=1$, on exit, for each $i$, $\operatorname{givcol}(1,2 i-1)$ and $\operatorname{givcol}(1,2 i)$ record the locations of Givens rotations performed on the $i$ th level on the computation tree.
perm	INTEGER. Array, DIMENSION ( 1 dgcol, nlvl) if icompq $=1$, and not referenced if $i c o m p q=0$. If $i c o m p q=1$, on exit, $\operatorname{perm}(1, i)$ records permutations done on the $i$-th level of the computation tree.
givnum	REAL for slasda   DOUBLE PRECISION for dlasda.   Array DIMENSION ( $1 d u, 2 *_{n l} v l$ ) if icompq $=1$, and not referenced if icompq $=0$. If $i$ compq $=1$, on exit, for each $i$, givnum $(1,2 i-1)$ and givnum $(1,2 i)$ record the $c$ - and $S$-values of Givens rotations performed on the $i$-th level on the computation tree.
c	REAL for slasda   DOUBLE PRECISION for dlasda.   Array,   DIMENSION ( $n$ ) if icompq = 1 , and   DIMENSION (1) if $i c o m p q=0$.   If $i$ compq $=1$ and the $i$-th subproblem is not square, on exit, $c(i)$ contains the $c$-value of a Givens rotation related to the right null space of the $i$-th subproblem.
$s$	REAL for slasda   DOUBLE PRECISION for dlasda.   Array,   DIMENSION (n) icompq = 1, and   DIMENSION (1) if $i$ compq $=0$.   If icompq $=1$ and the $i$-th subproblem is not square, on exit, $s(i)$ contains the $s$-value of a Givens rotation related to the right null space of the $i$-th subproblem.
info	INTEGER.   = 0: successful exit.   < 0: if info $=-i$, the $i$-th argument had an illegal value   >0: If info $=1$, an singular value did not converge

## ?lasdq

Computes the SVD of a real bidiagonal matrix with
diagonal d and off-diagonal e. Used by ?bdsdc.

## Syntax

```
call slasdq(uplo, sqre, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work,
info)
```

```
call dlasdq(uplo, sqre, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work,
info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?lasdq computes the singular value decomposition (SVD) of a real (upper or lower) bidiagonal matrix with diagonal $d$ and off-diagonal $e$, accumulating the transformations if desired. If $B$ is the input bidiagonal matrix, the algorithm computes orthogonal matrices $Q$ and $P$ such that $B=Q^{\star} S^{\star} P^{T}$. The singular values $S$ are overwritten on $d$.

The input matrix $U$ is changed to $U^{\star} Q$ if desired.
The input matrix $V T$ is changed to $P^{T \star} V T$ if desired.
The input matrix $C$ is changed to $Q^{T \star} C$ if desired.

## Input Parameters

uplo	CHARACTER*1. On entry, uplo specifies whether the input bidiagonal matrix is upper or lower bidiagonal.   If uplo = 'U' or 'u', $B$ is upper bidiagonal;   If uplo = 'L' or 'l', $B$ is lower bidiagonal.
sqre	INTEGER. ```= 0: then the input matrix is n-by-n. =1: then the input matrix is n-by-(n+1) if uplu = 'U' and (n+1)-by-n if uplu = 'L'. The bidiagonal matrix has n=nl + nr + 1 rows and m=n + sqre \geq n columns.```
$n$	INTEGER. On entry, $n$ specifies the number of rows and columns in the matrix. $n$ must be at least 0 .
ncvt	INTEGER. On entry, ncvt specifies the number of columns of the matrix VT. ncvt must be at least 0 .
nru	INTEGER. On entry, nru specifies the number of rows of the matrix $U$. nru must be at least 0 .
	INTEGER. On entry, ncc specifies the number of columns of the matrix $C$. ncc must be at least 0 .
d	REAL for slasdq   DOUBLE PRECISION for dlasdq.   Array, DIMENSION ( $n$ ). On entry, $d$ contains the diagonal entries of the bidiagonal matrix.
e	REAL for slasdq   DOUBLE PRECISION for dlasdq.   Array, DIMENSION is $(n-1)$ if sqre $=0$ and $n$ if sqre $=1$. On entry, the entries of e contain the off-diagonal entries of the bidiagonal matrix.
$v t$	REAL for slasdq   DOUBLE PRECISION for dlasdq.   Array, DIMENSION (ldvt, ncvt). On entry, contains a matrix which on exit has been premultiplied by $P^{T}$, dimension $n$-by-ncvt if sqre $=0$ and ( $n+1$ )-by-ncvt if sqre $=1$ (not referenced if ncvt=0).


Idvt	INTEGER. On entry, ldvt specifies the leading dimension of $v t$ as declared in the calling (sub) program. ldvt must be at least 1. If ncvt is nonzero, ldvt must also be at least $n$.
$u$	REAL for slasdq
	DOUBLE PRECISION for dlasdq.
	Array, DIMENSION ( $1 d u, n$ ). On entry, contains a matrix which on exit has been postmultiplied by $Q$, dimension nru-by- $n$ if sqre $=0$ and nru-by-( $n$ $+1)$ if sqre $=1($ not referenced if nru=0).
$I d u$	INTEGER. On entry, $1 d u$ specifies the leading dimension of $u$ as declared in the calling (sub) program. $1 d u$ must be at least max ( $1, n r u$ ) .
c	REAL for slasdq
	DOUBLE PRECISION for dlasdq.
	Array, DIMENSION (ldc, ncc). On entry, contains an n-by-ncc matrix which on exit has been premultiplied by $Q^{\prime}$, dimension $n$-by-ncc if sqre $=0$ and ( $n+1$ )-by-ncc if sqre $=1$ (not referenced if $n c c=0$ ).
$1 d c$	INTEGER. On entry, $I d c$ specifies the leading dimension of $C$ as declared in the calling (sub) program. $1 d c$ must be at least 1 . If $n c c$ is non-zero, $l d c$ must also be at least $n$.
work	REAL for slasdq
	DOUBLE PRECISION for dlasdq.
	Array, DIMENSION ( $4 n$ ). This is a workspace array. Only referenced if one of ncvt, nru, or ncc is nonzero, and if $n$ is at least 2.

## Output Parameters

```
d
e
vt
u
c
info
\(u\)
```

On normal exit, $d$ contains the singular values in ascending order.
On normal exit, e will contain 0 . If the algorithm does not converge, $d$ and $e$ will contain the diagonal and superdiagonal entries of a bidiagonal matrix orthogonally equivalent to the one given as input.
vt On exit, the matrix has been premultiplied by $P^{\prime}$.
On exit, the matrix has been postmultiplied by $Q$.
On exit, the matrix has been premultiplied by $Q^{\prime}$.
INTEGER. On exit, a value of 0 indicates a successful exit. If info < 0 , argument number-info is illegal. If info $>0$, the algorithm did not converge, and info specifies how many superdiagonals did not converge.

## ?lasdt

Creates a tree of subproblems for bidiagonal divide
and conquer. Used by ?bdsdc.

## Syntax

```
call slasdt(n, lvl, nd, inode, ndiml, ndimr, msub)
call dlasdt(n, lvl, nd, inode, ndiml, ndimr, msub)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine creates a tree of subproblems for bidiagonal divide and conquer.

## Input Parameters

n
msub

## Output Parameters

```
lvI
nd
inode
ndiml
ndimr
```

INTEGER. On entry, the number of diagonal elements of the bidiagonal matrix.
INTEGER. On entry, the maximum row dimension each subproblem at the bottom of the tree can be of.

INTEGER. On exit, the number of levels on the computation tree.
INTEGER. On exit, the number of nodes on the tree.
INTEGER.
Array, DIMENSION ( $n$ ). On exit, centers of subproblems.
INTEGER.
Array, DIMENSION ( $n$ ). On exit, row dimensions of left children.
INTEGER.
Array, DIMENSION (n). On exit, row dimensions of right children.

```
?laset
Initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Syntax
```

```
call slaset(uplo, m, n, alpha, beta, a, lda)
```

call slaset( uplo, m, n, alpha, beta, a, lda )
call dlaset( uplo, m, n, alpha, beta, a, lda )
call dlaset( uplo, m, n, alpha, beta, a, lda )
call claset( uplo, m, n, alpha, beta, a, lda )
call claset( uplo, m, n, alpha, beta, a, lda )
call zlaset( uplo, m, n, alpha, beta, a, lda )

```
call zlaset(uplo, m, n, alpha, beta, a, lda)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine initializes an $m$-by-n matrix $A$ to beta on the diagonal and alpha on the off-diagonals.

## Input Parameters

```
uplo CHARACTER*1. Specifies the part of the matrix A to be set.
 If uplo = 'U', upper triangular part is set; the strictly lower triangular
 part of A is not changed.
 If uplo = 'L': lower triangular part is set; the strictly upper triangular
 part of A is not changed.
 Otherwise: All of the matrix A is set.
 INTEGER. The number of rows of the matrix A. m\geq0.
 INTEGER. The number of columns of the matrix }A\mathrm{ .
 n}\geq0
 REAL for slaset
 DOUBLE PRECISION for dlaset
 COMPLEX for claset
```

```
DOUBLE COMPLEX for zlaset.
The constants to which the off-diagonal and diagonal elements are to be
set, respectively.
REAL for slaset
DOUBLE PRECISION for dlaset
COMPLEX for claset
DOUBLE COMPLEX for zlaset.
Array, DIMENSION (Ida, n).
On entry, the m-by-n matrix A.
Ida
INTEGER. The leading dimension of the array a.
lda \geq max (1,m).
```


## Output Parameters

On exit, the leading m-by-n submatrix of $A$ is set as follows:

```
if uplo = 'U', A(i,j) = alpha, 1\leqi\leqj-1, 1\leqj\leqn,
if uplo = 'L', A(i,j) = alpha, j+1\leqi\leqm, l\leqj\leqn,
otherwise, A(i,j) = alpha, 1\leqi\leqm, 1\leqj\leqn, i f= j,
and, for all uplo, A(i,i) = beta, l\leqi\leqmin(m, n).
```


## ?lasq1

Computes the singular values of a real square
bidiagonal matrix. Used by ?bdsqr.

## Syntax

```
call slasq1(n, d, e, work, info)
call dlasq1(n, d, e, work, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? lasq1 computes the singular values of a real $n$-by- $n$ bidiagonal matrix with diagonal $d$ and offdiagonal e. The singular values are computed to high relative accuracy, in the absence of denormalization, underflow and overflow.

## Input Parameters

```
n INTEGER.The number of rows and columns in the matrix. n\geq0.
d REAL for slasq1
DOUBLE PRECISION for dlasq1.
Array, DIMENSION (n).
On entry, d contains the diagonal elements of the bidiagonal matrix whose
SVD is desired.
e
REAL for slasq1
DOUBLE PRECISION for dlasq1.
Array, DIMENSION (\(n\)).
On entry, elements e(1:n-1) contain the off-diagonal elements of the bidiagonal matrix whose SVD is desired.
work REAL for slasq1
```

DOUBLE PRECISION for dlasq1. Workspace array, DIMENSION (4n).

## Output Parameters

$a$	On normal exit, $a$ contains the singular values in decreasing order.
$e$	On exit, $e$ is overwritten.
info	INTEGER.
	$=0:$ successful exit;
	< $0:$ if info $=-i$, the $i$-th argument had an illegal value;
	$>0:$ the algorithm failed:
	$=1$, a split was marked by a positive value in $e ;$
	$=2$, current block of $z$ not diagonalized after $30 n$ iterations (in inner while
	loop);
	$=3$, termination criterion of outer while loop not met (program created
	more than $n$ unreduced blocks.

## ?lasq2

Computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd array z to high relative accuracy. Used by ?bdsqr and ?stegr.

Syntax

```
call slasq2(n, z, info)
call dlasq2(n, z, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?lasq2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd array $z$ to high relative accuracy, in the absence of denormalization, underflow and overflow.
To see the relation of $z$ to the tridiagonal matrix, let $L$ be a unit lower bidiagonal matrix with subdiagonals $z(2,4,6, \ldots)$ and let $U$ be an upper bidiagonal matrix with 1 's above and diagonal $z(1,3,5, \ldots)$. The tridiagonal is $L U$ or, if you prefer, the symmetric tridiagonal to which it is similar.

## Input Parameters

```
n
z
INTEGER. The number of rows and columns in the matrix. n\geq0.
REAL for slasq2
DOUBLE PRECISION for dlasq2.
Array, DIMENSION (4 * n).
On entry, z holds the qd array.
```


## Output Parameters

On exit, entries 1 to $n$ hold the eigenvalues in decreasing order, $z(2 n+1)$ holds the trace, and $z(2 n+2)$ holds the sum of the eigenvalues. If $n>2$, then $z(2 n+3)$ holds the iteration count, $z(2 n+4)$ holds ndivs $/ \min ^{2}$, and $z(2 n+5)$ holds the percentage of shifts that failed. more than $n$ unreduced blocks).

## Application Notes

The routine ?lasq2 defines a logical variable, ieee, which is . TRUE. on machines which follow ieee-754 floating-point standard in their handling of infinities and NaNs, and .FALSE. otherwise. This variable is passed to ?lasq3.

## ?lasq3

Checks for deflation, computes a shift and calls dqds.
Used by ?bdsqr.

## Syntax

```
call slasq3(i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv, ieee, ttype,
dmin1, dmin2, dn, dn1, dn2, g, tau)
call dlasq3(i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv, ieee, ttype,
dmin1, dmin2, dn, dn1, dn2, g, tau)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ? lasq3 checks for deflation, computes a shift tau, and calls dqds. In case of failure, it changes shifts, and tries again until output is positive.

## Input Parameters

```
iO INTEGER. First index.
n0 INTEGER. Last index.
z REAL for slasq3
DOUBLE PRECISION for dlasq3.
Array, DIMENSION (4n). z holds the qd array.
pp
INTEGER. pp=0 for ping, pp=1 for pong. pp=2 indicates that flipping was
applied to the z array and that the initial tests for deflation should not be
performed.
```

desig	REAL for slasq3
	DOUBLE PRECISION for dlasq3.
	Lower order part of sigma.
qmax	REAL for slasq3
	DOUBLE PRECISION for dlasq3.
	Maximum value of $q$.
ieee	LOGICAL.
	Flag for ieee or non-ieee arithmetic (passed to ?lasq5).
ttype	INTEGER.
	Shift type.
$d m i n 1, d m i n 2, d n, d n 1, d n 2, ~ 9, ~ R E A L ~ f o r ~ s l a s q 3 ~$	
tau	DOUBLE PRECISION for dlasq3.
	These scalars are passed as arguments in order to save their values between calls to ?lasq3.

## Output Parameters



## ?lasq4

Computes an approximation to the smallest eigenvalue using values of $d$ from the previous transform. Used by ?bdsqr.

## Syntax

```
call slasq4(i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau, ttype, g)
call dlasq4(i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau, ttype, g)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes an approximation tau to the smallest eigenvalue using values of $d$ from the previous transform.

## Input Parameters

```
iO INTEGER. First index.
n0 INTEGER. Last index.
z REAL for slasq4
DOUBLE PRECISION for dlasq4.
Array, DIMENSION (4n).
z holds the qd array.
INTEGER. pp=0 for ping, pp=1 for pong.
INTEGER. The value of n0 at start of eigtest.
REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of d.
dmin1 REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of d, excluding d(n0).
dmin2
dn
dn1
dn2
g
REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of d, excluding d(n0) and d(n0-1).
REAL for slasq4
DOUBLE PRECISION for dlasq4. Contains d(n).
REAL for slasq4
DOUBLE PRECISION for dlasq4. Contains d(n-1).
REAL for slasq4
DOUBLE PRECISION for dlasq4. Contains d(n-2).
REAL for slasq4
DOUBLE PRECISION for dlasq4.
A scalar passed as an argument in order to save its value between calls to ?
lasq4.
```


## Output Parameters

```
tau REAL for slasq4
 DOUBLE PRECISION for dlasq4.
Shift.
INTEGER. Shift type.
REAL for slasq4
DOUBLE PRECISION for dlasq4.
A scalar passed as an argument in order to save its value between calls to ?
lasq4.
```


## ?lasq5

Computes one dqds transform in ping-pong form.
Used by ?bdsqr and ?stegr.

## Syntax

```
call slasq5(i0, n0, z, pp, tau, dmin, dmin1, dmin2, dn, dnm1, dnm2, ieee)
call dlasq5(iO, n0, z, pp, tau, dmin, dmin1, dmin2, dn, dnm1, dnm2, ieee)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine computes one dqds transform in ping-pong form: one version for ieee machines, another for non-ieee machines.

## Input Parameters

```
iO
no
z REAL for slasq5
 DOUBLE PRECISION for dlasq5.
 Array, DIMENSION (4n). z holds the qd array. emin is stored in z(4*n0)
 to avoid an extra argument.
pp INTEGER. pp=0 for ping, pp=1 for pong.
tau REAL for slasq5
 DOUBLE PRECISION for dlasq5.
 This is the shift.
ieee LOGICAL. Flag for IEEE or non-IEEE arithmetic.
```


## Output Parameters

```
dmin REAL for slasq5
 DOUBLE PRECISION for dlasq5.
 Minimum value of d.
dmin1 REAL for slasq5
 DOUBLE PRECISION for dlasq5.
 Minimum value of d, excluding d(n0).
dmin2 REAL for slasq5
 DOUBLE PRECISION for dlasq5.
 Minimum value of d, excluding d(n0) and d(n0-1).
dn REAL for slasq5
 DOUBLE PRECISION for dlasq5. Contains d(n0), the last value of d.
dnm1 REAL for slasq5
 DOUBLE PRECISION for dlasq5. Contains d(n0-1).
 REAL for slasq5
 DOUBLE PRECISION for dlasq5. Contains d(n0-2).
```


## ?lasq6

Computes one dqd transform in ping-pong form. Used
by ?bdsqr and ?stegr.

## Syntax

```
call slasq6(i0, n0, z, pp, dmin, dmin1, dmin2, dn, dnm1, dnm2)
``` Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
```

call dlasq6(i0, n0, z, pp, dmin, dmin1, dmin2, dn, dnm1, dnm2)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?lasq6 computes one dqd (shift equal to zero) transform in ping-pong form, with protection against underflow and overflow.

\section*{Input Parameters}
```

iO INTEGER. First index.
n0 INTEGER. Last index.
z REAL for slasq6
DOUBLE PRECISION for dlasq6.
Array, DIMENSION (4n). z holds the qd array. emin is stored in z(4*n0) to
avoid an extra argument.
INTEGER. pp=0 for ping, pp=1 for pong.

```

\section*{Output Parameters}
```

dmin
dmin1
dmin2 REAL for slasq6
DOUBLE PRECISION for dlasq6.
Minimum value of d, excluding d(n0) and d(n0-1).
REAL for slasq6
DOUBLE PRECISION for dlasq6. Contains d(n0), the last value of d.
REAL for slasq6
DOUBLE PRECISION for dlasq6. Contains d(n0-1).
REAL for slasq6
DOUBLE PRECISION for dlasq6. Contains d(n0-2).

```

\section*{?lasr}

Applies a sequence of plane rotations to a general rectangular matrix.

\section*{Syntax}
```

call slasr(side, pivot, direct, m, n, c, s, a, lda)
call dlasr(side, pivot, direct, m, n, c, s, a, lda)
call clasr(side, pivot, direct, m, n, c, s, a, lda)
call zlasr(side, pivot, direct, m, n, c, s, a, lda)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine applies a sequence of plane rotations to a real/complex matrix \(A\), from the left or the right.
\(A:=P^{\star} A\), when side \(=\) 'L' (Left-hand side )
\(A:=A^{*} P^{\prime}\), when side \(=\) 'R' (Right-hand side )
where \(P\) is an orthogonal matrix consisting of a sequence of plane rotations with \(z=m\) when side \(=\) 'L' and \(z=n\) when side \(=\) 'R'.

When direct \(=\) ' \(F\) ' (Forward sequence), then \(P=P(z-1) * \ldots P(2) * P(1)\),
and when direct \(=\) 'B' (Backward sequence), then
\(P=P(1) * P(2) * \ldots * P(z-1)\),
where \(P(k)\) is a plane rotation matrix defined by the 2-by-2 plane rotation:
\[
R(k)=\left[\begin{array}{cc}
C(k) & S(k) \\
-S(k) & C(k)
\end{array}\right]
\]

When pivot \(=\) ' \(V\) ' (Variable pivot \()\), the rotation is performed for the plane \((k, k+1)\), that is, \(P(k)\) has the form
\[
P(k)=\left[\begin{array}{cccccc}
1 & & & & & \\
& \ldots & & & & \\
& & 1 & & & \\
& & & c(k) s(k) & & \\
& & -s(k) c(k) & & \\
& & & & 1 & \\
& & & & \cdots & \\
& & & & & 1
\end{array}\right]
\]
where \(R(k)\) appears as a rank-2 modification to the identity matrix in rows and columns \(k\) and \(k+1\). When pivot = 'T' (Top pivot ), the rotation is performed for the plane \((1, k+1)\), so \(P(k)\) has the form
\[
P(k)=\left[\begin{array}{ccccccc}
c(k) & & & & s(k) & & \\
& 1 & & & & & \\
& & \cdots & & & & \\
& & & 1 & & & \\
\\
& & & & c(k) & & \\
\\
& s(k) & & & & & \\
& & & & & 1 & \\
& & & & & & \cdots
\end{array}\right]
\]
where \(R(k)\) appears in rows and columns \(k\) and \(k+1\).
Similarly, when pivot = 'B' (Bottom pivot ), the rotation is performed for the plane \((k, z)\), giving \(P(k)\) the form

where \(R(k)\) appears in rows and columns \(k\) and \(z\). The rotations are performed without ever forming \(P(k)\) explicitly.

Input Parameters
side
direct
pivot

CHARACTER* 1 . Specifies whether the plane rotation matrix \(P\) is applied to \(A\) on the left or the right.
\(=\) 'L': left, compute \(A:=P^{\star} A\)
\(=' R\) ': right, compute \(A:=A \star P^{\prime}\)
CHARACTER*1. Specifies whether \(P\) is a forward or backward sequence of plane rotations.
\(=' \mathrm{~F}^{\prime}:\) forward, \(P=P(z-1) * \ldots * P(2) * P(1)\)
\(=\) 'B': backward, \(P=P(1) * P(2) * \ldots * P(z-1)\)
CHARACTER*1. Specifies the plane for which \(P(k)\) is a plane rotation matrix.
\(=\) ' V ': Variable pivot, the plane \((k, k+1)\)
\(=\) 'T': Top pivot, the plane \((1, k+1)\)
\begin{tabular}{|c|c|}
\hline & \(=\) ' B ': Bottom pivot, the plane ( \(k, z\) ) \\
\hline m & INTEGER. The number of rows of the matrix \(A\). If \(m \leq 1\), an immediate return is effected. \\
\hline \(n\) & INTEGER. The number of columns of the matrix \(A\). If \(n \leq 1\), an immediate return is effected. \\
\hline \(c, s\) & \begin{tabular}{l}
REAL for slasr/clasr \\
DOUBLE PRECISION for dlasr/zlasr. \\
Arrays, DIMENSION \\
\((m-1)\) if side \(=\) 'L', \\
\((n-1)\) if side \(=\) ' \(\mathrm{R}^{\prime}\). \\
\(c(k)\) and \(s(k)\) contain the cosine and sine of the plane rotations respectively that define the 2-by-2 plane rotation part \((R(k))\) of the \(P(k)\) matrix as described above in Description.
\end{tabular} \\
\hline a & \begin{tabular}{l}
REAL for slasr \\
DOUBLE PRECISION for dlasr \\
COMPLEX for clasr \\
DOUBLE COMPLEX for zlasr. \\
Array, DIMENSION (lda, \(n\) ). \\
The \(m\)-by- \(n\) matrix \(A\).
\end{tabular} \\
\hline Ida & INTEGER. The leading dimension of the array \(a\). \(I d a \geq \max (1, m)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
On exit, \(A\) is overwritten by \(P^{\star} A\) if side \(=\) ' \(R^{\prime}\), or by \(A * P^{\prime}\) if side \(=\) 'L'.

\section*{?lasrt}

Sorts numbers in increasing or decreasing order.
Syntax
```

call slasrt(id, n, d, info)
call dlasrt(id, n, d, info)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ? lasrt sorts the numbers in \(d\) in increasing order (if id='I') or in decreasing order (if id= ' \(D\) '). It uses Quick Sort, reverting to Insertion Sort on arrays of size \(\leq 20\). Dimension of stack limits \(n\) to about \(2^{32}\).

Input Parameters
```

id CHARACTER*1.
= 'I': sort d in increasing order;
= 'D': sort d in decreasing order.
INTEGER. The length of the array d.
REAL for slasrt
DOUBLE PRECISION for dlasrt.

```

On entry, the array to be sorted.

\section*{Output Parameters}
\begin{tabular}{ll}
\(d\) & On exit, \(d\) has been sorted into increasing order \\
& \((d(1) \leq \ldots \leq d(n))\) or into decreasing order \\
info & \((d(1) \geq \ldots \geq d(n))\), depending on \(i d\). \\
& INTEGER. \\
& \(=0:\) successful exit \\
& \(<0:\) if info \(=-i\), the \(i\)-th argument had an illegal value.
\end{tabular}

\section*{?lassq}

Updates a sum of squares represented in scaled form.

\section*{Syntax}
```

call slassq(n, x, incx, scale, sumsq)
call dlassq(n, x, incx, scale, sumsq)
call classq(n, x, incx, scale, sumsq)
call zlassq(n, x, incx, scale, sumsq)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The real routines slassq/dlassq return the values scl and smsq such that

where \(x(i)=x(1+(i-1) i n c x)\).
The value of sumsq is assumed to be non-negative and scl returns the value
```

scl = max(scale, abs(x(i))).

```

Values scale and sumsq must be supplied in scale and sumsq, and scl and smsq are overwritten on scale and sumsq, respectively.

The complex routines classq/zlassq return the values scl and ssq such that
\(s c l^{2} * s s q=x(1)^{2}+\ldots+x(n)^{2}+s c a l e^{2} * s u m s q\),
where \(x(i)=a b s(x(1+(i-1) * i n c x))\).
The value of sumsq is assumed to be at least unity and the value of \(s s q\) will then satisfy \(1.0 \leq s s q \leq s u m s q\) \(+2 n\)
scale is assumed to be non-negative and scl returns the value
scl \(=\) max( scale, abs(real(x(i))), abs(aimag(x(i)))).
Values scale and sumsq must be supplied in scale and sumsq, and scl and ssq are overwritten on scale and sumsq, respectively.
All routines ?lassq make only one pass through the vector \(x\).

\section*{Input Parameters}
incx INTEGER. The increment between successive values of the vector \(x\). incx \(>\)
n
X
scale
sumsq

INTEGER. The number of elements to be used from the vector \(x\).
REAL for slassq
DOUBLE PRECISION for dlassq
COMPLEX for classq
DOUBLE COMPLEX for zlassq.
The vector for which a scaled sum of squares is computed: \(x(i)=x(1+\) (i-1)*incx), \(1 \leq i \leq n\). 0.

REAL for slassq/classq
DOUBLE PRECISION for dlassq/zlassq.
On entry, the value scale in the equation above.
REAL for slassq/classq
DOUBLE PRECISION for dlassq/zlassq.
On entry, the value sumsq in the equation above.

\section*{Output Parameters}
scale
sumsq
On exit, scale is overwritten with scl, the scaling factor for the sum of squares.
For real flavors:
On exit, sumsq is overwritten with the value smsq in the equation above.
For complex flavors:
On exit, sumsq is overwritten with the value ssq in the equation above.

\section*{?lasv2}

Computes the singular value decomposition of a 2-
by-2 triangular matrix.

\section*{Syntax}
```

call slasv2(f, g, h, ssmin, ssmax, snr, csr, snl, csl)
call dlasv2(f, g, h, ssmin, ssmax, snr, csr, snl, csl)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ? lasv2 computes the singular value decomposition of a 2-by-2 triangular matrix
\[
\left[\begin{array}{ll}
f & g \\
0 & h
\end{array}\right]
\]

On return, abs(ssmax) is the larger singular value, \(\mathrm{abs}(\operatorname{ssmin})\) is the smaller singular value, and (csl,snl) and (csr,snr) are the left and right singular vectors for abs(ssmax), giving the decomposition
\[
\left[\begin{array}{cc}
c s I & \operatorname{snI} \\
-\operatorname{snI} & \operatorname{csI}
\end{array}\right]\left[\begin{array}{ll}
f & g \\
0 & h
\end{array}\right]\left[\begin{array}{cc}
c s r & -\operatorname{snr} \\
\operatorname{snr} & c s r
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{simax} & 0 \\
0 & s \operatorname{smin}
\end{array}\right]
\]

\section*{Input Parameters}
```

f, g, h

```

REAL for slasv2
DOUBLE PRECISION for dlasv2.
The \((1,1),(1,2)\) and \((2,2)\) elements of the 2-by-2 matrix, respectively.

\section*{Output Parameters}
```

ssmin, ssmax REAL for slasv2
DOUBLE PRECISION for dlasv2.
abs(ssmin) and abs(ssmax) is the smaller and the larger singular value,
respectively.
snl,csl REAL for slasv2
DOUBLE PRECISION for dlasv2.
The vector (csl,snl) is a unit left singular vector for the singular value
abs(ssmax).
REAL for slasv2
DOUBLE PRECISION for dlasv2.
The vector (csr, snr) is a unit right singular vector for the singular value
abs(ssmax).

```

\section*{Application Notes}

Any input parameter may be aliased with any output parameter.
Barring over/underflow and assuming a guard digit in subtraction, all output quantities are correct to within a few units in the last place (ulps).

In ieee arithmetic, the code works correctly if one matrix element is infinite. Overflow will not occur unless the largest singular value itself overflows or is within a few ulps of overflow. (On machines with partial overflow, like the Cray, overflow may occur if the largest singular value is within a factor of 2 of overflow.) Underflow is harmless if underflow is gradual. Otherwise, results may correspond to a matrix modified by perturbations of size near the underflow threshold.
```

?laswp
Performs a series of row interchanges on a general
rectangular matrix.
Syntax

```
```

call slaswp(n, a, lda, k1, k2, ipiv, incx)

```
call slaswp( n, a, lda, k1, k2, ipiv, incx )
call dlaswp( n, a, lda, k1, k2, ipiv, incx )
call dlaswp( n, a, lda, k1, k2, ipiv, incx )
call claswp( n, a, lda, k1, k2, ipiv, incx )
call claswp( n, a, lda, k1, k2, ipiv, incx )
call zlaswp( n, a, lda, k1, k2, ipiv, incx )
```

call zlaswp(n, a, lda, k1, k2, ipiv, incx)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine performs a series of row interchanges on the matrix \(A\). One row interchange is initiated for each of rows \(k 1\) through \(k 2\) of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The number of columns of the matrix \(A\). \\
\hline \multirow[t]{6}{*}{a} & REAL for slaswp \\
\hline & DOUBLE PRECISION for dlaswp \\
\hline & COMPLEX for claswp \\
\hline & DOUBLE COMPLEX for zlaswp. \\
\hline & Array, DIMENSION (lda, \(n\) ). \\
\hline & On entry, the matrix of column dimension \(n\) to which the row interchanges will be applied. \\
\hline Ida & INTEGER. The leading dimension of the array a. \\
\hline k1 & INTEGER. The first element of ipiv for which a row interchange will be done. \\
\hline k2 & INTEGER. The last element of ipiv for which a row interchange will be done. \\
\hline \multirow[t]{4}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION (k2*|incx|). \\
\hline & The vector of pivot indices. Only the elements in positions k1 through \(k 2\) of ipiv are accessed. \\
\hline & \(\operatorname{ipiv}(k)=1\) implies rows \(k\) and \(l\) are to be interchanged. \\
\hline incx & INTEGER. The increment between successive values of ipiv. If ipiv is negative, the pivots are applied in reverse order. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
On exit, the permuted matrix.

\section*{?lasy2}

Solves the Sylvester matrix equation where the matrices are of order 1 or 2.

\section*{Syntax}
```

call slasy2(ltranl, ltranr, isgn, nl, n2, tl, ldtl, tr, ldtr, b, ldb, scale, x, ldx,
xnorm, info)
call dlasy2(ltranl, ltranr, isgn, nl, n2, tl, ldtl, tr, ldtr, b, ldb, scale, x, ldx,
xnorm, info)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine solves for the n1-by-n2 matrix \(x, 1 \leq n 1, n 2 \leq 2\), in
```

op(TL)*X + isgn* X*op(TR) = scale*B,

```
where
\(T L\) is \(n 1\)-by- \(n 1\),
```

TR is n2-by-n2,
B is n1-by-n2,
and isgn = 1 or-1.op (T) = T or TT, where TT
Input Parameters

```
ltranl
ltranr
isgn
n1
n2
tr
ldtr
b
\(1 d b\)
\(1 d x\)
```

LOGICAL.
On entry, ltranl specifies the op (TL):
=.FALSE., op $(T L)=T L$,
$=$. TRUE., op $(T L)=(T L)^{T}$.
LOGICAL.
On entry, ltranr specifies the op($T R$):
=.FALSE., op $(T R)=T R$,
$=$. TRUE., op $(T R)=(T R)^{T}$.
INTEGER. On entry, isgn specifies the sign of the equation as described before. isgn may only be 1 or -1 .
INTEGER. On entry, $n 1$ specifies the order of matrix $T L$.
$n 1$ may only be 0,1 or 2 .
INTEGER. On entry, n2 specifies the order of matrix $T R$. n2 may only be 0,1 or 2 .
REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldtl,2).
On entry, tl contains an n1-by-n1 matrix $T L$.
INTEGER. The leading dimension of the matrix TL.
$l d t 1 \geq \max (1, n 1)$.
REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldtr,2). On entry, tr contains an n2-by-n2 matrix TR.
INTEGER. The leading dimension of the matrix $T R$.
ldtr $\geq \max (1, n 2)$.
REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION ($1 \mathrm{db}, 2$). On entry, the n1-by-n2 matrix B contains the right-hand side of the equation.
INTEGER. The leading dimension of the matrix B.
$1 d b \geq \max (1, n 1)$.
INTEGER. The leading dimension of the output matrix x.
$I d x \geq \max (1, n 1)$.

```

\section*{Output Parameters}
scale
x
xnorm

REAL for slasy2
DOUBLE PRECISION for dlasy2.
On exit, scale contains the scale factor.
scale is chosen less than or equal to 1 to prevent the solution overflowing.
REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION ( \(1 d x, 2\) ). On exit, \(x\) contains the \(n 1-b y-n 2\) solution.
REAL for slasy2

DOUBLE PRECISION for dlasy2.
On exit, xnorm is the infinity-norm of the solution.
info
INTEGER. On exit, info is set to 0: successful exit. 1: TL and \(T R\) have too close eigenvalues, so \(T L\) or \(T R\) is perturbed to get a nonsingular equation.

NOTE For higher speed, this routine does not check the inputs for errors.

\section*{?lasyf \\ Computes a partial factorization of a real/complex symmetric matrix, using the diagonal pivoting method.}

\section*{Syntax}
```

call slasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call dlasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call clasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call zlasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?lasyf computes a partial factorization of a real/complex symmetric matrix \(A\) using the BunchKaufman diagonal pivoting method. The partial factorization has the form:
\[
\begin{aligned}
& A=\left[\begin{array}{ll}
I & U_{12} \\
0 & U_{12}
\end{array}\right]\left[\begin{array}{cc}
A_{11} & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
U_{12}^{\prime} & U_{12}^{\prime}
\end{array}\right] \text { if uplo }=\text { ' } U^{\prime} \text {, or } \\
& A=\left[\begin{array}{ll}
L_{11} & 0 \\
I_{21} & I
\end{array}\right]\left[\begin{array}{cc}
D & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{cc}
L_{12}^{\prime} & L_{21}^{\prime} \\
0 & I
\end{array}\right] \text { if up } 10={ }^{\prime} L^{\prime}
\end{aligned}
\]
where the order of \(D\) is at most \(n b\).
The actual order is returned in the argument \(k b\), and is either \(n b\) or \(n b-1\), or \(n\) if \(n \leq n b\).
This is an auxiliary routine called by ?sytrf. It uses blocked code (calling Level 3 BLAS) to update the submatrix \(A_{11}\) (if uplo \(=\) 'U') or \(A_{22}\) (if uplo = 'L').

\section*{Input Parameters}
uplo

\section*{CHARACTER*1.}

Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored:
= 'U': Upper triangular
= 'L': Lower triangular
```

n INTEGER. The order of the matrix A. n\geq0.
nb INTEGER. The maximum number of columns of the matrix A that should be
factored. nb should be at least 2 to allow for 2-by-2 pivot blocks.
REAL for slasyf
DOUBLE PRECISION for dlasyf
COMPLEX for clasyf
DOUBLE COMPLEX for zlasyf.
Array, DIMENSION (lda,n). If uplo = 'U', the leading n-by-n upper
triangular part of a contains the upper triangular part of the matrix }A\mathrm{ , and
the strictly lower triangular part of a is not referenced. If uplo = 'L', the
leading n-by-n lower triangular part of a contains the lower triangular part
of the matrix A, and the strictly upper triangular part of a is not referenced.
INTEGER. The leading dimension of the array a. lda }\geq\operatorname{max}(1,n)
REAL for slasyf
DOUBLE PRECISION for dlasyf
COMPLEX for clasyf
DOUBLE COMPLEX for zlasyf.
Workspace array, DIMENSION (Idw, nb).
ldw INTEGER. The leading dimension of the array w. ldw \geq max (1, n).

```

\section*{Output Parameters}
```

kb
a
ipiv
info
INTEGER. The number of columns of A that were actually factored $k b$ is either $n b-1$ or $n b$, or n if $n \leq n b$.
On exit, a contains details of the partial factorization.
INTEGER. Array, DIMENSION (n). Details of the interchanges and the block structure of D.
If uplo = 'U', only the last kb elements of ipiv are set;
if uplo = 'L', only the first $k b$ elements are set.
If ipiv(k) >0, then rows and columns k and ipiv(k) were interchanged and $D(k, k)$ is a 1-by- 1 diagonal block.
If uplo = 'U' and ipiv(k) $=\operatorname{ipiv}(k-1)<0$, then rows and columns $k-1$ and $-\operatorname{ipiv}(k)$ were interchanged and $D(k-1: k, k-1: k)$ is a 2-by-2 diagonal block.
If uplo $=$ 'L' and ipiv(k) $=\operatorname{ipiv}(k+1)<0$, then rows and columns k +1 and $-\operatorname{ipiv}(k)$ were interchanged and $D(k: k+1, k: k+1)$ is a 2-by-2 diagonal block.
INTEGER.
= 0 : successful exit
> 0: if info $=k, D(k, k)$ is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular.

```

\section*{?lahef}

Computes a partial factorization of a complex
Hermitian indefinite matrix, using the diagonal pivoting method.

\section*{Syntax}
```

call clahef(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call zlahef(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?lahef computes a partial factorization of a complex Hermitian matrix \(A\), using the BunchKaufman diagonal pivoting method. The partial factorization has the form:
\[
\begin{gathered}
A=\left[\begin{array}{ll}
I & U_{12} \\
0 & U_{12}
\end{array}\right]\left[\begin{array}{cc}
A_{11} & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
U_{12}{ }^{M} & U_{12}{ }^{N}
\end{array}\right] \text { if uplo= ' } \mathrm{U}^{\prime} \text {, or } \\
A=\left[\begin{array}{ll}
L_{11} & 0 \\
L_{21} & I
\end{array}\right]\left[\begin{array}{cc}
D & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{cc}
L_{12}^{\prime} & L_{21}^{\prime} \\
0 & I
\end{array}\right] \text { if uplo='L' }
\end{gathered}
\]
where the order of \(D\) is at most \(n b\).
The actual order is returned in the argument \(k b\), and is either \(n b\) or \(n b-1\), or \(n\) if \(n \leq n b\).
Note that \(U^{H}\) denotes the conjugate transpose of \(U\).
This is an auxiliary routine called by ?hetrf. It uses blocked code (calling Level 3 BLAS) to update the submatrix \(A_{11}\) (if uplo \(=\) 'U') or \(A_{22}\) (ifuplo = 'L').

Input Parameters
```

uplo
n
nb
a
Ida INTEGER. The leading dimension of the array a. lda \geq max (1,n).
w COMPLEX for clahef
Idw
CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian matrix
A is stored:
= 'U': upper triangular
= 'L': lower triangular
INTEGER. The order of the matrix A. n \geq0.
INTEGER. The maximum number of columns of the matrix A that should be
factored. nb should be at least 2 to allow for 2-by-2 pivot blocks.
COMPLEX for clahef
DOUBLE COMPLEX for zlahef.
Array, DIMENSION (Ida, n).
On entry, the Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of A contains the
upper triangular part of the matrix }A\mathrm{ , and the strictly lower triangular part
of }A\mathrm{ is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of A contains the
lower triangular part of the matrix }A\mathrm{ , and the strictly upper triangular part
of }A\mathrm{ is not referenced.
DOUBLE COMPLEX for zlahef.
Workspace array, DIMENSION (Idw, nb).
INTEGER. The leading dimension of the array w. ldw \geq max (1,n).

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline kb & INTEGER. The number of columns of \(A\) that were actually factored \(k b\) is either \(n b-1\) or \(n b\), or \(n\) if \(n \leq n b\). \\
\hline a & On exit, \(A\) contains details of the partial factorization. \\
\hline ipiv & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION ( \(n\) ). Details of the interchanges and the block structure of \(D\). \\
If uplo = 'U', only the last kb elements of ipiv are set; \\
if uplo = 'L', only the first kb elements are set. \\
If \(\operatorname{ipiv}(k)>0\), then rows and columns \(k\) and ipiv(k) are interchanged and \(D(k, k)\) is a 1-by-1 diagonal block. \\
If uplo = 'U' and ipiv(k) =ipiv(k-1) < 0, then rows and columns \(k-1\) and \(-\operatorname{ipiv}(k)\) are interchanged and \(D(k-1: k, k-1: k)\) is a 2-by-2 diagonal block. \\
If uplo \(=\) 'L' and \(\operatorname{ipiv}(k)=\operatorname{ipiv}(k+1)<0\), then rows and columns \(k\) +1 and \(-\operatorname{ipiv}(k)\) are interchanged and \(D(k: k+1, k: k+1)\) is a 2-by-2 diagonal block.
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. \\
= 0 : successful exit \\
\(>0\) : if info \(=k, D(k, k)\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular.
\end{tabular} \\
\hline
\end{tabular}

\section*{?latbs}

Solves a triangular banded system of equations.
Syntax
```

call slatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)
call dlatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)
call clatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)
call zlatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

Description
The routine solves one of the triangular systems
```

A*}\mp@subsup{x}{}{\prime}=\mp@subsup{s}{}{*}b,\mathrm{ or }\mp@subsup{A}{}{T}\mp@subsup{*}{X}{}=\mp@subsup{s}{}{*}b,\mathrm{ or }\mp@subsup{A}{}{H*}\mp@subsup{*}{X}{}=\mp@subsup{s}{}{*}b\mathrm{ (for complex flavors)

```
with scaling to prevent overflow, where \(A\) is an upper or lower triangular band matrix. Here \(A^{T}\) denotes the transpose of \(A, A^{H}\) denotes the conjugate transpose of \(A, x\) and \(b\) are \(n\)-element vectors, and \(s\) is a scaling factor, usually less than or equal to 1 , chosen so that the components of \(x\) will be less than the overflow threshold. If the unscaled problem will not cause overflow, the Level 2 BLAS routine ?tbsv is called. If the matrix \(A\) is singular \((A(j, j)=0\) for some \(j)\), then \(s\) is set to 0 and a non-trivial solution to \(A^{*} X=0\) is returned.

\section*{Input Parameters}
uplo
CHARACTER*1.
trans
n
\(k d\)
\(a b\)

X
cnorm

Specifies whether the matrix \(A\) is upper or lower triangular.
= 'U': upper triangular
\(=\) 'L': lower triangular
CHARACTER*1.
Specifies the operation applied to \(A\).
\(=' N^{\prime}\) : solve \(A^{*} X=s^{*} b\) (no transpose)
\(=' T ':\) solve \(A^{T} \star_{X}=s^{*} b\) (transpose)
\(={ }^{\prime} C^{\prime}\) : solve \(A^{H} \star_{X}=s^{*} b\) (conjugate transpose)
CHARACTER*1.
Specifies whether the matrix \(A\) is unit triangular
\(=\) 'N': non-unit triangular
= 'U': unit triangular
CHARACTER*1.
Specifies whether cnorm is set.
= 'Y': cnorm contains the column norms on entry;
\(=\) ' \(N^{\prime}\) : cnorm is not set on entry. On exit, the norms is computed and stored in cnorm.
INTEGER. The order of the matrix \(A . n \geq 0\).
INTEGER. The number of subdiagonals or superdiagonals in the triangular matrix \(A . k b \geq 0\).
REAL for slatbs
DOUBLE PRECISION for dlatbs
COMPLEX for clatbs
DOUBLE COMPLEX for zlatbs.
Array, DIMENSION (Idab, n).
The upper or lower triangular band matrix \(A\), stored in the first \(k b+1\) rows of the array. The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows:
if uplo = 'U', ab \((k d+1+i-j, j)=A(i, j)\) for max \((1, j-k d) \leq i \leq j\);
if uplo = 'L', ab(1+i \(-j, j)=A(i, j)\) for \(j \leq i \leq \min (n, j+k d)\).
INTEGER. The leading dimension of the array \(a b . l d a b \geq k b+1\).
REAL for slatbs
DOUBLE PRECISION for dlatbs
COMPLEX for clatbs
DOUBLE COMPLEX for zlatbs.
Array, DIMENSION ( \(n\) ).
On entry, the right hand side \(b\) of the triangular system.
REAL for slatbs/clatbs
DOUBLE PRECISION for dlatbs/zlatbs.
Array, DIMENSION (n).
If NORMIN \(=\) 'Y', cnorm is an input argument and cnorm( \(j\) ) contains the norm of the off-diagonal part of the \(j\)-th column of \(A\).
If trans \(=\) ' \(N\) ', cnorm \((j)\) must be greater than or equal to the infinitynorm, and if trans \(=\) ' \(T\) ' or ' \(C^{\prime}\), cnorm \((j)\) must be greater than or equal to the 1-norm.

\section*{Output Parameters}
```

scale

```

REAL for slatbs/clatbs
DOUBLE PRECISION for dlatbs/zlatbs.

The scaling factor s for the triangular system as described above. If scale \(=0\), the matrix \(A\) is singular or badly scaled, and the vector \(x\) is an exact or approximate solution to \(A x=0\).
cnorm If normin \(=\) ' \(N\) ', cnorm is an output argument and cnorm( \(j\) ) returns the 1norm of the off-diagonal part of the \(j\)-th column of \(A\).
info
INTEGER.
= 0: successful exit
\(<0\) : if info \(=-k\), the \(k\)-th argument had an illegal value

\section*{?latdf}

Uses the LU factorization of the \(n\)-by-n matrix
computed by ?getc2 and computes a contribution to the reciprocal Dif-estimate.

\section*{Syntax}
```

call slatdf(ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)
call dlatdf(ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)
call clatdf(ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)
call zlatdf(ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?latdf uses the \(L U\) factorization of the \(n-b y-n\) matrix \(z\) computed by ?getc2 and computes a contribution to the reciprocal Dif-estimate by solving \(Z^{*_{X}}=b\) for \(x\), and choosing the right-hand side \(b\) such that the norm of \(x\) is as large as possible. On entry \(r h s=b\) holds the contribution from earlier solved subsystems, and on return rhs \(=x\).

The factorization of \(z\) returned by ? getc2 has the form \(Z=P^{\star} L^{\star} U^{\star} Q\), where \(P\) and \(Q\) are permutation matrices. \(L\) is lower triangular with unit diagonal elements and \(U\) is upper triangular.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline ijob & \begin{tabular}{l}
INTEGER. \\
ijob \(=2\) : First compute an approximative null-vector e of \(z\) using ?gecon, \(e\) is normalized, and solve for \(Z^{\star} x= \pm e-f\) with the sign giving the greater value of 2 -norm ( \(x\) ). This option is about 5 times as expensive as default. ijob \(\neq 2\) (default): Local look ahead strategy where all entries of the right-hand side \(b\) is chosen as either +1 or -1 .
\end{tabular} \\
\hline \(n\) & INTEGER. The number of columns of the matrix \(z\). \\
\hline \(z\) & \begin{tabular}{l}
REAL for slatdf/clatdf \\
DOUBLE PRECISION for dlatdf/zlatdf. \\
Array, DIMENSION ( \(1 d z, n\) ) \\
On entry, the \(L U\) part of the factorization of the \(n\)-by- \(n\) matrix \(z\) computed by ?getc \(2: Z=P^{\star} L^{\star} U^{\star} Q\).
\end{tabular} \\
\hline \(1 d z\) & INTEGER. The leading dimension of the array \(z\). 1 da \(\geq \max (1, n)\). \\
\hline rhs & REAL for slatdf/clatdf \\
\hline & DOUBLE PRECISION for dlatdf/zlatdf. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Array, DIMENSION ( \(n\) ). \\
\hline & On entry, rhs contains contributions from other subsystems. \\
\hline \multirow[t]{4}{*}{rdsum} & REAL for slatdf/clatdf \\
\hline & DOUBLE PRECISION for dlatdf/zlatdf. \\
\hline & On entry, the sum of squares of computed contributions to the Dif-estimate under computation by ?tgsyl, where the scaling factor rdscal has been factored out. If trans = 'T', rdsum is not touched. \\
\hline & Note that rdsum only makes sense when ?tgsy2 is called by ?tgsyl. \\
\hline \multirow[t]{5}{*}{rdscal} & REAL for slatdf/clatdf \\
\hline & DOUBLE PRECISION for dlatdf/zlatdf. \\
\hline & On entry, scaling factor used to prevent overflow in rdsum. \\
\hline & If trans \(=T^{\prime}\), rdscal is not touched. \\
\hline & Note that rdscal only makes sense when ?tgsy2 is called by ?tgsyL. \\
\hline \multirow[t]{3}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION (n). \\
\hline & The pivot indices; for \(1 \leq i \leq n\), row \(i\) of the matrix has been interchanged with row ipiv(i). \\
\hline \multirow[t]{3}{*}{jpiv} & INTEGER. \\
\hline & Array, DIMENSION (n). \\
\hline & The pivot indices; for \(1 \leq j \leq n\), column \(j\) of the matrix has been interchanged with column jpiv(j). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline rhs & On exit, rhs contains the solution of the subsystem with entries according to the value of ijob. \\
\hline rdsum & \begin{tabular}{l}
On exit, the corresponding sum of squares updated with the contributions from the current sub-system. \\
If trans = 'T', rdsum is not touched.
\end{tabular} \\
\hline rdscal & \begin{tabular}{l}
On exit, rdscal is updated with respect to the current contributions in rdsum. \\
If trans = 'T', rdscal is not touched.
\end{tabular} \\
\hline
\end{tabular}

\section*{?latps}

Solves a triangular system of equations with the matrix held in packed storage.

Syntax
```

call slatps(uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)
call dlatps(uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)
call clatps(uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)
call zlatps(uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

Description
The routine ?latps solves one of the triangular systems
\(A^{*} X=s^{\star} b\), or \(A^{T} \star_{X}=s^{\star} b\), or \(A^{H}{ }_{X}=s^{\star} b\) (for complex flavors)
with scaling to prevent overflow, where \(A\) is an upper or lower triangular matrix stored in packed form. Here \(A^{T}\) denotes the transpose of \(A, A^{H}\) denotes the conjugate transpose of \(A, x\) and \(b\) are \(n\)-element vectors, and \(s\) is a scaling factor, usually less than or equal to 1 , chosen so that the components of \(x\) will be less than the overflow threshold. If the unscaled problem does not cause overflow, the Level 2 BLAS routine ?tpsv is called. If the matrix \(A\) is singular \((A(j, j)=0\) for some \(j\) ), then \(s\) is set to 0 and a non-trivial solution to \(A^{\star} X=0\) is returned.

Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{uplo} & CHARACTER*1. \\
\hline & \begin{tabular}{l}
Specifies whether the matrix \(A\) is upper or lower triangular. = 'U': upper triangular \\
= 'L': uower triangular
\end{tabular} \\
\hline \multirow[t]{5}{*}{trans} & CHARACTER*1. \\
\hline & Specifies the operation applied to \(A\). \\
\hline & \(={ }^{\prime} N^{\prime}\) : solve \(A^{\star} X=s^{\star} b\) (no transpose) \\
\hline & \(='^{\prime}\) ': solve \(A^{T}{ }_{X}=s^{\star} b\) (transpose) \\
\hline & \(={ }^{\prime} C^{\prime}\) : solve \(A^{H_{\star}} X=s^{\star} b\) (conjugate transpose) \\
\hline \multirow[t]{4}{*}{diag} & CHARACTER*1. \\
\hline & Specifies whether the matrix \(A\) is unit triangular. \\
\hline & \(={ }^{\prime} N\) ': non-unit triangular \\
\hline & = 'U': unit triangular \\
\hline \multirow[t]{5}{*}{normin} & CHARACTER*1. \\
\hline & Specifies whether cnorm is set. \\
\hline & = 'Y': cnorm contains the column norms on entry; \\
\hline & \(=\) ' N ': cnorm is not set on entry. On exit, the norms will be computed and \\
\hline & stored in cnorm. \\
\hline \(n\) & INTEGER. The order of the matrix \(A . n \geq 0\). \\
\hline \multirow[t]{9}{*}{ap} & REAL for slatps \\
\hline & DOUBLE PRECISION for dlatps \\
\hline & COMPLEX for clatps \\
\hline & DOUBLE COMPLEX for zlatps. \\
\hline & Array, DIMENSION ( \(n(n+1) / 2\) ). \\
\hline & The upper or lower triangular matrix \(A\), packed columnwise in a linear array. \\
\hline & The \(j\)-th column of \(A\) is stored in the array ap as follows: \\
\hline & if uplo = 'U', ap \((i+(j-1) j / 2)=A(i, j)\) for \(1 \leq i \leq j ;\) \\
\hline & if uplo = 'L', ap \((i+(j-1)(2 n-j) / 2)=A(i, j)\) for \(j \leq i \leq n\). \\
\hline \multirow[t]{5}{*}{\(x\)} & REAL for slatps DOUBLE PRECISION for dlatps \\
\hline & COMPLEX for clatps \\
\hline & DOUBLE COMPLEX for zlatps. \\
\hline & Array, DIMENSION ( \(n\) ) \\
\hline & On entry, the right hand side \(b\) of the triangular system. \\
\hline \multirow[t]{5}{*}{cnorm} & REAL for slatps/clatps \\
\hline & DOUBLE PRECISION for dlatps/zlatps. \\
\hline & Array, DIMENSION ( \(n\) ). \\
\hline & If normin \(=\) ' \(Y\) ', cnorm is an input argument and cnorm( \(j\) ) contains the norm of the off-diagonal part of the \(j\)-th column of \(A\). \\
\hline & If trans \(=\) ' \(N\) ', cnorm( \(j\) ) must be greater than or equal to the infinitynorm, and if trans \(=\) ' T' or 'C', cnorm(j) must be greater than or equal to the 1-norm. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
\(x\) & On exit, \(x\) is overwritten by the solution vector \(x\). \\
scale & REAL for slatps/clatps \\
& DOUBLE PRECISION for dlatps/zlatps. \\
& The scaling factor \(s\) for the triangular system as described above. \\
& If scale \(=0\), the matrix \(A\) is singular or badly scaled, and the vector \(x\) is \\
& an exact or approximate solution to \(A * x=0\). \\
cnorm & If normin \(=N^{\prime}\), cnorm is an output argument and cnorm( \(j\) ) returns the 1- \\
info & norm of the off-diagonal part of the \(j\)-th column of \(A\). \\
& INTEGER. \\
& \(=0:\) successful exit \\
& \(<0:\) if info \(=-k\), the \(k\)-th argument had an illegal value
\end{tabular}

\section*{?latrd}

Reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form
by an orthogonal/unitary similarity transformation.

\section*{Syntax}
```

call slatrd(uplo, n, nb, a, lda, e, tau, w, ldw)
call dlatrd(uplo, n, nb, a, lda, e, tau, w, ldw)
call clatrd(uplo, n, nb, a, lda, e, tau, w, ldw)
call zlatrd(uplo, n, nb, a, lda, e, tau, w, ldw)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ? latrd reduces nb rows and columns of a real symmetric or complex Hermitian matrix \(A\) to symmetric/Hermitian tridiagonal form by an orthogonal/unitary similarity transformation \(Q^{T} A^{*} Q\) for real flavors, \(Q^{H \star} A^{\star} Q\) for complex flavors, and returns the matrices \(V\) and \(w\) which are needed to apply the transformation to the unreduced part of \(A\).
If uplo = 'U', ? latrd reduces the last nb rows and columns of a matrix, of which the upper triangle is supplied;
if uplo = 'L', ?latrd reduces the first nb rows and columns of a matrix, of which the lower triangle is supplied.

This is an auxiliary routine called by ?sytrd/?hetrd.
Input Parameters
```

uplo
n
nb
CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric/
Hermitian matrix A is stored:
= 'U': upper triangular
= 'L': lower triangular
INTEGER. The order of the matrix A.
INTEGER. The number of rows and columns to be reduced.

```
```

a
REAL for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
DOUBLE COMPLEX for zlatrd.
Array, DIMENSION (Ida, n).
On entry, the symmetric/Hermitian matrix A
If uplo = 'U', the leading n-by-n upper triangular part of a contains the
upper triangular part of the matrix A, and the strictly lower triangular part
of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of a contains the
lower triangular part of the matrix A, and the strictly upper triangular part
of a is not referenced.

```

Ida
\(I d W\)

\section*{Output Parameters}
\(a\)
w

On exit, if uplo = 'U', the last nb columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of \(a\); the elements above the diagonal with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors;
if uplo = 'L', the first nb columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of \(a\); the elements below the diagonal with the array tau, represent the orthogonal/ unitary matrix \(Q\) as a product of elementary reflectors.
REAL for slatrd/clatrd
DOUBLE PRECISION for dlatrd/zlatrd.
If uplo \(=\) ' U ', \(e(n-n b: n-1)\) contains the superdiagonal elements of the last nb columns of the reduced matrix;
if uplo \(=\) 'L', e(1:nb) contains the subdiagonal elements of the first nb columns of the reduced matrix.
```

REAL for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
DOUBLE COMPLEX for zlatrd.
Array, DIMENSION (Ida,n).
The scalar factors of the elementary reflectors, stored in tau(n-nb:n-1) if
uplo = 'U', and in tau(1:nb) if uplo = 'L'.
REAL for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
DOUBLE COMPLEX for zlatrd.
Array, DIMENSION (Idw, n).
The n-by-nb matrix w required to update the unreduced part of A.

```

\section*{Application Notes}

If uplo = 'U', the matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(n) * H(n-1) * \ldots * H(n-n b+1)\)
Each \(H(i)\) has the form
\(H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(i: n)=0\) and \(v(i-1)=1 ; v(1\) : \(i-1)\) is stored on exit in a(1: i-1, i), and tau in tau(i-1).
If uplo = 'L', the matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(1) * H(2) * \ldots * H(n b)\)
Each \(H(i)\) has the form \(H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1\) : i) \(=0\) and \(v(i+1)=1\); \(v(i+1: n)\) is stored on exit in \(a(i+1: n, i)\), and tau in tau(i).
The elements of the vectors \(v\) together form the \(n\)-by- \(n b\) matrix \(v\) which is needed, with \(w\), to apply the transformation to the unreduced part of the matrix, using a symmetric/Hermitian rank-2k update of the form:
\(A:=A-V W^{\prime}-W V^{\prime}\).
The contents of \(a\) on exit are illustrated by the following examples with \(n=5\) and \(n b=2\) :
\[
\begin{aligned}
& \text { if } \operatorname{uplo}={ }^{\prime} \mathrm{U}^{\prime} \text { : if } u p l o=' \mathrm{~L} \text { ' } \\
& {\left[\begin{array}{lllll}
a & a & a & v_{4} & v_{4} \\
& a & a & v_{4} & v_{5} \\
& & a & 1 & v_{5} \\
& & & d & 1 \\
& & & & d
\end{array}\right]\left[\begin{array}{lllll}
d & & & \\
1 & d & & \\
v_{1} & 1 & a & \\
v_{1} & v_{2} & a & a & \\
v_{1} & v_{2} & a & a & a
\end{array}\right]}
\end{aligned}
\]
where \(d\) denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and \(v_{i}\) denotes an element of the vector defining \(H(i)\).

\section*{?latrs}

Solves a triangular system of equations with the scale factor set to prevent overflow.

\section*{Syntax}
```

call slatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)
call dlatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)
call clatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)
call zlatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine solves one of the triangular systems
\(A^{\star} X=s^{\star} b\), or \(A^{T}{ }_{X}=s^{\star} b\), or \(A^{H}{ }_{X}=s^{\star} b\) (for complex flavors)
with scaling to prevent overflow. Here \(A\) is an upper or lower triangular matrix, \(A^{T}\) denotes the transpose of \(A\), \(A^{H}\) denotes the conjugate transpose of \(A, x\) and \(b\) are \(n\)-element vectors, and \(s\) is a scaling factor, usually less than or equal to 1 , chosen so that the components of \(x\) will be less than the overflow threshold. If the unscaled problem will not cause overflow, the Level 2 BLAS routine ?trsv is called. If the matrix \(A\) is singular \((A(j, j)=0\) for some \(j)\), then \(s\) is set to 0 and a non-trivial solution to \(A^{\star} X=0\) is returned.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. \\
Specifies whether the matrix \(A\) is upper or lower triangular. \\
= 'U': Upper triangular \\
= 'L': Lower triangular
\end{tabular} \\
\hline trans & \begin{tabular}{l}
CHARACTER*1. \\
Specifies the operation applied to \(A\).
\[
\begin{aligned}
& =' N^{\prime}: \text { solve } A^{\star}{ }_{X}=S^{\star} b \text { (no transpose) } \\
& =' T^{\prime}: \text { solve } A^{T \star}{ }_{X}=S^{\star} b \text { (transpose) } \\
& ='^{\prime}: \text { solve } A^{H \star}{ }_{X}=s^{\star} b \text { (conjugate transpose) }
\end{aligned}
\]
\end{tabular} \\
\hline diag & \begin{tabular}{l}
CHARACTER*1. \\
Specifies whether or not the matrix \(A\) is unit triangular. \\
= 'N': non-unit triangular \\
\(=\) ' N ': non-unit triangular
\end{tabular} \\
\hline normin & \begin{tabular}{l}
CHARACTER*1. \\
Specifies whether cnorm has been set or not. \\
= 'Y': cnorm contains the column norms on entry; \\
\(=' N '\) : cnorm is not set on entry. O \\
n exit, the norms will be computed and stored in cnorm.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix A. \(n \geq 0\) \\
\hline a & \begin{tabular}{l}
REAL for slatrs \\
DOUBLE PRECISION for dlatrs \\
COMPLEX for clatrs \\
DOUBLE COMPLEX for zlatrs. \\
Array, DIMENSION ( 1 da, \(n\) ). Contains the triangular matrix \(A\). \\
If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of \(A\) is not referenced. \\
If uplo = 'L', the leading n-by-n lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of \(A\) is not referenced. \\
If diag = 'U', the diagonal elements of \(A\) are also not referenced and are assumed to be 1 .
\end{tabular} \\
\hline Ida & INTEGER. The leading dimension of the array \(a\). 1 da \(\geq \max (1, n)\). \\
\hline \(x\) & \begin{tabular}{l}
REAL for slatrs \\
DOUBLE PRECISION for dlatrs \\
COMPLEX for clatrs \\
DOUBLE COMPLEX for zlatrs. \\
Array, DIMENSION ( \(n\) ). \\
On entry, the right hand side \(b\) of the triangular system.
\end{tabular} \\
\hline cnorm & ```
REAL for slatrs/clatrs
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (n).
``` \\
\hline
\end{tabular}

If normin = 'Y', cnorm is an input argument and cnorm (\(j\)) contains the norm of the off-diagonal part of the \(j\)-th column of \(A\).
If trans \(=\) ' \(N\) ', cnorm \((j)\) must be greater than or equal to the infinitynorm, and if trans \(=\) ' \(T\) ' or 'C', cnorm \((j)\) must be greater than or equal to the 1-norm.

\section*{Output Parameters}

On exit, \(x\) is overwritten by the solution vector \(x\).
REAL for slatrs/clatrs
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (1 da, \(n\)). The scaling factor \(s\) for the triangular system as described above.
If scale \(=0\), the matrix \(A\) is singular or badly scaled, and the vector \(x\) is an exact or approximate solution to \(A^{\star} X=0\).
If normin \(=\) ' \(N\) ', cnorm is an output argument and cnorm \((j)\) returns the 1 norm of the off-diagonal part of the \(j\)-th column of \(A\).
INTEGER.
\(=0\) : successful exit
< 0: if info \(=-k\), the \(k\)-th argument had an illegal value

\section*{Application Notes}

A rough bound on \(x\) is computed; if that is less than overflow, ?trsv is called, otherwise, specific code is used which checks for possible overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving \(A x=b\). The basic algorithm if \(A\) is lower triangular is
```

x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j)*a[j+1:n,j]
end

```

Define bounds on the components of \(x\) after \(j\) iterations of the loop:
```

M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]

```
Initially, let \(M(0)=0\) and \(G(0)=\max \{x(i), i=1, \ldots, n\}\).

Then for iteration \(j+1\) we have
\(M(j+1) \leq G(j) /|a(j+1, j+1)|\)
\(G(j+1) \leq G(j)+M(j+1) *|a[j+2: n, j+1]|\)
\(\leq G(j)(1+\operatorname{cnorm}(j+1) /|a(j+1, j+1)|\),
where cnorm \((j+1)\) is greater than or equal to the infinity-norm of column \(j+1\) of \(a\), not counting the diagonal. Hence
\[
G(j) \leq G(0) \prod_{1 \leq i \leq j}(1+\operatorname{cnorm}(i) /|A(i, i)|)
\]
and
\[
|x(j)| \leq(G(0) /|A(j, j)|) \prod_{1 \leq i \leq j}(1+\operatorname{cnorm}(i) /|A(i, i)|)
\]

Since \(|x(j)| \leq M(j)\), we use the Level 2 BLAS routine ?trsv if the reciprocal of the largest \(M(j)\), \(j=1, . ., n\), is larger than max (underflow, l/overflow).

The bound on \(x(j)\) is also used to determine when a step in the columnwise method can be performed without fear of overflow. If the computed bound is greater than a large constant, \(x\) is scaled to prevent overflow, but if the bound overflows, \(x\) is set to \(0, x(j)\) to 1 , and scale to 0 , and a non-trivial solution to \(A x=\) 0 is found.

Similarly, a row-wise scheme is used to solve \(A^{T} X=b\) or \(A^{H} X=b\). The basic algorithm for \(A\) upper triangular is
```

for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' x[1:j-1]) / A(j,j)
end

```

We simultaneously compute two bounds
```

G(j) = bound on ( b(i) - A[1:i-1,i]'*x[1:i-1]), 1\leq i\leq j
M(j) = bound on x(i), 1\leq i\leq j

```

The initial values are \(G(0)=0, M(0)=\max \{b(i), i=1, \ldots, n\}\), and we add the constraint \(G(j) \geq\) \(G(j-1)\) and \(M(j) \geq M(j-1)\) for \(j \geq 1\).

Then the bound on \(x(j)\) is
```

M(j) \leqM(j-1) *(1 + cnorm(j)) / | A(j,j)|

```
\[
\leq M(0) \prod_{1 \leq i \leq j}(1+\operatorname{cnorm}(i) /|A(i, i)|)
\]
and we can safely call ? trsv if \(1 / M(n)\) and \(1 / G(n)\) are both greater than max (underflow, 1/overflow).

\section*{?latrz}

Factors an upper trapezoidal matrix by means of orthogonal/unitary transformations.

\section*{Syntax}
```

call slatrz( m, n, l, a, lda, tau, work )
call dlatrz( m, n, l, a, lda, tau, work )
call clatrz( m, n, l, a, lda, tau, work )
call zlatrz( m, n, l, a, lda, tau, work )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ? latrz factors the \(m\)-by- \((m+1)\) real/complex upper trapezoidal matrix
```

[A1 A2] = [A(1:m,1:m) A(1: m, n-1+1:n)]

```
as \((R 0)^{*} Z\), by means of orthogonal/unitary transformations. \(z\) is an (\(m+1\))-by- \((m+1)\) orthogonal/unitary matrix and \(R\) and \(A 1\) are \(m\)-by \(-m\) upper triangular matrices.

\section*{Input Parameters}
```

m INTEGER. The number of rows of the matrix A. m\geq0.
n INTEGER. The number of columns of the matrix A. n \geq0.
I INTEGER. The number of columns of the matrix A containing the meaningful
part of the Householder vectors.
n-m\geq1\geq0.
REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
DOUBLE COMPLEX for zlatrz.
Array, DIMENSION (lda, n).
On entry, the leading m-by-n upper trapezoidal part of the array a must
contain the matrix to be factorized.
Ida INTEGER. The leading dimension of the array a. Ida \geq max (1,m).
work REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
DOUBLE COMPLEX for zlatrz.
Workspace array, DIMENSION (m).

```

\section*{Output Parameters}
On exit, the leading \(m\)-by \(-m\) upper triangular part of a contains the upper
triangular matrix \(R\), and elements \(n-1+1\) to \(n\) of the first \(m\) rows of \(a\), with
the array tau, represent the orthogonal/unitary matrix \(z\) as a product of \(m\)
elementary reflectors.
REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
DOUBLE COMPLEX for zlatrz.
Array, DIMENSION \((m)\).
The Scalar factors of the elementary reflectors.

\section*{Application Notes}

The factorization is obtained by Householder's method. The \(k\)-th transformation matrix, \(z(k)\), which is used to introduce zeros into the \((m-k+1)\)-th row of \(A\), is given in the form
\[
Z(k)=\left[\begin{array}{cc}
I & 0 \\
0 & T(k)
\end{array}\right]
\]
where for real flavors
\[
T(k)=\mathrm{I}-\operatorname{tau^{*}} u(k)^{*} T(k)^{T}, \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
\]
and for complex flavors
\[
T(k)=\mathrm{I}-t a u^{*} u(k)^{*} T(k)^{H}, \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
\]
tau is a scalar and \(z(k)\) is an 1 -element vector. tau and \(z(k)\) are chosen to annihilate the elements of the \(k-\) th row of \(A 2\).

The scalar \(\operatorname{tau}\) is returned in the \(k\)-th element of \(\operatorname{tau}\) and the vector \(u(k)\) in the \(k\)-th row of \(A 2\), such that the elements of \(z(k)\) are in \(a(k, l+1), \ldots, a(k, n)\).

The elements of \(r\) are returned in the upper triangular part of \(A 1\).
\(z\) is given by
\(Z=Z(1) * Z(2) * \ldots * Z(m)\).

\section*{?lauu2}

Computes the product \(U^{\star} U^{T}\left(U^{*} U^{H}\right)\) or \(L^{T} \star L\left(L^{H} \star L\right)\), where \(U\) and \(L\) are upper or lower triangular matrices (unblocked algorithm).

\section*{Syntax}
```

call slauu2( uplo, n, a, lda, info )
call dlauu2( uplo, n, a, lda, info )
call clauu2( uplo, n, a, lda, info )
call zlauu2( uplo, n, a, lda, info )

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ? lauu2 computes the product \(U^{\star} U^{T}\) or \(L^{T \star} L\) for real flavors, and \(U^{\star} U^{H}\) or \(L^{H \star} L\) for complex flavors. Here the triangular factor \(U\) or \(L\) is stored in the upper or lower triangular part of the array \(a\). If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor \(U\) in \(A\). If uplo = ' \(L\) ' or ' l', then the lower triangle of the result is stored, overwriting the factor \(L\) in \(A\). This is the unblocked form of the algorithm, calling BLAS Level 2 Routines.

\section*{Input Parameters}
```

uplo
n
a

```

\section*{Output Parameters}
a
On exit,
if uplo = 'U', then the upper triangle of \(a\) is overwritten with the upper triangle of the product \(U^{\star} U^{T}\left(U^{\star} U^{H}\right)\); if uplo = 'L', then the lower triangle of \(a\) is overwritten with the lower triangle of the product \(L^{T \star} L\left(L^{H \star} L\right)\).
info
INTEGER. = 0: successful exit
\(<0\) : if info \(=-k\), the \(k\)-th argument had an illegal value

\section*{?lauum \\ Computes the product \(U^{*} U^{T}\left(U^{*} U^{H}\right)\) or \(L^{T}{ }^{*} L\left(L^{H} * L\right)\), where \(U\) and \(L\) are upper or lower triangular matrices (blocked algorithm).}

\section*{Syntax}
```

call slauum( uplo, n, a, lda, info )
call dlauum( uplo, n, a, lda, info )
call clauum( uplo, n, a, lda, info )
call zlauum( uplo, n, a, lda, info )

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?lauum computes the product \(U^{\star} U^{T}\) or \(L^{T \star} L\) for real flavors, and \(U^{\star} U^{H}\) or \(L^{H \star} L\) for complex flavors. Here the triangular factor \(U\) or \(L\) is stored in the upper or lower triangular part of the array \(a\).
If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor \(U\) in \(A\). If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor \(L\) in \(A\). This is the blocked form of the algorithm, calling BLAS Level 3 Routines.

\section*{Input Parameters}
```

uplo
a

```

\section*{Output Parameters}
a
On exit,
if uplo = 'U', then the upper triangle of \(a\) is overwritten with the upper triangle of the product \(U^{\star} U^{T}\left(U^{\star} U^{H}\right)\);
if uplo = 'L', then the lower triangle of \(a\) is overwritten with the lower triangle of the product \(L^{T \star} L\left(L^{H \star} L\right)\).
info
INTEGER.
= 0: successful exit
< 0 : if info \(=-k\), the \(k\)-th argument had an illegal value

\section*{?org21/?ung21}

Generates all or part of the orthogonal/unitary matrix
Q from a QL factorization determined by ?geqlf (unblocked algorithm).

\section*{Syntax}
```

call sorg2l( m, n, k, a, lda, tau, work, info )
call dorg2l( m, n, k, a, lda, tau, work, info )
call cung2l( m, n, k, a, lda, tau, work, info )
call zung2l( m, n, k, a, lda, tau, work, info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?org2l/?ung2l generates an \(m\)-by-n real/complex matrix \(Q\) with orthonormal columns, which is defined as the last \(n\) columns of a product of \(k\) elementary reflectors of order \(m\) :
```

Q =H(k)*···*H(2)*H(1) as returned by ?geqlf.

```

\section*{Input Parameters}

INTEGER. The number of rows of the matrix \(Q . m \geq 0\).
```

n
k
a
Ida
tau
work
INTEGER. The number of columns of the matrix $Q . m \geq n \geq 0$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q . n \geq k \geq 0$.

```
```

REAL for sorg2l

```
REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
DOUBLE COMPLEX for zung2l.
Array, DIMENSION (lda,n).
On entry, the (\(n-k+i\))-th column must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ? geqlf in the last \(k\) columns of its array argument \(A\).
```

Ida
tau

INTEGER. The leading dimension of the array $a$. $1 \mathrm{da} \geq \max (1, m)$.
REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
DOUBLE COMPLEX for zung2l.
Array, DIMENSION ( $k$ ).
$\operatorname{tau}(i)$ must contain the scalar factor of the elementary reflector $H(i)$, as returned by ?geqle.
REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
DOUBLE COMPLEX for zung2l.
Workspace array, DIMENSION ( $n$ ).

## Output Parameters

```
a
info
```

On exit, the $m$-by- $n$ matrix $Q$.
INTEGER.
= 0: successful exit
< 0 : if info $=-i$, the $i$-th argument has an illegal value

## ?org2r/?ung2r

Generates all or part of the orthogonal/unitary matrix $Q$ from a $Q R$ factorization determined by ?geqrf (unblocked algorithm).

## Syntax

```
call sorg2r(m, n, k, a, lda, tau, work, info)
call dorg2r(m, n, k, a, lda, tau, work, info)
call cung2r(m, n, k, a, lda, tau, work, info)
call zung2r(m, n, k, a, lda, tau, work, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?org2r/?ung2r generates an $m$-by-n real/complex matrix $Q$ with orthonormal columns, which is defined as the first $n$ columns of a product of $k$ elementary reflectors of order $m$

```
Q = H(1)*H(2)* ...*H(k)
```

as returned by ?geqre.

## Input Parameters

m
$n$
k
a

Ida
tau
work

INTEGER. The number of rows of the matrix $Q . m \geq 0$.
INTEGER. The number of columns of the matrix $Q . m \geq n \geq 0$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q . n \geq k \geq 0$.

REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
DOUBLE COMPLEX for zung2r.
Array, DIMENSION (lda, n).
On entry, the $i$-th column must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ? geqre in the first $k$ columns of its array argument $a$.

INTEGER. The first DIMENSION of the array $a$. $1 d a \geq \max (1, m)$.
REAL for sorg2r DOUBLE PRECISION for dorg2r COMPLEX for cung2r
DOUBLE COMPLEX for zung2r.
Array, DIMENSION ( $k$ ).
tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by ?geqre.

REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
DOUBLE COMPLEX for zung2r.
Workspace array, DIMENSION (n).

## Output Parameters

```
a
info
```

On exit, the $m-b y-n$ matrix $Q$.
INTEGER.
= 0: successful exit
< 0: if info $=-i$, the $i$-th argument has an illegal value

## ?orgl2/?ungl2

Generates all or part of the orthogonal/unitary matrix $Q$ from an $L Q$ factorization determined by ?gelqf (unblocked algorithm).

## Syntax

```
call sorgl2(m, n, k, a, lda, tau, work, info)
call dorgl2(m, n, k, a, lda, tau, work, info)
call cungl2(m, n, k, a, lda, tau, work, info)
call zungl2(m, n, k, a, lda, tau, work, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?orgl2/?ungl2 generates a m-by-n real/complex matrix $Q$ with orthonormal rows, which is defined as the first $m$ rows of a product of $k$ elementary reflectors of order $n$
$Q=H(k) \star \ldots{ }^{\star} H(2){ }^{\star} H(1)$ for real flavors, or $Q=(H(k))^{H_{\star}} \ldots{ }^{*}(H(2))^{H_{\star}}(H(1))^{H}$ for complex flavors as returned by ?gelqf.

## Input Parameters

```
m
n
k INTEGER. The number of elementary reflectors whose product defines the
 matrix Q. m\geqk\geq0.
a REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
DOUBLE COMPLEX for zungl2.
Array, DIMENSION (Ida,n). On entry, the i-th row must contain the vector
which defines the elementary reflector H(i), for i = 1,2,\ldots, k, as
returned by ?gelqf in the first k rows of its array argument a.
Ida INTEGER. The leading dimension of the array a. lda \geq max (1,m).
tau REAL for sorgl2
 DOUBLE PRECISION for dorgl2
 COMPLEX for cungl2
 DOUBLE COMPLEX for zungl2.
 Array, DIMENSION (k).
 tau(i) must contain the scalar factor of the elementary reflector H(i), as
 returned by ?gelqf.
work REAL for sorgl2
 DOUBLE PRECISION for dorgl2
 COMPLEX for cungl2
 DOUBLE COMPLEX for zungl2.
 Workspace array, DIMENSION (m).
```


## Output Parameters

```
a
info
On exit, the m-by-n matrix Q.
INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument has an illegal value.
```


## ?orgr2/?ungr2

Generates all or part of the orthogonal/unitary matrix $Q$ from an $R Q$ factorization determined by ?gerqf (unblocked algorithm).

## Syntax

```
call sorgr2(m, n, k, a, lda, tau, work, info)
```

```
call dorgr2(m, n, k, a, lda, tau, work, info)
call cungr2(m, n, k, a, lda, tau, work, info)
call zungr2(m, n, k, a, lda, tau, work, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?orgr2/?ungr2 generates an $m$-by-n real matrix $Q$ with orthonormal rows, which is defined as the last $m$ rows of a product of $k$ elementary reflectors of order $n$
$Q=H(1){ }^{*} H(2){ }^{*} \ldots{ }^{*} H(k)$ for real flavors, or $Q=(H(1))^{H *}(H(2))^{H *} \ldots{ }^{*}(H(k))^{H}$ for complex flavors as returned by ?gerqf.

## Input Parameters

m
$n$
k
a
work

INTEGER. The number of rows of the matrix $Q . m \geq 0$.
INTEGER. The number of columns of the matrix $Q . n \geq m$
INTEGER.
The number of elementary reflectors whose product defines the matrix $Q . m$ $\geq k \geq 0$.

REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
DOUBLE COMPLEX for zungr2.
Array, DIMENSION (Ida, n).
On entry, the ( $m-k+i$ )-th row must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ?gerqf in the last $k$ rows of its array argument $a$.

INTEGER. The leading dimension of the array $a$. 1 da $\geq \max (1, m)$.
REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
DOUBLE COMPLEX for zungr2.
Array, DIMENSION ( $k$ ).tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by ?gerqf.
REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
DOUBLE COMPLEX for zungr2.
Workspace array, DIMENSION (m).

## Output Parameters

a
info

On exit, the $m-b y-n$ matrix $Q$.
INTEGER.
= 0: successful exit
$<0$ : if info $=-i$, the $i$-th argument has an illegal value

## ?orm21/?unm21

Multiplies a general matrix by the orthogonal/unitary matrix from a QL factorization determined by ?geqlf (unblocked algorithm).

## Syntax

```
call sorm2l(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
call dorm2l(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
call cunm2l(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
call zunm2l(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?orm2l/?unm2l overwrites the general real/complex m-by-n matrix $C$ with

```
Q*C if side = 'L' and trans = 'N', or
\mp@subsup{Q}{}{T*}C/ Q Q*C if side = 'L' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors), or
C*Q if side = 'R' and trans = 'N', or
C* Q / C* Q ' if side = 'R' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors).
```

Here $Q$ is a real orthogonal or complex unitary matrix defined as the product of $k$ elementary reflectors

```
Q =H(k)* ...*H(2)*H(1) as returned by ?geqlf.
```

$Q$ is of order $m$ if side $=$ 'L' and of order $n$ if side $=$ 'R'.

## Input Parameters

```
side
trans
m
n
k
a
```

```
CHARACTER*1.
```

CHARACTER*1.
= 'L': apply Q or Q / / Q from the left

```
= 'L': apply Q or Q / / Q from the left
```




```
CHARACTER*1.
```

CHARACTER*1.
= 'N': apply Q (no transpose)
= 'N': apply Q (no transpose)
= 'T': apply QT (transpose, for real flavors)
= 'T': apply QT (transpose, for real flavors)
= 'C': apply Q (conjugate transpose, for complex flavors)
= 'C': apply Q (conjugate transpose, for complex flavors)
INTEGER. The number of rows of the matrix c.m \geq0.
INTEGER. The number of columns of the matrix C. n \geq0.
INTEGER. The number of elementary reflectors whose product defines the
matrix Q.
If side = 'L',m\geqk\geq 0;
if side = 'R', n \geq k \geq 0.
REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
DOUBLE COMPLEX for zunm2l.
Array, DIMENSION (lda,k).

```

The \(i\)-th column must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ? geqle in the last \(k\) columns of its array argument \(a\). The array \(a\) is modified by the routine but restored on exit.
```

Ida INTEGER. The leading dimension of the array a.
If side = 'L',lda \geq max(1, m)
if side = 'R', lda \geq max(1, n).
REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
DOUBLE COMPLEX for zunm2l.
Array, DIMENSION (k). tau(i) must contain the scalar factor of the
elementary reflector }H(i)\mathrm{ , as returned by ?geqlf.
C
REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
DOUBLE COMPLEX for zunm2l.
Array, DIMENSION (ldc,n).
On entry, the m-by-n matrix C.
ldc INTEGER. The leading dimension of the array C. Idc \geq max (1,m).
work REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
DOUBLE COMPLEX for zunm2l.
Workspace array, DIMENSION:
(n) if side = 'L',
(m) if side = 'R'.

```

\section*{Output Parameters}
```

C
info

```

On exit, \(c\) is overwritten by \(Q^{\star} C\) or \(Q^{T *} C / Q^{H \star} C\), or \(C^{\star} Q\), or \(C^{\star} Q^{T} / C^{\star} Q^{H}\).
INTEGER.
= 0: successful exit
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value

\section*{?orm2r/?unm2r}

Multiplies a general matrix by the orthogonal/unitary
matrix from a QR factorization determined by ?geqrf
(unblocked algorithm).

\section*{Syntax}
```

call sorm2r( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call dorm2r( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call cunm2r( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call zunm2r( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

```

Include files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?orm \(2 r /\) ?unm \(2 r\) overwrites the general real/complex \(m\)-by- \(n\) matrix \(C\) with
```

Q*C if side = 'L' and trans = 'N', or
\mp@subsup{Q}{}{T*}C/ / Q }\mp@subsup{}{}{H*}C\mathrm{ if side = 'L' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors), or
C*Q if side = 'R' and trans = 'N', or
C* QT}/\mp@subsup{C}{}{\star}\mp@subsup{Q}{}{H}\mathrm{ if side = 'R' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors).

```

Here \(Q\) is a real orthogonal or complex unitary matrix defined as the product of \(k\) elementary reflectors \(Q=H(1) \star H(2) \star \ldots * H(k)\) as returned by ?geqrf.
\(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) ' \(R^{\prime}\).

\section*{Input Parameters}
```

side
trans
m
n
k
a
lda
tau
c

```
```

CHARACTER*1.

```
CHARACTER*1.
= 'L': apply Q or Q 'T Q 直 from the left
= 'L': apply Q or Q 'T Q 直 from the left
= 'R': apply Q or QT / Q from the right
= 'R': apply Q or QT / Q from the right
CHARACTER*1.
CHARACTER*1.
= 'N': apply Q (no transpose)
= 'N': apply Q (no transpose)
= 'T': apply Q (transpose, for real flavors)
= 'T': apply Q (transpose, for real flavors)
= 'C': apply Q (conjugate transpose, for complex flavors)
= 'C': apply Q (conjugate transpose, for complex flavors)
INTEGER. The number of rows of the matrix C. m\geq0.
INTEGER. The number of columns of the matrix C. n \geq0.
INTEGER. The number of elementary reflectors whose product defines the
matrix Q.
If side = 'L',m\geqk\geq0;
if side = 'R', n \geq k \geq 0.
REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
DOUBLE COMPLEX for zunm2r.
Array, DIMENSION (lda,k).
The i-th column must contain the vector which defines the elementary
reflector }H(i)\mathrm{ , for i = 1,2, .., k, as returned by ?geqrf in the first k
columns of its array argument a. The array a is modified by the routine but
restored on exit.
INTEGER. The leading dimension of the array a.
If side = 'L',lda \geq max(1, m);
if side = 'R', lda \geq max(1, n).
REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
DOUBLE COMPLEX for zunm2r.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as
returned by ?geqrf.
REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
```

	DOUBLE COMPLEX for zunm2r. Array, DIMENSION ( $1 d c, n$ ). On entry, the $m$-by-n matrix $C$.
$1 d \mathrm{c}$	Integer. The leading dimension of the array $c$. $1 d \mathrm{c} \geq \mathrm{max}(1, m)$.
work	REAL for sorm2r
	DOUBLE PRECISION for dorm2r
	COMPLEX for cunn2r
	DOUBLE COMPLEX for zunm2r.
	Workspace array, DIMENSION
	$(\mathrm{n})$ if side = 'L',
	$(m)$ if side $=$ 'R'.

## Output Parameters

c
info

On exit, $c$ is overwritten by $Q^{\star} C$ or $Q^{T *} C / Q^{H *} C$, or $C^{\star} Q$, or $C^{\star} Q^{T} / C^{\star} Q^{H}$. INTEGER. = 0: successful exit $<0$ : if info $=-i$, the $i$-th argument had an illegal value

## ?orml2/?unml2

Multiplies a general matrix by the orthogonal/unitary matrix from a LQ factorization determined by ?gelqf (unblocked algorithm).

## Syntax

```
call sorml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
call dorml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
call cunml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
call zunml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?orml2/?unml2 overwrites the general real/complex m-by-n matrix $C$ with $Q^{\star} C$ if side $=$ 'L' and trans $=$ 'N', or
$Q^{T \star} C / Q^{H \star} C$ if side $=$ 'L' and trans $=$ 'T' (for real flavors) or trans = 'C' (for complex flavors), or $C^{\star} Q$ if side $=$ ' $R^{\prime}$ and trans $=$ ' $N$ ', or
$C^{\star} Q^{T} / C^{\star} Q^{H}$ if side = 'R' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors).
Here $Q$ is a real orthogonal or complex unitary matrix defined as the product of $k$ elementary reflectors $Q=H(k) * \ldots{ }^{\star} H(2){ }^{*} H(1)$ for real flavors, or $Q=(H(k))^{H_{\star}} \ldots{ }^{*}(H(2))^{H_{\star}}(H(1))^{H}$ for complex flavors as returned by ?gelqf.
$Q$ is of order $m$ if side $=$ 'L' and of order $n$ if side $=$ 'R'.

## Input Parameters

side

CHARACTER*1.

```
= 'L': apply Q or QT / Q from the left
= 'R': apply Q or Q / | Q from the right
CHARACTER*1.
= 'N': apply Q (no transpose)
= 'T': apply Q T
= 'C': apply Q (conjugate transpose, for complex flavors)
INTEGER. The number of rows of the matrix c. m \geq 0.
INTEGER. The number of columns of the matrix C. n \geq0.
INTEGER. The number of elementary reflectors whose product defines the
matrix Q.
If side = 'L',m\geqk\geq 0;
if side = 'R', n \geq k \geq 0.
REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
DOUBLE COMPLEX for zunml2.
Array, DIMENSION
(lda,m) if side = 'L',
(lda, n) if side = 'R'
The i-th row must contain the vector which defines the elementary reflector
H(i), for i = 1,2, .., k, as returned by ?gelqf in the first k rows of its
array argument a. The array a is modified by the routine but restored on
exit.
 INTEGER. The leading dimension of the array a. Ida \geq max (1,k).
REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
DOUBLE COMPLEX for zunml2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as
returned by ?gelqf.
C
ldc
work
REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
DOUBLE COMPLEX for zunml2.
Array, DIMENSION (Idc, n) On entry, the m-by-n matrix c.
INTEGER. The leading dimension of the array c. ldc \geq max (1,m).
REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
DOUBLE COMPLEX for zunml2.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'
```


## Output Parameters

```
c
info
```

On exit, $c$ is overwritten by $Q^{\star} C$ or $Q^{T *} C / Q^{H \star} C$, or $C^{\star} Q$, or $C^{\star} Q^{T} / C^{\star} Q^{H}$.
INTEGER.
= 0: successful exit

$$
<0 \text { : if info }=-i \text {, the } i \text {-th argument had an illegal value }
$$

?ormr2/?unmr2<br>Multiplies a general matrix by the orthogonal/unitary<br>matrix from a $R Q$ factorization determined by ?gerqf (unblocked algorithm).

## Syntax

```
call sormr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
call dormr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
call cunmr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
call zunmr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
```

Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?ormr2/?unmr2 overwrites the general real/complex m-by-n matrix $C$ with

```
Q*C if side = 'L' and trans = 'N', or
\mp@subsup{Q}{}{T}*C/ Q Q C if side = 'L' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors), or
C*Q if side = 'R' and trans = 'N', or
C* QT / C* Q ' if side = 'R' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors).
```

Here $Q$ is a real orthogonal or complex unitary matrix defined as the product of $k$ elementary reflectors $Q=H(1){ }^{*} H(2) * \ldots{ }^{*} H(k)$ for real flavors, or $Q=(H(1))^{H_{\star}}(H(2))^{H_{\star}} \ldots{ }^{*}(H(k))^{H}$ as returned by ? gerqf. $Q$ is of order $m$ if side $=$ 'L' and of order $n$ if side $=$ 'R'.

## Input Parameters

```
side
trans
 CHARACTER*1.
 = 'L': apply Q or Q / / Q from the left
 = 'R': apply Q or Q / / Q from the right
 CHARACTER*1.
 = 'N': apply Q (no transpose)
 = 'T': apply QT (transpose, for real flavors)
 = 'C': apply Q (conjugate transpose, for complex flavors)
 INTEGER. The number of rows of the matrix c. m\geq0.
 INTEGER. The number of columns of the matrix C. n\geq0}\geq
 INTEGER. The number of elementary reflectors whose product defines the
 matrix Q.
 If side = 'L',m\geqk\geq0;
 if side = 'R', n \geq k \geq0.
 REAL for sormr2
 DOUBLE PRECISION for dormr2
 COMPLEX for cunmr2
 DOUBLE COMPLEX for zunmr2.
 Array, DIMENSION
```

$(l d a, m)$ if side $=$ 'L', $(l d a, n)$ if side $=$ ' '
The $i$-th row must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ?gerqf in the last $k$ rows of its array argument $a$. The array $a$ is modified by the routine but restored on exit.
Ida
INTEGER.
The leading dimension of the array $a$. $1 d a \geq \max (1, k)$.
tau

REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
DOUBLE COMPLEX for zunmr2.
Array, DIMENSION ( $k$ ).
$\operatorname{tau}(i)$ must contain the scalar factor of the elementary reflector $H(i)$, as returned by ?gerqf.
c
REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
DOUBLE COMPLEX for zunmr2.
Array, DIMENSION ( $1 d c, n$ ).
On entry, the m-by-n matrix $C$.
$I d c \quad$ INTEGER. The leading dimension of the array $c . l d c \geq \max (1, m)$.
work
REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
DOUBLE COMPLEX for zunmr2.
Workspace array, DIMENSION
( $n$ ) if side = 'L',
(m) if side $=$ ' $\mathrm{R}^{\prime}$

## Output Parameters

c
info
On exit, $c$ is overwritten by $Q^{\star} C$ or $Q^{T *} C / Q^{H \star} C$, or $C^{\star} Q$, or $C^{\star} Q^{T} / C^{\star} Q^{H}$.
INTEGER.
= 0: successful exit
$<0$ : if info $=-i$, the $i$-th argument had an illegal value

## ?ormr3/?unmr3

Multiplies a general matrix by the orthogonal/unitary
matrix from a RZ factorization determined by ?tzrzf
(unblocked algorithm).

## Syntax

```
call sormr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)
call dormr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)
call cunmr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)
call zunmr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The routine ?ormr3/?unmr3 overwrites the general real/complex m-by-n matrix $C$ with

```
Q*C if side = 'L' and trans = 'N', or
\mp@subsup{Q}{}{T*}C/ Q Q*C if side = 'L' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors), or
C*Q if side = 'R' and trans = 'N',or
C* Q / C* Q ' if side = 'R' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors).
```

Here $Q$ is a real orthogonal or complex unitary matrix defined as the product of $k$ elementary reflectors $Q=H(1) * H(2) * \ldots * H(k)$ as returned by ?tzrzf.
$Q$ is of order $m$ if side $=$ 'L' and of order $n$ if side $=$ 'R'.

## Input Parameters

```
side
trans
m
n
k
I
a
lda
tau
```

```
CHARACTER*1.
```

CHARACTER*1.
= 'L': apply Q or QT / Q from the left

```
= 'L': apply Q or QT / Q from the left
```




```
CHARACTER*1.
```

CHARACTER*1.
= 'N': apply Q (no transpose)
= 'N': apply Q (no transpose)
= 'T': apply Q (transpose, for real flavors)
= 'T': apply Q (transpose, for real flavors)
= 'C': apply QH
= 'C': apply QH
INTEGER. The number of rows of the matrix c.m \geq0.
INTEGER. The number of columns of the matrix c. n \geq0.
INTEGER. The number of elementary reflectors whose product defines the
matrix Q.
If side = 'L',m\geqk\geq 0;
if side = 'R', n\geq k \geq 0.

```

1
\(a\)

INTEGER. The number of columns of the matrix \(A\) containing the meaningful part of the Householder reflectors.
If side \(=\) 'L', \(m \geq 1 \geq 0\), if side \(=\) 'R', \(n \geq 1 \geq 0\).

REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
DOUBLE COMPLEX for zunmr3.
Array, DIMENSION
(lda, m) if side = 'L',
(lda, n) if side = 'R'
The \(i\)-th row must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ?tzrzf in the last \(k\) rows of its array argument \(a\). The array a is modified by the routine but restored on exit.

INTEGER.
The leading dimension of the array \(a\). \(1 d a \geq \max (1, k)\).
REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
DOUBLE COMPLEX for zunmr3.
Array, DIMENSION (\(k\)).
```

                                    tau(i) must contain the scalar factor of the elementary reflector H(i), as returned by ?tzrzf.
    REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
DOUBLE COMPLEX for zunmr3.
Array, DIMENSION (ldc, n).
On entry, the m-by-n matrix $c$.
$I d c \quad$ INTEGER. The leading dimension of the array $c$. $I d c \geq \max (1, m)$.
work
REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
DOUBLE COMPLEX for zunmr3.
Workspace array, DIMENSION
$(n)$ if side $=$ 'L',
( $m$ ) if side $=$ ' R '.

```

\section*{Output Parameters}
```

C
info

```

On exit, \(c\) is overwritten by \(Q^{\star} C\) or \(Q^{T *} C / Q^{H \star} C\), or \(C^{\star} Q\), or \(C^{\star} Q^{T} / C^{\star} Q^{H}\).
INTEGER.
\(=0\) : successful exit
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value

\section*{?pbtf2}

Computes the Cholesky factorization of a symmetric/
Hermitian positive-definite band matrix (unblocked
algorithm).

\section*{Syntax}
```

call spbtf2( uplo, n, kd, ab, ldab, info )
call dpbtf2( uplo, n, kd, ab, ldab, info )
call cpbtf2( uplo, n, kd, ab, ldab, info )
call zpbtf2( uplo, n, kd, ab, ldab, info )

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine computes the Cholesky factorization of a real symmetric or complex Hermitian positive definite band matrix \(A\).

The factorization has the form
\(A=U^{T} * U\) for real flavors, \(A=U^{H \star} U\) for complex flavors if uplo \(=' U '\), or
\(A=L^{\star} L^{T}\) for real flavors, \(A=L^{\star} L^{H}\) for complex flavors if uplo \(=\) ' \(L\) ',
where \(U\) is an upper triangular matrix, and \(L\) is lower triangular. This is the unblocked version of the algorithm, calling BLAS Level 2 Routines.

\section*{Input Parameters}
```

uplo
n
kd
ab
ldab

```

\section*{Output Parameters}
```

ab
info

```

On exit, If info \(=0\), the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T \star} U\left(A=U^{H \star} U\right)\), or \(A=L^{\star} L^{T}\left(A=L^{\star} L^{H}\right)\) of the band matrix \(A\), in the same storage format as \(A\).
INTEGER.
= 0: successful exit
< 0: if info \(=-k\), the \(k\)-th argument had an illegal value \(>0\) : if info \(=k\), the leading minor of order \(k\) is not positive definite, and the factorization could not be completed.

\section*{?potf2}

Computes the Cholesky factorization of a symmetric/ Hermitian positive-definite matrix (unblocked algorithm).

\section*{Syntax}
```

call spotf2( uplo, n, a, lda, info )
call dpotf2( uplo, n, a, lda, info )
call cpotf2( uplo, n, a, lda, info )
call zpotf2( uplo, n, a, lda, info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?potf2 computes the Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix \(A\). The factorization has the form
```

A = U'U}\mp@subsup{U}{}{T}|\mathrm{ for real flavors, }A=\mp@subsup{U}{}{H*}U\mathrm{ for complex flavors if uplo = 'U', or
A = L`` L' for real flavors, }A=\mp@subsup{L}{}{\star}\mp@subsup{L}{}{H}\mathrm{ for complex flavors if uplo = 'L',

```
where \(U\) is an upper triangular matrix, and \(L\) is lower triangular.
This is the unblocked version of the algorithm, calling BLAS Level 2 Routines

\section*{Input Parameters}
```

uplo
n
a
lda

```

\section*{Output Parameters}
a
info

On exit, If info \(=0\), the factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T} \star U\left(A=U^{H} \star U\right)\), or \(A=L^{\star} L^{T}\left(A=L^{\star} L^{H}\right)\).

INTEGER.
= 0: successful exit
\(<0\) : if info \(=-k\), the \(k\)-th argument had an illegal value
\(>0\) : if info \(=k\), the leading minor of order \(k\) is not positive definite, and the factorization could not be completed.

\section*{?ptts2}

Solves a tridiagonal system of the form \(A * X=B\) using
the \(L^{\star} D^{\star} L^{H} / L^{\star} D^{\star} L^{H}\) factorization computed by ?pttrf.
Syntax
```

call sptts2( n, nrhs, d, e, b, ldb )
call dptts2( n, nrhs, d, e, b, ldb )
call cptts2( iuplo, n, nrhs, d, e, b, ldb )

```
```

call zptts2( iuplo, n, nrhs, d, e, b, ldb )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?ptts 2 solves a tridiagonal system of the form
\(A^{*} X=B\)
Real flavors sptts2/dptts2 use the \(L^{\star} D^{\star} L^{T}\) factorization of \(A\) computed by spttrf/dpttrf, and complex flavors cptts2/zptts2 use the \(U^{H \star} D^{\star} U\) or \(L^{\star} D^{\star} L^{H}\) factorization of A computed by cpttrf/zpttrf.
\(D\) is a diagonal matrix specified in the vector \(d_{,} U(\) or \(L\)) is a unit bidiagonal matrix whose superdiagonal (subdiagonal) is specified in the vector \(e\), and \(X\) and \(B\) are \(n\)-by- \(n r h s\) matrices.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline iuplo & \begin{tabular}{l}
INTEGER. Used with complex flavors only. \\
Specifies the form of the factorization, and whether the vector \(e\) is the superdiagonal of the upper bidiagonal factor \(U\) or the subdiagonal of the lower bidiagonal factor \(L\).
\[
\begin{aligned}
& =1: A=U^{H \star} D^{\star} U, e \text { is the superdiagonal of } U ; \\
& =0: A=L^{\star} D^{\star} L^{H}, e \text { is the subdiagonal of } L
\end{aligned}
\]
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the tridiagonal matrix \(A\). \(n \geq 0\). \\
\hline nrhs & INTEGER. The number of right hand sides, that is, the number of columns of the matrix \(B\). nrhs \(\geq 0\). \\
\hline d & \begin{tabular}{l}
REAL for sptts2/cptts2 \\
DOUBLE PRECISION for dptts2/zptts2. \\
Array, DIMENSION (\(n\)). \\
The \(n\) diagonal elements of the diagonal matrix \(D\) from the factorization of A.
\end{tabular} \\
\hline e & \begin{tabular}{l}
REAL for sptts2 \\
DOUBLE PRECISION for dptts2 \\
COMPLEX for cptts2 \\
DOUBLE COMPLEX for zptts2. \\
Array, DIMENSION (\(n-1\)). \\
Contains the (\(n-1\)) subdiagonal elements of the unit bidiagonal factor \(L\) from the \(L^{\star} D^{\star} L^{T}\) (for real flavors) or \(L^{\star} D^{\star} L^{H}\) (for complex flavors when iuplo = 0) factorization of \(A\). \\
For complex flavors when iuplo \(=1\), e contains the (\(n-1\)) superdiagonal elements of the unit bidiagonal factor \(U\) from the factorization \(A=U^{H \star} D^{\star} U\).
\end{tabular} \\
\hline B & \begin{tabular}{l}
REAL for sptts2/cptts2 \\
DOUBLE PRECISION for dptts2/zptts2. \\
Array, DIMENSION (ldb, nrhs). \\
On entry, the right hand side vectors \(B\) for the system of linear equations.
\end{tabular} \\
\hline 1 db & INTEGER. The leading dimension of the array \(B\). \(1 \mathrm{db} \geq \mathrm{max}(1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
b
On exit, the solution vectors, \(x\).

\section*{?rscl}

Multiplies a vector by the reciprocal of a real scalar.

\section*{Syntax}
```

call srscl( n, sa, sx, incx )
call drscl( n, sa, sx, incx )
call csrscl( n, sa, sx, incx )
call zdrscl( n, sa, sx, incx )

```

Include files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?rscl multiplies an \(n\)-element real/complex vector \(x\) by the real scalar \(1 / a\). This is done without overflow or underflow as long as the final result \(x / a\) does not overflow or underflow.

\section*{Input Parameters}
```

n
sa
sx
incx
INTEGER. The number of components of the vector $x$.
REAL for srscl/csrscl
DOUBLE PRECISION for drscl/zdrscl.
The scalar a which is used to divide each component of the vector $x$. sa must be $\geq 0$, or the subroutine will divide by zero.
$S X$
REAL for srscl
DOUBLE PRECISION for drscl
COMPLEX for csrscl
DOUBLE COMPLEX for zdrscl.
Array, DIMENSION ( $1+(n-1)$ * $\mid$ incx $\mid$ ).
The $n$-element vector $x$.
incx INTEGER. The increment between successive values of the vector sx.
If incx $>0, s x(1)=x(1)$, and $s x(1+(i-1) * i n c x)=x(i), 1<i \leq n$.

```

\section*{Output Parameters}
\(s x \quad\) On exit, the result \(x / a\).

\section*{?syswapr}

Applies an elementary permutation on the rows and columns of a symmetric matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssyswapr( uplo, n, a, il, i2 )
call dsyswapr( uplo, n, a, il, i2 )
call csyswapr( uplo, n, a, il, i2 )
call zsyswapr( uplo, n, a, il, i2 )

```

\section*{Fortran 95:}
```

call syswapr( a,il,i2[,uplo] )

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90

\section*{Description}

The routine applies an elementary permutation on the rows and columns of a symmetric matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates how the input matrix \(A\) has been factored: \\
\hline & If uplo = ' \(U\) ', the array a stores the upper triangular factor \(U\) of the factorization \(A=U * D^{*} U^{T}\). \\
\hline & If uplo = ' L', the array a stores the lower triangular factor \(L\) of the factorization \(A=L^{*} D^{*} L^{T}\). \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; nrhs \(\geq 0\). \\
\hline \multirow[t]{6}{*}{a} & REAL for ssyswapr \\
\hline & DOUBLE PRECISION for dsyswapr \\
\hline & COMPLEX for csyswapr \\
\hline & DOUBLE COMPLEX for zsyswapr \\
\hline & Array of dimension (lda, \(n\)). \\
\hline & The array a contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?sytrf. \\
\hline 11 & Integer. Index of the first row to swap. \\
\hline i2 & INTEGER. Index of the second row to swap. \\
\hline
\end{tabular}

\section*{Output Parameters}
If info \(=0\), the symmetric inverse of the original matrix.
If info \(=\) ' \(U\) ', the upper triangular part of the inverse is formed and the part of
A below the diagonal is not referenced.
If info \(=\) ' L ', the lower triangular part of the inverse is formed and the part of
A above the diagonal is not referenced.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine syswapr interface are as follows:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
i1 & Holds the index for swap. \\
uplo & Holds the index for swap. \\
indicates how the matrix \(A\) has been factored. Must be ' U' or 'L'.
\end{tabular}

\section*{See Also}
?sytrf

\section*{?heswapr \\ Applies an elementary permutation on the rows and columns of a Hermitian matrix.}

\section*{Syntax}

\section*{Fortran 77:}
```

call cheswapr( uplo, n, a, il, i2 )
call zheswapr( uplo, n, a, il, i2 )

```

\section*{Fortran 95:}
```

call heswapr( a, il, i2 [,uplo] )

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90

\section*{Description}

The routine applies an elementary permutation on the rows and columns of a Hermitian matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates how the input matrix \(A\) has been factored: \\
\hline & If uplo = 'U', the array a stores the upper triangular factor \(U\) of the factorization \(A=U \star D * U^{H}\). \\
\hline & If uplo = 'L', the array a stores the lower triangular factor \(L\) of the factorization \(A=L * D * L^{H}\). \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; nrhs \(\geq 0\). \\
\hline \multirow[t]{4}{*}{a} & COMPLEX for cheswapr \\
\hline & DOUBLE COMPLEX for zheswapr \\
\hline & Array of dimension (lda, \(n\)). \\
\hline & The array a contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?hetrf. \\
\hline i1 & INTEGER. Index of the first row to swap. \\
\hline 12 & INTEGER. Index of the second row to swap. \\
\hline
\end{tabular}

\section*{Output Parameters}
If info \(=0\), the inverse of the original matrix.
If info \(=' U '\), the upper triangular part of the inverse is formed and the part of
A below the diagonal is not referenced.
If info \(=\) ' L , the lower triangular part of the inverse is formed and the part of
A above the diagonal is not referenced.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine heswapr interface are as follows:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
i1 & Holds the index for swap. \\
i2 & Holds the index for swap. \\
uplo & Must be 'U' or 'L'.
\end{tabular}

\section*{See Also}
?hetrf
?syswapr1

\section*{?syswapr1}

Applies an elementary permutation on the rows and columns of a symmetric matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssyswaprl( uplo, n, a, il, i2 )
call dsyswapr1( uplo, n, a, il, i2 )
call csyswaprl( uplo, n, a, il, i2 )
call zsyswapr1( uplo, n, a, il, i2 )

```

\section*{Fortran 95:}
```

call syswapr1( a,il,i2[,uplo] )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- Fortran 95: lapack.f90

\section*{Description}

The routine applies an elementary permutation on the rows and columns of a symmetric matrix.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the
factorization }A=U*D*\mp@subsup{U}{}{T}\mathrm{ .
If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = L* D* L'T.
n INTEGER. The order of matrix A; n\geq0.
nrhs
a
lda
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix $A$ has been factored:
If uplo = 'U', the array a stores the upper triangular factor $U$ of the factorization $A=U * D * U^{T}$.
If uplo = 'L', the array a stores the lower triangular factor $L$ of the factorization $A=L^{\star} D^{*} L^{T}$.
INTEGER. The order of matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; nrhs $\geq 0$.
REAL for ssyswapr1
DOUBLE PRECISION for dsyswapr1
COMPLEX for csyswapr1
DOUBLE COMPLEX for zsyswapr1
Array of dimension (lda, $n$ ).
The array a contains the block diagonal matrix $D$ and the multipliers used to obtain the factor $U$ or $L$ as computed by ?sytrf.
lda
INTEGER. The leading dimension of the array a. $I d a \geq \max (1, n)$.

```
\begin{tabular}{ll}
i1 & INTEGER. Index of the first row to swap. \\
i2 & INTEGER. Index of the second row to swap.
\end{tabular}

\section*{Output Parameters}
a If info \(=0\), the symmetric inverse of the original matrix.
If info = 'U', the upper triangular part of the inverse is formed and the part of \(A\) below the diagonal is not referenced.
If info = 'L', the lower triangular part of the inverse is formed and the part of \(A\) above the diagonal is not referenced.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine syswapr1 interface are as follows:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
i1 Holds the index for swap.
i2 Holds the index for swap.
uplo Indicates how the matrix A has been factored. Must be 'U' or 'L'.

```

See Also
?sytrf

\section*{?sygs2/?hegs2}

Reduces a symmetric/Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from ?potrf (unblocked algorithm).

\section*{Syntax}
```

call ssygs2( itype, uplo, n, a, lda, b, ldb, info )
call dsygs2( itype, uplo, n, a, lda, b, ldb, info )
call chegs2( itype, uplo, n, a, lda, b, ldb, info )
call zhegs2( itype, uplo, n, a, lda, b, ldb, info )

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?sygs2/?hegs2 reduces a real symmetric-definite or a complex Hermitian-definite generalized eigenproblem to standard form.
If itype \(=1\), the problem is
\[
A^{\star} X=\lambda \star B^{\star} X
\]
and \(A\) is overwritten by \(\operatorname{inv}\left(U^{H}\right) \star A \star \operatorname{inv}(U)\) or \(\operatorname{inv}(L) * A * \operatorname{inv}\left(L^{H}\right)\) for complex flavors and by \(\operatorname{inv}\left(U^{T}\right) \star A * \operatorname{inv}(U)\) or \(\operatorname{inv}(L) \star A * \operatorname{inv}\left(L^{T}\right)\) for real flavors.
If itype \(=2\) or 3 , the problem is
\(A^{\star} B^{\star}{ }_{X}=\lambda^{\star}{ }_{x}\), or \(B^{\star} A^{\star}{ }_{X}=\lambda^{\star}{ }_{x}\),
and \(A\) is overwritten by \(U^{\star} A^{\star} U^{H}\) or \(L^{H \star} A^{\star} L\) for complex flavors and by \(U^{\star} A^{\star} U^{T}\) or \(L^{T \star} A^{\star} L\) for real flavors. Here \(U^{T}\) and \(L^{T}\) are the transpose while \(U^{H}\) and \(L^{H}\) are conjugate transpose of \(U\) and \(L\).
\(B\) must be previously factorized by ?potrf as follows:
- \(U^{H \star} U\) or \(L^{\star} L^{H}\) for complex flavors
- \(U^{T} \star U\) or \(L^{\star} L^{T}\) for real flavors

\section*{Input Parameters}
itype
uplo
n
a

Ida
b
\(1 d b\)

\section*{Output Parameters}
a
info

INTEGER.
For complex flavors:
= 1: compute \(\operatorname{inv}\left(U^{H}\right) \star A \star \operatorname{inv}(U)\) or inv(\(L\)) * \(A^{\star} \operatorname{inv}\left(L^{H}\right)\);
\(=2\) or 3 : compute \(U^{\star} A^{\star} U^{H}\) or \(L^{H \star} A^{\star} L\).
For real flavors:
= 1: compute \(\operatorname{inv}\left(U^{T}\right) \star A \star \operatorname{inv}(U)\) or inv \((L) \star A \star \operatorname{inv}\left(L^{T}\right)\);
\(=2\) or 3 : compute \(U^{\star} A^{\star} U^{T}\) or \(L^{T \star} A^{\star} L\).
CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric/Hermitian matrix \(A\) is stored, and how \(B\) has been factorized.
= 'U': upper triangular
= 'L': lower triangular
INTEGER. The order of the matrices \(A\) and \(B . n \geq 0\).
REAL for ssygs2
DOUBLE PRECISION for dsygs2
COMPLEX for chegs2
DOUBLE COMPLEX for zhegs2.
Array, DIMENSION (Ida, n).
On entry, the symmetric/Hermitian matrix \(A\).
If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced.
If uplo = 'L', the leading \(n-b y-n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.
INTEGER.
The leading dimension of the array \(a . l d a \geq \max (1, n)\).
REAL for ssygs2
DOUBLE PRECISION for dsygs2
COMPLEX for chegs2
DOUBLE COMPLEX for zhegs2.
Array, DIMENSION (\(1 \mathrm{db}, \mathrm{n}\)).
The triangular factor from the Cholesky factorization of \(B\) as returned by ? potrf.
INTEGER. The leading dimension of the array b. \(1 \mathrm{db} \geq \max (1, n)\).

On exit, If info \(=0\), the transformed matrix, stored in the same format as A.

INTEGER.
\(=0\) : successful exit.
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value.

\section*{?sytd2/?hetd2}

Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation(unblocked algorithm).

\section*{Syntax}
```

call ssytd2( uplo, n, a, lda, d, e, tau, info )
call dsytd2( uplo, n, a, lda, d, e, tau, info )
call chetd2( uplo, n, a, lda, d, e, tau, info )
call zhetd2( uplo, n, a, lda, d, e, tau, info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?sytd2/?hetd2 reduces a real symmetric/complex Hermitian matrix \(A\) to real symmetric tridiagonal form \(T\) by an orthogonal/unitary similarity transformation: \(Q^{T \star} A^{\star} Q=T\left(Q^{H \star} A \star Q=T\right)\).

\section*{Input Parameters}
```

uplo
n
a
lda

```

\section*{Output Parameters}
a
On exit, if uplo = 'U', the diagonal and first superdiagonal of a are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements above the first superdiagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors; if uplo = 'L', the diagonal and first subdiagonal of a are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements below the first subdiagonal, with the array tau, represent the orthogonal/ unitary matrix \(Q\) as a product of elementary reflectors.
```

d
REAL for ssytd2/chetd2
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION (n).
The diagonal elements of the tridiagonal matrix T:
d(i) = a(i,i).
e
REAL for ssytd2/chetd2
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION ( }n-1\mathrm{ ).
The off-diagonal elements of the tridiagonal matrix T}T\mathrm{ :
e(i) = a(i,i+1) if uplo = 'U',
e(i) = a(i+1,i) if uplo = 'L'.
REAL for ssytd2
DOUBLE PRECISION for dsytd2
COMPLEX for chetd2
DOUBLE COMPLEX for zhetd2.
Array, DIMENSION (n).
The first n-1 elements contain scalar factors of the elementary reflectors.
tau(n) is used as workspace.
info
INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value.

```

\section*{?sytf2}

Computes the factorization of a real/complex symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm).

\section*{Syntax}
```

call ssytf2( uplo, n, a, lda, ipiv, info )
call dsytf2( uplo, n, a, lda, ipiv, info )
call csytf2( uplo, n, a, lda, ipiv, info )
call zsytf2( uplo, n, a, lda, ipiv, info )

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?sytf2 computes the factorization of a real/complex symmetric matrix A using the BunchKaufman diagonal pivoting method:
```

A = U* D* 晒, or }A=\mp@subsup{L}{}{\star}\mp@subsup{D}{}{\star}\mp@subsup{L}{}{T}

```
where \(U(\operatorname{or} L)\) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling BLAS Level 2 Routines.
Input Parameters

Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored
= 'U': upper triangular
= 'L': lower triangular
INTEGER. The order of the matrix \(A\). \(n \geq 0\).
REAL for ssytf2
DOUBLE PRECISION for dsytf2
COMPLEX for csytf2
DOUBLE COMPLEX for zsytf2.
Array, DIMENSION (\(1 d a, n\)).
On entry, the symmetric matrix \(A\).
If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

INTEGER.
The leading dimension of the array \(a\). Ida \(\geq \max (1, n)\).

\section*{Output Parameters}
a
ipiv
info

On exit, the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\).

INTEGER.
Array, DIMENSION (n).
Details of the interchanges and the block structure of \(D\)
If ipiv(k) > 0, then rows and columns \(k\) and \(\operatorname{ipiv(k)~are~interchanged~}\) and \(D(k, k)\) is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) =ipiv(k-1) < 0, then rows and columns \(k-1\) and \(-\operatorname{ipiv}(k)\) are interchanged and \(D(k, k)\) is a 2-by-2 diagonal block. If uplo \(=\) 'L' and ipiv(\(k\)) \(=\operatorname{ipiv}(k+1)<0\), then rows and columns \(k+1\) and -ipiv(\(k\)) were interchanged and \(D(k: k+1, k: k+1)\) is a \(2-b y-2\) diagonal block.
INTEGER.
= 0: successful exit
\(<0\) : if info \(=-k\), the \(k\)-th argument has an illegal value
> 0: if info \(=k, D(k, k)\) is exactly zero. The factorization are completed, but the block diagonal matrix \(D\) is exactly singular, and division by zero will occur if it is used to solve a system of equations.

\section*{?hetf2}

Computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (unblocked algorithm).

\section*{Syntax}
```

call chetf2( uplo, n, a, lda, ipiv, info)
call zhetf2( uplo, n, a, lda, ipiv, info)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine computes the factorization of a complex Hermitian matrix \(A\) using the Bunch-Kaufman diagonal pivoting method:
```

A = U\star D* U}\mp@subsup{U}{}{H}\mathrm{ or }A=\mp@subsup{L}{}{\star}\mp@subsup{D}{}{\star}\mp@subsup{L}{}{H

```
where \(U\) (or \(L\)) is a product of permutation and unit upper (lower) triangular matrices, \(U^{H}\) is the conjugate transpose of \(U\), and \(D\) is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

This is the unblocked version of the algorithm, calling BLAS Level 2 Routines.

\section*{Input Parameters}
```

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian matrix
A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
INTEGER. The order of the matrix A. n \geq0.
COMPLEX for chetf2
DOUBLE COMPLEX for zhetf2.
Array, DIMENSION (lda,n).
On entry, the Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of A contains the
upper triangular part of the matrix A, and the strictly lower triangular part
of A is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of A contains the
lower triangular part of the matrix A, and the strictly upper triangular part
of }A\mathrm{ is not referenced.
INTEGER. The leading dimension of the array a. lda \geq max (1,n).

```

\section*{Output Parameters}
\(a\)
ipiv
info
On exit, the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\).

INTEGER. Array, DIMENSION (\(n\)).
Details of the interchanges and the block structure of \(D\)
If ipiv(k) \(>0\), then rows and columns \(k\) and ipiv \((k)\) were interchanged and \(D(k, k)\) is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) \(=\operatorname{ipiv}(k-1)<0\), then rows and columns \(k-1\) and -ipiv(k) were interchanged and \(D(k-1: k, k-1: k)\) is a 2-by-2 diagonal block.
If uplo = 'L' and ipiv(k) =ipiv(\(k+1\)) < 0, then rows and columns \(k+1\) and -ipiv(k) were interchanged and \(D(k: k+1, k: k+1)\) is a 2-by-2 diagonal block.

INTEGER.
= 0: successful exit
< 0 : if info \(=-k\), the \(k\)-th argument had an illegal value
\(>0\) : if info \(=k, D(k, k)\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, and division by zero will occur if it is used to solve a system of equations.

\section*{?tgex2}

Swaps adjacent diagonal blocks in an upper (quasi)
triangular matrix pair by an orthogonal/unitary equivalence transformation.

\section*{Syntax}
```

call stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, n1, n2, work,
lwork, info )
call dtgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, n1, n2, work,
lwork, info )
call ctgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, jl, info )
call ztgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, jl, info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The real routines stgex2/dtgex2 swap adjacent diagonal blocks (\(A 11, B 11\)) and (\(A 22, B 22\)) of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair \((A, B)\) by an orthogonal equivalence transformation. (\(A, B\)) must be in generalized real Schur canonical form (as returned by sgges/dgges), that is, \(A\) is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. \(B\) is upper triangular.

The complex routines ctgex2/ztgex2 swap adjacent diagonal 1-by-1 blocks (\(A 11, B 11\)) and (\(A 22, B 22\)) in an upper triangular matrix pair \((A, B)\) by an unitary equivalence transformation.
\((A, B)\) must be in generalized Schur canonical form, that is, \(A\) and \(B\) are both upper triangular.
All routines optionally update the matrices \(Q\) and \(Z\) of generalized Schur vectors:
For real flavors,
```

Q(in)*A(in)*Z(in)}\mp@subsup{}{}{T}=Q(out)*A(out)*Z(out)
Q(in)*B(in)*Z(in)T}=Q(out)*B(out)*Z(out)T

```

For complex flavors,
```

Q(in)*A(in)*Z(in)}\mp@subsup{}{}{H}=Q(out)*A(out)*Z(out) H
Q(in)*B(in)*Z(in)}\mp@subsup{}{}{H}=Q(out)*B(out)*Z(out) H.

```

Input Parameters
```

wantq LOGICAL.
If wantq = .TRUE. : update the left transformation matrix Q;
If wantq = .FALSE. : do not update Q.
wantz LOGICAL.
If wantz = .TRUE . : update the right transformation matrix z;
If wantz = .FALSE.: do not update z.
n
a,b REAL for stgex2 DOUBLE PRECISION for dtgex2

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{} & COMPLEX for ctgex2 \\
\hline & DOUBLE COMPLEX for ztgex2. \\
\hline & Arrays, DIMENSION (\(1 \mathrm{da}, \mathrm{n}\)) and (\(1 \mathrm{db}, \mathrm{n}\)), respectively. \\
\hline & On entry, the matrices \(A\) and \(B\) in the pair (\(A, B\)). \\
\hline Ida & INTEGER. The leading dimension of the array \(a .1 d a \geq \max (1, n)\). \\
\hline 1 db & INTEGER. The leading dimension of the array b. \(1 \mathrm{db} \geq \mathrm{max}(1, n)\). \\
\hline \multirow[t]{5}{*}{q, z} & REAL for stgex2 DOUBLE PRECISION for dtgex2 \\
\hline & COMPLEX for ctgex2 \\
\hline & DOUBLE COMPLEX for ztgex2. \\
\hline & Arrays, DIMENSION (\(1 d q, n\)) and (\(l d z, n\)), respectively. \\
\hline & On entry, if want \(q=\). TRUE., \(q\) contains the orthogonal/unitary matrix \(Q\), and if wantz = .TRUE., z contains the orthogonal/unitary matrix \(z\). \\
\hline \multirow[t]{2}{*}{\(1 d q\)} & INTEGER. The leading dimension of the array \(q\). 1 dq \(\geq 1\). \\
\hline & If wantq \(=\). TRUE., \(1 d q \geq \mathrm{n}\). \\
\hline \multirow[t]{2}{*}{\(1 d z\)} & INTEGER. The leading dimension of the array z. \(1 \mathrm{dz} \geq 1\). \\
\hline & If wantz = .TRUE., \(1 d z \geq n\). \\
\hline \multirow[t]{2}{*}{j1} & INTEGER. \\
\hline & The index to the first block (\(A 11, B 11\)). \(1 \leq j 1 \leq n\). \\
\hline n1 & INTEGER. Used with real flavors only. The order of the first block (A11, B11). \(n 1=0,1\) or 2 . \\
\hline \(n 2\) & INTEGER. Used with real flavors only. The order of the second block (A22, B22). n2 = 0, 1 or 2 . \\
\hline \multirow[t]{3}{*}{work} & REAL for stgex2 \\
\hline & DOUBLE PRECISION for dtgex2. \\
\hline & Workspace array, DIMENSION (max (1,lwork)). Used with real flavors only. \\
\hline \multirow[t]{2}{*}{Iwork} & INTEGER. The dimension of the array work. \\
\hline & \[
1 \text { work } \geq \max \left(n^{*}(n 2+n 1), 2 *(n 2+n 1)^{2}\right)
\] \\
\hline
\end{tabular}

\section*{Output Parameters}
```

a
B
Q
z
info

```

On exit, the updated matrix \(A\).
On exit, the updated matrix \(B\).
On exit, the updated matrix \(Q\).
Not referenced if wantq \(=\). FALSE. .
On exit, the updated matrix \(z\).
Not referenced if wantz \(=\).FALSE..
INTEGER.
=0: Successful exit For stgex2/dtgex2: If info \(=1\), the transformed matrix \((A, B)\) would be too far from generalized Schur form; the blocks are not swapped and \((A, B)\) and \((Q, Z)\) are unchanged. The problem of swapping is too ill-conditioned. If info \(=-16\) : lwork is too small. Appropriate value for 1 work is returned in work(1).
For ctgex2/ztgex2:
If info \(=1\), the transformed matrix pair \((A, B)\) would be too far from generalized Schur form; the problem is ill-conditioned.

\section*{?tgsy2}

Solves the generalized Sylvester equation (unblocked algorithm).

\section*{Syntax}
```

call stgsy2( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf,
scale, rdsum, rdscal, iwork, pq, info )
call dtgsy2( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf,
scale, rdsum, rdscal, iwork, pq, info)
call ctgsy2( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf,
scale, rdsum, rdscal, iwork, pq, info )
call ztgsy2( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf,
scale, rdsum, rdscal, iwork, pq, info)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ? tgsy2 solves the generalized Sylvester equation:
\(A^{\star} R-L^{\star} B=s c a l e{ }^{\star} C\)
\(D^{\star} R-L^{\star} E=S c a l e^{\star} F\)
using Level 1 and 2 BLAS, where \(R\) and \(L\) are unknown \(m\)-by- \(n\) matrices, \((A, D),(B, E)\) and (\(C, F\)) are given matrix pairs of size \(m\)-by \(-m, n\)-by- \(n\) and \(m\)-by- \(n\), respectively. For stgsy2/dtgsy2, pairs (\(A, D\)) and (\(B, E\)) must be in generalized Schur canonical form, that is, \(A, B\) are upper quasi triangular and \(D, E\) are upper triangular. For ctgsy \(2 / z \operatorname{tgsy} 2\), matrices \(A, B, D\) and \(E\) are upper triangular (that is, \((A, D)\) and \((B, E)\) in generalized Schur form).

The solution (\(R, L\)) overwrites (\(C, F\)).
\(0 \leq\) scale \(\leq 1\) is an output scaling factor chosen to avoid overflow.
In matrix notation, solving equation (1) corresponds to solve
```

Z*X = scale*b

```
where \(z\) is defined for real flavors as
\[
Z=\left[\begin{array}{ll}
\operatorname{kron}\left(I_{n}, A\right) & -\operatorname{kron}\left(B^{T}, I_{*}\right) \tag{2}\\
\operatorname{kron}\left(I_{n}, D\right) & -\operatorname{kron}\left(E^{T}, I_{*}\right)
\end{array}\right]
\]
and for complex flavors as
\[
Z=\left[\begin{array}{ll}
\operatorname{kron}\left(I_{n}, A\right) & -\operatorname{kron}\left(B^{H}, I_{*}\right) \tag{3}\\
\operatorname{kron}\left(I_{n}, D\right) & -\operatorname{kron}\left(E^{H}, I_{n}\right)
\end{array}\right]
\]

Here \(I_{k}\) is the identity matrix of size \(k\) and \(X^{T}\left(X^{H}\right)\) is the transpose (conjugate transpose) of \(X\). kron(\(X, Y\)) denotes the Kronecker product between the matrices \(X\) and \(Y\).

For real flavors, if trans \(=\) ' T ', solve the transposed system
\(z^{T \star} y=\) scale \({ }^{\star} b\)
for \(y\), which is equivalent to solving for \(R\) and \(L\) in
\(A^{T} \star R+D^{T} \star L=\) scale \({ }^{\star} C\)
\(R^{\star} B^{T}+L^{\star} E^{T}=\) Scale \(^{\star}(-F)\)
For complex flavors, if trans \(=\) ' C', solve the conjugate transposed system
```

z**}y=\mp@subsup{scale}{*}{*}

```
for \(y\), which is equivalent to solving for \(R\) and \(L\) in
```

A H* R R D D** L=scale*C
(5)
R* B

```

These cases are used to compute an estimate of \(\operatorname{Dif}[(A, D),(B, E)]=\operatorname{sigma} \min (Z)\) using reverse communication with ?lacon.
?tgsy2 also (for ijob \(\geq 1\)) contributes to the computation in ?tgsyl of an upper bound on the separation between two matrix pairs. Then the input (\(A, D\)), (\(B, E\)) are sub-pencils of the matrix pair (two matrix pairs) in ?tgsyl. See ?tgsyl for details.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{trans} & CHARACTER*1. \\
\hline & If trans = 'N', solve the generalized Sylvester equation (1); \\
\hline & If trans = 'T': solve the transposed system (4). \\
\hline & If trans \(=\) 'C': solve the conjugate transposed system (5). \\
\hline \multirow[t]{4}{*}{ijob} & \begin{tabular}{l}
INTEGER. Specifies what kind of functionality is to be performed. \\
If ijob = 0: solve (1) only.
\end{tabular} \\
\hline & If ijob \(=1\) : a contribution from this subsystem to a Frobenius norm-based estimate of the separation between two matrix pairs is computed (look ahead strategy is used); \\
\hline & If \(i j o b=2\) : a contribution from this subsystem to a Frobenius norm-based estimate of the separation between two matrix pairs is computed (?gecon on sub-systems is used). \\
\hline & Not referenced if trans \(=\) 'T'. \\
\hline m & INTEGER. On entry, m specifies the order of \(A\) and \(D\), and the row dimension of \(C, F, R\) and \(L\). \\
\hline \(n\) & INTEGER. On entry, \(n\) specifies the order of \(B\) and \(E\), and the column dimension of \(C, F, R\) and \(L\). \\
\hline \multirow[t]{5}{*}{\(a, b\)} & REAL for stgsy2 \\
\hline & DOUBLE PRECISION for dtgsy2 \\
\hline & COMPLEX for ctgsy2 \\
\hline & DOUBLE COMPLEX for ztgsy2. \\
\hline & Arrays, DIMENSION (\(1 \mathrm{da}, \mathrm{m}\)) and (\(1 \mathrm{db}, \mathrm{n}\)), respectively. On entry, a contains an upper (quasi) triangular matrix \(A\), and \(b\) contains an upper (quasi) triangular matrix \(B\). \\
\hline Ida & INTEGER. The leading dimension of the array \(a\). 1 da \(\geq \max (1, m)\). \\
\hline \multirow[t]{2}{*}{1 db} & INTEGER. \\
\hline & The leading dimension of the array \(b .1 d b \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{\(c, f\)} & REAL for stgsy2 \\
\hline & DOUBLE PRECISION for dtgsy2 \\
\hline & COMPLEX for ctgsy2 \\
\hline
\end{tabular}

DOUBLE COMPLEX for ztgsy2.
Arrays, DIMENSION (\(I d c, n\)) and (\(l d f, n\)), respectively. On entry, contains the right-hand-side of the first matrix equation in (1), and \(f\) contains the right-hand-side of the second matrix equation in (1).
ldc
\(d, e\)
ldd
lde
ldf
rdsum
rdscal
iwork

\section*{Output Parameters}
c
f
scale
rdsum
rdscal
\(p q\)
info

INTEGER. The leading dimension of the array c. \(1 d c \geq \max (1, m)\).
REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
DOUBLE COMPLEX for ztgsy2.
Arrays, DIMENSION (\(1 d d, m\)) and (\(l d e, n\)), respectively. On entry, d contains an upper triangular matrix \(D\), and e contains an upper triangular matrix \(E\).
INTEGER. The leading dimension of the array \(d\). \(I d d \geq \max (1, m)\).
\(\operatorname{INTEGER}\). The leading dimension of the array \(e\). Ide \(\geq \max (1, n)\).
INTEGER. The leading dimension of the array \(f\). \(\operatorname{ldf} \geq \max (1, m)\).
REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, the sum of squares of computed contributions to the Difestimate under computation by ?tgsyl, where the scaling factor rdscal has been factored out.
REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, scaling factor used to prevent overflow in rdsum.
INTEGER. Used with real flavors only.
Workspace array, DIMENSION \((m+n+2)\).

On exit, if \(i\) job \(=0, c\) is overwritten by the solution \(R\).
On exit, if ijob \(=0, f\) is overwritten by the solution \(L\).
REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On exit, \(0 \leq\) scale \(\leq 1\). If \(0<\) scale \(<1\), the solutions \(R\) and \(L\) (\(C\) and \(F\) on entry) hold the solutions to a slightly perturbed system, but the input matrices \(A, B, D\) and \(E\) are not changed. If scale \(=0, R\) and \(L\) hold the solutions to the homogeneous system with \(C=F=0\). Normally scale \(=\) 1.

On exit, the corresponding sum of squares updated with the contributions from the current sub-system.
If trans = 'T', rdsum is not touched.
Note that rdsum only makes sense when ?tgsy2 is called by ?tgsyl.
On exit, rdscal is updated with respect to the current contributions in rdsum.
If trans = 'T', rdscal is not touched.
Note that rdscal only makes sense when ?tgsy2 is called by ?tgsyl.
INTEGER. Used with real flavors only.
On exit, the number of subsystems (of size 2-by-2, 4-by-4 and 8-by-8)
solved by the routine stgsy2/dtgsy2.
INTEGER. On exit, if info is set to
= 0: Successful exit
< 0: If info \(=-i\), the \(i\)-th argument has an illegal value.
```

> 0: The matrix pairs (A,D) and (B,E) have common or very close
eigenvalues.

```

\section*{?trti2}

Computes the inverse of a triangular matrix (unblocked algorithm).

\section*{Syntax}
```

call strti2( uplo, diag, n, a, lda, info )
call dtrti2( uplo, diag, n, a, lda, info )
call ctrti2( uplo, diag, n, a, lda, info )
call ztrti2( uplo, diag, n, a, lda, info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?trti2 computes the inverse of a real/complex upper or lower triangular matrix.
This is the Level \(2 B L A S\) version of the algorithm.
Input Parameters
```

uplo
diag
n
a
Ida
CHARACTER*1.
Specifies whether the matrix A is upper or lower triangular.
= 'U': upper triangular
= 'L':lower triangular
CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N': non-unit triangular
= 'N': non-unit triangular
INTEGER. The order of the matrix A. n \geq0.
REAL for strti2
DOUBLE PRECISION for dtrti2
COMPLEX for ctrti2
DOUBLE COMPLEX for ztrti2.
Array, DIMENSION (Ida, n).
On entry, the triangular matrix }A\mathrm{ .
If uplo = 'U', the leading n-by-n upper triangular part of the array a
contains the upper triangular matrix, and the strictly lower triangular part
of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of the array a
contains the lower triangular matrix, and the strictly upper triangular part
of a is not referenced.
If diag = 'U', the diagonal elements of a are also not referenced and are
assumed to be 1.
INTEGER. The leading dimension of the array a. lda \geq max (1,n).

```

\section*{Output Parameters}
a
On exit, the (triangular) inverse of the original matrix, in the same storage format.
info
```

INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

```

\section*{clag2z}

Converts a complex single precision matrix to a complex double precision matrix.

\section*{Syntax}
```

call clag2z( m, n, sa, ldsa, a, lda, info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

This routine converts a complex single precision matrix \(S A\) to a complex double precision matrix \(A\).
Note that while it is possible to overflow while converting from double to single, it is not possible to overflow when converting from single to double.
This is an auxiliary routine so there is no argument checking.

\section*{Input Parameters}
\begin{tabular}{ll}
\(m\) & INTEGER. The number of lines of the matrix \(A(m \geq 0)\). \\
\(n\) & INTEGER. The number of columns in the matrix \(A(n \geq 0)\). \\
\(l d s a\) & INTEGER. The leading dimension of the array \(s a ; l d s a \geq \max (1, m)\). \\
\(l d a\) & DOUBLE PRECISION array, DIMENSION \((l d a, n)\). \\
& On entry, Contains the \(m\)-by- \(n\) coefficient matrix \(A\). \\
& INTEGER. The leading dimension of the array \(a ; l d a \geq \max (1, m)\).
\end{tabular}

\section*{Output Parameters}
```

sa REAL array, DIMENSION (Idsa, n).
On exit, contains the m-by-n coefficient matrix SA.
info INTEGER.
If info = 0, the execution is successful.

```

\section*{dlag2s}

Converts a double precision matrix to a single precision matrix.

\section*{Syntax}
```

call dlag2s( m, n, a, lda, sa, ldsa, info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

This routine converts a double precision matrix \(S A\) to a single precision matrix \(A\).
RMAX is the overflow for the single precision arithmetic. dlag2s checks that all the entries of \(A\) are between RMAX and RMAX. If not, the convertion is aborted and a flag is raised.
This is an auxiliary routine so there is no argument checking.

\section*{Input Parameters}
\begin{tabular}{ll}
\(m\) & INTEGER. The number of lines of the matrix \(A(m \geq 0)\). \\
\(n\) & INTEGER. The number of columns in the matrix \(A(n \geq 0)\). \\
\(a\) & DOUBLE PRECISION array, DIMENSION \((l d a, n)\). \\
\(l d a\) & On entry, contains the \(m\)-by- \(n\) coefficient matrix \(A\). \\
\(l d s a\) & INTEGER. The leading dimension of the array \(a ; l d a \geq \max (1, m)\). \\
& INTEGER. The leading dimension of the array \(s a ; l d s a \geq \max (1, m)\).
\end{tabular}

\section*{Output Parameters}
```

sa REAL array, DIMENSION (Idsa, n).
On exit, if info = 0, contains the m-by-n coefficient matrix SA; if info > 0,
the content of sa is unspecified.
info
INTEGER.
If info = 0, the execution is successful.
If info = 1, an entry of the matrix A is greater than the single precision
overflow threshold; in this case, the content of sa on exit is unspecified.

```
slag2d
Converts a single precision matrix to a double precision matrix.

Syntax
```

call slag2d( m, n, sa, ldsa, a, lda, info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine converts a single precision matrix \(S A\) to a double precision matrix \(A\).
Note that while it is possible to overflow while converting from double to single, it is not possible to overflow when converting from single to double.

This is an auxiliary routine so there is no argument checking.

\section*{Input Parameters}
m
\(n\)
sa
ldsa

INTEGER. The number of lines of the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in the matrix \(A(n \geq 0)\).
REAL array, DIMENSION (ldsa, n).
On entry, contains the \(m\)-by-n coefficient matrix \(S A\).
INTEGER. The leading dimension of the array sa; Idsa \(\geq \max (1, m)\).

INTEGER. The leading dimension of the array \(a ; ~ I d a \geq \max (1, m)\).

\section*{Output Parameters}
```

a
DOUBLE PRECISION array, DIMENSION (Ida,n).
On exit, contains the m-by-n coefficient matrix A.
info
INTEGER.
If info = 0, the execution is successful.

```

\section*{zlag2c}

Converts a complex double precision matrix to a
complex single precision matrix.
Syntax
```

call zlag2c( m, n, a, lda, sa, ldsa, info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine converts a double precision complex matrix \(S A\) to a single precision complex matrix \(A\).
RMAX is the overflow for the single precision arithmetic. zlag2c checks that all the entries of \(A\) are between RMAX and RMAX. If not, the convertion is aborted and a flag is raised.
This is an auxiliary routine so there is no argument checking.

\section*{Input Parameters}
```

m
n
a
lda
Idsa
INTEGER. The number of lines of the matrix $A(m \geq 0)$.
INTEGER. The number of columns in the matrix $A(n \geq 0)$.
DOUBLE COMPLEX array, DIMENSION (Ida, n).
On entry, contains the $m$-by- $n$ coefficient matrix $A$.
lda
ldsa
INTEGER. The leading dimension of the array $a ; ~ I d a \geq \max (1, m)$.
INTEGER. The leading dimension of the array sa; ldsa $\geq \max (1, m)$.

```

\section*{Output Parameters}
```

sa COMPLEX array, DIMENSION (ldsa, n).
On exit, if info = 0, contains the m-by-n coefficient matrix SA; if info > 0,
the content of sa is unspecified.
info INTEGER.
If info = 0, the execution is successful.
If info = 1, an entry of the matrix }A\mathrm{ is greater than the single precision
overflow threshold; in this case, the content of sa on exit is unspecified.

```

\section*{?larfp}

Generates a real or complex elementary reflector.

\section*{Syntax}

\section*{Fortran 77:}
```

call slarfp(n, alpha, x, incx, tau)
call dlarfp(n, alpha, x, incx, tau)
call clarfp(n, alpha, x, incx, tau)
call zlarfp(n, alpha, x, incx, tau)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ? larfp routines generate a real or complex elementary reflector \(H\) of order \(n\), such that
```

H* (alpha) = (beta),

```
and \(H^{\prime}{ }^{*} H=I\) for real flavors, conjg (\(\left.H\right)^{\prime} \star^{*} H=I\) for complex flavors.

Here
```

alpha and beta are scalars, beta is real and non-negative,

```
\(x\) is \((n-1)\)-element vector.
\(H\) is represented in the form
```

H = I - tau* ( 1 )* (1 v'),
( v )

```
where tau is scalar, and \(v\) is (\(n-1\)) -element vector .
For real flavors if the elements of \(x\) are all zero, then \(\operatorname{tau}=0\) and \(H\) is taken to be the unit matrix. Otherwise \(1 \leq \operatorname{tau} \leq 2\).

For complex flavors if the elements of \(x\) are all zero and alpha is real, then \(\operatorname{tau}=0\) and \(H\) is taken to be the unit matrix. Otherwise \(1 \leq\) real \((\operatorname{tau}) \leq 2\), and abs (tau-1 \(\leq 1\).

\section*{Input Parameters}
```

n
alpha
x
incx
INTEGER. Specifies the order of the elementary reflector.
REAL for slarfp
DOUBLE PRECISION for dlarfp
COMPLEX for clarfp
DOUBLE COMPLEX for zlarfp
Specifies the scalar alpha.
$x$
REAL for slarfp
DOUBLE PRECISION for dlarfp
COMPLEX for clarfp
DOUBLE COMPLEX for zlarfp
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. It contains the vector $x$.
INTEGER. Specifies the increment for the elements of $x$. The value of incx must not be zero.

```

\section*{Output Parameters}
\begin{tabular}{ll}
alpha & Overwritten by the value beta. \\
\(y\) & Overwritten by the vector \(v\). \\
tau & REAL for slarfp \\
& DOUBLE PRECISION for dlarfp \\
& COMPLEX for clarfp \\
& DOUBLE COMPLEX for zlarfp \\
& Contains the scalar tau.
\end{tabular}

\section*{ila?lc}

Scans a matrix for its last non-zero column.

\section*{Syntax}

\section*{Fortran 77:}
```

value = ilaslc(m, n, a, lda)
value = iladlc(m, n, a, lda)
value = ilaclc(m, n, a, lda)
value = ilazlc(m, n, a, lda)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ila?lc routines scan a matrix \(A\) for its last non-zero column.

\section*{Input Parameters}
```

m
n
a
Ida

```

\section*{Output Parameters}

\author{
value
}

INTEGER
Number of the last non-zero column.

\section*{ila?!}

Scans a matrix for its last non-zero row.

\section*{Syntax}

\section*{Fortran 77:}
```

value = ilaslr(m, n, a, lda)
value = iladlr(m, n, a, lda)
value = ilaclr(m, n, a, lda)
value = ilazlr(m, n, a, lda)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ila?lr routines scan a matrix \(A\) for its last non-zero row.

\section*{Input Parameters}
```

m
n
a
lda
INTEGER. Specifies number of rows in the matrix A.
INTEGER. Specifies number of columns in the matrix }A\mathrm{ .
REAL for ilaslr
DOUBLE PRECISION for iladlr
COMPLEX for ilaclr
DOUBLE COMPLEX for idazlr
Array, DIMENSION (Ida, *). The second dimension of a must be at least
max(1, n).
Before entry the leading n-by-n part of the array a must contain the matrix
A.
INTEGER. Specifies the leading dimension of a as declared in the calling
(sub)program. The value of lda must be at least max (1, m).

```

\section*{Output Parameters}
\begin{tabular}{ll}
value & INTEGER \\
& Number of the last non-zero row.
\end{tabular}
?gsvj0
Pre-processor for the routine ?gesvj.

\section*{Syntax}

Fortran 77:
```

call sgsvj0(jobv, m, n, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work,
lwork, info)
call dgsvj0(jobv, m, n, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work,
lwork, info)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

This routine is called from ?gesvj as a pre-processor and that is its main purpose. It applies Jacobi rotations in the same way as ?gesvj does, but it does not check convergence (stopping criterion).

The routine ?gsvj0 enables ?gesvj to use a simplified version of itself to work on a submatrix of the original matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobv & \begin{tabular}{l}
CHARACTER*1. Must be 'V', 'A', or 'N'. \\
Specifies whether the output from this routine is used to compute the matrix \(V\). \\
If jobv = 'V', the product of the Jacobi rotations is accumulated by postmultiplying the \(n\)-by- \(n\) array v . \\
If jobv = 'A', the product of the Jacobi rotations is accumulated by postmultiplying the \(m v-\) by- \(n\) array \(v\). \\
If jobv = ' N ', the Jacobi rotations are not accumulated.
\end{tabular} \\
\hline m & INTEGER. The number of rows of the input matrix \(A(m \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns of the input matrix \(B(m \geq n \geq 0)\). \\
\hline a & \begin{tabular}{l}
REAL for sgsvj0 \\
DOUBLE PRECISION for dgsvj0. \\
Arrays, DIMENSION (Ida, *). Contains the m-by-n matrix \(A\), such that \(A^{*} \operatorname{diag}(D)\) represents the input matrix. The second dimension of a must be at least max \((1, n)\).
\end{tabular} \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, m)\). \\
\hline d & \begin{tabular}{l}
REAL for sgsvj0 \\
DOUBLE PRECISION for dgsvj0. \\
Arrays, DIMENSION (\(n\)). Contains the diagonal matrix \(D\) that accumulates the scaling factors from the fast scaled Jacobi rotations. On entry \(A * \operatorname{diag}(D)\) represents the input matrix.
\end{tabular} \\
\hline sva & \begin{tabular}{l}
REAL for sgsvj0 \\
DOUBLE PRECISION for dgsvj0. \\
Arrays, DIMENSION (\(n\)). Contains the Euclidean norms of the columns of the matrix \(A * \operatorname{diag}(D)\).
\end{tabular} \\
\hline mV & \begin{tabular}{l}
INTEGER. The leading dimension of \(b\); at least \(\max (1, p)\). \\
If jobv = 'A', then mv rows of \(v\) are post-multiplied by a sequence of Jacobi rotations. \\
If jobv = ' N ', then mv is not referenced.
\end{tabular} \\
\hline v & \begin{tabular}{l}
REAL for sgsvj0 \\
DOUBLE PRECISION for dgsvj0. \\
Array, DIMENSION (\(I d v, *\)). The second dimension of a must be at least \(\max (1, n)\). \\
If jobv = ' \(V\) ', then \(n\) rows of \(v\) are post-multiplied by a sequence of Jacobi rotations. \\
If jobv = 'A', then mv rows of \(v\) are post-multiplied by a sequence of Jacobi rotations. \\
If jobv = ' \(N\) ', then \(v\) is not referenced.
\end{tabular} \\
\hline \(l d v\) & INTEGER. The leading dimension of the array \(v ; ~ I d v \geq 1\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \(l d v \geq n\) if jobv = 'V'; \\
\hline & \(l d v \geq m v\) if jobv = 'A'. \\
\hline eps & REAL for sgsvjo \\
\hline & DOUBLE PRECISION for dgsvj0. \\
\hline & The relative machine precision (epsilon) returned by the routine ? lamch. \\
\hline sfmin & REAL for sgsvj0 \\
\hline & DOUBLE PRECISION for dgsvj0. \\
\hline & Value of safe minimum returned by the routine ? lamch. \\
\hline tol & REAL for sgsvjo \\
\hline & DOUBLE PRECISION for dgsvj0. \\
\hline & The threshold for Jacobi rotations. For a pair \(A(:, p), A(:, q)\) of pivot columns, the Jacobi rotation is applied only if abs (cos(angle(A(:,p),A(:,q))))> tol. \\
\hline nsweep & INTEGER. \\
\hline & The number of sweeps of Jacobi rotations to be performed. \\
\hline work & REAL for sgsvjo \\
\hline & DOUBLE PRECISION for dgsvj0. \\
\hline & Workspace array, DIMENSION (lwork). \\
\hline Iwork & INTEGER. The size of the array work; at least max (1, m) . \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & On exit, \(A^{\star}\) diag (\(D\)) represents the input matrix post-multiplied by a sequence of Jacobi rotations, where the rotation threshold and the total number of sweeps are given in tol and nsweep, respectively \\
\hline d & On exit, \(A^{\star} \operatorname{diag}(D)\) represents the input matrix post-multiplied by a sequence of Jacobi rotations, where the rotation threshold and the total number of sweeps are given in tol and nsweep, respectively. \\
\hline sva & On exit, contains the Euclidean norms of the columns of the output matrix \(A^{\star} \operatorname{diag}(D)\). \\
\hline v & \begin{tabular}{l}
If jobv = ' \(V\) ', then \(n\) rows of \(v\) are post-multiplied by a sequence of Jacobi rotations. \\
If jobv = 'A', then mv rows of \(v\) are post-multiplied by a sequence of Jacobi rotations. \\
If jobv = 'N', then \(v\) is not referenced.
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value.
\end{tabular} \\
\hline
\end{tabular}

\section*{?gsvj1}

Pre-processor for the routine ?gesvj, applies Jacobi
rotations targeting only particular pivots.

\section*{Syntax}

\section*{Fortran 77:}
```

call sgsvjl(jobv, m, n, nl, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep,
work, lwork, info)
call dgsvjl(jobv, m, n, nl, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep,
work, lwork, info)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

T
This routine is called from ?gesvj as a pre-processor and that is its main purpose. It applies Jacobi rotations in the same way as ?gesvj does, but it targets only particular pivots and it does not check convergence (stopping criterion).
The routine ? gsvj1 applies few sweeps of Jacobi rotations in the column space of the input m-by-n matrix \(A\). The pivot pairs are taken from the \((1,2)\) off-diagonal block in the corresponding \(n\)-by-n Gram matrix \(A^{\prime} * A\). The block-entries (tiles) of the \((1,2)\) off-diagonal block are marked by the [\(x\)]'s in the following scheme:
\begin{tabular}{|cccccc:}
\(*\) & \(*\) & \(*\) & {\([x]\)} & {\([x]\)} & {\([x]\)} \\
\(:\) & \(\star\) & \(*\) & \(*\) & {\([x]\)} & {\([x]\)}
\end{tabular}\([x]: \mid\)
row-cycling in the nblr-by-nblc [x] blocks, row-cyclic pivoting inside each [x] block
In terms of the columns of the matrix \(A\), the first \(n 1\) columns are rotated 'against' the remaining \(n-n 1\) columns, trying to increase the angle between the corresponding subspaces. The off-diagonal block is n1-by(\(n-n 1\)) and it is tiled using quadratic tiles. The number of sweeps is specified by nsweep, and the orthogonality threshold is set by tol.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobv & \begin{tabular}{l}
CHARACTER*1. Must be 'V', 'A', or 'N'. \\
Specifies whether the output from this routine is used to compute the matrix \(V\). \\
If jobv = 'V', the product of the Jacobi rotations is accumulated by postmultiplying the \(n-b y-n\) array v . \\
If jobv = 'A', the product of the Jacobi rotations is accumulated by postmultiplying the \(m v-\) by- \(n\) array \(v\). \\
If jobv = 'N', the Jacobi rotations are not accumulated.
\end{tabular} \\
\hline m & INTEGER. The number of rows of the input matrix \(A(m \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns of the input matrix \(B(m \geq n \geq 0)\). \\
\hline n1 & INTEGER. Specifies the 2-by-2 block partition. The first \(n 1\) columns are rotated 'against' the remaining \(n-n 1\) columns of the matrix \(A\). \\
\hline a & \begin{tabular}{l}
REAL for sgsvj1 \\
DOUBLE PRECISION for dgsvj1. \\
Arrays, DIMENSION (lda, *). Contains the m-by-n matrix \(A\), such that \(A^{\star} \operatorname{diag}(D)\) represents the input matrix. The second dimension of a must be at least \(\max (1, n)\).
\end{tabular} \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max (\(1, m\)). \\
\hline d & \begin{tabular}{l}
REAL for sgsvj1 \\
DOUBLE PRECISION for dgsvj1. \\
Arrays, DIMENSION (\(n\)). Contains the diagonal matrix \(D\) that accumulates the scaling factors from the fast scaled Jacobi rotations. On entry \(A * \operatorname{diag}(D)\) represents the input matrix.
\end{tabular} \\
\hline sva & \begin{tabular}{l}
REAL for sgsvj1 \\
DOUBLE PRECISION for dgsvj1.
\end{tabular} \\
\hline
\end{tabular}
\(m v\)

V

\section*{Output Parameters}
a
\(d\)
sva
v

Arrays, DIMENSION (\(n\)). Contains the Euclidean norms of the columns of the matrix \(A * \operatorname{diag}(D)\).
INTEGER. The leading dimension of \(b\); at least max \((1, p)\).
If jobv = ' \(A\) ', then mv rows of \(v\) are post-multiplied by a sequence of Jacobi rotations.
If jobv = ' N ', then \(m v\) is not referenced.
REAL for sgsvj1
DOUBLE PRECISION for dgsvj1.
Array, DIMENSION (\(I d v, *\)). The second dimension of a must be at least \(\max (1, n)\).
If jobv \(=\) ' \(V\) ', then \(n\) rows of \(v\) are post-multiplied by a sequence of Jacobi rotations.
If jobv = 'A', then mv rows of \(v\) are post-multiplied by a sequence of Jacobi rotations.
If jobv = ' \(N\) ', then \(v\) is not referenced.
INTEGER. The leading dimension of the array \(v ; ~ I d v \geq 1\)
\(I d v \geq n\) if jobv = 'V';
\(l d v \geq m v i f\) jobv \(=\) 'A'.
REAL for sgsvj1
DOUBLE PRECISION for dgsvj1.
The relative machine precision (epsilon) returned by the routine ? lamch.
REAL for sgsvj1
DOUBLE PRECISION for dgsvj1.
Value of safe minimum returned by the routine ?lamch.
REAL for sgsvj1
DOUBLE PRECISION for dgsvj1.
The threshold for Jacobi rotations. For a pair \(A(:, p), A(:, q)\) of pivot columns, the Jacobi rotation is applied only if
\(\operatorname{abs}(\cos (\operatorname{angle}(A(:, p), A(:, q))))>\) tol.
INTEGER.
The number of sweeps of Jacobi rotations to be performed.
REAL for sgsvj1
DOUBLE PRECISION for dgsvj1.
Workspace array, DIMENSION (lwork).
INTEGER. The size of the array work; at least max \((1, m)\).

On exit, \(A^{*} \operatorname{diag}(D)\) represents the input matrix post-multiplied by a sequence of Jacobi rotations, where the rotation threshold and the total number of sweeps are given in tol and nsweep, respectively
On exit, \(A^{\star}\) diag (\(D\)) represents the input matrix post-multiplied by a sequence of Jacobi rotations, where the rotation threshold and the total number of sweeps are given in tol and nsweep, respectively.
On exit, contains the Euclidean norms of the columns of the output matrix \(A^{\star} \operatorname{diag}(D)\).
If jobv \(=\) ' \(V\) ', then \(n\) rows of \(v\) are post-multiplied by a sequence of Jacobi rotations.
If jobv = 'A', then mv rows of \(v\) are post-multiplied by a sequence of Jacobi rotations.
If jobv = 'N', then \(v\) is not referenced.
info \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\)-th parameter had an illegal value.
\end{tabular}

\section*{?sfrk}

Performs a symmetric rank-k operation for matrix in RFP format.

\section*{Syntax}

\section*{Fortran 77:}
```

call ssfrk(transr, uplo, trans, n, k, alpha, a, lda, beta, c)
call dsfrk(transr, uplo, trans, n, k, alpha, a, lda, beta, c)

```

C:
```

lapack_int LAPACKE_<?>sfrk( int matrix_order, char transr, char uplo, char trans,
lapack_int n, lapack_int k, <datatype> alpha, const <datatype>* a, lapack_int lda,
<datatype> beta, <datatype>* c );

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- C: mkl_lapacke.h

\section*{Description}

The ?sfrk routines perform a matrix-matrix operation using symmetric matrices. The operation is defined as
```

C := alpha\star A\star A }\mp@subsup{A}{}{T}+\mathrm{ beta* C,

```
or
```

C := alpha\star AT* A + beta* C,

```
where:
alpha and beta are scalars,
\(C\) is an \(n\)-by- \(n\) symmetric matrix in rectangular full packed (RFP) format,
\(A\) is an \(n\)-by- \(k\) matrix in the first case and a \(k\)-by-n matrix in the second case.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type defintions.
```

transr CHARACTER*1.
if transr = 'N' or 'n', the normal form of RFP C is stored;
if transr= 'T' or 't', the transpose form of RFP C is stored.
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array c is used.
If uplo = 'U' or 'u', then the upper triangular part of the array c is used.
If uplo = 'L' or 'l', then the low triangular part of the array c is used.
trans
CHARACTER*1. Specifies the operation:
if trans = 'N' or 'n', then C := alpha\star A* AT + beta*C;

```
\begin{tabular}{|c|c|}
\hline & if trans \(=\) 'T' or 't', then \(C:=a l p h a \star A^{T \star} A+\) beta* \(C\); \\
\hline \(n\) & INTEGER. Specifies the order of the matrix \(C\). The value of \(n\) must be at least zero. \\
\hline k & \begin{tabular}{l}
INTEGER. On entry with trans \(=\) ' \(N\) ' or ' \(n\) ', \(k\) specifies the number of columns of the matrix \(A\), and on entry with trans \(=\) ' \(T\) ' or ' \(t\) ', \(k\) specifies the number of rows of the matrix \(A\). \\
The value of \(k\) must be at least zero.
\end{tabular} \\
\hline alpha & \begin{tabular}{l}
REAL for ssfrk \\
DOUBLE PRECISION for dsfrk \\
Specifies the scalar alpha.
\end{tabular} \\
\hline a & \begin{tabular}{l}
REAL for ssfrk \\
DOUBLE PRECISION for dsfrk \\
Array, DIMENSION (lda,ka), where ka is \(k\) when trans = 'N' or 'n', and is \(n\) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', the leading \(n\) -by- \(k\) part of the array a must contain the matrix \(A\), otherwise the leading \(k\) -by-n part of the array a must contain the matrix \(A\).
\end{tabular} \\
\hline Ida & INTEGER. Specifies the leading dimension of a declared in the calling (sub)program. When trans \(=\) ' \(N\) ' or ' n ', then lda must be at least \(\max (1, n)\), otherwise lda must be at least max \((1, k)\). \\
\hline beta & \begin{tabular}{l}
REAL for ssfrk \\
DOUBLE PRECISION for dsfrk \\
Specifies the scalar beta.
\end{tabular} \\
\hline c & \begin{tabular}{l}
REAL for ssfrk \\
DOUBLE PRECISION for dsfrk \\
Array, DIMENSION (\(n *(n+1) / 2\)). Before entry contains the symmetric matrix \(C\) in RFP format.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
```

c

```
```

If trans = 'N' or 'n', then c contains c:= alpha*A*A' + beta*C;

```
If trans = 'N' or 'n', then c contains c:= alpha*A*A' + beta*C;
if trans = 'T' or't', then c contains C := alpha*A'*A + beta*C;
```

if trans = 'T' or't', then c contains C := alpha*A'*A + beta*C;

```

\section*{?hfrk}

Performs a Hermitian rank-k operation for matrix in RFP format.

\section*{Syntax}

\section*{Fortran 77:}
```

call chfrk(transr, uplo, trans, n, k, alpha, a, lda, beta, c)
call zhfrk(transr, uplo, trans, n, k, alpha, a, lda, beta, c)

```

C:
```

lapack_int LAPACKE_chfrk( int matrix_order, char transr, char uplo, char trans,
lapack_int n, lapack_int k, float alpha, const lapack_complex_float* a, lapack_int
lda, float beta, lapack_complex_float* c );
lapack_int LAPACKE_zhfrk( int matrix_order, char transr, char uplo, char trans,
lapack_int n, lapack_int k, double alpha, const lapack_complex_double* a, lapack_int
lda, double beta, lapack_complex_double* c );

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- C: mkl_lapacke.h

\section*{Description}

The ?hfrk routines perform a matrix-matrix operation using Hermitian matrices. The operation is defined as
```

C := alpha* A* A A}+\mp@code{beta*C,

```
or
\(C:=\operatorname{alpha}{ }^{\star} A^{H \star} A+\operatorname{beta}^{\star} C\),
where:
alpha and beta are real scalars,
\(C\) is an \(n-b y-n\) Hermitian matrix in RFP format,
\(A\) is an \(n\)-by- \(k\) matrix in the first case and a \(k\)-by- \(n\) matrix in the second case.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type defintions.
\begin{tabular}{|c|c|}
\hline transr & \begin{tabular}{l}
CHARACTER*1. \\
if transr \(=\) ' \(N\) ' or ' \(n\) ', the normal form of RFP \(C\) is stored; \\
if transr \(=\) ' \(C\) ' or ' \(C\) ', the conjugate-transpose form of RFP \(C\) is stored.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Specifies whether the upper or lower triangular part of the array \(c\) is used. \\
If uplo = 'U' or 'u', then the upper triangular part of the array \(c\) is used. \\
If uplo = 'L' or 'l', then the low triangular part of the array \(c\) is used.
\end{tabular} \\
\hline trans & \begin{tabular}{l}
CHARACTER*1. Specifies the operation: \\
if trans \(=\) 'N' or 'n', then \(C:=a l p h a \star A \star A^{H}+\) beta* \(C\); \\
if trans \(=\) 'C' or 'c', then \(C:=a l p h a \star A^{H \star} A+\) beta* \(C\).
\end{tabular} \\
\hline \(n\) & INTEGER. Specifies the order of the matrix \(C\). The value of \(n\) must be at least zero. \\
\hline k & \begin{tabular}{l}
INTEGER. On entry with trans \(=\) 'N' or 'n', \(k\) specifies the number of columns of the matrix \(a\), and on entry with trans \(=\) ' \(T\) ' or ' \(t\) ' or 'C' or 'c', \(k\) specifies the number of rows of the matrix \(a\). \\
The value of \(k\) must be at least zero.
\end{tabular} \\
\hline alpha & COMPLEX for chfrk \\
\hline & DOUBLE COMPLEX for zhfrk Specifies the scalar alpha. \\
\hline a & \begin{tabular}{l}
COMPLEX for chfrk \\
DOUBLE COMPLEX for zhfrk
\end{tabular} \\
\hline & Array, DIMENSION (lda,ka), where ka is \(k\) when trans \(=\) 'N' or 'n', and is \(n\) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', the leading \(n\) -by- \(k\) part of the array a must contain the matrix \(A\), otherwise the leading \(k\) -by-n part of the array a must contain the matrix \(A\). \\
\hline Ida & INTEGER. Specifies the leading dimension of a declared in the calling (sub)program. When trans \(=\) ' \(N\) ' or ' \(n\) ', then lda must be at least \(\max (1, n)\), otherwise lda must be at least max \((1, k)\). \\
\hline
\end{tabular}
```

beta COMPLEX for chfrk
DOUBLE COMPLEX for zhfrk
Specifies the scalar beta.
C
COMPLEX for chfrk
DOUBLE COMPLEX for zhfrk
Array, DIMENSION (n* (n+1)/2 ). Before entry contains the Hermitian
matrix C in in RFP format.

```

\section*{Output Parameters}
```

c If trans = 'N' or 'n', then c contains C := alpha\starA\star A + beta*C;
if trans = 'C' or 'c', then c contains C := alpha* A H*A + beta*C;

```

\section*{?tfsm}

Solves a matrix equation (one operand is a triangular matrix in RFP format).

\section*{Syntax}

\section*{Fortran 77:}
```

call stfsm(transr, side, uplo, trans, diag, m, n, alpha, a, b, ldb)
call dtfsm(transr, side, uplo, trans, diag, m, n, alpha, a, b, ldb)
call ctfsm(transr, side, uplo, trans, diag, m, n, alpha, a, b, ldb)
call ztfsm(transr, side, uplo, trans, diag, m, n, alpha, a, b, ldb)

```

C:
lapack_int LAPACKE_<?>tfsm(int matrix_order, char transr, char side, char uplo, char
trans, char diag, lapack_int \(m, ~ l a p a c k \_i n t ~ n, ~<d a t a t y p e>~ a l p h a, ~ c o n s t ~<d a t a t y p e>* ~ a, ~\)
<datatype>* b, lapack_int ldb);

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- C: mkl_lapacke.h

\section*{Description}

The ?tfsm routines solve one of the following matrix equations:
\(o p(A) * X=\) alpha*B,
or
\(X^{*}\) op (A) \(=\) alpha*B,
where:
alpha is a scalar,
\(x\) and \(B\) are m-by- \(n\) matrices,
\(A\) is a unit, or non-unit, upper or lower triangular matrix in rectangular full packed (RFP) format.
op (\(A\)) can be one of the following:
- \(\mathrm{op}(A)=A\) or op \((A)=A^{T}\) for real flavors
- \(\mathrm{op}(A)=A\) or op \((A)=A^{H}\) for complex flavors

The matrix \(B\) is overwritten by the solution matrix \(x\).

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type defintions.
\begin{tabular}{|c|c|}
\hline transr & \begin{tabular}{l}
CHARACTER*1. \\
if transr = 'N' or ' n ', the normal form of RFP \(A\) is stored; \\
if transr \(=\) ' \(T\) ' or ' \(t\) ', the transpose form of RFP \(A\) is stored; \\
if transr \(=\) ' C' or ' C ', the conjugate-transpose form of RFP \(A\) is stored.
\end{tabular} \\
\hline side & \begin{tabular}{l}
CHARACTER*1. Specifies whether op (A) appears on the left or right of \(x\) in the equation: \\
if side \(=\) 'L' or 'l', then op \((A) * X=\) alpha* \(B\); \\
if side \(=\) 'R' or 'r', then \(X^{\star} o p(A)=a l p h{ }^{\star} B\).
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Specifies whether the RFP matrix \(A\) is upper or lower triangular: \\
if uplo = 'U' or 'u', then the matrix is upper triangular; \\
if uplo = 'L' or 'l', then the matrix is low triangular.
\end{tabular} \\
\hline trans & \begin{tabular}{l}
CHARACTER*1. Specifies the form of op (A) used in the matrix multiplication: \\
if trans \(=\) ' \(N\) ' or ' n ', then op \((A)=A\); \\
if trans \(=\) 'T' or 't', then op \((A)=A\) '; \\
if trans \(=\) 'C' or 'c', then op \((A)=\operatorname{conjg}(A ')\).
\end{tabular} \\
\hline diag & \begin{tabular}{l}
CHARACTER*1. Specifies whether the RFP matrix \(A\) is unit triangular: \\
if diag = 'U' or 'u' then the matrix is unit triangular; \\
if diag = 'N' or 'n', then the matrix is not unit triangular.
\end{tabular} \\
\hline m & INTEGER. Specifies the number of rows of \(B\). The value of \(m\) must be at least zero. \\
\hline \(n\) & INTEGER. Specifies the number of columns of \(B\). The value of \(n\) must be at least zero. \\
\hline \multirow[t]{5}{*}{alpha} & REAL for stfsm \\
\hline & DOUBLE PRECISION for dtfsm \\
\hline & COMPLEX for ctfsm \\
\hline & DOUBLE COMPLEX for ztfsm \\
\hline & \begin{tabular}{l}
Specifies the scalar alpha. \\
When alpha is zero, then \(a\) is not referenced and \(b\) need not be set before entry.
\end{tabular} \\
\hline \multirow[t]{5}{*}{a} & REAL for stfsm \\
\hline & DOUBLE PRECISION for dtfsm \\
\hline & COMPLEX for ctfsm \\
\hline & DOUBLE COMPLEX for ztfsm \\
\hline & Array, DIMENSION (\(\left.n^{*}(n+1) / 2\right)\). Contains the matrix \(A\) in RFP format. \\
\hline \multirow[t]{5}{*}{\(b\)} & REAL for stfsm \\
\hline & DOUBLE PRECISION for dtfsm \\
\hline & COMPLEX for ctfsm \\
\hline & DOUBLE COMPLEX for ztfsm \\
\hline & Array, DIMENSION (\(I d b, n\)). Before entry, the leading \(m\)-by-n part of the array \(b\) must contain the right-hand side matrix \(B\). \\
\hline 1 db & INTEGER. Specifies the leading dimension of \(b\) as declared in the calling (sub)program. The value of \(1 d b\) must be at least max \((1,+m)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
b
Overwritten by the solution matrix \(x\).

\section*{?lansf}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix in RFP format.

\section*{Syntax}
```

val = slansf(norm, transr, uplo, n, a, work)
val = dlansf(norm, transr, uplo, n, a, work)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

\section*{T}

The function ?lansf returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an \(n-b y-n\) real symmetric matrix \(A\) in the rectangular full packed (RFP) format.

\section*{Input Parameters}
```

norm
transr
uplo
n
a
work
CHARACTER*1. Specifies the value to be returned by the routine: $=' M '$ or 'm': val $=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)$, largest absolute value of the matrix $A$. $=$ '1' or 'O' or 'O': val = norm1(A), 1-norm of the matrix $A$ (maximum column sum),
$=$ 'I' or 'i': val $=$ normI( $A$ ), infinity norm of the matrix $A$ (maximum row sum),
= 'F', 'f', 'E' or 'e': val = normF(A), Frobenius norm of the matrix $A$ (square root of sum of squares).
CHARACTER*1.
Specifies whether the RFP format of matrix $A$ is normal or transposed
format.
If transr = 'N': RFP format is normal;
if transr = 'T': RFP format is transposed.
CHARACTER*1.
Specifies whether the RFP matrix A came from upper or lower triangular matrix.
If uplo = 'U': RFP matrix A came from an upper triangular matrix; if uplo = 'L': RFP matrix $A$ came from a lower triangular matrix.
INTEGER. The order of the matrix $A . n \geq 0$.
When $n=0$, ?lansf is set to zero.
REAL for slansf
DOUBLE PRECISION for dlansf
Array, DIMENSION ( $\left.n^{*}(n+1) / 2\right)$.
The upper (if uplo = 'U') or lower (if uplo = 'L') part of the symetric matrix A stored in RFP format.
work
REAL for slansf.

```

DOUBLE PRECISION for dlansf.
Workspace array, DIMENSION (max (1, lwork)), where
lwork \(\geq n\) when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.

\section*{Output Parameters}
```

val REAL for slansf
DOUBLE PRECISION for dlansf
Value returned by the function.

```

\section*{?lanhf}

Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of a Hermitian matrix in RFP format.

\section*{Syntax}
```

val = clanhf(norm, transr, uplo, n, a, work)
val = zlanhf(norm, transr, uplo, n, a, work)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function ?lanhf returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an \(n\)-by- \(n\) complex Hermitian matrix \(A\) in the rectangular full packed (RFP) format.

\section*{Input Parameters}
```

norm
transr
uplo
n
CHARACTER*1.
Specifies the value to be returned by the routine:
= 'M' or 'm': val = max(abs( }\mp@subsup{A}{ij}{\prime}))\mathrm{ , largest absolute value of the matrix A.
= '1' or 'O' or 'O': val = norm1(A),1-norm of the matrix A (maximum
column sum),
= 'I' or 'i': val = normI(A), infinity norm of the matrix A (maximum
row sum),
= 'F','f','E' or 'e': val = normF(A), Frobenius norm of the matrix A
(square root of sum of squares).

```

CHARACTER*1.
Specifies the value to be returned by the routine:
\(=' M '\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix \(A\). \(=\) '1' or 'O' or 'o': val \(=\operatorname{norm1}(A)\), 1 -norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val \(=\) normI(\(A\)), infinity norm of the matrix \(A\) (maximum row sum),
\(=' F^{\prime}, ' f ', ' E\) ' or 'e': val = normF(A), Frobenius norm of the matrix \(A\) (square root of sum of squares).
CHARACTER*1.
Specifies whether the RFP format of matrix \(A\) is normal or conjugatetransposed format.
If transr = 'N': RFP format is normal;
if transr = 'C': RFP format is conjugate-transposed.
CHARACTER*1.
Specifies whether the RFP matrix A came from upper or lower triangular matrix.
If uplo = 'U': RFP matrix A came from an upper triangular matrix;
if uplo = 'L': RFP matrix \(A\) came from a lower triangular matrix.
INTEGER. The order of the matrix \(A . n \geq 0\).
When \(n=0\), ?lanhf is set to zero.
```

a
COMPLEX for clanhf
DOUBLE COMPLEX for zlanhf
Array, DIMENSION ( }n*(n+1)/2)
The upper (if uplo = 'U') or lower (if uplo = 'L') part of the Hermitian
matrix A stored in RFP format.
work
COMPLEX for clanhf.
DOUBLE COMPLEX for zlanhf.
Workspace array, DIMENSION (max (1, lwork)), where
lwork \geq n when norm = 'I' or '1' or 'O'; otherwise, work is not
referenced.

```

\section*{Output Parameters}
\begin{tabular}{ll}
val & COMPLEX for clanhf \\
& DOUBLE COMPLEX for zlanhf \\
& Value returned by the function.
\end{tabular}

\section*{?tfttp}

Copies a triangular matrix from the rectangular full packed format (TF) to the standard packed format (TP).

\section*{Syntax}

\section*{Fortran 77:}
```

call stfttp( transr, uplo, n, arf, ap, info )
call dtfttp( transr, uplo, n, arf, ap, info)
call ctfttp( transr, uplo, n, arf, ap, info)
call ztfttp( transr, uplo, n, arf, ap, info )

```

C:
lapack_int LAPACKE_<?>tfttp(int matrix_order, char transr, char uplo, lapack_int n, const <datatype>* arf, <datatype>* ap);

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- C: mkl_lapacke.h

\section*{Description}

The routine copies a triangular matrix \(A\) from the Rectangular Full Packed (RFP) format to the standard packed format. For the description of the RFP format, see Matrix Storage Schemes.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the \(C\) interface section above. See the \(C\) Interface Conventions section for the \(C\) interface principal conventions and type defintions.
```

transr

```
```

CHARACTER*1.

```
CHARACTER*1.
 = 'N': arf is in the Normal format,
 = 'N': arf is in the Normal format,
 = 'T': arf is in the Transpose format (for stfttp and dtfttp),
```

    = 'T': arf is in the Transpose format (for stfttp and dtfttp),
    ```
\begin{tabular}{|c|c|}
\hline & \(=\) ' \(\mathrm{C}^{\prime}\) : arf is in the Conjugate-transpose format (for ctfttp and ztfttp). CHARACTER*1. \\
\hline \multirow{3}{*}{uplo} & Specifies whether A is upper or lower triangular: \\
\hline & = 'U': A is upper triangular, \\
\hline & = 'L': A is lower triangular. \\
\hline \(n\) & INTEGER. The order of the matrix \(A\). \(n \geq 0\). \\
\hline \multirow[t]{6}{*}{arf} & REAL for stfttp, \\
\hline & DOUBLE PRECISION for dtfttp, \\
\hline & COMPLEX for ctfttp, \\
\hline & Double Complex for ztfttp. \\
\hline & Array, diMEnsion at least max (\(\left.1, n^{*}(n+1) / 2\right)\). \\
\hline & On entry, the upper or lower triangular matrix A stored in the RFP format. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \multirow[t]{7}{*}{ap} & REAL for stfttp, \\
\hline & DOUBLE PRECISION for dtfttp, \\
\hline & COMPLEX for ctfttp, \\
\hline & DOUBLE COMPLex for ztfttp. \\
\hline & Array, dimension at least max (\(\left.1, n^{*}(n+1) / 2\right)\). \\
\hline & On exit, the upper or lower triangular matrix \(A\), packed columnwise in a linear array. The \(j\)-th column of \(A\) is stored in the array \(a p\) as follows: if uplo = 'U', ap \((i+(j-1) * j / 2)=A(i, j)\) for \(1 \leq i \leq j\), \\
\hline & if uplo = 'L', ap \((i+(j-1) *(2 n-j) / 2)=A(i, j)\) for \(j \leq i \leq n\). \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & \(=0\) : successful exit, \\
\hline & <0: if info \(=-i\), the \(i\)-th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{?tfttr}

Copies a triangular matrix from the rectangular full
packed format (TF) to the standard full format (TR) .

\section*{Syntax}

\section*{Fortran 77:}
```

call stfttr( transr, uplo, n, arf, a, lda, info )
call dtfttr( transr, uplo, n, arf, a, lda, info )
call ctfttr( transr, uplo, n, arf, a, lda, info )
call ztfttr( transr, uplo, n, arf, a, lda, info )

```

C:
lapack_int LAPACKE_<?>tfttr(int matrix_order, char transr, char uplo, lapack_int \(n\), const <datatype>* arf, <datatype>* a, lapack_int lda);

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- C: mkl_lapacke.h

Description

The routine copies a triangular matrix A from the Rectangular Full Packed (RFP) format to the standard full format. For the description of the RFP format, see Matrix Storage Schemes.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type defintions.
```

transr CHARACTER*1.

```
 \(=\) ' N ': arf is in the Normal format,
 \(=\) 'T': arf is in the Transpose format (for stfttr and dtfttr),
\(=\) 'C': arf is in the Conjugate-transpose format (for ctfttr and ztfttr).
uplo
CHARACTER*1.
Specifies whether \(A\) is upper or lower triangular:
= 'U': A is upper triangular,
= 'L': A is lower triangular.
INTEGER. The order of the matrices arf and \(a . n \geq 0\).
arf
lda
INTEGER. The leading dimension of the array \(a\). \(1 d a \geq \max (1, n)\).

\section*{Output Parameters}
```

a REAL for stfttr,
DOUBLE PRECISION for dtfttr,
COMPLEX for ctfttr,
DOUBLE COMPLEX for ztfttr.
Array, DIMENSION (Ida, *).
On exit, the triangular matrix A. If uplo = 'U', the leading n-by-n upper
triangular part of the array a contains the upper triangular matrix, and the
strictly lower triangular part of a is not referenced. If uplo = 'L', the leading
n-by-n lower triangular part of the array a contains the lower triangular
matrix, and the strictly upper triangular part of a is not referenced.
INTEGER.
$=0$ : successful exit,
< 0 : if info $=-i$, the $i$-th parameter had an illegal value.

```

\section*{?tpttf \\ Copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF). \\ Syntax}

\section*{Fortran 77:}
```

call stpttf( transr, uplo, n, ap, arf, info )
call dtpttf( transr, uplo, n, ap, arf, info )
call ctpttf( transr, uplo, n, ap, arf, info )

```
```

call ztpttf( transr, uplo, n, ap, arf, info )

```

\section*{C:}
```

lapack_int LAPACKE_<?>tpttf( int matrix_order, char transr, char uplo, lapack_int n,
const <datatype>* ap, <datatype>* arf );

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- C: mkl_lapacke.h

\section*{Description}

The routine copies a triangular matrix \(A\) from the standard packed format to the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

\section*{Input Parameters}

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the \(C\) interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type defintions.
```

transr
uplo
n
ap

```
```

CHARACTER*1.

```
CHARACTER*1.
 = 'N': arf must be in the Normal format,
 = 'N': arf must be in the Normal format,
 = 'T': arf must be in the Transpose format (for stpttf and dtpttf),
 = 'T': arf must be in the Transpose format (for stpttf and dtpttf),
 = 'C': arf must be in the Conjugate-transpose format (for ctpttf and
 = 'C': arf must be in the Conjugate-transpose format (for ctpttf and
 ztpttf).
 ztpttf).
 CHARACTER*1.
 CHARACTER*1.
 Specifies whether A is upper or lower triangular:
 = 'U': A is upper triangular,
 = 'L': A is lower triangular.
INTEGER. The order of the matrix A. n \geq0.
REAL for stpttf,
DOUBLE PRECISION for dtpttf,
COMPLEX for ctpttf,
DOUBLE COMPLEX for ztpttf.
Array, DIMENSION at least max (1, n* (n+1)/2).
On entry, the upper or lower triangular matrix A, packed columnwise in a
linear array. The j-th column of A is stored in the array ap as follows:
if uplo = 'U', ap(i + (j-1)*j/2) =A(i,j) for 1\leqi\leq j,
if uplo = 'L', ap(i + (j-1)* (2n-j)/2)=A(i,j) for j \leqi\leqn.
```


## Output Parameters

```
arf
info
```

```
REAL for stpttf,
```

REAL for stpttf,
DOUBLE PRECISION for dtpttf,
DOUBLE PRECISION for dtpttf,
COMPLEX for ctfttp,
COMPLEX for ctfttp,
DOUBLE COMPLEX for ztpttf.
DOUBLE COMPLEX for ztpttf.
Array, DIMENSION at least max (1, n*(n+1)/2).
Array, DIMENSION at least max (1, n*(n+1)/2).
On exit, the upper or lower triangular matrix A stored in the RFP
On exit, the upper or lower triangular matrix A stored in the RFP
format.
format.
INTEGER.
INTEGER.
=0: successful exit,
=0: successful exit,
< 0: if info =-i, the i-th parameter had an illegal value.

```
< 0: if info =-i, the i-th parameter had an illegal value.
```


## ?tpttr

Copies a triangular matrix from the standard packed format (TP) to the standard full format (TR).

## Syntax

## Fortran 77:

```
call stpttr(uplo, n, ap, a, lda, info)
call dtpttr(uplo, n, ap, a, lda, info)
call ctpttr(uplo, n, ap, a, lda, info)
call ztpttr(uplo, n, ap, a, lda, info)
C:
lapack_int LAPACKE_<?>tpttr(int matrix_order, char uplo, lapack_int n, const
<datatype>* ap, <datatype>* a, lapack_int lda);
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- C: mkl_lapacke.h


## Description

The routine copies a triangular matrix $A$ from the standard packed format to the standard full format.

## Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the $C$ interface section above. See the $C$ Interface Conventions section for the $C$ interface principal conventions and type defintions.

```
uplo
n
ap
lda
CHARACTER*1.
Specifies whether A is upper or lower triangular:
= 'U':A is upper triangular,
= 'L':A is lower triangular.
INTEGER. The order of the matrices ap and a.n \geq0.
REAL for stpttr,
DOUBLE PRECISION for dtpttr,
COMPLEX for ctpttr,
DOUBLE COMPLEX for ztpttr.
Array, DIMENSION at least max (1, n*(n+1)/2).
On entry, the upper or lower triangular matrix A, packed columnwise in a
linear array. The j-th column of A is stored in the array ap as follows:
if uplo = 'U', ap(i + (j-1)*j/2) = A(i,j) for 1\leqi\leq j,
if uplo = 'L', ap(i + (j-1)*(2n-j)/2)=A(i,j) for j \leqi\leqn.
INTEGER. The leading dimension of the array a. Ida \geqmax(1,n).
```


## Output Parameters

a

```
REAL for stpttr,
DOUBLE PRECISION for dtpttr,
COMPLEX for ctpttr,
DOUBLE COMPLEX for ztpttr.
```

Array, DIMENSION (Ida, *).
On exit, the triangular matrix $A$. If uplo $=$ ' $U$ ', the leading $n$-by- $n$ upper triangular part of the array a contains the upper triangular part of the matrix $A$, and the strictly lower triangular part of $a$ is not referenced. If uplo = 'L', the leading $n$-by-n lower triangular part of the array a contains the lower triangular part of the matrix $A$, and the strictly upper triangular part of $a$ is not referenced.
info
INTEGER. $=0$ : successful exit, < 0 : if info $=-i$, the $i$-th parameter had an illegal value.

## ?trttf

Copies a triangular matrix from the standard full format (TR) to the rectangular full packed format (TF).

## Syntax

## Fortran 77:

```
call strttf(transr, uplo, n, a, lda, arf, info)
call dtrttf(transr, uplo, n, a, lda, arf, info)
call ctrttf(transr, uplo, n, a, lda, arf, info)
call ztrttf(transr, uplo, n, a, lda, arf, info)
```

C:
lapack_int LAPACKE_<?>trttf( int matrix_order, char transr, char uplo, lapack_int n,
const <datatype>* a, lapack_int lda, <datatype>* arf );

## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- C: mkl_lapacke.h


## Description

The routine copies a triangular matrix $A$ from the standard full format to the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

## Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the $C$ interface data types in the C interface section above. See the C Interface Conventions section for the C interface principal conventions and type defintions.

```
transr CHARACTER*1.
 = 'N': arf must be in the Normal format,
ztrttf).
uplo CHARACTER*1.
 = 'U':A is upper triangular,
 = 'L':A is lower triangular.
```

    \(=\) ' T ': arf must be in the Transpose format (for strttf and dtrttf),
    \(=\) 'C': arf must be in the Conjugate-transpose format (for ctrttf and
    Specifies whether \(A\) is upper or lower triangular:
    ```
n
INTEGER. The order of the matrix A. n \geq0.
REAL for strttf,
DOUBLE PRECISION for dtrttf,
COMPLEX for ctrttf,
DOUBLE COMPLEX for ztrttf.
Array, DIMENSION (Ida, *).
On entry, the triangular matrix A. If uplo = 'U', the leading n-by-n upper
triangular part of the array a contains the upper triangular matrix, and the
strictly lower triangular part of a is not referenced. If uplo = 'L', the leading
n-by-n lower triangular part of the array a contains the lower triangular
matrix, and the strictly upper triangular part of a is not referenced.
Ida INTEGER. The leading dimension of the array a. Ida \geq max(1,n).
```


## Output Parameters

```
arf REAL for strttf,
 DOUBLE PRECISION for dtrttf,
 COMPLEX for ctrttf,
 DOUBLE COMPLEX for ztrttf.
 Array, DIMENSION at least max (1, n* (n+1)/2).
 On exit, the upper or lower triangular matrix A stored in the RFP
 format.
info INTEGER.
=0: successful exit,
< 0: if info = -i, the i-th parameter had an illegal value.
```


## ?trttp

Copies a triangular matrix from the standard full
format (TR) to the standard packed format (TP) .
Syntax

## Fortran 77:

```
call strttp(uplo, n, a, lda, ap, info)
call dtrttp(uplo, n, a, lda, ap, info)
call ctrttp(uplo, n, a, lda, ap, info)
call ztrttp(uplo, n, a, lda, ap, info)
```

C:

```
lapack_int LAPACKE_<?>trttp(int matrix_order, char uplo, lapack_int n, const
<datatype>* a, lapack_int lda, <datatype>* ap);
```


## Include Files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h
- C: mkl_lapacke.h


## Description

The routine copies a triangular matrix $A$ from the standard full format to the standard packed format.

## Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the $C$ interface section above. See the $C$ Interface Conventions section for the $C$ interface principal conventions and type defintions.

```
uplo CHARACTER*1.
Specifies whether A is upper or lower triangular:
= 'U': A is upper triangular,
= 'L':A is lower triangular.
n
a
Ida
```


## Output Parameters

```
ap
info
```

```
REAL for strttp,
DOUBLE PRECISION for dtrttp,
COMPLEX for ctrttp,
DOUBLE COMPLEX for ztrttp.
Array, DIMENSION at least max (1, n*(n+1)/2).
On exit, the upper or lower triangular matrix }A\mathrm{ , packed columnwise in a
linear array. The j-th column of A is stored in the array ap as follows:
if uplo = 'U', ap(i + (j-1)*j/2) =A(i,j) for 1\leqi\leq j,
if uplo = 'L', ap(i + (j-1)* (2n-j)/2)=A(i,j) for j \leqi\leqn.
INTEGER.
=0: successful exit,
< 0: if info = -i, the i-th parameter had an illegal value.
```


## ?pstf2

Computes the Cholesky factorization with complete pivoting of a real symmetric or complex Hermitian positive semi-definite matrix.

## Syntax

```
call spstf2(uplo, n, a, lda, piv, rank, tol, work, info)
call dpstf2(uplo, n, a, lda, piv, rank, tol, work, info)
call cpstf2(uplo, n, a, lda, piv, rank, tol, work, info)
call zpstf2(uplo, n, a, lda, piv, rank, tol, work, info)
```

Include files

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h


## Description

The real flavors spstf2 and dpstf2 compute the Cholesky factorization with complete pivoting of a real symmetric positive semi-definite matrix $A$. The complex flavors cpstf2 and zpstf2 compute the Cholesky factorization with complete pivoting of a complex Hermitian positive semi-definite matrix $A$. The factorization has the form:

```
PT* A * P = U' * U, if uplo = 'U' for real flavors,
PT* A * P = U' * U, if uplo = 'U' for complex flavors,
PT* A * P = L * L', if uplo = 'L' for real flavors,
PT* A * P = L * L', if uplo = 'L' for complex flavors,
```

where $U$ is an upper triangular matrix and $L$ is lower triangular, and $P$ is stored as vector piv.
This algorithm does not check that $A$ is positive semi-definite. This version of the algorithm calls level 2 BLAS.

Input Parameters

```
uplo
n
a

CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric or Hermitian matrix \(A\) is stored:
= 'U': Upper triangular,
= 'L': Lower triangular.
INTEGER. The order of the matrix \(A\). \(n \geq 0\).
REAL for spstf2,
DOUBLE PRECISION for dpstf2,
COMPLEX for cpstf2,
DOUBLE COMPLEX for zpstf2.
Array, DIMENSION (lda, *).
On entry, the symmetric matrix \(A\). If uplo = ' \(U\) ', the leading \(n\)-by-n upper triangular part of the array a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of the array a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.
REAL for spstf2 and cpstf2, DOUBLE PRECISION for dpstf2 and zpstf2.
A user-defined tolerance.
If tol < 0, \(n * u l p{ }^{*} \max (A(k, k)\)) will be used (ulp is the Unit in the Last Place, or Unit of Least Precision). The algorithm terminates at the (\(k-1\))-st step if the pivot is not greater than tol.
INTEGER. The leading dimension of the matrix \(A . I d a \geq \max (1, n)\).
REAL for spstf2 and cpstf2,
DOUBLE PRECISION for dpstf2 and zpstf2.
Workspace array, DIMENSION at least max (1, \(2 \star_{n}\)).

INTEGER. Array. DIMENSION at least max \((1, n)\).
piv is such that the non-zero entries are \(P(\operatorname{piv}(k), k)=1\).
On exit, if info \(=0\), the factor \(U\) or \(L\) from the Cholesky factorization stored the same way as the matrix \(A\) is stored on entry.

\section*{Output Parameters}
piv
a
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{rank} & INTEGER. \\
\hline & The rank of \(A\), determined by the number of steps the algorithm completed. \\
\hline \multirow[t]{4}{*}{info} & INTEGER. \\
\hline & < 0: if info \(=-k\), the \(k\)-th parameter had an illegal value, \\
\hline & \(=0\) : the algorithm completed successfully, \\
\hline & \(>0\) : the matrix \(A\) is rank-deficient with the computed rank, returned in rank, or indefinite. \\
\hline
\end{tabular}

\section*{dlat2s}

Converts a double-precision triangular matrix to a single-precision triangular matrix.

\section*{Syntax}
```

call dlat2s( uplo, n, a, lda, sa, ldsa, info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

This routine converts a double-precision triangular matrix \(A\) to a single-precision triangular matrix SA. dlat 2 s checks that all the elements of \(A\) are between \(-R M A X\) and \(R M A X\), where RMAX is the overflow for the single-precision arithmetic. If this condition is not met, the conversion is aborted and a flag is raised. The routine does no parameter checking.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER*1. \\
\hline & \begin{tabular}{l}
Specifies whether the matrix \(A\) is upper or lower triangular: = 'U': A is upper triangular, \\
= 'L': A is lower triangular.
\end{tabular} \\
\hline \(n\) & INTEGER. The number of rows and columns of the matrix \(A . n \geq 0\). \\
\hline a & DOUBLE PRECISION. \\
\hline & Array, DIMENSION (lda, *). \\
\hline & On entry, the \(n-b y-n\) triangular matrix \(A\). \\
\hline Ida & INTEGER. The leading dimension of the array a. 1 da \(\geq \max (1, n)\). \\
\hline Idsa & INTEGER. The leading dimension of the array sa. Idsa \(\geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

sa

```
info

REAL.
Array, DIMENSION (Idsa, *).
Only the part of sa determined by uplo is referenced. On exit,
- if info \(=0\), the \(n\)-by-n triangular matrix \(S A\),
- if info \(>0\), the content of the part of sa determined by uplo is unspecified.

INTEGER.
\(=0\) : successful exit,
\(>0\) : an element of the matrix \(A\) is greater than the single-precision overflow threshold; in this case, the content of the part of sa determined by uplo is unspecified on exit.

\section*{zlat2c}

Converts a double complex triangular matrix to a complex triangular matrix.

\section*{Syntax}
```

call zlat2c( uplo, n, a, lda, sa, ldsa, info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

This routine is declared in mkl_lapack.fi for FORTRAN 77 interface and in mkl_lapack.h for C interface.
The routine converts a DOUBLE COMPLEX triangular matrix \(A\) to a COMPLEX triangular matrix SA. zlat2c checks that the real and complex parts of all the elements of \(A\) are between -RMAX and RMAX, where RMAX is the overflow for the single-precision arithmetic. If this condition is not met, the conversion is aborted and a flag is raised. The routine does no parameter checking.

\section*{Input Parameters}
```

uplo
n
a
lda
ldsa
CHARACTER*1.
Specifies whether the matrix $A$ is upper or lower triangular:
= 'U': A is upper triangular,
= ' L ': A is lower triangular.
INTEGER. The number of rows and columns in the matrix $A . n \geq 0$.
DOUBLE COMPLEX.
Array, DIMENSION (Ida, *).
On entry, the $n-b y-n$ triangular matrix $A$.
INTEGER. The leading dimension of the array $a$. Ida $\geq \max (1, n)$.
INTEGER. The leading dimension of the array sa. Idsa $\geq \max (1, n)$.

```

\section*{Output Parameters}

COMPLEX.
Array, DIMENSION (Idsa, *).
Only the part of sa determined by uplo is referenced. On exit,
- if info \(=0\), the \(n-b y-n\) triangular matrix sa,
- if info \(>0\), the content of the part of sa determined by uplo is unspecified.

\section*{INTEGER.}
\(=0\) : successful exit,
\(>0\) : the real or complex part of an element of the matrix \(A\) is greater than the single-precision overflow threshold; in this case, the content of the part of sa determined by uplo is unspecified on exit.

\section*{?lacp2}

Copies all or part of a real two-dimensional array to a complex array.

\section*{Syntax}
```

call clacp2( uplo, m, n, a, lda, b, ldb )
call zlacp2( uplo, m, n, a, lda, b, ldb )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine copies all or part of a two-dimensional matrix \(A\) to another matrix \(B\).

\section*{Input Parameters}
```

uplo CHARACTER*1.
Specifies the part of the matrix A to be copied to B.
If uplo = 'U', the upper triangular part of A;
if uplo = 'L', the lower triangular part of A.
Otherwise, all of the matrix A is copied.
INTEGER. The number of rows in the matrix A (m\geq0).
INTEGER. The number of columns in A (n\geq0).
REAL for clacp2
DOUBLE PRECISION for zlacp2
Array a(Ida,n), contains the m-by-n matrix A.
If uplo = 'U', only the upper triangle or trapezoid is accessed; if uplo =
'L', only the lower triangle or trapezoid is accessed.
Ida INTEGER. The leading dimension of a; lda \geq max (1, m).
ldb INTEGER. The leading dimension of the output array b; ldb \geqmax (1, m).

```

\section*{Output Parameters}
b
COMPLEX for clacp2
DOUBLE COMPLEX for zlacp2.
Array \(b(l d b, m)\), contains the \(m\)-by- \(n\) matrix \(B\).
On exit, \(B=A\) in the locations specified by uplo.

\section*{?la_gbamv}

Performs a matrix-vector operation to calculate error
bounds.

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_gbamv(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)
call dla_gbamv(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)
call cla_gbamv(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)

```
```

call zla_gbamv(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?la_gbamv function performs one of the matrix-vector operations defined as
```

y := alpha*abs(A)*abs(x) + beta*abs(y),

```
or
\(y:=\) alpha*abs \((A)^{T}\) *abs \((x)+b e t a * a b s(y)\),
where:
```

alpha and beta are scalars,

```
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(n\) matrix, with \(k l\) sub-diagonals and \(k u\) super-diagonals.
This function is primarily used in calculating error bounds. To protect against underflow during evaluation, the function perturbs components in the resulting vector away from zero by \((n+1)\) times the underflow threshold. To prevent unnecessarily large errors for block structure embedded in general matrices, the function does not perturb symbolically zero components. A zero entry is considered symbolic if all multiplications involved in computing that entry have at least one zero multiplicand.

\section*{Input Parameters}
trans
m
n
kl
ku
alpha
\(a b\)

INTEGER. Specifies the operation to be performed:
```

If trans = 'BLAS_NO_TRANS', then y := alpha*abs(A)*abs(x) +
beta*abs(y)
If trans = 'BLAS_TRANS', then y := alpha*abs ( }\mp@subsup{A}{}{T}\mathrm{ )*abs(x) +
beta*abs(y)
If trans = 'BLAS_CONJ_TRANS', then y := alpha*abs( }\mp@subsup{A}{}{T})*abs(x)
beta*abs(y)

```

The parameter is unchanged on exit.
INTEGER. Specifies the number of rows of the matrix \(A\).
The value of \(m\) must be at least zero. Unchanged on exit.
INTEGER. Specifies the number of columns of the matrix \(A\). The value of \(n\) must be at least zero. Unchanged on exit.
INTEGER. Specifies the number of sub-diagonals within the band of \(A\). \(k l \geq 0\).
INTEGER. Specifies the number of super-diagonals within the band of \(A\). \(k u \geq 0\).
REAL for sla_gbamv and cla_gbamv
DOUBLE PRECISION for dla_gbamv and zla_gbamv
Specifies the scalar alpha. Unchanges on exit.
REAL for sla_gbamv
DOUBLE PRECISION for dla_gbamv
COMPLEX for cla_gbamv
DOUBLE COMPLEX for zla_gbamv
Array, DIMENSION (Idab, *).
\begin{tabular}{|c|c|}
\hline & Before entry, the leading \(m\)-by-n part of the array \(a b\) must contain the matrix of coefficients. The second dimension of ab must be at least \(\max (1, n)\). Unchanged on exit. \\
\hline Idab & Integer. Specifies the leading dimension of \(a b\) as declared in the calling (sub)program. The value of 1 dab must be at least max \((1, m)\). Unchanged on exit. \\
\hline \multirow[t]{8}{*}{\(x\)} & REAL for sla_gbamv \\
\hline & DOUBLE PRECISION for dla_gbamv \\
\hline & COMPLEX for cla_gbamv \\
\hline & DOUBLE COMPLEX for zla_gbamv \\
\hline & Array, DIMENSION \\
\hline & \((1+(n-1) * a b s(i n c x))\) when trans \(='^{\prime} N^{\prime}\) or 'n' and at least \\
\hline & \((1+(m-1) * a b s(i n c x))\) otherwise. \\
\hline & Before entry, the incremented array x must contain the vector x . \\
\hline incx & INTEGER. Specifies the increment for the elements of \(x\). incx must not be zero. \\
\hline \multirow[t]{3}{*}{beta} & REAL for sla_gbamv and cla_gbamv \\
\hline & DOUBLE PRECISION for dla_gbamv and zla_gbamv \\
\hline & Specifies the scalar beta. When beta is zero, you do not need to set \(y\) on input. \\
\hline \multirow[t]{6}{*}{y} & REAL for sla_gbamv and cla_gbamv \\
\hline & DOUBLE PRECISION for dla_gbamv and zla_gbamv \\
\hline & Array, DIMENSION at least - \\
\hline & \((1+(m-1) * a b s(i n c y))\) when trans \(='^{\prime}{ }^{\prime}\) or 'n' and at least \\
\hline & \((1+(n-1) *\) abs (incy)) otherwise. \\
\hline & Before entry with beta non-zero, the incremented array \(y\) must contain the vector \(y\). \\
\hline \multirow[t]{2}{*}{incy} & INTEGER. Specifies the increment for the elements of \(y\). \\
\hline & The value of incy must not be zero. Unchanged on exit. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

y Updated vector y.

```

\section*{?la_gbrcond}

Estimates the Skeel condition number for a general banded matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_gbrcond( trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, cmode, c, info, work,
iwork )
call dla_gbrcond( trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, cmode, c, info, work,
iwork )
Include Files

```
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function estimates the Skeel condition number of
op (A) * op2 (C)
where
the cmode parameter determines op2 as follows:
\begin{tabular}{ll}
\hline cmode Value & op2(C) \\
\hline 1 & \(C\) \\
0 & \(I\) \\
-1 & \(\operatorname{inv}(C)\) \\
\hline
\end{tabular}

The Skeel condition number
```

cond(A) = norminf(|inv(A)||A|)

```
is computed by computing scaling factors \(R\) such that
```

diag(R)* A*op2(C)

```
is row equilibrated and by computing the standard infinity-norm condition number.
Input Parameters
```

trans CHARACTER*1.Must be 'N' or 'T' or 'C'.
Specifies the form of the system of equations:
If trans = 'N', the system has the form A* X = B.
If trans = 'T', the system has the form AT*X = B.
If trans = 'C', the system has the form A'H*}X=B\mathrm{ .

```
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The number of linear equations, that is, the order of the matrix \(A ; n \geq\) 0. \\
\hline kI & INTEGER. The number of subdiagonals within the band of \(A ; k I \geq 0\). \\
\hline ku & INTEGER. The number of superdiagonals within the band of \(A ; k u \geq 0\). \\
\hline \(a b, a f b, c\), work & \begin{tabular}{l}
REAL for sla_gbrcond \\
DOUBLE PRECISION for dla_gbrcond \\
Arrays: \\
\(a b(l d a b, *)\) contains the original band matrix \(A\) stored in rows from 1 to \(k l+k u\) \\
+1 . The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array ab as follows:
\[
a b(k u+1+i-j, j)=A(i, j)
\] \\
for
\[
\max (1, j-k u) \leq i \leq \min (n, j+k l)
\] \\
\(\operatorname{afb}(l d a f b, *)\) contains details of the LU factorization of the band matrix \(A\), as returned by ?gbtrf. \(U\) is stored as an upper triangular band matrix with \(k l+k u\) superdiagonals in rows 1 to \(k l+k u+1\), and the multipliers used during the factorization are stored in rows \(k l+k u+2\) to \(2 * k l+k u+1\). \\
\(C\), DIMENSION \(n\). The vector \(C\) in the formula op (\(A\)) * op2 (C). \\
work is a workspace array of DIMENSION (\(5 *_{n}\)). \\
The second dimension of \(a b\) and \(a f b\) must be at least max \((1, n)\).
\end{tabular} \\
\hline Idab & INTEGER. The leading dimension of the array \(a b . l d a b \geq k l+k u+1\). \\
\hline Idafb & INTEGER. The leading dimension of \(a f b\). 1 dafb \(\geq 2 \star k l+k u+1\). \\
\hline ipiv & INTEGER. \\
\hline
\end{tabular}
cmode
iwork

\section*{Output Parameters}

Array with DIMENSION \(n\). The pivot indices from the factorization \(A=P^{\star} L^{\star} U\) as computed by ?gbtrf. Row \(i\) of the matrix was interchanged with row ipiv(i).
info

INTEGER.
If info \(=0\), the execution is successful.
If \(i>0\), the \(i\)-th parameter is invalid.

\section*{See Also}
?gbtrf

\section*{?la_gbrcond_c}

Computes the infinity norm condition number of \(o p(A) * i n v(\operatorname{diag}(C))\) for general banded matrices.

\section*{Syntax}

\section*{Fortran 77:}
```

call cla_gbrcond_c( trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, c, capply, info,
work, rwork )
call zla_gbrcond_c( trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, c, capply, info,
work, rwork )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function computes the infinity norm condition number of
```

op(A) * inv(diag(c))

```
where the \(c\) is a REAL vector for cla_gbrcond_c and a DOUBLE PRECISION vector for zla_gbrcond_c.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline trans & CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & Specifies the form of the system of equations: \\
\hline & If trans \(=\) ' N ', the system has the form \(A * X=B\) (No transpose) \\
\hline & If trans \(=\) 'T', the system has the form \(A^{T} * X=B\) (Transpose) \\
\hline & If trans \(=\) ' C', the system has the form \(A^{H} * X=B\) (Conjugate Transpose \(=\) Transpose) \\
\hline \(n\) & INTEGER. The number of linear equations, that is, the order of the matrix \(A ; n \geq\) 0. \\
\hline kI & INTEGER. The number of subdiagonals within the band of \(A ; k l \geq 0\). \\
\hline ku & INTEGER. The number of superdiagonals within the band of \(A ; k u \geq 0\). \\
\hline ab, afb, work & COMPLEX for cla_gbrcond_c \\
\hline
\end{tabular}

\section*{Output Parameters}

INTEGER.
If info \(=0\), the execution is successful.
If \(i>0\), the \(i\)-th parameter is invalid.

\section*{See Also}
?gbtrf

\section*{?la_gbrcond_x}

Computes the infinity norm condition number of op(A)*diag(x) for general banded matrices.

\section*{Syntax}

\section*{Fortran 77:}
```

call cla_gbrcond_x( trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, x, info, work,
rwork )
call zla_gbrcond_x( trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, x, info, work,
rwork )

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function computes the infinity norm condition number of
```

op(A) * diag(x)

```
where the \(x\) is a COMPLEX vector for cla_gbrcond_x and a DOUBLE COMPLEX vector for zla_gbrcond_x.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{trans} & CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & Specifies the form of the system of equations: \\
\hline & If trans \(=\) ' N ', the system has the form \(A * X=B\) (No transpose) \\
\hline & If trans \(=\) 'T', the system has the form \(A^{T} * X=B\) (Transpose) \\
\hline & If trans \(=\) ' C', the system has the form \(A^{H *} X=B\) (Conjugate Transpose \(=\) \\
\hline & Transpose) \\
\hline \(n\) & INTEGER. The number of linear equations, that is, the order of the matrix \(A ; n \geq\) 0. \\
\hline kI & INTEGER. The number of subdiagonals within the band of \(A ; k I \geq 0\). \\
\hline ku & INTEGER. The number of superdiagonals within the band of \(A ; k u \geq 0\). \\
\hline \multirow[t]{13}{*}{\(a b, a f b, x, w o r k\)} & COMPLEX for cla_gbrcond_x \\
\hline & DOUBLE COMPLEX for zla_gbrcond_x \\
\hline & Arrays: \\
\hline & \(a b(l d a b, *)\) contains the original band matrix \(A\) stored in rows from 1 to \(k l+k u\) \\
\hline & \[
a b(k u+1+i-j, j)=A(i, j)
\] \\
\hline & for \\
\hline & \(\max (1, j-k u) \leq i \leq \min (n, j+k l)\) \\
\hline & \(a f b\) (ldafb,*) contains details of the LU factorization of the band matrix \(A\), as \\
\hline & returned by ?gbtrf. \(U\) is stored as an upper triangular band matrix with \(k l+k u\) \\
\hline & superdiagonals in rows 1 to \(k l+k u+1\), and the multipliers used during the factorization are stored in rows \(k l+k u+2\) to \(2 * k l+k u+1\). \\
\hline & \(x\), DIMENSION \(n\). The vector \(x\) in the formula op (\(A\)) * diag (x). \\
\hline & work is a workspace array of DIMENSION (\(2 *_{n}\)). \\
\hline & The second dimension of \(a b\) and \(a f b\) must be at least max (\(1, n\)). \\
\hline Idab & INTEGER. The leading dimension of the array \(a b . l d a b \geq k l+k u+1\). \\
\hline Idafb & INTEGER. The leading dimension of \(a f b\). 1 dafb \(\geq 2 * k l+k u+1\). \\
\hline \multirow[t]{2}{*}{ipiv} & INTEGER. \\
\hline & Array with DIMENSION \(n\). The pivot indices from the factorization \(A=P^{\star} L^{\star} U\) as computed by ?gbtrf. Row i of the matrix was interchanged with row ipiv(i). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cla_gbrcond_x \\
\hline & DOUBLE PRECISION for zla_gbrcond_x \\
\hline & Array rwork with DIMENSION \(n\) is a workspace. \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{info}

INTEGER.
If info \(=0\), the execution is successful.
If \(i>0\), the \(i\)-th parameter is invalid.
See Also
?gbtrf

\section*{?la_gbrfsx_extended \\ Improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.}

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_gbrfsx_extended( prec_type, trans_type, n, kl, ku, nrhs, ab, ldab, afb,
ldafb, ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm,
err_bnds_comp, res, ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise,
info )
call dla_gbrfsx_extended( prec_type, trans_type, n, kl, ku, nrhs, ab, ldab, afb,
ldafb, ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm,
err_bnds_comp, res, ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise,
info )
call cla_gbrfsx_extended( prec_type, trans_type, n, kl, ku, nrhs, ab, ldab, afb,
ldafb, ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm,
err_bnds_comp, res, ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise,
info )
call zla_gbrfsx_extended( prec_type, trans_type, n, kl, ku, nrhs, ab, ldab, afb,
ldafb, ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm,
err_bnds_comp, res, ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise,
info )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?la_gbrfsx_extended subroutine improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. The ?gbrfsx routine calls ?la_gbrfsx_extended to perform iterative refinement.

In addition to normwise error bound, the code provides maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

Use ?la_gbrfsx_extended to set only the second fields of err_bnds_norm and err_bnds_comp.

\section*{Input Parameters}
prec_type
trans_type

INTEGER.
Specifies the intermediate precision to be used in refinement. The value is defined by ilaprec (p), where \(p\) is a CHARACTER and:
If \(p=\) 'S': Single.
If \(p=\) 'D': Double.
If \(p=\) 'I': Indigenous.
If \(p=\) 'X', 'E': Extra.
INTEGER.
Specifies the transposition operation on \(A\). The value is defined by
ilatrans (\(t\)), where \(t\) is a CHARACTER and:
If \(t=\) 'N': No transpose.

If \(t=\) 'T': Transpose.
If \(t=\) ' C': Conjugate Transpose.
n
\(k l\)
ku
nrhs
\(a b, a f b, b, y\)
ldab
ldafb
ipiv
colequ

C

1 db
ldy
n_norms
err_bnds_norm

INTEGER. The number of linear equations; the order of the matrix \(A ; n \geq 0\).
INTEGER. The number of subdiagonals within the band of \(A ; k l \geq 0\).
INTEGER. The number of superdiagonals within the band of \(A ; k u \geq 0\). INTEGER. The number of right-hand sides; the number of columns of the matrix \(B\).
REAL for sla_gbrfsx_extended
DOUBLE PRECISION for dla_gbrfsx_extended
COMPLEX for cla_gbrfsx_extended
DOUBLE COMPLEX for zla_gbrfsx_extended.
Arrays: \(a b(I d a b, *)\), \(a f b(l d a f b, *), b(I d b, *), y(I d y, *)\).
The array \(a b\) contains the original \(n-b y-n\) matrix \(A\). The second dimension of \(a b\) must be at least max \((1, n)\).
The array \(a f b\) contains the factors \(L\) and \(U\) from the factorization \(A=\) \(\left.P^{\star} L^{\star} U\right)\) as computed by ?gbtrf. The second dimension of afb must be at least max \((1, n)\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max (1, nrhs).
The array \(y\) on entry contains the solution matrix \(x\) as computed by ?
gbtrs. The second dimension of \(y\) must be at least max (\(1, n r h s\)).
INTEGER. The leading dimension of the array \(a b ; I d a b \geq \max (1, n)\).
INTEGER. The leading dimension of the array \(a f b ; \operatorname{ldafb} \geq \max (1, n)\).
INTEGER.
Array, DIMENSION at least max \((1, n)\). Contains the pivot indices from the factorization \(A=P^{\star} L^{\star} U\)) as computed by ?gbtrf; row \(i\) of the matrix was interchanged with row ipiv(i).
LOGICAL. If colequ \(=\).TRUE., column equilibration was done to \(A\) before calling this routine. This is needed to compute the solution and error bounds correctly.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
c contains the column scale factors for \(A\). If colequ =. FALSE., \(c\) is not accessed.
If \(c\) is input, each element of \(c\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by power of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
INTEGER. The leading dimension of the array \(b ; 1 d b \geq \max (1, n)\).
INTEGER. The leading dimension of the array \(y ; l d y \geq \max (1, n)\).
INTEGER. Determines which error bounds to return. See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below. If \(n \_\)norms \(\geq 1\), returns normwise error bounds. If \(n \_n o r m s \geq 2\), returns componentwise error bounds.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the \(i\)-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
The first index in err_bnds_norm(i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_norm (: ,err) contains the following three fields:
```

err=1
err=2

```
err=3
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors.
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/ \(z\),inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1.
Use this subroutine to set only the second field above.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the \(i\)-th solution vector:

The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) \(=0.0\)), then err_bnds_comp is not accessed. If \(n_{-} e r r_{-} b n d s\) \(<3\), then at most the first (:, \(n_{-} e r r_{-}\)bnds) entries are returned. The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the follwoing three fields:
err=1
err=2
err=3
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold \(\operatorname{sqrt}(n) *\) slamch (\(\varepsilon\)) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors.
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * s l a m c h(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/
\(z\),inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{\star}\left(a^{\star} \operatorname{diag}(x)\right)\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a^{\star}\) diag \((x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1 . Use this subroutine to set only the second field above.
res, dy, y_tail
\(a y b\)
```

REAL for sla_gbrfsx_extended
DOUBLE PRECISION for dla_gbrfsx_extended
COMPLEX for cla_gbrfsx_extended
DOUBLE COMPLEX for zla_gbrfsx_extended.
Workspace arrays of DIMENSION n.
res holds the intermediate residual.
dy holds the intermediate solution.
y_tail holds the trailing bits of the intermediate solution.
REAL for single precision flavors

```
\begin{tabular}{|c|c|}
\hline & DOUBLE PRECISION for double precision flavors. Workspace array, DIMENSION n. \\
\hline \multirow[t]{3}{*}{rcond} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned. \\
\hline ithresh & INTEGER. The maximum number of residual computations allowed for refinement. The default is 10 . For 'aggressive', set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy. \\
\hline \multirow[t]{7}{*}{rthresh} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & \begin{tabular}{l}
Determines when to stop refinement if the error estimate stops decreasing. Refinement stops when the next solution no longer satisfies \\
norm(dx_\{i+1\}) < rthresh * norm(dx_i)
\end{tabular} \\
\hline & where norm \((z)\) is the infinity norm of \(z\). \\
\hline & rthresh satisfies \\
\hline & \(0<r\) rhresh \(\leq 1\). \\
\hline & The default value is 0.5 . For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices. \\
\hline \multirow[t]{4}{*}{\(d z_{-} u b\)} & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Determines when to start considering componentwise convergence. \\
\hline & Componentwise \(d z_{-} u b\) convergence is only considered after each component of the solution \(y\) is stable, that is, the relative change in each component is less than \(d z_{-} u b\). The default value is 0.25 , requiring the first bit to be stable. \\
\hline \multirow[t]{2}{*}{ignore_cwise} & LOGICAL \\
\hline & If . TRUE., the function ignores componentwise convergence. Default value is. FALSE. \\
\hline
\end{tabular}

\section*{Output Parameters}
y
berr_out

REAL for sla_gbrfsx_extended
DOUBLE PRECISION for dla_gbrfsx_extended
COMPLEX for cla_gbrfsx_extended
DOUBLE COMPLEX for zla_gbrfsx_extended.
The improved solution matrix \(y\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max (\(1, n r h s\)). Contains the componentwise relative backward error for right-hand-side \(j\) from the formula max(i) (abs(res(i)) / (abs(op(A))*abs(y) + abs(B))(i)) where abs \((z)\) is the componentwise absolute value of the matrix or vector z. This is computed by ?la_lin_berr.
```

err_bnds_norm,
err_bnds_comp
info

```

Values of the corresponding input parameters improved after iterative refinement and stored in the second column of the array (1:nrhs, 2). The other elements are kept unchanged.

INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\author{
See Also \\ ?gbrfsx \\ ?gbtrf \\ ?gbtrs \\ ?lamch \\ ilaprec \\ ilatrans \\ ?la_lin_berr
}

\section*{?la_gbrpvgrw \\ Computes the reciprocal pivot growth factor norm (A) / norm (U) for a general band matrix.}

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_gbrpvgrw( n, kl, ku, ncols, ab, ldab, afb, ldafb )
call dla_gbrpvgrw( n, kl, ku, ncols, ab, ldab, afb, ldafb )
call cla_gbrpvgrw( n, kl, ku, ncols, ab, ldab, afb, ldafb )
call zla_gbrpvgrw( n, kl, ku, ncols, ab, ldab, afb, ldafb )

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?la_gbrpvgrw routine computes the reciprocal pivot growth factor norm (A)/norm (U). The max absolute element norm is used. If this is much less than 1 , the stability of the \(L U\) factorization of the equilibrated matrix \(A\) could be poor. This also means that the solution \(x\), estimated condition numbers, and error bounds could be unreliable.

\section*{Input Parameters}
```

n
kl
ku
ncols
ab, afb

```

INTEGER. The number of linear equations, the order of the matrix \(A ; n\) \(\geq 0\).
INTEGER. The number of subdiagonals within the band of \(A ; k I \geq 0\).
INTEGER. The number of superdiagonals within the band of \(A ; k u \geq 0\).
INTEGER. The number of columns of the matrix \(A ; n c o l s \geq 0\).
REAL for sla_gbrpvgrw
DOUBLE PRECISION for dla_gbrpvgrw
COMPLEX for cla_gbrpvgrw
DOUBLE COMPLEX for zla_gbrpvgrw.
Arrays: \(a b(l d a b, *), a f b(l d a f b, *)\).
\(a b\) contains the original band matrix \(A\) (see Matrix Storage Schemes) stored in rows from 1 to \(k I+k u+1\). The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows:
```

ab(ku+1+i-j,j) = A(i,j)
for
max (1,j-ku) \leqi\leqmin(n,j+kl)
afb contains details of the LU factorization of the band matrix A, as
returned by ?gbtrf. U is stored as an upper triangular band matrix
with kl+ku superdiagonals in rows 1 to kl+ku+1, and the multipliers
used during the factorization are stored in rows kl+ku+2 to 2* kl+ku
+1.

```
INTEGER. The leading dimension of ab; ldab }\geqkl+ku+1
```

INTEGER. The leading dimension of ab; ldab }\geqkl+ku+1
INTEGER. The leading dimension of afb; ldafb }\geq2*kl+ku+1
INTEGER. The leading dimension of afb; ldafb }\geq2*kl+ku+1
Idab
ldafb

```

\section*{See Also \\ ?gbtrf}

\section*{?la_geamv}

Computes a matrix-vector product using a general matrix to calculate error bounds.

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_geamv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call dla_geamv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call cla_geamv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call zla_geamv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?la_geamv routines perform a matrix-vector operation defined as
```

y := alpha*abs(A)* (x) + beta*abs(y),

```
or
\(y:=a l p h a * a b s\left(A^{T}\right) * a b s(x)+b e t a * a b s(y)\),
where:
```

alpha and beta are scalars,
x and y are vectors,
$A$ is an m-by-n matrix.

```

This function is primarily used in calculating error bounds. To protect against underflow during evaluation, the function perturbs components in the resulting vector away from zero by (\(n+1\)) times the underflow threshold. To prevent unnecessarily large errors for block structure embedded in general matrices, the function does not perturb symbolically zero components. A zero entry is considered symbolic if all multiplications involved in computing that entry have at least one zero multiplicand.

Input Parameters
trans
m
n
alpha
a

Ida

X
incx
beta
y
incy

CHARACTER*1. Specifies the operation:
```

if trans = BLAS_NO_TRANS, then y := alpha*abs(A)*abs(x) +
beta*abs(y)
if trans = BLAS_TRANS, then y := alpha*abs (AT})*abs(x) +
beta*abs(y)
if trans = 'BLAS_CONJ_TRANS, then y := alpha*abs ( }\mp@subsup{A}{}{T})*abs(x)
beta*abs(y).

```

INTEGER. Specifies the number of rows of the matrix \(A\). The value of \(m\) must be at least zero.
INTEGER. Specifies the number of columns of the matrix \(A\). The value of \(n\) must be at least zero.

REAL for sla_geamv and for cla_geamv
DOUBLE PRECISION for dla_geamv and zla_geamv
Specifies the scalar alpha.
REAL for sla_geamv
DOUBLE PRECISION for dla_geamv
COMPLEX for cla_geamv
DOUBLE COMPLEX for zla_geamv
Array, DIMENSION (Ida, *). Before entry, the leading m-by-n part of the array a must contain the matrix of coefficients. The second dimension of a must be at least max \((1, n)\).

INTEGER. Specifies the leading dimension of a declared in the calling (sub) program. The value of 1 da must be at least max \((1, m)\).

REAL for sla_geamv
DOUBLE PRECISION for dla_geamv
COMPLEX for cla_geamv
DOUBLE COMPLEX for zla_geamv
Array, DIMENSION at least (1+(n-1)*abs(incx)) when trans = 'N' or ' \(n\) ' and at least (\(1+(m-1) * a b s(i n c x))\) otherwise. Before entry, the incremented array \(x\) must contain the vector \(x\).

INTEGER. Specifies the increment for the elements of \(x\). The value of incx must be non-zero.

REAL for sla_geamv and for cla_geamv
DOUBLE PRECISION for dla_geamv and zla_geamv
Specifies the scalar beta. When beta is zero, you do not need to set \(y\) on input.

REAL for sla_geamv and for cla_geamv
DOUBLE PRECISION for dla_geamv and zla_geamv
Array, DIMENSION at least (1 + (m-1)*abs(incy)) when trans = 'N' or 'n' and at least (1 + (n - 1)*abs (incy)) otherwise. Before entry with non-zero beta, the incremented array y must contain the vector \(Y\).
INTEGER. Specifies the increment for the elements of \(y\). The value of incy must be non-zero.

\section*{Output Parameters}
Updated vector \(Y\).

\section*{?la_gercond \\ Estimates the Skeel condition number for a general matrix.}

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_gercond( trans, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork )
call dla_gercond( trans, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork )

```
Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function estimates the Skeel condition number of
op (A) * op2 (C)
where
the cmode parameter determines op2 as follows:
\begin{tabular}{ll}
\hline cmode Value & op2(C) \\
\hline 1 & \(C\) \\
0 & \(I\) \\
-1 & \(\operatorname{inv}(C)\) \\
\hline
\end{tabular}

The Skeel condition number
```

cond(A) = norminf(|inv (A)| |A|

```
is computed by computing scaling factors \(R\) such that
```

diag(R)*A*op2 (C)

```
is row equilibrated and by computing the standard infinity-norm condition number.
Input Parameters
```

trans CHARACTER*1.Must be 'N' or 'T' or 'C'.
Specifies the form of the system of equations:
If trans = 'N', the system has the form A*X = B (No transpose).
If trans = 'T', the system has the form }\mp@subsup{A}{}{T*}\mp@subsup{*}{X}{\prime}=B\mathrm{ (Transpose).
If trans = 'C', the system has the form A'A*X = B (Conjugate Transpose =
Transpose).
INTEGER. The number of linear equations, that is, the order of the matrix A; n\geq
0.
a,af,c,work REAL for sla_gercond
DOUBLE PRECISION for dla_gercond
Arrays:
a(Ida,*) contains the original general n-by-n matrix A.
af(ldaf,*) contains factors L and U from the factorization of the general matrix
A= P*}\mp@subsup{L}{}{*}U\mathrm{ , as returned by ?getrf.
C, DIMENSION n. The vector C in the formula op (A) * op2 (C).

```
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
work is a workspace array of DIMENSION (\(3 *_{n}\)). \\
The second dimension of \(a\) and af must be at least max \((1, n)\).
\end{tabular} \\
\hline lda & INTEGER. The leading dimension of the array a. 1 da \(\geq \max (1, n)\) \\
\hline ldaf & INTEGER. The leading dimension of \(a f . l d a f \geq \max (1, n)\). \\
\hline ipiv & \begin{tabular}{l}
INTEGER. \\
Array with DIMENSION \(n\). The pivot indices from the factorization \(A=P^{\star} L^{\star} U\) as computed by ?getrf. Row i of the matrix was interchanged with row ipiv(i).
\end{tabular} \\
\hline cmode & \begin{tabular}{l}
INTEGER. Determines op2 (\(C\)) in the formula op (\(A\)) * op2 (\(C\)) as follows: \\
If cmode \(=1, o p 2(C)=C\). \\
If cmode \(=0, \mathrm{op} 2(C)=I\). \\
If cmode \(=-1\), op2 \((C)=\operatorname{inv}(C)\).
\end{tabular} \\
\hline iwork & INTEGER. Workspace array with DIMENSION \(n\). \\
\hline
\end{tabular}

\section*{Output Parameters}

\author{
info
}

INTEGER.
If info \(=0\), the execution is successful.
If \(i>0\), the \(i\)-th parameter is invalid.

\section*{See Also \\ ?getrf}

\section*{?la_gercond_c \\ Computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices.}

\section*{Syntax}

\section*{Fortran 77:}
```

call cla_gercond_c( trans, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork )
call zla_gercond_c( trans, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork )

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function computes the infinity norm condition number of
```

op(A) * inv(diag(c))

```
where the \(c\) is a REAL vector for cla_gercond_c and a DOUBLE PRECISION vector for zla_gercond_c.

\section*{Input Parameters}
```

trans
CHARACTER*1. Must be 'N' or 'T' or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' $N$ ', the system has the form $A * X=B$ (No transpose)
If trans $=$ ' T', the system has the form $A^{T} * X=B$ (Transpose)
If trans $=$ ' C', the system has the form $A^{H *} X=B$ (Conjugate Transpose $=$ Transpose)

```

INTEGER. The number of linear equations, that is, the order of the matrix \(A ; n \geq\) 0.
\begin{tabular}{|c|c|}
\hline \multirow[t]{7}{*}{a, af, work} & COMPLEX for cla_gercond_c \\
\hline & DOUBLE COMPLEX for zla_gercond_c \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) contains the original general \(n\)-by-n matrix \(A\). \\
\hline & \(a f(I d a f, *)\) contains the factors \(L\) and \(U\) from the factorization \(A=P^{\star} L^{\star} U\) as returned by ?getrf. \\
\hline & work is a workspace array of DIMENSION (\(2 *_{n}\)). \\
\hline & The second dimension of \(a\) and af must be at least max \((1, n)\). \\
\hline Ida & INTEGER. The leading dimension of the array a. 1 da \(\geq \max (1, n)\). \\
\hline Idaf & INTEGER. The leading dimension of \(a f .1 d a f \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{ipiv} & INTEGER. \\
\hline & Array with DIMENSION \(n\). The pivot indices from the factorization \(A=P^{\star} L^{\star} U\) as computed by ?getrf. Row i of the matrix was interchanged with row ipiv(i). \\
\hline \multirow[t]{5}{*}{c, rwork} & REAL for cla_gercond_c \\
\hline & DOUBLE PRECISION for zla_gercond_c \\
\hline & Array \(c\) with DIMENSION \(n\). The vector \(c\) in the formula \\
\hline & op (A) * inv(diag (c)). \\
\hline & Array rwork with DIMENSION \(n\) is a workspace. \\
\hline \multirow[t]{2}{*}{capply} & LOGICAL. If capply=.TRUE., then the function uses the vector c from the formula \\
\hline & op (A) * inv(diag(c)). \\
\hline
\end{tabular}

\section*{Output Parameters}

INTEGER.
If info \(=0\), the execution is successful.
If \(i>0\), the \(i\)-th parameter is invalid.

\section*{See Also}
?getrf

\section*{?la_gercond_x}

Computes the infinity norm condition number of op(A)*diag \((x)\) for general matrices.

\section*{Syntax}

\section*{Fortran 77:}
```

call cla_gercond_x( trans, n, a, lda, af, ldaf, ipiv, x, info, work, rwork )
call zla_gercond_x( trans, n, a, lda, af, ldaf, ipiv, x, info, work, rwork )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function computes the infinity norm condition number of
```

op(A) * diag(x)

```
where the \(x\) is a COMPLEX vector for cla_gercond_x and a DOUBLE COMPLEX vector for zla_gercond_x.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{trans} & CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & Specifies the form of the system of equations: \\
\hline & If trans \(=\) ' \(N\) ', the system has the form \(A * X=B\) (No transpose) \\
\hline & If trans \(=\) 'T', the system has the form \(A^{T} * X=B\) (Transpose) \\
\hline & If trans \(=\) ' C', the system has the form \(A^{H *} \times=B\) (Conjugate Transpose \(=\) \\
\hline & Transpose) \\
\hline \(n\) & INTEGER. The number of linear equations, that is, the order of the matrix \(A ; n \geq\) 0. \\
\hline \multirow[t]{8}{*}{a, af, x, work} & COMPLEX for cla_gercond_x \\
\hline & DOUBLE COMPLEX for zla_gercond_x \\
\hline & Arrays: - - \\
\hline & \(a(l d a, *)\) contains the original general \(n\)-by-n matrix \(A\). \\
\hline & \(a f\left(\operatorname{ldaf},^{*}\right)\) contains the factors \(L\) and \(U\) from the factorization \(A=P^{\star} L^{\star} U\) as returned by ?getrf. \\
\hline & \(x\), DIMENSION \(n\). The vector \(x\) in the formula op (\(A\)) * diag (\(x\)). \\
\hline & work is a workspace array of DIMENSION \(\left(2 *_{n}\right)\). \\
\hline & The second dimension of \(a\) and af must be at least max \((1, n)\). \\
\hline Ida & INTEGER. The leading dimension of the array \(a\). 1 da \(\geq \max (1, n)\). \\
\hline Idaf & INTEGER. The leading dimension of \(a f .1 d a f \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{ipiv} & INTEGER. \\
\hline & Array with DIMENSION \(n\). The pivot indices from the factorization \(A=P^{\star} L^{\star} U\) as computed by ?getrf. Row i of the matrix was interchanged with row ipiv(i). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cla_gercond_x \\
\hline & DOUBLE PRECISION for zla_gercond_x \\
\hline & Array rwork with DIMENSION \(n\) is a workspace. \\
\hline
\end{tabular}

\section*{Output Parameters}

\author{
info
}

INTEGER.
If info \(=0\), the execution is successful.
If \(i>0\), the \(i\)-th parameter is invalid.

\section*{See Also \\ ?getrf}

\section*{?la_gerfsx_extended}

Improves the computed solution to a system of linear equations for general matrices by performing extraprecise iterative refinement and provides error bounds and backward error estimates for the solution.

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_gerfsx_extended( prec_type, trans_type, n, nrhs, a, lda, af, ldaf, ipiv,
colequ, c, b, ldb, y, ldy, berr_out, n_norms, errs_n, errs_c, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
call dla_gerfsx_extended( prec_type, trans_type, n, nrhs, a, lda, af, ldaf, ipiv,
colequ, c, b, ldb, y, ldy, berr_out, n_norms, errs_n, errs_c, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)

```
```

call cla_gerfsx_extended( prec_type, trans_type, n, nrhs, a, lda, af, ldaf, ipiv,
colequ, c, b, ldb, y, ldy, berr_out, n_norms, errs_n, errs_c, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
call zla_gerfsx_extended( prec_type, trans_type, n, nrhs, a, lda, af, ldaf, ipiv,
colequ, c, b, ldb, y, ldy, berr_out, n_norms, errs_n, errs_c, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?la_gerfsx_extended subroutine improves the computed solution to a system of linear equations for general matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. The ?gerfsx routine calls ?la_gerfsx_extended to perform iterative refinement.
In addition to normwise error bound, the code provides maximum componentwise error bound, if possible. See comments for errs_n and errs_c for details of the error bounds.
Use ?la_gerfsx_extended to set only the second fields of errs_n and errs_c.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{prec_type} & INTEGER. \\
\hline & Specifies the intermediate precision to be used in refinement. The value is defined by ilaprec (p), where p is a CHARACTER and: \\
\hline & If \(p=\) 'S': Single. \\
\hline & If \(p=\) 'D': Double. \\
\hline & If \(p=\) 'I': Indigenous. \\
\hline & If \(p=\) 'X', 'E': Extra. \\
\hline \multirow[t]{6}{*}{trans_type} & INTEGER. \\
\hline & Specifies the transposition operation on \(A\). The value is defined by \\
\hline & ilatrans(t), where \(t\) is a CHARACTER and: \\
\hline & If \(t=\) 'N': No transpose. \\
\hline & If \(t=\) 'T': Transpose. \\
\hline & If \(t=\) 'C': Conjugate Transpose. \\
\hline \(n\) & INTEGER. The number of linear equations; the order of the matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; the number of columns of the matrix \(B\). \\
\hline \multirow[t]{8}{*}{\(a, a f, b, y\)} & REAL for sla_gerfsx_extended \\
\hline & DOUBLE PRECISION for dla_gerfsx_extended \\
\hline & COMPLEX for cla_gerfsx_extended \\
\hline & DOUBLE COMPLEX for zla_gerfsx_extended. \\
\hline & Arrays: \(a(l d a, *), ~ a f(l d a f, *), b(l d b, *), y(l d y, *)\). \\
\hline & The array a contains the original matrix \(n-b y-n\) matrix \(A\). The second dimension of a must be at least max \((1, n)\). \\
\hline & The array af contains the factors \(L\) and \(U\) from the factorization \(A=\) \(\left.P^{\star} L^{\star} U\right)\) as computed by ?getrf. The second dimension of af must be at least max \((1, n)\). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least \(\max (1, n r h s)\). \\
\hline
\end{tabular}

Ida
ldaf
ipiv
colequ
c
\(1 d b\)
ldy
n_norms
errs_n

The array \(y\) on entry contains the solution matrix \(x\) as computed by ? getrs. The second dimension of \(y\) must be at least max (\(1, n r h s\)).
INTEGER. The leading dimension of the array \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of the array \(a f ; l \operatorname{daf} \geq \max (1, n)\).
INTEGER.
Array, DIMENSION at least max \((1, n)\). Contains the pivot indices from the factorization \(A=P^{\star} L^{\star} U\)) as computed by ?getrf; row \(i\) of the matrix was interchanged with row ipiv(i).
LOGICAL. If colequ = .TRUE., column equilibration was done to \(A\) before calling this routine. This is needed to compute the solution and error bounds correctly.
REAL for single precision flavors (sla_gerfsx_extended, cla_gerfsx_extended)
DOUBLE PRECISION for double precision flavors (dla_gerfsx_extended, zla_gerfsx_extended).
\(c\) contains the column scale factors for \(A\). If colequ \(=\). FALSE., \(c\) is not used.
If \(c\) is input, each element of \(c\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by power of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
INTEGER. The leading dimension of the array \(b ; 1 d b \geq \max (1, n)\).
INTEGER. The leading dimension of the array \(y ; \operatorname{ldy} \geq \max (1, n)\).
INTEGER. Determines which error bounds to return. See errs_n and errs_c descriptions in Output Arguments section below.
If \(n \_\)norms \(\geq 1\), returns normwise error bounds.
If \(n \_\)norms \(\geq 2\), returns componentwise error bounds.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the \(i\)-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
The first index in errs_n(i,:) corresponds to the \(i\)-th right-hand side. The second index in errs_n (: err) contains the following three fields:
err=1
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(\(n\)) *slamch (\(\varepsilon\)) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors.
```

err=2
err=3

```
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/
\(z\),inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1.
Use this subroutine to set only the second field above.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the \(i\)-th solution vector:

The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) \(=0.0\)), then errs_c is not accessed. If \(n_{-} e r r_{-}\)bnds \(<3\), then at most the first (: , \(n_{-} e r r_{-}\)bnds) entries are returned.
The first index in errs_c (\(i,:\)) corresponds to the \(i\)-th right-hand side. The second index in errs_c (:,err) contains the follwoing three fields:
\(\left.\begin{array}{ll}\text { err=1 } & \begin{array}{l}\text { "Trust/don't trust" boolean. Trust the answer if } \\
\text { the reciprocal condition number is less than the }\end{array} \\
\text { threshold } \operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon) \text { for single } \\
\text { precision flavors and } \operatorname{sqrt}(n) * d l a m c h(\varepsilon) \text { for } \\
\text { double precision flavors. }\end{array}\right\}\)\begin{tabular}{l}
"Guaranteed" error bpound. The estimated \\
forward error, almost certainly within a factor of \\
\\
\\
\\
\\
\\
\\
greater than the threshold \(\operatorname{sqr}(n) * \operatorname{slamch}(\varepsilon)\) \\
for single precision flavors and
\end{tabular}
\(\operatorname{sqrt}(n) *\) dlamch (\(\varepsilon\)) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
err=3
Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * s l a m c h(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm(1/
\(z\),inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{\star}\left(a^{\star} \operatorname{diag}(x)\right)\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a * \operatorname{diag}(x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1 . Use this subroutine to set only the second field above.
\begin{tabular}{|c|c|}
\hline res, dy, y_tail & REAL forsla_gerfsx_extended \\
\hline & DOUBLE PRECISION for dla_gerfsx_extended \\
\hline & COMPLEX for cla_gerfsx_extended \\
\hline & DOUBLE COMPLEX for zla_gerfsx_extended. \\
\hline & Workspace arrays of DIMENSION \(n\). \\
\hline & res holds the intermediate residual. \\
\hline & \(d y\) holds the intermediate solution. \\
\hline & \(y_{-}\)tail holds the trailing bits of the intermediate solution. \\
\hline ayb & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Workspace array, DIMENSION \(n\). \\
\hline rcond & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned. \\
\hline ithresh & INTEGER. The maximum number of residual computations allowed for refinement. The default is 10 . For 'aggressive', set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in errs_n and errs_c may no longer be trustworthy. \\
\hline rthresh & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Determines when to stop refinement if the error estimate stops decreasing. Refinement stops when the next solution no longer satisfies
\[
\operatorname{norm}\left(d x \_\{i+1\}\right)<r t h r e s h * \operatorname{norm}\left(d x \_i\right)
\] \\
\hline & where norm \((z)\) is the infinity norm of \(z\). \\
\hline & rthresh satisfies \\
\hline & \(0<r\) rhresh \(\leq 1\) \\
\hline
\end{tabular}

The default value is 0.5 . For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Determines when to start considering componentwise convergence.
Componentwise \(d z\) ub convergence is only considered after each component of the solution \(y\) is stable, that is, the relative change in each component is less than \(d z_{\text {_ }} u b\). The default value is 0.25 , requiring the first bit to be stable.

LOGICAL
If . TRUE., the function ignores componentwise convergence. Default value is . FALSE.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline Y & REAL for sla_gerfsx_extended \\
\hline & DOUBLE PRECISION for dla_gerfsx_extended \\
\hline & COMPLEX for cla_gerfsx_extended \\
\hline & DOUBLE COMPLEX for zla_gerfsx_extended. \\
\hline & The improved solution matrix Y . \\
\hline berr_out & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Array, DIMENSION at least max (\(1, n r h s\)). Contains the componentwise relative backward error for right-hand-side \(j\) from the formula \\
\hline & \(\max (\mathrm{i})\) (abs(res(i)) / (abs(op(A))*abs (y) + abs(B)) (i)) \\
\hline & where \(\mathrm{abs}(z)\) is the componentwise absolute value of the matrix or vector z. This is computed by ?la_lin_berr. \\
\hline errs_n, errs_c & Values of the corresponding input parameters improved after iterative refinement and stored in the second column of the array (1:nrhs, 2). The other elements are kept unchanged. \\
\hline info & INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed. \\
\hline & If info = -i, the \(i\)-th parameter had an illegal value. \\
\hline
\end{tabular}
```

See Also
?gerfsx
?getrf
?getrs
?lamch
ilaprec
ilatrans
?la_lin_berr

```

\section*{?la_heamv}

Computes a matrix-vector product using a Hermitian indefinite matrix to calculate error bounds.

\section*{Syntax}

\section*{Fortran 77:}
```

call cla_heamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call zla_heamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

```

\section*{Include files}
```

- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

```

\section*{Description}

The ?la_heamv routines perform a matrix-vector operation defined as
```

y := alpha*abs (A)*abs (x) + beta*abs (Y),

```
where:
```

alpha and beta are scalars,
x and y are vectors,
A is an n-by-n Hermitian matrix.

```

This function is primarily used in calculating error bounds. To protect against underflow during evaluation, the function perturbs components in the resulting vector away from zero by \((n+1)\) times the underflow threshold. To prevent unnecessarily large errors for block structure embedded in general matrices, the function does not perturb symbolically zero components. A zero entry is considered symbolic if all multiplications involved in computing that entry have at least one zero multiplicand.

\section*{Input Parameters}
\begin{tabular}{ll}
uplo & \\
& CHARACTER*1. \\
& Specifies whether the upper or lower triangular part of the array \(A\) is to be \\
& referenced:
\end{tabular}

DOUBLE PRECISION for zla_heamv
Array, DIMENSION at least (\(1+(n-1) * a b s(i n c y))\) otherwise. Before entry with non-zero beta, the incremented array \(y\) must contain the vector Y.
incy INTEGER. Specifies the increment for the elements of \(y\). The value of incy must be non-zero.

\section*{Output Parameters}
```

y Updated vector Y.

```

\section*{?la_hercond_c}

Computes the infinity norm condition number of \(o p(A) * i n v(\operatorname{diag}(c))\) for Hermitian indefinite matrices.

\section*{Syntax}

\section*{Fortran 77:}
```

call cla_hercond_c( uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork )
call zla_hercond_c( uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function computes the infinity norm condition number of
```

op(A) * inv(diag(c))

```
where the \(c\) is a REAL vector for cla_hercond_c and a DOUBLE PRECISION vector for zla_hercond_c.
Input Parameters
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Specifies the triangle of A to store: \\
If uplo = 'U', the upper triangle of \(A\) is stored, \\
If uplo = 'L', the lower triangle of \(A\) is stored.
\end{tabular} \\
\hline \(n\) & INTEGER. The number of linear equations, that is, the order of the matrix \(A ; n \geq\) 0. \\
\hline a & \begin{tabular}{l}
COMPLEX for cla_hercond_c \\
DOUBLE COMPLEX for zla_hercond_c \\
Array, DIMENSION (Ida, *). On entry, the \(n\)-by-n matrix A. The second dimension of a must be at least max \((1, n)\).
\end{tabular} \\
\hline Ida & INTEGER. The leading dimension of the array a. 1 da \(\geq\) max \((1, n)\). \\
\hline af & \begin{tabular}{l}
COMPLEX for cla_hercond_c \\
DOUBLE COMPLEX for zla_hercond_c \\
Array, DIMENSION (Idaf, *). The block diagonal matrix D and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?hetrf. The second dimension of af must be at least max \((1, n)\).
\end{tabular} \\
\hline Idaf & INTEGER. The leading dimension of the array af. 1 daf \(\geq \max (1, n)\). \\
\hline ipiv & INTEGER. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Array with DIMENSION n. Details of the interchanges and the block structure of \(D\) as determined by ?hetrf. \\
\hline \multirow[t]{3}{*}{C} & REAL for cla_hercond_c \\
\hline & DOUBLE PRECISION for zla_hercond_c \\
\hline & Array \(c\) with DIMENSION \(n\). The vector \(c\) in the formula \\
\hline capply & LOGICAL. If .TRUE., then the function uses the vector \(c\) from the formula op (A) * inv(diag(c)). \\
\hline \multirow[t]{3}{*}{work} & COMPLEX for cla_hercond_c \\
\hline & DOUBLE COMPLEX for zla_hercond_c \\
\hline & Array DIMENSION \(2^{*} n\). Workspace. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cla_hercond_c \\
\hline & DOUBLE PRECISION for zla_hercond_c \\
\hline & Array DIMENSION n. Workspace. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

info INTEGER.
If info = 0, the execution is successful.
If i>0, the i-th parameter is invalid.

```

\section*{See Also}
?hetrf

\section*{?la_hercond_x \\ Computes the infinity norm condition number of \(o p(A) * \operatorname{diag}(x)\) for Hermitian indefinite matrices.}

\section*{Syntax}

\section*{Fortran 77:}
```

call cla_hercond_x( uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork )
call zla_hercond_x( uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork )

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function computes the infinity norm condition number of
```

op(A) * diag(x)

```
where the \(x\) is a COMPLEX vector for cla_hercond_x and a DOUBLE COMPLEX vector for zla_hercond_x.
Input Parameters
```

uplo
CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of $A$ to store:
If uplo = 'U', the upper triangle of $A$ is stored,
If uplo = 'L', the lower triangle of $A$ is stored.

```
n
n
INTEGER. The number of linear equations, that is, the order of the matrix \(A ; n \geq\) 0.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{a} & COMPLEX for cla_hercond_c \\
\hline & DOUBLE COMPLEX for zla_hercond_c \\
\hline & Array, DIMENSION (Ida, *). On entry, the \(n-b y-n\) matrix A. The second dimension of a must be at least max \((1, n)\). \\
\hline Ida & INTEGER. The leading dimension of the array \(a .1 d a \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{af} & COMPLEX for cla_hercond_c \\
\hline & DOUBLE COMPLEX for zla_hercond_c \\
\hline & Array, DIMENSION (Idaf, *). The block diagonal matrix D and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?hetrf. The second dimension of af must be at least max \((1, n)\). \\
\hline Idaf & INTEGER. The leading dimension of the array af. 1 daf \(\geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{ipiv} & INTEGER. \\
\hline & Array with DIMENSION \(n\). Details of the interchanges and the block structure of \(D\) as determined by ?hetrf. \\
\hline \multirow[t]{4}{*}{x} & COMPLEX for cla_hercond_c \\
\hline & DOUBLE COMPLEX for zla_hercond_c \\
\hline & Array \(x\) with DIMENSION \(n\). The vector \(x\) in the formula \\
\hline & op(A) * inv(diag(x)). \\
\hline \multirow[t]{3}{*}{work} & COMPLEX for cla_hercond_c \\
\hline & DOUBLE COMPLEX for zla_hercond_c \\
\hline & Array DIMENSION \(2 *_{n}\). Workspace. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cla_hercond_c \\
\hline & DOUBLE PRECISION for zla_hercond_c \\
\hline & Array DIMENSION \(n\). Workspace. \\
\hline
\end{tabular}

\section*{Output Parameters}
info
INTEGER.
If info \(=0\), the execution is successful.
If \(i>0\), the \(i\)-th parameter is invalid.

\section*{See Also}
?hetrf

\section*{?la_herfsx_extended}

Improves the computed solution to a system of linear equations for Hermitian indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

\section*{Syntax}

\section*{Fortran 77:}
```

call cla_herfsx_extended( prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c,
b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
call zla_herfsx_extended( prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c,
b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )

```

\section*{Include files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?la_herfsx_extended subroutine improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. The ?herfsx routine calls ?la_herfsx_extended to perform iterative refinement.

In addition to normwise error bound, the code provides maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

Use ?la_herfsx_extended to set only the second fields of err_bnds_norm and err_bnds_comp.
Input Parameters
\begin{tabular}{|c|c|}
\hline prec_type & INTEGER. \\
\hline & \begin{tabular}{l}
Specifies the intermediate precision to be used in refinement. The value is defined by ilaprec (\(p\)), where \(p\) is a CHARACTER and: \\
If \(p=\) 'S': Single. \\
If \(p=\) ' \(D\) ': Double. \\
If \(p=\) 'I': Indigenous. \\
If \(p=\) ' X ', ' E ': Extra.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Specifies the triangle of \(A\) to store: \\
If uplo = 'U', the upper triangle of \(A\) is stored, \\
If uplo = 'L', the lower triangle of \(A\) is stored.
\end{tabular} \\
\hline \(n\) & INTEGER. The number of linear equations; the order of the matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; the number of columns of the matrix \(B\). \\
\hline \(a, a f, b, y\) & \begin{tabular}{l}
COMPLEX for cla_herfsx_extended \\
DOUBLE COMPLEX for zla_herfsx_extended. \\
Arrays: \(a(l d a, *), a f(l d a f, *), b(l d b, *), y(l d y, *)\). \\
The array a contains the original \(n-b y-n\) matrix \(A\). The second dimension of a must be at least max \((1, n)\). \\
The array af contains the block diagonal matrix D and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?hetrf. The second dimension of af must be at least max \((1, n)\). \\
The array \(b\) contains the right-hand-side of the matrix \(B\). The second dimension of \(b\) must be at least max (\(1, n r h s\)). \\
The array \(y\) on entry contains the solution matrix \(x\) as computed by ? hetrs. The second dimension of \(y\) must be at least max (\(1, n r h s\)).
\end{tabular} \\
\hline Ida & INTEGER. The leading dimension of the array \(a ; 1 d a \geq \max (1, n)\). \\
\hline Idaf & INTEGER. The leading dimension of the array \(a f ; 1 \mathrm{daf} \geq \mathrm{max}(1, n)\). \\
\hline ipiv & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION n. Details of the interchanges and the block structure of D as determined by ?hetrf.
\end{tabular} \\
\hline colequ & LOGICAL. If colequ \(=\).TRUE., column equilibration was done to \(A\) before calling this routine. This is needed to compute the solution and error bounds correctly. \\
\hline c & \begin{tabular}{l}
REAL for cla_herfsx_extended \\
DOUBLE PRECISION for zla_herfsx_extended.
\end{tabular} \\
\hline
\end{tabular}
\(C\) contains the column scale factors for \(A\). If colequ \(=\).FALSE., \(C\) is not used.
If \(c\) is input, each element of \(c\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by power of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

1 db
ldy
n_norms
err_bnds_norm

INTEGER. The leading dimension of the array \(b ; l d b \geq \max (1, n)\).
INTEGER. The leading dimension of the array \(y ; I d y \geq \max (1, n)\).
INTEGER. Determines which error bounds to return. See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below. If \(n \_\)norms \(\geq 1\), returns normwise error bounds.
If \(n \_n o r m s \geq 2\), returns componentwise error bounds.
REAL for cla_herfsx_extended
DOUBLE PRECISION for zla_herfsx_extended.
Array, DIMENSION (\(n r h s, n_{-} e r r_{-}\)bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error.
Normwise relative error in the \(i\)-th solution vector is defined as follows:

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
The first index in err_bnds_norm(i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_norm (: ,err) contains the following three fields:
\begin{tabular}{ll}
err=1 & \begin{tabular}{l}
"Trust/don't trust" boolean. Trust the answer if \\
the reciprocal condition number is less than the
\end{tabular} \\
threshold \(s q r t(n) * s l a m c h(\varepsilon)\) for \\
& cla_herfsx_extended and \\
& \(s q r t(n) * d l a m c h(\varepsilon)\) for \\
zla_herfsx_extended. \\
err=2 & "Guaranteed" error bound. The estimated \\
& forward error, almost certainly within a factor of \\
& 10 of the true error so long as the next entry is \\
& greater than the threshold sqrt \((n) * s l a m c h(\varepsilon)\) \\
& for cla_herfsx_extended and \\
& \(s q r t(n) * d l a m c h(\varepsilon)\) for
\end{tabular}
zla_herfsx_extended to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1/(norm (1/
\(z, i n f)\) *norm (z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1.
Use this subroutine to set only the second field above.

REAL for cla_herfsx_extended
DOUBLE PRECISION for zla_herfsx_extended.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the \(i\)-th solution vector:

The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) \(=0.0\)), then err_bnds_comp is not accessed. If \(n_{-} e r r_{-}\)bnds \(<3\), then at most the first (:, n_err_bnds) entries are returned. The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the follwoing three fields:
\begin{tabular}{|c|c|}
\hline err=1 & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for cla_herfsx_extended and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for zla_herfsx_extended. \\
\hline err=2 & "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for cla_herfsx_extended and sqrt(n)*dlamch(\(\varepsilon\)) for zla_herfsx_extended. This error bound should only be trusted if the previous boolean is true. \\
\hline err=3 & Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt(n)*slamch(\varepsilon)}\) for cla_herfsx_extended and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for \\
\hline
\end{tabular}
zla_herfsx_extended to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1/ (norm (1/
\(z\),inf) *norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{\star}\left(a^{*} \operatorname{diag}(x)\right)\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a^{\star} \operatorname{diag}(x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1 . Use this subroutine to set only the second field above.
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{res, dy, y_tail} & COMPLEX for cla_herfsx_extended \\
\hline & DOUBLE COMPLEX for zla_herfsx_extended. \\
\hline & Workspace arrays of DIMENSION \(n\). \\
\hline & res holds the intermediate residual. \\
\hline & \(d y\) holds the intermediate solution. \\
\hline & \(y_{-}\)tail holds the trailing bits of the intermediate solution. \\
\hline \multirow[t]{3}{*}{ayb} & REAL for cla_herfsx_extended \\
\hline & DOUBLE PRECISION for zla_herfsx_extended. \\
\hline & Workspace array, DIMENSION \(n\). \\
\hline \multirow[t]{3}{*}{rcond} & REAL for cla_herfsx_extended \\
\hline & DOUBLE PRECISION for zla_herfsx_extended. \\
\hline & Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned. \\
\hline ithresh & INTEGER. The maximum number of residual computations allowed for refinement. The default is 10 . For 'aggressive', set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy. \\
\hline \multirow[t]{6}{*}{rthresh} & REAL for cla_herfsx_extended \\
\hline & DOUBLE PRECISION for zla_herfsx_extended. \\
\hline & Determines when to stop refinement if the error estimate stops decreasing. \\
\hline & \begin{tabular}{l}
Refinement stops when the next solution no longer satisfies
\[
\text { norm(dx_\{i+1\}) < rthresh * norm(dx_i) }
\] \\
where norm \((z)\) is the infinity norm of \(z\). \\
rthresh satisfies
\end{tabular} \\
\hline & \(0<r\) rhresh \(\leq 1\). \\
\hline & The default value is 0.5 . For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices. \\
\hline \multirow[t]{4}{*}{\(d z_{-} u b\)} & REAL for cla_herfsx_extended \\
\hline & DOUBLE PRECISION for zla_herfsx_extended. \\
\hline & Determines when to start considering componentwise convergence. \\
\hline & component of the solution \(y\) is stable, that is, the relative change in each component is less than \(d z_{-} u b\). The default value is 0.25 , requiring the first bit to be stable. \\
\hline ignore cwise & LOGICAL \\
\hline
\end{tabular}
If .TRUE., the function ignores componentwise convergence. Default value
is .FALSE.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{Y} & COMPLEX for cla_herfsx_extended \\
\hline & DOUBLE COMPLEX for zla_herfsx_extended. \\
\hline & The improved solution matrix \(Y\). \\
\hline \multirow[t]{5}{*}{berr_out} & REAL for cla_herfsx_extended \\
\hline & DOUBLE PRECISION for zla_herfsx_extended. \\
\hline & Array, DIMENSION nrhs. berr_out (\(j\)) contains the componentwise relative backward error for right-hand-side \(j\) from the formula \\
\hline & \(\max (i) \quad(\operatorname{abs}(r e s(i)) /(\operatorname{abs}(\mathrm{op}(A)) * \operatorname{abs}(y)+\operatorname{abs}(B)\)) (i)) \\
\hline & where \(\mathrm{abs}(z)\) is the componentwise absolute value of the matrix or vector z. This is computed by ?la_lin_berr. \\
\hline err_bnds_norm, & Values of the corresponding input parameters improved after iterative \\
\hline err_bnds_comp & refinement and stored in the second column of the array (\(1: n r h s, 2\)). The other elements are kept unchanged. \\
\hline \multirow[t]{2}{*}{info} & INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed. \\
\hline & If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
\hline
\end{tabular}

See Also
?herfsx
?hetrf
?hetrs
?lamch
ilaprec
ilatrans
?la_lin_berr

\section*{?la_herpvgrw \\ Computes the reciprocal pivot growth factor norm (A) / \\ norm (U) for a Hermitian indefinite matrix.}

\section*{Syntax}

\section*{Fortran 77:}
```

call cla_herpvgrw( uplo, n, info, a, lda, af, ldaf, ipiv, work )
call zla_herpvgrw( uplo, n, info, a, lda, af, ldaf, ipiv, work )

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?la_herpvgrw routine computes the reciprocal pivot growth factor norm (A)/norm (U). The max absolute element norm is used. If this is much less than 1, the stability of the LU factorization of the equilibrated matrix \(A\) could be poor. This also means that the solution \(x\), estimated condition numbers, and error bounds could be unreliable.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Specifies the triangle of A to store: \\
If uplo = 'U', the upper triangle of \(A\) is stored, \\
If uplo = 'L', the lower triangle of \(A\) is stored.
\end{tabular} \\
\hline \(n\) & INTEGER. The number of linear equations, the order of the matrix \(A ; n\) \(\geq 0\). \\
\hline info & INTEGER. The value of INFO returned from ?hetrf, that is, the pivot in column info is exactly 0. \\
\hline \(a, a f\) & COMPLEX for cla_herpvgrw \\
\hline & DOUBLE COMPLEX for zla_herpvgrw. \\
\hline & ```
Arrays: a(lda,*), af(ldaf,*).
a contains the n-by-n matrix A. The second dimension of a must be at
least max (1,n).
``` \\
\hline & af contains the block diagonal matrix D and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?hetrf. The second dimension of af must be at least max \((1, n)\). \\
\hline Ida & INTEGER. The leading dimension of array \(a\); 1 da \(\geq \max (1, n)\). \\
\hline Idaf & INTEGER. The leading dimension of array af; \(\operatorname{ldaf} \geq \max (1, n)\). \\
\hline ipiv & INTEGER. \\
\hline & Array, DIMENSION n. Details of the interchanges and the block structure of \(D\) as determined by ?hetrf. \\
\hline work & REAL for cla_herpvgrw \\
\hline & DOUBLE PRECISION for zla_herpvgrw. \\
\hline & Array, DIMENSION 2*n. Workspace. \\
\hline
\end{tabular}

\section*{See Also}
?hetrf

\section*{?la_lin_berr}

Computes component-wise relative backward error.

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_lin_berr(n, nz, nrhs, res, ayb, berr)
call dla_lin_berr(n, nz, nrhs, res, ayb, berr)
call cla_lin_berr(n, nz, nrhs, res, ayb, berr)
call zla_lin_berr(n, nz, nrhs, res, ayb, berr)

```

Include files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?la_lin_berr computes a component-wise relative backward error from the formula:
```

max(i) (abs(R(i))/(abs(op(A_s))*abs(Y) + abs(B_s)) (i))

```
where \(\mathrm{abs}(Z)\) is the component-wise value of the matrix or vector \(Z\).

\section*{Input Parameters}
n
\(n z\)
nrhs
res, ayb

INTEGER. The number of linear equations, the order of the matrix \(A ; n \geq 0\). INTEGER. The parameter for guarding against spuriously zero residuals. \((n z+1)\) *slamch ( 'Safe minimum' ) is added to \(R(i)\) in the numerator of the relative backward error formula. The default value is \(n\).

INTEGER. Number of right-hand sides, the number of columns in the matrices AYB, RES, and BERR; nrhs \(\geq 0\).
REAL for sla_lin_berr, cla_lin_berr DOUBLE PRECISION for dla_lin_berr, zla_lin_berr Arrays, DIMENSION ( \(n, n r h s\) ). res is the residual matrix, that is, the matrix \(R\) in the relative backward error formula.
ayb is the denominator of that formula, that is, the matrix \(\operatorname{abs}\left(o p\left(A_{-} s\right)\right)\) *abs \((Y)+\operatorname{abs}\left(B_{-} s\right)\). The matrices \(A, Y\), and \(B\) are from iterative refinement. See description of ?la_gerfsx_extended.

\section*{Output Parameters}
```

berr REAL for sla_lin_berr
DOUBLE PRECISION for dla_lin_berr
COMPLEX for cla_lin_berr
DOUBLE COMPLEX for zla_lin_berr
The component-wise relative backward error.

```

\section*{See Also}
?lamch
?la_gerfsx_extended

\section*{?la_porcond}

Estimates the Skeel condition number for a symmetric positive-definite matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_porcond(uplo, n, a, lda, af, ldaf, cmode, c, info, work, iwork)
call dla_porcond(uplo, n, a, lda, af, ldaf, cmode, c, info, work, iwork)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function estimates the Skeel condition number of
op (A) * op2 (C)
where
the cmode parameter determines op2 as follows:
cmode Value op2(C)

1
C
\begin{tabular}{ll}
\hline cmode Value & op2(C) \\
\hline 0 & \(I\) \\
-1 & \(\operatorname{inv}(C)\) \\
\hline
\end{tabular}

The Skeel condition number
```

cond(A) = norminf(|inv(A)||A|)

```
is computed by computing scaling factors \(R\) such that
```

diag(R)*A*op2 (C)

```
is row equilibrated and by computing the standard infinity-norm condition number.

\section*{Input Parameters}
```

uplo
n
a, af, c, work
Ida
ldaf
cmode

```
iwork

\section*{Output Parameters}

CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of \(A\) to store:
If uplo = 'U', the upper triangle of \(A\) is stored, If uplo = 'L', the lower triangle of \(A\) is stored.
INTEGER. The number of linear equations, that is, the order of the matrix \(A ; n \geq\) 0.

REAL for sla_porcond
DOUBLE PRECISION for dla_porcond
Arrays:
a (lda,*) contains the \(n\)-by- \(n\) matrix \(A\).
af (ldaf,*) contains the triangular factor \(L\) or \(U\) from the Cholesky factorization
\(A=U^{T} * U\) or \(A=L * L^{T}\),
as computed by ?potrf.
\(c\), DIMENSION \(n\). The vector \(C\) in the formula op ( \(A\) ) * op2 ( \(C\) ).
work is a workspace array of DIMENSION ( \(3 *_{n}\) ).
The second dimension of \(a\) and \(a f\) must be at least max \((1, n)\).
INTEGER. The leading dimension of the array \(a b\). \(1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of \(a f\). 1 daf \(\geq \max (1, n)\).
INTEGER. Determines op2 ( \(C\) ) in the formula op ( \(A\) ) * op2 ( \(C\) ) as follows:
If cmode \(=1\), op2 \((C)=C\).
If cmode \(=0\), op2 \((C)=I\).
If cmode \(=-1, \operatorname{op} 2(C)=\operatorname{inv}(C)\).
INTEGER. Workspace array with DIMENSION \(n\).
```

See Also
?potrf
?la_porcond_c
Computes the infinity norm condition number of
op(A)*inv(diag(c)) for Hermitian positive-definite
matrices.

```

\section*{Syntax}

\section*{Fortran 77:}
```

call cla_porcond_c(uplo, n, a, lda, af, ldaf, c, capply, info, work, rwork)
call zla_porcond_c(uplo, n, a, lda, af, ldaf, c, capply, info, work, rwork)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function computes the infinity norm condition number of
```

op(A) * inv(diag(c))

```
where the \(c\) is a REAL vector for cla_porcond_c and a DOUBLE PRECISION vector for zla_porcond_c.

\section*{Input Parameters}
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Specifies the triangle of A to store:
If uplo = 'U', the upper triangle of }A\mathrm{ is stored,
If uplo = 'L', the lower triangle of A is stored.

```
n
a
Ida
\[
a f
\]

Idaf
C

work
rwork

INTEGER. The number of linear equations, that is, the order of the matrix \(A ; n \geq\) 0.

COMPLEX for cla_porcond_c
DOUBLE COMPLEX for zla_porcond_c
Array, DIMENSION ( \(1 d a,{ }^{*}\) ). On entry, the \(n\)-by-n matrix A. The second dimension of a must be at least max \((1, n)\).
INTEGER. The leading dimension of the array \(a\). Ida \(\geq \max (1, n)\).
COMPLEX for cla_porcond_c
DOUBLE COMPLEX for zla_porcond_c
Array, DIMENSION (Idaf, *). The triangular factor L or U from the Cholesky factorization
\(A=U^{H} \star U\) or \(A=L^{*} L^{H}\),
as computed by ?potrf.
The second dimension of af must be at least max \((1, n)\).
INTEGER. The leading dimension of the array af. Idaf \(\geq \max (1, n)\).
REAL for cla_porcond_c
DOUBLE PRECISION for zla_porcond_c
Array \(c\) with DIMENSION \(n\). The vector \(c\) in the formula
op (A) * inv(diag(c)).
LOGICAL. If .TRUE., then the function uses the vector \(c\) from the formula op (A) * inv(diag(c)).
COMPLEX for cla_porcond_c
DOUBLE COMPLEX for zla_porcond_c
Array DIMENSION 2*n. Workspace.
REAL for cla_porcond_c
DOUBLE PRECISION for zla_porcond_c
Array DIMENSION n. Workspace.

\section*{Output Parameters}
info
INTEGER.
If info \(=0\), the execution is successful.
If \(i>0\), the \(i\)-th parameter is invalid.
```

See Also
?potrf
?la_porcond_x
Computes the infinity norm condition number of
op(A)*diag(X) for Hermitian positive-definite matrices.
Syntax

```
Fortran 77:
```

call cla_porcond_x(uplo, n, a, lda, af, ldaf, x, info, work, rwork)
call zla_porcond_x(uplo, n, a, lda, af, ldaf, x, info, work, rwork)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function computes the infinity norm condition number of
```

op(A) * diag(x)

```
where the \(x\) is a COMPLEX vector for cla_porcond_x and a DOUBLE COMPLEX vector for zla_porcond_x.

\section*{Input Parameters}
```

uplo
n
a COMPLEX for cla_porcond_c
DOUBLE COMPLEX for zla_porcond_c
Array, DIMENSION (lda, *). On entry, the n-by-n matrix A.
The second dimension of a must be at least max (1,n).
lda INTEGER.The leading dimension of the array a. lda \geqmax (1,n).
af COMPLEX for cla_porcond_c
DOUBLE COMPLEX for zla_porcond_c
Array, DIMENSION (Idaf, *). The triangular factor L or U from the Cholesky
factorization
A = U U
as computed by ?potrf.
The second dimension of af must be at least max (1,n).
Idaf INTEGER. The leading dimension of the array af. ldaf \geq max (1,n).
x COMPLEX for cla_porcond_c
DOUBLE COMPLEX for zla_porcond_c

```

Array \(x\) with DIMENSION \(n\). The vector \(x\) in the formula
```

op(A) * inv(diag(x)).

```
work
rwork

COMPLEX for cla_porcond_c
DOUBLE COMPLEX for zla_porcond_c
Array DIMENSION 2*n. Workspace.
REAL for cla_porcond_c
DOUBLE PRECISION for zla_porcond_c
Array DIMENSION n. Workspace.

\section*{Output Parameters}

INTEGER.
If info \(=0\), the execution is successful.
If \(i>0\), the \(i\)-th parameter is invalid.

\section*{See Also}
?potrf

\section*{?la_porfsx_extended}

Improves the computed solution to a system of linear equations for symmetric or Hermitian positive-definite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_porfsx_extended(prec_type, uplo, n, nrhs, a, lda, af, ldaf, colequ, c, b,
ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
call dla_porfsx_extended(prec_type, uplo, n, nrhs, a, lda, af, ldaf, colequ, c, b,
ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
call cla_porfsx_extended(prec_type, uplo, n, nrhs, a, lda, af, ldaf, colequ, c, b,
ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
call zla_porfsx_extended(prec_type, uplo, n, nrhs, a, lda, af, ldaf, colequ, c, b,
ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?la_porfsx_extended subroutine improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. The ?herfsx routine calls ?la_porfsx_extended to perform iterative refinement.
In addition to normwise error bound, the code provides maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

Use ?la_porfsx_extended to set only the second fields of err_bnds_norm and err_bnds_comp.
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{prec_type} & INTEGER. \\
\hline & Specifies the intermediate precision to be used in refinement. The value is defined by ilaprec ( \(p\) ), where \(p\) is a CHARACTER and: \\
\hline & If \(p=\) 'S': Single. \\
\hline & If \(p=\) 'D': Double. \\
\hline & If \(p=\) 'I': Indigenous. \\
\hline & If \(p=\) 'X', 'E': Extra. \\
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Specifies the triangle of A to store: \\
\hline & If uplo = 'U', the upper triangle of \(A\) is stored, \\
\hline & If uplo = 'L', the lower triangle of \(A\) is stored. \\
\hline \(n\) & INTEGER. The number of linear equations; the order of the matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; the number of columns of the matrix \(B\). \\
\hline \multirow[t]{12}{*}{\(a, a f, b, y\)} & REAL forsla_porfsx_extended \\
\hline & DOUBLE PRECISION for dla_porfsx_extended \\
\hline & COMPLEX for cla_porfsx_extended \\
\hline & DOUBLE COMPLEX for zla_porfsx_extended. \\
\hline &  \\
\hline & The array a contains the original \(n-b y-n\) matrix \(A\). The second dimension of a must be at least max \((1, n)\). \\
\hline & The array af contains the triangular factor \(L\) or \(U\) from the Cholesky factorization as computed by ?potrf: \\
\hline & \(A=U^{T} * U\) or \(A=L^{*} L^{T}\) for real flavors, \\
\hline & \(A=U^{H} * U\) or \(A=L * L^{H}\) for complex flavors. \\
\hline & The second dimension of af must be at least max \((1, n)\). \\
\hline & The array \(b\) contains the right-hand-side of the matrix \(B\). The second dimension of \(b\) must be at least max ( \(1, n r h s\) ). \\
\hline & The array \(y\) on entry contains the solution matrix \(x\) as computed by ? potrs. The second dimension of \(y\) must be at least max ( \(1, n r h s\) ). \\
\hline Ida & INTEGER. The leading dimension of the array \(a ; 1 d a \geq \max (1, n)\). \\
\hline Idaf & INTEGER. The leading dimension of the array \(a f ; 1 \mathrm{daf} \geq \mathrm{max}(1, n)\). \\
\hline colequ & LOGICAL. If colequ = .TRUE., column equilibration was done to A before calling this routine. This is needed to compute the solution and error bounds correctly. \\
\hline \multirow[t]{5}{*}{C} & REAL for sla_porfsx_extended and cla_porfsx_extended \\
\hline & DOUBLE PRECISION for dla_porfsx_extended and \\
\hline & zla_porfsx_extended. \\
\hline & \(c\) contains the column scale factors for \(A\). If colequ \(=\). FALSE., \(c\) is not used. \\
\hline & If \(c\) is input, each element of \(c\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by power of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable. \\
\hline 1 db & INTEGER. The leading dimension of the array \(b ; 1 d b \geq \max (1, n)\). \\
\hline \(l d y\) & INTEGER. The leading dimension of the array \(y ; 1 d y \geq m a x(1, n)\) \\
\hline
\end{tabular}

condition numbers are 1/ (norm(1/
\(z\),inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1.
Use this subroutine to set only the second field above.
err_bnds_comp
REAL for sla_porfsx_extended and cla_porfsx_extended DOUBLE PRECISION for dla_porfsx_extended and zla_porfsx_extended.
Array, DIMENSION ( \(n r h s, n_{-} e r r_{-} b n d s\) ). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the \(i\)-th solution vector:


The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) \(=0.0\) ), then err_bnds_comp is not accessed. If \(n_{-} e r r_{-}\)bnds \(<3\), then at most the first (:, \(n_{-} e r r_{-} b n d s\) ) entries are returned. The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the follwoing three fields:
\begin{tabular}{|c|c|}
\hline err=1 & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt ( \(n\) ) *slamch ( \(\varepsilon\) ) for sla_porfsx_extended/ cla_porfsx_extended and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for dla_porfsx_extended/ zla_porfsx_extended. \\
\hline err=2 & "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt \((n) * \operatorname{slamch}(\varepsilon)\) for sla_porfsx_extended/ cla_porfsx_extended and \(\operatorname{sqrt}(n)\) *dlamch( \(\varepsilon\) ) for dla_porfsx_extended/ zla_porfsx_extended. This error bound should only be trusted if the previous boolean is true. \\
\hline \(e r r=3\) & Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold \\
\hline
\end{tabular}

\section*{\(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for}
sla_porfsx_extended/
cla_porfsx_extended and
\(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for
dla_porfsx_extended/
zla_porfsx_extended to determine if the error estimate is "guaranteed". These reciprocal condition numbers are \(1 /\) (norm (1/
\(z\),inf)*norm(z,inf)) for some appropriately scaled matrix \(z\).
Let \(z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a \star \operatorname{diag}(x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1 . Use this subroutine to set only the second field above.
\begin{tabular}{|c|c|}
\hline \multirow[t]{8}{*}{res, dy, y_tail} & REAL for sla_porfsx_extended \\
\hline & DOUBLE PRECISION for dla_porfsx_extended \\
\hline & COMPLEX for cla_porfsx_extended \\
\hline & DOUBLE COMPLEX for zla_porfsx_extended. \\
\hline & Workspace arrays of DIMENSION \(n\). \\
\hline & res holds the intermediate residual. \\
\hline & \(d y\) holds the intermediate solution. \\
\hline & \(y_{\sim}\) tail holds the trailing bits of the intermediate solution. \\
\hline \multirow[t]{4}{*}{ayb} & REAL for sla_porfsx_extended and cla_porfsx_extended \\
\hline & DOUBLE PRECISION for dla_porfsx_extended and \\
\hline & zla_porfsx_extended. \\
\hline & Workspace array, DIMENSION \(n\). \\
\hline \multirow[t]{4}{*}{rcond} & REAL for sla_porfsx_extended and cla_porfsx_extended \\
\hline & DOUBLE PRECISION for dla_porfsx_extended and \\
\hline & zla_porfsx_extended. \\
\hline & Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned. \\
\hline ithresh & INTEGER. The maximum number of residual computations allowed for refinement. The default is 10 . For 'aggressive', set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy. \\
\hline \multirow[t]{8}{*}{rthresh} & REAL for sla_porfsx_extended and cla_porfsx_extended \\
\hline & DOUBLE PRECISION for dla_porfsx_extended and \\
\hline & zla_porfsx_extended. \\
\hline & Determines when to stop refinement if the error estimate stops decreasing. \\
\hline & Refinement stops when the next solution no longer satisfies
\[
\text { norm(dx_\{i+1\}) < rthresh * norm(dx_i) }
\] \\
\hline & where norm \((z)\) is the infinity norm of \(z\). \\
\hline & rthresh satisfies \\
\hline & \(0<r\) rhresh \(\leq 1\). \\
\hline
\end{tabular}

The default value is 0.5 . For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices.
```

dz_ub
ignore_cwise

```

\section*{Output Parameters}

REAL for sla_porfsx_extended
DOUBLE PRECISION for dla_porfsx_extended
COMPLEX for cla_porfsx_extended
DOUBLE COMPLEX for zla_porfsx_extended.
The improved solution matrix \(Y\).
REAL for sla_porfsx_extended and cla_porfsx_extended DOUBLE PRECISION for dla_porfsx_extended and zla_porfsx_extended.
Array, DIMENSION nrhs. berr_out (j) contains the componentwise relative backward error for right-hand-side \(j\) from the formula
\(\max (i)(\operatorname{abs}(r e s(i)) /(\operatorname{abs}(o p(A)) * a b s(y)+\operatorname{abs}(B)\) ) (i) ) where abs \((z)\) is the componentwise absolute value of the matrix or vector \(z\). This is computed by ?la_lin_berr.
Values of the corresponding input parameters improved after iterative refinement and stored in the second column of the array ( \(1: n r h s, 2\) ). The other elements are kept unchanged.
INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{See Also}
?porfsx
?potrf
?potrs
?lamch
ilaprec
ilatrans
?la_lin_berr

\section*{?la_porpvgrw}

Computes the reciprocal pivot growth factor norm (A) / norm (U) for a symmetric or Hermitian positive-
definite matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_porpvgrw(uplo, ncols, a, lda, af, ldaf, work)
call dla_porpvgrw(uplo, ncols, a, lda, af, ldaf, work)
call cla_porpvgrw(uplo, ncols, a, lda, af, ldaf, work)
call zla_porpvgrw(uplo, ncols, a, lda, af, ldaf, work)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?la_porpvgrw routine computes the reciprocal pivot growth factor norm (A)/norm ( \(U\) ). The max absolute element norm is used. If this is much less than 1 , the stability of the \(L U\) factorization of the equilibrated matrix \(A\) could be poor. This also means that the solution \(x\), estimated condition numbers, and error bounds could be unreliable.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Specifies the triangle of \(A\) to store: \\
\hline & If uplo = 'U', the upper triangle of \(A\) is stored, \\
\hline & If uplo = 'L', the lower triangle of \(A\) is stored. \\
\hline ncols & INTEGER. The number of columns of the matrix \(A ; n C O 1 s \geq 0\). \\
\hline \multirow[t]{10}{*}{\(a, ~ a f\)} & REAL for sla_porpvgrw \\
\hline & DOUBLE PRECISION for dla_porpvgrw \\
\hline & COMPLEX for cla_porpvgrw \\
\hline & DOUBLE COMPLEX for zla_porpvgrw. \\
\hline & Arrays: a(lda,*), af (ldaf,*). \\
\hline & The array a contains the input \(n-b y-n\) matrix \(A\). The second dimension of a must be at least max \((1, n)\). \\
\hline & The array af contains the triangular factor \(L\) or \(U\) from the Cholesky factorization as computed by ?potrf: \\
\hline & \(A=U^{T} * U\) or \(A=L^{*} L^{T}\) for real flavors, \\
\hline & \(A=U^{H} * U\) or \(A=L^{*} L^{H}\) for complex flavors. \\
\hline & The second dimension of af must be at least max ( \(1, n\) ). \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline Idaf & INTEGER. The leading dimension of \(a f ; 1\) daf \(\geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{work} & REAL for sla_porpvgrw and cla_porpvgrw \\
\hline & DOUBLE PRECISION for dla_porpvgrw and zla_porpvgrw. Workspace array, dimension \(2^{*} n\). \\
\hline
\end{tabular}

See Also
?potrf

\section*{?laqhe}

Scales a Hermitian matrix.

\section*{Syntax}
```

call claqhe(uplo, n, a, lda, s, scond, amax, equed)

``` Intel® Math Kernel Library Reference Manual
```

call zlaqhe(uplo, n, a, lda, s, scond, amax, equed)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine equilibrates a Hermitian matrix \(A\) using the scaling factors in the vector \(s\).

\section*{Input Parameters}
```

uplo
n
a COMPLEX for claqhe
DOUBLE COMPLEX for zlaqhe
Array, DIMENSION (Ida,n). On entry, the Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of a contains the
upper triangular part of matrix }A\mathrm{ and the strictly lower triangular part of a is
not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of a contains the
lower triangular part of matrix }A\mathrm{ and the strictly upper triangular part of a is
not referenced.
lda INTEGER. The leading dimension of the array a.
lda \geq max(n,1).
REAL for claqhe
DOUBLE PRECISION for zlaqhe
Array, DIMENSION (}n\mathrm{). The scale factors for A.
scond
amax
REAL for claqhe
DOUBLE PRECISION for zlaqhe
Ratio of the smallest s(i) to the largest s(i).
REAL for claqhe
DOUBLE PRECISION for zlaqhe
Absolute value of largest matrix entry.

```

\section*{Output Parameters}
```

a
equed

```

If equed \(=\) 'Y', a contains the equilibrated matrix diag ( \(s\) ) *A*diag (s). CHARACTER*1.
Specifies whether or not equilibration was done.
If equed \(=\) ' \(N\) ': No equilibration.
If equed \(=\) ' \(Y\) ': Equilibration was done, that is, \(A\) has been replaced by diag(s)*A*diag(s).

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small. The parameter thresh is a threshold value used to decide if scaling should be done based on the ratio of the scaling factors. If scond < thresh, scaling is done.

The large and small parameters are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

\section*{?laqhp}

Scales a Hermitian matrix stored in packed form.
Syntax
```

call claqhp(uplo, n, ap, s, scond, amax, equed)
call zlaqhp(uplo, n, ap, s, scond, amax, equed)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine equilibrates a Hermitian matrix \(A\) using the scaling factors in the vector \(s\).

\section*{Input Parameters}
uplo CHARACTER*1.
Specifies whether to store the upper or lower part of the Hermitian matrix
A.

If uplo = 'U', the upper triangular part of \(A\);
if uplo = 'L', the lower triangular part of \(A\).
n
ap

S
scond
amax
INTEGER. The order of the matrix \(A\).
\(n \geq 0\).
COMPLEX for claqhp
DOUBLE COMPLEX for zlaqhp
Array, DIMENSION \(\left(n^{*}(n+1) / 2\right)\). The Hermitian matrix \(A\).
- If uplo = 'U', the upper triangular part of the Hermitian matrix \(A\) is stored in the packed array ap as follows:
```

 ap(i+(j-1)*j/2) = A(i,j) for 1\leqi\leqj.
    ```
- If uplo = 'L', the lower triangular part of Hermitian matrix \(A\) is stored in the packed array ap as follows:
\[
a p(i+(j-1) *(2 n-j) / 2)=A(i, j) \text { for } j \leq i \leq n .
\]

REAL for claqhp
DOUBLE PRECISION for zlaqhp
Array, DIMENSION ( \(n\) ). The scale factors for \(A\).
REAL for claqhp
DOUBLE PRECISION for zlaqhp
Ratio of the smallest \(s(i)\) to the largest \(s(i)\).
REAL for claqhp
DOUBLE PRECISION for zlaqhp
Absolute value of largest matrix entry.

\section*{Output Parameters}

\section*{a}

If equed \(=\) ' \(Y\) ', a contains the equilibrated matrix diag \((s) * A * \operatorname{diag}(s)\) in the same storage format as on input.
```

equed CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed = 'Y': Equilibration was done, that is, A has been replaced by
diag(s)*A*diag(s).

```

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small. The parameter thresh is a threshold value used to decide if scaling should be done based on the ratio of the scaling factors. If scond \(<\) thresh, scaling is done.

The large and small parameters are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

\section*{?larcm}

Multiplies a square real matrix by a complex matrix.

\section*{Syntax}
```

call clarcm(m, n, a, lda, b, ldb, c, ldc, rwork)
call zlarcm(m, n, a, lda, b, ldb, c, ldc, rwork)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine performs a simple matrix-matrix multiplication of the form
```

C = A* B,

```
where \(A\) is \(m\)-by- \(m\) and real, \(B\) is \(m\)-by- \(n\) and complex, \(C\) is \(m\)-by- \(n\) and complex.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & INTEGER. The number of rows and columns of the matrix \(A\) and of the number of rows of the matrix \(C(m \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns of the matrix \(B\) and the number of columns of the matrix \(C\)
\[
(n \geq 0)
\] \\
\hline a & \begin{tabular}{l}
REAL for clarcm \\
DOUBLE PRECISION for zlarcm \\
Array, DIMENSION (Ida, m). Contains the m-by-m matrix A.
\end{tabular} \\
\hline Ida & INTEGER. The leading dimension of the array \(a, 1\) da \(\geq \max (1, m)\). \\
\hline b & \begin{tabular}{l}
COMPLEX for clarcm \\
DOUBLE COMPLEX for zlarcm \\
Array, DIMENSION ( \(1 d b, n\) ). Contains the \(m-b y-n\) matrix \(B\).
\end{tabular} \\
\hline 1 db & INTEGER. The leading dimension of the array \(b, 1 d b \geq \max (1, n)\). \\
\hline \(1 d c\) & INTEGER. The leading dimension of the output array \(c, I d c \geq \max (1, m)\) \\
\hline rwork & \begin{tabular}{l}
REAL for clarcm \\
DOUBLE PRECISION for zlarcm \\
Workspace array, DIMENSION ( \(2 \star m \star n\) ).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

C COMPLEX for clarcm
DOUBLE COMPLEX for zlarcm
Array, DIMENSION ( \(I d c, n\) ). Contains the \(m\)-by-n matrix \(C\).

\section*{?la_rpvgrw}

Computes the reciprocal pivot growth factor norm (A) / norm (U) for a general matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_rpvgrw(n, ncols, a, lda, af, ldaf)
call dla_rpvgrw(n, ncols, a, lda, af, ldaf)
call cla_rpvgrw(n, ncols, a, lda, af, ldaf)
call zla_rpvgrw(n, ncols, a, lda, af, ldaf)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ? la_rpvgrw routine computes the reciprocal pivot growth factor norm (A)/norm (U). The max absolute element norm is used. If this is much less than 1, the stability of the \(L U\) factorization of the equilibrated matrix \(A\) could be poor. This also means that the solution \(x\), estimated condition numbers, and error bounds could be unreliable.

\section*{Input Parameters}
```

n
ncols
a,af
lda
Idaf

```
    INTEGER. The number of linear equations, the order of the matrix \(A ; n\)
    \(\geq 0\).
    INTEGER. The number of columns of the matrix \(A ; n C O I s \geq 0\).
REAL for sla_rpvgrw
DOUBLE PRECISION for dla_rpvgrw
COMPLEX for cla_rpvgrw
DOUBLE COMPLEX for zla_rpvgrw.
Arrays: a(lda,*), af(ldaf,*).
The array a contains the input \(n\)-by- \(n\) matrix \(A\). The second dimension
of a must be at least max \((1, n)\).
The array af contains the factors \(L\) and \(U\) from the factorization
triangular factor \(L\) or \(U\) from the Cholesky factorization \(A=P * L * U\) as
computed by ?getrf. The second dimension of af must be at least
\(\max (1, n)\).
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of af; \(\operatorname{ldaf} \geq \max (1, n)\).

See Also
?getrf

\section*{?larscl2}

Performs reciprocal diagonal scaling on a vector.

\section*{Syntax}

\section*{Fortran 77:}
```

call slarscl2(m, n, d, x, ldx)
call dlarscl2(m, n, d, x, ldx) call clarscl2(m, n, d, x, ldx) call zlarscl2(m, n, d,
x, ldx)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?larscl2 routines perform reciprocal diagonal scaling on a vector
\[
x:=D^{-1 \star} x,
\]
where:
\(x\) is a vector, and
\(D\) is a diagonal matrix.

\section*{Input Parameters}
m
n
d

X
\(1 d x\)

INTEGER. Specifies the number of rows of the matrix \(D\) and the number of elements of the vector \(x\). The value of \(m\) must be at least zero.

INTEGER. The number of columns of \(D\) and \(x\). The value of \(n\) must be at least zero.

REAL for slarscl2 and clarscl2.
DOUBLE PRECISION for dlarscl2 and zlarscl2.
Array, DIMENSION m. Diagonal matrix \(D\) stored as a vector of length \(m\).
REAL for slarscl2.
DOUBLE PRECISION for dlarscl2.
COMPLEX for clarscl2.
DOUBLE COMPLEX for zlarscl2.
Array, DIMENSION ( \(I d x, n\) ). The vector \(x\) to scale by \(D\).
INTEGER.
The leading dimension of the vector \(x\). The value of \(l d x\) must be at least zero.

\section*{Output Parameters}

X
Scaled vector \(x\).

\section*{?lascl2}

Performs diagonal scaling on a vector.
Syntax

\section*{Fortran 77:}
```

call slascl2(m, n, d, x, ldx)

```
```

call dlascl2(m, n, d, x, ldx)
call clascl2(m, n, d, x, ldx)
call zlascl2(m, n, d, x, ldx)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?lascl2 routines perform diagonal scaling on a vector
\(x:=D^{\star} x\),
where:
\(x\) is a vector, and
\(D\) is a diagonal matrix.

\section*{Input Parameters}
m
n
d
\(x\)
\(\operatorname{ldx}\)

INTEGER. Specifies the number of rows of the matrix \(D\) and the number of elements of the vector \(x\). The value of \(m\) must be at least zero.
INTEGER. The number of columns of \(D\) and \(x\). The value of \(n\) must be at least zero.
REAL for slascl2 and clascl2.
DOUBLE PRECISION for dlascl2 and zlascl2.
Array, DIMENSION m. Diagonal matrix \(D\) stored as a vector of length \(m\).
REAL for slascl2.
DOUBLE PRECISION for dlascl2.
COMPLEX for clascl2.
DOUBLE COMPLEX for zlascl2.
Array, DIMENSION \((I d x, n)\). The vector \(x\) to scale by \(D\).
INTEGER.
The leading dimension of the vector \(x\). The value of \(I d x\) must be at least zero.

\section*{Output Parameters}
x
Scaled vector \(x\).

\section*{?la_syamv}

Computes a matrix-vector product using a symmetric indefinite matrix to calculate error bounds.

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_syamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call dla_syamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call cla_syamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call zla_syamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?la_syamv routines perform a matrix-vector operation defined as
```

y := alpha*abs(A)*abs(x) + beta*abs(y),

```
where:
```

alpha and beta are scalars,
x and y are vectors,
A is an n-by-n Hermitian matrix.

```

This function is primarily used in calculating error bounds. To protect against underflow during evaluation, the function perturbs components in the resulting vector away from zero by \((n+1)\) times the underflow threshold. To prevent unnecessarily large errors for block structure embedded in general matrices, the function does not perturb symbolically zero components. A zero entry is considered symbolic if all multiplications involved in computing that entry have at least one zero multiplicand.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. \\
Specifies whether the upper or lower triangular part of the array A is to be referenced: \\
If uplo = 'BLAS_UPPER', only the upper triangular part of \(A\) is to be referenced, \\
If uplo = 'BLAS_LOWER', only the lower triangular part of \(A\) is to be referenced.
\end{tabular} \\
\hline \(n\) & INTEGER. Specifies the number of rows and columns of the matrix \(A\). The value of \(n\) must be at least zero. \\
\hline alpha & \begin{tabular}{l}
REAL for sla_syamv and cla_syamv \\
DOUBLE PRECISION for dla_syamv and zla_syamv. \\
Specifies the scalar alpha.
\end{tabular} \\
\hline a & \begin{tabular}{l}
REAL for sla_syamv \\
DOUBLE PRECISION for dla_syamv \\
COMPLEX for cla_syamv \\
DOUBLE COMPLEX for zla_syamv. \\
Array, DIMENSION (lda, *). Before entry, the leading m-by-n part of the array a must contain the matrix of coefficients. The second dimension of a must be at least max \((1, n)\).
\end{tabular} \\
\hline Ida & INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least max \((1, n)\). \\
\hline \(x\) & \begin{tabular}{l}
REAL for sla_syamv \\
DOUBLE PRECISION for dla_syamv \\
COMPLEX for cla_syamv \\
DOUBLE COMPLEX for zla_syamv. \\
Array, DIMENSION at least ( \(1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the vector \(x\).
\end{tabular} \\
\hline incx & INTEGER. Specifies the increment for the elements of \(x\). The value of incx must be non-zero. \\
\hline beta & REAL for sla_syamv and cla_syamv DOUBLE PRECISION for dla_syamv and zla_syamv \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Specifies the scalar beta. When beta is zero, you do not need to set \(y\) on input. \\
\hline \multirow[t]{4}{*}{y} & REAL for sla_syamv and cla_syamv \\
\hline & DOUBLE PRECISION for dla_syamv and zla_syamv \\
\hline & Array, DIMENSION at least \((1+(n-1) * a b s(\) incy ) ) otherwise. Before entry with non-zero beta, the incremented array y must contain the vector \\
\hline & \\
\hline \multirow[t]{2}{*}{incy} & INTEGER. Specifies the increment for the elements of \(y\). \\
\hline & The value of incy must be non-zero. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline y & Updated vector Y . \\
\hline
\end{tabular}

\section*{?la_syrcond \\ Estimates the Skeel condition number for a symmetric indefinite matrix.}

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_syrcond(uplo, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork)
call dla_syrcond(uplo, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function estimates the Skeel condition number of
op (A) * op2 (C)
where
the cmode parameter determines op2 as follows:
\begin{tabular}{ll}
\hline cmode Value & op2(C) \\
\hline 1 & \(C\) \\
0 & \(I\) \\
-1 & \(\operatorname{inv}(C)\) \\
\hline
\end{tabular}

The Skeel condition number
```

cond(A) = norminf(|inv(A)||A|)

```
is computed by computing scaling factors \(R\) such that \(\operatorname{diag}(R) * A * o p 2(C)\)
is row equilibrated and by computing the standard infinity-norm condition number.
Input Parameters
uplo
CHARACTER*1. Must be 'U' or 'L'.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Specifies the triangle of \(A\) to store: \\
If uplo = 'U', the upper triangle of \(A\) is stored, \\
If uplo = 'L', the lower triangle of \(A\) is stored.
\end{tabular} \\
\hline \(n\) & INTEGER. The number of linear equations, that is, the order of the matrix \(A ; n \geq\) 0. \\
\hline \multirow[t]{8}{*}{a, af, c, work} & REAL for sla_syrcond \\
\hline & DOUBLE PRECISION for dla_syrcond \\
\hline & Arrays: \\
\hline & \(a b\) ( \(1 \mathrm{da}, *\) ) contains the \(n-b y-n\) matrix \(A\). \\
\hline & af (ldaf,*) contains the The block diagonal matrix D and the multipliers used to obtain the factor \(L\) or \(U\) as computed by ?sytrf. \\
\hline & The second dimension of \(a\) and af must be at least max \((1, n)\). \\
\hline & \(c\), DIMENSION \(n\). The vector \(C\) in the formula op ( \(A\) ) * \(\mathrm{op} 2(C)\). \\
\hline & work is a workspace array of DIMENSION ( \(3 *_{n}\) ). \\
\hline Ida & INTEGER. The leading dimension of the array ab. 1 da \(\geq \max (1, n)\). \\
\hline Idaf & INTEGER. The leading dimension of \(a f .1 d a f \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{ipiv} & INTEGER. \\
\hline & Array with DIMENSION \(n\). Details of the interchanges and the block structure of \(D\) as determined by ?sytrf. \\
\hline \multirow[t]{4}{*}{cmode} & INTEGER. Determines op2 (C) in the formula op (A) * op2 ( \(C\) ) as follows: \\
\hline & If cmode \(=1\), op2 \((C)=C\). \\
\hline & If cmode \(=0, \mathrm{op} 2(C)=I\). \\
\hline & If cmode \(=-1\), op2 \((C)=\operatorname{inv}(C)\). \\
\hline iwork & INTEGER. Workspace array with DIMENSION \(n\). \\
\hline
\end{tabular}

\section*{Output Parameters}

INTEGER.
If info \(=0\), the execution is successful.
If \(i>0\), the \(i\)-th parameter is invalid.

\section*{See Also}
?sytrf

\section*{?la_syrcond_c}

Computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefinite matrices.

Syntax
Fortran 77:
```

call cla_syrcond_c(uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
call zla_syrcond_c(uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function computes the infinity norm condition number of
```

op(A) * inv(diag(c))

```


\section*{Output Parameters}
info INTEGER.
If info \(=0\), the execution is successful. If \(i>0\), the \(i\)-th parameter is invalid.

\section*{See Also}
?sytrf

\section*{?la_syrcond_x}

Computes the infinity norm condition number of \(o p(A) * \operatorname{diag}(x)\) for symmetric indefinite matrices.

\section*{Syntax}

\section*{Fortran 77:}
```

call cla_syrcond_x(uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
call zla_syrcond_x(uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function computes the infinity norm condition number of
```

op(A) * diag(x)

```
where the \(x\) is a COMPLEX vector for cla_syrcond_x and a DOUBLE COMPLEX vector for zla_syrcond_x.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of A to store:
If uplo = 'U', the upper triangle of A is stored,
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The number of linear equations, that is, the order of the matrix A; n\geq
0.
COMPLEX for cla_syrcond_c
DOUBLE COMPLEX for zla_syrcond_c
Array, DIMENSION (Ida, *). On entry, the n-by-n matrix A. The second
dimension of a must be at least max (1,n).
INTEGER. The leading dimension of the array a. Ida \geqmax (1,n).
COMPLEX for cla_syrcond_c
DOUBLE COMPLEX for zla_syrcond_c
Array, DIMENSION (ldaf, *). The block diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by ?sytrf. The second dimension
of af must be at least max (1,n).
ldaf INTEGER. The leading dimension of the array af. ldaf \geqmax (1,n).
ipiv
x
COMPLEX for cla_syrcond_c
DOUBLE COMPLEX for zla_syrcond_c
Array x with DIMENSION n. The vector }x\mathrm{ in the formula
op(A) * inv(diag(x)).
work COMPLEX for cla_syrcond_c
DOUBLE COMPLEX for zla_syrcond_c
Array DIMENSION 2*n. Workspace.
rwork
REAL for cla_syrcond_c
DOUBLE PRECISION for zla_syrcond_c
Array DIMENSION n. Workspace.

```

\section*{Output Parameters}
info
INTEGER.

If info \(=0\), the execution is successful.
If \(i>0\), the \(i\)-th parameter is invalid.

\section*{See Also}
?sytrf

\section*{?la_syrfsx_extended}

Improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_syrfsx_extended(prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c,
b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
call dla_syrfsx_extended(prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c,
b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
call cla_syrfsx_extended(prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c,
b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
call zla_syrfsx_extended(prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c,
b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?la_syrfsx_extended subroutine improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. The ?syrfsx routine calls ?la_syrfsx_extended to perform iterative refinement.
In addition to normwise error bound, the code provides maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.
Use ?la_syrfsx_extended to set only the second fields of err_bnds_norm and err_bnds_comp.

\section*{Input Parameters}
```

prec_type
uplo CHARACTER*1.Must be 'U' or 'L'.

```

Specifies the triangle of \(A\) to store:
If uplo = ' U', the upper triangle of \(A\) is stored,
If uplo = 'L', the lower triangle of \(A\) is stored.
n
nrhs
\(a, a f, b, y\)
lda
ldaf
ipiv
colequ

C

1 db
ldy
n_norms
err_bnds_norm

INTEGER. The number of linear equations; the order of the matrix \(A ; n \geq 0\).
INTEGER. The number of right-hand sides; the number of columns of the matrix \(B\).

REAL for sla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended
COMPLEX for cla_syrfsx_extended
DOUBLE COMPLEX for zla_syrfsx_extended.
Arrays: \(a(I d a, *), a f(I d a f, *), b(I d b, *), y(I d y, *)\).
The array a contains the original \(n-b y-n\) matrix \(A\). The second dimension of a must be at least max \((1, n)\).
The array af contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?sytrf.
The second dimension of af must be at least max \((1, n)\).
The array \(b\) contains the right-hand-side of the matrix \(B\). The second dimension of \(b\) must be at least max ( \(1, n r h s\) ).
The array \(y\) on entry contains the solution matrix \(x\) as computed by ? sytrs. The second dimension of \(y\) must be at least max ( \(1, n r h s\) ).
INTEGER. The leading dimension of the array \(a ; 1\) da \(\geq \max (1, n)\).
INTEGER. The leading dimension of the array \(a f ; l d a f \geq \max (1, n)\).
INTEGER.
Array with DIMENSION \(n\). Details of the interchanges and the block structure of \(D\) as determined by ?sytrf.
LOGICAL. If colequ \(=\).TRUE., column equilibration was done to \(A\) before calling this routine. This is needed to compute the solution and error bounds correctly.
REAL for sla_syrfsx_extended and cla_syrfsx_extended DOUBLE PRECISION for dla_syrfsx_extended and zla_syrfsx_extended.
\(c\) contains the column scale factors for \(A\). If colequ \(=\). FALSE., \(c\) is not used.
If \(c\) is input, each element of \(c\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by power of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
INTEGER. The leading dimension of the array \(b ; 1 d b \geq \max (1, n)\).
INTEGER. The leading dimension of the array \(y ; 1 d y \geq \max (1, n)\).
INTEGER. Determines which error bounds to return. See err_bnds_norm
and err_bnds_comp descriptions in Output Arguments section below.
If \(n _n o r m s \geq 1\), returns normwise error bounds.
If \(n _n o r m s \geq 2\), returns componentwise error bounds.
REAL for sla_syrfsx_extended and cla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended and zla_syrfsx_extended.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error.

Normwise relative error in the \(i\)-th solution vector is defined as follows:


The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned. The first index in err_bnds_norm(i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_norm (: ,err) contains the following three fields:
\begin{tabular}{|c|c|}
\hline err=1 & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt \((n) * \operatorname{slamch}(\varepsilon)\) for sla_syrfsx_extended/ cla_syrfsx_extended and \(\operatorname{sqrt}(n)\) *dlamch ( \(\varepsilon\) ) for dla_syrfsx_extended/ zla_syrfsx_extended. \\
\hline err \(=2\) & "Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for sla_syrfsx_extended/ cla_syrfsx_extended and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for dla_syrfsx_extended/ zla_syrfsx_extended. This error bound should only be trusted if the previous boolean is true. \\
\hline err=3 & \begin{tabular}{l}
Reciprocal condition number. Estimated normwise reciprocal condition number. \\
Compared with the threshold \\
\(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for sla_syrfsx_extended/ \\
cla_syrfsx_extended and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for dla_syrfsx_extended/ \\
zla_syrfsx_extended to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1/(norm(1/ \\
\(z\),inf)*norm(z,inf)) for some appropriately scaled matrix \(z\). \\
Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1 . \\
Use this subroutine to set only the second field above.
\end{tabular} \\
\hline REAL for DOUBLE zla_syr & ended and cla_syrfsx_extended a_syrfsx_extended and \\
\hline
\end{tabular}

Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the \(i\)-th solution vector:


The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) \(=0.0\) ), then err_bnds_comp is not accessed. If \(n_{-} e r r_{-}\)bnds \(<3\), then at most the first (:, \(n_{-} e r r_{-} b n d s\) ) entries are returned.
The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the follwoing three fields:
\begin{tabular}{|c|c|}
\hline err=1 & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold \(\operatorname{sqrt}(n)\) *slamch ( \(\varepsilon\) ) for sla_syrfsx_extended/ cla_syrfsx_extended and \(\operatorname{sqrt}(n)\) *dlamch ( \(\varepsilon\) ) for dla_syrfsx_extended/ zla_syrfsx_extended. \\
\hline err=2 & "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt ( \(n\) ) *slamch \((\varepsilon)\) for sla_syrfsx_extended/ cla_syrfsx_extended and \(\operatorname{sqrt}(n)\) *dlamch( \(\varepsilon\) ) for dla_syrfsx_extended/ zla_syrfsx_extended. This error bound should only be trusted if the previous boolean is true. \\
\hline err \(=3\) & \begin{tabular}{l}
Reciprocal condition number. Estimated componentwise reciprocal condition number. \\
Compared with the threshold \\
\(\operatorname{sqrt}(n)\) *slamch( \(\varepsilon\) ) for sla_syrfsx_extended/ cla_syrfsx_extended and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for dla_syrfsx_extended/ zla_syrfsx_extended to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1 / (norm (1/ \(z\),inf) *norm(z,inf)) for some appropriately scaled matrix \(z\).
\end{tabular} \\
\hline
\end{tabular}

Let \(z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a^{\star} \operatorname{diag}(x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1 . Use this subroutine to set only the second field above.
res, dy, y_tail
ayb
rcond
ithresh
rthresh
dz_ub

REAL for sla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended
COMPLEX for cla_syrfsx_extended
DOUBLE COMPLEX for zla_syrfsx_extended.
Workspace arrays of DIMENSION \(n\).
res holds the intermediate residual.
\(d y\) holds the intermediate solution.
y_tail holds the trailing bits of the intermediate solution.
REAL for sla_syrfsx_extended and cla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended and
zla_syrfsx_extended.
Workspace array, DIMENSION \(n\).
REAL for sla_syrfsx_extended and cla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended and
zla_syrfsx_extended.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
INTEGER. The maximum number of residual computations allowed for refinement. The default is 10 . For 'aggressive', set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
REAL for sla_syrfsx_extended and cla_syrfsx_extended DOUBLE PRECISION for dla_syrfsx_extended and zla_syrfsx_extended.
Determines when to stop refinement if the error estimate stops decreasing. Refinement stops when the next solution no longer satisfies
norm(dx_\{i+1\}) < rthresh * norm(dx_i)
where norm \((z)\) is the infinity norm of \(z\).
rthresh satisfies
\(0<r\) thresh \(\leq 1\).
The default value is 0.5 . For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices.
REAL for sla_syrfsx_extended and cla_syrfsx_extended DOUBLE PRECISION for dla_syrfsx_extended and zla_syrfsx_extended.
Determines when to start considering componentwise convergence.
Componentwise \(d z\) ub convergence is only considered after each component of the solution \(y\) is stable, that is, the relative change in each component is less than \(d z_{-} u b\). The default value is 0.25 , requiring the first bit to be stable.
\begin{tabular}{ll} 
ignore_cwise & LOGICAL \\
& If . TRUE., the function ignores componentwise convergence. Default value \\
& is .FALSE.
\end{tabular}

\section*{Output Parameters}
```

Y REAL for sla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended
COMPLEX for cla_syrfsx_extended
DOUBLE COMPLEX for zla_syrfsx_extended.
The improved solution matrix Y.
berr_out REAL for sla_syrfsx_extended and cla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended and
zla_syrfsx_extended.

```
    Array, DIMENSION nrhs. berr_out ( \(j\) ) contains the componentwise relative
    backward error for right-hand-side \(j\) from the formula
\(\max (i)\) ( abs(res(i)) / (abs(op(A))*abs(y) + abs(B) )(i) )
where \(\mathrm{abs}(z)\) is the componentwise absolute value of the matrix or vector
z. This is computed by ?la_lin_berr.
err_bnds_norm,
err_bnds_comp
info

Values of the corresponding input parameters improved after iterative refinement and stored in the second column of the array ( \(1: n r h s, 2\) ). The other elements are kept unchanged.
INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
See Also
?syrfsx
?sytrf
?sytrs
?lamch
ilaprec
ilatrans
?la_lin_berr

\section*{?la_syrpvgrw}

Computes the reciprocal pivot growth factor norm (A) / norm (U) for a symmetric indefinite matrix.

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_syrpvgrw(uplo, n, info, a, lda, af, ldaf, ipiv, work)
call dla_syrpvgrw(uplo, n, info, a, lda, af, ldaf, ipiv, work)
call cla_syrpvgrw(uplo, n, info, a, lda, af, ldaf, ipiv, work)
call zla_syrpvgrw(uplo, n, info, a, lda, af, ldaf, ipiv, work)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ?la_syrpvgrw routine computes the reciprocal pivot growth factor norm (A)/norm ( \(U\) ). The max absolute element norm is used. If this is much less than 1 , the stability of the \(L U\) factorization of the equilibrated matrix \(A\) could be poor. This also means that the solution \(x\), estimated condition numbers, and error bounds could be unreliable.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Specifies the triangle of A to store: \\
If uplo = 'U', the upper triangle of \(A\) is stored, \\
If uplo = 'L', the lower triangle of \(A\) is stored.
\end{tabular} \\
\hline \(n\) & INTEGER. The number of linear equations, the order of the matrix \(A ; n\) \(\geq 0\). \\
\hline info & INTEGER. The value of INFO returned from ?sytrf, that is, the pivot in column info is exactly 0 . \\
\hline \multirow[t]{8}{*}{\(a, a f\)} & REAL for sla_syrpvgrw \\
\hline & DOUBLE PRECISION for dla_syrpvgrw \\
\hline & COMPLEX for cla_syrpvgrw \\
\hline & DOUBLE COMPLEX for zla_syrpvgrw. \\
\hline & Arrays: a(lda,*), af(ldaf,*). \\
\hline & The array a contains the input \(n-b y-n\) matrix \(A\). The second dimension of a must be at least max \((1, n)\). \\
\hline & The array af contains the block diagonal matrix D and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?sytrf. \\
\hline & The second dimension of af must be at least max ( \(1, n\) ). \\
\hline Ida & INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline ldaf & INTEGER. The leading dimension of \(a f ; 1\) daf \(\geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION n. Details of the interchanges and the block structure of \(D\) as determined by ?sytrf. \\
\hline \multirow[t]{2}{*}{work} & REAL for sla_syrpvgrw and cla_syrpvgrw \\
\hline & DOUBLE PRECISION for dla_syrpvgrw and zla_syrpvgrw. Workspace array, dimension \(2 *_{n}\). \\
\hline
\end{tabular}

See Also
?sytrf

\section*{?la_wwaddw}

Adds a vector into a doubled-single vector.

\section*{Syntax}

\section*{Fortran 77:}
```

call sla_wwaddw(n, x, y, w)
call dla_wwaddw(n, x, y, w)
call cla_wwaddw(n, x, y, w)
call zla_wwaddw(n, x, y, w)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ? la_wwaddw routine adds a vector \(w\) into a doubled-single vector ( \(X, Y\) ). This works for all existing IBM hex and binary floating-point arithmetics, but not for decimal.

\section*{Input Parameters}
\(n\)
\(x, y, w\)

INTEGER. The length of vectors \(X, Y\), and \(W\).
REAL for sla_wwaddw
DOUBLE PRECISION for dla_wwaddw
COMPLEX for cla_wwaddw
DOUBLE COMPLEX for zla_wwaddw.
Arrays DIMENSION \(n\). \(x\) and \(y\) contain the first and second parts of the doubled-single accumulation vector, respectively. \(w\) contains the vector \(w\) to be added.

\section*{Output Parameters}
\(x, y\)
Contain the first and second parts of the doubled-single accumulation vector, respectively, after adding the vector \(w\).

\section*{Utility Functions and Routines}

This section describes LAPACK utility functions and routines. Summary information about these routines is given in the following table:
LAPACK Utility Routines
\begin{tabular}{|c|c|c|}
\hline Routine Name & \begin{tabular}{l}
Data \\
Types
\end{tabular} & Description \\
\hline ilaver & & Returns the version of the Lapack library. \\
\hline ilaenv & & Environmental enquiry function which returns values for tuning algorithmic performance. \\
\hline iparmq & & Environmental enquiry function which returns values for tuning algorithmic performance. \\
\hline ieeeck & & Checks if the infinity and NaN arithmetic is safe. Called by ilaenv. \\
\hline Isame & & Tests two characters for equality regardless of case. \\
\hline Isamen & & Tests two character strings for equality regardless of case. \\
\hline ? labad & s, d & Returns the square root of the underflow and overflow thresholds if the exponent-range is very large. \\
\hline ? 1 amch & s, d & Determines machine parameters for floating-point arithmetic. \\
\hline ? \(1 \mathrm{amc1}\) & \(s, d\) & Called from ?lamc2. Determines machine parameters given by beta, \(t\), rnd, ieeel. \\
\hline ? 1 amc 2 & \(s, d\) & Used by ?lamch. Determines machine parameters specified in its arguments list. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Routine Name & Data Types & Description \\
\hline ? 1 amc 3 & \(s, d\) & Called from ?lamc1-?lamc5. Intended to force \(a\) and \(b\) to be stored prior to doing the addition of \(a\) and \(b\). \\
\hline ? 1 amc 4 & s, d & This is a service routine for ? lamc2. \\
\hline ? lamc5 & s, d & Called from ?lamc2. Attempts to compute the largest machine floating-point number, without overflow. \\
\hline second/dsecnd & & Return user time for a process. \\
\hline chla_transtype & & Translates a BLAST-specified integer constant to the character string specifying a transposition operation. \\
\hline iladiag & & Translates a character string specifying whether a matrix has a unit diagonal or not to the relevant BLAST-specified integer constant. \\
\hline ilaprec & & Translates a character string specifying an intermediate precision to the relevant BLAST-specified integer constant. \\
\hline ilatrans & & Translates a character string specifying a transposition operation to the BLAST-specified integer constant. \\
\hline ilauplo & & Translates a character string specifying an upper- or lower-triangular matrix to the relevant BLAST-specified integer constant. \\
\hline xerbla & & Error handling routine called by LAPACK routines. \\
\hline xerbla_array & & Assists other languages in calling the xerbla function. \\
\hline
\end{tabular}

\section*{ilaver}

Returns the version of the LAPACK library.
Syntax
```

call ilaver(vers_major, vers_minor, vers_patch)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

This routine returns the version of the LAPACK library.

\section*{Output Parameters}
```

vers_major
vers_minor
vers_patch
INTEGER.
Returns the major version of the LAPACK library.
INTEGER.
Returns the minor version from the major version of the LAPACK library.
INTEGER.
Returns the patch version from the minor version of the LAPACK library.

```

\section*{ilaenv \\ Environmental enquiry function that returns values for tuning algorithmic performance.}

\section*{Syntax}
```

value = ilaenv(ispec, name, opts, n1, n2, n3, n4)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The enquiry function ilaenv is called from the LAPACK routines to choose problem-dependent parameters for the local environment. See ispec below for a description of the parameters.

This version provides a set of parameters that should give good, but not optimal, performance on many of the currently available computers.

This routine will not function correctly if it is converted to all lower case. Converting it to all upper case is allowed.

\section*{Optimization Notice}

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

\section*{Input Parameters}
ispec
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{12}{*}{\begin{tabular}{l}
Specifies the parameter to be returned as the value of ilaenv: \\
\(=1\) : the optimal blocksize; if this value is 1 , an unblocked algorithm will give the best performance. \\
\(=2\) : the minimum block size for which the block routine should be used; if the usable block size is less than this value, an unblocked routine should be used. \\
\(=3\) : the crossover point (in a block routine, for \(n\) less than this value, an unblocked routine should be used) \\
\(=4\) : the number of shifts, used in the nonsymmetric eigenvalue routines (deprecated) \\
= 5: the minimum column dimension for blocking to be used; rectangular blocks must have dimension at least \(k-\) by- \(m\), where \(k\) is given by ilaenv (2,...) and mby ilaenv (5,...) \\
= 6: the crossover point for the SVD (when reducing an \(m\)-by-n matrix to bidiagonal form, if \(\max (\mathrm{m}, \mathrm{n}) / \mathrm{min}(\mathrm{m}, \mathrm{n})\) exceeds this value, a \(Q R\) factorization is used first to reduce the matrix to a triangular form.) \\
= 7: the number of processors \\
\(=8\) : the crossover point for the multishift \(Q R\) and \(Q Z\) methods for nonsymmetric eigenvalue problems (deprecated).
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
= 9: maximum size of the subproblems at the bottom of the computation tree in the divide-and-conquer algorithm (used by ?gelsd and ?gesdd) \\
\(=10\) : ieee NaN arithmetic can be trusted not to trap \\
=11: infinity arithmetic can be trusted not to trap \\
\(12 \leq\) ispec \(\leq 16\) : ?hseqr or one of its subroutines, see iparmq for detailed explanation.
\end{tabular} \\
\hline name & CHARACTER* (*). The name of the calling subroutine, in either upper case or lower case. \\
\hline opts & CHARACTER* (*). The character options to the subroutine name, concatenated into a single character string. For example, uplo = 'U', trans = 'T', and diag = 'N' for a triangular routine would be specified as opts = 'UTN'. \\
\hline \(n 1, n 2, n 3, n 4\) & INTEGER. Problem dimensions for the subroutine name; these may not all be required. \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{value}

INTEGER.
If value \(\geq 0\) : the value of the parameter specified by ispec; If value \(=-\mathrm{k}<0\) : the \(k\)-th argument had an illegal value.

\section*{Application Notes}

The following conventions have been used when calling ilaenv from the LAPACK routines:
1. opts is a concatenation of all of the character options to subroutine name, in the same order that they appear in the argument list for name, even if they are not used in determining the value of the parameter specified by ispec.
2. The problem dimensions \(n 1, n 2, n 3, n 4\) are specified in the order that they appear in the argument list for name. \(n 1\) is used first, \(n 2\) second, and so on, and unused problem dimensions are passed a value of -1 .
3. The parameter value returned by ilaenv is checked for validity in the calling subroutine. For example, ilaenv is used to retrieve the optimal blocksize for strtri as follows:
```

nb = ilaenv(1, 'strtri', uplo // diag, n, -1, -1, -1>)
if(nb.le.1) nb = max(1, n)

```

Below is an example of ilaenv usage in C language:
```

\#include <stdio.h>
\#include "mkl.h"
int main(void)
{
int size = 1000;
int ispec = 1;
int dummy = -1;
int blockSize1 = ilaenv(\&ispec, "dsytrd", "U", \&size, \&dummy, \&dummy, \&dummy);
int blockSize2 = ilaenv(\&ispec, "dormtr", "LUN", \&Size, \&size, \&dummy, \&dummy);
printf("DSYTRD blocksize = %d\n",
blockSize1);
printf("DORMTR blocksize = %d\n", blockSize2);
return 0;

```
\}

\section*{See Also}
?hseqr
iparmq
iparmq
Environmental enquiry function which returns values for tuning algorithmic performance.

\section*{Syntax}
```

value = iparmq(ispec, name, opts, n, ilo, ihi, lwork)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function sets problem and machine dependent parameters useful for ?hseqr and its subroutines. It is called whenever ilaenv is called with \(12 \leq i s p e c \leq 16\).

\section*{Input Parameters}
ispec
name
opts

INTEGER.
Specifies the parameter to be returned as the value of iparmq:
= 12: (inmin) Matrices of order nmin or less are sent directly to ?lahqr, the implicit double shift QR algorithm. nmin must be at least 11.
= 13: (inwin) Size of the deflation window. This is best set greater than or equal to the number of simultaneous shifts \(n s\). Larger matrices benefit from larger deflation windows.
= 14: (inibl) Determines when to stop nibbling and invest in an (expensive) multi-shift QR sweep. If the aggressive early deflation subroutine finds \(l d\) converged eigenvalues from an order \(n w\) deflation window and \(l d>\left(n w^{\star} n i b b l e\right) / 100\), then the next QR sweep is skipped and early deflation is applied immediately to the remaining active diagonal block. Setting iparmq (ispec=14)=0 causes TTQRE to skip a multi-shift QR sweep whenever early deflation finds a converged eigenvalue. Setting iparmq(ispec=14) greater than or equal to 100 prevents TTQRE from skipping a multi-shift QR sweep.
= 15: (nshfts) The number of simultaneous shifts in a multi-shift QR iteration.
= 16: (iacc22) iparmq is set to 0,1 or 2 with the following meanings.
0 : During the multi-shift QR sweep, ?laqr5 does not accumulate reflections and does not use matrix-matrix multiply to update the far-fromdiagonal matrix entries.
1: During the multi-shift QR sweep, ?laqr5 and/or ?laqr3 accumulates reflections and uses matrix-matrix multiply to update the far-from-diagonal matrix entries.
2: During the multi-shift QR sweep, ?laqr5 accumulates reflections and takes advantage of 2-by-2 block structure during matrix-matrix multiplies. (If ?trrm is slower than ?gemm, then iparmq (ispec=16) \(=1\) may be more efficient than iparmq (ispec=16) \(=2\) despite the greater level of arithmetic work implied by the latter choice.)
CHARACTER* (*). The name of the calling subroutine.
CHARACTER* (*). This is a concatenation of the string arguments to \(T T Q R E\).
\begin{tabular}{ll}
\(n\) & INTEGER. \(n\) is the order of the Hessenberg matrix \(H\). \\
ilo, ihi & INTEGER. \\
& It is assumed that \(H\) is already upper triangular in rows and columns \\
& \(1:\) ilo-1 and \(i h i+1: n\). \\
& INTEGER. \\
& The amount of workspace available.
\end{tabular}

\section*{Output Parameters}
```

value INTEGER.
If value }\geq0\mathrm{ : the value of the parameter specified by iparmq;
If value = - k < 0: the k-th argument had an illegal value.

```

\section*{Application Notes}

The following conventions have been used when calling ilaenv from the LAPACK routines:
1. opts is a concatenation of all of the character options to subroutine name, in the same order that they appear in the argument list for name, even if they are not used in determining the value of the parameter specified by ispec.
2. The problem dimensions \(n 1, n 2, n 3, n 4\) are specified in the order that they appear in the argument list for name. \(n 1\) is used first, n2 second, and so on, and unused problem dimensions are passed a value of -1 .
3. The parameter value returned by ilaenv is checked for validity in the calling subroutine. For example, ilaenv is used to retrieve the optimal blocksize for strtri as follows:
```

nb = ilaenv(1, 'strtri', uplo // diag, n, -1, -1, -1>)
if(nb.le.1) nb = max(1, n)

```

\section*{ieeeck}

Checks if the infinity and NaN arithmetic is safe.
Called by ilaenv.

\section*{Syntax}
```

ival = ieeeck(ispec, zero, one)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function ieeeck is called from ilaenv to verify that infinity and possibly NaN arithmetic is safe, that is, will not trap.

\section*{Input Parameters}
\begin{tabular}{ll} 
ispec & INTEGER. \\
& Specifies whether to test just for infinity arithmetic or both for infinity and \\
& NaN arithmetic: \\
If \(i s p e c=0:\) Verify infinity arithmetic only. \\
zero & If ispec \(=1:\) Verify infinity and NaN arithmetic. \\
& REAL. Must contain the value 0.0 \\
one & This is passed to prevent the compiler from optimizing away this code. \\
& REAL. Must contain the value 1.0
\end{tabular}

This is passed to prevent the compiler from optimizing away this code.

\section*{Output Parameters}
ival
INTEGER.
If ival \(=0\) : Arithmetic failed to produce the correct answers.
If ival \(=1\) : Arithmetic produced the correct answers.

\section*{Isamen}

Tests two character strings for equality regardless of case.

\section*{Syntax}
```

val = lsamen(n, ca, cb)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

This logical function tests if the first \(n\) letters of the string \(c a\) are the same as the first \(n\) letters of \(c b\), regardless of case. The function lsamen returns.TRUE. if ca and cb are equivalent except for case and.FALSE. otherwise. lsamen also returns.FALSE. if len(ca) or len(cb) is less than \(n\).

\section*{Input Parameters}
```

n
ca, cb

```

INTEGER. The number of characters in \(c a\) and \(c b\) to be compared.
CHARACTER* (*). Specify two character strings of length at least \(n\) to be compared. Only the first \(n\) characters of each string will be accessed.

\section*{Output Parameters}

LOGICAL. Result of the comparison.

\section*{?labad}

Returns the square root of the underflow and overflow thresholds if the exponent-range is very large.

\section*{Syntax}
```

call slabad(small, large)
call dlabad(small, large)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine takes as input the values computed by slamch/dlamch for underflow and overflow, and returns the square root of each of these values if the log of large is sufficiently large. This subroutine is intended to identify machines with a large exponent range, such as the Crays, and redefine the underflow and overflow limits to be the square roots of the values computed by ?lamch. This subroutine is needed because ?lamch does not compensate for poor arithmetic in the upper half of the exponent range, as is found on a Cray.

Input Parameters
\begin{tabular}{ll} 
small & REAL for slabad \\
DOUBLE PRECISION for dlabad. \\
large & The underflow threshold as computed by ?lamch. \\
& REAL for slabad \\
& DOUBLE PRECISION for dlabad. \\
& The overflow threshold as computed by ?lamch.
\end{tabular}

\section*{Output Parameters}
small
large

On exit, if log10 (large) is sufficiently large, the square root of small, otherwise unchanged.
On exit, if log10 (large) is sufficiently large, the square root of large, otherwise unchanged.

\section*{?lamch}

Determines machine parameters for floating-point arithmetic.

\section*{Syntax}
```

val = slamch(cmach)
val = dlamch(cmach)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The function ?lamch determines single precision and double precision machine parameters.

\section*{Input Parameters}
cmach
\[
\begin{aligned}
& \text { CHARACTER*1. Specifies the value to be returned by ?lamch: } \\
& \text { = 'E' or 'e', val = eps } \\
& \text { = 'S' or 's', val = sfmin } \\
& \text { = 'B' or 'b', val = base } \\
& \text { = 'P' or 'p', val = eps*base } \\
& =\text { ' } n \text { ' or ' } n \text { ', val }=t \\
& \text { = 'R' or 'r', val = rnd } \\
& =\text { ' } \mathrm{m} \text { ' or ' } \mathrm{m} \text { ', val }=\text { emin } \\
& \text { = 'U' or 'u', val = rmin } \\
& \text { = 'L' or 'l', val = emax } \\
& \text { = 'o' or 'o', val = rmax } \\
& \text { where } \\
& e p s=\text { relative machine precision; } \\
& \operatorname{sfmin}=\text { safe minimum, such that } 1 / s f m i n \text { does not overflow; } \\
& \text { base = base of the machine; } \\
& \text { prec }=\text { eps* }{ }^{*} \text { base; } \\
& t=\text { number of (base) digits in the mantissa; } \\
& \text { rnd }=1.0 \text { when rounding occurs in addition, } 0.0 \text { otherwise; } \\
& \text { emin }=\text { minimum exponent before (gradual) underflow; }
\end{aligned}
\]
```

rmin = underflow_threshold - base**(emin-1);
emax = largest exponent before overflow;
rmax = overflow_threshold-(base**emax)*(1-eps).

```

NOTE You can use a character string for cmach instead of a single character in order to make your code more readable. The first character of the string determines the value to be returned. For example, 'Precision' is interpreted as ' p '.

\section*{Output Parameters}
```

val REAL for slamch
DOUBLE PRECISION for dlamch
Value returned by the function.

```
```

?lamc1
Called from ?lamc2. Determines machine parameters
given by beta, t, rnd, ieeel.

```

\section*{Syntax}
```

call slamc1(beta, t, rnd, ieeel)
call dlamcl(beta, t, rnd, ieeel)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

Description
The routine ? lamcl determines machine parameters given by beta, \(t\), rnd, ieeel.

\section*{Output Parameters}
\begin{tabular}{ll} 
beta & INTEGER. The base of the machine. \\
\(t\) & INTEGER. The number of (beta) digits in the mantissa. \\
rnd & LOGICAL. \\
Specifies whether proper rounding ( rnd =. TRUE. ) or chopping ( rnd \\
& \(=\).FALSE.) occurs in addition. This may not be a reliable guide to the way \\
in which the machine performs its arithmetic. \\
& LOGICAL. \\
& Specifies whether rounding appears to be done in the ieee 'round to \\
& nearest' style.
\end{tabular}

\section*{?lamc2}

Used by ?lamch. Determines machine parameters
specified in its arguments list.

\section*{Syntax}
```

call slamc2(beta, t, rnd, eps, emin, rmin, emax, rmax)
call dlamc2(beta, t, rnd, eps, emin, rmin, emax, rmax)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ?lamc2 determines machine parameters specified in its arguments list.

\section*{Output Parameters}
```

beta INTEGER. The base of the machine.
t INTEGER. The number of (beta) digits in the mantissa.
rnd LOGICAL.
Specifies whether proper rounding (rnd = .TRUE.) or chopping (rnd
= .FALSE.) occurs in addition. This may not be a reliable guide to the way
in which the machine performs its arithmetic.
eps }\begin{array}{ll}{\mathrm{ REAL for slamc2 }}
{}\&{\mathrm{ DOUBLE PRECISION for dlamc2}}
The smallest positive number such that
fl(1.0 - eps) < 1.0,
where fl denotes the computed value.
emin INTEGER. The minimum exponent before (gradual) underflow occurs.
rmin REAL for slamc2
DOUBLE PRECISION for dlamc2
The smallest normalized number for the machine, given by
base emin-1,
where base is the floating point value of beta.
INTEGER.The maximum exponent before overflow occurs.
REAL for slamc2
DOUBLE PRECISION for dlamc2
The largest positive number for the machine, given by base emax(1 - eps),
where base is the floating point value of beta.

```
?lamc3
Called from ?lamc1-?lamc5. Intended to force a and \(b\) to be stored prior to doing the addition of \(a\) and \(b\).

\section*{Syntax}
```

val = slamc3(a, b)
val = dlamc3(a, b)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine is intended to force \(A\) and \(B\) to be stored prior to doing the addition of \(A\) and \(B\), for use in situations where optimizers might hold one of these in a register.

\section*{Input Parameters}
\(a, b\)
REAL for slamc3
DOUBLE PRECISION for dlamc3
The values \(a\) and \(b\).

\section*{Output Parameters}
\begin{tabular}{ll} 
val & REAL for slamc3 \\
& DOUBLE PRECISION for dlamc3 \\
& The result of adding values \(a\) and \(b\).
\end{tabular}
?lamc4
This is a service routine for ?lamc2.

\section*{Syntax}
```

call slamc4(emin, start, base)
call dlamc4(emin, start, base)

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

This is a service routine for ? lamc2.

\section*{Input Parameters}
```

start REAL for slamc4
DOUBLE PRECISION for dlamc4
The starting point for determining emin.
base INTEGER. The base of the machine.

```

\section*{Output Parameters}
emin
INTEGER. The minimum exponent before (gradual) underflow, computed by setting \(a=\) start and dividing by base until the previous a can not be recovered.

\section*{?lamc5}

Called from ?lamc2. Attempts to compute the largest machine floating-point number, without overflow.

\section*{Syntax}
```

call slamc5(beta, p, emin, ieee, emax, rmax)
call dlamc5(beta, p, emin, ieee, emax, rmax)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine ? lamc5 attempts to compute rmax, the largest machine floating-point number, without overflow. It assumes that emax + abs (emin) sum approximately to a power of 2 . It will fail on machines where this assumption does not hold, for example, the Cyber 205 (emin \(=-28625\), emax \(=28718\) ). It will also fail if the value supplied for emin is too large (that is, too close to zero), probably with overflow.

\section*{Input Parameters}
\begin{tabular}{ll} 
beta & INTEGER. The base of floating-point arithmetic. \\
\(p\) & INTEGER. The number of base beta digits in the mantissa of a floating-point \\
value. \\
emin & INTEGER. The minimum exponent before (gradual) underflow. \\
ieee & LOGICAL. A logical flag specifying whether or not the arithmetic system is \\
& thought to comply with the IEEE standard.
\end{tabular}

\section*{Output Parameters}
```

emax

```

INTEGER. The largest exponent before overflow.
REAL for slamc5
DOUBLE PRECISION for dlamc5
The largest machine floating-point number.

\section*{second/dsecnd}

Return user time for a process.

\section*{Syntax}
```

val = second()
val = dsecnd()

```

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The functions second/dsecnd return the user time for a process in seconds. These versions get the time from the system function etime. The difference is that dsecnd returns the result with double precision.

\section*{Output Parameters}
```

val REAL for second
DOUBLE PRECISION for dsecnd
User time for a process.

```
chla_transtype
Translates a BLAST-specified integer constant to the
character string specifying a transposition operation.
Syntax
val = chla_transtype (trans )

\section*{Include Files}
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The chla_transtype function translates a BLAST-specified integer constant to the character string specifying a transposition operation.

The function returns a CHARACTER*1. If the input is not an integer indicating a transposition operator, then val is ' X '. Otherwise, the function returns the constant value corresponding to trans.

\section*{Input Parameters}
```

trans

```

INTEGER.
Specifies the form of the system of equations:
If trans = BLAS_NO_TRANS = 111: No transpose.
If trans = BLAS_TRANS = 112: Transpose.
If trans = BLAS_CONJ_TRANS = 113: Conjugate Transpose.

\section*{Output Parameters}
val

Character that specifies a transposition operation.

\section*{iladiag}

Translates a character string specifying whether a matrix has a unit diagonal to the relevant BLASTspecified integer constant.

\section*{Syntax}
```

val = iladiag(diag)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The iladiag function translates a character string specifying whether a matrix has a unit diagonal or not to the relevant BLAST-specified integer constant.

The function returns an INTEGER. If val < 0, the input is not a character indicating a unit or non-unit diagonal. Otherwise, the function returns the constant value corresponding to diag.

\section*{Input Parameters}
```

diag CHARACTER*1.

```

Specifies the form of the system of equations:
If diag = 'N': A is non-unit triangular.
If diag = 'U': A is unit triangular.

\section*{Output Parameters}
val
INTEGER
Value returned by the function.
```

ilaprec
Translates a character string specifying an
intermediate precision to the relevant BLAST-specified
integer constant.
Syntax
val = ilaprec(prec)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ilaprec function translates a character string specifying an intermediate precision to the relevant BLAST-specified integer constant.
The function returns an INTEGER. If val < 0, the input is not a character indicating a supported intermediate precision. Otherwise, the function returns the constant value corresponding to prec.

\section*{Input Parameters}
```

prec CHARACTER*1.
Specifies the form of the system of equations:
If prec = 'S':Single.
If prec = 'D': Double.
If prec = 'I': Indigenous.
If prec = 'X', 'E': Extra.

```

\section*{Output Parameters}

INTEGER
Value returned by the function.

\section*{ilatrans}

Translates a character string specifying a transposition operation to the BLAST-specified integer constant.

Syntax
```

val = ilatrans(trans)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ilatrans function translates a character string specifying a transposition operation to the BLASTspecified integer constant.
The function returns a INTEGER. If val < 0 , the input is not a character indicating a transposition operator. Otherwise, the function returns the constant value corresponding to trans.

Input Parameters
trans
CHARACTER*1.

Specifies the form of the system of equations:
If trans = 'N': No transpose.
If trans \(=\) ' T ': Transpose.
If trans \(=\) 'C': Conjugate Transpose.

\section*{Output Parameters}

INTEGER
Character that specifies a transposition operation.

\section*{ilauplo}

Translates a character string specifying an upper- or lower-triangular matrix to the relevant BLASTspecified integer constant.

Syntax
```

val = ilauplo(uplo)

```

Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The ilauplo function translates a character string specifying an upper- or lower-triangular matrix to the relevant BLAST-specified integer constant.
The function returns an INTEGER. If val < 0, the input is not a character indicating an upper- or lowertriangular matrix. Otherwise, the function returns the constant value corresponding to uplo.

Input Parameters
\begin{tabular}{ll} 
diag & CHARACTER. \\
& Specifies the form of the system of equations: \\
If diag \(=' U ': A\) is upper triangular. \\
& If diag \(=' L ': A\) is lower triangular.
\end{tabular}

\section*{Output Parameters}
val
INTEGER
Value returned by the function.

\section*{xerbla_array}

Assists other languages in calling the xerbla function.
Syntax
call xerbla_array( srname_array, srname_len, info )
Include Files
- FORTRAN 77: mkl_lapack.fi and mkl_lapack.h

\section*{Description}

The routine assists other languages in calling the error handling xerbla function. Rather than taking a Fortran string argument as the function name, xerbla_array takes an array of single characters along with the array length. The routine then copies up to 32 characters of that array into a Fortran string and passes that to xerbla. If called with a non-positive srname_len, the routine will call xerbla with a string of all blank characters.
If some macro or other device makes xerbla_array available to C99 by a name lapack_xerbla and with a common Fortran calling convention, a c99 program could invoke xerbla via:
\{
```

 int flen = strlen(__func__);
    ```
    lapack_xerbla(__func_, \(\overline{\text { \&flen, }}\) \&info);
\}

Providing xerbla_array is not necessary for intercepting LAPACK errors. xerbla_array calls xerbla.

\section*{Output Parameters}
srname_array
srname_len
info

CHARACTER (1).
Array, dimension (srname_len). The name of the routine that called xerbla_array.
INTEGER.
The length of the name in srname_array.
INTEGER.
Position of the invalid parameter in the parameter list of the calling routine.

5

\section*{ScaLAPACK Routines}

This chapter describes the Inte \({ }^{\circledR}\) Math Kernel Library implementation of routines from the ScaLAPACK package for distributed-memory architectures. Routines are supported for both real and complex dense and band matrices to perform the tasks of solving systems of linear equations, solving linear least-squares problems, eigenvalue and singular value problems, as well as performing a number of related computational tasks.

Intel MKL ScaLAPACK routines are written in FORTRAN 77 with exception of a few utility routines written in C to exploit the IEEE arithmetic. All routines are available in all precision types: single precision, double precision, complexm, and double complex precision. See the mkl_scalapack. h header file for C declarations of ScaLAPACK routines.

D
NOTE ScaLAPACK routines are provided only with Intel \({ }^{\circledR}\) MKL versions for Linux* and Windows* OSs.

Sections in this chapter include descriptions of ScaLAPACK computational routines that perform distinct computational tasks, as well as driver routines for solving standard types of problems in one call.
Generally, ScaLAPACK runs on a network of computers using MPI as a message-passing layer and a set of prebuilt communication subprograms (BLACS), as well as a set of BLAS optimized for the target architecture. Intel MKL version of ScaLAPACK is optimized for Intel \({ }^{\circledR}\) processors. For the detailed system and environment requirements, see Inte \({ }^{\circledR}\) MKL Release Notes and Inte \({ }^{\circledR}\) MKL User's Guide.

For full reference on ScaLAPACK routines and related information, see [SLUG].

\section*{Optimization Notice}

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

\section*{Overview}

The model of the computing environment for ScaLAPACK is represented as a one-dimensional array of processes (for operations on band or tridiagonal matrices) or also a two-dimensional process grid (for operations on dense matrices). To use ScaLAPACK, all global matrices or vectors should be distributed on this array or grid prior to calling the ScaLAPACK routines.
ScaLAPACK uses the two-dimensional block-cyclic data distribution as a layout for dense matrix computations. This distribution provides good work balance between available processors, as well as gives the opportunity to use BLAS Level 3 routines for optimal local computations. Information about the data distribution that is required to establish the mapping between each global array and its corresponding process and memory location is contained in the so called array descriptor associated with each global array. An example of an array descriptor structure is given in Table "Content of the array descriptor for dense matrices".

Content of the array descriptor for dense matrices
\begin{tabular}{lll}
\hline Array Element \# & Name & Definition \\
\hline 1 & dtype & Descriptor type ( =1 for dense matrices) \\
2 & ctxt & BLACS context handle for the process grid
\end{tabular}
\begin{tabular}{lll}
\hline Array Element \# & Name & Definition \\
\hline 3 & \(m\) & Number of rows in the global array \\
4 & \(n\) & Number of columns in the global array \\
5 & \(m b\) & Row blocking factor \\
6 & \(n b\) & Column blocking factor \\
7 & rsrc & Process row over which the first row of the global array is distributed \\
8 & \(\operatorname{csrc}\) & \begin{tabular}{l} 
Process column over which the first column of the global array is \\
distributed
\end{tabular} \\
9 & \(l l d\) & Leading dimension of the local array \\
\hline
\end{tabular}

The number of rows and columns of a global dense matrix that a particular process in a grid receives after data distributing is denoted by \(\operatorname{LOC}_{r}()\) and \(L O C_{C}()\), respectively. To compute these numbers, you can use the ScaLAPACK tool routine numroc.

After the block-cyclic distribution of global data is done, you may choose to perform an operation on a submatrix of the global matrix \(A\), which is contained in the global subarray sub(A), defined by the following 6 values (for dense matrices):
```

m The number of rows of sub(A)
n The number of columns of sub(A)
a A pointer to the local array containing the entire global array A
ia The row index of sub(A) in the global array
ja The column index of sub(A) in the global array
desca The array descriptor for the global array

```

\section*{Optimization Notice}

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

\section*{Routine Naming Conventions}

For each routine introduced in this chapter, you can use the ScaLAPACK name. The naming convention for ScaLAPACK routines is similar to that used for LAPACK routines (see Routine Naming Conventions in Chapter 4). A general rule is that each routine name in ScaLAPACK, which has an LAPACK equivalent, is simply the LAPACK name prefixed by initial letter \(p\).
ScaLAPACK names have the structure p?yyzzz or p?yyzz, which is described below.
The initial letter \(p\) is a distinctive prefix of ScaLAPACK routines and is present in each such routine.
The second symbol ? indicates the data type:
```

s real, single precision
d real, double precision
c complex, single precision
z complex, double precision

```

The second and third letters yy indicate the matrix type as:
```

ge general
gb general band
gg a pair of general matrices (for a generalized problem)

```
\begin{tabular}{ll}
\(d t\) & general tridiagonal (diagonally dominant-like) \\
\(d b\) & general band (diagonally dominant-like) \\
po & symmetric or Hermitian positive-definite \\
pb & symmetric or Hermitian positive-definite band \\
pt & symmetric or Hermitian positive-definite tridiagonal \\
sy & symmetric \\
st & symmetric tridiagonal (real) \\
he & Hermitian \\
or & orthogonal \\
tr & triangular (or quasi-triangular) \\
tz & trapezoidal \\
un & unitary
\end{tabular}

For computational routines, the last three letters \(\mathbf{z z Z}\) indicate the computation performed and have the same meaning as for LAPACK routines.
For driver routines, the last two letters \(\mathbf{z z}\) or three letters \(\mathbf{z z z}\) have the following meaning:
```

sv a simple driver for solving a linear system
svx an expert driver for solving a linear system
ls a driver for solving a linear least squares problem
ev a simple driver for solving a symmetric eigenvalue problem
evd a simple driver for solving an eigenvalue problem using a divide and conquer
algorithm
an expert driver for solving a symmetric eigenvalue problem
svd a driver for computing a singular value decomposition
gvx an expert driver for solving a generalized symmetric definite eigenvalue problem

```

Simple driver here means that the driver just solves the general problem, whereas an expert driver is more versatile and can also optionally perform some related computations (such, for example, as refining the solution and computing error bounds after the linear system is solved).

\section*{Computational Routines}

In the sections that follow, the descriptions of ScaLAPACK computational routines are given. These routines perform distinct computational tasks that can be used for:
- Solving Systems of Linear Equations
- Orthogonal Factorizations and LLS Problems
- Symmetric Eigenproblems
- Nonsymmetric Eigenproblems
- Singular Value Decomposition
- Generalized Symmetric-Definite Eigenproblems

See also the respective driver routines.

\section*{Linear Equations}

ScaLAPACK supports routines for the systems of equations with the following types of matrices:
- general
- general banded
- general diagonally dominant-like banded (including general tridiagonal)
- symmetric or Hermitian positive-definite
- symmetric or Hermitian positive-definite banded
- symmetric or Hermitian positive-definite tridiagonal

A diagonally dominant-like matrix is defined as a matrix for which it is known in advance that pivoting is not required in the \(L U\) factorization of this matrix.

For the above matrix types, the library includes routines for performing the following computations:
factoring the matrix; equilibrating the matrix; solving a system of linear equations; estimating the condition number of a matrix; refining the solution of linear equations and computing its error bounds; inverting the matrix. Note that for some of the listed matrix types only part of the computational routines are provided (for example, routines that refine the solution are not provided for band or tridiagonal matrices). See Table "Computational Routines for Systems of Linear Equations" for full list of available routines.

To solve a particular problem, you can either call two or more computational routines or call a corresponding driver routine that combines several tasks in one call. Thus, to solve a system of linear equations with a general matrix, you can first call p?getrf( \(L U\) factorization) and then \(p\) ?getrs(computing the solution). Then, you might wish to call p?gerfs to refine the solution and get the error bounds. Alternatively, you can just use the driver routine p?gesvx which performs all these tasks in one call.

Table "Computational Routines for Systems of Linear Equations" lists the ScaLAPACK computational routines for factorizing, equilibrating, and inverting matrices, estimating their condition numbers, solving systems of equations with real matrices, refining the solution, and estimating its error.

Computational Routines for Systems of Linear Equations
\begin{tabular}{llllll}
\hline \begin{tabular}{l} 
Matrix type, storage \\
scheme
\end{tabular} & \begin{tabular}{l} 
Factorize \\
matrix
\end{tabular} & \begin{tabular}{l} 
Equilibrate \\
matrix
\end{tabular} & \begin{tabular}{l} 
Solve \\
system
\end{tabular} & \begin{tabular}{l} 
Condition \\
number
\end{tabular} & \begin{tabular}{l} 
Estimate \\
error
\end{tabular} \\
\hline \begin{tabular}{l} 
general (partial pivoting) \\
general band (partial \\
pivoting) \\
general band (no \\
pivoting) \\
general tridiagonal (no \\
pivoting) \\
symmetric/Hermitian \\
positive-definite \\
symmetric/Hermitian \\
positive-definite, band
\end{tabular} & p?gbtrf
\end{tabular}

In this table ? stands for s (single precision real), d (double precision real), c (single precision complex), or \(z\) (double precision complex).

\section*{Routines for Matrix Factorization}

This section describes the ScaLAPACK routines for matrix factorization. The following factorizations are supported:
- LU factorization of general matrices
- LU factorization of diagonally dominant-like matrices
- Cholesky factorization of real symmetric or complex Hermitian positive-definite matrices

You can compute the factorizations using full and band storage of matrices.

\footnotetext{
p?getrf
Computes the LU factorization of a general m-by-n distributed matrix.
}

\section*{Syntax}
```

call psgetrf(m, n, a, ia, ja, desca, ipiv, info)
call pdgetrf(m, n, a, ia, ja, desca, ipiv, info)
call pcgetrf(m, n, a, ia, ja, desca, ipiv, info)
call pzgetrf(m, n, a, ia, ja, desca, ipiv, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?getrf routine forms the \(L U\) factorization of a general \(m-b y-n\) distributed matrix sub \((A)=A(i a: i a\) \(+m-1, j a: j a+n-1)\) as
\(A=P^{*} L^{*} U\)
where \(P\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>\) \(n\) ) and \(U\) is upper triangular (upper trapezoidal if \(m<n\) ). \(L\) and \(U\) are stored in \(\operatorname{sub}(A)\).

The routine uses partial pivoting, with row interchanges.

\section*{Input Parameters}
m
\(n\)
a
desca

\section*{Output Parameters}
\(a\)
ipiv
info
(global) INTEGER. The number of rows in the distributed submatrix sub(A); \(m \geq 0\).
(global) INTEGER. The number of columns in the distributed submatrix \(\operatorname{sub}(A) ; n \geq 0\).
(local)
REAL for psgetrf
DOUBLE PRECISION for pdgetrf
COMPLEX for pcgetrf
DOUBLE COMPLEX for pzgetrf.
Pointer into the local memory to an array of local dimension (lld_a, \(\operatorname{LOCC}(j a+n-1))\).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be factored.
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix A(ia:ia+n-1, ja:ja+n-1), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).

Overwritten by local pieces of the factors \(L\) and \(U\) from the factorization \(A=\) \(P^{*} L * U\). The unit diagonal elements of \(L\) are not stored.
(local) INTEGER array.
The dimension of ipiv is (LOCr (m_a) + mb_a).
This array contains the pivoting information: local row \(i\) was interchanged with global row ipiv(i). This array is tied to the distributed matrix \(A\).
(global) INTEGER.
If info=0, the execution is successful.
info < 0 : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
If info \(=i, u_{i i}\) is 0 . The factorization has been completed, but the factor \(U\) is exactly singular. Division by zero will occur if you use the factor \(U\) for solving a system of linear equations.
p?gbtrf
Computes the Lu factorization of a general n-by-n banded distributed matrix.

\section*{Syntax}
```

call psgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)
call pdgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)
call pcgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)
call pzgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?gbtrf routine computes the \(L U\) factorization of a general \(n\)-by- \(n\) real/complex banded distributed matrix \(A(1: n, j a: j a+n-1)\) using partial pivoting with row interchanges.
The resulting factorization is not the same factorization as returned from the LAPACK routine ? gbtrf. Additional permutations are performed on the matrix for the sake of parallelism.
The factorization has the form
```

A(1:n, ja:ja+n-1) = P* L* U*Q

```
where \(P\) and \(Q\) are permutation matrices, and \(L\) and \(U\) are banded lower and upper triangular matrices, respectively. The matrix \(Q\) represents reordering of columns for the sake of parallelism, while \(P\) represents reordering of rows for numerical stability using classic partial pivoting.

\section*{Input Parameters}
\(n\)
(global) INTEGER. The number of rows and columns in the distributed submatrix \(A(1: n, j a: j a+n-1) ; n \geq 0\).
bwI
bwu
a
(global) INTEGER. The number of sub-diagonals within the band of \(A\) ( \(0 \leq b w l \leq n-1\) ).
(global) INTEGER. The number of super-diagonals within the band of \(A\) ( \(0 \leq b w u \leq n-1\) ). (local)
REAL for psgbtrf
DOUBLE PRECISION for pdgbtrf
COMPLEX for pcgbtrf
DOUBLE COMPLEX for pzgbtrf.
Pointer into the local memory to an array of local dimension (lld_a,
\(L O C_{C}(j a+n-1)\) where
lld_a \(\geq 2 *\) bwl \(+2 *\) bwu +1 .

Contains the local pieces of the \(n\)-by- \(n\) distributed banded matrix \(A(1: n\), ja:ja+n-1) to be factored.
ja
desca
laf

work
I work
l work

\section*{Output Parameters}
a
ipiv
\(a f\)
work(1)
info
(global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\) ).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
If desca(dtype_) \(=501\), then dlen_ \(\geq 7\);
else if desca(dtype_) \(=1\), then \(d l e n_{-} \geq 9\).
(local) INTEGER. The dimension of the array af.
Must be laf \(\geq(N B+b w u) *(b w l+b w u)+6 *(b w l+b w u) *(b w l+2 * b w u)\).
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\).
(local) Same type as a. Workspace array of dimension lwork.
(local or global) INTEGER. The size of the work array (Iwork \(\geq 1\) ). If lwork is too small, the minimal acceptable size will be returned in work(1) and an error code is returned.

On exit, this array contains details of the factorization. Note that additional permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.
(local) INTEGER array.
The dimension of ipiv must be \(\geq\) desca(NB).
Contains pivot indices for local factorizations. Note that you should not alter the contents of this array between factorization and solve.
(local)
REAL for psgbtrf
DOUBLE PRECISION for pdgbtrf
COMPLEX for pcgbtrf
DOUBLE COMPLEX for pzgbtrf.
Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization routine \(p\) ? gbtrf and this is stored in af.
Note that if a linear system is to be solved using p?gbtrs after the factorization routine, af must not be altered after the factorization.
On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
If info \(=0\), the execution is successful.
info < 0 :
If the \(i\) th argument is an array and the \(j\) th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\).
info > 0:
If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not nonsingular, and the factorization was not completed. If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

\section*{p?dbtrf}

Computes the LU factorization of a n-by-n diagonally dominant-like banded distributed matrix.

\section*{Syntax}
```

call psdbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)
call pddbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)
call pcdbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)
call pzdbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?dbtrf routine computes the LU factorization of a \(n\)-by-n real/complex diagonally dominant-like banded distributed matrix \(A(1: n, j a: j a+n-1)\) without pivoting.

Note that the resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & (global) INTEGER. The number of rows and columns in the distributed submatrix \(A(1: n, j a: j a+n-1) ; n \geq 0\). \\
\hline bwl & (global) INTEGER. The number of sub-diagonals within the band of \(A\) ( \(0 \leq b w l \leq n-1\) ). \\
\hline bwu & (global) INTEGER. The number of super-diagonals within the band of \(A\) ( \(0 \leq\) bwu \(\leq n-1\) ). \\
\hline \multirow[t]{7}{*}{a} & (local) \\
\hline & REAL for psdbtrf \\
\hline & DOUBLE PRECISION for pddbtrf \\
\hline & COMPLEX for pcdbtrf \\
\hline & DOUBLE COMPLEX for pzdbtrf. \\
\hline & Pointer into the local memory to an array of local dimension (Ild_a, LOCC (ja+n-1)). \\
\hline & Contains the local pieces of the \(n-b y-n\) distributed banded matrix \(A(1: n\), \(j a: j a+n-1)\) to be factored. \\
\hline ja & (global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\) ). \\
\hline \multirow[t]{2}{*}{desca} & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline & If desca(dtype_) = 501, then dlen_ \(\geq\) 7; else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\). \\
\hline \multirow[t]{3}{*}{laf} & (local) INTEGER. The dimension of the array af. \\
\hline & Must be laf \(\geq \mathrm{NB}^{*}(b w l+b w u)+6^{*}(\max (\mathrm{bwl}, \mathrm{bwu}))^{2}\). \\
\hline & If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\). \\
\hline work & (local) Same type as a. Workspace array of dimension lwork. \\
\hline
\end{tabular}
(local) Same type as a. Workspace array of dimension lwork.
lwork
(local or global) INTEGER. The size of the work array, must be lwork \(\geq\) (max (bwl,bwu) ) \({ }^{2}\). If lwork is too small, the minimal acceptable size will be returned in work(1) and an error code is returned.

\section*{Output Parameters}
a
\(a f\)
work(1)
info

On exit, this array contains details of the factorization. Note that additional permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.
(local)
REAL for psdbtrf
DOUBLE PRECISION for pddbtrf
COMPLEX for pcdbtrf
DOUBLE COMPLEX for pzdbtrf.
Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization routine \(p\) ?
dbtrf and this is stored in af.
Note that if a linear system is to be solved using p?dbtrs after the factorization routine, af must not be altered after the factorization.

On exit, work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
If info \(=0\), the execution is successful.
info < 0:
If the \(i\) th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). info \(>0\) :
If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not diagonally dominant-like, and the factorization was not completed. If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

\section*{p?dttrf \\ Computes the LU factorization of a diagonally \\ dominant-like tridiagonal distributed matrix.}

\section*{Syntax}
```

call psdttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)
call pddttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)
call pcdttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)
call pzdttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?dttrf routine computes the \(L U\) factorization of an \(n\)-by- \(n\) real/complex diagonally dominant-like tridiagonal distributed matrix \(A(1: n, j a: j a+n-1)\) without pivoting for stability.
The resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:
\(A(1: n, j a: j a+n-1)=P \star L * U^{\star} P^{T}\),
where \(P\) is a permutation matrix, and \(L\) and \(U\) are banded lower and upper triangular matrices, respectively.

\section*{Input Parameters}
\(n\)
\(d l, d, d u\)
ja
desca
laf
work
lwork

\section*{Output Parameters}
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed submatrix \(A(1: n, j a: j a+n-1)(n \geq 0)\).
(local)
REAL for pspttrf
DOUBLE PRECISON for pdpttrf
COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.
Pointers to the local arrays of dimension (desca (nb_)) each.
On entry, the array \(d l\) contains the local part of the global vector storing the subdiagonal elements of the matrix. Globally, \(d l(1)\) is not referenced, and \(d l\) must be aligned with \(d\).
On entry, the array \(d\) contains the local part of the global vector storing the diagonal elements of the matrix.
On entry, the array \(d u\) contains the local part of the global vector storing the super-diagonal elements of the matrix. \(d u(n)\) is not referenced, and \(d u\) must be aligned with \(d\).
(global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on ( which may be either all of \(A\) or a submatrix of \(A\) ).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). If desca(dtype_) = 501, then dlen_ \(\geq 7\); else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\).
(local) INTEGER. The dimension of the array af.
Must be laf \(\geq 2^{*}(\mathrm{NB}+2)\).
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\).
(local) Same type as \(d\). Workspace array of dimension lwork.
(local or global) INTEGER. The size of the work array, must be at least lwork \(\geq 8^{*}\) NPCOL.

On exit, overwritten by the information containing the factors of the matrix.
(local)
REAL for psdttrf
DOUBLE PRECISION for pddttrf
COMPLEX for pcdttrf
DOUBLE COMPLEX for pzdttrf.
Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization routine \(p\) ? dttrf and this is stored in af.
Note that if a linear system is to be solved using p?dttrs after the factorization routine, af must not be altered.

On exit, work (1) contains the minimum value of lwork required for optimum performance.
\begin{tabular}{|c|c|}
\hline info & \begin{tabular}{l}
(global) INTEGER. \\
If info \(=0\), the execution is successful. \\
info < 0 : \\
If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
info > 0: \\
If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not diagonally dominant-like, and the factorization was not completed. If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.
\end{tabular} \\
\hline
\end{tabular}

\section*{p?potrf \\ Computes the Cholesky factorization of a symmetric \\ (Hermitian) positive-definite distributed matrix.}

\section*{Syntax}
```

call pspotrf(uplo, n, a, ia, ja, desca, info)
call pdpotrf(uplo, n, a, ia, ja, desca, info)
call pcpotrf(uplo, n, a, ia, ja, desca, info)
call pzpotrf(uplo, n, a, ia, ja, desca, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?potrf routine computes the Cholesky factorization of a real symmetric or complex Hermitian positivedefinite distributed \(n\)-by-n matrix \(A(i a: i a+n-1, j a: j a+n-1)\), denoted below as \(\operatorname{sub}(A)\).
The factorization has the form
```

sub (A) = U U'*U if uplo='U', or
sub(A) = L* * L' if uplo='L'

```
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

\section*{Input Parameters}
```

uplo
n
a
(global) CHARACTER*1.
Indicates whether the upper or lower triangular part of sub(A) is stored.
Must be 'U' or 'L'.
If uplo = 'U', the array a stores the upper triangular part of the matrix
sub (A) that is factored as UU*U.
If uplo = 'L', the array a stores the lower triangular part of the matrix
sub (A) that is factored as L**L'.

```
n
a
(global) CHARACTER*1.
Indicates whether the upper or lower triangular part of \(\operatorname{sub}(A)\) is stored.
Must be 'u' or 'L'.
If uplo = 'U', the array a stores the upper triangular part of the matrix sub ( \(A\) ) that is factored as \(U^{H *} U\).
If uplo = 'L', the array a stores the lower triangular part of the matrix sub ( \(A\) ) that is factored as \(L^{\star} L^{H}\).
(global) INTEGER. The order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\).
(local)
REAL for pspotrf
DOUBLE PRECISON for pdpotrf
COMPLEX for pcpotrf

DOUBLE COMPLEX for pzpotrf.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+n-1)\) ).
On entry, this array contains the local pieces of the \(n\)-by-n symmetric/ Hermitian distributed matrix sub ( \(A\) ) to be factored.
Depending on uplo, the array a contains either the upper or the lower triangular part of the matrix sub (A) (see uplo).
ia, ja
desca
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).

\section*{Output Parameters}
a
The upper or lower triangular part of a is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.
(global) INTEGER.
If info \(=0\), the execution is successful;
info < 0 : if the \(i\)-th argument is an array, and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
If info \(=k>0\), the leading minor of order \(k, A(i a: i a+k-1\), ja:ja \(+k-1)\), is not positive-definite, and the factorization could not be completed.

\section*{p?pbtrf}

Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite banded distributed
matrix.

\section*{Syntax}
```

call pspbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)
call pdpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)
call pcpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)
call pzpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?pbtrf routine computes the Cholesky factorization of an \(n\)-by- \(n\) real symmetric or complex Hermitian positive-definite banded distributed matrix \(A(1: n, j a: j a+n-1)\).
The resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:
```

A(1:n, ja:ja+n-1)= P\star U'H\star U\star P}\mp@subsup{P}{}{T},\mathrm{ if uplo='U', or
A(1:n, ja:ja+n-1) = P*L* L'H* P', if uplo='L',

```
where \(P\) is a permutation matrix and \(U\) and \(L\) are banded upper and lower triangular matrices, respectively.

Input Parameters
uplo
n
bw
a
ja
desca
\(\operatorname{laf}\)
work
I work

\section*{Output Parameters}
a
\(a f\)
(global) CHARACTER*1. Must be 'U' or 'L'.
If uplo \(=\) 'U', upper triangle of \(A(1: n, j a: j a+n-1)\) is stored;
If uplo \(=\) 'L', lower triangle of \(A(1: n, j a: j a+n-1)\) is stored.
(global) INTEGER. The order of the distributed submatrix \(A(1: n\), ja: ja \(+n-1)\).
( \(n \geq 0\) ) .
(global) INTEGER.
The number of superdiagonals of the distributed matrix if uplo = 'U', or the number of subdiagonals if uplo = 'L' \((b w \geq 0)\).

> (local)

REAL for pspbtrf
DOUBLE PRECISON for pdpbtrf
COMPLEX for pcpbtrf
DOUBLE COMPLEX for pzpbtrf.
Pointer into the local memory to an array of dimension ( I Id_a, LOCC (ja+n-1)).
On entry, this array contains the local pieces of the upper or lower triangle of the symmetric/Hermitian band distributed matrix \(A(1: n, j a: j a+n-1)\) to be factored.
(global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on ( which may be either all of \(A\) or a submatrix of \(A\) ).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
If desca(dtype_) \(=501\), then dlen_ \(\geq 7\);
else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\).
(local) INTEGER. The dimension of the array \(a f\).
Must be laf \(\geq(\mathrm{NB}+2 * b w) * b w\).
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\).
(local) Same type as a. Workspace array of dimension lwork.
(local or global) INTEGER. The size of the work array, must be 1 work \(\geq\) \(b w^{2}\).

On exit, if info \(=0\), contains the permuted triangular factor \(U\) or \(L\) from the Cholesky factorization of the band matrix \(A(1: n, j a: j a+n-1)\), as specified by uplo.
(local)
REAL for pspbtrf
DOUBLE PRECISON for pdpbtrf
COMPLEX for pcpbtrf
DOUBLE COMPLEX for pzpbtrf.
Array, dimension (laf). Auxiliary Fillin space. Fillin is created during the factorization routine p?pbtrf and this is stored in af. Note that if a linear system is to be solved using p?pbtrs after the factorization routine, af must not be altered.
```

work(1) On exit, work(1) contains the minimum value of lwork required for
optimum performance.
info
(global) INTEGER.
If info=0, the execution is successful.
info < 0:
If the ith argument is an array and the jth entry had an illegal value, then
info = - (i*100+j); if the ith argument is a scalar and had an illegal
value, then info = -i.
info>0:
If info = k \leq NPROCS, the submatrix stored on processor info and
factored locally was not positive definite, and the factorization was not
completed.
If info = k > NPROCS, the submatrix stored on processor info-NPROCS
representing interactions with other processors was not nonsingular, and
the factorization was not completed.

```

\section*{p?pttrf}

Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite tridiagonal distributed matrix.

\section*{Syntax}
```

call pspttrf(n, d, e, ja, desca, af, laf, work, lwork, info)
call pdpttrf(n, d, e, ja, desca, af, laf, work, lwork, info)
call pcpttrf(n, d, e, ja, desca, af, laf, work, lwork, info)
call pzpttrf(n, d, e, ja, desca, af, laf, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?pttrf routine computes the Cholesky factorization of an \(n\)-by-n real symmetric or complex hermitian positive-definite tridiagonal distributed matrix \(A(1: n, j a: j a+n-1)\).

The resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.
The factorization has the form:
```

A(1:n, ja:ja+n-1) = P*L*D* L'** P
A(1:n, ja:ja+n-1) = P* U'H*D*U* PT,

```
where \(P\) is a permutation matrix, and \(U\) and \(L\) are tridiagonal upper and lower triangular matrices, respectively.

\section*{Input Parameters}
\(n\)

\(d, e\)
(global) INTEGER. The order of the distributed submatrix \(A(1: n, j a: j a\) \(+n-1)\)
( \(n \geq 0\) ).
\(d, e\)
(local)
REAL for pspttrf
DOUBLE PRECISON for pdpttrf

COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.
Pointers into the local memory to arrays of dimension (desca (nb_)) each. On entry, the array \(d\) contains the local part of the global vector storing the main diagonal of the distributed matrix \(A\).
On entry, the array e contains the local part of the global vector storing the upper diagonal of the distributed matrix \(A\).
(global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
If desca(dtype_) = 501, then dlen_ \(\geq 7\);
else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\).
(local) INTEGER. The dimension of the array \(a f\).
Must be laf \(\geq \mathrm{NB}+2\).
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in af(1).
(local) Same type as \(d\) and e. Workspace array of dimension lwork. (local or global) INTEGER. The size of the work array, must be at least lwork \(\geq 8 *\) NPCOL.

\section*{Output Parameters}
\(d, e\)
af
work(1)
info
On exit, overwritten by the details of the factorization.
(local)
REAL for pspttrf
DOUBLE PRECISION for pdpttrf
COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.
Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization routine p ? pttrf and this is stored in af.
Note that if a linear system is to be solved using p?pttrs after the factorization routine, af must not be altered.
On exit, work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
If info=0, the execution is successful.
info < 0:
If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
info > 0:
If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.
If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

\section*{Routines for Solving Systems of Linear Equations}

This section describes the ScaLAPACK routines for solving systems of linear equations. Before calling most of these routines, you need to factorize the matrix of your system of equations (see Routines for Matrix Factorization in this chapter). However, the factorization is not necessary if your system of equations has a triangular matrix.

\section*{p?getrs}

Solves a system of distributed linear equations with a general square matrix, using the LU factorization computed by p?getrf.

\section*{Syntax}
```

call psgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pdgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pcgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pzgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?getrs routine solves a system of distributed linear equations with a general \(n\)-by- \(n\) distributed matrix sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\) using the \(L U\) factorization computed by p?getrf.

The system has one of the following forms specified by trans:
```

sub(A)*X = sub(B) (no transpose),
sub(A)}\mp@subsup{}{}{T}\starX=\operatorname{sub}(B)(transpose)
sub (A) }\mp@subsup{}{}{\mp@subsup{H}{\star}{}}X=\operatorname{sub}(B)\mathrm{ (conjugate transpose),

```
where sub \((B)=B(i b: i b+n-1, j b: j b+n r h s-1)\).
Before calling this routine, you must call p?getrf to compute the \(L U\) factorization of \(\operatorname{sub}(A)\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{trans} & (global) CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & Indicates the form of the equations: \\
\hline & If trans \(=\) ' N ', then \(\operatorname{sub}(A) * X=\operatorname{sub}(B)\) is solved for \(X\). \\
\hline & If trans \(=\) ' \(T^{\prime}\) ', then sub ( \(\left.A\right)^{T \star} X=\operatorname{sub}(B)\) is solved for \(X\). \\
\hline & If trans \(=\) ' C', then sub ( \(A)^{H} * X=\operatorname{sub}(B)\) is solved for \(X\). \\
\hline \(n\) & (global) INTEGER. The number of linear equations; the order of the submatrix sub (A) ( \(n \geq 0\) ). \\
\hline nrhs & (global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix sub ( \(B\) ) ( \(n r h s \geq 0\) ). \\
\hline \multirow[t]{5}{*}{\(a, b\)} & (global) \\
\hline & REAL for psgetrs \\
\hline & DOUBLE PRECISION for pdgetrs \\
\hline & COMPLEX for pcgetrs \\
\hline & DOUBLE COMPLEX for pzgetrs. \\
\hline
\end{tabular}

Pointers into the local memory to arrays of local dimension a(lld_a, \(\operatorname{LOCC}(j a+n-1))\) and \(b\left(1 I d _b, \operatorname{LOCC}(j b+n r h s-1)\right)\), respectively. On entry, the array a contains the local pieces of the factors \(L\) and \(U\) from the factorization sub \((A)=P^{\star} L \star U\); the unit diagonal elements of \(L\) are not stored. On entry, the array \(b\) contains the right hand sides \(\operatorname{sub}(B)\).
ia, ja
desca
ipiv
ib, jb
descb

\section*{Output Parameters}
```

b
info

```
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local) INTEGER array.
The dimension of ipiv is \(\left(\operatorname{LOCr}\left(m_{-} a\right)+m b _a\right)\). This array contains the pivoting information: local row i of the matrix was interchanged with the global row ipiv(i).
This array is tied to the distributed matrix \(A\).
(global) INTEGER. The row and column indices in the global array \(B\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(B)\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\).

On exit, overwritten by the solution distributed matrix \(x\).
INTEGER. If info \(=0\), the execution is successful. info \(<0\) :
If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?gbtrs \\ Solves a system of distributed linear equations with a general band matrix, using the LU factorization \\ computed by p?gbtrf.}

\section*{Syntax}
```

call psgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, af, laf,
work, lwork, info)
call pdgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, af, laf,
work, lwork, info)
call pcgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, af, laf,
work, lwork, info)
call pzgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, af, laf,
work, lwork, info)

```

\section*{Include files}
- C: mkl_scalapack.h

\section*{Description}

The p?gbtrs routine solves a system of distributed linear equations with a general band distributed matrix sub \((A)=A(1: n, j a: j a+n-1)\) using the \(L U\) factorization computed by p?gbtrf.

The system has one of the following forms specified by trans:
```

sub (A)*X = sub (B) (no transpose),
sub(A)}\mp@subsup{}{}{T*}X=\operatorname{sub}(B)\quad(transpose)
sub(A) }\mp@subsup{}{}{H*}X=\operatorname{sub}(B)\mathrm{ (conjugate transpose),
where sub(B) = B(ib:ib+n-1, 1:nrhs).
Before calling this routine, you must call p?gbtrf to compute the LU factorization of sub(A).
Input Parameters
trans

```
(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans \(=' \mathrm{~N}\) ', then \(\operatorname{sub}(A) * X=\operatorname{sub}(B)\) is solved for \(X\).
If trans \(=\) ' \(T\) ', then \(\operatorname{sub}(A)^{T} \star X=\operatorname{sub}(B)\) is solved for \(X\). If trans \(=' C\) ', then sub \((A)^{H} * X=\operatorname{sub}(B)\) is solved for \(X\).
n
bwI
bwu
nrhs
\(a, b\)
ja
desca
ib
descb
laf

(global) INTEGER. The number of linear equations; the order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\).
(global) INTEGER. The number of sub-diagonals within the band of \(A(0 \leq\) bwl \(\leq n-1\) ).
(global) INTEGER. The number of super-diagonals within the band of \(A(0\) \(\leq\) bwu \(\leq n-1\) ).
(global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix \(\operatorname{sub}(B)(n r h s \geq 0)\).
(global)
REAL for psgbtrs
DOUBLE PRECISION for pdgbtrs
COMPLEX for pcgbtrs
DOUBLE COMPLEX for pzgbtrs.
Pointers into the local memory to arrays of local dimension \(a\left(l l d _a, L O C_{C}(j a+n-1)\right)\) and \(b\left(l l d _b, L O C_{C}(n r h s)\right)\), respectively.
The array a contains details of the \(L U\) factorization of the distributed band matrix \(A\).
On entry, the array \(b\) contains the local pieces of the right hand sides B(ib:ib+n-1, 1:nrhs).
(global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on ( which may be either all of \(A\) or a submatrix of \(A\) ).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
If desca(dtype_) = 501, then dlen_ \(\geq 7\);
else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\).
(global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on ( which may be either all of \(A\) or a submatrix of \(A\) ).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
If desca(dtype_) = 502, then dlen_ \(\geq 7\);
else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\).
(local) INTEGER. The dimension of the array af.
Must be \(l a f \geq \mathrm{NB}^{*}(b w l+b w u)+6^{*}(b w l+b w u) *(b w l+2 * b w u)\).
\begin{tabular}{|c|c|}
\hline & If \(l_{a f}\) is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\). \\
\hline work & (local) Same type as a. Workspace array of dimension lwork. \\
\hline lwork & (local or global) INTEGER. The size of the work array, must be at least lwork \(\geq\) nrhs* (NB+2*bwl+4*bwu). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

ipiv
b
af
work (1)
info Integer. If info=0, the execution is successful.
info < 0:
If the i-th argument is an array and the jth entry had an illegal value, then
info = - (i*100+j); if the i-th argument is a scalar and had an illegal
value, then info = -i.

```

\section*{p?dbtrs}

Solves a system of linear equations with a diagonally dominant-like banded distributed matrix using the factorization computed by p?dbtrf.

\section*{Syntax}
```

call psdbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pddbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pcdbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pzdbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)

```

\section*{Include files}
- C: mkl_scalapack.h

\section*{Description}

The \(p\) ?dbtrs routine solves for \(x\) one of the systems of equations:
```

sub(A)*X = sub(B),
(sub (A)) T* X = sub (B), or
(sub (A)) }\mp@subsup{}{}{H}\mp@subsup{A}{X}{}=\operatorname{sub}(B)

```
where \(\operatorname{sub}(A)=A(1: n, j a: j a+n-1)\) is a diagonally dominant-like banded distributed matrix, and \(\operatorname{sub}(B)\) denotes the distributed matrix \(B(i b: i b+n-1,1: n r h s)\).

This routine uses the \(L U\) factorization computed by p?dbtrf.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{trans} & (global) CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & Indicates the form of the equations: \\
\hline & If trans \(=\) ' N ', then \(\operatorname{sub}(A) * X=\operatorname{sub}(B)\) is solved for \(X\). \\
\hline & If trans \(=\) ' \(\mathrm{T}^{\prime}\) ', then \((\operatorname{sub}(A))^{T *} X=\operatorname{sub}(B)\) is solved for \(X\). \\
\hline & If trans \(=\) ' \(C^{\prime}\), then \((\operatorname{sub}(A))^{H_{\star} X}=\operatorname{sub}(B)\) is solved for \(X\). \\
\hline \(n\) & (global) INTEGER. The order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{bwl} & (global) INTEGER. The number of subdiagonals within the band of \(A\) \\
\hline & ( \(0 \leq b w l \leq n-1)\). \\
\hline \multirow[t]{2}{*}{bwu} & (global) INTEGER. The number of superdiagonals within the band of \(A\) \\
\hline & ( \(0 \leq b w u \leq n-1)\). \\
\hline \multirow[t]{2}{*}{nrhs} & (global) INTEGER. The number of right hand sides; the number of columns \\
\hline & of the distributed submatrix \(\operatorname{sub}(B)(n r h s \geq 0)\). \\
\hline \multirow[t]{9}{*}{\(a, b\)} & (local) \\
\hline & REAL for psdbtrs \\
\hline & DOUBLE PRECISON for pddbtrs \\
\hline & COMPLEX for pcdbtrs \\
\hline & DOUBLE COMPLEX for pzdbtrs. \\
\hline & Pointers into the local memory to arrays of local dimension \\
\hline & \(a\left(l l d _a, L O C C(j a+n-1)\right)\) and \(b\) (lld_b, LOCC (nrhs)), respectively. \\
\hline & On entry, the array a contains details of the \(L U\) factorization of the band matrix \(A\), as computed by p?dbtrf. \\
\hline & On entry, the array \(b\) contains the local pieces of the right hand side distributed matrix \(\operatorname{sub}(B)\). \\
\hline \multirow[t]{2}{*}{ja} & (global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \\
\hline & \(A)\). \\
\hline \multirow[t]{3}{*}{desca} & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline & If desca(dtype_) = 501, then dlen_ \(\geq 7\); \\
\hline & else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\). \\
\hline \multirow[t]{2}{*}{ib} & (global) INTEGER. The row index in the global array \(B\) that points to the first \\
\hline & row of the matrix to be operated on (which may be either all of \(B\) or a submatrix of \(B\) ). \\
\hline \multirow[t]{3}{*}{descb} & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\). \\
\hline & If descb (dtype_) = 502, then dlen_ \(\geq\) 7; \\
\hline & else if descb (dtype_) \(=1\), then dlen_ \(\geq 9\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{7}{*}{af, work} & (local) \\
\hline & REAL for psdbtrs \\
\hline & DOUBLE PRECISION for pddbtrs \\
\hline & COMPLEX for pcdbtrs \\
\hline & DOUBLE COMPLEX for pzdbtrs. \\
\hline & Arrays of dimension (laf) and (lwork), respectively The array af contains auxiliary Fillin space. Fillin is created during the factorization routine p? dbtrf and this is stored in af. \\
\hline & The array work is a workspace array. \\
\hline \multirow[t]{3}{*}{\(\operatorname{laf}\)} & (local) INTEGER. The dimension of the array af. \\
\hline & Must be laf \(\geq \mathrm{NB*}(\mathrm{bwl}+\mathrm{bwu})+6 *(\max (\mathrm{bwl}, \mathrm{bwu}))^{2}\) \\
\hline & If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\). \\
\hline lwork & (local or global) INTEGER. The size of the array work, must be at least lwork \(\geq(\max (\mathrm{bwl}, \mathrm{bwu}))^{2}\). \\
\hline
\end{tabular}

\section*{Output Parameters}
b
work(1)
info
On exit, this array contains the local pieces of the solution distributed matrix \(x\).
On exit, work (1) contains the minimum value of lwork required for optimum performance.
INTEGER. If info \(=0\), the execution is successful. info \(<0\) :
if the \(i\) th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i \star 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?dttrs}

Solves a system of linear equations with a diagonally dominant-like tridiagonal distributed matrix using the factorization computed by p?dttrf.

\section*{Syntax}
```

call psdttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pddttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pcdttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pzdttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf, work,
lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?dttrs routine solves for \(x\) one of the systems of equations:
```

sub (A)*X = sub (B),
(\operatorname{sub}(A))}\mp@subsup{)}{}{T}*X=\operatorname{sub}(B),\mathrm{ or

```
\((\operatorname{sub}(A))^{H_{\star}} X=\operatorname{sub}(B)\),
where sub \((A)=(1: n, j a: j a+n-1)\); is a diagonally dominant-like tridiagonal distributed matrix, and sub ( \(B\) ) denotes the distributed matrix \(B(i b: i b+n-1,1: n r h s)\).

This routine uses the \(L U\) factorization computed by p?dttrf.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline trans & \begin{tabular}{l}
(global) CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
Indicates the form of the equations: \\
If trans \(=' N\) ', then \(\operatorname{sub}(A) * X=\operatorname{sub}(B)\) is solved for \(X\). \\
If trans \(=\) ' \(T\) ', then \((\operatorname{sub}(A))^{T *} X=\operatorname{sub}(B)\) is solved for \(X\). \\
If trans \(=' C '\), then \((\operatorname{sub}(A))^{H_{\star}} X=\operatorname{sub}(B)\) is solved for \(X\).
\end{tabular} \\
\hline \(n\) & (global) INTEGER. The order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\). \\
\hline nrhs & (global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix \(\operatorname{sub}(B)(n r h s \geq 0)\). \\
\hline \multirow[t]{7}{*}{\(d 1, d, d u\)} & (local) \\
\hline & REAL for psdttrs \\
\hline & DOUBLE PRECISON for pddttrs \\
\hline & COMPLEX for pcdttrs \\
\hline & DOUBLE COMPLEX for pzdttrs. \\
\hline & Pointers to the local arrays of dimension (desca (nb_)) each. \\
\hline & On entry, these arrays contain details of the factorization. Globally, \(d l(1)\) and \(d u(n)\) are not referenced; \(d l\) and \(d u\) must be aligned with \(d\). \\
\hline ja & (global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A). \\
\hline desca & \begin{tabular}{l}
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). If desca(dtype_) = 501 or 502, then dlen_ \(\geq 7\); \\
else if desca(dtype_) = 1 , then dlen_ \(\geq 9\).
\end{tabular} \\
\hline \multirow[t]{3}{*}{b} & (local) Same type as \(d\). \\
\hline & Pointer into the local memory to an array of local dimension b(lld_b,LOCC (nrhs)). \\
\hline & On entry, the array \(b\) contains the local pieces of the \(n\)-by-nrhs right hand side distributed matrix \(\operatorname{sub}(B)\). \\
\hline ib & (global) INTEGER. The row index in the global array \(B\) that points to the first row of the matrix to be operated on (which may be either all of \(B\) or a submatrix of \(B\) ). \\
\hline \multirow[t]{2}{*}{descb} & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\). \\
\hline & If descb(dtype_) = 502, then dlen_ \(\geq\) 7; else if descb(dtype_) \(=1\), then \(d l e n_{_} \geq 9\). \\
\hline \multirow[t]{5}{*}{af, work} & (local) REAL for psdttrs \\
\hline & DOUBLE PRECISION for pddttrs \\
\hline & COMPLEX for pcdttrs \\
\hline & DOUBLE COMPLEX for pzdttrs. \\
\hline & Arrays of dimension (laf) and (lwork), respectively. \\
\hline
\end{tabular}

The array af contains auxiliary Fillin space. Fillin is created during the factorization routine p?dttrf and this is stored in af. If a linear system is to be solved using p?dttrsafter the factorization routine, af must not be altered.
The array work is a workspace array.
laf
lwork

\section*{Output Parameters}
b
work(1)
info

On exit, this array contains the local pieces of the solution distributed matrix \(x\).
On exit, work (1) contains the minimum value of 1 work required for optimum performance.
INTEGER. If info \(=0\), the execution is successful. info \(<0\) :
if the \(i\) th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i-\) th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?potrs}

Solves a system of linear equations with a Choleskyfactored symmetric/Hermitian distributed positivedefinite matrix.

\section*{Syntax}
```

call pspotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pdpotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pcpotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pzpotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?potrs routine solves for \(x\) a system of distributed linear equations in the form:
```

sub(A)*X = su.b (B),

```
where sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\) is an \(n\)-by- \(n\) real symmetric or complex Hermitian positive definite distributed matrix, and \(\operatorname{sub}(B)\) denotes the distributed matrix \(B(i b: i b+n-1, j b: j b+n r h s-1)\).
This routine uses Cholesky factorization
\(\operatorname{sub}(A)=U^{H} * U\), or \(\operatorname{sub}(A)=L^{\star} L^{H}\)
computed by p?potrf.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & (global) CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', upper triangle of sub \((A)\) is stored; \\
\hline & If uplo = 'L', lower triangle of \(\operatorname{sub}(A)\) is stored. \\
\hline \(n\) & (global) INTEGER. The order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\). \\
\hline nrhs & (global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix \(\operatorname{sub}(B)(n r h s \geq 0)\). \\
\hline \multirow[t]{8}{*}{\(a, b\)} & (local) \\
\hline & REAL for pspotrs \\
\hline & DOUBLE PRECISION for pdpotrs \\
\hline & COMPLEX for pcpotrs \\
\hline & DOUBLE COMPLEX for pzpotrs. \\
\hline & Pointers into the local memory to arrays of local dimension \\
\hline & a(lld_a,LOCC(ja+n-1)) and b(lld_b,LOCC(jb+nrhs-1)), respectively. The array a contains the factors \(L\) or \(U\) from the Cholesky factorization \(\operatorname{sub}(A)=L^{*} L^{H} \operatorname{or} \operatorname{sub}(A)=U^{H} * U\), as computed by p?potrf. \\
\hline & On entry, the array \(b\) contains the local pieces of the right hand sides sub( \(B\) ). \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix sub( \(A\) ), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline ib, jb & (global) INTEGER. The row and column indices in the global array \(B\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(B)\), respectively. \\
\hline descb & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\). \\
\hline
\end{tabular}

\section*{Output Parameters}
b
info

Overwritten by the local pieces of the solution matrix \(x\).
INTEGER. If info=0, the execution is successful.
info < 0 : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?pbtrs}

Solves a system of linear equations with a Choleskyfactored symmetric/Hermitian positive-definite band matrix.

\section*{Syntax}
```

call pspbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
call pdpbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
call pcpbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork,
info)

```
```

call pzpbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork,
info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?pbtrs routine solves for \(x\) a system of distributed linear equations in the form:
```

sub (A)*X = sub(B),

```
where sub \((A)=A(1: n, j a: j a+n-1)\) is an \(n-b y-n\) real symmetric or complex Hermitian positive definite distributed band matrix, and \(\operatorname{sub}(B)\) denotes the distributed matrix \(B\) (ib:ib+n-1, \(1: n r h s\) ).

This routine uses Cholesky factorization

computed by p?pbtrf.

\section*{Input Parameters}
```

uplo
n
bw
nrhs
a,b
ja
desca

```
(global) CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', upper triangle of \(\operatorname{sub}(A)\) is stored; If uplo = 'L', lower triangle of \(\operatorname{sub}(A)\) is stored.
(global) INTEGER. The order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\). (global) INTEGER. The number of superdiagonals of the distributed matrix if uplo = 'U', or the number of subdiagonals if uplo = 'L' (bw \(\geq 0\) ).
(global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix \(\operatorname{sub}(B)(n r h s \geq 0)\).
(local)
REAL for pspbtrs
DOUBLE PRECISION for pdpbtrs
COMPLEX for pcpbtrs
DOUBLE COMPLEX for pzpbtrs.
Pointers into the local memory to arrays of local dimension \(a\left(I l d _a, \operatorname{LOCC}(j a+n-1)\right)\) and \(b\left(I l d _b, \operatorname{LOCC}(n r h s-1)\right)\), respectively. The array a contains the permuted triangular factor \(U\) or \(L\) from the Cholesky factorization sub \((A)=P^{\star} U^{H \star} U^{\star} P^{T}\), or \(\operatorname{sub}(A)=P^{*} L^{*} L^{H \star} P^{T}\) of the band matrix \(A\), as returned by p?pbtrf.
On entry, the array \(b\) contains the local pieces of the \(n\)-by-nrhs right hand side distributed matrix \(\operatorname{sub}(B)\).
(global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
If desca(dtype_) \(=501\), then dlen_ \(\geq 7\);
else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\).
(global) INTEGER. The row index in the global array \(B\) indicating the first row of the submatrix \(\operatorname{sub}(B)\).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\).
If descb(dtype_) = 502, then dlen_ \(\geq 7\);
ib
descb
else if descb(dtype_) \(=1\), then dlen_ \(\geq 9\).
```

```
af, work
```

```
```

```
af, work
```

```
laf
l work
(local) Arrays, same type as a.
The array af is of dimension (laf). It contains auxiliary Fillin space. Fillin is created during the factorization routine \(p\) ?dbtrf and this is stored in af.
The array work is a workspace array of dimension lwork.
(local) INTEGER. The dimension of the array af.
Must be laf \(\geq\) nrhs*bw.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\).
(local or global) INTEGER. The size of the array work, must be at least lwork \(\geq b w^{2}\).

\section*{Output Parameters}
b
work(1)
info

On exit, if info=0, this array contains the local pieces of the \(n\)-by-nrhs solution distributed matrix \(x\).

On exit, work (1) contains the minimum value of lwork required for optimum performance.
INTEGER. If info \(=0\), the execution is successful.
info < 0:
If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
p?pttrs
Solves a system of linear equations with a symmetric (Hermitian) positive-definite tridiagonal distributed matrix using the factorization computed by p?pttrf.

\section*{Syntax}
```

call pspttrs(n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork, info)
call pdpttrs(n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork, info)
call pcpttrs(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork, info)
call pzpttrs(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?pttrs routine solves for \(x\) a system of distributed linear equations in the form:
\(\operatorname{sub}(A) * X=\operatorname{sub}(B)\),
where sub \((A)=A(1: n, j a: j a+n-1)\) is an \(n-b y-n\) real symmetric or complex Hermitian positive definite tridiagonal distributed matrix, and \(\operatorname{sub}(B)\) denotes the distributed matrix \(B(i b: i b+n-1,1: n r h s)\).

This routine uses the factorization
\(\operatorname{sub}(A)=P^{\star} L^{\star} D^{\star} L^{H \star} P^{T}\), or \(\operatorname{sub}(A)=P^{\star} U^{H \star} D^{\star} U^{\star} P^{T}\)
computed by p?pttrf.

Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & (global, used in complex flavors only) \\
\hline & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', upper triangle of sub \((A)\) is stored; \\
\hline & If uplo = 'L', lower triangle of \(\operatorname{sub}(A)\) is stored. \\
\hline \(n\) & (global) INTEGER. The order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\). \\
\hline nrhs & (global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix \(\operatorname{sub}(B)(n r h s \geq 0)\). \\
\hline \multirow[t]{7}{*}{\(d, e\)} & (local) \\
\hline & REAL for pspttrs \\
\hline & DOUBLE PRECISON for pdpttrs \\
\hline & COMPLEX for pcpttrs \\
\hline & DOUBLE COMPLEX for pzpttrs. \\
\hline & Pointers into the local memory to arrays of dimension (desca (nb_)) each. \\
\hline & These arrays contain details of the factorization as returned by p?pttrf \\
\hline ja & (global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A). \\
\hline \multirow[t]{2}{*}{desca} & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline & If desca(dtype_) \(=501\) or 502 , then dlen_ \(\geq 7\); else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\). \\
\hline \multirow[t]{3}{*}{b} & (local) Same type as \(d, e\). \\
\hline & Pointer into the local memory to an array of local dimension \\
\hline & On entry, the array b contains the local pieces of the \(n\)-by-nrhs right hand side distributed matrix \(\operatorname{sub}(B)\). \\
\hline ib & (global) INTEGER. The row index in the global array \(B\) that points to the first row of the matrix to be operated on (which may be either all of \(B\) or a submatrix of \(B\) ). \\
\hline \multirow[t]{2}{*}{descb} & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\). \\
\hline & If descb(dtype_) = 502, then dlen_ \(\geq 7\); else if descb(dtype_) \(=1\), then dlen_ \(\geq 9\). \\
\hline \multirow[t]{6}{*}{af, work} & (local) REAL for pspttrs \\
\hline & DOUBLE PRECISION for pdpttrs \\
\hline & COMPLEX for pcpttrs \\
\hline & DOUBLE COMPLEX for pzpttrs. \\
\hline & Arrays of dimension (laf) and (lwork), respectively The array af contains auxiliary Fillin space. Fillin is created during the factorization routine \(p\) ? pttrf and this is stored in af. \\
\hline & The array work is a workspace array. \\
\hline \multirow[t]{3}{*}{laf} & (local) INTEGER. The dimension of the array af. \\
\hline & Must be laf \(\geq \mathrm{NB}+2\). \\
\hline & If laf is not large enough, an error code is returned and the minimum acceptable size will be returned in \(a f(1)\). \\
\hline lwork & (local or global) INTEGER. The size of the array work, must be at least 1 work \(\geq(10+2 * \min (100, n r h s))^{*} \mathrm{NPCOL}+4^{*}\) nrhs. \\
\hline
\end{tabular}
(global, used in complex flavors only)
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', upper triangle of \(\operatorname{sub}(A)\) is stored;
If uplo = 'L', lower triangle of \(\operatorname{sub}(A)\) is stored.
(global) INTEGER. The order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\).
(global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix \(\operatorname{sub}(B)(n r h s \geq 0)\).
(local)
REAL for pspttrs
DOUBLE PRECISON for pdpttrs
COMPLEX for pcpttrs
DOUBLE COMPLEX for pzpttrs.
Pointers into the local memory to arrays of dimension (desca(nb_)) each. These arrays contain details of the factorization as returned by p?pttrf
(global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
If desca(dtype_) = 501 or 502, then dlen_ \(\geq 7\);
else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\).
(local) Same type as \(d\), e.
Pointer into the local memory to an array of local dimension
b(lld_b, LOCc(nrhs)).
On entry, the array b contains the local pieces of the \(n\)-by-nrhs right hand side distributed matrix \(\operatorname{sub}(B)\).
(global) INTEGER. The row index in the global array \(B\) that points to the first row of the matrix to be operated on (which may be either all of \(B\) or a submatrix of \(B\) ).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(в\).
If descb(dtype_) = 502, then dlen_ \(\geq 7\);
else if descb(dtype_) \(=1\), then dlen_ \(\geq 9\).
(local) REAL for pspttrs
DOUBLE PRECISION for pdpttrs
COMPLEX for pcpttrs
DOUBLE COMPLEX for pzpttrs.
Arrays of dimension (laf) and (lwork), respectively The array af contains auxiliary Fillin space. Fillin is created during the factorization routine \(p\) ?
pttrf and this is stored in af.
The array work is a workspace array.
(local) INTEGER. The dimension of the array af.
Must be laf \(\geq\) NB+2.
If laf is not large enough, an error code is returned and the minimum acceptable size will be returned in \(a f(1)\).
lwork \(\geq(10+2 * \min (100, n r h s)){ }^{*}\) NPCOL \(+4{ }^{*}\) nrhs.

\section*{Output Parameters}
b
work(1)
info

On exit, this array contains the local pieces of the solution distributed matrix \(x\).

On exit, work (1) contains the minimum value of lwork required for optimum performance.

INTEGER. If info=0, the execution is successful.
info < 0 :
if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\);
if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?trtrs}

Solves a system of linear equations with a triangular distributed matrix.

\section*{Syntax}
```

call pstrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pdtrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pctrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pztrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
Include Files

```
- C: mkl_scalapack.h

\section*{Description}

The p?trtrs routine solves for \(x\) one of the following systems of linear equations:
```

sub(A)*X = sub(B),
(sub (A))}\mp@subsup{}{}{T\star}X=\operatorname{sub}(B),\mathrm{ or
(sub (A))}\mp@subsup{)}{}{H\star}X=\operatorname{sub}(B)

```
where sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\) is a triangular distributed matrix of order \(n\), and \(\operatorname{sub}(B)\) denotes the distributed matrix \(B\) (ib:ib+n-1, jb:jb+nrhs-1).

A check is made to verify that \(\operatorname{sub}(A)\) is nonsingular.
Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & (global) CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether \(\operatorname{sub}(A)\) is upper or lower triangular: \\
\hline & If uplo = 'U', then \(\operatorname{sub}(A)\) is upper triangular. \\
\hline & If uplo = 'L', then \(\operatorname{sub}(A)\) is lower triangular. \\
\hline \multirow[t]{5}{*}{trans} & (global) CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & Indicates the form of the equations: \\
\hline & If trans \(=\) ' N ', then \(\operatorname{sub}(A) * X=\operatorname{sub}(B)\) is solved for \(x\). \\
\hline & If trans \(=\) 'T', then sub ( \(A)^{T *} X=\operatorname{sub}(B)\) is solved for \(X\). \\
\hline & If trans \(=\) ' C', then sub ( \(A)^{H_{\star}} X=\operatorname{sub}(B)\) is solved for \(x\). \\
\hline \multirow[t]{3}{*}{diag} & (global) CHARACTER*1. Must be 'N' or 'U'. \\
\hline & If diag \(=\) ' N ', then \(\operatorname{sub}(A)\) is not a unit triangular matrix. \\
\hline & If diag = 'U', then \(\operatorname{sub}(A)\) is unit triangular. \\
\hline
\end{tabular}
```

n
nrhs

```
\(a, b\)
ia, ja
desca
ib, jb
descb

\section*{Output Parameters}
```

b

```
info
(global) INTEGER. The order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\). (global) INTEGER. The number of right-hand sides; i.e., the number of columns of the distributed matrix \(\operatorname{sub}(B)(n r h s \geq 0)\).
(local)
REAL for pstrtrs
DOUBLE PRECISION for pdtrtrs
COMPLEX for pctrtrs
DOUBLE COMPLEX for pztrtrs.
Pointers into the local memory to arrays of local dimension
\(a\left(l l d _a, \operatorname{LOCC}(j a+n-1)\right)\) and \(b\left(1 l d _b, \operatorname{LOCC}(j b+n r h s-1)\right)\), respectively. The array a contains the local pieces of the distributed triangular matrix sub (A).
If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular matrix, and the strictly lower triangular part of sub(A) is not referenced.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular matrix, and the strictly upper triangular part of sub(A) is not referenced.
If diag = 'U', the diagonal elements of \(\operatorname{sub}(A)\) are also not referenced and are assumed to be 1 .
On entry, the array \(b\) contains the local pieces of the right hand side distributed matrix \(\operatorname{sub}(B)\).
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(global) INTEGER. The row and column indices in the global array \(B\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(B)\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\).

On exit, if \(\inf O=0, \operatorname{sub}(B)\) is overwritten by the solution matrix \(x\).
INTEGER. If info=0, the execution is successful.
info < 0 :
if the \(i\) th argument is an array and the \(j\) th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\);
info > 0 :
if info \(=i\), the \(i\)-th diagonal element of \(\operatorname{sub}(A)\) is zero, indicating that the submatrix is singular and the solutions \(x\) have not been computed.

\section*{Routines for Estimating the Condition Number}

This section describes the ScaLAPACK routines for estimating the condition number of a matrix. The condition number is used for analyzing the errors in the solution of a system of linear equations. Since the condition number may be arbitrarily large when the matrix is nearly singular, the routines actually compute the reciprocal condition number.

\section*{p?gecon}

Estimates the reciprocal of the condition number of a general distributed matrix in either the 1 -norm or the infinity-norm.

\section*{Syntax}
```

call psgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork, iwork, liwork,
info)
call pdgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork, iwork, liwork,
info)
call pcgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork, rwork, lrwork,
info)
call pzgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork, rwork, lrwork,
info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?gecon routine estimates the reciprocal of the condition number of a general distributed real/complex matrix sub \((A)=A(i a: i a+n-1\), ja:ja \(+n-1\) ) in either the 1-norm or infinity-norm, using the \(L U\) factorization computed by p?getrf.

An estimate is obtained for \(\|(\operatorname{sub}(A))^{-1}| |\), and the reciprocal of the condition number is computed as
\[
\operatorname{rcond}=\frac{1}{\|\operatorname{sub}(A)\| \times\left\|(\operatorname{sub}(A))^{-1}\right\|}
\]

\section*{Input Parameters}
```

norm
n
a
(global) CHARACTER*1. Must be '1' or 'O' or 'I'.
Specifies whether the 1-norm condition number or the infinity-norm
condition number is required.
If norm = '1' or 'O', then the 1-norm is used;
If norm = 'I', then the infinity-norm is used.
(global) INTEGER. The order of the distributed submatrix sub(A) (}n\geq0)\mathrm{ .
(local)
REAL for psgecon
DOUBLE PRECISION for pdgecon
COMPLEX for pcgecon
DOUBLE COMPLEX for pzgecon.
Pointer into the local memory to an array of dimension a(lld_a,LOCC(ja
+n-1)).
The array a contains the local pieces of the factors L and U from the
factorization sub(A) = P* **U; the unit diagonal elements of L are not
stored.

```
\begin{tabular}{|c|c|}
\hline ia, ja & (global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix sub( \(A\) ), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline anorm & \begin{tabular}{l}
(global) REAL for single precision flavors, DOUBLE PRECISION for double precision flavors. \\
If norm \(=\) ' 1 ' or ' \(O\) ', the 1 -norm of the original distributed matrix sub( \(A\) ); \\
If norm = 'I', the infinity-norm of the original distributed matrix \(\operatorname{sub}(A)\).
\end{tabular} \\
\hline \multirow[t]{6}{*}{work} & (local) \\
\hline & REAL for psgecon \\
\hline & DOUBLE PRECISION for pdgecon \\
\hline & COMPLEX for pcgecon \\
\hline & DOUBLE COMPLEX for pzgecon. \\
\hline & The array work of dimension (lwork) is a workspace array. \\
\hline \multirow[t]{8}{*}{lwork} & (local or global) INTEGER. The dimension of the array work. \\
\hline & For real flavors: \\
\hline & lwork must be at least \\
\hline & ```
lwork \geq 2*LOCr(n+mod(ia-1,mb_a))+ 2*LOCC(n+mod(ja-1,nb_a))+
max(2, max(nb_a*max(1, iceil(NPROW-1, NPCOL)), LOCC(n
+mod(ja-1,nb_a)) + nb_a\starmax(1, iceil(NPCOL-1, NPROW)))).
``` \\
\hline & \begin{tabular}{l}
For complex flavors: \\
lwork must be at least
\end{tabular} \\
\hline & ```
lwork \geq 2*LOCr(n+mod(ia-1,mb_a))+max(2,
max(nb_a*iceil(NPROW-1, NPCOL), LOCC(n+mod(ja-1,nb_a))+
``` \\
\hline & nb_a*iceil (NPCOL-1, NPROW))). \\
\hline & LOCr and LOCC values can be computed using the ScaLAPACK tool function numroc; NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. \\
\hline iwork & (local) INTEGER. Workspace array, DIMENSION (liwork). Used in real flavors only. \\
\hline \multirow[t]{2}{*}{Iiwork} & (local or global) INTEGER. The dimension of the array iwork; used in real flavors only. Must be at least \\
\hline & liwork \(\geq\) LOCr \((n+\bmod (i a-1, m b / a)\) ). \\
\hline \multirow[t]{3}{*}{rwork} & (local) REAL for pcgecon \\
\hline & DOUBLE PRECISION for pzgecon \\
\hline & Workspace array, DIMENSION (lrwork). Used in complex flavors only. \\
\hline \multirow[t]{2}{*}{lrwork} & (local or global) INTEGER. The dimension of the array rwork; used in complex flavors only. Must be at least \\
\hline & lrwork \(\geq \max \left(1,2 * \operatorname{LOCC}\left(n+\bmod \left(j a-1, n b _a\right)\right)\right.\) ). \\
\hline
\end{tabular}

\section*{Output Parameters}
(global) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The reciprocal of the condition number of the distributed matrix \(\operatorname{sub}(A)\). See Description.
On exit, work (1) contains the minimum value of lwork required for optimum performance.
On exit, iwork (1) contains the minimum value of liwork required for optimum performance (for real flavors).
```

rwork(1) On exit, rwork(1) contains the minimum value of lrwork required for
optimum performance (for complex flavors).
info
(global) INTEGER. If info=0, the execution is successful.
info < 0:
If the i-th argument is an array and the j-th entry had an illegal value,
then info = - (i*100+j); if the i-th argument is a scalar and had an
illegal value, then info = -i.

```

\section*{p?pocon}

Estimates the reciprocal of the condition number (in
the 1 - norm) of a symmetric / Hermitian positivedefinite distributed matrix.

\section*{Syntax}
```

call pspocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork, iwork, liwork,
info)
call pdpocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork, iwork, liwork,
info)
call pcpocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork, rwork, lrwork,
info)
call pzpocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork, rwork, lrwork,
info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?pocon routine estimates the reciprocal of the condition number (in the 1 - norm) of a real symmetric or complex Hermitian positive definite distributed matrix sub (A) \(=A(\) ia:ia+n-1, ja:ja+n-1), using the Cholesky factorization sub \((A)=U^{H} * U\) or sub \((A)=L^{\star} L^{H}\) computed by p?potrf.
An estimate is obtained for \(\left|\left|(\operatorname{sub}(A))^{-1}\right|\right|\), and the reciprocal of the condition number is computed as
\[
\operatorname{rcond}=\frac{1}{\|\operatorname{sub}(A)\| \times\left\|(\operatorname{sub}(A))^{-1}\right\|}
\]

\section*{Input Parameters}
```

uplo
n
a
(global) CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the factor stored in $\operatorname{sub}(A)$ is upper or lower triangular. If uplo = 'U', $\operatorname{sub}(A)$ stores the upper triangular factor U of the Cholesky factorization $\operatorname{sub}(A)=U^{H} * U$.
If uplo = 'L', $\operatorname{sub}(A)$ stores the lower triangular factor L of the Cholesky factorization $\operatorname{sub}(A)=L^{\star} L^{H}$.
n
a
(global) INTEGER. The order of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$. (local)
REAL for pspocon

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{} & DOUBLE PRECISION for pdpocon \\
\hline & COMPLEX for pcpocon \\
\hline & DOUBLE COMPLEX for pzpocon. \\
\hline & Pointer into the local memory to an array of dimension a(lld_a, LOCC (ja \(+n-1)\) ). \\
\hline & The array a contains the local pieces of the factors \(L\) or \(U\) from the Cholesky factorization \(\operatorname{sub}(A)=U^{H} \star U\), or \(\operatorname{sub}(A)=L^{\star} L^{H}\), as computed by \(p\) ? potrf. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline anorm & (global) REAL for single precision flavors, \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & The 1-norm of the symmetric/Hermitian distributed matrix sub(A). \\
\hline \multirow[t]{6}{*}{work} & (local) \\
\hline & REAL for pspocon \\
\hline & DOUBLE PRECISION for pdpocon \\
\hline & COMPLEX for pcpocon \\
\hline & DOUBLE COMPLEX for pzpocon. \\
\hline & The array work of dimension (lwork) is a workspace array. \\
\hline \multirow[t]{9}{*}{lwork} & (local or global) INTEGER. The dimension of the array work. \\
\hline & For real flavors: \\
\hline & lwork must be at least \\
\hline & ```
lwork \geq 2*LOCr(n+mod(ia-1,mb_a))+ 2*LOCC(n+mod(ja-1,nb_a))+
max(2, max(nb_a*iceil(NPROW-1, NPCOL), LOCC(n+mod(ja-1,nb_a))
``` \\
\hline & + nb_a*iceil (NPCOL-1, NPROW))). \\
\hline & For complex flavors: \\
\hline & lwork must be at least \\
\hline & 1 work \(\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b \_a\right)\right)+\max (2\), \\
\hline & ```
max(nb_a*max(1,iceil(NPROW-1, NPCOL)), LOCC(n+mod(ja-1,nb_a))
+ nb a*max(1,iceil(NPCOL-1, NPROW)))).
``` \\
\hline iwork & (local) InTEGER. Workspace array, DIMENSION (liwork). Used in real flavors only. \\
\hline liwork & (local or global) INTEGER. The dimension of the array iwork; used in real flavors only. Must be at least liwork \(\geq \operatorname{LOCr}(n+\bmod (i a-1, m b a)\) ). \\
\hline \multirow[t]{3}{*}{rwork} & (local) REAL for pcpocon \\
\hline & DOUBLE PRECISION for pzpocon \\
\hline & Workspace array, DIMENSION (lrwork). Used in complex flavors only. \\
\hline lrwork & (local or global) INTEGER. The dimension of the array rwork; used in complex flavors only. Must be at least lrwork \(\geq 2\) * LOCC ( \(n\) \(\left.+\bmod \left(j a-1, n b _a\right)\right)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
rcond
work(1)
(global) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The reciprocal of the condition number of the distributed matrix \(\operatorname{sub}(A)\).
On exit, work (1) contains the minimum value of 1 work required for optimum performance.
```

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for
optimum performance (for real flavors).
rwork(1)
info (global) INTEGER. If info=0, the execution is successful.
info < 0:
If the ith argument is an array and the jth entry had an illegal value, then
info = - (i*100+j); if the ith argument is a scalar and had an illegal
value, then info = -i.

```
p?trcon
Estimates the reciprocal of the condition number of a triangular distributed matrix in either 1-norm or infinity-norm.

\section*{Syntax}
```

call pstrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork, iwork, liwork,
info)
call pdtrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork, iwork, liwork,
info)
call pctrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork, rwork, lrwork,
info)
call pztrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork, rwork, lrwork,
info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?trcon routine estimates the reciprocal of the condition number of a triangular distributed matrix \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\), in either the 1 -norm or the infinity-norm.

The norm of \(\operatorname{sub}(A)\) is computed and an estimate is obtained for \(\left\|(\operatorname{sub}(A))^{-1}\right\|\), then the reciprocal of the condition number is computed as
\[
r \text { cond }=\frac{1}{\| \beta u b(A)|\times| | \beta u b(A))^{-1} \mid}
\]

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{norm} & (global) CHARACTER*1. Must be '1' or 'O' or 'I'. \\
\hline & Specifies whether the 1-norm condition number or the infinity-norm condition number is required. \\
\hline & If norm = '1' or ' 0 ', then the 1-norm is used; \\
\hline & If norm = 'I', then the infinity-norm is used. \\
\hline \multirow[t]{2}{*}{uplo} & (global) CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', sub \((A)\) is upper triangular. If uplo = 'L', sub \((A)\) is lower triangular. \\
\hline diag & (global) CHARACTER*1. Must be 'N' or 'U'. \\
\hline
\end{tabular}

If diag \(=\) 'N', sub \((A)\) is non-unit triangular. If diag \(=\) ' \(U\) ', sub \((A)\) is unit triangular.
(global) INTEGER. The order of the distributed submatrix sub (A), ( \(n \geq 0\) ).
(local)
REAL for pstrcon
DOUBLE PRECISION for pdtrcon
COMPLEX for pctrcon
DOUBLE COMPLEX for pztrcon.
Pointer into the local memory to an array of dimension
a(lld_a,LOCC(ja+n-1)).
The array a contains the local pieces of the triangular distributed matrix sub(A).
If uplo = 'U', the leading \(n-b y-n\) upper triangular part of this distributed matrix contains the upper triangular matrix, and its strictly lower triangular part is not referenced.
If uplo = 'L', the leading \(n-b y-n\) lower triangular part of this distributed matrix contains the lower triangular matrix, and its strictly upper triangular part is not referenced.
If diag = 'U', the diagonal elements of \(\operatorname{sub}(A)\) are also not referenced and are assumed to be 1 .
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for pstrcon
DOUBLE PRECISION for pdtrcon
COMPLEX for pctrcon
DOUBLE COMPLEX for pztrcon.
The array work of dimension (lwork) is a workspace array.
(local or global) INTEGER. The dimension of the array work.
For real flavors:
lwork must be at least
lwork \(\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, \operatorname{mb} _a\right)\right)+\operatorname{LOCC}\left(n+\bmod \left(j a-1, n b _a\right)\right)+\) \(\max \left(2, \max \left(n b _a \star \max (1, i c e i l(N P R O W-1, N P C O L))\right.\right.\), LOCC(n+mod (ja-1,nb_a))+nb_a*max(1,iceil(NPCOL-1, NPROW)))).
For complex flavors:
lwork must be at least
lwork \(\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)+\max (2\), max(nb_a*iceil(NPROW-1, NPCOL),
\(\left.\left.\operatorname{LOCC}\left(n+\bmod \left(j a-1, n b _a\right)\right)+n b _a * i c e i l(N P C O L-1, ~ N P R O W)\right)\right)\).
(local) INTEGER. Workspace array, DIMENSION (liwork). Used in real flavors only.
(local or global) INTEGER. The dimension of the array iwork; used in real flavors only. Must be at least
liwork \(\geq\) LOCr (n+mod(ia-1,mb_a)).
(local) REAL for pcpocon
DOUBLE PRECISION for pzpocon
Workspace array, DIMENSION (lrwork). Used in complex flavors only.
(local or global) INTEGER. The dimension of the array rwork; used in complex flavors only. Must be at least
lrwork \(\geq\) LOCC(n+mod(ja-1,nb_a)).

\section*{Output Parameters}
rcond
work(1)
iwork(1)
rwork(1)
info
(global) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The reciprocal of the condition number of the distributed matrix sub(A).
On exit, work (1) contains the minimum value of lwork required for optimum performance.
On exit, iwork(1) contains the minimum value of liwork required for optimum performance (for real flavors).
On exit, rwork (1) contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) INTEGER. If info=0, the execution is successful.
info < 0:
If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i-\) th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Refining the Solution and Estimating Its Error}

This section describes the ScaLAPACK routines for refining the computed solution of a system of linear equations and estimating the solution error. You can call these routines after factorizing the matrix of the system of equations and computing the solution (see Routines for Matrix Factorization and Solving Systems of Linear Equations).
p?gerfs
Improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution.

\section*{Syntax}
```

call psgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)
call pdgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)
call pcgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)
call pzgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)

```

Include Files
- C: mkl_scalapack.h

Description
The p?gerfs routine improves the computed solution to one of the systems of linear equations
```

sub(A)*sub(X) = sub(B),
sub (A) }\mp@subsup{}{}{T}*\mathrm{ sub (X) = sub (B), or

```
sub \((A)^{H *}\) sub \((X)=\) sub \((B)\) and provides error bounds and backward error estimates for the solution.
Here sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\), sub \((B)=B(i b: i b+n-1, j b: j b+n r h s-1)\), and \(s u b(X)=\) X(ix:ix+n-1, jx:jx+nrhs-1).

\section*{Input Parameters}

\begin{tabular}{|c|c|}
\hline descx & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(x\). \\
\hline ipiv & \begin{tabular}{l}
(local) Integer. \\
Array, dimension LOCr (m_af + mb_af. \\
This array contains pivoting information as computed by p?getrf. If ipiv(i)=j, then the local row i was swapped with the global row \(j\). This array is tied to the distributed matrix \(A\).
\end{tabular} \\
\hline work & \begin{tabular}{l}
(local) \\
REAL for psgerfs \\
DOUBLE PRECISION for pdgerfs \\
COMPLEX for pcgerfs \\
DOUBLE COMPLEX for pzgerfs. \\
The array work of dimension (lwork) is a workspace array.
\end{tabular} \\
\hline Iwork & \begin{tabular}{l}
(local or global) INTEGER. The dimension of the array work. \\
For real flavors: \\
lwork must be at least \\
lwork \(\geq 3 *\) LOCr (n+mod(ia-1,mb_a)) \\
For complex flavors: \\
lwork must be at least \\
lwork \(\geq 2 *\) LOCr ( \(n+\bmod \left(i a-1, m b _a\right)\) )
\end{tabular} \\
\hline iwork & (local) InTEGER. Workspace array, DIMENSION (liwork). Used in real flavors only. \\
\hline liwork & (local or global) INTEGER. The dimension of the array iwork; used in real flavors only. Must be at least
\[
\text { liwork } \geq \operatorname{LOCr}\left(n+\bmod \left(i b-1, m b _b\right)\right) \text {. }
\] \\
\hline rwork & \begin{tabular}{l}
(local) REAL for pcgerfs \\
DOUBLE PRECISION for pzgerfs \\
Workspace array, DIMENSION (lrwork). Used in complex flavors only.
\end{tabular} \\
\hline lrwork & (local or global) INTEGER. The dimension of the array rwork; used in complex flavors only. Must be at least lrwork \(\geq \operatorname{LOCr}(n\) \(+\bmod (i b-1, m b\) b) )). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(x\)
ferr, berr

On exit, contains the improved solution vectors.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCC (jb+nrhs-1) each.
The array ferr contains the estimated forward error bound for each solution vector of \(\operatorname{sub}(X)\).
If XTRUE is the true solution corresponding to \(\operatorname{sub}(X)\), ferr is an estimated upper bound for the magnitude of the largest element in (sub (X) -
XTRUE) divided by the magnitude of the largest element in \(\operatorname{sub}(X)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
This array is tied to the distributed matrix \(x\).
The array berr contains the component-wise relative backward error of each solution vector (that is, the smallest relative change in any entry of \(\operatorname{sub}(A)\) or \(\operatorname{sub}(B)\) that makes \(\operatorname{sub}(X)\) an exact solution). This array is tied to the distributed matrix \(x\).
```

work(1)
iwork(1)
rwork(1)
info
On exit, work (1) contains the minimum value of lwork required for optimum performance.
On exit, iwork(1) contains the minimum value of liwork required for optimum performance (for real flavors).
rwork(1)
info
On exit, rwork (1) contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) INTEGER. If info=0, the execution is successful. info < 0:
If the i th argument is an array and the j th entry had an illegal value, then info $=-(i \star 100+j)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

```

\section*{p?porfs}

Improves the computed solution to a system of linear equations with symmetric/Hermitian positive definite distributed matrix and provides error bounds and backward error estimates for the solution.

\section*{Syntax}
```

call psporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b, ib, jb, descb,
x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, infol
call pdporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b, ib, jb, descb,
x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)
call pcporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b, ib, jb, descb,
x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, infol
call pzporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b, ib, jb, descb,
x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, infol

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?porfs routine improves the computed solution to the system of linear equations
```

sub (A)*sub (X) = sub (B),

```
where sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\) is a real symmetric or complex Hermitian positive definite distributed matrix and
```

sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1),
sub(X) = X(ix:ix+n-1, jx:jx+nrhs-1)

```
are right-hand side and solution submatrices, respectively. This routine also provides error bounds and backward error estimates for the solution.

\section*{Input Parameters}
(global) CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix \(\operatorname{sub}(A)\) is stored.
If uplo = 'U', \(\operatorname{sub}(A)\) is upper triangular. If uplo = 'L', \(\operatorname{sub}(A)\) is lower triangular.
\begin{tabular}{|c|c|}
\hline \(n\) & (global) INTEGER. The order of the distributed matrix \(\operatorname{sub}(A)(n \geq 0)\). \\
\hline nrhs & (global) INTEGER. The number of right-hand sides, i.e., the number of columns of the matrices \(\operatorname{sub}(B)\) and \(\operatorname{sub}(x)(n r h s \geq 0)\). \\
\hline \multirow[t]{13}{*}{\(a, a f, b, x\)} & (local) \\
\hline & REAL for psporfs \\
\hline & DOUBLE PRECISION for pdporfs \\
\hline & COMPLEX for pcporfs \\
\hline & DOUBLE COMPLEX for pzporfs. \\
\hline & Pointers into the local memory to arrays of local dimension \(a\left(l l d _a, \operatorname{LOCC}(j a+n-1)\right), a f\left(1 l d _a f, \operatorname{LOCC}(j a+n-1)\right)\), \\
\hline & b(lld_b,LOCC(jb+nrhs-1)), and \(x\left(11 d _x, \operatorname{LOCC}(j x+n r h s-1)\right)\), respectively. \\
\hline & The array a contains the local pieces of the \(n\)-by- \(n\) symmetric/Hermitian distributed matrix \(\operatorname{sub}(A)\). \\
\hline & If uplo = 'U', the leading \(n\)-by-n upper triangular part of sub(A) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. \\
\hline & If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the distributed matrix, and its strictly upper triangular part is not referenced. \\
\hline & The array af contains the factors \(L\) or \(U\) from the Cholesky factorization sub \((A)=L^{\star} L^{H}\) or sub \((A)=U^{H} * U\), as computed by p?potrf. \\
\hline & On entry, the array \(b\) contains the local pieces of the distributed matrix of right hand sides \(\operatorname{sub}(B)\). \\
\hline & On entry, the array \(x\) contains the local pieces of the solution vectors \(\operatorname{sub}(x)\). \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline iaf, jaf & (global) INTEGER. The row and column indices in the global array \(A F\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A F)\), respectively. \\
\hline descaf & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A F\). \\
\hline ib, jb & (global) INTEGER. The row and column indices in the global array \(B\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(B)\), respectively. \\
\hline descb & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\). \\
\hline ix, jx & (global) INTEGER. The row and column indices in the global array \(x\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(x)\), respectively. \\
\hline descx & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(x\). \\
\hline \multirow[t]{4}{*}{work} & (local) \\
\hline & REAL for psporfs \\
\hline & DOUBLE PRECISION for pdporfs \\
\hline & COMPLEX for pcporfs \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow{9}{*}{lwork} & DOUBLE COMPLEX for pzporfs. \\
\hline & The array work of dimension (lwork) is a workspace array. \\
\hline & (local) Integer. The dimension of the array work. \\
\hline & For real flavors: \\
\hline & l work must be at least \\
\hline & lwork \(\geq 3 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)\) \\
\hline & For complex flavors: \\
\hline & lwork must be at least \\
\hline & lwork \(\geq 2 * \operatorname{LOCr}(n+\bmod (i a-1, m b a)\) ) \\
\hline iwork & (local) INTEGER. Workspace array, DIMENSION (liwork). Used in real flavors only. \\
\hline Iiwork & (local or global) INTEGER. The dimension of the array iwork; used in real flavors only. Must be at least \\
\hline & liwork \(\geq\) LOCr \(\left(n+\bmod \left(i b-1, m b _b\right)\right)\). \\
\hline \multirow[t]{3}{*}{rwork} & (local) REAL for pcporfs \\
\hline & DOUBLE PRECISION for pzporfs \\
\hline & Workspace array, DIMENSION (lrwork). Used in complex flavors only. \\
\hline Irwork & (local or global) INTEGER. The dimension of the array rwork; used in complex flavors only. Must be at least lrwork \(\geq \operatorname{LOCr}(n\) \(+\bmod (i b-1, m b\) b) )). \\
\hline
\end{tabular}

\section*{Output Parameters}

X
ferr, berr
work(1)
iwork(1)
rwork(1)
info
On exit, contains the improved solution vectors.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCC ( \(j b+n r h s-1\) ) each.
The array ferr contains the estimated forward error bound for each solution vector of \(\operatorname{sub}(X)\).
If XTRUE is the true solution corresponding to \(\operatorname{sub}(X)\), ferr is an estimated upper bound for the magnitude of the largest element in (sub (X) -
XTRUE) divided by the magnitude of the largest element in sub ( \(X\) ). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
This array is tied to the distributed matrix \(x\).
The array berr contains the component-wise relative backward error of each solution vector (that is, the smallest relative change in any entry of \(\operatorname{sub}(A)\) or \(\operatorname{sub}(B)\) that makes \(\operatorname{sub}(X)\) an exact solution). This array is tied to the distributed matrix \(x\).
On exit, work (1) contains the minimum value of lwork required for optimum performance.
On exit, iwork (1) contains the minimum value of liwork required for optimum performance (for real flavors).
On exit, rwork (1) contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) INTEGER. If info=0, the execution is successful.
info < 0 :
If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?trifs}

Provides error bounds and backward error estimates for the solution to a system of linear equations with a distributed triangular coefficient matrix.

\section*{Syntax}
```

call pstrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, x, ix,
jx, descx, ferr, berr, work, lwork, iwork, liwork, info)
call pdtrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, x, ix,
jx, descx, ferr, berr, work, lwork, iwork, liwork, info)
call pctrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, x, ix,
jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)
call pztrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, x, ix,
jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?trrfs routine provides error bounds and backward error estimates for the solution to one of the systems of linear equations
```

sub(A) *sub (X) = sub(B),
sub (A) T* sub (X) = sub (B), or
sub (A) }\mp@subsup{}{}{H*}\operatorname{sub}(X)=\operatorname{sub}(B)
where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is a triangular matrix,
sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1), and
sub(X) = X(ix:ix+n-1, jx:jx+nrhs-1).

```

The solution matrix \(x\) must be computed by p?trtrs or some other means before entering this routine. The routine p?trrfs does not do iterative refinement because doing so cannot improve the backward error.

\section*{Input Parameters}
```

uplo (global) CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', sub(A) is upper triangular. If uplo = 'L', sub(A) is lower
triangular.
(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.
Specifies the form of the system of equations:
If trans = 'N', the system has the form sub (A)*sub (X) = sub (B) (No
transpose);
If trans = 'T', the system has the form sub (A) T* sub (X) = sub (B)
(Transpose);
If trans = 'C', the system has the form sub (A) }\mp@subsup{}{}{H*}\operatorname{sub}(X)=\operatorname{sub}(B
(Conjugate transpose).
CHARACTER*1. Must be 'N' or 'U'.
If diag = 'N', then sub(A) is non-unit triangular.
If diag = 'U', then sub(A) is unit triangular.

```
n
    (global) INTEGER. The order of the distributed matrix \(\operatorname{sub}(A)(n \geq 0)\).
```

nrhs
a,b,x
ia,ja
desca
ib, jb
descb
ix, jx
descx
work
(global) INTEGER. The number of right-hand sides, that is, the number of columns of the matrices $\operatorname{sub}(B)$ and $\operatorname{sub}(x)(n r h s \geq 0)$.
(local)
REAL for pstrrfs
DOUBLE PRECISION for pdtrrfs
COMPLEX for pctrrfs
DOUBLE COMPLEX for pztrrfs.
Pointers into the local memory to arrays of local dimension
$a\left(l l d \_a, \operatorname{LOCC}(j a+n-1)\right), b(\operatorname{lld} b, \operatorname{LOCC}(j b+n r h s-1))$, and $x\left(11 d \_x, \operatorname{LOCC}(j x+n r h s-1)\right)$, respectively.
The array a contains the local pieces of the original triangular distributed matrix $\operatorname{sub}(A)$.
If uplo = 'U', the leading $n-b y-n$ upper triangular part of sub(A) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo = 'L', the leading $n-b y-n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the distributed matrix, and its strictly upper triangular part is not referenced.
If diag = 'U', the diagonal elements of $\operatorname{sub}(A)$ are also not referenced and are assumed to be 1 .
On entry, the array b contains the local pieces of the distributed matrix of right hand sides $\operatorname{sub}(B)$.
On entry, the array x contains the local pieces of the solution vectors $\operatorname{sub}(x)$.
(global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(global) INTEGER. The row and column indices in the global array B indicating the first row and the first column of the submatrix $\operatorname{sub}(B)$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix B.
(global) INTEGER. The row and column indices in the global array x indicating the first row and the first column of the submatrix $\operatorname{sub}(x)$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix x.
(local)
REAL for pstrrfs
DOUBLE PRECISION for pdtrrfs
COMPLEX for pctrrfs
DOUBLE COMPLEX for pztrrfs.
The array work of dimension (lwork) is a workspace array.
(local) INTEGER. The dimension of the array work. For real flavors:
lwork must be at least 1 work $\geq 3 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b \_a\right)\right)$
For complex flavors:
lwork must be at least
lwork $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b \_a\right)\right)$

```
\begin{tabular}{|c|c|}
\hline iwork & (local) INTEGER. Workspace array, DIMENSION (liwork). Used in real flavors only. \\
\hline liwork & \begin{tabular}{l}
(local or global) INTEGER. The dimension of the array iwork; used in real flavors only. Must be at least \\
liwork \(\geq \operatorname{LOCr}\left(n+\bmod \left(i b-1, m b _b\right)\right)\).
\end{tabular} \\
\hline rwork & \begin{tabular}{l}
(local) REAL for pctrrfs \\
DOUBLE PRECISION for pztrrfs \\
Workspace array, DIMENSION (lrwork). Used in complex flavors only.
\end{tabular} \\
\hline lrwork & (local or global) InTEGER. The dimension of the array rwork; used in complex flavors only. Must be at least lrwork \(\geq \operatorname{LOCr}(n\) \(\left.+\bmod \left(i b-1, m b _b\right)\right)\) ). \\
\hline
\end{tabular}

\section*{Output Parameters}
ferr, berr
work(1)
iwork(1)
rwork(1)
info
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCc ( \(j b+n r h s-1\) ) each.
The array ferr contains the estimated forward error bound for each solution vector of \(\operatorname{sub}(x)\).
If XTRUE is the true solution corresponding to \(\operatorname{sub}(X)\), ferr is an estimated upper bound for the magnitude of the largest element in ( \(\operatorname{sub}(x)-X T R U E)\) divided by the magnitude of the largest element in \(\operatorname{sub}(x)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
This array is tied to the distributed matrix \(x\).
The array berr contains the component-wise relative backward error of each solution vector (that is, the smallest relative change in any entry of \(\operatorname{sub}(A)\) or \(\operatorname{sub}(B)\) that makes \(\operatorname{sub}(X)\) an exact solution). This array is tied to the distributed matrix \(x\).

On exit, work (1) contains the minimum value of lwork required for optimum performance.
On exit, iwork (1) contains the minimum value of liwork required for optimum performance (for real flavors).
On exit, rwork (1) contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) INTEGER. If info=0, the execution is successful.
info < 0 :
If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Routines for Matrix Inversion}

This sections describes ScaLAPACK routines that compute the inverse of a matrix based on the previously obtained factorization. Note that it is not recommended to solve a system of equations \(A x=b\) by first computing \(A^{-1}\) and then forming the matrix-vector product \(x=A^{-1} b\). Call a solver routine instead (see Solving Systems of Linear Equations); this is more efficient and more accurate.
p?getri
Computes the inverse of a LU-factored distributed matrix.

\section*{Syntax}
```

call psgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)
call pdgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)
call pcgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)
call pzgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?getri routine computes the inverse of a general distributed matrix sub (A) = A(ia:ia+n-1, ja:ja \(+n-1\) ) using the \(L U\) factorization computed by \(p\) ?getrf. This method inverts \(U\) and then computes the inverse of sub (A) by solving the system
```

inv(sub(A))*L = inv(U)

```
for inv(sub (A)).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & (global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\). \\
\hline a & (local) \\
\hline & REAL for psgetri \\
\hline & DOUBLE PRECISION for pdgetri \\
\hline & COMPLEX for pcgetri \\
\hline & DOUBLE COMPLEX for pzgetri. \\
\hline & Pointer into the local memory to an array of local dimension a(lld_a,LOCC (ja+n-1)). \\
\hline & On entry, the array a contains the local pieces of the \(L\) and \(U\) obtained by the factorization \(\operatorname{sub}(A)=P^{\star} L^{\star} U\) computed by p?getrf. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline work & (local) \\
\hline & REAL for psgetri \\
\hline & DOUBLE PRECISION for pdgetri \\
\hline & COMPLEX for pcgetri \\
\hline & DOUBLE COMPLEX for pzgetri. \\
\hline & The array work of dimension (lwork) is a workspace array. \\
\hline Iwork & (local) INTEGER. The dimension of the array work. lwork must be at least \\
\hline & The array work is used to keep at most an entire column block of sub(A). \\
\hline iwork & (local) INTEGER. Workspace array used for physically transposing the pivots, DIMENSION (liwork). \\
\hline Iiwork & (local or global) INTEGER. The dimension of the array iwork. \\
\hline
\end{tabular}

The minimal value liwork of is determined by the following code:
```

if NPROW == NPCOL then
liwork = LOCc(n_a + mod(ja-1,nb_a))+ n.b_a
else
liwork = LOCc(n_a + mod(ja-1,nb_a)) +
max(ceil(ceil(LOCr(m_a)/mb_a)/(lcm/NPROW)),nb_a)
end if

```
where 1 cm is the least common multiple of process rows and columns (NPROW and NPCOL).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline ipiv & \begin{tabular}{l}
(local) InTEGER. \\
Array, dimension ( \(\left.\operatorname{LOCr}\left(m_{-} a\right)+m b _a\right)\). \\
This array contains the pivoting information. \\
If ipiv(i)=j, then the local row i was swapped with the global row \(j\). \\
This array is tied to the distributed matrix \(A\).
\end{tabular} \\
\hline work(1) & On exit, work (1) contains the minimum value of lwork required for optimum performance. \\
\hline iwork(1) & On exit, iwork (1) contains the minimum value of liwork required for optimum performance. \\
\hline info & \begin{tabular}{l}
(global) INTEGER. If info=0, the execution is successful. \\
info < 0: \\
If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
info > 0: \\
If info \(=i, U(i, i)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, and division by zero will occur if it is used to solve a system of equations.
\end{tabular} \\
\hline
\end{tabular}

\section*{p?potri}

Computes the inverse of a symmetric/Hermitian positive definite distributed matrix.

\section*{Syntax}
```

call pspotri(uplo, n, a, ia, ja, desca, info)
call pdpotri(uplo, n, a, ia, ja, desca, info)
call pcpotri(uplo, n, a, ia, ja, desca, info)
call pzpotri(uplo, n, a, ia, ja, desca, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?potri routine computes the inverse of a real symmetric or complex Hermitian positive definite distributed matrix sub \((A)=A\left(i a: i a+n-1\right.\), ja:ja \(A n-1\) ) using the Cholesky factorization sub \((A)=U^{H} * U\) or sub \((A)=L^{\star} L^{H}\) computed by p?potrf.

\section*{Input Parameters}
uplo
n
\(a\)
ia, ja
desca

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & On exit, overwritten by the local pieces of the upper or lower triangle of the (symmetric/Hermitian) inverse of sub( \(A\) ). \\
\hline \multirow[t]{3}{*}{info} & (global) INTEGER. If info=0, the execution is successful. info < 0: \\
\hline & If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
info > 0: \\
\hline & If \(i n f o=i\), the \((i, i)\) element of the factor \(U\) or \(L\) is zero, and the inverse could not be computed. \\
\hline
\end{tabular}
p?trtri
Computes the inverse of a triangular distributed
matrix.

\section*{Syntax}
```

call pstrtri(uplo, diag, n, a, ia, ja, desca, info)
call pdtrtri(uplo, diag, n, a, ia, ja, desca, info)
call pctrtri(uplo, diag, n, a, ia, ja, desca, info)
call pztrtri(uplo, diag, n, a, ia, ja, desca, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?trtri routine computes the inverse of a real or complex upper or lower triangular distributed matrix sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\).

Input Parameters
uplo
diag
n
a
ia, ja
desca

\section*{Output Parameters}
a
info
(global) CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the distributed matrix \(\operatorname{sub}(A)\) is upper or lower triangular.
If uplo = 'U', \(\operatorname{sub}(A)\) is upper triangular.
If uplo = 'L', \(\operatorname{sub}(A)\) is lower triangular.
CHARACTER*1. Must be 'N' or 'U'.
Specifies whether or not the distributed matrix \(\operatorname{sub}(A)\) is unit triangular.
If diag \(=\) ' \(N\) ', then \(\operatorname{sub}(A)\) is non-unit triangular.
If diag \(=\) ' \(U\) ', then \(\operatorname{sub}(A)\) is unit triangular.
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\).
(local)
REAL for pstrtri
DOUBLE PRECISION for pdtrtri
COMPLEX for pctrtri
DOUBLE COMPLEX for pztrtri.
Pointer into the local memory to an array of local dimension
a(lld_a, LOCC (ja+n-1)).
The array a contains the local pieces of the triangular distributed matrix sub(A).
If uplo = 'U', the leading \(n\)-by-n upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular matrix to be inverted, and the strictly lower triangular part of \(\operatorname{sub}(A)\) is not referenced.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of sub \((A)\) contains the lower triangular matrix, and the strictly upper triangular part of sub(A) is not referenced.
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix sub( \(A\) ), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).

On exit, overwritten by the (triangular) inverse of the original matrix.
(global) INTEGER. If info=0, the execution is successful.
info < 0 :
If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
info > 0 :
If info \(=k, A(i a+k-1, j a+k-1)\) is exactly zero. The triangular matrix \(\operatorname{sub}(A)\) is singular and its inverse can not be computed.

\section*{Routines for Matrix Equilibration}

ScaLAPACK routines described in this section are used to compute scaling factors needed to equilibrate a matrix. Note that these routines do not actually scale the matrices.

\section*{p?geequ \\ Computes row and column scaling factors intended to equilibrate a general rectangular distributed matrix and reduce its condition number.}

\section*{Syntax}
```

call psgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)
call pdgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)
call pcgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)
call pzgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)

```
Include files
- C: mkl_scalapack.h

\section*{Description}

The \(p\) ? geequ routine computes row and column scalings intended to equilibrate an \(m\)-by- \(n\) distributed matrix sub \((A)=A(i a: i a+m-1, j a: j a+n-1)\) and reduce its condition number. The output array returns the row scale factors and the array \(c\) the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix \(B\) with elements \(b_{i j}=r(i) * a_{i j}{ }^{*} C(j)\) have absolute value 1.
\(r(\mathrm{i})\) and \(c(\mathrm{j})\) are restricted to be between SMLNUM \(=\) smallest safe number and \(B I G N U M=\) largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of sub(A) but works well in practice.

SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision (real and complex) values of SMLNUM and BIGNUM as follows:
```

SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM

```

The auxiliary function p?laqge uses scaling factors computed by p?geequ to scale a general rectangular matrix.

\section*{Input Parameters}
m
\(n\)
a
(global) INTEGER. The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A)(m \geq 0)\).
(global) INTEGER. The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\).
(local)

REAL for psgeequ
DOUBLE PRECISION for pdgeequ
COMPLEX for pcgeequ
DOUBLE COMPLEX for pzgeequ .
Pointer into the local memory to an array of local dimension
a(lld_a,LOCC(ja+n-1)).

\section*{Output Parameters}
```

r, c

```
rowend, colcnd
amax
info

The array a contains the local pieces of the \(m\)-by- \(n\) distributed matrix whose equilibration factors are to be computed.
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix sub( \(A\) ), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCr (m_a) and LOCC ( \(\left.n_{-} a\right)\), respectively.
If info \(=0\), or info \(>\bar{i}_{a}+m-1\), the array \(r(i a: i a+m-1)\) contains the row scale factors for \(\operatorname{sub}(A) . r\) is aligned with the distributed matrix \(A\), and replicated across every process column. \(r\) is tied to the distributed matrix \(A\). If info \(=0\), the array \(c(j a: j a+n-1)\) contains the column scale factors for \(\operatorname{sub}(A) . C\) is aligned with the distributed matrix \(A\), and replicated down every process row. \(c\) is tied to the distributed matrix \(A\).
(global) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info \(=0\) or info \(>i a+m-1\), rowend contains the ratio of the smallest \(r(i)\) to the largest \(r\) (i) (ia \(\leq i \leq i a+m-1\) ). If rowend \(\geq 0.1\) and amax is neither too large nor too small, it is not worth scaling by \(r\) (ia:ia
+m-1).
If info \(=0\), colcnd contains the ratio of the smallest \(c(j)\) to the largest
\(c(j) \quad(j a \leq j \leq j a+n-1)\).
If colcnd \(\geq 0.1\), it is not worth scaling by \(c(j a: j a+n-1)\).
(global) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest matrix element. If amax is very close to overflow or very close to underflow, the matrix should be scaled.
(global) INTEGER. If info=0, the execution is successful.
info < 0 :
If the \(i\) th argument is an array and the \(j\) th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i-t h\) argument is a scalar and had an illegal value, then info \(=-i\).
info > 0 :
If info \(=i\) and
\(i \leq m\), the \(i\) th row of the distributed matrix
sub ( \(A\) ) is exactly zero;
\(i>m\), the \((i-m)\) th column of the distributed
matrix \(\operatorname{sub}(A)\) is exactly zero.

\section*{p?poequ}

Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite distributed matrix and reduce its condition number.

\section*{Syntax}
```

call pspoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)
call pdpoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)

```
```

call pcpoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)
call pzpoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?poequ routine computes row and column scalings intended to equilibrate a real symmetric or complex Hermitian positive definite distributed matrix \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\) and reduce its condition number (with respect to the two-norm). The output arrays sr and sc return the row and column scale factors
\[
s(i)=\frac{1}{\sqrt{a_{i, i}}}
\]

These factors are chosen so that the scaled distributed matrix \(B\) with elements \(b_{i j}=s(i) * a_{i j}{ }^{*} S(j)\) has ones on the diagonal.
This choice of \(s r\) and \(s c\) puts the condition number of \(B\) within a factor \(n\) of the smallest possible condition number over all possible diagonal scalings.

The auxiliary function p?laqsy uses scaling factors computed by p?geequ to scale a general rectangular matrix.

\section*{Input Parameters}
n
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\).
a
(local)
REAL for pspoequ
DOUBLE PRECISION for pdpoequ
COMPLEX for pcpoequ
DOUBLE COMPLEX for pzpoequ.
Pointer into the local memory to an array of local dimension
a(lld_a, LOCC(ja+n-1)).
The array a contains the \(n\)-by- \(n\) symmetric/Hermitian positive definite distributed matrix \(\operatorname{sub}(A)\) whose scaling factors are to be computed. Only the diagonal elements of \(\operatorname{sub}(A)\) are referenced.
ia, ja
desca
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).

\section*{Output Parameters}
\[
s r, s c
\]
(local)
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCr (m_a) and LOCC (n_a), respectively.
\begin{tabular}{|c|c|}
\hline \multirow[b]{3}{*}{scond} & If info \(=0\), the array sr(ia:ia+n-1) contains the row scale factors for \(\operatorname{sub}(A) . s r\) is aligned with the distributed matrix \(A\), and replicated across every process column. sr is tied to the distributed matrix \(A\). \\
\hline & If info \(=0\), the array sc (ja:ja+n-1) contains the column scale factors for \(\operatorname{sub}(A) . S C\) is aligned with the distributed matrix \(A\), and replicated down every process row. sc is tied to the distributed matrix \(A\). \\
\hline & (global) \\
\hline & REAL for single precision flavors; \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & If info \(=0\), scond contains the ratio of the smallest \(\operatorname{sr}(\mathrm{i})(\) or \(s c(\mathrm{j}))\) to the largest \(s r(\mathrm{i})(\) or \(s c(\mathrm{j}))\), with \\
\hline & \(i a \leq i \leq i a+n-1\) and \(j a \leq j \leq j a+n-1\). \\
\hline & If scond \(\geq 0.1\) and amax is neither too large nor too small, it is not worth scaling by sr (or sc). \\
\hline \multirow[t]{4}{*}{amax} & (global) \\
\hline & REAL for single precision flavors; \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Absolute value of the largest matrix element. If amax is very close to overflow or very close to underflow, the matrix should be scaled. \\
\hline \multirow[t]{6}{*}{info} & (global) INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & info < 0: \\
\hline & If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
\hline & info > 0 : \\
\hline & If info \(=k\), the \(k\)-th diagonal entry of \(\operatorname{sub}(A)\) is nonpositive. \\
\hline
\end{tabular}

\section*{Orthogonal Factorizations}

This section describes the ScaLAPACK routines for the \(Q R(R Q)\) and \(L Q\) ( \(Q L\) ) factorization of matrices. Routines for the \(R Z\) factorization as well as for generalized \(Q R\) and \(R Q\) factorizations are also included. For the mathematical definition of the factorizations, see the respective LAPACK sections or refer to [SLUG].

Table "Computational Routines for Orthogonal Factorizations" lists ScaLAPACK routines that perform orthogonal factorization of matrices.
Computational Routines for Orthogonal Factorizations
\begin{tabular}{lllll}
\hline \begin{tabular}{l} 
Matrix type, \\
factorization
\end{tabular} & \begin{tabular}{l} 
Factorize \\
without \\
pivoting
\end{tabular} & \begin{tabular}{l} 
Factorize with \\
pivoting
\end{tabular} & \begin{tabular}{l} 
Generate matrix \\
Q
\end{tabular} & Apply matrix Q \\
\hline \begin{tabular}{l} 
general matrices, QR \\
factorization
\end{tabular} & p?geqrf & p?geqpf & p?orgqr & p?ormqr \\
\begin{tabular}{lll} 
general matrices, RQ \\
factorization
\end{tabular} & p?gerqf & p?ungqr & p?unmqr
\end{tabular}
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
Matrix type, \\
factorization
\end{tabular} & \begin{tabular}{l} 
Factorize \\
without \\
pivoting
\end{tabular} & \begin{tabular}{l} 
Factorize with \\
pivoting
\end{tabular} & \begin{tabular}{l} 
Generate matrix
\end{tabular} \\
\hline \begin{tabular}{ll} 
general matrices, QL \\
factorization
\end{tabular} & p?geqlf & p?orgql & ply matrix Q
\end{tabular}
p?geqrf
Computes the \(Q R\) factorization of a general m-by-n
matrix.
Syntax
```

call psgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?geqrf routine forms the \(Q R\) factorization of a general m-by-n distributed matrix sub \((A)=A\) (ia:ia \(+m-1, j a: j a+n-1)\) as
\(A=Q^{\star} R\)

\section*{Input Parameters}
m
n
a
(global) INTEGER. The number of rows in the distributed submatrix sub(A);
( \(m \geq 0\) ).
(global) Integer. The number of columns in the distributed submatrix
\(\operatorname{sub}(A) ;(n \geq 0)\).
(local)
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Pointer into the local memory to an array of local dimension (lld_a, LOCC (ja+n-1)).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be factored.
```

ia, ja
desca
work
lwork
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A(ia:ia $+m-1, j a: j a+n-1)$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A
(local).
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf.
COMPLEX for pcgeqrf.
DOUBLE COMPLEX for pzgeqrf
Workspace array of dimension lwork.
lwork
(local or global) INTEGER, dimension of work, must be at least lwork \geq
nb_a * (mp0 $\left.+n q 0+n b \_a\right)$, where
iroff $=\bmod (i a-1, m b a), i C O f f=\bmod \left(j a-1, n b \_a\right)$,
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW),
nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL), and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}
a


The elements on and above the diagonal of \(\operatorname{sub}(A)\) contain the \(\min (m, n)\)-by\(n\) upper trapezoidal matrix \(R\) ( \(R\) is upper triangular if \(m \geq n\) ); the elements below the diagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local)
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Array, DIMENSION LOCC (ja+min \((m, n)-1)\).
Contains the scalar factor tau of elementary reflectors. tau is tied to the distributed matrix A.

On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\), the execution is successful.
\(<0\), if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\[
Q=H(j a) \star H(j a+1) \star \ldots \star H(j a+k-1),
\]
where \(k=\min (m, n)\).
Each \(H(i)\) has the form
\(H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{\prime}\)
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0\) and \(v(i)=1\); \(v(i\) \(+1: m\) ) is stored on exit in \(A(i a+i: i a+m-1, j a+i-1)\), and tau in tau(ja+i-1).

\section*{p?geqpf}

Computes the \(Q R\) factorization of a general m-by-n
matrix with pivoting.

\section*{Syntax}
```

call psgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)
call pdgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)
call pcgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)
call pzgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?geqpf routine forms the \(Q R\) factorization with column pivoting of a general \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)\) as \(\operatorname{sub}(A) \star P=Q^{\star} R\)

\section*{Input Parameters}
```

m (global) INTEGER. The number of rows in the submatrix sub(A)(m\geq0).
n
a
ia, ja
desca
work
(global) INTEGER. The number of columns in the submatrix sub(A) (}n
0).
(local)
REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf
COMPLEX for pcgeqpf
DOUBLE COMPLEX for pzgeqpf.
Pointer into the local memory to an array of local dimension (lld_a,
LOCC(ja+n-1)).
Contains the local pieces of the distributed matrix sub(A) to be factored.

```
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\) (ia:ia \(+m-1, j a: j a+n-1)\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local).
REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf.
COMPLEX for pcgeqpf.
DOUBLE COMPLEX for pzgeqpf
Workspace array of dimension lwork.
```

lwork (local or global) INTEGER, dimension of work, must be at least
For real flavors:
lwork \geq max(3,mp0+nq0) + LOCc (ja+n-1) + nq0.
For complex flavors:
lwork \geq max(3,mp0+nq0) .
Here
iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL),
mp0 = numroc(m+iroff, mb_a, MYROW, iarow, NPROW),
nq0 = numroc(n+icoff, nb_a, MYCOL, iacol, NPCOL),
LOCC (ja+n-1) = numroc(ja+n-1, nb_a, MYCOL,CSrc_a, NPCOL),
and numroc, indxg2p are ScaLAPACK tool functions.
You can determine MYROW, MYCOL, NPROW and NPCOL by calling the
blacs_gridinfo subroutine.
If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}

The elements on and above the diagonal of \(\operatorname{sub}(A)\) contain the \(\min (m, n)\)-by\(n\) upper trapezoidal matrix \(R\) ( \(R\) is upper triangular if \(m \geq n\) ); the elements below the diagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
ipiv (local) INTEGER. Array, DIMENSION LOCc (ja+n-1).
\(\operatorname{ipiv}(i)=k\), the local \(i\)-th column of \(\operatorname{sub}(A) *_{P}\) was the global \(k\)-th column of \(\operatorname{sub}(A)\). ipiv is tied to the distributed matrix \(A\).
(local)
REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf
COMPLEX for pcgeqpf
DOUBLE COMPLEX for pzgeqpf.
Array, DIMENSION LOCC(ja+min(m, n)-1).
Contains the scalar factor tau of elementary reflectors. tau is tied to the distributed matrix \(A\).
work(1)
info
On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\), the execution is successful.
\(<0\), if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(1) \star H(2) \star \ldots{ }^{\star} H(k)\)
where \(k=\min (m, n)\).
Each \(H(i)\) has the form
\(H=I-t a u^{\star} V^{\star} V^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0\) and \(v(i)=1\); \(v(i\) \(+1: m\) ) is stored on exit in \(A(i a+i: i a+m-1, j a+i-1)\).

The matrix \(P\) is represented in ipiv as follows: if \(\operatorname{ipiv}(j)=i\) then the \(j\)-th column of \(P\) is the \(i\)-th canonical unit vector.

\section*{p?orgqr \\ Generates the orthogonal matrix \(Q\) of the \(Q R\) \\ factorization formed by p?geqre.}

\section*{Syntax}
```

call psorgqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorgqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include files}
- C: mkl_scalapack.h

\section*{Description}

The p?orgqr routine generates the whole or part of \(m-b y-n\) real distributed matrix \(Q\) denoting \(A(i a: i a+m-1\), \(j a: j a+n-1)\) with orthonormal columns, which is defined as the first \(n\) columns of a product of \(k\) elementary reflectors of order \(m\)
```

Q}=H(1)*H(2)*···* H(k

```
as returned by p?geqrf.

\section*{Input Parameters}
```

m
n
k
a
ia,ja
desca
tau
(global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(Q)(m \geq 0)$.
(global) INTEGER. The number of columns in the submatrix $\operatorname{sub}(Q)(m \geq n$ $\geq 0)$.
(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(n \geq k \geq 0)$.
(local)
REAL for psorgqr
DOUBLE PRECISION for pdorgqr
Pointer into the local memory to an array of local dimension (lld_a, $\operatorname{LOCC}(j a+n-1))$. The j-th column must contain the vector which defines the elementary reflector $H(j), j a \leq j \leq j a+k-1$, as returned by p?geqrf in the k columns of its distributed matrix argument $A(i a: *, j a: j a+k-1)$.
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A (ia:ia $+m-1, j a: j a+n-1)$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(local)
REAL for psorgqr
DOUBLE PRECISION for pdorgqr
Array, DIMENSION LOCC (ja+k-1).

```
\begin{tabular}{|c|c|}
\hline & Contains the scalar factor tau ( \(j\) ) of elementary reflectors \(H(j)\) as returned by p?geqrf. tau is tied to the distributed matrix \(A\). \\
\hline \multirow[t]{4}{*}{work} & (local) \\
\hline & REAL for psorgqr \\
\hline & DOUBLE PRECISION for pdorgqr \\
\hline & Workspace array of dimension of lwork. \\
\hline \multirow[t]{12}{*}{lwork} & (local or global) INTEGER, dimension of work. \\
\hline & Must be at least lwork \(\geq\) nb_a* (nqa0 \(+m p a 0\) + nb_a), where \\
\hline & iroffa \(=\bmod \left(i a-1, ~ m b _a\right), ~ i C o f f a ~=~ m o d ~\left(j a-1, ~ n b _a\right), ~\) \\
\hline & iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), \\
\hline & iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), \\
\hline & mpa0 = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW), \\
\hline & nqa0 = numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL); \\
\hline & indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs gridinfo. \\
\hline & If 1 work \(=-1\), then lwork is global input and a workspace query is \\
\hline & assumed; the routine only calculates the minimum and optimal size for all \\
\hline & work arrays. Each of these values is returned in the first entry of the \\
\hline & corresponding work array, and no error message is issued by pxerbla. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

a
work(1)
info (global) INTEGER.
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had an illegal value,
then info = - (i* 100+j), if the i-th argument is a scalar and had an
illegal value, then info = -i.

```

\section*{p?ungqr \\ Generates the complex unitary matrix \(Q\) of the \(Q R\) \\ factorization formed by p?geqrf.}

\section*{Syntax}
```

call pcungqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzungqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

This routine generates the whole or part of \(m\)-by- \(n\) complex distributed matrix \(Q\) denoting \(A(i a: i a+m-1\), \(j a: j a+n-1)\) with orthonormal columns, which is defined as the first \(n\) columns of a product of \(k\) elementary reflectors of order \(m\)
```

Q = H(1)*H(2)* ...*H(k)

```
as returned by p?geqrf.

\section*{Input Parameters}
m
n
k
a
ia, ja
desca
tau
work
l work
(global) INTEGER. The number of rows in the submatrix \(\operatorname{sub}(Q) ;(m \geq 0)\).
(global) INTEGER. The number of columns in the submatrix \(\operatorname{sub}(Q)(m \geq n \geq 0)\).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(n \geq k \geq 0)\).
(local)
COMPLEX for pcungqr
DOUBLE COMPLEX for pzungqr
Pointer into the local memory to an array of dimension (lld_a, LOCc(ja \(+n-1)\) ). The \(j\)-th column must contain the vector which defines the elementary reflector \(H(j)\), \(j a \leq j \leq j a+k-1\), as returned by \(p\) ? geqrf in the \(k\) columns of its distributed matrix argument \(A(i a: *, j a: j a+k-1)\).
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
COMPLEX for pcungqr
DOUBLE COMPLEX for pzungqr
Array, DIMENSION LOCC (ja+k-1).
Contains the scalar factor \(\operatorname{tau}(j)\) of elementary reflectors \(H(j)\) as returned by p?geqrf. tau is tied to the distributed matrix \(A\).
(local)
COMPLEX for pcungqr
DOUBLE COMPLEX for pzungqr
Workspace array of dimension of lwork.
(local or global) INTEGER, dimension of work, must be at least lwork \(\geq\) \(n b _a *\left(n q a 0+m p a 0+n b _a\right)\), where
iroffa \(=\bmod (i a-1, m b a)\),
icoffa \(=\bmod \left(j a-1, n b _a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 \(=\) numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 \(=\) numroc \(\left(n+i C o f f a, n b _a, M Y C O L, ~ i a c o l, N P C O L\right) ~\)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW
and NPCOL can be determined by calling the subroutine blacs_gridinfo. If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
work(1)
info

Contains the local pieces of the \(m\)-by-n distributed matrix \(Q\).
On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
＜ 0 ：if the \(i\)－th argument is an array and the \(j\)－entry had an illegal value， then info \(=-(i * 100+j)\) ，if the \(i\)－th argument is a scalar and had an illegal value，then info \(=-i\) ．

\section*{p？ormqr \\ Multiplies a general matrix by the orthogonal matrix \(Q\) of the \(Q R\) factorization formed by p？geqrf．}

\section*{Syntax}
```

call psormqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pdormqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)

```

\section*{Include Files}
－C：mkl＿scalapack．h

\section*{Description}

The p ？ormqr routine overwrites the general real m－by－n distributed matrix sub（C）＝C（ic：ic＋m－1，jc：jc \(+n-1\) ）with
```

side ='L' side ='R'
trans = 'N': \quad Q*sub(C) sub(C)*Q
trans = 'T': 林

```
where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
```

Q = H(1) H(2) ... H(k)

```
as returned by p？geqrf．\(Q\) is of order mif side＝＇L＇and of order \(n\) if side＝＇R＇．

\section*{Input Parameters}
```

side (global) CHARACTER
='L':Q or Q 亚 is applied from the left.
='R':Q or Q 的的 applied from the right.
trans (global) CHARACTER
= 'N', no transpose, Q is applied.
='T',

```
(global) INTEGER. The number of rows in the distributed matrix sub( \(C\) )
( \(m \geq 0\) ) .
（global）INTEGER．The number of columns in the distributed matrix sub（ \(C\) ） （ \(n \geq 0\) ）．
（global）INTEGER．The number of elementary reflectors whose product defines the matrix \(Q\) ．Constraints：
If side \(=\)＇L＇，\(m \geq k \geq 0\)
If side \(=\)＇R＇，\(n \geq k \geq 0\) ．
a
（local）
REAL for psormqr
DOUBLE PRECISION for pdormqr．

Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+k-1)\) ). The \(j\)-th column must contain the vector which defines the elementary reflector \(H(j), j a \leq j \leq j a+k-1\), as returned by p?geqrf in the \(k\) columns of its distributed matrix argument A(ia:*, ja: ja+k-1). A(ia:*, \(j a: j a+k-1)\) is modified by the routine but restored on exit.
If side \(=\) 'L', lld_a \(\geq \max (1\), LOCr(ia+m-1))
If side \(=\) 'R', lld_a \(\geq \max (1, \operatorname{LOCr}(i a+n-1))\)
ia, ja
desca
tau
c
ic, jc
descc
work
lwork
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for psormqr
DOUBLE PRECISION for pdormqr
Array, DIMENSION LOCC ( \(j a+k-1\) ).
Contains the scalar factor tau ( \(j\) ) of elementary reflectors \(H(j)\) as returned by p?geqrf. tau is tied to the distributed matrix \(A\).
(local)
REAL for psormqr
DOUBLE PRECISION for pdormqr
Pointer into the local memory to an array of local dimension (lld_c,
\(\operatorname{LOCC}(j c+n-1)\) ).
Contains the local pieces of the distributed matrix sub ( \(C\) ) to be factored.
(global) INTEGER. The row and column indices in the global array \(c\) indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(C\).
(local)
REAL for psormqr
DOUBLE PRECISION for pdormqr.
Workspace array of dimension of lwork.
(local or global) INTEGER, dimension of work, must be at least:
if side = 'L',
lwork \(\geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2,(n q c 0+m p c 0) * n b _a\right)+n b _a * n b _a\) else if side = 'R', lwork \(\geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2\right.\),
(nqc0+max (npa0+numroc (numroc (n+icoffc, nb_a, 0, 0, NPCOL),
\(\left.\left.\left.n b_{-} a, 0,0,1(m q), m p c 0\right)\right){ }^{*} n b_{-} a\right)+n b_{-} a^{*} n b_{-} a\)
end if
where
lcmq \(=1 \mathrm{~cm} / \mathrm{NPCOL}\) with \(l \mathrm{~cm}=\) ilcm (NPROW, NPCOL),
iroffa \(=\bmod \left(i a-1, m b _a\right)\),
icoffa \(=\bmod \left(j a-1, n b _a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
npa0 0 numroc (n+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc \(=\bmod \left(i c-1, m b _c\right)\),
\(i c o f f c=\bmod \left(j c-1, n b _c\right)\),
icrow \(=\) indxg \(2 p\left(i c, m b=c, ~ M Y R O W, ~ r s r c _c, ~ N P R O W\right), ~\)
iccol \(=\) indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpco= numroc (m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 \(=\) numroc (n+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
```

c

```

```

 sub (C)*Q.
 work(1)
info (global) INTEGER.
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had an illegal value,
then info = - (i* 100+j), if the i-th argument is a scalar and had an
illegal value, then info = -i.

```

\section*{p?unmqr \\ Multiplies a complex matrix by the unitary matrix \(Q\) of \\ the \(Q R\) factorization formed by p?geqre.}

\section*{Syntax}
```

call pcunmqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunmqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

This routine overwrites the general complex m-by-n distributed matrix sub (C) = C(ic:ic+m-1,jc:jc \(+n-1\) ) with

```

trans = 'T': 㫜*sub(C) sub(C)** Q

```
where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors \(Q=H(1) H(2) \ldots H(k)\) as returned by p?geqrf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side = 'R'.

Input Parameters
```

side
trans (global) CHARACTER

```
\begin{tabular}{ll} 
& \(=\) 'N', no transpose, \(Q\) is applied. \\
& \(=\) 'C', conjugate transpose, \(Q^{H}\) is applied. \\
& (global) INTEGER. The number of rows in the distributed matrix sub( \(C\) ) \\
& \((m \geq 0)\).
\end{tabular}
```

lwork \geq max((nb_a* (nb_a-1))/2, (nqc0 + max(npa0 +
numroc (numroc(n+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0,
lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
where
lcmq = lcm/NPCOL with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(n+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}
```

C
work(1)
info
Overwritten by the product Q^{\star} sub (C), or $Q^{H \star} \operatorname{sub}(C)$, or $\operatorname{sub}(C) * Q^{H}$, or sub (C) *Q.
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
$=0$: the execution is successful.
< 0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

```
p?gelqf
Computes the LQ factorization of a general rectangular
matrix.
Syntax
```

call psgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?gelqf routine computes the \(L Q\) factorization of a real/complex distributed \(m\)-by- \(n\) matrix sub \((A)=\) \(A(i a: i a+m-1, ~ i a: i a+n-1)=L^{\star} Q\).

Input Parameters
\(m\)
\(n\)
k
a
ia, ja
desca
work
lwork
(global) INTEGER. The number of rows in the submatrix \(\operatorname{sub}(Q)(m \geq 0)\). (global) INTEGER. The number of columns in the submatrix \(\operatorname{sub}(\ell)(n \geq\) \(0)\).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(n \geq k \geq 0)\).
(local)
REAL for psgelqf
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Pointer into the local memory to an array of local dimension (lld_a, \(\operatorname{LOCC}(j a+n-1)\) ).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be factored.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A(ia:ia+m-1, ia: ia+n-1), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for psgelqf
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Workspace array of dimension of lwork.
(local or global) INTEGER, dimension of work, must be at least 1 work \(\geq\) mb_a* \(\left(m p 0+n q 0+m b _a\right)\), where
iroff \(=\bmod \left(i a-1, m b _a\right)\),
icoff \(=\bmod \left(j a-1, n b _a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL),
mp0 \(=\) numroc (m+iroff, mb_a, MYROW, iarow, NPROW),
\(n q 0=\) numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. If 1 work \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
The elements on and below the diagonal of \(\operatorname{sub}(A)\) contain the \(m\) by \(\min (m, n)\) lower trapezoidal matrix \(L\) ( \(L\) is lower trapezoidal if \(m \leq n\) ); the elements above the diagonal, with the array tau, represent the orthogonal/ unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
\begin{tabular}{|c|c|}
\hline \multirow[t]{7}{*}{tau} & (local) \\
\hline & REAL for psgelqf \\
\hline & DOUBLE PRECISION for pdgelqf \\
\hline & COMPLEX for pcgelqf \\
\hline & DOUBLE COMPLEX for pzgelqf \\
\hline & Array, DIMENSION LOCr(iatmin (m, n) -1). \\
\hline & Contains the scalar factors of elementary reflectors. tau is tied to the distributed matrix \(A\). \\
\hline work(1) & On exit, work (1) contains the minimum value of lwork required for optimum performance. \\
\hline \multirow[t]{4}{*}{info} & (global) INTEGER. \\
\hline & \(=0\) : the execution is successful. \\
\hline & < 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an \\
\hline & illegal value, then info \(=-i\). \\
\hline
\end{tabular}

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(i a+k-1) * H(i a+k-2) * \ldots * H(i a)\),
where \(k=\min (m, n)\)
Each \(H(i)\) has the form
\(H(i)=I-t^{*} u^{\star} V^{\prime}\)
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0\) and \(v(i)=1 ; v(i\) \(+1: n\) ) is stored on exit in \(A(i a+i-1, j a+i: j a+n-1)\), and tau in tau (ia+i-1).
p?orglq
Generates the real orthogonal matrix \(Q\) of the \(L Q\)
factorization formed by p?gelqf.

\section*{Syntax}
```

call psorglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include files}
- C: mkl_scalapack.h

\section*{Description}

The p?orglq routine generates the whole or part of \(m\)-by-n real distributed matrix \(Q\) denoting \(A(i a: i a+m-1\), \(j a: j a+n-1)\) with orthonormal rows, which is defined as the first \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
```

Q = H(k)* ...* H(2)* H(1)

```
as returned by p?gelqf.

\section*{Input Parameters}
m
(global) INTEGER. The number of rows in the submatrix \(\operatorname{sub}(\ell) ;(m \geq 0)\).

\section*{Output Parameters}

\section*{a}
```

n
k
a
ia, ja
desca
work
I work
(global) INTEGER. The number of columns in the submatrix sub(ℓ) ($n \geq m \geq 0$).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(m \geq k \geq 0)$.
(local)
REAL for psorglq
DOUBLE PRECISION for pdorglq
Pointer into the local memory to an array of local dimension (Ild_a, LOCc ($j a+n-1$)). On entry, the i-th row must contain the vector which defines the elementary reflector $H(i), i a \leq i \leq i a+k-1$, as returned by p?gelqf in the k rows of its distributed matrix argument $A(i a: i a+k-1, \quad j a: *)$.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A(ia: $i a+m-1$, ja:ja+n-1), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(local)
REAL for psorglq
DOUBLE PRECISION for pdorglq
Workspace array of dimension of 1 work.
(local or global) INTEGER, dimension of work, must be at least 1 work \geq
$m b \_a^{\star}\left(\right.$ mpa $\left.0+n q a 0+m b \_a\right)$, where
iroffa $=\bmod \left(i a-1, m b \_a\right)$,
icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL), mpaO = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW), nqa0 $=$ numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

```

Contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(Q\) to be factored.
(local)
REAL for psorglq
DOUBLE PRECISION for pdorglq
Array, DIMENSION LOCr (ia+k -1).
Contains the scalar factors tau of elementary reflectors \(H(i)\). tau is tied to the distributed matrix \(A\).
On exit, work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?unglq}

Generates the unitary matrix \(Q\) of the \(L_{Q}\) factorization
formed by p?gelqf.

\section*{Syntax}
```

call pcunglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzunglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

This routine generates the whole or part of \(m\)-by- \(n\) complex distributed matrix \(Q\) denoting \(A(i a: i a+m-1\), \(j a: j a+n-1)\) with orthonormal rows, which is defined as the first \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
```

Q = (H(k))}\mp@subsup{}{}{H}.\mp@subsup{.}{}{*}(H(2)\mp@subsup{)}{}{H*}(H(1)\mp@subsup{)}{}{H}\mathrm{ as returned by p?gelqf.

```

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & (global) INTEGER. The number of rows in the submatrix \(\operatorname{sub}(Q)(m \geq 0)\). \\
\hline \(n\) & (global) INTEGER. The number of columns in the submatrix \(\operatorname{sub}(Q)\) ( \(n \geq m \geq 0\) ) . \\
\hline k & (global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(m \geq k \geq 0)\). \\
\hline a & (local) \\
\hline & COMPLEX for pcunglq \\
\hline & DOUBLE COMPLEX for pzunglq \\
\hline & Pointer into the local memory to an array of local dimension (lld_a, \(\operatorname{LOCC}(j a+n-1))\). On entry, the \(i\)-th row must contain the vector which defines the elementary reflector \(H(i)\), \(i a \leq i \leq i a+k-1\), as returned by \(p\) ? gelqf in the \(k\) rows of its distributed matrix argument \(A(i a: i a+k-1\), ja:*). \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\) (ia:ia \(+m-1\), ja: ja+n-1), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline tau & (local) \\
\hline & COMPLEX for pcunglq \\
\hline & DOUBLE COMPLEX for pzunglq \\
\hline & Array, DIMENSION LOCr ( \(i a+k-1\) ). \\
\hline & Contains the scalar factors tau of elementary reflectors \(H(i)\). tau is tied to the distributed matrix \(A\). \\
\hline work & (local) \\
\hline & COMPLEX for pcunglq \\
\hline & DOUBLE COMPLEX for pzunglq \\
\hline & Workspace array of dimension of lwork. \\
\hline lwork & (local or global) INTEGER, dimension of work, must be at least lwork \(\geq\) mb_a* (mpa0+nqa0+mb_a), where \\
\hline
\end{tabular}
```

iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW
and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}
```

a

```
work(1) On exit, work(1) contains the minimum value of lwork required for
optimum performance.
info (global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value,
then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an
illegal value, then info \(=-i\).

\section*{p?ormlq}

Multiplies a general matrix by the orthogonal matrix \(Q\)
of the \(L Q\) factorization formed by p?gelqf.

\section*{Syntax}
```

call psormlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, work, lwork,
info)
call pdormlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, work, lwork,
info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?ormlq routine overwrites the general real m-by-n distributed matrix sub(C) \(=C(i c: i c+m-1, j c: j c\) \(+n-1\) ) with
```

trans = 'N': 㫙sub(C) sub(C)*Q
trans = 'T': 晤*sub(c) sub(C)*Q Q

```
where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
```

Q = H(k) ..H(2) H(1)

```
as returned by p?gelqf. \(Q\) is of order mif side \(=\) 'L' and of order \(n\) if side \(=\) ' \(\mathrm{R}^{\prime}\).

Input Parameters
side
trans
m
\(n\)
k
a
ia, ja
desca
tau

C
ic, jc
descc
work
l work
(global) CHARACTER
\(=\) 'L': \(Q\) or \(Q^{T}\) is applied from the left.
\(={ }^{\prime} R^{\prime}: Q\) or \(Q^{T}\) is applied from the right.
(global) CHARACTER
\(=\) ' \(N^{\prime}\) ', no transpose, \(Q\) is applied.
\(=\) 'T', transpose, \(Q^{T}\) is applied.
(global) INTEGER. The number of rows in the distributed matrix sub(C) ( \(m \geq 0\) ) .
(global) INTEGER. The number of columns in the distributed matrix sub( \(C\) ) ( \(n \geq 0\) ) .
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) 'R', \(n \geq k \geq 0\).
(local)
REAL for psormlq
DOUBLE PRECISION for pdormlq.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+m-1)\) ), if side \(=\) 'L' and (Ild_a, LOCC(ja+n-1)), if side = 'R'.The \(i\)-th row must contain the vector which defines the elementary reflector \(H(i), i a \leq i \leq i a+k-1\), as returned by p?gelqf in the \(k\) rows of its distributed matrix argument \(A(i a: i a+k-1, ~ j a: *)\).
\(A(i a: i a+k-1, j a: *)\) is modified by the routine but restored on exit.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for psormlq
DOUBLE PRECISION for pdormlq
Array, DIMENSION LOCC ( \(j a+k-1\) ).
Contains the scalar factor tau (i) of elementary reflectors \(H(i)\) as returned by p?gelqf. tau is tied to the distributed matrix \(A\).
(local)
REAL for psormlq
DOUBLE PRECISION for pdormlq
Pointer into the local memory to an array of local dimension (lld_c, LOCC (jc+n-1)).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
(global) INTEGER. The row and column indices in the global array \(c\) indicating the first row and the first column of the submatrix \(C\), respectively. (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(C\).
(local)
REAL for psormlq
DOUBLE PRECISION for pdormlq.
Workspace array of dimension of lwork.
(local or global) INTEGER, dimension of the array work; must be at least:
```

If side = 'L',
lwork \geq max((mb_a*(mb_a-1))/2, (mpc0+max mqa0) +
numroc(numroc(m + iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0,
lcmp), nqc0))* mb_a) + mb_a*mb_a
else if side = 'R',
lwork \geq max ((mb_a* (mb_a-1))/2, (mpc0+nqc0)*mb_a + mb_a*mb_a
end if
where
lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpcO = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline c & Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime}\) sub ( \(C\) ), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C)^{*} Q\) \\
\hline work(1) & On exit work (1) contains the minimum value of lwork required for optimum performance. \\
\hline info & \begin{tabular}{l}
(global) INTEGER. \\
\(=0\) : the execution is successful. \\
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
\end{tabular} \\
\hline
\end{tabular}
p?unmlq
Multiplies a general matrix by the unitary matrix \(Q\) of the \(L_{Q}\) factorization formed by p?gelqf.

\section*{Syntax}
```

call pcunmlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunmlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

This routine overwrites the general complex m-by-n distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c\) \(+n-1\) ) with
```

side ='L' side ='R'

```


where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors
```

Q = H(k)' ... H(2)' H(1)'

```
as returned by p?gelqf. \(Q\) is of order mif side = 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
```

side
trans

```
m
n
k
a
ia, ja
desca
tau

C
(global) CHARACTER
\(=\) ' L': Q or \(Q^{H}\) is applied from the left.
\(=^{\prime} R^{\prime}: Q\) or \(Q^{H}\) is applied from the right.
(global) CHARACTER
\(=' \mathrm{~N}\) ', no transpose, \(Q\) is applied.
\(=\) ' C', conjugate transpose, \(Q^{H}\) is applied.
(global) INTEGER. The number of rows in the distributed matrix sub(C) ( \(m \geq 0\) ) .
(global) INTEGER. The number of columns in the distributed matrix sub(C) ( \(n \geq 0\) ) .
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) ' \(R\) ', \(n \geq k \geq 0\).
(local)
COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja
\(+m-1)\) ), if side = 'L', and (lld_a, LOCC(ja+n-1)), if side = 'R', where lld_a \(\geq \max (1\), LOCr \((i a+k-1))\). The \(i\)-th column must contain the vector which defines the elementary reflector \(H(i)\), \(i a \leq i \leq i a+k-1\), as returned by p?gelqf in the \(k\) rows of its distributed matrix argument A(ia:ia+k-1, ja:*). A(ia:ia+k-1, ja:*) is modified by the routine but restored on exit.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq
Array, DIMENSION LOCC(ia+k-1).
Contains the scalar factor tau (i) of elementary reflectors \(H(i)\) as returned by p?gelqf. tau is tied to the distributed matrix \(A\).
(local)
COMPLEX for pcunmlq
\begin{tabular}{|c|c|}
\hline \multirow[b]{4}{*}{ic, jc} & DOUBLE COMPLEX for pzunmlq. \\
\hline & Pointer into the local memory to an array of local dimension (lld_c, \(\operatorname{LOCC}(j c+n-1)\) ). \\
\hline & Contains the local pieces of the distributed matrix sub( \(C\) ) to be factored. \\
\hline & (global) INTEGER. The row and column indices in the global array \(c\) indicating the first row and the first column of the submatrix \(C\), respectively. \\
\hline descc & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(c\). \\
\hline \multirow[t]{4}{*}{work} & (local) \\
\hline & COMPLEX for pcunmlq \\
\hline & DOUBLE COMPLEX for pzunmlq. \\
\hline & Workspace array of dimension of lwork. \\
\hline \multirow[t]{13}{*}{lwork} & (local or global) INTEGER, dimension of the array work; must be at least: If side = 'L', \\
\hline & ```
lwork \geq max((mb_a*(mb_a-1))/2, (mpc0 + max mqa0) +
numroc(numroc(m + iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0,
lcmp), nqc())*mb_a) + mb_a*mb_a
else if side = 'R',
``` \\
\hline & ```
lwork \geqmax((mb_a* (mb_a-1))/2, (mpc0 + nqc0)*mb_a +
mb_a*mb_a
end if
where
``` \\
\hline & ```
lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
``` \\
\hline & icoffa \(=\bmod \left(j a-1, ~ n b \_a\right)\), \\
\hline & ```
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(m + icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),
``` \\
\hline & icoffc \(=\bmod \left(j c-1, n b _c\right)\), \\
\hline & icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW), \\
\hline & \begin{tabular}{l}
iccol \(=\) indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL), \\
mpc0 \(=\) numroc (m+iroffc, mb_c, MYROW, icrow, NPROW),
\end{tabular} \\
\hline & \(n q c 0\) = numroc (n+icoffc, nb_c, MYCOL, iccol, NPCOL), \\
\hline & ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine \\
\hline & NPROW and NPCOL can be determined by calling the subroutine blacs gridinfo. \\
\hline & If 1 work \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla. \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *}\) sub ( \(C\) ), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or sub (C)* \({ }^{*}\)
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```

p?geqlf
Computes the QL factorization of a general matrix.

```

\section*{Syntax}
```

call psgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?geqlf routine forms the \(Q L\) factorization of a real/complex distributed \(m\)-by-n matrix sub (A) = A(ia:ia+m-1, ja:ja+n-1) = \(Q^{\star} L\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & (global) INTEGER. The number of rows in the submatrix \(\operatorname{sub}(Q) ;(m \geq 0)\). \\
\hline \(n\) & (global) INTEGER. The number of columns in the submatrix sub( \(\ell\) ) ( \(n \geq\) \(0)\). \\
\hline \multirow[t]{7}{*}{a} & (local) \\
\hline & REAL for psgeqlf \\
\hline & DOUBLE PRECISION for pdgeqlf \\
\hline & COMPLEX for pcgeqlf \\
\hline & DOUBLE COMPLEX for pzgeqlf \\
\hline & Pointer into the local memory to an array of local dimension (lld_a, \\
\hline & \(\operatorname{LOCC}(j a+n-1))\). Contains the local pieces of the distributed matrix sub(A) to be factored. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A (ia:ia+m-1, ia: ia+n-1), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{6}{*}{work} & (local) \\
\hline & REAL for psgeqlf \\
\hline & DOUBLE PRECISION for pdgeqlf \\
\hline & COMPLEX for pcgeqlf \\
\hline & DOUBLE COMPLEX for pzgeqlf \\
\hline & Workspace array of dimension of lwork. \\
\hline \multirow[t]{7}{*}{lwork} & (local or global) INTEGER, dimension of work, must be at least lwork \(\geq\) nb_a* (mp0 + nq0 + nb_a), where \\
\hline & iroff \(=\bmod \left(i a-1, ~ m b _a\right)\), \\
\hline & iCOff \(=\bmod \left(j a-1, ~ n b _a\right)\), \\
\hline & iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), \\
\hline & iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), \\
\hline & mp0 \(=\) numroc (m+iroff, mb_a, MYROW, iarow, NPROW), \\
\hline & \(n q 0=\) numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL) \\
\hline
\end{tabular}
numroc and indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. If 1 work \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
On exit, if \(m \geq n\), the lower triangle of the distributed submatrix \(A\) (ia+m-n: ia \(+m-1\), ja: ja \(n-1\) ) contains the \(n\)-by- \(n\) lower triangular matrix \(L\); if \(m \leq n\), the elements on and below the \((n-m)\)-th superdiagonal contain the \(m\)-by- \(n\) lower trapezoidal matrix \(L\); the remaining elements, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local)
REAL for psgeqlf
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Array, DIMENSION LOCC (ja+n-1).
Contains the scalar factors of elementary reflectors. tau is tied to the distributed matrix \(A\).
work(1) On exit, work(1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the j-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(j a+k-1) \star \ldots \star H(j a+1) \star H(j a)\)
where \(k=\min (m, n)\)
Each \(H(i)\) has the form
\(H(i)=I-\tan ^{\star} V^{\star} V^{\prime}\)
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(m-k+i+1: m)=0\) and \(v(m-k+i)=\) \(1 ; v(1: m-k+i-1)\) is stored on exit in \(A(i a: i a+m-k+i-2, j a+n-k+i-1)\), and tau in tau (ja+n-k+i-1).
p?orgal
Generates the orthogonal matrix \(Q\) of the \(Q L\)
factorization formed by p?geqle.

\section*{Syntax}
```

call psorgql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorgql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?orgql routine generates the whole or part of \(m\)-by-n real distributed matrix \(Q\) denoting \(A\) (ia:ia+m-1, \(j a: j a+n-1)\) with orthonormal rows, which is defined as the first \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
\[
Q=H(k) \star \ldots \star H(2) \star H(1)
\]
as returned by p?geqle.

\section*{Input Parameters}
\[
m
\]
\[
n
\]
\[
k
\]
a
(global) INTEGER. The number of rows in the submatrix \(\operatorname{sub}(Q),(m \geq 0)\). (global) INTEGER. The number of columns in the submatrix \(\operatorname{sub}(Q)\), ( \(m \geq n \geq 0\) ).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(n \geq k \geq 0)\).
(local)
REAL for psorgql
DOUBLE PRECISION for pdorgql
Pointer into the local memory to an array of local dimension (Ild_a, LOCC ( \(j a+n-1\) )). On entry, the \(j\)-th column must contain the vector which defines the elementary reflector \(H(j), j a+n-k \leq j \leq j a+n-1\), as returned by p?geqlf in the \(k\) columns of its distributed matrix argument \(A(i a: *, j a+n-\) k: ja+n-1).
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A(ia:ia+m-1, ja: ja+n-1), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for psorgql
DOUBLE PRECISION for pdorgql
Array, DIMENSION LOCC (ja+n-1).
Contains the scalar factors \(\operatorname{tau}(j)\) of elementary reflectors \(H(j)\). tau is tied to the distributed matrix \(A\).
(local)
REAL for psorgql
DOUBLE PRECISION for pdorgql
Workspace array of dimension of lwork.
(local or global) INTEGER, dimension of work, must be at least lwork \(\geq\) nb_a* (nqa0 \(\left.+m p a 0+n b _a\right)\), where
iroffa \(=\bmod \left(i a-1, ~ m b _a\right)\),
icoffa \(=\bmod \left(j a-1, ~ n b _a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), mpa0 = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW), nqa0 \(=\) numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
```

work(1)

```
info

Contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(Q\) to be factored.
On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?ungql \\ Generates the unitary matrix \(Q\) of the QL factorization \\ formed by p?geqle.}

\section*{Syntax}
```

call pcungql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzungql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

This routine generates the whole or part of \(m-b y-n\) complex distributed matrix \(Q\) denoting \(A(i a: i a+m-1\), \(j a: j a+n-1\) ) with orthonormal rows, which is defined as the first \(n\) columns of a product of \(k\) elementary reflectors of order \(m\)
\(Q=(H(k))^{H} \ldots{ }^{\star}(H(2))^{H_{\star}}(H(1))^{H}\) as returned by p?geqle.

\section*{Input Parameters}
m
n
k
a
ia, ja
(global) INTEGER. The number of rows in the submatrix \(\operatorname{sub}(Q)(m \geq 0)\). (global) INTEGER. The number of columns in the submatrix sub(Q) ( \(m \geq n \geq 0\) ).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(n \geq k \geq 0)\).
(local)
COMPLEX for pcungql
DOUBLE COMPLEX for pzungql Pointer into the local memory to an array of local dimension (IId_a, \(\operatorname{LOCC}(j a+n-1))\). On entry, the \(j\)-th column must contain the vector which defines the elementary reflector \(H(j)\), \(j a+n-k \leq j \leq\) \(j a+n-1\), as returned by p?geqlf in the \(k\) columns of its distributed matrix argument \(A\left(i a:^{*}, j a+n-k: j a+n-1\right)\).
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\) (ia:ia \(+m-1, j a: j a+n-1)\), respectively.


\section*{Output Parameters}
```

a
work(1)
info (global) INTEGER.
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had an illegal value,
then info = - (i* 100+j), if the i-th argument is a scalar and had an
illegal value, then info = -i.

```
```

p?ormql
Multiplies a general matrix by the orthogonal matrix Q
of the QL factorization formed by p?geqle.

```

\section*{Syntax}
```

call psormql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pdormql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p ?ormql routine overwrites the general real m-by-n distributed matrix sub(C) =C(ic:ic+m-1,jc:jc \(+n-1\) ) with
```

side ='L' side ='R'

```


where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
```

Q = H(k)' ... H(2)' H(1)'

```
as returned by p?geqle. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) ' R'.

\section*{Input Parameters}
```

side
trans

```
m
n
k
a
ia, ja
desca
tau

C
(global) CHARACTER
\(=\) 'L': Q or \(Q^{T}\) is applied from the left.
\(=^{\prime} R^{\prime}: Q\) or \(Q^{T}\) is applied from the right.
(global) CHARACTER
\(=\) ' \(N^{\prime}\), no transpose, \(Q\) is applied.
\(=\) 'T', transpose, \(Q^{T}\) is applied.
(global) INTEGER. The number of rows in the distributed matrix sub(C), ( \(m \geq 0\) ) .
(global) INTEGER. The number of columns in the distributed matrix sub(c), ( \(n \geq 0\) ) .
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) ' R ', \(n \geq k \geq 0\).
(local)
REAL for psormql
DOUBLE PRECISION for pdormql.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+k-1)\) ). The \(j\)-th column must contain the vector which defines the elementary reflector \(H(j), j a \leq j \leq j a+k-1\), as returned by p?gelqf in the \(k\) columns of its distributed matrix argument A(ia:*, ja:ja+k-1).A(ia:*, \(j a: j a+k-1)\) is modified by the routine but restored on exit.
If side \(=\) 'L',lld_a \(\geq \max (1\), LOCr(ia+m-1)),
If side \(=\) 'R', lld_a \(\geq \max (1, \operatorname{LOCr}(i a+n-1))\).
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for psormql
DOUBLE PRECISION for pdormql.
Array, DIMENSION LOCC (ja+n-1).
Contains the scalar factor tau ( \(j\) ) of elementary reflectors \(H(j)\) as returned by p?geqlf. tau is tied to the distributed matrix \(A\).
(local)
REAL for psormql


\section*{Output Parameters}

Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *}\) sub ( \(C\) ), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C) *{ }_{Q}\)
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?unmql}

Multiplies a general matrix by the unitary matrix \(Q\) of the QL factorization formed by p?geqle.

Syntax
```

call pcunmql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunmql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

This routine overwrites the general complex m-by-n distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c\) \(+n-1\) ) with
```

 side ='L' side ='R'
    ```


where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors
```

Q = H(k)' ... H(2)' H(1)'

```
as returned by p?geqle. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) 'R'.

\section*{Input Parameters}
```

side (global) CHARACTER

```

```

='R':Q or Q Q is applied from the right.
trans
(global) CHARACTER
= 'N', no transpose, Q is applied.
= ' C', conjugate transpose, Q is applied.
(global) INTEGER. The number of rows in the distributed matrix sub(C) ($m \geq 0$) .

```
(global) INTEGER. The number of columns in the distributed matrix sub(C) ( \(n \geq 0\) ) .
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) ' \(\mathbf{R '}^{\prime}, n \geq k \geq 0\).
(local)
COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+k-1)\) ). The \(j\)-th column must contain the vector which defines the elementary reflector \(H(j)\), \(j a \leq j \leq j a+k-1\), as returned by p?geqlf in the \(k\) columns of its distributed matrix argument A(ia:*, ja:ja+k-1).A(ia:*, \(j a: j a+k-1)\) is modified by the routine but restored on exit.
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& \text { If side }=\text { 'L', lld_a } \geq \max (1, \operatorname{LOCr}(i a+m-1)) \text {, } \\
& \text { If side }=' R ', \quad \text { lld_a } \geq \max (1, \operatorname{LOCr}(i a+n-1)) .
\end{aligned}
\] \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{5}{*}{tau} & (local) \\
\hline & COMPLEX for pcunmql \\
\hline & DOUBLE COMPLEX for pzunmql \\
\hline & Array, DIMENSION LOCC (ia+n-1). \\
\hline & Contains the scalar factor \(\operatorname{tau}(j)\) of elementary reflectors \(H(j)\) as returned by p?geqle. tau is tied to the distributed matrix \(A\). \\
\hline \multirow[t]{5}{*}{C} & (local) \\
\hline & COMPLEX for pcunmql \\
\hline & DOUBLE COMPLEX for pzunmql. \\
\hline & Pointer into the local memory to an array of local dimension (lld_c, \\
\hline & Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored. \\
\hline ic, jc & (global) INTEGER. The row and column indices in the global array c indicating the first row and the first column of the submatrix \(C\), respectively. \\
\hline descc & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(c\). \\
\hline \multirow[t]{4}{*}{work} & (local) \\
\hline & COMPLEX for pcunmql \\
\hline & DOUBLE COMPLEX for pzunmql. \\
\hline & Workspace array of dimension of lwork. \\
\hline \multirow[t]{16}{*}{Iwork} & (local or global) INTEGER, dimension of work, must be at least: \\
\hline & If side = 'L', \\
\hline & \[
\begin{aligned}
& \text { lwork } \geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2,(n q c 0+\operatorname{mpc} 0) * n b _a+n b _a^{*} n b _a\right. \\
& \text { else if side }=\text { 'R', }
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \text { lwork } \geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2, \quad(n q C 0+\max n p a 0)+\right. \\
& \text { numroc (numroc }\left(n+i c o f f_{C}, n b _a, 0,0, N P C O L\right), n b _a, 0,0,
\end{aligned}
\] \\
\hline & ```
lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
where
``` \\
\hline & ```
lcmp = lcm/NPCOL with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
``` \\
\hline & icoffa \(=\bmod \left(j a-1, ~ n b _a\right)\), \\
\hline & iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), \\
\hline & npa0 \(=\) numroc ( \(\left.n+i r o f f a, ~ m b _a, ~ M Y R O W, ~ i a r o w, ~ N P R O W\right), ~\) iroffc \(=\bmod (i c-1, \mathrm{mb} c)\), \\
\hline & icoffc \(=\bmod \left(j c-1, ~ n b _c\right)\), \\
\hline & icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW), \\
\hline & iccol \(=\) indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL), \\
\hline & \(m p c 0=\) numroc (m+iroffc, mb_c, MYROW, icrow, NPROW), \\
\hline & \(n q c 0=\) numroc (n+icoffc, nb_c, MYCOL, iccol, NPCOL), \\
\hline & ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, \\
\hline & NPROW and NPCOL can be determined by calling the subroutine \\
\hline
\end{tabular}

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
```

C
work(1)
info
Overwritten by the product $Q^{*} \operatorname{sub}(C)$, or $Q^{\prime} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{\prime}$, or sub(C) ${ }^{*} Q$
On exit work(1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
$=0$: the execution is successful.
< 0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

```
p?gerqf
Computes the \(R Q\) factorization of a general rectangular matrix.

Syntax
```

call psgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

```

Include files
- C: mkl_scalapack.h

\section*{Description}

The p?gerqf routine forms the \(Q R\) factorization of a general \(m\)-by- \(n\) distributed matrix sub \((A)=A\) (ia:ia \(+m-1, j a: j a+n-1)\) as
\(A=R^{\star} Q\)

\section*{Input Parameters}
m
n
a
(global) INTEGER. The number of rows in the distributed submatrix sub(A); ( \(m \geq 0\) ) .
(global) INTEGER. The number of columns in the distributed submatrix \(\operatorname{sub}(A) ;(n \geq 0)\).
(local)
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Pointer into the local memory to an array of local dimension (lld_a, LOCC (ja+n-1)).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be factored.
```

ia, ja
desca
work
lwork
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A (ia:ia $+m-1, j a: j a+n-1)$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A
(local).
REAL for psgeqrf
DOUBLE PRECISION for pdgeqre.
COMPLEX for pcgeqrf.
DOUBLE COMPLEX for pzgeqrf
Workspace array of dimension lwork.
lwork
(local or global) INTEGER, dimension of work, must be at least 1 work \geq $m b \_a^{*}\left(m p 0+n q 0+m b \_a\right)$, where
iroff $=\bmod \left(i a-1, m b \_a\right)$,
icoff $=\bmod \left(j a-1, n b \_a\right)$,
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW), nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL) and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}
a
On exit, if \(m \leq n\), the upper triangle of \(A(i a: i a+m-1, j a: j a+n-1)\) contains the \(m\)-by- \(m\) upper triangular matrix \(R\); if \(m \geq n\), the elements on and above the ( \(m-n\) )-th subdiagonal contain the \(m\)-by- \(n\) upper trapezoidal matrix \(R\); the remaining elements, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).

REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Array, DIMENSION LOCr (ia+m-1).
Contains the scalar factor tau of elementary reflectors. tau is tied to the distributed matrix \(A\).
On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\), the execution is successful.
\(<0\), if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(i a) * H(i a+1) * \ldots * H(i a+k-1)\),
where \(k=\min (m, n)\).
Each \(H(i)\) has the form
\(H(i)=I-t a u^{\star} V^{\star} V^{\prime}\)
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(n-k+i+1: n)=0\) and \(v(n-k+i)=\) 1; \(v(1: n-k+i-1)\) is stored on exit in \(A(i a+m-k+i-1, j a: j a+n-k+i-2)\), and tau in tau(ia+m-k+i-1).
```

p?orgrq
Generates the orthogonal matrix Q of the RQ
factorization formed by p?gerqf.

```

\section*{Syntax}
```

call psorgrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorgrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```
Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?orgrq routine generates the whole or part of \(m-b y-n\) real distributed matrix \(Q\) denoting \(A(i a: i a+m-1\), \(j a: j a+n-1)\) with orthonormal columns, which is defined as the last \(m\) rows of a product of \(k\) elementary reflectors of order \(m\)
```

Q=H(1)*H(2)* .. * H(k)

```
as returned by p?gerqf.

\section*{Input Parameters}
```

m
n
k
a
ia, ja
desca
tau
(global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(Q),(m \geq 0)$.
(global) INTEGER. The number of columns in the submatrix sub(ℓ), ($n \geq m \geq 0$).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(m \geq k \geq 0)$.
(local)
REAL for psorgrq
DOUBLE PRECISION for pdorgra
Pointer into the local memory to an array of local dimension (lld_a, $\operatorname{LOCC}(j a+n-1))$. The i-th column must contain the vector which defines the elementary reflector $H(i), j a \leq j \leq j a+k-1$, as returned by p?gerqf in the k columns of its distributed matrix argument $A(i a: *, j a: j a+k-1)$.

```
ia, ja
desca
tau
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\) (ia:ia \(+m-1, j a: j a+n-1)\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for psorgrq
DOUBLE PRECISION for pdorgrq
Array, DIMENSION LOCC (ja+k-1).
\begin{tabular}{|c|c|}
\hline & Contains the scalar factor tau(i) of elementary reflectors \(H(i)\) as returned by p?gerqf. tau is tied to the distributed matrix \(A\). \\
\hline \multirow[t]{4}{*}{work} & (local) \\
\hline & REAL for psorgrq \\
\hline & DOUBLE PRECISION for pdorgrq \\
\hline & Workspace array of dimension of lwork. \\
\hline \multirow[t]{12}{*}{lwork} & (local or global) INTEGER, dimension of work, must be at least \\
\hline & lwork \(\geq\) mb_a*(mpa0 + nqa0 + mb_a), where \\
\hline & iroffa \(=\) mod (ia-1, mb_a), \\
\hline & icoffa \(=\bmod \left(j a-1, ~ n b _a\right)\), \\
\hline & iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), \\
\hline & iacol \(=\) indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL), \\
\hline & mpa0 = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW), \\
\hline & nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL) \\
\hline & indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs gridinfo. \\
\hline & If 1 work \(=-1\), then lwork is global input and a workspace query is \\
\hline & assumed; the routine only calculates the minimum and optimal size for all work arrays. Fach of these values is returned in the first entry of the \\
\hline & corresponding work array, and no error message is issued by pererbla. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

a
work(1)

```
info (global) INTEGER.
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value,
then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an
illegal value, then info \(=-i\).

\section*{p?ungrq}

Generates the unitary matrix \(Q\) of the \(R Q\) factorization
formed by p?gerqf.
Syntax
```

call pcungrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzungrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

This routine generates the \(m\)-by-n complex distributed matrix \(Q\) denoting A(ia:ia+m-1, ja:ja+n-1) with orthonormal rows, which is defined as the last \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
\[
Q=(H(1))^{H_{\star}}(H(2))^{H_{\star}} \ldots \ldots^{\star}(H(k))^{H} \text { as returned by p?gerqf. }
\]

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & (global) INTEGER. The number of columns in the submatrix sub( \(\ell\) ) ( \(n \geq m \geq 0\) ). \\
\hline k & (global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(m \geq k \geq 0)\). \\
\hline \multirow[t]{4}{*}{a} & (local) \\
\hline & COMPLEX for pcungrq \\
\hline & DOUBLE COMPLEX for pzungrqc \\
\hline & Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+n-1)\) ). The \(i\)-th row must contain the vector which defines the elementary reflector \(H(i)\), \(i a+m-k \leq i \leq i a+m-1\), as returned by p?gerqf in the \(k\) rows of its distributed matrix argument \(A(i a+m-k: i a+m-1\), ja:*). \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{5}{*}{tau} & (local) \\
\hline & COMPLEX for pcungrq \\
\hline & DOUBLE COMPLEX for pzungrq \\
\hline & Array, DIMENSION LOCr (ia+m-1). \\
\hline & Contains the scalar factor tau (i) of elementary reflectors \(H(i)\) as returned by p?gerqf. tau is tied to the distributed matrix \(A\). \\
\hline \multirow[t]{4}{*}{work} & (local) \\
\hline & COMPLEX for pcungrq \\
\hline & DOUBLE COMPLEX for pzungrq \\
\hline & Workspace array of dimension of lwork. \\
\hline \multirow[t]{8}{*}{lwork} & (local or global) INTEGER, dimension of work, must be at least lwork \(\geq\) \(m b _a *\left(m p a 0+n q a 0+m b _a\right)\), where \\
\hline & iroffa \(=\bmod \left(i a-1, ~ m b _a\right)\), \\
\hline & icoffa \(=\bmod \left(j a-1, ~ n b _a\right)\), \\
\hline & iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), \\
\hline & \[
\begin{aligned}
& \text { iacol }=\text { indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), } \\
& \text { mpaO = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW), }
\end{aligned}
\] \\
\hline & nqa0 \(=\) numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL) \\
\hline & indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. \\
\hline & If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

a

```
work(1)
info

Contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(Q\).
On exit work(1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```

p?ormrq
Multiplies a general matrix by the orthogonal matrix Q
of the RQ factorization formed by p?gerqf.

```

Syntax
```

call psormrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pdormrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?ormrq routine overwrites the general real m-by-n distributed matrix sub(C) = C(ic:ic+m-1,jc:jc \(+n-1\) ) with
```

 side ='L' side ='R'
    ```

```

trans = 'T': 林

```
where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
```

Q = H(1) H(2) ... H(k)

```
as returned by p?gerqf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
```

side (global) CHARACTER
='L':Q or QT
='R':Q or Q Q is applied from the right.
trans
(global) CHARACTER
= 'N', no transpose, Q is applied.
='T', transpose, QT is applied.

```
m
n
k
a
(global) INTEGER. The number of rows in the distributed matrix sub(C)
( \(m \geq 0\) ) .
(global) Integer. The number of columns in the distributed matrix sub(c) ( \(n \geq 0\) ).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(\varrho\). Constraints:
If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) 'R', \(n \geq k \geq 0\).
a
(local)
REAL for psormqr
DOUBLE PRECISION for pdormqr.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+m-1)\) ) if side \(=\) 'L', and (lld_a, LOCC(ja+n-1)) if side = 'R'.

The \(i\)-th row must contain the vector which defines the elementary reflector \(H(i), i a \leq i \leq i a+k-1\), as returned by p?gerqf in the \(k\) rows of its distributed matrix argument \(A(i a: i a+k-1, j a: *) . A(i a: i a+k-1, j a: *)\) is modified by the routine but restored on exit.
ia, ja
desca
tau
lwork
c
ic, jc
descc
work
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for psormqr
DOUBLE PRECISION for pdormqr
Array, DIMENSION LOCC ( \(j a+k-1\) ).
Contains the scalar factor tau (i) of elementary reflectors \(H(i)\) as returned by p?gerqf. tau is tied to the distributed matrix \(A\).
(local)
REAL for psormrq
DOUBLE PRECISION for pdormrq
Pointer into the local memory to an array of local dimension (lld_c, LOCC (jc+n-1)).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
(global) INTEGER. The row and column indices in the global array \(c\)
indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(C\).
(local)
REAL for psormrq
DOUBLE PRECISION for pdormrq.
Workspace array of dimension of 1 work.
(local or global) INTEGER, dimension of work, must be at least:
If side = 'L',
lwork \(\geq \max \left(\left(m b _a^{\star}\left(m b _a-1\right)\right) / 2,(m p c 0+\max (m q a 0+\right.\)
numroc (numroc (n+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0,
lcmp), \(n q(0))\) *mb_a) + mb_a*mb_a
else if side ='R',
lwork \(\geq \max \left(\left(m b _a *\left(m b _a-1\right)\right) / 2,(m p c 0+n q c 0) * m b _a\right)+\)
\(m b _a * m b _a\)
end if
where
lcmp \(=1 \mathrm{~cm} / \mathrm{NPROW}\) with \(l \mathrm{~cm}=\mathrm{ilcm}\) (NPROW, NPCOL), iroffa \(=\bmod \left(i a-1, m b _a\right)\),
icoffa \(=\bmod \left(j a-1, n b _a\right)\),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 \(=\) numroc (n+iCoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc \(=\bmod \left(i c-1, m b _c\right)\),
icoffc \(=\bmod \left(j c-1, n b _c\right)\),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol \(=\) indxg2p(jc, nb_c, MYCOL, CSrc_c, NPCOL),
mpcO = numroc (m+iroffc, mb_c, MYROW, icrow, NPROW),
\(n q c 0=\) numroc (n+icoffc, nb_c, MYCOL, icCol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If lwork \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline c & Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *}\) sub ( \(C\) ), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C)^{*} \ell\) \\
\hline work(1) & On exit work (1) contains the minimum value of lwork required for optimum performance. \\
\hline info & \begin{tabular}{l}
(global) INTEGER. \\
\(=0\) : the execution is successful. \\
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
\end{tabular} \\
\hline
\end{tabular}
p?unmrq
Multiplies a general matrix by the unitary matrix \(Q\) of the \(R Q\) factorization formed by p?gerqf.

\section*{Syntax}
```

call pcunmrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunmrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

This routine overwrites the general complex m-by-n distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\) with
```

 side ='L' side ='R'
 trans = 'N': 急sub(C) sub(C)*Q

```

where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors
```

Q = H(1)' H(2)'... H(k)'

```
as returned by p?gerqf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
\begin{tabular}{ll} 
side & (global) CHARACTER \\
& \(=' L^{\prime}: Q\) or \(Q^{H}\) is applied from the left. \\
& \(=' R^{\prime}: Q\) or \(Q^{H}\) is applied from the right. \\
trans & (global) CHARACTER
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
= ' N ', no transpose, \(Q\) is applied. \\
\(=^{\prime} C^{\prime}\), conjugate transpose, \(Q^{H}\) is applied.
\end{tabular} \\
\hline m & (global) INTEGER. The number of rows in the distributed matrix sub(c), ( \(m \geq 0\) ) . \\
\hline \(n\) & (global) INTEGER. The number of columns in the distributed matrix sub(c), ( \(n \geq 0\) ) . \\
\hline k & \begin{tabular}{l}
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints: \\
If side \(=\) 'L', \(m \geq k \geq 0\) \\
If side \(=\) 'R', \(n \geq k \geq 0\).
\end{tabular} \\
\hline \multirow[t]{4}{*}{a} & (local) \\
\hline & COMPLEX for pcunmrq \\
\hline & DOUBLE COMPLEX for pzunmrq. \\
\hline & Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+m-1)\) ) if side = 'L', and (lld_a, LOCC(ja+n-1)) if side = 'R'. The \(i\)-th row must contain the vector which defines the elementary reflector \(H(i), i a \leq i \leq i a+k-1\), as returned by p?gerqf in the \(k\) rows of its distributed matrix argument \(A(i a: i a+k-1, ~ j a *) . A(i a: i a+k-1, ~ j a *)\) is modified by the routine but restored on exit. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{5}{*}{tau} & (local) \\
\hline & COMPLEX for pcunmrq \\
\hline & DOUBLE COMPLEX for pzunmrq \\
\hline & Array, DIMENSION LOCC (ja+k-1). \\
\hline & Contains the scalar factor tau (i) of elementary reflectors \(H(i)\) as returned by p?gerqf. tau is tied to the distributed matrix \(A\). \\
\hline \multirow[t]{5}{*}{C} & (local) \\
\hline & COMPLEX for pcunmrq \\
\hline & DOUBLE COMPLEX for pzunmrq. \\
\hline & Pointer into the local memory to an array of local dimension (lld_c, LOCC(jc+n-1)). \\
\hline & Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored. \\
\hline ic, jc & (global) INTEGER. The row and column indices in the global array \(c\) indicating the first row and the first column of the submatrix \(C\), respectively. \\
\hline descc & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(C\). \\
\hline \multirow[t]{4}{*}{work} & (local) \\
\hline & COMPLEX for pcunmrq \\
\hline & DOUBLE COMPLEX for pzunmrq. \\
\hline & Workspace array of dimension of lwork. \\
\hline \multirow[t]{2}{*}{lwork} & (local or global) INTEGER, dimension of work, must be at least: If side = 'L', \\
\hline & ```
lwork \geqmax((mb_a*(mb_a-1))/2, (mpc0 +
max(mqa0+numroc(numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a,
0, 0, lcmp), nqc0))*mb_a) + mb_a*mb_a
else if side = 'R',
``` \\
\hline
\end{tabular}
```

lwork \geq max((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) +
mb_a*mb_a
end if
where
lcmp = lcm/NPROW with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}
```

C
work(1)
info
Overwritten by the product $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime *} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{\prime}$, or $\operatorname{sub}(C) *$ Q
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

```

\section*{p?tzrzf}

Reduces the upper trapezoidal matrix A to upper
triangular form.
Syntax
```

call pstzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdtzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pctzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pztzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?tzrzf routine reduces the \(m\)-by \(-n(m \leq n)\) real/complex upper trapezoidal matrix sub (A) = (ia: ia \(+m-1, j a: j a+n-1)\) to upper triangular form by means of orthogonal/unitary transformations. The upper trapezoidal matrix \(A\) is factored as
\[
A=\left(\begin{array}{ll}
R & 0
\end{array}\right) * Z,
\]
where \(z\) is an \(n\)-by- \(n\) orthogonal/unitary matrix and \(R\) is an \(m\)-by-m upper triangular matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & (global) INTEGER. The number of rows in the submatrix \(\operatorname{sub}(A) ;(m \geq 0)\). \\
\hline \(n\) & (global) INTEGER. The number of columns in the submatrix \(\operatorname{sub}(A)(n \geq 0)\). \\
\hline \multirow[t]{6}{*}{a} & (local) \\
\hline & REAL for pstzrzf \\
\hline & DOUBLE PRECISION for pdtzrzf. \\
\hline & COMPLEX for pctzrzf. \\
\hline & DOUBLE COMPLEX for pztzrzf. \\
\hline & Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+n-1)\)). Contains the local pieces of the \(m\)-by-n distributed matrix sub (A) to be factored. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{6}{*}{work} & (local) \\
\hline & REAL for pstzrzf \\
\hline & DOUBLE PRECISION for pdtzrzf. \\
\hline & COMPLEX for pctzrzf. \\
\hline & DOUBLE COMPLEX for pztzrzf. \\
\hline & Workspace array of dimension of lwork. \\
\hline \multirow[t]{11}{*}{lwork} & (local or global) INTEGER, dimension of work, must be at least lwork \(\geq\) \(m b \_a *\left(m p 0+n q 0+m b \_a\right)\), where \\
\hline & iroff \(=\bmod \left(i a-1, ~ m b \_a\right)\), \\
\hline & icoff \(=\bmod \left(j a-1, ~ n b \_a\right)\), \\
\hline & iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), \\
\hline & iacol \(=\) indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL), \\
\hline & \(m p 0\) = numroc (m+iroff, mb_a, MYROW, iarow, NPROW), \\
\hline & nq0 = numroc (\(n+i C O f f, ~ n b\) a, MYCOL, iacol, NPCOL) \\
\hline & indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs gridinfo. \\
\hline & If 1 work \(=-1\), then lwork is global input and a workspace query is \\
\hline & assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the \\
\hline & corresponding work array, and no error message is issued by pxerbla. \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, the leading m-by-m upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular matrix \(R\), and elements \(m+1\) to \(n\) of the first \(m\) rows of sub (A), with the array tau, represent the orthogonal/unitary matrix \(z\) as a product of \(m\) elementary reflectors.
```

work(1) On exit work(1) contains the minimum value of lwork required for
optimum performance.
tau
(local)
REAL for pstzrzf
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf.
DOUBLE COMPLEX for pztzrzf.
Array, DIMENSION LOCr(ia+m-1).
Contains the scalar factor of elementary reflectors. tau is tied to the
distributed matrix A.
info (global) INTEGER.
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had an illegal value,
then info = - (i* 100+j), if the i-th argument is a scalar and had an
illegal value, then info = -i.

```

\section*{Application Notes}

The factorization is obtained by the Householder's method. The \(k\)-th transformation matrix, \(z(k)\), which is or whose conjugate transpose is used to introduce zeros into the (\(m-k+1\)) -th row of \(\operatorname{sub}(A)\), is given in the form
\[
Z(k)=\left[\begin{array}{cc}
i & 0 \\
0 & \mathrm{~T}(k)
\end{array}\right]
\]
where
```

T(k) = i - tau*u(k)*u(k)',

```
\[
u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
\]
tau is a scalar and \(Z(k)\) is an \((n-m)\) element vector. tau and \(Z(k)\) are chosen to annihilate the elements of the \(k\)-th row of \(\operatorname{sub}(A)\). The scalar tau is returned in the \(k\)-th element of \(\operatorname{tau}\) and the vector \(u(k)\) in the \(k\)-th row of \(\operatorname{sub}(A)\), such that the elements of \(Z(k)\) are in \(a(k, m+1), \ldots, a(k, n)\). The elements of \(R\) are returned in the upper triangular part of \(\operatorname{sub}(A) . z\) is given by
```

Z = Z(1) * Z(2) *... * Z(m).

```

\section*{p?ormrz}

Multiplies a general matrix by the orthogonal matrix from a reduction to upper triangular form formed by p?tzrzf.

\section*{Syntax}
```

call psormrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pdormrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)

```

\section*{Include files}
- C: mkl_scalapack.h

\section*{Description}

This routine overwrites the general real m-by-n distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\) with
```

side ='L' side = 'R'
trans = 'N': 暗sub(C) sub(C)*Q

```

where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
```

Q = H(1) H(2)... H(k)

```
as returned by p?tzrzf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side = 'R'.
Input Parameters
side (global) CHARACTER
\(=\) 'L': \(Q\) or \(Q^{T}\) is applied from the left.
\(={ }^{\prime} R^{\prime}: Q\) or \(Q^{T}\) is applied from the right.
trans (global) CHARACTER
\(=' N^{\prime}\), no transpose, \(Q\) is applied.
\(=\) 'T', transpose, \(Q^{T}\) is applied.
m
n
k

1
a
ia, ja
desca
(global) INTEGER. The number of rows in the distributed matrix sub (\(C\)) (\(m \geq 0\)) .
(global) INTEGER. The number of columns in the distributed matrix sub (\(C\)) (\(n \geq 0\)) .
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) 'R', \(n \geq k \geq 0\).
(global)
The columns of the distributed submatrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors.
If side \(=\) 'L', \(m \geq 1 \geq 0\)
If side \(=\) ' R ', \(n \geq 1 \geq 0\).
(local)
REAL for psormrz
DOUBLE PRECISION for pdormrz.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja
\(+m-1)\)) if side \(=\) 'L', and (IId_a, LOCC (ja+n-1)) if side \(=\) ' \(\mathrm{R}^{\prime}\), where lld_a \(\geq \max (1, \operatorname{LOCr}(i a+k-1))\).
The \(i\)-th row must contain the vector which defines the elementary reflector \(H(i), i a \leq i \leq i a+k-1\), as returned by p?tzrzf in the \(k\) rows of its distributed matrix argument \(A(i a: i a+k-1, j a: *) . A(i a: i a+k-1, j a: *)\) is modified by the routine but restored on exit.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).

\section*{Output Parameters}
```

work(1) On exit work(1) contains the minimum value of lwork required for
optimum performance.
info (global) INTEGER.
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had an illegal value,
then info = - (i* 100+j), if the i-th argument is a scalar and had an
illegal value, then info = -i.

```
p?unmiz
Multiplies a general matrix by the unitary transformation matrix from a reduction to upper triangular form determined by p?tzrzf.

\section*{Syntax}
```

call pcunmrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunmrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)

```

\section*{Include files}
- C: mkl_scalapack.h

\section*{Description}

This routine overwrites the general complex m-by-n distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\) with
```

                                    side ='L' side ='R'
    trans = 'N': 暗sub(C) sub(C)*Q

```

where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors
```

Q = H(1)' H(2)'... H(k)'

```
as returned by pctzrzf/pztzrzf. \(Q\) is of order mif side = 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{side} & (global) CHARACTER \\
\hline & \(=L^{\prime} \mathrm{L}: Q\) or \(Q^{H}\) is applied from the left. \\
\hline & = 'R' : Q or \(Q^{H}\) is applied from the right. \\
\hline \multirow[t]{3}{*}{trans} & (global) CHARACTER \\
\hline & \(={ }^{\prime} N^{\prime}\) ', no transpose, \(Q\) is applied. \\
\hline & \(=\) ' C', conjugate transpose, \(Q^{H}\) is applied. \\
\hline m & (global) INTEGER. The number of rows in the distributed matrix sub(c), (\(m \geq 0\)) . \\
\hline \(n\) & (global) INTEGER. The number of columns in the distributed matrix sub(c), (\(n \geq 0\)) . \\
\hline \multirow[t]{3}{*}{k} & (global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints: \\
\hline & If side \(=\) 'L', m \(\mathrm{L} \geq \mathrm{k} \geq 0\) \\
\hline & If side = 'R', \(n \geq k \geq 0\) \\
\hline
\end{tabular}
```

I
a
ia, ja
desca
tau
c
ic, jc
descc
work
lwork
(global) INTEGER. The columns of the distributed submatrix sub(A) containing the meaningful part of the Householder reflectors.
If side $=$ 'L', $m \geq 1 \geq 0$
If side $=$ 'R', $n \geq 1 \geq 0$.

```
a
ia, ja
desca
tau
ic, jc
descc
work
l work
(local)
COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+m-1)\)) if side = 'L', and (lld_a, LOCC(ja+n-1)) if side = 'R', where lld_a \(\geq \max (1, \operatorname{LOCr}(j a+k-1))\). The \(i\)-th row must contain the vector which defines the elementary reflector \(H(i)\), \(i a \leq i \leq i a+k-1\), as returned by \(p\) ?gerqf in the \(k\) rows of its distributed matrix argument A(ia:ia \(+k-1\), ja*). A(ia:ia \(\left.+k-1, j a^{*}\right)\) is modified by the routine but restored on exit.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz
Array, DIMENSION LOCC (ia+k-1).
Contains the scalar factor tau (i) of elementary reflectors \(H(i)\) as returned by p?gerqf. tau is tied to the distributed matrix \(A\).
(local)
COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz.
Pointer into the local memory to an array of local dimension (lld_c, \(\operatorname{LOCC}(j c+n-1)\)).
Contains the local pieces of the distributed matrix sub(\(C\)) to be factored.
(global) INTEGER. The row and column indices in the global array \(c\)
indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(C\).
(local)
COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz.
Workspace array of dimension lwork.
(local or global) INTEGER, dimension of work, must be at least:
If side = 'L',
lwork \(\geq \max \left(\left(m b \_a^{*}\left(m b \_a-1\right)\right) / 2\right.\),
(mpc0+max (mqa0+numroc (numroc (n+iroffc, mb_a, 0, 0, NPROW), \(\left.\left.\left.m b \_a, 0,0,1 c m p\right), n q(0)\right) * m b \_a\right)+m b \_a * m b \_a\)
else if side ='R',
lwork \(\geq \max \left(\left(m b \_a^{\star}\left(m b \_a-1\right)\right) / 2,(m p c 0+n q c 0) * m b \_a\right)+m b \_a^{\star} m b \_a\)
end if
where
lcmp = lcm/NPROW with lcm = ilcm(NPROW, NPCOL),
iroffa \(=\) mod (ia-1, mb_a),
icoffa \(=\bmod \left(j a-1, ~ n b \_a\right)\),
```

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}

C
work(1)
info

Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *}\) sub (\(C\)), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or sub(C)*Q
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?ggqrf}

Computes the generalized QR factorization.

\section*{Syntax}
```

call psggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork,
info)
call pdggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork,
info)
call pcggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork,
info)
call pzggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork,
info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?ggqrf routine forms the generalized \(Q R\) factorization of an \(n\)-by-m matrix
```

sub(A) = A(ia:ia+n-1, ja:ja+m-1)

```
and an \(n\)-by- \(p\) matrix
```

sub(B) = B(ib:ib+n-1, jb:jb+p-1):

```
as
\(\operatorname{sub}(A)=Q^{\star} R, \operatorname{sub}(B)=Q^{\star} T * Z\),
where \(Q\) is an \(n-b y-n\) orthogonal/unitary matrix, \(Z\) is a \(p\)-by- \(p\) orthogonal/unitary matrix, and \(R\) and \(T\) assume one of the forms:

If \(n \geq m\)
\[
R=\binom{R_{11}}{0} n \begin{gathered}
m \\
n-m
\end{gathered}
\]
m
or if \(n<m\)
\[
\begin{array}{r}
R=\left(\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right) n \\
n \\
m-n
\end{array}
\]
where \(R_{11}\) is upper triangular, and
\[
\left.\begin{array}{c}
T=\left(\begin{array}{ll}
0 & T_{12}
\end{array}\right) n, \text { if } n \leq p \\
p-n \\
n
\end{array}\right)=\binom{T_{11}}{T_{21}}\binom{n-p}{p}, \text { if } n>p, ~ \begin{gathered}
p \\
\text { or } T
\end{gathered}
\]
where \(T_{12}\) or \(T_{21}\) is an upper triangular matrix.
In particular, if \(\operatorname{sub}(B)\) is square and nonsingular, the \(G Q R\) factorization of \(\operatorname{sub}(A)\) and \(\operatorname{sub}(B)\) implicitly gives the \(Q R\) factorization of inv \((\operatorname{sub}(B))^{*} \operatorname{sub}(A):\)
```

inv(\operatorname{sub}(B))*\operatorname{sub}(A)= Z Z**(inv(T)*R)

```

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & (global) INTEGER. The number of rows in the distributed matrices sub (A) and \(\operatorname{sub}(B)(n \geq 0)\). \\
\hline m & (global) INTEGER. The number of columns in the distributed matrix sub(A) (\(m \geq 0\)). \\
\hline \(p\) & INTEGER. The number of columns in the distributed matrix \(\operatorname{sub}(B)(p \geq 0)\) \\
\hline a & (local) \\
\hline & REAL for psggqrf \\
\hline & DOUBLE PRECISION for pdggqrf \\
\hline & COMPLEX for pcggqrf \\
\hline & DOUBLE COMPLEX for pzggqrf. \\
\hline & Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+m-1)\)). Contains the local pieces of the \(n-b y-m\) matrix \(\operatorname{sub}(A)\) to be factored. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{6}{*}{b} & (local) \\
\hline & REAL for psggqrf \\
\hline & DOUBLE PRECISION for pdggqre \\
\hline & COMPLEX for pcggqrf \\
\hline & DOUBLE COMPLEX for pzggqrf. \\
\hline & Pointer into the local memory to an array of dimension (lld_b, LOCC (\(j b\) \(+p-1)\)). Contains the local pieces of the \(n\)-by- \(p\) matrix \(\operatorname{sub}(B)\) to be factored. \\
\hline ib, jb & (global) INTEGER. The row and column indices in the global array b indicating the first row and the first column of the submatrix \(B\), respectively. \\
\hline descb & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix B. \\
\hline \multirow[t]{6}{*}{work} & (local) \\
\hline & REAL for psggqrf \\
\hline & DOUBLE PRECISION for pdggqrf \\
\hline & COMPLEX for pcggqrf \\
\hline & DOUBLE COMPLEX for pzggqrf. \\
\hline & Workspace array of dimension of lwork. \\
\hline \multirow[t]{16}{*}{lwork} & (local or global) INTEGER. Dimension of work, must be at least \\
\hline & \[
\begin{aligned}
& \text { lwork } \geq \max \left(n b \_a^{\star}\left(n p a 0+m q a 0+n b \_a\right), \max \left(\left(n b-a^{\star}\left(n b \_a-1\right)\right) / 2\right. \text {, }\right. \\
& \left.\left.(p q b 0+n p b 0){ }^{\star} n b \_a\right)+n b \_a^{\star} n b \_a, m b \_b^{\star}\left(n p b 0+p q b 0+m b \_b\right)\right), \\
& \text { where }
\end{aligned}
\] \\
\hline & iroffa \(=\bmod \left(i a-1, ~ m b \_A\right)\), \\
\hline & icoffa \(=\bmod \left(j a-1, ~ n b \_a\right)\), \\
\hline & iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), \\
\hline & iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), \\
\hline & npa0 = numroc (\(\left.n+i r o f f a, ~ m b \_a, ~ M Y R O W, ~ i a r o w, ~ N P R O W\right), ~\) \\
\hline & mqaO \(=\) numroc (m+icoffa, nb_a, MYCOL, iacol, NPCOL) iroffb \(=\bmod (i b-1, m b b)\), \\
\hline & \(i C O f f b=\bmod \left(j b-1, ~ n b \_b\right)\), \\
\hline & ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW), \\
\hline & ibcol \(=\) indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL), \\
\hline & \begin{tabular}{l}
npbo \(=\) numroc (n+iroffa, mb_b, MYROW, Ibrow, NPROW), \\
pqbO \(=\) numroc (m+icoffb, nb_b, MYCOL, ibcol, NPCOL)
\end{tabular} \\
\hline & and numroc, indxg \(2 p\) are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. \\
\hline & If 1 work \(=-1\), then lwork is global input and a workspace query is \\
\hline & assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the \\
\hline & corresponding work array, and no error message is issued by pxerbla. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
On exit, the elements on and above the diagonal of sub (A) contain the \(\min (n, m)\)-by- \(m\) upper trapezoidal matrix \(R\) (\(R\) is upper triangular if \(n \geq m\)); the elements below the diagonal, with the array taua, represent the orthogonal/unitary matrix \(Q\) as a product of \(\min (n, m)\) elementary reflectors. (See Application Notes below).
\begin{tabular}{|c|c|}
\hline \multirow[t]{8}{*}{taua, taub} & (local) \\
\hline & REAL for psggqrf \\
\hline & DOUBLE PRECISION for pdggqrf \\
\hline & COMPLEX for pcggqrf \\
\hline & DOUBLE COMPLEX for pzggqrf. \\
\hline & Arrays, DIMENSION LOCC(ja+min \((n, m)-1)\) for taua and LOCr (ib+n-1) for taub. \\
\hline & The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Q\). taua is tied to the distributed matrix A. (See Application Notes below). \\
\hline & The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix 2 . taub is tied to the distributed matrix B. (See Application Notes below). \\
\hline work(1) & On exit work (1) contains the minimum value of lwork required for optimum performance. \\
\hline \multirow[t]{4}{*}{info} & (global) INTEGER. \\
\hline & \(=0\) : the execution is successful. \\
\hline & < 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an \\
\hline & \\
\hline
\end{tabular}

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\[
Q=H(j a) \star H(j a+1) \star \ldots \star H(j a+k-1),
\]
where \(k=\min (n, m)\).
Each \(H(i)\) has the form
\(H(i)=i-t a u a^{\star} V^{\star} V^{\prime}\)
where taua is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0\) and \(v(i)=1\); \(v(i\) \(+1: n\)) is stored on exit in \(A(i a+i: i a+n-1, j a+i-1)\), and taua in taua(ja+i-1). To form \(Q\) explicitly, use ScaLAPACK subroutine p?orgqr/p?ungqr. To use \(Q\) to update another matrix, use ScaLAPACK subroutine p? ormqr/p?unmqr.

The matrix \(z\) is represented as a product of elementary reflectors
\(Z=H(i b) * H(i b+1) * \ldots{ }^{*} H(i b+k-1)\), where \(k=\min (n, p)\).
Each \(H(i)\) has the form
\(H(i)=i-\) taub* \(^{\star} V^{\prime}\)
where taub is a real/complex scalar, and \(v\) is a real/complex vector with \(v(p-k+i+1: p)=0\) and \(v(p-k+i)\) \(=1 ; v(1: p-k+i-1)\) is stored on exit in \(B(i b+n-k+i-1, j b: j b+p-k+i-2)\), and taub in taub(ib+n-k \(+i-1)\). To form \(z\) explicitly, use ScaLAPACK subroutine p?orgrq/p?ungrq. To use \(z\) to update another matrix, use ScaLAPACK subroutine p?ormrq/p?unmrq.

\section*{p?ggrqf}

Computes the generalized \(R Q\) factorization.

\section*{Syntax}
```

call psggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork,
info)

```
```

call pdggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork,
info)
call pcggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork,
info)
call pzggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork,
info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?ggrqf routine forms the generalized \(R Q\) factorization of an m-by-n matrix sub \((A)=(i a: i a+m-1\), ja: ja+n-1) and a \(p-b y-n\) matrix sub \((B)=(i b: i b+p-1, j a: j a+n-1)\) :
\(\operatorname{sub}(A)=R^{\star} Q, \operatorname{sub}(B)=Z^{*} T^{*} Q\),
where \(Q\) is an \(n\)-by- \(n\) orthogonal/unitary matrix, \(Z\) is a \(p\)-by- \(p\) orthogonal/unitary matrix, and \(R\) and \(T\) assume one of the forms:
\[
\begin{gathered}
R=m\left(0 \quad R_{12}\right), \text { if } m \leq n, \\
n-m m
\end{gathered}
\]
or
\[
R=\binom{R_{11}}{R_{12}}^{m}-n, \text { if } m>n
\]
\(n\)
where \(R_{11}\) or \(R_{21}\) is upper triangular, and
\[
T=\binom{T_{11}}{0}_{p-n}^{n}, \text { if } p \geq n
\]
or
\[
\begin{gathered}
T=p\left(\begin{array}{ll}
\left(T_{11}\right. & T_{12}
\end{array}\right) \quad p, \text { if } p<n, \\
p n-p
\end{gathered}
\]
where \(T^{11}\) is upper triangular.
In particular, if \(\operatorname{sub}(B)\) is square and nonsingular, the \(G R Q\) factorization of \(\operatorname{sub}(A)\) and \(\operatorname{sub}(B)\) implicitly gives the \(R Q\) factorization of sub \((A) * \operatorname{inv}(\operatorname{sub}(B))\) :
\(\operatorname{sub}(A) * \operatorname{inv}(\operatorname{sub}(B))=\left(R^{*} \operatorname{inv}(T)\right) * Z^{\prime}\)
where \(\operatorname{inv}(\operatorname{sub}(B))\) denotes the inverse of the matrix \(\operatorname{sub}(B)\), and \(Z^{\prime}\) ' denotes the transpose (conjugate transpose) of matrix \(z\).

\section*{Input Parameters}
m
\(p\)
n
a
ia, ja
desca
b
ib, jb
descb
work
lwork
(global) INTEGER. The number of rows in the distributed matrices sub (A) (\(m \geq 0\)) .

INTEGER. The number of rows in the distributed matrix \(\operatorname{sub}(B)(p \geq 0)\).
(global) INTEGER. The number of columns in the distributed matrices \(\operatorname{sub}(A)\) and \(\operatorname{sub}(B)(n \geq 0)\).
(local)
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+n-1)\)). Contains the local pieces of the \(m-b y-n\) distributed matrix sub(A) to be factored.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.
Pointer into the local memory to an array of dimension (lld_b, LOCC (jb \(+n-1)\)).
Contains the local pieces of the \(p\)-by- \(n\) matrix \(\operatorname{sub}(B)\) to be factored.
(global) INTEGER. The row and column indices in the global array \(b\) indicating the first row and the first column of the submatrix \(B\), respectively. (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\).
```

(local)
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.
Workspace array of dimension of lwork.
(local or global) INTEGER.
Dimension of work, must be at least lwork \geq
max(mb_a*(mpa0+nqa0+mb_a), max((mb_a* (mb_a-1))/2,
(ppb0+nqb0)*mb_a) + mb_a*mb_a, nb_b* (ppb0+nqb0+nb_b)), where
iroffa = mod(ia-1, mb_A),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpaO = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
nqaO = numroc (m+icoffa, nb_a, MYCOL, iacol, NPCOL)
iroffb = mod(ib-1, mb_b),
icoffb = mod(jb-1, nb_b),
ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW ),

```
```

ibcol = indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL ),
ppb0 = numroc (p+iroffb, mb_b, MYROW, ibrow, NPROW),
nqbO = numroc (n+icoffb, nb_b, MYCOL, ibcol, NPCOL)
and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW
and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}
a
On exit, if \(m \leq n\), the upper triangle of \(A(i a: i a+m-1, j a+n-m: j a+n-1)\) contains the \(m\)-by- \(m\) upper triangular matrix \(R\); if \(m \geq n\), the elements on and above the \((m-n)\)-th subdiagonal contain the \(m-\) by- \(n\) upper trapezoidal matrix \(R\); the remaining elements, with the array taua, represent the orthogonal/ unitary matrix \(Q\) as a product of \(\min (n, m)\) elementary reflectors (see Application Notes below).
(local)
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Arrays, DIMENSION LOCr(ia+m-1) for taua and LOCC(jb+min \((p, n)-1)\) for taub.
The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Q\). taua is tied to the distributed matrix A.(See Application Notes below).
The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix 2 . taub is tied to the distributed matrix B. (See Application Notes below).
On exit work (1) contains the minimum value of lwork required for optimum performance.
info
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\[
Q=H(i a) \star H(i a+1) \star \ldots{ }^{\star} H(i a+k-1)
\]
where \(k=\min (m, n)\).
Each \(H(i)\) has the form
\(H(i)=i-\operatorname{tana}^{\star} V^{\star} V^{\prime}\)
where taua is a real/complex scalar, and \(v\) is a real/complex vector with \(v(n-k+i+1: n)=0\) and \(v(n-k+i)\) \(=1\); \(v(1: n-k+i-1)\) is stored on exit in \(A(i a+m-k+i-1, j a: j a+n-k+i-2)\), and taua in taua(ia+m-k \(+i-1)\). To form \(Q\) explicitly, use ScaLAPACK subroutine p?orgrq/p?ungrq. To use \(Q\) to update another matrix, use ScaLAPACK subroutine p?ormrq/p?unmrq.

The matrix \(z\) is represented as a product of elementary reflectors
\(Z=H(j b) \star H(j b+1) \star \ldots{ }^{\star} H(j b+k-1)\), where \(k=\min (p, n)\).
Each \(H(i)\) has the form
\(H(i)=i-\operatorname{tau}^{\star} V^{\star} V^{\prime}\)
where taub is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0\) and \(v(i)=1\); \(v(i\) \(+1: p\)) is stored on exit in \(B(i b+i: i b+p-1, j b+i-1)\), and taub in taub (\(j b+i-1\)). To form \(z\) explicitly, use ScaLAPACK subroutine p?orgqr/p?ungqr. To use \(z\) to update another matrix, use ScaLAPACK subroutine p? ormqr/p?unmqr.

\section*{Symmetric Eigenproblems}

To solve a symmetric eigenproblem with ScaLAPACK, you usually need to reduce the matrix to real tridiagonal form \(T\) and then find the eigenvalues and eigenvectors of the tridiagonal matrix T. ScaLAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or unitary) similarity transformation \(A=Q T Q^{H}\) as well as for solving tridiagonal symmetric eigenvalue problems. These routines are listed in Table "Computational Routines for Solving Symmetric Eigenproblems".

There are different routines for symmetric eigenproblems, depending on whether you need eigenvalues only or eigenvectors as well, and on the algorithm used (either the \(Q T Q\) algorithm, or bisection followed by inverse iteration).

Computational Routines for Solving Symmetric Eigenproblems
\begin{tabular}{|c|c|c|c|}
\hline Operation & Dense symmetric/ Hermitian matrix & Orthogonal/unitary matrix & Symmetric tridiagonal matrix \\
\hline Reduce to tridiagonal form \(A=Q T Q^{H}\) & p?sytrd/p?hetrd & & \\
\hline Multiply matrix after reduction & & p?ormtr/p?unmtr & \\
\hline Find all eigenvalues and eigenvectors of a tridiagonal matrix \(T\) by a \(Q T Q\) method & & & steqr \(2^{*}\)) \\
\hline Find selected eigenvalues of a tridiagonal matrix \(T\) via bisection & & & p?stebz \\
\hline Find selected eigenvectors of a tridiagonal matrix \(T\) by inverse iteration & & & p?stein \\
\hline
\end{tabular}
\({ }^{*}\)) This routine is described as part of auxiliary ScaLAPACK routines.
p?sytrd
Reduces a symmetric matrix to real symmetric
tridiagonal form by an orthogonal similarity
transformation.

\section*{Syntax}
```

call pssytrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pdsytrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?sytrd routine reduces a real symmetric matrix \(\operatorname{sub}(A)\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation:
\(Q^{\prime *} \operatorname{sub}(A) * Q=T\),
where sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\).

\section*{Input Parameters}
uplo
n
a
ia, ja
desca
work

I Work
(global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric matrix \(\operatorname{sub}(A)\) is stored:
If uplo = 'U', upper triangular
If uplo = 'L', lower triangular
(global) INTEGER. The order of the distributed matrix \(\operatorname{sub}(A)(n \geq 0)\).
(local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja
\(+n-1)\)). On entry, this array contains the local pieces of the symmetric distributed matrix \(\operatorname{sub}(A)\).
If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced. See Application Notes below.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Workspace array of dimension lwork.
(local or global) INTEGER, dimension of work, must be at least:
lwork \(\geq \max (N B *(n p+1), 3 * N B)\),
where NB \(=m b \_a=n b_{-} a\),
\(n p=\) numroc (\(n, ~ N B, ~ M Y R O W, ~ i a r o w, ~ N P R O W), ~\)
iarow \(=\) indxg2p(ia, NB, MYROW, rsrc_a, NPROW).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
d

On exit, if \(u p l o=' U '\), the diagonal and first superdiagonal of \(\operatorname{sub}(A)\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements above the first superdiagonal, with the array tau, represent the orthogonal matrix \(Q\) as a product of elementary reflectors; if uplo = ' L', the diagonal and first subdiagonal of \(\operatorname{sub}(A)\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements below the first subdiagonal, with the array tau, represent the orthogonal matrix \(Q\) as a product of elementary reflectors. See Application Notes below. (local)

REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION LOCC (ja+n-1). The diagonal elements of the tridiagonal matrix \(T\) :
\(d(i)=A(i, i)\).
\(d\) is tied to the distributed matrix \(A\).
e
(local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION LOCC(ja+n-1) if uplo = 'U', LOCC(ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix \(T\) :
\(e(i)=A(i, i+1)\) if uplo = 'U', \(e(i)=A(i+1, i)\) if uplo \(=\) 'L'. \(e\) is tied to the distributed matrix \(A\). (local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION LOCC (ja+n-1). This array contains the scalar factors tau of the elementary reflectors. tau is tied to the distributed matrix \(A\).
work(1)
info
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

If uplo = 'U', the matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(n-1) \ldots H(2) H(1)\).
Each \(H(i)\) has the form
```

H(i) = i - tau * v * v',

```
where tau is a real scalar, and \(v\) is a real vector with \(v(i+1: n)=0\) and \(v(i)=1 ; \quad v(1: i-1)\) is stored on exit in \(A(i a: i a+i-2, j a+i)\), and tau in tau (ja+i-1).
If uplo = 'L', the matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(1) H(2) \ldots H(n-1)\).
Each \(H(i)\) has the form
\(H(i)=i-\operatorname{tau} * v^{*} v^{\prime}\),
where tau is a real scalar, and \(v\) is a real vector with \(v(1: i)=0\) and \(v(i+1)=1 ; v(i+2: n)\) is stored on exit in \(A(i a+i+1: i a+n-1, j a+i-1)\), and tau in tau(ja+i-1).

The contents of \(\operatorname{sub}(A)\) on exit are illustrated by the following examples with \(n=5\) :
If uplo = 'U':
\[
\left[\begin{array}{ccccc}
d & e & v 2 & v 3 & v 4 \\
& d & e & v 3 & v 4 \\
& & d & e & v 4 \\
& & & d & e \\
& & & & d
\end{array}\right]
\]

If uplo = 'L':
\[
\left[\begin{array}{ccccc}
d & & & & \\
e & d & & & \\
v 1 & e & d & & \\
v 1 & v 2 & e & d & \\
v 1 & v 2 & v 3 & e & d
\end{array}\right]
\]
where \(d\) and \(e\) denote diagonal and off-diagonal elements of \(T\), and \(v i\) denotes an element of the vector defining \(H(i)\).

\section*{p?ormtr \\ Multiplies a general matrix by the orthogonal \\ transformation matrix from a reduction to tridiagonal form determined by p?sytrd.}

\section*{Syntax}
```

call psormtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pdormtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

This routine overwrites the general real distributed \(m\)-by-n matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\) with
\[
\begin{array}{lll}
& \text { side }=' L ' & \text { side }=R^{\prime} \\
\text { trans }=' \mathrm{~N}^{\prime}: & Q^{*} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q^{\prime} \\
\text { trans }=' T^{\prime}: & Q^{T *} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q^{T}
\end{array}
\]
where \(Q\) is a real orthogonal distributed matrix of order \(n q\), with \(n q=m\) if side \(=\) ' \(L\) ' and \(n q=n\) if side \(=\) 'R'.
\(Q\) is defined as the product of \(n q\) elementary reflectors, as returned by p?sytrd.
If uplo = 'U', \(Q=H(n q-1) \ldots\) (2) \(H(1)\);
If uplo \(=\) 'L', \(Q=H(1) H(2) \ldots H(n q-1)\).

\section*{Input Parameters}
```

side (global) CHARACTER

```
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
\(=' L ': Q\) or \(Q^{T}\) is applied from the left. \\
\(={ }^{\prime} \mathrm{R}^{\prime}: Q\) or \(Q^{T}\) is applied from the right.
\end{tabular} \\
\hline trans & \begin{tabular}{l}
(global) CHARACTER \\
\(=\) 'N', no transpose, \(Q\) is applied. \\
\(=\) 'T', transpose, \(Q^{T}\) is applied.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
(global) CHARACTER. \\
= 'U': Upper triangle of \(A(i a: *, ~ j a: *) ~ c o n t a i n s ~ e l e m e n t a r y ~ r e f l e c t o r s ~\) from p?sytrd; \\
= 'L': Lower triangle of A(ia:*, ja:*) contains elementary reflectors from p?sytrd
\end{tabular} \\
\hline m & (global) INTEGER. The number of rows in the distributed matrix sub(\(c\)) (\(m \geq 0\)) . \\
\hline \(n\) & (global) INTEGER. The number of columns in the distributed matrix sub(c) (\(n \geq 0\)). \\
\hline a & \begin{tabular}{l}
(local) \\
REAL for psormtr \\
DOUBLE PRECISION for pdormtr. \\
Pointer into the local memory to an array of dimension (lld_a, LOCc (ja \(+m-1)\)) if side='L', or (lld_a, LOCc(ja+n-1)) if side = 'R'. \\
Contains the vectors which define the elementary reflectors, as returned by p?sytrd. \\
If side='L', lld_a \(\geq\) max (\(1, \operatorname{LOCr}(i a+m-1))\); \\
If side \(=\) 'R', lld_a \(\geq \max (1, \operatorname{LOCr}(i a+n-1))\).
\end{tabular} \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline tau & \begin{tabular}{l}
(local) \\
REAL for psormtr \\
DOUBLE PRECISION for pdormtr. \\
Array, DIMENSION of 1 tau where \\
if side \(=\) 'L' and uplo = 'U', Itau \(=\operatorname{LOCc}\left(m_{\_} a\right)\), \\
if side \(=\) 'L' and uplo = 'L', ltau \(=\operatorname{LOCc}(j a+m-2)\), \\
if side \(=\) 'R' and uplo = 'U', ltau \(=\operatorname{LOCc}\left(n_{-}\right.\)a), \\
if side \(=\) 'R' and uplo = 'L', ltau \(=\operatorname{LOCc}(j a+n-2)\). \\
\(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(H(i)\), as returned by p?sytrd. tau is tied to the distributed matrix \(A\).
\end{tabular} \\
\hline c & \begin{tabular}{l}
(local) REAL for psormtr \\
DOUBLE PRECISION for pdormtr. \\
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+n-1)\)). Contains the local pieces of the distributed matrix sub (c).
\end{tabular} \\
\hline ic, jc & (global) INTEGER. The row and column indices in the global array \(c\) indicating the first row and the first column of the submatrix \(C\), respectively. \\
\hline descc & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(C\). \\
\hline work & \begin{tabular}{l}
(local) \\
REAL for psormtr \\
DOUBLE PRECISION for pdormtr. \\
Workspace array of dimension lwork.
\end{tabular} \\
\hline
\end{tabular}
```

if uplo = 'U',
iaa= ia; jaa= ja+1, icc= ic; jcc= jc;
else uplo = 'L',
iaa= ia+1, jaa= ja;
If side = 'L',
icc= ic+1; jcc= jc;
else icc= ic; jcc= jc+1;
end if
end if
If side = 'L',
mi= m-1; ni= n
lwork \geqmax((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) +
nb_a*nb_a
else
If side = 'R',
mi= m; mi = n-1;
lwork \geq max((nb_a*(nb_a-1))/2, (nqc0 +
max(npa0+numroc(numroc(ni+iCoffc, nb_a, 0, 0, NPCOL), nb_a,
0, 0, lcmq), mpc0))*nb_a)+ nb_a*nb_a
end if
where lcmq = lcm/NPCOL with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc}=\operatorname{mod}(jcc-1, nb_c)
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, cSrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, icCol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo. If lwork = -1, then lwork is global input and a
workspace query is assumed; the routine only calculates the minimum and
optimal size for all work arrays. Each of these values is returned in the first
entry of the corresponding work array, and no error message is issued by
pxerbla.

```

\section*{Output Parameters}
c
work(1)
info

Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C)^{*} Q\).
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?hetrd}

Reduces a Hermitian matrix to Hermitian tridiagonal
form by a unitary similarity transformation.

\section*{Syntax}
```

call pchetrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pzhetrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The \(p\) ? hetrd routine reduces a complex Hermitian matrix \(\operatorname{sub}(A)\) to Hermitian tridiagonal form \(T\) by a unitary similarity transformation:
```

Q'*sub (A)*Q = T
where sub(A) = A(ia:ia+n-1,ja:ja+n-1).

```

\section*{Input Parameters}
```

uplo
n
a
ia,ja
desca
work
lwork (local or global) INTEGER, dimension of work, must be at least:
(global) CHARACTER.
Specifies whether the upper or lower triangular part of the Hermitian matrix
sub(A) is stored:
If uplo = 'U',upper triangular
If uplo = 'L',lower triangular
(global) INTEGER. The order of the distributed matrix sub(A) (n\geq0).
(local)
COMPLEX for pchetrd
DOUBLE COMPLEX for pzhetrd.
Pointer into the local memory to an array of dimension (lld_a, LOCC(ja
+n-1)). On entry, this array contains the local pieces of the Hermitian
distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains
the upper triangular part of the matrix, and its strictly lower triangular part
is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains
the lower triangular part of the matrix, and its strictly upper triangular part
is not referenced. (see Application Notes below).
(global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix }A\mathrm{ , respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.
(local)
COMPLEX for pchetrd
DOUBLE COMPLEX for pzhetrd.
Workspace array of dimension lwork.
lwork}\geqmax(NB* (np +1), 3*NB
where NB = mb_a = nb_a,
np = numroc(n, NB, MYROW, iarOW, NPROW),
iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW).

```
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. If 1 work \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
\(a\)
On exit,
If uplo = ' U', the diagonal and first superdiagonal of sub(A) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements above the first superdiagonal, with the array tau, represent the unitary matrix \(Q\) as a product of elementary reflectors;if uplo = ' L', the diagonal and first subdiagonal of \(\operatorname{sub}(A)\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements below the first subdiagonal, with the array tau, represent the unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
\(d\)
e
(local)
REAL for pchetrd
DOUBLE PRECISION for pzhetrd.
Arrays, DIMENSION LOCC (ja+n-1). The diagonal elements of the tridiagonal matrix \(T\) :
\(d(i)=A(i, i)\).
\(d\) is tied to the distributed matrix \(A\).
(local)
REAL for pchetrd
DOUBLE PRECISION for pzhetrd.
Arrays, DIMENSION LOCC (ja+n-1) if uplo = 'U'; LOCC (ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix \(T\) :
\(e(i)=A(i, i+1)\) if uplo \(=\) 'U',
\(e(i)=A(i+1, i)\) if uplo \(=' L '\).
\(e\) is tied to the distributed matrix \(A\).
work(1)
info
(local) COMPLEX for pchetrd
DOUBLE COMPLEX for pzhetrd.
Arrays, DIMENSION LOCC (ja+n-1). This array contains the scalar factors tau of the elementary reflectors. tau is tied to the distributed matrix \(A\).
On exit work(1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i \star 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

If uplo = 'U', the matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(n-1) * \ldots * H(2) * H(1)\).
Each \(H(i)\) has the form
\(H(i)=i-\tan ^{\star} V^{\star} V^{\prime}\),
where \(t a u\) is a complex scalar, and \(v\) is a complex vector with \(v(i+1: n)=0\) and \(v(i)=1\); \(v(1: i-1)\) is stored on exit in A(ia:ia+i-2, ja+i), and tau in tau (ja+i-1).

If uplo = 'L', the matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(1) * H(2) * \ldots * H(n-1)\).
Each \(H(i)\) has the form
\(H(i)=i-t a u^{*} V^{\star} V^{\prime}\),
where \(t a u\) is a complex scalar, and \(v\) is a complex vector with \(v(1: i)=0\) and \(v(i+1)=1 ; v(i+2: n)\) is stored on exit in \(A(i a+i+1: i a+n-1, j a+i-1)\), and tau in tau(ja+i-1).

The contents of \(\operatorname{sub}(A)\) on exit are illustrated by the following examples with \(n=5\) :
If uplo = 'U':
\[
\left[\begin{array}{ccccc}
d & e & v 2 & v 3 & v 4 \\
& d & e & v 3 & v 4 \\
& & d & e & v 4 \\
& & & d & e \\
& & & & d
\end{array}\right]
\]

If uplo = 'L':
\[
\left[\begin{array}{ccccc}
d & & & & \\
e & d & & & \\
v 1 & e & d & & \\
v 1 & v 2 & e & d & \\
v 1 & v 2 & v 3 & e & d
\end{array}\right]
\]
where \(d\) and \(e\) denote diagonal and off-diagonal elements of \(T\), and \(v i\) denotes an element of the vector defining \(H(i)\).

\section*{p?unmtr}

Multiplies a general matrix by the unitary
transformation matrix from a reduction to tridiagonal
form determined by p?hetrd.

\section*{Syntax}
```

call pcunmtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunmtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

This routine overwrites the general complex distributed m-by-n matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\) with
\begin{tabular}{|c|c|c|}
\hline & side \(=\) 'L' & side \(=\) 'R' \\
\hline trans \(=\) 'N': & \(Q^{*}\) sub(\(C\)) & \(\operatorname{sub}(C){ }^{*}{ }_{Q}\) \\
\hline trans \(=\) 'C': & \(Q^{H *}\) sub(\(C\)) & \(\operatorname{sub}(C) * Q^{H}\) \\
\hline
\end{tabular}
where \(Q\) is a complex unitary distributed matrix of order \(n q\), with \(n q=m\) if side \(=\) 'L'and \(n q=n\) if side = 'R'.
\(Q\) is defined as the product of nq-1 elementary reflectors, as returned by p?hetrd.
```

If uplo = 'U',Q = H(nq-1)... H(2) H(1);
If uplo = 'L', Q = H(1) H(2)... H(nq-1).

```

Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{side} & (global) CHARACTER \\
\hline & \(=' L ': Q\) or \(Q^{H}\) is applied from the left. \\
\hline & = 'R': \(Q\) or \(Q^{H}\) is applied from the right. \\
\hline \multirow[t]{3}{*}{trans} & (global) CHARACTER \\
\hline & \(={ }^{\prime} N^{\prime}\) ', no transpose, \(Q\) is applied. \\
\hline & \(={ }^{\prime} \mathrm{C}\) ', conjugate transpose, \(Q^{H}\) is applied. \\
\hline \multirow[t]{5}{*}{uplo} & (global) CHARACTER. \\
\hline & = 'U': Upper triangle of A (ia:*, ja:*) contains elementary reflectors \\
\hline & from p?hetrd; \\
\hline & \(=\) 'L': Lower triangle of A(ia:*, ja:*) contains elementary reflectors \\
\hline & from p?hetrd \\
\hline \multirow[t]{2}{*}{\(m\)} & (global) INTEGER. The number of rows in the distributed matrix sub(\(C\)) \\
\hline & \[
(m \geq 0) .
\] \\
\hline \multirow[t]{2}{*}{\(n\)} & (global) INTEGER. The number of columns in the distributed matrix sub(\(C\)) \\
\hline & \((n \geq 0)\). \\
\hline \multirow[t]{8}{*}{a} & (local) \\
\hline & REAL for pcunmtr \\
\hline & DOUBLE PRECISION for pzunmtr. \\
\hline & Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \\
\hline & +m-1)) if side='L', or (lld_a, LOCC(ja+n-1)) if side = 'R'. \\
\hline & Contains the vectors which define the elementary reflectors, as returned by p?hetrd. \\
\hline & If side \(=1\) ', lld_a \(\geq \max (1, L O C r(i a+m-1))\); \\
\hline & If side \(=\) 'R', lld \(\bar{d} a \geq \max (1, \operatorname{LOCr}(i a+n-1)\)). \\
\hline
\end{tabular}
ia, ja (global) INTEGER. The row and column indices in the global array a
desca
tau
indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix \(A\).
(local)
COMPLEX for pcunmtr
DOUBLE COMPLEX for pzunmtr.
Array, DIMENSION of 1 tau where
If side \(=\) 'L' and uplo = 'U', ltau \(=\operatorname{LOCC}\left(m_{-} a\right)\),
if side \(=\) 'L' and uplo = 'L', ltau \(=\) LOCC(ja+m-2),
if side \(=\) 'R' and uplo \(=\) 'U', ltau \(=\operatorname{LOCC}\left(n_{-} a\right)\),
if side \(=\) 'R' and uplo = 'L', ltau = LOCC(ja+n-2).
\(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(H(i)\), as
returned by p?hetrd. tau is tied to the distributed matrix \(A\).
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{c} & (local) COMPLEX for pcunmtr \\
\hline & DOUBLE COMPLEX for pzunmtr. \\
\hline & Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+n-1)\)). Contains the local pieces of the distributed matrix sub (\(C\)). \\
\hline ic, jc & (global) INTEGER. The row and column indices in the global array \(c\) indicating the first row and the first column of the submatrix \(C\), respectively. \\
\hline descc & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(C\). \\
\hline \multirow[t]{4}{*}{work} & (local) \\
\hline & COMPLEX for pcunmtr \\
\hline & DOUBLE COMPLEX for pzunmtr. \\
\hline & Workspace array of dimension lwork. \\
\hline \multirow[t]{35}{*}{lwork} & (local or global) INTEGER, dimension of work, must be at least: \\
\hline & If uplo = 'U', \\
\hline & iaa= ia; jaa= ja+1, icc= ic; jcc= jc; \\
\hline & else uplo = 'L', \\
\hline & iaa= ia+1, jaa= ja; \\
\hline & If side = 'L', \\
\hline & \(i C C=~ i c+1 ; ~ j c c=~ j c ; ~\) \\
\hline & else icc= ic; jcc= jc+1; \\
\hline & end if \\
\hline & \begin{tabular}{l}
end if \\
If side = 'L',
\end{tabular} \\
\hline & \[
m i=m-1 ; n i=n
\] \\
\hline & lwork \(\geq \max \left(\left(n b \_a *\left(n b \_a-1\right)\right) / 2,(n q c 0+m p c 0) * n b \_a\right)+\) \\
\hline & \(n b^{\prime} a^{\star} n b_{\sim} a\) \\
\hline & else \\
\hline & If side = 'R', \\
\hline & \(m i=m ; m i=n-1 ;\) \\
\hline & ```
lwork \geq max((nb_a*(nb_a-1))/2, (nqc0 +
max(npa0+numroc(numroc(ni+icoffc, nb a, 0, 0, NPCOL), nb a,
``` \\
\hline & \[
\left.0,0,1 c m q), \quad m p c 0)) \star n b _a\right)+n b _a \star n b-a
\] end if \\
\hline & where \(1 \mathrm{cmq}=1 \mathrm{~cm} / \mathrm{NPCOL}\) with \(1 \mathrm{~cm}=\mathrm{ilcm}(\mathrm{NPROW}, \mathrm{NPCOL})\), \\
\hline & iroffa \(=\bmod \left(i a a-1, ~ m b _a\right)\), \\
\hline & icoffa \(=\bmod \left(j a a-1, ~ n b _a\right)\), \\
\hline & \[
\text { iarow }=\text { indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW), }
\] \\
\hline & npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW), \\
\hline & iroffc \(=\bmod \left(i C c-1, ~ m b _c\right), ~\) \\
\hline & icoffc \(=\bmod \left(j c c-1, ~ n b _c\right)\), \\
\hline & icrow \(=\) indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW), \\
\hline & iccol \(=\) indxg2p(jcc, nb_c, MYCOL, CSrc_c, NPCOL), \\
\hline & \(m p c 0=\) numroc (mi+iroffc, mb_c, MYROW, ícrow, NPROW), \\
\hline & \(n q C 0=\) numroc (ni+icoffc, nb_c, MYCOL, iccol, NPCOL), \\
\hline & ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, \\
\hline & NPROW and NPCOL can be determined by calling the subroutine \\
\hline & blacs_gridinfo. If lwork \(=-1\), then lwork is global input and a \\
\hline & workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first \\
\hline & entry of the corresponding work array, and no error message is issued by \\
\hline & \\
\hline
\end{tabular}

\section*{Output Parameters}
```

c
Overwritten by the product Q*sub(C), or Q'*sub(C), or sub(C)*Q', or
sub(c)*Q.
work(1) On exit work(1) contains the minimum value of lwork required for
optimum performance.
info
(global) INTEGER.
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had an illegal value,
then info = - i

```

\section*{p?stebz}

Computes the eigenvalues of a symmetric tridiagonal matrix by bisection.

\section*{Syntax}
```

call psstebz(ictxt, range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w,
iblock, isplit, work, iwork, liwork, info)
call pdstebz(ictxt, range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w,
iblock, isplit, work, iwork, liwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?stebz routine computes the eigenvalues of a symmetric tridiagonal matrix in parallel. These may be all eigenvalues, all eigenvalues in the interval [ v 1 vu ], or the eigenvalues indexed il through iu. A static partitioning of work is done at the beginning of \(p\) ? stebz which results in all processes finding an (almost) equal number of eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline ictxt & (global) INTEGER. The BLACS context handle. \\
\hline \multirow[t]{4}{*}{range} & (global) CHARACTER. Must be 'A' or 'V' or 'I'. \\
\hline & If range = 'A', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' \(V\) ', the routine computes eigenvalues in the interval [ v 1 , vu]. \\
\hline & If range = 'I', the routine computes eigenvalues with indices il to iu. \\
\hline \multirow[t]{3}{*}{order} & (global) CHARACTER. Must be 'B' or 'E'. \\
\hline & If order = ' B ', the eigenvalues are to be ordered from smallest to largest within each split-off block. \\
\hline & If order = 'E', the eigenvalues for the entire matrix are to be ordered from smallest to largest. \\
\hline \(n\) & (global) INTEGER. The order of the tridiagonal matrix \(T(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{vl, vu} & (global) \\
\hline & REAL for psstebz \\
\hline & DOUBLE PRECISION for pdstebz. \\
\hline & If range \(=\) ' V ', the routine computes the lower and the upper bounds for the eigenvalues on the interval [1, vu]. \\
\hline & If range = 'A' or 'I', vl and vu are not referenced. \\
\hline
\end{tabular}


\section*{Output Parameters}
```

m
nsplit
W
iblock

```
isplit
info
(global) Integer. The actual number of eigenvalues found. \(0 \leq m \leq n\)
(global) INTEGER. The number of diagonal blocks detected in \(T\).
\(1 \leq n s p l i t \leq n\)
(global)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array, DIMENSION ( \(n\) ). On exit, the first \(m\) elements of \(w\) contain the eigenvalues on all processes.
(global) Integer.
Array, DIMENSION ( \(n\) ). At each row/column \(j\) where \(e(j)\) is zero or small, the matrix \(T\) is considered to split into a block diagonal matrix. On exit iblock(i) specifies which block (from 1 to the number of blocks) the eigenvalue \(w(i)\) belongs to.

NOTE In the (theoretically impossible) event that bisection does not converge for some or all eigenvalues, info is set to 1 and the ones for which it did not are identified by a negative block number.
(global) INTEGER.
Array, DIMENSION ( \(n\) ).
Contains the splitting points, at which \(T\) breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), etc., and the nsplit-th consists of rows/columns isplit(nsplit-1)+1 through
isplit (nsplit) \(=n\). (Only the first nsplit elements are used, but since the nsplit values are not known, \(n\) words must be reserved for isplit.)
(global) INTEGER.
If info \(=0\), the execution is successful.
If info \(<0\), if info \(=-i\), the \(i\)-th argument has an illegal value.
If info \(>0\), some or all of the eigenvalues fail to converge or not computed.
If info = 1, bisection fails to converge for some eigenvalues; these eigenvalues are flagged by a negative block number. The effect is that the eigenvalues may not be as accurate as the absolute and relative tolerances. If info \(=2\), mismatch between the number of eigenvalues output and the number desired.
If info = 3: range='i', and the Gershgorin interval initially used is incorrect. No eigenvalues are computed. Probable cause: the machine has a sloppy floating point arithmetic. Increase the fudge parameter, recompile, and try again.

\section*{p?stein}

Computes the eigenvectors of a tridiagonal matrix
using inverse iteration.

\section*{Syntax}
```

call psstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz, work, lwork,
iwork, liwork, ifail, iclustr, gap, info)

```
```

call pdstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz, work, lwork,
iwork, liwork, ifail, iclustr, gap, info)
call pcstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz, work, lwork,
iwork, liwork, ifail, iclustr, gap, info)
call pzstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz, work, lwork,
iwork, liwork, ifail, iclustr, gap, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?stein routine computes the eigenvectors of a symmetric tridiagonal matrix \(T\) corresponding to specified eigenvalues, by inverse iteration. p?stein does not orthogonalize vectors that are on different processes. The extent of orthogonalization is controlled by the input parameter lwork. Eigenvectors that are to be orthogonalized are computed by the same process. p?stein decides on the allocation of work among the processes and then calls ?stein2 (modified LAPACK routine) on each individual process. If insufficient workspace is allocated, the expected orthogonalization may not be done.

NOTE If the eigenvectors obtained are not orthogonal, increase 1 work and run the code again.
\(p=\) NPROW*NPCOL is the total number of processes.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & (global) INTEGER. The order of the matrix \(T(n \geq 0)\). \\
\hline m & (global) INTEGER. The number of eigenvectors to be returned. \\
\hline \multirow[t]{12}{*}{\(d, e, w\)} & (global) \\
\hline & REAL for single-precision flavors \\
\hline & DOUBLE PRECISION for double-precision flavors. \\
\hline & Arrays: \(d(*)\) contains the diagonal elements of \(T\). \\
\hline & DIMENSION ( \(n\) ). \\
\hline & \(e(*)\) contains the off-diagonal elements of \(T\). \\
\hline & DIMENSION ( \(n-1\) ). \\
\hline & \(w^{(*)}\) contains all the eigenvalues grouped by split-off block.The eigenvalues \\
\hline & are supplied from smallest to largest within the block. (Here the output \\
\hline & array w from p? stebz with order = 'B' is expected. The array should be \\
\hline & replicated in all processes.) \\
\hline & DIMENSION( \(m\) ) \\
\hline \multirow[t]{2}{*}{iblock} & (global) INTEGER. \\
\hline & Array, DIMENSION ( \(n\) ). The submatrix indices associated with the corresponding eigenvalues in \(w^{--1}\) for eigenvalues belonging to the first submatrix from the top, 2 for those belonging to the second submatrix, etc. (The output array iblock from p?stebz is expected here). \\
\hline \multirow[t]{7}{*}{isplit} & (global) INTEGER. \\
\hline & Array, DIMENSION ( \(n\) ). The splitting points, at which \(T\) breaks up into \\
\hline & submatrices. The first submatrix consists of rows/columns 1 to isplit(1), \\
\hline & the second of rows/columns isplit(1)+1 through isplit(2), etc., and \\
\hline & the nsplit-th consists of rows/columns isplit(nsplit-1)+1 through \\
\hline & isplit(nsplit) \(=n\). (The output array isplit from p?stebz is expected \\
\hline & here.) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{9}{*}{orfac} & (global) \\
\hline & REAL for single-precision flavors \\
\hline & DOUBLE PRECISION for double-precision flavors. \\
\hline & orfac specifies which eigenvectors should be orthogonalized. Eigenvectors \\
\hline & that correspond to eigenvalues within orfac*||T|| of each other are to be orthogonalized. However, if the workspace is insufficient (see 1 work), this \\
\hline & tolerance may be decreased until all eigenvectors can be stored in one \\
\hline & process. No orthogonalization is done if orfac is equal to zero. A default \\
\hline & value of 1000 is used if orfac is negative. orfac should be identical on all \\
\hline & processes \\
\hline \multirow[t]{2}{*}{iz, jz} & (global) INTEGER. The row and column indices in the global array \(z\) \\
\hline & indicating the first row and the first column of the submatrix \(z\), respectively. \\
\hline \multirow[t]{2}{*}{descz} & (global and local) INTEGER array, dimension (dlen_). The array descriptor \\
\hline & for the distributed matrix \(z\). \\
\hline \multirow[t]{3}{*}{work} & (local). REAL for single-precision flavors \\
\hline & DOUBLE PRECISION for double-precision flavors. \\
\hline & Workspace array, DIMENSION (lwork). \\
\hline \multirow[t]{7}{*}{Iwork} & (local) INTEGER. \\
\hline & lwork controls the extent of orthogonalization which can be done. The \\
\hline & number of eigenvectors for which storage is allocated on each process is \\
\hline & \(n v e c=\) floor ( 1 work-max ( \(5 * n, n p 00 * m q 00)\) )/n). Eigenvectors \\
\hline & corresponding to eigenvalue clusters of size nvec - ceil \((\mathrm{m} / \mathrm{p})+1\) are \\
\hline & guaranteed to be orthogonal (the orthogonality is similar to that obtained \\
\hline & from ?stein2). \\
\hline
\end{tabular}

NOTE 1 work must be no smaller than max \((5 * n, n p 00 * m q 00)+\) \(\operatorname{ceil}(m / p) * n\) and should have the same input value on all processes.
iwork
liwork

\section*{Output Parameters}
(local)
REAL for psstein
DOUBLE PRECISION for pdstein
COMPLEX for pcstein
DOUBLE COMPLEX for pzstein.
\begin{tabular}{|c|c|}
\hline & Array, DIMENSION (descz(dlen_), n/NPCOL + NB). z contains the computed eigenvectors associated with the specified eigenvalues. Any vector which fails to converge is set to its current iterate after MAXIT iterations (See ?stein2). On output, \(z\) is distributed across the \(p\) processes in block cyclic format. \\
\hline work (1) & On exit, work (1) gives a lower bound on the workspace (lwork) that guarantees the user desired orthogonalization (see orfac). Note that this may overestimate the minimum workspace needed. \\
\hline iwork & On exit, iwork (1) contains the amount of integer workspace required. On exit, the iwork (2) through iwork (p+2) indicate the eigenvectors computed by each process. Process \(i\) computes eigenvectors indexed iwork(i+2)+1 through iwork(i+3). \\
\hline ifail & (global). INTEGER. Array, DIMENSION ( \(m\) ). On normal exit, all elements of ifail are zero. If one or more eigenvectors fail to converge after MAXIT iterations (as in ?stein), then info \(>0\) is returned. If mod(info, m+1)>0, then for \(i=1\) to \(\bmod (i n f 0, m+1)\), the eigenvector corresponding to the eigenvalue w(ifail(i)) failed to converge (w refers to the array of eigenvalues on output). \\
\hline iclustr & \begin{tabular}{l}
(global) INTEGER. Array, DIMENSION ( \(2 * p\) ) \\
This output array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be orthogonalized due to insufficient workspace (see lwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr(2*I-1) to iclustr(2*I), i = 1 to infol ( \(m+1\) ), could not be orthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr is a zero terminated array --- (iclustr \((2 * k)\). ne. 0 . and. iclustr \(\left(2^{*} k+1\right)\).eq. 0 ) if and only if \(k\) is the number of clusters.
\end{tabular} \\
\hline gap & \begin{tabular}{l}
(global) \\
REAL for single-precision flavors \\
DOUBLE PRECISION for double-precision flavors. \\
This output array contains the gap between eigenvalues whose eigenvectors could not be orthogonalized. The info/m output values in this array correspond to the infol ( \(m+1\) ) clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the \(i-t h\) cluster may be as high as ( \(O(n){ }^{*}\) macheps)/gap(i).
\end{tabular} \\
\hline info & \begin{tabular}{l}
(global) INTEGER. \\
If info \(=0\), the execution is successful. \\
If info < 0: If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), \\
If the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
If info < 0: if info \(=-i\), the \(i\)-th argument had an illegal value. \\
If info > 0 : if mod(info, \(m+1\) ) \(=i\), then \(i\) eigenvectors failed to converge in MAXIT iterations. Their indices are stored in the array ifail. If infol \((m+1)=i\), then eigenvectors corresponding to \(i\) clusters of eigenvalues could not be orthogonalized due to insufficient workspace. The indices of the clusters are stored in the array iclustr.
\end{tabular} \\
\hline
\end{tabular}

\section*{Nonsymmetric Eigenvalue Problems}

This section describes ScaLAPACK routines for solving nonsymmetric eigenvalue problems, computing the Schur factorization of general matrices, as well as performing a number of related computational tasks.

To solve a nonsymmetric eigenvalue problem with ScaLAPACK, you usually need to reduce the matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg matrix obtained.
Table "Computational Routines for Solving Nonsymmetric Eigenproblems" lists ScaLAPACK routines for reducing the matrix to the upper Hessenberg form by an orthogonal (or unitary) similarity transformation \(A\) \(=Q H Q^{H}\), as well as routines for solving eigenproblems with Hessenberg matrices, and multiplying the matrix after reduction.
\begin{tabular}{llll} 
Computational Routines for Solving Nonsymmetric Eigenproblems \\
\hline Operation performed & General matrix & \begin{tabular}{l} 
Orthogonal/Unitary \\
matrix
\end{tabular} & Hessenberg matrix \\
\hline \begin{tabular}{lll} 
Reduce to Hessenberg form \(A=\) & p?gehrd & \\
\(Q H Q^{H}\)
\end{tabular} & & p?ormhr/p?unmhr & \\
\begin{tabular}{l} 
Multiply the matrix after reduction
\end{tabular} & & p?lahqr \\
\begin{tabular}{l} 
Find eigenvalues and Schur \\
factorization
\end{tabular} & & & \\
\hline
\end{tabular}

\section*{p?gehrd}

Reduces a general matrix to upper Hessenberg form.
Syntax
```

call psgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pdgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pcgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pzgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include Files}
```

- C:mkl_scalapack.h

```

\section*{Description}

The p?gehrd routine reduces a real/complex general distributed matrix sub (A) to upper Hessenberg form \(H\) by an orthogonal or unitary similarity transformation
```

Q'*sub (A)*Q = H,
where sub(A) = A(ia+n-1:ia+n-1, ja+n-1:ja+n-1).

```

\section*{Input Parameters}
```

n
ilo, ihi
a
ia, ja
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) INTEGER.
It is assumed that $\operatorname{sub}(A)$ is already upper triangular in rows ia: ia+ilo-2 and ia+ihi:ia+n-1 and columns ja:ja+ilo-2 and ja+ihi:ja+n-1. (See Application Notes below).
If $n>0$, $1 \leq i l o \leq i h i \leq n ;$ otherwise set ilo $=1$, ihi $=n$.
a
(local) REAL for psgehrd
DOUBLE PRECISION for pdgehrd
COMPLEX for pcgehrd
DOUBLE COMPLEX for pzgehrd.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja
$+n-1)$). On entry, this array contains the local pieces of the $n-b y-n$ general distributed matrix $\operatorname{sub}(A)$ to be reduced.
ia, ja
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.

```
\begin{tabular}{|c|c|}
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline work & (local) \\
\hline & REAL for psgehrd \\
\hline & DOUBLE PRECISION for pdgehrd \\
\hline & COMPLEX for pcgehrd \\
\hline & DOUBLE COMPLEX for pzgehrd. \\
\hline & Workspace array of dimension lwork. \\
\hline \multirow[t]{15}{*}{lwork} & (local or global) INTEGER, dimension of the array work. lwork is local input and must be at least \\
\hline & \[
\text { lwork } \geq \mathrm{NB} \text { *NB + NB*max(ihip+1, ihlp+inlq) }
\] \\
\hline & where NB \(=\) mb_a \(=n b _a\), \\
\hline & iroffa \(=\bmod (i a-1, N B)\), \\
\hline & icoffa \(=\bmod (j a-1, N B)\), \\
\hline & \[
\begin{aligned}
& \text { ioff }=\bmod (i a+i l o-2, N B), ~ i a r o w=i n d x g 2 p(i a, ~ N B, ~ M Y R O W, ~ \\
& \text { rSrc_a, NPROW), ihip = numroc(ihi+iroffa, NB, MYROW, iarow, }
\end{aligned}
\] \\
\hline & NPROW), \\
\hline & ilrow = indxg2p(ia+ilo-1, NB, MYROW, rsrc_a, NPROW), \\
\hline & ihlp = numroc(ihi-ilotiofft1, NB, MYROW, ilrow, NPROW), \\
\hline & ilcol \(=\) indxg2p(ja+ilo-1, NB, MYCOL, Csrc_a, NPCOL), \\
\hline & inlq = numroc (n-ilotiofftl, NB, MYCOL, ilcol, NPCOL), \\
\hline & indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs gridinfo. \\
\hline & If 1 work \(=-1\), then lwork is global input and a workspace query is \\
\hline & assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the \\
\hline & corresponding work array, and no error message is issued by pxerbla. \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a\)
tau
work(1)
info

On exit, the upper triangle and the first subdiagonal of sub(A)are overwritten with the upper Hessenberg matrix \(H\), and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local). REAL for psgehrd
DOUBLE PRECISION for pdgehrd
COMPLEX for pcgehrd
DOUBLE COMPLEX for pzgehrd.
Array, DIMENSION at least max (ja+n-2).
The scalar factors of the elementary reflectors (see Application Notes below). Elements ja:ja+ilo-2 and ja+ihi:ja+n-2 of tau are set to zero. tau is tied to the distributed matrix \(A\).
On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0: if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of (ihi-ilo) elementary reflectors
```

Q = H(ilo)*H(ilo+1)*...*H(ihi-1).

```

Each \(H(i)\) has the form
\(H(i)=i-t a u^{*} V^{\star} V^{\prime}\)
where \(\operatorname{tau}\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i)=0, v(i+1)=1\) and \(v(i h i\) \(+1: n)=0 ; v(i+2: i h i)\) is stored on exit in a(ia+ilo+i:ia+ihi-1,ja+ilo+i-2), and tau in tau(ja \(+i l o+i-2)\). The contents of \(a(i a: i a+n-1, j a: j a+n-1)\) are illustrated by the following example, with \(n=\) 7, ilo = 2 and \(i h i=6\) :
on entry
\[
\left[\begin{array}{lllllll}
a & a & a & a & a & a & a \\
& a & a & a & a & a & a \\
& a & a & a & a & a & a \\
& a & a & a & a & a & a \\
a & a & a & a & a & a \\
a & a & a & a & a & a \\
& & & & & & a
\end{array}\right]
\]
on exit
\[
\left[\begin{array}{ccccccc}
a & a & a & h & h & h & a \\
& a & h & h & h & h & a \\
& h & h & h & h & h & h \\
& v 2 & h & h & h & h & h \\
& v 2 & v 3 & h & h & h & h \\
& v 2 & v 3 & v 4 & h & h & h \\
& & & & & & a
\end{array}\right]
\]
where a denotes an element of the original matrix \(\operatorname{sub}(A), H\) denotes a modified element of the upper Hessenberg matrix \(H\), and vi denotes an element of the vector defining \(H(j a+i l o+i-2)\).

\section*{p?ormhr}

Multiplies a general matrix by the orthogonal transformation matrix from a reduction to Hessenberg form determined by p?gehrd.

\section*{Syntax}
```

call psormhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)
call pdormhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?ormhr routine overwrites the general real distributed \(m\)-by-n matrix sub \((C)=C(i c: i c+m-1, j c: j C\) \(+n-1\) ) with
```

side ='L' side ='R'

```


where \(Q\) is a real orthogonal distributed matrix of order \(n q\), with \(n q=m\) if side \(=\) 'L' and \(n q=n\) if side = 'R'.
\(Q\) is defined as the product of ihi-ilo elementary reflectors, as returned by p ? gehrd.
\(Q=H(i l o) H(i l o+1) \ldots H(i h i-1)\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline side & (global) CHARACTER \\
\hline & \(=\) 'L': \(Q\) or \(Q^{T}\) is applied from the left. \\
\hline & = 'R': \(Q\) or \(Q^{T}\) is applied from the right. \\
\hline trans & (global) CHARACTER \\
\hline & \(={ }^{\prime} N^{\prime}\) ', no transpose, \(Q\) is applied. \\
\hline & \(=\) 'T', transpose, \(Q^{T}\) is applied. \\
\hline m & (global) INTEGER. The number of rows in the distributed matrix sub (c) \\
\hline & ( \(m \geq 0\) ). \\
\hline \(n\) & (global) INTEGER. The number of columns in he distributed matrix sub (c) \\
\hline & ( \(n \geq 0\) ). \\
\hline ilo, ihi & (global) INTEGER. \\
\hline & ilo and ihi must have the same values as in the previous call of p?gehrd. \\
\hline & \(Q\) is equal to the unit matrix except for the distributed submatrix \(Q\) (ia \\
\hline & +ilo:ia+ihi-1,ia+ilo:ja+ihi-1). \\
\hline & If side = 'L', \(1 \leq i l o \leq i h i \leq \max (1, m)\); \\
\hline & If side = 'R', \(1 \leq i l o \leq i h i \leq \max (1, n)\); \\
\hline & ilo and ihi are relative indexes. \\
\hline a & (local) \\
\hline & REAL for psormhr \\
\hline & DOUBLE PRECISION for pdormhr \\
\hline & Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \\
\hline & +m-1)) if side='L', and (lld_a, LOCc (ja+n-1)) if side = 'R'. \\
\hline & Contains the vectors which define the elementary reflectors, as returned by p?gehrd. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a \\
\hline & indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline tau & (local) \\
\hline & REAL for psormhr \\
\hline & DOUBLE PRECISION for pdormhr \\
\hline & Array, DIMENSION LOCC(ja+m-2), if side = 'L', and LOCC(ja+n-2) if side = 'R'. \\
\hline & This array contains the scalar factors \(\operatorname{tau}(j)\) of the elementary reflectors \(H(j)\) as returned by \(p\) ? gehrd. tau is tied to the distributed matrix \(A\). \\
\hline
\end{tabular}


\section*{Output Parameters}
```

c
work(1)
info

```
\(\operatorname{sub}(C)\) is overwritten by \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C)^{*} Q\). On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```

p?unmhr
Multiplies a general matrix by the unitary
transformation matrix from a reduction to Hessenberg
form determined by p?gehrd.

```

\section*{Syntax}
```

call pcunmhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)
call pzunmhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

This routine overwrites the general complex distributed \(m\)-by-n matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\) with
```

 side ='L' side ='R'
    ```


where \(Q\) is a complex unitary distributed matrix of order \(n q\), with \(n q=m\) if side \(=\) ' \(L\) ' and \(n q=n\) if side = 'R'.
\(Q\) is defined as the product of ihi-ilo elementary reflectors, as returned by p ? gehrd.
\(Q=H(i l o) H(i l o+1) . . . H(i h i-1)\).

\section*{Input Parameters}
```

side (global) CHARACTER
= 'L':Q or Q 贯 is applied from the left.
='R':Q or Q 巵 is applied from the right.
trans (global) CHARACTER
='N', no transpose, Q is applied.
= 'C', conjugate transpose, Q is applied.
(global) INTEGER. The number of rows in the distributed submatrix sub (c)
(m\geq0).
(global) INTEGER. The number of columns in the distributed submatrix sub
(c) (}n\geq0)
(global) INTEGER
These must be the same parameters ilo and ihi, respectively, as supplied
to p?gehrd. Q is equal to the unit matrix except in the distributed
submatrix Q (ia+ilo:ia+ihi-1,ia+ilo:ja+ihi-1).
If side ='L', then 1\leqilo\leqihi\leqmax (1,m).
If side = 'R', then 1\leqilo\leqihi\leqmax(1,n)
ilo and ihi are relative indexes.

```

```

iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}
```

C C is overwritten by Q* sub(C) or Q'*sub(C) or sub(C)*Q' or sub(C)*Q.
work(1) On exit work(1) contains the minimum value of lwork required for
optimum performance.
info (global) INTEGER.
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had an illegal value,
then info = - (i* 100+j), if the i-th argument is a scalar and had an
illegal value, then info = -i.

```
p?lahqr
Computes the Schur decomposition and/or
eigenvalues of a matrix already in Hessenberg form.

\section*{Syntax}
```

call pslahqr(wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z, descz, work,
lwork, iwork, ilwork, info)
call pdlahqr(wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z, descz, work,
lwork, iwork, ilwork, info)
Include Files

```
- C: mkl_scalapack.h

\section*{Description}

This is an auxiliary routine used to find the Schur decomposition and/or eigenvalues of a matrix already in Hessenberg form from columns ilo to ihi.

\section*{Input Parameters}
```

wantt
wantz
n (global) INTEGER. The order of the Hessenberg matrix A (and z if wantz).
ilo, ihi
(global) LOGICAL
If wantt = .TRUE., the full Schur form T is required;
If wantt = .FALSE., only eigenvalues are required.
(global) LOGICAL.
If wantz = .TRUE., the matrix of Schur vectors z is required;
If wantz = .FALSE., Schur vectors are not required.
(}n\geq0)
(global) INTEGER.

```

It is assumed that \(A\) is already upper quasi-triangular in rows and columns ihi+1:n, and that \(A(i l o, i l o-1)=0\) (unless ilo \(=1\) ). p?lahqr works primarily with the Hessenberg submatrix in rows and columns ilo to ihi, but applies transformations to all of \(h\) if wantt is. TRUE. .
\(1 \leq i l o \leq \max (1, i h i)\); ihi \(\leq n\).
a
desca
iloz, ihiz
z
descz
work
lwork
iwork
ilwork

\section*{Output Parameters}
a
work(1)
wr, wi
(global)
REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Array, DIMENSION (desca(lld_),*). On entry, the upper Hessenberg matrix \(A\).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(global) INTEGER. Specify the rows of \(z\) to which transformations must be applied if wantz is .TRUE.. \(1 \leq i l o z \leq i l o ; ~ i h i \leq i h i z \leq n . ~\)
(global) REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Array. If wantz is .TRUE., on entry \(z\) must contain the current matrix \(z\) of transformations accumulated by pdhseqr. If wantz is .FALSE., \(z\) is not referenced.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(Z\).
(local)
REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Workspace array with dimension lwork.
(local) INTEGER. The dimension of work. lwork is assumed big enough so that lwork \(\geq 3 * n+\max \left(2 * \max \left(\operatorname{descz}\left(l l d_{-}\right)\right.\right.\), desca(lld_)) + \(2 * \operatorname{LOCq}(n), 7 * \operatorname{ceil}(n / h b l) / l c m(N P R O W, N P C O L)))\).
If 1 work \(=-1\), then work (1) gets set to the above number and the code returns immediately.
(global and local) INTEGER array of size ilwork.
(local) INTEGER This holds some of the iblk integer arrays.

On exit, if wantt is .TRUE., \(A\) is upper quasi-triangular in rows and columns ilo:ihi, with any 2-by-2 or larger diagonal blocks not yet in standard form. If wantt is .FALSE., the contents of \(A\) are unspecified on exit.
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global replicated output)
REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Arrays, DIMENSION( \(n\) ) each. The real and imaginary parts, respectively, of the computed eigenvalues ilo to ihi are stored in the corresponding elements of wr and wi. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of wr and wi, say the \(i\)-th and \((i+1)\)-th, with \(w i(i)>0\) and \(w i(i+1)<0\). If wantt is .TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in A. A may be returned with larger diagonal blocks until the next release.

On exit \(z\) has been updated; transformations are applied only to the submatrix z(iloz:ihiz, ilo:ihi).
(global) INTEGER.
\(=0\) : the execution is successful.
< 0: parameter number -info incorrect or inconsistent
> 0: p?lahqr failed to compute all the eigenvalues ilo to ihi in a total of 30 (ihi-ilo 1 ) iterations; if info = i, elements \(i+1\) :ihi of wr and wi contain those eigenvalues which have been successfully computed.

\section*{Singular Value Decomposition}

This section describes ScaLAPACK routines for computing the singular value decomposition (SVD) of a general m-by-n matrix A (see "Singular Value Decomposition" in LAPACK chapter).
To find the SVD of a general matrix \(A\), this matrix is first reduced to a bidiagonal matrix \(B\) by a unitary (orthogonal) transformation, and then SVD of the bidiagonal matrix is computed. Note that the SVD of \(B\) is computed using the LAPACK routine ? \(b \mathrm{bdsqr}\).

Table "Computational Routines for Singular Value Decomposition (SVD)" lists ScaLAPACK computational routines for performing this decomposition.
Computational Routines for Singular Value Decomposition (SVD)
\begin{tabular}{lll}
\hline Operation & General matrix & Orthogonal/unitary matrix \\
\hline Reduce \(A\) to a bidiagonal matrix & p?gebrd & \\
Multiply matrix after reduction & & p?ormbr/p?unmbr \\
\hline
\end{tabular}

\section*{p?gebrd}

Reduces a general matrix to bidiagonal form.
Syntax
```

call psgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pdgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pcgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pzgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?gebrd routine reduces a real/complex general \(m\)-by- \(n\) distributed matrix sub \((A)=A(i a:\) ia \(+m-1, j a: j a+n-1)\) to upper or lower bidiagonal form \(B\) by an orthogonal/unitary transformation:
\(Q^{\prime *} \operatorname{sub}(A) * P=B\).
If \(m \geq n, B\) is upper bidiagonal; if \(m<n, B\) is lower bidiagonal.

\section*{Input Parameters}
\begin{tabular}{ll}
\(m\) & (global) INTEGER. The number of rows in the distributed matrix \(\operatorname{sub}(A)\) \\
\(n\) & \((m \geq 0)\). \\
& \((g l o b a l)\) INTEGER. The number of columns in the distributed matrix \(\operatorname{sub}(A)\) \\
\((n \geq 0)\).
\end{tabular}

REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd
DOUBLE COMPLEX for pzgebrd.
Real pointer into the local memory to an array of dimension (lld_a, \(\operatorname{LOCC}(j a+n-1))\). On entry, this array contains the distributed matrix sub (A).
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
```

(local)

```

REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd
DOUBLE COMPLEX for pzgebrd. Workspace array of dimension lwork.
lwork
(local or global) INTEGER, dimension of work, must be at least:
lwork \(\geq\) nb* (mpa0 + nqa0 +1 ) + nqa0
where \(n b=m b _a=n b _a\),
iroffa \(=\bmod (i a-1, n b)\),
icoffa \(=\bmod (j a-1, n b)\),
iarow = indxg2p(ia, nb, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p (ja, nb, MYCOL, CSrc_a, NPCOL),
mpa0 \(=\) numroc (m +iroffa, nb, MYROW, iarow, NPROW),
nqa0 \(=\) numroc ( \(n\) +icoffa, nb, MYCOL, iacol, NPCOL),
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
\(a\)
d
e

On exit, if \(m \geq n\), the diagonal and the first superdiagonal of sub(A) are overwritten with the upper bidiagonal matrix \(B\); the elements below the diagonal, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors, and the elements above the first superdiagonal, with the array taup, represent the orthogonal matrix \(P\) as a product of elementary reflectors. If \(m<n\), the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix \(B\); the elements below the first subdiagonal, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors, and the elements above the diagonal, with the array taup, represent the orthogonal matrix \(P\) as a product of elementary reflectors. See Application Notes below.
(local)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION
\(\operatorname{LOCC}(j a+\min (m, n)-1)\) if \(m \geq n\); \(\operatorname{LOCr}(i a+\min (m, n)-1)\) otherwise. The distributed diagonal elements of the bidiagonal matrix \(B: d(i)=a(i, i)\). \(d\) is tied to the distributed matrix \(A\).
(local)
\begin{tabular}{|c|c|}
\hline \multirow{13}{*}{tauq, taup} & REAL for single-precision flavors \\
\hline & DOUBLE PRECISION for double-precision flavors. Array, DIMENSION \\
\hline & \(\operatorname{LOCr}(i a+m i n(m, n)-1)\) if \(m \geq n\); \(\operatorname{LOCC}(j a+m i n(m, n)-2)\) otherwise. The distributed off-diagonal elements of the bidiagonal distributed matrix \(B\) : \\
\hline & If \(m \geq n, e(i)=a(i, i+1)\) for \(i=1,2, \ldots, n-1\); if \(m<n\), \(e(i)=\) \(a(i+1, i)\) for \(i=1,2, \ldots, m-1\). e is tied to the distributed matrix \(A\). \\
\hline & (local) \\
\hline & REAL for psgebrd \\
\hline & DOUBLE PRECISION for pdgebrd \\
\hline & COMPLEX for pcgebrd \\
\hline & DOUBLE COMPLEX for pzgebrd. \\
\hline & Arrays, DIMENSION LOCC (ja+min (m, \(n\) ) -1) for tauq and LOCr (ia \\
\hline & \(+\min (m, n)-1)\) for taup. Contain the scalar factors of the elementary \\
\hline & reflectors which represent the orthogonal/unitary matrices \(Q\) and \(P\), respectively. tauq and taup are tied to the distributed matrix \(A\). See \\
\hline & Application Notes below. \\
\hline work(1) & On exit work (1) contains the minimum value of lwork required for optimum performance. \\
\hline \multirow[t]{4}{*}{info} & (global) INTEGER. \\
\hline & \(=0\) : the execution is successful. \\
\hline & < 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, \\
\hline & then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
\hline
\end{tabular}

\section*{Application Notes}

The matrices \(Q\) and \(P\) are represented as products of elementary reflectors:
If \(m \geq n\),
\(Q=H(1) * H(2) * \ldots * H(n)\), and \(P=G(1) * G(2) * \ldots * G(n-1)\).
Each \(H(i)\) and \(G(i)\) has the form:
\(H(i)=i-t a u q * V V^{\prime}\) and \(G(i)=i-t a u p * u^{\star} u^{\prime}\)
where tauq and taup are real/complex scalars, and \(v\) and \(u\) are real/complex vectors;
\(v(1: i-1)=0, v(i)=1\), and \(v(i+1: m)\) is stored on exit in A(ia+i:ia+m-1,ja+i-1);
\(u(1: i)=0, u(i+1)=1\), and \(u(i+2: n)\) is stored on exit in A (ia+i-1,ja+i+1:ja+n-1);
tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1).
If \(m<n\),
\(Q=H(1) * H(2) * \ldots * H(m-1)\), and \(P=G(1) * G(2) * \ldots * G(m)\)
Each \(H(i)\) and \(G(i)\) has the form:
\(H(i)=i-\operatorname{tauq}^{\star} v^{\star} V^{\prime}\) and \(G(i)=i-\operatorname{taup}{ }^{*} u^{\star} u^{\prime}\)
here tauq and taup are real/complex scalars, and \(v\) and \(u\) are real/complex vectors;
\(v(1: i)=0, v(i+1)=1\), and \(v(i+2: m)\) is stored on exit in A (ia+i:ia+m-1,ja+i-1); u(1:i-1) = \(0, u(i)=1\), and \(u(i+1: n)\) is stored on exit in \(A(i a+i-1, j a+i+1: j a+n-1)\);
tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1).
The contents of \(\operatorname{sub}(A)\) on exit are illustrated by the following examples:
\(m=6\) and \(n=5(m>n):\)
\[
\left[\begin{array}{ccccc}
d & e & u 1 & u 1 & u 1 \\
v 1 & d & e & u 2 & u 2 \\
v 1 & v 2 & d & e & u 3 \\
v 1 & v 2 & v 3 & d & e \\
v 1 & v 2 & v 3 & v 4 & d \\
v 1 & v 2 & v 3 & v 4 & v 5
\end{array}\right]
\]
\(m=5\) and \(n=6(m<n):\)
\[
\left[\begin{array}{cccccc}
d & u 1 & u 1 & u 1 & u 1 & u \mathbf{1} \\
e & d & u 2 & u 2 & u 2 & u 2 \\
v 1 & e & d & u 3 & u 3 & u 3 \\
v 1 & v 2 & e & d & u 4 & u 4 \\
v 1 & v 2 & v 3 & e & d & u 5
\end{array}\right]
\]
where \(d\) and \(e\) denote diagonal and off-diagonal elements of \(B, v i\) denotes an element of the vector defining \(H(i)\), and ui an element of the vector defining \(G(i)\).

\section*{p?ormbr}

Multiplies a general matrix by one of the orthogonal matrices from a reduction to bidiagonal form determined by p?gebrd.

\section*{Syntax}
```

call psormbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)
call pdormbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

If vect \(=\) ' \(Q\) ', the p?ormbr routine overwrites the general real distributed \(m\)-by- \(n\) matrix sub \((C)=C(c\) : ic \(+m-1, j c: j c+n-1)\) with
\[
\begin{array}{ll} 
& \text { side }=' \mathrm{~L} ' \\
\text { trans }=\text { 'N': } & \text { Q sub(C) } \\
\text { trans }=' T ': & Q^{T} \operatorname{sub}(C)
\end{array}
\]
\[
\begin{aligned}
& \text { side }=' R ' \\
& \operatorname{sub}(C) Q \\
& \operatorname{sub}(C) Q^{T}
\end{aligned}
\]

If vect \(=\) ' \(P\) ', the routine overwrites sub(c) with
\[
\begin{array}{ll}
\text { trans }=' \mathrm{~N}^{\prime}: & \text { side }=' \mathrm{~L} ' \\
\text { trans }='^{\prime} \mathrm{T}: & P \operatorname{sub}(C) \\
P^{T} \operatorname{sub}(C)
\end{array}
\]
\[
\begin{aligned}
& \text { side }=' \mathrm{R} \text { ' } \\
& \operatorname{sub}(C) P \\
& \operatorname{sub}(C) P^{T}
\end{aligned}
\]

Here \(Q\) and \(P^{T}\) are the orthogonal distributed matrices determined by p?gebrd when reducing a real distributed matrix \(A\left(i a:{ }^{*}, j a:{ }^{*}\right)\) to bidiagonal form: \(A(i a: *, j a: *)=Q^{\star} B^{\star} P^{T} . Q\) and \(P^{T}\) are defined as products of elementary reflectors \(H(i)\) and \(G(i)\) respectively.

Let \(n q=m\) if side \(=\) 'L' and \(n q=n\) if side \(=\) 'R'. Thus \(n q\) is the order of the orthogonal matrix \(Q\) or \(P^{T}\) that is applied.
```

If vect = 'Q', A(ia:*, ja:*) is assumed to have been an nq-by-k matrix:
If nq \geq k, Q = H(1) H(2)...H(k);
If nq< k, Q = H(1) H(2)...H(nq-1).
If vect = 'P', A(ia:*, ja:*) is assumed to have been a k-by-nq matrix:
If k<nq, P=G(1) G(2)...G(k);
If k}\geqnq, P=G(1) G(2)...G(nq-1)

```
Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{vect} & (global) CHARACTER. \\
\hline & If vect \(=\) ' \(Q^{\prime}\), then \(Q\) or \(Q^{T}\) is applied. \\
\hline & If vect \(=\) ' \(\mathrm{P}^{\prime}\), then \(P\) or \(P^{T}\) is applied. \\
\hline \multirow[t]{3}{*}{side} & (global) CHARACTER. \\
\hline & If side ='L', then \(Q\) or \(Q^{T}, P\) or \(P^{T}\) is applied from the left. \\
\hline & If side \(=\) 'R', then \(Q\) or \(Q^{T}, P\) or \(P^{T}\) is applied from the right. \\
\hline \multirow[t]{3}{*}{trans} & (global) CHARACTER. \\
\hline & If trans = 'N', no transpose, \(Q\) or \(P\) is applied. \\
\hline & If trans \(=\) ' T ', then \(Q^{T}\) or \(P^{T}\) is applied. \\
\hline
\end{tabular}
m
\(n\)
k
a
ia, ja
desca
tau
(global) INTEGER. The number of rows in the distributed matrix sub (C).
(global) INTEGER. The number of columns in the distributed matrix sub (c).
(global) INTEGER.
If vect \(=\) ' \(Q\) ', the number of columns in the original distributed matrix reduced by p?gebrd;
If vect = 'P', the number of rows in the original distributed matrix reduced by p?gebrd.
Constraints: \(k \geq 0\).
(local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Pointer into the local memory to an array of dimension (llda, LOCC (ja
\(+m i n(n q, k)-1)\) )
If vect='Q', and (lld_a, LOCC(ja+nq-1))
If vect = 'P'.
\(n q=m\) if side \(=\) 'L', and \(n q=n\) otherwise.
The vectors which define the elementary reflectors \(H(i)\) and \(G(i)\), whose products determine the matrices \(Q\) and \(P\), as returned by p?gebrd.
If vect \(=\) ' \(Q\) ', lld_a \(\max (1, \quad L O C r(i a+n q-1))\); If vect \(=\) ' \(P^{\prime}\), lld_a \(\max (1, \operatorname{LOCr}(i a+m i n(n q, k)-1))\).
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)

REAL for psormbr
DOUBLE PRECISION for pormbr.
Array, DIMENSION LOCC(ja+min(nq, \(k)-1)\), if vect \(=\) ' \(Q\) ', and LOCr(ia \(+\min (n q, k)-1)\), if vect \(=' P '\).
\(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(H(i)\) or \(G(i)\), which determines \(Q\) or \(P\), as returned by pdgebrd in its array argument tauq or taup. tau is tied to the distributed matrix \(A\).
c
ic, jc
descc
work
lwork
(local) REAL for psormbr
DOUBLE PRECISION for pdormbr
Pointer into the local memory to an array of dimension (Ild_a, LOCC (jc \(+n-1)\) ).
Contains the local pieces of the distributed matrix sub (c).
(global) INTEGER. The row and column indices in the global array \(c\) indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(C\).
(local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Workspace array of dimension lwork.
(local or global) INTEGER, dimension of work, must be at least:
If side = 'L'
\(n q=m ;\)
if ((vect = 'Q' and \(n q \geq k\) ) or (vect is not equal to ' \(Q\) ' and \(n q>k\) )),
iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;
else
iaa= ia+1; jaa=ja; mi=m-1; ni=n; icc=ic+1; jcc= jc;
end if
else
If side = 'R', \(n q=n\);
if((vect = 'Q' and \(n q \geq k\) ) or (vect is not equal to ' \(Q\) ' and
\(n q>k)\) ),
iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;
else
iaa= ia; jaa= ja+1; mi= m; ni= n-1; icc= ic; jcc= jc+1;
end if
end if
If vect = 'Q',
If side \(=\) 'L', lwork \(\geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2,(n q c 0+m p c 0) * n b _a\right)+\) \(n b _a\) * nb_a
else if side = 'R',
lwork \(\geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2\right.\), \((n q c 0+\max (n p a 0+\)
numroc (numroc (ni+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0 ,
lcmq), \(m p c 0)\) ) \(n b\) _a) \(+n b _a^{\star} n b _a\)
end if
else if vect is not equal to ' Q ', if side = 'L',
lwork \(\geq \max \left(\left(m b _a^{*}\left(m b _a-1\right)\right) / 2\right.\), \((m p c 0+\max (m q a 0+\)
numroc (numroc (mi+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0,
lcmp), \(\left.n q(0)) * m b _a\right)+m b _a^{\star} m b _a\)
else if side = 'R',
\(I\) work \(\geq \max \left(\left(m b _a^{*}\left(m b _a-1\right)\right) / 2,(m p c 0+n q c 0) * m b _a\right)+m b _a * m b _a\)
```

end if
end if
where lcmp = lcm/NPROW, lcmq = lcm/NPCOL, with lcm =
ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(jaa, nb_a, MYCOL, csrc_a, NPCOL),
mqaO = numroc(mi+icoffa, nb_a, MYCOL, iacol, NPCOL),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW
and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}

C
On exit, if vect= ' \(Q^{\prime}, \operatorname{sub}(C)\) is overwritten by \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or sub( \((C)^{*} Q\); if vect= \(P^{\prime}, \operatorname{sub}(C)\) is overwritten by \(P^{*} \operatorname{sub}(C)\), or \(P^{\prime *} \operatorname{sub}(C)\), or sub(C)* \({ }^{*}\), or sub( \((C)^{*} P^{\prime}\).
work(1)
info
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) Integer.
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?unmbr}

Multiplies a general matrix by one of the unitary
transformation matrices from a reduction to bidiagonal
form determined by p?gebrd.

\section*{Syntax}
```

call pcunmbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)
call pzunmbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

If vect \(=\) ' \(Q\) ', the p?unmbr routine overwrites the general complex distributed \(m\)-by- \(n\) matrix sub \((C)=\) \(C(i c: i c+m-1, j c: j c+n-1)\) with
\[
\begin{array}{lll} 
& \text { side }=^{\prime} L^{\prime} & \text { side }=' R^{\prime} \\
\text { trans }=\text { ' } N^{\prime}: & Q^{*} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q \\
\text { trans }='^{\prime} C^{\prime}: & Q^{H *} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q^{H}
\end{array}
\]

If vect \(=\) ' \(P\) ', the routine overwrites sub(c) with
\[
\begin{array}{lll} 
& \text { side }=^{\prime} \mathrm{L}^{\prime} & \text { side }=^{\prime} \mathrm{R}^{\prime} \\
\operatorname{trans}= & \mathrm{N}^{\prime}: & P^{*} \operatorname{sub}(C) \\
\operatorname{trans}=\mathrm{C}^{\prime} \mathrm{C}^{\prime}: & P^{H *} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} P \\
\text { sub }(C)^{*} P^{H}
\end{array}
\]

Here \(Q\) and \(P^{H}\) are the unitary distributed matrices determined by p ? gebrd when reducing a complex distributed matrix \(A\left(i a: \star\right.\), ja:*) to bidiagonal form: \(A(i a: \star, j a: \star)=Q^{\star} B^{\star} P^{H}\).
\(Q\) and \(P^{H}\) are defined as products of elementary reflectors \(H(i)\) and \(G(i)\) respectively.
Let \(n q=m\) if side \(=\) 'L' and \(n q=n\) if side \(=\) 'R'. Thus \(n q\) is the order of the unitary matrix \(Q\) or \(p^{H}\) that is applied.

If vect \(=\) ' \(Q\) ', A(ia:*, ja:*) is assumed to have been an \(n q-b y-k\) matrix:
If \(n q \geq k, Q=H(1) H(2) \ldots H(k)\);
If \(n q<k, Q=H(1) H(2) \ldots H(n q-1)\).
If vect \(=\) ' \(P^{\prime}, A(i a: *, j a: *)\) is assumed to have been a \(k\)-by-nq matrix:
If \(k<n q, P=G(1) G(2) \ldots G(k)\);
If \(k \geq n q, P=G(1) \quad G(2) \ldots G(n q-1)\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{vect} & (global) CHARACTER. \\
\hline & If vect \(=\) ' \(Q^{\prime}\), then \(Q\) or \(Q^{H}\) is applied. \\
\hline & If vect \(=\) ' \(\mathrm{P}^{\prime}\), then \(P\) or \(P^{H}\) is applied. \\
\hline \multirow[t]{3}{*}{side} & (global) CHARACTER. \\
\hline & If side \(=\) 'L', then \(Q\) or \(Q^{H}, P\) or \(P^{H}\) is applied from the left. \\
\hline & If side = 'R', then \(Q\) or \(Q^{H}, P\) or \(P^{H}\) is applied from the right. \\
\hline \multirow[t]{3}{*}{trans} & (global) CHARACTER. \\
\hline & If trans = 'N', no transpose, \(Q\) or \(P\) is applied. \\
\hline & If trans = 'C', conjugate transpose, \(Q^{H}\) or \(P^{H}\) is applied. \\
\hline m & (global) INTEGER. The number of rows in the distributed matrix sub ( \(C\) ) \(m \geq 0\). \\
\hline \(n\) & (global) INTEGER. The number of columns in the distributed matrix sub (c) \(n \geq 0\). \\
\hline \multirow[t]{3}{*}{k} & (global) INTEGER. \\
\hline & If vect \(=\) ' \(Q\) ', the number of columns in the original distributed matrix reduced by p?gebrd; \\
\hline & \begin{tabular}{l}
If vect = ' \(P\) ', the number of rows in the original distributed matrix reduced by p?gebrd. \\
Constraints: \(k \geq 0\).
\end{tabular} \\
\hline a & (local) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & COMPLEX for psormbr \\
\hline & DOUBLE COMPLEX for pdormbr. \\
\hline & Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+\min (n q, k)-1)\) ) if vect='Q', and (lld_a, LOCC(ja+nq-1)) if vect = 'P'. \\
\hline & \(n q=m\) if side \(=\) 'L', and \(n q=n\) otherwise. \\
\hline & The vectors which define the elementary reflectors \(H(i)\) and \(G(i)\), whose products determine the matrices \(Q\) and \(P\), as returned by p?gebrd. \\
\hline & If vect \(=\) 'Q', lld_a \(\geq \max (1, \operatorname{LOCr}(i a+n q-1))\); \\
\hline & If vect \(=\) ' P', lld_a \(\geq\) max ( \(1, \operatorname{LOCr}(i a+m i n(n q, k)-1)\) ). \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline tau & (local) \\
\hline & COMPLEX for pcunmbr \\
\hline & DOUBLE COMPLEX for pzunmbr. \\
\hline & Array, DIMENSION LOCC(ja+min(nq, k)-1), if vect = 'Q', and LOCr(ia \(+\min (n q, k)-1)\), if vect \(=\) ' \(P\) '. \\
\hline & \(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(H(i)\) or \(G(i)\), which determines \(Q\) or \(P\), as returned by p?gebrd in its array argument tauq or taup. tau is tied to the distributed matrix \(A\). \\
\hline C & (local) COMPLEX for pcunmbr \\
\hline & DOUBLE COMPLEX for pzunmbr \\
\hline & Pointer into the local memory to an array of dimension (lld_a, LOCC (jc \(+n-1)\) ). \\
\hline & Contains the local pieces of the distributed matrix sub (c). \\
\hline ic, jc & (global) INTEGER. The row and column indices in the global array \(c\) indicating the first row and the first column of the submatrix \(C\), respectively. \\
\hline descc & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(c\). \\
\hline work & (local) \\
\hline & COMPLEX for pcunmbr \\
\hline & DOUBLE COMPLEX for pzunmbr. \\
\hline & Workspace array of dimension lwork. \\
\hline lwork & (local or global) INTEGER, dimension of work, must be at least: \\
\hline & If side \(=\) 'L' \\
\hline & \(n q=m ;\) \\
\hline & if ((vect \(=\) ' \(Q\) ' and \(n q \geq k\) ) or (vect is not equal to ' \(Q\) ' and \(n q>\) k) ), iaa= ia; jaa= ja; mi= m; ni= n; icc= ic; jcc= jc; else \\
\hline & ```
iaa= ia+1; jaa= ja; mi=m-1; ni= n; icc= ic+1; jcc= jc;
end if
else
``` \\
\hline & If side = 'R', \(n q=n ;\) \\
\hline & ```
if ((vect = 'Q' and nq \geq k) or (vect is not equal to 'Q' and
nq \geq k)),
``` \\
\hline & \begin{tabular}{l}
iaa= ia; jaa= ja; mi= m; ni= n; icc= ic; jcc= jc; \\
else
\end{tabular} \\
\hline & ```
iaa= ia; jaa= ja+1; mi= m; ni= n-1; icc= ic; jcc= jc+1;
end if
``` \\
\hline
\end{tabular}
```

end if
If vect = 'Q',
If side = 'L', lwork \geq max((nb_a* (nb_a-1))/2, (nqc0+mpc0)*nb_a)

+ nb_a*nb_a
else if side = 'R',
lwork \geq max((nb_a*(nb_a-1))/2, (nqc0 +
max(npa0+numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a,
0, 0, lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
else if vect is not equal to 'Q',
if side = 'L',
lwork \geq max((mb_a*(mb_a-1))/2, (mpc0 +
max(mqa0+numroc(numroc (mi+iroffc, mb_a, 0, 0, NPROW), mb_a,
0, 0, lcmp), nqc0))*mb_a) + mb_a*mb_a
else if side = 'R',
lwork \geq max ((mb_a* (mb_a-1))/2, (mpc0 + nqc0)*mb_a) +
mb_a*mb_a
end if
end if
where lcmp = lcm/NPROW, lcmq = Icm/NPCOL, with lcm =
ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(jaa, nb_a, MYCOL, cSrc_a, NPCOL),
mqa0 = numroc(mi+icoffa, nb_a, MYCOL, iacol, NPCOL),
npa0 = numroc(ni+iroffa,mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW
and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}
work(1)
info
On exit, if vect=' \(Q^{\prime}, \operatorname{sub}(C)\) is overwritten by \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *}{ }^{*} \operatorname{sub}(C)\), or sub \((C) * Q^{\prime}\), or sub \((C) * Q\); if vect=' \(P^{\prime}, \operatorname{sub}(C)\) is overwritten by \(P^{\star} \operatorname{sub}(C)\), or \(P^{\prime} * \operatorname{sub}(C)\), or \(\operatorname{sub}(C) * P\), or \(\operatorname{sub}(C) * P^{\prime}\).
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{\star} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Generalized Symmetric-Definite Eigen Problems}

This section describes ScaLAPACK routines that allow you to reduce the generalized symmetric-definite eigenvalue problems (see Generalized Symmetric-Definite Eigenvalue Problems in LAPACK chapters) to standard symmetric eigenvalue problem \(C y=\lambda y\), which you can solve by calling ScaLAPACK routines described earlier in this chapter (see Symmetric Eigenproblems).
Table "Computational Routines for Reducing Generalized Eigenproblems to Standard Problems" lists these routines.
Computational Routines for Reducing Generalized Eigenproblems to Standard Problems
\begin{tabular}{lll}
\hline Operation & Real symmetric matrices & Complex Hermitian matrices \\
\hline Reduce to standard problems & p?sygst & p?hegst \\
\hline
\end{tabular}
```

p?sygst
Reduces a real symmetric-definite generalized
eigenvalue problem to the standard form.
Syntax

```
```

call pssygst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, info)

```
call pssygst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, info)
call pdsygst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, info)
```

call pdsygst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?sygst routine reduces real symmetric-definite generalized eigenproblems to the standard form.
In the following \(\operatorname{sub}(A)\) denotes \(A(i a: i a+n-1, j a: j a+n-1)\) and \(s u b(B)\) denotes \(B(i b: i b+n-1, j b: j b\) \(+n-1)\).

If ibtype \(=1\), the problem is
\(\operatorname{sub}(A){ }^{*} x=\lambda * \operatorname{sub}(B){ }^{*} x^{\prime}\),
and \(\operatorname{sub}(A)\) is overwritten by \(\operatorname{inv}\left(U^{T}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)\), \(\operatorname{or} \operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{T}\right)\).
If ibtype \(=2\) or 3 , the problem is

and \(\operatorname{sub}(A)\) is overwritten by \(U^{*} \operatorname{sub}(A)^{*} U^{T}\), or \(L^{T *} \operatorname{sub}(A) * L\).
sub(B) must have been previously factorized as \(U^{T} * U\) or \(L * L^{T}\) by p?potrf.

\section*{Input Parameters}
```

ibtype
uplo
(global) INTEGER. Must be 1 or 2 or 3.
If itype = 1, compute inv ( $U^{T}$ ) *sub ( $A$ ) *inv ( $U$ ), or $\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{T}\right)$;
If itype $=2$ or 3 , compute $U^{*} \operatorname{sub}(A) * U^{T}$, or $L^{T *} \operatorname{sub}(A) * L$.
uplo
(global) CHARACTER. Must be 'U' or 'L'.
If uplo = 'U', the upper triangle of $\operatorname{sub}(A)$ is stored and $\operatorname{sub}(B)$ is factored as $U^{T} * U$.
If uplo = 'L', the lower triangle of $\operatorname{sub}(A)$ is stored and $\operatorname{sub}(B)$ is factored as $L{ }^{\star} L^{T}$.

```

\section*{Output Parameters} a
```

n
a
ia, ja
desca
b
ib, jb
descb
(global) INTEGER. The order of the matrices sub (A) and sub (B) ( $n \geq 0$ ). (local)
REAL for pssygst
DOUBLE PRECISION for pdsygst.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja $+n-1)$ ). On entry, the array contains the local pieces of the $n-b y-n$ symmetric distributed matrix $\operatorname{sub}(A)$.
If uplo = 'U', the leading $n-b y-n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo = 'L', the leading $n-b y-n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
(local)
REAL for pssygst
DOUBLE PRECISION for pdsygst.
Pointer into the local memory to an array of dimension (lld_b, LOCC ( $j b$ $+n-1)$ ). On entry, the array contains the local pieces of the triangular factor from the Cholesky factorization of sub (B) as returned by p?potrf.
(global) INTEGER. The row and column indices in the global array $b$ indicating the first row and the first column of the submatrix $B$, respectively. (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $B$.

```

On exit, if info \(=0\), the transformed matrix, stored in the same format as \(\operatorname{sub}(A)\).
(global)
REAL for pssygst
DOUBLE PRECISION for pdsygst.
Amount by which the eigenvalues should be scaled to compensate for the scaling performed in this routine. At present, scale is always returned as 1.0 , it is returned here to allow for future enhancement.
(global) INTEGER.
If info \(=0\), the execution is successful. If info \(<0\), if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then \(i n f o=-i\).

\section*{p?hegst}

Reduces a Hermitian-definite generalized eigenvalue problem to the standard form.

\section*{Syntax}
```

call pchegst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, info)
call pzhegst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?hegst routine reduces complex Hermitian-definite generalized eigenproblems to the standard form.
In the following sub(A) denotes \(A(i a: i a+n-1, j a: j a+n-1)\) and sub(\(B\)) denotes \(B(i b: i b+n-1\), \(j b: j b+n-1)\).

If ibtype \(=1\), the problem is
\(\operatorname{sub}(A){ }^{*} x=\lambda * \operatorname{sub}(B){ }^{*} x^{\prime}\),
and \(\operatorname{sub}(A)\) is overwritten by \(\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)\), or \(\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)\).
If ibtype \(=2\) or 3 , the problem is
\(\operatorname{sub}(A){ }^{*} \operatorname{sub}(B){ }^{*} x=\lambda{ }^{*} x\), or \(\operatorname{sub}(B){ }^{*} \operatorname{sub}(A){ }^{*} x_{x}=\lambda{ }^{*} x_{,}\),
and \(\operatorname{sub}(A)\) is overwritten by \(U^{*} \operatorname{sub}(A)^{*} U^{H}\), or \(L^{H *} \operatorname{sub}(A)^{*} L\).
\(\operatorname{sub}(B)\) must have been previously factorized as \(U^{H} * U\) or \(L^{\star} L^{H}\) by p?potrf.
Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{ibtype} & (global) Integer. Must be 1 or 2 or 3. \\
\hline & If itype \(=1\), compute inv (\(U^{H}\)) * sub (\(A\)) *inv (\(U\)), or \\
\hline & \(\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right) ;\) \\
\hline & If itype \(=2\) or 3 , compute \(U^{\star} \operatorname{sub}(A) * U^{H}\), or \(L^{H *} \operatorname{sub}(A) * L\). \\
\hline \multirow[t]{3}{*}{uplo} & (global) CHARACTER. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', the upper triangle of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factored as \(U^{H *} U\). \\
\hline & If uplo = 'L', the lower triangle of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factored as \(L^{\star} L^{H}\). \\
\hline \(n\) & (global) INTEGER. The order of the matrices sub (A) and sub (B) (\(n \geq 0\)). \\
\hline \multirow[t]{5}{*}{a} & (local) \\
\hline & COMPLEX for pchegst \\
\hline & DOUBLE COMPLEX for pzhegst. \\
\hline & Pointer into the local memory to an array of dimension (Ild_a, LOCC (ja \(+n-1)\)). On entry, the array contains the local pieces of the \(n\)-by-n \\
\hline & Hermitian distributed matrix \(\operatorname{sub}(A)\). If uplo \(=\) ' \(U\) ', the leading \(n\)-by- \(n\) upper triangular part of sub(A) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If uplo \(=\) 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{4}{*}{b} & (local) \\
\hline & COMPLEX for pchegst \\
\hline & DOUBLE COMPLEX for pzhegst. \\
\hline & Pointer into the local memory to an array of dimension (lld_b, LOCC (\(j b\) \(+n-1)\)). On entry, the array contains the local pieces of the triangular factor from the Cholesky factorization of sub (\(B\)) as returned by p?potrf. \\
\hline
\end{tabular}
```

ib, jb
descb

```

\section*{Output Parameters}
a
scale
info
(global) INTEGER. The row and column indices in the global array \(b\) indicating the first row and the first column of the submatrix \(B\), respectively. (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\).

On exit, if info \(=0\), the transformed matrix, stored in the same format as sub(A).
(global)
REAL for pchegst
DOUBLE PRECISION for pzhegst.
Amount by which the eigenvalues should be scaled to compensate for the scaling performed in this routine. At present, scale is always returned as 1.0 , it is returned here to allow for future enhancement.
(global) INTEGER.
If info \(=0\), the execution is successful. If info \(<0\), if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Driver Routines}

Table "ScaLAPACK Driver Routines" lists ScaLAPACK driver routines available for solving systems of linear equations, linear least-squares problems, standard eigenvalue and singular value problems, and generalized symmetric definite eigenproblems.

\section*{ScaLAPACK Driver Routines}
\begin{tabular}{|c|c|c|}
\hline Type of Problem & Matrix type, storage scheme & Driver \\
\hline \multirow[t]{7}{*}{Linear equations} & general (partial pivoting) & ```
p?gesv (simple driver)p?gesvx (expert driver)
``` \\
\hline & general band (partial pivoting) & p?gbsv (simple driver) \\
\hline & general band (no pivoting) & p?dbsv (simple driver) \\
\hline & general tridiagonal (no pivoting) & p?dtsv (simple driver) \\
\hline & symmetric/Hermitian positive-definite & p?posv (simple driver)p?posvx (expert driver) \\
\hline & symmetric/Hermitian positive-definite, band & p?pbsv (simple driver) \\
\hline & symmetric/Hermitian positive-definite, tridiagonal & p?ptsv (simple driver) \\
\hline Linear least squares problem & general m-by-n & p?gels \\
\hline Symmetric eigenvalue problem & symmetric/Hermitian & \begin{tabular}{l}
p?syev / p?heev (simple driver); p? \\
syevd / p?heevd (simple driver with a divide and conquer algorithm); \(p\) ? \\
syevx / p?heevx (expert driver)
\end{tabular} \\
\hline Singular value decomposition & general \(m\)-by-n & p? gesvd \\
\hline Generalized symmetric definite eigenvalue problem & symmetric/Hermitian, one matrix also positive-definite & p?sygvx / p?hegvx (expert driver) \\
\hline
\end{tabular}
p?gesv
Computes the solution to the system of linear equations with a square distributed matrix and multiple right-hand sides.

\section*{Syntax}
```

call psgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pdgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pcgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pzgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?gesv routine computes the solution to a real or complex system of linear equations sub ( \(A\) ) * \(X=\) sub (B), where sub (A) = A(ia:ia+n-1, ja:ja+n-1) is an n-by-n distributed matrix and \(x\) and sub (B) = B(ib:ib+n-1, jb:jb+nrhs-1) are n-by-nrhs distributed matrices.

The \(L U\) decomposition with partial pivoting and row interchanges is used to factor sub(A) as sub \((A)=\) \(P^{\star} L^{\star} U\), where \(P\) is a permutation matrix, \(L\) is unit lower triangular, and \(U\) is upper triangular. \(L\) and \(U\) are stored in \(\operatorname{sub}(A)\). The factored form of \(\operatorname{sub}(A)\) is then used to solve the system of equations sub \((A) * X=\) sub (B) .

Input Parameters
```

n
nrhs
a,b
ia, ja
desca
ib, jb
descb

```

\section*{Output Parameters}
```

a
b
ipiv
Overwritten by the factors L and U from the factorization $\operatorname{sub}(A)=P^{*} L^{*} U_{\text {; }}$; the unit diagonal elements of L are not stored . Overwritten by the solution distributed matrix x.
(local) INTEGER array.

```

The dimension of ipiv is (LOCr \(\left.\left(m_{-} a\right)+m b _a\right)\). This array contains the pivoting information. The (local) row i of the matrix was interchanged with the (global) row ipiv(i).
This array is tied to the distributed matrix \(A\).
info
(global) INTEGER. If info=0, the execution is successful.
info < 0:
If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
info > 0:
If info \(=k, U(i a+k-1, j a+k-1)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution could not be computed.

\section*{p?gesvx}

Uses the LU factorization to compute the solution to the system of linear equations with a square matrix \(A\)
and multiple right-hand sides, and provides error bounds on the solution.

\section*{Syntax}
```

call psgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv,
equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork,
iwork, liwork, info)
call pdgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv,
equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork,
iwork, liwork, info)
call pcgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv,
equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork,
rwork, lrwork, info)
call pzgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv,
equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork,
rwork, lrwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The \(p\) ? gesvx routine uses the \(L U\) factorization to compute the solution to a real or complex system of linear equations \(A X=B\), where \(A\) denotes the \(n\)-by- \(n\) submatrix \(A(i a: i a+n-1, j a: j a+n-1), B\) denotes the \(n\)-bynrhs submatrix \(B(i b: i b+n-1, j b: j b+n r h s-1)\) and \(x\) denotes the \(n\)-by-nrhs submatrix \(X(i x: i x+n-1\), jx:jx+nrhs-1).

Error bounds on the solution and a condition estimate are also provided.
In the following description, af stands for the subarray \(a f(i a f: i a f+n-1, j a f: j a f+n-1)\).
The routine p?gesvx performs the following steps:
1. If fact \(=\) ' \(E\) ', real scaling factors \(R\) and \(C\) are computed to equilibrate the system:
```

trans = 'N': diag(R)*A*diag(C) *diag(C) -1*X = diag(R)*B

```
\(\operatorname{trans}=' \mathrm{~T}^{\prime}:(\operatorname{diag}(R) \star A \star \operatorname{diag}(C)) T \star \operatorname{diag}(R)-1 * X=\operatorname{diag}(C) * \mathrm{~B}\)
\(\operatorname{trans}='^{\prime} \mathrm{C}:\left(\operatorname{diag}(R) * A^{\star} \operatorname{diag}(C)\right) H * \operatorname{diag}(R)-1 * X=\operatorname{diag}(C) * B\)
Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by diag \((R) * A * \operatorname{diag}(C)\) and \(B\) by diag \((R) * B\) (if trans='N') or diag ( \(C\) ) *B (if trans = 'T' or 'C').
2. If fact \(=\) ' \(N\) ' or ' \(E\) ', the \(L U\) decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) \({ }^{\prime} E^{\prime}\) ) as \(A=P L U\), where \(P\) is a permutation matrix, \(L\) is a unit lower triangular matrix, and \(U\) is upper triangular.
3. The factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than relative machine precision, steps 4-6 are skipped.
4. The system of equations is solved for \(x\) using the factored form of \(A\).
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix \(x\) is premultiplied by diag( \(C\) ) (if trans = ' \(N\) ') or diag( \(R\) ) (if trans \(=\) ' T ' or ' C ') so that it solves the original system before equilibration.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{fact} & (global) CHARACTER*1. Must be 'F', 'N', or 'E'. \\
\hline & Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored. \\
\hline & If fact = ' F ' then, on entry, af and ipiv contain the factored form of \(A\). \\
\hline & If equed is not ' \(N\) ', the matrix \(A\) has been equilibrated with scaling factors given by \(r\) and \(c\). Arrays \(a, ~ a f\), and ipiv are not modified. \\
\hline & If fact \(=\) ' \(N\) ', the matrix \(A\) is copied to af and factored. \\
\hline & If fact \(=\) ' \(E\) ', the matrix \(A\) is equilibrated if necessary, then copied to af and factored. \\
\hline \multirow[t]{5}{*}{trans} & (global) CHARACTER*1. Must be 'N', 'T', or 'C'. \\
\hline & Specifies the form of the system of equations: \\
\hline & If trans \(=\) ' N ', the system has the form \(A * X=B\) ( A ( transpose); \\
\hline & If trans \(=\) 'T', the system has the form \(A^{T *} X_{X}=B\) (Transpose); \\
\hline & If trans \(=\) ' C', the system has the form \(A^{H *} X=B\) (Conjugate transpose); \\
\hline \(n\) & (global) INTEGER. The number of linear equations; the order of the submatrix \(A(n \geq 0)\). \\
\hline nrhs & (global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrices \(B\) and \(X(n r h s \geq 0)\). \\
\hline \multirow[t]{9}{*}{\(a, ~ a f, b, w o r k\)} & (local) \\
\hline & REAL for psgesvx \\
\hline & DOUBLE PRECISION for pdgesvx \\
\hline & COMPLEX for pcgesvx \\
\hline & DOUBLE COMPLEX for pzgesvx. \\
\hline & Pointers into the local memory to arrays of local dimension a(lld_a, LOCC(ja+n-1)), af(lld_af, LOCC(ja+n-1)), \\
\hline & b(lld_b, LOCC (jb+nrhs-1)), work (lwork), respectively. \\
\hline & The array a contains the matrix \(A\). If fact \(=\) ' \(F\) ' and equed is not ' \(N\) ', then \(A\) must have been equilibrated by the scaling factors in \(r\) and/or \(c\). \\
\hline & The array af is an input argument if fact = 'F'. In this case it contains on entry the factored form of the matrix \(A\), that is, the factors \(L\) and \(U\) from the factorization \(A=P^{\star} L^{\star} U\) as computed by p?getrf. If equed is not ' \(N\) ', then \(a f\) is the factored form of the equilibrated matrix \(A\). \\
\hline
\end{tabular}

The array \(b\) contains on entry the matrix \(B\) whose columns are the righthand sides for the systems of equations.
work (*) is a workspace array. The dimension of work is (lwork).
ia, ja
desca
iaf, jaf
descaf
i.b, jb
descb
ipiv
equed
r, c
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix A(ia:ia+n-1, ja:ja+n-1), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(global) INTEGER. The row and column indices in the global array af indicating the first row and the first column of the subarray af (iaf:iaf \(+n-1\), jaf:jaftn-1), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A F\).
(global) INTEGER. The row and column indices in the global array B indicating the first row and the first column of the submatrix \(B\) ( \(i b: i b+n-1\), \(j b: j b+n r h s-1)\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\).
(local) INTEGER array.
The dimension of ipiv is (LOCr \(\left.\left(m_{-} a\right)+m b _a\right)\).
The array ipiv is an input argument if fact \(={ }^{\prime} \mathrm{F}^{\prime}\).
On entry, it contains the pivot indices from the factorization \(A=P^{\star} L^{\star} U\) as computed by p?getrf; (local) row i of the matrix was interchanged with the (global) row ipiv(i).
This array must be aligned with \(A(i a: i a+n-1, ~ *)\).
(global) CHARACTER*1. Must be 'N', 'R', 'C', or 'B'. equed is an input argument if fact \(={ }^{\prime} F^{\prime}\). It specifies the form of equilibration that was done:
If equed \(=\) ' \(N\) ', no equilibration was done (always true if fact \(=\) ' \(N\) '); If equed \(=\) ' \(R\) ', row equilibration was done, that is, \(A\) has been premultiplied by diag( \(r\) );
If equed \(=\) ' C', column equilibration was done, that is, \(A\) has been postmultiplied by diag(c);
If equed = ' B ', both row and column equilibration was done; \(A\) has been replaced by diag ( \(r\) ) * \(A * \operatorname{diag}(C)\).
(local) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCr (m_a) and LOCC (n_a), respectively.
The array \(r\) contains the row scale factors for \(A\), and the array \(C\) contains the column scale factors for \(A\). These arrays are input arguments if fact = ' F ' only; otherwise they are output arguments. If equed \(=\) ' \(\mathrm{R}^{\prime}\) or ' B ', \(A\) is multiplied on the left by \(\operatorname{diag}(r)\); if equed \(={ }^{\prime} N\) ' or ' \(C\) ', \(r\) is not accessed.
If fact \(=\) ' \(F\) ' and equed \(=\) ' \(R\) ' or ' B', each element of \(r\) must be positive.
If equed \(=\) ' C' or ' \(B\) ', \(A\) is multiplied on the right by diag( \(c)\); if equed = ' \(N\) ' or 'R', \(c\) is not accessed.
\begin{tabular}{|c|c|}
\hline ix, jx & (global) INTEGER. The row and column indices in the global array \(x\) indicating the first row and the first column of the submatrix \(x(i x: i x+n-1\), jx:jx+nrhs-1), respectively. \\
\hline descx & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(x\). \\
\hline lwork & (local or global) INTEGER. The dimension of the array work; must be at least max (p?gecon(lwork), p?gerfs(lwork)) +LOCr(n_a). \\
\hline iwork & (local, psgesvx/pdgesvx only) INTEGER. Workspace array. The dimension of iwork is (liwork). \\
\hline liwork & (local, psgesvx/pdgesvx only) INTEGER. The dimension of the array iwork, must be at least LOCr (n_a). \\
\hline rwork & (local) REAL for pcgesvx \\
\hline & DOUBLE PRECISION for pzgesvx. \\
\hline & Workspace array, used in complex flavors only. \\
\hline & The dimension of rwork is (lrwork). \\
\hline Irwork & (local or global, pcgesvx/pzgesvx only) INTEGER. The dimension of the array rwork; must be at least \(2 *\) LOCC (n_a) . \\
\hline
\end{tabular}

\section*{Output Parameters}

If fact \(=\) 'F' and equed \(=\) ' C' or 'B', each element of \(c\) must be positive. Array \(r\) is replicated in every process column, and is aligned with the distributed matrix A. Array \(c\) is replicated in every process row, and is aligned with the distributed matrix \(A\).
(global) INTEGER. The row and column indices in the global array \(X\) indicating the first row and the first column of the submatrix \(x(i x: i x+n-1\), \(j x: j x+n r h s-1)\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(X\).
(local or global) INTEGER. The dimension of the array work; must be at least max (p?gecon(lwork), p?gerfs(lwork))+LOCr(n_a) .
(local, psgesvx/pdgesvx only) INTEGER. Workspace array. The dimension of iwork is (liwork).
(local, psgesvx/pdgesvx only) INTEGER. The dimension of the array iwork, must be at least LOCr (n_a).
(local) REAL for pcgesvx
DOUBLE PRECISION for pzgesvx.
Workspace array, used in complex flavors only.
The dimension of rwork is (lrwork).
(local or global, pcgesvx/pzgesvx only) INTEGER. The dimension of the array rwork; must be at least \(2 * L O C c\left(n _a\right)\).
(local)
REAL for psgesvx
DOUBLE PRECISION for pdgesvx
COMPLEX for pcgesvx
DOUBLE COMPLEX for pzgesvx.
Pointer into the local memory to an array of local dimension
x(lld_x,LOCc (jx+nrhs-1)).
If info \(=0\), the array \(x\) contains the solution matrix \(x\) to the original system of equations. Note that \(A\) and \(B\) are modified on exit if equed \(\neq\) ' N ', and the solution to the equilibrated system is:
diag \((C)-1 * X\), if trans \(=\) ' \(N\) ' and equed \(=\) ' \(C\) ' or ' \(\mathrm{B}^{\prime}\); and diag \((R)-1 * X\), if trans \(=\) 'T' or 'C' and equed \(=\) ' R ' or ' B '.
Array a is not modified on exit if fact \(=\) ' F ' or ' N ', or if fact \(=\) ' E ' and equed = 'N'.
If equed \(\neq{ }^{\prime} \mathrm{N}^{\prime}\), \(A\) is scaled on exit as follows:
equed \(=\) 'R': \(A=\operatorname{diag}(R) * A\)
equed \(=\) 'C': A = A*diag \((C)\)
equed \(=\) 'B': \(A=\operatorname{diag}(R) * A * \operatorname{diag}(c)\)
If fact \(=\) ' \(N\) ' or ' \(E\) ', then \(a f\) is an output argument and on exit returns the factors \(L\) and \(U\) from the factorization \(A=P^{\star} L^{\star} U\) of the original matrix \(A\) (if fact = 'N') or of the equilibrated matrix \(A\) (if fact = 'E'). See the description of a for the form of the equilibrated matrix.
Overwritten by diag \((R) * B\) if trans \(=\) ' \(N\) ' and equed \(=\) 'R' or ' B '; overwritten by diag \((C){ }^{*} B\) if trans \(=' T\) ' and equed \(=\) ' \(C\) ' or ' \(B\) '; not changed if equed \(=\) ' \(N\) '.
These arrays are output arguments if fact \(\neq\) ' \(\mathrm{F}^{\prime}\).
\begin{tabular}{|c|c|}
\hline & See the description of \(r, c\) in Input Arguments section. (global) REAL for single precision flavors. \\
\hline \multirow{2}{*}{rcond} & DOUBLE PRECISION for double precision flavors. \\
\hline & An estimate of the reciprocal condition number of the matrix \(A\) after equilibration (if done). The routine sets rcond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular. \\
\hline \multirow[t]{3}{*}{ferr, berr} & (local) REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Arrays, DIMENSION LOCC (n_b) each. Contain the component-wise forward and relative backward errors, respectively, for each solution vector. Arrays ferr and berr are both replicated in every process row, and are aligned with the matrices \(B\) and \(x\). \\
\hline ipiv & If fact \(=\) 'N' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization \(A=P^{\star} L^{\star} U\) of the original matrix \(A\) (if fact \(=\) 'N') or of the equilibrated matrix \(A\) (if fact \(='^{\prime} E^{\prime}\) ). \\
\hline equed & If fact \(\neq ' \mathrm{~F}\) ', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section). \\
\hline work(1) & If info=0, on exit work (1) returns the minimum value of lwork required for optimum performance. \\
\hline iwork(1) & If info=0, on exit iwork(1) returns the minimum value of liwork required for optimum performance. \\
\hline rwork(1) & If info=0, on exit rwork (1) returns the minimum value of lrwork required for optimum performance. \\
\hline \multirow[t]{2}{*}{info} & INTEGER. If info \(=0\), the execution is successful. \\
\hline & info < 0 : if the \(i\) th argument is an array and the \(j\) th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\). If info \(=i\), and \(i \leq n\), then \(U(i, i)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed. If info \(=i\), and \(i=n+1\), then \(U\) is nonsingular, but rcond is less than machine precision. The factorization has been completed, but the matrix is singular to working precision and the solution and error bounds have not been computed. \\
\hline
\end{tabular}

\section*{p?gbsv}

Computes the solution to the system of linear equations with a general banded distributed matrix and multiple right-hand sides.

\section*{Syntax}
```

call psgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork, info)
call pdgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork, info)
call pcgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork, info)
call pzgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?gbsv routine computes the solution to a real or complex system of linear equations
\(\operatorname{sub}(A) * X=\operatorname{sub}(B)\),
where sub \((A)=A(1: n, j a: j a+n-1)\) is an \(n-b y-n\) real/complex general banded distributed matrix with bwl subdiagonals and bwu superdiagonals, and \(x\) and sub \((B)=B(i b: i b+n-1,1: r h s)\) are \(n\)-by-nrhs distributed matrices.

The \(L U\) decomposition with partial pivoting and row interchanges is used to factor \(\operatorname{sub}(A)\) as sub \((A)=\) \(P^{\star} L^{\star} U^{\star} Q\), where \(P\) and \(Q\) are permutation matrices, and \(L\) and \(U\) are banded lower and upper triangular matrices, respectively. The matrix \(Q\) represents reordering of columns for the sake of parallelism, while \(P\) represents reordering of rows for numerical stability using classic partial pivoting.

\section*{Input Parameters}
\(n\)
bwl
bwu
nrhs
work
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\).
(global) INTEGER. The number of subdiagonals within the band of \(A(0 \leq b w l\) \(\leq n-1\) ).
(global) INTEGER. The number of superdiagonals within the band of \(A(0 \leq\) bwu \(\leq n-1\) ).
(global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix \(\operatorname{sub}(B)(n r h s \geq 0)\).
(local)
REAL for psgbsv
DOUBLE PRECISON for pdgbsv
COMPLEX for pcgbsv
DOUBLE COMPLEX for pzgbsv.
Pointers into the local memory to arrays of local dimension
\(a(\operatorname{lld} a, \operatorname{LOCC}(j a+n-1))\) and \(b\left(I l d _b, \operatorname{LOCC}(n r h s)\right)\), respectively.
On entry, the array a contains the local pieces of the global array \(A\).
On entry, the array \(b\) contains the right hand side distributed matrix \(\operatorname{sub}(B)\).
(global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
If desca(dtype_) = 501, then dlen_ \(\geq 7\); else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\).
(global) INTEGER. The row index in the global array \(B\) that points to the first row of the matrix to be operated on (which may be either all of \(B\) or a submatrix of \(B\) ).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\).
If descb(dtype_) \(=502\), then dlen_ \(\geq 7\);
else if descb(dtype_) \(=1\), then dlen_ \(\geq 9\).
(local)
REAL for psgbsv
\begin{tabular}{ll}
\hline & DOUBLE PRECISON for pdgbsv \\
& COMPLEX for pcgbsv \\
& DOUBLE COMPLEX for pzgbsv. \\
& Workspace array of dimension (lwork). \\
& (local or global) INTEGER. The size of the array work, must be at least \\
& \(l w o r k \geq(N B+b w u) *(b w l+b w u)+6 *(b w l+b w u) *(b w l+2 * b w u)+\) \\
& \(+\max (n r h s *(N B+2 * b w l+4 * b w u), 1)\).
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & On exit, contains details of the factorization. Note that the resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism. \\
\hline b & On exit, this array contains the local pieces of the solution distributed matrix \(x\). \\
\hline ipiv & \begin{tabular}{l}
(local) INTEGER array. \\
The dimension of ipiv must be at least desca(NB). This array contains pivot indices for local factorizations. You should not alter the contents between factorization and solve.
\end{tabular} \\
\hline work(1) & On exit, work (1) contains the minimum value of 1 work required for optimum performance. \\
\hline info & \begin{tabular}{l}
INTEGER. If info=0, the execution is successful. info < 0 : \\
If the \(i\) th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\). \\
info > 0: \\
If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not nonsingular, and the factorization was not completed. If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.
\end{tabular} \\
\hline
\end{tabular}

\section*{p?dbsv}

Solves a general band system of linear equations.

\section*{Syntax}
```

call psdbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)
call pddbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)
call pcdbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)
call pzdbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?dbsv routine solves the following system of linear equations:
\(A(1: n, j a: j a+n-1) * x=B(i b: i b+n-1,1: n r h s)\),
where \(A(1: n, j a: j a+n-1)\) is an \(n\)-by- \(n\) real/complex banded diagonally dominant-like distributed matrix with bandwidth bwl, bwu.

Gaussian elimination without pivoting is used to factor a reordering of the matrix into \(L U\).

\section*{Input Parameters}
\(n\)
bwl
bwu
nrhs
a
ja
desca
b
ib
descb
work
(global) INTEGER. The order of the distributed submatrix \(A,(n \geq 0)\).
(global) INTEGER. Number of subdiagonals. \(0 \leq b w l \leq n-1\).
(global) INTEGER. Number of subdiagonals. \(0 \leq b w u \leq n-1\).
(global) INTEGER. The number of right-hand sides; the number of columns of the distributed submatrix \(B\), (nrhs \(\geq 0)\).
(local). REAL for psdbsv
DOUBLE PRECISION for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Pointer into the local memory to an array with leading dimension lld_a \(\geq\) (bwl+bwu+1) (stored in desca). On entry, this array contains the local pieces of the distributed matrix.
(global) INTEGER. The index in the global array a that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A).
(global and local) INTEGER array of dimension dlen.
If \(1 d\) type (dtype_a=501 or 502), dlen \(\geq 7\);
If \(2 d\) type (dtype_a=1), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(A\).
Contains information of mapping of \(A\) to memory.
(local)
REAL for psdbsv
DOUBLE PRECISON for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Pointer into the local memory to an array of local lead dimension \(11 d _b \geq\) \(n b\). On entry, this array contains the local pieces of the right hand sides \(B\) (ib:ib+n-1, 1:nrhs).
(global) INTEGER. The row index in the global array \(b\) that points to the first row of the matrix to be operated on (which may be either all of \(b\) or a submatrix of \(B\) ).
(global and local) INTEGER array of dimension dlen.
If \(1 d\) type (dtype_b \(=502\) ), dlen \(\geq 7\);
If \(2 d\) type (dtype_b \(=1\) ), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(B\).
Contains information of mapping of \(B\) to memory.
(local).
REAL for psdbsv
DOUBLE PRECISON for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Temporary workspace. This space may be overwritten in between calls to routines. work must be the size given in lwork.
(local or global) INTEGER. Size of user-input workspace work. If lwork is too small, the minimal acceptable size will be returned in work(1) and an error code is returned.
```

lwork \geq nb(bwl+bwu)+6max(bwl,bwu) *max (bwl,bwu)
+max((max(bwl,bwu) nrhs), max(bwl,bwu)*max(bwl,bwu))

```

\section*{Output Parameters}
a
b
work
info

On exit, this array contains information containing details of the factorization.
Note that permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.
On exit, this contains the local piece of the solutions distributed matrix \(x\).
On exit, work(1) contains the minimal lwork.
(local) INTEGER. If info=0, the execution is successful.
< 0: If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
> 0: If info \(=k<\) NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.
If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed.

\section*{p?dtsv}

Solves a general tridiagonal system of linear equations.

\section*{Syntax}
```

call psdtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork, info)
call pddtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork, info)
call pcdtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork, info)
call pzdtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork, info)

```

\section*{Include files}
- C: mkl_scalapack.h

\section*{Description}

The routine solves a system of linear equations
```

A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs),

```
where \(A(1: n, j a: j a+n-1)\) is an \(n\)-by-n complex tridiagonal diagonally dominant-like distributed matrix. Gaussian elimination without pivoting is used to factor a reordering of the matrix into \(L U\).

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & (global) INTEGER. The order of the distributed submatrix \(A(n \geq 0)\). \\
\(n r h s\) & INTEGER. The number of right hand sides; the number of columns of the \\
& distributed matrix \(B(n r h s \geq 0)\).
\end{tabular}
(local). REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the lower diagonal of the matrix. Globally, \(d l(1)\) is not referenced, and \(d l\) must be aligned with \(d\). Must be of size > desca( nb_ ).
work
(local). REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the main diagonal of the matrix.
(local). REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the upper diagonal of the matrix. Globally, \(d u(n)\) is not referenced, and \(d u\) must be aligned with \(d\).
(global) INTEGER. The index in the global array a that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A).
(global and local) INTEGER array of dimension dlen.
If \(1 d\) type (dtype_a=501 or 502), dlen \(\geq 7\);
If \(2 d\) type (dtype_a=1), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(A\).
Contains information of mapping of \(A\) to memory.
(local)
REAL for psdtsv
DOUBLE PRECISONfor pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer into the local memory to an array of local lead dimension lld_b > \(n b\). On entry, this array contains the local pieces of the right hand sides \(B\) (ib:ib+n-1, 1:nrhs).
(global) INTEGER. The row index in the global array \(b\) that points to the first row of the matrix to be operated on (which may be either all of \(b\) or a submatrix of \(B\) ).
(global and local) INTEGER array of dimension dlen.
If 1d type (dtype_b =502), dlen \(\geq 7\);
If \(2 d\) type (dtype_b \(=1\) ), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(B\).
Contains information of mapping of \(B\) to memory.
(local).
REAL for psdtsv
DOUBLE PRECISON for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv. Temporary workspace. This space may be overwritten in between calls to routines. work must be the size given in lwork.
lwork
(local or global) INTEGER. Size of user-input workspace work. If lwork is too small, the minimal acceptable size will be returned in work(1) and an error code is returned. 1 work \(>(12 * \mathrm{NPCOL}+3 * n b)+\max ((10+2 * \min (100\), nrhs) ) *NPCOL+4*nrhs, 8*NPCOL)

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline dl & On exit, this array contains information containing the \(*\) factors of the matrix. \\
\hline d & On exit, this array contains information containing the \(*\) factors of the matrix. Must be of size \(>\) desca( nb_ ). \\
\hline \(d u\) & On exit, this array contains information containing the \(*\) factors of the matrix. Must be of size > desca ( nb_ ). \\
\hline b & On exit, this contains the local piece of the solutions distributed matrix X . \\
\hline work & On exit, work (1) contains the minimal lwork. \\
\hline \multirow[t]{4}{*}{info} & (local) INTEGER. If info \(=0\), the execution is successful. \\
\hline & < 0: If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
\hline & \(>0\) : If info \(=k<\) NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed. \\
\hline & If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed. \\
\hline
\end{tabular}

\section*{p?posv}

Solves a symmetric positive definite system of linear
equations.

\section*{Syntax}
```

call psposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pdposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pcposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pzposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?posv routine computes the solution to a real/complex system of linear equations
```

sub (A)*X = sub (B),

```
where \(\operatorname{sub}(A)\) denotes \(A(i a: i a+n-1, j a: j a+n-1)\) and is an \(n-b y-n\) symmetric/Hermitian distributed positive definite matrix and \(x\) and \(\operatorname{sub}(B)\) denoting \(B(i b: i b+n-1, j b: j b+n r h s-1)\) are \(n\)-by-nrhs distributed matrices. The Cholesky decomposition is used to factor \(\operatorname{sub}(A)\) as
\(\operatorname{sub}(A)=U^{T} \star U\), if uplo = 'U', or
\(\operatorname{sub}(A)=L^{\star} L^{T}\), if uplo = 'L',
where \(U\) is an upper triangular matrix and \(L\) is a lower triangular matrix. The factored form of \(\operatorname{sub}(A)\) is then used to solve the system of equations.

\section*{Input Parameters}
```

uplo
n
nrhs

```
a
ia, ja
desca
b
ib, jb
descb

\section*{Output Parameters}
a
\(b\)
info
(global). CHARACTER. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(\operatorname{sub}(A)\) is stored.
(global) INTEGER. The order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\).
INTEGER. The number of right-hand sides; the number of columns of the distributed submatrix \(\operatorname{sub}(B)(n r h s \geq 0)\).
(local)
REAL for psposv
DOUBLE PRECISION for pdposv
COMPLEX for pcposv
COMPLEX*16 for pzposv.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+n-1)\) ). On entry, this array contains the local pieces of the \(n\)-by- \(n\) symmetric distributed matrix \(\operatorname{sub}(A)\) to be factored.
If uplo = ' \(U\) ', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo = ' \(L\) ', the leading \(n\)-by- \(n\) lower triangular part of sub(A) contains the lower triangular part of the distributed matrix, and its strictly upper triangular part is not referenced.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for psposv
DOUBLE PRECISON for pdposv
COMPLEX for pcposv
COMPLEX*16 for pzposv.
Pointer into the local memory to an array of dimension (lld_b, LOC ( jb
\(+n r h s-1)\) ). On entry, the local pieces of the right hand sides distributed matrix \(\operatorname{sub}(B)\).
(global) INTEGER. The row and column indices in the global array \(b\) indicating the first row and the first column of the submatrix \(B\), respectively. (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(в\).

On exit, if info \(=0\), this array contains the local pieces of the factor \(U\) or \(L\) from the Cholesky factorization sub \((A)=U^{H \star} U\), or \(L^{\star} L^{H}\).
On exit, if info \(=0, \operatorname{sub}(B)\) is overwritten by the solution distributed matrix \(x\).
(global) INTEGER.
If info \(=0\), the execution is successful.
If info < 0: If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

If info > 0: If info \(=k\), the leading minor of order \(k\), \(A(i a: i a+k-1\), \(j a: j a+k-1)\) is not positive definite, and the factorization could not be completed, and the solution has not been computed.

\section*{p?posvx}

Solves a symmetric or Hermitian positive definite system of linear equations.

\section*{Syntax}
```

call psposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, equed, sr,
sc, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork, iwork,
liwork, info)
call pdposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, equed, sr,
sc, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork, iwork,
liwork, info)
call pcposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, equed, sr,
sc, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork, iwork,
liwork, info)
call pzposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, equed, sr,
sc, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork, iwork,
liwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?posvx routine uses the Cholesky factorization \(A=U^{T} * U\) or \(A=L^{*} L^{T}\) to compute the solution to a real or complex system of linear equations
```

A(ia:ia+n-1, ja:ja+n-1)*X = B(ib:ib+n-1, jb:jb+nrhs-1),

```
where \(A(i a: i a+n-1, j a: j a+n-1)\) is a \(n-b y-n\) matrix and \(x\) and \(B(i b: i b+n-1, j b: j b+n r h s-1)\) are \(n\)-bynrhs matrices.

Error bounds on the solution and a condition estimate are also provided.
In the following comments \(y\) denotes \(Y(i y: i y+m-1, j y: j y+k-1)\) a \(m\)-by- \(k\) matrix where \(y\) can be \(a, a f, b\) and \(x\).

The routine p?posvx performs the following steps:
1. If fact \(=\) ' \(E\) ', real scaling factors \(s\) are computed to equilibrate the system:
\(\operatorname{diag}(s r) * A * \operatorname{diag}(s C) * i n v(\operatorname{diag}(S C)) * X=\operatorname{diag}(s r) * B\)
Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by diag \((s r) * A * \operatorname{diag}(s C)\) and \(B\) by diag (sr)*B.
2. If fact \(=\) ' \(N\) ' or 'E', the Cholesky decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) 'E') as
\(A=U^{T} * U\), if uplo \(=\) 'U', or
\(A=L * L^{T}\), if uplo = 'L',
where \(U\) is an upper triangular matrix and \(L\) is a lower triangular matrix.
3. The factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, steps 4-6 are skipped
4. The system of equations is solved for \(x\) using the factored form of \(A\).
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix \(x\) is premultiplied by diag(sr) so that it solves the original system before equilibration.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{fact} & (global) CHARACTER. Must be 'F', 'N', or 'E'. \\
\hline & Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored. \\
\hline & If fact \(=\) ' \(F\) ': on entry, af contains the factored form of \(A\). If equed \(=\) ' \(Y\) ', the matrix \(A\) has been equilibrated with scaling factors given by s. a and \(a f\) will not be modified. \\
\hline & If fact \(=\) ' \(N\) ', the matrix \(A\) will be copied to af and factored. \\
\hline & If fact \(=\) ' \(E\) ', the matrix \(A\) will be equilibrated if necessary, then copied to af and factored. \\
\hline \multirow[t]{2}{*}{uplo} & (global) CHARACTER. Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is stored. \\
\hline \(n\) & (global) INTEGER. The order of the distributed submatrix \(\operatorname{sub}(A)(n \geq 0)\). \\
\hline nrhs & (global) INTEGER. The number of right-hand sides; the number of columns of the distributed submatrices \(B\) and \(x\). (nrhs \(\geq 0\) ). \\
\hline \multirow[t]{10}{*}{a} & (local) \\
\hline & REAL for psposvx \\
\hline & DOUBLE PRECISION for pdposvx \\
\hline & COMPLEX for pcposvx \\
\hline & DOUBLE COMPLEX for pzposvx. \\
\hline & Pointer into the local memory to an array of local dimension (lld_a, \\
\hline & LOCC( \(j a+n-1)\) ). On entry, the symmetric/Hermitian matrix \(A\), except if \\
\hline & fact \(=\) ' F ' and equed \(=\) ' Y ', then \(A\) must contain the equilibrated matrix \(\operatorname{diag}(s r){ }^{*} A^{*} \operatorname{diag}(s c)\). \\
\hline & If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(A\) contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(A\) is not referenced. \\
\hline & If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(A\) contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(A\) is not referenced. \(A\) is not modified if fact \(='^{\prime} F^{\prime}\) or ' \(N\) ', or if fact \(=\) ' E ' and equed \(=\) ' \(N\) ' on exit. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{5}{*}{af} & (local) \\
\hline & REAL for psposvx \\
\hline & DOUBLE PRECISION for pdposvx \\
\hline & COMPLEX for pcposvx \\
\hline & DOUBLE COMPLEX for pzposvx. \\
\hline
\end{tabular}

Pointer into the local memory to an array of local dimension (lld_af, \(\operatorname{LOCC}(j a+n-1))\).
If fact \(=\) ' \(F\) ', then \(a f\) is an input argument and on entry contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T} \star U\) or \(A=\) \(L^{\star} L^{T}\), in the same storage format as \(A\). If equed \(\neq{ }^{\prime} N^{\prime}\), then af is the factored form of the equilibrated matrix diag ( \(s r\) ) *A*diag ( \(S C\) ).
iaf, jaf
descaf
equed
sr
b
ib, jb
descb
x
ix, jx
descx
work
(global) INTEGER. The row and column indices in the global array af indicating the first row and the first column of the submatrix \(A F\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix AF.
(global). CHARACTER. Must be 'N' or 'Y'. equed is an input argument if fact \(='^{\prime} F^{\prime}\). It specifies the form of equilibration that was done:
If equed \(=\) ' \(N\) ', no equilibration was done (always true if fact \(=\) ' \(N\) ');
If equed \(=\) ' \(Y\) ', equilibration was done and \(A\) has been replaced by \(\operatorname{diag}(s r) * A * \operatorname{diag}(s C)\).
(local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Array, DIMENSION (lld_a).
The array \(s\) contains the scale factors for \(A\). This array is an input argument if fact \(=\) ' F ' only; otherwise it is an output argument.
If equed \(=\) ' \(N\) ', s is not accessed.
If fact \(=\) ' \(F\) ' and equed \(=\) ' \(Y\) ', each element of \(s\) must be positive.
(local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension (lld_b,
\(\operatorname{LOCC}(j b+n r h s-1))\). On entry, the \(n\)-by-nrhs right-hand side matrix \(B\).
(global) INTEGER. The row and column indices in the global array \(b\) indicating the first row and the first column of the submatrix \(B\), respectively. (global and local) INTEGER. Array, dimension (dlen_). The array descriptor for the distributed matrix \(B\).
(local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension (lld_x, LOCC(jx+nrhs-1)).
(global) INTEGER. The row and column indices in the global array \(x\) indicating the first row and the first column of the submatrix \(x\), respectively. (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(x\).
(local)
\begin{tabular}{|c|c|}
\hline & REAL for psposvx \\
\hline & DOUBLE PRECISION for pdposvx \\
\hline & COMPLEX for pcposvx \\
\hline & DOUBLE COMPLEX for pzposvx. \\
\hline & Workspace array, DIMENSION (lwork). \\
\hline \multirow[t]{8}{*}{I work} & (local or global) INTEGER. \\
\hline & The dimension of the array work. lwork is local input and must be at least \\
\hline & lwork \(=\max (\mathrm{p}\) ? pocon(lwork), p?porfs(lwork)) + LOCr(n_a). \\
\hline & lwork = 3*desca(lld_). \\
\hline & If 1 work \(=-1\), then 1 work is global input and a workspace query is \\
\hline & assumed; the routine only calculates the minimum and optimal size for all \\
\hline & work arrays. Each of these values is returned in the first entry of the \\
\hline & corresponding work array, and no error message is issued by pxerbla. \\
\hline iwork & (local) INTEGER. Workspace array, dimension (liwork). \\
\hline \multirow[t]{7}{*}{liwork} & (local or global) \\
\hline & INTEGER. The dimension of the array iwork. liwork is local input and must \\
\hline & be at least liwork = desca(lld_) liwork = LOCr(n_a). \\
\hline & If liwork \(=-1\), then liwork is global input and a workspace query is \\
\hline & assumed; the routine only calculates the minimum and optimal size for all \\
\hline & work arrays. Each of these values is returned in the first entry of the \\
\hline & corresponding work array, and no error message is issued by pxerbla. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & On exit, if fact = 'E' and equed = 'Y', a is overwritten by \(\operatorname{diag}(s r) * a * \operatorname{diag}(s c)\). \\
\hline af & \begin{tabular}{l}
If fact \(=\) ' \(N\) ', then af is an output argument and on exit returns the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T} \star U\) or \(A=\) \(L * L^{T}\) of the original matrix \(A\). \\
If fact \(=\) 'E', then af is an output argument and on exit returns the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T} \star U\) or \(A=\) \(L^{\star} L^{T}\) of the equilibrated matrix \(A\) (see the description of \(A\) for the form of the equilibrated matrix).
\end{tabular} \\
\hline equed & If fact \(\neq '^{\prime} \mathrm{F}^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section). \\
\hline \(s r\) & This array is an output argument if fact \(\neq '^{\prime} \mathrm{F}^{\prime}\). See the description of sr in Input Arguments section. \\
\hline SC & This array is an output argument if fact \(\neq{ }^{\prime} \mathrm{F}^{\prime}\). See the description of sc in Input Arguments section. \\
\hline b & On exit, if equed \(=\) ' \(N\) ', \(b\) is not modified; if trans \(=\) ' \(N\) ' and equed = ' \(R\) ' or ' \(B\) ', b is overwritten by diag \((r) * b\); if trans \(=\) 'T' or 'C' and equed \(=\) 'C' or ' \(\mathrm{B}^{\prime}, \mathrm{b}\) is overwritten by \(\operatorname{diag}(c) * b\). \\
\hline \(x\) & (local) \\
\hline & REAL for psposvx \\
\hline & DOUBLE PRECISION for pdposvx \\
\hline & COMPLEX for pcposvx \\
\hline & DOUBLE COMPLEX for pzposvx. \\
\hline & If info \(=0\) the \(n\)-by-nrhs solution matrix \(x\) to the original system of equations. \\
\hline
\end{tabular}


\section*{p?pbsv}

Solves a symmetric/Hermitian positive definite banded system of linear equations.

\section*{Syntax}
```

call pspbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)
call pdpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)
call pcpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)
call pzpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?pbsv routine solves a system of linear equations
```

A(1:n, ja:ja+n-1)*X = B(ib:ib+n-1, 1:nrhs),

```
where \(A(1: n, j a: j a+n-1)\) is an \(n\)-by- \(n\) real/complex banded symmetric positive definite distributed matrix with bandwidth bw.

Cholesky factorization is used to factor a reordering of the matrix into \(L^{\star} L^{\prime}\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & (global) CHARACTER. Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular of \(A\) is stored. \\
\hline & If uplo = 'U', the upper triangular \(A\) is stored \\
\hline & If uplo = 'L', the lower triangular of \(A\) is stored. \\
\hline \(n\) & (global) INTEGER. The order of the distributed matrix \(A(n \geq 0)\). \\
\hline bw & (global) INTEGER. The number of subdiagonals in \(L\) or \(U .0 \leq b_{W} \leq n-1\). \\
\hline nrhs & (global) INTEGER. The number of right-hand sides; the number of columns in \(B(n r h s \geq 0)\). \\
\hline \multirow[t]{5}{*}{a} & (local). REAL for pspbsv \\
\hline & DOUBLE PRECISON for pdp.bsv \\
\hline & COMPLEX for pcpbsv \\
\hline & DOUBLE COMPLEX for pzpbsv. \\
\hline & Pointer into the local memory to an array with leading dimension lld_a \(\geq\) ( \(b w+1\) ) (stored in desca). On entry, this array contains the local pieces of the distributed matrix sub ( \(A\) ) to be factored. \\
\hline ja & (global) INTEGER. The index in the global array a that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A). \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{6}{*}{b} & (local) \\
\hline & REAL for pspbsv \\
\hline & DOUBLE PRECISON for pdp.bsv \\
\hline & COMPLEX for pcpbsv \\
\hline & DOUBLE COMPLEX for pzpbsv. \\
\hline & Pointer into the local memory to an array of local lead dimension lld_ \(b \geq\) \(n b\). On entry, this array contains the local pieces of the right hand sides B(ib:ib+n-1, 1:nrhs). \\
\hline ib & (global) INTEGER. The row index in the global array \(b\) that points to the first row of the matrix to be operated on (which may be either all of \(b\) or a submatrix of \(B\) ). \\
\hline \multirow[t]{5}{*}{descb} & (global and local) INTEGER array of dimension dlen. \\
\hline & If 1D type (dtype_b =502), dlen \(\geq 7\); \\
\hline & If 2D type (dtype_b =1), dlen \(\geq 9\). \\
\hline & The array descriptor for the distributed matrix \(B\). \\
\hline & Contains information of mapping of \(B\) to memory. \\
\hline \multirow[t]{4}{*}{work} & (local). \\
\hline & REAL for pspbsv \\
\hline & DOUBLE PRECISON for pdp.bsv \\
\hline & COMPLEX for pcpbsv \\
\hline
\end{tabular}
DOUBLE COMPLEX for pzpbsv.
Temporary workspace. This space may be overwritten in between calls to
routines. work must be the size given in 1 work.
(local or global) INTEGER. Size of user-input workspace work. If 1 work is
too small, the minimal acceptable size will be returned in work (1) and an
error code is returned. 1 work \(\geq(n b+2 * b w) * b w+\max \left(\left(b_{w}^{*} n r h s\right)\right.\),
\(\left.b w^{*} b w\right)\)

\section*{Output Parameters}
a
b
work
info

On exit, this array contains information containing details of the factorization. Note that permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.
On exit, contains the local piece of the solutions distributed matrix \(x\).
On exit, work (1) contains the minimal lwork.
(global). INTEGER. If info \(=0\), the execution is successful.
< 0: If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
> 0 : If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.
If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed.

\section*{p?ptsv}

\section*{Syntax}

Solves a symmetric or Hermitian positive definite tridiagonal system of linear equations.
```

call psptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)
call pdptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)
call pcptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)
call pzptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?ptsv routine solves a system of linear equations
```

A(1:n, ja:ja+n-1)*X = B(ib:ib+n-1, 1:nrhs),

```
where \(A(1: n, j a: j a+n-1)\) is an \(n-b y-n\) real tridiagonal symmetric positive definite distributed matrix.
Cholesky factorization is used to factor a reordering of the matrix into \(L^{*} L^{\prime}\).

\section*{Input Parameters}
(global) INTEGER. The order of matrix \(A(n \geq 0)\).
```

nrhs
d
e
ja
desca
b
ib
descb
work

```
(local or global) INTEGER. Size of user-input workspace work. If lwork is too small, the minimal acceptable size will be returned in work(1) and an error code is returned. 1 work \(>(12 * \mathrm{NPCOL}+3 * n b)+\max ((10+2 * \min (100\), nrhs) )*NPCOL+4*nrhs, 8*NPCOL).

\section*{Output Parameters}
```

d
e
b
work
info

```

On exit, this array contains information containing the factors of the matrix. Must be of size greater than or equal to desca (nb_).
On exit, this array contains information containing the factors of the matrix. Must be of size greater than or equal to desca (nb_).
On exit, this contains the local piece of the solutions distributed matrix \(x\).
On exit, work(1) contains the minimal lwork.
(local) INTEGER. If info=0, the execution is successful.
< 0: If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
> 0: If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.
If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed.

\section*{p?gels}

Solves overdetermined or underdetermined linear systems involving a matrix of full rank.

\section*{Syntax}
```

call psgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, work, lwork, info)
call pdgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, work, lwork, info)
call pcgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, work, lwork, info)
call pzgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?gels routine solves overdetermined or underdetermined real/ complex linear systems involving an m-by-n matrix sub \((A)=A(i a: i a+m-1, j a: j a+n-1)\), or its transpose/ conjugate-transpose, using a \(Q T Q\) or LQ factorization of \(\operatorname{sub}(A)\). It is assumed that \(\operatorname{sub}(A)\) has full rank.
The following options are provided:
1. If trans \(=\) ' \(N\) ' and \(m \geq n\) : find the least squares solution of an overdetermined system, that is, solve the least squares problem
minimize \(||\operatorname{sub}(B)-\operatorname{sub}(A) * X||\)
2. If trans \(=\) ' \(N\) ' and \(m<n\) : find the minimum norm solution of an underdetermined system \(\operatorname{sub}(A) * X=\) sub ( \(B\) ).
3. If trans \(=\) 'T' and \(m \geq n\) : find the minimum norm solution of an undetermined system sub \((A)^{T} * X=\) sub ( \(B\) ).
4. If trans = 'T' and \(m<n\) : find the least squares solution of an overdetermined system, that is, solve the least squares problem
```

minimize ||sub(B) - sub(A) T* X||,

```
where sub ( \(B\) ) denotes \(B(i b: i b+m-1, j b: j b+n r h s-1)\) when trans \(=\) ' \(N\) ' and \(B(i b: i b+n-1, j b: j b\) \(+n r h s-1)\) otherwise. Several right hand side vectors \(b\) and solution vectors \(x\) can be handled in a single call; when trans = 'N', the solution vectors are stored as the columns of the \(n\)-by-nrhs right hand side matrix \(\operatorname{sub}(B)\) and the \(m\)-by-nrhs right hand side matrix \(\operatorname{sub}(B)\) otherwise.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{trans} & (global) CHARACTER. Must be 'N', or 'T'. \\
\hline & If trans \(=\) ' N ', the linear system involves matrix sub( \(A\) ); \\
\hline & If trans \(=\) ' \(T\) ', the linear system involves the transposed matrix \(A^{T}\) (for real flavors only). \\
\hline m & (global) INTEGER. The number of rows in the distributed submatrix sub (A) ( \(m \geq 0\) ). \\
\hline \(n\) & (global) INTEGER. The number of columns in the distributed submatrix sub (A) \((n \geq 0)\). \\
\hline nrhs & (global) INTEGER. The number of right-hand sides; the number of columns in the distributed submatrices \(\operatorname{sub}(B)\) and \(x\). (nrhs \(\geq 0)\). \\
\hline \multirow[t]{6}{*}{a} & (local) \\
\hline & REAL for psgels \\
\hline & DOUBLE PRECISION for pdgels \\
\hline & COMPLEX for pcgels \\
\hline & DOUBLE COMPLEX for pzgels. \\
\hline & Pointer into the local memory to an array of dimension (lld_a, LOCC (ja \(+n-1)\) ). On entry, contains the \(m\)-by- \(n\) matrix \(A\). \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{6}{*}{b} & (local) \\
\hline & REAL for psgels \\
\hline & DOUBLE PRECISION for pdgels \\
\hline & COMPLEX for pcgels \\
\hline & DOUBLE COMPLEX for pzgels. \\
\hline & Pointer into the local memory to an array of local dimension (lld_b, \(\operatorname{LOCc}(j b+n r h s-1)\) ). On entry, this array contains the local pieces of the distributed matrix \(B\) of right-hand side vectors, stored columnwise; \(\operatorname{sub}(B)\) is \(m\)-by-nrhs if trans=' \(\mathrm{N}^{\prime}\), and \(n\)-by-nrhs otherwise. \\
\hline ib, jb & (global) INTEGER. The row and column indices in the global array \(b\) indicating the first row and the first column of the submatrix \(B\), respectively. \\
\hline descb & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\). \\
\hline \multirow[t]{6}{*}{work} & (local) \\
\hline & REAL for psgels \\
\hline & DOUBLE PRECISION for pdgels \\
\hline & COMPLEX for pcgels \\
\hline & DOUBLE COMPLEX for pzgels. \\
\hline & Workspace array with dimension lwork. \\
\hline
\end{tabular}
(local or global) INTEGER.
The dimension of the array work lwork is local input and must be at least
```

lwork \geqltau + max(lwf, lws),where if m > n, then

```
ltau \(=\) numroc (ja+min \(\left.(m, n)-1, n b _a, ~ M Y C O L, ~ C S r c _a, ~ N P C O L\right), ~\)
lwf \(=n b _a^{*}\left(m p a 0+n q a 0+n b _a\right)\)
lws \(=\max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2,(n r h s q b 0+m p b 0) * n b _a\right)+\)
\(n b _a^{\star} n b _a\)
else
ltau \(=\) numroc (ia+min \(\left.(m, n)-1, ~ m b _a, ~ M Y R O W, ~ r s r c _a, ~ N P R O W\right), ~\)
lwf = mb_a * (mpaO + nqa0 + mb_a)
lws \(=\max \left(\left(m b _a^{*}\left(m b _a-1\right)\right) / 2,(n p b 0+\max (n q a 0+\right.\)
numroc (numroc (n+iroffb, mb_a, 0, 0, NPROW), mb_a, 0, 0,
lcmp), nrhsqb0)) *mb_a) + mb_a*mb_a
end if,
where \(1 \mathrm{cmp}=1 \mathrm{~cm} /\) NPROW with \(1 \mathrm{~cm}=i l \mathrm{~cm}(\) NPROW, NPCOL\()\),
iroffa \(=\bmod \left(i a-1, m b _a\right)\),
icoffa \(=\bmod \left(j a-1, n b _a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol= indxg2p(ja, nb_a, MYROW, rsrc_a, NPROW)
mpa0 \(=\) numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 = numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffb \(=\bmod \left(i b-1, ~ m b _b\right)\),
\(i c o f f b=\bmod \left(j b-1, n b _b\right)\),
ibrow \(=\) indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW),
ibcol \(=\) indxg2p(jb, nb_b, MYCOL, CSrc_b, NPCOL),
mpb0 = numroc (m+iroffb, mb_b, MYROW, icrow, NPROW),
nqb0 \(=\) numroc (n+icoffb, nb_b, MYCOL, ibcol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
\(b\)
work(1)
On exit, If \(m \geq n, \operatorname{sub}(A)\) is overwritten by the details of its \(Q R\) factorization as returned by p?geqrf; if \(m<n, \operatorname{sub}(A)\) is overwritten by details of its \(L Q\) factorization as returned by p?gelqf.
On exit, \(\operatorname{sub}(B)\) is overwritten by the solution vectors, stored columnwise: if trans \(=\) ' \(N\) ' and \(m \geq n\), rows 1 to \(n\) of \(\operatorname{sub}(B)\) contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements \(n+1\) to \(m\) in that column; If trans \(=\) ' \(N\) ' and \(m<n\), rows 1 to \(n\) of \(\operatorname{sub}(B)\) contain the minimum norm solution vectors;
If trans \(=\) ' \(T\) ' and \(m \geq n\), rows 1 to \(m\) of \(\operatorname{sub}(B)\) contain the minimum norm solution vectors; if trans \(=\) ' \(T\) ' and \(m<n\), rows 1 to \(m\) of \(\operatorname{sub}(B)\) contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements \(m+1\) to \(n\) in that column.
On exit, work (1) contains the minimum value of lwork required for optimum performance.
info \(\quad\)\begin{tabular}{l} 
(global) INTEGER. \\
\(=0:\) the execution is successful. \\
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, \\
then info \(=-\left(i^{\star} 100+j\right)\), if the \(i\)-th argument is a scalar and had an \\
illegal value, then info \(=-i\).
\end{tabular}

p?syev

Computes selected eigenvalues and eigenvectors of a
 symmetric matrix.

\section*{Syntax}
```

call pssyev(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork, info)
call pdsyev(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork, info)

```

\section*{Include files}
- C: mkl_scalapack.h

\section*{Description}

The p?syev routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) by calling the recommended sequence of ScaLAPACK routines.

In its present form, the routine assumes a homogeneous system and makes no checks for consistency of the eigenvalues or eigenvectors across the different processes. Because of this, it is possible that a heterogeneous system may return incorrect results without any error messages.
```

Input Parameters
n p = ~ t h e ~ n u m b e r ~ o f ~ r o w s ~ l o c a l ~ t o ~ a ~ g i v e n ~ p r o c e s s .
nq= the number of columns local to a given process.

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & (global). CHARACTER. Must be 'N' or 'V'. Specifies if it is necessary to compute the eigenvectors: \\
\hline & If jobz ='N', then only eigenvalues are computed. \\
\hline & If jobz ='V', then eigenvalues and eigenvectors are computed. \\
\hline uplo & (global). CHARACTER. Must be 'U' or 'L'. Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored: \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & (global) INTEGER. The number of rows and columns of the matrix \(A\) ( \(n \geq\) \(0)\). \\
\hline \multirow[t]{6}{*}{a} & (local) \\
\hline & REAL for pssyev. \\
\hline & DOUBLE PRECISION for pdsyev. \\
\hline & Block cyclic array of global dimension ( \(n, n\) ) and local dimension (lld_a, LOC \(c(j a+n-1))\). On entry, the symmetric matrix \(A\). \\
\hline & If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the symmetric matrix. \\
\hline & If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the symmetric matrix. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectivel \\
\hline
\end{tabular}


\section*{Output Parameters}

On exit, the lower triangle (if uplo='L') or the upper triangle (if uplo='U') of \(A\), including the diagonal, is destroyed.
(global). REAL for pssyev
DOUBLE PRECISION for pdsyev
Array, DIMENSION ( \(n\) ).
On normal exit, the first \(m\) entries contain the selected eigenvalues in ascending order.
(local). REAL for pssyev
DOUBLE PRECISION for pdsyev

Array, global dimension ( \(n, n\) ), local dimension (Ild_z, LOCC(jz+n-1)). If jobz \(=\) ' \(V\) ', then on normal exit the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues.
If jobz = 'N', then \(z\) is not referenced.
work(1)
info (global) INTEGER.
On output, work (1) returns the workspace needed to guarantee completion. If the input parameters are incorrect, work (1) may also be incorrect.
If jobz = 'N' work(1) = minimal (optimal) amount of workspace
If jobz = 'V' work(1) = minimal workspace required to generate all the eigenvectors.

If info \(=0\), the execution is successful.
If info < 0: If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
If info > 0 :
If info= 1 through \(n\), the \(i\)-th eigenvalue did not converge in ?steqr2 after a total of 30 n iterations.
If info \(=n+1\), then p?syev has detected heterogeneity by finding that eigenvalues were not identical across the process grid. In this case, the accuracy of the results from p?syev cannot be guaranteed.

\section*{p?syevd}

Computes all eigenvalues and eigenvectors of a real symmetric matrix by using a divide and conquer
algorithm.

\section*{Syntax}
```

call pssyevd(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork,
iwork, liwork, info)
call pdsyevd(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork,
iwork, liwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?syevd routine computes all eigenvalues and eigenvectors of a real symmetric matrix \(A\) by using a divide and conquer algorithm.

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
```

jobz (global). CHARACTER*1. Must be 'N' or 'V'.
Specifies if it is necessary to compute the eigenvectors:
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.

```
uplo (global). CHARACTER*1. Must be 'U' or 'L'.

Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored:
If uplo = 'U', a stores the upper triangular part of \(A\). If uplo = 'L', a stores the lower triangular part of \(A\).
\(n\)
a
ia, ja
desca
iz, jz
descz
work
l work
iwork
liwork

\section*{Output Parameters}
(global) INTEGER. The number of rows and columns of the matrix \(A(n \geq\) \(0)\).
(local).
REAL for pssyevd
DOUBLE PRECISION for pdsyevd.
Block cyclic array of global dimension ( \(n, n\) ) and local dimension (lld_a, \(\operatorname{LOCC}(j a+n-1))\). On entry, the symmetric matrix \(A\).
If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the symmetric matrix.
If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the symmetric matrix.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). If desca(ctxt_) is incorrect, p?syevd cannot guarantee correct error reporting.
(global) INTEGER. The row and column indices in the global array \(z\) indicating the first row and the first column of the submatrix \(z\), respectively. (global and local) INTEGER array, dimension dlen_. The array descriptor for the distributed matrix z. descz(ctxt_) must equal desca(ctxt_).
(local).
REAL for pssyevd
DOUBLE PRECISION for pdsyevd.
Array, DIMENSION lwork.
(local). INTEGER. The dimension of the array work.
If eigenvalues are requested:
lwork \(\geq \max \left(1+6 * n+2 * n p^{*} n q\right.\), trilwmin \()+2 * n\)
with trilwmin \(=3 * n+\max \left(n b^{*}(n p+1), 3 * n b\right)\)
\(n p=\) numroc ( \(n, n b\), myrow, iarow, NPROW)
\(n q=\) numroc ( \(n, n b\), mycol, iacol, NPCOL)
If 1 work \(=-1\), then \(l\) work is global input and a workspace query is
assumed; the routine only calculates the size required for optimal
performance for all work arrays. The required workspace is returned as the first element of the corresponding work arrays, and no error message is issued by pxerbla.
(local) INTEGER. Workspace array, dimension liwork.
(local) INTEGER, dimension of iwork.
liwork \(=7{ }^{*} n+8 * n p c o l+2\).

On exit, the lower triangle (if uplo = 'L'), or the upper triangle (if uplo = ' \(U\) ') of \(A\), including the diagonal, is overwritten.
(global).
REAL for pssyevd
DOUBLE PRECISION for pdsyevd.
\begin{tabular}{|c|c|}
\hline \multirow{6}{*}{\(z\)} & Array, DIMENSION \(n\). If info \(=0, w\) contains the eigenvalues in the ascending order. \\
\hline & (local). \\
\hline & REAL for pssyevd \\
\hline & DOUBLE PRECISION for pdsyevd. \\
\hline & Array, global dimension ( \(n, n\) ), local dimension (lld_z, LOCC (jz+n-1)). \\
\hline & The \(z\) parameter contains the orthonormal eigenvectors of the matrix \(A\). \\
\hline work(1) & On exit, returns adequate workspace to allow optimal performance. \\
\hline \multirow[t]{2}{*}{iwork(1)} & (local). \\
\hline & On exit, if liwork > 0, iwork (1) returns the optimal liwork. \\
\hline \multirow[t]{8}{*}{info} & (global) INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info < 0: \\
\hline & If the \(i\)-th argument is an array and the j-entry had an illegal value, then \\
\hline & info \(=-(i * 100+j)\). If the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
\hline & If info > 0 : \\
\hline & The algorithm failed to compute the infol \((n+1)\)-th eigenvalue while working on the submatrix lying in global rows and columns mod (info, \(n\) \\
\hline & +1). \\
\hline
\end{tabular}

\section*{p?syevx}

Computes selected eigenvalues and, optionally, eigenvectors of a symmetric matrix.

Syntax
```

call pssyevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, abstol, m, nz,
w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork, ifail, iclustr, gap, info)
call pdsyevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, abstol, m, nz,
w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork, ifail, iclustr, gap, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?syevx routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) by calling the recommended sequence of ScaLAPACK routines. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.


If range \(=\) ' \(V\) ', all eigenvalues in the half-open interval \([v l, v u]\) will be found.
If range \(=\) 'I', the eigenvalues with indices il through iu will be found.
uplo
n
a
ia, ja
desca
vl, vu
il, iu
abstol
orfac
(global). CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored:
If uplo = 'U', a stores the upper triangular part of \(A\).
If uplo = 'L', a stores the lower triangular part of \(A\).
(global) INTEGER. The number of rows and columns of the matrix \(A(n \geq\) \(0)\).
(local). REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
Block cyclic array of global dimension ( \(n, n\) ) and local dimension (lld_a, \(\operatorname{LOCC}(j a+n-1))\). On entry, the symmetric matrix \(A\).
If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the symmetric matrix.
If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the symmetric matrix.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(global)
REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues; vl \(\leq v u\). Not referenced if range \(=\) 'A' or 'I'.
(global) INTEGER.
If range ='I', the indices of the smallest and largest eigenvalues to be returned.
Constraints: il \(\geq 1\)
\(\min (i l, n) \leq i u \leq n\)
Not referenced if range \(=\) ' \(A\) ' or 'V'.
(global). REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
If jobz='V', setting abstol to p?lamch (context, 'U') yields the most orthogonal eigenvectors.
The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([a, b]\) of width less than or equal to
abstol + eps * max (|a|,|b|),
where eps is the machine precision. If abstol is less than or equal to zero, then eps*norm( \(T\) ) will be used in its place, where norm \((T)\) is the 1-norm of the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) p?lamch ('S') not zero. If this routine returns with ((mod (info, 2).ne.0).or. * (mod (infol8,2).ne.0)), indicating that some eigenvalues or eigenvectors did not converge, try setting abstol to 2*p?lamch('S').
(global). REAL for pssyevx
DOUBLE PRECISION for pdsyevx.

Specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within tol=orfac*norm ( \(A\) ) of each other are to be reorthogonalized. However, if the workspace is insufficient (see lwork), tol may be decreased until all eigenvectors to be reorthogonalized can be stored in one process. No reorthogonalization will be done if orfac equals zero. A default value of \(1.0 \mathrm{e}-3\) is used if orfac is negative. orfac should be identical on all processes.
\(i z, j z\)
descz
work
lwork
(global) INTEGER. The row and column indices in the global array \(z\) indicating the first row and the first column of the submatrix \(z\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(z\).descz (ctxt_) must equal desca(ctxt_). (local)
REAL for pssyevx.
DOUBLE PRECISION for pdsyevx.
Array, DIMENSION (lwork).
(local) Integer. The dimension of the array work.
See below for definitions of variables used to define lwork.
If no eigenvectors are requested ( \(\mathrm{jobz}=\mathrm{I}^{\prime} \mathrm{N}\) '), then 1 work \(\geq 5 \star^{\prime} n+\) \(\max \left(5^{*} n n, N B *(n p 0+1)\right)\).
If eigenvectors are requested ( \(j o b z={ }^{\prime} \mathrm{V}\) '), then the amount of workspace required to guarantee that all eigenvectors are computed is:
```

lwork \geq 5*n + max(5*nn, np0*mq0 + 2*NB*NB) + iceil(neig,
NPROW*NPCOL)*nn

```

The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality (at the cost of potentially poor performance) you should add the following to lwork:
(clustersize-1)*n,
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:
```

{w(k),..., w(k+clustersize-1)|w(j+1) \leqw(j)) +

```
orfac*2*norm (A) \},
where
neig = number of eigenvectors requested
\(n b=\operatorname{desca}\left(m b b_{-}\right)=\operatorname{desca}\left(n b _\right)=\operatorname{descz}\left(m b _\right)=\operatorname{descz}\left(n b _\right)\);
\(n n=\max (n, n b, 2)\);
\(\operatorname{desca}\left(r s c_{-}\right)=\operatorname{desca}\left(n b_{-}\right)=\operatorname{descz}\left(r s r c_{-}\right)=\operatorname{descz}\left(\operatorname{csr} c_{-}\right)=0\);
np0 \(=\) numroc (nn, nb, 0,0 , NPROW) ;
\(m q 0=\) numroc (max (neig, n.b, 2), nb, 0, 0, NPCOL)
iceil \((x, y)\) is a ScaLAPACK function returning ceiling \((x / y)\)

If lwork is too small to guarantee orthogonality, p?syevx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.
If lwork is too small to compute all the eigenvectors requested, no computation is performed and info \(=-23\) is returned.
Note that when range='V', number of requested eigenvectors are not known until the eigenvalues are computed. In this case and if lwork is large enough to compute the eigenvalues, p?sygvx computes the eigenvalues and as many eigenvectors as possible.
Relationship between workspace, orthogonality \& performance:

Greater performance can be achieved if adequate workspace is provided. In some situations, performance can decrease as the provided workspace increases above the workspace amount shown below:
lwork \(\geq \max \left(1\right.\) work, \(\left.5 * n+n s y t r d _l w o p t\right)\),
where 1 work, as defined previously, depends upon the number of eigenvectors requested, and
nsytrd_lwopt \(=n+2 *(a n b+1) *(4 * n p s+2)+(n p s+3) * n p s ;\)
anb \(=\) pjlaenv(desca(ctxt_), 3, 'p?syttrd', 'L', 0, 0, 0, 0);
sqnpc \(=\) int (sqrt(dble(NPROW * NPCOL)));
\(n p s=\max (\) numroc \((n, 1,0,0, s q n p c), 2 * a n b)\);
numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
For large n, no extra workspace is needed, however the biggest boost in performance comes for small \(n\), so it is wise to provide the extra workspace (typically less than a megabyte per process).
If clustersize > \(n /\) sqrt(NPROW*NPCOL), then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. At the limit (that is, clustersize \(=n-1\) ) p?stein will perform no better than ?stein on single processor.
For clustersize \(=n /\) sqrt(NPROW*NPCOL) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more. For clustersize > n/sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.
If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
iwork
liwork
(local) INTEGER. Workspace array.
(local) INTEGER, dimension of iwork. liwork \(\geq 6 * n n p\)
Where: \(n n p=\max (n\), NPROW*NPCOL \(+1,4)\)
If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
m
\(n z\)

On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = ' U ') of \(A\), including the diagonal, is overwritten.
(global) INTEGER. The total number of eigenvalues found; \(0 \leq m \leq n\).
(global) INTEGER. Total number of eigenvectors computed. \(0 \leq n z \leq m\). The number of columns of \(z\) that are filled.
If \(j o b z \neq ' \mathrm{~V}\) ', \(n z\) is not referenced.
If \(j o b z=\) ' \(V\) ', \(n z=m\) unless the user supplies insufficient space and \(p\) ? syevx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold
\begin{tabular}{|c|c|}
\hline & the eigenvectors in \(z\) (m.le.descz(n_)) and sufficient workspace to compute them. (See lwork). p?syevx is always able to detect insufficient space without computation unless range.eq. 'V'. \\
\hline \multirow[t]{3}{*}{w} & (global). REAL for pssyevx \\
\hline & DOUBLE PRECISION for pdsyevx. \\
\hline & Array, DIMENSION ( \(n\) ). The first \(m\) elements contain the selected eigenvalues in ascending order. \\
\hline \multirow[t]{7}{*}{\(z\)} & (local). REAL for pssyevx \\
\hline & DOUBLE PRECISION for pdsyevx. \\
\hline & Array, global dimension ( \(n, n\) ), local dimension (lld_z, LOCC (jz+n-1)). \\
\hline & If jobz = ' V ', then on normal exit the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix corresponding to the selected \\
\hline & eigenvalues. If an eigenvector fails to converge, then that column of \(z\) \\
\hline & contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in \(\qquad\) \\
\hline & If jobz = 'N', then \(z\) is not referenced. \\
\hline work(1) & On exit, returns workspace adequate workspace to allow optimal performance. \\
\hline iwork(1) & On return, iwork (1) contains the amount of integer workspace required. \\
\hline \multirow[t]{5}{*}{ifail} & (global) INTEGER. \\
\hline & Array, DIMENSION ( \(n\) ). \\
\hline & If jobz = 'V', then on normal exit, the first melements of ifail are zero. \\
\hline & If (mod (info, 2) . ne.0) on exit, then ifail contains the indices of the eigenvectors that failed to converge. \\
\hline & If jobz = 'N', then ifail is not referenced. \\
\hline \multirow[t]{7}{*}{iclustr} & (global) INTEGER. Array, DIMENSION ( \(2 *\) NPROW*NPCOL) \\
\hline & This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient \\
\hline & workspace (see lwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr(2*i-1) to iclustr(2*i), could \\
\hline & not be reorthogonalized due to lack of workspace. Hence the eigenvectors \\
\hline & corresponding to these clusters may not be orthogonal. iclustr() is a zero \\
\hline & terminated array. (iclustr ( \(2 * k\) ).ne.0. and. iclustr( \(2 * k+1\) ).eq.0) if and only if \(k\) is the number of clusters. \\
\hline & iclustr is not referenced if jobz = 'N'. \\
\hline \multirow[t]{5}{*}{gap} & (global) \\
\hline & REAL for pssyevx \\
\hline & DOUBLE PRECISION for pdsyevx. \\
\hline & Array, DIMENSION (NPROW*NPCOL) \\
\hline & This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the \(i\) th cluster may be as high as \(\left(C^{\star} n\right) / g a p(i)\) where \(C\) is a small constant. \\
\hline \multirow[t]{4}{*}{info} & (global) INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info < 0 : \\
\hline & If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
\hline
\end{tabular}

If info > 0 : if \((\bmod (i n f o, 2) . n e .0)\), then one or more eigenvectors failed to converge. Their indices are stored in ifail. Ensure abstol=2.0*p?lamch('U'). If (mod (infol2,2).ne.0), then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr.
If (mod (infol 4,2\(). n e .0)\), then space limit prevented p?syevxf rom computing all of the eigenvectors between \(v l\) and \(v u\). The number of eigenvectors computed is returned in \(n z\).
If (mod (infol, 2 ) . ne.0), then p?stebz failed to compute eigenvalues. Ensure abstol=2.0*p?lamch('U').

\section*{p?heev}

Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix.

\section*{Syntax}
```

call pcheev(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork, rwork,
lrwork, info)
call pzheev(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork, rwork,
lrwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The \(p\) ?heev routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\) by calling the recommended sequence of ScaLAPACK routines. The routine assumes a homogeneous system and makes spot checks of the consistency of the eigenvalues across the different processes. A heterogeneous system may return incorrect results without any error messages.

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{jobz} & (global). CHARACTER*1. Must be 'N' or 'V'. \\
\hline & Specifies if it is necessary to compute the eigenvectors: \\
\hline & If jobz = 'N', then only eigenvalues are computed. \\
\hline & If jobz = 'V', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{uplo} & (global). CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored: \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & (global) INTEGER. The number of rows and columns of the matrix \(A(n \geq\) \(0)\). \\
\hline \multirow[t]{3}{*}{a} & (local). \\
\hline & COMPLEX for pcheev \\
\hline & DOUBLE COMPLEX for pzheev. \\
\hline
\end{tabular}

Block cyclic array of global dimension ( \(n, n\) ) and local dimension (lld_a, \(\operatorname{LOCC}(j a+n-1))\). On entry, the Hermitian matrix \(A\).
If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the Hermitian matrix.
If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the Hermitian matrix.
ia, ja
desca
\(i z, j z\)
descz
work
lwork
rwork
lrwork
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). If desca(ctxt_) is incorrect, p?heev cannot guarantee correct error reporting.
(global) INTEGER. The row and column indices in the global array \(z\) indicating the first row and the first column of the submatrix \(z\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(z\). descz (ctxt_) must equal desca(ctxt_).
(local).
COMPLEX for pcheev
DOUBLE COMPLEX for pzheev.
Array, DIMENSION lwork.
(local). INTEGER. The dimension of the array work.
If only eigenvalues are requested (jobz = 'N'):
lwork \(\geq \max \left(n b^{*}(n p 0+1), 3\right)+3 * n\)
If eigenvectors are requested ( \(j \circ b z=\) ' \(V\) '), then the amount of workspace required:
lwork \(\geq(n p 0+n q 0+n b) * n b+3 * n+n^{2}\)
with \(n b=\operatorname{desca}(\mathrm{mb})\) ) \(\operatorname{desca}(\mathrm{nb})=n b=\operatorname{descz}(\mathrm{mb})=\)
\(\operatorname{descz}(n b\) )
np0 \(=\) numroc ( \(n n, n b, 0,0, N P R O W)\).
\(n q 0=\) numroc ( \(\max (n, n b, 2), n b, 0,0, N P C O L)\).
If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. The required workspace is returned as the first element of the corresponding work arrays, and no error message is issued by pxerbla.
(local).
REAL for pcheev
DOUBLE PRECISION for pzheev.
Workspace array, DIMENSION lrwork.
(local) INTEGER. The dimension of the array rwork.
See below for definitions of variables used to define lrwork.
If no eigenvectors are requested ( \(j 0 b z=\) 'N'), then lrwork \(\geq 2 \star_{n}\). If eigenvectors are requested (jobz \(=\) ' \(V\) '), then lrwork \(\geq 2\) * \(^{\prime} n+\) 2* \(n\)-2.
If lrwork \(=-1\), then lrwork is global input and a workspace query is assumed; the routine only calculates the minimum size required for the rwork array. The required workspace is returned as the first element of rwork, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
On exit, the lower triangle (if uplo = 'L'), or the upper triangle (if uplo = ' \(U\) ') of \(A\), including the diagonal, is overwritten.
(global).
REAL for pcheev
DOUBLE PRECISION for pzheev.
Array, DIMENSION \(n\). The first \(m\) elements contain the selected eigenvalues in ascending order.
z
(local).
COMPLEX for pcheev
DOUBLE COMPLEX for pzheev.
Array, global dimension ( \(n, n\) ), local dimension (lld_z, LOCC \((j z+n-1)\) ). If jobz \(=\) ' V ', then on normal exit the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz = 'N', then \(z\) is not referenced.
work(1) On exit, returns adequate workspace to allow optimal performance.
If jobz ='N', then work(1) = minimal workspace only for eigenvalues.
If jobz ='V', then work(1) = minimal workspace required to generate all the eigenvectors.
rwork(1)
info
COMPLEX for pcheev
DOUBLE COMPLEX for pzheev.
On output, rwork (1) returns workspace required to guarantee completion.
(global) INTEGER.
If info \(=0\), the execution is successful.
If info < 0 :
If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\). If the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
If info > 0:
If info \(=1\) through \(n\), the \(i\)-th eigenvalue did not converge in ?steqr2 after a total of \(30 *_{n}\) iterations.
If info \(=n+1\), then \(p\) ?heev detected heterogeneity, and the accuracy of the results cannot be guaranteed.

\section*{p?heevd}

Computes all eigenvalues and eigenvectors of a complex Hermitian matrix by using a divide and conquer algorithm.

\section*{Syntax}
```

call pcheevd(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork,
rwork, lrwork, iwork, liwork, info)
call pzheevd(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork,
rwork, lrwork, iwork, liwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?heevd routine computes all eigenvalues and eigenvectors of a complex Hermitian matrix a by using a divide and conquer algorithm.

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{jobz} & (global). CHARACTER*1. Must be 'N' or 'V'. \\
\hline & Specifies if it is necessary to compute the eigenvectors: \\
\hline & If jobz = 'N', then only eigenvalues are computed. \\
\hline & If \(j 0 . b z=\) ' V ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{uplo} & (global). CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored: \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline
\end{tabular}
\(n\)
a
ia, ja
desca
iz, jz
descz
work
lwork
(global) INTEGER. The number of rows and columns of the matrix \(A(n \geq\) \(0)\).
(local).
COMPLEX for pcheevd
DOUBLE COMPLEX for pzheevd.
Block cyclic array of global dimension ( \(n, n\) ) and local dimension (lld_a, \(\operatorname{LOCC}(j a+n-1))\). On entry, the Hermitian matrix \(A\).
If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the Hermitian matrix.
If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the Hermitian matrix.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). If desca(ctxt_) is incorrect, p?heevd cannot guarantee correct error reporting.
(global) INTEGER. The row and column indices in the global array \(z\) indicating the first row and the first column of the submatrix \(z\), respectively.
(global and local) INTEGER array, dimension dlen_. The array descriptor for the distributed matrix \(z\). descz (ctxt_) must equal desca(ctxt_).
(local).
COMPLEX for pcheevd
DOUBLE COMPLEX for pzheevd.
Array, DIMENSION lwork.
(local). INTEGER. The dimension of the array work. If eigenvalues are requested:
```

lwork = n + (nb0 + mq0 + nb)*nb
with np0 = numroc(max(n, nb, 2), nb, 0, 0, NPROW)
mq0 = numroc(max(n, n., 2), nb, 0, 0, NPCOL)

```
\begin{tabular}{|c|c|}
\hline & If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. The required workspace is returned as the first element of the corresponding work arrays, and no error message is issued by pxerbla. \\
\hline rwork & \begin{tabular}{l}
(local). \\
REAL for pcheevd
\end{tabular} \\
\hline & DOUBLE PRECISION for pzheevd. Workspace array, DIMENSION lrwork. \\
\hline lrwork & (local) Integer. The dimension of the array rwork.
```

lrwork \geq 1 + 9*n + 3*np*nq,
with np = numroc(n, nb, myrow, iarow, NPROW)
nq = numroc(n, nb, mycol, iacol, NPCOL)

``` \\
\hline iwork & (local) INTEGER. Workspace array, dimension liwork. \\
\hline liwork & (local) INTEGER, dimension of iwork.
\[
\text { liwork }=7 *_{n}+8 *_{n p c o l}+2 .
\] \\
\hline
\end{tabular}

\section*{Output Parameters}
a
w
z
work(1)
rwork(1)
iwork(1)
info

On exit, the lower triangle (if uplo = 'L'), or the upper triangle (if uplo = ' \(U\) ') of \(A\), including the diagonal, is overwritten.
(global).
REAL for pcheevd
DOUBLE PRECISION for pzheevd.
Array, DIMENSION \(n\). If info \(=0, w\) contains the eigenvalues in the ascending order.
(local).
COMPLEX for pcheevd
DOUBLE COMPLEX for pzheevd.
Array, global dimension \((n, n)\), local dimension (lld_z, LOCC (jz+n-1)).
The \(z\) parameter contains the orthonormal eigenvectors of the matrix \(A\).
On exit, returns adequate workspace to allow optimal performance.
(local)
COMPLEX for pcheevd
DOUBLE COMPLEX for pzheevd.
On output, rwork (1) returns workspace required to guarantee completion.
(local).
On return, iwork (1) contains the amount of integer workspace required.
(global) INTEGER.
If info \(=0\), the execution is successful.
If info < 0 :
If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\). If the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
If info > 0 :
If info \(=1\) through \(n\), the \(i\)-th eigenvalue did not converge.
p?heevx
Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix.
```

call pcheevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, abstol, m, nz,
w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork, iwork, liwork, ifail, iclustr,
gap, info)
call pzheevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, abstol, m, nz,
w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork, iwork, liwork, ifail, iclustr,
gap, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?heevx routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\) by calling the recommended sequence of ScaLAPACK routines. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{jobz} & (global). CHARACTER*1. Must be ' N ' or 'V'. \\
\hline & Specifies if it is necessary to compute the eigenvectors: \\
\hline & If jobz = 'N', then only eigenvalues are computed. \\
\hline & If jobz = 'V', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{range} & (global). CHARACTER*1. Must be 'A', 'V', or 'I'. \\
\hline & If range = 'A', all eigenvalues will be found. \\
\hline & If range \(=\) ' \(V\) ', all eigenvalues in the half-open interval \([v 1, v u\) ] will be found. \\
\hline & If range = 'I', the eigenvalues with indices il through iu will be found. \\
\hline \multirow[t]{4}{*}{uplo} & (global). CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored: \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & (global) INTEGER. The number of rows and columns of the matrix \(A\) ( \(n \geq\) \(0)\). \\
\hline \multirow[t]{6}{*}{a} & (local). \\
\hline & COMPLEX for pcheevx \\
\hline & DOUBLE COMPLEX for pzheevx. \\
\hline & Block cyclic array of global dimension ( \(n, n\) ) and local dimension (lld_a, LOC \(C(j a+n-1))\). On entry, the Hermitian matrix \(A\). \\
\hline & If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the Hermitian matrix. \\
\hline & If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the Hermitian matrix. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A. If desca(ctxt_) is incorrect, p?heevx cannot guarantee correct error reporting. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{v1, vu} & (global) \\
\hline & REAL for pcheevx \\
\hline & DOUBLE PRECISION for pzheevx. \\
\hline & If range = 'V', the lower and upper bounds of the interval to be searched for eigenvalues; not referenced if range \(=\) ' \(A\) ' or 'I'. \\
\hline \multirow[t]{5}{*}{il, iu} & (global) \\
\hline & INTEGER. If range \(=\) 'I', the indices of the smallest and largest \\
\hline & \begin{tabular}{l}
eigenvalues to be returned. \\
Constraints:
\end{tabular} \\
\hline & \(i l \geq 1 ; \min (i l, n) \leq i u \leq n\). \\
\hline & Not referenced if range \(=\) ' \(\mathrm{A}^{\prime}\) ' or 'V'. \\
\hline \multirow[t]{10}{*}{abstol} & (global). \\
\hline & REAL for pcheevx \\
\hline & DOUBLE PRECISION for pzheevx. \\
\hline & If jobz='V', setting abstol to p?lamch(context, 'U') yields the most orthogonal eigenvectors. \\
\hline & The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an \\
\hline & interval [a, b] of width less than or equal to abstol+eps*max (|a|,|b|), \\
\hline & where eps is the machine precision. If abstol is less than or equal to zero, then eps*norm ( \(T\) ) will be used in its place, where norm ( \(T\) ) is the 1-norm \\
\hline & of the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. \\
\hline & Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold \(2 * \mathrm{p}\) ? lamch ('S'), not zero. If this routine returns with \\
\hline & ( (mod (info, 2).ne.0).or. (mod (infol8, 2).ne.0)), indicating that some eigenvalues or eigenvectors did not converge, try setting abstol to 2*p?lamch('S'). \\
\hline \multirow[t]{7}{*}{orfac} & (global). REAL for pcheevx \\
\hline & DOUBLE PRECISION for pzheevx. \\
\hline & Specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within tol=orfac*norm(A) of each \\
\hline & other are to be reorthogonalized. However, if the workspace is insufficient (see lwork), tol may be decreased until all eigenvectors to be \\
\hline & reorthogonalized can be stored in one process. No reorthogonalization will \\
\hline & be done if orfac equals zero. A default value of \(1.0 \mathrm{e}-3\) is used if orfac is \\
\hline & orfac should be identical on all processes. \\
\hline \multirow[t]{2}{*}{iz, jz} & (global) INTEGER. The row and column indices in the global array \(z\) \\
\hline & indicating the first row and the first column of the submatrix \(z\), respectively. \\
\hline \multirow[t]{2}{*}{descz} & (global and local) INTEGER array, dimension (dlen_). The array descriptor \\
\hline & for the distributed matrix \(z\). descz ( ctxt_ ) must equal desca( ctxt_ ). \\
\hline \multirow[t]{4}{*}{work} & (local). \\
\hline & COMPLEX for pcheevx \\
\hline & DOUBLE COMPLEX for pzheevx. \\
\hline & Array, DIMENSION lwork. \\
\hline \multirow[t]{6}{*}{lwork} & (local). INTEGER. The dimension of the array work. \\
\hline & If only eigenvalues are requested: \\
\hline & lwork \(\geq n+\max \left(n b^{*}(n p 0+1)\right.\), 3) \\
\hline & If eigenvectors are requested: \\
\hline & 1 work \(\geq n+(n p 0+m q 0+n b) * n b\) \\
\hline & with nq0 = numroc (nn, nb, 0, 0, NPCOL). \\
\hline
\end{tabular}
```

lwork \geq 5*n + max(5*nn, np0*mq0+2*nb*nb) + iceil(neig,
NPROW*NPCOL)*nn
For optimal performance, greater workspace is needed, that is
lwork \geq max(lwork, nhetrd_lwork)
where lwork is as defined above, and nhetrd_lwork = n + 2*(anb

```
\(+1) *(4 * n p s+2)+(n p s+1) * n p s\)
ictxt \(=\) desca(ctxt_)
anb = pjlaenv(ictxt, 3, 'pchettrd', 'L', 0, 0, 0, 0)
sqnpc \(=\) sqrt(dble(NPROW * NPCOL))
\(n p s=\max (\) numroc (n, 1, 0, 0, sqnpc), 2*anb)
If lwork \(=-1\), then lwork is global input and a workspace query is
assumed; the routine only calculates the size required for optimal
performance for all work arrays. Each of these values is returned in the first
entry of the corresponding work arrays, and no error message is issued by
pxerbla.
rwork
lrwork
(local)
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
Workspace array, DIMENSION lrwork.
(local) INTEGER. The dimension of the array work.
See below for definitions of variables used to define lwork.
If no eigenvectors are requested ( \(j 0 b z={ }^{\prime} N\) '), then \(1 r w o r k \geq 5 * n n\) \(+4 * n\).
If eigenvectors are requested ( \(j o b z={ }^{\prime} \mathrm{V}\) '), then the amount of workspace required to guarantee that all eigenvectors are computed is:
lrwork \(\geq 4 *_{n}+\max \left(5 \star_{n n}, n p 0 \star_{m q 0}+2 *_{n b}{ }^{\star} n b\right)+\) iceil(neig, NPROW*NPCOL) * \(n n\)
The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality (at the cost of potentially poor performance) you should add the following values to lrwork:
(clustersize-1)*n,
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:
\(\{w(k), \ldots, w(k+c l u s t e r s i z e-1) \mid w(j+1) \leq w(j)\)
+orfac*2*norm (A) \}.
Variable definitions:
neig = number of eigenvectors requested;
\(n b=\operatorname{desca}\left(m b_{-}\right)=\operatorname{desca}\left(n b_{-}\right)=\operatorname{descz}\left(m b_{-}\right)=\operatorname{descz}\left(n b_{-}\right)\);
\(n n=\max (n, N B, 2)\);
desca(rsrc_) = desca(nb_) = descz(rsrc_) = descz(csrc_) = 0;
np0 \(=\) numroc (nn, nb, 0, 0, NPROW);
mq0 \(=\) numroc (max(neig, nb, 2), nb, 0, 0, NPCOL);
iceil ( \(x, y\) ) is a ScaLAPACK function returning ceiling \((x / y\) )
When lrwork is too small:
If 1 work is too small to guarantee orthogonality, p?heevx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues. If 1 work is too small to compute all the eigenvectors requested, no computation is performed and info= -23 is returned. Note that when range='V', p?heevx does not know how many eigenvectors are requested until the eigenvalues are computed. Therefore, when range= ' V '
and as long as lwork is large enough to allow p?heevx to compute the eigenvalues, \(p\) ?heevx will compute the eigenvalues and as many eigenvectors as it can.
Relationship between workspace, orthogonality and performance:
If clustersize \(\geq n /\) sqrt (NPROW*NPCOL), then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. In the limit (that is, clustersize \(=n-1\) ) p?stein will perform no better than ?stein on 1 processor.
For clustersize \(=n / \operatorname{sqrt}(\) NPROW*NPCOL \()\) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more. For clustersize > n/sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.
If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local) INTEGER. Workspace array.
(local) INTEGER, dimension of iwork.
liwork \(\geq\) 6*nnp
Where: \(n n p=\max (n\), NPROW*NPCOL+1, 4)
If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

On exit, the lower triangle (if uplo = 'L'), or the upper triangle (if uplo = ' \(U\) ') of \(A\), including the diagonal, is overwritten.
(global) INTEGER. The total number of eigenvalues found; \(0 \leq m \leq n\).
(global) INTEGER. Total number of eigenvectors computed. \(0 \leq n z \leq m\). The number of columns of \(z\) that are filled.
If \(j o b z \neq ' V\) ', \(n z\) is not referenced.
If jobz = ' \(V\) ', \(n z=m\) unless the user supplies insufficient space and \(p\) ? heevx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in \(z\) (m.le.descz(n_)) and sufficient workspace to compute them. (See lwork). p? heevx is always able to detect insufficient space without computation unless range.eq. 'V'.
(global).
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
Array, DIMENSION ( \(n\) ). The first \(m\) elements contain the selected eigenvalues in ascending order.
(local).
COMPLEX for pcheevx
DOUBLE COMPLEX for pzheevx.
Array, global dimension \((n, n)\), local dimension (lld_z, LOCC \((j z+n-1)\) ).
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If jobz ='V', then on normal exit the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail. \\
If jobz = ' \(N\) ', then \(z\) is not referenced.
\end{tabular} \\
\hline work(1) & On exit, returns adequate workspace to allow optimal performance. \\
\hline \multirow[t]{6}{*}{rwork} & (local). \\
\hline & REAL for pcheevx \\
\hline & DOUBLE PRECISION for pzheevx. \\
\hline & Array, DIMENSION (lrwork). On return, rwork (1) contains the optimal amount of workspace required for efficient execution. If jobz='N' rwork(1) = optimal amount of workspace required to compute eigenvalues efficiently. \\
\hline & If jobz='V' rwork (1) = optimal amount of workspace required to compute eigenvalues and eigenvectors efficiently with no guarantee on orthogonality. \\
\hline & If range \(=\) ' V ', it is assumed that all eigenvectors may be required. \\
\hline \multirow[t]{2}{*}{iwork(1)} & (local) \\
\hline & On return, iwork (1) contains the amount of integer workspace required. \\
\hline \multirow[t]{4}{*}{ifail} & (global) INTEGER. \\
\hline & Array, DIMENSION (n). \\
\hline & If jobz ='V', then on normal exit, the first \(m\) elements of ifail are zero. If (mod (info, 2). ne.0) on exit, then ifail contains the indices of the eigenvectors that failed to converge. \\
\hline & If jobz = 'N', then ifail is not referenced. \\
\hline \multirow[t]{3}{*}{iclustr} & (global) INTEGER. \\
\hline & Array, DIMENSION ( 2 * \({ }^{\text {NPROW*NPCOL }}\) ). \\
\hline & This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see lwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr(2*i-1) to iclustr(2*i), could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr() is a zero terminated array. (iclustr \((2 * k)\).ne. 0 . and. iclustr \((2 * k\) \(+1)\).eq.0) if and only if \(k\) is the number of clusters. iclustr is not referenced if jobz \(=\) ' \(N\) '. \\
\hline \multirow[t]{5}{*}{gap} & (global) \\
\hline & REAL for pcheevx \\
\hline & DOUBLE PRECISION for pzheevx. \\
\hline & Array, DIMENSION (NPROW*NPCOL) \\
\hline & This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the \(i\)-th cluster may be as high as \(\left(C^{\star} n\right) / g a p(i)\) where \(C\) is a small constant. \\
\hline \multirow[t]{4}{*}{info} & (global) INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info < 0 : \\
\hline & If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i \star 100+j)\). If the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
\hline
\end{tabular}

If info > 0 :
If (mod (info, 2).ne.0), then one or more eigenvectors failed to converge. Their indices are stored in ifail. Ensure abstol=2.0*p?lamch ('U') If (mod (infol2,2).ne.0), then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr.
If (mod (infol 4,2).ne.0), then space limit prevented p?syevx from computing all of the eigenvectors between \(v l\) and \(v u\). The number of eigenvectors computed is returned in \(n z\).
If (mod (infol 8,2\(). n e .0)\), then \(p\) ?stebz failed to compute eigenvalues. Ensure abstol=2.0*p?lamch('U').

\section*{p?gesvd}

Computes the singular value decomposition of a general matrix, optionally computing the left and/or right singular vectors.

\section*{Syntax}
```

call psgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu, vt, ivt, jvt,
descvt, work, lwork, info)
call pdgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu, vt, ivt, jvt,
descvt, work, lwork, info)
call pcgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu, vt, ivt, jvt,
descvt, work, lwork, rwork, info)
call pzgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu, vt, ivt, jvt,
descvt, work, lwork, rwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p? gesvd routine computes the singular value decomposition (SVD) of an m-by-n matrix \(A\), optionally computing the left and/or right singular vectors. The SVD is written
\(A=U^{\star} \Sigma^{\star} V^{T}\),
where \(\Sigma\) is an \(m\)-by- \(n\) matrix that is zero except for its \(\min (m, n)\) diagonal elements, \(U\) is an \(m\)-by- \(m\) orthogonal matrix, and \(V\) is an \(n-b y-n\) orthogonal matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\) and the columns of \(U\) and \(V\) are the corresponding right and left singular vectors, respectively. The singular values are returned in array \(s\) in decreasing order and only the first \(\min (m, n)\) columns of \(U\) and rows of \(v t=V^{T}\) are computed.

\section*{Input Parameters}
```

mp = number of local rows in A and U
nq= number of local columns in A and VT
size = min(m,n)
sizeq= number of local columns in U
sizep = number of local rows in VT

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobu} & (global). CHARACTER*1. Specifies options for computing all or part of the matrix \(U\). \\
\hline & If jobu = 'V', the first size columns of \(U\) (the left singular vectors) are returned in the array \(u\); \\
\hline & If jobu ='N', no columns of \(U\) (no left singular vectors) are computed. \\
\hline \multirow[t]{4}{*}{jobvt} & (global) CHARACTER*1. \\
\hline & Specifies options for computing all or part of the matrix \(V^{T}\). \\
\hline & If jobvt \(=\) ' \(V\) ', the first size rows of \(V^{T}\) (the right singular vectors) are returned in the array \(v t\); \\
\hline & If jobvt = 'N', no rows of \(V^{T}\) ( no right singular vectors) are computed. \\
\hline m & (global) INTEGER. The number of rows of the matrix \(A(m \geq 0)\). \\
\hline \(n\) & (global) INTEGER. The number of columns in \(A(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{a} & (local). REAL for psgesvd \\
\hline & DOUBLE PRECISION for pdgesvd \\
\hline & COMPLEX for pcgesvd \\
\hline & COMPLEX*16 for pzgesvd \\
\hline & Block cyclic array, global dimension ( \(m, n\) ), local dimension ( \(m p, n q\) ). work (lwork) is a workspace array. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline iu, ju & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(U\), respectively. \\
\hline descu & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(U\). \\
\hline ivt, jvt & (global) INTEGER. The row and column indices in the global array vt indicating the first row and the first column of the submatrix \(V T\), respectively. \\
\hline descvt & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(V T\). \\
\hline \multirow[t]{5}{*}{work} & (local). REAL for psgesvd \\
\hline & DOUBLE PRECISION for pdgesvd \\
\hline & COMPLEX for pcgesvd \\
\hline & COMPLEX*16 for pzgesvd \\
\hline & Workspace array, dimension (lwork) \\
\hline \multirow[t]{5}{*}{Iwork} & (local) INTEGER. The dimension of the array work; \\
\hline & \begin{tabular}{l}
lwork > 2 + 6*sizeb + max(watobd, wbdtosvd), where sizeb \(=\max (m, n)\), and watobd and wbdtosvd refer, respectively, to the workspace required to bidiagonalize the matrix \(A\) and to go from the bidiagonal matrix to the singular value decomposition \(U S V T\). \\
For watobd, the following holds:
\end{tabular} \\
\hline & ```
watobd = max(max(wp?lange,wp?gebrd), max(wp?lared2d, wp?
laredld)),
``` \\
\hline & where wp?lange, wp?lared1d, wp?lared2d, wp?gebrd are the workspaces required respectively for the subprograms p?lange, p?lared1d, p? \\
\hline & \begin{tabular}{l}
lared2d, p?gebrd. Using the standard notation \\
\(m p=\) numroc (\(\left.m, ~ m b, ~ M Y R O W, ~ d e s c a\left(c t x t \_\right), ~ N P R O W\right), ~\) \\
\(n q=\) numroc (n, nb, MYCOL, desca(lld_), NPCOL), \\
the workspaces required for the above subprograms are
\end{tabular} \\
\hline
\end{tabular}
```

wp?lange = mp,
wp?laredld = nq0,
wp?lared2d = mp0,
wp?gebrd = nb* (mp + nq + 1) + nq,

```
where \(n q 0\) and \(m p 0\) refer, respectively, to the values obtained at MYCOL \(=0\)
and MYROW \(=0\). In general, the upper limit for the workspace is given by a
workspace required on processor \((0,0)\) :
watobd \(\leq n b^{*}(m p 0+n q 0+1)+n q 0\).
In case of a homogeneous process grid this upper limit can be used as an
estimate of the minimum workspace for every processor.
For wbdtosvd, the following holds:
wbdtosvd = size*(wantu*nru + wantvt*ncvt) \(+\max (w ? b d s q r\),
max (wantu*wp?ormbrqln, wantvt*wp?ormbrprt)),
where
wantu(wantvt) \(=1\), if left/right singular vectors are wanted, and
wantu(wantvt) \(=0\), otherwise. w?bdsqr, wp?ormbrqln, and wp?ormbrprt
refer respectively to the workspace required for the subprograms ?bdsqr,
\(p\) ?ormbr (qln), and p?ormbr(prt), where \(q \ln\) and prt are the values of the
arguments vect, side, and trans in the call to p?ormbr. nru is equal to
the local number of rows of the matrix \(U\) when distributed 1-dimensional
"column" of processes. Analogously, ncvt is equal to the local number of
columns of the matrix \(V T\) when distributed across 1-dimensional "row" of
processes. Calling the LAPACK procedure ?bdsqr requires
w?bdsqr \(=\max (1,2 *\) size \(+(2 *\) size -4\() * \max (w a n t u, ~ w a n t v t))\)
on every processor. Finally,
wp?ormbrqln \(=\max \left(\left(n b^{*}(n b-1)\right) / 2,(\right.\) sizeq \(\left.+m p) * n b\right)+n b * n b\),
wp?ormbrprt \(=\max ((m b *(m b-1)) / 2,(\) sizep \(+n q) * m b)+m b * m b\),
If \(I\) work \(=-1\), then \(l\) work is global input and a workspace query is
assumed; the routine only calculates the minimum size for the work array.
The required workspace is returned as the first element of work and no
error message is issued by pxerbla.

REAL for psgesvd
DOUBLE PRECISION for pdgesvd
COMPLEX for pcgesvd
COMPLEX*16 for pzgesvd
Workspace array, dimension (\(1+\) 4*sizeb \(^{*}\))

\section*{Output Parameters}

On exit, the contents of a are destroyed.
(global). REAL for psgesvd
DOUBLE PRECISION for pdgesvd
COMPLEX for pcgesvd
COMPLEX*16 for pzgesvd
Array, DIMENSION (size).
Contains the singular values of \(A\) sorted so that \(s(i) \geq s(i+1)\).
(local). REAL for psgesvd
DOUBLE PRECISION for pdgesvd
COMPLEX for pcgesvd
COMPLEX*16 for pzgesvd
local dimension (mp, sizeq), global dimension (\(m\), size)
If jobu \(=\) ' \(V\) ', u contains the first \(\min (m, n)\) columns of \(U\).
\begin{tabular}{|c|c|}
\hline & If jobu \(=\) ' N ' or ' \(\mathrm{O}^{\prime}\), \(u\) is not referenced. \\
\hline \multirow[t]{6}{*}{\(v t\)} & (local). REAL for psgesvd \\
\hline & DOUBLE PRECISION for pdgesvd \\
\hline & COMPLEX for pcgesvd \\
\hline & COMPLEX*16 for pzgesvd \\
\hline & local dimension (sizep, nq), global dimension (size, \(n\)) \\
\hline & If jobvt \(=\) ' \(V\) ', vt contains the first size rows of \(V^{T} \mathrm{if}\) jobu \(={ }^{\prime} \mathrm{N}^{\prime}\), vt is not referenced. \\
\hline work & On exit, if info \(=0\), then work (1) returns the required minimal size of lwork. \\
\hline rwork & On exit, if info \(=0\), then rwork(1) returns the required size of rwork. \\
\hline \multirow[t]{6}{*}{info} & (global) INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info < 0, If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline & If info > 0 i, then if ?bdsqr did not converge, \\
\hline & If info \(=\min (m, n)+1\), then \(p\) ?gesvd has detected heterogeneity by \\
\hline & finding that eigenvalues were not identical across the process grid. In this case, the accuracy of the results from p?gesvd cannot be guaranteed. \\
\hline
\end{tabular}

See Also
?bdsqr
p?ormbr
pxerbla

\section*{p?sygvx}

Computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem.

\section*{Syntax}
```

call pssygvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb, descb, vl,
vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork,
ifail, iclustr, gap, info)
call pdsygvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb, descb, vl,
vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork,
ifail, iclustr, gap, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?sygvx routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form

Here \(x\) denotes eigen vectors, \(\lambda\) (lambda) denotes eigenvalues, sub (\(A\)) denoting \(A\) (ia:ia+n-1, ja: ja \(+n-1\)) is assumed to symmetric, and \(\operatorname{sub}(B)\) denoting \(B(i b: i b+n-1, j b: j b+n-1)\) is also positive definite.

\section*{Input Parameters}
ibtype
(global) INTEGER. Must be 1 or 2 or 3.

IWork \(\geq 5{ }^{*} n+\max (5 * n n, n p 0 * m q 0+2 * n b * n b)+\) iceil(neig, NPROW*NPCOL) *nn.
The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality at the cost of potentially poor performance you should add the following to lwork:
(clustersize-1)*n,
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:
```

{w(k),..., w(k+clustersize-1)|w(j+1) \leqw(j) +
orfac*2*norm(A) }
Variable definitions:
neig $=$ number of eigenvectors requested,
nb = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_),
nn = max(n, nb, 2),
desca(rsrc_) = desca(nb_) = descz(rsrc_) = descz(csrc_) = 0,
np0 = numroc(nn, nb, 0, 0, NPROW),
mq0 = numroc(max(neig, nb, 2), nb, 0, 0, NPCOL)
iceil( }x,y\mathrm{ y) is a ScaLAPACK function returning ceiling(x/y)
If lwork is too small to guarantee orthogonality, p?syevx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.

```

If lwork is too small to compute all the eigenvectors requested, no computation is performed and info \(=-23\) is returned.
Note that when range= 'V', number of requested eigenvectors are not known until the eigenvalues are computed. In this case and if lwork is large enough to compute the eigenvalues, p?sygvx computes the eigenvalues and as many eigenvectors as possible.
Greater performance can be achieved if adequate workspace is provided. In some situations, performance can decrease as the provided workspace increases above the workspace amount shown below:
 lwork, as defined previously, depends upon the number of eigenvectors requested, and
\(n s y t r d \_l\) wopt \(=n+2 *(a n b+1) *(4 * n p s+2)+(n p s+3) * n p s\)
nsygst_lwopt \(=2 * n p 0 * n b+n q 0 * n b+n b * n b\)
anb \(=\) pjlaenv (desca (ctxt_), 3, p?syttrd ', 'L', 0, 0, 0, 0)
sqnpc \(=\operatorname{int}(\operatorname{sqrt}(d b l e(N P R O W * N P C O L)))\)
\(n p s=\max (\) numroc \((n, 1,0,0, s q n p c), 2 * a n b)\)
\(\mathrm{NB}=\operatorname{desca}(\mathrm{mb}\) _)
\(n p 0=\operatorname{numroc}(n, n b, 0,0, N P R O W)\)
\(n q 0=\operatorname{numroc}(n, n b, 0,0, N P C O L)\)
numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
For large n, no extra workspace is needed, however the biggest boost in performance comes for small \(n\), so it is wise to provide the extra workspace (typically less than a Megabyte per process).
If clustersize \(\geq n /\) sqrt(NPROW*NPCOL), then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. At the limit (that is, clustersize \(=n-1\)) p?stein will perform no better than ?stein on a single processor.
iwork
liwork

For clustersize \(=n /\) sqrt(NPROW*NPCOL) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more. For clustersize > \(n /\) sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local) INTEGER. Workspace array.
(local) INTEGER, dimension of iwork.
liwork \(\geq\) 6*nnp
Where:
nnp \(=\max (n\), NPROW*NPCOL \(+1,4)\)
If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a

On exit,
If jobz = 'V', and if info \(=0, \operatorname{sub}(A)\) contains the distributed matrix \(z\) of eigenvectors. The eigenvectors are normalized as follows:
for ibtype \(=1\) or \(2, Z^{T} * \operatorname{sub}(B) * z=i\);
for ibtype \(=3, Z^{T} \star_{\text {inv }}(\operatorname{sub}(B)) * z=i\).
If jobz = 'N', then on exit the upper triangle (if uplo='U') or the lower triangle (if uplo='L') of \(\operatorname{sub}(A)\), including the diagonal, is destroyed.
On exit, if info \(\leq n\), the part of \(\operatorname{sub}(B)\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(\operatorname{sub}(B)=\) \(U^{T} * U\) or \(\operatorname{sub}(B)=L^{\star} L^{T}\).
(global) INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\). (global) INTEGER.
Total number of eigenvectors computed. \(0 \leq n z \leq m\). The number of columns of \(z\) that are filled.
If \(j o b z \neq ' \mathrm{~V} ', n z\) is not referenced.
If \(j o b z=' \mathrm{~V}\) ', \(n z=m\) unless the user supplies insufficient space and \(p\) ? sygvx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in \(z\) (\(m\).le. descz(n_)) and sufficient workspace to compute them. (See lwork below.) p?sygvx is always able to detect insufficient space without computation unless range.eq. ' V '.
(global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Array, DIMENSION (\(n\)). On normal exit, the first \(m\) entries contain the selected eigenvalues in ascending order.
(local).
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
global dimension (\(n, n\)), local dimension (lld_z, LOCC(jz+n-1)). If jobz \(=\) ' \(V\) ', then on normal exit the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If \(j o b z=\) 'N', then \(z\) is not referenced.
work
ifail
iclustr
gap
info

If jobz='N' work(1) = optimal amount of workspace required to compute eigenvalues efficiently
If jobz = 'V' work(1) = optimal amount of workspace required to compute eigenvalues and eigenvectors efficiently with no guarantee on orthogonality.
If range='V', it is assumed that all eigenvectors may be required.
(global) INTEGER.
Array, DIMENSION (n).
ifail provides additional information when info.ne. 0
If (mod(infol16,2).ne.0) then ifail(1) indicates the order of the smallest minor which is not positive definite. If (mod (info, 2\().\) ne.0) on exit, then ifail contains the indices of the eigenvectors that failed to converge.
If neither of the above error conditions hold and jobz = 'V', then the first \(m\) elements of ifail are set to zero.
(global) INTEGER.
Array, DIMENSION (\(2 *\) NPROW*NPCOL) . This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see lwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr (2*i-1) to iclustr(2*i), could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr() is a zero terminated array.
(iclustr \((2 * k)\).ne. 0.and. iclustr \((2 * k+1)\).eq. 0) if and only if \(k\) is the number of clusters iclustr is not referenced if jobz = ' N '.
(global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Array, DIMENSION (NPROW*NPCOL). This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the \(i\)-th cluster may be as high as \(\left(C^{\star} n\right) / \operatorname{gap}(i)\), where \(C\) is a small constant.
(global) INTEGER. If info \(=0\), the execution is successful.
If info <0: the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
If info > 0 :
If (mod (info, 2).ne.0), then one or more eigenvectors failed to converge. Their indices are stored in ifail.

If (mod (info, 2, 2). ne. 0), then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr.
If (mod (infol 4,2\(). n e .0)\), then space limit prevented p?sygvx from computing all of the eigenvectors between vl and vu. The number of eigenvectors computed is returned in \(n z\).
If (mod (infol, 2\(). n e .0)\), then \(p\) ?stebz failed to compute eigenvalues. If (mod (infol 16,2\(). n e .0)\), then \(B\) was not positive definite. ifail(1) indicates the order of the smallest minor which is not positive definite.

\section*{p?hegvx}

Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem.

\section*{Syntax}
```

call pchegvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb, descb, vl,
vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork,
iwork, liwork, ifail, iclustr, gap, info)
call pzhegvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb, descb, vl,
vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork,
iwork, liwork, ifail, iclustr, gap, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?hegvx routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form

Here sub (A) denoting \(A(i a: i a+n-1, j a: j a+n-1)\) and \(\operatorname{sub}(B)\) are assumed to be Hermitian and sub(B) denoting \(B(i b: i b+n-1, j b: j b+n-1)\) is also positive definite.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{8}{*}{ibtype} & (global) INTEGER. Must be 1 or 2 or 3. \\
\hline & Specifies the problem type to be solved: \\
\hline & If ibtype \(=1\), the problem type is \\
\hline & \\
\hline & If ibtype \(=2\), the problem type is \\
\hline & sub (A)*sub (\(B\)) * \(x=\) lambda* \({ }^{\text {\% }}\) \\
\hline & If ibtype \(=3\), the problem type is \\
\hline & \\
\hline \multirow[t]{3}{*}{jobz} & (global). CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobz ='N', then compute eigenvalues only. \\
\hline & If \(j o b z=' \mathrm{~V}\) ', then compute eigenvalues and eigenvectors. \\
\hline \multirow[t]{2}{*}{range} & (global). CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) 'A', the routine computes all eigenvalues. \\
\hline
\end{tabular}

If range \(=\) ' V ', the routine computes eigenvalues in the interval: [V], vu] If range \(=\) 'I', the routine computes eigenvalues with indices il through iu.
uplo
n
a
b
(global). CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays \(a\) and \(b\) store the upper triangles of \(\operatorname{sub}(A)\) and sub (B);

If uplo = 'L', arrays \(a\) and \(b\) store the lower triangles of \(\operatorname{sub}(A)\) and sub (B).
(global). INTEGER.
The order of the matrices \(\operatorname{sub}(A)\) and \(\operatorname{sub}(B)(n \geq 0)\).
(local)
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
Pointer into the local memory to an array of dimension (lld_a, LOCC (ja
\(+n-1)\)). On entry, this array contains the local pieces of the \(n\)-by- \(n\)
Hermitian distributed matrix \(\operatorname{sub}(A)\). If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix.
(global) INTEGER.
The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_).
The array descriptor for the distributed matrix A. If desca(ctxt_) is incorrect, p?hegvx cannot guarantee correct error reporting.
(local).
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
Pointer into the local memory to an array of dimension (lld_b, LOCC (jb
\(+n-1)\)). On entry, this array contains the local pieces of the \(n-b y-n\) Hermitian distributed matrix \(\operatorname{sub}(B)\).
If uplo = 'U', the leading \(n-b y-n\) upper triangular part of \(\operatorname{sub}(B)\) contains the upper triangular part of the matrix.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(B)\) contains the lower triangular part of the matrix.
(global) INTEGER.
The row and column indices in the global array \(b\) indicating the first row and the first column of the submatrix \(B\), respectively.
(global and local) INTEGER array, dimension (dlen_).
The array descriptor for the distributed matrix B. descb (ctxt_) must be equal to desca(ctxt_).
(global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues.
If range \(=\) 'A' or 'I', vl and vu are not referenced.
(global)
INTEGER.

rwork
lrwork
```

np0 = numroc (n, nb, 0, 0, NPROW)
nq0 = numroc(n, nb, 0, 0, NPCOL)
ictxt = desca(ctxt_)
anb = pjlaenv(ictxt, 3, 'p?hettrd', 'L', 0, 0, 0, 0)
sqnpc = sqrt(dble(NPROW * NPCOL))
nps = max(numroc (n, 1, 0, 0, sqnpc), 2*anb)
numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine

```
blacs_gridinfo.
If 1 work \(=-1\), then 1 work is global input and a workspace query is
assumed; the routine only calculates the size required for optimal
performance for all work arrays. Each of these values is returned in the first
entry of the corresponding work arrays, and no error message is issued by
pxerbla.
(local)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Workspace array, DIMENSION (lrwork).
(local) Integer. The dimension of the array rwork.
See below for definitions of variables used to define lrwork.
If no eigenvectors are requested (\(j 0\) obz \(=1 \mathrm{~N}\)), then lrwork \(\geq 5 \star_{n n+4 *_{n}}\) If eigenvectors are requested (\(j 0 b z=\) ' \(V\) '), then the amount of workspace required to guarantee that all eigenvectors are computed is:
lrwork \(\geq 4 * n+\max (5 * n n, n p 0 * m q 0)+\) iceil(neig, NPROW*NPCOL) *nn
The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality (at the cost of potentially poor performance) you should add the following value to lrwork:
(clustersize-1)*n,
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:
\(\{w(k), \ldots, w(k+c l u s t e r s i z e-1) \mid w(j+1) \leq w(j)+\operatorname{orfac} 2 \star \operatorname{norm}(A)\}\) Variable definitions:
neig \(=\) number of eigenvectors requested;
\(n b=\operatorname{desca}\left(m b_{-}\right)=\operatorname{desca}\left(n b_{-}\right)=\operatorname{descz}\left(m b_{-}\right)=\operatorname{descz}\left(n b \_\right)\);
\(n n=\max (n, n b, 2)\);
\(\operatorname{desca}\left(r s r c_{-}\right)=\operatorname{desca}(n b+)=\operatorname{descz}\left(r s r C_{-}\right)=\operatorname{descz}(\operatorname{csrc})=0\);
\(n p 0=\) numroc (nn, nb, 0, 0, NPROW);
\(m q 0=\) numroc (max (neig, nb, 2), nb, 0, 0, NPCOL);
iceil \((x, y)\) is a ScaLAPACK function returning ceiling \((x / y)\).
When lrwork is too small:
If lwork is too small to guarantee orthogonality, p?hegvx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.
If lwork is too small to compute all the eigenvectors requested, no computation is performed and info \(=-25\) is returned. Note that when range='V', p?hegvx does not know how many eigenvectors are requested until the eigenvalues are computed. Therefore, when range='V' and as
long as lwork is large enough to allow p?hegvx to compute the eigenvalues, p?hegvx will compute the eigenvalues and as many eigenvectors as it can.
Relationship between workspace, orthogonality \& performance:
If clustersize > \(n / \operatorname{sqrt}\left(\mathrm{NPROW}^{*} N P C O L\right)\), then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. In the limit (that is, clustersize \(=n-1\)) p?stein will perform no better than ?stein on 1 processor.
For clustersize \(=n / \operatorname{sqrt}(\) NPROW*NPCOL \()\) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more. For clustersize > \(n /\) sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.
If 1 work \(=-1\), then lrwork is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
iwork
liwork

\section*{Output Parameters}

On exit, if \(j o b z=' V\) ', then if info \(=0, \operatorname{sub}(A)\) contains the distributed matrix \(z\) of eigenvectors.
The eigenvectors are normalized as follows:
If ibtype \(=1\) or 2 , then \(Z^{H \star} \operatorname{sub}(B) * Z=i\);
If ibtype \(=3\), then \(Z^{H *} \operatorname{inv}(\operatorname{sub}(B)) * Z=i\).
If \(j o b z=\) 'N', then on exit the upper triangle (if \(u p l o=' U\) ') or the lower triangle (if uplo='L') of \(\operatorname{sub}(A)\), including the diagonal, is destroyed.

On exit, if info \(\leq n\), the part of \(\operatorname{sub}(B)\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(\operatorname{sub}(B)=\) \(U^{H}{ }^{*} U\), or \(\operatorname{sub}(B)=L^{\star} L^{H}\).
(global) INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\).
(global) INTEGER. Total number of eigenvectors computed. \(0<n z<m\). The number of columns of \(z\) that are filled.
If \(j o b z \neq ' \mathrm{~V} ', n z\) is not referenced.
If jobz = ' \(V\) ', \(n z=m\) unless the user supplies insufficient space and \(p\) ? hegvx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in \(z\) (m. le. descz(n_)) and sufficient workspace to compute them. (See lwork below.) The routine p?hegvx is always able to detect insufficient space without computation unless range \(=\) ' V '.
(global)
REAL for pchegvx

DOUBLE PRECISION for pzhegvx.
Array, DIMENSION (\(n\)). On normal exit, the first \(m\) entries contain the selected eigenvalues in ascending order.
(local).
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
global dimension (\(n, n\)), local dimension (lld_z, LOCC(jz+n-1)). If jobz = 'V', then on normal exit the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.
On exit, work (1) returns the optimal amount of workspace.
On exit, rwork (1) contains the amount of workspace required for optimal efficiency
If jobz='N' rwork(1) = optimal amount of workspace required to compute eigenvalues efficiently
If jobz='V' rwork(1) = optimal amount of workspace required to compute eigenvalues and eigenvectors efficiently with no guarantee on orthogonality.
If range=' V ', it is assumed that all eigenvectors may be required when computing optimal workspace.
(global) INTEGER.
Array, DIMENSION (\(n\)).
ifail provides additional information when info.ne. 0
If (mod(infol16,2).ne.0), then ifail(1) indicates the order of the smallest minor which is not positive definite.
If (mod(info, 2).ne.0) on exit, then ifail(1) contains the indices of the eigenvectors that failed to converge.
If neither of the above error conditions are held, and \(j o b z=\) ' \(V\) ', then the first \(m\) elements of ifail are set to zero.
(global) INTEGER.
Array, DIMENSION (\(2 *\) NPROW*NPCOL) . This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see lwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr (2*i-1) to iclustr(2*i), could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal.
iclustr() is a zero terminated array. (iclustr(2*k).ne.
0 .and.clustr (\(2 \star k+1\)).eq. 0) if and only if \(k\) is the number of clusters.
iclustr is not referenced if jobz \(=\) ' \(N\) '.
(global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Array, DIMENSION (NPROW*NPCOL).
This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the \(i\)-th cluster may be as high as \(\left(C^{\star} n\right) / \operatorname{gap}(i)\), where \(C\) is a small constant.
(global) INTEGER.
If info \(=0\), the execution is successful.
If info \(<0\) : the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
If info > 0:
If (mod (info, 2).ne.0), then one or more eigenvectors failed to converge.
Their indices are stored in ifail.
If (mod (info, 2, 2).ne.0), then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr.
If (mod (infol 4,2\(). n e .0)\), then space limit prevented p?sygvx from computing all of the eigenvectors between \(v l\) and \(v u\). The number of eigenvectors computed is returned in \(n z\).
If (mod (infol 8,2\(). n e .0)\), then \(p\) ?stebz failed to compute eigenvalues. If (mod (infol 16,2) . ne.0), then \(B\) was not positive definite. ifail(1) indicates the order of the smallest minor which is not positive definite.

\title{
ScaLAPACK Auxiliary and Utility Routines
}

This chapter describes the Intel® Math Kernel Library implementation of ScaLAPACK Auxiliary Routines and Utility Functions and Routines. The library includes routines for both real and complex data.

NOTE ScaLAPACK routines are provided only with Intel \({ }^{\circledR}\) MKL versions for Linux* and Windows* OSs.

Routine naming conventions, mathematical notation, and matrix storage schemes used for ScaLAPACK auxiliary and utility routines are the same as described in previous chapters. Some routines and functions may have combined character codes, such as sc or \(d z\). For example, the routine pscsum1 uses a complex input array and returns a real value.

\section*{Auxiliary Routines}

ScaLAPACK Auxiliary Routines
\begin{tabular}{|c|c|c|}
\hline Routine Name & \begin{tabular}{l}
Data \\
Types
\end{tabular} & Description \\
\hline p?lacgv & C, z & Conjugates a complex vector. \\
\hline p?max1 & C, z & Finds the index of the element whose real part has maximum absolute value (similar to the Level 1 PBLAS p?amax, but using the absolute value to the real part). \\
\hline ? combamax1 & C, z & Finds the element with maximum real part absolute value and its corresponding global index. \\
\hline p?sum1 & sc, dz & Forms the 1-norm of a complex vector similar to Level 1 PBLAS p? asum, but using the true absolute value. \\
\hline p?dbtrsv & \(s, d, c, z\) & Computes an \(L U\) factorization of a general tridiagonal matrix with no pivoting. The routine is called by p?dbtrs. \\
\hline p?dttrsv & \(s, d, c, z\) & Computes an \(L U\) factorization of a general band matrix, using partial pivoting with row interchanges. The routine is called by \(p\) ? dttrs. \\
\hline p?gebd2 & \(s, d, c, z\) & Reduces a general rectangular matrix to real bidiagonal form by an orthogonal/unitary transformation (unblocked algorithm). \\
\hline p?gehd2 & \(s, d, c, z\) & Reduces a general matrix to upper Hessenberg form by an orthogonal/unitary similarity transformation (unblocked algorithm). \\
\hline \(p ? g e l q 2\) & \(s, d, c, z\) & Computes an \(L Q\) factorization of a general rectangular matrix (unblocked algorithm). \\
\hline p? \({ }^{\text {geq12 }}\) & \(s, d, c, z\) & Computes a \(Q L\) factorization of a general rectangular matrix (unblocked algorithm). \\
\hline p?geqr2 & \(s, d, c, z\) & Computes a \(Q R\) factorization of a general rectangular matrix (unblocked algorithm). \\
\hline p?gerq2 & \(s, d, c, z\) & Computes an \(R Q\) factorization of a general rectangular matrix (unblocked algorithm). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Routine Name & Data Types & Description \\
\hline p?getf2 & \(s, d, c, z\) & Computes an \(L U\) factorization of a general matrix, using partial pivoting with row interchanges (local blocked algorithm). \\
\hline p?labrd & \(s, d, c, z\) & Reduces the first nb rows and columns of a general rectangular matrix A to real bidiagonal form by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of \(A\). \\
\hline p?lacon & \(s, d, c, z\) & Estimates the 1-norm of a square matrix, using the reverse communication for evaluating matrix-vector products. \\
\hline p?laconsb & s,d & Looks for two consecutive small subdiagonal elements. \\
\hline p?lacp2 & \(s, d, c, z\) & Copies all or part of a distributed matrix to another distributed matrix. \\
\hline p?lacp3 & s,d & Copies from a global parallel array into a local replicated array or vice versa. \\
\hline p?lacpy & \(s, d, c, z\) & Copies all or part of one two-dimensional array to another. \\
\hline p?laevswp & \(s, d, c, z\) & Moves the eigenvectors from where they are computed to ScaLAPACK standard block cyclic array. \\
\hline p?lahrd & \(s, d, c, z\) & Reduces the first \(n b\) columns of a general rectangular matrix \(A\) so that elements below the \(k^{\text {th }}\) subdiagonal are zero, by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of \(A\). \\
\hline p?laiect & \(s, d, c, z\) & Exploits IEEE arithmetic to accelerate the computations of eigenvalues. (C interface function). \\
\hline p?lange & \(s, d, c, z\) & Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a general rectangular matrix. \\
\hline p?lanhs & \(s, d, c, z\) & Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of an upper Hessenberg matrix. \\
\hline p?lansy, p?lanhe & \[
\begin{aligned}
& s, d, c, z / \\
& c, z
\end{aligned}
\] & Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a real symmetric or complex Hermitian matrix. \\
\hline p?lantr & \(s, d, c, z\) & Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a triangular matrix. \\
\hline p?lapiv & \(s, d, c, z\) & Applies a permutation matrix to a general distributed matrix, resulting in row or column pivoting. \\
\hline p?laqge & \(s, d, c, z\) & Scales a general rectangular matrix, using row and column scaling factors computed by p?geequ. \\
\hline p?laqsy & \(s, d, c, z\) & Scales a symmetric/Hermitian matrix, using scaling factors computed by p?poequ. \\
\hline p?lared1d & s,d & Redistributes an array assuming that the input array bycol is distributed across rows and that all process columns contain the same copy of bycol. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Routine Name & \begin{tabular}{l}
Data \\
Types
\end{tabular} & Description \\
\hline p?lared2d & s,d & Redistributes an array assuming that the input array byrow is distributed across columns and that all process rows contain the same copy of byrow. \\
\hline p?larf & \(s, d, c, z\) & Applies an elementary reflector to a general rectangular matrix. \\
\hline p?larfb & \(s, d, c, z\) & Applies a block reflector or its transpose/conjugate-transpose to a general rectangular matrix. \\
\hline p?larfc & C, z & Applies the conjugate transpose of an elementary reflector to a general matrix. \\
\hline p?larfg & \(s, d, c, z\) & Generates an elementary reflector (Householder matrix). \\
\hline p?larft & \(s, d, c, z\) & Forms the triangular vector \(T\) of a block reflector \(H=I-V T V^{H}\) \\
\hline p?larz & \(s, d, c, z\) & Applies an elementary reflector as returned by p?tzrzf to a general matrix. \\
\hline p?larzb & \(s, d, c, z\) & Applies a block reflector or its transpose/conjugate-transpose as returned by p?tzrzf to a general matrix. \\
\hline p?larzc & C, z & Applies (multiplies by) the conjugate transpose of an elementary reflector as returned by p?tzrzf to a general matrix. \\
\hline p?larzt & \(s, d, c, z\) & Forms the triangular factor \(T\) of a block reflector \(H=I-V T V^{H}\) as returned by p?tzrzf. \\
\hline p?lascl & \(s, d, c, z\) & Multiplies a general rectangular matrix by a real scalar defined as \(C_{\text {to }} / C_{\text {from }}\). \\
\hline p?laset & \(s, d, c, z\) & Initializes the off-diagonal elements of a matrix to \(\alpha\) and the diagonal elements to \(\beta\). \\
\hline p?lasmsub & s,d & Looks for a small subdiagonal element from the bottom of the matrix that it can safely set to zero. \\
\hline p?lassq & \(s, d, c, z\) & Updates a sum of squares represented in scaled form. \\
\hline p?laswp & \(s, d, c, z\) & Performs a series of row interchanges on a general rectangular matrix. \\
\hline p?latra & \(s, d, c, z\) & Computes the trace of a general square distributed matrix. \\
\hline p?latrd & \(s, d, c, z\) & Reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal/unitary similarity transformation. \\
\hline p?latrz & \(s, d, c, z\) & Reduces an upper trapezoidal matrix to upper triangular form by means of orthogonal/unitary transformations. \\
\hline p?lauu2 & \(s, d, c, z\) & Computes the product \(U U^{H}\) or \(L^{H} L\), where \(U\) and \(L\) are upper or lower triangular matrices (local unblocked algorithm). \\
\hline p?laum & \(s, d, c, z\) & Computes the product \(U U^{H}\) or \(L^{H} L\), where \(U\) and \(L\) are upper or lower triangular matrices. \\
\hline p?lawil & s,d & Forms the Wilkinson transform. \\
\hline p?org2l/p?ung2l & \(s, d, c, z\) & Generates all or part of the orthogonal/unitary matrix \(Q\) from a QL factorization determined by p?geqlf (unblocked algorithm). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Routine Name & \begin{tabular}{l}
Data \\
Types
\end{tabular} & Description \\
\hline p?org2r/p?ung2r & \(s, d, c, z\) & Generates all or part of the orthogonal/unitary matrix \(Q\) from a \(Q R\) factorization determined by p?geqrf (unblocked algorithm). \\
\hline p?orgl2/p?ungl2 & \(s, d, c, z\) & Generates all or part of the orthogonal/unitary matrix \(Q\) from an \(L Q\) factorization determined by p?gelqf (unblocked algorithm). \\
\hline p?orgr2/p?ungr2 & \(s, d, c, z\) & Generates all or part of the orthogonal/unitary matrix \(Q\) from an \(R Q\) factorization determined by p?gerqf (unblocked algorithm). \\
\hline p?orm2l/p?unm2l & \(s, d, c, z\) & Multiplies a general matrix by the orthogonal/unitary matrix from a QL factorization determined by p?geqlf (unblocked algorithm). \\
\hline p?orm2r/p?unm2r & \(s, d, c, z\) & Multiplies a general matrix by the orthogonal/unitary matrix from a \(Q R\) factorization determined by p?geqrf (unblocked algorithm). \\
\hline p?orml2/p?unml2 & \(s, d, c, z\) & Multiplies a general matrix by the orthogonal/unitary matrix from an \(L Q\) factorization determined by \(p\) ?gelqf (unblocked algorithm). \\
\hline p?ormr2/p?unmr2 & \(s, d, c, z\) & Multiplies a general matrix by the orthogonal/unitary matrix from an \(R Q\) factorization determined by p?gerqf (unblocked algorithm). \\
\hline p?pbtrsv & \(s, d, c, z\) & Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a banded matrix computed by p?pbtrf. \\
\hline p?pttrsv & \(s, d, c, z\) & Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a tridiagonal matrix computed by p?pttrf. \\
\hline p?potf2 & \(s, d, c, z\) & Computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (local unblocked algorithm). \\
\hline prrscl & \(s, d, c s, z d\) & Multiplies a vector by the reciprocal of a real scalar. \\
\hline p?sygs2/p?hegs2 & \(s, d, c, z\) & Reduces a symmetric/Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from \(p\) ? potrf (local unblocked algorithm). \\
\hline p?sytd2/p?hetd2 & \(s, d, c, z\) & Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation (local unblocked algorithm). \\
\hline p?trti2 & \(s, d, c, z\) & Computes the inverse of a triangular matrix (local unblocked algorithm). \\
\hline ?lamsh & s,d & Sends multiple shifts through a small (single node) matrix to maximize the number of bulges that can be sent through. \\
\hline ?laref & s,d & Applies Householder reflectors to matrices on either their rows or columns. \\
\hline ?lasorte & s,d & Sorts eigenpairs by real and complex data types. \\
\hline ?lasrt2 & s,d & Sorts numbers in increasing or decreasing order. \\
\hline ?stein2 & s,d & Computes the eigenvectors corresponding to specified eigenvalues of a real symmetric tridiagonal matrix, using inverse iteration. \\
\hline ? dbtf2 & \(s, d, c, z\) & Computes an \(L U\) factorization of a general band matrix with no pivoting (local unblocked algorithm). \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Routine Name & \begin{tabular}{l}
Data \\
Types
\end{tabular} & Description \\
\hline ?dbtrf & \(s, d, c, z\) & \begin{tabular}{l}
Computes an \(L U\) factorization of a general band matrix with no \\
pivoting (local blocked algorithm).
\end{tabular} \\
?dttrf & \(s, d, c, z\) & \begin{tabular}{l}
Computes an \(L U\) factorization of a general tridiagonal matrix with \\
no pivoting (local blocked algorithm).
\end{tabular} \\
?pttrsv & \(s, d, c, z\) & \begin{tabular}{l}
Solves a general tridiagonal system of linear equations using the \(L U\) \\
factorization computed by ?dttrf.
\end{tabular} \\
?steqr2 & \(s, d, c, z\) & \begin{tabular}{l}
Solves a symmetric (Hermitian) positive-definite tridiagonal system \\
of linear equations, using the \(L D L^{H}\) factorization computed by ? \\
pttrf.
\end{tabular} \\
\hline
\end{tabular}

\section*{p?lacgv}

Conjugates a complex vector.

\section*{Syntax}
```

call pclacgv(n, x, ix, jx, descx, incx)
call pzlacgv(n, x, ix, jx, descx, incx)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p? lacgv routine conjugates a complex vector sub \((x)\) of length \(n\), where sub (x) denotes \(X(i x, j x: j x\) \(+n-1)\) if \(i n c x=m_{-} x\), and \(x(i x: i x+n-1, j x)\) if \(i n c x=1\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & (global) INTEGER. The length of the distributed vector \(\operatorname{sub}(x)\). \\
\hline \multirow[t]{4}{*}{\(x\)} & (local). \\
\hline & COMPLEX for pclacgv \\
\hline & COMPLEX*16 for pzlacgv.Pointer into the local memory to an array of \\
\hline & DIMENSION (lld_x,*). On entry the vector to be conjugated \(x(i)=x(i x+\) \(\left.(j x-1) * m_{-} x+(i-1) * i n c x\right), 1 \leq i \leq n\). \\
\hline ix & (global) INTEGER.The row index in the global array \(x\) indicating the first row of sub(x). \\
\hline jx & (global) INTEGER. The column index in the global array \(x\) indicating the first column of \(\operatorname{sub}(x)\). \\
\hline descx & (global and local) INTEGER. Array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(x\). \\
\hline incx & (global) INTEGER.The global increment for the elements of \(x\). Only two values of incx are supported in this version, namely 1 and \(m_{-} x\). incx must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters} x
(local).
On exit, the conjugated vector.

\section*{p?max 1}

Finds the index of the element whose real part has
maximum absolute value (similar to the Level 1 PBLAS
p?amax, but using the absolute value to the real part).

\section*{Syntax}
```

call pcmaxl(n, amax, indx, x, ix, jx, descx, incx)
call pzmax1(n, amax, indx, x, ix, jx, descx, incx)
Include Files

```
- C: mkl_scalapack.h

\section*{Description}

The p?max1 routine computes the global index of the maximum element in absolute value of a distributed vector sub(x). The global index is returned in indx and the value is returned in amax, where sub(x) denotes \(x(i x: i x+n-1, j x)\) if incx \(=1, X(i x, j x: j x+n-1)\) if \(i n c x=m_{1} x\).

\section*{Input Parameters}
\(n\)

X
ix
jx
descx
incx
(global) pointer to INTEGER. The number of components of the distributed vector \(\operatorname{sub}(x) . n \geq 0\).
(local)
COMPLEX for pcmaxi.
COMPLEX*16 for pzmax1
Array containing the local pieces of a distributed matrix of dimension of at least \(\left((j x-1){ }^{*} m_{-} x+i x+(n-1) * a b s(i n c x)\right)\). This array contains the entries of the distributed vector sub (\(x\)).
(global) INTEGER. The row index in the global array \(x\) indicating the first row of sub(x).
(global) INTEGER. The column index in the global array \(x\) indicating the first column of sub(x)
(global and local) INTEGER. Array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(x\).
(global) INTEGER.The global increment for the elements of \(x\). Only two values of incx are supported in this version, namely 1 and \(m_{-} x\). incx must not be zero.

\section*{Output Parameters}
amax
indx
(global output) pointer to REAL. The absolute value of the largest entry of the distributed vector \(\operatorname{sub}(x)\) only in the scope of \(\operatorname{sub}(x)\).
(global output) pointer to INTEGER.The global index of the element of the distributed vector sub(\(x\)) whose real part has maximum absolute value.

\section*{?combamax 1}

Finds the element with maximum real part absolute value and its corresponding global index.

\section*{Syntax}
```

call ccombamax1(v1, v2)
call zcombamax1(v1, v2)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The ?combamax1 routine finds the element having maximum real part absolute value as well as its corresponding global index.

\section*{Input Parameters}
```

v1 (local)
COMPLEX for ccombamax1
COMPLEX*16 for zcombamax1 Array, DIMENSION 2. The first maximum
absolute value element and its global index. v1(1)=amax, v1(2)=indx.
v2
(local)
COMPLEX for ccombamax1
COMPLEX*16 for zcombamax1

```

Array, DIMENSION 2. The second maximum absolute value element and its global index. v2(1)=amax, v2(2)=indx.

\section*{Output Parameters}
(local).
The first maximum absolute value element and its global index.
v1 (1) =amax, v1 (2) =indx.

\section*{p?sum1}

Forms the 1-norm of a complex vector similar to Level
1 PBLAS p?asum, but using the true absolute value.
Syntax
```

call pscsum1(n, asum, x, ix, jx, descx, incx)
call pdzsum1(n, asum, x, ix, jx, descx, incx)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p ? sum1 routine returns the sum of absolute values of a complex distributed vector \(\operatorname{sub}(x)\) in asum, where \(\operatorname{sub}(x)\) denotes \(x(i x: i x+n-1, j x: j x)\), if \(i n c x=1, X(i x: i x, j x: j x+n-1)\), if \(i n c x=m_{1} x\).
Based on p?asum from the Level 1 PBLAS. The change is to use the 'genuine' absolute value.

\section*{Input Parameters}
```

n
X
ix
jx
descx
incx
(global) pointer to INTEGER. The number of components of the distributed vector sub(x). $n \geq 0$.
(local ) COMPLEX for pscsum1
COMPLEX*16 for pdzsum1.
Array containing the local pieces of a distributed matrix of dimension of at least $\left((j x-1){ }^{*} m_{-} x+i x+(n-1) * a b s(i n c x)\right)$. This array contains the entries of the distributed vector sub ( $x$ ).
(global) INTEGER.The row index in the global array $x$ indicating the first row of sub(x).
(global) INTEGER. The column index in the global array $x$ indicating the first column of $\operatorname{sub}(x)$
(global and local) INTEGER. Array, DIMENSION 8. The array descriptor for the distributed matrix $x$.
(global) INTEGER.The global increment for the elements of $x$. Only two values of incx are supported in this version, namely 1 and $m_{-} x$.

```

\section*{Output Parameters}
```

asum

```
```

asum

```
(local)
Pointer to REAL. The sum of absolute values of the distributed vector sub(x) only in its scope.

\section*{p?dbtrsv}

Computes an LU factorization of a general triangular
matrix with no pivoting. The routine is called by p?
dbtrs.

\section*{Syntax}
```

call psdbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)
call pddbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)
call pcdbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)
call pzdbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?dbtrsv routine solves a banded triangular system of linear equations
\(A(1: n, j a: j a+n-1) * x=B(i b: i b+n-1,1\) :nrhs \()\) or
\(A(1: n, j a: j a+n-1)^{T} * X=B(i b: i b+n-1,1: n r h s)(f o r ~ r e a l ~ f l a v o r s) ; ~ A(1: n, j a: j a+n-1)^{H} * X=B(i b: i b\) \(+n-1,1\) :nrhs) (for complex flavors),
where \(A(1: n, j a: j a+n-1)\) is a banded triangular matrix factor produced by the Gaussian elimination code PD@ (dom_pre) BTRF and is stored in \(A(1: n, j a: j a+n-1)\) and \(a f\). The matrix stored in \(A(1: n, j a: j a+n-1)\) is either upper or lower triangular according to uplo, and the choice of solving \(A(1: n, j a: j a+n-1)\) or \(A(1: n\), \(j a: j a+n-1)^{T}\) is dictated by the user by the parameter trans.

Routine p?dbtrf must be called first.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{uplo} & (global) CHARACTER. \\
\hline & If uplo='U', the upper triangle of \(A(1: n, j a: j a+n-1)\) is stored, if uplo = 'L', the lower triangle of \(A(1: n, j a: j a+n-1)\) is stored. \\
\hline \multirow[t]{3}{*}{trans} & (global) CHARACTER. \\
\hline & If trans \(=\) 'N', solve with \(A(1: n, j a: j a+n-1)\), \\
\hline & if trans \(=\) ' C', solve with conjugate transpose \(A(1: n, j a: j a+n-1)\). \\
\hline \(n\) & (global) INTEGER. The order of the distributed submatrix \(A ;(n \geq 0)\). \\
\hline bwl & (global) INTEGER. Number of subdiagonals. \(0 \leq b w 1 \leq n-1\). \\
\hline bwu & (global) INTEGER. Number of subdiagonals. \(0 \leq b w u \leq n-1\). \\
\hline nrhs & (global) INTEGER. The number of right-hand sides; the number of columns of the distributed submatrix \(B(n r h s \geq 0)\). \\
\hline \multirow[t]{9}{*}{a} & (local). \\
\hline & REAL for psdbtrsv \\
\hline & DOUBLE PRECISION for pddbtrsv \\
\hline & COMPLEX for pcdbtrsv \\
\hline & COMPLEX*16 for pzdbtrsv. \\
\hline & Pointer into the local memory to an array with first DIMENSION lld_a (\(b w 1\) \\
\hline & \(+b w u+1\))(stored in desca). On entry, this array contains the local pieces of the \(n\)-by- \(n\) unsymmetric banded distributed Cholesky factor \(I\) or \\
\hline & \(L^{T} \star A(1: n, j a: j a+n-1)\). This local portion is stored in the packed banded format used in LAPACK. See the Application Notes below and the \\
\hline & ScaLAPACK manual for more detail on the format of distributed matrices. \\
\hline ja & (global) INTEGER. The index in the global array a that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A). \\
\hline \multirow[t]{3}{*}{desca} & (global and local) INTEGER array of DIMENSION (dlen_). \\
\hline & if 1 d type (dtype_a \(=501\) or 502), dlen \(\geq 7\); \\
\hline & if \(2 d\) type (dtype_a \(=1\)), dlen \(\geq 9\). The array descriptor for the distributed matrix \(A\). Contains information of mapping of \(A\) to memory. \\
\hline \multirow[t]{7}{*}{b} & (local) \\
\hline & REAL for psdbtrsv \\
\hline & DOUBLE PRECISION for pddbtrsv \\
\hline & COMPLEX for pcdbtrsv \\
\hline & COMPLEX*16 for pzdbtrsv. \\
\hline & Pointer into the local memory to an array of local lead DIMENSION \\
\hline & \(l l d \_b \geq n b\). On entry, this array contains the local pieces of the right-hand sides \(B(i b: i b+n-1,1: n r h s)\). \\
\hline ib & (global) INTEGER. The row index in the global array \(b\) that points to the first row of the matrix to be operated on (which may be either all of \(b\) or a submatrix of \(B\)). \\
\hline \multirow[t]{2}{*}{descb} & (global and local) INTEGER array of DIMENSION (dlen_). \\
\hline & if 1d type (dtype_b =502), dlen \(\geq 7\); \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & if \(2 d\) type (dtype_b =1), dlen \(\geq 9\). The array descriptor for the distributed matrix \(B\). Contains information of mapping \(B\) to memory. \\
\hline \multirow[t]{3}{*}{\(\operatorname{laf}\)} & (local) \\
\hline & Integer. Size of user-input Auxiliary Filling space af. \\
\hline & laf must be \(\geq n b^{*}(b w l+b w u)+6 * \max (b w l, b w u) * \max (b w l, b w u)\). If laf is not large enough, an error code is returned and the minimum acceptable size will be returned in \(a f(1)\). \\
\hline \multirow[t]{6}{*}{work} & (local). \\
\hline & REAL for psdbtrsv \\
\hline & DOUBLE PRECISION for pddbtrsv \\
\hline & COMPLEX for pcdbtrsv \\
\hline & COMPLEX*16 for pzdbtrsv. \\
\hline & \begin{tabular}{l}
Temporary workspace. This space may be overwritten in between calls to routines. \\
work must be the size given in lwork.
\end{tabular} \\
\hline \multirow[t]{2}{*}{lwork} & (local or global) INTEGER. \\
\hline & Size of user-input workspace work. If lwork is too small, the minimal acceptable size will be returned in work(1) and an error code is returned. lwork \(\geq \max (b w l, b w u) * n r h s\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & (local). \\
\hline & This local portion is stored in the packed banded format used in LAPACK. Please see the ScaLAPACK manual for more detail on the format of distributed matrices. \\
\hline \(b\) & On exit, this contains the local piece of the solutions distributed matrix \(x\). \\
\hline af & (local). \\
\hline & REAL for psdbtrsv \\
\hline & DOUBLE PRECISION for pddbtrsv \\
\hline & COMPLEX for pcdbtrsv \\
\hline & COMPLEX*16 for pzdbtrsv. \\
\hline & Auxiliary Filling Space. Filling is created during the factorization routine p? \\
\hline & dbtrf and this is stored in af. If a linear system is to be solved using p? \\
\hline & dbtrf after the factorization routine, \(a f\) must not be altered after the factorization. \\
\hline work & On exit, work(1) contains the minimal lwork. \\
\hline info & (local). \\
\hline & INTEGER. If info \(=0\), the execution is successful. \\
\hline & < 0: If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an \\
\hline & illegal value, then info \(=-i\). \\
\hline
\end{tabular}

\section*{p?dttrsv}

Computes an LU factorization of a general band
matrix, using partial pivoting with row interchanges.
The routine is called by p?dttrs.

\section*{Syntax}
```

call psdttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

```
```

call pddttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf,
work, lwork, info)
call pcdttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf,
work, lwork, info)
call pzdttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?dttrsv routine solves a tridiagonal triangular system of linear equations
```

A(1 :n, ja:ja+n-1)*X = B(ib:ib+n-1, 1 :nrhs) or
A(1 :n, ja:ja+n-1) T * X = B(ib:ib+n-1, 1 :nrhs) for real flavors; A(1 : n, ja:ja+n-1) H* X =
B(ib:ib+n-1, 1 :nrhs) for complex flavors,

```
where \(A(1: n, j a: j a+n-1)\) is a tridiagonal matrix factor produced by the Gaussian elimination code PS@ (dom_pre)TTRF and is stored in \(A(1: n, j a: j a+n-1)\) and af.

The matrix stored in \(A(1: n, j a: j a+n-1)\) is either upper or lower triangular according to uplo, and the choice of solving \(A(1: n, j a: j a+n-1)\) or \(A(1: n, j a: j a+n-1)^{T}\) is dictated by the user by the parameter trans.

Routine \(p\) ?dttrf must be called first.

\section*{Input Parameters}
```

uplo
trans
n
nrhs
dl
d
(global) CHARACTER.
If uplo='U', the upper triangle of A(1:n, ja:ja+n-1) is stored,
if uplo = 'L', the lower triangle of A(1:n, ja:ja+n-1) is stored.

```
(global) CHARACTER.
If uplo='U', the upper triangle of \(A(1: n, j a: j a+n-1)\) is stored,
if uplo = 'L', the lower triangle of \(A(1: n, j a: j a+n-1)\) is stored.
(global) CHARACTER.
If trans \(=\) 'N', solve with \(A(1: n, j a: j a+n-1)\),
if trans \(=\) 'C', solve with conjugate transpose \(A(1: n, j a: j a+n-1)\).
(global) INTEGER. The order of the distributed submatrix \(A ;(n \geq 0)\).
(global) INTEGER. The number of right-hand sides; the number of columns of the distributed submatrix \(B\) (ib:ib+n-1, \(1: n r h s) .(n r h s \geq 0)\).
(local).
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer to local part of global vector storing the lower diagonal of the matrix.
Globally, \(d l(1)\) is not referenced, and \(d l\) must be aligned with \(d\).
Must be of size \(\geq \operatorname{desca}\left(\mathrm{nb}_{-}\right)\).
(local).
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer to local part of global vector storing the main diagonal of the matrix.
\begin{tabular}{|c|c|}
\hline \multirow[t]{7}{*}{\(d u\)} & (local). \\
\hline & REAL for psdttrsv \\
\hline & DOUBLE PRECISION for pddttrsv \\
\hline & COMPLEX for pcdttrsv \\
\hline & COMPLEX*16 for pzdttrsv. \\
\hline & Pointer to local part of global vector storing the upper diagonal of the matrix. \\
\hline & Globally, \(d u(n)\) is not referenced, and \(d u\) must be aligned with \(d\). \\
\hline ja & (global) INTEGER. The index in the global array a that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A). \\
\hline \multirow[t]{4}{*}{desca} & (global and local). INTEGER array of DIMENSION (dlen_). \\
\hline & if 1 d type (dtype_a = 501 or 502), dlen \(\geq\) 7; \\
\hline & if \(2 d\) type (dtype_a = 1), dlen \(\geq 9\). \\
\hline & The array descriptor for the distributed matrix A. Contains information of mapping of \(A\) to memory. \\
\hline \multirow[t]{7}{*}{b} & (local) \\
\hline & REAL for psdttrsv \\
\hline & DOUBLE PRECISION for pddttrsv \\
\hline & COMPLEX for pcdttrsv \\
\hline & COMPLEX*16 for pzdttrsv. \\
\hline & Pointer into the local memory to an array of local lead DIMENSION \\
\hline & \(l l d \_b \geq n b\). On entry, this array contains the local pieces of the right-hand sides \(B\) (ib:ib+n-1, 1 :nrhs). \\
\hline i.b & (global). INTEGER. The row index in the global array \(b\) that points to the first row of the matrix to be operated on (which may be either all of \(b\) or a submatrix of \(B\)). \\
\hline \multirow[t]{4}{*}{descb} & (global and local).INTEGER array of DIMENSION (dlen_). \\
\hline & if 1dtype (dtype_b = 502), dlen \(\geq 7\); \\
\hline & if 2 d type (dtype_b = 1), dlen \(\geq 9\). \\
\hline & The array descriptor for the distributed matrix \(B\). Contains information of mapping \(B\) to memory. \\
\hline \multirow[t]{4}{*}{laf} & (local). \\
\hline & INTEGER. \\
\hline & Size of user-input Auxiliary Filling space af. \\
\hline & laf must be \(\geq 2^{*}(n b+2)\). If laf is not large enough, an error code is returned and the minimum acceptable size will be returned in \(a f(1)\). \\
\hline \multirow[t]{6}{*}{work} & (local). \\
\hline & REAL for psdttrsv \\
\hline & DOUBLE PRECISION for pddttrsv \\
\hline & COMPLEX for pcdttrsv \\
\hline & COMPLEX*16 for pzdttrsv. \\
\hline & \begin{tabular}{l}
Temporary workspace. This space may be overwritten in between calls to routines. \\
work must be the size given in lwork.
\end{tabular} \\
\hline \multirow[t]{3}{*}{lwork} & (local or global).INTEGER. \\
\hline & Size of user-input workspace work. If 1 work is too small, the minimal acceptable size will be returned in work (1) and an error code is returned. \\
\hline & \(l\) work \(\geq 10 * n p c o l+4 * n r h s\). \\
\hline
\end{tabular}
lwork \(\geq\) 10*npcol+4*nrhs.

\section*{Output Parameters}
\(d l\)
\(d\)
af

work
info
(local).
On exit, this array contains information containing the factors of the matrix.
On exit, this array contains information containing the factors of the matrix.
Must be of size \(\geq\) desca (\(n b \_\)).
On exit, this contains the local piece of the solutions distributed matrix \(X\).
(local).
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Auxiliary Filling Space. Filling is created during the factorization routine \(p\) ? dttrf and this is stored in af. If a linear system is to be solved using p? dttrs after the factorization routine, af must not be altered after the factorization.
work
On exit, work (1) contains the minimal lwork.
(local). INTEGER.
If info \(=0\), the execution is successful.
if info< 0 : If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?gebd2}

Reduces a general rectangular matrix to real
bidiagonal form by an orthogonal/unitary transformation (unblocked algorithm).

\section*{Syntax}
```

call psgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pdgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pcgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pzgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p? gebd2 routine reduces a real/complex general m-by-n distributed matrix \(\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a\) \(+n-1\)) to upper or lower bidiagonal form \(B\) by an orthogonal/unitary transformation:
\(Q^{\prime *} \operatorname{sub}(A) * P=B\).
If \(m \geq n, B\) is the upper bidiagonal; if \(m<n, B\) is the lower bidiagonal.

\section*{Input Parameters}
m
(global) INTEGER.
The number of rows of the distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\).
(global) INTEGER.
The order of the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\).

\section*{Output Parameters}
(local).
On exit, if \(m \geq n\), the diagonal and the first superdiagonal of \(\operatorname{sub}(A)\) are overwritten with the upper bidiagonal matrix \(B\); the elements below the diagonal, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors, and the elements above the first superdiagonal, with the array taup, represent the orthogonal matrix \(P\) as a product of elementary reflectors. If \(m<n\), the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix \(B\); the elements below the first subdiagonal, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors, and the elements above the diagonal, with the array taup, represent the orthogonal matrix \(P\) as a product of elementary reflectors. See Applications Notes below.
\(d\)
(local)
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
\begin{tabular}{|c|c|}
\hline \multirow{16}{*}{\(e\)} & COMPLEX for pcgebd2 \\
\hline & COMPLEX*16 for pzgebd2. \\
\hline & Array, DIMENSION LOCC(ja+min \((m, n)-1)\) if \(m \geq n\); LOCr (ia \\
\hline & \(+\min (m, n)-1)\) otherwise. The distributed diagonal elements of the \\
\hline & bidiagonal matrix \(B: d(i)=a(i, i) . d\) is tied to the distributed matrix \(A\). \\
\hline & (local) \\
\hline & REAL for psgebd2 \\
\hline & DOUBLE PRECISION for pdgebd2 \\
\hline & COMPLEX for pcgebd2 \\
\hline & COMPLEX*16 for pzgebd2. \\
\hline & Array, DIMENSION LOCC(ja+min \((m, n)-1\)) if \(m \geq n\); LOCr (ia \\
\hline & \(+\min (m, n)-2)\) otherwise. The distributed diagonal elements of the \\
\hline & bidiagonal matrix \(B\) : \\
\hline & if \(m \geq n, e(i)=a(i, i+1)\) for \(i=1,2, \ldots, n-1\); \\
\hline & if \(m<n, e(i)=a(i+1, i)\) for \(i=1,2, \ldots, m-1\). e is tied to the \\
\hline & distributed matrix \(A\). \\
\hline \multirow[t]{6}{*}{tauq} & (local). \\
\hline & REAL for psgebd2 \\
\hline & DOUBLE PRECISION for pdgebd2 \\
\hline & COMPLEX for pcgebd2 \\
\hline & COMPLEX*16 for pzgebd2. \\
\hline & Array, DIMENSIONLOCC (ja+min \((m, n)-1)\). The scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Q\). tauq is tied to the distributed matrix \(A\). \\
\hline \multirow[t]{6}{*}{taup} & (local). \\
\hline & REAL for psgebd2 \\
\hline & DOUBLE PRECISION for pdgebd2 \\
\hline & COMPLEX for pcgebd2 \\
\hline & COMPLEX*16 for pzgebd2. \\
\hline & Array, DIMENSION LOCr (ia+min \((m, n)-1)\). The scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix P. taup is tied to the distributed matrix \(A\). \\
\hline work & On exit, work (1) returns the minimal and optimal lwork. \\
\hline \multirow[t]{4}{*}{info} & (local) \\
\hline & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & if info < 0 : If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
\hline
\end{tabular}

\section*{Application Notes}

The matrices \(Q\) and \(P\) are represented as products of elementary reflectors:
If \(m \geq n\),
\(Q=H(1) * H(2) * \ldots * H(n)\), and \(P=G(1) * G(2) * \ldots * G(n-1)\)
Each \(H(\mathrm{i})\) and \(G(\mathrm{i})\) has the form:
\(H(i)=I-t^{\prime} q^{\star} V^{\star} V^{\prime}\), and \(G(i)=I-\operatorname{taup}^{\star} u^{\star} u^{\prime}\),
where tauq and taup are real/complex scalars, and \(v\) and \(u\) are real/complex vectors. \(v(1: i-1)=0, v(i)\) \(=1\), and \(v(i+i: m)\) is stored on exit in

A(ia+i-ia+m-1, a+i-1);
\(u(1: i)=0, u(i+1)=1\), and \(u(i+2: n)\) is stored on exit in \(A(i a+i-1, j a+i+1: j a+n-1)\);
tauq is stored in TAUQ (ja+i-1) and taup in TAUP(ia+i-1).
If \(m<n\),
\(v(1: i)=0, v(i+1)=1\), and \(v(i+2: m)\) is stored on exit in A(ia+i+1: ia+m-1, ja+i-1);
\(u(1: i-1)=0, u(i)=1\), and \(u(i+1: n)\) is stored on exit in \(A(i a+i-1, j a+i: j a+n-1)\);
tauq is stored in TAUQ (ja+i-1) and taup in TAUP(ia+i-1).
The contents of \(\operatorname{sub}(A)\) on exit are illustrated by the following examples:
\[
\begin{array}{ll}
m=6 \text { and } n=5(m>n): & m=5 \text { and } n=6(m<n): \\
{\left[\begin{array}{ccccc}
d & e & u 1 & u 1 & u 1 \\
v 1 & d & e & u 2 & u 2 \\
v 1 & v 2 & d & e & u 3 \\
v 1 & v 2 & v 3 & d & e \\
v 1 & v 2 & v 3 & v 4 & d \\
v 1 & v 2 & v 3 & v 4 & v 5
\end{array}\right]} & {\left[\begin{array}{cccccc}
d & u 1 & u 1 & u 1 & u 1 & u 1 \\
e & d & u 2 & u 2 & u 2 & u 2 \\
v 1 & e & d & u 3 & u 3 & u 3 \\
v 1 & v 2 & e & d & u 4 & u 4 \\
v 1 & v 2 & v 3 & e & d & u 5
\end{array}\right]}
\end{array}
\]
where \(d\) and \(e\) denote diagonal and off-diagonal elements of \(B\), vi denotes an element of the vector defining \(H(i)\), and ui an element of the vector defining \(G(i)\).

\section*{p?gehd2}

Reduces a general matrix to upper Hessenberg form by an orthogonal/unitary similarity transformation (unblocked algorithm).

\section*{Syntax}
```

call psgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pdgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pcgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pzgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The \(p\) ?gehd2 routine reduces a real/complex general distributed matrix \(\operatorname{sub}(A)\) to upper Hessenberg form \(H\) by an orthogonal/unitary similarity transformation: \(Q^{\prime *} \operatorname{sub}(A) * Q=H\), where sub(A) \(=A(i a+n-1\) :ia \(+n-1\), ja+n-1 :ja+n-1).

\section*{Input Parameters}
```

ilo, ihi

```
a
(global) INTEGER. The order of the distributed submatrix \(A .(n \geq 0)\).
(global) INTEGER. It is assumed that \(\operatorname{sub}(A)\) is already upper triangular in rows ia:ia+ilo-2 and ia+ihi:ia+n-1 and columns ja:ja+jlo-2 and ja \(+j h i: j a+n-1\). See Application Notes for further information.
If \(n \geq 0,1 \leq i l o \leq i h i \leq n\); otherwise set ilo \(=1\), ihi \(=n\).
(local).
REAL for psgehd2

DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCC (ja
\(+n-1)\)).
On entry, this array contains the local pieces of the \(n-b y-n\) general distributed matrix \(\operatorname{sub}(A)\) to be reduced.
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(A\), respectively. (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
(local).
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
This is a workspace array of DIMENSION (lwork).
lwork
(local or global). INTEGER.
The dimension of the array work.
lwork is local input and must be at least 1 work \(\geq n b+\max (n p a 0, n b)\), where \(n b=m b \_a=n b \_a, i r o f f a=\bmod (i a-1, n b)\), iarow \(=\) indxg2p (ia, nb, myrow, rsrc_a, nprow), npa0 = numroc(ihi +iroffa, nb, myrow, iarow, nprow).
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo. If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
work
info
(local). On exit, the upper triangle and the first subdiagonal of sub(A) are overwritten with the upper Hessenberg matrix \(H\), and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors. (see Application Notes below).
(local).
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
Array, DIMENSION LOCC (ja+n-2) The scalar factors of the elementary reflectors (see Application Notes below). Elements ja: ja+ilo-2 and ja \(+i h i: j a+n-2\) of \(\operatorname{tau}\) are set to zero. tau is tied to the distributed matrix \(A\).

On exit, work(1) returns the minimal and optimal lwork.
(local).INTEGER.
If info \(=0\), the execution is successful.
if info \(<0\) : If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of (ihi-ilo) elementary reflectors
```

Q = H(ilo)*H(ilo+1)*···*H(ihi-1).

```

Each \(H(i)\) has the form
\(H(i)=I-\tan ^{\star} V^{\star} v^{\prime}\),
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1\) : \(i)=0, v(i+1)=1\) and \(v(i h i\) \(+1: n)=0 ; v(i+2: i h i)\) is stored on exit in A(ia+ilo+i:ia+ihi-1, ia+ilo+i-2), and tau in tau(jatilo +i-2).

The contents of \(A(i a: i a+n-1, j a: j a+n-1)\) are illustrated by the following example, with \(n=7\), \(i l 0=2\) and \(i\) ihi \(=6\) :
where a denotes an element of the original matrix \(\operatorname{sub}(A), h\) denotes a modified element of the upper Hessenberg matrix \(H\), and vi denotes an element of the vector defining \(H(j a+i l o+i-2)\).

\section*{p?gelq2 \\ Computes an LQ factorization of a general rectangular matrix (unblocked algorithm).}

\section*{Syntax}
```

call psgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?gelq2 routine computes an \(L Q\) factorization of a real/complex distributed \(m\)-by- \(n\) matrix sub \((A)=\) \(A(i a: i a+m-1, j a: j a+n-1)=L^{\star} Q\).

\section*{Input Parameters}
\begin{tabular}{ll}
\(m\) & (global) INTEGER. \\
The number of rows to be operated on, that is, the number of rows of the \\
distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\). \\
(global) INTEGER. \\
The number of columns to be operated on, that is, the number of columns \\
of the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\).
\end{tabular}
a
ia, ja
desca
work
lwork
(local).
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
Pointer into the local memory to an array of DIMENSION (Ild_a, LOCC (ja
\(+n-1)\)).
On entry, this array contains the local pieces of the m-by-n distributed matrix \(\operatorname{sub}(A)\) which is to be factored.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
(local).
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
This is a workspace array of DIMENSION (lwork).
(local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least 1 work \(\geq n q 0+\max (1, m p 0)\), where iroff \(=\bmod (i a-1, \operatorname{mb} a), i C O f f=\bmod \left(j a-1, n b \_a\right)\), iarow \(=\) indxg2p(ia, mb_a, myrow, rsrc_a, nprow), iacol \(=\) indxg2p(ja, nb_a, mycol, csrc_a, npcol), mp0 = numroc(m+iroff, mb_a, myrow, iarow, nprow), nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol), indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo. If 1 work \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
(local).
On exit, the elements on and below the diagonal of \(\operatorname{sub}(A)\) contain the \(m\) by \(\min (m, n)\) lower trapezoidal matrix \(L\) (\(L\) is lower triangular if \(m \leq n\)); the elements above the diagonal, with the array tau, represent the orthogonal/ unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local).
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
Array, DIMENSION LOCr (ia+min \((m, n)-1\)). This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix \(A\).
On exit, work(1) returns the minimal and optimal lwork.
info (local).INTEGER. If info \(=0\), the execution is successful. if info < 0 : If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
```

Q =H(ia+k-1)*H(ia+k-2)*. . . *H(ia) for real flavors, Q = (H(ia+k-1) )}\mp@subsup{)}{}{H*}(H(i
+k-2)) H
where k = min(m,n).

```

Each \(H(i)\) has the form
```

H(i) = I - tau* V* V'

```
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0\) and \(v(i)=1 ; v(i\) \(+1: n\)) (for real flavors) or conjg (v(i+1: n)) (for complex flavors) is stored on exit in \(A(i a+i-1, j a\) \(+i: j a+n-1)\), and tau in TAU(ia+i-1).

\section*{p?geql2 \\ Computes a QL factorization of a general rectangular matrix (unblocked algorithm).}

\section*{Syntax}
```

call psgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?geql2 routine computes a \(Q L\) factorization of a real/complex distributed \(m\)-by-n matrix sub \((A)=\) \(A(i a: i a+m-1, j a: j a+n-1)=Q * L\).

\section*{Input Parameters}
m
n
a

(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\).
(local).
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.

Pointer into the local memory to an array of DIMENSION (Ild_a,LOCC (ja \(+n-1)\)).
On entry, this array contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)\) which is to be factored.
ia, ja
desca
work
lwork
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
(local).
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
This is a workspace array of DIMENSION (lwork).
(local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least 1 work \(\geq \operatorname{mp} 0+\max (1, n q 0)\), where iroff \(=\bmod (i a-1, \operatorname{mb} a), i c o f f=\bmod \left(j a-1, n b \_a\right)\), iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow), iacol \(=\) indxg2p(ja, nb_a, mycol, csrc_a, npcol), mp0 \(=\) numroc (m+iroff, mb_a, myrow, iarow, nprow), nq0 \(=\) numroc (n+icoff, nb_a, mycol, iacol, npcol), indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo. If 1 work \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
tau
work
info
(local).
On exit,
if \(m \geq n\), the lower triangle of the distributed submatrix \(A(i a+m-n: i a+m-1\), \(j a: j a+n-1)\) contains the \(n\)-by- \(n\) lower triangular matrix \(L\);
if \(m \leq n\), the elements on and below the \((n-m)\)-th superdiagonal contain the \(m\)-by- \(n\) lower trapezoidal matrix \(L\); the remaining elements, with the array tau, represent the orthogonal/ unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local).
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
Array, DIMENSION LOCC \((j a+n-1)\). This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix \(A\).
On exit, work(1) returns the minimal and optimal lwork.
(local). INTEGER.
If info \(=0\), the execution is successful. if info \(<0\) : If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\) (\(i * 100+j\)), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
```

Q = H(ja+k-1)*. ..*H(ja+1)*H(ja), where k = min (m,n).

```

Each \(H(i)\) has the form
\(H(i)=I-\operatorname{tau}{ }^{*} V^{\star} V^{\prime}\)
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(m-k+i+1: m)=0\) and \(v(m-k+i)=\) \(1 ; \mathrm{v}(1: m-k+i-1)\) is stored on exit in \(A(i a: i a+m-k+i-2, j a+n-k+i-1)\), and \(\operatorname{tau}\) in \(T A U(j a+n-k+i-1)\).

\section*{p?geqr2}

Computes a QR factorization of a general rectangular matrix (unblocked algorithm).

Syntax
```

call psgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?geqr2 routine computes a \(Q R\) factorization of a real/complex distributed \(m\)-by- \(n\) matrix sub \((A)=\) \(A(i a: i a+m-1, j a: j a+n-1)=Q^{\star} R\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{m} & (global). INTEGER. \\
\hline & The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\). \\
\hline \(n\) & (global).INTEGER. The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\). \\
\hline \multirow[t]{7}{*}{a} & (local). \\
\hline & REAL for psgeqr2 \\
\hline & DOUBLE PRECISION for pdgeqr2 \\
\hline & COMPLEX for pcgeqr2 \\
\hline & COMPLEX*16 for pzgeqr2. \\
\hline & Pointer into the local memory to an array of DIMENSION (Ild_a, LOCC (ja \(+n-1)\)). \\
\hline & On entry, this array contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)\) which is to be factored. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A. \\
\hline \multirow[t]{2}{*}{work} & (local). \\
\hline & REAL for psgeqr2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow{16}{*}{lwork} & DOUBLE PRECISION for pdgeqr2 \\
\hline & COMPLEX for pcgeqr2 \\
\hline & COMPLEX*16 for pzgeqr2. \\
\hline & This is a workspace array of DIMENSION (lwork). \\
\hline & (local or global). INTEGER. \\
\hline & The dimension of the array work. \\
\hline & lwork is local input and must be at least 1 wor \(k \geq \operatorname{mp} 0+\max (1, n q 0)\), where iroff \(=\bmod \left(i a-1, m_{2} a\right), i c o f f=\bmod \left(j a-1, ~ n b \_a\right)\), \\
\hline & iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow), \\
\hline & iacol \(=\) indxg2p(ja, nb_a, mycol, csrc_a, npcol), \\
\hline & \(m p 0=\) numroc (m+iroff, mb_a, myrow, iarow, nprow), \\
\hline & \(n q 0=\) numroc (n+icoff, nb_a, mycol, iacol, npcol). \\
\hline & indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs gridinfo. \\
\hline & If lwork \(=-1\), then lwork is global input and a workspace query is \\
\hline & assumed; the routine only calculates the minimum and optimal size for all \\
\hline & work arrays. Each of these values is returned in the first entry of the \\
\hline & corresponding work array, and no error message is issued by pxerbla. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{a} & (local). \\
\hline & On exit, the elements on and above the diagonal of \(\operatorname{sub}(A)\) contain the \(\min (m, n)\) by \(n\) upper trapezoidal matrix \(R\) (\(R\) is upper triangular if \(m \geq n\)); the elements below the diagonal, with the array tau, represent the orthogonal/ unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below). \\
\hline \multirow[t]{6}{*}{tau} & (local). \\
\hline & REAL for psgeqr2 \\
\hline & DOUBLE PRECISION for pdgeqr2 \\
\hline & COMPLEX for pcgeqr2 \\
\hline & COMPLEX*16 for pzgeqr2. \\
\hline & Array, DIMENSION LOCC \((j a+\min (m, n)-1)\). This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix \(A\). \\
\hline work & On exit, work (1) returns the minimal and optimal lwork. \\
\hline \multirow[t]{4}{*}{info} & (local). INTEGER. \\
\hline & If info \(=0\), the execution is successful. if info < 0: \\
\hline & If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), \\
\hline & if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
\hline
\end{tabular}

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(j a) * H(j a+1) * . ~ . ~ . * H(j a+k-1)\), where \(k=\min (m, n)\).
Each \(H(i)\) has the form
\(H(j)=I-t a u^{*} V^{*} v^{\prime}\),
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0\) and \(v(i)=1 ; v(i+1\) : \(m\)) is stored on exit in \(A(i a+i: i a+m-1, j a+i-1)\), and tau in TAU(ja+i-1).
```

p?gerq2
Computes an RQ factorization of a general rectangular matrix (unblocked algorithm).

```

\section*{Syntax}
```

call psgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?gerq2 routine computes an \(R Q\) factorization of a real/complex distributed \(m\)-by- \(n\) matrix sub \((A)=\) A(ia:ia+m-1, ja:ja+n-1) = \(R^{\star} Q\).

\section*{Input Parameters}
```

m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix \operatorname{sub}(A). (m\geq0).

```
n
a
(global).INTEGER. The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\).
(local).
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCC(ja \(+n-1)\)).
On entry, this array contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)\) which is to be factored.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
(local).
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
This is a workspace array of DIMENSION (lwork).
(local or global). INTEGER.
The dimension of the array work.
lwork is local input and must be at least 1 work \(\geq n q 0+\max (1, \mathrm{mp} 0)\), where
iroff \(=\bmod \left(i a-1, ~ m b \_a\right), ~ i C O f f=\bmod \left(j a-1, ~ n b \_a\right)\),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
```

iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol), mp0 =
numroc( m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow,
and npcol can be determined by calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}
a
(local).
On exit,
if \(m \leq n\), the upper triangle of \(A(i a+m-n: i a+m-1, j a: j a+n-1)\) contains the \(m\)-by- \(m\) upper triangular matrix \(R\);
if \(m \geq n\), the elements on and above the \((m-n)\)-th subdiagonal contain the \(m\) -by- \(n\) upper trapezoidal matrix \(R\); the remaining elements, with the array tau, represent the orthogonal/ unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local).
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
Array, DIMENSION LOCr (ia+m-1). This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix \(A\).
work On exit, work(1) returns the minimal and optimal lwork.
info
(local). INTEGER.
If info \(=0\), the execution is successful.
if info < 0 : If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(i a){ }^{\star} H(i a+1) \star \ldots{ }^{*} H(i a+k-1)\) for real flavors,
\(Q=(H(i a))^{H *}(H(i a+1))^{H} \ldots{ }^{*}(H(i a+k-1))^{H}\) for complex flavors,
where \(k=\min (m, n)\).
Each H(i) has the form
\(H(i)=I-t a u^{*} v^{*} v^{\prime}\),
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(n-k+i+1: n)=0\) and \(v(n-k+i)=\) \(1 ; v(1: n-k+i-1)\) for real flavors or \(\operatorname{conjg}(v(1: n-k+i-1))\) for complex flavors is stored on exit in \(A(i a+m-\) \(k+i-1, j a: j a+n-k+i-2)\), and tau in \(T A U(i a+m-k+i-1)\).

\section*{p?getf2}

Computes an LU factorization of a general matrix, using partial pivoting with row interchanges (local blocked algorithm).

\section*{Syntax}
```

call psgetf2(m, n, a, ia, ja, desca, ipiv, info)
call pdgetf2(m, n, a, ia, ja, desca, ipiv, info)
call pcgetf2(m, n, a, ia, ja, desca, ipiv, info)
call pzgetf2(m, n, a, ia, ja, desca, ipiv, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?getf2 routine computes an \(L U\) factorization of a general \(m\)-by-n distributed matrix \(\operatorname{sub}(A)=A(i a: i a\) \(+m-1, j a: j a+n-1)\) using partial pivoting with row interchanges.
The factorization has the form \(\operatorname{sub}(A)=P * L^{\star} U\), where \(P\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>n\)), and \(U\) is upper triangular (upper trapezoidal if \(m<n\)). This is the right-looking Parallel Level 2 BLAS version of the algorithm.

\section*{Input Parameters}
\(m\) (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\).
\(n\)
a
ia, ja
desca

\section*{Output Parameters}
(global).INTEGER. The number of columns to be operated on, that is, the number of columns of the distributed submatrix sub(A). (nb_a -
\(\left.\bmod \left(j a-1, n b \_a\right) \geq n \geq 0\right)\).
(local).
REAL for psgetf2
DOUBLE PRECISION for pdgetf2
COMPLEX for pcgetf2
COMPLEX*16 for pzgetf 2 .
Pointer into the local memory to an array of DIMENSION (Ild_a, LOCC(ja
\(+n-1)\)).
On entry, this array contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)\).
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
(local). INTEGER.
Array, DIMENSION (LOCr (m_a) + mb_a). This array contains the pivoting information. ipiv(i) -> The global row that local row \(i\) was swapped with. This array is tied to the distributed matrix \(A\).
(local). INTEGER.
If info = 0: successful exit.
If info < 0:
- if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i \star 100+j)\),
- if the \(i\)-th argument is a scalar and had an illegal value, then info \(=\) \(i\).

If info > 0: If info \(=k, u(i a+k-1, j a+k-1)\) is exactly zero. The factorization has been completed, but the factor \(u\) is exactly singular, and division by zero will occur if it is used to solve a system of equations.

\section*{p?labrd}

Reduces the first nb rows and columns of a general rectangular matrix A to real bidiagonal form by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of \(A\).

\section*{Syntax}
```

call pslabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y, iy,
jy, descy, work)
call pdlabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y, iy,
jy, descy, work)
call pclabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y, iy,
jy, descy, work)
call pzlabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y, iy,
jy, descy, work)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?labrd routine reduces the first \(n b\) rows and columns of a real/complex general \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)\) to upper or lower bidiagonal form by an orthogonal/unitary transformation \(Q^{\prime *} A * P\), and returns the matrices \(X\) and \(Y\) necessary to apply the transformation to the unreduced part of sub (\(A\)).
If \(m \geq n\), sub (\(A\)) is reduced to upper bidiagonal form; if \(m<n\), sub (\(A\)) is reduced to lower bidiagonal form.
This is an auxiliary routine called by p?gebrd.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & (global). INTEGER. \\
\hline & The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\). \\
\hline \(n\) & (global).INTEGER. The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\). \\
\hline \(n b\) & (global) INTEGER. \\
\hline & The number of leading rows and columns of \(\operatorname{sub}(A)\) to be reduced. \\
\hline a & (local). \\
\hline & REAL for pslabrd \\
\hline & DOUBLE PRECISION for pdlabrd \\
\hline & COMPLEX for pclabrd \\
\hline & COMPLEX*16 for pzlabrd. \\
\hline
\end{tabular}

Pointer into the local memory to an array of DIMENSION(Ilda, LOCC(ja \(+n-1)\)).
On entry, this array contains the local pieces of the general distributed matrix \(\operatorname{sub}(A)\).
ia, ja
desca
ix, jx
descx
iy, jy
descy
work
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
(global) INTEGER. The row and column indices in the global array \(x\) indicating the first row and the first column of the submatrix sub (\(X\)), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(X\).
(global) INTEGER. The row and column indices in the global array \(y\) indicating the first row and the first column of the submatrix sub (Y), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(Y\).
(local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Workspace array, DIMENSION (lwork)
lwork \(\geq\) nb_a \(+n q\),
with \(n q=\) numroc \(\left(n+\bmod \left(i a-1, n b \_y\right), n b \_y, ~ m y c o l, i a c o l\right.\), npcol)
iacol \(=\) indxg2p (ja, nb_a, mycol, csrc_a, npcol)
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

\section*{Output Parameters}

\section*{a}
(local)
On exit, the first nb rows and columns of the matrix are overwritten; the rest of the distributed matrix sub \((A)\) is unchanged.
If \(m \geq n\), elements on and below the diagonal in the first \(n b\) columns, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors; and elements above the diagonal in the first nb rows, with the array taup, represent the orthogonal/unitary matrix \(P\) as a product of elementary reflectors.
If \(m<n\), elements below the diagonal in the first \(n b\) columns, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors, and elements on and above the diagonal in the first nb rows, with the array taup, represent the orthogonal/unitary matrix \(P\) as a product of elementary reflectors. See Application Notes below.
d
(local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd

\section*{Application Notes}

The matrices \(Q\) and \(P\) are represented as products of elementary reflectors:
\(Q=H(1) \star H(2) \star \ldots \star H(n b)\), and \(P=G(1) * G(2) * \ldots * G(n b)\)
Each \(H(i)\) and \(G(i)\) has the form:
\(H(i)=I-t^{2} u q^{\star} V^{\star} V^{\prime}\), and \(G(i)=I-\operatorname{tap}^{\star} u^{\star} u^{\prime}\),
where tauq and taup are real/complex scalars, and \(v\) and \(u\) are real/complex vectors.
If \(m \geq n, v(1: i-1)=0, v(i)=1\), and \(v(i: m)\) is stored on exit in
\(A(i a+i-1: i a+m-1, j a+i-1) ; u(1: i)=0, u(i+1)=1\), and \(u(i+1: n)\) is stored on exit in \(A(i a+i-1\), \(j a+i: j a+n-1) ;\) tauq is stored in TAUQ (ja+i-1) and taup in TAUP(ia+i-1).

If \(m<n, v(1: i)=0, v(i+1)=1\), and \(v(i+1: m)\) is stored on exit in
\(A(i a+i+1: i a+m-1, j a+i-1) ; u(1: i-1)=0, u(i)=1\), and \(u(i: n)\) is stored on exit in \(A(i a+i-1, j a\) \(+i: j a+n-1)\); tauq is stored in \(T A U Q(j a+i-1)\) and taup in TAUP(ia+i-1). The elements of the vectors \(v\) and \(u\) together form the \(m\)-by-nb matrix \(V\) and the \(n b-b y-n\) matrix \(U^{\prime}\) which are necessary, with \(X\) and \(Y\), to apply the transformation to the unreduced part of the matrix, using a block update of the form: sub (\(A\)) : = sub (A) \(-V^{\star} Y^{\prime}-X^{\star} U^{\prime}\). The contents of sub (A) on exit are illustrated by the following examples with nb \(=\) 2:
\[
\begin{array}{lc}
m=6 \text { and } n=5(m>n): & m=5 \text { and } n=6(m<n): \\
{\left[\begin{array}{ccccc}
1 & 1 & u 1 & u 1 & u 1 \\
v 1 & 1 & 1 & u 2 & u 2 \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a
\end{array}\right]} & {\left[\begin{array}{cccccc}
1 & u 1 & u 1 & u 1 & u 1 & u 1 \\
1 & 1 & u 2 & u 2 & u 2 & u 2 \\
v 1 & 1 & a & a & a & a \\
v 1 & v 2 & a & a & a & a \\
v 1 & v 2 & a & a & a & a
\end{array}\right]}
\end{array}
\]
where a denotes an element of the original matrix which is unchanged, vi denotes an element of the vector defining \(H(i)\), and ui an element of the vector defining \(G(i)\).

\section*{p?lacon}

Estimates the 1-norm of a square matrix, using the reverse communication for evaluating matrix-vector products.

\section*{Syntax}
```

call pslacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)
call pdlacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)
call pclacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)
call pzlacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?lacon routine estimates the 1-norm of a square, real/unitary distributed matrix \(A\). Reverse communication is used for evaluating matrix-vector products. \(x\) and \(v\) are aligned with the distributed matrix \(A\), this information is implicitly contained within iv, ix, descv, and descx.

\section*{Input Parameters}
\[
\begin{aligned}
& n \\
& v
\end{aligned}
\]
(global).INTEGER. The length of the distributed vectors \(v\) and \(x . n \geq 0\).
(local).
REAL for pslacon
DOUBLE PRECISION for pdlacon
COMPLEX for pclacon
COMPLEX* 16 for pzlacon.

Pointer into the local memory to an array of DIMENSION LOCr \((n+\bmod (i v-1\), \(\left.m b \_v\right)\)). On the final return, \(v=a^{\star} w\), where est \(=\operatorname{norm}(v) /\) norm \((w)\) (\(w\) is not returned).
iv, jv
descv
\(x\)
ix, jx
descx
isgn
kase

\section*{Output Parameters}

X
(local).
On an intermediate return, \(X\) should be overwritten by \(A^{*} X\), if kase \(=1, A^{\prime}\) \(*_{X}\), if kase=2,
p?lacon must be re-called with all the other parameters unchanged.
(global). REAL for single precision flavors
DOUBLE PRECISION for double precision flavors
(local)
INTEGER. On an intermediate return, kase is 1 or 2 , indicating whether \(x\) should be overwritten by \(A^{*} X\), or \(A^{\prime} * X\). On the final return from p?lacon, kase is again 0 .
p?laconsb
Looks for two consecutive small subdiagonal elements.
Syntax
```

call pslaconsb(a, desca, i, l, m, h44, h33, h43h34, buf, lwork)
call pdlaconsb(a, desca, i, l, m, h44, h33, h43h34, buf, lwork)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?laconsb routine looks for two consecutive small subdiagonal elements by analyzing the effect of starting a double shift \(Q R\) iteration given by \(h 44, h 33\), and \(h 43 h 34\) to see if this process makes a subdiagonal negligible.

\section*{Input Parameters}
a
desca
i

1
h44, h33, h43h34
l work
(global). REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
Array, DIMENSION (desca (lld_),*). On entry, the Hessenberg matrix whose tridiagonal part is being scanned. Unchanged on exit.
(global and local) INTEGER.
Array of DIMENSION (dlen_). The array descriptor for the distributed matrix A.
(global) INTEGER.
The global location of the bottom of the unreduced submatrix of \(A\). Unchanged on exit.
(global) INTEGER.
The global location of the top of the unreduced submatrix of \(A\). Unchanged on exit.
(global). REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
These three values are for the double shift QR iteration.
(global) INTEGER.
This must be at least 7*ceil(ceil((i-l)/hbl)/lcm(nprow, npcol)). Here 1 cm is least common multiple and \(n p r o w^{\star} n p c o l\) is the logical grid size.

\section*{Output Parameters}
m
buf
(global). On exit, this yields the starting location of the \(Q R\) double shift. This will satisfy:
\[
I \leq m \leq i-2 .
\]
(local).
REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
Array of size lwork.
(global). On exit, lwork is the size of the work buffer.

\section*{p?lacp2}

Copies all or part of a distributed matrix to another distributed matrix.

\section*{Syntax}
```

call pslacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pdlacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pclacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pzlacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?lacp2 routine copies all or part of a distributed matrix \(A\) to another distributed matrix \(B\). No communication is performed, p?lacp2 performs a local copy \(\operatorname{sub}(A):=\operatorname{sub}(B)\), where \(\operatorname{sub}(A)\) denotes \(A(i a: i a+m-1, a: j a+n-1)\) and \(\operatorname{sub}(B)\) denotes \(B(i b: i b+m-1, j b: j b+n-1)\).
p?lacp2 requires that only dimension of the matrix operands is distributed.
Input Parameters
uplo
m
n
a
ia, ja
desca
ib, jb
descb

\section*{Output Parameters}
b
(global) CHARACTER. Specifies the part of the distributed matrix sub(A) to be copied:
= 'U': Upper triangular part is copied; the strictly lower triangular part of \(\operatorname{sub}(A)\) is not referenced;
\(=\) 'L': Lower triangular part is copied; the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced.
Otherwise: all of the matrix \(\operatorname{sub}(A)\) is copied.
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\).
(local).
REAL for pslacp2
DOUBLE PRECISION for pdlacp2
COMPLEX for pclacp2
COMPLEX*16 for pzlacp2.
Pointer into the local memory to an array of DIMENSION (IId_a, LOCC (ja \(+n-1)\)).
On entry, this array contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)\).
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
(global) INTEGER. The row and column indices in the global array \(B\) indicating the first row and the first column of \(\operatorname{sub}(B)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(B\).
```

(local).
REAL for pslacp2
DOUBLE PRECISION for pdlacp2
COMPLEX for pclacp2
COMPLEX*16 for pzlacp2.
Pointer into the local memory to an array of DIMENSION (lld_b, LOCc(jb
+n-1)). This array contains on exit the local pieces of the distributed
matrix sub( B ) set as follows:
if uplo = 'U', B(ib+i-1, jb+j-1)=A(ia+i-1,ja+j-1), 1\leqi\leq j, 1\leqj\leq
n;

```
```

if uplo = 'L', B(ib+i-1, jb+j-1)=A(ia+i-1, ja+j-1), j\leqi\leqm, 1\leq j\leq
n;
otherwise, B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1), 1\leqi\leqm,1\leqj\leqn.

```
p?lacp3
Copies from a global parallel array into a local replicated array or vice versa.

\section*{Syntax}
```

call pslacp3(m, i, a, desca, b, ldb, ii, jj, rev)
call pdlacp3(m, i, a, desca, b, ldb, ii, jj, rev)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

This is an auxiliary routine that copies from a global parallel array into a local replicated array or vise versa. Note that the entire submatrix that is copied gets placed on one node or more. The receiving node can be specified precisely, or all nodes can receive, or just one row or column of nodes.

\section*{Input Parameters}
```

m (global) INTEGER.
m}\mathrm{ is the order of the square submatrix that is copied.
m}\geq0\mathrm{ . Unchanged on exit.
i (global) INTEGER. A(i,i) is the global location that the copying starts from.
a (global). REAL for pslacp3
DOUBLE PRECISION for pdlacp3
Array, DIMENSION (desca(lld_),*). On entry, the parallel matrix to be
copied into or from.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor
for the distributed matrix A.
(local).
REAL for pslacp3
DOUBLE PRECISION for pdlacp3
Array, DIMENSION ( ldb,m). If rev = 0, this is the global portion of the
array A(i:i+m-1,i:i+m-1). If rev = 1, this is the unchanged on exit.
ldb
(local)
INTEGER.
The leading dimension of B.
(global) INTEGER. By using rev 0 and 1, data can be sent out and
returned again. If rev = 0, then ii is destination row index for the node(s)
receiving the replicated B. If ii \geq0, jj\geq0, then node (ii, jj) receives the
data. If ii = -1, jj \geq 0, then all rows in column jj receive the data. If ii
\geq0,jj = -1, then all cols in row ii receive the data.f ii=-1, jj = -1,
then all nodes receive the data. If rev !=0, then ii is the source row index
for the node(s) sending the replicated в.
(global) INTEGER. Similar description as ii above.

```
(global) INTEGER. Use rev \(=0\) to send global \(A\) into locally replicated \(B\) (on node (\(i i, j j\))). Use rev \(!=0\) to send locally replicated \(B\) from node (\(i i, j j\)) to its owner (which changes depending on its location in \(A\)) into the global A.

\section*{Output Parameters}
a
(global). On exit, if rev \(=1\), the copied data. Unchanged on exit if rev \(=\) 0 .
b
(local). If rev \(=1\), this is unchanged on exit.
p?lacpy
Copies all or part of one two-dimensional array to another.

Syntax
```

call pslacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pdlacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pclacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pzlacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

```

Include files
- C: mkl_scalapack.h

\section*{Description}

The p?lacpy routine copies all or part of a distributed matrix \(A\) to another distributed matrix \(B\). No communication is performed, p?lacpy performs a local \(\operatorname{copy} \operatorname{sub}(B):=\operatorname{sub}(A)\), where \(\operatorname{sub}(A)\) denotes \(A(\) ia:ia \(+m-1, j a: j a+n-1)\) and \(\operatorname{sub}(B)\) denotes \(B(i b: i b+m-1, j b: j b+n-1)\).

\section*{Input Parameters}
uplo
m
n
a
(global). CHARACTER. Specifies the part of the distributed matrix \(\operatorname{sub}(A)\) to be copied:
\(=\) ' U': Upper triangular part; the strictly lower triangular part of \(\operatorname{sub}(A)\) is not referenced;
\(=\) 'L': Lower triangular part; the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced.
Otherwise: all of the matrix \(\operatorname{sub}(A)\) is copied.
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\).
(local).
REAL for pslacpy
DOUBLE PRECISION for pdlacpy
COMPLEX for pclacpy
COMPLEX*16 for pzlacpy.

Pointer into the local memory to an array of DIMENSION (Ild_a, LOCC(ja \(+n-1)\)).
On entry, this array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
```

ia, ja
desca
ib, jb
descb
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix $A$.
ib, jb
descb
(global) INTEGER. The row and column indices in the global array $B$ indicating the first row and the first column of $\operatorname{sub}(B)$ respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.

```

\section*{Output Parameters}
b
(local).
REAL for pslacpy
DOUBLE PRECISION for pdlacpy
COMPLEX for pclacpy
COMPLEX*16 for pzlacpy.
Pointer into the local memory to an array of DIMENSION (Ild_b, LOCc (\(j b\) \(+n-1)\)). This array contains on exit the local pieces of the distributed matrix sub(\(B\)) set as follows:
if uplo \(=' U ', B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), 1 \leq i \leq j, 1 \leq j \leq n\); if uplo \(=\) 'L', \(B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), j \leq i \leq m, 1 \leq j \leq n\); otherwise, \(B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), 1 \leq i \leq m, 1 \leq j \leq n\).
```

p?laevswp
Moves the eigenvectors from where they are
computed to ScaLAPACK standard block cyclic array.

```

\section*{Syntax}
```

call pslaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)

```
call pslaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)
call pdlaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)
call pdlaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)
call pclaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)
call pclaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)
call pzlaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)
```

call pzlaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)

```
Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?laevswp routine moves the eigenvectors (potentially unsorted) from where they are computed, to a ScaLAPACK standard block cyclic array, sorted so that the corresponding eigenvalues are sorted.

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\(n\)} & (global). INTEGER. \\
\hline & The order of the matrix A. \(n \geq 0\). \\
\hline \multirow[t]{5}{*}{\(z i n\)} & (local). \\
\hline & REAL for pslaevswp \\
\hline & DOUBLE PRECISION for pdlaevswp \\
\hline & COMPLEX for pclaevswp \\
\hline & COMPLEX*16 for pzlaevswp. Array, DIMENSION (Idzi, nvs(iam)). The eigenvectors on input. Each eigenvector resides entirely in one process. Each process holds a contiguous set of nvs(iam) eigenvectors. The first eigenvector which the process holds is: sum for \(i=[0, i a m-1\)) of nvs(i). \\
\hline \multirow[t]{2}{*}{ldzi} & (local) \\
\hline & INTEGER.The leading dimension of the zin array. \\
\hline \(i z, j z\) & (global) INTEGER. The row and column indices in the global array \(z\) indicating the first row and the first column of the submatrix \(z\), respectively \\
\hline descz & (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(Z\). \\
\hline \multirow[t]{3}{*}{nvs} & (global) INTEGER. \\
\hline & ```
Array, DIMENSION(nprocs+1)
nvs(i) = number of processes number of eigenvectors held by processes
[0, i-1)
``` \\
\hline & \(\operatorname{nvs}(1)=\) number of eigen vectors held by[0, 1-1) \(=0\) nvs(nprocs +1\()=\) number of eigen vectors held by \([0\), nprocs \()=\) total number of eigenvectors. \\
\hline \multirow[t]{2}{*}{key} & (global) INTEGER. \\
\hline & Array, DIMENSION (n). Indicates the actual index (after sorting) for each of the eigenvectors. \\
\hline \multirow[t]{5}{*}{rwork} & (local). \\
\hline & REAL for pslaevswp \\
\hline & DOUBLE PRECISIONfor pdlaevswp \\
\hline & COMPLEX for pclaevswp \\
\hline & COMPLEX*16 for pzlaevswp. Array, DIMENSION (lrwork). \\
\hline \multirow[t]{2}{*}{Irwork} & (local) \\
\hline & INTEGER. Dimension of work. \\
\hline
\end{tabular}

\section*{Output Parameters}
z
(local).
REAL for pslaevswp
DOUBLE PRECISION for pdlaevswp
COMPLEX for pclaevswp
COMPLEX*16 for pzlaevswp.
Array, global DIMENSION ( \(n, n\) ), local DIMENSION (descz(dlen_), nq). The eigenvectors on output. The eigenvectors are distributed in a block cyclic manner in both dimensions, with a block size of \(n b\).

\section*{p?lahrd}

Reduces the first nb columns of a general rectangular matrix \(A\) so that elements below the \(k\)-th subdiagonal are zero, by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of \(A\).

\section*{Syntax}
```

call pslahrd(n, k, n., a, ia, ja, desca, tau, t, y, iy, jy, descy, work)
call pdlahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)
call pclahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)
call pzlahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?lahrd routine reduces the first \(n b\) columns of a real general \(n\)-by- \(n-k+1\) ) distributed matrix \(A\) (ia: ia \(+n-1\), ja:ja+n-k) so that elements below the \(k\)-th subdiagonal are zero. The reduction is performed by an orthogonal/unitary similarity transformation \(Q^{\prime}{ }^{*} A{ }^{*} Q\). The routine returns the matrices \(V\) and \(T\) which determine \(Q\) as a block reflector \(I-V^{\star} T * V^{\prime}\), and also the matrix \(Y=A * V^{\star} T\).
This is an auxiliary routine called by p?gehrd. In the following comments sub(A) denotes \(A(i a: i a+n-1\), ja:ja+n-1).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & (global) INTEGER. \\
\hline & The order of the distributed submatrix sub(A). \(n \geq 0\). \\
\hline k & (global) INTEGER. \\
\hline & The offset for the reduction. Elements below the \(k\)-th subdiagonal in the first \(n b\) columns are reduced to zero. \\
\hline n. & (global) INTEGER. \\
\hline & The number of columns to be reduced. \\
\hline a & (local). \\
\hline & REAL for pslahrd \\
\hline & DOUBLE PRECISION for pdlahrd \\
\hline & COMPLEX for pclahrd \\
\hline & COMPLEX*16 for pzlahrd. \\
\hline & Pointer into the local memory to an array of DIMENSION (lld_a, LOCc (ja \\
\hline & \(+n-k)\) ). On entry, this array contains the local pieces of the \(n-\) by \(-(n-k+1)\) general distributed matrix \(A(i a: i a+n-1, j a: j a+n-k)\). \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively. \\
\hline desca & (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline iy, jy & (global) INTEGER. The row and column indices in the global array \(Y\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(Y)\), respectively. \\
\hline descy & (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(Y\). \\
\hline work & (local). \\
\hline & REAL for pslahrd \\
\hline & DOUBLE PRECISION for pdlahrd \\
\hline & COMPLEX for pclahrd \\
\hline & COMPLEX*16 for pzlahrd. \\
\hline
\end{tabular}

Array, DIMENSION (nb).

\section*{Output Parameters}
\(a\)
tau
\(t\)
y
(local).
On exit, the elements on and above the \(k\)-th subdiagonal in the first \(n b\) columns are overwritten with the corresponding elements of the reduced distributed matrix; the elements below the \(k\)-th subdiagonal, with the array tau, represent the matrix \(Q\) as a product of elementary reflectors. The other columns of \(A(i a: i a+n-1, j a: j a+n-k)\) are unchanged. (See Application Notes below.)
(local)
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array, DIMENSION LOCC(ja+n-2). The scalar factors of the elementary reflectors (see Application Notes below). tau is tied to the distributed matrix \(A\).
(local)REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array, DIMENSION (nb_a, nb_a) The upper triangular matrix \(T\).
(local).
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Pointer into the local memory to an array of DIMENSION (Ild_y, nb_a). On exit, this array contains the local pieces of the \(n\)-by-nb distributed matrix \(Y\). lld_y \(\geq \operatorname{LOCr}(i a+n-1)\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of \(n b\) elementary reflectors
\[
Q=H(1) \star H(2) \star \ldots \star H(n b)
\]

Each \(H(i)\) has the form
\(H(i)=i-t a u^{*} v^{\star} v^{\prime}\),
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1\) : \(i+k-1)=0, v(i+k)=1 ; v(i+k\) \(+1: n)\) is stored on exit in \(A(i a+i+k: i a+n-1, j a+i-1)\), and tau in TAU(ja+i-1).
The elements of the vectors \(v\) together form the \((n-k+1)\)-by- \(n b\) matrix \(V\) which is needed, with \(T\) and \(Y\), to apply the transformation to the unreduced part of the matrix, using an update of the form: A(ia:ia+n-1, \(j a: j a+n-k):=\left(I-V^{*} T^{*} V^{\prime}\right)^{*}\left(A(i a: i a+n-1, j a: j a+n-k)-Y^{*} V^{\prime}\right)\). The contents of \(A(i a: i a+n-1, j a: j a+n-k)\) on exit are illustrated by the following example with \(n=7, k=3\), and \(n b=2\) :
\[
\left[\begin{array}{ccccc}
a & h & a & a & a \\
a & h & a & a & a \\
a & h & a & a & a \\
h & h & a & a & a \\
v 1 & h & a & a & a \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a
\end{array}\right]
\]
where a denotes an element of the original matrix \(A(i a: i a+n-1, j a: j a+n-k)\), \(h\) denotes a modified element of the upper Hessenberg matrix \(H\), and vi denotes an element of the vector defining \(H(i)\).

\section*{p?laiect}

Exploits IEEE arithmetic to accelerate the computations of eigenvalues. (C interface function).

\section*{Syntax}
```

void pslaiect(float *sigma, int *n, float *d, int *count);
void pdlaiectb(float *sigma, int *n, float *d, int *count);
void pdlaiectl(float *sigma, int *n, float *d, int *count);

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?laiect routine computes the number of negative eigenvalues of ( \(A-\sigma I\) ). This implementation of the Sturm Sequence loop exploits IEEE arithmetic and has no conditionals in the innermost loop. The signbit for real routine pslaiect is assumed to be bit 32. Double precision routines pdlaiectb and pdlaiectl differ in the order of the double precision word storage and, consequently, in the signbit location. For pdlaiectb, the double precision word is stored in the big-endian word order and the signbit is assumed to be bit 32 . For pdlaiectl, the double precision word is stored in the little-endian word order and the signbit is assumed to be bit 64.

Note that all arguments are call-by-reference so that this routine can be directly called from Fortran code.
This is a ScaLAPACK internal subroutine and arguments are not checked for unreasonable values.
Input Parameters
```

sigma
n
d
Realfor pslaiect
DOUBLE PRECISIONfor pdlaiectb/pdlaiectl.
The shift. p?laiect finds the number of eigenvalues less than equal to sigma.
INTEGER. The order of the tridiagonal matrix $T . n \geq 1$.
Real for pslaiect
DOUBLE PRECISION for pdlaiectb/pdlaiectl.
Array of DIMENSION ($2 n-1$).
On entry, this array contains the diagonals and the squares of the offdiagonal elements of the tridiagonal matrix τ. These elements are assumed to be interleaved in memory for better cache performance. The diagonal entries of T are in the entries $d(1), d(3), \ldots, d(2 n-1)$, while the

```
squares of the off-diagonal entries are \(d(2), d(4), \ldots, d(2 n-2)\). To avoid overflow, the matrix must be scaled so that its largest entry is no greater than overflow \({ }^{(1 / 2)}\) * underflow \({ }^{(1 / 4)}\) in absolute value, and for greatest accuracy, it should not be much smaller than that.

\section*{Output Parameters}

INTEGER. The count of the number of eigenvalues of \(T\) less than or equal to sigma.

\section*{p?lange}

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a general rectangular matrix.

Syntax
```

val = pslange(norm, m, n, a, ia, ja, desca, work)
val = pdlange(norm, m, n, a, ia, ja, desca, work)
val = pclange(norm, m, n, a, ia, ja, desca, work)
val = pzlange(norm, m, n, a, ia, ja, desca, work)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?lange routine returns the value of the 1 -norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a distributed matrix sub \((A)=A(i a: i a+m-1, j a: j a+n-1)\).

Input Parameters
norm
m
n
a
(global) CHARACTER. Specifies what value is returned by the routine: \(=' M^{\prime}\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix \(A\), it \(s\) not a matrix norm. \(=\) '1' or 'O' or 'o': val \(=\operatorname{norm1}(A), 1\)-norm of the matrix \(A\) (maximum column sum), \(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F', 'f', 'E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).
(global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A)\). When \(m=0, p\) lange is set to zero. \(m \geq 0\).
(global). INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A)\). When \(n=0, p\) lange is set to zero. \(n\) \(\geq 0\).
(local).
Real for pslange
DOUBLE PRECISION for pdlange
COMPLEX for pclange

COMPLEX*16 for pzlange.
Pointer into the local memory to an array of DIMENSION (IId_a, LOCC(ja \(+n-1)\) ) containing the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
ia, ja
desca
work
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).

\section*{(local).}

Real for pslange
DOUBLE PRECISION for pdlange
COMPLEX for pclange
COMPLEX*16 for pzlange.
Array DIMENSION (lwork).
lwork \(\geq 0\) if norm \(=\) ' \(M\) ' or ' \(m\) ' (not referenced),
nq0 if norm = '1', 'O' or 'o',
mp0 if norm = 'I' or 'i',
0 if norm = 'F', 'f', 'E' or 'e' (not referenced),
where
iroffa \(=\bmod (i a-1, m b a), i C o f f a=\bmod \left(j a-1, n b _a\right)\),
iarow \(=\) indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol), mp0 \(=\) numroc (m+iroffa, mb_a, myrow, iarow, nprow), nq0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol), indxg2p and numroc are ScaLAPACK tool routines; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

\section*{Output Parameters}

\section*{p?lanhs}

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of an upper Hessenberg matrix.

\section*{Syntax}
```

val = pslanhs(norm, n, a, ia, ja, desca, work)
val = pdlanhs(norm, n, a, ia, ja, desca, work)
val = pclanhs(norm, n, a, ia, ja, desca, work)
val = pzlanhs(norm, n, a, ia, ja, desca, work)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?lanhs routine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an upper Hessenberg distributed matrix sub \((A)=A(i a: i a+m-1\), ja:ja+n-1).

Input Parameters
norm
n
a
ia, ja
desca
work

CHARACTER*1. Specifies the value to be returned by the routine:
\(=' M^{\prime}\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix
A.
\(=\) ' 1 ' or ' \(O\) ' or ' \(O\) ': \(\operatorname{val}=\operatorname{norm1}(A)\), 1 -norm of the matrix \(A\)
(maximum column sum),
\(=\) 'I' or 'i': val \(=\operatorname{normI}(A)\), infinity norm of the matrix \(A\) (maximum row sum),
\(=' F^{\prime}, ' f ', E^{\prime}\) or 'e': val \(=\operatorname{normF}(A)\), Frobenius norm of the matrix \(A\) (square root of sum of squares).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A)\). When \(n=0, p\) lanhs is set to zero. \(n\) \(\geq 0\).
(local).
Real for pslanhs
DOUBLE PRECISION for pdlanhs
COMPLEX for pclanhs
COMPLEX* 16 for pzlanhs.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCC (ja \(+n-1)\) ) containing the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
(global) INTEGER.
The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
(local).
Real for pslanhs
DOUBLE PRECISION for pdlanhs
COMPLEX for pclanhs
COMPLEX*16 for pzlanh.
Array, DIMENSION (I work).
lwork \(\geq 0\) if norm \(=\) ' \(M\) ' or 'm' (not referenced),
nq0 if norm = '1', 'O' or 'o',
mp0 if norm \(=\) 'I' or 'i',
0 if norm \(=\) ' \(F^{\prime}\), 'f', 'E' or 'e' (not referenced),
where


The value returned by the fuction.
```

p?lansy, p?lanhe
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element, of a real symmetric or a complex Hermitian
matrix.

```

\section*{Syntax}
```

val = pslansy(norm, uplo, n, a, ia, ja, desca, work)
val = pdlansy(norm, uplo, n, a, ia, ja, desca, work)
val = pclansy(norm, uplo, n, a, ia, ja, desca, work)
val = pzlansy(norm, uplo, n, a, ia, ja, desca, work)
val = pclanhe(norm, uplo, n, a, ia, ja, desca, work)
val = pzlanhe(norm, uplo, n, a, ia, ja, desca, work)

```

Include files
- C: mkl_scalapack.h

\section*{Description}

The p?lansy and p?lanhe routines return the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a distributed matrix sub (A) = A (ia: ia+m-1, ja: ja +n-1).

\section*{Input Parameters}
norm
uplo
n
a
(global) CHARACTER. Specifies what value is returned by the routine: \(=\) 'M' or 'm': val = max (abs ( \(A_{i j}\) ) ), largest absolute value of the matrix \(A\), it s not a matrix norm.
\(=\) '1' or 'O' or 'o': val \(=\operatorname{norm1}(A), 1\)-norm of the matrix \(A\)
(maximum column sum),
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F','f','E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).
(global) CHARACTER. Specifies whether the upper or lower triangular part of the symmetric matrix \(\operatorname{sub}(A)\) is to be referenced.
\(=\) 'U': Upper triangular part of \(\operatorname{sub}(A)\) is referenced,
= 'L': Lower triangular part of sub(A) is referenced.
(global) INTEGER.
The number of columns to be operated on i.e the number of columns of the distributed submatrix \(\operatorname{sub}(A)\). When \(n=0, p\) lansy is set to zero. \(n \geq 0\).
(local).
REAL for pslansy
DOUBLE PRECISION for pdlansy
COMPLEX for pclansy, pclanhe
COMPLEX*16 for pzlansy, pzlanhe.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja \(+n-1)\) ) containing the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
ia, ja
desca
work

If uplo = ' \(U\) ', the leading \(n-b y-n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular matrix whose norm is to be computed, and the strictly lower triangular part of this matrix is not referenced. If uplo = 'L', the leading \(n-b y-n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular matrix whose norm is to be computed, and the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced.
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix sub(A), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
```

(local).
REAL for pslansy, pclansy, pclanhe
DOUBLE PRECISION for pdlansy, pzlansy, pzlanhe
Array DIMENSION (lwork).
lwork \geq 0 if norm = 'M' or 'm'(not referenced),
2*nq0+mp0+ldw if norm = '1', 'O' or 'o','I' or 'i',
where ldw is given by:
if(nprow.ne.npcol) then
ldw = mb_a*iceil(iceil(np0,mb_a),(lcm/nprow))
else
ldW = 0
end if
0 if norm = 'F','f','E' or 'e'(not referenced),
where lcm is the least common multiple of nprow and npcol, lcm =
ilcm(nprow, npcol) and iceil (x,y) is a ScaLAPACK function that
returns ceiling (x/y).
iroffa = mod(ia-1, mb_a), icoffa= mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroffa,mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoffa, nb_a,mycol, iacol, npcol),
ilcm, iceil, indxg2p, and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.

```

\section*{Output Parameters}

The value returned by the routine.

\section*{p?lantr}

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a triangular matrix.

\section*{Syntax}
```

val = pslantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)
val = pdlantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)
val = pclantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)
val = pzlantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?lantr routine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular distributed matrix sub (A) =A(ia:ia+m-1, ja:ja+n-1).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline norm & \begin{tabular}{l}
(global) CHARACTER. Specifies what value is returned by the routine: \\
\(=\) 'M' or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix \\
\(A\), it s not a matrix norm. \\
\(=\) '1' or 'O' or '○': val \(=\operatorname{norm1}(A)\), 1 -norm of the matrix \(A\) \\
(maximum column sum), \\
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum), \\
\(=\) ' \(\mathrm{F}^{\prime}, \mathrm{f}^{\prime} \mathrm{f}^{\prime}\) 'E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
(global) CHARACTER. \\
Specifies whether the upper or lower triangular part of the symmetric matrix \(\operatorname{sub}(A)\) is to be referenced. \\
= 'U': Upper trapezoidal, \\
= 'L': Lower trapezoidal. \\
Note that \(\operatorname{sub}(A)\) is triangular instead of trapezoidal if \(m=n\).
\end{tabular} \\
\hline diag & \begin{tabular}{l}
(global). CHARACTER. \\
Specifies whether the distributed matrix \(\operatorname{sub}(A)\) has unit diagonal. \\
= 'N': Non-unit diagonal. \\
= 'U': Unit diagonal.
\end{tabular} \\
\hline
\end{tabular}
m
n
a
ia, ja
desca
work
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A)\). When \(m=0, p\) lantr is set to zero. \(m \geq 0\). (global) INTEGER.
The number of columns to be operated on i.e the number of columns of the distributed submatrix \(\operatorname{sub}(A)\). When \(n=0\), plantr is set to zero. \(n \geq 0\).
(local).
Real for pslantr
DOUBLE PRECISION for pdlantr
COMPLEX for pclantr
COMPLEX*16 for pzlantr.
Pointer into the local memory to an array of DIMENSION (IId_a, LOCC (ja \(+n-1)\) ) containing the local pieces of the distributed matrix sub(A).
(global) INTEGER.
The row and column indices in the global array a indicating the first row and the first column of the submatrix sub( \(A\) ), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
(local).
Real for pslantr
DOUBLE PRECISION for pdlantr
COMPLEX for pclantr
```

COMPLEX*16 for pzlantr.
Array DIMENSION (lwork).
lwork \geq 0 if norm = 'M' or 'm' (not referenced),
nq0 if norm = '1', 'O' or 'o',
mp0 if norm = 'I' or'i',
O if norm = 'F','f','E' or 'e' (not referenced),
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, CSrc_a, npcol),
mp0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow,
and npcol can be determined by calling the subroutine blacs_gridinfo.

```

\section*{Output Parameters}
val
The value returned by the routine.

\section*{p?lapiv}

Applies a permutation matrix to a general distributed matrix, resulting in row or column pivoting.

Syntax
```

call pslapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp, descip,
iwork)
call pdlapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp, descip,
iwork)
call pclapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp, descip,
iwork)
call pzlapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp, descip,
iwork)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?lapiv routine applies either \(P\) (permutation matrix indicated by ipiv) or inv( \(P\) ) to a general m-by-n distributed matrix sub \((A)=A(i a: i a+m-1, j a: j a+n-1)\), resulting in row or column pivoting. The pivot vector may be distributed across a process row or a column. The pivot vector should be aligned with the distributed matrix \(A\). This routine will transpose the pivot vector, if necessary.

For example, if the row pivots should be applied to the columns of sub(A), pass rowcol=' \(C^{\prime}\) and pivroc='C'.

Input Parameters
```

direc
(global) CHARACTER*1.
Specifies in which order the permutation is applied:
$=' F^{\prime}$ (Forward). Applies pivots forward from top of matrix. Computes P^{\star} sub (A).

```


Let 1 cm be the least common multiple of nprow and npcol.
If ( rowcol.eq.'r' .and. pivroc. eq.'r') then
\(\operatorname{If}(\) nprow.eq. npcol) then
\(l d w=\operatorname{LOCr}\left(n _p+\bmod \left(j p-1, n b _p\right)\right)+n b _p\)
else
\(l d w=\operatorname{LOCr}\left(n_{-} p+\bmod \left(j p-1, n b _p\right)\right)+\)
nb_p * ceil( ceil(LOCc(n_p)/nb_p) / (lcm/npcol) )
end if
else if( rowcol.eq.'c' .and. pivroc.eq.'c') then if ( nprow.eq.
npcol ) then
\(l d w=\operatorname{LOCc}\left(m_{-} p+\bmod \left(i p-1, m b _p\right)\right)+m b _p\)
else
\(l d w=\operatorname{LOCC}\left(m_{-} p+\bmod \left(i p-1, m b _p\right)\right)+\)
mb_p *ceil (ceil (LOCr (m_p) /mb_p) / (lcm/nprow) )
end if
else
iwork is not referenced.
end if.

\section*{Output Parameters}
(local).
On exit, the local pieces of the permuted distributed submatrix.

\section*{p?laqge}

Scales a general rectangular matrix, using row and column scaling factors computed by p?geequ .

\section*{Syntax}
```

call pslaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)
call pdlaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)
call pclaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)
call pzlaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

```

Include files
- C: mkl_scalapack.h

\section*{Description}

The p?laqge routine equilibrates a general \(m\)-by \(-n\) distributed matrix \(\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)\) using the row and scaling factors in the vectors \(r\) and \(c\) computed by \(p\) ? geequ.

\section*{Input Parameters}
m
\(n\)
\(a\)
(global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\).
(global).INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\).
(local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCC (ja \(+n-1)\) ).
On entry, this array contains the distributed matrix \(\operatorname{sub}(A)\).
(global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
(local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Array, DIMENSION LOCr (m_a). The row scale factors for \(\operatorname{sub}(A) . r\) is aligned with the distributed matrix \(A\), and replicated across every process column. \(r\) is tied to the distributed matrix \(A\).
(local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Array, DIMENSION LOCC ( \(n_{-} a\) ). The row scale factors for \(\operatorname{sub}(A) . c\) is aligned with the distributed matrix \(A\), and replicated across every process column. \(c\) is tied to the distributed matrix \(A\).
(local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
The global ratio of the smallest \(r(i)\) to the largest \(r(i)\), ia \(\leq i \leq i a+m-1\).
(local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
The global ratio of the smallest \(c\) (i) to the largest \(c\) (i), ia \(\leq i \leq i a+n-1\).
(global). REAL for pslaqge
DOUBLE PRECISION for pdlaqge

COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Absolute value of largest distributed submatrix entry.

\section*{Output Parameters}
a

\section*{(local).}

On exit, the equilibrated distributed matrix. See equed for the form of the equilibrated distributed submatrix.

\author{
equed
}
p?laqsy
Scales a symmetric/Hermitian matrix, using scaling
factors computed by p?poequ .

\section*{Syntax}
```

call pslaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)
call pdlaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)
call pclaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)
call pzlaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?laqsy routine equilibrates a symmetric distributed matrix sub ( \(A\) ) = \(A(i a: i a+n-1, j a: j a+n-1)\) using the scaling factors in the vectors sr and sc. The scaling factors are computed by p?poequ.

\section*{Input Parameters}
uplo
n
a
(global) CHARACTER. Specifies the upper or lower triangular part of the symmetric distributed matrix sub (A) is to be referenced:
= ' U': Upper triangular part;
= 'L': Lower triangular part.
(global) INTEGER.
The order of the distributed submatrix \(\operatorname{sub}(A) . n \geq 0\).
(local).
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.

Pointer into the local memory to an array of DIMENSION (Ild_a, LOCC(ja \(+n-1)\) ).
On entry, this array contains the local pieces of the distributed matrix sub \((A)\). On entry, the local pieces of the distributed symmetric matrix \(\operatorname{sub}(A)\).
If uplo = 'U', the leading \(n\)-by-n upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and the strictly lower triangular part of \(\operatorname{sub}(A)\) is not referenced.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced.
(global) INTEGER.
The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix sub( \(A\) ), respectively.
desca
sr
amax
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Array, DIMENSION LOCr(m_a). The scale factors for A(ia:ia+m-1, ja: ja \(+n-1)\). \(s r\) is aligned with the distributed matrix \(A\), and replicated across every process column. sr is tied to the distributed matrix \(A\).
(local)
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Array, DIMENSION LOCC( \(\left.m_{-} a\right)\). The scale factors for A (ia:ia+m-1, ja:ja \(+n-1) . s r\) is aligned with the distributed matrix \(A\), and replicated across every process column. sr is tied to the distributed matrix \(A\).
(global). REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Ratio of the smallest sr(i) (respectively \(s c(j)\) ) to the largest \(s r\) (i)
(respectively sc(j)), with ia \(\leq i \leq i a+n-1\) and \(j a \leq j \leq j a+n-1\).
(global).
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Absolute value of largest distributed submatrix entry.

\section*{Output Parameters}
a
On exit,
if equed \(=\) ' \(Y\) ', the equilibrated matrix:
diag(sr(ia:ia+n-1)) * sub(A) * \(\operatorname{diag(sc(ja:ja+n-1)).~}\)
equed
(global) CHARACTER*1.
Specifies whether or not equilibration was done.
```

= 'N': No equilibration.
= 'Y': Equilibration was done, that is, sub(A) has been replaced by:
diag(sr(ia:ia+n-1))* sub(A) * diag(sc(ja:ja+n-1)).

```

\section*{p?lared1d}

Redistributes an array assuming that the input array, bycol, is distributed across rows and that all process columns contain the same copy of bycol.

\section*{Syntax}
```

call pslaredld(n, ia, ja, desc, bycol, byall, work, lwork)
call pdlaredld(n, ia, ja, desc, bycol, byall, work, lwork)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?lared1d routine redistributes a 1D array. It assumes that the input array bycol is distributed across rows and that all process column contain the same copy of bycol. The output array byall is identical on all processes and contains the entire array.

\section*{Input Parameters}
\(n p=\) Number of local rows in bycol()
\begin{tabular}{|c|c|}
\hline \(n\) & (global). INTEGER. \\
\hline & The number of elements to be redistributed. \(n \geq 0\). \\
\hline ia, ja & (global) INTEGER. ia, ja must be equal to 1. \\
\hline desc & (global and local) INTEGER array, DIMENSION 8. A 2D array descriptor, which describes bycol. \\
\hline bycol & (local). \\
\hline & REAL for pslaredid \\
\hline & DOUBLE PRECISION for pdlaredid \\
\hline & COMPLEX for pclaredid \\
\hline & COMPLEX*16 for pzlared1d. \\
\hline & Distributed block cyclic array global DIMENSION ( \(n\) ), local DIMENSION \(n p\). bycol is distributed across the process rows. All process columns are assumed to contain the same value. \\
\hline work & (local). \\
\hline & REAL for pslaredid \\
\hline & DOUBLE PRECISION for pdlaredid \\
\hline & COMPLEX for pclaredid \\
\hline & COMPLEX*16 for pzlaredid. \\
\hline & DIMENSION (lwork). Used to hold the buffers sent from one process to another. \\
\hline lwork & (local) \\
\hline & INTEGER. The size of the work array. lwork \(\geq\) numroc ( \(n, \operatorname{desc}(n b\) ), \(0,0, n p c o l)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
byall
```

(global). REAL for pslared1d
DOUBLE PRECISION for pdlared1d
COMPLEX for pclared1d
COMPLEX*16 for pzlared1d.
Global DIMENSION (n), local DIMENSION (n). byall is exactly duplicated on
all processes. It contains the same values as bycol, but it is replicated
across all processes rather than being distributed.

```

\section*{p?lared2d}

Redistributes an array assuming that the input array
byrow is distributed across columns and that all
process rows contain the same copy of byrow.

\section*{Syntax}
```

call pslared2d(n, ia, ja, desc, byrow, byall, work, lwork)
call pdlared2d(n, ia, ja, desc, byrow, byall, work, lwork)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?lared2d routine redistributes a 1D array. It assumes that the input array byrow is distributed across columns and that all process rows contain the same copy of byrow. The output array byall will be identical on all processes and will contain the entire array.

\section*{Input Parameters}
\(n p=\) Number of local rows in byrow()
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\(n\)} & (global) INTEGER. \\
\hline & The number of elements to be redistributed. \(n \geq 0\). \\
\hline ia, ja & (global) INTEGER. ia, ja must be equal to 1. \\
\hline desc & (global and local) INTEGER array, DIMENSION (dlen_). A 2D array descriptor, which describes byrow. \\
\hline \multirow[t]{7}{*}{byrow} & (local). \\
\hline & REAL for pslared2d \\
\hline & DOUBLE PRECISION for pdlared2d \\
\hline & COMPLEX for pclared2d \\
\hline & COMPLEX*16 for pzlared2d. \\
\hline & Distributed block cyclic array global DIMENSION ( \(n\) ), local DIMENSION \(n p\). \\
\hline & bycol is distributed across the process columns. All process rows are assumed to contain the same value. \\
\hline \multirow[t]{6}{*}{work} & (local). \\
\hline & REAL for pslared2d \\
\hline & DOUBLE PRECISION for pdlared2d \\
\hline & COMPLEX for pclared2d \\
\hline & COMPLEX*16 for pzlared2d. \\
\hline & DIMENSION (lwork). Used to hold the buffers sent from one process to another. \\
\hline
\end{tabular}
(local).INTEGER. The size of the work array. lwork \(\geq\) numroc \(n\), \(\operatorname{desc}\left(n b _\right.\)), 0, 0, npcol).

\section*{Output Parameters}
byall
(global). REAL for pslared2d
DOUBLE PRECISION for pdlared2d
COMPLEX for pclared2d
COMPLEX*16 for pzlared2d.
Global DIMENSION( \(n\) ), local DIMENSION ( \(n\) ). byall is exactly duplicated on all processes. It contains the same values as bycol, but it is replicated across all processes rather than being distributed.
```

p?larf
Applies an elementary reflector to a general
rectangular matrix.
Syntax

```
```

call pslarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

```
call pslarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pdlarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pdlarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pclarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pclarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pzlarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
```

call pzlarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

```
Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?larf routine applies a real/complex elementary reflector \(Q\) (or \(Q^{T}\) ) to a real/complex m-by- \(n\) distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\), from either the left or the right. \(Q\) is represented in the form
```

Q = I-tau* ** V

```
where tau is a real/complex scalar and \(v\) is a real/complex vector.
If \(\operatorname{tau}=0\), then \(Q\) is taken to be the unit matrix.

\section*{Input Parameters}
```

side
m
n
v
(global). CHARACTER.
= 'L': form Q*sub (C),
= 'R': form sub (C)*Q,Q=\mp@subsup{Q}{}{T}}\mathrm{ .
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). (m\geq0).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(A) .(n \geq 0)$.
(local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf

```

COMPLEX*16 for pzlarf.
Pointer into the local memory to an array of DIMENSION ( \(11 d_{-}, *\) ) containing the local pieces of the distributed vectors \(V\) representing the Householder transformation \(Q\),
```

v(iv:iv+m-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+m-1) if side = 'L' and incv = m_v,
v(iv:iv+n-1, jv) if side = 'R' and incv = 1,
v(iv, jv:jv+n-1) if side = 'R' and incv = m_v.

```

The vector \(v\) is the representation of \(Q . v\) is not used if \(\operatorname{tau}=0\).
iv, jv
descv
incV
tau

C
ic, jc
descc
work
(global) INTEGER. The row and column indices in the global array \(V\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(V)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix V .
(global) INTEGER.
The global increment for the elements of \(v\). Only two values of incv are supported in this version, namely 1 and \(m_{-} v\).
incv must not be zero.
(local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Array, DIMENSION LOCC(jv) if inCv = 1, and LOCr(iv) otherwise. This array contains the Householder scalars related to the Householder vectors. tau is tied to the distributed matrix \(v\).
(local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Pointer into the local memory to an array of DIMENSION (lld_c, LOCC (jc \(+n-1)\) ), containing the local pieces of sub(C).
(global) INTEGER.
The row and column indices in the global array \(c\) indicating the first row and the first column of the submatrix sub( \(C\) ), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(C\).
(local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Array, DIMENSION (lwork).
If \(i n c v=1\),
if side = 'L',
if ivcol \(=i c c o l\),
lwork \(\geq n q c 0\)
else
lwork \(\geq m p c 0+\max (1, n q c 0)\)
end if
```

else if side = 'R',
lwork\geqnqc0 + max(max(1, mpc0), numroc(numroc(n+
icoffc,nb_v,0,0,npcol),nb_v,0,0,1cmq))
end if
else if incv = m_v,
if side = 'L',
lwork\geqmpc0 + max(max(1, nqc0), numroc(
numroc(m+iroffc,mb_v,0,0,nprow),mb_v,0,0, lcmp))
else if side = 'R',
if ivrow = icrow,
lwork\geqmpc0
else
lwork\geqnqc0 + max(1,mpc0)
end if
end if
end if,
where lcm is the least common multiple of nprow and npcol and lcm=
ilcm(nprow, npcol), lcmp = lcm/nprow, lcmq = lcm/npcol,
iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol,
nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.

```

\section*{Output Parameters}
c
(local).
On exit, \(\operatorname{sub}(C)\) is overwritten by the \(Q^{\star} \operatorname{sub}(C)\) if side \(=\) 'L', or \(\operatorname{sub}(C) * Q\) if side \(=\) ' \(\mathrm{R}^{\prime}\).
p?larfb
Applies a block reflector or its transpose/conjugatetranspose to a general rectangular matrix.

\section*{Syntax}
```

call pslarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc,
descc, work)
call pdlarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc,
descc, work)
call pclarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc,
descc, work)
call pzlarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc,
descc, work)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?larfb routine applies a real/complex block reflector \(Q\) or its transpose \(Q^{T} /\) conjugate transpose \(Q^{H}\) to a real/complex distributed \(m\)-by-n matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\) from the left or the right.

Input Parameters
storev
m
n
k
V
\(i v, j v\)
descv
```

side (global).CHARACTER.
if side = 'L': apply Q or Q ' for real flavors (QH for complex flavors) from
the Left;
if side = 'R': apply Q or QTfor real flavors (Q 盾 for complex flavors) from
the Right.
trans
direct
(global).CHARACTER. if side = 'L': apply Q or Q^{T} for real flavors (Q^{H} for complex flavors) from the Left;
if side = 'R': apply Q or Q^{T} for real flavors (Q^{H} for complex flavors) from the Right.
(global).CHARACTER.
if trans = 'N': no transpose, apply Q;
for real flavors, if trans=' T ': transpose, apply Q^{T}
for complex flavors, if trans $=$ ' C' : conjugate transpose, apply Q^{H};
(global) CHARACTER. Indicates how Q is formed from a product of elementary reflectors.
if direct $=' \mathrm{~F}^{\prime}: Q=H(1) * H(2) * \ldots{ }^{*} H(k)$ (Forward)
if direct $=$ 'B': $Q=H(k) * \ldots * H(2) * H(1)$ (Backward)

```
(global) CHARACTER.
Indicates how the vectors that define the elementary reflectors are stored:
if storev = 'C': Columnwise
if storev = 'R': Rowwise.
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(c) .(m \geq 0)\).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(c) .(n \geq 0)\).
(global) INTEGER.
The order of the matrix \(T\).
(local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of DIMENSION
( lld_v, LOCC(jv+k-1)) if storev = 'C',
(lld_v, LOCC(jv+m-1)) if storev = 'R' and side = 'L',
(lld_v, LOCC(jv+n-1) ) if storev = 'R' and side = 'R'.
It contains the local pieces of the distributed vectors \(V\) representing the Householder transformation.
if storev \(=\) 'C' and side \(=\) 'L', Ild_v \(\geq \max (1, L O C r(i v+m-1))\);
if storev \(=\) 'C' and side \(=\) 'R', lld_v \(\geq \max (1, L O C r(i v+n-1))\);
if storev \(=\) 'R', lld_v \(\geq \operatorname{LOCr}(j v+k-1)\).
(global) INTEGER.
The row and column indices in the global array \(v\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(V)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(V\).
```

c
ic, jc
descc
work

```
(local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of DIMENSION (lld_c, LOCC (jc \(+n-1)\) ), containing the local pieces of sub(c).
ic, jc
descc
work
(global) INTEGER. The row and column indices in the global array \(C\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(C)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(C\).
```

(local).

```
(local).
REAL for pslarfb
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
COMPLEX*16 for pzlarfb.
Workspace array, DIMENSION (lwork).
Workspace array, DIMENSION (lwork).
If storev = 'C',
If storev = 'C',
    if side = 'L',
```

 if side = 'L',
    ```


```

 else if side = 'R',
    ```
    else if side = 'R',
        lwork \geq ( nqc0 + max( npv0 + numroc( numroc( n +
        lwork \geq ( nqc0 + max( npv0 + numroc( numroc( n +
            icoffc, nb_v, 0, 0, npcol ), nb_v, 0, 0, lcmq ),
            icoffc, nb_v, 0, 0, npcol ), nb_v, 0, 0, lcmq ),
            mpc0))*\overline{k}
            mpc0))*\overline{k}
    end if
    end if
else if storev = 'R',
else if storev = 'R',
    if side = 'L',
    if side = 'L',
        lwork\geq (mpc0 + max( mqv0 + numroc( numroc( m +
        lwork\geq (mpc0 + max( mqv0 + numroc( numroc( m +
        iroffc,mb_v, 0, 0, nprow ), mb_v, 0, 0, lcmp ),
        iroffc,mb_v, 0, 0, nprow ), mb_v, 0, 0, lcmp ),
        nqc(0))* k
        nqc(0))* k
    else if side = 'R',
    else if side = 'R',
        lwork \geq (mpc0 + nqcO )*k
        lwork \geq (mpc0 + nqcO )*k
    end if
    end if
end if,
end if,
where
where
lcmq = lcm/ npcol with lcm = iclm( nprow, npcol ),
lcmq = lcm/ npcol with lcm = iclm( nprow, npcol ),
iroffv = mod( iv-1, mb_v ), icoffv = mod( jv-1, nb_v ),
iroffv = mod( iv-1, mb_v ), icoffv = mod( jv-1, nb_v ),
ivrow = indxg2p(iv, mb_v, myrow, rsrc_v, nprow ),
ivrow = indxg2p(iv, mb_v, myrow, rsrc_v, nprow ),
ivcol = indxg2p( jv, nb_v, mycol, csrc_v, npcol ),
ivcol = indxg2p( jv, nb_v, mycol, csrc_v, npcol ),
MqVO = numroc( m+icoffv, nb_v, mycol, ivcol, npcol ),
MqVO = numroc( m+icoffv, nb_v, mycol, ivcol, npcol ),
NpVO = numroc( n+iroffv, mb_v, myrow, ivrow, nprow ),
NpVO = numroc( n+iroffv, mb_v, myrow, ivrow, nprow ),
iroffC = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),
iroffC = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow ),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p( jc, nb_c,mycol, csrc_c, npcol ),
iccol = indxg2p( jc, nb_c,mycol, csrc_c, npcol ),
MpCO = numroc( m+iroffc,mb_c, myrow, icrow, nprow ),
MpCO = numroc( m+iroffc,mb_c, myrow, icrow, nprow ),
NpCO = numroc(n+icoffc,mb_c,myrow, icrow, nprow ),
NpCO = numroc(n+icoffc,mb_c,myrow, icrow, nprow ),
NqCO = numroc( n+icoffc, nb_c,mycol, iccol, npcol ),
NqCO = numroc( n+icoffc, nb_c,mycol, iccol, npcol ),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol,
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol,
nprow, and npcol can be determined by calling the subroutine
nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.
```

blacs_gridinfo.

```

\section*{Output Parameters}
\(t\)

C
(local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Array, DIMENSION ( mb_v, mb_v) if storev \(=\) ' \(R^{\prime}\), and ( \(n b _v, n b _v\) ) if storev \(=\) ' C'. The triangular matrix \(t\) is the representation of the block reflector.
(local).
On exit, \(\operatorname{sub}(C)\) is overwritten by the \(Q^{\star} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or sub \((C)^{\star} Q\), or \(\operatorname{sub}(C)^{\star} Q^{\prime}\). \(Q^{\prime}\) is transpose (conjugate transpose) of \(Q\).

\section*{p?larfc}

Applies the conjugate transpose of an elementary reflector to a general matrix.

\section*{Syntax}
```

call pclarfc(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pzlarfc(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?larfc routine applies a complex elementary reflector \(Q^{H}\) to a complex m-by- \(n\) distributed matrix sub( \(C\) ) \(=C(i c: i c+m-1, j c: j c+n-1)\), from either the left or the right. \(Q\) is represented in the form
\(Q=i-\tan u^{\star} V^{\star} V^{\prime}\),
where \(t a u\) is a complex scalar and \(v\) is a complex vector.
If \(\operatorname{tau}=0\), then \(Q\) is taken to be the unit matrix.

\section*{Input Parameters}
```

side (global).CHARACTER.
if side = 'L': form Q Q*
if side = 'R': form sub (C)*Q '.

```
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(c) .(m \geq 0)\).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(c) .(n \geq 0)\).
(local).
COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Pointer into the local memory to an array of DIMENSION (IId_v,*) containing the local pieces of the distributed vectors \(v\) representing the Householder transformation \(Q\),
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
\[
\begin{aligned}
& v(i v: i v+m-1, j v) \text { if side }=\text { 'L' and incv }=1, \\
& v(i v, j v: j v+m-1) \text { if side }=\text { 'L' and incv }=m_{-} v, \\
& v(i v: i v+n-1, j v) \text { if side }=' R \text { ' and incv }=1, \\
& v(i v, j v: j v+n-1) \text { if side }=' R ' \text { and incv }=m_{-} v .
\end{aligned}
\] \\
The vector \(v\) is the representation of \(Q . v\) is not used if \(\operatorname{tau}=0\).
\end{tabular} \\
\hline iv, jv & \begin{tabular}{l}
(global) INTEGER. \\
The row and column indices in the global array \(V\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(V)\), respectively.
\end{tabular} \\
\hline descv & (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(v\). \\
\hline incv & \begin{tabular}{l}
(global) INTEGER. \\
The global increment for the elements of \(v\). Only two values of incv are supported in this version, namely 1 and \(m_{-} v\). \\
incv must not be zero.
\end{tabular} \\
\hline tau & (local) \\
\hline & COMPLEX for pclarfc \\
\hline & \begin{tabular}{l}
COMPLEX*16 for pzlarfc. \\
Array, DIMENSION LOCC(jv) if incv = 1, and LOCr(iv) otherwise. This array contains the Householder scalars related to the Householder vectors. tau is tied to the distributed matrix \(V\).
\end{tabular} \\
\hline c & (local). \\
\hline & COMPLEX for pclarfc \\
\hline & COMPLEX*16 for pzlarfc. \\
\hline & Pointer into the local memory to an array of DIMENSION (Ild_c, LOCc(jc \(+n-1)\) ), containing the local pieces of sub( \(c\) ). \\
\hline ic, jc & \begin{tabular}{l}
(global) INTEGER. \\
The row and column indices in the global array \(C\) indicating the first row and the first column of the submatrix sub( \(C\) ), respectively.
\end{tabular} \\
\hline descc & (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(c\). \\
\hline \multirow[t]{8}{*}{work} & (local). \\
\hline & COMPLEX for pclarfc \\
\hline & COMPLEX*16 for pzlarfc. \\
\hline & Workspace array, DIMENSION (lwork). \\
\hline & ```
If incv=1,
    if side= 'L',
        if ivcol = iccol,
            lwork \geq nqc0
    else
``` \\
\hline & ```
 lwork \geqmpc0 + max(1, nqc0)
 end if
else if side = 'R',
``` \\
\hline & ```
        lwork \geq nqc0 + max(max( 1, mpc0 ), numroc( numroc(
        n+icoffc,nb_v,0,0,npcol ), nb_v,0,0,1cmq ))
    end if
else if inCv = m_v,
    if side = 'L',
``` \\
\hline & ```
 lwork \geqmpc0 + max(max(1, nqc0), numroc(numroc(
 m+iroffc,mb_v,0,0,nprow),mb_v,0,0,1cmp))
else if side = 'R',
 if ivrow = icrow,
``` \\
\hline
\end{tabular}
```

 lwork}\geqmpc
 else
 lwork \geq nqc0 + max(1, mpc0)
 end if
 end if
 end if,
where lcm is the least common multiple of nprow and npcol and lcm =
ilcm(nprow, npcol),
lcmp = lcm/nprow, lcmq = lcm/npcol,
iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;myrow, mycol,
nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.

```

\section*{Output Parameters} c
(local).
On exit, \(\operatorname{sub}(C)\) is overwritten by the \(Q^{H \star}\) sub ( \(C\) ) if side \(=\) 'L', or sub ( \(C\) ) * \(Q^{H}\) if side \(=\) 'R'.

\section*{p?larfg}

Generates an elementary reflector (Householder matrix).

\section*{Syntax}
```

call pslarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)
call pdlarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)
call pclarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)
call pzlarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?larfg routine generates a real/complex elementary reflector \(H\) of order \(n\), such that
\[
H^{*} \operatorname{sub}(X)=H^{*}\binom{x(i a x, j a x)}{x}=\binom{a l p h a}{0}, H^{*} H=I,
\]
where alpha is a scalar (a real scalar - for complex flavors), and sub ( \(X\) ) is an ( \(n-1\) )-element real/complex distributed vector \(X(i x: i x+n-2, j x)\) if \(i n c x=1\) and \(X(i x, j x: j x+n-2)\) if \(i n c x=\operatorname{descx}\left(m_{-}\right) . H\) is represented in the form
\[
H=I-\tan ^{*}\binom{1}{v} *\left(1 v^{\prime}\right)
\]
where \(t a u\) is a real/complex scalar and \(v\) is a real/complex ( \(n-1\) )-element vector. Note that \(H\) is not Hermitian.

If the elements of \(\operatorname{sub}(x)\) are all zero (and \(X(\) iax, \(j a x)\) is real for complex flavors), then \(\operatorname{tau}=0\) and \(H\) is taken to be the unit matrix.

Otherwise \(1 \leq\) real \((\) tau \() \leq 2\) and abs \((\) tau-1 \() \leq 1\).

\section*{Input Parameters}
```

n (global) INTEGER.
The global order of the elementary reflector. n \geq0.
(global) INTEGER.
The global row and column indices in x of X(iax, jax).
(local).
Real for pslarfg
DOUBLE PRECISION for pdlarfg
COMPLEX for pclarfg
COMPLEX*16 for pzlarfg.
Pointer into the local memory to an array of DIMENSION (IId_x,*). This
array contains the local pieces of the distributed vector sub(x). Before
entry, the incremented array sub(x) must contain vector x.
ix, jx
descx
incx

```

\section*{Output Parameters}
```

alpha
X
tau

```
```

(local)

```
(local)
REAL for pslafg
REAL for pslafg
DOUBLE PRECISION for pdlafg
DOUBLE PRECISION for pdlafg
COMPLEX for pclafg
COMPLEX for pclafg
COMPLEX*16 for pzlafg.
COMPLEX*16 for pzlafg.
On exit, alpha is computed in the process scope having the vector sub(X).
On exit, alpha is computed in the process scope having the vector sub(X).
(local).
(local).
On exit, it is overwritten with the vector v.
On exit, it is overwritten with the vector v.
(local).
(local).
Real for pslarfg
Real for pslarfg
DOUBLE PRECISION for pdlarfg
DOUBLE PRECISION for pdlarfg
COMPLEX for pclarfg
COMPLEX for pclarfg
COMPLEX*16 for pzlarfg.
```

COMPLEX*16 for pzlarfg.

```

Array, DIMENSION LOCc \((j x)\) if \(i n c x=1\), and LOCr \((i x)\) otherwise. This array contains the Householder scalars related to the Householder vectors. tau is tied to the distributed matrix \(x\).
```

p?larft
Forms the triangular vector T of a block reflector H=I-
V*T* V

```

\section*{Syntax}
```

call pslarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pdlarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pclarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pzlarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

```

\section*{Include files}
- C: mkl_scalapack.h

\section*{Description}

The p?larft routine forms the triangular factor \(T\) of a real/complex block reflector \(H\) of order \(n\), which is defined as a product of \(k\) elementary reflectors.

If direct \(=' F^{\prime}, H=H(1) \star H(2) \ldots \star H(k)\), and \(T\) is upper triangular;
If direct \(=\) ' \(\mathrm{B}^{\prime}, H=H(k) * \ldots{ }^{*} H(2) \star H(1)\), and \(T\) is lower triangular.
If storev \(=\) ' C', the vector which defines the elementary reflector \(H(i)\) is stored in the \(i\)-th column of the distributed matrix \(V\), and
\(H=I-V^{\star} T^{\star} V^{\prime}\)
If storev \(=\) 'R', the vector which defines the elementary reflector \(H(i)\) is stored in the \(i\)-th row of the distributed matrix \(V\), and
\(H=I-V^{\prime *} T^{*} V\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline direct & (global) CHARACTER*1. \\
\hline & \begin{tabular}{l}
Specifies the order in which the elementary reflectors are multiplied to form the block reflector: \\
if direct \(=\) ' \(\mathrm{F}^{\prime}: ~ H=H(1) * H(2) * \ldots * H(k)\) (forward) \\
if direct \(=\) 'B': \(H=H(k) * \ldots * H(2) * H(1)\) (backward).
\end{tabular} \\
\hline \multirow[t]{2}{*}{storev} & (global) CHARACTER*1. \\
\hline & \begin{tabular}{l}
Specifies how the vectors that define the elementary reflectors are stored (See Application Notes below): \\
if storev = 'C': columnwise; \\
if storev = 'R': rowwise.
\end{tabular} \\
\hline \multirow[t]{2}{*}{\(n\)} & (global) INTEGER. \\
\hline & The order of the block reflector \(H\). \(n \geq 0\). \\
\hline \multirow[t]{3}{*}{k} & (global) INTEGER. \\
\hline & The order of the triangular factor \(T_{\text {, }}\) is equal to the number of elementary reflectors. \\
\hline & \(1 \leq k \leq m b _v\left(=n b _v\right)\). \\
\hline
\end{tabular}
```

V
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Pointer into the local memory to an array of local DIMENSION
(LOCr(iv+n-1), LOCC(jv+k-1)) if storev = 'C', and
(LOCr(iv+k-1), LOCC(jv+n-1)) if storev = 'R'.
The distributed matrix v contains the Householder vectors. (See Application Notes below).
iv, jv
descv
tau
work
(global) INTEGER.
The row and column indices in the global array v indicating the first row and the first column of the submatrix sub(V), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix V.
(local)
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Array, DIMENSIONLOCr (iv+k-1) if inCv $=m_{-} v$, and LOCC $(j v+k-1)$
otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix V.
work
(local).
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Workspace array, DIMENSION $\left(k^{*}(k-1) / 2\right)$.

```

\section*{Output Parameters}

V
```

REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
(local)
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Array, DIMENSION (nb_v,nb_v) if storev = 'C', and (mb_v,mb_v)
otherwise. It contains the k-by-k triangular factor of the block reflector
associated with v. If direct = ' F', t is upper triangular;
if direct = 'B',t is lower triangular.

```
t

\section*{Application Notes}

The shape of the matrix \(V\) and the storage of the vectors that define the \(H\) (i) is best illustrated by the following example with \(n=5\) and \(k=3\). The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.
\[
\begin{aligned}
& \text { direct }={ }^{\prime} \mathrm{F}^{\prime} \text { andstorev }={ }^{\prime} \mathrm{C}^{\prime}: \quad \text { direct }={ }^{\prime} \mathrm{F} \text { ' and storev }={ }^{\prime} \mathrm{R}{ }^{\prime} \\
& V\left(i v: i v+n-1, \quad\left[\begin{array}{ccc}
1 & & \\
v 1 & 1 & \\
v 1 & v 2 & 1 \\
v 1 & v 2 & v 3 \\
v 1 & v 2 & v 3
\end{array}\right]\right. \\
& \left.\begin{array}{r}
V(i v \\
j v
\end{array}: j v+k-1, \quad j v+n-1\right)=\left[\begin{array}{ccccc}
1 & v 1 & v 1 & v 1 & v 1 \\
& 1 & v 2 & v 2 & v 2 \\
& & 1 & v 3 & v 3
\end{array}\right] \\
& \text { direct }={ }^{\prime} B \text { ' and storev }={ }^{\prime} C \text { ' } \\
& V\left(i v: i v+n-1, \quad\left[\begin{array}{ccc}
v 1 & v 2 v & v 3 \\
v 1 & v 2 & v 3 \\
1 & v 2 & v 3 \\
& 1 & v 3 \\
& & 1
\end{array}\right]\right. \\
& \text { direct }={ }^{\prime} B^{\prime} \text { and storev }={ }^{\prime} R^{\prime} \\
& V\left(i v: i v+k-1, \quad\left[\begin{array}{ccccc}
v 1 & v 1 & 1 & & \\
j v: j v+n-1) & =\left[\begin{array}{cccc}
v 2 & v 2 & v 2 & 1 \\
v 3 & v 3 & v 3 & v 3
\end{array}\right. & 1
\end{array}\right]\right.
\end{aligned}
\]
p?larz
Applies an elementary reflector as returned by p? tzrzf to a general matrix.

\section*{Syntax}
```

call pslarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pdlarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pclarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pzlarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

```

Include files
- C: mkl_scalapack.h

\section*{Description}

The p?larz routine applies a real/complex elementary reflector \(Q\) (or \(Q^{T}\) ) to a real/complex m-by- \(n\) distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\), from either the left or the right. \(Q\) is represented in the form
\(Q=I-\operatorname{ta}^{\star} V^{\star} V^{\prime}\),
where \(t_{a u}\) is a real/complex scalar and \(v\) is a real/complex vector.
If \(\operatorname{tau}=0\), then \(Q\) is taken to be the unit matrix.
\(Q\) is a product of \(k\) elementary reflectors as returned by p?tzrzf.

\section*{Input Parameters}
side
m
(global) CHARACTER.
if side \(=\) 'L': form \(Q^{\star}\) sub ( \(C\) ), if side \(=\) 'R': form \(\operatorname{sub}(C) * Q, Q=Q^{T}\) (for real flavors).
(global) INTEGER.

The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(c) .(m \geq 0)\).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(C) .(n \geq 0)\).
(global). INTEGER.
The columns of the distributed submatrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors. If side \(=\) ' \(L\) ', \(m \geq I \geq 0\), if side \(=\) 'R', \(n \geq 1 \geq 0\).
(local).
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Pointer into the local memory to an array of DIMENSION ( \(11 d_{-},{ }^{*}\), containing the local pieces of the distributed vectors \(v\) representing the Householder transformation \(Q\),
```

v(iv:iv+l-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+l-1) if side = 'L' and incv = m_v,
v(iv:iv+l-1, jv) if side = 'R' and incv = 1,
v(iv, jv:jv+l-1) if side = 'R' and incv = m_v.

```

The vector \(v\) in the representation of \(Q . v\) is not used if \(\operatorname{tau}=0\).
(global) INTEGER. The row and column indices in the global array \(V\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(V)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(V\).
(global) INTEGER.
The global increment for the elements of \(v\). Only two values of incv are supported in this version, namely 1 and \(m_{-} v\).
incv must not be zero.
(local)
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Array, DIMENSION LOCC(jv) if inCv \(=1\), and LOCr(iv) otherwise. This array contains the Householder scalars related to the Householder vectors. tau is tied to the distributed matrix \(V\).
(local).
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Pointer into the local memory to an array of DIMENSION (lld_c, LOCc (jc \(+n-1)\) ), containing the local pieces of sub( \(C\) ).
(global) INTEGER.
The row and column indices in the global array \(c\) indicating the first row and the first column of the submatrix sub( \(C\) ), respectively.
```

descc
work
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor
for the distributed matrix C.
(local).
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Array, DIMENSION (lwork)
If incv = 1,
if side = 'L',
if ivcol = iccol,
lwork \geq NqCO
else
lwork \geq MpCO + max(1,NqCO)
end if
else if side = 'R',
lwork \geq NqC0 + max(max(1, MpC0), numroc(numroc(n+icoffc,nb_v,
0,0,npcol),nb_v,0,0,1cmq))
end if
else if incv = m_v,
if side = 'L',
lwork \geqMpC0 + max(max(1,NqC0), numroc(numroc(m+iroffC,mb_v,
0,0,nprow),mb_v,0,0,1 cmp))
else if side = 'R' ,
if ivrow = icrow,
lwork}\geqMpC
else
lwork}\geqNqCO + max(1, MpC0
end if
end if
end if.
Here lcm is the least common multiple of nprow and npcol and
lcm = ilcm(nprow, npcol), lcmp = lcm/nprow,
lcmq = lcm/ npcol,
iroffc}=\operatorname{mod}(ic-1,mb_c),icoffc= mod(jc-1, nb_c)
icrow = indxg2p(ic,mb_c,myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol,
nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.

```

\section*{Output Parameters}
(local).
On exit, sub(C) is overwritten by the \(Q^{\star}\) sub ( \(C\) ) if side = 'L', or sub \((C) * Q\) if side \(=\) ' \({ }^{\prime}\).
```

p?larzb
Applies a block reflector or its transpose/conjugate-
transpose as returned by p?tzrzf to a general
matrix.
Syntax
call pslarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc,
descc, work)
call pdlarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc,
descc, work)
call pclarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc,
descc, work)
call pzlarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc,
descc, work)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?larzb routine applies a real/complex block reflector \(Q\) or its transpose \(Q^{T}\) (conjugate transpose \(Q^{H}\) for complex flavors) to a real/complex distributed \(m\)-by- \(n\) matrix \(\operatorname{sub}(c)=C(i c: i c+m-1, j c: j c+n-1)\) from the left or the right.
\(Q\) is a product of \(k\) elementary reflectors as returned by p?tzrzf.
Currently, only storev = 'R' and direct = 'B' are supported.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{side} & (global) CHARACTER. \\
\hline & if side = 'L': apply \(Q\) or \(Q^{T}\) ( \(Q^{H}\) for complex flavors) from the Left; \\
\hline & if side = 'R': apply \(Q\) or \(Q^{T}\) ( \(Q^{H}\) for complex flavors) from the Right. \\
\hline \multirow[t]{4}{*}{trans} & (global) CHARACTER. \\
\hline & if trans = 'N': No transpose, apply Q; \\
\hline & If trans='T': Transpose, apply \(Q^{T}\) (real flavors); \\
\hline & If trans= ' ' : Conjugate transpose, apply \(Q^{H}\) (complex flavors). \\
\hline \multirow[t]{4}{*}{direct} & (global) CHARACTER. \\
\hline & Indicates how \(H\) is formed from a product of elementary reflectors. \\
\hline & if direct \(='^{\prime} \mathrm{F}^{\prime}: H=H(1) \star H(2) * \ldots{ }^{*} H^{*}(k)\) - forward (not supported) \\
\hline & if direct \(=\) ' \(\mathrm{B}^{\prime}: H=H(k) * \ldots{ }^{*} \mathrm{~A}^{*}(2){ }^{*} H(1)-\) backward. \\
\hline \multirow[t]{3}{*}{storev} & (global) CHARACTER. \\
\hline & Indicates how the vectors that define the elementary reflectors are stored: if storev = 'C': columnwise (not supported). \\
\hline & if storev = 'R': rowwise. \\
\hline \multirow[t]{2}{*}{m} & (global) INTEGER. \\
\hline & The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(c) .(m \geq 0)\). \\
\hline \multirow[t]{2}{*}{\(n\)} & (global) INTEGER. \\
\hline & The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(c) .(n \geq 0)\). \\
\hline
\end{tabular}
```

k
I
V
iv, jv
descv
t
C
ic, jc
descc
work

k	(global) INTEGER. The order of the matrix T. (= the number of elementary reflectors whose product defines the block reflector).
1	(global) INTEGER. The columns of the distributed submatrix $\operatorname{sub}(A)$ containing the meaningful part of the Householder reflectors. If side $=$ 'L', $m \geq 1 \geq 0$, if side $=$ 'R', $n \geq 1 \geq 0$.
v	(local). REAL for pslarzb DOUBLE PRECISION for pdlarzb COMPLEX for pclarzb COMPLEX*16 for pzlarzb. Pointer into the local memory to an array of DIMENSION (lld_v, LOCC (jv $+m-1)$) if side = 'L', (lld_v, LOCC(jv+m-1)) if side = 'R'. It contains the local pieces of the distributed vectors V representing the Householder transformation as returned by p?tzrzf. $\text { lld_v } \geq \operatorname{LOCr}(i v+k-1)$
iv, jv	(global) INTEGER. The row and column indices in the global array v indicating the first row and the first column of the submatrix $\operatorname{sub}(V)$, respectively.
descv	(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix V.
t	(local) REAL for pslarzb DOUBLE PRECISION for pdlarzb COMPLEX for pclarzb COMPLEX*16 for pzlarzb. Array, DIMENSION mb_v by mb_v. The lower triangular matrix T in the representation of the block reflector.
C	(local). REAL for pslarfb DOUBLE PRECISION for pdlarfb COMPLEX for pclarfb COMPLEX*16 for pzlarfb. Pointer into the local memory to an array of DIMENSION (lld_c, LOCC(jc $+n-1)$). On entry, the m-by- n distributed matrix sub(c).
ic, jc	(global) INTEGER. The row and column indices in the global array c indicating the first row and the first column of the submatrix sub(C), respectively.
descc	(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix C.
work	(local). REAL for pslarzb DOUBLE PRECISION for pdlarzb COMPLEX for pclarzb COMPLEX*16 for pzlarzb.

```

Array, DIMENSION (lwork).
```

If storev = 'C',
if side = 'L' ,
lwork \geq(nqc0 + mpc0)* k
else if side = 'R' ,
lwork \geq(nqc0 + max(npv0 + numroc(numroc(n+icoffc, nb_v, 0, 0,
npcol),
n.b_v, 0, 0, lcmq), mpc0))* k
end if
else if storev = 'R',
if side = 'L' ,
lwork \geq(mpc0 + max(mqv0 + numroc(numroc(m+iroffc, mb_v, 0, 0,
nprow),
mb_v, 0, 0, lcmp), nqc0))* k
else if side = 'R' ,
lwork \geq (mpc0 + nqc0) * k
end if
end if.

```
Here \(\operatorname{lcmq}=1 \mathrm{~cm} / n p c o l\) with \(l \mathrm{~cm}=\operatorname{iclm}(n p r o w, n p c o l)\),
\(i r o f f v=\bmod \left(i v-1, m b _v\right), i C O f f_{V}=\bmod \left(j v-1, n b _v\right)\),
ivrow \(=\) indxg2p (iv, mb_v, myrow, rsrc_v, nprow),
\(i v c o l=i n d x g 2 p\left(j v, n b _v, m y c o l, \quad \operatorname{csrc} v, ~ n p c o l\right)\),
mqv0 \(=\) numroc (m+icoffv, nb_v, mycol, ivcol, npcol),
npvo \(=\) numroc (n+iroffv, mb_v, myrow, ivrow, nprow),
iroffc \(=\bmod (i c-1, \operatorname{mb} c), i C o f f C=\bmod \left(j c-1, n b _c\right)\),
icrow= indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol= indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpco \(=\) numroc (m+iroffc, mb_c, myrow, icrow, nprow),
npc0 \(=\) numroc (n+icoffc, mb_c, myrow, icrow, nprow),
nqc0 \(=\) numroc (n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol,
nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.

\section*{Output Parameters}
(local).
On exit, \(\operatorname{sub}(C)\) is overwritten by the \(Q^{\star} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or sub \((C) * Q\), or sub \((C)^{*} Q^{\prime}\), where \(Q^{\prime}\) is the transpose (conjugate transpose) of \(Q\).
p?larzc
Applies (multiplies by) the conjugate transpose of an elementary reflector as returned by p?tzrzf to a general matrix.

\section*{Syntax}
```

call pclarzc(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pzlarzc(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?larzc routine applies a complex elementary reflector \(Q^{H}\) to a complex m-by-n distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\), from either the left or the right. \(Q\) is represented in the form
\[
Q=i-t a u^{\star} V^{\star} V^{\prime},
\]
where tau is a complex scalar and \(v\) is a complex vector.
If \(\operatorname{tau}=0\), then \(Q\) is taken to be the unit matrix.
\(Q\) is a product of \(k\) elementary reflectors as returned by p?tzrzf.
Input Parameters
side
(global) CHARACTER.
if side \(=\) 'L': form \(Q^{H *}\) sub (C);
if side \(=\) 'R': form sub \((C) * Q^{H}\).
m
n

1

V
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(c) .(m \geq 0)\).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(c) .(n \geq 0)\).
(global) INTEGER.
The columns of the distributed submatrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors.
If side \(=\) 'L', \(m \geq 1 \geq 0\),
if side \(=\) 'R', \(n \geq 1 \geq 0\).
(local).
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Pointer into the local memory to an array of DIMENSION (Ild_v,*)
containing the local pieces of the distributed vectors \(v\) representing the Householder transformation \(Q\),
\(v(i v: i v+l-1, j v)\) if side \(=\) 'L' and incv \(=1\),
\(v(i v, j v: j v+l-1)\) if side \(=\) 'L' and incv \(=m_{-} v\),
\(v(i v: i v+l-1, j v)\) if side \(=\) 'R' and incv \(=1\),
\(v(i v, j v: j v+l-1)\) if side \(=\) 'R' and incv \(=m_{-} v\).
The vector \(v\) in the representation of \(Q . v\) is not used if \(\operatorname{tau}=0\).
(global) INTEGER.
The row and column indices in the global array \(V\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(V)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(V\).
(global). INTEGER.

The global increment for the elements of \(v\). Only two values of incv are supported in this version, namely 1 and \(m_{-} v\).
incv must not be zero.
(local)
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Array, DIMENSIONLOCC(jv) if incv \(=1\), and \(\operatorname{LOCr}(i v)\) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix \(V\).
(local).
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Pointer into the local memory to an array of DIMENSION(IId_c, LOCC(jc \(+n-1)\) ), containing the local pieces of \(\operatorname{sub}(C)\).
(global) INTEGER.
The row and column indices in the global array \(C\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(C)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(C\).

\section*{(local).}
```

If incv = 1,
if side = 'L' ,
if ivcol = iccol,
lwork \geq nqc0
else
lwork \geqmpc0 + max(1, nqc0)
end if
else if side = 'R' ,
lwork \geq nqc0 + max (max (1, mpc0), numroc(numroc(n+icoffc, nb_v, 0, 0,
npcol),
nb_v, 0, 0, lcmq))
end if
else if incv = m_v,
if side = 'L' ,
lwork \geqmpc0 + max (max (1, nqc0), numroc(numroc (m+iroffc, mb_v, 0, 0,
nprow),
mb_v, 0, 0, lcmp))
else if side = 'R',
if ivrow = icrow,
lwork \geqmpc0
else
lwork \geqnqc0 + max(1, mpc0)
end if
end if
end if

```

Here 1 cm is the least common multiple of nprow and npcol;
\(l \mathrm{~cm}=\mathrm{ilcm}(\) nprow, npcol\(), l \mathrm{cmp}=1 \mathrm{~cm} / \mathrm{nprow}, l \mathrm{cmq}=1 \mathrm{~cm} / \mathrm{npcol}\), iroffc \(=\bmod \left(i c-1, m b _c\right), i c o f f_{C}=\bmod \left(j c-1, n b _c\right)\), icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow), iccol \(=\) indxg2p(jc, nb_c, mycol, csrc_c, npcol), mpco = numroc (m+iroffc, mb_c, myrow, icrow, nprow), nqc0 = numroc (n+icoffc, nb_c, mycol, iccol, npcol), ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

\section*{Output Parameters}
c
(local).
On exit, sub(C) is overwritten by the \(Q^{H *}\) sub (C) if side \(=\) 'L', or \(\operatorname{sub}(C) * Q^{H}\) if side \(=\) 'R'.
```

p?larzt
Forms the triangular factor T of a block reflector H=I-
V*T*VH}\mathrm{ as returned by p?tzrzf.

```

\section*{Syntax}
```

call pslarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pdlarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pclarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pzlarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?larzt routine forms the triangular factor \(T\) of a real/complex block reflector \(H\) of order greater than \(n\), which is defined as a product of \(k\) elementary reflectors as returned by p?tzrzf.

If direct \(=' F^{\prime}, H=H(1) * H(2) * \ldots * H(k)\), and \(T\) is upper triangular;
If direct \(=\) ' \(\mathrm{B}^{\prime}, \quad H=H(k) \star \ldots \star H(2) \star H(1)\), and \(T\) is lower triangular.
If storev \(=\) ' C', the vector which defines the elementary reflector \(H(i)\), is stored in the \(i\)-th column of the array \(v\), and

\section*{\(H=i-V^{\star} t^{\star} V^{\prime}\).}

If storev = 'R', the vector, which defines the elementary reflector \(H(i)\), is stored in the \(i\)-th row of the array \(v\), and
\(H=i-v^{\prime *} t^{*} V\)
Currently, only storev \(=\) ' R ' and direct \(=\) ' B ' are supported.

\section*{Input Parameters}
```

direct (global) CHARACTER.
Specifies the order in which the elementary reflectors are multiplied to form
the block reflector:
if direct = 'F': H=H(1)*H(2)* ..**H(k) (Forward, not supported)
if direct = 'B': H = H(k)*···...*H(2)* H(1) (Backward).
storev (global) CHARACTER.
Specifies how the vectors which defines the elementary reflectors are
stored:
if storev = 'C': columnwise (not supported);
if storev = 'R': rowwise.

```
n
k

V
```

(global) CHARACTER.
Specifies the order in which the elementary reflectors are multiplied to form the block reflector:
if direct $=' F^{\prime}: H=H(1) * H(2) * \ldots{ }^{*} H(k)$ (Forward, not supported)
if direct $=$ 'B': $H=H(k) * \ldots * H(2) * H(1)$ (Backward).
storev (global) CHARACTER.
Specifies how the vectors which defines the elementary reflectors are stored:
if storev = 'C': columnwise (not supported);
if storev = 'R': rowwise.
(global). INTEGER.
The order of the block reflector H. $n \geq 0$.
(global). INTEGER.
The order of the triangular factor T ($=$ the number of elementary reflectors).
$1 \leq k \leq m b$ _v (= nb_v).
REAL for pslarzt
DOUBLE PRECISION for pdlarzt

```
```

COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.

```
Pointer into the local memory to an array of local DIMENSION (LOCr (iv
\(+k-1)\), LOCc (jv+n-1)).
The distributed matrix \(v\) contains the Householder vectors. See Application Notes below.
iv, jv
descv
tau
work
(global) INTEGER. The row and column indices in the global array V indicating the first row and the first column of the submatrix sub( \(v\) ), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix v .
(local)
REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Array, DIMENSION LOCr (iv+k-1) if inCv \(=m_{-} v\), and LOCC( \(\left.j v+k-1\right)\)
otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix \(V\).
(local).
REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Workspace array, DIMENSION ( \(\left.k^{*}(k-1) / 2\right)\).

\section*{Output Parameters}

REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
t
(local)
REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Array, DIMENSION ( \(m b=v, m b _v\) ). It contains the \(k-b y-k\) triangular factor of the block reflector associated with \(v . t\) is lower triangular.

\section*{Application Notes}

The shape of the matrix \(V\) and the storage of the vectors which define the \(H(i)\) is best illustrated by the following example with \(n=5\) and \(k=3\). The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.
        direct \(==^{\prime} F^{\prime}\) and storev \(=C^{\prime}\)
            \(\left[\begin{array}{ccc}v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3\end{array}\right]\)
        \(\mathrm{v}=\). . .
            . .
            1 . .
                1 .
                    1
direct \(=^{\prime} F^{\prime}\) and storev \(=R^{\prime} R^{\prime}\) :
\(\left[\right.\)\begin{tabular}{lllllllll} 
& \multicolumn{4}{c}{1} & \(v 1\) & \(v\) & \(v 1\) & \(v 1\) \\
\(v 1\) & \(v 1\) &. &. &. & 1 \\
\(v 2\) & \(v 2\) & \(v 2\) & \(v 2\) & \(v 2\) &. &. & 1 & \\
\(v 3\) & \(v 3\) & \(v 3\) & \(v 3\) & \(v 3\) &. & 1 & &
\end{tabular}\(]\)
    direct \(==^{\prime} B^{\prime}\) and storev \(=C^{\prime}\) :
        1
            . 1
            . . 1
            . . .
    \(\mathrm{v}=. \quad\).
            \(\left[\begin{array}{lll}v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3\end{array}\right]\)
direct \(=^{\prime} B^{\prime}\) and storev \(=R^{\prime}\) :
\(\left[\begin{array}{cccccccccc}1 & \cdot & \cdot & \cdot & \cdot & \overbrace{1} & \mathrm{v} 1 & \mathrm{v} 1 & \mathrm{v} 1 & \mathrm{v} 1 \\ \cdot & 1 & \cdot & \cdot & \cdot v 2 & \mathrm{v} 2 & \mathrm{v} 2 & \mathrm{v} 2 & \mathrm{v} 2 \\ \cdot & \cdot & 1 & \cdot & \cdot v 3 & \mathrm{v} 3 & \mathrm{v} 3 & \mathrm{v} 3 & \mathrm{v} 3\end{array}\right]\)

\section*{p?lascl}

Multiplies a general rectangular matrix by a real scalar
defined as \(C_{t o} / C_{\text {from }}\).

\section*{Syntax}
```

call pslascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)
call pdlascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)
call pclascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)
call pzlascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?lascl routine multiplies the \(m\)-by- \(n\) real/complex distributed matrix sub(A) denoting \(A\) (ia:ia+m-1, \(j a: j a+n-1)\) by the real/complex scalar cto/cfrom. This is done without over/underflow as long as the final result cto^A \((i, j) / c\) from does not over/underflow. type specifies that sub \((A)\) may be full, upper triangular, lower triangular or upper Hessenberg.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline type & \begin{tabular}{l}
(global) CHARACTER. \\
type indicates the storage type of the input distributed matrix. \\
if type \(=' \mathrm{G}\) ': \(\operatorname{sub}(A)\) is a full matrix, \\
if type \(=\) 'L': sub \((A)\) is a lower triangular matrix, \\
if type \(=\) ' U': \(\operatorname{sub}(A)\) is an upper triangular matrix, \\
if type \(=\) 'H': \(\operatorname{sub}(A)\) is an upper Hessenberg matrix.
\end{tabular} \\
\hline cfrom, cto & \begin{tabular}{l}
(global) \\
REAL for pslascl/pclascl \\
DOUBLE PRECISION for pdlascl/pzlascl. \\
The distributed matrix \(\operatorname{sub}(A)\) is multiplied by cto/cfrom. \(A(i, j)\) is computed without over/underflow if the final result cto^A(i,j)/cfrom can be represented without over/underflow. cfrom must be nonzero.
\end{tabular} \\
\hline m & \begin{tabular}{l}
(global) INTEGER. \\
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\).
\end{tabular} \\
\hline \(n\) & \begin{tabular}{l}
(global) INTEGER. \\
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\).
\end{tabular} \\
\hline a & \begin{tabular}{l}
(local input/local output) \\
REAL for pslascl \\
DOUBLE PRECISION for pdlascl \\
COMPLEX for pclascl \\
COMPLEX*16 for pzlascl. \\
Pointer into the local memory to an array of DIMENSION (lld_a, LOCC(ja \(+n-1)\) ). \\
This array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
\end{tabular} \\
\hline ia, ja & \begin{tabular}{l}
(global) INTEGER. \\
The column and row indices in the global array \(A\) indicating the first row and column of the submatrix \(\operatorname{sub}(A)\), respectively.
\end{tabular} \\
\hline desca & \begin{tabular}{l}
(global and local) INTEGER . \\
Array of DIMENSION (dlen_).The array descriptor for the distributed matrix A.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
a
info

\section*{(local).}

On exit, this array contains the local pieces of the distributed matrix multiplied by cto/cfrom.
(local)
INTEGER.
if info \(=0\) : the execution is successful.
if info < 0 : If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\),
if the \(i\)-th argument is a scalar and had an illegal value, then \(i n f o=-i\).

\section*{p?laset}

Initializes the offdiagonal elements of a matrix to alpha and the diagonal elements to beta.

\section*{Syntax}
```

call pslaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
call pdlaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
call pclaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
call pzlaset(uplo, m, n, alpha, beta, a, ia, ja, desca)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?laset routine initializes an m-by-n distributed matrix sub(A) denoting A(ia:ia+m-1, ja:ja+n-1) to beta on the diagonal and alpha on the offdiagonals.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{uplo} & (global) CHARACTER. \\
\hline & Specifies the part of the distributed matrix sub(A) to be set: \\
\hline & if uplo = 'U': upper triangular part; the strictly lower triangular part of sub(A) is not changed. \\
\hline & sub \((A)\) is not changed; \\
\hline & if uplo = 'L': lower triangular part; the strictly upper triangular part of \(\operatorname{sub}(A)\) is not changed. \\
\hline & Otherwise: all of the matrix \(\operatorname{sub}(A)\) is set. \\
\hline \multirow[t]{2}{*}{m} & (global) INTEGER. \\
\hline & The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\). \\
\hline \multirow[t]{2}{*}{\(n\)} & (global) INTEGER. \\
\hline & The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\). \\
\hline \multirow[t]{6}{*}{alpha} & (global). \\
\hline & REAL for pslaset \\
\hline & DOUBLE PRECISION for pdlaset \\
\hline & COMPLEX for pclaset \\
\hline & COMPLEX*16 for pzlaset. \\
\hline & The constant to which the offdiagonal elements are to be set. \\
\hline \multirow[t]{6}{*}{beta} & (global). \\
\hline & REAL for pslaset \\
\hline & DOUBLE PRECISION for pdlaset \\
\hline & COMPLEX for pclaset \\
\hline & COMPLEX*16 for pzlaset. \\
\hline & The constant to which the diagonal elements are to be set. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
(local).
REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX* 16 for pzlaset.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCC(ja \(+n-1)\) ).
This array contains the local pieces of the distributed matrix sub(A) to be set. On exit, the leading \(m-b y-n\) submatrix \(\operatorname{sub}(A)\) is set as follows:
if uplo = 'U', A(ia+i-1, ja+j-1) = alpha, \(1 \leq i \leq j-1,1 \leq j \leq n\), if uplo = 'L', A(ia+i-1, ja+j-1) = alpha, \(j+1 \leq i \leq m, 1 \leq j \leq n\), otherwise, \(A(i a+i-1, j a+j-1)=a l p h a, 1 \leq i \leq m, 1 \leq j \leq n, i a+i . n e . j a+j\), and, for all uplo, \(A(i a+i-1, j a+i-1)=b e t a, 1 \leq i \leq \min (m, n)\).
ia, ja
desca
(global) INTEGER.
The column and row indices in the global array \(A\) indicating the first row and column of the submatrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER .
Array of DIMENSION (dlen_). The array descriptor for the distributed matrix A.

\section*{p?lasmsub}

Looks for a small subdiagonal element from the
bottom of the matrix that it can safely set to zero.

\section*{Syntax}
```

call pslasmsub(a, desca, i, l, k, smlnum, buf, lwork)
call pdlasmsub(a, desca, i, l, k, smlnum, buf, lwork)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p? lasmsub routine looks for a small subdiagonal element from the bottom of the matrix that it can safely set to zero. This routine does a global maximum and must be called by all processes.

\section*{Input Parameters}
a
(global)
REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
Array, DIMENSION (desca(lld_),*).
On entry, the Hessenberg matrix whose tridiagonal part is being scanned.
Unchanged on exit.
desca
i
(global and local) INTEGER.
Array of DIMENSION (dlen_). The array descriptor for the distributed matrix A.
(global) INTEGER.


\section*{Output Parameters}
k
(global) INTEGER.
On exit, this yields the bottom portion of the unreduced submatrix. This will satisfy: \(1 \leq m \leq i-1\).
buf
(local).
REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
Array of size lwork.
p?lassq
Updates a sum of squares represented in scaled form.

\section*{Syntax}
```

call pslassq(n, x, ix, jx, descx, incx, scale, sumsq)
call pdlassq(n, x, ix, jx, descx, incx, scale, sumsq)
call pclassq(n, x, ix, jx, descx, incx, scale, sumsq)
call pzlassq(n, x, ix, jx, descx, incx, scale, sumsq)
Include Files

```
- C: mkl_scalapack.h

\section*{Description}

The p?lassq routine returns the values scl and smsq such that
\(s c l^{2} *\) smsq \(=x(1)^{2}+\ldots+x(n)^{2}+s c a l e^{2} *\) sumsq,
where \(x(i)=\operatorname{sub}(X)=X\left(i x+(j x-1) * \operatorname{descx}\left(m_{-}\right)+(i-1) * i n c x\right)\) for pslassq/pdlassq, and \(x(i)=\operatorname{sub}(X)=\operatorname{abs}\left(X\left(i x+(j x-1) * \operatorname{descx}\left(m_{-}\right)+(i-1) * i n c x\right)\right.\) for pclassq/pzlassq.

For real routines pslassq/pdlassq the value of sumsq is assumed to be non-negative and scl returns the value
```

scl = max(scale, abs(x(i))).

```

For complex routines pclassq/pzlassq the value of sumsq is assumed to be at least unity and the value of ssq will then satisfy
\[
1.0 \leq \text { ssq } \leq \text { sumsq }+2 n
\]

Value scale is assumed to be non-negative and scl returns the value
\[
s c l=\max _{i}(\text { scale }, \operatorname{abs}(\operatorname{real}(x(i))), \operatorname{abs}(\operatorname{aimag}(x(i))))
\]

For all routines p?lassq values scale and sumsq must be supplied in scale and sumsq respectively, and scale and sumsq are overwritten by scl and ssq respectively.

All routines p?lassq make only one pass through the vector sub(x).

\section*{Input Parameters}
```

n
X
ix
jx
descx
incx
scale
sumsq

```
(global) INTEGER.
The length of the distributed vector \(\operatorname{sub}(x)\).
REAL for pslassq
DOUBLE PRECISION for pdlassq
COMPLEX for pclassq
COMPLEX*16 for pzlassq.
The vector for which a scaled sum of squares is computed:
\(x\left(i x+(j x-1) * m_{-} x+(i-1) * i n c x\right), 1 \leq i \leq n\).
(global) INTEGER.
The row index in the global array \(x\) indicating the first row of \(\operatorname{sub}(x)\).
(global) INTEGER.
The column index in the global array \(x\) indicating the first column of \(\operatorname{sub}(x)\).
(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix \(x\).
(global) INTEGER.
The global increment for the elements of \(x\). Only two values of incx are supported in this version, namely 1 and \(m_{-} x\). The argument incx must not equal zero.
(local).
REAL for pslassq/pclassq
DOUBLE PRECISION for pdlassq/pzlassq.
On entry, the value scale in the equation above.
(local)
REAL for pslassq/pclassq
DOUBLE PRECISION for pdlassq/pzlassq.
On entry, the value sumsq in the equation above.
(local).
On exit, scale is overwritten with scl, the scaling factor for the sum of squares.
(local).
On exit, sumsq is overwritten with the value smsq, the basic sum of squares from which scl has been factored out.

Output Parameters
scale
sumsq
```

p?laswp
Performs a series of row interchanges on a general
rectangular matrix.

```

\section*{Syntax}
```

call pslaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)
call pdlaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)
call pclaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)
call pzlaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?laswp routine performs a series of row or column interchanges on the distributed matrix sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\). One interchange is initiated for each of rows or columns k1 through k2 of \(\operatorname{sub}(A)\). This routine assumes that the pivoting information has already been broadcast along the process row or column. Also note that this routine will only work for \(k 1-k 2\) being in the same mb (or nb) block. If you want to pivot a full matrix, use p?lapiv.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{direc} & (global) CHARACTER. \\
\hline & Specifies in which order the permutation is applied: \\
\hline & = 'F' - forward, \\
\hline & = 'B' - backward. \\
\hline \multirow[t]{4}{*}{rowcol} & (global) CHARACTER. \\
\hline & Specifies if the rows or columns are permuted: \\
\hline & = 'R' - rows, \\
\hline & \(={ }^{\prime} \mathrm{C}^{\prime}\) - columns. \\
\hline \multirow[t]{5}{*}{\(n\)} & (global) INTEGER. \\
\hline & If rowcol= 'R', the length of the rows of the distributed matrix \(A\) (*, \\
\hline & ja:ja+n-1) to be permuted; \\
\hline & If rowcol='C', the length of the columns of the distributed matrix A(ia:ia \\
\hline & +n-1 , *) to be permuted; \\
\hline \multirow[t]{6}{*}{a} & (local) \\
\hline & REAL for pslaswp \\
\hline & DOUBLE PRECISION for pdlaswp \\
\hline & COMPLEX for pclaswp \\
\hline & COMPLEX*16 for pzlaswp. \\
\hline & Pointer into the local memory to an array of DIMENSION (Ild_a, *). On entry, this array contains the local pieces of the distributed matrix to which the row/columns interchanges will be applied. \\
\hline \multirow[t]{2}{*}{ia} & (global) INTEGER. \\
\hline & The row index in the global array \(A\) indicating the first row of sub(A). \\
\hline \multirow[t]{2}{*}{ja} & (global) INTEGER. \\
\hline & The column index in the global array \(A\) indicating the first column of \(\operatorname{sub}(A)\). \\
\hline \multirow[t]{2}{*}{desca} & (global and local) INTEGER array of DIMENSION (dlen_). \\
\hline & The array descriptor for the distributed matrix \(A\). \\
\hline
\end{tabular}
```

k1 (global) INTEGER.
The first element of ipiv for which a row or column interchange will be
done.
k2 (global) INTEGER.
The last element of ipiv for which a row or column interchange will be
done.
ipiv (local)
INTEGER. Array, DIMENSION LOCr(m_a)+mb_a for row pivoting and
LOCr(n_a)+nb_a for column pivoting. This array is tied to the matrix A,
ipiv(k)=l implies rows (or columns) k and l are to be interchanged.

```

\section*{Output Parameters}
```

A
(local)
REAL for pslaswp
DOUBLE PRECISION for pdlaswp
COMPLEX for pclaswp
COMPLEX*16 for pzlaswp.
On exit, the permuted distributed matrix.

```
p?latra
Computes the trace of a general square distributed matrix.

Syntax
```

val = pslatra(n, a, ia, ja, desca)
val = pdlatra(n, a, ia, ja, desca)
val = pclatra(n, a, ia, ja, desca)
val = pzlatra(n, a, ia, ja, desca)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

This function computes the trace of an n-by-n distributed matrix sub(A) denoting A(ia:ia+n-1, ja: ja \(+n-1)\). The result is left on every process of the grid.

\section*{Input Parameters}
```

n
a
(global) INTEGER.
The number of rows and columns to be operated on, that is, the order of
the distributed submatrix sub(A). n \geq0.
(local).
Real for pslatra
DOUBLE PRECISION for pdlatra
COMPLEX for pclatra
COMPLEX*16 for pzlatra.
Pointer into the local memory to an array of DIMENSION (Ild_a, LOCC (ja
$+n-1)$) containing the local pieces of the distributed matrix, the trace of which is to be computed.

```
\begin{tabular}{ll} 
ia, ja & (global) INTEGER. The row and column indices respectively in the global \\
array \(A\) indicating the first row and the first column of the submatrix sub \((A)\), \\
respectively. \\
desca & (global and local) INTEGER array of DIMENSION (dlen_). The array \\
descriptor for the distributed matrix \(A\).
\end{tabular}

\section*{Output Parameters}
val
The value returned by the fuction.

\section*{p? latrd}

Reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form
by an orthogonal/unitary similarity transformation.

\section*{Syntax}
```

call pslatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)
call pdlatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)
call pclatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)
call pzlatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?latrd routine reduces nb rows and columns of a real symmetric or complex Hermitian matrix \(\operatorname{sub}(A)=\) A(ia:ia+n-1, ja:ja+n-1) to symmetric/complex tridiagonal form by an orthogonal/unitary similarity transformation \(Q^{\prime *} \operatorname{sub}(A) * Q\), and returns the matrices \(V\) and \(W\), which are needed to apply the transformation to the unreduced part of \(\operatorname{sub}(A)\).

If uplo \(=\mathrm{U}, \mathrm{p}\) ?latrd reduces the last nb rows and columns of a matrix, of which the upper triangle is supplied;
if uplo = L, p?latrd reduces the first nb rows and columns of a matrix, of which the lower triangle is supplied.

This is an auxiliary routine called by p?sytrd/p?hetrd.

\section*{Input Parameters}
```

uplo
n
nb
a
(global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric/
Hermitian matrix sub(A) is stored:
= 'U': Upper triangular
= L: Lower triangular.
(global) INTEGER.
The number of rows and columns to be operated on, that is, the order of
the distributed submatrix sub(A). n\geq0.
(global) INTEGER.
The number of rows and columns to be reduced.
REAL for pslatrd
DOUBLE PRECISION for pdlatrd

```
\begin{tabular}{|c|c|}
\hline & COMPLEX for pclatrd \\
\hline & COMPLEX*16 for pzlatrd. \\
\hline & Pointer into the local memory to an array of DIMENSION(Ild_a, LOCc (ja \(+n-1)\) ). \\
\hline & On entry, this array contains the local pieces of the symmetric/Hermitian distributed matrix \(\operatorname{sub}(A)\). \\
\hline & If uplo \(=U\), the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. \\
\hline & If uplo \(=\mathrm{L}\), the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced. \\
\hline ia & (global) INTEGER. \\
\hline & The row index in the global array \(A\) indicating the first row of sub \((A)\). \\
\hline ja & (global) INTEGER. \\
\hline & The column index in the global array \(A\) indicating the first column of sub(A). \\
\hline desca & (global and local) INTEGER array of DIMENSION (dien_). The array descriptor for the distributed matrix \(A\). \\
\hline iw & (global) Integer. \\
\hline & The row index in the global array \(w\) indicating the first row of sub(w). \\
\hline jw & (global) Integer. \\
\hline & The column index in the global array windicating the first column of sub(w). \\
\hline descw & (global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix w . \\
\hline work & (local) \\
\hline & REAL for pslatrd \\
\hline & DOUBLE PRECISION for pdlatrd \\
\hline & COMPLEX for pclatrd \\
\hline & COMPLEX*16 for pzlatrd. \\
\hline & Workspace array of DIMENSION (nb_a). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a\)
\(d\)
e
(local)
On exit, if uplo \(=\) 'U', the last \(n b\) columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of \(\operatorname{sub}(A)\); the elements above the diagonal with the array tau represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors;
if uplo = 'L', the first nb columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of sub(A); the elements below the diagonal with the array tau represent the orthogonal/ unitary matrix \(Q\) as a product of elementary reflectors.
(local)
REAL for pslatrd/pclatrd
DOUBLE PRECISION for pdlatrd/pzlatrd.
Array, DIMENSION LOCC(ja+n-1).
The diagonal elements of the tridiagonal matrix \(T\) : \(d(i)=a(i, i) \cdot d\) is tied to the distributed matrix \(A\).
(local)
REAL for pslatrd/pclatrd
\begin{tabular}{|c|c|}
\hline & DOUBLE PRECISION for pdlatrd/pzlatrd. \\
\hline & Array, DIMENSION LOCC(ja+n-1) if uplo = 'U', LOCC(ja+n-2) otherwise. \\
\hline & The off-diagonal elements of the tridiagonal matrix \(T\) : \\
\hline & \(e(i)=a(i, ~ i ~+~ 1) ~ i f ~ u p l o ~=~ ' U ', ~\) \\
\hline & \(e(i)=a(i+1, i)\) if uplo \(=\mathrm{L}\). \\
\hline & \(e\) is tied to the distributed matrix \(A\). \\
\hline tau & (local) \\
\hline & REAL for pslatrd \\
\hline & DOUBLE PRECISION for pdlatrd \\
\hline & COMPLEX for pclatrd \\
\hline & COMPLEX*16 for pzlatrd. \\
\hline & Array, DIMENSION LOCC (ja+n-1). This array contains the scalar factors tau of the elementary reflectors. tau is tied to the distributed matrix \(A\). \\
\hline w & (local) \\
\hline & REAL for pslatrd \\
\hline & DOUBLE PRECISION for pdlatrd \\
\hline & COMPLEX for pclatrd \\
\hline & COMPLEX*16 for pzlatrd. \\
\hline & Pointer into the local memory to an array of DIMENSION (lld_w, nb_w). This array contains the local pieces of the n-by-nb_w matrix w required to update the unreduced part of \(\operatorname{sub}(A)\). \\
\hline
\end{tabular}

\section*{Application Notes}

If uplo = 'U', the matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(n) * H(n-1) * \ldots * H(n-n b+1)\)
Each \(H(i)\) has the form
\(H(i)=I-\operatorname{ta} u^{\star} V^{\star} V^{\prime}\),
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(i: n)=0\) and \(v(i-1)=1\);
\(v(1: i-1)\) is stored on exit in \(A(i a: i a+i-1, j a+i)\), and tau in tau(ja+i-1).
If uplo \(=L\), the matrix \(Q\) is represented as a product of elementary reflectors
Q \(=H(1) * H(2) \star \ldots * H(n b)\)
Each \(H(i)\) has the form
\(H(i)=I-t a u^{\star} V^{\star} V^{\prime}\),
where \(\operatorname{tau}\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i)=0\) and \(v(i+1)=1 ; v(i\) \(+2: n\) ) is stored on exit in \(A(i a+i+1: i a+n-1, j a+i-1)\), and tau in tau(ja+i-1).
The elements of the vectors \(v\) together form the \(n\)-by- \(n b\) matrix \(v\) which is needed, with \(w\), to apply the transformation to the unreduced part of the matrix, using a symmetric/Hermitian rank- \(2 k\) update of the form:
```

sub (A) := sub (A) - VW' - WV'.

```

The contents of a onit are illustrated by the following examples with
\(n=5\) and \(n b=2:\)
\[
\begin{array}{cc}
\text { if uplo='U': } \\
{\left[\begin{array}{ccccc}
a & a & a & v_{4} & v_{5} \\
& a & a & v_{4} & v_{5} \\
& a & 1 & v_{5} \\
& & & d & 1 \\
& & & d
\end{array}\right] \quad\left[\begin{array}{ccccc}
d & & & & \\
1 & d & & & \\
v_{1} & 1 & a & & \\
v_{1} & v_{2} & a & a & \\
v_{1} & v_{2} & a & a & a
\end{array}\right]}
\end{array}
\]
where \(d\) denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and \(v_{i}\) denotes an element of the vector defining \(H(i)\).

\section*{p?latrs}

Solves a triangular system of equations with the scale factor set to prevent overflow.

\section*{Syntax}
```

call pslatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx, scale,
cnorm, work)
call pdlatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx, scale,
cnorm, work)
call pclatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx, scale,
cnorm, work)
call pzlatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx, scale,
cnorm, work)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?latrs routine solves a triangular system of equations \(A x=s b, A^{T} X=s b\) or \(A^{H} X=s b\), where \(s\) is a scale factor set to prevent overflow. The description of the routine will be extended in the future releases.

\section*{Input Parameters}
uplo
trans
diag

\section*{CHARACTER*1.}

Specifies whether the matrix \(A\) is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
CHARACTER*1.
Specifies the operation applied to \(A x\).
\(=' N^{\prime}\) : Solve \(A x=s * b\) (no transpose)
\(=\) 'T': Solve \(A^{T} X=s^{*} b\) (transpose)
\(=\) 'C': Solve \(A^{H} X=s *_{b}\) (conjugate transpose),
where \(s\) - is a scale factor
CHARACTER*1.
Specifies whether or not the matrix \(A\) is unit triangular.
\(=\) ' \(\mathrm{N}^{\prime}\) : Non-unit triangular
= 'U': Unit triangular
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{normin} & CHARACTER*1. \\
\hline & \begin{tabular}{l}
Specifies whether cnorm has been set or not. \\
= 'Y': cnorm contains the column norms on entry; \\
\(=\) 'N': cnorm is not set on entry. On exit, the norms will be computed and stored in cnorm.
\end{tabular} \\
\hline \multirow[t]{2}{*}{\(n\)} & INTEGER. \\
\hline & The order of the matrix A. \(n \geq 0\) \\
\hline \multirow[t]{6}{*}{a} & REAL for pslatrs/pclatrs \\
\hline & DOUBLE PRECISION for pdlatrs/pzlatrs \\
\hline & Array, DIMENSION ( \(1 d a, n\) ). Contains the triangular matrix \(A\). \\
\hline & If uplo \(=\mathrm{U}\), the leading \(n-\mathrm{by}-n\) upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of \(a\) is not referenced. \\
\hline & If uplo = 'L', the leading \(n-b y-n\) lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of \(a\) is not referenced. \\
\hline & If diag = 'U', the diagonal elements of a are also not referenced and are assumed to be 1 . \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{3}{*}{\(x\)} & REAL for pslatrs/pclatrs \\
\hline & DOUBLE PRECISION for pdlatrs/pzlatrs \\
\hline & Array, DIMENSION ( \(n\) ). On entry, the right hand side \(b\) of the triangular system. \\
\hline ix & (global) INTEGER.The row index in the global array \(x\) indicating the first row of sub( \(x\) ). \\
\hline \multirow[t]{2}{*}{\(j x\)} & (global) INTEGER. \\
\hline & The column index in the global array \(x\) indicating the first column of \(\operatorname{sub}(x)\). \\
\hline \multirow[t]{2}{*}{descx} & (global and local) INTEGER. \\
\hline & Array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(x\). \\
\hline \multirow[t]{3}{*}{cnorm} & REAL for pslatrs/pclatrs \\
\hline & DOUBLE PRECISION for pdlatrs/pzlatrs. \\
\hline & Array, DIMENSION ( \(n\) ). If normin = 'Y', cnorm is an input argument and cnorm ( \(j\) ) contains the norm of the off-diagonal part of the \(j\)-th column of \(A\). If trans \(=\) ' \(N\) ', cnorm ( \(j\) ) must be greater than or equal to the infinitynorm, and if trans \(=\) ' \(T\) ' or 'C', cnorm( \(j\) ) must be greater than or equal to the 1-norm. \\
\hline \multirow[t]{6}{*}{work} & (local). \\
\hline & REAL for pslatrs \\
\hline & DOUBLE PRECISION for pdlatrs \\
\hline & COMPLEX for pclatrs \\
\hline & COMPLEX*16 for pzlatrs. \\
\hline & Temporary workspace. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

X
scale

```

On exit, \(x\) is overwritten by the solution vector \(x\).
REAL for pslatrs/pclatrs

DOUBLE PRECISION for pdlatrs/pzlatrs.
Array, DIMENSION ( \(I d a, n\) ). The scaling factor \(s\) for the triangular system as described above.
If scale \(=0\), the matrix \(A\) is singular or badly scaled, and the vector \(x\) is an exact or approximate solution to \(A x=0\).
cnorm If normin \(={ }^{\prime} N\) ', cnorm is an output argument and cnorm( \(j\) ) returns the 1norm of the off-diagonal part of the \(j\)-th column of \(A\).

\section*{p?latrz}

Reduces an upper trapezoidal matrix to upper triangular form by means of orthogonal/unitary transformations.

\section*{Syntax}
```

call pslatrz(m, n, l, a, ia, ja, desca, tau, work)
call pdlatrz(m, n, l, a, ia, ja, desca, tau, work)
call pclatrz(m, n, l, a, ia, ja, desca, tau, work)
call pzlatrz(m, n, l, a, ia, ja, desca, tau, work)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?latrz routine reduces the \(m\)-by \(-n(m \leq n)\) real/complex upper trapezoidal matrix sub \((A)=\) [A(ia:ia+m-1, ja:ja+m-1) A(ia:ia+m-1, ja+n-l:ja+n-1)] to upper triangular form by means of orthogonal/unitary transformations.

The upper trapezoidal matrix \(\operatorname{sub}(A)\) is factored as
```

sub (A) = (}R=

```
where \(z\) is an \(n\)-by- \(n\) orthogonal/unitary matrix and \(R\) is an \(m\)-by- \(m\) upper triangular matrix.

\section*{Input Parameters}
m
n

1
a
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A) . m \geq 0\).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A) . n \geq 0\).
(global) INTEGER.
The number of columns of the distributed submatrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors. \(1>0\).
(local)
REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
\begin{tabular}{|c|c|}
\hline & Pointer into the local memory to an array of DIMENSION (IId_a, LOCC (ja \(+n-1)\) ). On entry, the local pieces of the \(m-b y-n\) distributed matrix sub(A), which is to be factored. \\
\hline ia & \begin{tabular}{l}
(global) INTEGER. \\
The row index in the global array \(A\) indicating the first row of \(\operatorname{sub}(A)\).
\end{tabular} \\
\hline ja & \begin{tabular}{l}
(global) INTEGER. \\
The column index in the global array \(A\) indicating the first column of \(\operatorname{sub}(A)\).
\end{tabular} \\
\hline desca & (global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{15}{*}{work} & (local) \\
\hline & REAL for pslatrz \\
\hline & DOUBLE PRECISION for pdlatrz \\
\hline & COMPLEX for pclatrz \\
\hline & COMPLEX*16 for pzlatrz. \\
\hline & Workspace array, DIMENSION (lwork). \\
\hline & 1 work \(\geq\) nq0 \(+\max (1, \mathrm{mp} 0)\), where \\
\hline & iroff \(=\bmod \left(i a-1, ~ m b _a\right)\), \\
\hline & icoff \(=\bmod \left(j a-1, ~ n b _a\right)\), \\
\hline & iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow), \\
\hline & iacol \(=\) indxg2p(ja, nb_a, mycol, csrc_a, npcol), \\
\hline & \(m p 0=\) numroc (m+iroff, mb_a, myrow, iarow, nprow), \\
\hline & \(n q 0=\) numroc (n+icoff, nb_a, mycol, iacol, npcol), \\
\hline & numroc, indxg2p, and numroc are ScaLAPACK tool functions; myrow, \\
\hline & mycol, nprow, and npcol can be determined by calling the subroutine blacs gridinfo. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
On exit, the leading \(m\)-by- \(m\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular matrix \(R\), and elements \(n-1+1\) to \(n\) of the first \(m\) rows of \(\operatorname{sub}(A)\), with the array tau, represent the orthogonal/unitary matrix \(z\) as a product of \(m\) elementary reflectors.
(local)
REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
Array, DIMENSION (LOCr ( \(\mathrm{ja+m-1}\) ) ). This array contains the scalar factors of the elementary reflectors. \(t^{2 u}\) is tied to the distributed matrix \(A\).

\section*{Application Notes}

The factorization is obtained by Householder's method. The \(k\)-th transformation matrix, \(Z(k)\), which is used (or, in case of complex routines, whose conjugate transpose is used) to introduce zeros into the ( \(m-k+\) 1) -th row of \(\operatorname{sub}(A)\), is given in the form
\[
Z(k)=\left[\begin{array}{cc}
I & 0 \\
0 & T(k)
\end{array}\right],
\]
where
\[
T(k)=I-\operatorname{tau} * v(k) * u(k), \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
\]
tau is a scalar and \(z(k)\) is an \((n-m)\)-element vector. tau and \(z(k)\) are chosen to annihilate the elements of the \(k\)-th row of \(\operatorname{sub}(A)\). The scalar tau is returned in the \(k\)-th element of tau and the vector \(u(k)\) in the \(k\)-th row of \(\operatorname{sub}(A)\), such that the elements of \(z(k)\) are in \(a(k, m+1), \ldots, a(k\), \(n)\). The elements of \(R\) are returned in the upper triangular part of \(\operatorname{sub}(A)\).
\(z\) is given by
```

Z = Z(1)Z(2) ...Z(m).

```

\section*{p?lauu2}

Computes the product \(U^{*} U^{\prime}\) or \(L^{\prime *} L\), where \(U\) and \(L\) are upper or lower triangular matrices (local unblocked algorithm).

\section*{Syntax}
```

call pslauu2(uplo, n, a, ia, ja, desca)
call pdlauu2(uplo, n, a, ia, ja, desca)
call pclauu2(uplo, n, a, ia, ja, desca)
call pzlauu2(uplo, n, a, ia, ja, desca)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p? lauu2 routine computes the product \(U^{\star} U^{\prime}\) or \(L^{\prime}{ }^{*} L\), where the triangular factor \(U\) or \(L\) is stored in the upper or lower triangular part of the distributed matrix
\(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\).
If uplo = 'U' or ' \(u\) ', then the upper triangle of the result is stored, overwriting the factor \(U\) in \(\operatorname{sub}(A)\).
If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor \(L\) in \(\operatorname{sub}(A)\).
This is the unblocked form of the algorithm, calling BLAS Level 2 Routines. No communication is performed by this routine, the matrix to operate on should be strictly local to one process.

\section*{Input Parameters}
uplo
n
a
(global) CHARACTER*1.
Specifies whether the triangular factor stored in the matrix \(\operatorname{sub}(A)\) is upper or lower triangular:
\(=\mathrm{U}\) : upper triangular
= L: lower triangular.
(global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the triangular factor \(U\) or \(L . n \geq 0\).
(local)
REAL for pslauu2
DOUBLE PRECISION for pdlauu2
\begin{tabular}{ll} 
& COMPLEX for pclauu2 \\
& COMPLEX 16 for pzlauu2. \\
& Pointer into the local memory to an array of DIMENSION (IId_a, LOCC ( ja \\
ia \\
in-1). On entry, the local pieces of the triangular factor \(U\) or \(L\).
\end{tabular}

\section*{Output Parameters}
a
(local)
On exit, if uplo = 'U', the upper triangle of the distributed matrix sub(A) is overwritten with the upper triangle of the product \(U^{\star} U^{\prime}\); if uplo = 'L', the lower triangle of \(\operatorname{sub}(A)\) is overwritten with the lower triangle of the product \(L^{\prime *} L\).
p?lauum
Computes the product \(U^{*} U^{\prime}\) or \(L^{\prime}{ }^{*} L\), where \(U\) and \(L\)
are upper or lower triangular matrices.

\section*{Syntax}
```

call pslauum(uplo, n, a, ia, ja, desca)
call pdlauum(uplo, n, a, ia, ja, desca)
call pclauum(uplo, n, a, ia, ja, desca)
call pzlauum(uplo, n, a, ia, ja, desca)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p? laum routine computes the product \(U^{\star} U^{\prime}\) or \(L^{\prime}{ }^{*} L\), where the triangular factor \(U\) or \(L\) is stored in the upper or lower triangular part of the matrix \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\).

If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor \(U\) in \(\operatorname{sub}(A)\). If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor \(L\) in \(\operatorname{sub}(A)\).

This is the blocked form of the algorithm, calling Level 3 PBLAS.

\section*{Input Parameters}
```

uplo
n

```
The number of rows and columns to be operated on, that is, the order of the triangular factor \(U\) or \(L . n \geq 0\).
```

```
(global) CHARACTER*1.
```

(global) CHARACTER*1.
Specifies whether the triangular factor stored in the matrix sub(A) is upper
Specifies whether the triangular factor stored in the matrix sub(A) is upper
or lower triangular:
or lower triangular:
= 'U': upper triangular
= 'U': upper triangular
= 'L': lower triangular.
= 'L': lower triangular.
(global) INTEGER.

```
(global) INTEGER.
```

a	(local)
	REAL for pslauum
	DOUBLE PRECISION for pdlaum
	COMPLEX for pclaum
	COMPLEX*16 for pzlaum.
	Pointer into the local memory to an array of DIMENSION (Ild_a, LOCC (ja $+n-1)$. On entry, the local pieces of the triangular factor U or L.
ia	(global) INTEGER.
	The row index in the global array A indicating the first row of sub (A).
ja	(global) INTEGER.
	The column index in the global array A indicating the first column of sub (A).
desca	(global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix A.

Output Parameters

(local)
On exit, if uplo $=$ ' U ', the upper triangle of the distributed matrix $\operatorname{sub}(A)$
is overwritten with the upper triangle of the product $U^{*} U^{\prime} ;$ if uplo $=$ ' L ',
the lower triangle of $\operatorname{sub}(A)$ is overwritten with the lower triangle of the
product $L^{\prime *} L$.
p?lawil
Forms the Wilkinson transform.

Syntax

```
call pslawil(ii, jj, m, a, desca, h44, h33, h43h34, v)
call pdlawil(ii, jj, m, a, desca, h44, h33, h43h34, v)
```


Include Files

- C: mkl_scalapack.h

Description

The p?lawil routine gets the transform given by $h 44, h 33$, and $h 43 h 34$ into v starting at row m.

Input Parameters

\(\left.$$
\begin{array}{ll}\text { ii } & \begin{array}{l}\text { (global) INTEGER. } \\
\text { Row owner of } h(m+2, m+2) . \\
j j \\
m\end{array}
$$

\& (global) INTEGER.

Column owner of h(m+2, m+2) .

(global) INTEGER.\end{array}\right]\)| On entry, the location from where the transform starts (row m). Unchanged |
| :--- |
| on exit. |
| (global) |
| |
| REAL for pslawil |
| DOUBLE PRECISION for pdlawil |
| desca |

Array of DIMENSION (dlen_). The array descriptor for the distributed matrix A. Unchanged on exit.
(global)
REAL for pslawil
DOUBLE PRECISION for pdlawil
These three values are for the double shift $Q R$ iteration. Unchanged on exit.

Output Parameters

v
(global)
REAL for pslawil
DOUBLE PRECISION for pdlawil
Array of size 3 that contains the transform on output.

p?org2l/p?ung2l

Generates all or part of the orthogonal/unitary matrix
Q from a QL factorization determined by p?geqlf
(unblocked algorithm).

Syntax

```
call psorg2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorg2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pcung2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzung2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


Include Files

- C: mkl_scalapack.h

Description

The p?org2l/p?ung2l routine generates an m-by-n real/complex distributed matrix Q denoting A (ia:ia $+m-1$, ja: ja+n-1) with orthonormal columns, which is defined as the last n columns of a product of k elementary reflectors of order m :

```
Q = H(k)* ...*H(2)*H(1) as returned by p?geqlf.
```


Input Parameters

m
n
k
a
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $Q . m \geq 0$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $Q . m \geq n \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
$n \geq k \geq 0$.
REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX for pcung2l
COMPLEX*16 for pzung2l.

Pointer into the local memory to an array, DIMENSION (Ild_a, LOCC(ja $+n-1$).
On entry, the j-th column must contain the vector that defines the elementary reflector $H(j), j a+n-k \leq j \leq j a+n-k$, as returned by p ? geqlf in the k columns of its distributed matrix argument $A(i a: *, j a+n-$ k: ja+n-1).
(global) INTEGER.
The row index in the global array A indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global array A indicating the first column of $\operatorname{sub}(A)$.
(global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix A.
(local)
REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX for pcung2l
COMPLEX*16 for pzung2l.
Array, DIMENSION LOCC(ja+n-1).
This array contains the scalar factor $\operatorname{tau}(j)$ of the elementary reflector $H(j)$, as returned by p?geqle.
(local)
REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX for pcung2l
COMPLEX*16 for pzung2l.
Workspace array, DIMENSION (lwork).
(local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least 1 work $\geq \operatorname{mpa0}+\max (1, n q a 0)$, where
iroffa $=\bmod \left(i a-1, m b \_a\right)$,
icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc (m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 $=$ numroc (n+icoffa, nb_a, mycol, iacol, npcol).
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo. If 1 work $=-1$, then l work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
work
info
On exit, this array contains the local pieces of the m-by- n distributed matrix Q.
On exit, work(1) returns the minimal and optimal lwork.
(local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
then info $=-(i * 100+j)$,
if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?org2r/p?ung2r

Generates all or part of the orthogonal/unitary matrix Q from a $Q R$ factorization determined by p?geqrf (unblocked algorithm).

Syntax

```
call psorg2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorg2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pcung2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzung2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


Include Files

- C: mkl_scalapack.h

Description

The p?org2r/p?ung2r routine generates an m-by-n real/complex matrix Q denoting A(ia:ia+m-1, ja: ja $+n-1)$ with orthonormal columns, which is defined as the first n columns of a product of k elementary reflectors of order m :

```
Q = H(1)*H(2)* ...*H(k)
```

as returned by p?geqrf.

Input Parameters

m
n
a
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $Q . m \geq 0$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $Q . m \geq n \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix $Q . n$
$\geq k \geq 0$.
REAL for psorg2r
DOUBLE PRECISION for pdorg2r
COMPLEX for pcung2r
COMPLEX*16 for pzung2r.
Pointer into the local memory to an array, DIMENSION (lld_a, LOCC (ja $+n-1$).
On entry, the j-th column must contain the vector that defines the elementary reflector $H(j), j a \leq j \leq j a+k-1$, as returned by p?geqre in the k columns of its distributed matrix argument $A(i a: *, j a: j a+k-1)$.
(global) INTEGER.
The row index in the global array A indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.

Output Parameters

a
On exit, this array contains the local pieces of the m-by- n distributed matrix Q.
work
info
On exit, work (1) returns the minimal and optimal lwork.
(local) Integer.
= 0 : successful exit
< 0 : if the i-th argument is an array and the j-entry had an illegal value, then info = - ($i * 100+j$),
if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?orgl2/p?ungl2

Generates all or part of the orthogonal/unitary matrix Q from an $L Q$ factorization determined by p?gelqf (unblocked algorithm).

Syntax

```
call psorgl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorgl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pcungl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzungl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```

Include Files

- C: mkl_scalapack.h

Description

The p?orgl2/p?ungl2 routine generates a m-by-n real/complex matrix Q denoting A(ia:ia+m-1, ja: ja $+n-1$) with orthonormal rows, which is defined as the first m rows of a product of k elementary reflectors of order n
$Q=H(k) \star \ldots{ }^{*} H(2){ }^{\star} H(1)$ (for real flavors),
$Q=(H(k))^{H *} \ldots{ }^{*}(H(2))^{H *}(H(1))^{H}$ (for complex flavors) as returned by p?gelqf.

Input Parameters

m	(global) INTEGER.
	The number of rows to be operated on, that is, the number of rows of the distributed submatrix $Q . m \geq 0$.
n	(global) INTEGER.
	The number of columns to be operated on, that is, the number of columns of the distributed submatrix $Q . n \geq m \geq 0$.
k	(global) INTEGER.
	The number of elementary reflectors whose product defines the matrix $Q . m$ $\geq k \geq 0$.
a	REAL for psorgl2
	DOUBLE PRECISION for pdorgl2
	COMPLEX for pcungl2
	COMPLEX*16 for pzungl2.
	Pointer into the local memory to an array, DIMENSION (Ild_a, LOCC(ja $+n-1$).
	On entry, the i-th row must contain the vector that defines the elementary reflector H (i), ia $\leq i \leq i a+k-1$, as returned by p?gelqf in the k rows of its distributed matrix argument $A(i a: i a+k-1, j a: *)$.
ia	(global) INTEGER.
	The row index in the global array A indicating the first row of $\operatorname{sub}(A)$.
ja	(global) INTEGER.
	The column index in the global array A indicating the first column of sub (A).
desca	(global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix A.
tau	(local)
	REAL for psorgl2
	DOUBLE PRECISION for pdorgl2
	COMPLEX for pcungl2
	COMPLEX*16 for pzungl2.

	Array, DIMENSION LOCr $(j a+k-1)$. This array contains the scalar factors tau(i) of the elementary reflectors $H(i)$, as returned by p?gelqf. This array is tied to the distributed matrix A.
WORK	(local)
	REAL for psorgl2
	DOUBLE PRECISION for pdorgl2
	COMPLEX for pcungl2
	COMPLEX*16 for pzungl2.
	Workspace array, DIMENSION (lwork).
lwork	(local or global) INTEGER.
	The dimension of the array work.
	lwork is local input and must be at least 1 work $\geq n q a 0+\max (1, m p a 0)$, where
	iroffa $=\bmod \left(i a-1, ~ m b \_a\right)$,
	icoffa $=\bmod \left(j a-1, ~ n b \_a\right)$,
	iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
	iacol $=$ indxg2p(ja, nb_a, mycol, csrc_a, npcol),
	mpa0 = numroc (m+iroffa, mb_a, myrow, iarow, nprow),
	nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).
	indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs gridinfo.
	If 1 work $=-1$, then lwork is global input and a workspace query is
	assumed; the routine only calculates the minimum and optimal size for all work arrays. Fach of these values is returned in the first entry of the
	corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a	On exit, this array contains the local pieces of the m-by- n distributed matrix
Work	
info	On exit, work (1) returns the minimal and optimal lwork.
	(local) INTEGER.
	$=0$: successful exit
	< 0 : if the i-th argument is an array and the j-entry had an illegal value,
	then info $=-(i * 100+j)$,
	if the i-th argument is a scalar and had an illegal value,
	then info $=-i$.

p?orgr2/p?ungr2

Generates all or part of the orthogonal/unitary matrix Q from an $R Q$ factorization determined by p?gerqf (unblocked algorithm).

Syntax

```
call psorgr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorgr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pcungr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzungr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


Include files

- C: mkl_scalapack.h

Description

The p?orgr2/p?ungr2 routine generates an m-by-n real/complex matrix Q denoting A(ia:ia+m-1, ja: ja $+n-1$) with orthonormal rows, which is defined as the last m rows of a product of k elementary reflectors of order n

```
Q = H(1)* H(2)* . . * H(k) (for real flavors);
Q = (H(1)) H* (H(2) ) H
```


Input Parameters

m
n
k
a
ia
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $Q . m \geq 0$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $Q . n \geq m \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix $Q . m$
$\geq k \geq 0$.
REAL for psorgr2
DOUBLE PRECISION for pdorgr2
COMPLEX for pcungr2
COMPLEX*16 for pzungr2.
Pointer into the local memory to an array, DIMENSION(Ild_a, LOCC(ja $+n-1)$.
On entry, the i-th row must contain the vector that defines the elementary reflector H (i), $i a+m-k \leq i \leq i a+m-1$, as returned by p?gerqf in the k rows of its distributed matrix argument $A(i a+m-k: i a+m-1, j a: *)$.
(global) INTEGER.
The row index in the global array A indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global array A indicating the first column of $\operatorname{sub}(A)$.
(global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix A.
(local)
REAL for psorgr2
DOUBLE PRECISION for pdorgr2
COMPLEX for pcungr2
COMPLEX*16 for pzungr2.
Array, DIMENSION LOCr (ja+m-1). This array contains the scalar factors $\operatorname{tau}(i)$ of the elementary reflectors $H(i)$, as returned by p?gerqf. This array is tied to the distributed matrix A.
(local)
REAL for psorgr2
DOUBLE PRECISION for pdorgr2
COMPLEX for pcungr2
COMPLEX*16 for pzungr2.
Workspace array, DIMENSION (lwork).

Iwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least 1 work \geq nqa0 $+\max (1$, mpa0), where iroffa $=\bmod \left(i a-1, m b \_a\right), i c o f f a=\bmod (j a-1$, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol $=$ indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc (m+iroffa, mb_a, myrow, iarow, nprow), nqa0 $=$ numroc (n+icoffa, nb_a, mycol, iacol, npcol). indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo. If 1 work $=-1$, then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
On exit, this array contains the local pieces of the m-by-n distributed matrix Q.
work
On exit, work(1) returns the minimal and optimal lwork.
info
(local) InTEGER.
= 0 : successful exit
< 0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-(i * 100+j)$,
if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?orm21/p?unm2l

Multiplies a general matrix by the orthogonal/unitary
matrix from a QL factorization determined by p?geqlf
(unblocked algorithm).

Syntax

```
call psorm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pdorm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pcunm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
```


Include Files

- C: mkl_scalapack.h

Description

The p?orm2l/p?unm2l routine overwrites the general real/complex m-by-n distributed matrix sub (C) $=C(i c: i c+m-1, j c: j c+n-1)$ with

Q*sub(C) if side = 'L' and trans = 'N', or

```
\(Q^{T \star}\) sub (C) / \(Q^{H *}\) sub ( \(C\) ) if side \(=\) 'L' and trans \(=\) 'T' (for real flavors) or trans \(=\) 'C' (for complex
flavors), or
sub \((C) * Q\) if side \(=' R\) ' and trans \(=' N\) ', or
sub \((C) * Q^{T} / \operatorname{sub}(C) * Q^{H}\) if side \(=\) 'R' and trans \(=\) ' \(T\) ' (for real flavors) or trans \(=\) ' C' (for complex
flavors).
where \(Q\) is a real orthogonal or complex unitary distributed matrix defined as the product of \(k\) elementary
reflectors
\(Q=H(k) * \ldots * H(2) * H(1)\) as returned by p?geqle. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\)
'R'.
Input Parameters
side (global) CHARACTER.
\(=\) 'L': apply \(Q\) or \(Q^{T}\) for real flavors ( \(Q^{H}\) for complex flavors) from the left,
\(=\) 'R': apply \(Q\) or \(Q^{T}\) for real flavors ( \(Q^{H}\) for complex flavors) from the right.
trans (global) CHARACTER.
\(=\) 'N': apply \(Q\) (no transpose)
\(=\) 'T': apply \(Q^{T}\) (transpose, for real flavors)
\(=\) ' C': apply \(Q^{H}\) (conjugate transpose, for complex flavors)
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix \(\operatorname{sub}(C) . m \geq 0\).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns
of the distributed submatrix \(\operatorname{sub}(c) . n \geq 0\).
```

k
a
ia
(global) CHARACTER.
$=$ 'L': apply Q or Q^{T} for real flavors (Q^{H} for complex flavors) from the left,
$=$ 'R': apply Q or Q^{T} for real flavors (Q^{H} for complex flavors) from the right.
(global) CHARACTER.
$=$ 'N': apply Q (no transpose)
$=$ 'T': apply Q^{T} (transpose, for real flavors)
$=$ 'C': apply Q^{H} (conjugate transpose, for complex flavors)
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(c) . m \geq 0$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(C) . n \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ 'R', $n \geq k \geq 0$.
(local)
REAL for psorm2l
DOUBLE PRECISION for pdorm2l
COMPLEX for pcunm2l
COMPLEX*16 for pzunm2l.
Pointer into the local memory to an array, DIMENSION(Ild_a, LOCC(ja $+k-1)$.
On entry, the j-th row must contain the vector that defines the elementary reflector $H(j)$, ja $\leq j \leq j a+k-1$, as returned by p?geqle in the k columns of its distributed matrix argument $A(i a: *, j a: j a+k-1)$. The argument $A\left(i a:{ }^{*}, j a: j a+k-1\right)$ is modified by the routine but restored on exit.
If side $=$ 'L', lld_a $\geq \max (1, \operatorname{LOCr}(i a+m-1))$,
if side $=$ 'R', lld_a $\geq \max (1, \operatorname{LOCr}(i a+n-1))$.
(global) INTEGER.
The row index in the global array A indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global array A indicating the first column of $\operatorname{sub}(A)$.
(global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix A.
(local)

REAL for psorm21
DOUBLE PRECISION for pdorm21
COMPLEX for pcunm21
COMPLEX*16 for pzunm2l.
Array, DIMENSIONLOCC (ja+n-1). This array contains the scalar factor $\operatorname{tau}(j)$ of the elementary reflector $H(j)$, as returned by p ?geqlf. This array is tied to the distributed matrix A.

C
(local)
REAL for psorm21
DOUBLE PRECISION for pdorm2l
COMPLEX for pcunm21
COMPLEX*16 for pzunm2l.
Pointer into the local memory to an array, DIMENSION(lld_c, LOCC(jc $+n-1$)). On entry, the local pieces of the distributed matrix sub (c).
(global) INTEGER.
The row index in the global array C indicating the first row of sub(c).
(global) INTEGER.
The column index in the global array C indicating the first column of sub(C).
(global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix C.
(local)
REAL for psorm21
DOUBLE PRECISION for pdorm21
COMPLEX for pcunm21
COMPLEX*16 for pzunm21.
Workspace array, DIMENSION (lwork).
On exit, work (1) returns the minimal and optimal lwork.
(local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least
if side $=$ 'L',lwork $\geq \operatorname{mpc} 0+\max (1, n q c 0)$,
if side = 'R', lwork \geq nqc0 $+\max (\max (1, \operatorname{mpc} 0)$, numroc (numroc (n
+icoffc, nb_a, 0, 0, npcol), nb_a, 0, 0, lcmq)),
where
lcmq $=1 \mathrm{~cm} / \mathrm{npcol}$,
lcm = iclm(nprow, npcol),
iroffc $=\bmod \left(i c-1, m b \_c\right)$,
icoffc $=\bmod \left(j c-1, n b \_c\right)$,
icrow $=$ indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MqcO = numroc(m+icoffc, nb_c, mycol, icrow, nprow),
NpcO = numroc(n+iroffc, mb_c, myrow, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c
On exit, c is overwritten by Q^{\star} sub (C), or $Q^{T \star}$ sub (C)/ $Q^{H \star}$ sub (C), or $\operatorname{sub}(C) * Q$, or sub (C) * $Q^{T} / \operatorname{sub}(C) * Q^{H}$
work
info
On exit, work(1) returns the minimal and optimal lwork.
(local) INTEGER.
= 0 : successful exit
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-(i * 100+j)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

NOTE The distributed submatrices $A(i a: *, j a: *)$ and $C(i c: i c+m-1, j c: j c+n-1)$ must verify some alignment properties, namely the following expressions should be true:

```
If side = 'L',( mb_a.eq.mb_c .AND. iroffa.eq.iroffc .AND. iarow.eq.icrow )
If side = 'R',( mb_a.eq.nb_c .AND. iroffa.eq.iroffc ).
```


p?orm2r/p?unm2r
 Multiplies a general matrix by the orthogonal/unitary matrix from a QR factorization determined by p ? geqrf (unblocked algorithm).

Syntax

```
call psorm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pdorm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pcunm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
```


Include Files

- C: mkl_scalapack.h

Description

The p?orm $2 r / p$?unm $2 r$ routine overwrites the general real/complex m-by-n distributed matrix sub
(C) $=C(i c: i c+m-1, j c: j c+n-1)$ with
Q^{*} sub (C) if side $=$ 'L' and trans $=$ 'N', or
$Q^{T \star}$ sub (C) $/ Q^{H \star}$ sub (C) if side $=$ 'L' and trans $=$ ' T ' (for real flavors) or trans $=$ ' C' (for complex flavors), or
sub $(C) * Q$ if side $=' R$ ' and trans $=' N$ ', or
sub $(C) * Q^{T} / \operatorname{sub}(C) * Q^{H}$ if side $=' R$ ' and trans $='^{\prime} T$ ' (for real flavors) or trans $=$ ' C' (for complex flavors).
where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary reflectors
$Q=H(k) * \ldots{ }^{*} H(2) * H(1)$ as returned by p?geqrf. Q is of order m if side $=$ 'L' and of order n if side $=$ 'R'.

Input Parameters

m

```
side
trans
(global) CHARACTER.
\(=\) 'L': apply \(Q\) or \(Q^{T}\) for real flavors ( \(Q^{H}\) for complex flavors) from the left, \(=\) 'R': apply \(Q\) or \(Q^{T}\) for real flavors ( \(Q^{H}\) for complex flavors) from the right.
(global) CHARACTER.
\(=\) 'N': apply \(Q\) (no transpose)
\(=\) 'T': apply \(Q^{T}\) (transpose, for real flavors)
\(=\) ' C': apply \(Q^{H}\) (conjugate transpose, for complex flavors)
```

(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(c) . m \geq 0$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(c) . n \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ 'R', $n \geq k \geq 0$.
(local)
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.
Pointer into the local memory to an array, DIMENSION(Ild_a, LOCC(ja $+k-1)$.
On entry, the j-th column must contain the vector that defines the elementary reflector $H(j)$, ja $\leq j \leq j a+k-1$, as returned by p?geqrf in the k columns of its distributed matrix argument $A(i a: \star, j a: j a+k-1)$. The argument $A\left(i a:^{\star}, j a: j a+k-1\right)$ is modified by the routine but restored on exit.
If side $=$ 'L', lld_a $\geq \max (1, \operatorname{LOCr}(i a+m-1))$, if side $=$ 'R', lld_a $\geq \max (1$, LOCr(ia+n-1)).
(global) INTEGER.
The row index in the global array A indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global array A indicating the first column of $\operatorname{sub}(A)$.
(global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix A.
(local)
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.
Array, DIMENSION LOCC (ja+k-1). This array contains the scalar factors $\operatorname{tau}(j)$ of the elementary reflector $H(j)$, as returned by p ?geqrf. This array is tied to the distributed matrix A.

	REAL for psorm2r
	DOUBLE PRECISION for pdorm2r
	COMPLEX for pcunm2r
	COMPLEX*16 for pzunm2r.
	Pointer into the local memory to an array, DIMENSION (lld_c, LOCc(jc $+n-1)$).
	On entry, the local pieces of the distributed matrix sub (C).
ic	(global) INTEGER.
	The row index in the global array C indicating the first row of sub(C).
jc	(global) INTEGER.
	The column index in the global array C indicating the first column of sub(C) .
descc	(global and local) INTEGER array of DIMENSION (dlen_).
	The array descriptor for the distributed matrix C.
work	(local)
	REAL for psorm2r
	DOUBLE PRECISION for pdorm2r
	COMPLEX for pcunm2r
	COMPLEX*16 for pzunm2r.
	Workspace array, DIMENSION (lwork).
lwork	(local or global) INTEGER.
	The dimension of the array work.
	lwork is local input and must be at least if side $=$ 'L', lwork $\geq m p c 0+\max (1, n q c 0)$,
	```if side = 'R', lwork \geq nqc0 + max(max(1, mpc0), numroc(numroc(n +icoffc, nb_a, 0, 0, npcol), nb_a, 0, 0, lcmq)), where```
	$1 \mathrm{cmq}=1 \mathrm{~cm} / \mathrm{npcol}$,
	lcm $=$ iclm(nprow, npcol),
	iroffc $=\bmod \left(i c-1, ~ m b \_c\right)$,
	icoff $C=\bmod \left(j c-1, ~ n b \_c\right)$,
	icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
	iccol $=$ indxg2p(jc, nb_c, mycol, csrc_c, npcol),
	Mqc0 = numroc (m+icoffc, nb_c, mycol, icrow, nprow),
	NpcO = numroc (n+iroffc, mb_c, myrow, iccol, npcol),
	ilcm, indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine
	blacs_gridinfo.
	If 1 work $=-1$, then 1 work is global input and a workspace query is
	assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the
	corresponding work array, and no error message is issued by

## Output Parameters

On exit, $c$ is overwritten by $Q^{\star}$ sub ( $C$ ), or $Q^{T \star}$ sub ( $C$ ) / $Q^{H \star}$ sub ( $C$ ), or $\operatorname{sub}(C) * Q$, or $\operatorname{sub}(C) * Q^{T} / \operatorname{sub}(C) * Q^{H}$
work
info
On exit, work(1) returns the minimal and optimal lwork.
(local) INTEGER.
= 0: successful exit
< 0 : if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-(i * 100+j)$,
if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

NOTE The distributed submatrices $A(i a: *, j a: *)$ and $C(i c: i c+m-1, j c: j c+n-1)$ must verify some alignment properties, namely the following expressions should be true:

If side = 'L', (mb_a.eq.mb_c .AND. iroffa.eq.iroffc .AND. iarow.eq.icrow) If side $=$ 'R', (mb_a.eq.nb_c.AND. iroffa.eq.iroffc).

## p?orml2/p?unml2

Multiplies a general matrix by the orthogonal/unitary matrix from an $L Q$ factorization determined by p? gelqf (unblocked algorithm).

## Syntax

```
call psorml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pdorml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pcunml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
```

Include Files

- C: mkl_scalapack.h


## Description

The p?orml2/p?unml2 routine overwrites the general real/complex m-by-n distributed matrix sub (C) $=C(i c: i c+m-1, j c: j c+n-1)$ with
$Q^{*}$ sub ( $C$ ) if side $=$ 'L' and trans $=$ ' $N$ ', or
$Q^{T \star}$ sub (C) / $Q^{H *}$ sub (C) if side = 'L' and trans $=$ ' $T$ ' (for real flavors) or trans = 'C' (for complex flavors), or
sub $(C) * Q$ if side $=' R$ ' and trans $=$ 'N', or
sub $(C) * Q^{T} / \operatorname{sub}(C) * Q^{H}$ if side $=' R$ ' and trans $=' T$ ' (for real flavors) or trans $=$ 'C' (for complex flavors).
where $Q$ is a real orthogonal or complex unitary distributed matrix defined as the product of $k$ elementary reflectors
$Q=H(k) \star \ldots{ }^{\star} H(2) * H(1)$ (for real flavors)
$Q=(H(k))^{H_{\star}} \ldots{ }^{*}(H(2))^{H_{\star}}(H(1))^{H}$ (for complex flavors)
as returned by p?gelqf. $Q$ is of order $m$ if side $=$ 'L' and of order $n$ if side $=$ 'R'.

## Input Parameters

side
(global) CHARACTER.
$=$ ' L': apply $Q$ or $Q^{T}$ for real flavors ( $Q^{H}$ for complex flavors) from the left,


jc	The row index in the global array $C$ indicating the first row of sub $(c)$. (global) INTEGER.
	The column index in the global array $C$ indicating the first column of sub( $c$ ).
descc	(global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix $C$.
work	(local)
	REAL for psorml2
	DOUBLE PRECISION for pdorml2
	COMPLEX for pcunml2
	COMPLEX*16 for pzunml2.
	Workspace array, DIMENSION (lwork).
lwork	(local or global) Integer.
	The dimension of the array work.
	lwork is local input and must be at least   if side $=$ 'L', lwork $\geq \operatorname{mqc0}+\max (\max (1, n p c 0)$,
	```numroc(numroc(m+icoffc, mb_a, 0, 0, nprow), mb_a, 0, 0, lcmp)), if side = 'R',lwork \geq npc0 + max(1, mqc0), where```
	$1 \mathrm{cmp}=1 \mathrm{~cm} / \mathrm{nprow}$,
	lcm $=$ iclm(nprow, npcol),
	iroffc $=\bmod \left(i c-1, ~ m b \_c\right)$,
	icoffc $=\bmod \left(j c-1, ~ n b \_c\right)$,
	icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
	iccol $=$ indxg2p(jc, nb_c, mycol, csrc_c, npcol),
	Mpco = numroc (m+icoffc, mb_c, mycol, icrow, nprow),
	NqCO = numroc (n+iroffc, nb_c, myrow, iccol, npcol),
	ilcm, indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine
	blacs_gridinfo.
	If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all
	work arrays. Each of these values is returned in the first entry of the
	corresponding work array, and no error message is issued by pxerbla.

Output Parameters

On exit, c is overwritten by $Q^{\star} \operatorname{sub}(C)$, or $Q^{T \star}$ sub (C) / $Q^{H *} \operatorname{sub}(C)$, or $\operatorname{sub}(C) * Q, \operatorname{or} \operatorname{sub}(C) * Q^{T} / \operatorname{sub}(C) * Q^{H}$
On exit, work (1) returns the minimal and optimal 1 work.
(local) Integer.
= 0: successful exit
< 0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-(i * 100+j)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

NOTE The distributed submatrices $A(i a: *, j a: *)$ and $C(i c: i c+m-1, j c: j c+n-1)$ must verify some alignment properties, namely the following expressions should be true:

If side = 'L', (nb_a.eq.mb_c .AND. icoffa.eq.iroffc)

```
If side = 'R',(nb_a.eq.nb_c .AND. icoffa.eq.icoffc .AND. iacol.eq.iccol).
```


p?ormr2/p?unmr2

Multiplies a general matrix by the orthogonal/unitary matrix from an $R Q$ factorization determined by p? gerqf (unblocked algorithm).

Syntax

```
call psormr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pdormr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pcunmr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunmr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
```

Include Files

- C: mkl_scalapack.h

Description

The p?ormr2/p?unmr2 routine overwrites the general real/complex m-by-n distributed matrix sub (C) $=C(i c: i c+m-1, j c: j c+n-1)$ with
Q^{*} sub (C) if side $=$ 'L' and trans $=$ 'N', or
$Q^{T *}$ sub (C) $/ Q^{H *}$ sub (C) if side $=$ 'L' and trans $=$ ' T ' (for real flavors) or trans $=$ ' C' (for complex flavors), or
sub $(C) * Q$ if side $=$ ' R ' and trans $=$ ' N ', or
sub $(C) * Q^{T} / \operatorname{sub}(C) * Q^{H}$ if side $=$ 'R' and trans $=$ ' T ' (for real flavors) or trans $=$ ' C' (for complex flavors).
where Q is a real orthogonal or complex unitary distributed matrix defined as the product of k elementary reflectors
$Q=H(1) * H(2) * \ldots * H(k)$ (for real flavors)
$Q=(H(1))^{H_{\star}}(H(2))^{H_{\star}} \ldots{ }^{\star}(H(k))^{H}$ (for complex flavors)
as returned by p?gerqf. Q is of order m if side $=$ 'L' and of order n if side $=$ 'R'.

Input Parameters

```
side
trans
m
```

```
(global) CHARACTER.
```

(global) CHARACTER.
= 'L': apply Q or Q ' for real flavors (Q 盾 for complex flavors) from the left,
= 'L': apply Q or Q ' for real flavors (Q 盾 for complex flavors) from the left,
= 'R': apply Q or QT for real flavors (}\mp@subsup{Q}{}{H}\mathrm{ for complex flavors) from the right.
= 'R': apply Q or QT for real flavors (}\mp@subsup{Q}{}{H}\mathrm{ for complex flavors) from the right.
(global) CHARACTER.
(global) CHARACTER.
= 'N': apply Q (no transpose)
= 'N': apply Q (no transpose)
= 'T': apply Q 'T (transpose, for real flavors)
= 'T': apply Q 'T (transpose, for real flavors)
= 'C': apply Q (conjugate transpose, for complex flavors)
= 'C': apply Q (conjugate transpose, for complex flavors)
(global) INTEGER.

```

The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(c) . m \geq 0\).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(c) . n \geq 0\).
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q\).
If side \(=\) 'L', \(m \geq k \geq 0\);
if side \(=\) 'R', \(n \geq k \geq 0\).
(local)
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Pointer into the local memory to an array, DIMENSION
(lld_a, LOCC(ja+m-1) if side='L',
(lld_a, LOCC(ja+n-1) if side='R',
where lld_a \(\geq \max (1, \operatorname{LOCr}(i a+k-1))\).
On entry, the \(i\)-th row must contain the vector that defines the elementary reflector \(H\) (i), ia \(\leq i \leq i a+k-1\), as returned by p?gerqf in the \(k\) rows of its distributed matrix argument \(A(i a: i a+k-1, j a: *)\).
The argument \(A(i a: i a+k-1, j a: *)\) is modified by the routine but restored on exit.
(global) INTEGER.
The row index in the global array \(A\) indicating the first row of \(\operatorname{sub}(A)\).
(global) INTEGER.
The column index in the global array \(A\) indicating the first column of \(\operatorname{sub}(A)\).
(global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Array, DIMENSION LOCC (ia+k-1). This array contains the scalar factors \(\operatorname{tau}(i)\) of the elementary reflector \(H(i)\), as returned by \(p\) ? gerqf. This array is tied to the distributed matrix \(A\).
(local)
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Pointer into the local memory to an array, DIMENSION(lld_c, LOCC(jc \(+n-1)\) ). On entry, the local pieces of the distributed matrix sub ( \(C\) ).
(global) INTEGER.
The row index in the global array \(C\) indicating the first row of sub( \(C\) ).
(global) INTEGER.
The column index in the global array \(c\) indicating the first column of sub(c).
(global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix \(C\).


\section*{Output Parameters}

On exit, \(c\) is overwritten by \(Q^{\star}\) sub ( \(C\) ), or \(Q^{T \star}\) sub ( \(C\) ) / \(Q^{H \star}\) sub ( \(C\) ), or sub \((C) * Q\), or sub ( \(C\) ) * \(Q^{T} / \operatorname{sub}(C) * Q^{H}\)
work
On exit, work(1) returns the minimal and optimal lwork.
(local) INTEGER.
= 0: successful exit
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\),
if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

NOTE The distributed submatrices \(A(i a: *, j a: *)\) and \(C(i c: i c+m-1, j c: j c+n-1)\) must verify some alignment properties, namely the following expressions should be true:

If side \(=\) 'L', ( nb_a.eq.mb_c .AND. icoffa.eq.iroffc )
If side = 'R', ( nb_a.eq.nb_c .AND. icoffa.eq.icoffc. AND. iacol.eq.iccol ).

\section*{p?pbtrsv}

Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a banded matrix computed by p?pbtrf.

\section*{Syntax}
```

call pspbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pdpbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pcpbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pzpbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?pbtrsv routine solves a banded triangular system of linear equations
```

A(1:n, ja:ja+n-1)*X = B(jb:jb+n-1, 1:nrhs)

```
or
\(A(1: n, j a: j a+n-1)^{T *} X=B(j b: j b+n-1,1: n r h s)\) for real flavors, \(A(1: n, j a: j a+n-1)^{H_{\star}} X=B(j b: j b+n-1,1: n r h s)\) for complex flavors,
where \(A(1: n, j a: j a+n-1)\) is a banded triangular matrix factor produced by the Cholesky factorization code p?pbtrf and is stored in \(A(1: n, j a: j a+n-1)\) and \(a f\). The matrix stored in \(A(1: n, j a: j a+n-1)\) is either upper or lower triangular according to uplo.

Routine p?pbtrf must be called first.
Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & (global) CHARACTER. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', upper triangle of \(A(1: n, j a: j a+n-1)\) is stored; \\
\hline & If uplo = 'L', lower triangle of \(A(1: n, j a: j a+n-1)\) is stored. \\
\hline \multirow[t]{5}{*}{trans} & (global) CHARACTER. Must be 'N' or 'T' or 'C'. \\
\hline & If trans \(=\) 'N', solve with \(A(1: n, j a: j a+n-1)\); \\
\hline & If trans \(=\) 'T' or 'C' for real flavors, solve with \(A(1: n, j a: j a+n-1)^{T}\). \\
\hline & If trans = 'C' for complex flavors, solve with conjugate \\
\hline & transpose(A(1:n, ja:ja+n-1) \({ }^{H}\). \\
\hline \multirow[t]{2}{*}{\(n\)} & (global) INTEGER. \\
\hline & The number of rows and columns to be operated on, that is, the order of the distributed submatrix \(A(1: n, j a: j a+n-1) . n \geq 0\). \\
\hline \multirow[t]{2}{*}{bw} & (global) INTEGER. \\
\hline & The number of subdiagonals in 'L' or ' U ', \(0 \leq b_{W} \leq n-1\). \\
\hline \multirow[t]{2}{*}{nrhs} & (global) INTEGER. \\
\hline & The number of right hand sides; the number of columns of the distributed submatrix \(B(j b: j b+n-1,1: n r h s) ; n r h s \geq 0\). \\
\hline \multirow[t]{5}{*}{a} & (local) \\
\hline & REAL for pspbtrsv \\
\hline & DOUBLE PRECISION for pdpbtrsv \\
\hline & COMPLEX for pcpbtrsv \\
\hline & COMPLEX*16 for pzpbtrsv. \\
\hline
\end{tabular}

Pointer into the local memory to an array with the first DIMENSION lld_a \(\geq(b w+1)\), stored in desca.
On entry, this array contains the local pieces of the \(n\)-by- \(n\) symmetric banded distributed Cholesky factor \(L\) or \(L^{T \star} A(1: n, j a: j a+n-1)\).
This local portion is stored in the packed banded format used in LAPACK. See the Application Notes below and the ScaLAPACK manual for more detail on the format of distributed matrices.
ja
desca
b
ib
descb
laf
work
lwork
(global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A).
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
If 1D type (dtype_a = 501), then dlen \(\geq 7\);
If 2D type (dtype_a \(=1\) ), then dlen \(\geq 9\).
Contains information on mapping of \(A\) to memory. (See ScaLAPACK manual for full description and options.)
(local)
REAL for pspbtrsv
DOUBLE PRECISION for pdp.btrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
Pointer into the local memory to an array of local lead DIMENSION lld_b \(\geq\) nb.
On entry, this array contains the local pieces of the right hand sides \(B(j b: j b+n-1,1: n r h s)\).
(global) INTEGER. The row index in the global array \(B\) that points to the first row of the matrix to be operated on (which may be either all of \(B\) or a submatrix of \(B\) ).
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(B\).
If 1D type (dtype_b = 502), then dlen \(\geq 7\);
If 2D type (dtype_b = 1), then dlen \(\geq 9\).
Contains information on mapping of \(B\) to memory. Please, see ScaLAPACK manual for full description and options.
(local)
INTEGER. The size of user-input auxiliary Fillin space af. Must be laf \(\geq\) \(\left(n b+2 * b_{w}\right) * b_{w}\). If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\).
(local)
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
The array work is a temporary workspace array of DIMENSION lwork. This space may be overwritten in between calls to routines.
(local or global) INTEGER. The size of the user-input workspace work, must be at least 1 work \(\geq b w^{\star} n r h s\). If lwork is too small, the minimal acceptable size will be returned in work (1) and an error code is returned.

\section*{Output Parameters}
```

af
b
work(1)
info

```

\section*{Application Notes}

If the factorization routine and the solve routine are to be called separately to solve various sets of righthand sides using the same coefficient matrix, the auxiliary space af must not be altered between calls to the factorization routine and the solve routine.

The best algorithm for solving banded and tridiagonal linear systems depends on a variety of parameters, especially the bandwidth. Currently, only algorithms designed for the case N/P >> bw are implemented. These algorithms go by many names, including Divide and Conquer, Partitioning, domain decompositiontype, etc.

The Divide and Conquer algorithm assumes the matrix is narrowly banded compared with the number of equations. In this situation, it is best to distribute the input matrix \(A\) one-dimensionally, with columns atomic and rows divided amongst the processes. The basic algorithm divides the banded matrix up into \(P\) pieces with one stored on each processor, and then proceeds in 2 phases for the factorization or 3 for the solution of a linear system.
1. Local Phase: The individual pieces are factored independently and in parallel. These factors are applied to the matrix creating fill-in, which is stored in a non-inspectable way in auxiliary space af.
Mathematically, this is equivalent to reordering the matrix \(A\) as \(P A P^{T}\) and then factoring the principal leading submatrix of size equal to the sum of the sizes of the matrices factored on each processor. The factors of these submatrices overwrite the corresponding parts of \(A\) in memory.
2. Reduced System Phase: A small \(\left(b w^{*}(P-1)\right)\) system is formed representing interaction of the larger blocks and is stored (as are its factors) in the space af. A parallel Block Cyclic Reduction algorithm is used. For a linear system, a parallel front solve followed by an analogous backsolve, both using the structure of the factored matrix, are performed.
3. Back Subsitution Phase: For a linear system, a local backsubstitution is performed on each processor in parallel.

\section*{p?pttrsv}

Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a tridiagonal matrix computed by p?pttrf.

\section*{Syntax}
```

call pspttrsv(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
call pdpttrsv(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
call pcpttrsv(uplo, trans, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pzpttrsv(uplo, trans, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work,
lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?pttrsv routine solves a tridiagonal triangular system of linear equations
```

A(1:n, ja:ja+n-1)*X = B(jb:jb+n-1, 1:nrhs)

```
or
\(A(1: n, j a: j a+n-1)^{T *} X=B(j b: j b+n-1,1: n r h s)\) for real flavors,
\(A(1: n, j a: j a+n-1)^{H_{\star}} X=B(j b: j b+n-1,1: n r h s)\) for complex flavors,
where \(A(1: n, \quad j a: j a+n-1)\) is a tridiagonal triangular matrix factor produced by the Cholesky factorization code p?pttrf and is stored in \(A(1: n, j a: j a+n-1)\) and af. The matrix stored in \(A(1: n, j a: j a+n-1)\) is either upper or lower triangular according to uplo.

Routine p?pttrf must be called first.

\section*{Input Parameters}
```

uplo
trans (global) CHARACTER. Must be 'N' or 'C'.
n
nrhs
d
(global) CHARACTER. Must be 'U' or 'L'.
If uplo = 'U', upper triangle of A(1:n, ja:ja+n-1) is stored;
If uplo = 'L', lower triangle of A(1:n, ja:ja+n-1) is stored.
If trans = 'N', solve with A(1:n, ja:ja+n-1);
If trans = 'C' (for complex flavors), solve with conjugate transpose
(A(1:n, ja:ja+n-1)) H.
(global) INTEGER.
The number of rows and columns to be operated on, that is, the order of
the distributed submatrix A(1:n, ja:ja+n-1).n \geq 0.
(global) INTEGER.
The number of right hand sides; the number of columns of the distributed
submatrix }B(jb:jb+n-1,1:nrhs); nrhs \geq 0.
(local)
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
Pointer to the local part of the global vector storing the main diagonal of the
matrix; must be of size \geq desca(nb_).

```
e
    (local)

REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
Pointer to the local part of the global vector storing the upper diagonal of the matrix; must be of size \(\geq\) desca(nb_). Globally, \(d u(n)\) is not referenced, and \(d u\) must be aligned with \(d\).
(global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A).
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
If 1D type (dtype_a \(=501\) or 502), then dlen \(\geq 7\);
If 2D type (dtype_a \(=1\) ), then dlen \(\geq 9\).
Contains information on mapping of \(A\) to memory. See ScaLAPACK manual for full description and options.
(local)
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
Pointer into the local memory to an array of local lead DIMENSION lld_b \(\geq\) nb.

On entry, this array contains the local pieces of the right hand sides B(jb:jb+n-1, 1:nrhs).
(global) INTEGER. The row index in the global array \(B\) that points to the first row of the matrix to be operated on (which may be either all of \(B\) or a submatrix of \(B\) ).
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(в\).
If 1D type (dtype_b = 502), then dlen \(\geq 7\);
If 2D type (dtype_b = 1), then dlen \(\geq 9\).
Contains information on mapping of \(B\) to memory. See ScaLAPACK manual for full description and options.
(local)
INTEGER. The size of user-input auxiliary Fillin space af. Must be laf \(\geq\) ( \(n b+2\) *bw) *bw.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\).
(local)
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
The array work is a temporary workspace array of DIMENSION lwork. This space may be overwritten in between calls to routines.
(local or global) INTEGER. The size of the user-input workspace work, must be at least 1 work \(\geq(10+2 * \min (100, n r h s)) * n p c o l+4 * n r h s\). If lwork is too small, the minimal acceptable size will be returned in work(1) and an error code is returned.

\section*{Output Parameters}
```

d,e
b
work (1)
info

```
(local).
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
On exit, these arrays contain information on the factors of the matrix.
(local)
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
The array af is of DIMENSION laf. It contains auxiliary Fillin space. Fillin is created during the factorization routine \(p\) ?pbtrf and this is stored in af. If a linear system is to be solved using p?pttrs after the factorization routine, af must not be altered after the factorization.
On exit, this array contains the local piece of the solutions distributed matrix \(x\).
On exit, work (1) contains the minimum value of 1 work.
(local) INTEGER.
\(=0\) : successful exit
\(<0\) : if the i-th argument is an array and the j-entry had an illegal value, then info \(=-(i * 100+j)\),
if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
p?potf2
Computes the Cholesky factorization of a symmetric/
Hermitian positive definite matrix (local unblocked algorithm).

\section*{Syntax}
```

call pspotf2(uplo, n, a, ia, ja, desca, info)
call pdpotf2(uplo, n, a, ia, ja, desca, info)
call pcpotf2(uplo, n, a, ia, ja, desca, info)
call pzpotf2(uplo, n, a, ia, ja, desca, info)

```

Include files
- C: mkl_scalapack.h

\section*{Description}

The p?potf2 routine computes the Cholesky factorization of a real symmetric or complex Hermitian positive definite distributed matrix sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\).
The factorization has the form
```

sub (A) = U'*U, if uplo = 'U', or sub (A) = L* L', if uplo = 'L',

```
where \(U\) is an upper triangular matrix, \(L\) is lower triangular. \(X^{\prime}\) denotes transpose (conjugate transpose) of \(X\).

\section*{Input Parameters}
uplo
n
a
ia, ja
desca

\section*{Output Parameters}
\(a\)

info
info
(global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix \(A\) is stored.
\(=\) ' \(U\) ' : upper triangle of sub \((A)\) is stored;
\(=\) 'L': lower triangle of sub (A) is stored.
(global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the distributed submatrix sub (A). \(n \geq 0\).
(local)
REAL for pspotf2
DOUBLE PRECISION or pdpotf2
COMPLEX for pcpotf2
COMPLEX*16 for pzpotf2.
Pointer into the local memory to an array of DIMENSION (Ild_a, LOCC(ja
\(+n-1\) ) ) containing the local pieces of the \(n-b y-n\) symmetric distributed matrix \(\operatorname{sub}(A)\) to be factored.
If uplo = ' \(U\) ', the leading \(n-b y-n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular matrix and the strictly lower triangular part of this matrix is not referenced.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of sub(A) contains the lower triangular matrix and the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced.
(global) INTEGER.
The row and column indices in the global array \(A\) indicating the first row and the first column of the \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
On exit,
if uplo = 'U', the upper triangular part of the distributed matrix contains the Cholesky factor U;
if uplo = 'L', the lower triangular part of the distributed matrix contains the Cholesky factor L.
(local) Integer.
= 0: successful exit
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
> 0: if info \(=k\), the leading minor of order \(k\) is not positive definite, and the factorization could not be completed.
p?rscl
Multiplies a vector by the reciprocal of a real scalar.

\section*{Syntax}
```

call psrscl(n, sa, sx, ix, jx, descx, incx)

```
```

call pdrscl(n, sa, sx, ix, jx, descx, incx)
call pcsrscl(n, sa, sx, ix, jx, descx, incx)
call pzdrscl(n, sa, sx, ix, jx, descx, incx)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?rscl routine multiplies an \(n\)-element real/complex vector sub ( \(x\) ) by the real scalar \(1 / a\). This is done without overflow or underflow as long as the final result sub ( \(x\) ) / a does not overflow or underflow.
sub (x) denotes \(x(i x: i x+n-1, j x: j x)\), if incx \(=1\),
and \(x(i x: i x, j x: j x+n-1)\), if incx \(=m_{-} x\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\(n\)} & (global) INTEGER. \\
\hline & The number of components of the distributed vector \(\operatorname{sub}(x) . n \geq 0\). \\
\hline \multirow[t]{3}{*}{sa} & REAL for psrscl/pcsrscl \\
\hline & DOUBLE PRECISION for pdrscl/pzdrscl. \\
\hline & The scalar a that is used to divide each component of the vector \(x\). This parameter must be \(\geq 0\). \\
\hline \multirow[t]{5}{*}{\(s X\)} & REAL forpsrscl \\
\hline & DOUBLE PRECISION for pdrscl \\
\hline & COMPLEX for pcsrscl \\
\hline & COMPLEX*16 for pzdrscl. \\
\hline & Array containing the local pieces of a distributed matrix of DIMENSION of at least \(\left((j x-1){ }^{m} m_{-} x+i x+(n-1) * a b s(i n c x)\right)\). This array contains the entries of the distributed vector \(\operatorname{sub}(x)\). \\
\hline ix & (global) INTEGER.The row index of the submatrix of the distributed matrix \(x\) to operate on. \\
\hline \multirow[t]{2}{*}{jx} & (global) INTEGER. \\
\hline & The column index of the submatrix of the distributed matrix \(x\) to operate on. \\
\hline \multirow[t]{2}{*}{descx} & (global and local). INTEGER. \\
\hline & Array of DIMENSION 8. The array descriptor for the distributed matrix \(x\). \\
\hline \multirow[t]{2}{*}{incx} & (global) INTEGER. \\
\hline & The increment for the elements of \(x\). This version supports only two values of incx, namely 1 and \(m x\). \\
\hline
\end{tabular}

\section*{Output Parameters}

SX
On exit, the result \(x / a\).

\footnotetext{
p?sygs2/p?hegs2
Reduces a symmetric/Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from p?potrf (local unblocked algorithm).
}

\section*{Syntax}
```

call pssygs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)
call pdsygs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)
call pchegs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)
call pzhegs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?sygs \(2 / p\) ?hegs 2 routine reduces a real symmetric-definite or a complex Hermitian-definite generalized eigenproblem to standard form.
Here sub ( \(A\) ) denotes \(A(i a: i a+n-1, j a: j a+n-1)\), and \(\operatorname{sub}(B)\) denotes \(B(i b: i b+n-1, j b: j b+n-1)\).
If ibtype \(=1\), the problem is

and sub ( \(A\) ) is overwritten by
```

inv (UT)*sub (A)*inv (U) or inv (L)*sub (A)*inv (}\mp@subsup{L}{}{T}\mathrm{) - for real flavors, and
inv (UH)*sub (A)*inv (U) or inv (L)*sub (A)*inv (L L') - for complex flavors.

```

If ibtype \(=2\) or 3 , the problem is
```

sub (A)*sub (B) x = \lambda* X or sub (B)*sub (A) x = \* X

```
and sub ( \(A\) ) is overwritten by
\(U^{\star} \operatorname{sub}(A) * U^{T}\) or \(L^{\star *} T^{*} \operatorname{sub}(A) * L\) - for real flavors and
\(U^{\star} \operatorname{sub}(A) * U^{H}\) or \(L^{\star}{ }^{\star} H^{\star}\) sub (A) \({ }^{\star} L\) - for complex flavors.
The matrix sub (B) must have been previously factorized as \(U^{T} \star U\) or \(L^{*} L^{T}\) (for real flavors), or as \(U^{H \star} U\) or \(L^{*} L^{H}\) (for complex flavors) by p?potrf.

\section*{Input Parameters}
```

ibtype
uplo
n
(global) INTEGER.
= 1:
compute inv((U) *sub (A)*inv(U), or inv(L)*sub (A)*inv(}\mp@subsup{L}{}{T}\mathrm{) for real
subroutines,
and inv(U'H)*\operatorname{sub}(A)*inv(U), or inv(L)*\operatorname{sub}(A)*inv(\mp@subsup{L}{}{H}) for complex
subroutines;
= 2 or 3:
compute U*}\mp@subsup{U}{}{\star}\operatorname{sub}(A)*\mp@subsup{U}{}{T}\mathrm{ , or }\mp@subsup{L}{}{T*}\mathrm{ sub (A) *L for real subroutines,
and U*sub (A)* * U
(global) CHARACTER
Specifies whether the upper or lower triangular part of the symmetric/
Hermitian matrix sub(A) is stored, and how sub(B) is factorized.
= 'U': Upper triangular of sub(A) is stored and sub(B) is factorized as U'T}\mp@subsup{U}{}{T
(for real subroutines) or as }\mp@subsup{U}{}{H}*UU\mathrm{ (for complex subroutines).
= 'L': Lower triangular of sub(A) is stored and \operatorname{sub}(B)\mathrm{ is factorized as L* 'LT}
(for real subroutines) or as L* L'H}\mathrm{ (for complex subroutines)
(global) INTEGER.
The order of the matrices sub(A) and sub(B). n \geq0.

```
```

a
(local)
REAL for pssygs2
DOUBLE PRECISION for pdsygs2
COMPLEX for pchegs2
COMPLEX*16 for pzhegs2.
Pointer into the local memory to an array, DIMENSION(lld_a, LOCC(ja
+n-1)).
On entry, this array contains the local pieces of the n-by-n symmetric/
Hermitian distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains
the upper triangular part of the matrix, and the strictly lower triangular part
of sub(A) is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains
the lower triangular part of the matrix, and the strictly upper triangular part
of sub(A) is not referenced.

```
ia, ja
desca

B
ib, jb
descb

\section*{Output Parameters}
```

(global) INTEGER.
The row and column indices in the global array A indicating the first row and the first column of the $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
(local)
REAL for pssygs2
DOUBLE PRECISION for pdsygs2
COMPLEX for pchegs2
COMPLEX*16 for pzhegs2.
Pointer into the local memory to an array, DIMENSION (lld_b, LOCC (jb
$+n-1)$).
On entry, this array contains the local pieces of the triangular factor from the Cholesky factorization of $\operatorname{sub}(B)$ as returned by p?potrf.
(global) INTEGER.
The row and column indices in the global array B indicating the first row and the first column of the $\operatorname{sub}(B)$, respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix B.

```

\footnotetext{
a
info
p?sytd2/p?hetd2
Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation (local unblocked algorithm).
}
(local)
On exit, if info \(=0\), the transformed matrix is stored in the same format as sub(A).
INTEGER.
= 0 : successful exit.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100)\),
if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Syntax}
```

call pssytd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pdsytd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pchetd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pzhetd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?sytd2/p?hetd2 routine reduces a real symmetric/complex Hermitian matrix sub(A) to symmetric/ Hermitian tridiagonal form \(T\) by an orthogonal/unitary similarity transformation:
```

Q'*sub(A)*Q = T, where sub(A) = A(ia:ia+n-1, ja:ja+n-1).

```

Input Parameters
uplo
n
a
ia, ja
desca
work
(global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix \(\operatorname{sub}(A)\) is stored:
= 'U': upper triangular
\(=\) 'L': lower triangular
(global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the distributed submatrix \(\operatorname{sub}(A) . n \geq 0\).
(local)
REAL for pssytd2
DOUBLE PRECISION for pdsytd2
COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.
Pointer into the local memory to an array, DIMENSION (lld_a, LOCC (ja
\(+n-1)\) ).
On entry, this array contains the local pieces of the \(n\)-by- \(n\) symmetric/
Hermitian distributed matrix \(\operatorname{sub}(A)\).
If uplo = 'U', the leading \(n-b y-n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and the strictly lower triangular part of \(\operatorname{sub}(A)\) is not referenced.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of sub( \(A\) ) contains the lower triangular part of the matrix, and the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced.
(global) INTEGER.
The row and column indices in the global array \(A\) indicating the first row and the first column of the \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).
(local)
REAL for pssytd2
DOUBLE PRECISION for pdsytd2
COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.

The array work is a temporary workspace array of DIMENSION lwork.

\section*{Output Parameters}
\(a\)
d
e
tau
work(1)
lwork
info

On exit, if uplo = 'U', the diagonal and first superdiagonal of \(\operatorname{sub}(A)\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements above the first superdiagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors;
if uplo = 'L', the diagonal and first subdiagonal of \(A\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements below the first subdiagonal, with the array tau, represent the orthogonal/ unitary matrix \(Q\) as a product of elementary reflectors. See the Application Notes below.
(local)
REAL for pssytd2/pchetd2
DOUBLE PRECISION for pdsytd2/pzhetd2.
Array, DIMENSION (LOCC \((j a+n-1))\). The diagonal elements of the tridiagonal matrix \(T\) :
\(d(i)=a(i, i) ; d\) is tied to the distributed matrix \(A\).
(local)
REAL for pssytd2/pchetd2
DOUBLE PRECISION for pdsytd2/pzhetd2.
Array, DIMENSION(LOCC(ja+n-1)),
if uplo = 'U', LOCC(ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix \(T\) :
\(e(i)=a(i, i+1)\) if uplo = 'U',
\(e(i)=a(i+1, i)\) if uplo = 'L'.
\(e\) is tied to the distributed matrix \(A\).
(local)
REAL for pssytd2
DOUBLE PRECISION for pdsytd2
COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.
Array, DIMENSION (LOCC (ja+n-1)).
The scalar factors of the elementary reflectors. tau is tied to the distributed matrix \(A\).
On exit, work (1) returns the minimal and optimal value of lwork.
(local or global) INTEGER.
The dimension of the workspace array work.
lwork is local input and must be at least 1 work \(\geq 3 n\).
If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local) INTEGER.
= 0 : successful exit
< 0: if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100)\),
if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

If uplo = 'U', the matrix \(Q\) is represented as a product of elementary reflectors
\[
Q=H(n-1) * \ldots * H(2) * H(1)
\]

Each \(H(i)\) has the form
\(H(i)=I-t a u^{\star} V^{\star} V^{\prime}\),
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(i+1: n)=0\) and \(v(i)=1\); \(v(1: i-1)\) is stored on exit in A(ia:ia+i-2, ja+i), and tau in TAU(ja+i-1).

If uplo = 'L', the matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(1) * H(2) * \ldots * H(n-1)\).
Each \(H(\mathrm{i})\) has the form
\(H(i)=I-t a u^{*} v^{*} V^{\prime}\),
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i)=0\) and \(v(i+1)=1 ; v(i\) \(+2: n\) ) is stored on exit in \(A(i a+i+1: i a+n-1, j a+i-1)\), and tau in TAU(ja+i-1).
The contents of sub (A) on exit are illustrated by the following examples with \(n=5\) :
\[
\begin{aligned}
& \text { if uplo='U': if uplo='L': } \\
& {\left[\begin{array}{lllll}
d & e & v_{2} & v_{3} & v_{4} \\
& d & e & v_{3} & v_{4} \\
& & d & e & v_{4} \\
& & & d & e \\
& & & & d
\end{array}\right] \quad\left[\begin{array}{lllll}
d & & & \\
e & d & & \\
v 1 & e & d & & \\
v 1 & v_{2} & e & d & \\
v 1 & v_{2} & v_{3} & e & d
\end{array}\right]}
\end{aligned}
\]
where \(d\) and \(e\) denotes diagonal and off-diagonal elements of \(T\), and \(v_{i}\) denotes an element of the vector defining \(H(i)\).

NOTE The distributed submatrix \(\operatorname{sub}(A)\) must verify some alignment properties, namely the following expression should be true:
( mb_a.eq.nb_a .AND. iroffa.eq.icoffa ) with iroffa \(=\bmod \left(i a-1, m b _a\right)\) and icoffa \(=\) \(\bmod \left(j a-1, ~ n b _a\right)\).

\section*{p?trti2}

Computes the inverse of a triangular matrix (local unblocked algorithm).

\section*{Syntax}
```

call pstrti2(uplo, diag, n, a, ia, ja, desca, info)
call pdtrti2(uplo, diag, n, a, ia, ja, desca, info)
call pctrti2(uplo, diag, n, a, ia, ja, desca, info)
call pztrti2(uplo, diag, n, a, ia, ja, desca, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?trti2 routine computes the inverse of a real/complex upper or lower triangular block matrix sub (A) = A(ia:ia+n-1, ja:ja+n-1).

This matrix should be contained in one and only one process memory space (local operation).

\section*{Input Parameters}
desca

\section*{Output Parameters}
a
info
```

uplo
diag
n
a
ia, ja
(global) CHARACTER*1.
Specifies whether the matrix sub (A) is upper or lower triangular.
$=$ 'U': sub (A) is upper triangular
$=$ 'L': sub (A) is lower triangular.
(global) CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
$=$ ' N ': sub (A) is non-unit triangular
$=$ 'U': sub (A) is unit triangular.
(global) INTEGER.
The number of rows and columns to be operated on, i.e., the order of the distributed submatrix sub (A). $n \geq 0$.
(local)
REAL for pstrti2
DOUBLE PRECISION for pdtrti2
COMPLEX for pctrti2
COMPLEX*16 for pztrti2.
Pointer into the local memory to an array, DIMENSION(Ild_a, LOCC(ja $+n-1)$).
On entry, this array contains the local pieces of the triangular matrix $\operatorname{sub}(A)$.
If uplo = 'U', the leading n-by-n upper triangular part of the matrix sub (A) contains the upper triangular part of the matrix, and the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced.
If uplo = 'L', the leading n-by- n lower triangular part of the matrix $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced. If diag $=$ ' U ', the diagonal elements of $\operatorname{sub}(A)$ are not referenced either and are assumed to be 1 .
(global) INTEGER.

```

The row and column indices in the global array \(A\) indicating the first row and the first column of the \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).

On exit, the (triangular) inverse of the original matrix, in the same storage format.
INTEGER.
\(=0\) : successful exit
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100)\),
if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```

?lamsh
Sends multiple shifts through a small (single node)
matrix to maximize the number of bulges that can be
sent through.
Syntax
call slamsh(s, lds, nbulge, jblk, h, ldh, n, ulp)
call dlamsh(s, lds, nbulge, jblk, h, ldh, n, ulp)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The ? lamsh routine sends multiple shifts through a small (single node) matrix to see how small consecutive subdiagonal elements are modified by subsequent shifts in an effort to maximize the number of bulges that can be sent through. The subroutine should only be called when there are multiple shifts/bulges (nbulge > 1) and the first shift is starting in the middle of an unreduced Hessenberg matrix because of two or more small consecutive subdiagonal elements.

\section*{Input Parameters}
```

s (local)
INTEGER. REAL for slamsh
DOUBLE PRECISION for dlamsh
Array, DIMENSION (lds,*).
On entry, the matrix of shifts. Only the 2x2 diagonal of s is referenced. It is
assumed that s has jblk double shifts (size 2).
lds
nbulge
jblk
h
ldh
n
ulp
(local) INTEGER.
On entry, the leading dimension of S; unchanged on exit. 1<nbulge \leq
jblk \leq lds/2.
(local) INTEGER.
On entry, the number of bulges to send through h (>1). nbulge should be
less than the maximum determined (jblk). 1<nbulge \leq jblk \leq lds/2.
(local) INTEGER.
On entry, the leading dimension of S; unchanged on exit.
(local) INTEGER.
REAL for slamsh
DOUBLE PRECISION for dlamsh
Array, DIMENSION (lds, n).
On entry, the local matrix to apply the shifts on.
h should be aligned so that the starting row is 2.
(local)
INTEGER.
On entry, the leading dimension of H; unchanged on exit.
(local) INTEGER.
On entry, the size of }H\mathrm{ . If all the bulges are expected to go through, n
should be at least 4nbulge+2. Otherwise, nbulge may be reduced by this
routine.
(local)
REAL for slamsh

```

DOUBLE PRECISION for dlamsh
On entry, machine precision. Unchanged on exit.

\section*{Output Parameters}
```

S
n.bulge
h

```

On exit, the data is rearranged in the best order for applying.
On exit, the maximum number of bulges that can be sent through.
On exit, the data is destroyed.

\section*{?laref}

Applies Householder reflectors to matrices on either their rows or columns.

\section*{Syntax}
```

call slaref(type, a, lda, wantz, z, ldz, block, irowl, icoll, istart, istop, itmpl,
itmp2, liloz, lihiz, vecs, v2, v3, t1, t2, t3)
call dlaref(type, a, lda, wantz, z, ldz, block, irowl, icoll, istart, istop, itmpl,
itmp2, liloz, lihiz, vecs, v2, v3, t1, t2, t3)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The ? laref routine applies one or several Householder reflectors of size 3 to one or two matrices (if column is specified) on either their rows or columns.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{type} & (global) CHRACTER*1. \\
\hline & If type \(=\) 'R', apply reflectors to the rows of the matrix (apply from left). Otherwise, apply reflectors to the columns of the matrix. Unchanged on exit. \\
\hline \multirow[t]{4}{*}{a} & (global) REAL for slaref \\
\hline & DOUBLE PRECISION for dlaref \\
\hline & Array, DIMENSION (lda, *). \\
\hline & On entry, the matrix to receive the reflections. \\
\hline \multirow[t]{2}{*}{Ida} & (local) INTEGER. \\
\hline & On entry, the leading dimension of \(A\); unchanged on exit. \\
\hline \multirow[t]{3}{*}{wantz} & (global) LOGICAL. \\
\hline & If wantz = .TRUE., apply any column reflections to \(z\) as well. \\
\hline & If wantz = .FALSE., do no additional work on \(z\). \\
\hline \multirow[t]{4}{*}{z} & (global) REAL for slaref \\
\hline & DOUBLE PRECISION for dlaref \\
\hline & Array, DIMENSION ( \(1 d z, *\) ). \\
\hline & On entry, the second matrix to receive column reflections. \\
\hline \multirow[t]{2}{*}{\(1 d z\)} & (local) INTEGER. \\
\hline & On entry, the leading dimension of \(z\); unchanged on exit. \\
\hline \multirow[t]{2}{*}{block} & (global). LOGICAL. \\
\hline & \(=\).TRUE . : apply several reflectors at once and read their data from the vecs array; \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline irow1 & \(=\).FALSE . : apply the single reflector given by v2, v3, t1, t2, and \(t 3\). (local) INTEGER. \\
\hline & On entry, the local row element of the matrix \(A\). \\
\hline icoll & \begin{tabular}{l}
(local) INTEGER. \\
On entry, the local column element of the matrix \(A\).
\end{tabular} \\
\hline istart & \begin{tabular}{l}
(global) INTEGER. \\
Specifies the "number" of the first reflector. \\
istart is used as an index into vecs if block is set. istart is ignored if block is . FALSE. .
\end{tabular} \\
\hline istop & \begin{tabular}{l}
(global) INTEGER. \\
Specifies the "number" of the last reflector. \\
istop is used as an index into vecs if block is set. istop is ignored if block is . FALSE. .
\end{tabular} \\
\hline itmp1 & \begin{tabular}{l}
(local) INTEGER. \\
Starting range into \(A\). For rows, this is the local first column. For columns, this is the local first row.
\end{tabular} \\
\hline itmp2 & \begin{tabular}{l}
(local) INTEGER. \\
Ending range into \(A\). For rows, this is the local last column. For columns, this is the local last row.
\end{tabular} \\
\hline liloz, lihiz & \begin{tabular}{l}
(local). INTEGER. \\
Serve the same purpose as itmp1, itmp2 but for \(z\) when wantz is set.
\end{tabular} \\
\hline vecs & \begin{tabular}{l}
(global) \\
REAL for slaref \\
DOUBLE PRECISION for dlaref. \\
Array of size \(3 *_{n}\) (matrix size). This array holds the size 3 reflectors one after another and is only accessed when block is .TRUE.
\end{tabular} \\
\hline \(v 2, v 3, t 1, t 2, t 3\) & \begin{tabular}{l}
(global). INTEGER. \\
REAL for slaref \\
DOUBLE PRECISION for dlaref. \\
These parameters hold information on a single size 3 Householder reflector and are read when block is .FALSE., and overwritten when block is . TRUE..
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
```

a
z
irow1
icol1
v2,v3,t1,t2,t3

```

On exit, the updated matrix.
Changed only if wantz is set. If wantz is.FALSE. , z is not referenced.
Undefined.
Undefined.
These parameters are read when block is .FALSE., and overwritten when block is .TRUE..

\section*{?lasorte}

Sorts eigenpairs by real and complex data types.

\section*{Syntax}
```

call slasorte(s, lds, j, out, info)
call dlasorte(s, lds, j, out, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The ?lasorte routine sorts eigenpairs so that real eigenpairs are together and complex eigenpairs are together. This helps to employ \(2 \times 2\) shifts easily since every second subdiagonal is guaranteed to be zero. This routine does no parallel work and makes no calls.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{s} & (local) INTEGER. \\
\hline & REAL for slasorte \\
\hline & DOUBLE PRECISION for dlasorte \\
\hline & Array, DIMENSION (lds). \\
\hline & On entry, a matrix already in Schur form. \\
\hline \multirow[t]{2}{*}{lds} & (local) INTEGER. \\
\hline & On entry, the leading dimension of the array \(s\); unchanged on exit. \\
\hline \multirow[t]{2}{*}{j} & (local) INTEGER. \\
\hline & On entry, the order of the matrix \(S\); unchanged on exit. \\
\hline \multirow[t]{3}{*}{out} & (local) INTEGER. \\
\hline & REAL for slasorte \\
\hline & DOUBLE PRECISION for dlasorte \\
\hline
\end{tabular}
info
Array, DIMENSION \(\left(2_{j}\right)\). The work buffer required by the routine.
(local) INTEGER.
Set, if the input matrix had an odd number of real eigenvalues and things could not be paired or if the input matrix \(S\) was not originally in Schur form. 0 indicates successful completion.

\section*{Output Parameters}
\begin{tabular}{ll}
\(s\) & \begin{tabular}{l} 
On exit, the diagonal blocks of \(S\) have been rewritten to pair the \\
eigenvalues. The resulting matrix is no longer similar to the input.
\end{tabular} \\
out & Work buffer.
\end{tabular}

\section*{?lasrt2}

Sorts numbers in increasing or decreasing order.

\section*{Syntax}
```

call slasrt2(id, n, d, key, info)
call dlasrt2(id, n, d, key, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The ?lasrt2 routine is modified LAPACK routine ?lasrt, which sorts the numbers in \(d\) in increasing order (if id \(=\) 'I') or in decreasing order (if \(i d=\) ' D' ). It uses Quick Sort, reverting to Insertion Sort on arrays of size \(\leq 20\). Dimension of \(\operatorname{STACK}\) limits \(n\) to about \(2^{32}\).

\section*{Input Parameters}
```

id CHARACTER*1.
= 'I': sort d in increasing order;
= 'D': sort d in decreasing order.

```
n
INTEGER. The length of the array \(d\).
REAL for slasrt2
DOUBLE PRECISION for dlasrt2.
Array, DIMENSION ( \(n\) ).
On entry, the array to be sorted.
key

INTEGER.
Array, DIMENSION (n).
On entry, key contains a key to each of the entries in \(d()\).
Typically, key(i) = ifor all i.

\section*{Output Parameters}

On exit, \(d\) has been sorted into increasing order
```

(d(1) \leq . . \leqd(n)) or into decreasing order
(d(1) \geq .. \geqd(n)), depending on id.
INTEGER.
= 0 : successful exit
< 0 : if info $=-i$, the i-th argument had an illegal value.

```
key
On exit, key is permuted in exactly the same manner as \(d()\) was permuted from input to output. Therefore, if \(k e y(i)=i\) for all \(i\) upon input, then d_out(i) = d_in(key(i)).

\section*{?stein2}

Computes the eigenvectors corresponding to specified eigenvalues of a real symmetric tridiagonal matrix, using inverse iteration.

\section*{Syntax}
```

call sstein2(n, d, e, m, w, iblock, isplit, orfac, z, ldz, work, iwork, ifail, info)
call dstein2(n, d, e, m, w, iblock, isplit, orfac, z, ldz, work, iwork, ifail, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The ?stein 2 routine is a modified LAPACK routine ?stein. It computes the eigenvectors of a real symmetric tridiagonal matrix \(T\) corresponding to specified eigenvalues, using inverse iteration.

The maximum number of iterations allowed for each eigenvector is specified by an internal parameter maxits (currently set to 5 ).

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. The order of the matrix \(T(n \geq 0)\). \\
\(m\) & INTEGER. The number of eigenvectors to be found \((0 \leq m \leq n)\). \\
\(d, e, w\) & REAL for single-precision flavors
\end{tabular}

DOUBLE PRECISION for double-precision flavors.
Arrays: \(d\left({ }^{*}\right)\), DIMENSION ( \(n\) ). The \(n\) diagonal elements of the tridiagonal matrix \(T\).
\(e(*)\), DIMENSION ( \(n\) ).
The ( \(n-1\) ) subdiagonal elements of the tridiagonal matrix \(T\), in elements 1 to \(n-1\). e( \(n\) ) need not be set.
\(w(*)\), DIMENSION ( \(n\) ).
The first \(m\) elements of \(w\) contain the eigenvalues for which eigenvectors are to be computed. The eigenvalues should be grouped by split-off block and ordered from smallest to largest within the block. (The output array w from ?stebz with ORDER = 'B' is expected here).
The dimension of \(w\) must be at least max \((1, n)\).
iblock
isplit
orfac
\(1 d z\)
work
iwork

\section*{Output Parameters}
z

INTEGER.
Array, DIMENSION ( \(n\) ).
The submatrix indices associated with the corresponding eigenvalues in \(w\); iblock(i) = 1, if eigenvalue \(w(i)\) belongs to the first submatrix from the top,
iblock(i) = 2, if eigenvalue \(w(i)\) belongs to the second submatrix, etc. (The output array iblock from ?stebz is expected here).
INTEGER.
Array, DIMENSION ( \(n\) ).
The splitting points, at which \(T\) breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit(1), the second submatrix consists of rows/columns isplit(1)+1 through isplit( 2 ), etc. (The output array isplit from ?stebz is expected here).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
orfac specifies which eigenvectors should be orthogonalized. Eigenvectors that correspond to eigenvalues which are within orfac*||T|| of each other are to be orthogonalized.
INTEGER. The leading dimension of the output array \(z ; l d z \geq \max (1, n)\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Workspace array, DIMENSION (5n).
INTEGER. Workspace array, DIMENSION (n).

REAL for sstein2
DOUBLE PRECISION for dstein2
Array, DIMENSION ( \(1 d z, m\) ).
The computed eigenvectors. The eigenvector associated with the eigenvalue \(w(i)\) is stored in the \(i\)-th column of \(z\). Any vector that fails to converge is set to its current iterate after maxits iterations.
INTEGER.
Array, DIMENSION (m).
On normal exit, all elements of ifail are zero. If one or more eigenvectors fail to converge after maxits iterations, then their indices are stored in the array ifail.

INTEGER.
info \(=0\), the exit is successful.
info < 0: if info \(=-i\), the \(i\)-th had an illegal value.
info \(>0\) : if info \(=i\), then \(i\) eigenvectors failed to converge in maxits iterations. Their indices are stored in the array ifail.

\section*{?dbtf2}

Computes an LU factorization of a general band matrix with no pivoting (local unblocked algorithm).

\section*{Syntax}
```

call sdbtf2(m, n, kl, ku, ab, ldab, info)
call ddbtf2(m, n, kl, ku, ab, ldab, info)
call cdbtf2(m, n, kl, ku, ab, ldab, info)
call zdbtf2(m, n, kl, ku, ab, ldab, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The ?dbtf2 routine computes an \(L U\) factorization of a general real/complex \(m\)-by- \(n\) band matrix \(A\) without using partial pivoting with row interchanges.

This is the unblocked version of the algorithm, calling BLAS Routines and Functions.

\section*{Input Parameters}
```

m
n
kI
ku
ab
Idab INTEGER. The leading dimension of the array ab.
(ldab \geq 2kl + ku +1)

```

\section*{Output Parameters}

On exit, details of the factorization: \(U\) is stored as an upper triangular band matrix with \(k l+k u\) superdiagonals in rows 1 to \(k l+k u+1\), and the multipliers used during the factorization are stored in rows \(k l+k u+2\) to \(2 * k l+k u+1\). See the Application Notes below for further details.
info
INTEGER.
\(=0\) : successful exit
< 0 : if info = - i, the i-th argument had an illegal value,
\(>0\) : if info \(=+i, u(i, i)\) is 0 . The factorization has been completed, but the factor \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{Application Notes}

The band storage scheme is illustrated by the following example, when \(m=n=6, k l=2, k u=1\) :
\[
\begin{array}{cccc}
c & \text { on entry } \\
{\left[\begin{array}{cccccc}
* & a 12 & a 23 & a 34 & a 4 b & a 66 \\
a 11 & a 22 & a 33 & a 44 & a b 6 & a 66 \\
a 21 & a 32 & a 43 & a b 4 & a 66 & * \\
331 & a 42 & a 63 & a 64 & * & *
\end{array}\right] \quad\left[\begin{array}{cccccc}
* & 412 & 423 & 434 & 446 & 466 \\
u 11 & 422 & 433 & 444 & 466 & 466 \\
m 21 & m 32 & m 43 & m 64 & m 66 & * \\
m 31 & m 42 & m 63 & m 64 & * & *
\end{array}\right]}
\end{array}
\]

The routine does not use array elements marked *; elements marked + need not be set on entry, but the routine requires them to store elements of \(U\), because of fill-in resulting from the row interchanges.

\section*{?dbtrf}

Computes an LU factorization of a general band matrix with no pivoting (local blocked algorithm).

\section*{Syntax}
```

call sdbtrf(m, n, kl, ku, ab, ldab, info)
call ddbtrf(m, n, kl, ku, ab, ldab, info)
call cdbtrf(m, n, kl, ku, ab, ldab, info)
call zdbtrf(m, n, kl, ku, ab, ldab, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

This routine computes an LU factorization of a real \(m\)-by- \(n\) band matrix \(A\) without using partial pivoting or row interchanges.

This is the blocked version of the algorithm, calling BLAS Routines and Functions.

\section*{Input Parameters}
```

m
n
kl
ku
ab
INTEGER. The number of rows of the matrix A (m\geq0).
INTEGER. The number of columns in A(n\geq0).
INTEGER. The number of sub-diagonals within the band of A(kl\geq0).
INTEGER. The number of super-diagonals within the band of A(ku\geq0).
REAL for sdbtrf
DOUBLE PRECISION for ddbtrf
COMPLEX for cdbtrf
COMPLEX*16 for zdbtrf.
Array, DIMENSION (ldab, n).

```

The matrix \(A\) in band storage, in rows \(k l+1\) to \(2 k l+k u+1\); rows 1 to \(k l\) of the array need not be set. The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows: \(a b(k l+k u+1+i-j, j)=A(i, j)\) for max \((1, j-\) \(k u) \leq i \leq \min (m, j+k l)\).
Idab INTEGER. The leading dimension of the array \(a b\).
\((l d a b \geq 2 k l+k u+1)\)

\section*{Output Parameters}

On exit, details of the factorization: \(U\) is stored as an upper triangular band matrix with \(k l+k u\) superdiagonals in rows 1 to \(k l+k u+1\), and the multipliers used during the factorization are stored in rows \(k l+k u+2\) to \(2 * k l+k u+1\). See the Application Notes below for further details.
INTEGER.
= 0: successful exit
< 0: if info \(=-i\), the \(i\)-th argument had an illegal value, \(>0\) : if info \(=+i, u(i, i)\) is 0 . The factorization has been completed, but the factor \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{Application Notes}

The band storage scheme is illustrated by the following example, when \(m=n=6, k I=2, k u=1\) :
on entry
\[
\left[\begin{array}{cccccc}
* & a 12 & a 23 & a 34 & a 46 & a 66 \\
a 11 & a 22 & a 33 & a 44 & a 66 & a 66 \\
a 21 & a 32 & a 43 & a 64 & a 66 & * \\
a 31 & a 42 & a 63 & a 64 & * & *
\end{array}\right]
\]
on exit
\[
\left[\begin{array}{cccccc}
* & u 12 & u 23 & u 34 & u 46 & 466 \\
u 11 & 422 & 433 & u 44 & 466 & 466 \\
m 21 & m 32 & m 43 & m 64 & m 65 & * \\
m 31 & m 42 & m 63 & m 64 & * & *
\end{array}\right]
\]

The routine does not use array elements marked *.

\section*{?dttrf}

Computes an LU factorization of a general tridiagonal matrix with no pivoting (local blocked algorithm).

Syntax
```

call sdttrf(n, dl, d, du, infO)
call ddttrf(n, dl, d, du, info)
call cdttrf(n, dl, d, du, info)
call zdttrf(n, dl, d, du, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The ? dttrf routine computes an \(L U\) factorization of a real or complex tridiagonal matrix \(A\) using elimination without partial pivoting.

The factorization has the form \(A=L \star U\), where \(L\) is a product of unit lower bidiagonal matrices and \(U\) is upper triangular with nonzeros only in the main diagonal and first superdiagonal.

\section*{Input Parameters}
\(n\)
\(d l, d, d u\)

INTEGER. The order of the matrix \(A(n \geq 0)\).
REAL for sdttrf
DOUBLE PRECISION for ddttrf
COMPLEX for cdttrf
COMPLEX*16 for zdttrf.
Arrays containing elements of \(A\).
The array dl of DIMENSION ( \(n-1\) ) contains the sub-diagonal elements of A.

The array \(d\) of DIMENSION \(n\) contains the diagonal elements of \(A\).
The array du of DIMENSION (n - 1) contains the super-diagonal elements of \(A\).

\section*{Output Parameters}

Overwritten by the ( \(n-1\) ) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\).
Overwritten by the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of \(A\).

Overwritten by the ( \(n-1\) ) elements of the first super-diagonal of \(U\).
INTEGER.
= 0 : successful exit
< 0: if info \(=-i\), the \(i\)-th argument had an illegal value,
> 0 : if info \(=i, u(i, i)\) is exactly 0 . The factorization has been completed, but the factor \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{?dttrsv}

Solves a general tridiagonal system of linear equations using the LU factorization computed by ?dttrf.

\section*{Syntax}
```

call sdttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)
call ddttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)
call cdttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)
call zdttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

```

\section*{Include files}
- C: mkl_scalapack.h

Description
The ? dttrsv routine solves one of the following systems of linear equations:
\(L^{\star} X=B, L^{T} \star X=B\), or \(L^{H} \star X=B\),
\(U^{*} X=B, U^{T} * X=B\), or \(U^{H} * X=B\)
with factors of the tridiagonal matrix \(A\) from the \(L U\) factorization computed by ?dttrf.

\section*{Input Parameters}
uplo
trans
n
nrhs
\(d l, d, d u, b\)
\(1 d b\)

\section*{CHARACTER*1.}

Specifies whether to solve with \(L\) or \(U\).
CHARACTER. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans \(=\) ' \(N\) ', then \(A^{\star} X=B\) is solved for \(X\) (no transpose).
If trans \(=\) ' \(T\) ', then \(A^{T \star} X=B\) is solved for \(X\) (transpose).
If trans \(=\) ' C ', then \(A^{H}{ }^{\prime} X=B\) is solved for \(X\) (conjugate transpose).
INTEGER. The order of the matrix \(A(n \geq 0)\).
INTEGER. The number of right-hand sides, that is, the number of columns in the matrix \(B(n r h s \geq 0)\).

REAL for sdttrsv DOUBLE PRECISION for ddttrsv COMPLEX for cdttrsv COMPLEX*16 for zdttrsv.
Arrays of DIMENSIONs: \(d l(n-1), d(n), d u(n-1), b(l d b, n r h s)\). The array \(d l\) contains the \((n-1)\) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\).
The array \(d\) contains \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of \(A\).
The array \(d u\) contains the ( \(n-1\) ) elements of the first super-diagonal of U.

On entry, the array \(b\) contains the right-hand side matrix \(B\).
INTEGER. The leading dimension of the array \(b ; l d b \geq \max (1, n)\).

\section*{Output Parameters}
b
info

Overwritten by the solution matrix \(x\).
INTEGER. If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{?pttrsv}

Solves a symmetric (Hermitian) positive-definite tridiagonal system of linear equations, using the \(L^{*} D^{*} L^{H}\) factorization computed by ?pttrf.

\section*{Syntax}
```

call spttrsv(trans, n, nrhs, d, e, b, ldb, info)
call dpttrsv(trans, n, nrhs, d, e, b, ldb, info)
call cpttrsv(uplo, trans, n, nrhs, d, e, b, ldb, info)
call zpttrsv(uplo, trans, n, nrhs, d, e, b, ldb, info)

```

Include files
- C: mkl_scalapack.h

\section*{Description}

The ?pttrsv routine solves one of the triangular systems:
\[
L^{T} * X=B \text {, or } L^{\star} X=B \text { for real flavors, }
\]
```

or
L*X = B, or L'*X = B,
U*X = B, or }\mp@subsup{U}{}{H}*X=B for complex flavors,

```
where \(L\) (or \(U\) for complex flavors) is the Cholesky factor of a Hermitian positive-definite tridiagonal matrix \(A\) such that
```

A = L* D* L'H}\mathrm{ (computed by spttrf/dpttrf)

```
or
\(A=U^{H}{ }^{*} D^{*} U\) or \(A=L^{\star} D^{\star} L^{H}\) (computed by cpttrf/zpttrf).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix \(A\) is stored and the form of the factorization: \\
\hline & If uplo = 'U', e is the superdiagonal of \(U\), and \(A=U^{H} *_{D} * U\) or \(A=\) \(L^{*} D^{*} L^{H}\); \\
\hline & if uplo = 'L', e is the subdiagonal of \(L\), and \(A=L^{\star} D^{\star} L^{H}\). \\
\hline & The two forms are equivalent, if \(A\) is real. \\
\hline \multirow[t]{7}{*}{trans} & CHARACTER. \\
\hline & Specifies the form of the system of equations: for real flavors: \\
\hline & if trans \(=\) ' \(\mathrm{N}^{\prime}: L^{\star} X=B\) (no transpose) \\
\hline & if trans \(=\) 'T': \(L^{T} * X=B\) (transpose) \\
\hline & for complex flavors: \\
\hline & if trans \(=\) 'N': \(U^{\star} X=B\) or \(L^{*} X=B\) (no transpose) \\
\hline & if trans \(=\) ' C': \(U^{H} * X=B\) or \(L^{H *} X=B\) (conjugate transpose). \\
\hline \(n\) & INTEGER. The order of the tridiagonal matrix \(A . n \geq 0\). \\
\hline nrhs & INTEGER. The number of right hand sides, that is, the number of columns of the matrix \(B\). nrhs \(\geq 0\). \\
\hline d & REAL array, DIMENSION ( \(n\) ). The \(n\) diagonal elements of the diagonal matrix \(D\) from the factorization computed by ?pttrf. \\
\hline e & COMPLEX array, DIMENSION ( \(n-1\) ). The ( \(n-1\) ) off-diagonal elements of the unit bidiagonal factor \(U\) or \(L\) from the factorization computed by ?pttrf. See uplo. \\
\hline \multirow[t]{2}{*}{b} & COMPLEX array, DIMENSION ( 1 db , nrhs). \\
\hline & On entry, the right hand side matrix \(B\). \\
\hline \multirow[t]{3}{*}{1 db} & INTEGER. \\
\hline & The leading dimension of the array \(b\). \\
\hline & \(l d b \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

b On exit, the solution matrix x.
info
On exit, the solution matrix x.

```

\footnotetext{
INTEGER.
= 0 : successful exit
< 0: if info \(=-i\), the \(i\)-th argument had an illegal value.
}

\section*{?steqr2 \\ Computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method.}

\section*{Syntax}
```

call ssteqr2(compz, n, d, e, z, ldz, nr, work, info)
call dsteqr2(compz, n, d, e, z, ldz, nr, work, info)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The ?steqr2 routine is a modified version of LAPACK routine ?steqr. The ?steqr2 routine computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method. ?steqr2 is modified from ?steqr to allow each ScaLAPACK process running ?steqr2 to perform updates on a distributed matrix Q . Proper usage of ? steqr2 can be gleaned from examination of ScaLAPACK routine p?syev.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{compz} & CHARACTER*1. Must be 'N' or 'I'. \\
\hline & \begin{tabular}{l}
If compz = 'N', the routine computes eigenvalues only. If compz = 'I', the routine computes the eigenvalues and eigenvectors of the tridiagonal matrix \(T\). \\
\(z\) must be initialized to the identity matrix by p?laset or ?laset prior to entering this subroutine.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(T(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{d, e, work} & REAL for single-precision flavors \\
\hline & DOUBLE PRECISION for double-precision flavors. \\
\hline & Arrays: \(d\) contains the diagonal elements of \(T\). The dimension of \(d\) must be at least max \((1, n)\). \\
\hline & e contains the \((n-1)\) subdiagonal elements of \(T\). The dimension of e must be at least max ( \(1, n-1\) ). \\
\hline & work is a workspace array. The dimension of work is max (1, \(2 *_{n-2}\) ). If compz = 'N', then work is not referenced. \\
\hline \multirow[t]{5}{*}{\(z\)} & (local) \\
\hline & REAL for ssteqr2 \\
\hline & DOUBLE PRECISION for dsteqr2 \\
\hline & Array, global DIMENSION ( \(n, n\) ), local DIMENSION ( \(1 \mathrm{dz}, n r\) ). \\
\hline & If compz = ' V ', then \(z\) contains the orthogonal matrix used in the reduction to tridiagonal form. \\
\hline \multirow[t]{3}{*}{\(1 d z\)} & INTEGER. The leading dimension of the array z Constraints: \\
\hline & \(l d z \geq 1\), \\
\hline & \(l d z \geq \max (1, n)\), if eigenvectors are desired. \\
\hline \(n r\) & INTEGER. \(n r=\max (1\), numroc ( \(n, ~ n b, ~ m y p r o w, ~ 0, ~ n p r o c s))\). If compz = 'N', then \(n r\) is not referenced. \\
\hline
\end{tabular}

\section*{Output Parameters}
\(d\)
e
z
info
REAL array, DIMENSION ( \(n\) ), for ssteqr2.
DOUBLE PRECISION array, DIMENSION ( \(n\) ), for dsteqr2.
On exit, the eigenvalues in ascending order, if info \(=0\).
See also info.
REAL array, DIMENSION ( \(n-1\) ), for ssteqr2.
DOUBLE PRECISION array, DIMENSION ( \(n-1\) ), for dsteqr2.
On exit, e has been destroyed.
(local)
REAL for ssteqr2
DOUBLE PRECISION for dsteqr2
Array, global DIMENSION ( \(n, n\) ), local DIMENSION ( \(1 d z, n r\) ).
On exit, if info \(=0\), then,
if compz \(=\) ' \(V^{\prime}\) ', \(z\) contains the orthonormal eigenvectors of the original symmetric matrix, and if compz \(=\) 'I', z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If compz \(={ }^{\prime} \mathrm{N}^{\prime}\), then \(z\) is not referenced.

INTEGER.
info \(=0\), the exit is successful.
info < 0 : if info \(=-i\), the \(i\)-th had an illegal value.
info \(>0\) : the algorithm has failed to find all the eigenvalues in a total of \(30 n\) iterations;
if info \(=i\), then \(i\) elements of e have not converged to zero; on exit, \(d\) and e contain the elements of a symmetric tridiagonal matrix, which is orthogonally similar to the original matrix.

\section*{Utility Functions and Routines}

This section describes ScaLAPACK utility functions and routines. Summary information about these routines is given in the following table:
ScaLAPACK Utility Functions and Routines
\begin{tabular}{lll}
\hline Routine Name & Data Types & Description \\
\hline p?labad & \(s, d\) & \begin{tabular}{l} 
Returns the square root of the underflow and overflow thresholds if the \\
exponent-range is very large.
\end{tabular} \\
p?lachkieee & \(s, d\) & \begin{tabular}{l} 
Performs a simple check for the features of the IEEE standard. (C \\
interface function).
\end{tabular} \\
p?lamch & \(s, d\) & \begin{tabular}{l} 
Determines machine parameters for floating-point arithmetic. \\
\(p ? l a s n b t ~\)
\end{tabular}\(\quad s, d\) \\
pxerbla & \begin{tabular}{l} 
Computes the position of the sign bit of a floating-point number. (C \\
interface function).
\end{tabular} \\
\hline
\end{tabular}

\section*{p?labad}

Returns the square root of the underflow and overflow thresholds if the exponent-range is very large.

Syntax
```

call pslabad(ictxt, small, large)

```
```

call pdlabad(ictxt, small, large)

```

Include files
- C: mkl_scalapack.h

\section*{Description}

The p?labad routine takes as input the values computed by p?lamch for underflow and overflow, and returns the square root of each of these values if the log of large is sufficiently large. This subroutine is intended to identify machines with a large exponent range, such as the Crays, and redefine the underflow and overflow limits to be the square roots of the values computed by p?lamch. This subroutine is needed because p? lamch does not compensate for poor arithmetic in the upper half of the exponent range, as is found on a Cray.

In addition, this routine performs a global minimization and maximization on these values, to support heterogeneous computing networks.

\section*{Input Parameters}
\begin{tabular}{ll} 
ictat & (global) INTEGER. \\
small & The BLACS context handle in which the computation takes place. \\
& (local). \\
& REAL PRECISION for pslabad. \\
& DOUBLE PRECISION for pdlabad. \\
large & On entry, the underflow threshold as computed by p?lamch. \\
& (local). \\
& REAL PRECISION for pslabad. \\
& DOUBLE PRECISION for pdlabad. \\
& On entry, the overflow threshold as computed by p?lamch.
\end{tabular}

\section*{Output Parameters}
```

small
large

```
(local).
On exit, if log10 (large) is sufficiently large, the square root of small, otherwise unchanged.
(local).
On exit, if log10 (large) is sufficiently large, the square root of large, otherwise unchanged.

\section*{p?lachkieee}

Performs a simple check for the features of the IEEE standard. (C interface function).

Syntax
```

void pslachkieee(int *isieee, float *rmax, float *rmin);
void pdlachkieee(int *isieee, float *rmax, float *rmin);

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?lachkieee routine performs a simple check to make sure that the features of the IEEE standard are implemented. In some implementations, p?lachkieee may not return.

Note that all arguments are call-by-reference so that this routine can be directly called from Fortran code.
This is a ScaLAPACK internal subroutine and arguments are not checked for unreasonable values.

\section*{Input Parameters}
```

rmax (local).
REAL for pslachkieee
DOUBLE PRECISION for pdlachkieee
The overflow threshold(= ?lamch ('O')).
(local).
REAL for pslachkieee
DOUBLE PRECISION for pdlachkieee
The underflow threshold(= ?lamch ('U')).

```

\section*{Output Parameters}
(local). INTEGER.
On exit, isieee \(=1\) implies that all the features of the IEEE standard that we rely on are implemented. On exit, isieee \(=0\) implies that some the features of the IEEE standard that we rely on are missing.
p?lamch
Determines machine parameters for floating-point arithmetic.

\section*{Syntax}
```

val = pslamch(ictxt, cmach)
val = pdlamch(ictxt, cmach)

```

Include Files
- C: mkl_scalapack.h

\section*{Description}

The p?lamch routine determines single precision machine parameters.

\section*{Input Parameters}
```

ictxt (global). INTEGER.The BLACS context handle in which the computation
takes place.
(global) CHARACTER*1.
Specifies the value to be returned by p?lamch:
= 'E' or 'e',p?lamch := eps
= 'S' or's',p?lamch := sfmin
= 'B' or 'b', p?lamch := base
= 'P' or 'p', p?lamch := eps*base
= 'N' or 'n', p?lamch := t
= 'R' or 'r', p?lamch := rnd
= 'M' or 'm', p?lamch := emin
= 'U' or 'u', p?lamch := rmin
= 'L' or 'l', p?lamch := emax
= 'O' or 'o', p?lamch := rmax,
where

```
```

eps = relative machine precision
sfmin = safe minimum, such that 1/sfmin does not overflow
base = base of the machine
prec = eps*base
t = number of (base) digits in the mantissa
rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
emin = minimum exponent before (gradual) underflow
rmin = underflow threshold - base(emin-1)
emax = largest exponent before overflow
rmax = overflow threshold - (base emax)* (1-eps)

```

\section*{Output Parameters}
```

val Value returned by the routine.

```
p?lasnbt
Computes the position of the sign bit of a floatingpoint number. (C interface function).

\section*{Syntax}
```

void pslasnbt(int *ieflag);
void pdlasnbt(int *ieflag);

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

The p?lasnbt routine finds the position of the signbit of a single/double precision floating point number. This routine assumes IEEE arithmetic, and hence, tests only the 32-nd bit (for single precision) or 32-nd and 64th bits (for double precision) as a possibility for the signbit. sizeof (int) is assumed equal to 4 bytes.

If a compile time flag (NO_IEEE) indicates that the machine does not have IEEE arithmetic, ieflag \(=0\) is returned.

\section*{Output Parameters}
```

ieflag

```

INTEGER.
This flag indicates the position of the signbit of any single/double precision floating point number.
ieflag \(=0\), if the compile time flag NO_IEEE indicates that the machine does not have IEEE arithmetic, or if sizeof (int) is different from 4 bytes. ieflag = 1 indicates that the signbit is the 32 -nd bit for a single precision routine.
In the case of a double precision routine:
ieflag = 1 indicates that the signbit is the 32-nd bit (Big Endian).
ieflag \(=2\) indicates that the signbit is the 64-th bit (Little Endian).
pxerbla
Error handling routine called by ScaLAPACK routines.
Syntax
```

call pxerbla(ictxt, srname, info)

```

\section*{Include Files}
- C: mkl_scalapack.h

\section*{Description}

This routine is an error handler for the ScaLAPACK routines. It is called by a ScaLAPACK routine if an input parameter has an invalid value. A message is printed. Program execution is not terminated. For the ScaLAPACK driver and computational routines, a RETURN statement is issued following the call to pxerbla.

Control returns to the higher-level calling routine, and it is left to the user to determine how the program should proceed. However, in the specialized low-level ScaLAPACK routines (auxiliary routines that are Level 2 equivalents of computational routines), the call to pxerbla() is immediately followed by a call to BLACS_ABORT () to terminate program execution since recovery from an error at this level in the computation is not possible.
It is always good practice to check for a nonzero value of info on return from a ScaLAPACK routine. Installers may consider modifying this routine in order to call system-specific exception-handling facilities.

\section*{Input Parameters}
```

ictxt (global) INTEGER
The BLACS context handle, indicating the global context of the operation.
The context itself is global.
srname
info (global) INTEGER.
The position of the invalid parameter in the parameter list of the calling
routine.

```

\section*{Sparse Solver Routines}

Intel \({ }^{\circledR}\) Math Kernel Library (Inte \({ }^{\circledR}\) MKL) provides user-callable sparse solver software to solve real or complex, symmetric, structurally symmetric or non-symmetric, positive definite, indefinite or Hermitian sparse linear system of equations.
The terms and concepts required to understand the use of the Intel MKL sparse solver routines are discussed in the Appendix A "Linear Solvers Basics". If you are familiar with linear sparse solvers and sparse matrix storage schemes, you can skip these sections and go directly to the interface descriptions.
This chapter describes the direct sparse solver PARDISO* and the alternative interface for the direct sparse solver referred to here as DSS interface; iterative sparse solvers (ISS) based on the reverse communication interface (RCI); and two preconditioners based on the incomplete LU factorization technique.

\section*{PARDISO* - Parallel Direct Sparse Solver Interface}

This section describes the interface to the shared-memory multiprocessing parallel direct sparse solver known as the PARDISO* solver. The interface is Fortran, but it can be called from C programs by observing Fortran parameter passing and naming conventions used by the supported compilers and operating systems. A discussion of the algorithms used in the PARDISO* software and more information on the solver can be found at http://www.pardiso-project.org.
The current implementation of the PARDISO solver additionally supports the out-of-core (OOC) version.
The PARDISO package is a high-performance, robust, memory efficient, and easy to use software package for solving large sparse symmetric and unsymmetric linear systems of equations on shared memory multiprocessors. The solver uses a combination of left- and right-looking Level-3 BLAS supernode techniques [Schenk00-2]. To improve sequential and parallel sparse numerical factorization performance, the algorithms are based on a Level-3 BLAS update and pipelining parallelism is used with a combination of left- and rightlooking supernode techniques [Schenk00, Schenk01, Schenk02, Schenk03]. The parallel pivoting methods allow complete supernode pivoting to compromise numerical stability and scalability during the factorization process. For sufficiently large problem sizes, numerical experiments demonstrate that the scalability of the parallel algorithm is nearly independent of the shared-memory multiprocessing architecture.

The following table lists the names of the PARDISO routines and describes their general use.
PARDISO Routines
\begin{tabular}{ll}
\hline Routine & Description \\
\hline pardiso & \begin{tabular}{l} 
Calculates the solution of a set of sparse linear equations \\
with multiple right-hand sides.
\end{tabular} \\
pardisoinit & \begin{tabular}{l} 
Initialize PARDISO with default parameters depending on \\
the matrix type.
\end{tabular} \\
pardiso_64 & \begin{tabular}{l} 
Calculates the solution of a set of sparse linear equations \\
with multiple right-hand sides, 64-bit integer version.
\end{tabular} \\
pardiso_getenv pardiso_setenv & Retrieves additional values from the PARDISO handle. \\
pardiso_getenv pardiso_setenv & Sets additional values in the PARDISO handle.
\end{tabular}

The PARDISO solver supports a wide range of sparse matrix types (see the figure below) and computes the solution of real or complex sparse linear system of equations on shared-memory multiprocessing architectures.

Sparse Matrices That Can Be Solved with the PARDISO* Solver


The PARDISO solver performs four tasks:
- analysis and symbolic factorization
- numerical factorization
- forward and backward substitution including iterative refinement
- termination to release all internal solver memory.

You can find a code example that uses the PARDISO interface routine to solve systems of linear equations in the examples \(\backslash\) solver \(\backslash\) source folder of your Intel MKL directory.

\section*{pardiso}

Calculates the solution of a set of sparse linear equations with multiple right-hand sides.

\section*{Syntax}

\section*{Fortran:}
```

call pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja, perm, nrhs, iparm, msglvl,

```
\(b, x\), error)

C:
```

pardiso (pt, \&maxfct, \&mnum, \&mtype, \&phase, \&n, a, ia, ja, perm, \&nrhs, iparm,

```
\&msglvl, \(b, x\), \&error) ;

\section*{Include Files}
- FORTRAN 77: mkl_pardiso.f77
- Fortran 90: mkl_pardiso.f90
- C: mkl_pardiso.h

\section*{Description}

The routine pardiso calculates the solution of a set of sparse linear equations \(A^{*} X=B\)
with multiple right-hand sides, using a parallel \(L U, L D L\) or \(L L^{T}\) factorization, where \(A\) is an \(n\)-by- \(n\) matrix, and \(x\) and \(B\) are \(n\)-by-nrhs matrices.

\section*{Supported Matrix Types.}

The analysis steps performed by pardiso depends on the structure of the input matrix \(A\).

Symmetric Matrices: The solver first computes a symmetric fill-in reducing permutation \(P\) based on either the minimum degree algorithm [Liu85] or the nested dissection algorithm from the METIS package [Karypis98] (both included with Intel MKL), followed by the parallel left-right looking numerical Cholesky factorization [Schenk00-2] of \(P A P^{T}=L L^{T}\) for symmetric positive-definite matrices, or \(P A P^{T}=L D L^{T}\) for symmetric indefinite matrices. The solver uses diagonal pivoting, or \(1 \times 1\) and \(2 \times 2\) Bunch and Kaufman pivoting for symmetric indefinite matrices, and an approximation of \(x\) is found by forward and backward substitution and iterative refinements.
Whenever numerically acceptable \(1 \times 1\) and \(2 \times 2\) pivots cannot be found within the diagonal supernode block, the coefficient matrix is perturbed. One or two passes of iterative refinements may be required to correct the effect of the perturbations. This restricting notion of pivoting with iterative refinements is effective for highly indefinite symmetric systems. Furthermore, for a large set of matrices from different applications areas, this method is as accurate as a direct factorization method that uses complete sparse pivoting techniques [Schenk04].
Another method of improving the pivoting accuracy is to use symmetric weighted matching algorithms. These algorithms identify large entries in the coefficient matrix A that, if permuted close to the diagonal, permit the factorization process to identify more acceptable pivots and proceed with fewer pivot perturbations. These algorithms are based on maximum weighted matchings and improve the quality of the factor in a complementary way to the alternative idea of using more complete pivoting techniques.
The inertia is also computed for real symmetric indefinite matrices.
Structurally Symmetric Matrices: The solver first computes a symmetric fill-in reducing permutation \(P\) followed by the parallel numerical factorization of \(P A P^{T}=Q L U^{T}\). The solver uses partial pivoting in the supernodes and an approximation of \(x\) is found by forward and backward substitution and iterative refinements.
Unsymmetric Matrices: The solver first computes a non-symmetric permutation \(P_{M P S}\) and scaling matrices \(D_{r}\) and \(D_{C}\) with the aim of placing large entries on the diagonal to enhance reliability of the numerical factorization process [Duff99]. In the next step the solver computes a fill-in reducing permutation \(P\) based on the matrix \(P_{\text {MPS }} A+\left(P_{M P S} A\right)_{T}\) followed by the parallel numerical factorization
\(Q L U R=P P_{M P S} D_{r} A D_{C} P\)
with supernode pivoting matrices \(Q\) and \(R\). When the factorization algorithm reaches a point where it cannot factor the supernodes with this pivoting strategy, it uses a pivoting perturbation strategy similar to [Li99]. The magnitude of the potential pivot is tested against a constant threshold of alpha \(=\) eps*||A2||inf, where eps is the machine precision, \(A 2=P \star P_{M P S}{ }^{\star} D_{r}{ }^{\star} A \star D_{C}{ }^{\star} P\), and \(||A 2||_{\text {inf }}\) is the infinity norm of the scaled and permuted matrix \(A\). Any tiny pivots encountered during elimination are set to the sign \(\left(I_{\text {II }}\right) *\) eps \(*||A 2||_{\text {inf }}\), which trades off some numerical stability for the ability to keep pivots from getting too small. Although many failures could render the factorization well-defined but essentially useless, in practice the diagonal elements are rarely modified for a large class of matrices. The result of this pivoting approach is that the factorization is, in general, not exact and iterative refinement may be needed.

\section*{Direct-Iterative Preconditioning for Unsymmetric Linear Systems.}

The solver enables to use a combination of direct and iterative methods [Sonn89] to accelerate the linear solution process for transient simulation. Most of applications of sparse solvers require solutions of systems with gradually changing values of the nonzero coefficient matrix, but the same identical sparsity pattern. In these applications, the analysis phase of the solvers has to be performed only once and the numerical factorizations are the important time-consuming steps during the simulation. PARDISO uses a numerical factorization \(A=L U\) for the first system and applies the factors \(L\) and \(U\) for the next steps in a preconditioned Krylow-Subspace iteration. If the iteration does not converge, the solver automatically switches back to the numerical factorization. This method can be applied to unsymmetric matrices in PARDISO. You can select the method using only one input parameter. For further details see the parameter description (iparm(4), iparm(20)).

\section*{Single and Double Precision Computations.}

PARDISO solves tasks using single or double precision. Each precision has its benefits and drawbacks. Double precision variables have more digits to store value, so the solver uses more memory for keeping data. But this mode solves matrices with better accuracy, and input matrices can have large condition numbers.

Single precision variables have fewer digits to store values, so the solver uses less memory than in the double precision mode. Additionally this mode usually takes less time. But as computations are made more roughly, only numerically stable process can use single precision.
Separate Forward and Backward Substitution.
The solver execution step ( see parameter phase \(=33\) below) can be divided into two or three separate substitutions: forward, backward, and possible diagonal. This separation can be explained by the examples of solving systems with different matrix types.

A real symmetric positive definite matrix \(A\) (mtype \(=2\) ) is factored by PARDISO as \(A=L^{\star} L^{T}\). In this case the solution of the system \(A^{\star} x=b\) can be found as sequence of substitutions: \(L^{\star} y=b\) (forward substitution, phase \(=331\) ) and \(L^{T \star} x_{X} y\) (backward substitution, phase \(=333\) ).

A real unsymmetric matrix \(A\) (mtype \(=11\) ) is factored by PARDISO as \(A=L^{*} U\). In this case the solution of the system \(A^{\star} x=b\) can be found by the following sequence: \(L^{\star} y=b\) (forward substitution, phase \(=331\) ) and \(U^{\star} x=y\) (backward substitution, phase =333).

Solving a system with a real symmetric indefinite matrix A (mtype \(=-2\) ) is slightly different from the cases above. PARDISO factors this matrix as \(A=L D L^{T}\), and the solution of the system \(A{ }^{*} x=b\) can be calculated as the following sequence of substitutions: \(L^{\star} y=b\) (forward substitution, phase \(=331\) ) s: \(D^{\star} v=y\) (diagonal substitution, phase \(=332\) ) and, finally \(L^{T *} X=V\) (backward substitution, phase \(=333\) ). Diagonal substitution makes sense only for indefinite matrices (mtype \(=-2,-4,6\) ). For matrices of other types a solution can be found as described in the first two examples.

NOTE The number of refinement steps (iparm(8)) must be set to zero if a solution is calculated with separate substitutions (phase \(=331,332,333\) ), otherwise PARDISO produces the wrong result.

NOTE Different pivoting (iparm(21)) produces different \(L D L^{T}\) factorization. Therefore results of forward, diagonal and backward substitutions with diagonal pivoting can differ from results of the same steps with Bunch and Kaufman pivoting. Of course, the final results of sequential execution of forward, diagonal and backward substitution are equal to the results of the full solving step (phase=33) regardless of the pivoting used.

\section*{Sparse Data Storage.}

Sparse data storage in PARDISO follows the scheme described in Sparse Matrix Storage Format with ja standing for columns, ia for rowIndex, and a for values. The algorithms in PARDISO require column indices ja to be in increasing order per row and that the diagonal element in each row be present for any structurally symmetric matrix. For symmetric or unsymmetric matrices the diagonal elements are not necessary: they may be present or not.

NOTE The presence of diagonal elements for symmetric matrices is not mandatory starting from the Intel MKL 10.3 beta release.

CAUTION It's recommended to set explicitly zero diagonal elements for symmetric matrices because in the opposite case PARDISO creates internal copies of arrays ia, ja and a full of diagonal elements that requires additional memory and computational time. However, in general, memory and time overheads are not significant comparing to the memory and the time needed to factor and solve the matrix.

\section*{INTEGER}

Array, DIMENSION (64)
Pointer to the address of solver internal data. These addresses are passed to the solver and all related internal memory management is organized through this pointer.

NOTE \(p t\) is an integer array with 64 entries. It is very important that the pointer is initialized with zero at the first call of pardiso. After that first do not modify the pointer, as a serious memory leak can occur. The integer length must be 4 bytes on 32 -bit operating systems and 8 bytes on 64-bit operating systems.

INTEGER
Maximum number of factors with identical nonzero sparsity structure that must be keep at the same time in memory. In most applications this value is equal to 1 . It is possible to store several different factorizations with the same nonzero structure at the same time in the internal data management of the solver.
pardiso can process several matrices with an identical matrix sparsity pattern and it can store the factors of these matrices at the same time. Matrices with a different sparsity structure can be kept in memory with different memory address pointers pt.

INTEGER
Indicates the actual matrix for the solution phase. With this scalar you can define which matrix to factorize. The value must be: \(1 \leq m n u m \leq \operatorname{maxfct}\). In most applications this value is 1.

\section*{INTEGER}

Defines the matrix type, which influences the pivoting method. The PARDISO solver supports the following matrices:

- Phase 1: Fill-reduction analysis and symbolic factorization
- Phase 2: Numerical factorization
- Phase 3: Forward and Backward solve including iterative refinements

This phase can be divided into two or three separate substitutions: forward, backward, and diagonal (see above).
- Termination and Memory Release Phase (phase 0 )

If a previous call to the routine has computed information from previous phases, execution may start at any phase. The phase parameter can have the following values:
\begin{tabular}{ll} 
phase & Solver Execution Steps \\
11 & Analysis \\
12 & Analysis, numerical factorization \\
13 & \begin{tabular}{l} 
Analysis, numerical factorization, solve, iterative \\
refinement
\end{tabular} \\
22 & Numerical factorization \\
23 & Numerical factorization, solve, iterative refinement \\
33 & Solve, iterative refinement \\
331 & like phase=33, but only forward substitution \\
332 & like phase=33, but only diagonal substitution \\
333 & like phase=33, but only backward substitution \\
0 & Release internal memory for \(L\) and \(U\) matrix number \\
-1 & \begin{tabular}{l} 
mnum \\
Release all internal memory for all matrices
\end{tabular} \\
&
\end{tabular}

\section*{INTEGER}

Number of equations in the sparse linear systems of equations \(A \star X=B\). Constraint: \(n>0\).

DOUBLE PRECISION - for real types of matrices (mtype=1, 2, -2 and 11) and for double precision PARDISO (iparm(28)=0)
REAL - for real types of matrices (mtype=1, 2, -2 and 11) and for single precision PARDISO (iparm(28)=1)
DOUBLE COMPLEX - for complex types of matrices (mtype \(=3,6,13,14\) and
-4) and for double precision PARDISO (iparm (28) =0)
COMPLEX - for complex types of matrices (mtype \(=3,6,13,14\) and -4 ) and for single precision PARDISO (iparm(28)=1)
Array. Contains the non-zero elements of the coefficient matrix \(A\) corresponding to the indices in \(j a\). The size of \(a\) is the same as that of \(j a\) and the coefficient matrix can be either real or complex. The matrix must be stored in compressed sparse row format with increasing values of ja for each row. Refer to values array description in Storage Formats for the Direct Sparse Solvers for more details.

NOTE The non-zero elements of each row of the matrix \(A\) must be stored in increasing order. For symmetric or structural symmetric matrices, it is also important that the diagonal elements are available and stored in the matrix. If the matrix is symmetric, the array \(a\) is only accessed in the factorization phase, in the triangular solution and iterative refinement phase. Unsymmetric matrices are accessed in all phases of the solution process.
ia

\section*{INTEGER}

Array, dimension ( \(n+1\) ). For \(i \leq n\), \(i a(i)\) points to the first column index of row \(i\) in the array \(j a\) in compressed sparse row format. That is, \(i a(I)\) gives the index of the element in array a that contains the first non-zero element from row \(i\) of \(A\). The last element \(i a(n+1)\) is taken to be equal to the number of non-zero elements in \(A\), plus one. Refer to rowIndex array description in Storage Formats for the Direct Sparse Solvers for more details. The array ia is also accessed in all phases of the solution process. Indexing of \(i a\) is one-based by default, but it can be changed to zero-based by setting the appropriate value to the parameter iparm(35).
INTEGER
Array ja(*) contains column indices of the sparse matrix A stored in compressed sparse row format. The indices in each row must be sorted in increasing order. The array \(j a\) is also accessed in all phases of the solution process. For structurally symmetric matrices it is assumed that diagonal elements, which are zero, are also stored in the list of non-zero elements in \(a\) and \(j\) a. For symmetric matrices, the solver needs only the upper triangular part of the system as is shown for columns array in Storage Formats for the Direct Sparse Solvers.
Indexing of \(j a\) is one-based by default, but it can be changed to zero-based by setting the appropriate value to the parameter iparm(35).

\section*{INTEGER}

Array, dimension ( \(n\) ). Holds the permutation vector of size \(n\). You can use it to apply your own fill-in reducing ordering to the solver. The array perm is defined as follows. Let \(A\) be the original matrix and \(B=P^{\star} A^{\star} P^{T}\) be the permuted matrix. Row (column) i of \(A\) is the perm(i) row (column) of \(B\). The permutation vector perm is used by the solver if iparm (5) \(=1\). The array perm is also used to return the permutation vector calculated during fill-in reducing ordering stage. The permutation vector is returned into the perm array if \(\operatorname{iparm}(5)=2\).
Indexing of perm is one-based by default, but it can be changed to zerobased by setting the appropriate value to the parameter iparm (35).

NOTE The first elements of row, column and permutation are numbered as array elements 1 by default (Fortran style, or one based array indexing), but these first elements can be numbered as array elements 0 ( C style, or zero based array indexing) by setting the appropriate value to the parameter iparm(35).

INTEGER
Number of right-hand sides that need to be solved for.
INTEGER

Array, dimension (64). This array is used to pass various parameters to PARDISO and to return some useful information after execution of the solver. If iparm(1) \(=0\), PARDISO uses default values for iparm(2) through iparm(64).
The individual components of the iparm array are described below (some of them are described in the Output Parameters section).

\section*{iparm(1)- use default values.}

If iparm(1) \(=0\), iparm(2) through iparm(64) are filled with default values, otherwise you must set all values in iparm from iparm (2) to iparm(64).
iparm(2) - fill-in reducing ordering.
iparm(2) controls the fill-in reducing ordering for the input matrix.
If iparm(2) \(=0\), the minimum degree algorithm is applied [Li99].
If iparm(2) \(=2\), the solver uses the nested dissection algorithm from the METIS package [Karypis98].
If iparm(2) = 3, the parallel (OpenMP) version of the nested dissection algorithm is used. It can decrease the time of computations on multi-core computers, especially when PARDISO Phase 1 takes significant time. The default value of iparm(2) is 2 .

CAUTION You can control the parallel execution of the solver by explicitly setting the environment variable MKL_NUM_THREADS. If fewer processors are available than specified, the execution may slow down instead of speeding up. If the variable MKL_NUM_THREADS is not defined, then the solver uses all available processors.
iparm(3)- currently is not used.
iparm(4) - preconditioned CGS.
This parameter controls preconditioned CGS [Sonn89] for unsymmetric or structurally symmetric matrices and Conjugate-Gradients for symmetric matrices. \(\operatorname{iparm}(4)\) has the form iparm(4) \(=10 * L+K\). The \(k\) and \(L\) values have the meanings as follows.

\section*{Value of \(K\)}

0

1

2

\section*{Description}

The factorization is always computed as required by phase.
CGS iteration replaces the computation of \(L U\). The preconditioner is \(L U\) that was computed at a previous step (the first step or last step with a failure) in a sequence of solutions needed for identical sparsity patterns.
CGS iteration for symmetric matrices replaces the computation of \(L U\). The preconditioner is \(L U\) that was computed at a previous step (the first step or last step with a failure) in a sequence of solutions needed for identical sparsity patterns.

Value \(L\) :
The value \(L\) controls the stopping criterion of the Krylow-Subspace iteration:

\section*{iparm(5)- user permutation.}

This parameter controls whether user supplied fill-in reducing permutation is used instead of the integrated multiple-minimum degree or nested dissection algorithms. Another possible use of this parameter is to control obtaining the fill-in reducing permutation vector calculated during the reordering stage of PARDISO.
This option is useful for testing reordering algorithms, adapting the code to special applications problems (for instance, to move zero diagonal elements to the end of \(P^{\star} A^{\star} P^{T}\) ), or for using the permutation vector more than once for equal or similar matrices. For definition of the permutation, see the description of the perm parameter.
If parm (5) \(=0\) (default value), then the array perm is not used by PARDISO; if \(\operatorname{parm}(5)=1\), then the user supplied fill-in reducing permutation in the array perm is used;
if \(\operatorname{parm}(5)=2\), then PARDISO returns the permutation vector into the array perm.
\(\operatorname{iparm}(6)\) - write solution on \(x\).
If iparm(6) = 0 (default value), then the array \(x\) contains the solution and the value of \(b\) is not changed.
If iparm(6) \(=1\), then the solver stores the solution in the right-hand side b.

Note that the array \(x\) is always used. The default value of iparm(6) is 0.

\section*{iparm(8) - iterative refinement step.}

On entry to the solve and iterative refinement step, iparm(8) must be set to the maximum number of iterative refinement steps that the solver performs. The solver does not perform more than the absolute value of
iparm(8) steps of iterative refinement and stops the process if a satisfactory level of accuracy of the solution in terms of backward error is achieved.
If iparm (8) \(<0\), the accumulation of the residue uses extended precision real and complex data types. Perturbed pivots result in iterative refinement (independent of iparm \((8)=0\) ) and the number of executed iterations is reported in iparm(7).
The solver automatically performs two steps of iterative refinements when perturbed pivots are obtained during the numerical factorization and \(\operatorname{iparm}(8)=0\).
The number of performed iterative refinement steps is reported in iparm(7).
The default value for iparm(8) is 0 .
iparm(9)
This parameter is reserved for future use. Its value must be set to 0 .

\section*{iparm(10)-pivoting perturbation.}

This parameter instructs PARDISO how to handle small pivots or zero pivots for unsymmetric matrices (mtype \(=11\) or mtype \(=13\) ) and symmetric matrices (mtype \(=-2\), mtype \(=-4\), or mtype \(=6\) ). For these matrices the solver uses a complete supernode pivoting approach. When the factorization algorithm reaches a point where it cannot factor the supernodes with this pivoting strategy, it uses a pivoting perturbation strategy similar to [Li99], [Schenk04].
The magnitude of the potential pivot is tested against a constant threshold of
alpha = eps*||A2||inf,
where eps \(=10^{(-i p a r m(10))}, A 2=P^{\star} P_{\text {MPS }}{ }^{\star} D_{\mathrm{r}} \star A \star D_{\mathrm{C}}{ }^{\star} P\), and \(||A 2||_{\text {inf }}\) is the infinity norm of the scaled and permuted matrix \(A\). Any tiny pivots encountered during elimination are set to the sign (lII)*eps*||A2||inf this trades off some numerical stability for the ability to keep pivots from getting too small. Small pivots are therefore perturbed with eps \(=10^{(-}\) iparm(10)).
For unsymmetric matrices (mtype \(=11\) or mtype \(=13\) ) the default value of \(\operatorname{iparm}(10)\) is 13 and therefore eps \(=1.0 \mathrm{E}-13\).
For symmetric indefinite matrices (mtype \(=-2\), mtype \(=-4\), or mtype \(=6\) ) the default value of iparm(10) is 8, and therefore eps \(=1.0 \mathrm{E}-8\).
iparm(11)-scaling vectors.
PARDISO uses a maximum weight matching algorithm to permute large elements on the diagonal and to scale the matrix so that the diagonal elements are equal to 1 and the absolute values of the off-diagonal entries are less or equal to 1 . This scaling method is applied only to unsymmetric matrices (mtype \(=11\) or mtype \(=13\) ). The scaling can also be used for symmetric indefinite matrices (mtype \(=-2\), mtype \(=-4\), or mtype \(=6\) ) when the symmetric weighted matchings are applied (iparm (13)=1).
Use iparm(11) = 1 (scaling) and iparm(13) = 1 (matching) for highly indefinite symmetric matrices, for example, from interior point optimizations or saddle point problems. Note that in the analysis phase (phase=11) you must provide the numerical values of the matrix \(A\) in case of scaling and symmetric weighted matching.

The default value of iparm(11) is 1 for unsymmetric matrices (mtype =11 or mtype =13). The default value of iparm(11) is 0 for symmetric indefinite matrices (mtype \(=-2\), mtype \(=-4\), or mtype \(=6\) ).
iparm(12) - solving with transposed or conjugate transposed matrix.
If iparm(12) \(=0\), PARDISO solves a linear system \(A x=b\) (default value). If \(\operatorname{iparm}(12)=1\), PARDISO solves a conjugate transposed system \(A^{H} X=b\) based on the factorization of the matrix \(A\).
If \(\operatorname{iparm}(12)=2\), PARDISO solves a transposed system \(A^{T} x=b\) based on the factorization of the matrix \(A\).

NOTE For real matrices the terms conjugate transposed and transposed are equivalent.

\section*{iparm(13) - improved accuracy using (non-)symmetric weighted}
matchings.
PARDISO can use a maximum weighted matching algorithm to permute large elements close the diagonal. This strategy adds an additional level of reliability to our factorization methods and can be seen as a complement to the alternative idea of using more complete pivoting techniques during the numerical factorization.
Use iparm(11)=1 (scalings) and iparm(13)=1 (matchings) for highly indefinite symmetric matrices, for example from interior point optimizations or saddle point problems. Note that in the analysis phase (phase \(=11\) ) you must provide the numerical values of the matrix \(A\) in the case of scalings and symmetric weighted matchings.
The default value of iparm(13) is 1 for unsymmetric matrices (mtype =11 or mtype \(=13\) ). The default value of iparm(13) is 0 for symmetric matrices (mtype \(=-2\), mtype \(=-4\), or mtype \(=6\) ).
iparm(18) - numbers of non-zero elements in the factors.
If iparm(18)< 0 on entry, the solver reports the numbers of non-zero elements in the factors.
The default value of iparm(18) is -1 .
\(\operatorname{iparm}(19)\) - MFLOPS of factorization.
If iparm(19) < 0 on entry, the solver reports the number of MFLOPS (1.0E6) that are necessary to factor the matrix \(A\). Reporting this number increases the reordering time.
The default value of iparm(19) is 0 .
iparm(21) - pivoting for symmetric indefinite matrices.
iparm(21) controls the pivoting method for sparse symmetric indefinite matrices.
If iparm(21) \(=0\), then \(1 \times 1\) diagonal pivoting is used.
If iparm(21) \(=1\), then \(1 \times 1\) and \(2 \times 2\) Bunch and Kaufman pivoting is used in the factorization process.

NOTE Use iparm(11) \(=1\) (scaling) and iparm(13) \(=1\) (matchings) for highly indefinite symmetric matrices, for example from interior point optimizations or saddle point problems.

The default value of iparm(21) is 1 . Bunch and Kaufman pivoting is available for matrices: mtype \(=-2\), mtype \(=-4\), or mtype \(=6\).

\section*{iparm(24) - parallel factorization control.}

This parameter selects the scheduling method for the parallel numerical factorization.
If iparm(24) \(=0\) (default value), then PARDISO uses the previous parallel factorization.
If \(\operatorname{iparm}(24)=1\), then PARDISO uses new two-level scheduling algorithm. This algorithm generally improves scalability in case of parallel factorization on many threads (more than eight).

The two-level scheduling factorization algorithm is enabled by default in previous MKL releases for matrices mtype=11. If you see performance degradation for such matrices with the default value, set manually \(\operatorname{iparm}(24)=1\).
iparm(25) - parallel forward/backward solve control.
If iparm(25) \(=0\) (default value), then PARDISO uses a parallel algorithm for the solve step.
If iparm(25) = 1, then PARDISO uses sequential forward and backward solve.

This feature is available only for in-core version.
iparm(27) - matrix checker.
If iparm(27)=0 (default value), PARDISO does not check the sparse matrix representation.
If iparm(27)=1, then PARDISO checks integer arrays ia and ja. In particular, PARDISO checks whether column indices are sorted in increasing order within each row.
iparm(28) - sets single or double precision of PARDISO.
If iparm (28) \(=0\), then the input arrays (matrix \(a\), vectors \(x\) and \(b\) ) and all internal arrays must be presented in double precision.
If iparm(28)=1, then the input arrays must be presented in single precision. In this case all internal computations are performed in single precision.
Depending on the sign of iparm(8), refinement steps can be calculated in quad or double precision for double precision accuracy, and in double or single precision for single precision accuracy.
Default value of iparm(28) is 0 (double precision).

Important iparm(28) value is stored in the PARDISO handle between PARDISO calls, so the precision mode can be changed only during the solver's phase 1.

\section*{iparm(31) - partial solution for sparse right-hand sides and sparse}

\section*{solution.}

This parameter controls the solution method if the right hand side contains a few nonzero components. It can be also used if only few components of the solution vector are needed, or if you want to reduce computation cost at solver step. To use this option define the input permutation vector perm so that perm(i) \(=1\) means that the \(i\)-the component in the right-hand side is nonzero or the i-th component in the solution vector is computed.
If iparm(31) \(=0\) (default value), this option is disabled.
If iparm(31) \(=1\), the right hand side must be sparse, and the \(i\)-th component in the solution vector is computed if perm(i) \(=1\). You can set \(\operatorname{perm}(i)=1\) only if the \(i\)-th component of the right hand side is nonzero. If iparm(31) \(=2\), the right hand side must be sparse, all components of the solution vector are computed. perm(i) \(=1\) means that the \(i\)-th component of the right hand side is nonzero.
In the last case the computation cost at solver step is reduced due to reduced forward solver step.
To use iparm(31) \(=2\), you must set the i-th component of the right hand side to zero explicitly if perm(i) is not equal to 1 .
If iparm(31) \(=3\), the right hand side can be of any type and you must set \(\operatorname{perm}(i)=1\) to compute the \(i\)-th component in the solution vector.
The permutation vector perm must be present in all phases of Intel MKL PARDISO software. At the reordering step, the software overwrites the input vector perm by a permutation vector used by the software at the factorization and solver step. If \(m\) is the number of components such that \(\operatorname{perm}(i)=1\), then the last \(m\) components of the output vector perm are a set of the indices i satisfying the condition \(\operatorname{perm}(i)=1\) on input.

NOTE Turning on this option often increases time used by PARDISO for factorization and reordering steps, but it enables time to be reduced for the solver step.

Important This feature is available only for the in-core version, so to use it you must set iparm(60) \(=0\). Set the parameters iparm (8) (iterative refinement steps), iparm(4) (preconditioned CGS), and iparm(5) (user permutation) to 0 as well.
iparm(32) - iparm(34) - these parameters are reserved for future use. Their values must be set to 0 .

\section*{iparm(35) - C or Fortran style array indexing.}
iparm(35) determines the indexing base for input matrices.
If iparm(35)=0 (default value), then PARDISO uses Fortran style indexing:
first value is referenced as array element 1.
Otherwise PARDISO uses C style indexing: the first value is referenced as array element 0.
iparm(35) - iparm(59) - these parameters are reserved for future use. Their values must be set to 0 .
iparm(60) - version of PARDISO.
iparm(60) controls what version of PARDISO - out-of-core (OC) version or in-core (IC) version - is used. The OC PARDISO can solve very large problems by holding the matrix factors in files on the disk. Because of that the amount of main memory required by OC PARDISO is significantly reduced.
If iparm(60) \(=0\) (default value), then IC PARDISO is used.
If \(\operatorname{iparm}(60)=1\) - then IC PARDISO is used if the total memory of RAM (in megabytes) needed for storing the matrix factors is less than sum of two values of the environment variables: MKL_PARDISO_OOC_MAX_CORE_SIZE (its default value is 2000 MB ) and MKL_PARDISO_OOC_MAX_SWAP_SIZE (its default value is 0 MB ); otherwise OOC PARDISO is used. In this case amount of RAM used by OOC PARDISO can not exceed the value of MKL_PARDISO_OOC_MAX_CORE_SIZE.
If iparm(60) \(=2\) - then OOC PARDISO is used.
If iparm(60) is equal to 1 or 2 , and the total peak memory needed for storing the local arrays is more than MKL_PARDISO_OOC_MAX_CORE_SIZE, the program stops with error -9. In this case, increase MKL_PARDISO_OOC_MAX_CORE_SIZE.
OOC parameters can be set in a configuration file. You can set the path to this file and its name using environmental variable
MKL_PARDISO_OOC_CFG_PATH and MKL_PARDISO_OOC_CFG_FILE_NAME.
Path and name are as follows:
<MKL_PARDISO_OOC_CFG_PATH >/< MKL_PARDISO_OOC_CFG_FILE_NAME>
for Linux* OS, and
<MKL_PARDISO_OOC_CFG_PATH > \< MKL_PARDISO_OOC_CFG_FILE_NAME>
for Windows* OS.
By default, the name of the file is pardiso_ooc.cfg and it is placed to the current directory.
All temporary data files can be deleted or stored when the calculations are completed in accordance with the value of the environmental variable MKL_PARDISO_OOC_KEEP_FILE. If it is set to 1 (default value), then all files are deleted, if it is set to 0 , then all files are stored.
By default, the OOC PARDISO uses the current directory for storing data, and all work arrays associated with the matrix factors are stored in files named ooc_temp with different extensions. These default values can be changed by using the environmental variable MKL_PARDISO_OOC_PATH. To set the environmental variables MKL_PARDISO_OOC_MAX_CORE_SIZE, MKL_PARDISO_OOC_MAX_SWAP_SIZE, MKL_PARDISO_OOC_KEEP_FILE, and MKL_PARDISO_OOC_PATH, create the configuration file with the following lines:
MKL_PARDISO_OOC_PATH = <path>\ooc_file
MKL_PARDISO_OOC_MAX_CORE_SIZE = N
MKL_PARDISO_OOC_MAX_SWAP_SIZE = K
MKL_PARDISO_OOC_KEEP_FILE = 0 (or 1)
where <path> is the directory for storing data, ooc_file is the file name without any extension, \(N\) is the maximum size of RAM in megabytes available for PARDISO (default value is 2000 MB ), \(K\) is the maximum swap size in megabytes available for PARDISO (default value is 0 MB ). Do not set \(N\) greater than the size of the RAM and \(K\) greater than the size of the swap.

WARNING The maximum length of the path lines in the configuration files is 1000 characters.
```

Alternatively the environment variables can be set via command line.
For Linux* OS:
export MKL_PARDISO_OOC_PATH = <path>/ooc_file
export MKL_PARDISO_OOC_MAX_CORE_SIZE = N
export MKL_PARDISO_OOC_MAX_CORE_SIZE = K
export MKL_PARDISO_OOC_KEEP_FILE = 0 (or 1)
For Windows* OS:
set MKL_PARDISO_OOC_PATH = <path>\ooc_file
set MKL_PARDISO_OOC_MAX_CORE_SIZE = N
set MKL_PARDISO_OOC_MAX_CORE_SIZE = K
set MKL_PARDISO_OOC_KEEP_FILE = 0 (or 1)

```

NOTE The values specified in a command line have higher priorities - it means that if a variable is changed in the configuration file and in the command line, OOC PARDISO uses only value defined in the command line.

NOTE You can switch between IC and OOC modes after the reordering phase. There are some recommendations and limitations:
- Set iparm(60) before reordering phase to get better PARDISO performance.
- Two-level factorization algorithm is not supported in the OOC mode. If you set two-level algorithm in the OOC mode then PARDISO returns error -1 .
- Switching between IC and OOC modes after reordering phase is not available in sequential mode. The program returns error -1 .
msglvl
b
iparm(61), iparm(62), iparm(64) - these parameters are reserved for future use. Their values must be set to 0 .

INTEGER
Message level information. If msglvi \(=0\) then PARDISO generates no output, if \(m s g l v l=1\) the solver prints statistical information to the screen.
DOUBLE PRECISION - for real types of matrices (mtype=1, 2, -2 and 11)
and for double precision PARDISO (iparm(28)=0)
REAL - for real types of matrices (mtype=1, 2, -2 and 11) and for single precision PARDISO (iparm(28)=1)
DOUBLE COMPLEX - for complex types of matrices (mtype=3, 6, 13, 14
and -4 ) and for double precision PARDISO (iparm(28) \(=0\) )
COMPLEX - for complex types of matrices (mtype \(=3,6,13,14\) and -4 ) and for single precision PARDISO (iparm (28) =1)
Array, dimension ( \(n, n r h s\) ). On entry, contains the right-hand side vector/ matrix \(B\), which is placed in memory contiguously. The \(b(i+(k-1) \times n r h s)\) must hold the \(i\)-th component of \(k\)-th right-hand side vector. Note that \(b\) is only accessed in the solution phase.

\section*{Output Parameters}

This parameter contains internal address pointers.
On output, some iparm values report information such as the numbers of non-zero elements in the factors.
\(\operatorname{iparm}(7)\) - number of performed iterative refinement steps.
The number of iterative refinement steps that are actually performed during the solve step.
iparm(14)- number of perturbed pivots.
After factorization, iparm(14) contains the number of perturbed pivots during the elimination process for mtype \(=11\), mtype \(=13\), mtype \(=-2\), mtype \(=-4\), or mtype \(=-6\).
iparm(15) - peak memory symbolic factorization.
The parameter iparm(15) reports the total peak memory in kilobytes that the solver needs during the analysis and symbolic factorization phase. This value is only computed in phase 1.
iparm(16) - permanent memory symbolic factorization.
The parameter iparm(16) reports the permanent memory in kilobytes from the analysis and symbolic factorization phase that the solver needs in the factorization and solve phases. This value is only computed in phase 1.
```

iparm(17) - size of factors /memory numerical factorization and

``` solution.
The parameter iparm(17) provides the size in kilobytes of the total memory consumed by IC PARDISO for internal float point arrays. This parameter is computed in phase 1. See iparm(63) for the OOC mode. The total peak memory solver consumption for all phases is max(iparm(15), iparm(16) +iparm(17))
iparm(18) - number of non-zero elements in factors.
The solver reports the numbers of non-zero elements on the factors if iparm(18) < 0 on entry.
iparm(19) - MFLOPS of factorization.
The solver reports the number of operations in MFLOPS (1.0E6 operations) that are necessary to factor the matrix \(A\) if iparm(19) \(<0\) on entry.

\section*{iparm(20) - CG/CGS diagnostics.}

The value is used to give CG/CGS diagnostics (for example, the number of iterations and cause of failure):
If iparm(20)>0, CGS succeeded, and the number of iterations executed are reported in iparm(20).
If iparm (20 ) < 0, iterations executed, but CG/CGS failed. The error report details in iparm(20) are of the form: iparm(20) = - it_cgs*10 -
cgs_error.
If phase \(=23\), then the factors \(L\) and \(U\) are recomputed for the matrix \(A\) and the error flag error=0 in case of a successful factorization. If phase \(=33\), then error \(=-4\) signals failure.
Description of cgs_error is given in the table below:
cgs_error
1

\section*{Description}
fluctuations of the residue are too large
```

cgs_error Description
2
3 stopping criterion is not reached at max_it_cgs
4 perturbed pivots causes iterative refinement
5 factorization is too fast for this matrix. It is better to
use the factorization method with iparm(4)=0

```

\section*{iparm(22) - inertia: number of positive eigenvalues.}

The parameter iparm(22) reports the number of positive eigenvalues for symmetric indefinite matrices.
iparm(23) - inertia: number of negative eigenvalues.
The parameter iparm(23) reports the number of negative eigenvalues for symmetric indefinite matrices.

\section*{iparm(30) - the number of the equation where PARDISO detects zero or negative pivot}

If the solver detects a zero or negative pivot for matrix types mtype \(=2\) (real positive definite matrix) and mtype \(=4\) (complex and Hermitian positive definite matrices), the factorization is stopped, PARDISO returns immediately with an error (error \(=-4\) ) and iparm (30) contains the number of the equation where the first zero or negative pivot is detected.

\section*{iparm(63) - size of the minimum OOC memory for numerical \\ factorization and solution.}

The parameter iparm(63) provides the size in kilobytes of the minimum memory required by OOC PARDISO for internal float point arrays. This parameter is computed in phase 1.
Total peak memory consumption of OOC PARDISO can be estimated as \(\max (i p a r m(15)\), iparm(16) +iparm(63))

On output, the array is replaced with the solution if \(\operatorname{iparm}(6)=1\).
DOUBLE PRECISION - for real types of matrices (mtype=1, 2, -2 and 11) and for double precision PARDISO (iparm(28)=0)
REAL - for real types of matrices (mtype=1, 2, -2 and 11) and for single precision PARDISO (iparm(28) =1)
DOUBLE COMPLEX - for complex types of matrices (mtype \(=3,6,13,14\) and -4) and for double precision PARDISO (iparm (28) \(=0\) )
COMPLEX - for complex types of matrices (mtype \(=3,6,13,14\) and -4 ) and for single precision PARDISO (iparm (28) =1)
Array, dimension ( \(n, n r h s\) ). If iparm (6) \(=0\) it contains solution vector/ matrix \(x\), which is placed contiguously in memory. The \(x(i+(k-1) \times n r h s)\) element must hold the i-th component of the \(k\)-th solution vector. Note that \(x\) is only accessed in the solution phase.
INTEGER
The error indicator according to the below table:
\begin{tabular}{ll} 
error & Information \\
0 & no error \\
-1 & input inconsistent \\
-2 & not enough memory \\
-3 & reordering problem
\end{tabular}
\begin{tabular}{ll} 
error & \begin{tabular}{l} 
Information \\
zero pivot, numerical factorization or iterative \\
-4
\end{tabular} \\
-5 & \begin{tabular}{l} 
unclassified (internal) error
\end{tabular} \\
-6 & \begin{tabular}{l} 
reordering failed (matrix types 11 and 13 only) \\
diagonal matrix is singular
\end{tabular} \\
-7 & \begin{tabular}{l}
32 -bit integer overflow problem \\
-8
\end{tabular} \\
-9 & not enough memory for OOC \\
-10 & problems with opening OOC temporary files \\
-11 & read/write problems with the OOC data file
\end{tabular}

\section*{See Also}
mkl_progress

\section*{pardisoinit}

Initialize PARDISO with default parameters in accordance with the matrix type.

\section*{Syntax}

\section*{Fortran:}
```

call pardisoinit (pt, mtype, iparm)

```

C:
```

pardisoinit (pt, \&mtype, iparm);

```

Include Files
- FORTRAN 77: mkl_pardiso.£77
- Fortran 90: mkl_pardiso.f90
- C: mkl_pardiso.h

\section*{Description}

This function initializes PARDISO internal address pointer pt with zero values (as needed for the very first call of PARDISO) and sets default iparm values in accordance with the matrix type. Intel MKL supplies the pardisoinit routine to be compatible with PARDISO 3.2 or lower distributed by the University of Basel.

\(\square\)
NOTE An alternative way to set default PARDISO iparm values is to call pardiso with iparm(1)=0. In this case you must initialize the internal address pointer pt with zero values manually.

NOTE The pardisoinit routine initializes only the in-core version of PARDISO. Switching on the outof core version of PARDISO as well as changing default iparm values can be done after the call to pardisoinit but before the first call to pardiso.

\section*{Input Parameters}

\section*{mtype}

NOTE Parameters types in this section are specified in FORTRAN 77
notation. See PARDISO Parameters in Tabular Form section for detailed
description of types of PARDISO parameters in C/Fortran 90 notations.
INTEGER
This scalar value defines the matrix type. Based on this value pardisoinit
sets default values for the iparm array. Refer to the section PARDISO
Parameters in Tabular Form for more details about the default values of
PARDISO.

\section*{Output Parameters}
```

pt

```

INTEGER for 32-bit architectures
INTEGER* 8 for 64-bit architectures
Array, DIMENSION (64)
Solver internal data address pointer. These addresses are passed to the solver, and all related internal memory management is organized through this array. The pardisoinit routine nullifies the array pt.

NOTE It is very important that the pointer \(p t\) is initialized with zero before the first call of PARDISO. After that first call you should never modify the pointer, as a serious memory leak can occur.

INTEGER
Array, dimension (64). This array is used to pass various parameters to PARDISO and to return some useful information after execution of the solver. The pardisoinit routine fills-in the iparm array with the default values. Refer to the section PARDISO Parameters in Tabular Form for more details about the default values of PARDISO.

\section*{pardiso_64}

Calculates the solution of a set of sparse linear equations with multiple right-hand sides, 64-bit integer version.

\section*{Syntax}

\section*{Fortran:}
```

call pardiso_64 (pt, maxfct, mnum, mtype, phase, n, a, ia, ja, perm, nrhs, iparm,
msglvl, b, x, error)

```

C:
```

pardiso_64 (pt, \&maxfct, \&mnum, \&mtype, \&phase, \&n, a, ia, ja, perm, \&nrhs, iparm,
\&msglvl, b, x, \&error);

```

Include Files
- FORTRAN 77: mkl_pardiso.f77
- Fortran 90: mkl_pardiso.f90
- C: mkl_pardiso.h

\section*{Description}
pardiso_64 is an alternative ILP64 (64-bit integer) version of the pardiso routine (see Description section for more details). The interface of pardiso_64 is equal to the interface of pardiso, but it accepts and returns all INTEGER data as INTEGER*8.

Use pardiso_64 interface for solving large matrices (with the number of non-zero elements on the order of 500 million or more). You can use it together with the usual LP64 interfaces for the rest of Intel MKL functionality. In other words, if you use 64-bit integer version (pardiso_64), you do not need to re-link your applications with ILP64 libraries. Take into account that pardiso_64 may perform slower than regular pardiso on reordering and symbolic factorization phase.

NOTE pardiso_64 is supported only in the 64-bit libraries. If pardiso_64 is called from the 32-bit libraries, it returns error \(=-12\).

\section*{Input Parameters}

The input parameters of pardiso_64 are equal to the input parameters of pardiso, but pardiso_64 accepts all INTEGER data as INTEGER*8.

\section*{Output Parameters}

The output parameters of pardiso_64 are equal to output parameters of pardiso, but pardiso_64 returns all INTEGER data as INTEGER*8.
```

See Also
mkl_progress

```

\section*{pardiso_getenv, pardiso_setenv}

Retrieves additional values from the PARDISO handle or sets them in it.

\section*{Syntax}
```

error = pardiso_getenv(handle, param, value)
error = pardiso_setenv(handle, param, value)

```

\section*{outputtext(Interface):}
```

INTEGER_t pardiso_getenv (const _MKL_DSS_HANDLE_t handle, const enum
PARDISO_ENV_PARAM* param, char* value);
_INTEGER_t pardiso_setenv (_MKL_DSS_HANDLE_t handle, const enum PARDISO_ENV_PARAM*
param, const char* value);
Include Files

```
- FORTRAN 77: mkl_pardiso.f77
- Fortran 90: mkl_pardiso.f90
- C: mkl_pardiso.h

NOTE pardiso_setenv requires the value parameter to be converted to the string in C notation if it is called from Fortran. You can do this using mkl_cvt_to_null_terminated_str subroutine declared in the mkl_dss.f77 or mkl_dss.f90 include files (see example below).

\section*{Description}

These functions operate with the PARDISO handle. The pardiso_getenv routine retrieves additional values from the PARDISO handle, and pardiso_setenv sets specified values in the PARDISO handle.
These functions enable retrieving and setting the name of the PARDISO OOC file.
To retrieve the PARDISO OOC file name, you can apply this function to any non-empty handle.
To set the the PARDISO OOC file name in the handle you must apply the function before reordering stage. That is you must apply the function only for the empty handle. This is because OOC file name is stored in the handle after reordering stage and it is not changed during further computations.

NOTE 1024-byte internal buffer is used inside PARDISO for storing OOC file name. Allocate 1024-byte buffer (value parameter) for passing it to pardiso_getenv function.

\section*{Input Parameters}
```

handle Input parameter for pardiso_getenv. Data object of the MKL_DSS_HANDLE
type (see DSS Interface Description).
INTEGER. Specifies the required parameter. The only value is
PARDISO_OCC_FILE_NAME, defined in the corresponding include file.
Input parameter for pardiso_setenv. STRING. Contains the name of the
OOC file that must be used in the handle.

```

\section*{Output Parameters}
value Output parameter for pardiso_getenv. STRING. Contains the name of the OOC file that is used in the handle.
handle Output parameter for pardiso_setenv. Data object of the MKL_DSS_HANDLE type (see DSS Interface Description).

\section*{Example (FORTRAN 90)}
```

INCLUDE 'mkl pardiso.f90'
INCLUDE 'mkl-dss.f90'
PROGRAM pardīSo_sym_f90
USE mkl_pardiso-
USE mkl_dss
INTEGER*8 pt(64)
CHARACTER*1024 file name
INTEGER buff(256), \overline{bufLen, error}
pt(1:64) = 0
file_name = 'pardiso_ooc_file'
bufLēn = len trim(file name)
call mkl_cvt_to_null_tērminated_str(buff, bufLen, trim(file_name))
error = pardiso_setenv(pt, PARD\overline{ISO_OOC_FILE_NAME, buff)}
! call pardiso() here
END PROGRAM

```

\section*{PARDISO Parameters in Tabular Form}

The following table lists all parameters of PARDISO and gives their brief descriptions.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Paramet er & Type & Description & Values & Comments & \[
\begin{aligned}
& \text { In/ } \\
& \text { Out }
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{pt (64)} & \begin{tabular}{l}
FORTRAN 77: \\
INTEGER on 32-bit architectures, INTEGER*8 on 64bit architectures
\end{tabular} & Solver internal data address pointer & 0 & Must be initialized by zeros and never be modified later & \[
\begin{aligned}
& \text { in/ } \\
& \text { ont }
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
Fortran 90: \\
TYPE (MKL_PARDISO _HANDLE), \\
INTENT (INOUT)
\end{tabular} & & & & \\
\hline & C: void* & & & & \\
\hline \multirow[t]{3}{*}{maxfct} & FORTRAN 77: INTEGER & Maximal number of factors in memory & >0 & Generally used value is 1 & in \\
\hline & Fortran 90: INTEGER, INTENT (IN) & & & & \\
\hline & C: _INTEGER_t* & & & & \\
\hline \multirow[t]{2}{*}{mnum} & \begin{tabular}{l}
FORTRAN 77: INTEGER \\
Fortran 90: \\
INTEGER, INTENT (IN)
\end{tabular} & The number of matrix (from 1 to maxfct) to solve & \[
\begin{aligned}
& {[1 ;} \\
& \operatorname{maxfct}]
\end{aligned}
\] & Generally used value is 1 & in \\
\hline & C: _INTEGER_t* & & & & \\
\hline \multirow[t]{8}{*}{mtype} & \begin{tabular}{l}
FORTRAN 77: \\
INTEGER
\end{tabular} & Matrix type & 1 & Real and structurally symmetric & in \\
\hline & \begin{tabular}{l}
Fortran 90: \\
INTEGER, \\
INTENT (IN)
\end{tabular} & & 2
-2 & Real and symmetric positive definite & \\
\hline & C: _INTEGER_t* & & 3 & \begin{tabular}{l}
Real and symmetric indefinite \\
Complex and structurally symmetric
\end{tabular} & \\
\hline & & & 4 & Complex and Hermitian positive definite & \\
\hline & & & -4 & Complex and Hermitian indefinite & \\
\hline & & & 6 & Complex and symmetric matrix & \\
\hline & & & 11 & Real and unsymmetric matrix & \\
\hline & & & 13 & Complex and unsymmetric matrix & \\
\hline \multirow[t]{5}{*}{phase} & FORTRAN 77: & Controls the & 11 & Analysis & in \\
\hline & INTEGER & execution of the solver & 12 & Analysis, numerical & \\
\hline & Fortran 90: & & & factorization & \\
\hline & \begin{tabular}{l}
INTEGER, \\
INTENT (IN)
\end{tabular} & & 13 & Analysis, numerical factorization, solve & \\
\hline & C: _INTEGER_t* & & 22 & Numerical factorization & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Paramet er & Type & Description & Values & Comments & \[
\begin{aligned}
& \hline \text { In/ } \\
& \text { Out }
\end{aligned}
\] \\
\hline & & & 23 & Numerical factorization, solve & \\
\hline & & & 33 & Solve, iterative refinement & \\
\hline & & & 331 & phase=33, but only forward substitution & \\
\hline & & & 332 & phase=33, but only diagonal substitution & \\
\hline & & & 333 & phase=33, but only backward substitution & \\
\hline & & & 0 & Release internal memory for \(L\) and \(U\) of the matrix number mnum & \\
\hline & & & -1 & Release all internal memory for all matrices & \\
\hline \multirow[t]{3}{*}{\(n\)} & \begin{tabular}{l}
FORTRAN 77: \\
T TПア C
\end{tabular} & \multirow[t]{3}{*}{Number of equations in the sparse linear system \(A^{*}{ }_{X}=B\)} & \multirow[t]{3}{*}{\(>0\)} & & \multirow[t]{3}{*}{in} \\
\hline & \begin{tabular}{l}
INTEGER \\
Fortran 90: \\
INTEGER, \\
INTENT (IN)
\end{tabular} & & & & \\
\hline & C: _INTEGER_t* & & & & \\
\hline \(a(*)\) & \begin{tabular}{l}
FORTRAN 77: \\
PARDISO_DATA_TYP \(\mathrm{E}^{1)}\) \\
Fortran 90: \\
PARDISO_DATA_TYP \(\mathrm{E}^{1)}\), INTENT (IN)
\end{tabular} & Contains the nonzero elements of the coefficient matrix A & * & The size of \(a\) is the same as that of ja, and the coefficient matrix can be either real or complex. The matrix must be stored in CSR format with increasing values of ja for each row & in \\
\hline & C: void* & & & & \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { ia (n } \\
& +1)
\end{aligned}
\]} & \begin{tabular}{l}
FORTRAN 77: \\
INTEGER
\end{tabular} & \multirow[t]{5}{*}{rowIndex array in CSR format} & \multirow[t]{5}{*}{\(>=0\)} & \begin{tabular}{l}
\[
0<i a(i)<=i a(i+1)
\] \\
ia(i) gives the index of the
\end{tabular} & \multirow[t]{5}{*}{in} \\
\hline & Fortran 90: & & & element in array a that & \\
\hline & INTEGER, INTENT (IN) & & & contains the first non-zero element from row \(i\) of \(A\). The last element ia( \(n+1\) ) is & \\
\hline & C: _INTEGER_t* & & & taken to be equal to the number of non-zero elements in \(A\), plus one. & \\
\hline & & & & Note: iparm(35) indicates whether row/column indexing starts from 1 or 0. & \\
\hline ja(*) & \begin{tabular}{l}
FORTRAN 77: \\
INTEGER \\
Fortran 90: \\
INTEGER, INTENT (IN) \\
C: _INTEGER_t*
\end{tabular} & columns array in CSR format & \(>=0\) & The indices in each row must be sorted in increasing order. For symmetric and structurally symmetric matrices zero diagonal elements are also stored in a and ja. For symmetric & in \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Paramet \\
er & Type & Description & Values \\
\hline & & Comments
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Paramet er & Type & Description & Values & Comments & \[
\begin{aligned}
& \text { In/ } \\
& \text { Out }
\end{aligned}
\] \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& x(n \star n r \\
& h s)
\end{aligned}
\]} & & \multirow[b]{2}{*}{Solution vectors} & \multirow[b]{2}{*}{*} & On output, the array is replaced with the solution if \(\operatorname{iparm}(6)=1\). & \multirow[b]{2}{*}{out} \\
\hline & \begin{tabular}{l}
FORTRAN 77: \\
PARDISO_DATA_TYP \(\mathrm{E}^{1)}\) \\
Fortran 90: \\
PARDISO_DATA_TYP \(\mathrm{E}^{1)}\), INTENT (OUT) \\
C: void*
\end{tabular} & & & On output, if iparm(6)=1, contains solution vector/ matrix \(x\) which is placed contiguously in memory. The \(x(i+(k-1) \times n r h s)\) element must hold the \(i\)-th component of \(k\)-th solution vector. Note that \(x\) is only accessed in the solution phase. & \\
\hline \multirow[t]{8}{*}{error} & \begin{tabular}{l}
FORTRAN 77: \\
INTEGER
\end{tabular} & \multirow[t]{8}{*}{Error indicator} & \multirow[t]{2}{*}{0
-1} & No error & \multirow[t]{8}{*}{out} \\
\hline & & & & Input inconsistent & \\
\hline & \begin{tabular}{l}
Fortran 90: \\
INTEGER, \\
INTENT (OUT)
\end{tabular} & & -2 & Not enough memory & \\
\hline & C: _INTEGER_t* & & -4 & Zero pivot, numerical factorization or iterative refinement problem & \\
\hline & & & -6 & \begin{tabular}{l}
Unclassified (internal) error \\
Reordering failed (matrix types 11 and 13 only)
\end{tabular} & \\
\hline & & & -8 & Diagonal matrix is singular 32-bit integer overflow problem & \\
\hline & & & -10 & Problems with opening OOC temporary files & \\
\hline & & & -11 & Read/write problems with the OOC data file & \\
\hline
\end{tabular}
\({ }^{1)}\) See description of PARDISO_DATA_TYPE in the table below.

The following table lists the values of PARDISO_DATA_TYPE depending on the matrix types and values of the parameter iparm(28).
\begin{tabular}{|llrl|}
\hline Data type value & Matrix type mtype & iparm(28) & comments \\
\hline DOUBLE PRECISION & \(1,2,-2,11\) & 0 & \begin{tabular}{l} 
Real matrices, double \\
precision
\end{tabular} \\
REAL & 1 & \begin{tabular}{l} 
Real matrices, single \\
precision
\end{tabular} \\
DOUBLE COMPLEX & \(3,6,13,4,-4\) & 0 & \begin{tabular}{l} 
Complex matrices, \\
double precision
\end{tabular}
\end{tabular}
\begin{tabular}{|llll|}
\hline Data type value & Matrix type mtype & iparm(28) & comments \\
\hline COMPLEX & 1 & \begin{tabular}{l} 
Complex matrices, single \\
precision
\end{tabular} \\
\hline
\end{tabular}

The following table lists all individual components of the PARDISO iparm () parameter and their brief descriptions. Components not listed in the table must be initialized with 0 . Default values in the column Values are denoted as \(X^{*}\).
\begin{tabular}{|c|c|c|c|c|}
\hline Compone nt & Description & Values & Comments & \[
\begin{aligned}
& \text { In/ } \\
& \text { Out }
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{INPUT, INPUT/OUTPUT PARAMETERS} \\
\hline \multirow[t]{2}{*}{iparm(1} & \multirow[t]{2}{*}{Use default values} & 0 & iparm(2) -iparm(64) are filled with default values. & \multirow[t]{2}{*}{in} \\
\hline & & \(!=0\) & You must supply all values in components iparm(2) -iparm(64) & \\
\hline \multirow[t]{3}{*}{iparm(2} & \multirow[t]{3}{*}{Fill-in reducing ordering for the input matrix} & 0 & The minimum degree algorithm. & \multirow[t]{3}{*}{in} \\
\hline & & 2* & The nested dissection algorithm from the METIS package & \\
\hline & & 3 & The parallel (OpenMP) version of the nested dissection algorithm. & \\
\hline \multirow[t]{4}{*}{iparm(4} & \multirow[t]{4}{*}{Preconditioned CGS/ CG} & 0* & Do not perform preconditioned Krylow-Subspace iterations. & \multirow[t]{4}{*}{in} \\
\hline & & \multirow[t]{2}{*}{\(10 * L+1\)} & CGS iteration replaces the computation of LU. The preconditioner is LU that is computed at the previous step (the first step or last step with a failure) in a sequence of solutions needed for identical sparsity patterns. & \\
\hline & & & L controls the stopping criterion of the KrylowSubspace iteration: epsCGS \(=10^{\wedge}(-L)\) is used in the stopping criterion ||dxi|| / ||dx0|| < epsCGS, with ||dxi|| = ||inv(L*U)*ri|| and ri is the residuum at iteration \(i\) of the preconditioned Krylow-Subspace iteration. & \\
\hline & & \(10 * L+2\) & Same as above, but CG iteration replaces the computation of LU. Designed for symmetric positive definite matrices. & \\
\hline \multirow[t]{3}{*}{iparm(5} & \multirow[t]{3}{*}{User permutation} & 0* & User permutation in perm array is ignored. & \multirow[t]{3}{*}{in} \\
\hline & & 1 & PARDISO uses the user supplied fill-in reducing permutation from perm array. iparm(2) is ignored. & \\
\hline & & 2 & PARDISO returns the permutation vector computed at phase 1 into perm array & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { iparm(6 } \\
& \text { ) }
\end{aligned}
\]} & \multirow[t]{3}{*}{Write solution on \(x\)} & 0* & The array \(x\) contains the solution; right-hand side vector \(b\) is kept unchanged. & \multirow[t]{3}{*}{in} \\
\hline & & 1 & The solver stores the solution on the right-hand side \(b\). & \\
\hline & & & Note that the array \(x\) is always used. & \\
\hline iparm(8 & Iterative refinement step & 0* & The solver automatically performs two steps of iterative refinements when perturbed pivots are obtained during the numerical factorization. & in \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline Compone nt & Description & Values & Comments & \[
\begin{aligned}
& \text { In/ } \\
& \text { Out }
\end{aligned}
\] \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \text { iparm(3 } \\
& \text { 5) }
\end{aligned}
\]} & \multirow{4}{*}{One- or zero-based indexing of columns and rows} & 2 & The right hand side is assumed to be sparse, perm(i) \(=1\) means that the \(i\)-th component of the right hand side is nonzero, and all components of the solution vector are computed. & \multirow{4}{*}{in} \\
\hline & & 3 & The right hand side can be of any type. If perm(i)=1, the i-th component of the solution vector is computed. & \\
\hline & & 0* & One-based indexing: columns and rows indexing in arrays ia, ja, and perm starts from 1. Default value. & \\
\hline & & 1 & Zero-based indexing: columns and rows indexing in arrays ia, ja, and perm starts from 0. & \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { iparm(6 } \\
& 0)
\end{aligned}
\]} & \multirow[t]{4}{*}{PARDISO mode} & 0* & In-core PARDISO & \multirow[t]{4}{*}{in} \\
\hline & & 1 & In-core PARDISO is used if the total memory needed for storing the matrix factors is less than the value of the environment variable MKL_PARDISO_OOC_MAX_CORE_SIZE. Otherwise out-of-core (OOC) \(\overline{\text { PARDIS }} \overline{\text { PI }}\) is used. & \\
\hline & & \multirow[t]{2}{*}{2} & Out-of-core (OOC) PARDISO & \\
\hline & & & The OOC PARDISO can solve very large problems by holding the matrix factors in files on the disk. Hence the amount of RAM required by OOC PARDISO is significantly reduced. & \\
\hline \multicolumn{5}{|l|}{OUTPUT PARAMETERS} \\
\hline \[
\begin{aligned}
& \text { iparm(7 } \\
& \text { ) }
\end{aligned}
\] & Number of performed iterative refinement steps & \(>=0\) & Reports the number of iterative refinement steps that were actually performed during the solve step. & out \\
\hline \begin{tabular}{l}
iparm(1 \\
4)
\end{tabular} & Number of perturbed pivots & \(>=0\) & After factorization, contains the number of perturbed pivots for the matrix types: 11, 13, -2 , -4 and -6. & out \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { iparm(1 } \\
& \text { 5) }
\end{aligned}
\]} & \multirow[t]{2}{*}{Peak memory on symbolic factorization} & \multirow[t]{2}{*}{\(>0 \mathrm{~KB}\)} & The total peak memory in kilobytes that the solver needs during the analysis and symbolic factorization phase. & \multirow[t]{2}{*}{out} \\
\hline & & & This value is only computed in phase 1. & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { iparm(1 } \\
& \text { 6) }
\end{aligned}
\]} & \multirow[t]{2}{*}{Permanent memory on symbolic factorization} & \multirow[t]{2}{*}{\(>0 \mathrm{~KB}\)} & Permanent memory from the analysis and symbolic factorization phase in kilobytes that the solver needs in the factorization and solve phases. & \multirow[t]{2}{*}{out} \\
\hline & & & This value is only computed in phase 1. & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { iparm(1 } \\
& \text { 7) }
\end{aligned}
\]} & \multirow[t]{2}{*}{Size of factors/Peak memory on numerical factorization and solution} & \multirow[t]{2}{*}{\(>0 \mathrm{~KB}\)} & This parameter provides the size in kilobytes of the total memory consumed by in-core PARDISO for internal float point arrays. This parameter is computed in phase 1. See iparm(63) for the OOC mode. & \multirow[t]{2}{*}{out} \\
\hline & & & The total peak memory consumed by PARDISO is max(iparm(15), iparm(16)+iparm(17)) & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { iparm(2 } \\
& 0)
\end{aligned}
\]} & \multirow[t]{2}{*}{CG/CGS diagnostics} & >0 & CGS succeeded, reports the number of completed iterations. & \multirow[t]{2}{*}{out} \\
\hline & & <0 & CG/CGS failed (error=-4 after the solution phase) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Compone nt & Description & Values & Comments & \[
\begin{aligned}
& \text { In/ } \\
& \text { Out }
\end{aligned}
\] \\
\hline & & & \begin{tabular}{l}
iparm(20) = - it_cgs*10 - cgs_error. \\
Possible values of cgs_error: \\
1-fluctuations of the residuum are too large \\
2-||dx at max_it_cgs/2|| is too large (slow convergence) \\
3 - stopping criterion is not reached at max_it_cgs \\
4 - perturbed pivots causes iterative refinement
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { iparm(2 } \\
& \text { 2) }
\end{aligned}
\] & Inertia: number of positive eigenvalues & > \(=0\) & PARDISO reports the number of positive eigenvalues for symmetric indefinite matrices & out \\
\hline \[
\begin{aligned}
& \text { iparm(2 } \\
& 3)
\end{aligned}
\] & Inertia: number of negative eigenvalues & \(>=0\) & PARDISO reports the number of negative eigenvalues for symmetric indefinite matrices. & out \\
\hline \begin{tabular}{l}
iparm(3 \\
0)
\end{tabular} & Number of zero or negative pivots & \(>=0\) & If PARDISO detects zero or negative pivot for mtype \(=2\) or mtype \(=4\) types, the factorization is stopped, PARDISO returns immediately with an error \(=-4\), and iparm (30) reports the number of the equation where the first zero or negative pivot is detected. & out \\
\hline \[
\begin{aligned}
& \text { iparm(6 } \\
& \text { 3) }
\end{aligned}
\] & Size of the minimum OOC memory for numerical factorization and solution & >0 KB & \begin{tabular}{l}
This parameter provides the size in kilobytes of the minimum memory required by OOC PARDISO for internal float point arrays. This parameter is computed in phase 1. \\
Total peak memory consumption of OOC PARDISO can be estimated as max(iparm(15), iparm(16) +iparm(63))
\end{tabular} & \\
\hline
\end{tabular}

\section*{Direct Sparse Solver (DSS) Interface Routines}

Intel MKL supports the DSS interface, an alternative to the PARDISO* interface for the direct sparse solver. The DSS interface implements a group of user-callable routines that are used in the step-by-step solving process and utilizes the general scheme described in Appendix A Linear Solvers Basics for solving sparse systems of linear equations. This interface also includes one routine for gathering statistics related to the solving process and an auxiliary routine for passing character strings from Fortran routines to C routines.
The current implementation of the DSS interface additionally supports the out-of-core (OOC) mode.
Table "DSS Interface Routines" lists the names of the routines and describes their general use.
DSS Interface Routines
\begin{tabular}{ll}
\hline Routine & Description \\
\hline dss_create & \begin{tabular}{l} 
Initializes the solver and creates the basic data structures \\
necessary for the solver. This routine must be called \\
before any other DSS routine.
\end{tabular} \\
dss_define_structure & \begin{tabular}{l} 
Informs the solver of the locations of the non-zero \\
elements of the array.
\end{tabular} \\
dss_reorder & \begin{tabular}{l} 
Based on the non-zero structure of the matrix, computes \\
a permutation vector to reduce fill-in during the factoring \\
process.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
\hline \hline Routine & Description \\
\hline\(d s s_{\text {_ }}\) factor_real, dss_factor_complex & \begin{tabular}{l} 
Computes the \(L U, L D L^{T}\) or \(L L^{T}\) factorization of a real or \\
complex matrix.
\end{tabular} \\
dss_solve_real, dss_solve_complex & \begin{tabular}{l} 
Computes the solution vector for a system of equations \\
based on the factorization computed in the previous \\
phase.
\end{tabular} \\
dss_delete & \begin{tabular}{l} 
Deletes all data structures created during the solving \\
process.
\end{tabular} \\
dss_statistics & \begin{tabular}{l} 
Returns statistics about various phases of the solving \\
process.
\end{tabular} \\
mkl_cvt_to_null_terminated_str & \begin{tabular}{l} 
Passes character strings from Fortran routines to \(C\) \\
routines.
\end{tabular} \\
\hline
\end{tabular}

To find a single solution vector for a single system of equations with a single right hand side, invoke the Intel MKL DSS interface routines in this order:
1. dss_create
2. dss_define_structure
3. dss_reorder
4. dss_factor_real, dss_factor_complex
5. dss_solve_real, dss_solve_complex
6. dss_delete

However, in certain applications it is necessary to produce solution vectors for multiple right-hand sides for a given factorization and/or factor several matrices with the same non-zero structure. Consequently, it is sometimes necessary to invoke the Intel MKL sparse routines in an order other than that listed, which is possible using the DSS interface. The solving process is conceptually divided into six phases. Figure "Typical order for invoking DSS interface routines" indicates the typical order in which the DSS interface routines can be invoked.

\section*{Typical order for invoking DSS interface routines}


See the code examples that use the DSS interface routines to solve systems of linear equations in the examples \solver\source folder of your Intel MKL directory (dss_sym_f.f, dss_sym_c.c, dss_sym_f90.f90).

\section*{DSS Interface Description}

Each DSS routine reads from or writes to a data object called a handle. Refer to Memory Allocation and Handles to determine the correct method for declaring a handle argument for each language. For simplicity, the descriptions in DSS routines refer to the data type as MKL_DSS_HANDLE.
C and C++ programmers should refer to Calling Sparse Solver and Preconditioner Routines from C C++ for information on mapping Fortran types to C/C++ types.

\section*{Routine Options}

The DSS routines have an integer argument (referred below to as opt) for passing various options to the routines. The permissible values for opt should be specified using only the symbol constants defined in the language-specific header files (see Implementation Details). The routines accept options for setting the message and termination levels as described in Table "Symbolic Names for the Message and Termination Levels Options". Additionally, each routine accepts the option MKL_DSS_DEFAULTS that sets the default values (as documented) for opt to the routine.

Symbolic Names for the Message and Termination Levels Options
\begin{tabular}{ll}
\hline Message Level & Termination Level \\
\hline MKL_DSS_MSG_LVL_SUCCESS & MKL_DSS_TERM_LVL_SUCCESS \\
\(M K L _D S S _M S G _L V L _I N F O ~\) & MKL_DSS_TERM_LVL_INFO \\
\(M K L _D S S _M S G _L V L _W A R N I N G ~\) & MKL_DSS_TERM_LVL_WARNING \\
\(M K L _D S S _M S G _L V L _E R R O R ~\) & \(M K L _D S S\) _TERM_LVL_ERROR \\
\(M K L _D S S _M S G _L V L _F A T A L ~\) & \(M K L _D S S _T E R M _L V L _F A T A L ~\) \\
\hline
\end{tabular}

The settings for message and termination levels can be set on any call to a DSS routine. However, once set to a particular level, they remain at that level until they are changed in another call to a DSS routine.
You can specify both message and termination level for a DSS routine by adding the options together. For example, to set the message level to debug and the termination level to error for all the DSS routines, use the following call:
CALL dss_create( handle, MKL_DSS_MSG_LVL_INFO + MKL_DSS_TERM_LVL_ERROR)

\section*{User Data Arrays}

Many of the DSS routines take arrays of user data as input. For example, user arrays are passed to the routine dss_define_structure to describe the location of the non-zero entries in the matrix. To minimize storage requirements and improve overall run-time efficiency, the Intel MKL DSS routines do not make copies of the user input arrays.

WARNING Do not modify the contents of these arrays after they are passed to one of the solver routines.

\section*{DSS Routines}
dss_create
Initializes the solver.

\section*{Syntax}

C:
dss_create (handle, opt)

\section*{Fortran:}
```

call dss_create(handle, opt)

```

Include Files
- FORTRAN 77: mkl_dss.f77
- Fortran 90: mkl_dss.f90
- C: mkl_dss.h

\section*{Description}

The dss_create routine initializes the solver. After the call to dss_create, all subsequent invocations of the Intel MKL DSS routines must use the value of the handle returned by dss_create.

WARNING Do not write the value of handle directly.

The default value of the parameter opt is
MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR.
By default, the DSS routines use double precision for solving systems of linear equations. The precision used by the DSS routines can be set to single mode by adding the following value to the opt parameter:

MKL_DSS_SINGLE_PRECISION.
As for PARDISO, input data and internal arrays are required to have single precision.
By default, the DSS routines use Fortran style indexing for input arrays of integer types (the first value is referenced as array element 1). The indexing can be set to \(C\) style (the first value is referenced as array element 0) by adding the following value to the opt parameter:

MKL_DSS_ZERO_BASED_INDEXING.
This parameter can also control number of refinement steps used on the solution stage by specifying the two following values:

MKL_DSS_REFINEMENT_OFF - maximum number of refinement steps is set to zero;
MKL_DSS_REFINEMENT_ON (default value) - maximum number of refinement steps is set to 2 .
By default, DSS uses in-core computations. To launch the out-of-core version of DSS (OOC DSS) you can add to this parameter one of two possible values: MKL_DSS_OOC_STRONG and MKL_DSS_OOC_VARIABLE.

MKL_DSS_OOC_STRONG - OOC DSS is used.
MKL_DSS_OOC_VARIABLE - if the memory needed for the matrix factors is less than the value of the environment variable MKL_PARDISO_OOC_MAX_CORE_SIZE, then the OOC DSS uses the in-core kernels of PARDISO, otherwise it uses the OOC computations.

The variable MKL_PARDISO_OOC_MAX_CORE_SIZE defines the maximum size of RAM allowed for storing work arrays associated with the matrix factors. It is ignored if MKL_DSS_OOC_STRONG is set. The default value of MKL_PARDISO_OOC_MAX_CORE_SIZE is 2000 MB. This value and default path and file name for storing temporary data can be changed using the configuration file pardiso_ooc.cfg or command line (See more details in the pardiso description above).

WARNING Do not change the OOC DSS settings after they are specified in the routine dss_create.

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
opt & FORTRAN 77: INTEGER \\
& Fortran 90: INTEGER, INTENT (IN) \\
& C:_INTEGER_t const*
\end{tabular}

\section*{Output Parameters}
```

Name Type
handle FORTRAN 77: INTEGER*8
Fortran 90: TYPE
(MKL_DSS_HANDLE), INTENT (OUT)
C: _MKL_DSS_HANDLE_t*

```

\section*{Return Values}
```

MKL_DSS_SUCCESS

```
MKL_DSS_SUCCESS
MKL_DSS_INVALID_OPTION
MKL_DSS_INVALID_OPTION
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_MSG_LVL_ERR
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
MKL_DSS_TERM_LVL_ERR
dss_define_structure
dss_define_structure
Communicates locations of non-zero elements in the
Communicates locations of non-zero elements in the
matrix to the solver.
```

matrix to the solver.

```
Syntax

\section*{Description}

Parameter to pass the DSS options. The default value is MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR.

\section*{Description}

Pointer to the data structure storing intermediate DSS results (MKL_DSS_HANDLE).

C:
dss_define_structure(handle, opt, rowIndex, nRows, nCols, columns, nNonZeros);
Fortran:
call dss_define_structure(handle, opt, rowIndex, nRows, nCols, columns, nNonZeros);
Include Files
- FORTRAN 77: mkl_dss.f77
- Fortran 90: mkl_dss.f90
- C: mkl_dss.h

\section*{Description}

The routine dss_define_structure communicates the locations of the nNonZeros number of non-zero elements in a matrix of nRows * nCols size to the solver.

The Intel MKL DSS software operates only on square matrices, so nRows must be equal to nCols.
To communicate the locations of non-zero elements in the matrix, do the following:
1. Define the general non-zero structure of the matrix by specifying the value for the options argument opt. You can set the following values for real matrices:
- MKL_DSS_SYMMETRIC_STRUCTURE
- MKL_DSS_SYMMETRIC
- MKL_DSS_NON_SYMMETRIC
and for complex matrices:
- MKL_DSS_SYMMETRIC_STRUCTURE_COMPLEX
- MKL_DSS_SYMMETRIC_COMPLEX
- MKL_DSS_NON_SYMMETRIC_COMPLEX

The information about the matrix type must be defined in dss_define_structure.
2. Provide the actual locations of the non-zeros by means of the arrays rowIndex and columns (see Sparse Matrix Storage Format).

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
opt & FORTRAN 77: INTEGER \\
& Fortran 90: INTEGER, INTENT (IN) \\
& C: _INTEGER_t const* \\
rowIndex & FORTRAN 77: INTEGER \\
& Fortran 90: INTEGER, INTENT (IN)
\end{tabular}
nRows FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: _INTEGER_t const*
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: _INTEGER_t const*
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: _INTEGER_t const*
nNonZeros
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: _INTEGER_t const*
Output Parameters

\section*{Name}
handle

Type
FORTRAN 77: INTEGER*8
Fortran 90: TYPE
(MKL_DSS_HANDLE), INTENT (INOUT)
C: _MKL_DSS_HANDLE_t*

\section*{Description}

Parameter to pass the DSS options. The default value for the matrix structure is MKL_DSS_SYMMETRIC.

Array of size min(nRows, nCols)+1. Defines the location of non-zero entries in the matrix.

Number of rows in the matrix.

Number of columns in the matrix.

Array of size nNonZeros. Defines the location of non-zero entries in the matrix.

Number of non-zero elements in the matrix.

\section*{Description}

Pointer to the data structure storing intermediate DSS results (MKL_DSS_HANDLE).

\section*{Return Values}
```

MKL DSS SUCCESS
MKL DSS STATE ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_STRUCTURE_ERR
MKL_DSS_ROW_ERR
MKL_DSS_COL_ERR
MKL_DSS_NOT_SQUARE
MKL_DSS_TOO_FEW_VALUES
MKL_DSS_TOO_MANY_VALUES
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR

```
dss_reorder
Computes or sets a permutation vector that minimizes
the fill-in during the factorization phase.
Syntax
C:
dss_reorder (handle, opt, perm)

\section*{Fortran:}
```

call dss_reorder(handle, opt, perm)

```

Include Files
- FORTRAN 77: mkl_dss.f77
- Fortran 90: mkl dss.f90
- C: mkl_dss.h

\section*{Description}

If opt contains the option MKL_DSS_AUTO_ORDER, then the routine dss_reorder computes a permutation vector that minimizes the fill-in during the factorization phase. For this option, the routine ignores the contents of the perm array.

If opt contains the option MKL_DSS_METIS_OPENMP_ORDER, then the routine dss_reorder computes permutation vector using the parallel (OpenMP) nested dissections algorithm to minimize the fill-in during the factorization phase. This option can be used to decrease the time of dss_reorder call on multi-core computers. For this option, the routine ignores the contents of the perm array.

If opt contains the option MKL_DSS_MY_ORDER, then you must supply a permutation vector in the array perm. In this case, the array perm is of length nRows, where nRows is the number of rows in the matrix as defined by the previous call to dss_define_structure.

If opt contains the option MKL_DSS_GET_ORDER, then the permutation vector computed during the dss_reorder call is copied to the array perm. In this case you must allocate the array perm beforehand. The permutation vector is computed in the same way as if the option MKL_DSS_AUTO_ORDER is set.

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
opt & FORTRAN 77: INTEGER \\
& Fortran 90: INTEGER, INTENT (IN) \\
perm & FORTRAN 77: INTEGER \\
& Fortran 90: INTEGER, INTENT (IN) \\
& C:_INTEGER_t const*
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
handle & FORTRAN 77: INTEGER*8 \\
& Fortran 90: TYPE \\
& (MKL_DSS_HANDLE), INTENT (INOUT) \\
& C: _MKL_DSS_HANDLE_t*
\end{tabular}

\section*{Return Values}
dss_factor_real, dss_factor_complex
Compute factorization of the matrix with previously
specified location of non-zero elements.
Syntax
C:
dss_factor_real (handle, opt, rValues)
dss_factor_complex(handle, opt, cValues)

\section*{Fortran 77:}

\section*{Description}

Parameter to pass the DSS options. The default value for the permutation type is MKL_DSS_AUTO_ORDER.

Array of length nRows. Contains a user-defined permutation vector (accessed only if opt contains MKL_DSS_MY_ORDER or MKL_DSS_GET_ORDER).

\section*{Description}

Pointer to the data structure storing intermediate DSS results (MKL_DSS_HANDLE).
```

MKL_DSS_SUCCESS

```
MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_INVALID_OPTION
MKL_DSS_REORDER_ERR
MKL_DSS_REORDER_ERR
MKL_DSS_REORDER1_ERR
MKL_DSS_REORDER1_ERR
MKL_DSS_I32BIT_ERR
MKL_DSS_I32BIT_ERR
MKL_DSS_FAILURE
MKL_DSS_FAILURE
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_MSG_LVL_ERR
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
```

MKL_DSS_TERM_LVL_ERR

```
```

call dss_factor_real(handle, opt, rValues)

```
call dss_factor_real(handle, opt, rValues)
call dss_factor_complex(handle, opt, cValues)
```

call dss_factor_complex(handle, opt, cValues)

```

\section*{Fortran 90:}

\section*{outputtext(unified Fortran 90 interface):}
```

call dss_factor(handle, opt, Values)

```
outputtext(or FORTRAN 77 like interface):
```

call dss_factor_real(handle, opt, rValues)
call dss_factor_complex(handle, opt, cValues)

```

\section*{Include Files}
- FORTRAN 77: mkl_dss.f77
- Fortran 90: mkl_dss.f90
- C: mkl_dss.h

\section*{Description}

These routines compute factorization of the matrix whose non-zero locations were previously specified by a call to dss_define_structure and whose non-zero values are given in the array rValues, cValues or Values. Data type These arrays must be of length nNonZeros as defined in a previous call to dss_define_structure.

NOTE The data type (single or double precision) of rValues, cValues, Values must be in correspondence with precision specified by the parameter opt in the routine dss_create.

The opt argument can contain one of the following options:
- MKL_DSS_POSITIVE_DEFINITE
- MKL_DSS_INDEFINITE
- MKL_DSS_HERMITIAN_POSITIVE_DEFINITE
- MKL_DSS_HERMITIAN_INDEFINITE
depending on your matrix's type.

NOTE This routine supports the Progress Routine feature. See Progress Function section for details.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \multirow[t]{3}{*}{handle} & FORTRAN 77: INTEGER*8 \\
\hline & \begin{tabular}{l}
Fortran 90: TYPE \\
(MKL_DSS_HANDLE), INTENT (INOUT)
\end{tabular} \\
\hline & C: _MKL_DSS_HANDLE_t* \\
\hline \multirow[t]{3}{*}{opt} & FORTRAN 77: INTEGER \\
\hline & Fortran 90: INTEGER, INTENT (IN) \\
\hline & C: _INTEGER_t const* \\
\hline rValues & FORTRAN 77: REAL*4 or \\
\hline & REAL* 8 \\
\hline
\end{tabular}

\section*{Description}

Pointer to the data structure storing intermediate DSS results (MKL_DSS_HANDLE).

Parameter to pass the DSS options. The default value is MKL_DSS_POSITIVE_DEFINITE.

Array of elements of the matrix A. Real data, single or double precision as it is specified by the parameter opt in the routine dss_create.
\begin{tabular}{ll} 
Name & Type \\
& Fortran 90: REAL (KIND=4), \\
& INTENT (IN) or \\
CValues & C: VOID const* \\
& FORTRD=8), INTENT (IN) \\
& COMPLEX*16 \\
Values & Fortran 90: COMPLEX (KIND=4), \\
& INTENT (IN) or \\
& COMPLEX (KIND=8), INTENT (IN) \\
& C: VOID Const* \\
& Fortran 90: REAL (KIND=4), \\
& INTENT (OUT), or \\
& REAL (KIND=8), INTENT (OUT), or \\
& COMPLEX (KIND=4), INTENT (OUT), or \\
& COMPLEX (KIND=8), INTENT (OUT)
\end{tabular}

\section*{Return Values}
```

MKL_DSS_SUCCESS

```
MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_INVALID_OPTION
MKL_DSS_OPTION_CONFLICT
MKL_DSS_OPTION_CONFLICT
MKL_DSS_VALUES_ERR
MKL_DSS_VALUES_ERR
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_ZERO_PIVOT
MKL_DSS_ZERO_PIVOT
MKL_DSS_FAILURE
MKL_DSS_FAILURE
MKL_DSS_MSG_LVL_ERR
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
MKL_DSS_TERM_LVL_ERR
MKL_DSS_OOC_MEM_ERR
MKL_DSS_OOC_MEM_ERR
MKL_DSS_OOC_OC_ERR
MKL_DSS_OOC_OC_ERR
MKL_DSS_OOC_RW_ERR
```

MKL_DSS_OOC_RW_ERR

```

\section*{See Also}
```

mkl_progress
dss_solve_real, dss_solve_complex
Compute the corresponding solution vector and place it in the output array.
it in the output array.

```

\section*{Description}

Array of elements of the matrix A. Complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

Array of elements of the matrix \(A\). Real or complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

Syntax
```

C:
dss_solve_real(handle, opt, rRhsValues, nRhs, rSolValues)
dss_solve_complex(handle, opt, cRhsValues, nRhs, cSolValues)

```

\section*{Fortran 77:}
```

call dss_solve_real(handle, opt, rRhsValues, nRhs, rSolValues)

```
```

call dss_solve_complex(handle, opt, cRhsValues, nRhs, cSolValues)

```

\section*{Fortran 90:}

\section*{outputtext(unified Fortran 90 interface):}
```

call dss_solve(handle, opt, RhsValues, nRhs, SolValues)

```

\section*{outputtext(or FORTRAN 77 like interface):}
```

call dss_solve_real(handle, opt, rRhsValues, nRhs, rSolValues)

```
call dss_solve_complex(handle, opt, cRhsValues, nRhs, cSolValues)

\section*{Include Files}
- FORTRAN 77: mkl_dss.f77
- Fortran 90: mkl_dss.f90
- C: mkl_dss.h

\section*{Description}

For each right hand side column vector defined in the arrays rRhsValues, cRhsValues, or RhsValues, these routines compute the corresponding solution vector and place it in the arrays rSolValues, cSolvalues, or Solvalues respectively.

NOTE The data type (single or double precision) of all arrays must be in correspondence with precision specified by the parameter opt in the routine dss_create.

The lengths of the right-hand side and solution vectors, nCols and nRows respectively, must be defined in a previous call to dss_define_structure.
By default, both routines perform the full solution step (it corresponds to phase \(=33\) in PARDISO). The parameter opt enables you to calculate the final solution step-by-step, calling forward and backward substitutions.
If it is set to MKL_DSS_FORWARD_SOLVE, the forward substitution (corresponding to phase = 331 in PARDISO) is performed;
if it is set to MKL_DSS_DIAGONAL_SOLVE, the diagonal substitution (corresponding to phase \(=332\) in PARDISO) is performed;
if it is set to MKL_DSS_BACKWARD_SOLVE, the backward substitution (corresponding to phase = 333 in PARDISO) is performed.

For more details about using these substitutions for different types of matrices, see the description of the PARDISO solver.

This parameter also can control the number of refinement steps that is used on the solution stage: if it is set to MKL_DSS_REFINEMENT_OFF, the maximum number of refinement steps equal to zero, and if it is set to MKL_DSS_REFINEMENT_ON (default value), the maximum number of refinement steps is equal to 2 .

MKL_DSS_CONJUGATE_SOLVE option added to the parameter opt enables solving a conjugate transposed system \(A^{H} X=b\) based on the factorization of the matrix \(A\). This option is equivalent to the parameter \(\operatorname{iparm}(12)=1\) in PARDISO.

MKL_DSS_TRANSPOSE_SOLVE option added to the parameter opt enables solving a transposed system \(A^{T} X=\) \(b\) based on the factorization of the matrix \(A\). This option is equivalent to the parameter iparm(12) \(=2\) in PARDISO.

\section*{Input Parameters}
Name
handle
opt
nRhs
rRhsValues

RhsValues

\section*{Type}

FORTRAN 77: INTEGER*8
Fortran 90: TYPE
(MKL_DSS_HANDLE), INTENT (INOUT)
C: _MKL_DSS_HANDLE_t*
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: _INTEGER_t const*
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: _INTEGER_t const*
FORTRAN 77: REAL*4 or REAL*8

Fortran 90: REAL (KIND=4), INTENT (IN) or

REAL (KIND=8), INTENT (IN)
C: VOID const*
FORTRAN 77: COMPLEX*8 or
COMPLEX*16
Fortran 90: COMPLEX (KIND=4), INTENT (IN) or
COMPLEX (KIND=8), INTENT (IN)
C: VOID const*
Fortran 90: REAL (KIND=4), INTENT (IN), or

REAL (KIND=8), INTENT (IN), or COMPLEX(KIND=4), INTENT(IN), or COMPLEX (KIND=8), INTENT (IN)

\section*{Description}

Pointer to the data structure storing intermediate DSS results (MKL_DSS_HANDLE).

Parameter to pass the DSS options.

Number of the right-hand sides in the linear equation.

Array of size nRows * nRhs. Contains real righthand side vectors. Real data, single or double precision as it is specified by the parameter opt in the routine dss_create.

Array of size nRows * nRhs. Contains complex right-hand side vectors. Complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

Array of size nRows * nRhs. Contains righthand side vectors. Real or complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
rSolValues & FORTRAN 77: REAL*4 or \\
& REAL*8 \\
& Fortran 90: REAL (KIND=4), \\
& INTENT (OUT) or \\
& REAL (KIND=8), INTENT (OUT) \\
& C: VOID const* \\
& FORTRAN 77: COMPLEX*8 or \\
& COMPLEX*16 \\
& Fortran 90: COMPLEX (KIND=4), \\
& INTENT (OUT) or \\
& COMPLEX (KIND=8), INTENT (OUT) \\
& C: VOID const* \\
& Fortran 90: REAL (KIND=4), \\
& INTENT (OUT), or \\
& REAL (KIND=8), INTENT (OUT), or \\
& COMPLEX (KIND=4), INTENT (OUT), or \\
& COMPLEX (KIND=8), INTENT (OUT)
\end{tabular}

\section*{Description}

Array of size nCols * nRhs. Contains real solution vectors. Real data, single or double precision as it is specified by the parameter opt in the routine dss_create.

Array of size nCols * nRhs. Contains complex solution vectors. Complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

Array of size nCols * nRhs. Contains solution vectors. Real or complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

\section*{Return Values}
```

MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_DIAG_ERR
MKL_DSS_FAILURE
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
MKL_DSS_OOC_MEM_ERR
MKL_DSS_OOC_OC_ERR
MKL_DSS_OOC_RW_ERR

```
dss_delete
Deletes all of the data structures created during the
solutions process.

\section*{Syntax}

C:
dss_delete(handle, opt)

\section*{Fortran:}
```

call dss_delete(handle, opt)

```

Include Files
- FORTRAN 77: mkl_dss.f77
- Fortran 90: mkl_dss.f90
- C: mkl_dss.h

\section*{Description}

The routine dss_delete deletes all data structures created during the solving process.

\section*{Input Parameters}
```

Name Type
opt FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: _INTEGER_t const*

```

\section*{Output Parameters}
```

Name Type
handle FORTRAN 77: INTEGER*8
Fortran 90: TYPE
(MKL_DSS_HANDLE), INTENT (INOUT)
C: _MKL_DSS_HANDLE_t*

```

\section*{Return Values}
```

MKL_DSS_SUCCESS

```
MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
dss_statistics
Returns statistics about various phases of the solving
process.
```


Syntax

```
C:
dss_statistics(handle, opt, statArr, retValues)
```


Fortran:

```
call dss_statistics(handle, opt, statArr, retValues)
```


Include Files

- FORTRAN 77: mkl_dss.f77
- Fortran 90: mkl_dss.f90
- C: mkl_dss.h

Description

The dss_statistics routine returns statistics about various phases of the solving process. This routine gathers the following statistics:

- time taken to do reordering,
- time taken to do factorization,
- duration of problem solving,
- determinant of the input matrix,
- inertia of the input matrix,
- number of floating point operations taken during factorization,
- total peak memory needed during the analysis and symbolic factorization,
- permanent memory needed from the analysis and symbolic factorization,
- memory consumption for the factorization and solve phases.

Statistics are returned in accordance with the input string specified by the parameter statArr. The value of the statistics is returned in double precision in a return array, which you must allocate beforehand.

For multiple statistics, multiple string constants separated by commas can be used as input. Return values are put into the return array in the same order as specified in the input string.

Statistics can only be requested at the appropriate stages of the solving process. For example, requesting FactorTime before a matrix is factored leads to errors.

The following table shows the point at which each individual statistics item can be requested:
Statistics Calling Sequences

Type of Statistics	When to Call
ReorderTime	Afterdss_reorder is completed successfully.
FactorTime	Afterdss_factor_real ordss_factor_complex is completed successfully.
SolveTime	Afterdss_solve_real or dss_solve_complex is completed successfully.
Determinant	Afterdss_factor_real ordss_factor_complex is completed successfully.
Inertia	Afterdss_factor_real is completed successfully and the matrix is real, symmetric, and indefinite.
Flops	After dss_factor_real or dss_factor_complex is completed successfully.
Peakmem	Afterdss_reorder is completed successfully.
Factormem	Afterdss_reorder is completed successfully.
Solvemem	Afterdss_factor_real ordss_factor_complex is completed successfully.

Input Parameters

Name

handle

Type

FORTRAN 77:
INTEGER*8

Description

Pointer to the data structure storing intermediate DSS results (MKL_DSS_HANDLE).

Fortran 90: TYPE
(MKL_DSS_HANDLE), INTENT (IN)

Name	Type	Description	
	C: _MKL_DSS_HANDLE_t*		
opt	FORTRAN 77: INTEGER	Parameter to pass the DSS options.	
	Fortran 90: INTEGER, INTENT (IN)		
	C: _INTEGER_t const*		
statArr	FORTRAN 77: INTEGER Fortran 90: INTEGER, INTENT (IN)	Input string that defines the type of the returned statistics. The parameter can include one or more of the following string constants (case of the input string has no effect):	
	C: char const*	ReorderTime	Amount of time taken to do the reordering.
		FactorTime	Amount of time taken to do the factorization.
		SolveTime	Amount of time taken to solve the problem after factorization.
		Determinant	Determinant of the matrix A.
			For real matrices: the determinant is returned as det_pow, det_base in two consecutive return array locations, where $1.0 \leq$ abs(det_base) < 10.0 and determinant $=$ det_base*10(det_pow).
			For complex matrices: the determinant is returned as det_pow, det_re, det_im in three consecutive return array locations, where 1.0 sabs(det_re) + abs(det_im) < 10.0 and determinant $=$ det_re, det_im*10(det_pow).
		Inertia	Inertia of a real symmetric matrix is defined as a triplet of nonnegative integers (p, n, z), where p is the number of positive eigenvalues, n is the number of negative eigenvalues, and z is the number of zero eigenvalues.
			Inertia is returned as three consecutive return array locations p, n, z.
			Computing inertia is recommended only for stable matrices. Unstable matrices can lead to incorrect results.
			Inertia of a k-by- k real symmetric positive definite matrix is always ($k, 0,0$).
			Therefore Inertia is returned only in cases of real symmetric indefinite matrices. For all other matrix types, an error message is returned.
		Flops	Number of floating point operations performed during the factorization.
		Peakmem	Total peak memory in kilobytes that the solver needs during the analysis and symbolic factorization phase.

Name Type Description

Factormem	Permanent memory in kilobytes that the solver needs from the analysis and symbolic factorization phase in the factorization and solve phases.
Solvemem	Total double precision memory consumption (kilobytes) of the solver for the factorization and solve phases.

NOTE To avoid problems in passing strings from Fortran to C, Fortran users must call the mkl_cvt_to_null_terminated_str routine before calling dss_statistics. Refer to the description of mkl_cvt_to_null_terminated_str for details.

Output Parameters

```
Name Type Description
retValues FORTRAN 77: REAL*8
Value of the statistics returned.
Fortran 90: REAL (KIND=8),
INTENT (OUT)
C: VOID const*
```

Finding 'time used to reorder' and 'inertia' of a matrix
The example below illustrates the use of the dss_statistics routine.
To find the above values, call dss_statistics(handle, opt, statArr, retValue), where staArr is "ReorderTime,Inertia"

In this example, retValue has the following values:

```
retValue[0] Time to reorder.
retValue[1] Positive Eigenvalues.
retValue[2] Negative Eigenvalues.
retValue[3] Zero Eigenvalues.
```


Return Values

```
MKL_DSS_SUCCESS
MKL_DSS_INVALID_OPTION
MKL_DSS_STATISTICS_INVALID_MATRIX
MKL_DSS_STATISTICS_INVALID_STATE
MKL_DSS_STATISTICS_INVALID_STRING
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
```

mkl_cvt_to_null_terminated_str
Passes character strings from Fortran routines to C routines.

Syntax

```
mkl_cvt_to_null_terminated_str (destStr, destLen, srcStr)
```


Include Files

- FORTRAN 77: mkl_dss.f77
- Fortran 90: mkl_dss.f90

Description

The routine mkl_cvt_to_null_terminated_str passes character strings from Fortran routines to C routines. The strings are converted into integer arrays before being passed to C. Using this routine avoids the problems that can occur on some platforms when passing strings from Fortran to C. The use of this routine is highly recommended.

Input Parameters

```
destLen
srcStr
```

INTEGER. Length of the output array destStr.
STRING. Input string.

Output Parameters

deststr
INTEGER. One-dimensional array of integers.

Implementation Details

Several aspects of the Intel MKL DSS interface are platform-specific and language-specific. To promote portability across platforms and ease of use across different languages, one of the following Intel MKL DSS language-specific header files can be included:

- mkl_dss.f77 for F77 programs
- mkl_dss.f90 for F90 programs
- mkl_dss.h for C programs

These header files define symbolic constants for returned error values, function options, certain defined data types, and function prototypes.

NOTE Constants for options, returned error values, and message severities must be referred only by the symbolic names that are defined in these header files. Use of the Intel MKL DSS software without including one of the above header files is not supported.

Memory Allocation and Handles

To simplify the use of the Intel MKL DSS routines, they do not require you to allocate any temporary working storage. The solver itself allocates any required storage. To enable multiple users to access the solver simultaneously, the solver keeps track of the storage allocated for a particular application by using a data object called a handle.

Each of the Intel MKL DSS routines creates, uses or deletes a handle. Consequently, each program must be able to allocate storage for a handle. The exact syntax for allocating storage for a handle varies from language to language. To standardize the handle declarations, the language-specific header files declare constants and defined data types that must be used when declaring a handle object in the user code.
Fortran 90 programmers must declare a handle as:
INCLUDE "mkl_dss.f90"
TYPE (MKL_DSS_HANDLE) handle

C and C++ programmers must declare a handle as:
\#include "mkl_dss.h"
_MKL_DSS_HANDLE_t handle;
FORTRAN 77 programmers using compilers that support eight byte integers, must declare a handle as:
INCLUDE "mkl_dss.f77"
INTEGER*8 handle
Otherwise they can replace the INTEGER*8 data types with the DOUBLE PRECISION data type.
In addition to the definition for the correct declaration of a handle, the include file also defines the following:

- function prototypes for languages that support prototypes
- symbolic constants that are used for the returned error values
- user options for the solver routines
- constants indicating message severity.

Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS)

Intel MKL supports the iterative sparse solvers (ISS) based on the reverse communication interface (RCI), referred to here as RCI ISS interface. The RCI ISS interface implements a group of user-callable routines that are used in the step-by-step solving process of a symmetric positive definite system (RCI conjugate gradient solver, or RCI CG), and of a non-symmetric indefinite (non-degenerate) system (RCI flexible generalized minimal residual solver, or RCI FGMRES) of linear algebraic equations. This interface uses the general RCI scheme described in [Dong95].
See the Appendix A Linear Solvers Basics for discussion of terms and concepts related to the ISS routines.
RCI means that when the solver needs the results of certain operations (for example, matrix-vector multiplications), the user must perform them and pass the result to the solver. This gives great universality to the solver as it is independent of the specific implementation of the operations like the matrix-vector multiplication. To perform such operations, the user can use the built-in sparse matrix-vector multiplications and triangular solvers routines (see Sparse BLAS Level 2 and Level 3 Routines).

NOTE The RCI CG solver is implemented in two versions: for system of equations with a single right hand side, and for system of equations with multiple right hand sides.
The CG method may fail to compute the solution or compute the wrong solution if the matrix of the system is not symmetric and positive definite.
The FGMRES method may fail if the matrix is degenerate.

Table "RCI CG Interface Routines" lists the names of the routines, and describes their general use.
RCI ISS Interface Routines

Routine	Description
dcg_init, dcgmrhs_init, dfgmres_init	Initializes the solver.
dcg_check, dcgmrhs_check, dfgmres_check	Checks the consistency and correctness of the user defined data.
dcg, dcgmrhs, dfgmres	Computes the approximate solution vector.
dcg_get, dcgmrhs_get, dfgmres_get	Retrieves the number of the current iteration.

The Intel MKL RCI ISS interface routines are normally invoked in this order:

1. <type>_init
2. <type>_check
3. <type>

4. <type>_get

Advanced users can change that order if they need it. Others should follow the above order of calls.
The following diagram in Figure "Typical Order for Invoking RCI ISS Interface Routines" indicates the typical order in which the RCI ISS interface routines can be invoked.

Typical Order for Invoking RCI ISS interface Routines

Code examples that use the RCI ISS interface routines to solve systems of linear equations can be found in the examples \solver\source folder of your Intel MKL directory (cg_no_precon.f, cg_no_precon_c.c, cg_mrhs.f, cg_mrhs_precond.f, cg_mrhs_stop_crt.f, fgmres_no_precon_f.f, fgmres_no_precon_c.c).

CG Interface Description

All types in this documentation refer to the common Fortran types, INTEGER, and DOUBLE PRECISION.
C and C++ programmers should refer to the section Calling Sparse Solver and Preconditioner Routines from C C++ for information on mapping Fortran types to C/C++ types.
Each routine for the RCI CG solver is implemented in two versions: for a system of equations with a single right hand side (SRHS), and for a system of equations with multiple right hand sides (MRHS). The names of routines for a system with MRHS contain the suffix mrhs.

Routine Options

All of the RCI CG routines have common parameters for passing various options to the routines (see CG Common Parameters). The values for these parameters can be changed during computations.
\qquad

User Data Arrays

Many of the RCI CG routines take arrays of user data as input. For example, user arrays are passed to the routine dcg to compute the solution of a system of linear algebraic equations. The Intel MKL RCI CG routines do not make copies of the user input arrays to minimize storage requirements and improve overall run-time efficiency.

CG Common Parameters

NOTE The default and initial values listed below are assigned to the parameters by calling the dcg_init/dcgmrhs_init routine.
n
x
nrhs
b

RCI_request
ipar

INTEGER, this parameter sets the size of the problem in the dcg_init/ dcgmrhs_init routine. All the other routines uses the ipar(1) parameter instead. Note that the coefficient matrix A is a square matrix of size $n * n$.

DOUBLE PRECISION array of size n for SRHS, or matrix of size ($n * n r h s$) for MRHS. This parameter contains the current approximation to the solution. Before the first call to the dcg/dcgmrhs routine, it contains the initial approximation to the solution.
INTEGER, this parameter sets the number of right-hand sides for MRHS routines.
DOUBLE PRECISION array containing a single right-hand side vector, or matrix of size ($n r h s^{\star} n$) containing right-hand side vectors.
INTEGER, this parameter gives information about the result of work of the RCI CG routines. Negative values of the parameter indicate that the routine completed with errors or warnings. The 0 value indicates successful completion of the task. Positive values mean that you must perform specific actions:

RCI_request= 1	multiply the matrix by tmp ($1: n, 1$), put the result in tmp (1:n,2), and return the control to the dcg/ dcgmrhs routine;
RCI_request $=2$	to perform the stopping tests. If they fail, return the control to the $\mathrm{dcg} / \mathrm{dcgmrhs}$ routine. If the stopping tests succeed, it indicates that the solution is found and stored in the x array;
RCI_request $=3$	for SRHS: apply the preconditioner to $\operatorname{tmp}(1: n, 3)$, put the result in $\operatorname{tmp}(1: n, 4)$, and return the control to the dcg routine; for MRHS: apply the preconditioner to tmp (: , $3+i p a r(3))$, put the result in tmp (: , 3), and return the control to the dcgmrhs routine.

Note that the dcg_get/dcgmrhs_get routine does not change the parameter $R C I_{-} r e q u e s t$. This enables use of this routine inside the reverse communication computations.
INTEGER array, of size 128 for SRHS, and of size ($128+2 * n r h s$) for MRHS. This parameter specifies the integer set of data for the RCI CG computations:
ipar(1) specifies the size of the problem. The dcg_init/ dcgmrhs_init routine assigns ipar(1)=n. All the other routines use this parameter instead of n. There is no default value for this parameter.
specifies the type of output for error and warning messages generated by the RCI CG routines. The default value 6 means that all messages are displayed on the screen. Otherwise, the error and warning messages are written to the newly created files dcg_errors.txt and dcg_check_warnings.txt, respectively. Note that if ipar(6) and ipar(7) parameters are set to 0, error and warning messages are not generated at all.
for SRHS: contains the current stage of the RCI CG computations. The initial value is 1 ;
for MRHS: contains the right-hand side for which the calculations are currently performed.

WARNING Avoid altering this variable during computations.
contains the current iteration number. The initial value is 0 .
specifies the maximum number of iterations. The default value is $\min (150, n)$.
if the value is not equal to 0 , the routines output error messages in accordance with the parameter ipar(2). Otherwise, the routines do not output error messages at all, but return a negative value of the parameter $R C I_{-}$request. The default value is 1 .
if the value is not equal to 0 , the routines output warning messages in accordance with the parameter ipar(2). Otherwise, the routines do not output warning messages at all, but they return a negative value of the parameter RCI_request. The default value is 1 .
if the value is not equal to 0 , the dcg/dcgmrhs routine performs the stopping test for the maximum number of iterations: ipar(4) $\leq i p a r(5)$. Otherwise, the method is stopped and the corresponding value is assigned to the $R C I$ request. If the value is 0 , the routine does not perform this stopping test. The default value is 1 . if the value is not equal to 0 , the dcg/dcgmrhs routine performs the residual stopping test: $\operatorname{dpar}(5) \leq \operatorname{dpar}(4)=\operatorname{dpar}(1) * \operatorname{dpar}(3)+$ dpar(2). Otherwise, the method is stopped and corresponding value is assigned to the $R C I$ request. If the value is 0 , the routine does not perform this stopping test. The default value is 0 . if the value is not equal to 0 , the dcg/dcgmrhs routine requests a user-defined stopping test by setting the output parameter $R C I \_$request $=2$. If the value is 0 , the routine does not perform the user defined stopping test. The default value is 1.
NOTE At least one of the parameters ipar(8)-

ipar(11) | ipar(10) must be set to 1. |
| :--- |

runs value is equal to 0 , the dcg/dcgmrhs routine
corresponding CG method. Otherwise, the routine
runs the preconditioned version of the CG method,
and by setting the output parameter
RCI_request=3, indicates that you must perform
the preconditioning step. The default value is 0.
are reserved and not used in the current RCI CG

DOUBLE PRECISION array of size ($n, 4$) for SRHS, and ($n, 3+n r h s$) for MRHS. This parameter is used to supply the double precision temporary space for the RCI CG computations, specifically:
$t m p(:, 1) \quad$ specifies the current search direction. The initial value is 0.0 .
$\operatorname{tmp}(:, 2) \quad$ contains the matrix multiplied by the current search direction. The initial value is 0.0 .
$\operatorname{tmp}(:, 3) \quad$ contains the current residual. The initial value is 0.0 .
$\operatorname{tmp}(:, 4) \quad$ contains the inverse of the preconditioner applied to the current residual. There is no initial value for this parameter.

IOTE You can define this array in the code using
RCI CG SRHS as DOUBLE PRECISION tmp ($n, 3$)
if you run only non-preconditioned CG iterations.

Schemes of Using the RCI CG Routines

The following pseudocode shows the general schemes of using the RCI CG routines.
generate matrix A
generate preconditioner C (optional)
call dcg_init($n, x, b, R C I$ request, ipar, dpar, tmp)
change parameters in ipar, dpar if necessary

1 call dcg($n, x, b, R C I$ request, ipar, dpar, tmp)
if ($R C I$ _request.eq.1) then
multiply the matrix A by $\operatorname{tmp}(1: n, 1)$ and put the result in $\operatorname{tmp}(1: n, 2)$
It is possible to use MKL Sparse BLAS Level 2 subroutines for this operation

```
c proceed with CG iterations
        goto 1
    endif
    if (RCI_request.eq.2)then
        do the stopping test
        if (test not passed) then
c proceed with CG iterations
```

```
            go to 1
            else
c stop CG iterations
            goto 2
            endif
    endif
    if (RCI_request.eq.3) then (optional)
    apply the preconditioner C inverse to tmp (1:n,3) and put the result in tmp (1:n,4)
c proceed with CG iterations
    goto 1
    end
2 ~ c a l l ~ d c g _ g e t ( n , ~ x , ~ b , ~ R C I _ r e q u e s t , ~ i p a r , ~ d p a r , ~ t m p , ~ i t e r c o u n t )
current iteration number is in itercount
the computed approximation is in the array \(x\)
```


FGMRES Interface Description

All types in this documentation refer to the common Fortran types, INTEGER, and DOUBLE PRECISION.
C and C++ programmers should refer to the section Calling Sparse Solver and Preconditioner Routines from C C++ for information on mapping Fortran types to C/C++ types.

Routine Options

All of the RCI FGMRES routines have common parameters for passing various options to the routines (see FGMRES Common Parameters). The values for these parameters can be changed during computations.

User Data Arrays

Many of the RCI FGMRES routines take arrays of user data as input. For example, user arrays are passed to the routine dfgmres to compute the solution of a system of linear algebraic equations. To minimize storage requirements and improve overall run-time efficiency, the Intel MKL RCI FGMRES routines do not make copies of the user input arrays.

FGMRES Common Parameters

NOTE The default and initial values listed below are assigned to the parameters by calling the dfgmres_init routine.

INTEGER, this parameter sets the size of the problem in the dfgmres_init routine. All the other routines uses ipar (1) parameter instead. Note that the coefficient matrix A is a square matrix of size $n^{*} n$.
x
b
RCI_request
ipar(128)

DOUBLE PRECISION array, this parameter contains the current approximation to the solution vector. Before the first call to the dfgmres routine, it contains the initial approximation to the solution vector.
DOUBLE PRECISION array, this parameter contains the right-hand side vector. Depending on user requests (see the parameter ipar(13), it may later contain the approximate solution.
INTEGER, this parameter gives information about the result of work of the RCI FGMRES routines. Negative values of the parameter indicate that the routine completed with errors or warnings. The 0 value indicates successful completion of the task. Positive values mean that you must perform specific actions:

RCI_request= 1	multiply the matrix by tmp (ipar(22)), put the result in tmp (ipar(23)), and return the control to the dfgmres routine;
RCI_request $=2$	perform the stopping tests. If they fail, return the control to the dfgres routine. Otherwise, the solution can be updated by a subsequent call to dfgmres_get routine;
RCI_request $=3$	apply the preconditioner to tmp (ipar(22)), put the result in tmp (ipar(23)), and return the control to the dfgmres routine.
RCI_request= 4	check if the norm of the current orthogonal vector is zero, within the rounding or computational errors. Return the control to the dfgmres routine if it is not zero, otherwise complete the solution process by calling dfgmres get routine.

INTEGER array, this parameter specifies the integer set of data for the RCI FGMRES computations:

```
ipar(1) specifies the size of the problem. The
    dfgmres_init routine assigns ipar(1)=n. All the
    other routines uses this parameter instead of n.
    There is no default value for this parameter.
ipar(2) specifies the type of output for error and warning
    messages that are generated by the RCI FGMRES
    routines. The default value 6 means that all
    messages are displayed on the screen. Otherwise
    the error and warning messages are written to the
    newly created file MKL_RCI_FGMRES_Log.txt. Note
    that if ipar(6) and ipar(7) parameters are set to
    0, error and warning messages are not generated at
    all.
    contains the current stage of the RCI FGMRES
    computations., The initial value is 1.
```

WARNING Avoid altering this variable during
computations.
contains the current iteration number. The initial value is 0 .

```
ipar(5)
ipar(6)
ipar(7)
ipar(8)
ipar(9)
ipar(10)
specifies the maximum number of iterations. The default value is \(\min (150, n)\).
if the value is not 0 , the routines output error messages in accordance with the parameter ipar(2). If it is 0 , the routines do not output error messages at all, but return a negative value of the parameter RCI_request. The default value is 1 .
if the value is not 0 , the routines output warning messages in accordance with the parameter ipar(2). Otherwise, the routines do not output warning messages at all, but they return a negative value of the parameter \(R C I\) _request. The default value is 1 .
if the value is not equal to 0 , the dfmres routine performs the stopping test for the maximum number of iterations: ipar(4) \(\leq i p a r(5)\). If the value is 0 , the dfgmres routine does not perform this stopping test. The default value is 1 .
if the value is not 0 , the dfgmres routine performs the residual stopping test: dpar(5) \(\leq \operatorname{dpar}(4)\). If the value is 0 , the dfgmres routine does not perform this stopping test. The default value is 0 . if the value is not 0 , the dfgmres routine indicates that the user-defined stopping test be performed by setting \(R C I_{-}\)request \(=2\). If the value is 0 , the dfgmres routine does not perform the user-defined stopping test. The default value is 1 .
```

NOTE At least one of the parameters ipar(8)ipar(10) must be set to 1 .
if the value is 0 , the dfgmres routine runs the nonpreconditioned version of the FGMRES method. Otherwise, the routine runs the preconditioned version of the FGMRES method, and requests that you perform the preconditioning step by setting the output parameter $R C I$ request $=3$. The default value is 0 .
if the value is not equal to 0 , the dfgmres routine performs the automatic test for zero norm of the currently generated vector: dpar(7) $\leq \operatorname{dpar}(8)$, where $d p a r(8)$ contains the tolerance value. Otherwise, the routine indicates that you must perform this check by setting the output parameter $R C I_{-} r e q u e s t=4$. The default value is 0 .
if the value is equal to 0 , the dfgmres_get routine updates the solution to the vector x according to the computations done by the dfgmres routine. If the value is positive, the routine writes the solution to the right hand side vector b. If the value is
negative, the routine returns only the number of the current iteration, and does not update the solution. The default value is 0 .

NOTE It is possible to call the dfgmres_get
routine at any place in the code, but you must pay special attention to the parameter ipar(13). The RCI FGMRES iterations can be continued after the call to dfgmres_get routine only if the parameter ipar(13) is not equal to zero. If ipar(13) is positive, then the updated solution overwrites the right hand side in the vector b. If you want to run the restarted version of FGMRES with the same right hand side, then it must be saved in a different memory location before the first call to the dfgmres_get routine with positive ipar(13).
contains the internal iteration counter that counts the number of iterations before the restart takes place. The initial value is 0 .

WARNING Do not alter this variable during computations.
specifies the number of the non-restarted FGMRES iterations. To run the restarted version of the FGMRES method, assign the number of iterations to $i p a r(15)$ before the restart. The default value is $\min (150, n)$, which means that by default the nonrestarted version of FGMRES method is used.
service variable specifying the location of the rotated Hessenberg matrix from which the matrix stored in the packed format (see Matrix Arguments in the Appendix B for details) is started in the tmp array.
service variable specifying the location of the rotation cosines from which the vector of cosines is started in the tmp array.
service variable specifying the location of the rotation sines from which the vector of sines is started in the tmp array.
service variable specifying the location of the rotated residual vector from which the vector is started in the tmp array.
service variable, specifies the location of the least squares solution vector from which the vector is started in the tmp array.

```
ipar(21)
```

ipar(22)
ipar(23)
ipar(24:128)
service variable specifying the location of the set of preconditioned vectors from which the set is started in the tmp array. The memory locations in the tmp array starting from ipar(21) are used only for the preconditioned FGMRES method.
specifies the memory location from which the first vector (source) used in operations requested via $R C I$ request is started in the tmp array.
specifies the memory location from which the second vector (source) used in operations requested via $R C I$ request is started in the tmp array. are reserved and not used in the current RCI FGMRES routines.

NOTE You must declare the array ipar with length 128. While defining the array in the code as INTEGER ipar(23) works, there is no guarantee of future compatibility with Intel MKL.
dpar(128)

DOUBLE PRECISION array, this parameter specifies the double precision set of data for the RCI CG computations, specifically:
dpar(1) specifies the relative tolerance. The default value is 1.0D-6.
specifies the absolute tolerance. The default value is 0.0D-0.
specifies the Euclidean norm of the initial residual (if it is computed in the dfgmres routine). The initial value is 0.0 .
service variable equal to
dpar(1)*dpar(3)+dpar(2) (if it is computed in the dfgmres routine). The initial value is 0.0 .
specifies the Euclidean norm of the current residual. The initial value is 0.0 .
specifies the Euclidean norm of residual from the previous iteration step (if available). The initial value is 0.0 .
contains the norm of the generated vector. The initial value is 0.0 .

OTE In terms of [Saad03] this parameter is the coefficient $h_{k+1, k}$ of the Hessenberg matrix.
contains the tolerance for the zero norm of the currently generated vector. The default value is 1.0D-12.
are reserved and not used in the current RCI FGMRES routines.

tmp	DOUBLE PRECISION array of size (2 *ipar(15)+1)* $n+$	
	ipar(15)*(ipar(15) temporary space for the	+9)/2 + 1)) used to supply the double precision the RCI FGMRES computations, specifically:
	tmp(1:ipar(16)-1)	contains the sequence of vectors generated by the FGMRES method. The initial value is 0.0.
	$\begin{aligned} & \operatorname{tmp}(i p a r(16) \text { :ipar } \\ & (17)-1) \end{aligned}$	contains the rotated Hessenberg matrix generated by the FGMRES method; the matrix is stored in the packed format. There is no initial value for this part of tmp array.
	$\begin{aligned} & \text { tmp (ipar(17) :ipar } \\ & (18)-1) \end{aligned}$	contains the rotation cosines vector generated by the FGMRES method. There is no initial value for this part of tmp array.
	$\begin{aligned} & \text { tmp (ipar(18) :ipar } \\ & (19)-1) \end{aligned}$	contains the rotation sines vector generated by the FGMRES method. There is no initial value for this part of tmp array.
	$\begin{aligned} & \text { tmp (ipar(19) :ipar } \\ & (20)-1) \end{aligned}$	contains the rotated residual vector generated by the FGMRES method. There is no initial value for this part of tmp array.
	$\begin{aligned} & \text { tmp (ipar(20) :ipar } \\ & (21)-1) \end{aligned}$	contains the solution vector to the least squares problem generated by the FGMRES method. There is no initial value for this part of tmp array.
	tmp(ipar(21):)	contains the set of preconditioned vectors generated for the FGMRES method by the user. This part of tmp array is not used if the non-preconditioned version of FGMRES method is called. There is no initial value for this part of tmp array.

NOTE You can define this array in the code as
DOUBLE PRECISION tmp ((2*ipar(15)+1)*n + ipar(15)*(ipar(15)+9)/2 + 1)) if you run only non-preconditioned FGMRES iterations.

Schemes of Using the RCI FGMRES Routines

The following pseudocode shows the general schemes of using the RCI FGMRES routines.

$$
\text { generate matrix } A
$$

generate preconditioner C (optional)

```
call dfgmres_init(n, x, b, RCI_request, ipar, dpar, tmp)
```

change parameters in ipar, dpar if necessary

```
    call dfgmres_check(n, x, b, RCI_request, ipar, dpar, tmp)
```

1 call dfgmres ($n, x, b, R C I$ request, ipar, dpar, tmp)
if (RCI_request.eq.1) then
multiply the matrix A by tmp(ipar(22)) and put the result in tmp(ipar(23))
It is possible to use MKL Sparse BLAS Level 2 subroutines for this operation
c

```
proceed with FGMRES iterations
    goto 1
    endif
    if (RCI_request.eq.2) then
        do the stopping test
        if (test not passed) then
c proceed with FGMRES iterations
        go to 1
        else
c stop FGMRES iterations
```

 goto 2
 endif
 endif
 if (RCI_request.eq.3) then (optional)
 apply the preconditioner \(C\) inverse to tmp(ipar(22)) and put the result in tmp(ipar(23))
 c proceed with FGMRES iterations
goto 1
endif
if (RCI_request.eq.4) then
check the norm of the next orthogonal vector, it is contained in dpar(7)
if (the norm is not zero up to rounding/computational errors) then
c proceed with FGMRES iterations
goto 1
else
c stop FGMRES iterations
goto 2
endif
endif

current iteration number is in itercount
the computed approximation is in the array x
For the FGMRES method, the array x initially contains the current approximation to the solution. It can be updated only by calling the routine dfgmres_get, which updates the solution in accordance with the computations performed by the routine dfgmres.

The above pseudocode demonstrates two main differences in the use of RCI FGMRES interface comparing with the CG Interface Description. The first difference relates to $R C I$ request=3: it uses different locations in the tmp array, which is two-dimensional for CG and one-dimensional for FGMRES. The second difference relates to RCI_request=4: the RCI CG interface never produces RCI_request=4.

RCI ISS Routines

dcg_init

Initializes the solver.

Syntax

dcg_init($n, x, b, R C I$ request, ipar, dpar, tmp)

Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine dcg_init initializes the solver. After initialization, all subsequent invocations of the Intel MKL RCI CG routines use the values of all parameters returned by the routine dcg_init. Advanced users can skip this step and set these parameters directly in the appropriate routines.

WARNING You can modify the contents of these arrays after they are passed to the solver routine only if you are sure that the values are correct and consistent. You can perform a basic check for correctness and consistency by calling the dcg_check routine, but it does not guarantee that the method will work correctly.

Input Parameters

```
n
X
b
```

INTEGER.Sets the size of the problem.
DOUBLE PRECISION array of size n. Contains the initial approximation to the solution vector. Normally it is equal to 0 or to b.
DOUBLE PRECISION array of size n. Contains the right-hand side vector.

Output Parameters

```
RCI_request
ipar
dpar
tmp DOUBLE PRECISION array of size (n,4).Refer to the CG Common Parameters.
```


Return Values

```
RCI_request= 0 Indicates that the task completed normally.
RCI_request= -10000 Indicates failure to complete the task.
```


dcg_check

Checks consistency and correctness of the user defined data.

Syntax

```
dcg_check(n, x, b, RCI_request, ipar, dpar, tmp)
```


Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine dcg_check checks consistency and correctness of the parameters to be passed to the solver routine dcg. However this operation does not guarantee that the solver returns the correct result. It only reduces the chance of making a mistake in the parameters of the method. Skip this operation only if you are sure that the correct data is specified in the solver parameters.
The lengths of all vectors must be defined in a previous call to the dcg_init routine.

Input Parameters

n	INTEGER. Sets the size of the problem.
x	DOUBLE PRECISION array of size n. Contains the initial approximation to
the solution vector. Normally it is equal to 0 or to b.	

Output Parameters

```
RCI_request
ipar
dpar
tmp
INTEGER. Gives information about result of the routine. INTEGER array of size 128. Refer to the CG Common Parameters. DOUBLE PRECISION array of size 128. Refer to the CG Common Parameters.
DOUBLE PRECISION array of size \((n, 4)\). Refer to the CG Common Parameters.
```


Return Values

```
RCI_request=0
RCI_request= -1100
RCI_request= -1001
RCI_request= -1010
RCI_request= -1011
```

Indicates that the task completed normally.
Indicates that the task is interrupted and the errors occur.
Indicates that there are some warning messages.
Indicates that the routine changed some parameters to make them consistent or correct.

Indicates that there are some warning messages and that the routine changed some parameters.
dcg
Computes the approximate solution vector.
Syntax

```
dcg(n, x, b, RCI_request, ipar, dpar, tmp)
```


Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The dcg routine computes the approximate solution vector using the CG method [Young71]. The routine dcg uses the vector in the array x before the first call as an initial approximation to the solution. The parameter $R C I_{-} r e q u e s t ~ g i v e s ~ y o u ~ i n f o r m a t i o n ~ a b o u t ~ t h e ~ t a s k ~ c o m p l e t i o n ~ a n d ~ r e q u e s t s ~ r e s u l t s ~ o f ~ c e r t a i n ~ o p e r a t i o n s ~$ that are required by the solver.
Note that lengths of all vectors must be defined in a previous call to the dcg_init routine.

Input Parameters

n	INTEGER. Sets the size of the problem.
x	DOUBLE PRECISION array of size n. Contains the initial approximation to
the solution vector.	
$t m p$	DOUBLE PRECISION array of size n. Contains the right-hand side vector.
	DOUBLE PRECISION array of size $(n, 4)$. Refer to the CG Common Parameters.

Output Parameters

```
RCI_request
x
ipar
dpar
tmp
```


Return Values

$R C I$ request $=0$

RCI_request $=-1$
$R C I$ request $=-2$
$R C I$ request $=-10$

INTEGER. Gives information about result of work of the routine. DOUBLE PRECISION array of size n. Contains the updated approximation to the solution vector.
INTEGER array of size 128. Refer to the CG Common Parameters.
DOUBLE PRECISION array of size 128. Refer to the CG Common Parameters.
DOUBLE PRECISION array of size $(n, 4)$. Refer to the CG Common Parameters.

Indicates that the task completed normally and the solution is found and stored in the vector x. This occurs only if the stopping tests are fully automatic. For the user defined stopping tests, see the description of the RCI_request= 2 .
Indicates that the routine was interrupted because the maximum number of iterations was reached, but the relative stopping criterion was not met. This situation occurs only if you request both tests.
Indicates that the routine was interrupted because of an attempt to divide by zero. This situation happens if the matrix is non-positive definite or almost non-positive definite.
Indicates that the routine was interrupted because the residual norm is invalid. This usually happens because the value dpar(6) was altered outside of the routine, or the dcg_check routine was not called.
\(\left.$$
\begin{array}{ll}R C I \_ \text {request }=-11 \\
R C I \_r e q u e s t=1\end{array}
$$ \quad \begin{array}{l}Indicates that the routine was interrupted because it enters

the infinite cycle. This usually happens because the values

ipar(8), i p a r(9), i p a r(10) were altered outside of the

routine, or the dcg_check routine was not called.\end{array}\right\}\)| Indicates that you must multiply the matrix by $\operatorname{tmp}(1: n$, |
| :--- |
| $1)$, put the result in the $\operatorname{tmp}(1: n, 2)$, and return the |
| control back to the routine dcg. |

dcg_get

Retrieves the number of the current iteration.

Syntax

```
dcg_get(n, x, b, RCI_request, ipar, dpar, tmp, itercount)
```

Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine dcg_get retrieves the current iteration number of the solutions process.

Input Parameters

n	INTEGER. Sets the size of the problem.
x	DOUBLE PRECISION array of size n. Contains the initial approximation
vector to the solution.	
RCI_request	DOUBLE PRECISION array of size n. Contains the right-hand side vector.
ipar	INTEGER. This parameter is not used.
dpar	INTEGER array of size 128. Refer to the CG Common Parameters.
$t m p$	DOUBLE PRECISION array of size 128. Refer to the CG Common
	Parameters.
	DOUBLE PRECISION array of size $(n, 4)$. Refer to the CG Common Parameters.

Output Parameters

INTEGER argument. Returns the current iteration number.

Return Values

The routine dcg_get has not return values.
dcgmrhs_init
Initializes the RCI CG solver with MHRS.

Syntax

```
dcgmrhs_init(n, x, nrhs, b, method, RCI_request, ipar, dpar, tmp)
```

Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine dcgmrhs_init initializes the solver. After initialization all subsequent invocations of the Intel MKL RCI CG with multiple right hand sides (MRHS) routines use the values of all parameters that are returned by dcgmrhs_init. Advanced users may skip this step and set the values to these parameters directly in the appropriate routines.

WARNING You can modify the contents of these arrays after they are passed to the solver routine only if you are sure that the values are correct and consistent. You can perform a basic check for correctness and consistency by calling the dcgmrhs_check routine, but it does not guarantee that the method will work correctly.

Input Parameters

```
n
x
nrhs
b
method
```

INTEGER. Sets the size of the problem.
DOUBLE PRECISION matrix of size $n \star n r h s$. Contains the initial approximation to the solution vectors. Normally it is equal to 0 or to b .
INTEGER. Sets the number of right-hand sides.
DOUBLE PRECISION matrix of size nrhs*n. Contains the right-hand side vectors.
INTEGER. Specifies the method of solution:
A value of 1 indicates CG with multiple right hand sides (default value)

Output Parameters

```
RCI_request
ipar
```

dpar DOUBLE PRECISION array of size $\left(128+2 *_{n} r h s\right)$. Refer to the CG Common
Parameters.
DOUBLE PRECISION array of size ($n, 3+n r h s$). Refer to the CG Common
Parameters.

Return Values

```
RCI_request= 0 Indicates that the task completed normally.
RCI_request= -10000 Indicates failure to complete the task.
```

dcgmrhs_check
Checks consistency and correctness of the user
defined data.
Syntax
dcgmrhs_check (n, x, nrhs, $\left.b, \quad R C I \_r e q u e s t, ~ i p a r, ~ d p a r, ~ t m p\right) ~$

Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine dcgmrhs_check checks the consistency and correctness of the parameters to be passed to the solver routine dcgmrhs. While this operation reduces the chance of making a mistake in the parameters, it does not guarantee that the solver returns the correct result.
If you are sure that the correct data is specified in the solver parameters, you can skip this operation.
The lengths of all vectors must be defined in a previous call to the dcgmrhs_init routine.

Input Parameters

n	INTEGER. Sets the size of the problem.
x	DOUBLE PRECISION matrix of size $n^{\star} n r h s$. THAT IS TEST Contains the
initial approximation to the solution vectors. Normally it is equal to 0 or to	
b.	
$m r h s$	INTEGER. This parameter sets the number of right-hand sides.
b	DOUBLE PRECISION matrix of size $(n r h s, n)$. Contains the right-hand side vectors.

Output Parameters

RCI_request	INTEGER. Gives information about the results of the routine.
ipar	INTEGER array of size $(128+2 \star n r h s)$. Refer to the CG Common
dpar	Parameters.
$t m p$	DOUBLE PRECISION array of size $(128+2 \star n r h s)$. Refer to the CG Common
	Parameters.
	DOUBLE PRECISION array of size $(n, 3+n r h s)$. Refer to the CG Common
	Parameters.

Return Values

```
RCI_request=0
RCI_request= -1100
RCI_request= -1001
RCI_request= -1010
RCI_request= -1011
```

Indicates that the task completed normally.
Indicates that the task is interrupted and the errors occur.
Indicates that there are some warning messages.
Indicates that the routine changed some parameters to make them consistent or correct.
Indicates that there are some warning messages and that the routine changed some parameters.
dcgmrhs
Computes the approximate solution vectors.
Syntax
dcgmrhs($\left.n, x, n r h s, b, R C I \_r e q u e s t, i p a r, ~ d p a r, ~ t m p\right)$
Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine dcgmrhs computes approximate solution vectors using the CG with multiple right hand sides (MRHS) method [Young71]. The routine dcgmrhs uses the value that was in the x before the first call as an initial approximation to the solution. The parameter $R C I_{-}$request gives information about task completion status and requests results of certain operations that are required by the solver.
Note that lengths of all vectors are assumed to have been defined in a previous call to the dcgmrhs_init routine.

Input Parameters

n	INTEGER. Sets the size of the problem, and the sizes of arrays x and b.
x	DOUBLE PRECISION matrix of size $n^{\star} n r h s$. Contains the initial
$n r h s$	approximation to the solution vectors.
b	INTEGER. Sets the number of right-hand sides.
$t m p$	DOUBLE PRECISION matrix of size $\left(n r h s^{\star} n\right)$. Contains the right-hand side
	vectors.
	DOUBLE PRECISION array of size $(n, 3+n r h s) . ~ R e f e r ~ t o ~ t h e ~ C G ~ C o m m o n ~$
	Parameters.

Output Parameters

```
RCI_request
X
ipar
dpar
tmp
```


Return Values

RCI_request $=-11$

```
RCI_request=0
```

RCI_request=0
RCI_request=-1
RCI_request=-1
RCI_request=-2
RCI_request=-2
RCI_request=-10

```
RCI_request=-10
```

INTEGER. Gives information about result of work of the routine.
DOUBLE PRECISION matrix of size n-by-nrhs. Contains the updated approximation to the solution vectors.
INTEGER array of size $(128+2 * n r h s)$. Refer to the CG Common Parameters.
DOUBLE PRECISION array of size ($\left.128+2 *_{n} n h s\right)$. Refer to the CG Common Parameters.

DOUBLE PRECISION array of size ($n, 3+n r h s$). Refer to the CG Common Parameters.

Indicates that the task completed normally and the solution is found and stored in the vector x. This occurs only if the stopping tests are fully automatic. For the user defined stopping tests, see the description of the RCI_request= 2 .
Indicates that the routine was interrupted because the maximum number of iterations was reached, but the relative stopping criterion was not met. This situation occurs only if both tests are requested by the user.
The routine was interrupted because of an attempt to divide by zero. This situation happens if the matrix is nonpositive definite or almost non-positive definite.

Indicates that the routine was interrupted because the residual norm is invalid. This usually happens because the value dpar(6) was altered outside of the routine, or the dcg_check routine was not called.
Indicates that the routine was interrupted because it enters the infinite cycle. This usually happens because the values ipar(8), ipar(9), ipar(10) were altered outside of the routine, or the dcg_check routine was not called.

RCI_request=1	Indicates that you must multiply the matrix by $\operatorname{tmp}(1: n$, 1), put the result in the $\operatorname{tmp}(1: n, 2)$, and return the control back to the routine dcg.
RCI_request $=2$	Indicates that you must perform the stopping tests. If they fail, return control back to the dcg routine. Otherwise, the solution is found and stored in the vector x.
RCI_request $=3$	Indicates that you must apply the preconditioner to tmp (: 3), put the result in the tmp (: , 4), and return the control back to the routine dcg.

dcgmrhs_get
Retrieves the number of the current iteration.

Syntax

dcgmrhs_get $\left(n, x, b, R C I \_r e q u e s t, i p a r, ~ d p a r, ~ t m p, ~ i t e r c o u n t\right)$

Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine dcgmrhs_get retrieves the current iteration number of the solving process.

Input Parameters

n	INTEGER. Sets the size of the problem.
x	DOUBLE PRECISION matrix of size $n^{\star} n r h s$. Contains the initial approximation to the solution vectors.
nrhs	INTEGER. Sets the number of right-hand sides.
b	DOUBLE PRECISION matrix of size (nrhs, n) . Contains the right-hand side .
RCI_request	INTEGER. This parameter is not used.
ipar	INTEGER array of size ($128+2 \star_{n r h s}$). Refer to the CG Common Parameters.
dpar	DOUBLE PRECISION array of size (128+2*nrhs). Refer to the CG Common Parameters.
tmp	DOUBLE PRECISION array of size ($n, 3+n r h s$). Refer to the CG Common Parameters.

Output Parameters

itercount INTEGER argument. Returns the current iteration number.

Return Values

The routine dcgmrhs_get has no return values.
dfgmres_init
Initializes the solver.
Syntax
dfgmres_init($\left.n, x, b, R C I \_r e q u e s t, i p a r, ~ d p a r, ~ t m p\right)$

Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine dfgmres_init initializes the solver. After initialization all subsequent invocations of Intel MKL RCI FGMRES routines use the values of all parameters that are returned by dfgmres_init. Advanced users may skip this step and set the values to these parameters directly in the appropriate routines.

WARNING You can modify the contents of these arrays after they are passed to the solver routine only if you are sure that the values are correct and consistent. You can perform a basic check for correctness and consistency by calling the dfgmres_check routine, but it does not guarantee that the method will work correctly.

Input Parameters

n	INTEGER. Sets the size of the problem.
x	DOUBLE PRECISION array of size n. Contains the initial approximation to
the solution vector. Normally it is equal to 0 or to b.	

Output Parameters

```
RCI_request
ipar
dpar
tmp
```

```
INTEGER. Gives information about the result of the routine.
INTEGER array of size 128. Refer to the FGMRES Common Parameters.
DOUBLE PRECISION array of size 128. Refer to the FGMRES Common
Parameters.
DOUBLE PRECISION array of size ((2*ipar(15) +1)*n
+ipar(15)*ipar(15)+9)/2 + 1). Refer to the FGMRES Common
Parameters.
```


Return Values

```
RCI_request= 0 Indicates that the task completed normally.
RCI_request= -10000 Indicates failure to complete the task.
```

dfgmres_check
Checks consistency and correctness of the user
defined data.

Syntax

```
dfgmres_check(n, x, b, RCI_request, ipar, dpar, tmp)
```

Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine dfgmres_check checks consistency and correctness of the parameters to be passed to the solver routine dfgmres. However, this operation does not guarantee that the method gives the correct result. It only reduces the chance of making a mistake in the parameters of the routine. Skip this operation only if you are sure that the correct data is specified in the solver parameters.

The lengths of all vectors are assumed to have been defined in a previous call to the dfgmres_init routine.

Input Parameters

n	INTEGER. Sets the size of the problem.
x	DOUBLE PRECISION array of size n. Contains the initial approximation to
the solution vector. Normally it is equal to 0 or to b.	

Output Parameters

RCI_request	INTEGER. Gives information about result of the routine.
ipar	INTEGER array of size 128. Refer to the FGMRES Common Parameters.
dpar	DOUBLE PRECISION array of size 128. Refer to the FGMRES Common Parameters.
tmp	DOUBLE PRECISION array of size ((2 *ipar (15) +1)*n +ipar(15)*ipar(15)+9)/2 + 1). Refer to the FGMRES Common Parameters.

Return Values

```
RCI_request= 0 Indicates that the task completed normally.
RCI_request= -1100
RCI_request= -1001
RCI_request= -1010
RCI_request= -1011
```

Indicates that the task completed normally.
Indicates that the task is interrupted and the errors occur.
Indicates that there are some warning messages.
Indicates that the routine changed some parameters to make them consistent or correct.
Indicates that there are some warning messages and that the routine changed some parameters.

dfgmres

Makes the FGMRES iterations.

Syntax

```
dfgmres(n, x, b, RCI_request, ipar, dpar, tmp)
```

Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine dfgmres performs the FGMRES iterations [Saad03], using the value that was in the array x before the first call as an initial approximation of the solution vector. To update the current approximation to the solution, the dfgmres_get routine must be called. The RCI FGMRES iterations can be continued after the call to the dfgmres_get routine only if the value of the parameter ipar(13) is not equal to 0 (default value). Note that the updated solution overwrites the right hand side in the vector b if the parameter
ipar(13) is positive, and the restarted version of the FGMRES method can not be run. If you want to keep the right hand side, you must be save it in a different memory location before the first call to the dfgmres_get routine with a positive ipar(13).

The parameter $R C I_{\text {_ }}$ request gives information about the task completion and requests results of certain operations that the solver requires.
The lengths of all the vectors must be defined in a previous call to the dfgmres_init routine.

Input Parameters

```
n
x
b
tmp
```


Output Parameters

RCI_request
ipar
dpar
tmp

INTEGER. Informs about result of work of the routine. INTEGER array of size 128. Refer to the FGMRES Common Parameters. DOUBLE PRECISION array of size 128. Refer to the FGMRES Common Parameters.
DOUBLE PRECISION array of size ((2*ipar(15) +1)*n +ipar(15)*ipar(15)+9)/2 + 1). Refer to the FGMRES Common Parameters.

INTEGER. Sets the size of the problem.
DOUBLE PRECISION array of size n. Contains the initial approximation to the solution vector.
DOUBLE PRECISION array of size n. Contains the right-hand side vector.
DOUBLE PRECISION array of size ($(2 * i \operatorname{par}(15)+1) * n$
+ipar(15)*ipar(15)+9)/2 + 1). Refer to the FGMRES Common
Parameters.

Return Values

RCI_request $=-10$

RCI_request $=-11$

RCI_request $=-12$

Indicates that the task completed normally and the solution is found and stored in the vector x. This occurs only if the stopping tests are fully automatic. For the user defined stopping tests, see the description of the $R C I_{-}$request $=2$ or 4.
Indicates that the routine was interrupted because the maximum number of iterations was reached, but the relative stopping criterion was not met. This situation occurs only if you request both tests.
Indicates that the routine was interrupted because of an attempt to divide by zero. Usually this happens if the matrix is degenerate or almost degenerate. However, it may happen if the parameter dpar is altered, or if the method is not stopped when the solution is found.
Indicates that the routine was interrupted because it entered an infinite cycle. Usually this happens because the values ipar(8), ipar(9), ipar(10) were altered outside of the routine, or the dfgmres_check routine was not called.
Indicates that the routine was interrupted because errors were found in the method parameters. Usually this happens if the parameters ipar and dpar were altered by mistake outside the routine.

RCI_request= 1	Indicates that you must multiply the matrix by tmp(ipar(22)), put the result in the tmp(ipar(23)), and return the control back to the routine dfgmres.
RCI_request $=2$	Indicates that you must perform the stopping tests. If they fail, return control to the dfgmres routine. Otherwise, the FGMRES solution is found, and you can run the fgmres_get routine to update the computed solution in the vector x.
RCI_request= 3	Indicates that you must apply the inverse preconditioner to ipar(22), put the result in the ipar(23), and return the control back to the routine dfgmres.
RCI_request= 4	Indicates that you must check the norm of the currently generated vector. If it is not zero within the computational/ rounding errors, return control to the dfgmres routine. Otherwise, the FGMRES solution is found, and you can run the dfgmres_get routine to update the computed solution in the vector x.

dfgmres_get

Retrieves the number of the current iteration and updates the solution.

Syntax

```
dfgmres_get(n, x, b, RCI_request, ipar, dpar, tmp, itercount)
```


Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine dfgmres_get retrieves the current iteration number of the solution process and updates the solution according to the computations performed by the dfgmres routine. To retrieve the current iteration number only, set the parameter ipar $(13)=-1$ beforehand. Normally, you should do this before proceeding further with the computations. If the intermediate solution is needed, the method parameters must be set properly. For details see FGMRES Common Parameters and the Iterative Sparse Solver code examples in the examples \solver\source folder of your Intel MKL directory (cg_no_precon.f, cg_no_precon_c.c, cg_mrhs.f, cg_mrhs_precond.f, cg_mrhs_stop_crt.f,fgmres_no_precon_f.f, fgmres_no_precon_c.c).

Input Parameters

n	INTEGER. Sets the size of the problem.
ipar	INTEGER array of size 128. Refer to the FGMRES Common Parameters.
dpar	DOUBLE PRECISION array of size 128. Refer to the FGMRES Common
$t m p$	Parameters.
	DOUBLE PRECISION array of size $((2 * i p a r(15)+1) *$ Parameters.

Output Parameters

```
X
b
RCI_request
itercount
```


Return Values

```
```

RCI_request=0

```
```

RCI_request=0
RCI_request= -12

```
```

RCI_request= -12

```
```

$R C I$ request $=-10000$
$R C I$ request $=-10000$

DOUBLE PRECISION array of size n. If ipar(13) $=0$, it contains the updated approximation to the solution according to the computations done in dfgmres routine. Otherwise, it is not changed.
DOUBLE PRECISION array of size n. If ipar (13) >0, it contains the updated approximation to the solution according to the computations done in dfgmres routine. Otherwise, it is not changed.

INTEGER. Gives information about result of the routine.
INTEGER argument. Contains the value of the current iteration number.

Indicates that the task completed normally.
Indicates that the routine was interrupted because errors were found in the routine parameters. Usually this happens if the parameters ipar and dpar are altered by mistake outside of the routine.
Indicates that the routine failed to complete the task.

Implementation Details

Several aspects of the Intel MKL RCI ISS interface are platform-specific and language-specific. To promote portability across platforms and ease of use across different languages, include one of the Intel MKL RCI ISS language-specific header files.

The C-language header file defines these function prototypes:

```
void dcg_init(int *n, double *x, double *b, int *rci_request, int *ipar, double dpar,
double *tmp);
void dcg_check(int *n, double *x, double *b, int *rci_request, int *ipar, double dpar,
double *tmp);
void dcg(int *n, double *x, double *b, int *rci_request, int *ipar, double dpar, double
*tmp);
void dcg_get(int *n, double *x, double *b, int *rci_request, int *ipar, double dpar,
double *tmp, int *itercount);
void dcgmrhs_init(int *n, double *x, int *nRhs, double *b, int *method, int
*rci_request, int *ipar, double dpar, double *tmp);
void dcgmrhs_check(int *n, double *x, int *nRhs, double *b, int *rci_request, int
*ipar, double dpar, double *tmp);
void dcgmrhs(int *n, double *x, int *nRhs, double *b, int *rci__request, int *ipar,
double dpar, double *tmp);
void dcgmrhs_get(int *n, double *x, int *nRhs, double *b, int *rci_request, int *ipar,
double dpar, double *tmp, int *itercount);
void dfgmres_init(int *n, double *x, double *b, int *rci_request, int *ipar, double
dpar, double *tmp);
void dfgmres_check(int *n, double *x, double *b, int *rci_request, int *ipar, double
dpar, double *tmp);
void dfgmres(int *n, double *x, double *b, int *rci_request, int *ipar, double dpar,
double *tmp);
```


Preconditioners based on Incomplete LU Factorization Technique

Preconditioners, or accelerators are used to accelerate an iterative solution process. In some cases, their use can reduce the number of iterations dramatically and thus lead to better solver performance. Although the terms preconditioner and accelerator are synonyms, hereafter only preconditioner is used.

Intel MKL provides two preconditioners, ILUO and ILUT, for sparse matrices presented in the format accepted in the Intel MKL direct sparse solvers (three-array variation of the CSR storage format described in Sparse Matrix Storage Format). The used algorithms used are described in [Saad03].

The ILUO preconditioner is based on a well-known factorization of the original matrix into a product of two triangular matrices: lower and upper triangular matrices. Usually, such decomposition leads to some fill-in in the resulting matrix structure in comparison with the original matrix. The distinctive feature of the ILUO preconditioner is that it preserves the structure of the original matrix in the result.
Unlike the ILUO preconditioner, the ILUT preconditioner preserves some resulting fill-in in the preconditioner matrix structure. The distinctive feature of the ILUT algorithm is that it calculates each element of the preconditioner and saves each one if it satisfies two conditions simultaneously: its value is greater than the product of the given tolerance and matrix row norm, and its value is in the given bandwidth of the resulting preconditioner matrix.
Both ILUO and ILUT preconditioners can apply to any non-degenerate matrix. They can be used alone or together with the Intel MKL RCI FGMRES solver (see Sparse Solver Routines). Avoid using these preconditioners with MKL RCI CG solver because in general, they produce a non-symmetric resulting matrix even if the original matrix is symmetric. Usually, an inverse of the preconditioner is required in this case. To do this the Intel MKL triangular solver routine mkl_dcsrtrsv must be applied twice: for the lower triangular part of the preconditioner, and then for its upper triangular part.

D
NOTE Although ILUO and ILUT preconditioners apply to any non-degenerate matrix, in some cases the algorithm may fail to ensure successful termination and the required result. Whether or not the preconditioner produces an acceptable result can only be determined in practice.
A preconditioner may increase the number of iterations for an arbitrary case of the system and the initial solution, and even ruin the convergence. It is your responsibility as a user to choose a suitable preconditioner.

General Scheme of Using ILUT and RCI FGMRES Routines

The general scheme for use is the same for both preconditioners. Some differences exist in the calling parameters of the preconditioners and in the subsequent call of two triangular solvers. You can see all these differences in the code examples for both preconditioners in the examples \backslash solver \backslash source folder of your Intel MKL directory (dcsrilu0_exampll.c, dcsrilu0_exampl2.f, dcsrilut_exampl1.c, dcsrilut_exampl2.f).
The following pseudocode shows the general scheme of using the ILUT preconditioner in the RCI FGMRES context.
generate matrix A
generate preconditioner C (optional)
call dfgmres_init($\left.n, x, b, R C I \_r e q u e s t, i p a r, ~ d p a r, ~ t m p\right)$

change parameters in ipar, dpar if necessary

```
call dcsrilut(n, a, ia, ja, bilut, ibilut, jbilut, tol, maxfil, ipar, dpar, ierr)
```

call dfgmres_check($\left.n, x, b, R C I \_r e q u e s t, i p a r, ~ d p a r, ~ t m p\right)$

1 call dfgmres ($n, x, b, R C I_{\text {_ }}$ request, ipar, dpar, tmp)
if ($R C I$ _request.eq.1) then
multiply the matrix A by tmp(ipar(22)) and put the result in tmp(ipar(23))
c proceed with FGMRES iterations
goto 1
endif
if (RCI_request.eq.2) then
do the stopping test
if (test not passed) then
c proceed with FGMRES iterations
go to 1
else
c stop FGMRES iterations.
goto 2
endif
endif
if (RCI_request.eq.3) then
C Below, trvec is an intermediate vector of length at least n
c Here is the recommended use of the result produced by the ILUT routine.
c via standard Intel MKL Sparse Blas solver routine mkl_dcsrtrsv. call mkl_dcsrtrsv('L','N','U', n, bilut, ibilut, jbilut, tmp(ipar(22)),trvec) call mkl_dcsrtrsv('U','N','N', n, bilut, ibilut, jbilut, trvec, tmp(ipar(23)))
c proceed with FGMRES iterations
goto 1
endif
if (RCI_request.eq.4) then
check the norm of the next orthogonal vector, it is contained in dpar(7)
if (the norm is not zero up to rounding/computational errors) then
c proceed with FGMRES iterations goto 1
else
c stop FGMRES iterations
goto 2
endif
endif

current iteration number is in itercount
the computed approximation is in the array x

ILUO and ILUT Preconditioners Interface Description

The concepts required to understand the use of the Intel MKL preconditioner routines are discussed in the Appendix A Linear Solvers Basics.
In this section the FORTRAN style notations are used. All types refer to the standard Fortran types, INTEGER, and DOUBLE PRECISION.

C and C++ programmers must refer to the section Calling Sparse Solver and Preconditioner Routines from C $\mathrm{C}++$ for information on mapping Fortran types to $\mathrm{C} / \mathrm{C}++$ types.

User Data Arrays

The preconditioner routines take arrays of user data as input. To minimize storage requirements and improve overall run-time efficiency, the Intel MKL preconditioner routines do not make copies of the user input arrays.

Common Parameters

Some parameters of the preconditioners are common with the FGMRES Common Parameters. The routine dfgmres_init specifies their default and initial values. However, some parameters can be redefined with other values. These parameters are listed below.

For the ILUO preconditioner:

ipar (2) - specifies the destination of error messages generated by the ILUO routine. The default value 6 means that all error messages are displayed on the screen. Otherwise routine creates a log file called MKL_PREC_log.txt and writes error messages to it. Note if the parameter ipar(6) is set to 0, then error messages are not generated at all.
ipar (6) - specifies whether error messages are generated. If its value is not equal to 0 , the ILU0 routine returns error messages as specified by the parameter ipar(2). Otherwise, the routine does not generate error messages at all, but returns a negative value for the parameter ierr. The default value is 1 .

For the ILUT preconditioner:

ipar (2) - specifies the destination of error messages generated by the ILUT routine. The default value 6 means that all messages are displayed on the screen. Otherwise routine creates a log file called MKL_PREC_log.txt and writes error messages to it. Note if the parameter ipar(6) is set to 0, then error messages are not generated at all.
ipar(6) - specifies whether error messages are generated. If its value is not equal to 0 , the ILUT routine returns error messages as specified by the parameter ipar(2). Otherwise, the routine does not generate error messages at all, but returns a negative value for the parameter ierr. The default value is 1 .
ipar(7) - if its value is greater than 0 , the ILUT routine generates warning messages as specified by the parameter ipar(2) and continues calculations. If its value is equal to 0 , the routine returns a positive value of the parameter ierr. If its value is less than 0 , the routine generates a warning message as specified by the parameter ipar(2) and returns a positive value of the parameter ierr. The default value is 1.

desrilu0

ILUO preconditioner based on incomplete LU factorization of a sparse matrix.

Syntax

Fortran:

```
call dcsrilu0(n, a, ia, ja, bilu0, ipar, dpar, ierr)
```

C:

```
dcsrilu0(&n, a, ia, ja, bilu0, ipar, dpar, &ierr);
```


Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine dcsrilu0 computes a preconditioner B [Saad03] of a given sparse matrix A stored in the format accepted in the direct sparse solvers:
$A \sim B=L^{\star} U$, where L is a lower triangular matrix with a unit diagonal, U is an upper triangular matrix with a non-unit diagonal, and the portrait of the original matrix A is used to store the incomplete factors L and U.

Input Parameters

n
a
ia
ja
ipar

INTEGER. Size (number of rows or columns) of the original square $n-b y-n$ matrix A.
DOUBLE PRECISION. Array containing the set of elements of the matrix A. Its length is equal to the number of non-zero elements in the matrix A. Refer to the values array description in the Sparse Matrix Storage Format for more details.

INTEGER. Array of size ($n+1$) containing begin indices of rows of the matrix A such that $i a(i)$ is the index in the array A of the first non-zero element from the row i. The value of the last element ia($n+1$) is equal to the number of non-zero elements in the matrix A plus one. Refer to the rowIndex array description in the Sparse Matrix Storage Format for more details.
INTEGER. Array containing the column indices for each non-zero element of the matrix A. Its size is equal to the size of the array a. Refer to the columns array description in the Sparse Matrix Storage Format for more details.

NOTE Column indices must be in ascending order for each row of matrix.

INTEGER array of size 128. This parameter specifies the integer set of data for both the ILU0 and RCI FGMRES computations. Refer to the ipar array description in the FGMRES Common Parameters for more details on FGMRES parameter entries. The entries that are specific to ILUO are listed below.
specifies how the routine operates when a zero diagonal element occurs during calculation. If this parameter is set to 0 (the default value set by the routine dfgmres_init), then the calculations are stopped and the routine returns a non-zero error value. Otherwise, the diagonal element is set to the value of dpar(32) and the calculations continue.

NOTE You must declare the array ipar with length 128. While defining the array in the code as INTEGER ipar(31) works, there is no guarantee of future compatibility with Intel MKL.
dpar

DOUBLE PRECISION array of size 128. This parameter specifies the double precision set of data for both the ILUO and RCI FGMRES computations. Refer to the dpar array description in the FGMRES Common Parameters for more details on FGMRES parameter entries. The entries specific to ILUO are listed below.
specifies a small value, which is compared with the computed diagonal elements. When ipar(31) is not 0 , then diagonal elements less than $\operatorname{dpar}(31)$ are set to dpar(32). The default value is $1.0 \mathrm{D}-16$.

IOTE This parameter can be set to the negative value, because the calculation uses its absolute value.

If this parameter is set to 0 , the comparison with the diagonal element is not performed.
dpar(32)
specifies the value that is assigned to the diagonal element if its value is less than dpar(31) (see above). The default value is $1.0 \mathrm{D}-10$.

NOTE You must declare the array dpar with length 128. While defining the array in the code as DOUBLE PRECISION ipar(32) works, there is no guarantee of future compatibility with Intel MKL.

Output Parameters

biluo
ierr

DOUBLE PRECISION. Array B containing non-zero elements of the resulting preconditioning matrix B, stored in the format accepted in direct sparse solvers. Its size is equal to the number of non-zero elements in the matrix A. Refer to the values array description in the Sparse Matrix Storage Format section for more details.

INTEGER. Error flag, gives information about the routine completion.

NOTE To present the resulting preconditioning matrix in the CSR format the arrays ia (row indices) and ja (column indices) of the input matrix must be used.

Return Values

```
ierr=0 Indicates that the task completed normally.
ierr=-101 Indicates that the routine was interrupted and that error
    occurred: at least one diagonal element is omitted from the
    matrix in CSR format (see Sparse Matrix Storage Format).
ierr=-102
ierr=-103
ierr=-104
ierr=-105
ierr=-106
```


Interfaces

FORTRAN 77 and Fortran 95:

```
SUBROUTINE dcsrilu0 (n, a, ia, ja, bilu0, ipar, dpar, ierr)
INTEGER n, ierr, ipar(128)
INTEGER ia(*), ja(*)
DOUBLE PRECISION a(*), biluO(*), dpar(128)
C:
void dcsrilu0 (int *n, double *a, int *ia, int *ja, double *bilu0, int *ipar, double *dpar, int *ierr);
```

dcsrilut
ILUT preconditioner based on the incomplete LU
factorization with a threshold of a sparse matrix.
Syntax

Fortran:

```
call dcsrilut(n, a, ia, ja, bilut, bilut, ibilut, jbilut, tol, maxfil, ipar, dpar,
ierr)
```

C:

```
dcsrilut(&n, a, ia, ja, bilut, bilut, ibilut, jbilut, &tol, &maxfil, ipar, dpar,
```

\&ierr);

Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine dcsrilut computes a preconditioner B [Saad03] of a given sparse matrix A stored in the format accepted in the direct sparse solvers:
$A \sim B=L^{\star} U$, where L is a lower triangular matrix with unit diagonal and U is an upper triangular matrix with non-unit diagonal.

The following threshold criteria are used to generate the incomplete factors L and U :

1) the resulting entry must be greater than the matrix current row norm multiplied by the parameter tol, and
2) the number of the non-zero elements in each row of the resulting L and U factors must not be greater than the value of the parameter maxfil.

Input Parameters

n
a
ia
ja
tol
maxfil
ipar

INTEGER. Size (number of rows or columns) of the original square n-by- n matrix A.

DOUBLE PRECISION. Array containing all non-zero elements of the matrix A. The length of the array is equal to their number. Refer to values array description in the Sparse Matrix Storage Format section for more details.

INTEGER. Array of size $(n+1)$ containing indices of non-zero elements in the array A. ia(i) is the index of the first non-zero element from the row i. The value of the last element ia($n+1$) is equal to the number of non-zeros in the matrix A plus one. Refer to the rowIndex array description in the Sparse Matrix Storage Format for more details.
INTEGER. Array of size equal to the size of the array a. This array contains the column numbers for each non-zero element of the matrix A. Refer to the columns array description in the Sparse Matrix Storage Format for more details.

NOTE Column numbers must be in ascending order for each row of matrix.

DOUBLE PRECISION. Tolerance for threshold criterion for the resulting entries of the preconditioner.
INTEGER. Maximum fill-in, which is half of the preconditioner bandwidth. The number of non-zero elements in the rows of the preconditioner can not exceed (2*maxfil+1).

INTEGER array of size 128. This parameter is used to specify the integer set of data for both the ILUT and RCI FGMRES computations. Refer to the ipar array description in the FGMRES Common Parameters for more details on FGMRES parameter entries. The entries specific to ILUT are listed below.
ipar(31)
specifies how the routine operates if the value of the computed diagonal element is less than the current matrix row norm multiplied by the value of the parameter tol. If ipar(31) $=0$, then the calculation is stopped and the routine returns nonzero error value. Otherwise, the value of the diagonal element is set to a value determined by dpar(31) (see its description below), and the calculations continue.

NOTE You must declare the array ipar with length 128. While defining the array in the code as INTEGER ipar(31) works, there is no guarantee of future compatibility with Intel MKL.

DOUBLE PRECISION array of size 128. This parameter specifies the double precision set of data for both ILUT and RCI FGMRES computations. Refer to the dpar array description in the FGMRES Common Parameters for more details on FGMRES parameter entries. The entries that are specific to ILUT are listed below.
dpar(31) used to adjust the value of small diagonal elements. Diagonal elements with a value less than the current matrix row norm multiplied by tol are replaced with the value of dpar(31) multiplied by the matrix row norm.

IOTE There is no default value for dpar(31) entry even if the preconditioner is used within RCI ISS context. Always set the value of this entry.

NOTE You must declare the array dpar with length 128. While defining the array in the code as DOUBLE PRECISION ipar(31) works, there is no guarantee of future compatibility with Intel MKL.

Output Parameters

INTEGER. Array of size $(n+1)$ containing indices of non-zero elements in the array bilut. ibilut(i) is the index of the first non-zero element from the row i. The value of the last element ibilut $(n+1)$ is equal to the number of non-zeros in the matrix B plus one. Refer to the rowIndex array description in the Sparse Matrix Storage Format for more details.

jbilut	INTEGER. Array, its size is equal to the size of the array bilut. This array
	contains the column numbers for each non-zero element of the matrix B.
	Refer to the columns array description in the Sparse Matrix Storage Format
for more details.	

Return Values

```
ierr=0
ierr=-101
ierr=-102
ierr=-103
ierr=-104
ierr=-105
ierr=-106
ierr=-107
```

ierr=101
ierr=102
ierr=103
ierr=104

Indicates that the task completed normally.
Indicates that the routine was interrupted because of an error: the number of elements in some matrix row specified in the sparse format is equal to or less than 0.

Indicates that the routine was interrupted because the value of the computed diagonal element is less than the product of the given tolerance and the current matrix row norm, and it cannot be replaced as ipar (31) $=0$.

Indicates that the routine was interrupted because the element ia(i+1) is less than or equal to the element ia(i) (see Sparse Matrix Storage Format).
Indicates that the routine was interrupted because the memory is insufficient for the internal work arrays.

Indicates that the routine was interrupted because the input value of maxfil is less than 0.
Indicates that the routine was interrupted because the size n of the input matrix is less than 0.

Indicates that the routine was interrupted because an element of the array $j a$ is less than 0 , or greater than n (see Sparse Matrix Storage Format).
The value of maxfil is greater than or equal to n. The calculation is performed with the value of maxfil set to ($n-1$).

The value of tol is less than 0 . The calculation is performed with the value of the parameter set to (-tol) The absolute value of tol is greater than value of dpar(31) ; it can result in instability of the calculation.
The value of dpar(31) is equal to 0 . It can cause calculations to fail.

Interfaces

FORTRAN 77 and Fortran 95:

```
SUBROUTINE dcsrilut (n, a, ia, ja, bilut, ibilut, jbilut, tol, maxfil, ipar, dpar, ierr)
INTEGER n, ierr, ipar(*), maxfil
INTEGER ia(*), ja(*), ibilut(*), jbilut(*)
DOUBLE PRECISION a(*), bilut(*), dpar(*), tol
C:
void dcsrilut (int *n, double *a, int *ia, int *ja, double *bilut, int *ibilut, int *jbilut, double
*tol, int *maxfil, int *ipar, double *dpar, int *ierr);
```


Calling Sparse Solver and Preconditioner Routines from C/C+ $+$

All of the Intel MKL sparse solver and preconditioner routines is designed to be called easily from FORTRAN 77 or Fortran 90 . However, any of these routines can be invoked directly from C or C++ if you are familiar with the inter-language calling conventions of your platforms. These conventions include, but are not limited to, the argument passing mechanisms for the language, the data type mappings from Fortran to $\mathrm{C} / \mathrm{C}++$, and the platform specific method of decoration for Fortran external names.
To promote portability, the C header files provide a set of macros and type definitions intended to hide the inter-language calling conventions and provide an interface to the Intel MKL sparse solver routines that appears natural for $\mathrm{C} / \mathrm{C}++$.
For example, consider a hypothetical library routine foo that takes a real vector of length n, and returns an integer status. Fortran users would access such a function as:
INTEGER n, status, foo
REAL $x(*)$
status $=$ foo (x, n)
As noted above, to invoke foo, C users need to know what C data types correspond to Fortran types Integer and ReAl; what argument passing mechanism the Fortran compiler uses; and what, if any, name decoration the Fortran compiler performs when generating the external symbol foo.
However, by using the C specific header file, for example mkl_solver. h, the invocation of foo, within a C program would look as follows:

```
#include "mkl_solver.h"
    INTEGER t i, status;
    _REAL_t \overline{x [];}
\overline{status = foo( x, i );}
```

Note that in the above example, the header file mkl_solver.h provides definitions for the types _INTEGER_t and _REAL_t that correspond to the Fortran types INTEGER and REAL.
To simplify calling of the Intel MKL sparse solver routines from C and C++, the following approach of providing C definitions of Fortran types is used: if an argument or a result from a sparse solver is documented as having the Fortran language specific type $X X X$, then the C and $\mathrm{C}++$ header files provide an appropriate C language type definitions for the name _ $X X X$ _t.

Caveat for C Users

One of the key differences between C/C++ and Fortran is the argument passing mechanisms for the languages: Fortran programs pass arguments by reference and $\mathrm{C} / \mathrm{C}++$ programs pass arguments by value. In the above example, the header file mkl_solver. h attempts to hide this difference by defining a macro foo, which takes the address of the appropriate arguments. For example, on the Tru64 UNIX* operating system mkl_solver.h defines the macro as follows:

```
#define foo(a,b) foo_((a), & (b))
```

Note how constants are treated when using the macro form of foo. foo $(x, 10)$ is converted into foo_ (x, $\& 10$). In a strictly ANSI compliant C compiler, taking the address of a constant is not permitted, so a strictly conforming program would look like:

```
INTEGER_t iTen = 10;
_REAL_t * x;
status = foo( x, iTen );
```

However, some C compilers in a non-ANSI compliant mode enable taking the address of a constant for ease of use with Fortran programs. The form $f \circ \circ(x, 10)$ is acceptable for such compilers.

Vector Mathematical Functions

This chapter describes Inte ${ }^{\circledR}$ MKL Vector Mathematical Functions Library (VML), which computes a mathematical function of each of the vector elements. VML includes a set of highly optimized functions (arithmetic, power, trigonometric, exponential, hyperbolic, special, and rounding) that operate on vectors of real and complex numbers.

Application programs that improve performance with VML include nonlinear programming software, computation of integrals, financial calculations, computer graphics, and many others.
VML functions fall into the following groups according to the operations they perform:

- VML Mathematical Functions compute values of mathematical functions, such as sine, cosine, exponential, or logarithm, on vectors stored contiguously in memory.
- VML Pack/Unpack Functions convert to and from vectors with positive increment indexing, vector indexing, and mask indexing (see Appendix B for details on vector indexing methods).
- VML Service Functions set/get the accuracy modes and the error codes.

The VML mathematical functions take an input vector as an argument, compute values of the respective function element-wise, and return the results in an output vector. All the VML mathematical functions can perform in-place operations, where the input and output arrays are at the same memory locations.

The Intel MKL interfaces are given in the following include files:

- mkl_vml.f77, which declares the FORTRAN 77 interfaces
- mkl_vml.f90, which declares the Fortran 90 interfaces; the mkl_vml.fi include file available in the previous versions of Intel MKL is retained for backward compatibility
- mkl_vml_functions.h, which declares the C interfaces

The following directories provide examples that demonstrate how to use the VML functions:
\$ \{MKL\} /examples/vmlc/source
\$\{MKL\}/examples/vmlf/source
See VML performance and accuracy data in the online VML Performance and Accuracy Data document available at http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation/

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

Data Types, Accuracy Modes, and Performance Tips

VML includes mathematical and pack/unpack vector functions for single and double precision vector arguments of real and compex types. The library provides Fortran- and C-interfaces for all functions, including the associated service functions. The Function Naming Conventions section below shows how to call these functions from different languages.
Performance depends on a number of factors, including vectorization and threading overhead. The recommended usage is as follows:

- Use VML for vector lengths larger than 40 elements.
- Use the Intel ${ }^{\circledR}$ Compiler for vector lengths less than 40 elements.

All VML vector functions support the following accuracy modes:

- High Accuracy (HA), the default mode
- Low Accuracy (LA), which improves performance by reducing accuracy of the two least significant bits
- Enhanced Performance (EP), which provides better performance at the cost of significantly reduced accuracy. Approximately half of the bits in the mantissa are correct.

Note that using the EP mode does not guarantee accurate processing of corner cases and special values. Although the default accuracy is HA, LA is sufficient in most cases. For applications that require less accuracy (for example, media applications, some Monte Carlo simulations, etc.), the EP mode may be sufficient.

VML handles special values in accordance with the C99 standard [C99].
Use the vmlSetMode (mode) function (see Table "Values of the mode Parameter") to switch between the HA, LA, and EP modes. The vmlGetMode () function returns the current mode.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

See Also

Function Naming Conventions

Function Naming Conventions

The VML function names are lowercase for Fortran (vsabs) and of mixed (lower and upper) case for C (vsAbs).
The VML mathematical and pack/unpack function names have the following structure:
$v[m]<?><$ name $><\bmod >$
where

- v is a prefix indicating vector operations.
- [m] is an optional prefix for mathematical functions that indicates additional argument to specify a VML mode for a given function call (see vmlSetMode for possible values and their description).
- <?> is a precision prefix that indicates one of the following the data types:
$s \quad$ REAL for the Fortran interface, or float for the C interface d DOUBLE PRECISION for the Fortran interface, or double for the C interface.
COMPLEX for the Fortran interface, or MKL_Complex 8 for the C interface.
DOUBLE COMPLEX for the Fortran interface, or MKL_Complex16 for the C interface.
- <name> indicates the function short name, with some of its letters in uppercase for the C interface. See examples in Table "VML Mathematical Functions".
- <mod> field (written in uppercase for the C interface) is present only in the pack/unpack functions and indicates the indexing method used:
i indexing with a positive increment
$v \quad$ indexing with an index vector
$m \quad$ indexing with a mask vector.

The VML service function names have the following structure:

```
vml<name>
```

where
<name> indicates the function short name, with some of its letters in uppercase for the C interface. See examples in Table "VML Service Functions".
To call VML functions from an application program, use conventional function calls. For example, call the vector single precision real exponential function as
call vsexp (n, a, y) for the Fortran interface, or
call vmsexp (n, a, y, mode $)$ for the Fortran interface with a specified mode, or
vsExp (n, a, y); for the C interface.

Function Interfaces

VML interfaces include the function names and argument lists. The following sections describe the Fortran and C interfaces for the VML functions. Note that some of the functions have multiple input and output arguments

Some VML functions may also take scalar arguments as input. See the function description for the naming conventions of such arguments.

VML Mathematical Functions

Fortran:

```
call v<?><name>( n, a, [scalar input arguments,] y )
call v<?><name>( n, a, b, [scalar input arguments,] y )
call v<?><name>( n, a, y, z )
call vm<?><name>( n, a, [scalar input arguments,] y, mode )
call vm<?><name>( n, a, b, [scalar input arguments,] y, mode )
call vm<?><name>( n, a, y, z, mode )
```

C:

```
v<?><name>( n, a, [scalar input arguments,] y );
v<?><name>( n, a, b, [scalar input arguments,] y );
v<?><name>( n, a, y, z );
vm<?><name>( n, a, [scalar input arguments,] y, mode );
vm<?><name>( n, a, b, [scalar input arguments,] y, mode );
vm<?><name>( n, a, y, z, mode );
```


Pack Functions

Fortran:

```
call v<?>packi( n, a, inca, y )
call v<?>packv( n, a, ia, y )
call v<?>packm( n, a, ma, y )
```

C:

```
v<?>PackI( n, a, inca, y );
v<?>PackV( n, a, ia, y );
v<?>PackM( n, a, ma, y );
```


Unpack Functions

Fortran:

```
call v<?>unpacki( n, a, y, incy )
call v<?>unpackv( n, a, y, iy )
call v<?>unpackm( n, a, y, my )
```

C:

```
v<?>UnpackI( n, a, y, incy );
v<?>UnpackV( n, a, y, iy );
v<?>UnpackM( n, a, y, my );
```


Service Functions

Fortran:

```
oldmode = vmlsetmode( mode )
mode = vmlgetmode( )
olderr = vmlseterrstatus ( err )
err = vmlgeterrstatus( )
olderr = vmlclearerrstatus( )
oldcallback = vmlseterrorcallback( callback )
callback = vmlgeterrorcallback( )
oldcallback = vmlclearerrorcallback( )
```

C:

```
oldmode = vmlSetMode( mode );
mode = vmlGetMode( void );
olderr = vmlSetErrStatus ( err );
err = vmlGetErrStatus( void );
olderr = vmlClearErrStatus( void );
oldcallback = vmlSetErrorCallBack( callback );
callback = vmlGetErrorCallBack( void );
oldcallback = vmlClearErrorCallBack( void );
```

Note that oldmode, oldcerr, and oldcallback refer to settings prior to the call.

Input Parameters

n
a
b
inca
ia
ma

incy

iy index vector for the output vector y
$m y \quad$ mask vector for the output vector y
err error code
mode VML mode
callback address of the callback function

Output Parameters

y	first output vector
z	second output vector
err	error code
mode	VML mode
olderr	former error code
oldmode	former VML mode
callback	address of the callback function
oldcallback	address of the former callback function

See the data types of the parameters used in each function in the respective function description section. All the Intel MKL VML mathematical functions can perform in-place operations.

Vector Indexing Methods

VML mathematical functions work only with unit stride. To accommodate arrays with other increments, or more complicated indexing, you can gather the elements into a contiguous vector and then scatter them after the computation is complete.
VML uses the three following indexing methods to do this task:

- positive increment
- index vector
- mask vector

The indexing method used in a particular function is indicated by the indexing modifier (see the description of the $\langle\bmod >$ field in Function Naming Conventions). For more information on the indexing methods, see Vector Arguments in VML in Appendix B.

Error Diagnostics

The VML mathematical functions incorporate the error handling mechanism, which is controlled by the following service functions:

```
vmlGetErrStatus,
vmlSetErrStatus,
vmlClearErrStatus
vmlGetErrCallBack,
vmlSetErrCallBack,
vmlClearErrCallBack
vmlSetMode, vmlGetMode
```

These functions operate with a global variable called VML Error Status. The VML Error Status flags an error, a warning, or a successful execution of a VML function.

These functions enable you to customize the error handling. For example, you can identify a particular argument in a vector where an error occurred or that caused a warning.

These functions get and set a VML mode. If you set a new VML mode using the vmlSetMode function, you can store the previous VML mode returned by the routine and restore it at any point of your application.

If both an error and a warning situation occur during the function call, the VML Error Status variable keeps only the value of the error code. See Table "Values of the VML Error Status" for possible values. If a VML function does not encounter errors or warnings, it sets the VML Error Status to VML_STATUS_OK.
If you use the Fortran interface, call the error reporting function XERBLA to receive information about correctness of input arguments (VML_STATUS_BADSIZE and VML_STATUS_BADMEM). See Table "Values of the VML Error Status" for details.

You can use the vmlSetMode and vmlGetMode functions to modify error handling behavoir. Depending on the VML mode, the error handling behavior includes the following operations:

- setting the VML Error Status to a value corresponding to the observed error or warning
- setting the errno variable to one of the values described in Table "Set Values of the errno Variable"
- writing error text information to the stderr stream
- raising the appropriate exception on an error, if necessary
- calling the additional error handler callback function that is set by vmlSetErrorCallBack.

Set Values of the errno Variable

Value of errno	Description
0	No errors are detected.
$E I N V A L$	The array dimension is not positive.
$E A C C E S$	NULL pointer is passed.
$E D O M$	At least one of array values is out of a range of definition.
$E R A N G E$	At least one of array values caused a singularity, overflow or
	underflow.

See Also
vmIGetErrStatus
vmISetErrStatus
vmIClearErrStatus
vmISetErrorCallBack
vmIGetErrorCallBack
vmIClearErrorCallBack
vmlGetMode
vmISetMode

VML Mathematical Functions

This section describes VML functions that compute values of mathematical functions on real and complex vector arguments with unit increment.
Each function is introduced by its short name, a brief description of its purpose, and the calling sequence for each type of data both for Fortran- and C-interfaces, as well as a description of the input/output arguments.

The input range of parameters is equal to the mathematical range of the input data type, unless the function description specifies input threshold values, which mark off the precision overflow, as follows:

- FLT_MAX denotes the maximum number representable in single precision real data type
- DBL_MAX denotes the maximum number representable in double precision real data type

Table "VML Mathematical Functions" lists available mathematical functions and associated data types.

VML Mathematical Functions

Function	Data Types	Description
Arithmetic Functions	s, d, c, z	Addition of vector elements
v?Add	s, d, c, z	Subtraction of vector elements
v?Sub	s, d	Squaring of vector elements
v?Sqr	s, d, c, z	Multiplication of vector elements
v?Mul	c, z	Multiplication of elements of one vector by conjugated elements of
v?MulByConj	c, z	the second vector
	s, d, c, z	Conjugation of vector elements
v?Conj	c, z	Computation of the absolute value of vector elements
v?Abs	s, d	Computation of the argument of vector elements
v?Arg	Linear fraction transformation of vectors	
v?LinearFrac		
Power and Root Functions		
v?Inv	s, d	Inversion of vector elements

Function	Data Types
v?Div	s, d, c, z
v?Sqrt	s, d, c, z
v?InvSqrt	s, d
v?Cbrt	s, d
v?InvCbrt	s, d
v?Pow2o3	s, d
v?Pow3o2	s, d
v?Pow	s, d, c, z
v?Powx	s, d, c, z
v?Hypot	s, d
Exponential and Logarithmic Functio	
v?Exp	s, d, c, z
v?Expm1	s, d
v?Ln	s, d, c, z
v?Log10	s, d, c, z
v?Log1p	s, d

Trigonometric Functions

v?Cos	s, d, c, z
v?Sin	s, d, c, z
v?Sincos	s, d
v?CIS	c, z
v?Tan	s, d, c, z
v?Acos	s, d, c, z
v?Asin	s, d, c, z
v?Atan	s, d, c, z
v?Atan2	s, d

Hyperbolic Functions

v?Cosh	s, d, c, z
v?Sinh	s, d, c, z
v?Tanh	s, d, c, z
v?Acosh	s, d, c, z
v?Asinh	s, d, c, z
v?Atanh	s, d, c, z
Special Functions	
$v ?$ Erf	s, d
v?Erfc	s, d
v?CdfNorm	s, d
v?ErfInv	s, d
v?ErfcInv	s, d
$v ? C d f N o r m I n v$	s, d
v?LGamma	s, d
v?TGamma	s, d
Rounding Functions	
v?Floor	s, d
v?Ceil	s, d
v?Trunc	s, d

Description
Division of elements of one vector by elements of the second vector Computation of the square root of vector elements
Computation of the inverse square root of vector elements
Computation of the cube root of vector elements
Computation of the inverse cube root of vector elements
Raising each vector element to the power of $2 / 3$
Raising each vector element to the power of $3 / 2$
Raising each vector element to the specified power
Raising each vector element to the constant power
Computation of the square root of sum of squares

Computation of the exponential of vector elements
Computation of the exponential of vector elements decreased by 1
Computation of the natural logarithm of vector elements
Computation of the denary logarithm of vector elements
Computation of the natural logarithm of vector elements that are increased by 1

Computation of the cosine of vector elements
Computation of the sine of vector elements
Computation of the sine and cosine of vector elements
Computation of the complex exponent of vector elements (cosine and sine combined to complex value)
Computation of the tangent of vector elements
Computation of the inverse cosine of vector elements
Computation of the inverse sine of vector elements
Computation of the inverse tangent of vector elements
Computation of the four-quadrant inverse tangent of elements of two vectors

Computation of the hyperbolic cosine of vector elements
Computation of the hyperbolic sine of vector elements
Computation of the hyperbolic tangent of vector elements
Computation of the inverse hyperbolic cosine of vector elements
Computation of the inverse hyperbolic sine of vector elements
Computation of the inverse hyperbolic tangent of vector elements.

Computation of the error function value of vector elements
Computation of the complementary error function value of vector elements
Computation of the cumulative normal distribution function value of vector elements
Computation of the inverse error function value of vector elements
Computation of the inverse complementary error function value of vector elements
Computation of the inverse cumulative normal distribution function value of vector elements
Computation of the natural logarithm for the absolute value of the gamma function of vector elements
Computation of the gamma function of vector elements

Rounding towards minus infinity
Rounding towards plus infinity
Rounding towards zero infinity

Intel ${ }^{-1}$ Math Kernel Library Reference Manual

Function	Data Types	Description
v?Round	s, d	Rounding to nearest integer
v?NearbyInt	s, d	Rounding according to current mode
v?Rint	s, d	Rounding according to current mode and raising inexact result exception
v?Modf	s, d	Computation of the integer and fraction parts

Special Value Notations

This section defines notations of special values for complex functions. The definitions are provided in text, tables, or formulas.

- $z, z 1, z 2$, etc. denote complex numbers.
- $i, i^{2}=-1$ is the imaginary unit.
- $x, X, x 1, x 2$, etc. denote real imaginary parts.
- $y, Y, y 1, y 2$, etc. denote imaginary parts.
- X and Y represent any finite positive IEEE-754 floating point values, if not stated otherwise.
- Quiet NaN and signaling NaN are denoted with QNAN and SNAN, respectively.
- The IEEE-754 positive infinities or floating-point numbers are denoted with a + sign before X, Y, etc.
- The IEEE-754 negative infinities or floating-point numbers are denoted with a - sign before X, Y, etc.
$\operatorname{CONJ}(z)$ and CIS (z) are defined as follows:
$\operatorname{CONJ}(x+i \cdot y)=x-i \cdot y$
$\operatorname{CIS}(\mathrm{y})=\cos (\mathrm{y})+\mathrm{i} \cdot \sin (\mathrm{y})$.
The special value tables show the result of the function for the z argument at the intersection of the RE (z) column and the $i * I M(z)$ row. If the function raises an exception on the argument z, the lower part of this cell shows the raised exception and the VML Error Status. An empty cell indicates that this argument is normal and the result is defined mathematically.

Arithmetic Functions

Arithmetic functions perform the basic mathematical operations like addition, subtraction, multiplication or computation of the absolute value of the vector elements.
v?Add
Performs element by element addition of vector a and vector b.

Syntax

Fortran:

```
call vsadd( }n,a,b,y
call vmsadd( n, a, b, y, mode )
call vdadd( n, a, b, y )
call vmdadd( n, a, b, y, mode )
call vcadd( n, a, b, y )
call vmcadd( }n,a,b,y, mode 
call vzadd( n, a, b, y )
call vmzadd( n, a, b, y, mode )
```

```
C:
vsAdd( n, a, b, y );
vmsAdd( n, a, b, y, mode );
vdAdd( n, a, b, y );
vmdAdd( n, a, b, y, mode );
vcAdd( n, a, b, y );
vmcAdd( n, a, b, y, mode );
vzAdd( n, a, b, y );
vmzAdd( n, a, b, y, mode );
```


Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
n	FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)	
	C: const int
	FORTRAN 77: REAL for vsadd,
	vmsadd
	DOUBLE PRECISION for vdadd,
	vmdadd
	COMPLEX for vcadd, vmcadd
	Fortran 90: REAL, INTENT (IN) for
	vsadd, vmsadd
	DOUBLE PRECISION, INTENT (IN) for
	vdadd, vmdadd
	COMPLEX, INTENT (IN) for vcadd,
	vmcadd
	DOUBLE COMPLEX, INTENT (IN) for
	vzadd, vmzadd
	C: const float* for vsAdd, vmsadd
	const double* for vdAdd, vmdadd
	const MKL_Complex8* for vcAdd,
vmcadd	
	const MKL_Complex16* for vzAdd,
vmzadd	

Description

Specifies the number of elements to be calculated.

FORTRAN: Arrays that specify the input vectors a and b.

C: Pointers to arrays that contain the input vectors a and b.

Name	Type
mode	FORTRAN 77: INTEGER*8
	Fortran 90: INTEGER(KIND=8),
	INTENT (IN)
	C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vsadd,
	vmsadd
	DOUBLE PRECISION for vdadd,
	vmdadd
	COMPLEX, for vcadd, vmcadd
	DOUBLE COMPLEX for vzadd, vmzadd
	Fortran 90: REAL, INTENT (OUT) for
	vsadd, vmsadd
	DOUBLE PRECISION, INTENT (OUT) for
	vdadd, vmdadd
	COMPLEX, INTENT (OUT) for vcadd,
	vmcadd
	DOUBLE COMPLEX, INTENT (out) for
	vzadd, vmzadd
	C: float* for vsAdd, vmsadd
	double* for vdAdd, vmdadd
	MKL_Complex8* for vcAdd, vmcadd
	MKL_Complex16* for vzAdd, vmzadd

Description

The v?Add function performs element by element addition of vector a and vector b.
Special values for Real Function v?Add(x)

Argument 1	Argument 2	Result	Exception
+0	+0	+0	
+0	-0	+0	
-0	+0	+0	
-0	-0	-0	INVALID
$+\infty$	$+\infty$	$+\infty$	INVALID
$+\infty$	$-\infty$	QNAN	
$-\infty$	$+\infty$	$-\infty$	INVALID
$-\infty$	$-\infty$	QNAN	INVALID
SNAN	any value	QNAN	
any value	SNAN	QNAN	

Argument 1	Argument 2	Result	Exception
non-SNAN	QNAN	QNAN	

Specifications for special values of the complex functions are defined according to the following formula

```
Add(x1+i*y1,x2+i*y2) = (x1+x2) + i*(y1+y2)
```

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when $\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2$ are finite numbers, but the real or imaginary part of the exact result is so large that it does not fit the target precision. In this case, the function returns ∞ in that part of the result, raises the OVERFLOW exception, and sets the VML Error Status to VML_STATUS_OVERFLOW.
v?Sub
Performs element by element subtraction of vector b
from vector a.

Syntax

Fortran:

```
call vssub( n, a, b, y )
call vmssub( }n,a,b,y,mode 
call vdsub( n, a, b, y )
call vmdsub( }n,a,b,y,mode 
call vcsub( }n,a,b,y
call vmcsub( }n,a,b,y,mode 
call vzsub( n, a, b, y )
call vmzsub( }n,a,b,y,mode 
C:
vsSub( n, a, b, y );
vmsSub( n, a, b, y, mode );
vdSub( n, a, b, y );
vmdSub ( n, a, b, y, mode );
vcSub( n, a, b, y );
vmcSub( n, a, b, y, mode );
vzSub ( n, a, b, y ) ;
vmzSub ( n, a, b, y, mode );
```


Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl vml functions.h

Input Parameters

Name	Type
n	FORTRAN 77: INTEGER
a, b	Fortran 90: INTEGER, INTENT (IN)
	C: const int
	FORTRAN 77: REAL for vssub,
	vmssub
	DOUBLE PRECISION for vdsub,
	vmdsub
	COMPLEX for vcsub, vmcsub
	DOUBLE COMPLEX for vzsub, vmzsub

Fortran 90: REAL, INTENT (IN) for vssub, vmssub
DOUBLE PRECISION, INTENT (IN) for vdsub, vmdsub
COMPLEX, INTENT (IN) for vcsub, vmcsub
DOUBLE COMPLEX, INTENT (IN) for vzsub, vmzsub
C: const float* for vssub, vmssub const double* for vdSub, vmdsub const MKL_Complex8* for vcSub, vmcsub
const MKL_Complex16* for vzSub, vmzsub
mode
FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vssub,
	vmssub
	DOUBLE PRECISION for vdsub,
	vmdsub
	COMPLEX for vcsub, vmcsub
	DOUBLE COMPLEX for vzsub, vmzsub

Fortran 90: REALINTENT (OUT) for vssub, vmssub

Description

Specifies the number of elements to be calculated.

FORTRAN: Arrays that specify the input vectors a and b.

C: Pointers to arrays that contain the input vectors a and b.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.
C: Pointer to an array that contains the output vector y.

Name Type Description

```
DOUBLE PRECISION, INTENT (OUT) for
vdsub, vmdsub
COMPLEX, INTENT (OUT) for vcsub,
vmcsub
DOUBLE COMPLEX, INTENT (OUT) for
vzsub, vmzsub
C: float* for vsSub, vmssub
double* for vdSub, vmdsub
MKL_Complex8* for vcSub, vmcsub
MKL_Complex16* for vzSub, vmzsub
```


Description

The v?Sub function performs element by element subtraction of vector b from vector a.
Special values for Real Function v?Sub(x)

Argument 1	Argument 2	Result	Exception
+0	+0	+0	
+0	-0	+0	
-0	+0	-0	
-0	-0	+0	INVALID
$+\infty$	$+\infty$	QNAN	
$+\infty$	$-\infty$	$+\infty$	INVALID
$-\infty$	$+\infty$	$-\infty$	INVALID
$-\infty$	$-\infty$	QNAN	INVALID
SNAN	any value	QNAN	
any value	SNAN	QNAN	
QNAN	non-SNAN	QNAN	
non-SNAN	QNAN		

Specifications for special values of the complex functions are defined according to the following formula
Sub (x1+i*y1,x2+i*y2) = (x1-x2) + i*(y1-y2).
Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when $x 1, x 2, y 1, y^{2}$ are finite numbers, but the real or imaginary part of the exact result is so large that it does not fit the target precision. In this case, the function returns ∞ in that part of the result, raises the OVERFLOW exception, and sets the VML Error Status to VML_STATUS_OVERFLOW.
v?Sqr
Performs element by element squaring of the vector.
Syntax

Fortran:

```
call vssqr( n, a, y )
call vmssqr( n, a, y, mode )
call vdsqr( n, a, y )
call vmdsqr( n, a, y, mode )
```

```
C:
vsSqr( n, a, y );
vmsSqr( n, a, y, mode );
vdSqr( n, a, y );
vmdSqr( n, a, y, mode );
```


Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type	Description		
n		FORTRAN 77: INTEGER	\quad	Specifies the number of elements to be calculated.
:---				

Output Parameters

Name	Type	Description
y	FORTRAN 77: REAL for vssqr,	FORTRAN: Array that specifies the output
vector y.		

Name \quad Type \quad| Fortran 90: REAL, INTENT (OUT) for |
| :--- |
| vssqr, vmssqr |
| DOUBLE PRECISION, INTENT (OUT) for |
| vdsqr, vmdsqr |
| C: float* for vsSqr, vmssqr |
| double* for vdSqr, vmdsqr |

Description

The v?Sqr function performs element by element squaring of the vector.
Special Values for Real Function v?Sqr(x)

Argument	Result	Exception
+0	+0	
-0	+0	
$+\infty$	$+\infty$	
$-\infty$	$+\infty$	INVALID
QNAN	QNAN	
SNAN	QNAN	

v?Mul
Performs element by element multiplication of vector a and vector b.

Syntax

Fortran:

```
call vsmul( n, a, b, y )
call vmsmul( n, a, b, y, mode )
call vdmul( n, a, b, y )
call vmdmul( n, a, b, y, mode )
call vcmul( n, a, b, y )
call vmcmul( n, a, b, y, mode )
call vzmul( n, a, b, y )
call vmzcmul( n, a, b, y, mode )
```

C:
vsMul($n, a, b, y)$;
vmsMul($n, a, b, y, m o d e ~) ;$
vdMul($n, a, b, y)$;
vmdMul (n, a, b, y, mode $)$;
vcMul($n, a, b, y)$;
vmcMul($n, a, b, y, m o d e)$;
vzMul($n, a, b, y)$;

```
vmzMul( n, a, b, y, mode );
```


Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name Type
 n

mode
FORTRAN 77: REAL for vsmul, vmsmul

DOUBLE PRECISION for vdmul, vmdmul

COMPLEX for vcmul, vmemul
DOUBLE COMPLEX for vzmul, vmzmul
Fortran 90: REAL, INTENT (IN) for vsmul, vmsmul

DOUBLE PRECISION, INTENT (IN) for vdmul, vmdmul

COMPLEX, INTENT (IN) for vcmul, vmcmul

DOUBLE COMPLEX, INTENT (IN) for vzmul, vmzmul

C: const float* for vsMul, vmsmul const double* for vdMul, vmdmul const MKL_Complex8* for vcMul, vmcMul
const MKL_Complex16* for vzMul, vmzMul

FORTRAN 77: INTEGER*8

Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vsmul,

Description

Specifies the number of elements to be calculated.

FORTRAN: Arrays that specify the input vectors a and b.

C: Pointers to arrays that contain the input vectors a and b.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.

| Type | Description |
| :--- | :--- | :--- |
| DOUBLE PRECISION for vamul, | C: Pointer to an array that contains the output |
| vmdmul | |
| COMPLEX, for vcmul, vmcmul y. | |

Description

The v?Mul function performs element by element multiplication of vector a and vector b.
Special values for Real Function v?Mul(x)

Argument 1	Argument 2	Result	Exception
+0	+0	+0	
+0	-0	-0	
-0	+0	-0	
-0	-0	+0	INVALID
+0	$+\infty$	QNAN	INVALID
+0	$-\infty$	QNAN	INVALID
-0	$+\infty$	QNAN	INVALID
-0	$-\infty$	QNAN	INVALID
$+\infty$	+0	QNAN	
$+\infty$	-0	QNAN	INVALID
$-\infty$	+0	$-\infty$	
$-\infty$	-0	$-\infty$	
$+\infty$	$+\infty$	$-\infty$	QNAN
$+\infty$	$-\infty$	$+\infty$	INVALID
$-\infty$	$+\infty$	QNAN	
$-\infty$	$-\infty$	QNAN	
SNAN	any value	QNAN	
any value	Qon-SNAN	QNAN	
QNAN	non-SNAN		

Specifications for special values of the complex functions are defined according to the following formula
Mul (x1+i*y1,x2+i*y2) = (x1*x2-y1*y2) + i*(x1*y2+y1*x2).

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when $\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2$ are finite numbers, but the real or imaginary part of the exact result is so large that it does not fit the target precision. In this case, the function returns ∞ in that part of the result, raises the OVERFLOW exception, and sets the VML Error Status to VML_STATUS_OVERFLOW.

v?MulByConj

Performs element by element multiplication of vector a element and conjugated vector belement.

Syntax

Fortran:

```
call vcmulbyconj( n, a, b, y )
call vmcmulbyconj( n, a, b, y, mode )
call vzmulbyconj( n, a, b, y )
call vmzmulbyconj( n, a, b, y, mode )
```

C:
vcMulByConj ($n, a, b, y)$;
vmcMulByConj (n, a, b, y, mode);
vzMulByConj($n, ~ a, b, y)$;
vmzMulByConj($n, a, b, y, m o d e) ;$

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
n	FORTRAN 77: INTEGER
a, b	Fortran 90: INTEGER, INTENT (IN)
	C: const int
	FORTRAN 77: COMPLEX for
	vomulbyconj, vmcmulbyconj
	vmzmulbyconj
	Fortran 90: COMPLEX, INTENT (IN)
	for vcmulbyconj, vmcmulbyconj
	DOUBLE COMPLEX, INTENT (IN) for
	vzmulbyconj, vmzmulbyconj
	C: const MKL_Complex8* for
	vcMulByConj, vmcMulByConj

Description

Specifies the number of elements to be calculated.

FORTRAN: Arrays that specify the input vectors a and b.

C: Pointers to arrays that contain the input vectors a and b.

Name | Type | |
| :--- | :--- |
| | const MKL_Complex16* for |
| | vzMulByConj, vmzMulByConj |

mode
FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8),
INTENT (IN)
C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: COMPLEX for vcmulbyconj, vmcmulbyconj
	DOUBLE COMPLEX for vzmulbyconj, vmzmulbyconj
	Fortran 90: COMPLEX, INTENT (OUT) for vcmulbyconj, vmemulbyconj
	DOUBLE COMPLEX, INTENT (OUT) for vzmulbyconj, vmzmulbyconj
	C: MKL_Complex8* for vcMulByConj, vmcMulByConj
	MKL_Complex16* for vzMulByConj, vmzMulByConj

Description

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Description

The v?MulByConj function performs element by element multiplication of vector a element and conjugated vector b element.
Specifications for special values of the functions are found according to the formula

```
MulByConj(x1+i*y1,x2+i*y2) = Mul(x1+i*y1,x2-i*y2).
```

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when $x 1, x 2, y 1, y 2$ are finite numbers, but the real or imaginary part of the exact result is so large that it does not fit the target precision. In this case, the function returns ∞ in that part of the result, raises the OVERFLOW exception, and sets the VML Error Status to VML_STATUS_OVERFLOW.

```
v?Conj
Performs element by element conjugation of the
vector.
```

Syntax

Fortran:

```
call vcconj( n, a, y )
call vmcconj( n, a, y, mode )
call vzconj( n, a, y )
call vmzconj( n, a, y, mode )
```

```
C:
vcConj( n, a, y );
vmcConj( n, a, y, mode );
vzConj( n, a, y );
vmzConj( n, a, y, mode );
```


Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
n	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN)

C: const int
a
mode
FORTRAN 77: INTEGER*8
Fortran 90: INTEGER(KIND=8), INTENT (IN)

C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: COMPLEX, for vcconj,
vmcconj	
	DOUBLE COMPLEX for vzconj,
	vmzconj
	Fortran 90: COMPLEX, INTENT (OUT)
	for vcconj, vmcconj

Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Name \quad Type \quad| DOUBLE COMPLEX, INTENT (OUT) for |
| :--- |
| vzConj, vmzconj |
| |
| C: MKL_Complex8* for vcConj, |
| vmcconj |
| |
| $M K L \_C o m p l e x 16 * ~ f o r ~ v z C o n j, ~$ |
| |
| vmzconj | Description

Description

The v ?Conj function performs element by element conjugation of the vector.
No special values are specified. The function does not raise floating-point exceptions.
v?Abs
Computes absolute value of vector elements.
Syntax

Fortran:

```
call vsabs( n, a, y )
call vmsabs( n, a, y, mode )
call vdabs( n, a, y )
call vmdabs( n, a, y, mode )
call vcabs( n, a, y )
call vmcabs( n, a, y, mode )
call vzabs( n, a, y )
call vmzabs( n, a, y, mode )
```

C:
vsAbs ($n, ~ a, ~ y)$;
vmsAbs ($n, ~ a, ~ y, ~ m o d e ~) ; ~$
vdAbs ($n, a, y)$;
vmdAbs ($n, ~ a, ~ y, ~ m o d e ~) ; ~$
vcAbs ($n, a, y)$;
vmcAbs ($n, a, y, m o d e)$;
vzAbs ($n, a, y)$;
vmzAbs ($n, ~ a, ~ y, ~ m o d e ~) ; ~$

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name
 n
 Type
 FORTRAN 77: INTEGER
 Fortran 90: INTEGER, INTENT (IN)

a
mode
C: const int

FORTRAN 77: REAL for vsabs, vmsabs

DOUBLE PRECISION for vdabs, vmdabs

COMPLEX for vcabs, vmcabs
DOUBLE COMPLEX for vzabs, vmzabs
Fortran 90: REAL, INTENT (IN) for vsabs, vmsabs

DOUBLE PRECISION, INTENT (IN) for vdabs, vmdabs

COMPLEX, INTENT (IN) for vcabs, vmcabs

DOUBLE COMPLEX, INTENT (IN) for vzabs, vmzabs

C: const float* for vsabs, vmsabs const double* for vdabs, vmdabs const MKL_Complex8* for vcAbs, vmcAbs
const MKL_Complex16* for vzAbs, vmzAbs

FORTRAN 77: INTEGER*8

Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vsabs,
	vmsabs, vcabs, vmcabs
	DOUBLE PRECISION for vdabs,
	vmdabs, vzabs, vmzabs
	Fortran 90: REAL, INTENT (OUT) for
	vsabs, vmsabs, vcabs, vmcabs
	DOUBLE PRECISION, INTENT (OUT) for
	vdabs, vmdabs, vzabs, vmzabs

Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlSetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Name	Type
	C: float* for vsabs, vmsabs, vcAbs,
	vmcAbs
	double* for vdabs, vmdabs, vzAbs,
	vmzAbs

Description

The v ?Abs function computes an absolute value of vector elements.

Special Values for Real Function v?Abs(x)

Argument	Result	Exception
+0	+0	
-0	+0	
$+\infty$	$+\infty$	
$-\infty$	$+\infty$	INVALID
QNAN	QNAN	
SNAN	QNAN	

Specifications for special values of the complex functions are defined according to the following formula

```
Abs(z) = Hypot(RE(z),IM(z)).
```

v?Arg
Computes argument of vector elements.

Syntax

Fortran:

```
call vcarg( n, a, y )
call vmcarg( n, a, y, mode )
call vzarg( n, a, y )
call vmzarg( n, a, y, mode )
```

C:
$\operatorname{vcArg}(n, a, y)$;
vmcArg (n, a, y, mode $)$;
$\operatorname{vzArg}(n, a, y) ;$
$\operatorname{vmzArg}(n, a, y, m o d e) ;$
Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name Type
 Description

n
a
mode

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: const int

FORTRAN77: COMPLEX for vcarg, vmcarg

DOUBLE COMPLEX for vzarg, vmzarg
Fortran 90: COMPLEX, INTENT (IN)
for vcarg, vmcarg DOUBLE COMPLEX, INTENT (IN) for vzarg, vmzarg

C: const MKL_Complex8* for vcArg, vmcArg
const MKL_Complex16* for vzArg, vmcArg

FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vcarg,
vmcarg	
	DOUBLE PRECISION for vzarg,
	vmzarg
	Fortran 90: REAL, INTENT (OUT) for
	vcarg, vmcarg
	DOUBLE PRECISION, INTENT (OUT) for
	vzarg, vmzarg
	C: float* for vcArg, vmcArg
	double* for vzArg, vmcArg

Name
y
double* for vzArg, vmcArg

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Description

The v?Arg function computes argument of vector elements.
See the Special Value Notations section for the conventions used in the table below.

Special Values for Complex Function v?Arg(z)

$\begin{aligned} & \text { RE(z) } \\ & \text { i•IM(z } \\ & \text {) } \end{aligned}$	-	-X	-0	+0	+X	$+\infty$	NAN
$+\mathrm{i} \cdot \infty$	$+3 \cdot \pi / 4$	$+\pi / 2$	$+\pi / 2$	$+\pi / 2$	$+\pi / 2$	$+\pi / 4$	NAN
$+\mathrm{i} \cdot \mathrm{Y}$	$+\pi$		$+\pi / 2$	$+\pi / 2$		+0	NAN
+i.0	$+\pi$	$+\pi$	$+\pi$	+0	+0	+0	NAN
-i.0	$-\pi$	$-\pi$	$-\pi$	-0	-0	-0	NAN
-i.Y	$-\pi$		$-\pi / 2$	$-\pi / 2$		-0	NAN
-i $\cdot \infty$	$-3 \cdot \pi / 4$	$-\pi / 2$	$-\pi / 2$	$-\pi / 2$	$-\pi / 2$	$-\pi / 4$	NAN
$+\mathrm{i} \cdot \mathrm{NAN}$	NAN						

Notes:

- raises INVALID exception when real or imaginary part of the argument is SNAN
- $\operatorname{Arg}(z)=\operatorname{Atan} 2(\operatorname{IM}(z), R E(z))$.

v?LinearFrac

Performs linear fraction transformation of vectors a and b with scalar parameters.

Syntax

Fortran:

```
call vslinearfrac( n, a, b, scalea, shifta, scaleb, shiftb, y )
call vmslinearfrac( n, a, b, scalea, shifta, scaleb, shiftb, y, mode )
call vdlinearfrac( n, a, b, scalea, shifta, scaleb, shiftb, y )
call vmdlinearfrac( n, a, b, scalea, shifta, scaleb, shiftb, y, mode )
```

C:

```
vsLinearFrac( n, a, b, scalea, shifta, scaleb, shiftb, y );
```

vmsLinearFrac ($n, ~ a, ~ b, ~ s c a l e a, ~ s h i f t a, ~ s c a l e b, ~ s h i f t b, ~ y, ~ m o d e ~) ; ~$
vdLinearFrac (n, a, b, scalea, shifta, scaleb, shiftb, y)
vmdLinearFrac ($n, ~ a, ~ b, ~ s c a l e a, ~ s h i f t a, ~ s c a l e b, ~ s h i f t b, ~ y, ~ m o d e ~) ; ~$

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type	Description
n	FORTRAN 77: INTEGER	Specifies the number of elements to be calculated.
	Fortran 90: INTEGER, INTENT (IN)	

C: const int

Name	Type	Description
a, b	FORTRAN 77: REAL for vslinearfrac	FORTRAN: Arrays that specify the input vectors a and b.
	DOUBLE PRECISION for vdlinearfrac Fortran 90: REAL, INTENT (IN) for vslinearfrac	C: Pointers to arrays that contain the input vectors a and b.
	DOUBLE PRECISION, INTENT (IN) for vdlinearfrac	
	C: const float* for vsLinearFrac const double* for vdLinearFrac	
scalea, scaleb	FORTRAN 77: REAL for vslinearfrac	Constant values for shifting addends of vectors a and b.
	DOUBLE PRECISION for vdlinearfrac	
	Fortran 90: REAL, INTENT (IN) for vslinearfrac	
	DOUBLE PRECISION, INTENT (IN) for vdlinearfrac	
	C: const float* for vsLinearFrac	
	const double* for vdLinearFrac	
shifta, shiftb	FORTRAN 77: REAL for vslinearfrac	Constant values for scaling multipliers of vectors a and b.
	DOUBLE PRECISION for vdlinearfrac	
	Fortran 90: REAL, INTENT (IN) for vslinearfrac	
	DOUBLE PRECISION, INTENT(IN) for vdlinearfrac	
	C: const float* for vsLinearFrac	
	const double* for vdLinearFrac	
mode	FORTRAN 77: INTEGER*8	Overrides global VML mode setting for this
	Fortran 90: INTEGER (KIND=8), INTENT (TN)	function call. See vmlSetMode for possible values and their description.
	C: const MKL_INT64	
Output Parameters		
Name	Type	Description
Y	FORTRAN 77: REAL for vslinearfrac	FORTRAN: Array that specifies the output vector y.
	DOUBLE PRECISION for vdlinearfrac Fortran 90: REAL, INTENT (OUT) for vslinearfrac	C: Pointer to an array that contains the output vector y.

Name	Type
DOUBLE PRECISION, INTENT (OUT) for	
vdlinearfrac	
C: float* for vsLinearFrac	
double* for vdLinearFrac	

Description

The v?LinearFrac function performs linear fraction transformation of vectors a by vector b with scalar parameters: scaling multipliers scalea, scaleb and shifting addends shifta, shiftb:
$y[i]=(s c a l e a \cdot a[i]+s h i f t a) /(s c a l e b \cdot b[i]+s h i f t b), i=1,2 \ldots n$
The v?LinearFrac function is implemented in the EP accuracy mode only, therefore no special values are defined for this function. Correctness is guaranteed within the threshold limitations defined for each input parameter (see the table below); otherwise, the behavior is unspecified.

```
Threshold Limitations on Input Parameters
\(2^{\mathrm{E}_{\text {min }} / 2} \leq \mid\) scalea \(\mid \leq 2^{\left(\mathrm{E}_{\text {max }}-2\right) / 2}\)
\(2^{\mathrm{E}_{\text {MIN }} / 2} \leq \mid\) scaleb \(\mid \leq 2^{\left(\mathrm{E}_{\text {MAX }}-2\right) / 2}\)
\(\mid\) shifta| \(\leq 2^{\mathrm{E}_{\text {max }}-2}\)
\(\mid\) shiftb| \(\leq 2^{\mathrm{E}_{\text {MAX }}-2}\)
\(2^{\mathrm{E}_{\text {MIN }} / 2} \leq a[i] \leq 2^{\left(\mathrm{E}_{\text {MAX }}-2\right) / 2}\)
\(2^{\mathrm{E}_{\text {min }} / 2} \leq b[i] \leq 2^{\left(\mathrm{E}_{\text {MAX }}-2\right) / 2}\)
\(a[i] \neq-(\) shifta/scalea \() *\left(1-\delta_{1}\right),\left|\delta_{1}\right| \leq 2^{1-(p-1) / 2}\)
\(b[i] \neq-(\) shiftb/scaleb \() *\left(1-\delta_{2}\right),\left|\delta_{2}\right| \leq 2^{1-(p-1) / 2}\)
```

$\mathrm{E}_{\text {MIN }}$ and $\mathrm{E}_{\text {MAX }}$ are the maximum and minimum exponents and p is the number of significant bits (precision) for corresponding data type according to the ANSI/IEEE Std 754-2008 standard ([IEEE754]):

- for single precision $\mathrm{E}_{\mathrm{MIN}}=-126, \mathrm{E}_{\mathrm{MAX}}=127, p=24$
- for double precision $\mathrm{E}_{\text {MIN }}=-1022, \mathrm{E}_{\text {MAX }}=1023, p=53$

The thresholds become less strict for common cases with scalea=0 and/or scaleb=0:

- if scalea=0, there are no limitations for the values of a[i] and shifta
- if scaleb=0, there are no limitations for the values of b [i] and shiftb

Power and Root functions

v? Inv
Performs element by element inversion of the vector.
Syntax

Fortran:

```
call vsinv( n, a, y )
call vmsinv( n, a, y, mode )
call vdinv( n, a, y )
```

```
call vmdinv( n, a, y, mode )
```

C:

```
vSInv( n, a, y );
vmsInv( n, a, y, mode );
vdInv( n, a, y );
vmdInv( n, a, y, mode );
```

Include files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name Type

n
a
mode vmsinv vmdinv vms Inv vmdInv

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: REAL for vsinv,

DOUBLE PRECISION for vdinv,

Fortran 90: REAL, INTENT (IN) for vsinv, vmsinv DOUBLE PRECISION, INTENT (IN) for vdinv, vmdinv

C: const float* for vsInv,
const double* for vdInv,

FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

Description

Specifies the number of elements to be calculated.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vsinv,
	vmsinv
	DOUBLE PRECISION for vdinv,
	vmdinv

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Name	Type	Description
	Fortran 90: REAL, INTENT (OUT) for	

```
vsinv, vmsinv
DOUBLE PRECISION, INTENT (OUT) for
vdinv, vmdinv
C: float* for vsInv, vmsInv
double* for vdInv, vmdInv
```


Description

The v? Inv function performs element by element inversion of the vector.
Special Values for Real Function v?Inv(x)

Argument	Result	VML Error Status	Exception
+0	$+\infty$	VML_STATUS_SING	ZERODIVIDE
-0	$-\infty$	VML_STATUS_SING	ZERODIVIDE
$+\infty$	+0		
$-\infty$	-0		INVALID
QNAN	QNAN		
SNAN	QNAN		

v?Div
Performs element by element division of vector a by vector b

Syntax

Fortran:

```
call vsdiv( n, a, b, y )
call vmsdiv( n, a, b, y, mode )
call vddiv( n, a, b, y )
call vmddiv( n, a, b, y, mode )
call vcdiv( n, a, b, y )
call vmcdiv( n, a, b, y, mode )
call vzdiv( n, a, b, y )
call vmzdiv( n, a, b, y, mode )
```

C:
vsDiv($n, a, b, y)$;
vmsDiv(n, a, b, y, mode $)$;
vdDiv($n, a, b, y)$;
vmdDiv(n, a, b, y, mode $) ;$
$\operatorname{vcDiv}(n, a, b, y)$;
vmcDiv ($n, a, b, y, m o d e) ;$
vzDiv($n, a, b, y)$;

```
vmzDiv( n, a, b, y, mode );
```


Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl vml functions.h

Input Parameters

Name Type
 n

mode

FORTRAN 77: REAL for vsdiv, vmsdiv

DOUBLE PRECISION for vddiv, vmddiv

COMPLEX for vcdiv, vmcdiv
DOUBLE COMPLEX for vzdiv, vmzdiv
Fortran 90: REAL, INTENT (IN) for vsdiv, vmsdiv

DOUBLE PRECISION, INTENT (IN) for vddiv, vmddiv

COMPLEX, INTENT (IN) for vcdiv, vmcdiv

DOUBLE COMPLEX, INTENT (IN) for vzdiv, vmzdiv

C: const float* for vsDiv, vmsDiv const double* for vdDiv, vmdDiv const MKL_Complex8* for vcDiv, vmcDiv
const MKL_Complex16* for vzDiv, vmzDiv

FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

Description

Specifies the number of elements to be calculated.

FORTRAN: Arrays that specify the input vectors a and b.

C: Pointers to arrays that contain the input vectors a and b.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Precision Overflow Thresholds for Real v?Div Function

Data Type	Threshold Limitations on Input Parameters
single precision	$\mathrm{abs}(a[i])<a b s(b[i])$
double precision	$\mathrm{abs}(a[i])<\mathrm{abs}(b[i])$ * DBL_MAX

Precision overflow thresholds for the complex v?Div function are beyond the scope of this document.

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vsdiv,
vmsdiv	
	DOUBLE PRECISION for vddiv,
	vmddiv
	COMPLEX for vcdiv, vmcdiv
	DOUBLE COMPLEX for vzdiv, vmzdiv
	Fortran 90: REAL, INTENT (OUT) for
	vsdiv, vmsdiv
	DOUBLE PRECISION, INTENT (OUT) for
	vddiv, vmddiv
	COMPLEX, INTENT (OUT) for vcdiv,
	vmcdiv
	DOUBLE COMPLEX, INTENT (OUT) for
	vzdiv, vmzdiv
	C: float* for vsDiv, vmsDiv
	double* for vdDiv, vmdDiv

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Description

The v? Div function performs element by element division of vector a by vector b.
Special values for Real Function v?Div(x)

Argument 1	Argument 2	Result	VML Error Status	Exception
$X>+0$	+0	$+\infty$	VML_STATUS_SING	ZERODIVIDE
$X>+0$	-0	$-\infty$	VML_STATUS_SING	ZERODIVIDE
$X<+0$	+0	$-\infty$	VML_STATUS_SING	ZERODIVIDE
$X<+0$	-0	$+\infty$	VML_STATUS_SING	ZERODIVIDE
+0	+0	QNAN	VML_STATUS_SING	
-0	-0	QNAN		
$X>+0$	$+\infty$	+0		
$X>+0$	$-\infty$	-0		
$+\infty$	$+\infty$	QNAN		
$-\infty$	$-\infty$	QNAN		
QNAN	QNAN	QNAN		
SNAN	SNAN			

Specifications for special values of the complex functions are defined according to the following formula
$\left.\operatorname{Div}\left(x 1+i^{\star} y 1, x 2+i^{*} y 2\right)=\left(x 1+i^{*} y 1\right) *\left(x 2-i^{*} y 2\right) /(x)^{\star} x 2+y 2 * y 2\right)$.
Overflow in a complex function occurs when $x 2+i * y 2$ is not zero, $x 1, x 2, y 1, y^{2}$ are finite numbers, but the real or imaginary part of the exact result is so large that it does not fit the target precision. In that case, the function returns ∞ in that part of the result, raises the OVERFLOW exception, and sets the VML Error Status to VML_STATUS_OVERFLOW.
v?Sqrt
Computes a square root of vector elements.

Syntax

fortran:

```
call vssqrt( n, a, y )
call vmssqrt( n, a, y, mode )
call vdsqrt( n, a, y )
call vmdsqrt( n, a, y, mode )
call vcsqrt( n, a, y )
call vmcsqrt( n, a, y, mode )
call vzsqrt( n, a, y )
call vmzsqrt( n, a, y, mode )
```

C:
vsSqrt ($n, a, y)$;
vmsSqrt (n, a, y, mode $)$;
vdSqrt ($n, a, y)$;
vmdSqrt (n, a, y, mode $)$;
vcSqrt ($n, a, y)$;
vmcSqrt (n, a, y, mode $)$;
vzSqrt ($n, a, y)$;
vmzSqrt ($n, a, y, m o d e) ;$
Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name n

Type

FORTRAN 77: INTEGER

Fortran 90: INTEGER, INTENT (IN)

C: const int
a
FORTRAN 77: REAL for vssqrt, vmssqrt

DOUBLE PRECISION for vdsqrt, vmdsqrt

COMPLEX for vcsqrt, vmcsqrt

Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Name Type Description

```
```

MKL_Complex8* for vcSqrt, vmcSqrt

```
```

MKL_Complex8* for vcSqrt, vmcSqrt
MKL_Complex16* for vzSqrt,
MKL_Complex16* for vzSqrt,
vmzSqrt

```
```

vmzSqrt

```
```


Description

The v?Sqret function computes a square root of vector elements.
Special Values for Real Function v?Sqrt(x)

Argument	Result	VML Error Status	Exception
$\mathrm{X}<+0$	QNAN	VML_STATUS_ERRDOM	INVALID
+0	+0		
-0	-0		
$-\infty$	QNAN		
$+\infty$	$+\infty$		INVALID
QNAN	QNAN		
SNAN	QNAN		

See the Special Value Notations section for the conventions used in the table below.
Special Values for Complex Function v?Sqrt(z)

$\begin{gathered} \text { RE(z) } \\ \text { i•IM(z } \\ \text {) } \end{gathered}$	$-\infty$	-X	-0	+0	+X	$+\infty$	NAN
$+i \cdot \infty$	$+\infty+i \cdot \infty$	$+\infty+\mathrm{i} \cdot \infty$	$+\infty+i \cdot \infty$	$+\infty+i \cdot \infty$	$+\infty+\mathrm{i} \cdot \infty$	$+\infty+i \cdot \infty$	$+\infty+i \cdot \infty$
$+\mathrm{i} \cdot \mathrm{Y}$	$+0+i \cdot \infty$					$+\infty+\mathrm{i} \cdot 0$	QNAN+i•QNAN
+i•0	$+0+i \cdot \infty$		$+0+\mathrm{i} \cdot 0$	$+0+i \cdot 0$		$+\infty+\mathrm{i} \cdot 0$	QNAN+i•QNAN
-i.0	$+0-\mathrm{i} \cdot \infty$		+0-i 0	+0-i $\cdot 0$		$+\infty-\mathrm{i} \cdot 0$	QNAN+i•QNAN
$-i \cdot Y$	$+0-\mathrm{i} \cdot \infty$					$+\infty-\mathrm{i} \cdot 0$	QNAN+i•QNAN
$-i \cdot \infty$	$+\infty-\mathrm{i} \cdot \infty$	$+\infty-\mathrm{i} \cdot \infty$	$+\infty-\mathrm{i} \cdot \infty$	$+\infty-\mathrm{i} \cdot \infty$	$+\infty$-i $\cdot \infty$	$+\infty-\mathrm{i} \cdot \infty$	$+\infty-\mathrm{i} \cdot \infty$
$+\mathrm{i} \cdot \mathrm{NAN}$	QNAN+i•QNAN	QNAN+i•QNAN	QNAN+i•QNAN	QNAN+i•QNAN	QNAN+i•QNAN	$+\infty+\mathrm{i} \cdot$ QNAN	QNAN+i•QNAN

Notes:

- raises INVALID exception when the real or imaginary part of the argument is SNAN
- $\operatorname{Sqrt}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Sqrt}(z))$.

v?InvSqrt

Computes an inverse square root of vector elements.

Syntax

Fortran:

```
call vsinvsqrt( n, a, y )
call vmsinvsqrt( n, a, y, mode )
call vdinvsqrt( n, a, y )
call vmdinvsqrt( n, a, y, mode )
```

```
C:
vsInvSqrt( n, a, y );
vmsInvSqrt( n, a, y, mode );
vdInvSqrt( n, a, y );
vmdInvSqrt( n, a, y, mode );
```

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
n	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN)

C: const int
a
mode
FORTRAN 77: REAL for vsinvsqrt, vmsinvsqrt

DOUBLE PRECISION for vdinvsqrt, vmdinvsqrt

Fortran 90: REAL, INTENT (IN) for vsinvsqrt, vmsinvsqrt

DOUBLE PRECISION, INTENT (IN) for vdinvsqrt, vmdinvsqrt

C: const float* for vsInvSqrt, vmsInvSqrt
const double* for vdInvSqrt, vmdInvSqrt

FORTRAN 77: INTEGER*8

Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vsinvsqrt,
	vmsinvsqrt
	DOUBLE PRECISION for vdinvsqrt,
	vmdinvsqrt

Fortran 90: REAL, INTENT (OUT) for vsinvsqrt, vmsinvsqrt

Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Name	Type
DOUBLE PRECISION, INTENT (OUT) for	
vdinvsqrt, vmdinvsqrt	
C: float* for vsInvSqrt,	
	vmsInvSqrt
	double* for vdInvSqrt, vmdInvSqrt

Description

The v? InvSqrt function computes an inverse square root of vector elements.

Special Values for Real Function v?InvSqrt(x)

Argument	Result	VML Error Status	Exception
$X<+0$	QNAN	VML_STATUS_ERRDOM	INVALID
+0	$+\infty$	VML_STATUS_SING	ZERODIVIDE
-0	$-\infty$	VML_STATUS_SING	ZERODIVIDE
$-\infty$	QNAN	VML_STATUS_ERRDOM	INVALID
$+\infty$	+0		
QNAN	QNAN		INVALID
SNAN	QNAN		

v?Cbrt
Computes a cube root of vector elements.

Syntax

Fortran:

```
call vscbrt( n, a, y )
call vmscbrt( n, a, y, mode )
call vdcbrt( n, a, y )
call vmdcbrt( n, a, y, mode )
```

C:

```
vsCbrt( n, a, y );
```

vmsCbrt (n, a, y, mode $)$;
vdCbrt ($n, a, y)$;
vmdCbrt (n, a, y, mode $)$;

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name Type Description
n
a
mode

Type

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: const int

FORTRAN 77: REAL for vscbrt, vmscbrt

DOUBLE PRECISION for vdcbrt, vmdcbrt

Fortran 90: REAL, INTENT (IN) for vscbrt, vmscbrt DOUBLE PRECISION, INTENT (IN) for vdcbrt, vmdcbrt

C: const float* for vsCbrt, vmsCbrt
const double* for vdCbrt, vmdCbrt
FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vscbrt,
	vmscbrt
	DOUBLE PRECISION for vdcbrt,
	vmdcbrt
	Fortran 90: REAL, INTENT (OUT) for
	vscbrt, vmscbrt
	DOUBLE PRECISION, INTENT (OUT) for
	vdcbrt, vmdcbrt
	C: float* for vsCbrt, vmsCbrt
	double* for vdCbrt, vmdCbrt

Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlSetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Description

The v?Cbrt function computes a cube root of vector elements.
Special Values for Real Function v?Cbrt(x)

Argument	Result	Exception
+0	+0	
-0	-0	
$+\infty$	$+\infty$	

Argument	Result	Exception
$-\infty$	$-\infty$	
QNAN	QNAN	
SNAN	QNAN	INVALID

v? InvCbrt

Computes an inverse cube root of vector elements.

Syntax

fortran:

```
call vsinvcbrt( n, a, y )
call vmsinvcbrt( n, a, y, mode )
call vdinvcbrt( n, a, y )
call vmdinvcbrt( n, a, y, mode )
```

C:

```
vsInvCbrt( n, a, y );
```

vmsInvCbrt ($n, a, y, m o d e)$;
vdInvCbrt($n, a, y)$;
vmdInvCbrt ($n, a, y, m o d e)$;

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name
 n
 a
 Type
 FORTRAN 77: INTEGER
 Fortran 90: INTEGER, INTENT (IN)
 C: const int
 FORTRAN 77: REAL for vsinvcbrt, vmsinvcbrt
 DOUBLE PRECISION for vdinvcbrt, vmdinvcbrt

Fortran 90: REAL, INTENT (IN) for vsinvcbrt, vmsinvcbrt
DOUBLE PRECISION, INTENT (IN) for vdinvcbrt, vmdinvcbrt
C: const float* for vsInvCbrt, vms InvCbrt

Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Name \quad Type | const double* for vdInvCbrt, |
| :--- |
| vmdInvCbrt |

FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)
C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vsinvcbrt,
	vmsinvcbrt
	DOUBLE PRECISION for vdinvcbrt,
	vmdinvcbrt
	Fortran 90: REAL, INTENT (OUT) for
	vsinvcbrt, vmsinvcbrt
	DOUBLE PRECISION, INTENT (OUT) for
	vdinvcbrt, vmdinvcbrt
	C: float* for vsInvCbrt,
	vmsInvCbrt
	double* for vdInvCbrt, vmdInvCbrt

Description

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Description

The v? InvCbrt function computes an inverse cube root of vector elements.
Special Values for Real Function v?InvCbrt(x)

Argument	Result	VML Error Status	Exception
+0	$+\infty$	VML_STATUS_SING	ZERODIVIDE
-0	$-\infty$	VML_STATUS_SING	ZERODIVIDE
$+\infty$	+0		
$-\infty$	-0		INVALID
QNAN	QNAN		
SNAN	QNAN		

v?Pow2o3

Raises each element of a vector to the constant power 2/3.

Syntax

Fortran:

```
call vspow2o3( n, a, y )
call vmspow2o3( n, a, y, mode )
call vdpow2o3( n, a, y )
call vmdpow2o3( n, a, y, mode )
```

```
C:
vsPow2o3( n, a, y );
vmsPow2o3( n, a, y, mode );
vdPow2o3( n, a, y );
vmdPow2o3( n, a, y, mode );
```


Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
n	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN)

C: const int
a
mode
FORTRAN 77: REAL for vspow2o3, vmspow2o3

DOUBLE PRECISION for vdpow2o3, vmdpow2o3

Fortran 90: REAL, INTENT (IN) for vspow2o3, vmspow2o3

DOUBLE PRECISION, INTENT (IN) for vdpow2o3, vmdpow2o3

C: const float* for vsPow2o3, vmsPow2o3
const double* for vdPow2o3, vmdPow2o3

FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vspow203,
	vmspow203
	DOUBLE PRECISION for vdpow203,
	vmdpow203

Fortran 90: REAL, INTENT (OUT) for vspow2o3, vmspow2o3

Description

Specifies the number of elements to be calculated.

FORTRAN: Arrays, specify the input vector a.
C: Pointers to arrays that contain the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array, specifies the output vector y.
C: Pointer to an array that contains the output vector y.

Name	Type
DOUBLE PRECISION, INTENT (OUT) for	
vdpow2o3, vmdpow2o3	
C: float* for vsPow203, vmsPow203	
	double* for vdPow203, vmdPow203

Description

The v? Pow203 function raises each element of a vector to the constant power 2/3.
Special Values for Real Function v?Pow2o3(x)

Argument	Result	Exception
+0	+0	
-0	+0	
$+\infty$	$+\infty$	
$-\infty$	$+\infty$	INVALID
QNAN	QNAN	
SNAN	QNAN	

v?Pow3o2
Raises each element of a vector to the constant power 3/2.

Syntax

Fortran:

```
call vspow3o2( n, a, y )
call vmspow3o2( n, a, y, mode )
call vdpow3o2( n, a, y )
call vmdpow3o2( n, a, y, mode )
```

C:
vsPow3o2 (n, a, y);
vmsPow3o2 (n, a, y, mode);
vdPow3o2 (n, a, y);
vmdPow3o2(n, a, y, mode $)$;
Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
n	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN)

Description

Specifies the number of elements to be calculated.

Name	Type	Description
	C: const int	
a	FORTRAN 77: REAL for vspow3o2, vmspow3o2 DOUBLE PRECISION for vdpow3o2, vmdpow3o2	FORTRAN: Arrays, specify the input vector a. C: Pointers to arrays that contain the input vector a.
	Fortran 90: REAL, INTENT (IN) for vspow3o2, vmspow3o2	
	DOUBLE PRECISION, INTENT (IN) for vdpow3o2, vmdpow3o2	
	C: const float* for vsPow3o2, vmsPow3o2	
	const double* for vdPow3o2, vmdPow3o2	
mode	FORTRAN 77: INTEGER*8	Overrides global VML mode setting for this
	Fortran 90: INTEGER (KIND=8), INTENT (IN)	values and their description.
	C: const MKL_INT64	
Precision Overflow Thresholds for Pow3o2 Function		
Data Type	Threshold Limitation	on Input Parameters
single precision	abs (a[i]) < (FLT	MAX) ${ }^{2 / 3}$
double precision	abs $(a[i])<($ DBL	MAX) ${ }^{2 / 3}$

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vspow3o2,
	vmspow3o2
	DOUBLE PRECISION for vdpow3o2,
	vmdpow3o2
	Fortran 90: REAL, INTENT (OUT) for
	vspow3o2, vmspow3o2
	DOUBLE PRECISION, INTENT (OUT) for
	vdpow3o2, vmdpow3o2
	C: float* for vsPow3o2, vmsPow3o2
	double* for vdPow3o2, vmdPow3o2

Description

The v? Pow 302 function raises each element of a vector to the constant power 3/2.
Special Values for Real Function v?Pow3o2(x)

Argument	Result	VML Error Status	Exception
$X<+0$	QNAN	VML_STATUS_ERRDOM	INVALID

Argument	Result	VML Error Status	Exception
+0	+0		
-0	-0		
$-\infty$	QNAN	IML_STATUS_ERRDOM	
$+\infty$	$+\infty$		INVALID
QNAN	QNAN		
SNAN	QNAN		

v?Pow
Computes a to the power b for elements of two vectors.

Syntax

Fortran:

```
call vspow( n, a, b, y )
call vmspow( n, a, b, y, mode )
call vdpow( n, a, b, y )
call vmdpow( n, a, b, y, mode )
call vcpow ( }n,a,b,y
call vmcpow( n, a, b, y, mode )
call vzpow( }n,a,b,y
call vmzpow( }n,a,b,y, mode 
```

C:
vsPow ($n, a, b, y)$;
vmsPow (n, a, b, y, mode $)$;
vdPow ($n, a, b, y)$;
vmdPow (n, a, b, y, mode $)$;
vcPow ($n, a, b, y)$;
$\operatorname{vmcPow}(n, a, b, y$, mode $)$;
vzPow ($n, a, b, y)$;
vmzPow (n, a, b, y, mode $)$;

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

```
Name
```

Type
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

Description

Specifies the number of elements to be calculated.

Name	Type	Description
	C: const int	
a, b	FORTRAN 77: REAL for vspow, vmspow	FORTRAN: Arrays that specify the input vectors a and b.
	DOUBLE PRECISION for vdpow, vmdpow	C: Pointers to arrays that contain the input vectors a and b.
	COMPLEX for vcpow, vmcpow	
	DOUBLE COMPLEX for vzpow, vmzpow	
	Fortran 90: REAL, INTENT (IN) for vspow, vmspow	
	DOUBLE PRECISION, INTENT (IN) for vdpow, vmdpow	
	COMPLEX, INTENT (IN) for vcpow, vmcpow	
	DOUBLE COMPLEX, INTENT(IN) for vzpow, vmzpow	
	C: const float* for vsPow, vmsPow	
	const double* for vdPow, vmdPow	
	const MKL_Complex8* for vcPow, vmcPow	
	$\begin{aligned} & \text { const MKL_Complex16* for vzPow, } \\ & \text { vmzPow } \end{aligned}$	
mode	FORTRAN 77: INTEGER*8	Overrides global VML mode setting for this
	Fortran 90: INTEGER (KIND=8), INTENT (IN)	function call. See vmlSetMode for possible values and their description.
	C: const MKL_INT64	

Precision Overflow Thresholds for Real v?Pow Function

Data Type	Threshold Limitations on Input Parameters
single precision	$\mathrm{abs}(a[i])<(\text { FLT_MAX })^{1 / b[i]}$
double precision	$\operatorname{abs}(a[i])<(\text { DBL_MAX })^{1 / b[i]}$

Precision overflow thresholds for the complex v? Pow function are beyond the scope of this document.

Output Parameters

Name	Type	Description		
y	FORTRAN 77: REAL for vspow,	FORTRAN: Array that specifies the output		
vmspow	vector y.		\quad	C: Pointer to an array that contains the output
:---				
vector y.				

Name	Type
	Fortran 90: REAL, INTENT (OUT) for vspow, vmspow
	DOUBLE PRECISION, INTENT (OUT) for vdpow, vmdpow
	COMPLEX, INTENT (OUT) for vcpow, vmcpow
	DOUBLE COMPLEX, INTENT (OUT) for vzpow, vmzpow
	C: float* for vsPow, vmsPow
	double* for vdPow, vmdPow
	MKL_Complex8* for vcPow, vmcPow
	MKL_Complex16* for vzPow, vmzPow

Description

The v ? Pow function computes a to the power b for elements of two vectors.
The real function $v(s / d)$ Pow has certain limitations on the input range of a and b parameters. Specifically, if a [i] is positive, then b[i] may be arbitrary. For negative a [i], the value of b [i] must be an integer (either positive or negative).
The complex function $v(c / z)$ Pow has no input range limitations.
$\underline{\text { Special values for Real Function v?Pow(x) }}$

Argument 1	Argument 2	Result	VML Error Status	Exception
+0	neg. odd integer	$+\infty$	VML_STATUS_ERRDOM	ZERODIVIDE
-0	neg. odd integer	$-\infty$	VML_STATUS_ERRDOM	ZERODIVIDE
+0	neg. even integer	$+\infty$	VML_STATUS_ERRDOM	ZERODIVIDE
-0	neg. even integer	$+\infty$	VML_STATUS_ERRDOM	ZERODIVIDE
+0	neg. non-integer	$+\infty$	VML_STATUS_ERRDOM	ZERODIVIDE
-0	neg. non-integer	$+\infty$	VML_STATUS_ERRDOM	ZERODIVIDE
-0	pos. odd integer	+0		
-0	pos. odd integer	-0		
+0	pos. even integer	+0		
-0	pos. even integer	+0		
+0	pos. non-integer	+0		
-0	pos. non-integer	+0		
-1	$+\infty$	+1		
-1	$-\infty$	+1		
+1	any value	+1		
+1	+0	+1		
+1	-0	+1		
+1	$+\infty$	+1		
+1	$-\infty$	+1		
+1	QNAN	+1		
any value	+0	+1		
+0	+0	+1		

Argument 1	Argument 2	Result	VML Error Status	Exception
-0	+0	+1		
$+\infty$	+0	+1		
$-\infty$	+0	+1		
QNAN	+0	+1		
any value	-0	+1		
+0	-0	+1		
-0	-0	+1		
$+\infty$	-0	+1		
$-\infty$	-0	+1		
QNAN	-0	+1		
$x<+0$	non-integer	QNAN	VML_STATUS_ERRDOM	INVALID
$\|X\|<1$	$-\infty$	$+\infty$		
+0	$-\infty$	$+\infty$	VML_STATUS_ERRDOM	ZERODIVIDE
-0	$-\infty$	$+\infty$	VML_STATUS_ERRDOM	ZERODIVIDE
$\|X\|>1$	$-\infty$	+0		
$+\infty$	$-\infty$	+0		
$-\infty$	$-\infty$	+0		
$\|X\|<1$	$+\infty$	+0		
+0	$+\infty$	+0		
-0	$+\infty$	+0		
$\|X\|>1$	$+\infty$	$+\infty$		
$+\infty$	$+\infty$	$+\infty$		
$-\infty$	$+\infty$	$+\infty$		
$-\infty$	neg. odd integer	-0		
$-\infty$	neg. even integer	+0		
$-\infty$	neg. non-integer	+0		
$-\infty$	pos. odd integer	$-\infty$		
$-\infty$	pos. even integer	$+\infty$		
$-\infty$	pos. non-integer	$+\infty$		
$+\infty$	$x<+0$	+0		
$+\infty$	$\mathrm{X}>+0$	$+\infty$		
QNAN	QNAN	QNAN		
QNAN	SNAN	QNAN		INVALID
SNAN	QNAN	QNAN		INVALID
SNAN	SNAN	QNAN		INVALID

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when $x 1, x 2, y 1, y 2$ are finite numbers, but the real or imaginary part of the exact result is so large that it does not fit the target precision. In this case, the function returns ∞ in that part of the result, raises the OVERFLOW exception, and sets the VML Error Status to VML_STATUS_OVERFLOW.
v?Powx
Raises each element of a vector to the constant power.

Syntax

Fortran:

```
call vspowx( n, a, b, y )
```

```
call vmspowx( }n,a,b,y, mode 
call vdpowx( n, a, b, y )
call vmdpowx( n, a, b, y, mode )
call vcpowx( }n,a,b,y
call vmcpowx( n, a, b, y, mode )
call vzpowx( n, a, b, y )
call vmzpowx( n, a, b, y, mode )
C:
vsPowx( n, a, b, y );
vmsPowx ( n, a, b, y, mode );
vdPowx ( n, a, b, y );
vmdPowx ( n, a, b, y, mode );
VCPOWx( n, a, b, y );
vmcPowx ( n, a, b, y, mode );
vzPowx( n, a, b, y );
vmzPowx( n, a, b, y, mode );
```


Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
n	FORTRAN 77: INTEGER
a	Fortran 90: INTEGER, INTENT (IN)
	C: const int
	vorTRAN 77: REAL for vspowx,
	DOUBLE PRECISION for vdpowx,
	vmdpowx
	COMPLEX for vcpowx, vmcpowx
	DOUBLE COMPLEX for vzpowx,
	vmzpowx
	Fortran 90: REAL, INTENT (IN) for
	vspowx, vmspowx
	DOUBLE PRECISION, INTENT (IN) for
	vdpowx, vmdpowx
	COMPLEX, INTENT (IN) for vcpowx,
	vmcpowx

Name
 n

C: const int
vmspowx
DOUBLE PRECISION for vdpowx, vmdpowx

COMPLEX for vcpowx, vmcpowx
DOUBLE COMPLEX for vzpowx, vmzpowx

Fortran 90: REAL, INTENT (IN) for vspowx, vmspowx

DOUBLE PRECISION, INTENT (IN) for vdpowx, vmdpowx
vmcpowx

Description

Number of elements to be calculated.

FORTRAN: Array a that specifies the input vector

C: Pointer to an array that contains the input vector a.

Name	Type
	DOUBLE COMPLEX, INTENT (IN) for vzpowx, vmzpowx
	C: const float* for vsPowx, vmsPowx
	const double* for vdPowx, vmdPowx
	const MKL_Complex8* for vcPowx, vmcPowx
	const MKL_Complex16* for vzPowx, vmzPowx
b	FORTRAN 77: REAL for vspowx, vmspowx
	DOUBLE PRECISION for vdpowx, vmdpowx
	COMPLEX for vcpowx, vmcpowx
	DOUBLE COMPLEX for vzpowx, vmzpowx
	Fortran 90: REAL, INTENT (IN) for vspowx, vmspowx
	DOUBLE PRECISION, INTENT (IN) for vdpowx, vmdpowx
	COMPLEX, INTENT (IN) for vcpowx, vmcpowx
	DOUBLE COMPLEX, INTENT (IN) for vzpowx, vmzpowx
	C: const float* for vsPowx, vmsPowx
	const double* for vdPowx, vmdPowx
	const MKL_Complex8* for vcPowx, vmcPowx
	```const MKL_Complex16* for vzPowx, vmzPowx```
mode	FORTRAN 77: INTEGER*8
	Fortran 90: INTEGER (KIND=8),
	INTENT (IN)
	C: const MKL_INT64

## Description

FORTRAN: Scalar value $b$ that is the constant power.

C: Constant value for power $b$.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Precision Overflow Thresholds for Real v?Powx Function

Data Type	Threshold Limitations on Input Parameters
single precision	abs $(a[i])<(\text { FLT_MAX })^{1 / b}$
double precision	abs $(a[i])<(\text { DBL_MAX })^{1 / b}$

Precision overflow thresholds for the complex v? Powx function are beyond the scope of this document.

## Output Parameters

Name	Type
Y	FORTRAN 77: REAL for vspowx,
	vmspowx
	DOUBLE PRECISION for vdpowx, vmdpowx
	COMPLEX for vcpowx, vmcpowx
	DOUBLE COMPLEX for vzpowx, vmzpowx
	Fortran 90: REAL, INTENT (OUT) for vspowx, vmspowx
	DOUBLE PRECISION, INTENT (OUT) for vdpowx, vmdpowx
	COMPLEX, INTENT (OUT) for vcpowx, vmcpowx
	DOUBLE COMPLEX, INTENT (OUT) for vzpowx, vmzpowx
	C: float* for vsPowx, vmsPowx
	double* for vdPowx, vmdPowx
	MKL_Complex8* for vcPowx, vmcPowx
	MKL_Complex16* for vzPowx, vmzPowx

## Description

FORTRAN: Array that specifies the output vector $y$.

C: Pointer to an array that contains the output vector $y$.

## Description

The v? Powx function raises each element of a vector to the constant power.
The real function $v(s / d)$ Powx has certain limitations on the input range of $a$ and $b$ parameters. Specifically, if $a$ [i] is positive, then $b$ may be arbitrary. For negative $a[i]$, the value of $b$ must be an integer (either positive or negative).

The complex function $v(c / z)$ Powx has no input range limitations.
Special values are the same as for the v? pow function.
v?Hypot
Computes a square root of sum of two squared
elements.

## Syntax

## fortran:

```
call vshypot(n, a, b, y)
call vmshypot(n, a, b, y, mode)
call vdhypot(n, a, b, y)
call vmdhypot(n, a, b, y, mode)
```

C:

```
vsHypot(n, a, b, y);
```

vmsHypot ( $n, a, b, y$, mode $)$;
vdHypot ( $n, a, b, y)$;
vmdHypot( $n, a, b, y$, mode $)$;

## Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
$n$	FORTRAN 77: INTEGER
a,b	Fortran 90: INTEGER, INTENT (IN)
	C: const int
	FORTRAN 77: REAL for vshypot,
	vmshypot
	Double PRECISION for vdhypot,
	vmdhypot
	Fortran 90: REAL, INTENT (IN) for
	Double PRECISION, INTENT (IN) for
	vdhypot, vmdhypot
	C: const float* for vsHypot,
	vmsHypot
	const double* for vdHypot,
	vmdHypot
mode	FORTRAN 77: INTEGER*8
	Fortran 90: INTEGER(KIND=8),
	INTENT (IN)
	C: const MKL_INT64

## Description

Number of elements to be calculated.

FORTRAN: Arrays that specify the input vectors $a$ and $b$

C: Pointers to arrays that contain the input vectors $a$ and $b$.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Precision Overflow Thresholds for Hypot Function

Data Type	Threshold Limitations on Input Parameters
single precision	$\operatorname{abs}(a[i])<\operatorname{sqrt}\left(F L T \_M A X\right)$
double precision	$\operatorname{abs}(b[i])<\operatorname{sqrt}\left(F L T \_M A X\right)$
	$\operatorname{abs}(a[i])<\operatorname{sqrt}\left(D B L \_M A X\right)$
	$\operatorname{abs}(b[i])<\operatorname{sqrt}\left(D B L \_M A X\right)$

## Output Parameters

Name	Type
$y$	FORTRAN 77: REAL for vshypot,
vmshypot	
	Double PRECISION for vdhypot,
vmdhypot	
	Fortran 90: REAL, INTENT (ouT) for
	vshypot, vmshypot
	Double PRECISION, INTENT (OUT) for
	vdhypot, vmdhypot
	C: float* for vsHypot, vmsHypot
	double* for vdHypot, vmdHypot

## Description

FORTRAN: Array that specifies the output vector $y$.

C: Pointer to an array that contains the output vector $y$.

## Description

The function $v$ ? Hypot computes a square root of sum of two squared elements.
Special values for Real Function v?Hypot(x)

Argument 1	Argument 2	Result	Exception
+0	+0	+0	
-0	-0	+0	
$+\infty$	any value	$+\infty$	
any value	$+\infty$	$+\infty$	INVALID
SNAN	any value	QNAN	INVALID
any value	SNAN	QNAN	
QNAN	any value	QNAN	
any value	QNAN	QNAN	

## Exponential and Logarithmic Functions

v? Exp
Computes an exponential of vector elements.
Syntax

## Fortran:

```
call vsexp(n, a, y)
call vmsexp(n, a, y, mode)
call vdexp(n, a, y)
call vmdexp(n, a, y, mode)
call vcexp(n, a, y)
call vmcexp(n, a, y, mode)
call vzexp(n, a, y)
call vmzexp(n, a, y, mode)
```

C:

```
vsExp(n, a, y);
```

vmsExp ( $n, a, y$, mode $) ;$
$\operatorname{vdExp}(n, a, y) ;$
vmdExp ( $n, a, y$, mode $) ;$
$\operatorname{vcExp}(n, a, y) ;$
$\operatorname{vmcExp}(n, a, y, m o d e)$;
$\operatorname{vzExp}(n, a, y) ;$
vmzExp ( $n, a, y$, mode $) ;$

## Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
$n$	FORTRAN 77: INTEGER
	Fortran 90: Integer, intent (In)
	C: const int
a	FORTRAN 77: REAL for vsexp, vmsexp
	DOUBLE PRECISION for vdexp, vmdexp
	COMPLEX for vcexp, vmcexp
	DOUBLE COMPLEX for vzexp, vmzexp
	Fortran 90: REAL, INTENT (IN) for vsexp, vmsexp
	DOUBLE PRECISION, INTENT(IN) for vdexp, vmdexp
	COMPLEX, INTENT (IN) for vcexp, vmcexp
	DOUBLE COMPLEX, INTENT(IN) for vzexp, vmzexp
	C: const float* for vsExp, vmsExp
	const double* for vdExp, vmdExp
	const MKL_Complex8* for vcExp, vmcexp
	const MKL_Complex16* for vzExp, vmzExp

## Description

Specifies the number of elements to be calculated.

FORTRAN: Array, specifies the input vector a.
C: Pointer to an array that contains the input vector a.


Precision overflow thresholds for the complex v?Exp function are beyond the scope of this document.

## Output Parameters

Name	Type
Y	FORTRAN 77: REAL for vsexp, vmsexp
	DOUBLE PRECISION for vdexp, vmdexp
	COMPLEX for vcexp, vmcexp
	DOUBLE COMPLEX for vzexp, vmzexp
	Fortran 90: REAL, INTENT (OUT) for vsexp, vmsexp
	DOUBLE PRECISION, INTENT (OUT) for vdexp, vmdexp
	COMPLEX, INTENT (OUT) for vcexp, vmcexp
	DOUBLE COMPLEX, INTENT (OUT) for vzexp, vmzexp
	C: float* for vsExp, vmsExp
	double* for vdExp, vmdExp
	MKL_Complex8* for vcExp, vmcExp
	MKL_Complex16* for vzExp, vmzExp

## Description

The v?Exp function computes an exponential of vector elements.
Special Values for Real Function v?Exp(x)

Argument	Result	VML Error Status	Exception
+0	+1		
-0	+1		OVERFLOW
$X>$ overflow	$+\infty$	VML_STATUS_OVERFLOW	UNDERFLOW
$X<$ underflow	+0	VML_STATUS_UNDERFLOW	
$+\infty$	$+\infty$		


Argument	Result	VML Error Status	Exception
$-\infty$	+0		
QNAN	QNAN		INVALID
SNAN	QNAN		

See the Special Value Notations section for the conventions used in the table below.
Special Values for Complex Function v?Exp(z)

$\begin{gathered} \text { RE(z) } \\ \text { i•IM(z } \\ \text { ) } \end{gathered}$	$-\infty$	-X	-0	+0	+X	$+\infty$	NAN
$+i \cdot \infty$	$+0+\mathrm{i} \cdot 0$	QNAN+i•QNAN INVALID	QNAN+i•QNAN INVALID	QNAN+i•QNAN INVALID	QNAN+i•QNAN INVALID	$+\infty+\mathrm{i} \cdot \mathrm{QNAN}$   INVALID	QNAN+i•QNAN INVALID
$+\mathrm{i} \cdot \mathrm{Y}$	+0.CIS(Y)					$+\infty \cdot$ CIS(Y)	QNAN+i•QNAN
+i. 0	+0.CIS(0)		$+1+\mathrm{i} \cdot 0$	+1+i.0		$+\infty+\mathrm{i} \cdot 0$	QNAN+i•0
-i. 0	+0.CIS(0)		+1-i.0	+1-i.0		$+\infty-\mathrm{i} \cdot 0$	QNAN-i. 0
-i.Y	+0.CIS(Y)					$+\infty \cdot \mathrm{CIS}$ (Y)	QNAN+i•QNAN
$-i \cdot \infty$	+0-i. 0	QNAN+i•QNAN INVALID	QNAN+i•QNAN INVALID	QNAN+i•QNAN INVALID	QNAN+i•QNAN INVALID	$+\infty+\mathrm{i} \cdot$ QNAN   INVALID	QNAN+i•QNAN
$+\mathrm{i} \cdot \mathrm{NAN}$	+0+i.0	QNAN+i•QNAN INVALID	QNAN+i•QNAN INVALID	QNAN+i•QNAN INVALID	QNAN+i•QNAN INVALID	$+\infty+\mathrm{i} \cdot \mathrm{QNAN}$	QNAN+i•QNAN

## Notes:

- raises the INVALID exception when real or imaginary part of the argument is SNAN
- raises the INVALID exception on argument $z=-\infty+i \cdot$ QNAN
- raises the OVERFLOW exception and sets the VML Error Status to VML_STATUS_OVERFLOW in the case of overflow, that is, when $R E(z), I M(z)$ are finite non-zero numbers, but the real or imaginary part of the exact result is so large that it does not meet the target precision.


## v?Expm1

Computes an exponential of vector elements decreased by 1.

## Syntax

## Fortran:

```
call vsexpm1(n, a, y)
call vmsexpm1(n, a, y, mode)
call vdexpm1(n, a, y)
call vdexpm1(n, a, y, mode)
```

C:

```
vsExpm1(n, a, y);
vmsExpm1 (n, a, y, mode);
vdExpm1(n, a, y);
vmdExpm1 (n, a, y, mode);
```


## Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
$n$	FORTRAN 77: INTEGER
a	Fortran 90: INTEGER, INTENT (IN)
	C: const int
	FORTRAN 77: REAL for vsexpm1,
	vmsexpm1
	DOUBLE PRECISION for vdexpm1,
	vmdexpm1
	Fortran 90: REAL, INTENT (IN) for
	vsexpm1, vmsexpm1
	DOUBLE PRECISION, INTENT (IN) for
	vdexpm1, vmdexpm1
	C: const float* for vsExpm1,
	vmsExpm1
	const double* for vdExpm1,
	vmdExpm1
mode	FORTRAN 77: INTEGER*8
	Fortran 90: INTEGER (KIND=8),
	INTENT (IN)
	C: const MKL_INT64

## Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Precision Overflow Thresholds for Expm1 Function

Data Type	Threshold Limitations on Input Parameters
single precision	$a[i]<\operatorname{Ln}($ FLT_MAX $)$
double precision	$a[i]<\operatorname{Ln}\left(\mathrm{DBL} \_M A X\right)$

## Output Parameters

Name	Type
$y$	FORTRAN 77: REAL for vsexpm1,
	vmsexpm1
	DOUBLE PRECISION for vdexpm1,
	vmdexpm1
	Fortran 90: REAL, INTENT (OUT) for
	vsexpm1, vmsexpm1
	DOUBLE PRECISION, INTENT (OUT) for
	vdexpm1, vmdexpm1

## Description

FORTRAN: Array that specifies the output vector $y$.

C: Pointer to an array that contains the output vector $y$.

| Name | Type |
| :--- | :--- | Description

## Description

The v?Expm1 function computes an exponential of vector elements decreased by 1.
Special Values for Real Function v?Expm1(x)

Argument	Result	VML Error Status	Exception
+0	+0		
-0	+0	VML_STATUS_OVERFLOW	OVERFLOW
$X>$ overflow	$+\infty$		
$+\infty$	$+\infty$		
$-\infty$	-1	QNAN	INVALID
QNAN	QNAN		
SNAN			

## v?! $n$

Computes natural logarithm of vector elements.
Syntax

## Fortran:

```
call vsln(n, a, y)
call vmsln(n, a, y, mode)
call vdln(n, a, y)
call vmdln(n, a, y, mode)
call vcln(n, a, y)
call vmcln(n, a, y, mode)
call vzln(n, a, y)
call vmzln(n, a, y, mode)
```

C:
$\operatorname{vsLn}(n, a, y) ;$
$\operatorname{vmsLn}(n, a, y, m o d e)$;
$\operatorname{vdLn}(n, a, y) ;$
$\operatorname{vmdLn}(n, a, Y$, mode $)$;
$\operatorname{vcLn}(n, a, y) ;$
$\operatorname{vmcLn}(n, a, y, m o d e) ;$
$\operatorname{vzLn}(n, a, y) ;$
vmzLn( $n, a, y, m o d e) ;$

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h


## Input Parameters

## Name <br> n <br> Type <br> FORTRAN 77: INTEGER <br> Fortran 90: INTEGER, INTENT (IN) <br> C: const int

a
mode
FORTRAN 77: REAL for vsln, vmsln DOUBLE PRECISION for vdln, vmdln COMPLEX for vcln, vmcln

DOUBLE COMPLEX for vzln, vmzln
Fortran 90: REAL, INTENT (IN) for vsln, vmsln

DOUBLE PRECISION, INTENT (IN) for vdln, vmdln COMPLEX, INTENT (IN) for vcln, vmcln

DOUBLE COMPLEX, INTENT (IN) for vzln, vmzln

C: const float* for vsLn, vmsLn const double* for vdLn, vmdLn const MKL_Complex8* for vcLn, vmcLn
const MKL_Complex16* for vzLn, vmzLn

FORTRAN 77: INTEGER*8

Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

## Output Parameters

Name	Type
$y$	FORTRAN 77: REAL for vsln, vmsln
	DOUBLE PRECISION for vdln, vmdln
	COMPLEX for vcln, vmcln
	DOUBLE COMPLEX for vzln, vmzln
	Fortran 90: REAL, INTENT (OUT) for
	vsln, vmsln
	DOUBLE PRECISION, INTENT (OUT) for
	valn, vmdln

## Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector $a$.

Overrides global VML mode setting for this function call. See vmlSetMode for possible values and their description.

## Description

FORTRAN: Array that specifies the output vector $y$.

C: Pointer to an array that contains the output vector $y$.

```
Name
```


## Type

COMPLEX, INTENT (OUT) for vcln, vmcln

DOUBLE COMPLEX, INTENT (OUT) for vzln, vmzln

C: float* for vsLn, vmsLn
double* for vdLn, vmdLn
MKL_Complex8* for vcLn, vmcLn
MKL_Complex16* for vzLn, vmzLn

## Description

The v?Ln function computes natural logarithm of vector elements.

## Special Values for Real Function v?Ln(x)

Argument	Result	VML Error Status	Exception
+1	+0		INVALID
$X<+0$	QNAN	VML_STATUS_ERRDOM	ZERODIVIDE
+0	$-\infty$	VML_STATUS_SING	ZERODIVIDE
-0	$-\infty$	VML_STATUS_SING	INVALID
$-\infty$	QML_STATUS_ERRDOM		
$+\infty$	$+\infty$		INVALID
QNAN	QNAN		

See the Special Value Notations section for the conventions used in the table below.
Special Values for Complex Function v?Ln(z)

$\begin{gathered} \text { RE(z) } \\ \text { i-IM }(z \\ ) \end{gathered}$	$-\infty$	-X	-0	+0	+X	+	NAN
$+i \cdot \infty$	$+\infty+i \cdot \frac{3 \pi}{4}$	$+\infty+\mathrm{i} \cdot \pi / 2$	$+\infty+\mathrm{i} \cdot \pi / 4$	$+\infty+$ i. QNAN			
+i.Y	$+\infty+\mathrm{i} \cdot \pi$					$+\infty+\mathrm{i} \cdot 0$	QNAN+i•QNAN INVALID
+i.0	$+\infty+\mathrm{i} \cdot \pi$		$-\infty+\mathrm{i} \cdot \pi$   ZERODIVID   E	$-\infty+\mathrm{i} \cdot 0$   ZERODIVID   E		$+\infty+\mathrm{i} \cdot 0$	QNAN+i.QNAN INVALID
-i.0	$+\infty-\mathrm{i} \cdot \pi$		$-\infty-\mathrm{i} \cdot \pi$   ZERODIVID   E	$-\infty-i \cdot 0$   ZERODIVID   E		$+\infty-\mathrm{i} \cdot 0$	QNAN+i.QNAN INVALID
-i.Y	$+\infty-\mathrm{i} \cdot \pi$					$+\infty-\mathrm{i} \cdot 0$	QNAN+i•QNAN INVALID
-i $\cdot \infty$	$+\infty-i \cdot \frac{3 \pi}{4}$	$+\infty-\mathrm{i} \cdot \pi / 2$	$+\infty-\mathrm{i} \cdot \pi / 4$	$+\infty+\mathrm{i} \cdot \mathrm{QNAN}$			
$+\mathrm{i} \cdot \mathrm{NAN}$	$+\infty+\mathrm{i}$-QNAN	QNAN+i.QNAN inVALID	QNAN+i.QNAN INVALID	QNAN+i.QNAN INVALID	QNAN+i•QNAN INVALID	$+\infty+$ i. QNAN	QNAN+i.QNAN INVALID

[^2]- raises INVALID exception when real or imaginary part of the argument is SNAN
v?Log10
Computes denary logarithm of vector elements.


## Syntax

## Fortran:

```
call vslog10(n, a, y)
call vmslog10(n, a, y, mode)
call vdlog10(n, a, y)
call vmdlog10(n, a, y, mode)
call vclog10(n, a, y)
call vmclog10(n, a, y, mode)
call vzlog10(n, a, y)
call vmzlog10(n, a, y, mode)
C:
vsLog10(n, a, y);
vmsLog10(n, a, y, mode);
vdLog10(n, a, y);
vmdLog10(n, a, y, mode);
vcLog10(n, a, y);
vmcLog10(n, a, y, mode);
vzLog10(n, a, y);
vmzLog10(n, a, y, mode);
```

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h


## Input Parameters

Name	Type
$n$	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN)
	C: const int
a	FORTRAN 77: REAL for vslog10, vmslog10
	DOUBLE PRECISION for vdlog10, vmdlog10
	COMPLEX for vclog10, vmclog10

## Name

a

## Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

## Name

mode

## Type

DOUBLE COMPLEX for vzlog10, vmzlog10

Fortran 90: REAL, INTENT (IN) for vslog10, vmslog10

DOUBLE PRECISION, INTENT (IN) for vdlog10, vmdlog10

COMPLEX, INTENT (IN) for vclog10, vmclog10

DOUBLE COMPLEX, INTENT (IN) for vzlog10, vmzlog10

C: const float* for vsLog10, vmsLog10
const double* for vdLog10, vmdLog10
const MKL_Complex8* for vcLog10, vmcLog10
const MKL_Complex16* for vzLog10, vmzLog10

FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

## Output Parameters

```
```

Name Type

```
```

Name Type
y
y
FORTRAN 77: REAL for vslog10,
FORTRAN 77: REAL for vslog10,
vmslog10
vmslog10
DOUBLE PRECISION for vdlog10,
DOUBLE PRECISION for vdlog10,
vmdlog10
vmdlog10
COMPLEX for vclog10, vmclog10
COMPLEX for vclog10, vmclog10
DOUBLE COMPLEX for vzlog10,
DOUBLE COMPLEX for vzlog10,
vmzlog10
vmzlog10
Fortran 90: REAL, INTENT (OUT) for vslog10, vmslog10
DOUBLE PRECISION, INTENT (OUT) for
DOUBLE PRECISION, INTENT (OUT) for
vdlog10, vmdlog10
vdlog10, vmdlog10
COMPLEX, INTENT (OUT) for vclog10,
COMPLEX, INTENT (OUT) for vclog10,
vmclog10
vmclog10
DOUBLE COMPLEX, INTENT (OUT) for
DOUBLE COMPLEX, INTENT (OUT) for
vzlog10, vmzlog10

```
vzlog10, vmzlog10
```

C: float* for vsLog 10, vmsLog10

```

\section*{Description}

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

FORTRAN: Array that specifies the output vector \(y\).

C: Pointer to an array that contains the output vector \(y\).

\section*{Name Type Description}
```

double* for vdLog10, vmdLog10
MKL_Complex8* for vcLog10,
vmcLog10
MKL_Complex16* for vzLog10,
vmzLog10

```

\section*{Description}

The v?Log10 function computes a denary logarithm of vector elements.

\section*{Special Values for Real Function v?Log10(x)}
\begin{tabular}{llll}
\hline Argument & Result & VML Error Status & Exception \\
\hline+1 & +0 & & \\
\(X<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & \(+\infty\) & & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See the Special Value Notations section for the conventions used in the table below.
Special Values for Complex Function v?Log10(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RE(z) } \\
& \text { i.IM }(z \\
& \text {) }
\end{aligned}
\] & \(-\infty\) & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(+\infty+i \frac{3}{4} \frac{\pi}{\ln (10)}\) & \(+\infty+i \frac{\pi}{2} \frac{1}{\ln (10)}\) & \(+\infty+i \frac{\pi}{4} \frac{1}{\ln (10)}\) & \begin{tabular}{l}
\(+\infty+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & \(+\infty+i \frac{\pi}{\ln (10)}\) & & & & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i•QNAN INVALID \\
\hline +i•0 & \(+\infty+i \frac{\pi}{\ln (10)}\) & & \begin{tabular}{l}
\[
-\infty+i \frac{\pi}{\ln (10)}
\] \\
ZERODRIVE
\end{tabular} & \begin{tabular}{l}
\[
-\infty+i \cdot 0
\] \\
ZERODRIVE
\end{tabular} & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i•QNAN INVALID \\
\hline -i.0 & \(+\infty-i \frac{\pi}{\ln (10)}\) & & \begin{tabular}{l}
\[
-\infty-i \frac{\pi}{\ln (10)}
\] \\
ZERODIVID E
\end{tabular} & \begin{tabular}{l}
\[
-\infty-i \cdot 0
\] \\
ZERODIVID \\
E
\end{tabular} & & \(+\infty-\mathrm{i} \cdot 0\) & QNAN-i•QNAN INVALID \\
\hline -i•Y & \(+\infty-i \frac{\pi}{\ln (10)}\) & & & & & \(+\infty-\mathrm{i} \cdot 0\) & QNAN+i•QNAN INVALID \\
\hline \(-i \cdot \infty\) & \(+\infty+i \frac{3}{4} \frac{\pi}{\ln (10)}\) & \[
+\infty-i \frac{\pi}{2} \frac{1}{\ln (10)}
\] & \(+\infty-i \frac{\pi}{2} \frac{1}{\ln (10)}\) & \(+\infty-i \frac{\pi}{2} \frac{1}{\ln (10)}\) & \(+\infty-i \frac{\pi}{2} \frac{1}{\ln (10)}\) & \(+\infty-i \frac{\pi}{4} \frac{1}{\ln (10)}\) & \(+\infty+\mathrm{i} \cdot \mathrm{QNAN}\) \\
\hline \(+\mathrm{i} \cdot \mathrm{NAN}\) & \(+\infty+\mathrm{i} \cdot \mathrm{QNAN}\) & QNAN+i•QNAN INVALID & QNAN+i•QNAN INVALID & QNAN+i•QNAN INVALID & QNAN+i•QNAN INVALID & \(+\infty+\mathrm{i} \cdot \mathrm{QNAN}\) & QNAN+i•QNAN INVALID \\
\hline
\end{tabular}

\section*{Notes:}
- raises INVALID exception when real or imaginary part of the argument is SNAN
```

v?Log1p
Computes a natural logarithm of vector elements that
are increased by }1

```

Syntax

\section*{Fortran:}
```

call vslog1p( n, a, y )
call vmslog1p( n, a, y, mode )
call vdlog1p( n, a, y )
call vmdlog1p( n, a, y, mode )

```
C:
vsLoglp (\(n, a, y)\);
vmsLoglp (\(n, a, y, m o d e)\);
vdLog1p (\(n, a, y)\);
vmdLoglp (\(n, a, y, m o d e) ;\)

Include Files
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

\section*{Description}

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Name} & Type & \multirow[t]{2}{*}{Description} \\
\hline & C: const MKL_INT64 & \\
\hline \multicolumn{3}{|l|}{Output Parameters} \\
\hline Name & Type & Description \\
\hline \multirow[t]{6}{*}{y} & FORTRAN 77: REAL for vslog1p, vmslog1p & FORTRAN: Array that specifies the output vector \(y\). \\
\hline & DOUBLE PRECISION for vdlog1p, vmdlog1p & C: Pointer to an array that contains the output vector \(y\). \\
\hline & Fortran 90: REAL, INTENT (OUT) for vslog1p, vmslog1p & \\
\hline & DOUBLE PRECISION, INTENT (OUT) for vdlog1p, vmdlog1p & \\
\hline & C: float* for vsLog1p, vmsLog1p & \\
\hline & double* for vdLog1p, vmdLog1p & \\
\hline
\end{tabular}

\section*{Description}

The v?Log1p function computes a natural logarithm of vector elements that are increased by 1.
Special Values for Real Function v?Log1p(x)
\begin{tabular}{llll}
\hline Argument & Result & VML Error Status & Exception \\
\hline-1 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(X<-1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & +0 & & \\
-0 & -0 & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & \(+\infty\) & & INVALID \\
\hline\(\infty\) & QNAN & & \\
\hline QNAN & & & \\
\hline
\end{tabular}

\section*{Trigonometric Functions}
v?Cos
Computes cosine of vector elements.
Syntax

\section*{Fortran:}
```

call vscos( n, a, y )
call vmscos( n, a, y, mode )
call vdcos( n, a, y )
call vmdcos( n, a, y, mode )
call vccos( n, a, y )
call vmccos( n, a, y, mode )

```
```

call vzcos( n, a, y )
call vmzcos( n, a, y, mode )

```

C:
```

vsCos( n, a, y );
vmsCos( n, a, y, mode );
vdCos( n, a, y);
vmdCos( n, a, y, mode );
vcCos( n, a, y);
vmcCos( n, a, y, mode );
vzCos( n, a, y );
vmzCos( n, a, y, mode );

```

\section*{Include Files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & FORTRAN 77: INTEGER \\
\hline & Fortran 90: INTEGER, INTENT (IN) \\
\hline & C: const int \\
\hline a & FORTRAN 77: REAL for vscos, vmscos \\
\hline & DOUBLE PRECISION for vdcos, vmdcos \\
\hline & COMPLEX for vccos, vmccos \\
\hline & DOUBLE PRECISION for vzcos, vmzcos \\
\hline & Fortran 90: REAL, INTENT (IN) for vscos, vmscos \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdcos, vmdcos \\
\hline & COMPLEX, INTENT(IN) for vccos, vmccos \\
\hline & DOUBLE PRECISION, INTENT (IN) for vzcos, vmzcos \\
\hline & C: const float* for vsCos, vmsCos const double* for vdCos, vmdCos \\
\hline & const MKL_Complex8* for vcCos, vmcCos \\
\hline
\end{tabular}

\section*{Name}
n

DOUBLE PRECISION for vdcos, vmdcos

COMPLEX for vccos, vmccos
DOUBLE PRECISION for vzcos, vmzcos

Fortran 90: REAL, INTENT (IN) for vscos, vmscos

DOUBLE PRECISION, INTENT (IN) for vdcos, vmdcos

COMPLEX, INTENT (IN) for vccos, vmccos

DOUBLE PRECISION, INTENT (IN) for vzcos, vmzcos

C: const float* for vsCos, vmsCos const double* for vdCos, vmdCos const MKL_Complex8* for vcCos, vmcCos

\section*{Description}

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.
Name \(\quad\) Type \(\quad\)\begin{tabular}{l}
const MKL_Complex16* for vzCos, \\
vmzCos
\end{tabular}
mode
FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)
C: const MKL_INT64

\section*{Output Parameters}
Name \begin{tabular}{ll}
Type \\
& FORTRAN 77: REAL for vscos, \\
& vmscos \\
& vouble PRECISION for vdcos, \\
& COMPLEX for vccos, vmccos \\
& DOUBLE PRECISION for vzcos, \\
& vmzcos \\
& Fortran 90: REAL, INTENT (OUT) for \\
& vscos, vmscos \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdcos, vmdcos \\
& COMPLEX, INTENT (OUT) for vccos, \\
& vmccos \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vzcos, vmzcos \\
& C: float* for vsCos, vmsCos \\
& double* for vdCos, vmdCos \\
& MKL_Complex8* for vcCos, vmcCos \\
& MKL_Complex16* for vzCos, vmzCos
\end{tabular}

\section*{Description}

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

FORTRAN: Array that specifies the output vector \(y\).

C: Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v ?Cos function computes cosine of vector elements.
Note that arguments abs(a[i]) \(\leq 2^{13}\) and \(\operatorname{abs}(a[i]) \leq 2^{16}\) for single and double precisions respectively are called fast computational path. These are trigonometric function arguments for which VML provides the best possible performance. Avoid arguments that do not belong to the fast computational path in the VML High Accuracy (HA) and Low Accuracy (LA) functions. Alternatively, you can use VML Enhanced Performance (EP) functions that are fast on the entire function domain. However, these functions provide less accuracy.
Special Values for Real Function v?Cos(x)
\begin{tabular}{llll}
\hline Argument & Result & VML Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & INVALID
\end{tabular}
\begin{tabular}{llll}
\hline Argument & Result & VML Error Status & Exception \\
\hline\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula \(\operatorname{Cos}(z)=\operatorname{Cosh}\left(i^{*} z\right)\).
v?Sin
Computes sine of vector elements.
Syntax

\section*{Fortran:}
```

call vssin( n, a, y )
call vmssin( n, a, y, mode )
call vdsin( n, a, y )
call vmdsin( n, a, y, mode )
call vcsin( n, a, y )
call vmcsin( n, a, y, mode )
call vzsin( n, a, y )
call vmzsin( n, a, y, mode )

```
C:
vSSin(\(n, a, y)\);
vmsSin (\(n, a, y\), mode \() ;\)
vdSin(\(n, a, y)\);
vmdSin(\(n, a, y, m o d e) ;\)
\(\operatorname{vCSin}(n, a, y) ;\)
vmcSin(\(n, a, y, m o d e) ;\)
\(\operatorname{vzSin}(n, a, y)\);
vmzSin(\(n, a, y, m o d e) ;\)

\section*{Include Files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters
\begin{tabular}{ll}
Name & Type \\
\(n\) & FORTRAN 77: INTEGER \\
& Fortran 90: INTEGER, INTENT (IN) \\
& C: const int
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{12}{*}{a} & FORTRAN 77: REAL for vssin, vmssin & FORTRAN: Array that specifies the input vector a. \\
\hline & DOUBLE PRECISION for vdsin, vmdsin & C: Pointer to an array that contains the input vector a. \\
\hline & COMPLEX for vcsin, vmcsin & \\
\hline & DOUBLE PRECISION for vzsin, vmzsin & \\
\hline & Fortran 90: REAL, INTENT (IN) for vssin, vmssin & \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdsin, vmdsin & \\
\hline & COMPLEX, INTENT (IN) for vcsin, vmcsin & \\
\hline & DOUBLE PRECISION, INTENT (IN) for vzsin, vmzsin & \\
\hline & C: const float* for vsSin, vmsSin & \\
\hline & const double* for vdSin, vmdSin & \\
\hline & ```
const MKL_Complex8* for vcSin,
vmcSin
``` & \\
\hline & ```
const MKL_Complex16* for vzSin,
vmzSin
``` & \\
\hline \multirow[t]{3}{*}{mode} & FORTRAN 77: INTEGER*8 & Overrides global VML mode setting for this \\
\hline & Fortran 90: INTEGER(KIND=8), INTENT (IN) & function call. See vmlsetMode for possible values and their description. \\
\hline & C: const MKL_INT64 & \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & FORTRAN 77: REAL for vssin, \\
& vmssin \\
& DOUBLE PRECISION for vdsin, \\
& vmdsin \\
& COMPLEX for vcsin, vmcsin \\
& DOUBLE PRECISION for vzsin, \\
& vmzsin \\
& Fortran 90: REAL, INTENT (OUT) for \\
& vssin, vmssin \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdsin, vmdsin
\end{tabular}

\section*{Description}

FORTRAN: Array that specifies the output vector \(y\).

C: Pointer to an array that contains the output vector \(y\).
```

Name Type Description
COMPLEX, INTENT (OUT) for vCsin,
vmcsin
DOUBLE PRECISION, INTENT (OUT) for
vzsin, vmzsin
C: float* for vsSin, vmsSin
double* for vdSin, vmdSin
MKL_Complex8* for vcSin, vmcSin
MKL_Complex16* for vzSin, vmzSin

```

\section*{Description}

This function is declared in mkl_vml.f77 for FORTRAN 77 interface, in mkl_vml.f90 for Fortran 90 interface, and in mkl_vml_functions.h for C interface.

The function computes sine of vector elements.
Note that arguments abs(a[i]) \(\leq 2^{13}\) and \(\operatorname{abs}(a[i]) \leq 2^{16}\) for single and double precisions respectively are called fast computational path. These are trigonometric function arguments for which VML provides the best possible performance. Avoid arguments that do not belong to the fast computational path in the VML High Accuracy (HA) and Low Accuracy (LA) functions. Alternatively, you can use VML Enhanced Performance (EP) functions that are fast on the entire function domain. However, these functions provide less accuracy.
Special Values for Real Function v?Sin(x)
\begin{tabular}{llll}
\hline Argument & Result & VML Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
\(\operatorname{Sin}(z)=-i * \operatorname{Sinh}(i * z)\).
v?SinCos
Computes sine and cosine of vector elements.

\section*{Syntax}

Fortran:
```

call vssincos( n, a, y, z )
call vmssincos( n, a, y, z, mode )
call vdsincos( n, a, y, z )
call vmdsincos( }n,a,y,z,mode

```

C:
```

vSSinCos( n, a, y, z );
vmsSinCos( n, a, y, z, mode );
vdSinCos( n, a, y, z );

```
```

vmdSinCos( n, a, y, z, mode );

```

\section*{Include Files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & FORTRAN 77: INTEGER \\
& Fortran 90: INTEGER, INTENT (IN)
\end{tabular}

C: const int
a
mode
FORTRAN 77: REAL for vssincos, vmssincos

DOUBLE PRECISION for vdsincos, vmdsincos

Fortran 90: REAL, INTENT (IN) for vssincos, vmssincos

DOUBLE PRECISION, INTENT (IN) for vdsincos, vmdsincos

C: const float* for vsSinCos, vmsSinCos
const double* for vdSinCos, vmdSinCos

FORTRAN 77: INTEGER*8

Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y, z\) & FORTRAN 77: REAL for vssincos, \\
& vmssincos \\
& DOUBLE PRECISION for vdsincos, \\
& vmdsincos \\
& Fortran 90: REAL, INTENT (OUT) for \\
& vssincos, vmssincos \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdsincos, vmdsincos \\
& \(\mathbf{C}:\) float* for vsSinCos, vmsSinCos \\
& double* for vdSinCos, vmdSinCos
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

FORTRAN: Arrays that specify the output vectors \(y\) (for sine values) and \(z\) (for cosine values).
C: Pointers to arrays that contain the output vectors \(y\) (for sinevalues) and \(z\) (for cosine values).

\section*{Description}

This function is declared in mkl_vml.f77 for FORTRAN 77 interface, in mkl_vml.f90 for Fortran 90 interface, and in mkl_vml_functions.h for C interface.

The function computes sine and cosine of vector elements.
Note that arguments abs (a[i]) \(\leq 2^{13}\) and abs (a[i]) \(\leq 2^{16}\) for single and double precisions respectively are called fast computational path. These are trigonometric function arguments for which VML provides the best possible performance. Avoid arguments that do not belong to the fast computational path in the VML High Accuracy (HA) and Low Accuracy (LA) functions. Alternatively, you can use VML Enhanced Performance (EP) functions that are fast on the entire function domain. However, these functions provide less accuracy.

Special Values for Real Function v?SinCos(x)
\begin{tabular}{lllll}
\hline Argument & Result 1 & Result 2 & VML Error Status & Exception \\
\hline+0 & +0 & +1 & & \\
-0 & -0 & +1 & & INVALID \\
\(+\infty\) & QNAN & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & QNAN & VML_STATUS_ERRDOM & \\
QNAN & QNAN & QNAN & & INVALID \\
\hline SNAN & QNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
\(\operatorname{Sin}(z)=-i * \operatorname{Sinh}(i * z)\).

\section*{v?CIS}

Computes complex exponent of real vector elements (cosine and sine of real vector elements combined to complex value).

Syntax

\section*{Fortran:}
```

call vccis( n, a, y )
call vmccis( n, a, y, mode )
call vzcis( n, a, y )
call vmzcis( n, a, y, mode )

```

C:
```

vcCIS( n, a, y );

```
vmcCIS (\(n, ~ a, ~ y, ~ m o d e ~) ; ~\)
\(\operatorname{vzCIS}(n, a, y) ;\)
vmzCIS (\(n, ~ a, ~ y, ~ m o d e ~) ; ~\)

\section*{Include Files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}

\section*{Name \\ Type}
n
a
mode vmccis vmzcis

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: const int
FORTRAN 77: REAL for vccis,

DOUBLE PRECISION for vzcis,

Fortran 90: REAL, INTENT (IN) for vccis, vmccis DOUBLE PRECISION, INTENT (IN) for vzcis, vmzcis

C: const float* for vcCIS, vmcCIS
const double* for vzCIS, vmzCIS
FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & FORTRAN 77: COMPLEX for vccis, \\
& vmccis \\
& DOUBLE COMPLEX for vzcis, vmzcis \\
& Fortran 90: ComPLEX, INTENT (OUT) \\
& for vccis, vmccis \\
& DOUBLE COMPLEX, INTENT (OUT) for \\
& vzcis, vmzcis \\
& C: MKL_Complex8* for vcCIS, vmcCIS \\
& MKL_Complex16* for vzCIS, vmzCIS
\end{tabular}

\section*{Description}

FORTRAN: Array that specifies the output vector \(y\).

C: Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?CIS function computes complex exponent of real vector elements (cosine and sine of real vector elements combined to complex value).

See the Special Value Notations section for the conventions used in the table below.
Special Values for Complex Function v?CIS(x)
\begin{tabular}{|c|c|}
\hline \(\mathbf{x}\) & CIS(x) \\
\hline\(+\infty\) & QNAN+i•QNAN \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \(\mathbf{x}\) & \multicolumn{1}{|c|}{ CIS(\(\mathbf{x}\)) } \\
\hline & INVALID \\
\hline+0 & \(+1+\mathrm{i} \cdot 0\) \\
\hline-0 & \(+1-\mathrm{i} \cdot 0\) \\
\hline\(-\infty\) & \begin{tabular}{l}
QNAN+ \(\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} \\
\hline NAN & QNAN+ \(\mathrm{i} \cdot\) QNAN \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when the argument is SNAN
- raises INVALID exception and sets the VML Error Status to VML_STATUS_ERRDOM for \(x=+\infty, x=-\infty\)
v?Tan
Computes tangent of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vstan( n, a, y )
call vmstan( n, a, y, mode )
call vdtan( n, a, y )
call vmdtan( n, a, y, mode )
call vctan( n, a, y )
call vmctan( n, a, y, mode )
call vztan( n, a, y )
call vmztan( n, a, y, mode )

```

C:
```

vsTan( n, a, y );

```
vmsTan (\(n, a, y\), mode \()\);
\(\operatorname{vdTan}(n, a, y) ;\)
vmdTan (\(n, a, y\), mode \()\);
\(\operatorname{vcTan}(n, a, y) ;\)
\(\operatorname{vmcTan}(n, a, y\), mode \() ;\)
\(\operatorname{vzTan}(n, a, y) ;\)
vmzTan (\(n, a, y\), mode \()\);

\section*{Include Files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}

\section*{Name Type \\ n \\ FORTRAN 77: INTEGER \\ Fortran 90: INTEGER, INTENT (IN)}
a
mode
C: const int
FORTRAN 77: REAL for vstan, vmstan

DOUBLE PRECISION for vdtan, vmdtan

COMPLEX for vctan, vmctan
DOUBLE COMPLEX for vztan, vmztan
Fortran 90: REAL, INTENT (IN) for vstan, vmstan

DOUBLE PRECISION, INTENT (IN) for vdtan, vmdtan

COMPLEX, INTENT (IN) for vctan, vmctan

DOUBLE COMPLEX, INTENT (IN) for vztan, vmztan

C: const float* for vsTan, vmsTan const double* for vdTan, vmdTan const MKL_Complex8* for vcTan, vmcTan
const MKL_Complex16* for vzTan, vmzTan

FORTRAN 77: INTEGER*8

Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & FORTRAN 77: REAL for vstan, \\
& vmstan \\
& DOUBLE PRECISION for vdtan, \\
& vmdtan \\
& COMPLEX for vctan, vmctan \\
& DOUBLE COMPLEX for vztan, vmztan
\end{tabular}

Fortran 90: REAL, INTENT (OUT) for vstan, vmstan

\section*{Description}

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

FORTRAN: Array that specifies the output vector \(y\).

C: Pointer to an array that contains the output vector \(y\).
```

Name Type Description
DOUBLE PRECISION, INTENT (OUT) for
vdtan, vmdtan
COMPLEX, INTENT (OUT) for vctan,
vmctan
DOUBLE COMPLEX, INTENT (OUT) for
vztan, vmztan
C: float* for vsTan, vmsTan
double* for vdTan, vmdTan
MKL_Complex8* for vcTan, vmcTan
MKL_Complex16* for vzTan, vmzTan

```

\section*{Description}

The v?Tan function computes tangent of vector elements.
Note that arguments abs(a[i]) \(\leq 2^{13}\) and \(\mathrm{abs}(a[i]) \leq 2^{16}\) for single and double precisions respectively are called fast computational path. These are trigigonometric function arguments for which VML provides the best possible performance. Avoid arguments that do not belong to the fast computational path in the VML
High Accuracy (HA) and Low Accuracy (LA) functions. Alternatively, you can use VML Enhanced Performance (EP) functions that are fast on the entire function domain. However, these functions provide less accuracy.
Special Values for Real Function v?Tan(x)
\begin{tabular}{llll}
\hline Argument & Result & VML Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
\(\operatorname{Tan}(z)=-i * \operatorname{Tanh}(i * z)\).
v?Acos
Computes inverse cosine of vector elements.
Syntax

\section*{Fortran:}
```

call vsacos( n, a, y )
call vmsacos( n, a, y, mode )
call vdacos( n, a, y )
call vmdacos( n, a, y, mode )
call vcacos( n, a, y )
call vmcacos( n, a, y, mode )
call vzacos( n, a, y )
call vmzacos( n, a, y, mode )

```
```

C:
vsAcos( n, a, y );
vmsAcos( n, a, y, mode );
vdAcos( n, a, y );
vmdAcos( n, a, y, mode );
vcAcos( n, a, y );
vmcAcos( n, a, y, mode );
vzAcos( n, a, y );
vmzAcos( n, a, y, mode );

```

\section*{Include Files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \multirow[t]{3}{*}{\(n\)} & FORTRAN 77: INTEGER \\
\hline & Fortran 90: InTEGER, INTENT (IN) \\
\hline & C: const int \\
\hline \multirow[t]{11}{*}{a} & FORTRAN 77: REAL for vsacos, vmsacos \\
\hline & DOUBLE PRECISION for vdacos, vmdacos \\
\hline & COMPLEX for vcacos, vmcacos \\
\hline & DOUBLE COMPLEX for vzacos, vmzacos \\
\hline & Fortran 90: REAL, INTENT (IN) for vsacos, vmsacos \\
\hline & DOUBLE PRECISION, INTENT(IN) for vdacos, vmdacos \\
\hline & COMPLEX, INTENT (IN) for vcacos, vmcacos \\
\hline & DOUBLE COMPLEX, Intent (In) for vzacos, vmzacos \\
\hline & C: const float* for vsAcos, vmsAcos \\
\hline & const double* for vdAcos, vmdAcos \\
\hline & const MKL_Complex8* for vcAcos, vmcAcos \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector \(a\).
\begin{tabular}{ll}
Name & Type \\
\begin{tabular}{l}
const MKL_Complex16* for vzAcos, \\
vmzAcos
\end{tabular} & Description
\end{tabular}

FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)
C: const MKL_INT64

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \multirow[t]{12}{*}{y} & FORTRAN 77: REAL for vsacos, vmsacos \\
\hline & DOUBLE PRECISION for vdacos, vmdacos \\
\hline & COMPLEX for vcacos, vmcacos \\
\hline & DOUBLE COMPLEX for vzacos, vmzacos \\
\hline & Fortran 90: REAL, INTENT (OUT) for vsacos, vmsacos \\
\hline & DOUBLE PRECISION, INTENT (OUT) for vdacos, vmdacos \\
\hline & COMPLEX, INTENT (OUT) for vcacos, vmcacos \\
\hline & DOUBLE COMPLEX, INTENT (OUT) for vzacos, vmzacos \\
\hline & C: float* for vsAcos, vmsAcos \\
\hline & double* for vdAcos, vmdAcos \\
\hline & MKL_Complex8* for vcAcos, vmcAcos \\
\hline & MKL_Complex16* for vzAcos, vmzAcos \\
\hline
\end{tabular}

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

FORTRAN: Array that specifies the output vector \(y\).
C: Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Acos function computes inverse cosine of vector elements.

\section*{Special Values for Real Function v?Acos(x)}
\begin{tabular}{llll}
\hline Argument & Result & VML Error Status & Exception \\
\hline+0 & \(+\pi / 2\) & & \\
-0 & \(+\pi / 2\) & & \\
+1 & +0 & & INVALID \\
-1 & \(+\pi\) & & INVALID \\
\(|X|>1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM &
\end{tabular}
\begin{tabular}{llll}
\hline Argument & Result & VML Error Status & Exception \\
\hline QNAN & QNAN & & \\
SNAN & QNAN & INVALID \\
\hline
\end{tabular}

See the Special Value Notations section for the conventions used in the table below.
Special Values for Complex Function v?Acos(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RE(z) } \\
& \text { i-IM }(z \\
& \text {) }
\end{aligned}
\] & - \(\infty\) & -X & -0 & \(+0\) & +X & \(+\infty\) & NAN \\
\hline \(+i \cdot \infty\) & \(+\frac{3 \pi}{4}-i \cdot \infty\) & \(+\frac{\pi}{2}-i \cdot \infty\) & \(+\frac{\pi}{2}-i \cdot \infty\) & \(+\frac{\pi}{2}-i \cdot \infty\) & \(+\frac{\pi}{2}-i \cdot \infty\) & \(+\frac{\pi}{4}-i \cdot \infty\) & QNAN-i \(\cdot \infty\) \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & \(+\pi\)-i \(\cdot \infty\) & & & & & \(+0-i \cdot \infty\) & QNAN+i•QNAN \\
\hline +i.0 & \(+\pi-\mathbf{i} \cdot \infty\) & & \(+\frac{\pi}{2}-i \cdot 0\) & \(+\frac{\pi}{2}-i \cdot 0\) & & \(+0-\mathrm{i} \cdot \infty\) & QNAN+i•QNAN \\
\hline -i.0 & \(+\pi+\mathrm{i} \cdot \infty\) & & \(+\frac{\pi}{2}+i \cdot \infty\) & \(+\frac{\pi}{2}+i \cdot \infty\) & & \(+0+\mathrm{i} \cdot \infty\) & QNAN+i•QNAN \\
\hline \(-i \cdot Y\) & \(+\pi+\mathrm{i} \cdot \infty\) & & & & & \(+0+i \cdot \infty\) & QNAN+i•QNAN \\
\hline \(-i \cdot \infty\) & \(+\frac{3 \pi}{4}+i \cdot \infty\) & \(+\frac{\pi}{2}+i \cdot \infty\) & \(+\frac{\pi}{2}+i \cdot \infty\) & \(+\frac{\pi}{2}+i \cdot \infty\) & \(+\frac{\pi}{2}+i \cdot \infty\) & \(+\frac{\pi}{4}+i \cdot \infty\) & QNAN \(+\mathrm{i} \cdot \infty\) \\
\hline \(+\mathrm{i} \cdot \mathrm{NAN}\) & QNAN+i•m & QNAN+i•QNAN & \(+\frac{\pi}{2}+i \cdot\) QNAN & \(+\frac{\pi}{2}+i \cdot\) QNAN & QNAN+i•QNAN & QNAN+i•m & QNAN+i•QNAN \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when real or imaginary part of the argument is SNAN
- \(\operatorname{Acos}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Acos}(z))\).

\section*{v?Asin}

Computes inverse sine of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vsasin( n, a, y )
call vmsasin( n, a, y, mode )
call vdasin( n, a, y )
call vmdasin( n, a, y, mode )
call vcasin( n, a, y )
call vmcasin( n, a, y, mode )
call vzasin( n, a, y )
call vmzasin( n, a, y, mode )
C:
vsAsin( n, a, y );
vmsAsin( n, a, y, mode );
vdAsin( n, a, y );
vmdAsin( n, a, y, mode );

```
```

vCAsin( n, a, y );
vmcAsin( n, a, y, mode );
vzAsin( n, a, y );
vmzAsin( n, a, y, mode );

```

\section*{Include files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}
mode

\section*{Name \\ n \\ a \\ Type \\ FORTRAN 77: INTEGER \\ Fortran 90: INTEGER, INTENT (IN) \\ C: const int \\ FORTRAN 77: REAL for vsasin, vmsasin \\ DOUBLE PRECISION for vdasin, vmdasin \\ COMPLEX for vcasin, vmcasin \\ DOUBLE COMPLEX for vzasin, vmzasin}

Fortran 90: REAL, INTENT (IN) for vsasin, vmsasin

DOUBLE PRECISION, INTENT(IN) for vdasin, vmdasin

COMPLEX, INTENT (IN) for vcasin, vmcasin

DOUBLE COMPLEX, INTENT (IN) for vzasin, vmzasin

C: const float* for vsAsin, vmsAsin
const double* for vdAsin, vmdAsin const MKL_Complex8* for vcAsin, vmcAsin
const MKL_Complex16* for vzAsin, vmzAsin

FORTRAN 77: INTEGER*8
Fortran 90: INTEGER(KIND=8), INTENT (IN)

C: const MKL_INT64

\section*{Description}

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & FORTRAN 77: REAL for vsasin, \\
& vmsasin \\
& vouble PRECISION for vdasin, \\
& COMPLEX for vcasin, vmcasin \\
& DOUBLE COMPLEX for vzasin, \\
& vmzasin \\
& Fortran 90: REAL, INTENT (OUT) for \\
& vsasin, vmsasin \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdasin, vmdasin \\
& COMPLEX, INTENT (OUT) for vcasin, \\
& vmcasin \\
& DOUBLE COMPLEX, INTENT (OUT) for \\
& vzasin, vmzasin \\
& C: float* for vsAsin, vmsAsin \\
& double* for vdAsin, vmdAsin \\
& MKL_Complex8* for vcAsin, vmcAsin \\
& MKL_Complex16* for vzAsin, \\
vmzAsin
\end{tabular}

\section*{Description}

FORTRAN: Array that specifies the output vector \(y\).

C: Pointer to an array that contains the output vector \(y\).

\section*{Description}

The \(v\) ?Asin function computes inverse sine of vector elements.
Special Values for Real Function \(\mathbf{v}\) ?Asin(\(\mathbf{x}\))
\begin{tabular}{llll}
\hline Argument & Result & VML Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & \\
+1 & \(+\pi / 2\) & & INVALID \\
-1 & \(-\pi / 2\) & VML_STATUS_ERRDOM & INVALID \\
\(|X|>1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & \\
\(-\infty\) & QNAN & & INVALID \\
QNAN & QNAN & & \\
SNAN & & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
Asin(z) \(=-i * A s i n h(i * z)\).
v?Atan
Computes inverse tangent of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vsatan( n, a, y )
call vmsatan( n, a, y, mode )
call vdatan( n, a, y )
call vmdatan( n, a, y, mode )
call vcatan( n, a, y )
call vmcatan( n, a, y, mode )
call vzatan( n, a, y )
call vmzatan( n, a, y, mode )

```

C:
```

vsAtan( n, a, y );

```
vmsAtan (\(n, a, y\), mode \()\);
\(\operatorname{vdAtan}(n, a, y)\);
vmdAtan (\(n, a, y\), mode \()\);
vcAtan (\(n, a, y)\);
vmcAtan (\(n, a, y\), mode \()\);
\(\operatorname{vzAtan}(n, a, y)\);
vmzAtan (\(n, a, y\), mode \()\);

Include Files
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}

Name
n
a

\section*{Type}

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: const int
FORTRAN 77: REAL for vsatan, vmsatan

DOUBLE PRECISION for vdatan, vmdatan

COMPLEX for vcatan, vmcatan
DOUBLE COMPLEX for vzatan, vmzatan

Fortran 90: REAL, INTENT (IN) for vsatan, vmsatan

\section*{Description}

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.
\begin{tabular}{|c|c|}
\hline \multirow[t]{7}{*}{Name} & Type \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdatan, vmdatan \\
\hline & COMPLEX, INTENT (IN) for vcatan, vmcatan \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzatan, vmzatan \\
\hline & C: const float* for vsAtan, vmsAtan \\
\hline & ```
const double* for vdAsin, vmdAtan
const MKL_Complex8* for vcAtan,
vmcAtan
``` \\
\hline & const MKL_Complex16* for vzAsin, vmzAtan \\
\hline \multirow[t]{4}{*}{mode} & FORTRAN 77: INTEGER*8 \\
\hline & Fortran 90: INTEGER (KIND=8), \\
\hline & INTENT (IN) \\
\hline & C: const MKL_INT64 \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & FORTRAN 77: REAL for vsatan, \\
& vmsatan \\
& vouble PRECISION for vdatan, \\
& COMPLEX for vcatan, vmcatan \\
& DOUBLE COMPLEX for vzatan, \\
& vmzatan \\
& Fortran 90: REAL, INTENT (OUT) for \\
& vsatan, vmsatan \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdatan, vmdatan \\
& COMPLEX, INTENT (OUT) for vcatan, \\
& vmcatan \\
& DOUBLE COMPLEX, INTENT (OUT) for \\
& vzatan, vmzatan \\
& C: float* for vsAtan, vmsAtan \\
& double* for vdAsin, vmdAtan \\
& MKL_Complex8* for vcAtan, vmcAtan \\
& MKL_Complexi6* for vzAsin, \\
vmzAtan
\end{tabular}

\section*{Description}

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

FORTRAN: Array that specifies the output vector \(y\).

C: Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Atan function computes inverse tangent of vector elements.
Special Values for Real Function v?Atan(x)
\begin{tabular}{lll}
\hline Argument & Result & VML Error Status \\
\hline+0 & +0 & \\
-0 & -0 & Exception \\
\(+\infty\) & \(+\pi / 2\) & \\
\(-\infty\) & \(-\pi / 2\) & INVALID \\
\hline QNAN & QNAN & \\
SNAN & QNAN & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
```

Atan(z) = -i*Atanh(i*z).

```
v?Atan2
Computes four-quadrant inverse tangent of elements of two vectors.

\section*{Syntax}

\section*{Fortran:}
```

call vsatan2(n, a, b, y)
call vmsatan2(n, a, b, y, mode)
call vdatan2(n, a, b, y)
call vmdatan2(n, a, b, y, mode)

```

C:
```

vsAtan2(n, a, b, y);

```
vmsAtan2 ( \(n, a, b, y, m o d e)\);
vdAtan2 ( \(n, a, b, y)\);
vmdAtan2 ( \(n, a, b, y, m o d e)\);

Include Files
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & FORTRAN 77: INTEGER \\
& Fortran 90: INTEGER, INTENT (IN) \\
& C: const int
\end{tabular}
\(a, b\)

FORTRAN 77: REAL for vsatan2, vmsatan2

\section*{Description}

Specifies the number of elements to be calculated.

FORTRAN: Arrays that specify the input vectors \(a\) and \(b\).
Name \begin{tabular}{ll} 
Type \\
& DOUBLE PRECISION for vdatan2, \\
vmdatan2 \\
& Fortran 90: REAL, INTENT (IN) for \\
& vsatan2, vmsatan2 \\
& DOUBLE PRECISION, INTENT (IN) for \\
& vdatan2, vmdatan2 \\
& C: const float* for vsAtan2, \\
& vmsAtan2 \\
& const double* for vdAtan2, \\
& vmdAtan2 \\
& FORTRAN 77: INTEGER*8 \\
& Fortran 90: INTEGER(KIND=8), \\
& INTENT (IN) \\
& C: const MKL_INT64
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & FORTRAN 77: REAL for vsatan2, \\
& vmsatan2 \\
& DOUBLE PRECISION for vdatan2, \\
& vmdatan2 \\
& Fortran 90: REAL, INTENT (OUT) for \\
& vsatan2, vmsatan2 \\
& DoUBLE PRECISION, INTENT (OUT) for \\
& vdatan2, vmdatan2 \\
& C: float* for vsAtan2, vmsAtan2 \\
& double* for vdAtan2, vmdAtan2
\end{tabular}

\section*{Description}

C: Pointers to arrays that contain the input vectors \(a\) and \(b\).

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

FORTRAN: Array that specifies the output vector \(y\).

C: Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Atan2 function computes four-quadrant inverse tangent of elements of two vectors.
The elements of the output vectory are computed as the four-quadrant arctangent of \(a[i] / b[i]\).
Special values for Real Function v?Atan2(x)
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline\(-\infty\) & \(-\infty\) & \(-3^{*} \pi / 4\) & \\
\(-\infty\) & \(X<+0\) & \(-\pi / 2\) & \\
\(-\infty\) & -0 & \(-\pi / 2\) & \\
\(-\infty\) & +0 & \(-\pi / 2\) & \\
\(-\infty\) & \(X>+0\) & \(-\pi / 2\) & \\
\(-\infty\) & \(+\infty\) & \(-\pi / 4\) & \\
\(X<+0\) & \(-\infty\) & \(-\pi / 2\) &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline \(\mathrm{X}<+0\) & +0 & \(-\pi / 2\) & \\
\hline \(x<+0\) & \(+\infty\) & -0 & \\
\hline -0 & \(-\infty\) & \(-\pi\) & \\
\hline -0 & X < + 0 & \(-\pi\) & \\
\hline -0 & -0 & \(-\pi\) & \\
\hline -0 & +0 & -0 & \\
\hline -0 & X > + 0 & -0 & \\
\hline -0 & \(+\infty\) & -0 & \\
\hline +0 & \(-\infty\) & \(+\pi\) & \\
\hline +0 & \(x<+0\) & \(+\pi\) & \\
\hline +0 & -0 & \(+\pi\) & \\
\hline +0 & +0 & +0 & \\
\hline +0 & X > + 0 & +0 & \\
\hline +0 & \(+\infty\) & +0 & \\
\hline \(x>+0\) & \(-\infty\) & \(+\pi\) & \\
\hline \(x>+0\) & -0 & \(+\pi / 2\) & \\
\hline \(x>+0\) & +0 & \(+\pi / 2\) & \\
\hline \(x>+0\) & \(+\infty\) & +0 & \\
\hline \(+\infty\) & \(-\infty\) & \(-3 * \pi / 4\) & \\
\hline \(+\infty\) & \(x<+0\) & \(+\pi / 2\) & \\
\hline \(+\infty\) & -0 & \(+\pi / 2\) & \\
\hline \(+\infty\) & +0 & \(+\pi / 2\) & \\
\hline \(+\infty\) & \(x>+0\) & \(+\pi / 2\) & \\
\hline \(+\infty\) & \(+\infty\) & \(+\pi / 4\) & \\
\hline \(x>+0\) & QNAN & QNAN & \\
\hline \(\mathrm{X}>+0\) & SNAN & QNAN & INVALID \\
\hline QNAN & X \(>+0\) & QNAN & \\
\hline SNAN & \(\mathrm{X}>+0\) & QNAN & INVALID \\
\hline QNAN & QNAN & QNAN & \\
\hline QNAN & SNAN & QNAN & INVALID \\
\hline SNAN & QNAN & QNAN & INVALID \\
\hline SNAN & SNAN & QNAN & INVALID \\
\hline
\end{tabular}

\section*{Hyperbolic Functions}
v?Cosh
Computes hyperbolic cosine of vector elements.
Syntax

\section*{Fortran:}
```

call vscosh(n, a, y)
call vmscosh(n, a, y, mode)
call vdcosh(n, a, y)
call vmdcosh(n, a, y, mode)

```
```

call vccosh(n, a, y)
call vmccosh(n, a, y, mode)
call vzcosh(n, a, y)
call vmzcosh(n, a, y, mode)
C:
vsCosh(n, a, y);
vmsCosh(n, a, y, mode);
vdCosh(n, a, y);
vmdCosh(n, a, y, mode);
vCCosh(n, a, y);
vmcCosh(n, a, y, mode);
vzCosh(n, a, y);
vmzCosh(n, a, y, mode);

```

Include Files
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}

\section*{Name \\ n \\ Type \\ FORTRAN 77: INTEGER \\ Fortran 90: INTEGER, INTENT (IN)}
a
C: const int
FORTRAN 77: REAL for vscosh, vmscosh

DOUBLE PRECISION for vdcosh, vmdcosh

COMPLEX for vccosh, vmccosh
DOUBLE COMPLEX for vzcosh, vmzcosh

Fortran 90: REAL, INTENT (IN) for vscosh, vmscosh
DOUBLE PRECISION, INTENT (IN) for vdcosh, vmdcosh

COMPLEX, INTENT (IN) for vccosh, vmccosh
DOUBLE COMPLEX, INTENT (IN) for vzcosh, vmzcosh

C: const float* for vsCosh, vmsCosh

\section*{Description}

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multicolumn{3}{|c|}{const MKL_Complex8* for vcCosh, vmcCosh} \\
\hline \multicolumn{3}{|c|}{```
const MKL_Complex16* for vzCosh,
vmzCosh
```} \\
\hline mode & FORTRAN 77: INTEGER*8 & Overrides global VML mode setting for this \\
\hline & \begin{tabular}{l}
Fortran 90: INTEGER (KIND=8), \\
INTENT (IN)
\end{tabular} & function call. See vmlSetMode for possible values and their description. \\
\hline \multicolumn{3}{|c|}{C: const MKL_INT64} \\
\hline \multicolumn{3}{|l|}{Precision Overflow Thresholds for Real v?Cosh Function} \\
\hline Data Type & Threshold Limitation & s on Input Parameters \\
\hline single precision & -Ln (FLT_MAX) - Ln2 & <a[i] < Ln (FLT_MAX) + Ln2 \\
\hline double precision & -Ln (DBL_MAX) - Ln2 & <a[i] < Ln (DBL_MAX) + Ln2 \\
\hline
\end{tabular}

Precision overflow thresholds for the complex \(v\) ? Cosh function are beyond the scope of this document.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & FORTRAN 77: REAL for vscosh, \\
& vmscosh \\
& DOUBLE PRECISION for vdcosh, \\
& vmdcosh \\
& DOUBLE ComPLEX for vzcosh, \\
& vmzcosh \\
& Fortran 90: REAL, INTENT (OUT) for \\
& vscosh, vmscosh \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdcosh, vmdcosh \\
& COMPLEX, INTENT (OUT) for vccosh, \\
& vmccosh \\
& DOUBLE ComPLEX, INTENT (OUT) for \\
& vzcosh, vmzcosh \\
& C: float* for vsCosh, vmsCosh \\
& double* for vdCosh, vmdCosh \\
& MKL_Complex8* for vcCosh, vmcCosh \\
& MKL_Complex16* for vzCosh, \\
& vmzCosh
\end{tabular}

Description
The v?Cosh function computes hyperbolic cosine of vector elements.

Special Values for Real Function v?Cosh(x)
\begin{tabular}{llll}
\hline Argument & Result & VML Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & \\
\(X>\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & OVERFLOW \\
\(X<-\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & \\
\(+\infty\) & \(+\infty\) & & OVERFLOW \\
\(-\infty\) & \(+\infty\) & & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See the Special Value Notations section for the conventions used in the table below.
Special Values for Complex Function v?Cosh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RE(z) } \\
& \text { I-IM(z } \\
& \text {) }
\end{aligned}
\] & - & -X & -0 & +0 & +X & + & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \begin{tabular}{l}
\[
+\infty+\mathrm{i} \cdot \text { QNAN }
\] \\
INVALID
\end{tabular} & QNAN+i•QNAN INVALID & QNAN-i. 0 INVALID & \begin{tabular}{l}
QNAN+i.O \\
INVALID
\end{tabular} & QNAN+i.QNAN INVALID & \(+\infty+\mathrm{i} \cdot \mathrm{QNAN}\) INVALID & QNAN+i.QNAN \\
\hline +i.Y & \[
\begin{aligned}
& +\infty \cdot \operatorname{Cos}(Y)- \\
& i \cdot \infty \cdot \operatorname{Sin}(Y)
\end{aligned}
\] & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & QNAN+i.QNAN \\
\hline +i.0 & \(+\infty-\mathrm{i} \cdot 0\) & & +1-i 0 & \(+1+\mathrm{i} \cdot 0\) & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i. 0 \\
\hline -i. 0 & \(+\infty+\mathrm{i} \cdot 0\) & & \(+1+\mathrm{i} \cdot 0\) & +1-i \(\cdot 0\) & & \(+\infty-\mathrm{i} \cdot 0\) & QNAN-i. 0 \\
\hline -i.Y & \[
\begin{aligned}
& +\infty \cdot \operatorname{Cos}(Y)- \\
& i \cdot \infty \cdot \operatorname{Sin}(Y)
\end{aligned}
\] & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & QNAN+i.QNAN \\
\hline -i \(\cdot \infty\) & \begin{tabular}{l}
\(+\infty+\) i.QNAN \\
INVALID
\end{tabular} & QNAN+i.QNAN INVALID & QNAN+i. 0 INVALID & QNAN-i. 0 INVALID & QNAN+i.QNAN INVALID & \(+\infty+\) i.QNAN INVALID & QNAN+i.QNAN \\
\hline \(+\mathrm{i} \cdot \mathrm{NAN}\) & \(+\infty+\mathrm{i} \cdot \mathrm{QNAN}\) & QNAN+i.QNAN & QNAN+i.QNAN & QNAN-i. QNAN & QNAN+i.QNAN & \(+\infty+\mathrm{i}\) - \({ }^{\text {NNAN }}\) & QNAN+i.QNAN \\
\hline
\end{tabular}

Notes:
- raises the INVALID exception when the real or imaginary part of the argument is SNAN
- raises the OVERFLOW exception and sets the VML Error Status to VML_STATUS_OVERFLOW in the case of overflow, that is, when \(\operatorname{RE}(z)\), IM (z) are finite non-zero numbers, but the real or imaginary part of the exact result is so large that it does not meet the target precision.
- \(\operatorname{Cosh}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Cosh}(z))\)
- \(\operatorname{Cosh}(-z)=\operatorname{Cosh}(z)\).

\section*{v?Sinh}

Computes hyperbolic sine of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vssinh( n, a, y )
call vmssinh( n, a, y, mode )
call vdsinh( n, a, y )
call vmdsinh( n, a, y, mode )

```
```

call vcsinh( n, a, y )
call vmcsinh( n, a, y, mode )
call vzsinh( n, a, y )
call vmzsinh( n, a, y, mode )

```
C:
vSSinh (\(n, a, y)\);
vmsSinh (\(n, a, y, m o d e) ;\)
vdSinh (\(n, a, y)\);
vmdSinh (\(n, a, y\), mode \()\);
vCSinh(\(n, a, y)\);
vmcSinh (\(n, a, y, m o d e) ;\)
vzSinh(\(n, a, y)\);
vmzSinh (\(n, a, y, m o d e) ;\)

Include Files
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

\section*{Name \\ n \\ Type \\ FORTRAN 77: INTEGER \\ Fortran 90: INTEGER, INTENT (IN)}
a
C: const int
FORTRAN 77: REAL for vssinh, vmssinh

DOUBLE PRECISION for vdsinh, vmdsinh

COMPLEX for vcsinh, vmcsinh
DOUBLE COMPLEX for vzsinh, vmzsinh

Fortran 90: REAL, INTENT (IN) for vssinh, vmssinh

DOUBLE PRECISION, INTENT (IN) for vdsinh, vmdsinh

COMPLEX, INTENT (IN) for vcsinh, vmcsinh

DOUBLE COMPLEX, INTENT (IN) for vzsinh, vmzsinh

C: const float* for vsSinh, vmsSinh

\section*{Description}

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Precision overflow thresholds for the complex \(v\) ? Sinh function are beyond the scope of this document.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & FORTRAN 77: REAL for vssinh, \\
vmssinh \\
& DOUBLE PRECISION for vdsinh, \\
& vmdsinh \\
& DOMPLEX for vcsinh, vmcsinh \\
& vmzsinh \\
& Fortran 90: REAL, INTENT (OUT) for \\
& vssinh, vmssinh \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdsinh, vmdsinh \\
& COMPLEX, INTENT (OUT) for vcsinh, \\
& vmcsinh \\
& DOUBLE COMPLEX, INTENT (OUT) for \\
& vzsinh, vmzsinh \\
& C: float* for vsSinh, vmsSinh \\
& double* for vdSinh, vmdSinh \\
& MKL_Complex8* for vcSinh, vmcSinh \\
& MKL_Complex16* for vzSinh, \\
& vmzSinh
\end{tabular}

\section*{Description}

The v?Sinh function computes hyperbolic sine of vector elements.

Special Values for Real Function v?Sinh(x)
\begin{tabular}{llll}
\hline Argument & Result & VML Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & \\
\(X>\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & OVERFLOW \\
\(X<-\) overflow & \(-\infty\) & & \\
\(+\infty\) & \(+\infty\) & & OVERFLOW \\
\(-\infty\) & \(-\infty\) & & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See the Special Value Notations section for the conventions used in the table below.
Special Values for Complex Function v?Sinh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z) }
\end{gathered}
\] & - \(\infty\) & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline \(+i \cdot \infty\) & \begin{tabular}{l}
\(-\infty+i \cdot\) QNAN \\
INVALID
\end{tabular} & QNAN+i•QNAN INVALID & \begin{tabular}{l}
-0+i.QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
\(+0+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & QNAN+i•QNAN INVALID & \begin{tabular}{l}
\(+\infty+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & QNAN+i•QNAN \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & \[
\begin{aligned}
& -\infty \cdot \operatorname{Cos}(Y)+ \\
& i \cdot \infty \cdot \operatorname{Sin}(Y)
\end{aligned}
\] & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & QNAN+i•QNAN \\
\hline +i.0 & \(-\infty+\mathrm{i} \cdot 0\) & & \(-0+i \cdot 0\) & \(+0+i \cdot 0\) & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i•0 \\
\hline -i. 0 & \(-\infty-\mathrm{i} \cdot 0\) & & -0-i.0 & +0-i \(\cdot 0\) & & \(+\infty-\mathrm{i} \cdot 0\) & QNAN-i-0 \\
\hline -i•Y & \[
\begin{aligned}
& -\infty \cdot \operatorname{Cos}(Y)+ \\
& i \cdot \infty \cdot \operatorname{Sin}(Y)
\end{aligned}
\] & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & QNAN+i•QNAN \\
\hline \(-i \cdot \infty\) & \begin{tabular}{l}
\(-\infty+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & QNAN+i•QNAN INVALID & \begin{tabular}{l}
-O+i.QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
\(+0+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & QNAN+i•QNAN INVALID & \begin{tabular}{l}
\(+\infty+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & QNAN+i•QNAN \\
\hline +i•NAN & \(-\infty+\mathrm{i} \cdot \mathrm{QNAN}\) & QNAN+i•QNAN & -0+i.QNAN & +0+i•QNAN & QNAN+i•QNAN & \(+\infty+\mathrm{i} \cdot\) QNAN & QNAN+i•QNAN \\
\hline
\end{tabular}

\section*{Notes:}
- raises the INVALID exception when the real or imaginary part of the argument is SNAN
- raises the OVERFLOW exception and sets the VML Error Status to VML_STATUS_OVERFLOW in the case of overflow, that is, when \(\operatorname{RE}(z)\), IM (z) are finite non-zero numbers, but the real or imaginary part of the exact result is so large that it does not meet the target precision.
- \(\operatorname{Sinh}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Sinh}(z))\)
- \(\operatorname{Sinh}(-z)=-\operatorname{Sinh}(z)\).

\section*{v?Tanh}

Computes hyperbolic tangent of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vstanh( n, a, y )
call vmstanh( n, a, y, mode )
call vdtanh( n, a, y )
call vmdtanh( n, a, y, mode )
call vctanh( n, a, y )

```
```

call vmctanh( n, a, y, mode )
call vztanh( n, a, y )
call vmztanh( n, a, y, mode )

```
C:
vsTanh (\(n, a, y)\);
vmsTanh (\(n, a, y, m o d e)\);
\(\operatorname{vdTanh}(n, a, y)\);
vmdTanh (\(n, a, y\), mode \()\);
\(\operatorname{vcTanh}(n, a, y)\);
vmcTanh (\(n, a, y\), mode \()\);
\(\operatorname{vzTanh}(n, a, y)\);
vmzTanh (\(n, a, y\), mode \()\);

\section*{Include Files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}

\section*{Name}
n
a

\section*{Type}

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: const int
FORTRAN 77: REAL for vstanh, vmstanh

DOUBLE PRECISION for vdtanh, vmdtanh

COMPLEX for vctanh, vmctanh
DOUBLE COMPLEX for vztanh, vmztanh

Fortran 90: REAL, INTENT (IN) for vstanh, vmstanh
DOUBLE PRECISION, INTENT (IN) for vdtanh, vmdtanh
COMPLEX, INTENT (IN) for vctanh, vmctanh
DOUBLE COMPLEX, INTENT (IN) for vztanh, vmztanh
C: const float* for vsTanh, vmsTanh
const double* for vdTanh, vmdTanh

\section*{Description}

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.
Name \begin{tabular}{l}
Type \\
\begin{tabular}{l}
const MKL_Complex8* for vcTanh, \\
vmcTanh
\end{tabular} \\
\begin{tabular}{l}
const MKL_Complex16* for vzTanh, \\
vmzTanh
\end{tabular}
\end{tabular}

FORTRAN 77: INTEGER*8
Fortran 90: INTEGER(KIND=8), INTENT (IN)

C: const MKL_INT64

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & FORTRAN 77: REAL for vstanh, \\
vmstanh \\
& DOUBLE PRECISION for vdtanh, \\
& vmdtanh \\
& DOMPLEX for vctanh, vmctanh \\
& vmztanh \\
& Fortran 90: REAL, INTENT (OUT) for \\
& vstanh, vmstanh \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdtanh, vmdtanh \\
& COMPLEX, INTENT (OUT) for vctanh, \\
& vmctanh \\
& DOUBLE COMPLEX, INTENT (OUT) for \\
& vztanh, vmztanh \\
& C: float* for vsTanh, vmsTanh \\
& double* for vdTanh, vmdTanh \\
& MKL_Complex8* for vcTanh, vmcTanh \\
& MKL_Complex16* for vzTanh, \\
& vmzTanh
\end{tabular}

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

FORTRAN: Array that specifies the output vector \(y\).

C: Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Tanh function computes hyperbolic tangent of vector elements.

\section*{Special Values for Real Function v?Tanh(x)}
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & +1 & \\
\(-\infty\) & -1 &
\end{tabular}
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline SNAN & QNAN & INVALID \\
\hline
\end{tabular}

See the Special Value Notations section for the conventions used in the table below.
Special Values for Complex Function v?Tanh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z } \\
\text {) }
\end{gathered}
\] & \(-\infty\) & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline \(+i \cdot \infty\) & \(-1+i \cdot 0\) & QNAN+i•QNAN INVALID & QNAN+i•QNAN INVALID & QNAN+i•QNAN INVALID & QNAN+i•QNAN INVALID & \(+1+\mathrm{i} \cdot 0\) & QNAN+i•QNAN \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & \(-1+\mathrm{i} \cdot 0 \cdot \operatorname{Tan}(\mathrm{Y})\) & & & & & +1+i \(\cdot 0 \cdot \operatorname{Tan}(\mathrm{Y})\) & QNAN+i•QNAN \\
\hline \(+\mathrm{i} \cdot 0\) & \(-1+\mathrm{i} \cdot 0\) & & \(-0+\mathrm{i} \cdot 0\) & +0+i.0 & & +1+i.0 & QNAN+i•0 \\
\hline -i. 0 & -1-i•0 & & -0-i. 0 & +0-i. 0 & & +1-i.0 & QNAN-i. 0 \\
\hline \(-i \cdot Y\) & \(-1+\mathrm{i} \cdot 0 \cdot \operatorname{Tan}(\mathrm{Y})\) & & & & & \(+1+\mathrm{i} \cdot 0 \cdot \operatorname{Tan}(\mathrm{Y})\) & QNAN+i•QNAN \\
\hline \(-i \cdot \infty\) & -1-i.0 & QNAN+i•QNAN INVALID & QNAN+i•QNAN INVALID & QNAN+i•QNAN INVALID & QNAN+i•QNAN INVALID & +1-i.0 & QNAN+i•QNAN \\
\hline +i•NAN & \(-1+\mathrm{i} \cdot 0\) & QNAN+i•QNAN & QNAN+i•QNAN & QNAN+i•QNAN & QNAN+i•QNAN & \(+1+\mathrm{i} \cdot 0\) & QNAN+i•QNAN \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when real or imaginary part of the argument is SNAN
- \(\operatorname{Tanh}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Tanh}(z))\)
- \(\operatorname{Tanh}(-z)=-\operatorname{Tanh}(z)\).

\section*{v?Acosh}

Computes inverse hyperbolic cosine (nonnegative) of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vsacosh( n, a, y )
call vmsacosh( n, a, y, mode )
call vdacosh( n, a, y )
call vmdacosh( n, a, y, mode )
call vcacosh( n, a, y )
call vmcacosh( n, a, y, mode )
call vzacosh( n, a, y )
call vmzacosh( n, a, y, mode )
C:
vsAcosh( n, a, y );
vmsAcosh( n, a, y, mode );
vdAcosh( n, a, y );
vmdAcosh( n, a, y, mode );

```
```

vcAcosh( n, a, y );

```
vmcAcosh (\(n, a, y, m o d e)\);
\(\operatorname{vzAcosh}(n, a, y)\);
vmzAcosh(\(n, a, y, m o d e)\);

\section*{Include Files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}
```

Name
n
a
mode

```

\section*{Type}

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: const int
FORTRAN 77: REAL for vsacosh, vmsacosh

DOUBLE PRECISION for vdacosh, vmdacosh

COMPLEX for vcacosh, vmcacosh
DOUBLE COMPLEX for vzacosh, vmzacosh

Fortran 90: REAL, INTENT (IN) for vsacosh, vmsacosh

DOUBLE PRECISION, INTENT (IN) for vdacosh, vmdacosh

COMPLEX, INTENT (IN) for vcacosh, vmcacosh

DOUBLE COMPLEX, INTENT (IN) for vzacosh, vmzacosh

C: const float* for vsAcosh, vmsAcosh
const double* for vdAcosh, vmdAcosh
const MKL_Complex8* for vcAcosh, vmcAcosh
const MKL_Complex16* for vzAcosh, vmzAcosh

FORTRAN 77: INTEGER*8
Fortran 90: INTEGER(KIND=8), INTENT (IN)

C: const MKL_INT64

\section*{Description}

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name
y

## Type

FORTRAN 77: REAL for vsacosh, vmsacosh

DOUBLE PRECISION for vdacosh, vmdacosh

COMPLEX for vcacosh, vmcacosh
DOUBLE COMPLEX for vzacosh, vmzacosh

Fortran 90: REAL, INTENT (OUT) for

```
vsacosh, vmsacosh
```

```
```

vsacosh, vmsacosh

```
```

DOUBLE PRECISION, INTENT (OUT) for vdacosh, vmdacosh

COMPLEX, INTENT (OUT) for vcacosh, vmcacosh

DOUBLE COMPLEX, INTENT (OUT) for vzacosh, vmzacosh

C: float* for vsAcosh, vmsAcosh
double* for vdAcosh, vmdAcosh
MKL_Complex8* for vcAcosh, vmcAcosh

MKL_Complex16* for vzAcosh, vmzAcosh

## Description

FORTRAN: Array that specifies the output vector $y$.

C: Pointer to an array that contains the output vector $y$.

## Description

The $v$ ?Acosh function computes inverse hyperbolic cosine (nonnegative) of vector elements.
Special Values for Real Function v?Acosh(x)

Argument	Result	VML Error Status	Exception
+1	+0		
$X<+1$	QNAN	VML_STATUS_ERRDOM	INVALID
$-\infty$	QNAN	VML_STATUS_ERRDOM	INVALID
$+\infty$	$+\infty$		
QNAN	QNAN		INVALID
SNAN	QNAN		

See the Special Value Notations section for the conventions used in the table below.
Special Values for Complex Function v?Acosh(z)

$\mathbf{R E}(\mathbf{z})$   $\mathbf{i} \cdot \mathbf{I M}(\mathbf{z}$   $\mathbf{)}$	$-\infty$	$\mathbf{- X}$	$\mathbf{- 0}$	$\mathbf{+ 0}$	$\mathbf{+ X}$	$\mathbf{+ \infty}$	NAN
$+\mathrm{i} \cdot \infty$	$+\infty+\mathrm{i} \cdot \frac{3 \pi}{4}$	$+\infty+\mathrm{i} \cdot \pi / 2$	$+\infty+\mathrm{i} \cdot \pi / 4$	$+\infty+\mathrm{i} \cdot$ QNAN			
$+\mathrm{i} \cdot \mathrm{Y}$	$+\infty+\mathrm{i} \cdot \pi$					$+\infty+\mathrm{i} \cdot 0$	QNAN $+\mathrm{i} \cdot$ QNAN


$\begin{aligned} & \text { RE(z) } \\ & \text { i•IM }(z \\ & \text { ) } \end{aligned}$	$-\infty$	-X	-0	+0	+X	$+\infty$	NAN
+i.0	$+\infty+\mathrm{i} \cdot \pi$		$+0+i \cdot \pi / 2$	$+0+i \cdot \pi / 2$		$+\infty+\mathrm{i} \cdot 0$	QNAN+i•QNAN
-i. 0	$+\infty+i \cdot \pi$		$+0+i \cdot \pi / 2$	$+0+i \cdot \pi / 2$		$+\infty+\mathrm{i} \cdot 0$	QNAN+i•QNAN
-i.Y	$+\infty+\mathrm{i} \cdot \pi$					$+\infty+\mathrm{i} \cdot 0$	QNAN+i•QNAN
$-i \cdot \infty$	$+\infty-i \cdot \frac{3 \pi}{4}$	$+\infty-\mathrm{i} \cdot \pi / 2$	$+\infty-\mathrm{i} \cdot \pi / 4$	$+\infty+\mathrm{i} \cdot \mathrm{QNAN}$			
+i•NAN	$+\infty+\mathrm{i} \cdot \mathrm{QNAN}$	QNAN+i•QNAN	QNAN+i•QNAN	QNAN+i•QNAN	QNAN+i•QNAN	$+\infty+i \cdot$ QNAN	QNAN+i•QNAN

Notes:

- raises INVALID exception when real or imaginary part of the argument is SNAN
- $\operatorname{Acosh}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Acosh}(z))$.


## v?Asinh

Computes inverse hyperbolic sine of vector elements.
Syntax

## Fortran:

```
call vsasinh(n, a, y)
call vmsasinh(n, a, y, mode)
call vdasinh(n, a, y)
call vmdasinh(n, a, y, mode)
call vcasinh(n, a, y)
call vmcasinh(n, a, y, mode)
call vzasinh(n, a, y)
call vmzasinh(n, a, y, mode)
C:
vsAsinh(n, a, y);
vmsAsinh(n, a, y, mode);
vdAsinh(n, a, y);
vmdAsinh(n, a, y, mode);
vcAsinh(n, a, y);
vmcAsinh(n, a, y, mode);
vzAsinh(n, a, y);
vmzAsinh(n, a, y, mode);
```


## Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h


## Input Parameters

## Name Type <br> n <br> a <br> FORTRAN 77: INTEGER <br> Fortran 90: INTEGER, INTENT (IN) <br> C: const int <br> FORTRAN 77: REAL for vsasinh, vmsasinh <br> DOUBLE PRECISION for vdasinh, vmdasinh <br> COMPLEX for vcasinh, vmcasinh <br> DOUBLE COMPLEX for vzasinh, vmzasinh

ode
Fortran 90: REAL, INTENT (IN) for vsasinh, vmsasinh DOUBLE PRECISION, INTENT (IN) for vdasinh, vmdasinh

COMPLEX, INTENT(IN) for vcasinh, vmcasinh

DOUBLE COMPLEX, INTENT (IN) for vzasinh, vmzasinh

C: const float* for vsAsinh, vmsAsinh const double* for vdAsinh, vmdAsinh
const MKL_Complex8* for vcAsinh, vmcAsinh
const MKL_Complex16* for vzAsinh, vmzAsinh

FORTRAN 77: INTEGER*8

Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

## Output Parameters

Name	Type
$y$	FORTRAN 77: REAL for vsasinh,
	vmsasinh
	DOUBLE PRECISION for vdasinh,
vmdasinh	
	COMPLEX for vcasinh, vmcasinh

## Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

## Description

FORTRAN: Array that specifies the output vector $y$.

C: Pointer to an array that contains the output vector $y$.

## Name

## Type

## Description

```
DOUBLE COMPLEX for vzasinh,
vmzasinh
```

Fortran 90: REAL, INTENT (OUT) for vsasinh, vmsasinh

DOUBLE PRECISION, INTENT (OUT) for vdasinh, vmdasinh

COMPLEX, INTENT (OUT) for vcasinh, vmcasinh

DOUBLE COMPLEX, INTENT (OUT) for
vzasinh, vmzasinh
C: float* for vsAsinh, vmsAsinh
double* for vdAsinh, vmdAsinh
MKL_Complex8* for vcAsinh, vmcAsinh

MKL_Complex16* for vzAsinh, vmzAsinh

## Description

The v?Asinh function computes inverse hyperbolic sine of vector elements.
Special Values for Real Function v?Asinh(x)

Argument	Result	Exception
+0	+0	
-0	-0	
$+\infty$	$+\infty$	
$-\infty$	$-\infty$	INVALID
QNAN	QNAN	
SNAN	QNAN	

See the Special Value Notations section for the conventions used in the table below.
Special Values for Complex Function v?Asinh(z)

$\begin{aligned} & \text { RE(z) } \\ & \text { i•IM(z } \\ & \text { ) } \end{aligned}$	$-\infty$	-X	-0	+0	+X	$+\infty$	NAN
$+\mathrm{i} \cdot \infty$	$-\infty+\mathrm{i} \cdot \pi / 4$	$-\infty+\mathrm{i} \cdot \pi / 2$	$+\infty+\mathrm{i} \cdot \pi / 4$	$+\infty+\mathrm{i} \cdot \mathrm{QNAN}$			
+i.Y	$-\infty+\mathrm{i} \cdot 0$					$+\infty+\mathrm{i} \cdot 0$	QNAN+i•QNAN
+i.0	$+\infty+\mathrm{i} \cdot 0$		$+0+\mathrm{i} \cdot 0$	$+0+\mathrm{i} \cdot 0$		$+\infty+\mathrm{i} \cdot 0$	QNAN+i•QNAN
-i.0	$-\infty-\mathrm{i} \cdot 0$		-0-i.0	$+0-\mathrm{i} \cdot 0$		$+\infty-\mathrm{i} \cdot 0$	QNAN-i.QNAN
$-\mathrm{i} \cdot \mathrm{Y}$	$-\infty-\mathrm{i} \cdot 0$					$+\infty-\mathrm{i} \cdot 0$	QNAN+i.QNAN
$-\mathrm{i} \cdot \infty$	$-\infty-\mathrm{i} \cdot \pi / 4$	$-\infty-\mathrm{i} \cdot \pi / 2$	$-\infty-\mathrm{i} \cdot \pi / 2$	$+\infty-\mathrm{i} \cdot \pi / 2$	$+\infty-\mathrm{i} \cdot \pi / 2$	$+\infty-\mathrm{i} \cdot \pi / 4$	$+\infty+\mathrm{i} \cdot \mathrm{QNAN}$
$+\mathrm{i} \cdot \mathrm{NAN}$	$-\infty+\mathrm{i} \cdot \mathrm{QNAN}$	QNAN   +i•QNAN	$\begin{aligned} & \text { QNAN } \\ & +\dot{+} \cdot \text { QNAN } \end{aligned}$	QNAN +i•QNAN	QNAN   +i.QNAN	$+\infty+\mathrm{i} \cdot \mathrm{QNAN}$	QNAN+i•QNAN

[^3]- raises INVALID exception when real or imaginary part of the argument is SNAN
- Asinh $(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Asinh}(z))$
- $\operatorname{Asinh}(-z)=-A \sinh (z)$.
v?Atanh
Computes inverse hyperbolic tangent of vector elements.


## Syntax

## Fortran:

```
call vsatanh(n, a, y)
call vmsatanh(n, a, y, mode)
call vdatanh(n, a, y)
call vmdatanh(n, a, y, mode)
call vcatanh(n, a, y)
call vmcatanh(n, a, y, mode)
call vzatanh(n, a, y)
call vmzatanh(n, a, y, mode)
```

C:
vsAtanh ( $n, a, y)$;
vmsAtanh ( $n, a, y$, mode $)$;
vdAtanh ( $n, a, y)$;
vmdAtanh ( $n, a, y, m o d e)$;
vcAtanh ( $n, a, y)$;
vmcAtanh ( $n, a, y$, mode $)$;
vzAtanh ( $n, a, y)$;
vmzAtanh ( $n, a, y$, mode $)$;

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h


## Input Parameters

Name	Type
$n$	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN)
	C: const int

a

FORTRAN 77: REAL for vsatanh, vmsatanh

## Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

Name	Type	Description
	DOUBLE PRECISION for vdatanh, vmdatanh	C: Pointer to an array that contains the input vector a.
	COMPLEX for vcatanh, vmcatanh	
	DOUBLE COMPLEX for vzatanh, vmzatanh	
	Fortran 90: REAL, INTENT (IN) for vsatanh, vmsatanh	
	DOUBLE PRECISION, INTENT (IN) for vdatanh, vmdatanh	
	COMPLEX, INTENT (IN) for vcatanh, vmcatanh	
	DOUBLE COMPLEX, INTENT (IN) for vzatanh, vmzatanh	
	C: const float* for vsAtanh, vmsAtanh	
	const double* for vdAtanh, vmdAtanh	
	const MKL_Complex8* for vcAtanh, vmcAtanh	
	const MKL_Complex16* for vzAtanh, vmzAtanh	
mode	FORTRAN 77: INTEGER*8	Overrides global VML mode setting for this
	Fortran 90: INTEGER (KIND=8), INTENT (IN)	function call. See vmlSetMode for possible values and their description.
	C: const MKL_INT64	
Output Parameters		
Name	Type	Description
y	FORTRAN 77: REAL for vsatanh, vmsatanh	FORTRAN: Array that specifies the output vector $y$.
	DOUBLE PRECISION for vdatanh, vmdatanh	C: Pointer to an array that contains the output vector $y$.
	COMPLEX for vcatanh, vmcatanh	
	DOUBLE COMPLEX for vzatanh, vmzatanh	
	Fortran 90: REAL, INTENT (OUT) for vsatanh, vmsatanh	
	DOUBLE PRECISION, INTENT (OUT) for vdatanh, vmdatanh	
	COMPLEX, INTENT (OUT) for vcatanh, vmcatanh	

Name Type

```
DOUBLE COMPLEX, INTENT (OUT) for
vzatanh, vmzatanh
C: float* for vsAtanh, vmsAtanh
double* for vdAtanh, vmdAtanh
MKL_Complex8* for vcAtanh,
vmcAtanh
MKL_Complex16* for vzAtanh,
vmzAtanh
```


## Description

## Description

The v?Atanh function computes inverse hyperbolic tangent of vector elements.

## Special Values for Real Function v?Atanh(x)

Argument	Result	VML Error Status	Exception
+1	$+\infty$	VML_STATUS_SING	ZERODIVIDE
-1	$-\infty$	VML_STATUS_SING	ZERODIVIDE
$\|X\|>1$	QNAN	VML_STATUS_ERRDOM	INVALID
$+\infty$	QNAN	VML_STATUS_ERRDOM	INVALID
$-\infty$	QNAN	VML_STATUS_ERRDOM	INVALID
QNAN	QNAN		
SNAN	QNAN		INVALID

See the Special Value Notations section for the conventions used in the table below.
Special Values for Complex Function v?Atanh(z)

$\begin{aligned} & \text { RE(z) } \\ & \text { i•IM(z } \\ & \text { ) } \end{aligned}$	- -	-X	-0	+0	+X	$+\infty$	NAN
$+\mathrm{i} \cdot \infty$	$-0+\mathrm{i} \cdot \pi / 2$	$-0+\mathrm{i} \cdot \pi / 2$	$-0+\mathrm{i} \cdot \pi / 2$	$+0+i \cdot \pi / 2$	$+0+\mathrm{i} \cdot \pi / 2$	$+0+\mathrm{i} \cdot \pi / 2$	$+0+\mathrm{i} \cdot \pi / 2$
+i.Y	$-0+\mathrm{i} \cdot \pi / 2$					$+0+\mathrm{i} \cdot \pi / 2$	QNAN+i.QNAN
+i.0	$-0+\mathrm{i} \cdot \pi / 2$		$-0+i \cdot 0$	+0+i•0		$+0+\mathrm{i} \cdot \pi / 2$	QNAN+i.QNAN
-i.0	$-0-\mathrm{i} \cdot \pi / 2$		-0-i.0	+0-i. 0		$+0-\mathrm{i} \cdot \pi / 2$	QNAN-i-QNAN
-i.Y	$-0-i \cdot \pi / 2$					$+0-\mathrm{i} \cdot \pi / 2$	QNAN+i.QNAN
-i $\cdot \infty$	-0-i $\cdot \pi / 2$	$-0-\mathrm{i} \cdot \pi / 2$	$-0-\mathrm{i} \cdot \pi / 2$	$+0-\mathrm{i} \cdot \pi / 2$			
$+\mathrm{i} \cdot \mathrm{NAN}$	-0+i.QNAN	QNAN   +i.QNAN	-0+i.QNAN	+0+i.QNAN	QNAN   +i.QNAN	+0+i•QNAN	QNAN+i.QNAN

## Notes:

- Atanh $(+-1+-i * 0)=+-\infty+-i * 0$, and ZERODIVIDE exception is raised
- raises INVALID exception when real or imaginary part of the argument is SNAN
- Atanh $(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Atanh}(z))$
- Atanh $(-z)=-\operatorname{Atanh}(z)$.


## Special Functions

## v?Erf

Computes the error function value of vector elements.

## Syntax

## Fortran:

```
call vserf(n, a, y)
call vmserf(n, a, y, mode)
call vderf(n, a, y)
call vmderf(n, a, y, mode)
```

C:

```
vsErf(n, a, y);
```

vmsErf( $n, a, y$, mode ) ;
$\operatorname{vdErf}(n, a, y)$;
vmdErf ( $n, a, y$, mode $)$;

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h


## Input Parameters

Name	Type
$n$	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN)
	C: const int
a	FORTRAN 77: REAL for vserf, vmserf
	DOUBLE PRECISION for vderf, vmderf
	Fortran 90: REAL, INTENT (IN) for vserf, vmserf
	DOUBLE PRECISION, INTENT (IN) for vderf, vmderf
	C: const float* for vsErf, vmsErf const double* for vdErf, vmdErf
mode	FORTRAN 77: INTEGER*8

## Description

Specifies the number of elements to be calculated.

FORTRAN: Array, specifies the input vector a.
C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.


## Description

The Erf function computes the error function values for elements of the input vector a and writes them to the output vector $y$.

The error function is defined as given by:

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

Useful relations:

1. $\operatorname{erfc}(x)=1-\operatorname{erf}(x)$,
where erfc is the complementary error function.
2. $\Phi(x)=\frac{1}{2} \operatorname{erf}(x / \sqrt{2})$,
where
$\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \exp \left(-t^{2} / 2\right) d t$
is the cumulative normal distribution function.
3. $\Phi^{-1}(x)=\sqrt{2} \operatorname{erf}^{-1}(2 x-1)$,
where $\Phi^{-1}(x)$ and $\operatorname{erf}^{-1}(x)$ are the inverses to $\Phi(x)$ and $\operatorname{erf}(x)$ respectively.
The following figure illustrates the relationships among Erf family functions (Erf, Erfc, CdfNorm).

Erf Family Functions Relationship


Useful relations for these functions:

$$
\begin{aligned}
& \operatorname{erf}(x)+\operatorname{erfc}(x)=1 \\
& \operatorname{cdfnom}(x)=\frac{1}{2}\left(1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right)=1-\frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)
\end{aligned}
$$

Special Values for Real Function v?Erf(x)

Argument	Result	Exception
$+\infty$	+1	
$-\infty$	-1	
QNAN	QNAN	
SNAN	QNAN	INVALID

See Also
v?Erfc
v?CdfNorm

## v?Erfc <br> Computes the complementary error function value of

 vector elements.
## Syntax

## Fortran:

```
call vserfc(n, a, y)
call vmserfc(n, a, y, mode)
call vderfc(n, a, y)
call vmderfc(n, a, y, mode)
```

C:

```
vsErfc(n, a, y);
```

vmsErfc ( $n, a, y$, mode $)$;
vdErfc ( $n, a, y)$;
vmdErfc $n, a, y$, mode $)$;

## Include files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name
n
a
mode

## Type

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: const int
FORTRAN 77: REAL for vserfc, vmserfc

DOUBLE PRECISION for vderfc, vmderfc

Fortran 90: REAL, INTENT (IN) for vserfc, vmserfc

DOUBLE PRECISION, INTENT (IN) for vderfc, vmderfc

C: const float* for vsErfc, vmsErfc
const double* for vdErfc, vmdErfc
FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)

## Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector $a$.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Name	Type	Description
	C: const MKL_INT64	

## Output Parameters

Name	Type
$y$	FORTRAN 77: REAL for vserfc,
	vmserfc
	DOUBLE PRECISION for vderfc,
	vmderfc
	Fortran 90: REAL, INTENT (OUT) for
	vserfc, vmserfc
	Double PRECISION, INTENT (OUT) for
	vderfc, vmderfc
	C: float* for vsErfc, vmsErfc
	double* for vdErfc, vmdErfc

## Description

The Erfc function computes the complementary error function values for elements of the input vector a and writes them to the output vector $y$.
The complementary error function is defined as follows:

$$
\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t
$$

Useful relations:

1. $\operatorname{erfc}(x)=1-\operatorname{erf}(x)$.
2. $\Phi(x)=\frac{1}{2} \operatorname{erf}(x / \sqrt{2})$,
where

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \exp \left(-t^{2} / 2\right) d t
$$

is the cumulative normal distribution function.
3. $\Phi^{-1}(x)=\sqrt{2} \operatorname{erf}^{-1}(2 x-1)$,
where $\Phi^{-1}(x)$ and $\operatorname{erf}^{-1}(x)$ are the inverses to $\Phi(x)$ and $\operatorname{erf}(x)$ respectively.
See also Figure "Erf Family Functions Relationship" in Erf function description for Erfc function relationship with the other functions of Erf family.

Special Values for Real Function v?Erfc $(\mathbf{x})$			
Argument	Result	VML Error Status	Exception
$X>$ underflow	+0	VML_STATUS_UNDERFLOW	UNDERFLOW
$+\infty$	+0		
$-\infty$	+2		INVALID
QNAN	QNAN		
SNAN	QNAN		

## See Also

v?Erf
v?CdfNorm

## v?CdfNorm

Computes the cumulative normal distribution function values of vector elements.

## Syntax

## Fortran:

```
call vscdfnorm(n, a, y)
call vmscdfnorm(}n, a, y, mode
call vdcdfnorm(n, a, y)
call vmdcdfnorm(}n,a,y, mode
```

C:
vsCdfNorm ( $n, a, y)$;
vmsCdfNorm ( $n, a, y, m o d e)$;
vdCdfNorm( $n, a, y)$;
vmdCdfNorm ( $n, a, y$, mode $)$;

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

## Name <br> n <br> Type <br> FORTRAN 77: INTEGER <br> Fortran 90: INTEGER, INTENT (IN)

a
C: const int
FORTRAN 77: REAL for vscdfnorm, vmscdfnorm
DOUBLE PRECISION for vdcdfnorm, vmdcdfnorm

## Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Name	Type
Fortran 90: REAL, INTENT (IN) for	
vscdfnorm, vmscdfnorm	
	DOUBLE PRECISION, INTENT (IN) for
	vdcdfnorm, vmdcdfnorm
	C: const float* for vsCdfNorm,
	vmsCdfNorm
	const double* for vdCdfNorm,
	vmdCdfNorm

FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)
C: const MKL_INT64

## Output Parameters

Name	Type		
$y$	FORTRAN 77: REAL for vscdfnorm,		
	vmscdfnorm		
	DOUBLE PRECISION for vdcdfnorm,		
	vmdcdfnorm		
	Fortran 90: REAL, INTENT (OUT) for		
	vscdfnorm, vmscdfnorm		
	DOUBLE PRECISION, INTENT (OUT) for		
	vdcdfnorm, vmdcdfnorm		
	C: $f l o a t * ~ f o r ~ v s C d f N o r m, ~$	,	vmsCdfNorm
:---			

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

## Description

FORTRAN: Array that specifies the output vector $y$.

C: Pointer to an array that contains the output vector $y$.

## Description

The CdfNorm function computes the cumulative normal distribution function values for elements of the input vector $a$ and writes them to the output vector $y$.
The cumulative normal distribution function is defined as given by:

$$
\operatorname{CdfNorm}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t
$$

Useful relations:

$$
\operatorname{cdfnom}(x)=\frac{1}{2}\left(1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right)=1-\frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)
$$

where Erf and Erfc are the error and complementary error functions.
See also Figure "Erf Family Functions Relationship" in Erf function description for CdfNorm function relationship with the other functions of Erf family.

Special Values for Real Function v?CdfNorm(x)

Argument	Result	VML Error Status	Exception
$X<$ underflow	+0	VML_STATUS_UNDERFLOW	UNDERFLOW
$+\infty$	+1		
$-\infty$	+0		
QNAN	QNAN	INVALID	
SNAN	QNAN		

```
See Also
v?Erf
v?Erfc
v?ErfInv
Computes inverse error function value of vector
elements.
```

Syntax

## Fortran:

```
call vserfinv(n, a, y)
call vmserfinv(n, a, y, mode)
call vderfinv(n, a, y)
call vmderfinv(n, a, y, mode)
```

C:

```
vsErfInv(n, a, y);
vmsErfInv(n, a, y, mode);
vdErfInv(n, a, y);
vmdErfInv(n, a, y, mode);
```


## Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
$n$	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN)

## Description

Specifies the number of elements to be calculated.

Name	Type	Description
a	FORTRAN 77: REAL for vserfinv, vmserfinv	FORTRAN: Array that specifies the input vector a.
	DOUBLE PRECISION for vderfinv, vmderfinv	C: Pointer to an array that contains the input vector $a$.
	Fortran 90: REAL, INTENT (IN) for vserfinv, vmserfinv	
	DOUBLE PRECISION, INTENT(IN) for vderfinv, vmderfinv	
	C: const float* for vsErfinv, vmsErfInv	
	const double* for vdErfInv, vmdErfInv	
mode	FORTRAN 77: INTEGER*8	Overrides global VML mode setting for this
	Fortran 90: INTEGER(KIND=8),   INTENT (IN)	function call. See vmlSetMode for possible values and their description.
	C: const MKL_INT64	

## Output Parameters

Name	Type
$y$	FORTRAN 77: REAL for vserfinv,
vmserfinv	
	DOUBLE PRECISION for vderfinv,
	vmderfinv
	Fortran 90: REAL, INTENT (OUT) for
	vserfinv, vmserfinv
	DOUBLE PRECISION, INTENT (OUT) for
	vderfinv, vmderfinv
	C: float* for vsErfinv, vmsErfinv
	double* for vdErfinv, vmdErfinv

## Description

FORTRAN: Array that specifies the output vector $y$.

C: Pointer to an array that contains the output vector $y$.

## Description

The ErfInv function computes the inverse error function values for elements of the input vector a and writes them to the output vector $y$
$y=\operatorname{erf}^{-1}(a)$,
where $\operatorname{erf}(x)$ is the error function defined as given by:

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

Useful relations:

1. $\operatorname{erf}^{-1}(x)=\operatorname{erfc}^{-1}(1-x)$,
where erfc is the complementary error function.
2. $\Phi(x)=\frac{1}{2} \operatorname{erf}(x / \sqrt{2})$,
where

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \exp \left(-t^{2} / 2\right) d t
$$

is the cumulative normal distribution function.
3. $\Phi^{-1}(x)=\sqrt{2} \operatorname{erf}^{-1}(2 x-1)$,
where $\Phi^{-1}(x)$ and $\operatorname{erf}^{-1}(x)$ are the inverses to $\Phi(x)$ and $\operatorname{erf}(x)$ respectively.
Figure "ErfInv Family Functions Relationship" illustrates the relationships among ErfInv family functions (ErfInv, ErfcInv, CdfNormInv).

ErfInv Family Functions Relationship


Useful relations for these functions:
$\operatorname{erfcinv}(x)=\operatorname{erfinv}(1-x)$

```
\(\operatorname{cdfnorminv}(x)=\sqrt{2} \operatorname{erfinv}(2 x-1)=\sqrt{2} \operatorname{erfcinv}(2-2 x)\)
```

Special Values for Real Function v?ErfInv(x)

Argument	Result	VML Error Status	Exception
+0	+0		
-0	-0		
+1	$+\infty$	VML_STATUS_SING	ZERODIVIDE
-1	$-\infty$	VML_STATUS_SING	ZERODIVIDE
$\|X\|>1$	QNAN	VML_STATUS_ERRDOM	INVALID
$+\infty$	QNAN	VML_STATUS_ERRDOM	INVALID
$-\infty$	QNAN	VML_STATUS_ERRDOM	INVALID
QNAN	QNAN		
SNAN	QNAN		INVALID

See Also
v?ErfcInv
v ?CdfNormInv
v?Erfclnv
Computes the inverse complementary error function value of vector elements.

Syntax

## fortran:

```
call vserfcinv(n, a, y)
call vmserfcinv(n, a, y, mode)
call vderfcinv(n, a, y)
call vmderfcinv(n, a, y, mode)
```

C:

```
vsErfcInv(n, a, y);
```

vmsErfcInv ( $n, a, y, m o d e)$;
vdErfcInv( $n, a, y)$;
vmdErfcInv ( $n, a, y, m o d e) ;$

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
$n$	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN)

C: const int

## Description

Specifies the number of elements to be calculated.

Name	Type	Description
a	FORTRAN 77: REAL for vserfcinv, vmserfcinv	FORTRAN: Array that specifies the input vector a.
	DOUBLE PRECISION for vderfcinv, vmderfcinv	C: Pointer to an array that contains the input vector a.
	Fortran 90: REAL, INTENT (IN) for vserfcinv, vmserfcinv	
	DOUBLE PRECISION, INTENT(IN) for vderfcinv, vmderfcinv	
	```C: const float* for vsErfcInv, vmsErfcInv```	
	const double* for vdErfcInv, vmdErfcInv	
mode	FORTRAN 77: INTEGER*8	Overrides global VML mode setting for this
	Fortran 90: INTEGER (KIND=8), INTENT (IN)	function call. See vmlSetMode for possible values and their description.
	C: const MKL_INT64	
Output Parameters		
Name	Type	Description
y	FORTRAN 77: REAL for vserfcinv, vmserfcinv	FORTRAN: Array that specifies the output vector y.
	DOUBLE PRECISION for vderfcinv, vmderfcinv	C: Pointer to an array that contains the output vector y.
	Fortran 90: REAL, INTENT (OUT) for vserfcinv, vmserfcinv	
	DOUBLE PRECISION, INTENT (OUT) for vderfcinv, vmderfcinv	
	C: float* for vsErfcInv, vmsErfcInv	
	double* for vdErfcInv, vmdErfcInv	

Description

The ErfcInv function computes the inverse complimentary error function values for elements of the input vector a and writes them to the output vector y.
The inverse complementary error function is defined as given by:

$$
\operatorname{erfcinv}(x)=\operatorname{erfinv}(1-x)
$$

$$
\operatorname{erfinv}(x)=\operatorname{erf}^{-1}(x)
$$

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

where $\operatorname{erf}(\mathrm{x})$ denotes the error function and erfinv(x) denotes the inverse error function.
See also Figure "ErfInv Family Functions Relationship" in ErfInv function description for ErfcInv function relationship with the other functions of ErfInv family.
Special Values for Real Function v?ErfcInv(x)

Argument	Result	VML Error Status	Exception
+1	+0		
+2	$-\infty$	VML_STATUS_SING	ZERODIVIDE
-0	$+\infty$	VML_STATUS_SING	ZERODIVIDE
+0	$+\infty$	VML_STATUS_SING	ZERODIVIDE
$X<-0$	QNAN	VML_STATUS_ERRDOM	INVALID
$X>+2$	QNAN	VML_STATUS_ERRDOM	INVALID
$+\infty$	QNAN	VML_STATUS_ERRDOM	INVALID
$-\infty$	QNAN	VML_STATUS_ERRDOM	INVALID
QNAN	QNAN		
SNAN	QNAN		INVALID

See Also

v?ErfInv
v?CdfNormInv
v?CdfNormInv
Computes the inverse cumulative normal distribution
function values of vector elements.
Syntax

Fortran:

```
call vscdfnorminv( n, a, y )
call vmscdfnorminv( n, a, y, mode )
call vdcdfnorminv( n, a, y )
call vmdcdfnorminv( n, a, y, mode )
```

C:

```
vsCdfNormInv( n, a, y );
```

vmsCdfNormInv ($n, a, y, m o d e)$;
vdCdfNormInv ($n, a, y)$;
vmdCdfNormInv ($n, a, y, m o d e)$;

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
n	FORTRAN 77: INTEGER
a	Fortran 90: INTEGER, INTENT (IN)
	C: const int
	FORTRAN 77: REAL for
	vscdfnorminv, vmscdfnorminv
	DOUBLE PRECISION for
	vdcdfnorminv, vmdcdfnorminv
	Fortran 90: REAL, INTENT (IN) for
	vscdfnorminv, vmscdfnorminv
	DOUBLE PRECISION, INTENT (IN) for
	vdcdfnorminv, vmdcdfnorminv
	C: const float* for vsCdfNormInv,
	vmsCdfNormInv
	const double* for vdCdfNormInv,
	vmdCdfNormInv
mode	FORTRAN 77: INTEGER*8
	Fortran 90: INTEGER(KIND=8),
	INTENT (IN)
	C: const MKL_INT64

Output Parameters

```
Name Type
y
FORTRAN 77: REAL for
vscdfnorminv, vmscdfnorminv
DOUBLE PRECISION for
vdcdfnorminv, vmdcdfnorminv
Fortran 90: REAL, INTENT (OUT) for
vscdfnorminv, vmscdfnorminv
DOUBLE PRECISION, INTENT (OUT) for
vdcdfnorminv, vmdcdfnorminv
C: float* for vsCdfNormInv,
vmsCdfNormInv
double* for vdCdfNormInv,
vmdCdfNormInv
```


Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.
C: Pointer to an array that contains the output vector y.

Description

The CdfNormInv function computes the inverse cumulative normal distribution function values for elements of the input vector a and writes them to the output vector y.

The inverse cumulative normal distribution function is defined as given by:

$$
\operatorname{CdfNormInv}(x)=\operatorname{CdfNorm}^{-1}(x)
$$

where CdfNorm(x) denotes the cumulative normal distribution function.
Useful relations:

$$
\operatorname{cdfnorminv}(x)=\sqrt{2 \operatorname{erfinv}}(2 x-1)=\sqrt{2 \operatorname{erfcinv}}(2-2 x)
$$

where erfinv (x) denotes the inverse error function and erfcinv(x) denotes the inverse complementary error functions.

See also Figure "ErfInv Family Functions Relationship" in ErfInv function description for CdfNormInv function relationship with the other functions of Erfinv family.
Special Values for Real Function v?CdfNormInv(x)

Argument	Result	VML Error Status	Exception
+0.5	+0		
+1	$+\infty$	VML_STATUS_SING	ZERODIVIDE
-0	$-\infty$	VML_STATUS_SING	ZERODIVIDE
+0	$-\infty$	VML_STATUS_SING	ZERODIVIDE
$X<-0$	QNAN	VML_STATUS_ERRDOM	INVALID
$X>+1$	QNAN	VML_STATUS_ERRDOM	INVALID
$+\infty$	QNAN	VML_STATUS_ERRDOM	INVALID
$-\infty$	QNAN	VML_STATUS_ERRDOM	INVALID
QNAN	QNAN		
SNAN	QNAN		INVALID

See Also

v?ErfInv
v?ErfcInv

v?LGamma

Computes the natural logarithm of the absolute value of gamma function for vector elements.

Syntax

Fortran:

```
call vslgamma( n, a, y )
call vmslgamma( n, a, y, mode )
call vdlgamma( n, a, y )
call vmdlgamma( n, a, y, mode )
```

C:

```
vsLGamma( n, a, y );
vmsLGamma( n, a, y, mode );
vdLGamma( n, a, y );
```

```
vmdLGamma( n, a, y, mode );
```


Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
n	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN)

C: const int
a
mode
FORTRAN 77: REAL for vslgamma, vmslgamma

DOUBLE PRECISION for vdlgamma, vmdlgamma

Fortran 90: REAL, INTENT (IN) for vslgamma, vmslgamma

DOUBLE PRECISION, INTENT (IN) for vdlgamma, vmdlgamma

C: const float* for vsLGamma, vmsLGamma
const double* for vdLGamma, vmdLGamma

FORTRAN 77: INTEGER*8

Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vslgamma,
	vmslgamma
	DOUBLE PRECISION for vdlgamma,
	vmdlgamma
	Fortran 90: REAL, INTENT (OUT) for
	vslgamma, vmslgamma
	DOUBLE PRECISION, INTENT (OUT) for
	vdlgamma, vmdlgamma
	C: float* for vsLGamma, vmsLGamma
	double* for vdLGamma, vmdLGamma

Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Description

The v?LGamma function computes the natural logarithm of the absolute value of gamma function for elements of the input vector a and writes them to the output vector y. Precision overflow thresholds for the v? LGamma function are beyond the scope of this document. If the result does not meet the target precision, the function raises the OVERFLOW exception and sets the VML Error Status to VML_STATUS_OVERFLOW.
Special Values for Real Function v?LGamma(x)

Argument	Result	VML Error Status	Exception
+1	+0		
+2	+0		
+0	$+?$	VML_STATUS_SING	ZERODIVIDE
-0	$+?$	VML_STATUS_SING	ZERODIVIDE
negative integer	$+?$	VML_STATUS_SING	ZERODIVIDE
$-?$	$+?$		
$+?$	$+?$		OVERFLOW
X overflow	$+?$		INVALID
QNAN	QNAN		
SNAN	QNAN		

v?TGamma

Computes the gamma function of vector elements.
Syntax

fortran:

```
call vstgamma( n, a, y )
call vmstgamma( n, a, y, mode )
call vdtgamma( n, a, y )
call vmdtgamma( n, a, y, mode )
```

C:

```
vsTGamma( n, a, y );
vmsTGamma( n, a, y, mode );
vdTGamma( n, a, y );
vmdTGamma( n, a, y, mode );
```


Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

```
Name Type
n
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
```


Description

Specifies the number of elements to be calculated.

C: const int

Name	Type
a	FORTRAN 77: REAL for vstgamma, vmstgamma DOUBLE PRECISION for vdtgamma, vmdtgamma
	Fortran 90: REAL, INTENT (IN) for vstgamma, vmstgamma DOUBLE PRECISION, INTENT (IN) for vdtgamma, vmdtgamma
	```C: const float* for vsTGamma, vmsTGamma const double* for vdTGamma, vmdTGamma```
mode	FORTRAN 77: 1 INTEGER*8
	Fortran 90: $\operatorname{INTEGER}$ (KIND=8),   INTENT (IN)
	C: const MKL_INT64

## Output Parameters

Name	Type
$y$	FORTRAN 77: REAL for vstgamma,
	vmstgamma
	DOUBLE PRECISION for vdtgamma,
	vmdtgamma

Fortran 90: REAL, INTENT (OUT) for vstgamma, vmstgamma
DOUBLE PRECISION, INTENT (OUT) for vdtgamma, vmdtgamma
C: float* for vsTGamma, vmsTGamma
double* for vdTGamma, vmdTGamma

## Description

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

## Description

FORTRAN: Array that specifies the output vector $y$.
C: Pointer to an array that contains the output vector $y$.

## Description

The v?TGamma function computes the gamma function for elements of the input vector a and writes them to the output vector $y$. Precision overflow thresholds for the v?TGamma function are beyond the scope of this document. If the result does not meet the target precision, the function raises the OVERFLOW exception and sets the VML Error Status to VML_STATUS_OVERFLOW.
Special Values for Real Function v?TGamma(x)

Argument	Result	VML Error Status	Exception
+0	$+\infty$	VML_STATUS_SING	ZERODIVIDE
-0	$-\infty$	VML_STATUS_SING	ZERODIVIDE
negative integer	QNAN	VML_STATUS_ERRDOM	INVALID
$-\infty$	QNAN	VML_STATUS_ERRDOM	INVALID
$+\infty$	$+\infty$		


Argument	Result	VML Error Status	Exception
$X>$ overflow	$+\infty$	VML_STATUS_OVERFLOW	OVERFLOW
QNAN	QNAN		
SNAN	QNAN		INVALID

## Rounding functions

v?Floor
Computes an integer value rounded towards minus infinity for each vector element.

## Syntax

## Fortran:

```
call vsfloor(n, a, y)
call vmsfloor(}n,a,y, mode
call vdfloor(n, a, y)
call vmdfloor(n, a, y, mode)
```

C:

```
vsFloor(n, a, y);
```

vmsFloor ( $n, a, y, m o d e)$;
vdFloor ( $n, a, y)$;
vmdFloor ( $n, a, y, m o d e)$;

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
$n$	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN)
	C: const int
a	FORTRAN 77: REAL for vsfloor, vmsfloor
	DOUBLE PRECISION for vdfloor, vmdfloor
	Fortran 90: REAL, INTENT (IN) for vsfloor, vmsfloor
	DOUBLE PRECISION, INTENT (IN) for vdfloor, vmdfloor

## Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Name	Type	Description
	```C: const float* for vsFloor, vmsfloor const double* for vdFloor, vmdfloor```	
mode	FORTRAN 77: INTEGER*8	Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.
	Fortran 90: INTEGER (KIND=8), INTENT (IN)	
	C: const MKL_INT64	
Output Parameters		
Name	Type	Description
y	FORTRAN 77: REAL for vsfloor, vmsfloor	FORTRAN: Array that specifies the output vector y.
	DOUBLE PRECISION for vdfloor, vmdfloor	C: Pointer to an array that contains the output vector y.
	Fortran 90: REAL, INTENT (OUT) for vsfloor, vmsfloor	
	DOUBLE PRECISION, INTENT (OUT) for vdfloor, vmdfloor	
	C: float* for vsFloor, vmsfloor	
	double* for vdFloor, vmdfloor	

Description

The function computes an integer value rounded towards minus infinity for each vector element.
Special Values for Real Function v?Floor(x)

Argument	Result	Exception
+0	+0	
-0	-0	
$+\infty$	$+\infty$	
$-\infty$	$-\infty$	INVALID
SNAN	QNAN	
QNAN	QNAN	

v?Ceil
Computes an integer value rounded towards plus infinity for each vector element.

Syntax

Fortran:

```
call vsceil( n, a, y )
call vmsceil( n, a, y, mode )
call vdceil( n, a, y )
```

```
call vmdceil( n, a, y, mode )
```

C:

```
vsCeil( n, a, y );
vmsCeil( n, a, y, mode );
vdCeil( n, a, y );
vmdCeil( n, a, y, mode );
```

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

```
Name
n
a
mode
```


Type

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: const int
a
FORTRAN 77: REAL for vsceil,

``` vmsceil
DOUBLE PRECISION for vdceil, vmdceil
Fortran 90: REAL, INTENT (IN) for vsceil, vmsceil
DOUBLE PRECISION, INTENT (IN) for vdceil, vmdceil
C: const float* for vsCeil, vmsceil
const double* for vdCeil, vmdceil
FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)
C: const MKL_INT64
```


Output Parameters

Name

y

Type

FORTRAN 77: REAL for vsceil, vmsceil

DOUBLE PRECISION for vdceil, vmdceil

Fortran 90: REAL, INTENT (OUT) for vsceil, vmsceil

Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Name	Type
DOUBLE PRECISION, INTENT (OUT) for	
	vdceil, vmdceil
C: float* for vsCeil, vmsceil	
double* for vdCeil, vmdceil	

Description

The function computes an integer value rounded towards plus infinity for each vector element.
Special Values for Real Function v?Ceil(x)

Argument	Result	Exception
+0	+0	
-0	-0	
$+\infty$	$+\infty$	INVALID
$-\infty$	$-\infty$	
SNAN	QNAN	
QNAN	QNAN	

v?Trunc
Computes an integer value rounded towards zero for each vector element.

Syntax

Fortran:

```
call vstrunc( }n,a,y
call vmstrunc( n, a, y, mode )
call vdtrunc( }n,a,y
call vmdtrunc( n, a, y, mode )
C:
vsTrunc( n, a, y );
vmsTrunc( n, a, y, mode );
vdTrunc( n, a, y );
vmdTrunc( n, a, y, mode );
```

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
n	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN)

Description

Specifies the number of elements to be calculated.

Name	Type
a	Fonst int
	FORTRAN 77: REAL for vstrunc,
	DOUBLE PRECISION for vdtrunc,
	vmdtrunc
	Fortran 90: REAL, INTENT (IN) for
	vstrunc, vmstrunc
	DOUBLE PRECISION, INTENT (IN) for
	vdtrunc, vmdtrunc
	C: const float* for vsTrunc,
	vmstrunc
	const double* for vdTrunc,
	vmdtrunc
	FORTRAN 77: INTEGER*8
	Fortran 90: INTEGER(KIND=8),
	INTENT (IN)
	C: const MKL_INT64

Output Parameters

Description

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Description

The function computes an integer value rounded towards zero for each vector element.
Special Values for Real Function v?Trunc(x)

Argument	Result	Exception
+0	+0	
-0	-0	
$+\infty$	$+\infty$	
$-\infty$	$-\infty$	INVALID
SNAN	QNAN	
QNAN	QNAN	

v?Round
 Computes a value rounded to the nearest integer for each vector element.

Syntax

Fortran:

```
call vsround( }n,a,y
call vmsround( n, a, y, mode )
call vdround( }n,a,y
call vmdround( n, a, y, mode )
```

C:

```
vsRound( n, a, y );
```

vmsRound ($n, a, y, m o d e)$;
vdRound ($n, a, y)$;
vmdRound ($n, a, y, m o d e)$;

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name
n
a
mode

Type

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: const int
FORTRAN 77: REAL for vsround, vmsround

DOUBLE PRECISION for vdround, vmdround

Fortran 90: REAL, INTENT (IN) for vsround, vmsround

DOUBLE PRECISION, INTENT (IN) for vdround, vmdround

C: const float* for vsRound, vmsround
const double* for vdRound, vmdround

FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)

Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Name	Type
	C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vsround,
vmsround	
	DOUBLE PRECISION for vdround,
vmdround	
	Fortran 90: REAL, INTENT (OUT) for
	vsround, vmsround
	DOUBLE PRECISION, INTENT (OUT) for
	vdround, vmdround
	C: float* for vsRound, vmsround
	double* for vdRound, vmdround

Description

The function computes a value rounded to the nearest integer for each vector element.
The resulting mode affects the results computed for inputs that fall half-way between consecutive integres. For example:

- $f(0.5)=0$, for rounding modes set to round to nearest round toward zero or to minus infinity.
- $f(0.5)=1$, for rounding modes set to plus infinity.
- $f(-1.5)=-2$, for rounding modes set to round to nearest or to minus infinity.
- $\mathrm{f}(-1.5)=-1$, for rounding modes set to round toward zero or to plus infinity.

Special Values for Real Function v?Round(x)

Argument	Result	Exception
+0	+0	
-0	-0	
$+\infty$	$+\infty$	
$-\infty$	$-\infty$	INVALID
SNAN	QNAN	
QNAN	QNAN	

v?Nearbylnt

Computes a rounded integer value in the current rounding mode for each vector element.

Syntax

Fortran:

```
call vsnearbyint( n, a, y )
call vmsnearbyint( n, a, y, mode )
call vdnearbyint( n, a, y )
call vmdnearbyint( n, a, y, mode )
```

```
C:
vsNearbyInt( n, a, y );
vmsNearbyInt( n, a, y, mode );
vdNearbyInt( n, a, y );
vmdNearbyInt( n, a, y, mode );
```


Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
n	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN)

C: const int
a
mode
FORTRAN 77: REAL for vsnearbyint, vmsnearbyint

DOUBLE PRECISION for vdnearbyint, vmdnearbyint

Fortran 90: REAL, INTENT (IN) for vsnearbyint, vmsnearbyint DOUBLE PRECISION, INTENT (IN) for vdnearbyint, vmdnearbyint

C: const float* for vsNearbyInt, vmsnearbyint
const double* for vdNearbyInt, vmdnearbyint

FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vsnearbyint,
	vmsnearbyint
	DOUBLE PRECISION for vdnearbyint,
	vmdnearbyint

Fortran 90: REAL, INTENT (OUT) for vsnearbyint, vmsnearbyint

Description

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Name	Type
DOUBLE PRECISION, INTENT (OUT) for	
vdnearbyint, vmdnearbyint	
C: float* for vsNearbyInt,	
vmsnearbyint	
	double* for vdNearbyInt, vmdnearbyint

Description

The v?NearbyInt function computes a rounded integer value in a current rounding mode for each vector element.

Halfway values, that is, $0.5,-1.5$, and the like, are rounded off towards even values.
Special Values for Real Function v?NearbyInt(x)

Argument	Result	Exception
+0	+0	
-0	-0	
$+\infty$	$+\infty$	
$-\infty$	$-\infty$	INVALID
SNAN	QNAN	
QNAN	QNAN	

v?Rint
Computes a rounded integer value in the current rounding mode for each vector element with inexact result exception raised for each changed value.

Syntax

Fortran:

```
call vsrint( n, a, y )
call vmsrint( n, a, y, mode )
call vdrint( n, a, y )
call vmdrint( n, a, y, mode )
```

C:

```
vsRint( n, a, y );
```

vmsRint (n, a, y, mode $)$;
vdRint ($n, a, y)$;
vmdRint ($n, a, y, m o d e)$;

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name Type
 Description

n
a
mode

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: const int

FORTRAN 77: REAL for vsrint, vmsrint

DOUBLE PRECISION for vdrint, vmdrint

Fortran 90: REAL, INTENT (IN) for vsrint, vmsrint DOUBLE PRECISION, INTENT (IN) for vdrint, vmdrint

C: const float* for vsRint, vmsrint
const double* for vdRint, vmdrint
FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8), INTENT (IN)

C: const MKL_INT64

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vsrint,
	vmsrint
	DOUBLE PRECISION for vdrint,
	vmdrint
	Fortran 90: REAL, INTENT (OUT) for
	vsrint, vmsrint
	DOUBLE PRECISION, INTENT (OUT) for
	vdrint, vmdrint
	C: float* for vsRint, vmsrint
	double* for vdRint, vmdrint

Type
FORTRAN 77: REAL for vsrint,
vmsrint
DOUBLE PRECISION for vdrint, vmdrint

Fortran 90: REAL, INTENT (OUT) for vsrint, vmsrint

DOUBLE PRECISION, INTENT (OUT) for vdrint, vmdrint
double* for vdRint, vmdrint

Specifies the number of elements to be calculated.

FORTRAN: Array that specifies the input vector a.

C: Pointer to an array that contains the input vector a.

Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.

Description

FORTRAN: Array that specifies the output vector y.

C: Pointer to an array that contains the output vector y.

Description

The v?Rint function computes a rounded floating-point integer value using the current rounding mode for each vector element.

The resulting mode affects the results computed for inputs that fall half-way between consecutive integres. For example:

- $f(0.5)=0$, for rounding modes set to round to nearest round toward zero or to minus infinity.
- $f(0.5)=1$, for rounding modes set to plus infinity.
- $\mathrm{f}(-1.5)=-2$, for rounding modes set to round to nearest or to minus infinity.
- $\mathrm{f}(-1.5)=-1$, for rounding modes set to round toward zero or to plus infinity.

Special Values for Real Function v?Rint(x)

Argument	Result	Exception
+0	+0	
-0	-0	
$+\infty$	$+\infty$	INVALID
$-\infty$	$-\infty$	
SNAN	QNAN	
QNAN	QNAN	

v?Modf
Computes a truncated integer value and the remaining fraction part for each vector element.

Syntax

Fortran:

```
call vsmodf( n, a, y, z )
call vmsmodf( }n,a,y,z, mode 
call vdmodf( n, a, y, z )
call vmdmodf( n, a, y, z, mode )
```

C:

```
vsModf( n, a, y, z );
```

vmsModf($n, a, y, z, m o d e) ;$
vdModf ($n, a, y, z)$;
vmdModf (n, a, y, z, mode $)$;

Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name	Type
n	FORTRAN 77: INTEGER
	Fortran 90: INTEGER, INTENT (IN) C: const int
a	FORTRAN 77: REAL for vsmodf, vmsmodf
	DOUBLE PRECISION for vdmodf, vmdmodf

Description

Specifies the number of elements to be calculated.

FORTRAN: Array, specifies the input vector a.
C: Pointer to an array that contains the input vector a.

Name	Type	Description
	Fortran 90: REAL, INTENT (IN) for vsmodf, vmsmodf DOUBLE PRECISION, INTENT (IN) for vdmodf, vmdmodf	
	C: const float* for vsModf, vmsmodf	
	const double* for vdModf, vmdmodf	
mode	FORTRAN 77: INTEGER*8	Overrides global VML mode setting for this function call. See vmlsetMode for possible values and their description.
	Fortran 90: INTEGER (KIND=8), INTENT (IN)	
	C: const MKL_INT64	
Output Parameters		
Name	Type	Description
y, z	FORTRAN 77: REAL for vsmodf, vmsmodf	FORTRAN: Array, specifies the output vector y and z.
	DOUBLE PRECISION for vdmodf, vmdmodf	C: Pointer to an array that contains the output vector y and z.
	Fortran 90: REAL, INTENT (OUT) for vsmodf, vmsmodf	
	DOUBLE PRECISION, INTENT (OUT) for vdmodf, vmdmodf	
	C: float* for vsModf, vmsmodf	
	double* for vdModf, vmdmodf	

Description

The function computes a truncated integer value and the remaining fraction part for each vector element.
Halfway values, such as $0.5,-1.5$, are rounded off towards even values. An inexact result exception is raised for each changed value.

Special Values for Real Function v?Modf(x)

Argument	Result 1	Result 2	Exception
+0	+0	+0	
-0	-0	-0	
$+\infty$	$+\infty$	+0	INVALID
$-\infty$	$-\infty$	-0	
SNAN	QNAN	QNAN	
QNAN	QNAN	QNAN	

VML Pack/Unpack Functions

This section describes VML functions that convert vectors with unit increment to and from vectors with positive increment indexing, vector indexing, and mask indexing (see Appendix B for details on vector indexing methods).
The table below lists available VML Pack/Unpack functions, together with data types and indexing methods associated with them.
VML Pack/Unpack Functions

Function Short Name	Data Types	Indexing Methods	Description
v?Pack	$\mathrm{S}, \mathrm{d}, \mathrm{C}$,	$\mathrm{I}, \mathrm{V}, \mathrm{M}$	Gathers elements of arrays, indexed by different methods.
v?Unpack	$\mathrm{s}, \mathrm{d}, \mathrm{C}$,	$\mathrm{I}, \mathrm{V}, \mathrm{M}$	Scatters vector elements to arrays with different indexing.
	z		

See Also
Vector Arguments in VML

v?Pack

Copies elements of an array with specified indexing to a vector with unit increment.

Syntax

Fortran:

```
call vspacki( n, a, inca, y )
call vspackv( n, a, ia, y )
call vspackm( n, a, ma, y )
call vdpacki( n, a, inca, y )
call vdpackv( n, a, ia, y )
call vdpackm( n, a, ma, y )
call vcpacki( n, a, inca, y )
call vcpackv( n, a, ia, y )
call vcpackm( n, a, ma, y )
call vzpacki( n, a, inca, y )
call vzpackv( n, a, ia, y )
call vzpackm( n, a, ma, y )
```

C:

```
vsPackI( n, a, inca, y );
vsPackV( n, a, ia, y );
vsPackM( n, a, ma, y );
vdPackI( n, a, inca, y );
vdPackV( n, a, ia, y );
vdPackM( n, a, ma, y );
vcPackI( n, a, inca, y );
```

```
vcPackV( n, a, ia, y );
vcPackM( n, a, ma, y );
vzPackI( n, a, inca, y );
vzPackV( n, a, ia, y );
vzPackM( n, a, ma, y );
```


Include Files

- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters

Name

n
a

Type

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)
C: const int
FORTRAN 77: REAL for vspacki, vspackv, vspackm

DOUBLE PRECISION for vdpacki, vdpackv, vdpackm

COMPLEX for vcpacki, vcpackv, vcpackm

DOUBLE COMPLEX for vzpacki, vzpackv, vzpackm

Fortran 90: REAL, INTENT (IN) for vspacki, vspackv, vspackm

DOUBLE PRECISION, INTENT (IN)
for vdpacki, vdpackv, vdpackm
COMPLEX, INTENT (IN) for vcpacki, vcpackv, vcpackm

DOUBLE COMPLEX, INTENT (IN) for vzpacki, vzpackv, vzpackm

C: const float* for vsPackI, vsPackV, vsPackM
const double* for vdPackI, vdPackV, vdPackM
const MKL_Complex8* for
vcPackI, vcPackV, vcPackM
const MKL_Complex16* for
vzPackI, vzPackV, vzPackM

Description

Specifies the number of elements to be calculated.

FORTRAN: Array, DIMENSION at least (1 + ($n-1$) *inca) for v?packi, Array, DIMENSION at least max ($n, \max (i a[j])$), $j=0, \ldots, n-1$ for v?packv, Array, DIMENSION at least n for v?packm. Specifies the input vector a.

C: Specifies pointer to an array that contains the input vector a. The arrays must be:
for v?PackI, at least (1 + (n-1)*inca)
for v?PackV, at least max ($n, \max (i a[j])$), $j=0$, ..., $n-1$
for v?PackM, at least n.

Name	Type	Description
inca	FORTRAN 77: INTEGER for vspacki, vdpacki, vcpacki, vzpacki	Specifies the increment for the elements of a.
	Fortran 90: INTEGER, INTENT (IN) for vspacki, vdpacki, vcpacki, vzpacki	
	C: const int for vsPackI, vdPackI, vcPackI, vzPackI	
ia	FORTRAN 77: INTEGER for vspackv, vdpackv, vcpackv, vzpackv	FORTRAN: Array, DIMENSION at least n. Specifies the index vector for the elements of a.
	Fortran 90: INTEGER, INTENT (IN) for vspackv, vdpackv, vcpackv, vzpackv	C: Specifies the pointer to an array of size at least n that contains the index vector for the elements of a.
	C: const int* for vsPackV, vdPackV, vcPackV, vzPackV	
ma	FORTRAN 77: INTEGER for vspackm, vdpackm, vcpackm, vzpackm	FORTRAN: Array, DIMENSION at least n, Specifies the mask vector for the elements of a.
	Fortran 90: INTEGER, INTENT (IN) for vspackm, vdpackm, vcpackm, vzpackm	C: Specifies the pointer to an array of size at least n that contains the mask vector for the elements of a.
	C: const int* for vsPackM, vdPackM, vcPackM, vzPackM	

Output Parameters

Name	Type
y	FORTRAN 77: REAL for vspacki,
	vspackv, vspackm
	DOUBLE PRECISION for vdpacki,
	vdpackv, vdpackm
	COMPLEX for vcpacki, vcpackv,
	vcpackm
	DOUBLE COMPLEX for vzpacki,
	vzpackv, vzpackm
	Fortran 90: REAL, INTENT (OUT) for
	vspacki, vspackv, vspackm
	DOUBLE PRECISION, INTENT (OUT) for
	vdpacki, vdpackv, vdpackm
	COMPLEX, INTENT (OUT) for vcpacki,
	vcpackv, vcpackm

Description

FORTRAN: Array, DIMENSION at least n.
Specifies the output vector y.
C: Pointer to an array of size at least n that contains the output vector y.

Name	Type
	DOUBLE COMPLEX, INTENT (OUT) for vzpacki, vzpackv, vzpackm
	$\begin{aligned} & \text { C: float* for vsPackI, vsPackV, } \\ & \text { vsPackM } \end{aligned}$
	double* for vdPackI, vdPackV, vdPackM
	const MKL_Complex8* for vcPackI, vcPackV, vcPackM
	const MKL_Complex16* for vzPackI, vzPackV, vzPackM

v?Unpack

Copies elements of a vector with unit increment to an array with specified indexing.

Syntax

Fortran:

C:
vsUnpackI(n, a, y, incy);
vsUnpackV(n, a, y, iy);
vsUnpackM(n, a, y, my);
vdUnpackI(n, a, y, incy);
vdUnpackV(n, a, y, iy);
vdUnpackM(n, a, y, my);
vcUnpackI(n, a, y, incy);
vcUnpackV(n, a, y, iy);

```
```

```
call vsunpacki( n, a, y, incy )
```

```
call vsunpacki( n, a, y, incy )
call vsunpackv( n, a, y, iy )
call vsunpackv( n, a, y, iy )
call vsunpackm( n, a, y, my )
call vsunpackm( n, a, y, my )
call vdunpacki( n, a, y, incy )
call vdunpacki( n, a, y, incy )
call vdunpackv( n, a, y, iy )
call vdunpackv( n, a, y, iy )
call vdunpackm( n, a, y, my )
call vdunpackm( n, a, y, my )
call vcunpacki( n, a, y, incy )
call vcunpacki( n, a, y, incy )
call vcunpackv( n, a, y, iy )
call vcunpackv( n, a, y, iy )
call vcunpackm( n, a, y, my )
call vcunpackm( n, a, y, my )
call vzunpacki( n, a, y, incy )
call vzunpacki( n, a, y, incy )
call vzunpackv( n, a, y, iy )
call vzunpackv( n, a, y, iy )
call vzunpackm( n, a, y, my )
```

call vzunpackm(n, a, y, my)

```

Description
```

DOUBLE COMPLEX, INTENT (OUT) for
vzpacki, vzpackv, vzpackm
C: float* for vsPackI, vsPackV,
vsPackM
double* for vdPackI, vdPackV,
vdPackM
const MKL_Complex8* for vcPackI,
vcPackV, vcPackM
vzPackV, vzPackM

```
```

vcUnpackM(n, a, y, my);
vzUnpackI(n, a, y, incy);
vzUnpackV(n, a, y, iy);
vzUnpackM(n, a, y, my);

```

\section*{Include Files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \multirow[t]{3}{*}{\(n\)} & FORTRAN 77: INTEGER \\
\hline & Fortran 90: INTEGER, INTENT (IN) \\
\hline & C: const int \\
\hline \multirow[t]{13}{*}{a} & FORTRAN 77: REAL for vsunpacki, vsunpackv, vsunpackm \\
\hline & DOUBLE PRECISION for vdunpacki, vdunpackv, vdunpackm \\
\hline & COMPLEX for vcunpacki, vcunpackv, vcunpackm \\
\hline & DOUBLE COMPLEX for vzunpacki, vzunpackv, vznpackm \\
\hline & Fortran 90: REAL, INTENT (IN) for vsunpacki, vsunpackv, vsunpackm \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdunpacki, vdunpackv, vdunpackm \\
\hline & COMPLEX, INTENT (IN) for vcunpacki, vcunpackv, vcunpackm \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzunpacki, vzunpackv, vzunpackm \\
\hline & C: const float* for vsUnpackI, vsUnpackV, vsUnpackM \\
\hline & const double* for vdUnpackI, vdUnpackV, vdUnpackM \\
\hline & const MKL_Complex8* for \\
\hline & vcUnpackI, vcUnpackV, vcUnpackM \\
\hline & const MKL_Complex16* for vzUnpackI, vzUnpackV, vzUnpackM \\
\hline incy & FORTRAN 77: INTEGER for vsunpacki, vdunpacki, vcunpacki, vzunpacki \\
\hline
\end{tabular}

Name
n
a
incy

FORTRAN 77: INTEGER for vzunpacki

\section*{Description}

Specifies the number of elements to be calculated.

FORTRAN: Array, DIMENSION at least \(n\).
Specifies the input vector \(a\).
C: Specifies the pointer to an array of size at least \(n\) that contains the input vector \(a\).

Specifies the increment for the elements of \(y\).
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Name} & Type & \multirow[t]{3}{*}{Description} \\
\hline & Fortran 90: INTEGER, INTENT (IN) for vsunpacki, vdunpacki, vcunpacki, vzunpacki & \\
\hline & C: const int for vsUnpackI, vdUnpackI, vcUnpackI, vzUnpackI & \\
\hline \multirow[t]{3}{*}{iy} & FORTRAN 77: INTEGER for vsunpackv, vdunpackv, vcunpackv, vzunpackv & \begin{tabular}{l}
FORTRAN: Array, DIMENSION at least \(n\). \\
Specifies the index vector for the elements of \(y\).
\end{tabular} \\
\hline & Fortran 90: INTEGER, INTENT (IN) for vsunpackv, vdunpackv, vcunpackv, vzunpackv & \multirow[t]{2}{*}{C: Specifies the pointer to an array of size at least \(n\) that contains the index vector for the elements of \(a\).} \\
\hline & C: const int* for vsunpackv, vdUnpackV, vcUnpackV, vzUnpackV & \\
\hline \multirow[t]{3}{*}{my} & FORTRAN 77: InTeger for vsunpackm, vdunpackm, vcunpackm, vzunpackm & \begin{tabular}{l}
FORTRAN: Array, DIMENSION at least \(n\), \\
Specifies the mask vector for the elements of \(y\).
\end{tabular} \\
\hline & Fortran 90: INTEGER, INTENT (IN) for vsunpackm, vdunpackm, vcunpackm, vzunpackm & C: Specifies the pointer to an array of size at least \(n\) that contains the mask vector for the elements of \(a\). \\
\hline & C: const int* for vsUnpackM, vdUnpackM, vcUnpackM, vzUnpackM & \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{Name Type \\ y \\ FORTRAN 77: REAL for vsunpacki, vsunpackv, vsunpackm \\ DOUBLE PRECISION for vdunpacki, vdunpackv, vdunpackm \\ COMPLEX, INTENT (IN) for vcunpacki, vcunpackv, vcunpackm DOUBLE COMPLEX, INTENT (IN) for vzunpacki, vzunpackv, vzunpackm}

Fortran 90: REAL, INTENT (OUT) for vsunpacki, vsunpackv, vsunpackm DOUBLE PRECISION, INTENT (OUT) for vdunpacki, vdunpackv, vdunpackm

COMPLEX, INTENT (OUT) for vcunpacki, vcunpackv, vcunpackm
DOUBLE COMPLEX, INTENT (OUT) for vzunpacki, vzunpackv, vzunpackm

\section*{Description}

FORTRAN: Array, DIMENSION
for v?unpacki, at least \((1+(n-1) *\) incy \()\)
for v?unpackv, at least
\(\max (n, \max (i y[j])), j=0, \ldots, n-1\)
for \(v\) ?unpackm, at least \(n\)
C: Specifies the pointer to an array that contains the output vector \(y\).

The array must be:
for v?UnpackI, at least \((1+(n-1)\) *incy)
for v?UnpackV, at least
max( \(n\), max (ia[j]) ) ,j=0,..., \(n-1\), for v?UnpackM, at least \(n\).
```

Name Type Description
C: float* for vsUnpackI,
vsUnpackV, vsUnpackM
double* for vdUnpackI,
vdUnpackV, vdUnpackM
const MKL_Complex8* for
vcUnpackI, vcUnpackV, vcUnpackM
const MKL_Complex16* for
vzUnpackI, vzUnpackV, vzUnpackM

```

\section*{VML Service Functions}

The VML Service functions enable you to set/get the accuracy mode and error code. These functions are available both in the Fortran and C interfaces. The table below lists available VML Service functions and their short description.
\begin{tabular}{ll} 
VML Service Functions & \\
\hline Function Short Name & Description \\
\hline vmlSetMode & Sets the VML mode \\
vmlGetMode & Gets the VML mode \\
vmlSetErrStatus & Sets the VML Error Status \\
vmlGetErrStatus & Gets the VML Error Status \\
vmlClearErrStatus & Clears the VML Error Status \\
vmlSetErrorCallBack & Sets the additional error handler callback function \\
vmlGetErrorCallBack & Gets the additional error handler callback function \\
vmlClearErrorCallBack & Deletes the additional error handler callback function \\
\hline
\end{tabular}

\section*{vmISetMode}

Sets a new mode for VML functions according to the mode parameter and stores the previous VML mode to oldmode.

\section*{Syntax}

\section*{Fortran:}
```

oldmode = vmlsetmode(mode)

```

C:
oldmode = vmlSetMode ( mode );

\section*{Include Files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}
Name Type
mode FORTRAN 77: INTEGER*8
Fortran 90: INTEGER (KIND=8),
INTENT (IN)
C: const MKL_INT64

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
oldmode & FORTRAN: INTEGER*8 \\
& Fortran 90: INTEGER(KIND=8) \\
& C: MKL_INT64
\end{tabular}

\section*{Description}

Specifies the VML mode to be set.

\section*{Description}

Specifies the former VML mode.

\section*{Description}

The vmlSetMode function sets a new mode for VML functions according to the mode parameter and stores the previous VML mode to oldmode. The mode change has a global effect on all the VML functions within a thread.

NOTE You can override the global mode setting and change the mode for a given VML function call by using a respective vm \([s, d]<\) Func> variant of the function.

The mode parameter is designed to control accuracy, handling of denormalized numbers, and error handling. Table "Values of the mode Parameter" lists values of the mode parameter. You can obtain all other possible values of the mode parameter from the mode parameter values by using bitwise OR ( | ) operation to combine one value for accuracy, one value for handling of denormalized numbers, and one vlaue for error control options. The default value of the mode parameter is VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_DEFAULT.

The VML_FTZDAZ_ON mode is specifically designed to improve the performance of computations that involve denormalized numbers at the cost of reasonable accuracy loss. This mode changes the numeric behavior of the functions: denormalized input values are treated as zeros (DAZ = denormals-are-zero) and denormalized results are flushed to zero (FTZ = flush-to-zero). Accuracy loss may occur if input and/or output values are close to denormal range.

\section*{Values of the mode Parameter}
\begin{tabular}{ll}
\hline Value of mode & Description \\
\hline Accuracy Control & \\
VML_HA & high accuracy versions of VML functions \\
VML_LA & low accuracy versions of VML functions \\
VML_EP & enhanced performance accuracy versions of VML functions \\
Denormalized Numbers Handling Control & \\
VML_FTZDAZ_ON & Faster processing of denormalized inputs is enabled. \\
VML_FTZDAZ_OFF & Faster processing of denormalized inputs is disabled. \\
Error Mode Control & \\
VML_ERRMODE_IGNORE & No action is set for computation errors. \\
VML_ERRMODE_ERRNO & On error, the errno variable is set.
\end{tabular}
\begin{tabular}{ll}
\hline Value of mode & Description \\
\hline VML_ERRMODE_STDERR & On error, the error text information is written to stderr. \\
VML_ERRMODE_EXCEPT & On error, an exception is raised. \\
VML_ERRMODE_CALLBACK & On error, an additional error handler function is called. \\
VML_ERRMODE_DEFAULT & On error, the errno variable is set, an exception is raised, and an \\
& additional error handler function is called. \\
\hline
\end{tabular}

\section*{Examples}

The following example shows how to set low accuracy, fast processing for denormalized numbers and errno error mode in the Fortran and \(C\) languages:
```

oldmode = vmlsetmode(VML_LA)
call vmlsetmode(IOR(VML_LA, VML_FTZDAZ_ON, VML_ERRMODE_ERRNO))
vmlSetMode(VML_LA);
vmlSetMode(VML_LA | VML_FTZDAZ_ON | VML_ERRMODE_ERRNO);

```

\section*{vmlGetMode}

Gets the VML mode.

\section*{Syntax}

\section*{Fortran:}
```

mod = vmlgetmode()

```

C:
```

mod = vmlGetMode(void);

```

\section*{Include Files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
mod & FORTRAN: INTEGER
\end{tabular}

\section*{Description}

Specifies the packed mode parameter.
\[
\mathbf{C} \text { : int }
\]

\section*{Description}

The function vmlGetMode () returns the VML mode parameter that controls accuracy, handling of denormalized numbers, and error handling options. The mod variable value is a combination of the values listed in the table "Values of the mode Parameter". You can obtain these values using the respective mask from the table "Values of Mask for the mode Parameter".

Values of Mask for the mode Parameter
\begin{tabular}{ll}
\hline Value of mask & Description \\
\hline VML_ACCURACY_MASK & Specifies mask for accuracy mode selection.
\end{tabular}
\begin{tabular}{ll}
\hline \hline Value of mask & Description \\
\hline VML_FTZDAZ_MASK & Specifies mask for FTZDAZ mode selection. \\
VML_ERRMODE_MASK & Specifies mask for error mode selection. \\
\hline
\end{tabular}

See example below:

\section*{Examples}
```

mod = vmlgetmode()
accm = IAND (mod, VML_ACCURACY_MASK)
denm = IAND (mod, VML_FTZDAZ_MASK)
errm = IAND (mod, VML_ERRMODE_MASK)
accm = vmlGetMode(void) \& VML_ACCURACY_MASK;
denm = vmlGetMode(void) \& VML_FTZDAZ_MASK;
errm = vmlGetMode(void) \& VML_ERRMODE_MASK;

```

\section*{vmISetErrStatus}

Sets the new VML Error Status according to err and stores the previous VML Error Status to olderr.

Syntax

\section*{Fortran:}
```

olderr = vmlseterrstatus(err)

```

C:
olderr = vmlSetErrStatus ( err );
Include Files
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Input Parameters
\begin{tabular}{lll} 
Name & Type & Description \\
err & FORTRAN 77: INTEGER & Specifies the VML error status to be set.
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
Olderr & FORTRAN: INTEGER & Specifies the former VML error status. \\
& C: int &
\end{tabular}

\section*{Description}

Table "Values of the VML Status" lists possible values of the err parameter.
Values of the VML Status

\section*{Status \\ Description}

\section*{Successful Execution}
```

VML_STATUS_OK

```

\section*{Warnings}

VML_STATUS_ACCURACYWARNING

\section*{Errors}
\begin{tabular}{ll} 
VML_STATUS_BADSIZE & The function does not support the preset accuracy mode. The Low \\
Accuracy mode is used instead. \\
VML_STATUS_BADMEM & NULL pointer is passed. \\
VML_STATUS_ERRDOM & At least one of array values is out of a range of definition. \\
VML_STATUS_SING & At least one of the input array values causes a divide-by-zero \\
VML_STATUS_OVERFLOW & exception or produces an invalid (QNaN) result. \\
VML_STATUS_UNDERFLOW & An overflow has happened during the calculation process. \\
& An underflow has happened during the calculation process.
\end{tabular}

\section*{Examples}
```

olderr = vmlSetErrStatus(VML_STATUS_OK);

```
olderr = vmlSetErrStatus( VML_STATUS_ERRDOM );
olderr = vmlSetErrStatus( VML_STATUS_UNDERFLOW );

\section*{vmlGetErrStatus}

Gets the VML Error Status.

\section*{Syntax}

\section*{Fortran:}
```

err = vmlgeterrstatus()

```

C:
```

err = vmlGetErrStatus(void);

```

\section*{Include Files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
err & FORTRAN: INTEGER \\
& C: int
\end{tabular}

\section*{Description}

Specifies the VML error status.

\section*{vmIClearErrStatus}

Sets the VML Error Status to VML_STATUS_OK and stores the previous VML Error Status to olderr.

\section*{Syntax}

\section*{Fortran:}
```

olderr = vmlclearerrstatus()

```

C:
```

olderr = vmlClearErrStatus(void);

```

\section*{Include Files}
- FORTRAN 77: mkl_vml.f77
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Output Parameters}
Name Type

\section*{Description}

Specifies the former VML error status.

\section*{vmlSetErrorCallBack}

Sets the additional error handler callback function and gets the old callback function.

\section*{Syntax}

\section*{Fortran:}
```

oldcallback = vmlseterrorcallback(callback)

```

C:
oldcallback = vmlSetErrorcallBack( callback );
Include Files
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Input Parameters}

\section*{Name FORTRAN:}
callback

C: callback

\section*{Description}

The callback function has the following format: INTEGER FUNCTION ERRFUNC (par)

TYPE (ERROR_STRUCTURE) par
! ...
! user error processing
! ...
ERRFUNC \(=0\)
! if ERRFUNC= 0 - standard VML error handler
! is called after the callback
! if ERRFUNC != 0 - standard VML error handler
! is not called
END
The passed error structure is defined as follows:
TYPE ERROR_STRUCTURE SEQUENCE
INTEGER*4 ICODE
INTEGER*4 IINDEX
REAL*8 DBA1
REAL*8 DBA2
REAL*8 DBR1
REAL*8 DBR2
CHARACTER (64) CFUNCNAME
INTEGER*4 IFUNCNAMELEN
REAL*8 DBA1IM
REAL*8 DBA2IM
REAL*8 DBR1IM
REAL*8 DBR2IM
END TYPE ERROR_STRUCTURE

The callback function has the following format:
static int stdcall
MyHandler (DefVmlErrorContext*
pContext)
\{
/* Handler body */
\};

\section*{Name}

\section*{Description}

The passed error structure is defined as follows:
```

typedef struct _DefVmlErrorContext

```
\{
int iCode;/* Error status value */
int iIndex;/* Index for bad array
    element, or bad array
    dimension, or bad
    array pointer */
double dbA1; /* Error argument 1 */
double dbA2; /* Error argument 2 */
double dbR1; /* Error result 1 */
double dbR2; /* Error result 2 */
char cFuncName[64]; /* Function name */
int iFuncNameLen; /* Length of functionname*/
double dbA1Im; /* Error argument 1, imag part*/
double dbA2Im; /* Error argument 2, imag part*/
double dbR1Im; /* Error result 1, imag part*/
double dbR2Im; /* Error result 2, imag part*/
\} DefVmlErrorContext;

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
oldcallback & Fortran 90: INTEGER \\
& C: int
\end{tabular}

\section*{Description}

FORTRAN: Address of the former callback function.
C: Pointer to the former callback function.

NOTE This function does not have a FORTRAN 77 interface due to the use of internal structures.

\section*{Description}

The callback function is called on each VML mathematical function error if VML_ERRMODE_CALLBACK error mode is set (see "Values of the mode Parameter").

Use the vmlSetErrorCallBack () function if you need to define your own callback function instead of default empty callback function.

The input structure for a callback function contains the following information about the error encountered:
- the input value that caused an error
- location (array index) of this value
- the computed result value
- error code
- name of the function in which the error occurred.

You can insert your own error processing into the callback function. This may include correcting the passed result values in order to pass them back and resume computation. The standard error handler is called after the callback function only if it returns 0 .

\section*{vmIGetErrorCallBack}

Gets the additional error handler callback function.

\section*{Syntax}

\section*{Fortran:}
```

callback = vmlgeterrorcallback()

```

C:
```

callback = vmlGetErrorCallBack(void);

```

Include Files
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

\section*{Output Parameters}

\section*{Name}
```

callback

```

\section*{vmIClearErrorCallBack}

Deletes the additional error handler callback function and retrieves the former callback function.

\section*{Syntax}

\section*{Fortran:}
```

oldcallback = vmlclearerrorcallback()

```

C:
```

oldcallback = vmlClearErrorCallBack(void);

```

Include Files
- Fortran 90: mkl_vml.f90
- C: mkl_vml_functions.h

Output Parameters
\begin{tabular}{ll} 
Name & Type \\
oldcallback & Fortran 90: INTEGER \\
& C: int
\end{tabular}

\section*{Description}

FORTRAN: Address of the former callback function

C: Pointer to the former callback function

Statistical functions in Intel \({ }^{\circledR}\) MKL are known as Vector Statistical Library (VSL) that is designed for the purpose of
- generating vectors of pseudorandom and quasi-random numbers
- performing mathematical operations of convolution and correlation
- computing basic statistical estimates for single and double precision multi-dimensional datasets

The corresponding functionality is described in the respective Random Number Generators, Convolution and Correlation, and VSL Summary Statistics sections.

See VSL performance data in the online VSL Performance Data document available at http:// software.intel.com/en-us/articles/intel-math-kernel-library-documentation/
The basic notion in VSL is a task. The task object is a data structure or descriptor that holds the parameters related to a specific statistical operation: random number generation, convolution and correlation, or summary statistics estimation. Such parameters can be an identifier of a random number generator, its internal state and parameters, data arrays, their shape and dimensions, an identifier of the operation and so forth. You can modify the VSL task parameters using the respective service functionality of the library.

\section*{Optimization Notice}

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

\section*{Random Number Generators}

Intel MKL VSL provides a set of routines implementing commonly used pseudo- or quasi-random number generators with continuous and discrete distribution. To improve performance, all these routines were developed using the calls to the highly optimized Basic Random Number Generators (BRNGs) and the library of vector mathematical functions (VML, see Chapter 9, "Vector Mathematical Functions").
VSL provides interfaces both for Fortran and \(C\) languages. For users of the \(C\) and \(C++\) languages the mkl _vsl.h header file is provided. For users of the Fortran 90 or Fortran 95 language the mkl_vsl.f90 header file is provided. The mkl_vsl.fi header file available in the previous versions of Intel \(\bar{M} K L\) is retained for backward compatibility. For users of the FORTRAN 77 language the mkl_vsl. \(f 77\) header file is provided. All header files are found in the following directory:
```

\${MKL}/include

```

The mkl_vsl.f90 header is intended for using via the Fortran include clause and is compatible with both standard forms of F90/F95 sources - the free and 72-columns fixed forms. If you need to use the VSL interface with 80- or 132-columns fixed form sources, you may add a new file to your project. That file is formatted as a 72-columns fixed-form source and consists of a single include clause as follows:
```

include 'mkl_vsl.f90'

```

This include clause causes the compiler to generate the module files mkl_vsl.mod and mkl_vsl_type.mod, which are used to process the Fortran use clauses referencing to the VSL interface:
```

use mkl_vsl_type

```
use mkl_vsl

Because of this specific feature, you do not need to include the mkl_vsl.f90 header into each source of your project. You only need to include the header into some of the sources. In any case, make sure that the sources that depend on the VSL interface are compiled after those that include the header so that the

The mkl_vsl.f77 header is intended for using via the Fortran include clause as follows:
include 'mkl_vsl.f77'

NOTE For Fortran 90 interface, VSL provides both subroutine-style interface and function-style interface. Default interface in this case is a function-style interface. Function-style interface, unlike subroutine-style interface, allows the user to get error status of each routine. Subroutine-style interface is provided for backward compatibility only. To use subroutine-style interface, manually include mkl_vsl_subroutine.fi file instead of mkl_vsl.f90 by changing the line include 'mkl_vsl.f90' in include\mkl.fi with the line include 'mkl_vsl_subroutine.fi'.
For the FORTRAN 77 interface, VSL provides only function-style interface.

All VSL routines can be classified into three major categories:
- Transformation routines for different types of statistical distributions, for example, uniform, normal (Gaussian), binomial, etc. These routines indirectly call basic random number generators, which are either pseudorandom number generators or quasi-random number generators. Detailed description of the generators can be found in Distribution Generators section.
- Service routines to handle random number streams: create, initialize, delete, copy, save to a binary file, load from a binary file, get the index of a basic generator. The description of these routines can be found in Service Routines section.
- Registration routines for basic pseudorandom generators and routines that obtain properties of the registered generators (see Advanced Service Routines section ).

The last two categories are referred to as service routines.

\section*{Optimization Notice}

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

\section*{Conventions}

This document makes no specific differentiation between random, pseudorandom, and quasi-random numbers, nor between random, pseudorandom, and quasi-random number generators unless the context requires otherwise. For details, refer to the 'Random Numbers' section in VSL Notes document provided at the Intel \({ }^{\circledR}\) MKL web page.

All generators of nonuniform distributions, both discrete and continuous, are built on the basis of the uniform distribution generators, called Basic Random Number Generators (BRNGs). The pseudorandom numbers with nonuniform distribution are obtained through an appropriate transformation of the uniformly distributed pseudorandom numbers. Such transformations are referred to as generation methods. For a given distribution, several generation methods can be used. See VSL Notes for the description of methods available for each generator.

An RNG task determines environment in which random number generation is performed, in particular parameters of the BRNG and its internal state. Output of VSL generators is a stream of random numbers that are used in Monte Carlo simulations. A random stream descriptor and a random stream are used as synonyms of an RNG task in the document unless the context requires otherwise.

The random stream descriptor specifies which BRNG should be used in a given transformation method. See the Random Streams and RNGs in Parallel Computation section of VSL Notes.
The term computational node means a logical or physical unit that can process data in parallel.

\section*{Mathematical Notation}

The following notation is used throughout the text:

N
z
R
\(\lfloor a\rfloor\)
\(\oplus\) or xor
\(C_{\alpha}^{\kappa}\) or \(\binom{\alpha}{\kappa}\)
\(\Phi(x)\)
\(\Gamma(\alpha)\)
\(B(p, q)\)

The set of natural numbers \(N=\{1,2,3 \ldots\}\).
The set of integers \(Z=\{\ldots-3,-2,-1,0,1,2,3 \ldots\}\).
The set of real numbers.
The floor of \(a\) (the largest integer less than or equal to \(a\) ).

Bitwise exclusive OR.
Binomial coefficient or combination ( \(\alpha \in R, \alpha \geq 0 ; k \in N \cup\{0\}\) ).
\(C_{\alpha}^{0}=1\)

For \(\alpha \geq k\) binomial coefficient is defined as
\[
C_{\alpha}^{\kappa}=\frac{\alpha(\alpha-1) \ldots(\alpha-\kappa+1)}{\kappa!}
\]

If \(\alpha<k\), then
\(C_{\alpha}^{k}=0\)
Cumulative Gaussian distribution function
\[
\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) d y
\]
defined over - \(\infty<x<+\infty\). \(\Phi(-\infty)=0, \quad \Phi(+\infty)=1\).
The complete gamma function
\[
\Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t
\]
where \(\alpha>0\).
The complete beta function
\[
B(P, G)=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t
\]
where \(p>0\) and \(q>0\).
```

LCG(a,c,m) Linear Congruential Generator }\mp@subsup{x}{n+1}{}=(a\mp@subsup{x}{n}{}+c)\operatorname{mod}m,\mathrm{ where a is
called the multiplier, c is called the increment, and m}\mathrm{ is called the
modulus of the generator.
MCG(a,m) Multiplicative Congruential Generator }\mp@subsup{x}{n+1}{}=(a\mp@subsup{x}{n}{\prime})m\textrm{mod}m\mathrm{ is a special
case of Linear Congruential Generator, where the increment c is taken
to be 0.
GFSR(p,q) Generalized Feedback Shift Register Generator
x

```

\section*{Naming Conventions}

The names of the Fortran routines in VSL random number generators are lowercase (virnguniform). The names are not case-sensitive.
In C, the names of the routines, types, and constants are case-sensitive and can be lowercase and uppercase viRngUniform).
The names of generator routines have the following structure:
v<type of result>rng<distribution> for the Fortran interface
v<type of result>Rng<distribution> for the C interface,
where
- v is the prefix of a VSL vector function.
- <type of result> is either \(s, d\), or \(i\) and specifies one of the following types:
\(\left.\left.\begin{array}{ll}\text { s } & \text { REAL for the Fortran interface } \\
\text { float for the C interface }\end{array}\right] \begin{array}{l}\text { DOUBLE PRECISION for the Fortran interface } \\
\text { double for the C interface }\end{array}\right]\)\begin{tabular}{l} 
INTEGER for the Fortran interface \\
int for the C interface \\
i \\
Prefixes s and d apply to continuous distributions only, prefix i applies \\
only to discrete case.
\end{tabular}
- rng indicates that the routine is a random generator.
- <distribution> specifies the type of statistical distribution.

Names of service routines follow the template below:
vsl<name>
where
- vsl is the prefix of a VSL service function.
- <name> contains a short function name.

For a more detailed description of service routines, refer to Service Routines and Advanced Service Routines sections.
Prototype of each generator routine corresponding to a given probability distribution fits the following structure:
status = <function name>( method, stream, n, r, [<distribution parameters>] )
where
- method defines the method of generation. A detailed description of this parameter can be found in table "Values of <method> in method parameter". See the next page, where the structure of the method parameter name is explained.
- stream defines the descriptor of the random stream and must have a non-zero value. Random streams, descriptors, and their usage are discussed further in Random Streams and Service Routines.
- \(n\) defines the number of random values to be generated. If \(n\) is less than or equal to zero, no values are generated. Furthermore, if \(n\) is negative, an error condition is set.
- \(r\) defines the destination array for the generated numbers. The dimension of the array must be large enough to store at least \(n\) random numbers.
- status defines the error status of a VSL routine. See Error Reporting section for a detailed description of error status values.
Additional parameters included into <distribution parameters> field are individual for each generator routine and are described in detail in Distribution Generators section.
To invoke a distribution generator, use a call to the respective VSL routine. For example, to obtain a vector \(r\), composed of \(n\) independent and identically distributed random numbers with normal (Gaussian) distribution, that have the mean value a and standard deviation sigma, write the following:
for the Fortran interface
```

status = vsrnggaussian(method, stream, n, r, a, sigma)

```
for the \(C\) interface
```

status = vsRngGaussian(method, stream, n, r, a, sigma)

```

The name of a method parameter has the following structure:
VSL_RNG_METHOD_method<distribution>_<method>
VSL_RNG_METHOD_<distribution>_<method>_ACCURATE
where
- <distribution> is the probability distribution.
- <method> is the method name.

Type of the name structure for the method parameter corresponds to fast and accurate modes of random number generation (see "Distribution Generators" section and VSL Notes for details).

Method names VSL_RNG_METHOD_<distribution>_<method>
and
VSL_RNG_METHOD_<distribution>_<method>_ACCURATE
should be used with
v<precision>Rng<distribution>
function only, where
- <precision> is \(s \quad\) for single precision continuous distribution d for double precision continuous distribution i for discrete distribution
- <distribution> is the probability distribution.
is the probability distribution.Table "Values of <method> in method parameter" provides specific predefined values of the method name. The third column contains names of the functions that use the given method.

Values of <method> in method parameter
\begin{tabular}{|c|c|c|}
\hline Method & Short Description & Functions \\
\hline STD & Standard method. Currently there is only one method for these functions. & \begin{tabular}{l}
Uniform \\
(continuous), \\
Uniform \\
(discrete), \\
UniformBits, \\
UniformBits32, \\
UniformBits64
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Method & Short Description & Functions \\
\hline BOXMULLER & BOXMULLER generates normally distributed random number \(x\) thru the pair of uniformly distributed numbers \(u_{1}\) and \(u_{2}\) according to the formula: & Gaussian, GaussianMV \\
\hline & \[
x=\sqrt{-2 \ln u_{1}} \sin 2 \pi u_{2}
\] & \\
\hline \multirow[t]{3}{*}{BOXMULLER2} & BOXMULLER2 generates normally distributed random numbers \(x_{1}\) and \(x_{2}\) thru the pair of uniformly distributed numbers \(u_{1}\) and \(u_{2}\) according to the formulas: & Gaussian, GaussianMV, Lognormal \\
\hline & \[
x_{1}=\sqrt{-2 \ln u_{1}} \sin 2 \pi u_{2}
\] & \\
\hline & \[
x_{2}=\sqrt{-2 \ln u_{1}} \cos 2 \pi u_{2}
\] & \\
\hline ICDF & Inverse cumulative distribution function method. & \begin{tabular}{l}
Exponential, \\
Laplace, \\
Weibull, Cauchy, \\
Rayleigh, \\
Gumbel, \\
Bernoulli, \\
Geometric, \\
Gaussian, \\
GaussianMV
\end{tabular} \\
\hline GNORM & For \(\alpha>1\), a gamma distributed random number is generated as a cube of properly scaled normal random number; for \(0.6 \leq \alpha<\) 1 , a gamma distributed random number is generated using rejection from Weibull distribution; for \(\alpha<0.6\), a gamma distributed random number is obtained using transformation of exponential power distribution; for \(\alpha=1\), gamma distribution is reduced to exponential distribution. & Gamma \\
\hline CJA & For \(\min (p, q)>1\), Cheng method is used; for \(\min (p, q)<\) 1 , Johnk method is used, if \(q+K \cdot p^{2}+C \leq 0(K=0.852 \ldots\), \(C=-0.956 \ldots\) ) otherwise, Atkinson switching algorithm is used; for \(\max (p, q)<1\), method of Johnk is used; for \(\min (p, q)\) 1 , \(\max (p, q)>1\), Atkinson switching algorithm is used (CJA stands for the first letters of Cheng, Johnk, Atkinson); for \(p=\) 1 or \(q=1\), inverse cumulative distribution function method is used;for \(p=1\) and \(q=1\), beta distribution is reduced to uniform distribution. & Beta \\
\hline BTPE & \begin{tabular}{l}
Acceptance/rejection method for ntrial \(\min (p, 1-p) \geq 30\) with decomposition into 4 regions: \\
- 2 parallelograms \\
- triangle \\
- left exponential tail \\
- right exponential tail
\end{tabular} & Binomial \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Method & Short Description & Functions \\
\hline H2PE & \begin{tabular}{l}
Acceptance/rejection method for large mode of distribution with decomposition into 3 regions: \\
- rectangular \\
- left exponential tail \\
- right exponential tail
\end{tabular} & Hypergeometric \\
\hline PTPE & \begin{tabular}{l}
Acceptance/rejection method for \(\lambda \geq 27\) with decomposition into 4 regions: \\
- 2 parallelograms \\
- triangle \\
- left exponential tail \\
- right exponential tail; \\
otherwise, table lookup method is used.
\end{tabular} & Poisson \\
\hline POISNORM & \begin{tabular}{l}
for \(\lambda \geq 1\), method based on Poisson inverse CDF approximation by Gaussian inverse CDF; \\
for \(\lambda<1\), table lookup method is used.
\end{tabular} & Poisson, PoissonV \\
\hline NBAR & \begin{tabular}{l}
Acceptance/rejection method for,
\[
\frac{(a-1) \cdot(1-p)}{p} \geq 100
\] \\
with decomposition into 5 regions: \\
- rectangular \\
- 2 trapezoid \\
- left exponential tail \\
- right exponential tail
\end{tabular} & NegBinomial \\
\hline
\end{tabular}

NOTE In this document, routines are often referred to by their base name (Gaussian) when this does not lead to ambiguity. In the routine reference, the full name (vsrnggaussian, vsRngGaussian) is always used in prototypes and code examples.

\section*{Basic Generators}

VSL provides the following BRNGs, which differ in speed and other properties:
- the 32-bit multiplicative congruential pseudorandom number generator MCG (1132489760, \(2^{31}\)-1) [L'Ecuyer99]
- the 32-bit generalized feedback shift register pseudorandom number generator \(\operatorname{GFSR}(250,103)\) [Kirkpatrick81]
- the combined multiple recursive pseudorandom number generator MRG-32k3a [L'Ecuyer99a]
- the 59 -bit multiplicative congruential pseudorandom number generator \(M C G\left(13^{13}, 2^{59}\right)\) from NAG Numerical Libraries [NAG]
- Wichmann-Hill pseudorandom number generator (a set of 273 basic generators) from NAG Numerical Libraries [NAG]
- Mersenne Twister pseudorandom number generator MT19937 [Matsumoto98] with period length \(2^{19937-1}\) of the produced sequence
- Set of 6024 Mersenne Twister pseudorandom number generators MT2203 [Matsumoto98], [Matsumoto00]. Each of them generates a sequence of period length equal to \(2^{2203}-1\). Parameters of the generators provide mutual independence of the corresponding sequences.
- SIMD-oriented Fast Mersenne Twister pseudorandom number generator SFMT19937 [Saito08] with a period length equal to \(2^{19937}-1\) of the produced sequence.

Besides these pseudorandom number generators, VSL provides two basic quasi-random number generators:
- Sobol quasi-random number generator [Sobol76], [Bratley88], which works in arbitrary dimension. For dimensions greater than 40 the user should supply initialization parameters (initial direction numbers and primitive polynomials or direction numbers) by using vslNewStreamEx function. See additional details on interface for registration of the parameters in the library in VSL Notes.
- Niederreiter quasi-random number generator [Bratley92], which works in arbitrary dimension. For dimensions greater than 318 the user should supply initialization parameters (irreducible polynomials or direction numbers) by using vslNewStreamEx function. See additional details on interface for registration of the parameters in the library in VSL Notes.
See some testing results for the generators in VSL Notes and comparative performance data at http:// software.intel.com/sites/products/documentation/hpc/mkl/vsl/vsl_data/vsl_performance_data.htm.

VSL provides means of registration of such user-designed generators through the steps described in Advanced Service Routines section.
For some basic generators, VSL provides two methods of creating independent random streams in multiprocessor computations, which are the leapfrog method and the block-splitting method. These sequence splitting methods are also useful in sequential Monte Carlo.
In addition, MT2203 pseudorandom number generator is a set of 6024 generators designed to create up to 6024 independent random sequences, which might be used in parallel Monte Carlo simulations. Another generator that has the same feature is Wichmann-Hill. It allows creating up to 273 independent random streams. The properties of the generators designed for parallel computations are discussed in detail in [Coddington94].

You may want to design and use your own basic generators. VSL provides means of registration of such user-designed generators through the steps described in Advanced Service Routines section.
There is also an option to utilize externally generated random numbers in VSL distribution generator routines. For this purpose VSL provides three additional basic random number generators:
- for external random data packed in 32-bit integer array
- for external random data stored in double precision floating-point array; data is supposed to be uniformly distributed over ( \(a, b\) ) interval
- for external random data stored in single precision floating-point array; data is supposed to be uniformly distributed over \((a, b)\) interval.

Such basic generators are called the abstract basic random number generators.
See VSL Notes for a more detailed description of the generator properties.

\section*{Optimization Notice}

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

\section*{BRNG Parameter Definition}

Predefined values for the brng input parameter are as follows:

Values of brng parameter
\begin{tabular}{ll} 
Value & Short Description \\
\hline VSL_BRNG_MCG31 & A 31-bit multiplicative congruential generator. \\
VSL_BRNG_R250 & A generalized feedback shift register generator. \\
VSL_BRNG_MRG32K3A & \begin{tabular}{l} 
A combined multiple recursive generator with two components \\
of order 3.
\end{tabular} \\
VSL_BRNG_MCG59 & A 59-bit multiplicative congruential generator. \\
VSL_BRNG_WH & \begin{tabular}{l} 
A set of 273 Wichmann-Hill combined multiplicative \\
congruential generators.
\end{tabular} \\
VSL_BRNG_MT19937 & \begin{tabular}{l} 
A Mersenne Twister pseudorandom number generator.
\end{tabular} \\
VSL_BRNG_MT2203 & \begin{tabular}{l} 
A set of 6024 Mersenne Twister pseudorandom number \\
generators.
\end{tabular} \\
VSL_BRNG_SFMT19937 & \begin{tabular}{l} 
A SIMD-oriented Fast Mersenne Twister pseudorandom \\
number generator.
\end{tabular} \\
VSL_BRNG_SOBOL & \begin{tabular}{l} 
A 32-bit Gray code-based generator producing low- \\
discrepancy sequences for dimensions 1 \\
defined dimensions are also available.
\end{tabular} \\
\hline VSL_BRNG_NIEDERR user-
\end{tabular}

See VSL Notes for detailed description.

\section*{Optimization Notice}

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

\section*{Random Streams}

Random stream (or stream) is an abstract source of pseudo- and quasi-random sequences of uniform distribution. You can operate with stream state descriptors only. A stream state descriptor, which holds state descriptive information for a particular BRNG, is a necessary parameter in each routine of a distribution generator. Only the distribution generator routines operate with random streams directly. See VSL Notes for details.

NOTE Random streams associated with abstract basic random number generator are called the abstract random streams. See VSL Notes for detailed description of abstract streams and their use.

You can create unlimited number of random streams by VSL Service Routines like NewStream and utilize them in any distribution generator to get the sequence of numbers of given probability distribution. When they are no longer needed, the streams should be deleted calling service routine DeleteStream.
VSL provides service functions SaveStreamF and LoadStreamF to save random stream descriptive data to a binary file and to read this data from a binary file respectively. See VSL Notes for detailed description.
```

Data Types
FORTRAN 77:
INTEGER*4 vslstreamstate(2)
Fortran 90:
TYPE
VSL_STREAM_STATE
INTEGER*4 descriptor1
INTEGER*4 descriptor2
END
TYPE VSL_STREAM_STATE
C:
typedef (void*) VSLStreamStatePtr;

```

See Advanced Service Routines for the format of the stream state structure for user-designed generators.

\section*{Error Reporting}

VSL RNG routines return status codes of the performed operation to report errors to the calling program. The application should perform error-related actions and/or recover from the error. The status codes are of integer type and have the following format:

VSL_ERROR_<ERROR_NAME> - indicates VSL errors common for all VSL domains.
VSL_RNG_ERROR_<ERROR_NAME> - indicates VSL RNG errors.
VSL RNG errors are of negative values while warnings are of positive values. The status code of zero value indicates successful completion of the operation: VSL_ERROR_OK (or synonymic VSL_STATUS_OK).

\section*{Status Codes}
Status Code Description

\section*{Common VSL}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_BADARGS
VSL_ERROR_CPU_NOT_SUPPORTED
VSL_ERROR_FEATURE_NOT_IMPLEMENTED
VSL_ERROR_MEM_FAILURE
VSL_ERROR_NULL_PTR
VSL_ERROR_UNKNOWN

```

\section*{VSL RNG Specific}
```

VSL_RNG_ERROR_BAD_FILE_FORMAT

```

File format is unknown.
\begin{tabular}{|c|c|}
\hline Status Code & Description \\
\hline VSL_RNG_ERROR_BAD_MEM_FORMAT & Descriptive random stream format is unknown. \\
\hline VSL_RNG_ERROR_BAD_NBITS & The value in NBits field is bad. \\
\hline VSL_RNG_ERROR_BAD_NSEEDS & The value in NSeeds field is bad. \\
\hline VSL_RNG_ERROR_BAD_STREAM & The random stream is invalid. \\
\hline VSL_RNG_ERROR_BAD_STREAM_STATE_SIZE & The value in StreamStateSize field is bad. \\
\hline VSL_RNG_ERROR_BAD_UPDATE & Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, \(<0\) or \(>\) nmax. \\
\hline VSL_RNG_ERROR_BAD_WORD_SIZE & The value in WordSize field is bad. \\
\hline VSL_RNG_ERROR_BRNG_NOT_SUPPORTED & BRNG is not supported by the function. \\
\hline VSL_RNG_ERROR_BRNG_TABLE_FULL & Registration cannot be completed due to lack of free entries in the table of registered BRNGs. \\
\hline VSL_RNG_ERROR_BRNGS_INCOMPATIBLE & Two BRNGs are not compatible for the operation. \\
\hline VSL_RNG_ERROR_FILE_CLOSE & Error in closing the file. \\
\hline VSL_RNG_ERROR_FILE_OPEN & Error in opening the file. \\
\hline VSL_RNG_ERROR_FILE_READ & Error in reading the file. \\
\hline VSL_RNG_ERROR_FILE_WRITE & Error in writing the file. \\
\hline VSL_RNG_ERROR_INVALID_ABSTRACT_STREAM & The abstract random stream is invalid. \\
\hline VSL_RNG_ERROR_INVALID_BRNG_INDEX & BRNG index is not valid. \\
\hline VSL_RNG_ERROR_LEAPFROG_UNSUPPORTED & BRNG does not support Leapfrog method. \\
\hline VSL_RNG_ERROR_NO_NUMBERS & Callback function for an abstract BRNG returns zero as the number of updated entries in a buffer. \\
\hline VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED & Period of the generator is exceeded. \\
\hline VSL_RNG_ERROR_SKIPAHEAD_UNSUPPORTED & BRNG does not support Skip-Ahead method. \\
\hline VSL_RNG_ERROR_UNSUPPORTED_FILE_VER & File format version is not supported. \\
\hline
\end{tabular}

\section*{VSL RNG Usage Model}

A typical algorithm for VSL random number generators is as follows:
1. Create and initialize stream/streams. Functions vslNewStream, vslNewStreamEx, vslCopyStream, vslCopyStreamState, vslLeapfrogStream, vslSkipAheadStream.
2. Call one or more RNGs.
3. Process the output.
4. Delete the stream/streams. Function vslDeleteStream.

NOTE You may reiterate steps 2-3. Random number streams may be generated for different threads.

The following C example demonstrates generation of a random stream that is output of basic generator MT19937. The seed is equal to 777 . The stream is used to generate 10,000 normally distributed random numbers in blocks of 1,000 random numbers with parameters \(a=5\) and sigma \(=2\). Delete the streams after completing the generation. The purpose of the example is to calculate the sample mean for normal distribution with the given parameters.

\section*{C Example of VSL RNG Usage}
```

\#include <stdio.h>
\#include "mkl_vsl.h"
int main()
{
double r[1000]; /* buffer for random numbers */
double s; /* average */
VSLStreamStatePtr stream;
int i, j;
/* Initializing */
s = 0.0;
vslNewStream(\&stream, VSL_BRNG_MT19937, 777);
/* Generating */
for (i=0; i<10; i++);
{
vdRngGaussian(VSL_RNG_METHOD_GAUSSIAN_ICDF, stream, 1000, r, 5.0, 2.0);
for (j=0; j<1000;-j++-);
{
s += r[j];
}
}
s /= 10000.0;
/* Deleting the stream */
vslDeleteStream(\&stream);
/* Printing results */
printf("Sample mean of normal distribution = %f\n", s);
return 0;
}

```

The Fortran version of the same example is below:

\section*{Fortran Example of VSL RNG Usage}
```

include 'mkl_vsl.f90'
program MKL_VSL_GAUSSIAN
USE MKL_VSL_TYPE
USE MKL_VSL-
real(kind=8) r(1000) ! buffer for random numbers
real(kind=8) s ! average
real(kind=8) a, sigma ! parameters of normal distribution
TYPE (VSL_STREAM_STATE) :: stream
integer(kind=4) errcode
integer(kind=4) i,j
integer brng,method,seed,n
n = 1000
s = 0.0
a = 5.0

```
```

sigma = 2.0
brng=VSL BRNG MT19937
method=V\overline{SL_RN\overline{G}_METHOD_GAUSSIAN_ICDF}
seed=777
***** Initializing *****
errcode=vslnewstream(stream, brng, seed)
***** Generating ******
do i = 1,10
errcode=vdrnggaussian(method, stream, n, r, a, sigma)
do j = 1, 1000
s=s+r(j)
end do
end do
s=s / 10000.0
***** Deinitialize ******
errcode=vsldeletestream(stream)
***** Printing results *****
print *,"Sample mean of normal distribution = ", s
end

```

Additionally, examples that demonstrate usage of VSL random number generators are available in the following directories:
```

\$ {MKL}/examples/vslc/source
\$ {MKL}/examples/vslf/source

```

\section*{Service Routines}

Stream handling comprises routines for creating, deleting, or copying the streams and getting the index of a basic generator. A random stream can also be saved to and then read from a binary file. Table "Service Routines" lists all available service routines
\begin{tabular}{ll} 
Service Routines & Short Description \\
\hline Routine & Creates and initializes a random stream. \\
\hline vslNewStream & \begin{tabular}{l} 
Creates and initializes a random stream for the generators \\
with multiple initial conditions. \\
vslNewStreamEx
\end{tabular} \\
vsliNewAbstractStream & \begin{tabular}{l} 
Creates and initializes an abstract random stream for integer \\
arrays.
\end{tabular} \\
vsldNewAbstractStream & \begin{tabular}{l} 
Creates and initializes an abstract random stream for double \\
precision floating-point arrays.
\end{tabular} \\
vslsNewAbstractStream & \begin{tabular}{l} 
Creates and initializes an abstract random stream for single \\
vslDeleteStream
\end{tabular} \\
precision floating-point arrays. \\
vslCopyStream & Deletes previously created stream. \\
vslCopyStreamState & Copies a stream to another stream. \\
vslSaveStreamF & Creates a copy of a random stream state. \\
vslLoadStreamF & Writes a stream to a binary file. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Routine & Short Description \\
\hline vslSaveStreamM & \begin{tabular}{l} 
Writes a random stream descriptive data, including state, to a \\
memory buffer.
\end{tabular} \\
vslLoadStreamM & \begin{tabular}{l} 
Creates a new stream and reads stream descriptive data, \\
including state, from the memory buffer.
\end{tabular} \\
vslGetStreamSize & \begin{tabular}{l} 
Computes size of memory necessary to hold the random \\
stream.
\end{tabular} \\
vslLeapfrogStream & \begin{tabular}{l} 
Initializes the stream by the leapfrog method to generate a \\
subsequence of the original sequence.
\end{tabular} \\
vslSkipAheadStream & \begin{tabular}{l} 
Initializes the stream by the skip-ahead method.
\end{tabular} \\
vslGetStreamStateBrng & \begin{tabular}{l} 
Obtains the index of the basic generator responsible for the \\
generation of a given random stream.
\end{tabular} \\
vslGetNumRegBrngs & Obtains the number of currently registered basic generators. \\
\hline
\end{tabular}

Most of the generator-based work comprises three basic steps:
1. Creating and initializing a stream (vslNewStream, vslNewStreamEx, vslCopyStream, vslCopyStreamState, vslLeapfrogStream, vslSkipAheadStream).
2. Generating random numbers with given distribution, see Distribution Generators.
3. Deleting the stream (vslDeleteStream).

Note that you can concurrently create multiple streams and obtain random data from one or several generators by using the stream state. You must use the vslDeleteStream function to delete all the streams afterwards.
vsINewStream
Creates and initializes a random stream.

\section*{Syntax}

\section*{Fortran:}
```

status = vslnewstream(stream, brng, seed)

```

C:
```

status = vslNewStream(\&stream, brng, seed);

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
brng & FORTRAN 77: INTEGER \\
& Fortran 90: INTEGER, \\
& INTENT (IN) \\
& C: const int
\end{tabular}

\section*{Description}

Index of the basic generator to initialize the stream. See Table Values of brng parameter for specific value.
\begin{tabular}{ll} 
Name & Type \\
seed & FORTRAN 77: INTEGER \\
& Fortran 90: INTEGER, \\
& INTENT (IN) \\
& C: const unsigned int
\end{tabular}

\section*{Output Parameters}

\section*{Name}
stream

\section*{Type}

FORTRAN 77: INTEGER*4
stream(2)

\section*{Fortran 90:}

TYPE (VSL_STREAM_STATE), INTENT (OUT)

C: VSLStreamStatePtr*

\section*{Description}

Initial condition of the stream. In the case of a quasirandom number generator seed parameter is used to set the dimension. If the dimension is greater than the dimension that brng can support or is less than 1 , then the dimension is assumed to be equal to 1.

\section*{Description}

Stream state descriptor

Description
For a basic generator with number brng, this function creates a new stream and initializes it with a 32-bit seed. The seed is an initial value used to select a particular sequence generated by the basic generator brng. The function is also applicable for generators with multiple initial conditions. See VSL Notes for a more detailed description of stream initialization for different basic generators.

口
NOTE This function is not applicable for abstract basic random number generators. Please use vsliNewAbstractStream, vslsNewAbstractStream or vsldNewAbstractStream to utilize integer, single-precision or double-precision external random data respectively.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_RNG_ERROR_INVALID_BRNG_INDEX
VSL_ERROR_MEM_FAILURE
Indicates no error, execution is successful.
BRNG index is invalid.
System cannot allocate memory for stream.

```
vsINewStreamEx
Creates and initializes a random stream for generators with multiple initial conditions.

\section*{Syntax}

\section*{Fortran:}
```

status = vslnewstreamex(stream, brng, n, params)

```

C:
```

status = vslNewStreamEx(\&stream, brng, n, params);

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{3}{*}{brng} & FORTRAN 77: INTEGER & \multirow[t]{3}{*}{Index of the basic generator to initialize the stream. See Table "Values of brng parameter" for specific value.} \\
\hline & Fortran 90: INTEGER, INTENT (IN) & \\
\hline & C: const int & \\
\hline \multirow[t]{3}{*}{\(n\)} & FORTRAN 77: INTEGER & \multirow[t]{3}{*}{Number of initial conditions contained in params} \\
\hline & Fortran 90: INTEGER, INTENT (IN) & \\
\hline & C: const int & \\
\hline \multirow[t]{3}{*}{params} & FORTRAN 77: Integer & \multirow[t]{3}{*}{Array of initial conditions necessary for the basic generator brng to initialize the stream. In the case of a quasi-random number generator only the first element in params parameter is used to set the dimension. If the dimension is greater than the dimension that brng can support or is less than 1 , then the dimension is assumed to be equal to 1 .} \\
\hline & \begin{tabular}{l}
Fortran 90: INTEGER (KIND=4), \\
INTENT (IN)
\end{tabular} & \\
\hline & C: const unsigned int & \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
stream & FORTRAN 77: INTEGER*4 & Stream state descriptor \\
& stream (2) & \\
& Fortran 90: & \\
& TYPE (VSL_STREAM_STATE), & \\
& INTENT (OUT) & \\
& C: VSLStreamStatePtr* &
\end{tabular}

\section*{Description}

The vslNewStreamEx function provides an advanced tool to set the initial conditions for a basic generator if its input arguments imply several initialization parameters. Initial values are used to select a particular sequence generated by the basic generator brng. Whenever possible, use vslNewStream, which is analogous to vslNewStreamEx except that it takes only one 32-bit initial condition. In particular, vslNewStreamEx may be used to initialize the state table in Generalized Feedback Shift Register Generators (GFSRs). A more detailed description of this issue can be found in VSL Notes.

This function is also used to pass user-defined initialization parameters of quasi-random number generators into the library. See VSL Notes for the format for their passing and registration in VSL.

NOTE This function is not applicable for abstract basic random number generators. Please use vsliNewAbstractStream, vslsNewAbstractStream or vsldNewAbstractStream to utilize integer, single-precision or double-precision external random data respectively.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_RNG_ERROR_INVALID_BRNG_INDEX

```

Indicates no error, execution is successful. BRNG index is invalid.

\section*{vsliNewAbstractStream}

Creates and initializes an abstract random stream for integer arrays.

Syntax

\section*{Fortran:}
```

status = vslinewabstractstream(stream, n, ibuf, icallback)

```

C:
```

status = vsliNewAbstractStream(\&stream, n, ibuf, icallback);

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{3}{*}{\(n\)} & FORTRAN 77: INTEGER & Size of the array ibuf \\
\hline & \begin{tabular}{l}
Fortran 90: INTEGER, \\
INTENT (IN)
\end{tabular} & \\
\hline & C: const int & \\
\hline \multirow[t]{3}{*}{ibuf} & FORTRAN 77: INTEGER & Array of \(n 32\)-bit integers \\
\hline & \begin{tabular}{l}
Fortran 90: INTEGER (KIND=4), \\
INTENT (IN)
\end{tabular} & \\
\hline & C: const unsigned int & \\
\hline \multirow[t]{2}{*}{icallback} & See Note below & Fortran: Address of the callback function used for ibuf update \\
\hline & & C: Pointer to the callback function used for ibuf update \\
\hline
\end{tabular}

NOTE Format of the callback function in FORTRAN 77:
INTEGER FUNCTION IUPDATEFUNC( stream, n, ibuf, nmin, nmax, idx )
INTEGER*4 stream(2)
INTEGER n
INTEGER*4 ibuf(n)
INTEGER nmin
INTEGER nmax
INTEGER idx

Format of the callback function in Fortran 90:
INTEGER FUNCTION IUPDATEFUNC[C]( stream, n, ibuf, nmin, nmax, idx )
TYPE (VSL_STREAM_STATE), POINTER :: stream[reference]
INTEGER (KIND=4), INTENT (IN) :: n[reference]
INTEGER (KIND=4), INTENT (OUT) : : ibuf[reference] ( \(0: \mathrm{n}\)-1)
INTEGER (KIND=4), INTENT (IN) : : nmin[reference]
INTEGER (KIND=4), INTENT (IN) :: nmax[reference]
INTEGER (KIND=4), INTENT (IN) : : idx[reference]
Format of the callback function in C :
int iUpdateFunc( VSLStreamStatePtr stream, int* \(n\), unsigned int ibuf[], int* nmin, int* nmax, int* idx );

The callback function returns the number of elements in the array actually updated by the function. Table icallback Callback Function Parameters gives the description of the callback function parameters.
icallback Callback Function Parameters
\begin{tabular}{ll}
\hline Parameters & Short Description \\
\hline stream & Abstract random stream descriptor \\
\(n\) & Size of ibuf \\
ibuf & Array of random numbers associated with the stream stream \\
nmin & Minimal quantity of numbers to update \\
\(n \max\) & Maximal quantity of numbers that can be updated \\
\(i d x\) & Position in cyclic buffer ibuf to start update \(0 \leq i d x<n\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
stream & FORTRAN 77: INTEGER*4 & Descriptor of the stream state structure \\
& stream (2) & \\
& Fortran 90: \\
& TYPE (VSL_STREAM_STATE), & \\
& TINTENT (OUT) \\
& C: VSLStreamStatePtr* &
\end{tabular}

\section*{Description}

The vsliNewAbstractStream function creates a new abstract stream and associates it with an integer array ibuf and your callback function icallback that is intended for updating of ibuf content.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_BADARGS
VSL_ERROR_MEM_FAILURE
VSL_ERROR_NULL_PTR

```

Indicates no error, execution is successful.
Parameter \(n\) is not positive.
System cannot allocate memory for stream.
Either buffer or callback function parameter is a NULL pointer.

\section*{vsldNewAbstractStream}

Creates and initializes an abstract random stream for double precision floating-point arrays.

\section*{Syntax}

\section*{Fortran:}
```

status = vsldnewabstractstream(stream, n, dbuf, a, b, dcallback)

```

C:
```

status = vsldNewAbstractStream(\&stream, n, dbuf, a, b, dcallback);

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{4}{*}{\(n\)} & FORTRAN 77: INTEGER & Size of the array dbuf \\
\hline & Fortran 90: INTEGER, & \\
\hline & INTENT (IN) & \\
\hline & C: const int & \\
\hline \multirow[t]{5}{*}{dbuf} & FORTRAN 77: DOUBLE & Array of \(n\) double precision floating-point random numbers \\
\hline & PRECISION & with uniform distribution over interval ( \(\mathrm{a}, \mathrm{b}\) ) \\
\hline & Fortran 90: REAL (KIND=8), & \\
\hline & INTENT (IN) & \\
\hline & C: const double & \\
\hline \multirow[t]{5}{*}{a} & FORTRAN 77: DOUBLE & Left boundary a \\
\hline & PRECISION & \\
\hline & Fortran 90: REAL (KIND=8), & \\
\hline & INTENT (IN) & \\
\hline & C: const double & \\
\hline \multirow[t]{5}{*}{\(b\)} & FORTRAN 77: DOUBLE & Right boundary b \\
\hline & PRECISION & \\
\hline & Fortran 90: REAL (KIND=8), & \\
\hline & INTENT (IN) & \\
\hline & C: const double & \\
\hline \multirow[t]{2}{*}{dcallback} & See Note below & Fortran: Address of the callback function used for update of the array dbuf \\
\hline & & C: Pointer to the callback function used for update of the array dbuf \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{Name Type}
stream

FORTRAN 77: INTEGER*4
stream(2)
Fortran 90:
TYPE (VSL_STREAM_STATE), INTENT (OUT)

C: VSLStreamStatePtr*

\section*{Description}

Descriptor of the stream state structure

NOTE Format of the callback function in FORTRAN 77:
INTEGER FUNCTION DUPDATEFUNC( stream, n, dbuf, nmin, nmax, idx )
INTEGER*4 stream(2)
INTEGER n
DOUBLE PRECISION dbuf (n)
INTEGER nmin
INTEGER nmax
INTEGER idx
Format of the callback function in Fortran 90:
```

INTEGER FUNCTION DUPDATEFUNC[C] (stream, n, dbuf, nmin, nmax, idx)
TYPE(VSL_STREAM_STATE),POINTER :: stream[reference]
INTEGER (KIND=4),INTENT (IN) :: n[reference]
REAL (KIND=8), INTENT (OUT) :: dbuf[reference] (0:n-1)
INTEGER (KIND=4),INTENT (IN) :: nmin[reference]
INTEGER (KIND=4), INTENT(IN) :: nmax[reference]
INTEGER (KIND=4) ,INTENT (IN) :: idx[reference]
Format of the callback function in C :
int dUpdateFunc(VSLStreamStatePtr stream, int* n, double dbuf[], int* nmin, int* nmax, int* idx);

```

The callback function returns the number of elements in the array actually updated by the function. Table dcallback Callback Function Parameters gives the description of the callback function parameters.
dcallback Callback Function Parameters
\begin{tabular}{ll} 
Parameters & Short Description \\
\hline stream & Abstract random stream descriptor \\
\(n\) & Size of \(d b u f\) \\
\(d b u f\) & Array of random numbers associated with the stream stream \\
nmin & Minimal quantity of numbers to update \\
\(n m a x\) & Maximal quantity of numbers that can be updated \\
\(i d x\) & Position in cyclic buffer dbuf to start update \(0 \leq i d x<n\).
\end{tabular}

\section*{Description}

The vsldNewAbstractStream function creates a new abstract stream for double precision floating-point arrays with random numbers of the uniform distribution over interval ( \(a, b\) ). The function associates the stream with a double precision array dbuf and your callback function dcallback that is intended for updating of dbuf content.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_BADARGS
VSL_ERROR_MEM_FAILURE
VSL_ERROR_NULL_PTR

```

Indicates no error, execution is successful. Parameter \(n\) is not positive.
System cannot allocate memory for stream.
Either buffer or callback function parameter is a NULL pointer.

\section*{vslsNewAbstractStream}

Creates and initializes an abstract random stream for
single precision floating-point arrays.
Syntax

\section*{Fortran:}
```

status = vslsnewabstractstream(stream, n, sbuf, a, b, scallback)

```

C:
```

status = vslsNewAbstractStream(\&stream, n, sbuf, a, b, scallback);

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}

Name Type
\(n \quad\) FORTRAN 77: INTEGER

\section*{Description}

Size of the array sbuf
Fortran 90: INTEGER,
INTENT (IN)
C: const int
sbuf FORTRAN 77: REAL
Fortran 90: REAL (KIND=4), INTENT (IN)

C: const float
a

FORTRAN 77: REAL
Fortran 90: REAL (KIND=4), INTENT (IN)

C: const float

Array of \(n\) single precision floating-point random numbers with uniform distribution over interval ( \(a, b\) )

都

Left boundary a
Name Type Description

FORTRAN 77: REAL
Fortran 90: REAL (KIND=4),
INTENT (IN)
C: const float
scallback See Note below
Right boundary b

Fortran: Address of the callback function used for update of the array sbuf
C: Pointer to the callback function used for update of the array sbuf

\section*{Output Parameters}

\section*{Name \\ Type}
stream
FORTRAN 77: INTEGER*4

\section*{Description}

Descriptor of the stream state structure

\section*{stream(2)}

\section*{Fortran 90:}

TYPE (VSL_STREAM_STATE), INTENT (OUT)

C: VSLStreamStatePtr*

NOTE Format of the callback function in FORTRAN 77:
INTEGER FUNCTION SUPDATEFUNC( stream, n, ibuf, nmin, nmax, idx )
INTEGER*4 stream(2)
INTEGER n
REAL sbuf (n)
INTEGER nmin
INTEGER nmax
INTEGER idx
Format of the callback function in Fortran 90:
INTEGER FUNCTION SUPDATEFUNC[C] ( stream, n, sbuf, nmin, nmax, idx )
TYPE(VSL_STREAM_STATE), POINTER : : stream[reference]
INTEGER (KIND=4) ,INTENT (IN) : : n[reference]
REAL (KIND=4), INTENT (OUT) : : sbuf[reference] (0:n-1)
INTEGER (KIND=4), INTENT (IN) : : nmin[reference]
INTEGER (KIND=4) ,INTENT (IN) : : nmax[reference]
INTEGER (KIND=4) , INTENT (IN) : : idx[reference]
Format of the callback function in C :
int sUpdateFunc( VSLStreamStatePtr stream, int* \(n\), float sbuf[], int* nmin, int* nmax, int* idx );

The callback function returns the number of elements in the array actually updated by the function. Table scallback Callback Function Parameters gives the description of the callback function parameters.

\section*{scallback Callback Function Parameters}
\begin{tabular}{ll} 
Parameters & Short Description \\
\hline stream & Abstract random stream descriptor \\
\(n\) & Size of sbuf \\
sbuf & Array of random numbers associated with the stream stream \\
nmin & Minimal quantity of numbers to update \\
nmax & Maximal quantity of numbers that can be updated \\
\(i d x\) & Position in cyclic buffer sbuf to start update \(0 \leq i d x<n\).
\end{tabular}

\section*{Description}

The vslsNewAbstractStream function creates a new abstract stream for single precision floating-point arrays with random numbers of the uniform distribution over interval ( \(a, b\) ). The function associates the stream with a single precision array sbuf and your callback function scallback that is intended for updating of sbuf content.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_BADARGS
VSL_ERROR_MEM_FAILURE
VSL_ERROR_NULL_PTR

```

Indicates no error, execution is successful.
Parameter \(n\) is not positive.
System cannot allocate memory for stream.
Either buffer or callback function parameter is a NULL pointer.

\section*{vsIDeleteStream}

Deletes a random stream.
Syntax

\section*{Fortran:}
```

status = vsldeletestream(stream)

```

C:
status = vslDeleteStream( \&stream );

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input/Output Parameters
\begin{tabular}{ll} 
Name & Type \\
stream & FORTRAN 77: INTEGER*4 \\
& stream (2)
\end{tabular}

\section*{Description}

Fortran: Stream state descriptor. Must have non-zero value. After the stream is successfully deleted, the descriptor becomes invalid.
\begin{tabular}{lll} 
Name & Type & Description \\
& Fortran 90: & C: Stream state descriptor. Must have non-zero value. After \\
TYPE (VSL_STREAM_STATE), & the stream is successfully deleted, the pointer is set to \\
& INTENT (OUT) & NULL. \\
C: VSLStreamStatePtr* &
\end{tabular}

\section*{Description}

The function deletes the random stream created by one of the initialization functions.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR stream parameter is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.

```
vsICopyStream
Creates a copy of a random stream.
Syntax
Fortran:
```

status = vslcopystream(newstream, srcstream)

```

C:
```

status = vslCopyStream(\&newstream, srcstream);

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
srcstream & FORTRAN 77: INTEGER*4 \\
& srcstream (2) \\
& Fortran 90: \\
& TYPE (VSL_STREAM_STATE), \\
& INTENT (IN) \\
& C: const VSLStreamStatePtr
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
newstream & FORTRAN 77: INTEGER*4 & Copied random stream descriptor \\
& newstream (2) &
\end{tabular}
\begin{tabular}{ll} 
Name & Type \\
& Fortran 90: \\
& TYPE (VSL_STREAM_STATE), \\
& INTENT (OUT) \\
& C: VSLStreamStatePtrion
\end{tabular}

\section*{Description}

The function creates an exact copy of srcstream and stores its descriptor to newstream.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR srcstream parameter is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM srcstream is not a valid random stream.
VSL_ERROR_MEM_FAILURE System cannot allocate memory for newstream.

```
vsICopyStreamState
Creates a copy of a random stream state.
Syntax
Fortran:
```

status = vslcopystreamstate(deststream, srcstream)

```

C:
```

status = vslCopyStreamState(deststream, srcstream);

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

\section*{Name Type}
srcstream FORTRAN 77: INTEGER*4
srcstream(2)
Fortran 90:
TYPE (VSL_STREAM_STATE), INTENT (IN)

C: const VSLStreamStatePtr

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
deststrea & FORTRAN 77: INTEGER*4 \\
\(m\) & deststream (2)
\end{tabular}

\section*{Description}

Fortran: Descriptor of the destination stream where the state of scrstream stream is copied
C: Pointer to the stream state structure, from which the state structure is copied

\section*{Description}

Fortran: Descriptor of the stream with the state to be copied
\begin{tabular}{lll} 
Name & Type & Description \\
& Fortran 90: & C: Pointer to the stream state structure where the stream \\
& IYPE (VSL_STREAM_STATE), & \begin{tabular}{l} 
state is copied
\end{tabular} \\
& C: VSLStreamStatePtr &
\end{tabular}

\section*{Description}

The vslCopyStreamState function copies a stream state from srcstream to the existing deststream stream. Both the streams should be generated by the same basic generator. An error message is generated when the index of the BRNG that produced deststream stream differs from the index of the BRNG that generated srcstream stream.

Unlike vslCopyStream function, which creates a new stream and copies both the stream state and other data from srcstream, the function vslCopyStreamState copies only srcstream stream state data to the generated deststream stream.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL RNG ERROR BRNGS INCOMPATIBLE

```

Indicates no error, execution is successful.
Either srcstream or deststream is a NULL pointer.
Either srcstream or deststream is not a valid random stream.
BRNG associated with srcstream is not compatible with BRNG associated with deststream.
```

vslSaveStreamF
Writes random stream descriptive data, including
stream state, to binary file.

```
Syntax

\section*{Fortran:}
```

errstatus = vslsavestreamf(stream, fname)

```

C:
```

errstatus = vslSaveStreamF(stream, fname);

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
stream & FORTRAN 77: INTEGER*4 \\
& stream (2) \\
& Fortran 90: \\
& TYPE (VSL_STREAM_STATE), \\
& INTENT (IN)
\end{tabular}
Name Type Description

C: const VSLStreamStatePtr
fname FORTRAN 77: CHARACTER (*)

Fortran 90: CHARACTER (*),
INTENT (IN)
C: const char*

\section*{Description}

Fortran: File name specified as a C-style null-terminated string
C: File name specified as a Fortran-style character string

Output Parameters

Name Type
errstatus Fortran: INTEGER
C: int

\section*{Description}

Error status of the operation

\section*{Description}

The vslSaveStreamF function writes the random stream descriptive data, including the stream state, to the binary file. Random stream descriptive data is saved to the binary file with the name fname. The random stream stream must be a valid stream created by vslNewStream-like or vslCopyStream-like service routines. If the stream cannot be saved to the file, errstatus has a non-zero value. The random stream can be read from the binary file using the vslLoadStreamF function.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR Either fname or stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_FILE_OPEN Indicates an error in opening the file.
VSL_RNG_ERROR_FILE_WRITE Indicates an error in writing the file.
VSL_RNG_ERROR_FILE_CLOSE Indicates an error in closing the file.
VSL_ERROR_MEM_FAILURE System cannot allocate memory for internal needs.

```

\section*{vsILoadStreamf}

Creates new stream and reads stream descriptive
data, including stream state, from binary file.

\section*{Syntax}

\section*{fortran:}
```

errstatus = vslloadstreamf(stream, fname)

```

C:
```

errstatus = vslLoadStreamF(\&stream, fname);

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
fname & FORTRAN 77: CHARACTER(*) \\
& Fortran 90: CHARACTER (*), \\
& INTENT (IN) \\
&
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
stream & FORTRAN 77: INTEGER*4 \\
& stream (2) \\
& Fortran 90: \\
& TYPE (VSL_STREAM_STATE), \\
& INTENT (OUT) \\
& C: VSLStreamStatePtr*
\end{tabular}
errstatus
Fortran: INTEGER

\section*{Description}

Fortran: Descriptor of a new random stream

\section*{Description}

Fortran: File name specified as a C-style null-terminated string
C: File name specified as a Fortran-style character string

C: Pointer to a new random stream

Error status of the operation

\section*{Description}

The vslLoadStreamF function creates a new stream and reads stream descriptive data, including the stream state, from the binary file. A new random stream is created using the stream descriptive data from the binary file with the name fname. If the stream cannot be read (for example, an I/O error occurs or the file format is invalid), errstatus has a non-zero value. To save random stream to the file, use vslSaveStreamF function.

CAUTION Calling vslLoadStreamF with a previously initialized stream pointer can have unintended consequences such as a memory leak. To initialize a stream which has been in use until calling vslLoadStreamF, you should call the vslDeleteStream function first to deallocate the resources.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR fname is a NULL pointer.
VSL_RNG_ERROR_FILE_OPEN Indicates an error in opening the file.
VSL_RNG_ERROR_FILE_WRITE Indicates an error in writing the file.
VSL_RNG_ERROR_FILE_CLOSE Indicates an error in closing the file.
VSL_ERROR_MEM_FAILURE
VSL_RNG_ERROR_BAD_FILE_FORMAT
VSL_RNG_ERROR_UNSUPPORTED_FILE_VER

```
vslSaveStreamM
Writes random stream descriptive data, including stream state, to a memory buffer.

\section*{Syntax}

\section*{Fortran:}
```

errstatus = vslsavestreamm(stream, memptr)

```

C:
```

errstatus = vslSaveStreamM(stream, memptr);

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
stream & FORTRAN 77: INTEGER*4 & Random stream to be written to the memory \\
& stream (2) & \\
& Fortran 90: & \\
& TYPE (VSL_STREAM_STATE), & \\
& INTENT (IN) \\
& C: const VSLStreamStatePtr & \\
& & FORTRAN 77: INTEGER*1
\end{tabular}\(\quad\)\begin{tabular}{l} 
Fortran: Memory buffer to save random stream descriptive \\
data to
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
errstatus & Fortran: INTEGER & Error status of the operation \\
& C: int &
\end{tabular}

\section*{Description}

The vslSaveStreamM function writes the random stream descriptive data, including the stream state, to the memory at memptr. Random stream stream must be a valid stream created by vslNewStream-like or vslCopyStream-like service routines. The memptr parameter must be a valid pointer to the memory of size sufficient to hold the random stream stream. Use the service routine vslGetStreamsize to determine this amount of memory.
If the stream cannot be saved to the memory, errstatus has a non-zero value. The random stream can be read from the memory pointed by memptr using the vslLoadStreamM function.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR Either memptr or stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is a NULL pointer.
VSL_ERROR_BAD_STREAM stream is not a valid random stream.

```

\section*{vsILoadStreamM}

Creates a new stream and reads stream descriptive
data, including stream state, from the memory buffer.
Syntax

\section*{Fortran:}
```

errstatus = vslloadstreamm(stream, memptr)

```

C:
```

errstatus = vslLoadStreamM(\&stream, memptr);

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
memptr & FORTRAN 77: INTEGER*1 & Fortran: Memory buffer to load random stream descriptive \\
& Fortran 90: INTEGER (KIND=1), & data from \\
& DIMENSION \((*)\), INTENT (IN) & C: Memory buffer to load random stream descriptive data \\
& C: const char* & from
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
stream & FORTRAN 77: INTEGER*4 & Fortran: Descriptor of a new random stream \\
& stream (2) & C: Pointer to a new random stream \\
& Fortran 90: & \\
& TYPE (VSL_STREAM_STATE), & \\
& INTENT (OUT) \\
& C: VSLStreamStatePtr* & \\
errstatus & Fortran: INTEGER & Error status of the operation \\
& C: int &
\end{tabular}

\section*{Description}

The vslloadStreamM function creates a new stream and reads stream descriptive data, including the stream state, from the memory buffer. A new random stream is created using the stream descriptive data from the memory pointer by memptr. If the stream cannot be read (for example, memptr is invalid), errstatus has a non-zero value. To save random stream to the memory, use vslSaveStreamM function. Use the service routine vslGetStreamsize to determine the amount of memory sufficient to hold the random stream.

CAUTION Calling LoadStreamM with a previously initialized stream pointer can have unintended consequences such as a memory leak. To initialize a stream which has been in use until calling vslLoadStreamM, you should call the vslDeleteStream function first to deallocate the resources.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_ERROR_MEM_FAILURE
VSL_RNG_ERROR_BAD_MEM_FORMAT
Indicates no error, execution is successful.
memptr is a NULL pointer.
System cannot allocate memory for internal needs.
Descriptive random stream format is unknown.

```

\section*{vsIGetStreamSize}

Computes size of memory necessary to hold the random stream.

Syntax

\section*{Fortran:}
```

memsize = vslgetstreamsize(stream)

```

C:
```

memsize = vslGetStreamSize(stream);

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
stream & FORTRAN 77: INTEGER*4 & Random stream
\end{tabular}
stream (2)

\section*{Fortran 90:}

TYPE (VSL_STREAM_STATE), INTENT (IN)

C: const VSLStreamStatePtr

\section*{Output Parameters}

\section*{Name Type \\ memsize Fortran: INTEGER}

C: int

\section*{Description}

Amount of memory in bytes necessary to hold descriptive data of random stream stream

\section*{Description}

The vslGetStreamsize function returns the size of memory in bytes which is necessary to hold the given random stream. Use the output of the function to allocate the buffer to which you will save the random stream by means of the vslSaveStreamM function.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_RNG_ERROR_BAD_STREAM stream is a NULL pointer.

```
```

VSL ERROR BAD STREAM stream is not a valid random stream.

```
vsILeapfrogStream
Initializes a stream using the leapfrog method.
Syntax

\section*{Fortran:}
```

status = vslleapfrogstream(stream, k, nstreams)

```

C:
status \(=\) vslLeapfrogStream ( stream, \(k\), nstreams ) ;
Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{3}{*}{stream} & \begin{tabular}{l}
FORTRAN 77: INTEGER*4 \\
stream(2)
\end{tabular} & Fortran: Descriptor of the stream to which leapfrog method is applied \\
\hline & \begin{tabular}{l}
Fortran 90: \\
TYPE (VSL_STREAM_STATE), INTENT (IN)
\end{tabular} & C: Pointer to the stream state structure to which leapfrog method is applied \\
\hline & C: VSLStreamStatePtr & \\
\hline \multirow[t]{3}{*}{k} & FORTRAN 77: INTEGER & Index of the computational node, or stream number \\
\hline & Fortran 90: INTEGER, INTENT (IN) & \\
\hline & C: const int & \\
\hline \multirow[t]{4}{*}{nstreams} & FORTRAN 77: INTEGER & Largest number of computational nodes, or stride \\
\hline & Fortran 90: INTEGER, INTENT (IN) & \\
\hline & -NHV(1) & \\
\hline & C: const int & \\
\hline
\end{tabular}

\section*{Description}

The vslleapfrogStream function generates random numbers in a random stream with non-unit stride. This feature is particularly useful in distributing random numbers from the original stream across the nstreams buffers without generating the original random sequence with subsequent manual distribution.

One of the important applications of the leapfrog method is splitting the original sequence into nonoverlapping subsequences across nstreams computational nodes. The function initializes the original random stream (see Figure "Leapfrog Method") to generate random numbers for the computational node \(k, 0 \leq k\) < nstreams, where nstreams is the largest number of computational nodes used.

\section*{Leapfrog Method}


The leapfrog method is supported only for those basic generators that allow splitting elements by the leapfrog method, which is more efficient than simply generating them by a generator with subsequent manual distribution across computational nodes. See VSL Notes for details.
For quasi-random basic generators, the leapfrog method allows generating individual components of quasirandom vectors instead of whole quasi-random vectors. In this case nstreams parameter should be equal to the dimension of the quasi-random vector while \(k\) parameter should be the index of a component to be generated ( \(0 \leq k<n s t r e a m s\) ). Other parameters values are not allowed.
The following code examples illustrate the initialization of three independent streams using the leapfrog method:

\section*{Fortran 90 Code for Leapfrog Method}
```

TYPE(VSL_STREAM_STATE) ::stream1
TYPE(VSL_STREAM_STATE) ::stream2
TYPE(VSL_STREAM_STATE) : : stream3
! Creating 3 identical streams
status = vslnewstream(stream1, VSL_BRNG_MCG31, 174)
status = vslcopystream(stream2, stream1)
status = vslcopystream(stream3, stream1)
! Leapfrogging the streams
status = vslleapfrogstream(stream1, 0, 3)
status = vslleapfrogstream(stream2, 1, 3)
status = vslleapfrogstream(stream3, 2, 3)
! Generating random numbers
...
! Deleting the streams
status = vsldeletestream(stream1)
status = vsldeletestream(stream2)
status = vsldeletestream(stream3)

```

\section*{C Code for Leapfrog Method}
...
VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;
/* Creating 3 identical streams */
status = vslNewStream(\&stream1, VSL_BRNG_MCG31, 174);
```

status = vslCopyStream(\&stream2, stream1);

```
status = vslCopyStream(\&stream3, stream1);
/* Leapfrogging the streams
*/
status = vslLeapfrogStream(stream1, 0, 3);
status = vslLeapfrogStream(stream2, 1, 3);
status = vslLeapfrogStream(stream3, 2, 3);
/* Generating random numbers
*/
...
/* Deleting the streams
*/
```

status = vslDeleteStream(\&stream1);

```
status = vslDeleteStream(\&stream2);
status \(=\) vslDeleteStream(\&stream3);

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_LEAPFROG_UNSUPPORTED BRNG does not support Leapfrog method.

```

\section*{vsISkipAheadStream}

Initializes a stream using the block-splitting method.

\section*{Syntax}

\section*{fortran:}
status = vslskipaheadstream ( stream, nskip )
C:
status \(=\) vslSkipAheadStream( stream, nskip);

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline stream & \begin{tabular}{l}
FORTRAN 77: INTEGER*4 \\
stream (2)
\end{tabular} & Fortran: Descriptor of the stream to which block-splitting method is applied \\
\hline & \begin{tabular}{l}
Fortran 90: \\
TYPE (VSL_STREAM_STATE), INTENT (IN)
\end{tabular} & C: Pointer to the stream state structure to which blocksplitting method is applied \\
\hline & C: VSLStreamStatePtr & \\
\hline nskip & FORTRAN 77: INTEGER*4 nskip(2) & Number of skipped elements \\
\hline & Fortran 90: INTEGER (KIND=8), & \\
\hline & INTENT (IN) & \\
\hline & C: const long long int & \\
\hline
\end{tabular}

\section*{Description}

The vslSkipAheadStream function skips a given number of elements in a random stream. This feature is particularly useful in distributing random numbers from original random stream across different computational nodes. If the largest number of random numbers used by a computational node is nskip, then the original random sequence may be split by vslSkipAheadStream into non-overlapping blocks of nskip size so that each block corresponds to the respective computational node. The number of computational nodes is unlimited. This method is known as the block-splitting method or as the skip-ahead method. (see Figure "Block-Splitting Method").

\section*{Block-Splitting Method}


The skip-ahead method is supported only for those basic generators that allow skipping elements by the skip-ahead method, which is more efficient than simply generating them by generator with subsequent manual skipping. See VSL Notes for details.

Please note that for quasi-random basic generators the skip-ahead method works with components of quasirandom vectors rather than with whole quasi-random vectors. Therefore, to skip NS quasi-random vectors, set the nskip parameter equal to the NS*DIMEN, where DIMEN is the dimension of the quasi-random vector. If this operation results in exceeding the period of the quasi-random number generator, which is \(2^{32}-1\), the library returns the VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED error code.

The following code examples illustrate how to initialize three independent streams using the vslSkipAheadStream function:

\section*{Fortran 90 Code for Block-Splitting Method}
```

type(VSL_STREAM_STATE) ::stream1
type(VSL_STREAM_STATE) ::stream2
type(VSL_STREAM_STATE) ::stream3
! Creating the 1st stream
status = vslnewstream(stream1, VSL_BRNG_MCG31, 174)
! Skipping ahead by }7\mathrm{ elements the 2nd stream
status = vslcopystream(stream2, stream1);
status = vslskipaheadstream(stream2, 7);
! Skipping ahead by }7\mathrm{ elements the 3rd stream
status = vslcopystream(stream3, stream2);
status = vslskipaheadstream(stream3, 7);
! Generating random numbers
! Deleting the streams
status = vsldeletestream(stream1)
status = vsldeletestream(stream2)
status = vsldeletestream(stream3)

```

\section*{C Code for Block-Splitting Method}
```

VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;
/* Creating the 1st stream
*/
status = vslNewStream(\&stream1, VSL_BRNG_MCG31, 174);
/* Skipping ahead by 7 elements the 2nd stream */
status = vslCopyStream(\&stream2, stream1);
status = vslSkipAheadStream(stream2, 7);
/* Skipping ahead by 7 elements the 3rd stream */
status = vslCopyStream(\&stream3, stream2);
status = vslSkipAheadStream(stream3, 7);
/* Generating random numbers
*/
/* Deleting the streams
*/
status = vslDeleteStream(\&stream1);
status = vslDeleteStream(\&stream2);
status = vslDeleteStream(\&stream3);

```

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.

```
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED BRNG does not support the Skip-Ahead method.
vsIGetStreamStateBrng
Returns index of a basic generator used for generation
of a given random stream.

\section*{Syntax}

\section*{Fortran:}
brng \(=\) vslgetstreamstatebrng( stream )
C:
brng = vslGetStreamStateBrng( stream );
Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{lll} 
Name & Type & Description \\
stream & FORTRAN 77: INTEGER*4 & Fortran: Descriptor of the stream state \\
& stream (2) & C: Pointer to the stream state structure \\
& Fortran 90: & \\
& TYPE (VSL_STREAM_STATE), & \\
& TINTENT (IN) \\
& C: const VSLStreamStatePtr &
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
brng & Fortran: INTEGER & Index of the basic generator assigned for the generation of \\
& C: int & \begin{tabular}{l} 
stream; negative in case of an error
\end{tabular}
\end{tabular}

\section*{Description}

The vslGetStreamStateBrng function retrieves the index of a basic generator used for generation of a given random stream.

Return Values
```

VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.

```

\section*{vslGetNumRegBrngs}

Obtains the number of currently registered basic generators.

Syntax

\section*{Fortran:}
```

nregbrngs = vslgetnumregbrngs()

```

C:
```

nregbrngs = vslGetNumRegBrngs(void);

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Output Parameters
\begin{tabular}{lll} 
Name & Type & Description \\
nregbrngs & Fortran: INTEGER & \begin{tabular}{l} 
Number of basic generators registered at the moment of \\
the function call
\end{tabular}
\end{tabular}

\section*{Name}

\section*{Type}

Description
C: int

\section*{Description}

The vslGetNumRegBrngs function obtains the number of currently registered basic generators. Whenever user registers a user-designed basic generator, the number of registered basic generators is incremented. The maximum number of basic generators that can be registered is determined by the VSL_MAX_REG_BRNGS parameter.

\section*{Distribution Generators}

Intel MKL VSL routines are used to generate random numbers with different types of distribution. Each function group is introduced below by the type of underlying distribution and contains a short description of its functionality, as well as specifications of the call sequence for both Fortran and C-interface and the explanation of input and output parameters. Table "Continuous Distribution Generators" and Table "Discrete Distribution Generators" list the random number generator routines with data types and output distributions, and sets correspondence between data types of the generator routines and the basic random number generators.

\section*{Continuous Distribution Generators}
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
Type of \\
Distribution
\end{tabular} & \begin{tabular}{l} 
Data \\
Types
\end{tabular} & \begin{tabular}{l} 
BRNG Data \\
Type
\end{tabular} & Description \\
\hline vRngUniform & \(s, d\) & \(s, d\) & Uniform continuous distribution on the interval \([a, b]\) \\
vRngGaussian & \(s, d\) & \(s, d\) & Normal (Gaussian) distribution \\
vRngGaussianMV & \(s, d\) & \(s, d\) & Multivariate normal (Gaussian) distribution \\
vRngExponential & \(s, d\) & s, d & Exponential distribution \\
vRngLaplace & \(\mathrm{s}, \mathrm{d}\) & \(\mathrm{s}, \mathrm{d}\) & Laplace distribution (double exponential distribution) \\
vRngWeibull & \(\mathrm{s}, \mathrm{d}\) & \(\mathrm{s}, \mathrm{d}\) & Weibull distribution \\
vRngCauchy & \(\mathrm{s}, \mathrm{d}\) & \(\mathrm{s}, \mathrm{d}\) & Cauchy distribution \\
vRngRayleigh & \(\mathrm{s}, \mathrm{d}\) & \(\mathrm{s}, \mathrm{d}\) & Rayleigh distribution \\
vRngLognormal & \(\mathrm{s}, \mathrm{d}\) & \(\mathrm{s}, \mathrm{d}\) & Lognormal distribution \\
vRngGumbel & \(\mathrm{s}, \mathrm{d}\) & \(\mathrm{s}, \mathrm{d}\) & Gumbel (extreme value) distribution \\
vRngGamma & \(\mathrm{s}, \mathrm{d}\) & \(\mathrm{s}, \mathrm{d}\) & Gamma distribution \\
vRngBeta & \(\mathrm{s}, \mathrm{d}\) & \(\mathrm{s}, \mathrm{d}\) & Beta distribution \\
\hline
\end{tabular}

Discrete Distribution Generators
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
Type of \\
Distribution
\end{tabular} & \begin{tabular}{l} 
Data \\
Types
\end{tabular} & BRNG Data Type & Description \\
\hline vRngUniform & i & d & \begin{tabular}{l} 
Uniform discrete \\
distribution on the \\
interval \([a, b)\)
\end{tabular} \\
vRngUniformBits & i & i & \begin{tabular}{l} 
Underlying BRNG integer \\
recurrence
\end{tabular}
\end{tabular}
\begin{tabular}{llll}
\hline \hline \begin{tabular}{l} 
Type of \\
Distribution
\end{tabular} & \begin{tabular}{l} 
Data \\
Types
\end{tabular} & BRNG Data Type & Description \\
\hline \begin{tabular}{lll} 
vRngUniformBits \\
32
\end{tabular} & i & i & \begin{tabular}{l} 
Uniformly distributed \\
bits in 32-bit chunks
\end{tabular} \\
\begin{tabular}{l} 
vRngUniformBits \\
64
\end{tabular} & i & i & \begin{tabular}{l} 
Uniformly distributed \\
bits in 64-bit chunks
\end{tabular} \\
vRngBernoulli & i & s & Bernoulli distribution
\end{tabular} \begin{tabular}{l} 
vRngGeometric \\
vRngBinomial \\
vRngHypergeomet \\
i \\
i
\end{tabular}

\section*{Modes of random number generation}

The library provides two modes of random number generation, accurate and fast. Accurate generation mode is intended for the applications that are highly demanding to accuracy of calculations. When used in this mode, the generators produce random numbers lying completely within definitional domain for all values of the distribution parameters. For example, random numbers obtained from the generator of continuous distribution that is uniform on interval \([a, b]\) belong to this interval irrespective of what \(a\) and \(b\) values may be. Fast mode provides high performance of generation and also guaranties that generated random numbers belong to the definitional domain except for some specific values of distribution parameters. The generation mode is set by specifying relevant value of the method parameter in generator routines. List of distributions that support accurate mode of generation is given in the table below.

Distribution Generators Supporting Accurate Mode
\begin{tabular}{|c|c|}
\hline Type of Distribution & Data Types \\
\hline vRngUniform & \(s, d\) \\
\hline vRngExponential & \(s, d\) \\
\hline vRngWeibull & \(s, d\) \\
\hline vRngRayleigh & \(s, d\) \\
\hline vRngLognormal & \(s, d\) \\
\hline vRngGamma & \(s, d\) \\
\hline vRngBeta & \(s, d\) \\
\hline
\end{tabular}

See additional details about accurate and fast mode of random number generation in VSL Notes.

\section*{New method names}

The current version of Intel MKL has a modified structure of VSL RNG method names. (See RNG Naming Conventions for details.) The old names are kept for backward compatibility. The set correspondence between the new and legacy method names for VSL random number generators.
\begin{tabular}{|c|c|c|}
\hline RNG & Legacy Method Name & New Method Name \\
\hline vRngUniform & ```
VSL_METHOD_SUNIFORM_STD,
VSL_METHOD_DUNIFORM_STD,
VSL_METHOD_SUNIFORM_STD_ACCURATE,
VSL_METHOD_DUNIFORM_STD_ACCURATE
``` & VSL_RNG_METHOD_UNIFORM_STD, VSL_RNG_METHOD_UNIFORM_STD_ACCURATE \\
\hline \begin{tabular}{l}
vRngGaussia \\
n
\end{tabular} & \[
\begin{aligned}
& \text { VSL_METHOD_SGAUSSIAN_BOXMULLER, } \\
& \text { VSL_METHOD_SGAUSSIAN_BOXMULLER2, } \\
& \text { VSL_METHOD_SGAUSSIAN_ICDF, } \\
& \text { VSL_METHOD_DGAUSSIAN_BOXMULLER, } \\
& \text { VSL_METHOD_DGAUSSIAN_BOXMULLER2, } \\
& \text { VSL_METHOD_DGAUSSIAN_ICDF }
\end{aligned}
\] & ```
VSL_RNG_METHOD_GAUSSIAN_BOXMULLER,
VSL_RNG_METHOD_GAUSSIAN_BOXMULLER2,
VSL_RNG_METHOD_GAUSSIAN_ICDF
``` \\
\hline \begin{tabular}{l}
vRngGaussia \\
nMV
\end{tabular} & ```
VSL_METHOD_SGAUSSIANMV BOXMULLER,
VSL_METHOD_SGAUSSIANMV_BOXMULLER2,
VSL_METHOD_SGAUSSIANMV_ICDF,
VSL_METHOD_DGAUSSIANMV BOXMULLER,
VSL_METHOD_DGAUSSIANMV_BOXMULLER2,
VSL_METHOD_DGAUSSIANMV_ICDF
``` & ```
VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER
'VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER
2,VSL_RNG_METHOD_GAUSSIANMV_ICDF
``` \\
\hline vRngExponen tial & ```
VSL_METHOD_SEXPONENTIAL_ICDF,
VSL_METHOD_DEXPONENTIAL_ICDF,
VSL_METHOD_SEXPONENTIAL_ICDF_ACCUR
ATE,
VSL_METHOD_DEXPONENTIAL_ICDF_ACCUR
ATE
``` & VSL_RNG_METHOD_EXPONENTIAL_ICDF, VSL_RNG_METHOD_EXPONENTIAL_ICDF_ACC URATE \\
\hline vRngLaplace & VSL_METHOD_SLAPLACE_ICDF, VSL_METHOD_DLAPLACEL_ICDF & VSL_RNG_METHOD_LAPLACE_ICDF \\
\hline vRngWeibull & ```
VSL_METHOD_SWEIBULL_ICDF,
VSL_METHOD_DWEIBULL_ICDF,
VSL_METHOD_SWEIBULL_ICDF_ACCURATE,
VSL_METHOD_DWEIBULL_ICDF_ACCURATE
``` & ```
VSL_RNG_METHOD_WEIBULL_ICDF,
VSL_RNG_METHOD_WEIBULL_ICDF_ACCURAT
E
``` \\
\hline vRngCauchy & \[
\begin{aligned}
& \text { VSL_METHOD_SCAUCHY_ICDF, } \\
& \text { VSL_METHOD_DCAUCHY_ICDF }
\end{aligned}
\] & VSL_RNG_METHOD_CAUCHY_ICDF \\
\hline vRngRayleig h & ```
VSL_METHOD_SRAYLEIGH_ICDF,
VSL_METHOD_DRAYLEIGH_ICDF,
VSL_METHOD_SRAYLEIGH_ICDF_ACCURATE,
VSL_METHOD_DRAYLEIGH_ICDF_ACCURATE
``` & VSL_RNG_METHOD_RAYLEIGH_ICDF, VSL_RNG_METHOD_RAYLEIGH_ICDF_ACCURA TE \\
\hline vRngLognorm al & \begin{tabular}{l}
VSL_METHOD_SLOGNORMAL_BOXMULLER2, VSL_METHOD_DLOGNORMAL_BOXMULLER2, VSL_METHOD_SLOGNORMAL_BOXMULLER2_A CCURATE, \\
VSL_METHOD_DLOGNORMAL_BOXMULLER2_A CCURATE
\end{tabular} & ```
VSL_RNG_METHOD_LOGNORMAL_BOXMULLER2
VSL_RNG_METHOD_LOGNORMAL_BOXMULLER2
    _ACCURATE
``` \\
\hline vRngGumbel & VSL_METHOD_SGUMBEL_ICDF, VSL_METHOD_DGUMBEL_ICDF & VSL_RNG_METHOD_GUMBEL_ICDF \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline RNG & Legacy Method Name & New Method Name \\
\hline vRngGamma & VSL_METHOD_SGAMMA_GNORM, & VSL_RNG_METHOD_GAMMA_GNORM, \\
& VSL_METHOD_DGAMMA_GNORM, & VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE \\
& VSL_METHOD_SGAMMA_GNORM_ACCURATE, & \\
& VSL_METHOD_DGAMMA_GNORM_ACCURATE & \\
& VRngBeta & VSL_METHOD_SBETA_CJA, \\
& VSL_METHOD_DBETA_CJA, & VSL_RNG_METHOD_BETA_CJA, \\
& VSL_METHOD_SBETA_CJA_ACCURATE, & VSL_RNG_METHOD_BETA_CJA_ACCURATE \\
&
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline RNG & Legacy Method Name & New Method Name \\
\hline vRngUniform & VSL_METHOD_IUNIFORM_STD & VSL_RNG_METHOD_UNIFORM_STD \\
\hline vRngUniformB its & VSL_METHOD_IUNIFORMBITS_STD & VSL_RNG_METHOD_UNIFORMBITS_STD \\
\hline vRngBernoull i & VSL_METHOD_IBERNOULLI_ICDF & VSL_RNG_METHOD_BERNOULLI_ICDF \\
\hline vRngGeometri C & VSL_METHOD_IGEOMETRIC_ICDF & VSL_RNG_METHOD_GEOMETRIC_ICDF \\
\hline vRngBinomial & VSL_METHOD_IBINOMIAL_BTPE & VSL_RNG_METHOD_BINOMIAL_BTPE \\
\hline vRngHypergeo metric & VSL_METHOD_IHYPERGEOMETRIC_H2PE & VSL_RNG_METHOD_HYPERGEOMETRIC_H2PE \\
\hline vRngPoisson & VSL_METHOD_IPOISSON_PTPE, VSL_METHOD_IPOISSON_POISNORM & VSL_RNG_METHOD_POISSON_PTPE, VSL_RNG_METHOD_POISSON_POISNORM \\
\hline vRngPoissonv & VSL_METHOD_IPOISSONV_POISNORM & VSL_RNG_METHOD_POISSONV_POISNORM \\
\hline vRngNegBinom ial & VSL_METHOD_INEGBINOMIAL_NBAR & VSL_RNG_METHOD_NEGBINOMIAL_NBAR \\
\hline
\end{tabular}

\section*{Continuous Distributions}

This section describes routines for generating random numbers with continuous distribution.

\section*{vRngUniform}

Generates random numbers with uniform distribution.

\section*{Syntax}

\section*{Fortran:}
```

status = vsrnguniform( method, stream, n, r, a, b )
status = vdrnguniform( method, stream, n, r, a, b )

```

C:
```

status = vsRngUniform( method, stream, n, r, a, b );
status = vdRngUniform( method, stream, n, r, a, b );

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}

\section*{Name \\ method \\ stream}
n
a
b

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: INTEGER*4
stream (2)
Fortran 90: TYPE
(VSL_STREAM_STATE), INTENT (IN)

C: VSLStreamStatePtr
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: REAL for
vsrnguniform
DOUBLE PRECISION for vdrnguniform

Fortran 90: REAL (KIND=4), INTENT (IN) for vsrnguniform REAL (KIND=8), INTENT (IN) for vdrnguniform

C: const float for vsRngUniform const double for vdRngUniform

FORTRAN 77: REAL for
vsrnguniform
DOUBLE PRECISION for vdrnguniform

Fortran 90: REAL (KIND=4), INTENT (IN) for vsrnguniform REAL (KIND=8), INTENT (IN) for vdrnguniform

\section*{Description}

Generation method; the specific values are as follows:
VSL_RNG_METHOD_UNIFORM_STD
VSL_RNG_METHOD_UNIFORM_STD_ACCURATE
Standard method.
Fortran: Descriptor of the stream state structure.
C: Pointer to the stream state structure

Number of random values to be generated

Left bound a

Right bound b

\section*{Name \\ Type \\ Description}

\author{
C: const float for vsRngUniform \\ const double for vdRngUniform
}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(r\) & FORTRAN 77: REAL for \\
& vSrnguniform \\
& DOUBLE PRECISION for \\
& vdrnguniform \\
& Fortran 90: REAL (KIND=4), \\
& INTENT (OUT) for vsrnguniform \\
& REAL (KIND=8), INTENT (OUT) \\
& for vdrnguniform \\
& C: float* for vsRngUniform \\
& double* for vdRngUniform
\end{tabular}

\section*{Description}

The vRngUni form function generates random numbers uniformly distributed over the interval [a, b], where \(a, b\) are the left and right bounds of the interval, respectively, and \(a, b \in R ; a<b\).

The probability density function is given by:
\[
f_{a, b}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a}, & x \in[a, b] \\
0, & x \notin[a, b]
\end{array},-\infty<x<+\infty\right.
\]

The cumulative distribution function is as follows:
\[
f_{a, b}(x)=\left\{\begin{aligned}
0, & x<a \\
\frac{x-a}{b-a}, & a \leq x \leq b,-\infty<x<+\infty \\
1, & x \geq b
\end{aligned}\right.
\]

Return Values
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR stream is a NULL pointer.

```
\begin{tabular}{ll}
VSL_RNG_ERROR_BAD_STREAM & stream is not a valid random stream. \\
VSL_RNG_ERROR_BAD_UPDATE & \begin{tabular}{l}
Callback function for an abstract BRNG returns an invalid \\
number of updated entries in a buffer, that is, \(<0\) or \(>\) \\
nmax.
\end{tabular} \\
VSL_RNG_ERROR_NO_NUMBERS & \begin{tabular}{l}
Callback function for an abstract BRNG returns 0 as the \\
number of updated entries in a buffer.
\end{tabular} \\
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED & Period of the generator has been exceeded.
\end{tabular}
vRngGaussian
Generates normally distributed random numbers.

\section*{Syntax}

\section*{Fortran:}
```

status = vsrnggaussian( method, stream, n, r, a, sigma )
status = vdrnggaussian( method, stream, n, r, a, sigma )

```

C:
```

status = vsRngGaussian( method, stream, n, r, a, sigma );
status = vdRngGaussian( method, stream, n, r, a, sigma );

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}

Name Type

Fortran 90: INTEGER,
INTENT (IN)
C: const int

\section*{Description}

Generation method. The specific values are as follows:
VSL_RNG_METHOD_GAUSSIAN_BOXMULLER
VSL_RNG_METHOD_GAUSSIAN_BOXMULLER2
VSL_RNG_METHOD_GAUSSIAN_ICDF
See brief description of the methods BOXMULLER, BOXMULLER2, and ICDF in Table "Values of <method> in method parameter"

Fortran: Descriptor of the stream state structure
C: Pointer to the stream state structure

Number of random values to be generated
\begin{tabular}{lll}
Name & Type & Description \\
a & FORTRAN 77: REAL for & Mean value a. \\
& vsrnggaussian & \\
& DOUBLE PRECISION for & \\
& vdrnggaussian \\
& Fortran 90: REAL (KIND=4), \\
& INTENT (IN) for vsrnggaussian & \\
& REAL(KIND=8), INTENT (IN) for \\
& vdrnggaussian \\
& C: const float for \\
& vsRngGaussian \\
& const double for \\
& vdRngGaussian \\
& FORTRAN 77: REAL for & \\
& vsrnggaussian \\
& DOUBLE PRECISION for & \\
& vdrnggaussian \\
& Fortran 90: REAL (KIND=4), \\
& INTENT (IN) for vsrnggaussian deviation \(\sigma\). \\
& REAL(KIND=8), INTENT (IN) for \\
& vdrnggaussian \\
& C: const float for \\
& vsRngGaussian \\
& const double for \\
& vdRngGaussian \\
&
\end{tabular}

\section*{Output Parameters}

\section*{Name Type}
r
FORTRAN 77: REAL for
vsrnggaussian
DOUBLE PRECISION for vdrnggaussian

Fortran 90: REAL (KIND=4), INTENT (OUT) for
vsrnggaussian
REAL (KIND=8), INTENT (OUT)
for vdrnggaussian
C: float* for vsRngGaussian
double* for vdRngGaussian

\section*{Description}

Vector of \(n\) normally distributed random numbers

\section*{Description}

The vRngGaussian function generates random numbers with normal (Gaussian) distribution with mean value a and standard deviation \(\sigma\), where
a, \(\sigma \in R ; \sigma>0\).
The probability density function is given by:
\[
f_{a, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right),-\infty<x<+\infty
\]

The cumulative distribution function is as follows:
\[
E_{a, \sigma}(x)=\int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(y-a)^{2}}{2 \sigma^{2}}\right) \mathrm{dy},-\infty<x<+\infty
\]

The cumulative distribution function \(F_{a, \sigma}(x)\) can be expressed in terms of standard normal distribution \(\Phi(x)\) as
\(F_{a, \sigma}(x)=\Phi((x-a) / \sigma)\)

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as the
number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.

```

\section*{vRngGaussianMV}

Generates random numbers from multivariate normal
distribution.

\section*{Syntax}

\section*{Fortran:}
```

status = vsrnggaussianmv( method, stream, n, r, dimen, mstorage, a, t )
status = vdrnggaussianmv( method, stream, n, r, dimen, mstorage, a, t )

```

C:
```

status = vsRngGaussianMV ( method, stream, n, r, dimen, mstorage, a, t );

```
status \(=\) vdRngGaussianMV (method, stream, \(n, r, d i m e n, m s t o r a g e, ~ a, ~ t) ;\)

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{ll}
Name & Type \\
method & FORTRAN 77: INTEGER \\
& Fortran 90: INTEGER, \\
& INTENT (IN) \\
& C: const int
\end{tabular}

FORTRAN 77: INTEGER*4
stream (2)
Fortran 90: TYPE
(VSL_STREAM_STATE), INTENT (IN)

C: VSLStreamStatePtr
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: INTEGER
Fortran 90: INTEGER,
INTENT (IN)
C: const int

\section*{Description}

Generation method. The specific values are as follows:
VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER
VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER2
VSL_RNG_METHOD_GAUSSIANMV_ICDF
See brief description of the methods BOXMULLER, BOXMULLER2, and ICDF in Table "Values of <method> in method parameter"

Fortran: Descriptor of the stream state structure.
C: Pointer to the stream state structure

Number of \(d\)-dimensional vectors to be generated

Dimension \(d \quad(d \geq 1)\) of output random vectors

Fortran: Matrix storage scheme for upper triangular matrix \(T^{T}\). The routine supports three matrix storage schemes:
- VSL_MATRIX_STORAGE_FULL— all \(d\) x \(d\) elements of the matrix \(T^{T}\) are passed, however, only the upper triangle part is actually used in the routine.
- VSL_MATRIX_STORAGE_PACKED- upper triangle elements of \(T^{T}\) are packed by rows into a onedimensional array.
- VSL_MATRIX_STORAGE_DIAGONAL— only diagonal elements of \(T^{T}\) are passed.

C: Matrix storage scheme for lower triangular matrix \(T\). The routine supports three matrix storage schemes:
- VSL_MATRIX_STORAGE_FULL— all \(d x d\) elements of the matrix \(T\) are passed, however, only the lower triangle part is actually used in the routine.

Name
a
t

\section*{Type}
FORTRAN 77: REAL for vsrnggaussianmv DOUBLE PRECISION for vdrnggaussianmv
Fortran 90: REAL (KIND=4), INTENT (IN) for vsrnggaussianmv REAL (KIND=8), INTENT (IN) for vdrnggaussianmv
C: const float* for vsRngGaussianMV
const double* for vdRngGaussianMV

FORTRAN 77: REAL for
vsrnggaussianmv
DOUBLE PRECISION for vdrnggaussianmv

Fortran 90: REAL (KIND=4),
INTENT (IN) for
vsrnggaussianmv
REAL (KIND=8), INTENT (IN) for vdrnggaussianmv

C: const float* for vsRngGaussianMV
const double* for
vdRngGaussianMV

\section*{Output Parameters}

\section*{Name}
r

\section*{Type}

FORTRAN 77: REAL for
vsrnggaussianmv
DOUBLE PRECISION for vdrnggaussianmv

Fortran 90: REAL (KIND=4), INTENT (OUT) for vsrnggaussianmv

\section*{Description}
- VSL_MATRIX_STORAGE_PACKED- lower triangle elements of \(T\) are packed by rows into a onedimensional array.
- VSL_MATRIX_STORAGE_DIAGONAL- only diagonal elements of \(T\) are passed.

Mean vector a of dimension \(d\)

Fortran: Elements of the upper triangular matrix passed according to the matrix \(T^{T}\) storage scheme mstorage.

C: Elements of the lower triangular matrix passed according to the matrix \(T\) storage scheme mstorage.

\section*{Description}

Array of \(n\) random vectors of dimension dimen
```

Name Type Description
REAL (KIND=8), INTENT (OUT)
for vdrnggaussianmv
C: float* for
vsRngGaussianMV
double* for vdRngGaussianMV

```

\section*{Description}

The vRngGaussianMV function generates random numbers with \(d\)-variate normal (Gaussian) distribution with mean value a and variance-covariance matrix \(C\), where \(a \in R^{d}\); \(C\) is a \(d \times d\) symmetric positive-definite matrix.

The probability density function is given by:
\[
f_{a, c}(x)=\frac{1}{\sqrt{\operatorname{det}(2 \pi C)}} \exp \left(-1 / 2(x-a)^{T} C^{-1}(x-a)\right)
\]
where \(x \in R^{d}\).
Matrix \(C\) can be represented as \(C=T T^{T}\), where \(T\) is a lower triangular matrix - Cholesky factor of \(C\).
Instead of variance-covariance matrix \(C\) the generation routines require Cholesky factor of \(C\) in input. To compute Cholesky factor of matrix \(C\), the user may call MKL LAPACK routines for matrix factorization: ? potrf or ?pptrf for v?RngGaussianMV/v?rnggaussianmv routines (? means either s or d for single and double precision respectively). See Application Notes for more details.

\section*{Application Notes}

Since matrices are stored in Fortran by columns, while in C they are stored by rows, the usage of MKL factorization routines (assuming Fortran matrices storage) in combination with multivariate normal RNG (assuming C matrix storage) is slightly different in C and Fortran. The following tables help in using these routines in C and Fortran. For further information please refer to the appropriate VSL example file.
\begin{tabular}{cllll}
Using Cholesky Factorization Routines in Fortran & & \\
\hline Matrix Storage Scheme & \begin{tabular}{l}
Variance- \\
Covariance Matrix
\end{tabular} & \begin{tabular}{l}
Factorization \\
Routine
\end{tabular} & \begin{tabular}{l}
UPLO \\
Parameter \\
in \\
Factorizati \\
on Routine
\end{tabular} & \begin{tabular}{l}
Result of \\
Factorizatio \\
n as Input \\
Argument \\
for RNG
\end{tabular} \\
& & & spontrf for & 'U'
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Matrix Storage Scheme & VarianceCovariance Matrix Argument & Factorization Routine & \begin{tabular}{l}
UPLO \\
Parameter in Factorizati on Routine
\end{tabular} & Result of Factorizatio n as Input Argument for RNG \\
\hline VSL_MATRIX_STORAGE_FULL & \(C\) in C twodimensional array & \begin{tabular}{l}
spotrf for vsRngGaussianMV \\
dpotrf for vdRngGaussianMV
\end{tabular} & 'U' & Upper triangle of \(T^{T}\). Lower triangle is not used. \\
\hline \[
\begin{aligned}
& \text { VSL_MATRIX_STORAGE_PACK } \\
& \text { ED }
\end{aligned}
\] & Lower triangle of \(C\) packed by columns into onedimensional array & \begin{tabular}{l}
spptrf for vsRngGaussianMV \\
dpptrf for vdRngGaussianMV
\end{tabular} & 'L' & Upper triangle of \(T^{T}\) packed by rows into onedimensional array. \\
\hline
\end{tabular}

Return Values
\begin{tabular}{ll}
VSL_ERROR_OK, VSL_STATUS_OK & Indicates no error, execution is successful. \\
VSL_ERROR_NULL_PTR & stream is a NULL pointer. \\
VSL_RNG_ERROR_BAD_STREAM & stream is not a valid random stream. \\
VSL_RNG_ERROR_BAD_UPDATE & \begin{tabular}{l}
Callback function for an abstract BRNG returns an invalid \\
\\
number of updated entries in a buffer, that is, \(<0\) or \(>\) \\
nmax.
\end{tabular} \\
VSL_RNG_ERROR_NO_NUMBERS & \begin{tabular}{l}
Callback function for an abstract BRNG returns 0 as the \\
\\
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
\end{tabular} \\
& neriod of the generator has been exceeded.
\end{tabular}
vRngExponential
Generates exponentially distributed random numbers.

\section*{Syntax}

\section*{Fortran:}
```

status = vsrngexponential( method, stream, n, r, a, beta )
status = vdrngexponential( method, stream, n, r, a, beta )

```

C:
```

status = vsRngExponential( method, stream, n, r, a, beta );

```
status \(=\) vdRngExponential (method, stream, \(n, r, a\), beta) ;

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Name}
method
n

\section*{Type}

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: INTEGER*4
stream (2)
Fortran 90: TYPE
(VSL_STREAM_STATE), INTENT (IN)

C: VSLStreamStatePtr

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: REAL for vsrngexponential DOUBLE PRECISION for vdrngexponential
Fortran 90: REAL (KIND=4), INTENT (IN) for vsrngexponential REAL (KIND=8), INTENT (IN) for vdrngexponential
C: const float for vsRngExponential
C: const double for vdRngExponential

FORTRAN 77: REAL for
vsrngexponential
DOUBLE PRECISION for vdrngexponential

Fortran 90: REAL (KIND=4), Intent (IN) for vsrngexponential REAL (KIND=8), INTENT (IN) for vdrngexponential

C: const float for vsRngExponential

\section*{Description}

Generation method. The specific values are as follows:
VSL_RNG_METHOD_EXPONENTIAL_ICDF
VSL_RNG_METHOD_EXPONENTIAL_ICDF_ACCURATE
Inverse cumulative distribution function method
Fortran: Descriptor of the stream state structure.
C: Pointer to the stream state structure

Number of random values to be generated

Displacement a

Scalefactor \(\beta\).

\section*{Name}
Type
const double for
vdRngExponential

\section*{Output Parameters}

\section*{Name}

\section*{Type}

FORTRAN 77: REAL for vsrngexponential
DOUBLE PRECISION for vdrngexponential
Fortran 90: REAL (KIND=4), INTENT (OUT) for vsrngexponential REAL (KIND=8), INTENT (OUT) for vdrngexponential
C: float* for vsRngExponential double* for vdRngExponential

\section*{Description}

The vRngExponential function generates random numbers with exponential distribution that has displacement a and scalefactor \(\beta\), where \(a, \beta \in R ; \beta>0\).
The probability density function is given by:
\[
f_{a, \beta}(x)=\left\{\begin{array}{ll}
\frac{1}{\beta} \exp ((-(x-a)) / \beta), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty\right.
\]

The cumulative distribution function is as follows:
\[
F_{a, \beta}(x)=\left\{\begin{array}{ll}
1-\exp ((-(x-a)) / \beta), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty .\right.
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK

```
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
```

VSL_RNG_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as the
number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.

```
vRngLaplace
Generates random numbers with Laplace distribution.

\section*{Syntax}

\section*{Fortran:}
```

status = vsrnglaplace( method, stream, n, r, a, beta )
status = vdrnglaplace( method, stream, n, r, a, beta )

```

C:
```

status = vsRngLaplace( method, stream, n, r, a, beta );
status = vdRngLaplace( method, stream, n, r, a, beta );

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{4}{*}{method} & FORTRAN 77: INTEGER & Generation method. The specific values are as follows: \\
\hline & Fortran 90: INTEGER, & VSL_RNG_METHOD_LAPLACE_ICDF \\
\hline & INTENT (IN) & Inverse cumulative distribution function method \\
\hline & C: const int & \\
\hline \multirow[t]{3}{*}{stream} & FORTRAN 77: INTEGER*4 stream (2) & Fortran: Descriptor of the stream state structure. C: Pointer to the stream state structure \\
\hline & \begin{tabular}{l}
Fortran 90: TYPE \\
(VSL_STREAM_STATE), INTENT (IN)
\end{tabular} & \\
\hline & C: VSLStreamStatePtr & \\
\hline \multirow[t]{3}{*}{\(n\)} & FORTRAN 77: INTEGER & Number of random values to be generated \\
\hline & Fortran 90: INTEGER, INTENT (IN) & \\
\hline & C: const int & \\
\hline a & FORTRAN 77: REAL for vsrnglaplace & Mean value a \\
\hline & DOUBLE PRECISION for vdrnglaplace & \\
\hline
\end{tabular}

Fortran 90: REAL (KIND=4), INTENT (IN) for vsrnglaplace
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{Name} & Type & Description \\
\hline & REAL (KIND=8), INTENT (IN) for vdrnglaplace & \\
\hline & C: const float for vsRngLaplace & \\
\hline & const double for vdRngLaplace & \\
\hline \multirow[t]{6}{*}{beta} & FORTRAN 77: REAL for vsrnglaplace & Scalefactor \(\beta\). \\
\hline & DOUBLE PRECISION for vdrnglaplace & \\
\hline & Fortran 90: REAL (KIND=4), INTENT (IN) for vsrnglaplace & \\
\hline & REAL (KIND=8), INTENT (IN) for vdrnglaplace & \\
\hline & C: const float for vsRngLaplace & \\
\hline & const double for vdRngLaplace & \\
\hline
\end{tabular}

\section*{Output Parameters}

Name Type
r
FORTRAN 77: REAL for
vsrnglaplace
DOUBLE PRECISION for vdrnglaplace

Fortran 90: REAL (KIND=4), INTENT (OUT) for vsrnglaplace

REAL (KIND=8), INTENT (OUT)
for vdrnglaplace
C: float* for vsRngLaplace
double* for vdRngLaplace

\section*{Description}

Vector of \(n\) Laplace distributed random numbers

\section*{Description}

The vRngLaplace function generates random numbers with Laplace distribution with mean value (or average) a and scalefactor \(\beta\), where \(a, \beta \in R ; \beta>0\). The scalefactor value determines the standard deviation as
\[
\sigma=\beta \sqrt{2}
\]

The probability density function is given by:
\[
f_{a, \beta}(x)=\frac{1}{\sqrt{2 \beta}} \exp \left(-\frac{|x-a|}{\beta}\right),-\infty<x<+\infty .
\]

The cumulative distribution function is as follows:
\[
f_{a, \beta}(x)=\left\{\begin{array}{ll}
\frac{1}{2} \exp \left(-\frac{|x-a|}{\beta}\right), & x \geq a \\
1-\frac{1}{2} \exp \left(-\frac{|x-a|}{\beta}\right), & x<a
\end{array},-\infty<x<+\infty .\right.
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > max.
Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
Period of the generator has been exceeded.

```
vRngWeibull
Generates Weibull distributed random numbers.

\section*{Syntax}

\section*{Fortran:}
```

status = vsrngweibull( method, stream, n, r, alpha, a, beta )
status = vdrngweibull( method, stream, n, r, alpha, a, beta )

```

C:
```

status = vsRngWeibull( method, stream, n, r, alpha, a, beta );

```
status \(=\) vdRngWeibull(method, stream, \(n, r, a l p h a, ~ a, ~ b e t a) ;\)

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Name}
method
\(n\)

\section*{Type}

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: INTEGER*4
stream (2)
Fortran 90: TYPE
(VSL_STREAM_STATE), INTENT (IN)

C: VSLStreamStatePtr
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: REAL for
vsrngweibull
DOUBLE PRECISION for vdrngweibull

Fortran 90: REAL (KIND=4), INTENT (IN) for vsrngweibull REAL (KIND=8), INTENT (IN) for vdrngweibull

C: const float for vsRngWeibull
const double for vdRngWeibull

FORTRAN 77: REAL for vsrngweibull

DOUBLE PRECISION for vdrngweibull

Fortran 90: REAL (KIND=4), INTENT (IN) for vsrngweibull REAL (KIND=8), INTENT (IN) for vdrngweibull

C: const float for vsRngWeibull
const double for vdRngWeibull

\section*{Description}

Generation method. The specific values are as follows:
VSL_RNG_METHOD_WEIBULL_ICDF
VSL_RNG_METHOD_WEIBULL_ICDF_ACCURATE
Inverse cumulative distribution function method
Fortran: Descriptor of the stream state structure.
C: Pointer to the stream state structure

Shape \(\alpha\).
\begin{tabular}{lll}
Name & Type & Description \\
beta & FORTRAN 77: REAL for & Scalefactor \(\beta\).
\end{tabular}
vsrngweibull
DOUBLE PRECISION for
vdrngweibull
Fortran 90: REAL (KIND=4),
INTENT (IN) for vsrngweibull
REAL (KIND=8), INTENT (IN) for
vdrngweibull
C: const float for
vsRngWeibull
const double for
vdRngWeibull

\section*{Output Parameters}
```

Name Type
r
FORTRAN 77: REAL for

```

\section*{Description}
```

Vector of $n$ Weibull distributed random numbers vsrngweibull
DOUBLE PRECISION for vdrngweibull
Fortran 90: REAL (KIND=4),
INTENT (OUT) for vsrngweibull
REAL (KIND=8), INTENT (OUT)
for vdrngweibull
C: float* for vsRngWeibull
double* for vdRngWeibull

```

\section*{Description}

The vRngWeibull function generates Weibull distributed random numbers with displacement \(a\), scalefactor \(\beta\), and shape \(\alpha\), where \(\alpha, \beta, a \in R ; \alpha>0, \beta>0\).

The probability density function is given by:
\[
f_{a, \alpha, \beta}(x)= \begin{cases}\frac{\alpha}{\beta^{\alpha}}(x-a)^{\alpha-1} \exp \left(-\left(\frac{x-a}{\beta}\right)^{\alpha}\right), & x \geq a \\ 0, & x<a\end{cases}
\]

The cumulative distribution function is as follows:
\[
F_{a, \alpha, \beta}(x)=\left\{\begin{array}{c}
1-\exp \left(-\left(\frac{x-a}{\beta}\right)^{\alpha}\right), \quad x \geq a,-\infty<x<+\infty \\
0, \\
x<a
\end{array}\right.
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED

```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
Period of the generator has been exceeded.
vRngCauchy
Generates Cauchy distributed random values.
Syntax

\section*{Fortran:}
```

status = vsrngcauchy( method, stream, n, r, a, beta )
status = vdrngcauchy( method, stream, n, r, a, beta )

```

C:
```

status = vsRngCauchy( method, stream, n, r, a, beta );
status = vdRngCauchy( method, stream, n, r, a, beta );

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
method & FORTRAN 77: INTEGER & Generation method. The specific values are as follows: \\
& Fortran 90: INTEGER, & VSL_RNG_METHOD_CAUCHY_ICDF \\
& INTENT (IN) & Inverse cumulative distribution function method \\
C: const int & \\
stream & \begin{tabular}{l}
FORTRAN 77: INTEGER*4 \\
stream(2)
\end{tabular} & \begin{tabular}{l}
Fortran: Descriptor of the stream state structure.
\end{tabular} \\
& & C: Pointer to the stream state structure
\end{tabular}
```

Name
Type
Description
Fortran 90: TYPE
(VSL_STREAM_STATE),
INTENT(IN)
C: VSLStreamStatePtr

```
n

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: REAL for vsrngcauchy

DOUBLE PRECISION for vdrngcauchy

Fortran 90: REAL (KIND=4), INTENT (IN) for vsrngcauchy REAL (KIND=8), INTENT (IN) for vdrngcauchy

C: const float for vsRngCauchy
const double for vdRngCauchy
FORTRAN 77: REAL for
vsrngcauchy
DOUBLE PRECISION for vdrngcauchy

Fortran 90: REAL (KIND=4),
INTENT (IN) for vsrngcauchy
REAL (KIND=8), INTENT (IN) for vdrngcauchy

C: const float for vsRngCauchy
const double for vdRngCauchy

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(r\) & FORTRAN 77: REAL for & Vector of \(n\) Cauchy distributed random numbers \\
& vsrngcauchy & \\
& DOUBLE PRECISION for & \\
& vdrngcauchy \\
& Fortran 90: REAL (KIND=4), & \\
& INTENT (OUT) for vsrngcauchy
\end{tabular}

\section*{Name Type Description}

REAL (KIND=8), INTENT (OUT)
for vdrngcauchy
C: float* for vsRngCauchy
double* for vdRngCauchy

\section*{Description}

The function generates Cauchy distributed random numbers with displacement a and scalefactor \(\beta\), where \(a\), \(\beta \in R ; \beta>0\).
The probability density function is given by:
\[
f_{a, \beta}(x)=\frac{1}{\pi \beta\left(1+\left(\frac{x-a}{\beta}\right)^{2}\right)},-\infty<x<+\infty .
\]

The cumulative distribution function is as follows:
\[
F_{a, \beta}(x)=\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x-a}{\beta}\right),-\infty<x<+\infty .
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as the
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
Period of the generator has been exceeded.

```
vRngRayleigh
Generates Rayleigh distributed random values.

\section*{Syntax}

\section*{Fortran:}
```

status = vsrngrayleigh( method, stream, n, r, a, beta )
status = vdrngrayleigh( method, stream, n, r, a, beta )
C:

```
```

status = vsRngRayleigh( method, stream, n, r, a, beta );

```
```

status = vsRngRayleigh( method, stream, n, r, a, beta );

```
```

status = vdRngRayleigh( method, stream, n, r, a, beta );

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{4}{*}{method} & FORTRAN 77: INTEGER & Generation method. The specific values are as follows: \\
\hline & Fortran 90: INTEGER, & VSL_RNG_METHOD_RAYLEIGH_ICDF \\
\hline & INTENT (IN) & VSL_RNG_METHOD_RAYLEIGH_ICDF_ACCURATE \\
\hline & C: const int & Inverse cumulative distribution function method \\
\hline \multirow[t]{3}{*}{stream} & \begin{tabular}{l}
FORTRAN 77: INTEGER*4 \\
stream (2)
\end{tabular} & \begin{tabular}{l}
Fortran: Descriptor of the stream state structure. \\
C: Pointer to the stream state structure
\end{tabular} \\
\hline & \begin{tabular}{l}
Fortran 90: TYPE \\
(VSL_STREAM_STATE), \\
INTENT (IN)
\end{tabular} & \\
\hline & C: VSLStreamStatePtr & \\
\hline \multirow[t]{3}{*}{\(n\)} & FORTRAN 77: INTEGER & Number of random values to be generated \\
\hline & Fortran 90: INTEGER, INTENT (IN) & \\
\hline & C: const int & \\
\hline \multirow[t]{5}{*}{a} & \begin{tabular}{l}
FORTRAN 77: REAL for vsrngrayleigh \\
DOUBLE PRECISION for vdrngrayleigh
\end{tabular} & Displacement a \\
\hline & \begin{tabular}{l}
Fortran 90: REAL (KIND=4), \\
INTENT (IN) for vssngrayleigh
\end{tabular} & \\
\hline & REAL (KIND=8), INTENT (IN) for vdrngrayleigh & \\
\hline & C: const float for vsRngRayleigh & \\
\hline & const double for vdRngRayleigh & \\
\hline \multirow[t]{3}{*}{beta} & FORTRAN 77: REAL for vsrngrayleigh & Scalefactor \(\beta\). \\
\hline & DOUBLE PRECISION for vdrngrayleigh & \\
\hline & Fortran 90: REAL (KIND=4), INTENT (IN) for vsrngrayleigh & \\
\hline
\end{tabular}

\footnotetext{
INTENT (IN) for vsrngrayleigh
}
vsrngrayleigh
DOUBLE PRECISION for vdrngrayleigh
Fortran 90: REAL (KIND=4), INTENT (OUT) for vsrngrayleigh REAL (KIND=8), INTENT (OUT) for vdrngrayleigh
C: float* for vsRngRayleigh double* for vdRngRayleigh
Name \(\quad\) Type \(\quad\)\begin{tabular}{l}
REAL (KIND=8), INTENT (IN) for \\
vdrngrayleigh \\
\\
C: const float for \\
\\
vsRngRayleigh \\
\\
const double for \\
\\
vdRngRayleigh
\end{tabular}

\section*{Output Parameters}

\section*{Name}

\section*{Type}

FORTRAN 77: REAL for

\section*{Description}

Description
REAL (KIND=8), INTENT (IN) for vdrngrayleigh

C: const float for vsRngRayleigh
const double for vdRngRayleigh
r

Vector of \(n\) Rayleigh distributed random numbers

\section*{Description}

The vRngRayleigh function generates Rayleigh distributed random numbers with displacement a and scalefactor \(\beta\), where \(a, \beta \in R ; \beta>0\).
The Rayleigh distribution is a special case of the Weibull distribution, where the shape parameter \(\alpha=2\). The probability density function is given by:
\[
f_{a, \beta}(x)=\left\{\begin{array}{l}
\frac{2(x-a)}{\beta^{2}} \exp \left(-\frac{(x-a)^{2}}{\beta^{2}}\right), x \geq a \\
0, \quad x<a
\end{array},-\infty<x<+\infty\right.
\]

The cumulative distribution function is as follows:
\[
F_{a, \beta}(x)=\left\{\begin{array}{ll}
1-\exp \left(-\frac{(x-a)^{2}}{\beta^{2}}\right), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty .\right.
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED

```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
Period of the generator has been exceeded.

\section*{vRngLognormal}

Generates lognormally distributed random numbers.
Syntax

\section*{Fortran:}
```

status = vsrnglognormal( method, stream, n, r, a, sigma, b, beta )
status = vdrnglognormal( method, stream, n, r, a, sigma, b, beta )

```

C:
```

status = vsRngLognormal( method, stream, n, r, a, sigma, b, beta );
status = vdRngLognormal( method, stream, n, r, a, sigma, b, beta );

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{4}{*}{method} & FORTRAN 77: INTEGER & Generation method. The specific values are as follows: \\
\hline & Fortran 90: INTEGER, & VSL_RNG_METHOD_LOGNORMAL_BOXMULIER2 \\
\hline & INTENT (IN) & VSL_RNG_METHOD_LOGNORMAL_BOXMULLER2_ACCURATE \\
\hline & C: const int & Inverse cumulative distribution function method \\
\hline \multirow[t]{3}{*}{stream} & \begin{tabular}{l}
FORTRAN 77: INTEGER*4 \\
stream (2)
\end{tabular} & \begin{tabular}{l}
Fortran: Descriptor of the stream state structure. \\
C: Pointer to the stream state structure
\end{tabular} \\
\hline & Fortran 90: TYPE (VSL_STREAM_STATE), INTENT (IN) & \\
\hline & C: VSLStreamStatePtr & \\
\hline \(n\) & FORTRAN 77: INTEGER & Number of random values to be generated \\
\hline & Fortran 90: INTEGER, INTENT (IN) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Name} & Type & Description \\
\hline & C: const int & \\
\hline \multirow[t]{6}{*}{a} & FORTRAN 77: REAL for vsrnglognormal & Average a of the subject normal distribution \\
\hline & DOUBLE PRECISION for vdrnglognormal & \\
\hline & Fortran 90: REAL (KIND=4), INTENT (IN) for vsrnglognormal & \\
\hline & REAL (KIND=8), INTENT (IN) for vdrnglognormal & \\
\hline & C: const float for vsRngLognormal & \\
\hline & const double for vdRngLognormal & \\
\hline \multirow[t]{6}{*}{sigma} & FORTRAN 77: REAL for vsrnglognormal & Standard deviation \(\sigma\) of the subject normal distribution \\
\hline & DOUBLE PRECISION for vdrnglognormal & \\
\hline & Fortran 90: REAL (KIND=4), INTENT (IN) for vsrnglognormal & \\
\hline & REAL (KIND=8), INTENT (IN) for vdrnglognormal & \\
\hline & C: const float for vsRngLognormal & \\
\hline & const double for vdRngLognormal & \\
\hline \multirow[t]{6}{*}{b} & FORTRAN 77: REAL for vsrnglognormal & Displacement \(b\) \\
\hline & DOUBLE PRECISION for vdrnglognormal & \\
\hline & Fortran 90: REAL (KIND=4), INTENT (IN) for vsrnglognormal & \\
\hline & REAL (KIND=8), INTENT (IN) for vdrnglognormal & \\
\hline & C: const float for vsRngLognormal & \\
\hline & const double for vdRngLognormal & \\
\hline
\end{tabular}
\begin{tabular}{lll}
Name & Type & Description \\
beta & FORTRAN 77: REAL for & Scalefactor \(\beta\).
\end{tabular}
vsrnglognormal
DOUBLE PRECISION for vdrnglognormal

Fortran 90: REAL (KIND=4), INTENT (IN) for vsrnglognormal

REAL (KIND=8), INTENT (IN) for vdrnglognormal

C: const float for vsRngLognormal
const double for
vdRngLognormal

\section*{Output Parameters}

\section*{Name Type}
r
FORTRAN 77: REAL for vsrnglognormal

DOUBLE PRECISION for vdrnglognormal

Fortran 90: REAL (KIND=4),
INTENT (OUT) for vsrnglognormal

REAL (KIND=8), INTENT (OUT)
for vdrnglognormal
C: float* for vsRngLognormal
double* for vdRngLognormal

\section*{Description}

The vRngLognormal function generates lognormally distributed random numbers with average of distribution \(a\) and standard deviation \(\sigma\) of subject normal distribution, displacement \(b\), and scalefactor \(\beta\), where \(a, \sigma, b\), \(\beta \in R ; \sigma>0, \beta>0\).
The probability density function is given by:
\[
f_{a, \sigma, b, \beta}(x)= \begin{cases}\frac{1}{\sigma(x-b) \sqrt{2 \pi}} \exp \left(-\frac{[\ln ((x-b) / \beta)-a]^{2}}{2 \sigma^{2}}\right), & x>b \\ 0, & x \leq b\end{cases}
\]

The cumulative distribution function is as follows:
\[
F_{a, \sigma, b, \beta}(x)= \begin{cases}\Phi((\ln ((x-b) / \beta)-a) / \sigma), & x>b \\ 0, & x \leq b\end{cases}
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED

```
vRngGumbel
Generates Gumbel distributed random values.
Syntax

\section*{Fortran:}
```

status = vsrnggumbel( method, stream, n, r, a, beta )
status = vdrnggumbel( method, stream, n, r, a, beta )

```

C:
```

status = vsRngGumbel( method, stream, n, r, a, beta );
status = vdRngGumbel( method, stream, n, r, a, beta );

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
method & FORTRAN 77: INTEGER & Generation method. The specific values are as follows: \\
& Fortran 90: INTEGER, & VSL_RNG_METHOD_GUMBEL_ICDF \\
& INTENT (IN) & Inverse cumulative distribution function method \\
& C: const int & \\
stream & FORTRAN 77: INTEGER*4 \\
& stream (2) & Fortran: Descriptor of the stream state structure \\
& Fortran 90: TYPE \\
& (VSL_STREAM_STATE), & \\
& INTENT (IN)
\end{tabular}
```

Name
Type
C: VSLStreamStatePtr

```
n
a
beta
beta

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: REAL for vsrnggumbel

DOUBLE PRECISION for vdrnggumbel

Fortran 90: REAL (KIND=4), INTENT (IN) for vsrnggumbel REAL (KIND=8), INTENT (IN) for vdrnggumbel

C: const float for vsRngGumbel
const double for vdRngGumbel
FORTRAN 77: REAL for
vsrnggumbel
DOUBLE PRECISION for vdrnggumbel

Fortran 90: REAL (KIND=4),
INTENT (IN) for vsrnggumbel
REAL (KIND=8), INTENT (IN) for vdrnggumbel

C: const float for vsRngGumbel
const double for vdRngGumbel

\section*{Output Parameters}

\section*{Description}

Number of random values to be generated

Displacement a.

Scalefactor \(\beta\).

\section*{Description}

Vector of \(n\) random numbers with Gumbel distribution vsrnggumbel

DOUBLE PRECISION for vdrnggumbel

Fortran 90: REAL (KIND=4), INTENT (OUT) for vsrnggumbel REAL (KIND=8), INTENT (OUT) for vdrnggumbel

C: float* for vsRngGumbel
double* for vdRngGumbel

\section*{Description}

The vRngGumbel function generates Gumbel distributed random numbers with displacement a and scalefactor \(\beta\), where \(a, \beta \in R ; \beta>0\).
The probability density function is given by:
\[
f_{a, \beta}(x)=\left\{\frac{1}{\beta} \exp \left(\frac{x-a}{\beta}\right) \exp (-\exp ((x-a) / \beta)),-\infty<x<+\infty .\right.
\]

The cumulative distribution function is as follows:
\[
F_{a, \beta}(x)=1-\exp (-\exp ((x-a) / \beta)),-\infty<x<+\infty
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED

```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
Period of the generator has been exceeded.

\section*{vRngGamma}

Generates gamma distributed random values.

\section*{Syntax}

\section*{Fortran:}
```

status = vsrnggamma( method, stream, n, r, alpha, a, beta )
status = vdrnggamma( method, stream, n, r, alpha, a, beta )

```

C:
status \(=\) vsRngGamma (method, stream, \(n, r, a l p h a, ~ a, ~ b e t a) ;\)
status \(=\) vdRngGamma (method, stream, \(n, r\), alpha, a, beta \()\);
Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}

\section*{Name}
method
n

\section*{Type}

FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int

FORTRAN 77: INTEGER*4
stream (2)
Fortran 90: TYPE
(VSL_STREAM_STATE), INTENT (IN)

C: VSLStreamStatePtr
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: REAL for vsrnggamma

DOUBLE PRECISION for vdrnggamma

Fortran 90: REAL (KIND=4), INTENT (IN) for vsrnggamma

REAL (KIND=8), INTENT (IN) for vdrnggamma

C: const float for vsRngGamma
const double for vdRngGamma
FORTRAN 77: REAL for
vsrnggamma
DOUBLE PRECISION for
vdrnggamma
Fortran 90: REAL (KIND=4), INTENT (IN) for vsrnggamma REAL (KIND=8), INTENT (IN) for vdrnggamma

C: const float for vsRngGamma
const double for vdRngGamma

\section*{Description}

Generation method. The specific values are as follows:
VSL_RNG_METHOD_GAMMA_GNORM
VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE
Acceptance/rejection method using random numbers with Gaussian distribution. See brief description of the method GNORM in Table "Values of <method> in method parameter"

Fortran: Descriptor of the stream state structure
C: Pointer to the stream state structure

Number of random values to be generated

Shape \(\alpha\).

Displacement a.
\begin{tabular}{lll}
Name & Type & Description \\
beta & FORTRAN 77: REAL for & Scalefactor \(\beta\). \\
& vsrnggamma & \\
& DOUBLE PRECISION for & \\
& vdrnggamma \\
& Fortran 90: REAL (KIND=4), \\
& INTENT (IN) for vsrnggamma \\
& REAL (KIND=8), INTENT (IN) for \\
& vdrnggamma \\
& C: const float for \\
& vsRngGamma \\
& const double for vdRngGamma
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(r\) & FORTRAN 77: REAL for & Vector of \(n\) random numbers with gamma distribution \\
& vsrnggamma & \\
& DOUBLE PRECISION for & \\
& vdrnggamma \\
& INTENT (OUT) for vsrnggamma \\
& REAL (KIND=8), INTENT (OUT) \\
& for vdrnggamma \\
& C: float* for vsRngGamma \\
& double* for vdRngGamma
\end{tabular}

\section*{FORTRAN 77: REAL for}
vsrnggamma
DOUBLE PRECISION for vdrnggamma

Fortran 90: REAL (KIND=4), INTENT (OUT) for vsrnggamma

REAL (KIND=8), INTENT (OUT)
for vdrnggamma
C: float* for vsRngGamma
double* for vdRngGamma

\section*{Description}

Vector of \(n\) random numbers with gamma distribution

\section*{Description}

The vRngGamma function generates random numbers with gamma distribution that has shape parameter \(\alpha\), displacement \(a\), and scale parameter \(\beta\), where \(\alpha, \beta\), and \(a \in R ; \alpha>0, \beta>0\).

The probability density function is given by:
\[
f_{\alpha, a, \beta}(x)=\left\{\begin{array}{c}
\frac{1}{\Gamma(\alpha) \beta^{\alpha}}(x-a)^{\alpha-1} e^{-(x-a) / \beta}, x \geq a \\
0, \\
x<a
\end{array},-\infty<x<+\infty\right.
\]
where \(\Gamma(\alpha)\) is the complete gamma function.
The cumulative distribution function is as follows:
\[
F_{\alpha, a, \beta}(x)=\left\{\begin{array}{c}
\int_{a}^{x} \frac{1}{\Gamma(\alpha) \beta^{\alpha}}(y-a)^{\alpha-1} e^{-(y-a) / \beta} d y, x \geq a \\
0, \\
x<a
\end{array},-\infty<x<+\infty\right.
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED

```

\section*{vRngBeta}

Generates beta distributed random values.

\section*{Syntax}

\section*{Fortran:}
```

status = vsrngbeta( method, stream, n, r, p, q, a, beta )
status = vdrngbeta( method, stream, n, r, p, q, a, beta )

```

C:
```

status = vsRngBeta( method, stream, n, r, p, q, a, beta );
status = vdRngBeta( method, stream, n, r, p, q, a, beta );

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90:mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{4}{*}{method} & FORTRAN 77: INTEGER & Generation method. The specific values are as follows: \\
\hline & Fortran 90: INTEGER, & VSL_RNG_METHOD_BETA_CJA \\
\hline & INTENT (IN) & VSL_RNG_METHOD_BETA_CJA_ACCURATE \\
\hline & C: const int & See brief description of the method CJA in Table "Values of <method> in method parameter" \\
\hline \multirow[t]{6}{*}{stream} & FORTRAN 77: INTEGER*4 & Fortran: Descriptor of the stream state structure \\
\hline & stream(2) & C: Pointer to the stream state structure \\
\hline & Fortran 90: TYPE & \\
\hline & (VSL_STREAM_STATE), & \\
\hline & INTENT (IN) & \\
\hline & C: VSLStreamStatePtr & \\
\hline \(n\) & FORTRAN 77: INTEGER & Number of random values to be generated \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline & Fortran 90: INTEGER, INTENT (IN) & \\
\hline & C: const int & \\
\hline \(p\) & FORTRAN 77: REAL for vsrngbeta & Shape \(p\) \\
\hline & DOUBLE PRECISION for vdrngbeta & \\
\hline & Fortran 90: REAL (KIND=4), INTENT (IN) for vsrngbeta & \\
\hline & REAL (KIND=8), INTENT (IN) for vdrngbeta & \\
\hline & C: const float for vsRngBeta const double for vdRngBeta & \\
\hline \(q\) & FORTRAN 77: REAL for vsrngbeta & Shape q \\
\hline & DOUBLE PRECISION for vdrngbeta & \\
\hline & Fortran 90: REAL (KIND=4), INTENT (IN) for vsrngbeta & \\
\hline & REAL (KIND=8), INTENT (IN) for vdrngbeta & \\
\hline & C: const float for vsRngBeta const double for vdRngBeta & \\
\hline a & FORTRAN 77: REAL for vsrngbeta & Displacement a. \\
\hline & DOUBLE PRECISION for vdrngbeta & \\
\hline & Fortran 90: REAL (KIND=4), INTENT (IN) for vsrngbeta & \\
\hline & REAL (KIND=8), INTENT (IN) for vdrngbeta & \\
\hline & C: const float for vsRngBeta const double for vdRngBeta & \\
\hline beta & FORTRAN 77: REAL for vsrngbeta & Scalefactor \(\beta\). \\
\hline & DOUBLE PRECISION for vdrngbeta & \\
\hline & Fortran 90: REAL (KIND=4), INTENT (IN) for vsrngbeta & \\
\hline
\end{tabular}
Name Type Description

REAL (KIND=8), INTENT (IN) for vdrngbeta

C: const float for vsRngBeta const double for vdRngBeta

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(r\) & FORTRAN 77: REAL for & Vector of \(n\) random numbers with beta distribution
\end{tabular}

\section*{Description}

The vRngBeta function generates random numbers with beta distribution that has shape parameters \(p\) and \(q\), displacement \(a\), and scale parameter \(\beta\), where \(p, q\), and \(\beta \in R\); \(p>0, q>0, \beta>0\).

The probability density function is given by:
\[
f_{p, q, a, \beta}(x)=\left\{\begin{array}{c}
\frac{1}{B(p, q) \beta^{p+q-1}}(x-a)^{p-1}(\beta+a-x)^{q-1}, a \leq x<a+\beta \\
0, \quad x<a, x \geq a+\beta
\end{array},-\infty<x<\infty,\right.
\]
where \(B(p, q)\) is the complete beta function.
The cumulative distribution function is as follows:
\[
F_{p, q, a, \beta}(x)=\left\{\begin{array}{cc}
0, & x<a \\
\int_{a}^{x} \frac{1}{B(p, q) \beta^{p+q-1}}(y-a)^{p-1}(\beta+a-y)^{q-1} d y, & a \leq x<a+\beta,-\infty<x<\infty . \\
1, & x \geq a+\beta
\end{array}\right.
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK

```
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
\begin{tabular}{ll}
VSL_RNG_ERROR_BAD_UPDATE & \begin{tabular}{l}
Callback function for an abstract BRNG returns an invalid \\
number of updated entries in a buffer, that is, \(<0\) or \(>\)
\end{tabular} \\
& nmax.
\end{tabular}

\section*{Discrete Distributions}

This section describes routines for generating random numbers with discrete distribution.
vRngUniform
Generates random numbers uniformly distributed over
the interval [a, b).
Syntax

\section*{Fortran:}
```

status = virnguniform( method, stream, n, r, a, b )

```

C:
```

status = viRngUniform( method, stream, n, r, a, b );

```

\section*{Include files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}

\section*{Name \\ Type}

FORTRAN 77: INTEGER

Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: INTEGER*4
stream (2)
Fortran 90: TYPE
(VSL_STREAM_STATE), INTENT (IN)

C: VSLStreamStatePtr
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: INTEGER*4

\section*{Description}

Generation method; the specific value is as follows:
VSL_RNG_METHOD_UNIFORM_STD
Standard method. Currently there is only one method for this distribution generator.

Fortran: Descriptor of the stream state structure.
C: Pointer to the stream state structure

Number of random values to be generated

Left interval bound a
```

Name Type Description
Fortran 90: INTEGER(KIND=4),
INTENT(IN)
C: const int
b
FORTRAN 77: INTEGER*4 Right interval bound b
Fortran 90: INTEGER (KIND=4),
INTENT (IN)
C: const int

```

\section*{Output Parameters}

\section*{Name Type}
r
FORTRAN 77: INTEGER*4
Fortran 90: INTEGER (KIND=4),

\section*{Description}

Vector of \(n\) random numbers uniformly distributed over the interval [a,b)

C: int*

\section*{Description}

The vRngUniform function generates random numbers uniformly distributed over the interval [a, b), where \(a, b\) are the left and right bounds of the interval respectively, and \(a, b \in z ; a<b\).
The probability distribution is given by:
\[
P(X=k)=\frac{1}{b-a}, k \in\{a, a+1, \ldots, b-1\}
\]

The cumulative distribution function is as follows:
\[
F_{a, b}(X)=\left\{\begin{array}{c}
0, \quad x<a \\
\frac{\lfloor x-a+1\rfloor}{b-a}, a \leq x<b, X \in R \\
1, x \geq b
\end{array}\right.
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE

```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
```

VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED

```

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
Period of the generator has been exceeded.
vRngUniformBits
Generates bits of underlying BRNG integer recurrence.
Syntax

\section*{Fortran:}
```

status = virnguniformbits( method, stream, n, r )

```

C:
```

status = viRngUniformBits( method, stream, n, r );

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}

\section*{Description}

Fortran: Vector of \(n\) random integer numbers. If the stream was generated by a 64 or a 128-bit generator, each integer value is represented by two or four elements of \(r\) respectively. The number of bytes occupied by each integer is contained in the field wordsize of the structure VSL_BRNG_PROPERTIES. The total number of bits that are

\section*{Name Type Description}
actually used to store the value are contained in the field nbits of the same structure. See Advanced Service Routines for a more detailed discussion of VSLBRngProperties.

C: Vector of \(n\) random integer numbers. If the stream was generated by a 64 or a 128-bit generator, each integer value is represented by two or four elements of \(r\) respectively. The number of bytes occupied by each integer is contained in the field WordSize of the structure VSLBRngProperties. The total number of bits that are actually used to store the value are contained in the field NBits of the same structure. See Advanced Service Routines for a more detailed discussion of VSLBRngProperties.

\section*{Description}

The vRngUniformBits function generates integer random values with uniform bit distribution. The generators of uniformly distributed numbers can be represented as recurrence relations over integer values in modular arithmetic. Apparently, each integer can be treated as a vector of several bits. In a truly random generator, these bits are random, while in pseudorandom generators this randomness can be violated. For example, a well known drawback of linear congruential generators is that lower bits are less random than higher bits (for example, see [Knuth81]). For this reason, care should be taken when using this function. Typically, in a 32-bit LCG only 24 higher bits of an integer value can be considered random. See VSL Notes for details.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL RNG ERROR NO NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED

```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

Period of the generator has been exceeded.

\section*{vRngUniformBits32}

Generates uniformly distributed bits in 32-bit chunks.
Syntax

\section*{Fortran:}
```

status = virnguniformbits32( method, stream, n, r )

```

C:
```

status = viRngUniformBits32( method, stream, n, r );

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{3}{*}{method} & FORTRAN 77: Integer & Generation method; the specific value is \\
\hline & Fortran 90: INTEGER, INTENT (IN) & VSL_RNG_METHOD_UNIFORMBITS32_STD \\
\hline & C: const int & \\
\hline \multirow[t]{3}{*}{stream} & FORTRAN 77: INTEGER*4 stream (2) & \begin{tabular}{l}
Fortran: Descriptor of the stream state structure. \\
C: Pointer to the stream state structure
\end{tabular} \\
\hline & \begin{tabular}{l}
Fortran 90: TYPE \\
(VSL_STREAM_STATE), \\
INTENT (IN)
\end{tabular} & \\
\hline & C: vsLStreamStatePtr & \\
\hline \multirow[t]{3}{*}{n} & FORTRAN 77: INTEGER & Number of random values to be generated \\
\hline & Fortran 90: INTEGER, INTENT (IN) & \\
\hline & C: const int & \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(r\) & FORTRAN 77: INTEGER*4 \\
& Fortran 90: INTEGER \\
& \((\) KIND=4), INTENT (OUT) \\
& C: unsigned int*
\end{tabular}

\section*{Description}

Fortran: Vector of \(n 32\)-bit random integer numbers with uniform bit distribution.
C: Vector of \(n\) 32-bit random integer numbers with uniform bit distribution.

\section*{Description}

The vRngUniformBits 32 function generates uniformly distributed bits in 32-bit chunks. Unlike vRngUniformBits, which provides the output of underlying integer recurrence and does not guarantee uniform distribution across bits, vRngUniformBits32 is designed to ensure each bit in the 32-bit chunk is uniformly distributed. See VSL Notes for details.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BRNG_NOT_SUPPORTED
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED

```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
BRNG is not supported by the function.
Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
Period of the generator has been exceeded.
vRngUniformBits64
Generates uniformly distributed bits in 64-bit chunks.

Syntax

\section*{Fortran:}
```

status = virnguniformbits64( method, stream, n, r )

```

C:
```

status = viRngUniformBits64( method, stream, n, r );

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}

\begin{tabular}{lll}
Name & Type & Description \\
\(r\) & FORTRAN 77: INTEGER*8 & Fortran: Vector of \(n\) 64-bit random integer numbers with \\
& Fortran 90: INTEGER & uniform bit distribution. \\
& \((\) KIND=8), INTENT (OUT) & C: Vector of \(n\) 64-bit random integer numbers with uniform \\
& C: unsigned long long* & bit distribution.
\end{tabular}

\section*{Description}

The vRngUniformBits 64 function generates uniformly distributed bits in 64-bit chunks. Unlike vRngUniformBits, which provides the output of underlying integer recurrence and does not guarantee uniform distribution across bits, vRngUniformBits64 is designed to ensure each bit in the 64-bit chunk is uniformly distributed. See VSL Notes for details.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BRNG_NOT_SUPPORTED
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED

```

\section*{vRngBernoulli}

Generates Bernoulli distributed random values.

\section*{Syntax}

\section*{Fortran:}
```

status = virngbernoulli( method, stream, n, r, p )

```

C:
```

status = viRngBernoulli( method, stream, n, r, p );

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{4}{*}{method} & FORTRAN 77: InTEGER & Generation method. The specific value is as follows: \\
\hline & Fortran 90: INTEGER, & VSL_RNG_METHOD_BERNOULLI_ICDF \\
\hline & INTENT (IN) & Inverse cumulative distribution function method. \\
\hline & C: const int & \\
\hline \multirow[t]{3}{*}{stream} & \begin{tabular}{l}
FORTRAN 77: INTEGER*4 \\
stream (2)
\end{tabular} & \begin{tabular}{l}
Fortran: Descriptor of the stream state structure. \\
C: Pointer to the stream state structure
\end{tabular} \\
\hline & \begin{tabular}{l}
Fortran 90: TYPE \\
(VSL_STREAM_STATE), \\
INTENT (IN)
\end{tabular} & \\
\hline & C: VSLStreamStatePtr & \\
\hline \(n\) & FORTRAN 77: Integer & Number of random values to be generated \\
\hline & Fortran 90: INTEGER, INTENT (IN) & \\
\hline & C: const int & \\
\hline \(p\) & \begin{tabular}{l}
FORTRAN 77: DOUBLE \\
pRECISION
\end{tabular} & Success probability \(p\) of a trial \\
\hline
\end{tabular}
\begin{tabular}{ll}
Name & Type \\
& Fortran 90: REAL (KIND=8), \\
& INTENT (IN) \\
& C: const double
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(r\) & FORTRAN 77: INTEGER*4 & Vector of \(n\) Bernoulli distributed random values \\
& Fortran 90: INTEGER (KIND=4), & \\
& INTENT (OUT) \\
& C: int* &
\end{tabular}

\section*{Description}

The vRngBernoulli function generates Bernoulli distributed random numbers with probability \(p\) of a single trial success, where
\(p \in R ; 0 \leq p \leq 1\).
A variate is called Bernoulli distributed, if after a trial it is equal to 1 with probability of success \(p\), and to 0 with probability \(1-p\).
The probability distribution is given by:
\(P(X=1)=p\)
\(P(X=0)=1-p\)
The cumulative distribution function is as follows:
\[
F_{p}(x)=\left\{\begin{aligned}
0, x & <0 \\
1-p, 0 & \leq x<1, x \in R \\
1, x & \geq 1
\end{aligned}\right.
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED

```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, \(<0\) or > nmax.
Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
Period of the generator has been exceeded.

\section*{vRngGeometric}
```

Generates geometrically distributed random values.

```

Syntax

\section*{Fortran:}
```

status = virnggeometric( method, stream, n, r, p )

```

C:
```

status = viRngGeometric( method, stream, n, r, p );

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

\section*{Name Type}
method FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
stream FORTRAN 77: INTEGER*4
stream (2)
Fortran 90: TYPE
(VSL_STREAM_STATE), INTENT (IN)

C: VSLStreamStatePtr
FORTRAN 77: INTEGER
Fortran 90: INTEGER,
INTENT (IN)
C: const int
\(p \quad\) FORTRAN 77: DOUBLE PRECISION
Fortran 90: REAL (KIND=8), INTENT (IN)
C: const double
Output Parameters

\section*{Name Type}

FORTRAN 77: INTEGER*
Fortran 90: \(\operatorname{INTEGER}\) (KIND=4), INTENT (OUT)
C: int*

\section*{Description}

Generation method. The specific value is as follows: VSL_RNG_METHOD_GEOMETRIC_ICDF

Inverse cumulative distribution function method.

Fortran: Descriptor of the stream state structure.
C: Pointer to the stream state structure

Number of random values to be generated

Success probability \(p\) of a trial

\section*{Description}

Vector of \(n\) geometrically distributed random values

\section*{Description}

The vRngGeometric function generates geometrically distributed random numbers with probability \(p\) of a single trial success, where \(p \in R ; 0<p<1\).
A geometrically distributed variate represents the number of independent Bernoulli trials preceding the first success. The probability of a single Bernoulli trial success is \(p\).
The probability distribution is given by:
\(P(X=k)=p \cdot(1-p)^{k}, k \in\{0,1,2, \ldots\}\).
The cumulative distribution function is as follows:
\[
F_{p}(x)=\left\{\begin{array}{ll}
0, & x<0 \\
1-(1-p)^{\lfloor x+1\rfloor}, & 0 \geq x
\end{array} \quad x \in R\right.
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
Period of the generator has been exceeded.

```
vRngBinomial
Generates binomially distributed random numbers.
Syntax

\section*{Fortran:}
```

status = virngbinomial( method, stream, n, r, ntrial, p )

```

C:
```

status = viRngBinomial( method, stream, n, r, ntrial, p );

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}

\section*{Name Type}
method FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
stream FORTRAN 77: INTEGER*4
stream (2)
Fortran 90: TYPE
(VSL_STREAM_STATE), INTENT (IN)

C: VSLStreamStatePtr
FORTRAN 77: INTEGER
Fortran 90: Integer,
INTENT (IN)
C: const int
FORTRAN 77: INTEGER*4
Fortran 90: \(\operatorname{INTEGER}\) (KIND=4), INTENT (IN)

C: const int
p
FORTRAN 77: DOUBLE
PRECISION
Fortran 90: REAL (KIND=8), INTENT (IN)

C: const double

\section*{Description}

Generation method. The specific value is as follows:
VSL_RNG_METHOD_BINOMIAL_BTPE
See brief description of the BTPE method in Table "Values of <method> in method parameter".

Fortran: Descriptor of the stream state structure.
C: Pointer to the stream state structure

Number of random values to be generated

Number of independent trials m

Success probability \(p\) of a single trial

\section*{Description}

Vector of \(n\) binomially distributed random values

Fortran 90: \(\operatorname{INTEGER}\) (KIND=4), INTENT (OUT)

C: int*
\begin{tabular}{lll}
Name & Type & Description \\
\(r\) & FORTRAN 77: INTEGER*4 & Vector of \(n\) binomially distributed random values \\
& Fortran 90: INTEGER \((\mathrm{KIND}=4)\), & \\
& INTENT (OUT) \\
& C: int* &
\end{tabular}

\section*{Description}

The vRngBinomial function generates binomially distributed random numbers with number of independent Bernoulli trials \(m\), and with probability \(p\) of a single trial success, where \(p \in R ; 0 \leq p \leq 1, m \in N\).

A binomially distributed variate represents the number of successes in \(m\) independent Bernoulli trials with probability of a single trial success \(p\).

The probability distribution is given by:
\[
P(X=k)=C_{m}^{k} p^{k}(1-p)^{m-k}, k \in\{0,1, \ldots, m\} .
\]

The cumulative distribution function is as follows:
\[
F_{m, p}(x)=\left\{\begin{array}{cl}
0, & x<0 \\
\sum_{k=0}^{\lfloor x\rfloor} C_{m}^{k} p^{k}(1-p)^{m-k}, & 0 \leq x<m, x \in R \\
1, & x \geq m
\end{array}\right.
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED

```

Indicates no error, execution is successful. stream is a NULL pointer. stream is not a valid random stream.

Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

Period of the generator has been exceeded.
vRngHypergeometric
Generates hypergeometrically distributed random
values.

\section*{Syntax}

\section*{Fortran:}
```

status = virnghypergeometric( method, stream, n, r, l, s, m )

```

C:
status \(=\) viRngHypergeometric (method, stream, \(n, r, 1, s, m)\);
Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
method & FORTRAN 77: INTEGER
\end{tabular}

\section*{Description}

Generation method. The specific value is as follows: VSL_RNG_METHOD_HYPERGEOMETRIC_H2PE

Name Type Description
Fortran 90: INTEGER,
INTENT (IN)
C: const int
stream FORTRAN 77: INTEGER*4
stream (2)
Fortran 90: TYPE
(VSL_STREAM_STATE), INTENT (IN)

C: VSLStreamStatePtr
n

1
m
FORTRAN 77: INTEGER
Fortran 90: InTEGER, INTENT (IN)

C: const int
FORTRAN 77: INTEGER*4 Lot size 1
Fortran 90: \(\operatorname{INTEGER}\) (KIND=4), INTENT (IN)

C: const int
FORTRAN 77: INTEGER*4
Fortran 90: \(\operatorname{INTEGER}\) (KIND=4), INTENT (IN)

C: const int
FORTRAN 77: INTEGER*4 Number of marked elements \(m\)
Fortran 90: \(\operatorname{INTEGER}\) (KIND=4), INTENT (IN)

C: const int

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(r\) & FORTRAN 77: \(\operatorname{INTEGER*4}\) & Vector of \(n\) hypergeometrically distributed random values \\
& Fortran 90: INTEGER \((\) KIND=4), \\
& INTENT (OUT) & \\
& C: int* &
\end{tabular}

\section*{Description}

The vRngHypergeometric function generates hypergeometrically distributed random values with lot size 1 , size of sampling \(s\), and number of marked elements in the lot \(m\), where \(1, m, s \in N \cup\{0\} ; 1 \geq \max (s, m)\).

Consider a lot of 1 elements comprising \(m\) "marked" and \(1-m\) "unmarked" elements. A trial sampling without replacement of exactly \(s\) elements from this lot helps to define the hypergeometric distribution, which is the probability that the group of \(s\) elements contains exactly \(k\) marked elements.

The probability distribution is given by:)
\[
P(X=k)=\frac{C_{k}^{k} C_{1-\mathbb{z}}^{s-k}}{C_{1}^{s}}
\]
,\(k \in\{\max (0, s+m-1), \ldots, \min (s, m)\}\)
The cumulative distribution function is as follows:
\[
F_{1, s, \mathbb{M}}(\mathrm{x})=\left\{\begin{aligned}
0, & x<\max (0, s+m-1) \\
\sum_{k=\max (0, s+\mathbb{M}-1)}^{\lfloor x\rfloor} \frac{C_{\mathbb{R}}^{k} C_{1-\mathbb{Z}}^{s-k}}{C_{1}^{s}}, & \max (0, s+m-1) \leq x \leq \min (s, m) \\
1, & x>\min (s, m)
\end{aligned}\right.
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an invalid
number of updated entries in a buffer, that is, < 0 or >
nmax.
VSL_RNG_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as the
number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.

```
vRngPoisson
Generates Poisson distributed random values.

\section*{Syntax}

\section*{Fortran:}
```

status = virngpoisson( method, stream, n, r, lambda )

```

C:
```

status = viRngPoisson( method, stream, n, r, lambda );

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}

\section*{Name Type}
method FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int

FORTRAN 77: INTEGER*4
stream (2)
Fortran 90: TYPE
(VSL_STREAM_STATE), INTENT (IN)

C: VSLStreamStatePtr
FORTRAN 77: INTEGER
Fortran 90: INTEGER, INTENT (IN)

C: const int
FORTRAN 77: DOUBLE
PRECISION
Fortran 90: REAL (KIND=8), INTENT (IN)

C: const double

\section*{Description}

Generation method. The specific values are as follows:
VSL_RNG_METHOD_POISSON_PTPE
VSL_RNG_METHOD_POISSON_POISNORM
See brief description of the PTPE and POISNORM methods in Table "Values of <method> in method parameter".

Fortran: Descriptor of the stream state structure.
C: Pointer to the stream state structure

Number of random values to be generated

Distribution parameter \(\lambda\).

\section*{Description}

Vector of \(n\) Poisson distributed random values

Fortran 90: INTEGER (KIND=4), INTENT (OUT)

C: int*

\section*{Description}

The vRng"Poisson function generates Poisson distributed random numbers with distribution parameter \(\lambda\), where \(\lambda \in R ; \lambda>0\).

The probability distribution is given by:
\[
P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!},
\]
\(k \in\{0,1,2, \ldots\}\).
The cumulative distribution function is as follows:
\[
F_{\lambda}(x)=\left\{\begin{array}{ll}
\sum_{k=0}^{\lfloor x\rfloor} \frac{\lambda^{k} e^{-\lambda}}{k!}, & x \geq 0 \\
0, & x<0
\end{array}, x \in R\right.
\]

Return Values
```

VSL_ERROR_OK,VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an invalid
number of updated entries in a buffer, that is, < 0 or >
nmax.
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.

```
vRngPoissonV
Generates Poisson distributed random values with
varying mean.

\section*{Syntax}

\section*{Fortran:}
```

status = virngpoissonv( method, stream, n, r, lambda )

```

C:
```

status = viRngPoissonV( method, stream, n, r, lambda );

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}

\section*{Name Type}
method FORTRAN 77: INTEGER
Fortran 90: INTEGER,
INTENT (IN)
C: const int
stream

FORTRAN 77: INTEGER*4 stream (2)

Fortran 90: TYPE
(VSL_STREAM_STATE), INTENT (IN)

\section*{Description}

Generation method. The specific value is as follows:
VSL_RNG_METHOD_POISSONV_POISNORM
See brief description of the POISNORM method in Table
"Values of <method> in method parameter"

Fortran: Descriptor of the stream state structure.
C: Pointer to the stream state structure
Name Type Description
n
C: VSLStreamStatePtr

Fortran 90: INTEGER, INTENT (IN)
C: const int
lambda FORTRAN 77: DOUBLE \(\quad\) Array of \(n\) distribution parameters \(\lambda_{i}\).
PRECISION
Fortran 90: REAL (KIND=8), INTENT (IN)

C: const double*

\section*{Description}

Number of random values to be generated

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(r\) & FORTRAN 77: \(\operatorname{INTEGER*4}\) & Vector of \(n\) Poisson distributed random values \\
& Fortran 90: \(\operatorname{INTEGER}(\mathrm{KIND}=4)\), &
\end{tabular} INTENT (OUT)

C: int*

\section*{Description}

The vRngPoissonv function generates \(n\) Poisson distributed random numbers \(x_{i}(i=1, \ldots, n)\) with distribution parameter \(\lambda_{i}\), where \(\lambda_{i} \in R ; \lambda_{i}>0\).

The probability distribution is given by:
\[
P\left(X_{i}=k\right)=\frac{\lambda_{i}^{k} \exp \left(-\lambda_{i}\right)}{k!}, k \in\{0,1,2, \ldots\}
\]

The cumulative distribution function is as follows:
\[
F_{\lambda_{i}}(X)=\left\{\begin{array}{ll}
\sum_{k=0}^{\lfloor x\rfloor} \frac{\lambda_{i}^{*} e^{-\lambda_{i}}}{k!}, & X \geq 0 \\
0, & X<0
\end{array}, X \in R\right.
\]

\section*{Return Values}
```

VSL_ERROR_OK,VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.

```
\begin{tabular}{ll}
VSL_RNG_ERROR_BAD_UPDATE & \begin{tabular}{l}
Callback function for an abstract BRNG returns an invalid \\
number of updated entries in a buffer, that is, \(<0\) or \(>\)
\end{tabular} \\
nmax.
\end{tabular}
vRngNegBinomial
Generates random numbers with negative binomial
distribution.
Syntax

\section*{Fortran:}
```

status = virngnegbinomial( method, stream, n, r, a, p )

```

C:
```

status = viRngNegbinomial( method, stream, n, r, a, p );

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{4}{*}{method} & FORTRAN 77: Integer & Generation method. The specific value is: \\
\hline & Fortran 90: Integer, & VSL_RNG_METHOD_NEGBINOMIAL_NBAR \\
\hline & INTENT (IN) & \multirow[t]{2}{*}{See brief description of the NBAR method in Table "Values of <method> in method parameter"} \\
\hline & C: const int & \\
\hline \multirow[t]{6}{*}{stream} & FORTRAN 77: INTEGER*4 & Fortran: descriptor of the stream state structure. \\
\hline & stream(2) & \multirow[t]{5}{*}{C: pointer to the stream state structure} \\
\hline & Fortran 90: TYPE & \\
\hline & (VSL_STREAM_STATE), & \\
\hline & INTENT (IN) & \\
\hline & C: vSLStreamStatePtr & \\
\hline \multirow[t]{4}{*}{\(n\)} & FORTRAN 77: INTEGER & \multirow[t]{4}{*}{Number of random values to be generated} \\
\hline & Fortran 90: INTEGER, & \\
\hline & INTENT (IN) & \\
\hline & C: const int & \\
\hline \multirow[t]{5}{*}{a} & FORTRAN 77: DOUBLE & \multirow[t]{5}{*}{The first distribution parameter a} \\
\hline & PRECISION & \\
\hline & Fortran 90: REAL (KIND=8), & \\
\hline & Intent (IN) & \\
\hline & C: const double & \\
\hline
\end{tabular}
\begin{tabular}{lll}
Name & Type & Description \\
\(p\) & FORTRAN 77: DOUBLE & The second distribution parameter \(p\) \\
& PRECISION & \\
& Fortran 90: REAL (KIND=8), & \\
& INTENT (IN) & \\
& C: const double &
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(r\) & FORTRAN 77: \(\operatorname{INTEGER*4}\) & Vector of \(n\) random values with negative binomial \\
& Fortran 90: \(\operatorname{INTEGER}(\mathrm{KIND}=4)\), & distribution. \\
& INTENT (OUT) & \\
& C: int* &
\end{tabular}

\section*{Description}

The vRngNegBinomial function generates random numbers with negative binomial distribution and distribution parameters \(a\) and \(p\), where \(p, a \in R ; 0<p<1\); a \(>0\).
If the first distribution parameter \(a \in N\), this distribution is the same as Pascal distribution. If \(a \in N\), the distribution can be interpreted as the expected time of a-th success in a sequence of Bernoulli trials, when the probability of success is \(p\).

The probability distribution is given by:
\[
P(X=k)=C_{a+k-1}^{k} p^{a}(1-p)^{k}, k \in\{0,1,2, \ldots\} .
\]

The cumulative distribution function is as follows:
\[
F_{a, p}(x)=\left\{\begin{array}{ll}
\sum_{k=0}^{\lfloor x\rfloor} C_{a+k-1}^{k} p^{a}(1-p)^{k}, & x \geq 0 \\
0, & x<0
\end{array} \quad, x \in R\right.
\]

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED

```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
Period of the generator has been exceeded.

\section*{Advanced Service Routines}

This section describes service routines for registering a user-designed basic generator (vslRegisterBrng) and for obtaining properties of the previously registered basic generators (vslGetBrngProperties). See VSL Notes ("Basic Generators" section of VSL Structure chapter) for substantiation of the need for several basic generators including user-defined BRNGs.

\section*{Data types}

The Advanced Service routines refer to a structure defining the properties of the basic generator. This structure is described in Fortran 90 as follows:
```

TYPE VSL_BRNG_PROPERTIES
INTEGER streamstatesize
INTEGER nseeds
INTEGER includeszero
INTEGER wordsize
INTEGER nbits
INTEGER nitstream
INTEGER sbrng
INTEGER dbrng
INTEGER ibrng
END TYPE VSL_BRNG_PROPERTIES
The C version is as follows:

```
```

typedef struct _VSLBRngProperties {

```
typedef struct _VSLBRngProperties {
 int StreamStateSize;
 int StreamStateSize;
 int NSeeds;
 int NSeeds;
 int IncludesZero;
 int IncludesZero;
 int WordSize;
 int WordSize;
 int NBits;
 int NBits;
 InitStreamPtr InitStream;
 InitStreamPtr InitStream;
 sBRngPtr sBRng;
 sBRngPtr sBRng;
 dBRngPtr dBRng;
 dBRngPtr dBRng;
 iBRngPtr iBRng;
 iBRngPtr iBRng;
} VSLBRngProperties;
```

} VSLBRngProperties;

```

The following table provides brief descriptions of the fields engaged in the above structure:
Field Descriptions
\begin{tabular}{ll}
\hline Field & Short Description \\
\hline Fortran: streamstatesize & The size, in bytes, of the stream state structure for a given basic \\
C: StreamStateSize & generator. \\
Fortran: nseeds & The number of 32-bit initial conditions (seeds) necessary to initialize \\
C: NSeeds & the stream state structure for a given basic generator.
\end{tabular}
Field Short Description

Fortran: includeszero
C: IncludesZero
Fortran: wordsize
C: WordSize

Fortran: nbits
C: NBits

Flag value indicating whether the generator can produce a random 0.

Machine word size, in bytes, used in integer-value computations. Possible values: 4, 8, and 16 for 32, 64, and 128-bit generators, respectively.

The number of bits required to represent a random value in integer arithmetic. Note that, for instance, 48 -bit random values are stored to 64-bit (8 byte) memory locations. In this case, wordsize/ WordSize is equal to 8 (number of bytes used to store the random value), while nbits/NBits contains the actual number of bits occupied by the value (in this example, 48).

Contains the pointer to the initialization routine of a given basic generator.

Contains the pointer to the basic generator of single precision real numbers uniformly distributed over the interval \((a, b)\) (real in Fortran and float in C).

Contains the pointer to the basic generator of double precision real numbers uniformly distributed over the interval \((a, b)\) (double PRECISION in Fortran and double in C).

Contains the pointer to the basic generator of integer numbers with uniform bit distribution \({ }^{1}\) (INTEGER in Fortran and unsigned int in C).
\({ }^{1}\) A specific generator that permits operations over single bits and bit groups of random numbers.
vslRegisterBrng
Registers user-defined basic generator.

\section*{Syntax}

\section*{Fortran:}
```

brng = vslregisterbrng( properties )

```

C:
```

brng = vslRegisterBrng( \&properties );

```

\section*{Include Files}
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
propertie & Fortran: & Pointer to the structure containing properties of the basic \\
\(s\) & TYPE (VSL_BRNG_PROPERTIES), & generator to be registered \\
& INTENT (IN) \\
& C: const VSLBRngProperties* &
\end{tabular}

NOTE FORTRAN 77 support is unavailable for this function.

\section*{Output Parameters}

\section*{Name Type}
brng Fortran: INTEGER, INTENT (OUT)

C: int

\section*{Description}

Number (index) of the registered basic generator; used for identification. Negative values indicate the registration error.

\section*{Description}

An example of a registration procedure can be found in the respective directory of the VSL examples.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_RNG_ERROR_BRNG_TABLE_FULL
VSL_RNG_ERROR_BAD_STREAM_STATE_SIZE
VSL_RNG_ERROR_BAD_WORD_SIZE
VSL_RNG_ERROR_BAD_NSEEDS
VSL_RNG_ERROR_BAD_NBITS
VSL_ERROR_NULL_PTR
Indicates no error, execution is successful.
Registration cannot be completed due to lack of free entries
in the table of registered BRNGs.
Bad value in StreamStateSize field.
Bad value in WordSize field.
Bad value in NSeeds field.
Bad value in NBits field.
At least one of the fields iBrng, dBrng, sBrng or
InitStream is a NULL pointer.

```

\section*{vslGetBrngProperties}

Returns structure with properties of a given basic generator.

\section*{Syntax}

\section*{Fortran:}
```

status = vslgetbrngproperties( brng, properties )

```

C:
```

status = vslGetBrngProperties( brng, \&properties );

```

\section*{Include Files}
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{ll}
Name & Type \\
brng & Fortran: INTEGER (KIND=4), \\
& INTENT (IN)
\end{tabular}

C: const int

\section*{Description}

Number (index) of the registered basic generator; used for identification. See specific values in Table "Values of brng parameter". Negative values indicate the registration error.

NOTE FORTRAN 77 support is unavailable for this function.

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
propertie & Fortran: & Pointer to the structure containing properties of the \\
\(s\) & TYPE (VSL_BRNG_PROPERTIES), & generator with number brng \\
& INTENT (OUT) & \\
& C: VSLBRngProperties* &
\end{tabular}

\section*{Description}

The vslGetBrngProperties function returns a structure with properties of a given basic generator.

\section*{Return Values}
```

VSL_ERROR_OK,VSL_STATUS_OK Indicates no error, execution is successful.
VSL_RNG_ERROR_INVALID_BRNG_INDEX BRNG index is invalid.

```

\section*{Formats for User-Designed Generators}

To register a user-designed basic generator using vslRegisterBrng function, you need to pass the pointer iBrng to the integer-value implementation of the generator; the pointers sBrng and dBrng to the generator implementations for single and double precision values, respectively; and pass the pointer InitStream to the stream initialization routine. See below recommendations on defining such functions with input and output arguments. An example of the registration procedure for a user-designed generator can be found in the respective directory of VSL examples.
The respective pointers are defined as follows:
```

typedef int(*InitStreamPtr)( int method, VSLStreamStatePtr stream, int n, const unsigned int params[] );
typedef int(*sBRngPtr)( VSLStreamStatePtr stream, int n, float r[], float a, float b );
typedef int(*dBRngPtr)( VSLStreamStatePtr stream, int n, double r[], double a, double b );
typedef int(*iBRngPtr)( vSLStreamStatePtr stream, int n, unsigned int r[] );

```

\section*{InitStream}

C:
int MyBrngInitStream(int method, VSLStreamStatePtr stream, int \(n\), const unsigned int params[])
```

    /* Initialize the stream */
    ```
\} /* MyBrngInitStream */

\section*{Description}

The initialization routine of a user-designed generator must initialize stream according to the specified initialization method, initial conditions params and the argument \(n\). The value of method determines the initialization method to be used.
- If method is equal to 1 , the initialization is by the standard generation method, which must be supported by all basic generators. In this case the function assumes that the stream structure was not previously initialized. The value of \(n\) is used as the actual number of 32 -bit values passed as initial conditions
through params. Note, that the situation when the actual number of initial conditions passed to the function is not sufficient to initialize the generator is not an error. Whenever it occurs, the basic generator must initialize the missing conditions using default settings.
- If method is equal to 2 , the generation is by the leapfrog method, where \(n\) specifies the number of computational nodes (independent streams). Here the function assumes that the stream was previously initialized by the standard generation method. In this case params contains only one element, which identifies the computational node. If the generator does not support the leapfrog method, the function must return the error code VSL_ERROR_LEAPFROG_UNSUPPORTED.
- If method is equal to 3 , the generation is by the block-splitting method. Same as above, the stream is assumed to be previously initialized by the standard generation method; params is not used, \(n\) identifies the number of skipped elements. If the generator does not support the block-splitting method, the function must return the error code VSL_ERROR_SKIPAHEAD_UNSUPPORTED.

For a more detailed description of the leapfrog and the block-splitting methods, refer to the description of vslLeapfrogStream and vslSkipAheadStream, respectively.
Stream state structure is individual for every generator. However, each structure has a number of fields that are the same for all the generators:

\section*{C:}
typedef struct
\{
unsigned int Reserved1[2];
unsigned int Reserved2[2];
[fields specific for the given generator]
\} MyStreamState;
The fields Reserved1 and Reserved2 are reserved for private needs only, and must not be modified by the user. When including specific fields into the structure, follow the rules below:
- The fields must fully describe the current state of the generator. For example, the state of a linear congruential generator can be identified by only one initial condition;
- If the generator can use both the leapfrog and the block-splitting methods, additional fields should be introduced to identify the independent streams. For example, in \(\operatorname{LCG}(a, c, m)\), apart from the initial conditions, two more fields should be specified: the value of the multiplier \(a^{k}\) and the value of the increment \(\left(a^{k}-1\right) c /(a-1)\).
For a more detailed discussion, refer to [Knuth81], and [Gentle98]. An example of the registration procedure can be found in the respective directory of VSL examples.
```

iBRng
C:
int iMyBrng( VSLStreamStatePtr stream, int n, unsigned int r[] )
{
int i; /* Loop variable */
/* Generating integer random numbers */
/* Pay attention to word size needed to
store only random number */
for( i = 0; i < n; i++)
{
r[i] = ...;
}
/* Update stream state */
return errcode;
} /* iMyBrng */

```

NOTE When using 64 and 128-bit generators, consider digit capacity to store the numbers to the random vector \(r\) correctly. For example, storing one 64-bit value requires two elements of \(r\), the first to store the lower 32 bits and the second to store the higher 32 bits. Similarly, use 4 elements of \(r\) to store a 128-bit value.

\section*{sBRng}

C:
int sMyBrng(VSLStreamStatePtr stream, int n, float r[], float a, float b)
\{
int i; /* Loop variable */
/* Generating float (a,b) random numbers */
for (i = 0; i < n; i++)
\{
 \(r[i]=. .\). ;
 \}
/* Update stream state */
return errcode;
\} /* sMyBrng */

\section*{dBRng}

C:
int dMyBrng(VSLStreamStatePtr stream, int \(n\), double r[], double \(a\), double \(b\))
i
```

    int i; /* Loop variable */
    ```
 /* Generating double (\(\mathrm{a}, \mathrm{b}\)) random numbers */
 for (i = 0; i < n; i++)
 i
 \(r[i]=\ldots\);
 \}
 /* Update stream state */
 ...
 return errcode;
\} /* dMyBrng */

\section*{Convolution and Correlation}

Intel MKL VSL provides a set of routines intended to perform linear convolution and correlation transformations for single and double precision real and complex data.
For correct definition of implemented operations, see the Mathematical Notation and Definitions section.
The current implementation provides:
- Fourier algorithms for one-dimensional single and double precision real and complex data
- Fourier algorithms for multi-dimensional single and double precision real and complex data
- Direct algorithms for one-dimensional single and double precision real and complex data
- Direct algorithms for multi-dimensional single and double precision real and complex data

One-dimensional algorithms cover the following functions from the IBM* ESSL library:
```

SCONF, SCORF
SCOND, SCORD
SDCON, SDCOR
DDCON, DDCOR
SDDCON, SDDCOR.

```

Special wrappers are designed to simulate these ESSL functions. The wrappers are provided as sample sources for Fortran and C. To reuse them, use the following directories:
\$ \{MKL\}/examples/vslc/essl/vsl_wrappers
\$ \{MKL\}/examples/vslf/essl/vsl_wrappers
Additionally, you can browse the examples demonstrating the calculation of the ESSL functions through the wrappers. You can find the examples in the following directories:
\$\{MKL\}/examples/vslc/essl
```

\${MKL}/examples/vslf/essl

```

Convolution and correlation API provides interfaces for FORTRAN 77, Fortran 90 and C/89 languages. You may use the \(\mathrm{C} / 89\) interface also with later versions of C or \(\mathrm{C}++\), or Fortran 90 interface with programs written in Fortran 95.

For users of the C/C++ and Fortran languages, the mkl_vsl.h, mkl_vsl.f90, and mkl_vsl.f77 headers are provided. All header files are found under the directory:

\section*{\$ \{MKL\}/include}

See more details about the Fortran header in Random Number Generators section of this chapter.
Convolution and correlation API is implemented through task objects, or tasks. Task object is a data structure, or descriptor, which holds parameters that determine the specific convolution or correlation operation. Such parameters may be precision, type, and number of dimensions of user data, an identifier of the computation algorithm to be used, shapes of data arrays, and so on.
All the Intel MKL VSL convolution and correlation routines process task objects in one way or another: either create a new task descriptor, change the parameter settings, compute mathematical results of the convolution or correlation using the stored parameters, or perform other operations. Accordingly, all routines are split into the following groups:

Task Constructors - routines that create a new task object descriptor and set up most common parameters.
Task Editors - routines that can set or modify some parameter settings in the existing task descriptor.
Task Execution Routines - compute results of the convolution or correlation operation over the actual input data, using the operation parameters held in the task descriptor.
Task Copy - routines used to make several copies of the task descriptor.
Task Destructors - routines that delete task objects and free the memory.
When the task is executed or copied for the first time, a special process runs which is called task commitment. During this process, consistency of task parameters is checked and the required work data are prepared. If the parameters are consistent, the task is tagged as committed successfully. The task remains committed until you edit its parameters. Hence, the task can be executed multiple times after a single commitment process. Since the task commitment process may include costly intermediate calculations such as preparation of Fourier transform of input data, launching the process only once can help speed up overall performance.

\section*{Naming Conventions}

The names of Fortran routines in the convolution and correlation API are written in lowercase (vslsconvexec), while the names of Fortran types and constants are written in uppercase. The names are not case-sensitive.
In \(C\), the names of routines, types, and constants are case-sensitive and can be lowercase and uppercase (vslsConvExec).

The names of routines have the following structure:
```

vsl[datatype]{Conv|Corr}<base name> for the C interface

```
vsl[datatype] \{conv|corr\}<base name> for the Fortran interface
where
- vsl is a prefix indicating that the routine belongs to Vector Statistical Library of Intel \({ }^{\circledR}\) MKL.
- [datatype] is optional. If present, the symbol specifies the type of the input and output data and can be \(s\) (for single precision real type), d (for double precision real type), c (for single precision complex type), or z (for double precision complex type).
- Conv or Corr specifies whether the routine refers to convolution or correlation task, respectively.
- <base name> field specifies a particular functionality that the routine is designed for, for example, NewTask, DeleteTask.

\section*{Data Types}

All convolution or correlation routines use the following types for specifying data objects:

\section*{Type}

FORTRAN 77: INTEGER*4 task (2)

\section*{Data Object}

Pointer to a task descriptor for convolution

\section*{Type}

\section*{Data Object}

\section*{Fortran 90:}

TYPE (VSL_CONV_TASK)
C: VSLConvTaskPtr
FORTRAN 77: INTEGER*4 task (2)

\section*{Fortran 90:}

TYPE (VSL_CORR_TASK)
C: VSLCorrTaskPtr
FORTRAN 77: REAL*4
Fortran 90: REAL (KIND=4)
C: float
FORTRAN 77: REAL*8
Fortran 90: REAL (KIND=8)
C: double
FORTRAN 77: COMLEX*8
Fortran 90: COMPLEX (KIND=4)
C: MKL_Complex8

FORTRAN 77: COMPLEX*16
Fortran 90: COMPLEX (KIND=8)
C: MKL_Complex16
FORTRAN 77: INTEGER
Fortran 90: INTEGER
C: int

Input/output user real data in single precision

Input/output user complex data in single precision
Pointer to a task descriptor for correlation

Input/output user real data in double precision

Input/output user complex data in double precision

All other data

Generic integer type (without specifying the byte size) is used for all integer data.

\(\square\)
NOTE The actual size of the generic integer type is platform-dependent. Before you compile your application, set an appropriate byte size for integers. See details in the 'Using the ILP64 Interface vs. LP64 Interface' section of the Inte/® MKL User's Guide.

\section*{Parameters}

Basic parameters held by the task descriptor are assigned values when the task object is created, copied, or modified by task editors. Parameters of the correlation or convolution task are initially set up by task constructors when the task object is created. Parameter changes or additional settings are made by task editors. More parameters which define location of the data being convolved need to be specified when the task execution routine is invoked.
According to how the parameters are passed or assigned values, all of them can be categorized as either explicit (directly passed as routine parameters when a task object is created or executed) or optional (assigned some default or implicit values during task construction).
The following table lists all applicable parameters used in the Intel MKL convolution and correlation API.

Convolution and Correlation Task Parameters
\begin{tabular}{|c|c|c|c|c|}
\hline Name & Category & Type & Default Value Label & Description \\
\hline job & explicit & integer & Implied by the constructor name & Specifies whether the task relates to convolution or correlation \\
\hline type & explicit & integer & Implied by the constructor name & Specifies the type (real or complex) of the input/output data. Set to real in the current version. \\
\hline precision & explicit & integer & Implied by the constructor name & Specifies precision (single or double) of the input/output data to be provided in arrays \(x, y, z\). \\
\hline mode & explicit & integer & None & Specifies whether the convolution/ correlation computation should be done via Fourier transforms, or by a direct method, or by automatically choosing between the two. See SetMode for the list of named constants for this parameter. \\
\hline method & optional & integer & "auto" & Hints at a particular computation method if several methods are available for the given mode. Setting this parameter to "auto" means that software will choose the best available method. \\
\hline internal_pre cision & optional & integer & Set equal to the value of precision & Specifies precision of internal calculations. Can enforce double precision calculations even when input/output data are single precision. See SetInternalPrecision for the list of named constants for this parameter. \\
\hline dims & explicit & integer & None & Specifies the rank (number of dimensions) of the user data provided in arrays \(x, y, z\). Can be in the range from 1 to 7 . \\
\hline \(x, y\) & explicit & real arrays & None & Specify input data arrays. See Data Allocation for more information. \\
\hline z & explicit & real array & None & Specifies output data array. See Data Allocation for more information. \\
\hline \begin{tabular}{l}
xshape, \\
yshape, \\
zshape
\end{tabular} & explicit & integer arrays & None & Define shapes of the arrays \(x, y, z\). See Data Allocation for more information. \\
\hline xstride, ystride, zstride & explicit & integer arrays & None & Define strides within arrays \(x, y, z\), that is specify the physical location of the input and output data in these arrays. See Data Allocation for more information. \\
\hline start & optional & integer array & Undefined & Defines the first element of the mathematical result that will be stored to output array z. See SetStart and Data Allocation for more information. \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\hline \hline Name & Category & Type & \begin{tabular}{l}
Default Value \\
Label
\end{tabular} & Description \\
\hline decimation & optional & \begin{tabular}{l}
integer \\
array
\end{tabular} & Undefined & \begin{tabular}{l}
Defines how to thin out the mathematical \\
result that will be stored to output array \(z\). \\
See SetDecimation and Data Allocation for \\
more information.
\end{tabular} \\
& & & \begin{tabular}{l}
mor
\end{tabular} \\
\hline
\end{tabular}

Users of the C or C++ language may pass the NULL pointer instead of either or all of the parameters xstride, ystride, or zstride for multi-dimensional calculations. In this case, the software assumes the dense data allocation for the arrays \(x, y\), or \(z\) due to the Fortran-style "by columns" representation of multidimensional arrays.

\section*{Task Status and Error Reporting}

The task status is an integer value, which is zero if no error has been detected while processing the task, or a specific non-zero error code otherwise. Negative status values indicate errors, and positive values indicate warnings.
An error can be caused by invalid parameter values, a system fault like a memory allocation failure, or can be an internal error self-detected by the software.

Each task descriptor contains the current status of the task. When creating a task object, the constructor assigns the VSL_STATUS_OK status to the task. When processing the task afterwards, other routines such as editors or executors can change the task status if an error occurs and write a corresponding error code into the task status field.
Note that at the stage of creating a task or editing its parameters, the set of parameters may be inconsistent. The parameter consistency check is only performed during the task commitment operation, which is implicitly invoked before task execution or task copying. If an error is detected at this stage, task execution or task copying is terminated and the task descriptor saves the corresponding error code. Once an error occurs, any further attempts to process that task descriptor is terminated and the task keeps the same error code.

Normally, every convolution or correlation function (except DeleteTask) returns the status assigned to the task while performing the function operation.
The status codes are given symbolic names defined in the respective header files. For the C/C++ interface, these names are defined as macros via the \#define statements, and for the Fortran interface as integer constants via the PARAMETER operators.

If there is no error, the VSL_STATUS_OK status is returned, which is defined as zero:
```

C/C++: \#define VSL_STATUS_OK 0
F90/F95: INTEGER(KIND=4) VSL_STATUS_OK
PARAMETER(VSL_STATUS\overline{_OK = \overline{0})}\=()
F77: INTEGER*4 VSL_STATUS_OK
PARAMETER(VSL_STATUS_OK = 0)

```

In case of an error, a non-zero error code is returned, which indicates the origin of the failure. The following status codes for the convolution/correlation error codes are pre-defined in the header files for both \(\mathrm{C} / \mathrm{C}++\) and Fortran languages.
Convolution/Correlation Status Codes
\begin{tabular}{ll}
Status Code & Description \\
\hline VSL_CC_ERROR_NOT_IMPLEMENTED & Requested functionality is not implemented. \\
VSL_CC_ERROR_ALLOCATION_FAILURE & Memory allocation failure. \\
VSL_CC_ERROR_BAD_DESCRIPTOR & Task descriptor is corrupted.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Status Code & Description \\
\hline VSL_CC_ERROR_SERVICE_FAILURE & A service function has failed. \\
\hline VSL_CC_ERROR_EDIT_FAILURE & Failure while editing the task. \\
\hline VSL_CC_ERROR_EDIT_PROHIBITED & You cannot edit this parameter. \\
\hline VSL_CC_ERROR_COMMIT_FAILURE & Task commitment has failed. \\
\hline VSL_CC_ERROR_COPY_FAILURE & Failure while copying the task. \\
\hline VSL_CC_ERROR_DELETE_FAILURE & Failure while deleting the task. \\
\hline VSL_CC_ERROR_BAD_ARGUMENT & Bad argument or task parameter. \\
\hline VSL_CC_ERROR_JOB & Bad parameter: job. \\
\hline SL_CC_ERROR_KIND & Bad parameter: kind. \\
\hline VSL_CC_ERROR_MODE & Bad parameter: mode. \\
\hline VSL_CC_ERROR_METHOD & Bad parameter: method. \\
\hline VSL_CC_ERROR_TYPE & Bad parameter: type. \\
\hline VSL_CC_ERROR_EXTERNAL_PRECISION & Bad parameter: external_precision. \\
\hline VSL_CC_ERROR_INTERNAL_PRECISION & Bad parameter: internal_precision. \\
\hline VSL_CC_ERROR_PRECISION & Incompatible external/internal precisions. \\
\hline VSL_CC_ERROR_DIMS & Bad parameter: dims. \\
\hline VSL_CC_ERROR_XSHAPE & Bad parameter: xshape. \\
\hline VSL_CC_ERROR_YSHAPE & Bad parameter: yshape. \\
\hline & Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, \(<0\) or \(>\) nmax. \\
\hline VSL_CC_ERROR_ZSHAPE & Bad parameter: zshape. \\
\hline VSL_CC_ERROR_XSTRIDE & Bad parameter: xstride. \\
\hline VSL_CC_ERROR_YSTRIDE & Bad parameter: ystride. \\
\hline VSL_CC_ERROR_ZSTRIDE & Bad parameter: zstride. \\
\hline VSL_CC_ERROR_X & Bad parameter: \(x\). \\
\hline VSL_CC_ERROR_Y & Bad parameter: y. \\
\hline VSL_CC_ERROR_Z & Bad parameter: \(z\). \\
\hline VSL_CC_ERROR_START & Bad parameter: start. \\
\hline VSL_CC_ERROR_DECIMATION & Bad parameter: decimation. \\
\hline VSL_CC_ERROR_OTHER & Another error. \\
\hline
\end{tabular}

\section*{Task Constructors}

Task constructors are routines intended for creating a new task descriptor and setting up basic parameters. No additional parameter adjustment is typically required and other routines can use the task object.
Intel \({ }^{\circledR}\) MKL implementation of the convolution and correlation API provides two different forms of constructors: a general form and an X-form. X-form constructors work in the same way as the general form constructors but also assign particular data to the first operand vector used in the convolution or correlation operation (stored in array \(x\)).
Using X-form constructors is recommended when you need to compute multiple convolutions or correlations with the same data vector held in array \(x\) against different vectors held in array \(y\). This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.
Each constructor routine has an associated one-dimensional version that provides algorithmic and computational benefits.

NOTE If the constructor fails to create a task descriptor, it returns the NULL task pointer.

The Table "Task Constructors" lists available task constructors:
Task Constructors
\begin{tabular}{ll}
\hline Routine & Description \\
\hline vslConvNewTask/vslCorrNewTask & \begin{tabular}{l}
Creates a new convolution or correlation task descriptor for a \\
multidimensional case.
\end{tabular} \\
vslConvNewTask1D/ & \begin{tabular}{l}
Creates a new convolution or correlation task descriptor for a \\
one-dimensional case.
\end{tabular} \\
vslCorrNewTask1D & \begin{tabular}{l}
Creates a new convolution or correlation task descriptor as an \\
VslConvNewTaskX/vslCorrNewTaskX
\end{tabular} \\
X-form for a multidimensional case. \\
vslConvNewTaskX1D/ & Creates a new convolution or correlation task descriptor as an \\
VslCorrNewTaskX1D & X-form for a one-dimensional case.
\end{tabular}

\section*{vsIConvNewTask/vsICorrNewTask}

Creates a new convolution or correlation task descriptor for multidimensional case.

\section*{Syntax}

\section*{Fortran:}
```

status = vslsconvnewtask(task, mode, dims, xshape, yshape, zshape)
status = vsldconvnewtask(task, mode, dims, xshape, yshape, zshape)
status = vslcconvnewtask(task, mode, dims, xshape, yshape, zshape)
status = vslzconvnewtask(task, mode, dims, xshape, yshape, zshape)
status = vslscorrnewtask(task, mode, dims, xshape, yshape, zshape)
status = vsldcorrnewtask(task, mode, dims, xshape, yshape, zshape)
status = vslccorrnewtask(task, mode, dims, xshape, yshape, zshape)
status = vslzcorrnewtask(task, mode, dims, xshape, yshape, zshape)

```

C:
```

status = vslsConvNewTask(task, mode, dims, xshape, yshape, zshape);

```
```

status = vsldConvNewTask(task, mode, dims, xshape, yshape, zshape);
status = vslcConvNewTask(task, mode, dims, xshape, yshape, zshape);
status = vslzConvNewTask(task, mode, dims, xshape, yshape, zshape);
status = vslsCorrNewTask(task, mode, dims, xshape, yshape, zshape);
status = vsldCorrNewTask(task, mode, dims, xshape, yshape, zshape);
status = vslcCorrNewTask(task, mode, dims, xshape, yshape, zshape);
status = vslzCorrNewTask(task, mode, dims, xshape, yshape, zshape);

```

Include Files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline mode & \begin{tabular}{l}
FORTRAN 77: InTEGER \\
Fortran 90: INTEGER \\
C: const int
\end{tabular} & Specifies whether convolution/correlation calculation must be performed by using a direct algorithm or through Fourier transform of the input data. See Table "Values of mode parameter" for a list of possible values. \\
\hline dims & \begin{tabular}{l}
FORTRAN 77: INTEGER \\
Fortran 90: INTEGER \\
C: const int
\end{tabular} & Rank of user data. Specifies number of dimensions for the input and output arrays \(x, y\), and \(z\) used during the execution stage. Must be in the range from 1 to 7 . The value is explicitly assigned by the constructor. \\
\hline xshape & \begin{tabular}{l}
FORTRAN 77: INTEGER \\
Fortran 90: INTEGER, \\
DIMENSION(*) \\
C: const int[]
\end{tabular} & Defines the shape of the input data for the source array \(x\). See Data Allocation for more information. \\
\hline yshape & \begin{tabular}{l}
FORTRAN 77: INTEGER \\
Fortran 90: INTEGER, DIMENSION(*) \\
C: const int[]
\end{tabular} & Defines the shape of the input data for the source array \(y\). See Data Allocation for more information. \\
\hline zshape & \begin{tabular}{l}
FORTRAN 77: INTEGER \\
Fortran 90: INTEGER, \\
DIMENSION (*) \\
C: const int[]
\end{tabular} & Defines the shape of the output data to be stored in array z. See Data Allocation for more information. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

Name Type
task FORTRAN 77: INTEGER*4
task(2) for vslsconvnewtask,
vsldconvnewtask,
vslcconvnewtask,
vslzconvnewtask
INTEGER*4 task(2) for
vslscorrnewtask,
vsldcorrnewtask,
vslccorrnewtask,
vslzcorrnewtask
Name
task

```

\section*{Fortran 90:}

TYPE (VSL_CONV_TASK) for
vslsconvnewtask,
vsldconvnewtask,
vslcconvnewtask,
vslzconvnewtask
TYPE (VSL_CORR_TASK) for
vslscorrnewtask,
vsldcorrnewtask,
vslccorrnewtask,
vslzcorrnewtask
C: VSLConvTaskPtr* for
vslsConvNewTask,
vsldConvNewTask,
vslcConvNewTask,
vslzConvNewTask
VSLCorrTaskPtr* for
vslsCorrNewTask,
vsldCorrNewTask,
vslcConvNewTask,
vslzConvNewTask
vslsconvnewtask,
vsldconvnewtask,
vslcconvnewtask,
vslzconvnewtask
TYPE (VSL_CORR_TASK) for vslscorrnewtask,
vsldcorrnewtask,
vslccorrnewtask,
vslzcorrnewtask
C: VSLConvTaskPtr* for
vslsConvNewTask,
vsldConvNewTask,
vslcConvNewTask,
vslzConvNewTask
VSLCorrTaskPtr* for
vslsCorrNewTask,
vsldCorrNewTask,
vslcConvNewTask,
vslzConvNewTask

FORTRAN 77: INTEGER
Fortran 90: InTEGER
C: int

\section*{Description \\ Description}

Pointer to the task descriptor if created successfully or NULL
pointer otherwise.

Set to VSL_STATUS_OK if the task is created successfully or set to non-zero error code otherwise.

If the constructor fails to create a task descriptor, it returns a NULL task pointer.
vsiConvNewTask1D/vsICorrNewTask1D
Creates a new convolution or correlation task descriptor for one-dimensional case.

\section*{Syntax}

\section*{Fortran:}
```

status = vslsconvnewtaskld(task, mode, xshape, yshape, zshape)
status = vsldconvnewtaskld(task, mode, xshape, yshape, zshape)
status = vslcconvnewtaskld(task, mode, xshape, yshape, zshape)
status = vslzconvnewtaskld(task, mode, xshape, yshape, zshape)
status = vslscorrnewtaskld(task, mode, xshape, yshape, zshape)
status = vsldcorrnewtaskld(task, mode, xshape, yshape, zshape)
status = vslccorrnewtaskld(task, mode, xshape, yshape, zshape)
status = vslzcorrnewtaskld(task, mode, xshape, yshape, zshape)
C:
status = vslsConvNewTask1D(task, mode, xshape, yshape, zshape);
status = vsldConvNewTask1D(task, mode, xshape, yshape, zshape);
status = vslcConvNewTask1D(task, mode, xshape, yshape, zshape);
status = vslzConvNewTask1D(task, mode, xshape, yshape, zshape);
status = vslsCorrNewTasklD(task, mode, xshape, yshape, zshape);
status = vsldCorrNewTask1D(task, mode, xshape, yshape, zshape);
status = vslcCorrNewTask1D(task, mode, xshape, yshape, zshape);
status = vslzCorrNewTasklD(task, mode, xshape, yshape, zshape);

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
mode & FORTRAN 77: INTEGER \\
& Fortran 90: INTEGER \\
& C: const int \\
xshape & FORTRAN 77: INTEGER \\
& Fortran 90: INTEGER
\end{tabular}

\section*{Description}

Specifies whether convolution/correlation calculation must be performed by using a direct algorithm or through Fourier transform of the input data. See Table "Values of mode parameter" for a list of possible values.

Defines the length of the input data sequence for the source array \(x\). See Data Allocation for more information.

\section*{Name}

\section*{Type}

FORTRAN 77: INTEGER
Fortran 90: INTEGER
C: const int
zshape FORTRAN 77: INTEGER
Fortran 90: INTEGER
C: const int

\section*{Output Parameters}
```

Name
task

```

\section*{Type}
```

FORTRAN 77: INTEGER*4
task(2) for vslsconvnewtask1d, vsldconvnewtask1d, vslcconvnewtaskid, vslzconvnewtaskid INTEGER*4 task(2) for vslscorrnewtaskld, vsldcorrnewtaskid, vslccorrnewtaskid, vslzcorrnewtaskid

```

\section*{Fortran 90:}

TYPE (VSL_CONV_TASK) for vslsconvnewtaskld, vsldconvnewtaskld, vslcconvnewtask1d, vslzconvnewtask1d TYPE (VSL_CORR_TASK) for vslscorrnewtaskld, vsldcorrnewtask1d, vslccorrnewtaskid, vslzcorrnewtaskid

C: VSLConvTaskPtr* for vslsConvNewTask1D, vsldConvNewTask1D, vslcConvNewTask1D, vslzConvNewTask1D

VSLCorrTaskPtr* for vslsCorrNewTask1D, vsldCorrNewTask1D, vslcCorrNewTask1D, vslzCorrNewTask1D

FORTRAN 77: INTEGER
Fortran 90: INTEGER

\section*{Description}

Defines the length of the input data sequence for the source array \(y\). See Data Allocation for more information.

Defines the length of the output data sequence to be stored in array \(z\). See Data Allocation for more information.

\section*{Description}

Pointer to the task descriptor if created successfully or NULL pointer otherwise.

Set to VSL_STATUS_OK if the task is created successfully or set to non-zero error code otherwise.

\begin{abstract}
Name Type Description
\end{abstract}

C: int

\section*{Description}

Each vslConvNewTask1D/vslCorrNewTask1D constructor creates a new convolution or correlation task descriptor with the user specified values for explicit parameters. The optional parameters are set to their default values (see Table "Convolution and Correlation Task Parameters"). Unlike vslConvNewTask/ vslCorrNewTask, these routines represent a special one-dimensional version of the constructor which assumes that the value of the parameter dims is 1 . The parameters xshape, yshape, and zshape are equal to the number of elements read from the arrays \(x\) and \(y\) or stored to the array \(z\). You explicitly assign the shape parameters when calling the constructor.

\section*{vsIConvNewTaskX/vsICorrNewTaskX}

Creates a new convolution or correlation task descriptor for multidimensional case and assigns source data to the first operand vector.

\section*{Syntax}

\section*{Fortran:}
```

status = vslsconvnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vsldconvnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vslcconvnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vslzconvnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vslscorrnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vsldcorrnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vslccorrnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vslzcorrnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
C:

```
```

status = vslsConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);

```
status = vslsConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vsldConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vsldConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslcConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslcConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslzConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslzConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslsCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslsCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vsldCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vsldCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslcCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslcCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslzCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
```

status = vslzCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline mode & \begin{tabular}{l}
FORTRAN 77: INTEGER \\
Fortran 90: \\
INTEGER \\
C: const int
\end{tabular} & Specifies whether convolution/correlation calculation must be performed by using a direct algorithm or through Fourier transform of the input data. See Table "Values of mode parameter" for a list of possible values. \\
\hline dims & \begin{tabular}{l}
FORTRAN 77: INTEGER \\
Fortran 90: \\
INTEGER \\
C: const int
\end{tabular} & Rank of user data. Specifies number of dimensions for the input and output arrays \(x, y\), and \(z\) used during the execution stage. Must be in the range from 1 to 7 . The value is explicitly assigned by the constructor. \\
\hline xshape & \begin{tabular}{l}
FORTRAN 77: INTEGER \\
Fortran 90: INTEGER, \\
DIMENSION (*) \\
C: const int[]
\end{tabular} & Defines the shape of the input data for the source array x . See Data Allocation for more information. \\
\hline yshape & \begin{tabular}{l}
FORTRAN 77: INTEGER \\
Fortran 90: INTEGER, \\
dIMENSION(*) \\
C: const int[]
\end{tabular} & Defines the shape of the input data for the source array \(y\). See Data Allocation for more information. \\
\hline zshape & \begin{tabular}{l}
FORTRAN 77: INTEGER \\
Fortran 90: INTEGER, DIMENSION (*) \\
C: const int[]
\end{tabular} & Defines the shape of the output data to be stored in array z.See Data Allocation for more information. \\
\hline \(x\) & \begin{tabular}{l}
FORTRAN 77: REAL*4 for real data in single precision flavors, REAL*8 for real data in double precision flavors, \\
COMPLEX* 8 for complex data in single precision flavors, \\
COMPLEX* 16 for complex data in double precision flavors \\
Fortran 90: REAL (KIND=4) , DIMENSION (*) for real data in single precision flavors, \\
REAL (KIND=8), DIMENSION (*) for real data in double precision flavors, COMPLEX(KIND=4), DIMENSION (*) for complex data in single precision flavors, \\
COMPLEX(KIND=8), DIMENSION (*) for complex data in double precision flavors
\end{tabular} & Pointer to the array containing input data for the first operand vector.See Data Allocation for more information. \\
\hline
\end{tabular}
Name Type Description

C: const float [] for real data in single precision flavors, const double[] for real data in double precision flavors, const MKL_Complex8[] for complex data in single precision flavors,
```

const MKL_Complex16[] for complex data in double precision

``` flavors
xstride
FORTRAN 77: INTEGER
Fortran 90: INTEGER, DIMENSION (*)

C: const int[]

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \multirow[t]{6}{*}{task} & \begin{tabular}{l}
FORTRAN 77: INTEGER*4 \\
task(2) for vslsconvnewtaskx, vsldconvnewtaskx, vslcconvnewtaskx, vslzconvnewtaskx
\end{tabular} \\
\hline & INTEGER*4 task(2) for vslscorrnewtaskx, vsldcorrnewtaskx, vslccorrnewtaskx, vslzcorrnewtaskx \\
\hline & Fortran 90: \\
\hline & ```
TYPE (VSL_CONV_TASK) for
vslsconvnewtaskx,
vsldconvnewtaskx,
vslcconvnewtaskx,
vslzconvnewtaskx
``` \\
\hline & TYPE (VSL_CORR_TASK) for vslscorrnewtaskx, vsldcorrnewtaskx, vslccorrnewtaskx, vslzcorrnewtaskx \\
\hline & C: VSLConvTaskPtr* for vslsConvNewTaskX, vsldConvNewTaskX, vslcConvNewTaskX, vslzConvNewTaskX \\
\hline
\end{tabular}

\section*{Description}

Pointer to the task descriptor if created successfully or NULL pointer otherwise.

\section*{Name Type Description}

> VSLCorrTaskPtr* for vslsCorrNewTaskX, vsldCorrNewTaskX, vslcCorrNewTaskX, vslzCorrNewTaskX
status FORTRAN 77: INTEGER
Fortran 90: INTEGER
Set to VSL_STATUS_OK if the task is created successfully or set to non-zero error code otherwise.

C: int

\section*{Description}

Each vslConvNewTaskX/vslCorrNewTaskX constructor creates a new convolution or correlation task descriptor with the user specified values for explicit parameters. The optional parameters are set to their default values (see Table "Convolution and Correlation Task Parameters").
Unlike vslConvNewTask/vslCorrNewTask, these routines represent the so called X-form version of the constructor, which means that in addition to creating the task descriptor they assign particular data to the first operand vector in array \(x\) used in convolution or correlation operation. The task descriptor created by the vslConvNewTaskX/vslCorrNewTaskX constructor keeps the pointer to the array \(x\) all the time, that is, until the task object is deleted by one of the destructor routines (see vslConvDeleteTask/ vslCorrDeleteTask).
Using this form of constructors is recommended when you need to compute multiple convolutions or correlations with the same data vector in array \(x\) against different vectors in array \(y\). This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.

The parameters xshape, yshape, and zshape define the shapes of the input and output data provided by the arrays \(x, y\), and \(z\), respectively. Each shape parameter is an array of integers with its length equal to the value of dims. You explicitly assign the shape parameters when calling the constructor. If the value of the parameter dims is 1, then xshape, yshape, and zshape are equal to the number of elements read from the arrays \(x\) and \(y\) or stored to the array \(z\). Note that values of shape parameters may differ from physical shapes of arrays \(x, y\), and \(z\) if non-trivial strides are assigned.
The stride parameter xstride specifies the physical location of the input data in the array \(x\). In a onedimensional case, stride is an interval between locations of consecutive elements of the array. For example, if the value of the parameter xstride is \(s\), then only every \(s^{\text {th }}\) element of the array \(x\) will be used to form the input sequence. The stride value must be positive or negative but not zero.

\section*{vsIConvNewTaskX1D/vsICorrNewTaskX1D}

\section*{Creates a new convolution or correlation task}
descriptor for one-dimensional case and assigns source data to the first operand vector.

\section*{Syntax}

\section*{Fortran:}
```

status = vslsconvnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)
status = vsldconvnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)
status = vslcconvnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)
status = vslzconvnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)

```
```

status = vslscorrnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)
status = vsldcorrnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)
status = vslccorrnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)
status = vslzcorrnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)

```
C:
```

status = vslsConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vsldConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslcConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslzConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslsCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vsldCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslcCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslzCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);

```

Include files
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}

\section*{Name Type \\ mode FORTRAN 77: INTEGER \\ Fortran 90: INTEGER \\ C: const int \\ xshape FORTRAN 77: INTEGER \\ Fortran 90: INTEGER \\ C: const int \\ yshape \\ FORTRAN 77: INTEGER}
zshape

X

Fortran 90: INTEGER
C: const int
FORTRAN 77: INTEGER
Fortran 90: INTEGER
C: const int
FORTRAN 77: REAL*4 for real data in single precision flavors, REAL*8 for real data in double precision flavors,

COMPLEX* 8 for complex data in single precision flavors,

\section*{Description}

Specifies whether convolution/correlation calculation must be performed by using a direct algorithm or through Fourier transform of the input data. See Table "Values of mode parameter" for a list of possible values.

Defines the length of the input data sequence for the source array \(x\). See Data Allocation for more information.

Defines the length of the input data sequence for the source array \(y\). See Data Allocation for more information.

Defines the length of the output data sequence to be stored in array \(z\). See Data Allocation for more information.

Pointer to the array containing input data for the first operand vector. See Data Allocation for more information.
Name Type Description

COMPLEX*16 for complex data in double precision flavors

Fortran 90: REAL (KIND=4), DIMENSION (*) for real data in single precision flavors,

REAL (KIND=8), DIMENSION
(*) for real data in double precision flavors,

COMPLEX(KIND=4), DIMENSION
(*) for complex data in single precision flavors,

COMPLEX(KIND=8), DIMENSION
(*) for complex data in double precision flavors

C: const float[] for real data in single precision flavors, const double[] for real data in double precision flavors, const MKL_Complex8[] for complex data in single precision flavors,
const MKL_Complex16[] for complex data in double precision flavors

FORTRAN 77: INTEGER
Fortran 90: INTEGER
C: const int

\section*{Output Parameters}

\section*{Name}
task
Type
FORTRAN 77: INTEGER*4
task(2) for
vslsconvnewtaskx1d, vsldconvnewtaskx1d, vslcconvnewtaskx1d, vslzconvnewtaskx1d

INTEGER*4 task(2) for vslscorrnewtaskx1d, vsldcorrnewtaskxld, vslccorrnewtaskxld, vslzcorrnewtaskx1d

\section*{Fortran 90:}

TYPE (VSL_CONV_TASK) for vslsconvnewtaskx1d,

Stride for input data sequence in the arrayx.

\section*{Description}

Pointer to the task descriptor if created successfully or NULL pointer otherwise.

\section*{Name}
status

\section*{Type}
vsldconvnewtaskx1d, vslcconvnewtaskx1d, vslzconvnewtaskx1d

TYPE (VSL_CORR_TASK) for vslscorrnewtaskxld, vsldcorrnewtaskxld, vslccorrnewtaskxld, vslzcorrnewtaskx1d

C: VSLConvTaskPtr* for vslsConvNewTaskX1D, vsldConvNewTaskX1D, vslcConvNewTaskX1D, vslzConvNewTaskX1D

VSLCorrTaskPtr* for vslsCorrNewTaskX1D, vsldCorrNewTaskX1D, vslcCorrNewTaskX1D, vslzCorrNewTaskX1D

FORTRAN 77: INTEGER
Fortran 90: INTEGER
C: int

\section*{Description}

Set to VSL_STATUS_OK if the task is created successfully or set to non-zero error code otherwise.

\section*{Description}

Each vslConvNewTaskX1D/vslCorrNewTaskX1D constructor creates a new convolution or correlation task descriptor with the user specified values for explicit parameters. The optional parameters are set to their default values (see Table "Convolution and Correlation Task Parameters").

These routines represent a special one-dimensional version of the so called X-form of the constructor. This assumes that the value of the parameter dims is 1 and that in addition to creating the task descriptor, constructor routines assign particular data to the first operand vector in array \(x\) used in convolution or correlation operation. The task descriptor created by the vslConvNewTaskX1D/vslCorrNewTaskX1D constructor keeps the pointer to the array \(x\) all the time, that is, until the task object is deleted by one of the destructor routines (see vslConvDeleteTask/vslCorrDeleteTask).

Using this form of constructors is recommended when you need to compute multiple convolutions or correlations with the same data vector in array \(x\) against different vectors in array \(y\). This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.
The parameters xshape, yshape, and zshape are equal to the number of elements read from the arrays \(x\) and \(y\) or stored to the array \(z\). You explicitly assign the shape parameters when calling the constructor.

The stride parameters xstride specifies the physical location of the input data in the array \(x\) and is an interval between locations of consecutive elements of the array. For example, if the value of the parameter \(x\) stride is \(s\), then only every \(s^{\text {th }}\) element of the array \(x\) will be used to form the input sequence. The stride value must be positive or negative but not zero.

\section*{Task Editors}

Task editors in convolution and correlation API of Intel MKL are routines intended for setting up or changing the following task parameters (see Table "Convolution and Correlation Task Parameters"):
- mode
- internal_precision
- start
- decimation

For setting up or changing each of the above parameters, a separate routine exists.

D
NOTE Fields of the task descriptor structure are accessible only through the set of task editor routines provided with the software.

The work data computed during the last commitment process may become invalid with respect to new parameter settings. That is why after applying any of the editor routines to change the task descriptor settings, the task loses its commitment status and goes through the full commitment process again during the next execution or copy operation. For more information on task commitment, see the Introduction to Convolution and Correlation.

Table "Task Editors" lists available task editors.
Task Editors
\begin{tabular}{ll}
\hline Routine & Description \\
\hline vslConvSetMode/vslCorrSetMode & \begin{tabular}{l} 
Changes the value of the parameter mode for the \\
operation of convolution or correlation.
\end{tabular} \\
\begin{tabular}{l} 
vslConvSetInternalPrecision/ \\
vslCorrSetInternalPrecision
\end{tabular} & \begin{tabular}{l} 
Changes the value of the parameter \\
internal_precision for the operation of convolution or \\
correlation.
\end{tabular} \\
vslConvSetStart/vslCorrSetStart & \begin{tabular}{l} 
Sets the value of the parameter start for the operation \\
of convolution or correlation.
\end{tabular} \\
vslConvSetDecimation/ & \begin{tabular}{l} 
Sets the value of the parameter decimation for the \\
operation of convolution or correlation.
\end{tabular} \\
vslCorrSetDecimation
\end{tabular}

NOTE You can use the NULL task pointer in calls to editor routines. In this case, the routine is terminated and no system crash occurs.

\section*{vsIConvSetMode/vsICorrSetMode \\ Changes the value of the parameter mode in the convolution or correlation task descriptor.}

\section*{Syntax}

\section*{Fortran:}
```

status = vslconvsetmode(task, newmode)
status = vslcorrsetmode(task, newmode)

```

C:
```

status = vslConvSetMode(task, newmode);
status = vslCorrSetMode(task, newmode);

```

\section*{Include Files}
- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
task & FORTRAN 77: INTEGER*4 \\
& task(2) for vslconvsetmode \\
& INTEGER*4 task(2) for \\
& vslcorrsetmode \\
& Fortran 90: \\
& TYPE (VSL_CONV_TASK) for \\
& vslconvsetmode \\
& TYPE (VSL_CORR_TASK) for \\
& vslcorrsetmode \\
& C: VSLConvTaskPtr for \\
& vslConvSetMode \\
& VSLCorrTaskPtr for \\
& vslCorrSetMode
\end{tabular}
newmode
FORTRAN 77: INTEGER

\section*{Description}

Pointer to the task descriptor.

Fortran 90: INTEGER
C: const int

New value of the parameter mode.

\section*{Description}

Current status of the task.

Fortran 90: INTEGER
C: int

\section*{Description}

This function is declared in mkl_vsl.f77 for FORTRAN 77 interface, in mkl_vsl.f90 for Fortran 90 interface, and in mkl_vsl_functions.h for C interface.
The function routine changes the value of the parameter mode for the operation of convolution or correlation. This parameter defines whether the computation should be done via Fourier transforms of the input/output data or using a direct algorithm. Initial value for mode is assigned by a task constructor.

Predefined values for the mode parameter are as follows:
Values of mode parameter
\begin{tabular}{ll}
\hline Value & Purpose \\
\hline VSL_CONV_MODE_FFT & Compute convolution by using fast Fourier transform. \\
VSL_CORR_MODE_FFT & Compute correlation by using fast Fourier transform.
\end{tabular}
\begin{tabular}{ll}
\hline Value & Purpose \\
\hline VSL_CONV_MODE_DIRECT & Compute convolution directly. \\
VSL_CORR_MODE_DIRECT & Compute correlation directly. \\
VSL_CONV_MODE_AUTO & Automatically choose direct or Fourier mode for convolution. \\
VSL_CORR_MODE_AUTO & Automatically choose direct or Fourier mode for correlation. \\
\hline
\end{tabular}

\section*{vsIConvSetInternalPrecision/vsICorrSetInternalPrecision}

Changes the value of the parameter
internal_precision in the convolution or correlation task descriptor.

Syntax

\section*{Fortran:}
```

status = vslconvsetinternalprecision(task, precision)
status = vslcorrsetinternalprecision(task, precision)
C:

```
```

status = vslConvSetInternalPrecision(task, precision);

```
status = vslConvSetInternalPrecision(task, precision);
status = vslCorrSetInternalPrecision(task, precision);
```

Include Files

- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

```
Name Type Description
    task FORTRAN 77: INTEGER*4 Pointer to the task descriptor.
    task(2) for
        vslconvsetinternalprecisio
        n
        INTEGER*4 task(2) for
        vslcorrsetinternalprecisio
            n
                Fortran 90:
                TYPE (VSL_CONV_TASK) for
                vslconvsetinternalprecisio
                n
                TYPE (VSL_CORR_TASK) for
                vslcorrsetinternalprecisio
                n
                    C: VSLConvTaskPtr for
                vslConvSetInternalPrecisio
                    n
```

Name	Type	Description
	VSLCorrTaskPtr for vslCorrSetInternalPrecisio n	
precision	FORTRAN 77: INTEGER	New value of the parameter internal_precision.
	Fortran 90: INTEGER	
	C: const int	
Output Param	neters	
Name	Type	Description
status	FORTRAN 77: INTEGER	Current status of the task.
	Fortran 90: Integer	
	C: int	

Description

The vslConvSetInternalPrecision/vslCorrSetInternalPrecision routine changes the value of the parameter internal_precision for the operation of convolution or correlation. This parameter defines whether the internal computations of the convolution or correlation result should be done in single or double precision. Initial value for internal_precision is assigned by a task constructor and set to either "single" or "double" according to the particular flavor of the constructor used.
Changing the internal_precision can be useful if the default setting of this parameter was "single" but you want to calculate the result with double precision even if input and output data are represented in single precision.

Predefined values for the internal_precision input parameter are as follows:
Values of internal_precision Parameter

Value	Purpose
VSL_CONV_PRECISION_SINGLE	Compute convolution with single precision.
VSL_CORR_PRECISION_SINGLE	Compute correlation with single precision.
VSL_CONV_PRECISION_DOUBLE	Compute convolution with double precision.
VSL_CORR_PRECISION_DOUBLE	Compute correlation with double precision.

vsIConvSetStart/vsICorrSetStart

Changes the value of the parameter start in the convolution or correlation task descriptor.

Syntax

Fortran:

```
status = vslconvsetstart(task, start)
status = vslcorrsetstart(task, start)
C:
```

```
status = vslConvSetStart(task, start);
```

```
status = vslConvSetStart(task, start);
```

```
status = vslCorrSetStart(task, start);
```


Include Files

- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl vsl functions.h

Input Parameters

```
Name Type Description
task FORTRAN 77: INTEGER*4 Pointer to the task descriptor.
    task(2) for vslconvsetstart
    INTEGER*4 task(2) for
vslcorrsetstart
```


Fortran 90:

```
TYPE (VSL_CONV_TASK) for vslconvsetstart
TYPE (VSL_CORR_TASK) for
vslcorrsetstart
C: VSLConvTaskPtr for
vslConvSetStart
VSLCorrTaskPtr for
vslCorrSetStart
start FORTRAN 77: INTEGER New value of the parameter start.
Fortran 90: INTEGER, DIMENSION (*)
C: const int[]
```


Output Parameters

Name	Type	Description
status	FORTRAN 77: INTEGER	Current status of the task.

Fortran 90: INTEGER
C: int

Description

The vslConvSetStart/vslCorrSetStart routine sets the value of the parameter start for the operation of convolution or correlation. In a one-dimensional case, this parameter points to the first element in the mathematical result that should be stored in the output array. In a multidimensional case, start is an array of indices and its length is equal to the number of dimensions specified by the parameter dims. For more information about the definition and effect of this parameter, see Data Allocation.

During the initial task descriptor construction, the default value for start is undefined and this parameter is not used. Therefore the only way to set and use the start parameter is via assigning it some value by one of the vslConvSetStart/vslCorrSetStart routines.

vsIConvSetDecimation/vsICorrSetDecimation

Changes the value of the parameter decimation in the convolution or correlation task descriptor.

Syntax

Fortran:

```
status = vslconvsetdecimation(task, decimation)
status = vslcorrsetdecimation(task, decimation)
```

C:

```
status = vslConvSetDecimation(task, decimation);
```

status $=$ vslCorrSetDecimation(task, decimation);

Include Files

- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

Name	Type	Description
task	FORTRAN 77: INTEGER*4 task(2) for vslconvsetdecimation	Pointer to the task descriptor.
	INTEGER*4 task(2) for vslcorrsetdecimation	
	Fortran 90: TYPE (VSL_CONV_TASK) for vslconvsetdecimation	
	TYPE (VSL_CORR_TASK) for vslcorrsetdecimation	
	C: VSLConvTaskPtr for vslConvSetDecimation	
	VSLCorrTaskPtr for vslCorrSetDecimation	
decimatio	FORTRAN 77: INTEGER	New value of the parameter decimation.
n	Fortran 90: INTEGER, DIMENSION (*)	
	C: const int[]	
Output Parameters		
Name	Type	Description
status	FORTRAN 77: INTEGER	Current status of the task.
	Fortran 90: INTEGER	

Name Type Description

C: int

Description

The routine sets the value of the parameter decimation for the operation of convolution or correlation. This parameter determines how to thin out the mathematical result of convolution or correlation before writing it into the output data array. For example, in a one-dimensional case, if decimation $=d>1$, only every d-th element of the mathematical result is written to the output array z. In a multidimensional case, decimation is an array of indices and its length is equal to the number of dimensions specified by the parameter dims. For more information about the definition and effect of this parameter, see Data Allocation.

During the initial task descriptor construction, the default value for decimation is undefined and this parameter is not used. Therefore the only way to set and use the decimation parameter is via assigning it some value by one of the vslSetDecimation routines.

Task Execution Routines

Task execution routines compute convolution or correlation results based on parameters held by the task descriptor and on the user data supplied for input vectors.

After you create and adjust a task, you can execute it multiple times by applying to different input/output data of the same type, precision, and shape.
Intel MKL provides the following forms of convolution/correlation execution routines:

- General form executors that use the task descriptor created by the general form constructor and expect to get two source data arrays x and y on input
- X-form executors that use the task descriptor created by the X-form constructor and expect to get only one source data array y on input because the first array x has been already specified on the construction stage
When the task is executed for the first time, the execution routine includes a task commitment operation, which involves two basic steps: parameters consistency check and preparation of auxiliary data (for example, this might be the calculation of Fourier transform for input data).
Each execution routine has an associated one-dimensional version that provides algorithmic and computational benefits.

NOTE You can use the NULL task pointer in calls to execution routines. In this case, the routine is terminated and no system crash occurs.

If the task is executed successfully, the execution routine returns the zero status code. If an error is detected, the execution routine returns an error code which signals that a specific error has occurred. In particular, an error status code is returned in the following cases:

- if the task pointer is NULL
- if the task descriptor is corrupted
- if calculation has failed for some other reason.

NOTE Intel ${ }^{\circledR}$ MKL does not control floating-point errors, like overflow or gradual underflow, or operations with NaNs , etc.

If an error occurs, the task descriptor stores the error code.
The table below lists all task execution routines.

Task Execution Routines

Routine
vslConvExec/vslCorrExec
vslConvExec1D/vslCorrExec1D
vslConvExecX/vslCorrExecX
vslConvExecX1D/vslCorrExecX1D

Description

Computes convolution or correlation for a multidimensional case.
Computes convolution or correlation for a one-dimensional case.
Computes convolution or correlation as X -form for a multidimensional case.

Computes convolution or correlation as X-form for a onedimensional case.

vsIConvExec/vsICorrExec

Computes convolution or correlation for multidimensional case.

Syntax

Fortran:

```
status = vslsconvexec(task, x, xstride, y, ystride, z, zstride)
status = vsldconvexec(task, x, xstride, y, ystride, z, zstride)
status = vslcconvexec(task, x, xstride, y, ystride, z, zstride)
status = vslzconvexec(task, x, xstride, y, ystride, z, zstride)
status = vslscorrexec(task, x, xstride, y, ystride, z, zstride)
status = vsldcorrexec(task, x, xstride, y, ystride, z, zstride)
status = vslccorrexec(task, x, xstride, y, ystride, z, zstride)
status = vslzcorrexec(task, x, xstride, y, ystride, z, zstride)
```

c:

```
status = vslsConvExec(task, x, xstride, y, ystride, z, zstride);
status = vsldConvExec(task, x, xstride, y, ystride, z, zstride);
status = vslcConvExec(task, x, xstride, y, ystride, z, zstride);
status = vslzConvExec(task, x, xstride, y, ystride, z, zstride);
status = vslsCorrExec(task, x, xstride, y, ystride, z, zstride);
status = vsldCorrExec(task, x, xstride, y, ystride, z, zstride);
status = vslcCorrExec(task, x, xstride, y, ystride, z, zstride);
status = vslzCorrExec(task, x, xstride, y, ystride, z, zstride);
```

Include Files

- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

```
Name
task
```


Type

```
FORTRAN 77: INTEGER*4
task(2) for vslsconvexec, vsldconvexec, vslcconvexec, vslzconvexec
```

```
INTEGER*4 task(2) for
```

INTEGER*4 task(2) for
vslscorrexec, vsldcorrexec,
vslscorrexec, vsldcorrexec,
vslccorrexec, vslzcorrexec

```
vslccorrexec, vslzcorrexec
```

x, y

Fortran 90:

TYPE (VSL_CONV_TASK) for vslsconvexec, vsldconvexec, vslcconvexec, vslzconvexec

TYPE (VSL_CORR_TASK) for vslscorrexec, vsldcorrexec, vslccorrexec, vslzcorrexec

C: VSLConvTaskPtr for vslsConvExec, vsldConvExec, vslcConvExec, vslzConvExec

VSLCorrTaskPtr for vslsCorrExec, vsldCorrExec, vslcCorrExec, vslzCorrExec

FORTRAN 77: REAL*4 for
vslsconvexec and vslscorrexec,

REAL*8 for vsldconvexec and vsldcorrexec,

COMPLEX*8 forvslcconvexec and vslccorrexec, COMPLEX*16 forvslzconvexec and vslzcorrexec

Fortran 90: REAL (KIND=4), DIMENSION(*) for vslsconvexec and vslscorrexec, REAL (KIND=8), DIMENSION(*) for vsldconvexec and vsldcorrexec, COMPLEX(KIND=4), DIMENSION
(*) forvslcconvexec and vslccorrexec, COMPLEX(KIND=8), DIMENSION
(*) for vslzconvexec and vslzcorrexec

Description

Pointer to the task descriptor

Pointers to arrays containing input data. See Data Allocation for more information.

Name
 Type
 Description

C: const float[] for vslsConvExec and vslsCorrExec, const double[] for vsldConvExec and vsldCorrExec, const MKL_Complex8[] for vslcConvExec and vslcCorrExec, const MKL_Complex16[] for vslzConvExec and vslzCorrExec
xstride, FORTRAN 77: INTEGER
ystride, zstride

Fortran 90: INTEGER, DIMENSION (*)

C: const int[]

Output Parameters

```
Name Type
z
FORTRAN 77: REAL*4 for
vslsconvexec and
vslscorrexec,
REAL*8 for vsldconvexec and
vsldcorrexec,
COMPLEX*8 forvslcconvexec
and vslccorrexec,
COMPLEX*16 forvslzconvexec
and vslzcorrexec
Fortran 90: REAL (KIND=4),
DIMENSION(*) for
vslsconvexec and
vslscorrexec,
REAL(KIND=8), DIMENSION(*)
for vsldconvexec and
vsldcorrexec,
COMPLEX(KIND=4), DIMENSION
    (*) forvslcconvexec and
vslccorrexec,
COMPLEX(KIND=8), DIMENSION
    (*) for vslzconvexec and
    vslzcorrexec
```


Description

Strides for input and output data. For more information, see stride parameters.

Pointer to the array that stores output data. See Data Allocation for more information.

Name
 Type
 Description

status

C: const float[] for vslsConvExec and vslsCorrExec, const double[] for vsldConvExec and vsldCorrExec, const MKL_Complex8[] for vslcConvExec and vslcCorrExec, const MKL_Complex16[] for vslzConvExec and vslzCorrExec

FORTRAN 77: INTEGER
Fortran 90: INTEGER

Set to VSL_STATUS_OK if the task is executed successfully or set to non-zero error code otherwise.

C: int

Description

Each of the vslConvExec/vslCorrExec routines computes convolution or correlation of the data provided by the arrays x and y and then stores the results in the array z. Parameters of the operation are read from the task descriptor created previously by a corresponding vslConvNewTask/vslCorrNewTask constructor and pointed to by task. If task is NULL, no operation is done.

The stride parameters xstride, ystride, and zstride specify the physical location of the input and output data in the arrays x, y, and z, respectively. In a one-dimensional case, stride is an interval between locations of consecutive elements of the array. For example, if the value of the parameter zstride is s, then only every $s^{\text {th }}$ element of the array z will be used to store the output data. The stride value must be positive or negative but not zero.

vsIConvExec1D/vsICorrExec1D

Computes convolution or correlation for onedimensional case.

Syntax

Fortran:

```
status = vslsconvexecld(task, x, xstride, y, ystride, z, zstride)
status = vsldconvexecld(task, x, xstride, y, ystride, z, zstride)
status = vslcconvexecld(task, x, xstride, y, ystride, z, zstride)
status = vslzconvexecld(task, x, xstride, y, ystride, z, zstride)
status = vslscorrexecld(task, x, xstride, y, ystride, z, zstride)
status = vsldcorrexecld(task, x, xstride, y, ystride, z, zstride)
status = vslccorrexecld(task, x, xstride, y, ystride, z, zstride)
status = vslzcorrexecld(task, x, xstride, y, ystride, z, zstride)
```

C:

```
status = vslsConvExeclD(task, x, xstride, y, ystride, z, zstride);
```

```
status = vsldConvExec1D(task, x, xstride, y, ystride, z, zstride);
status = vslcConvExeclD(task, x, xstride, y, ystride, z, zstride);
status = vslzConvExec1D(task, x, xstride, y, ystride, z, zstride);
status = vslsCorrExec1D(task, x, xstride, y, ystride, z, zstride);
status = vsldCorrExec1D(task, x, xstride, y, ystride, z, zstride);
status = vslcCorrExec1D(task, x, xstride, y, ystride, z, zstride);
status = vslzCorrExec1D(task, x, xstride, y, ystride, z, zstride);
```


Include Files

- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

Name	Type
task	FORTRAN 77: INTEGER*4
	task(2) for vslsconvexecld,
	vsldconvexecld,
	vslcconvexecld,
	vslzconvexecld
	INTEGER*4 task(2) for
	vslscorrexecld,
	vsldcorrexecld,
	vslccorrexecld,
	vslzcorrexecld

Description

Pointer to the task descriptor.
task(2) for vslsconvexec1d,
vsldconvexec1d,
vslcconvexec1d,

INTEGER*4 task(2) for
vslscorrexec1d,
vsldcorrexec1d,
vslzcorrexec1d

Fortran 90:

TYPE (VSL_CONV_TASK) for vslsconvexec1d, vsldconvexec1d, vslcconvexecld, vslzconvexec1d

TYPE (VSL_CORR_TASK) for vslscorrexecld, vsldcorrexecid, vslccorrexec1d, vslzcorrexec1d

C: VSLConvTaskPtr for vslsConvExec1D, vsldConvExec1D, vslcConvExec1D, vslzConvExec1D

VSLCorrTaskPtr for vslsCorrExec1D, vsldCorrExec1D, vslcCorrExec1D, vslzCorrExec1D

```
Name
Type
FORTRAN 77: REAL*4 for
vslsconvexec1d and
vslscorrexecld,
REAL*8 for vsldconvexec1d
and vsldcorrexecld,
COMPLEX*8 forvslcconvexecld
and vslccorrexec1d,
COMPLEX*16
forvslzconvexec1d and
vslzcorrexecld
Fortran 90: REAL (KIND=4),
DIMENSION(*) for
vslsconvexec1d and
vslscorrexec1d,
REAL(KIND=8), DIMENSION(*)
for vsldconvexecld and
vsldcorrexecld,
COMPLEX(KIND=4), DIMENSION
    (*) forvslcconvexec1d and
vslccorrexec1d,
COMPLEX(KIND=8), DIMENSION
    (*) for vslzconvexecld and
vslzcorrexec1d
C: const float[] for
vslsConvExec1D and
vslsCorrExec1D,
const double[] for
vsldConvExec1D and
vsldCorrExec1D,
const MKL_Complex8[] for
vslcConvExec1D and
vslcCorrExec1D,
const MKL_Complex16[] for
vslzConvExec1D and
vslzCorrExec1D
```

xstride, ystride, zstride

FORTRAN 77: INTEGER
Fortran 90: INTEGER
C: const int

Description

Pointers to arrays containing input data. See Data Allocation for more information.

Strides for input and output data. For more information, see stride parameters.

Output Parameters

Namez
FORTRAN 77: REAL*4 for
vslsconvexec1d and
vslscorrexec1d,
REAL*8 for vsldconvexec1d
and vsldcorrexec1d,
COMPLEX*8 forvslcconvexec1d
and vslccorrexec1d,
COMPLEX*16
forvslzconvexec1d and
vslzcorrexecld
Fortran 90: REAL (KIND=4) ,
DIMENSION(*) for
vslsconvexec1d and
vslscorrexec1d,
REAL (KIND=8), DIMENSION(*)
for vsldconvexec1d and
vsldcorrexec1d,
COMPLEX(KIND=4), DIMENSION
(*) forvslcconvexec1d and
vslccorrexec1d,
COMPLEX(KIND=8), DIMENSION
(*) for vslzconvexec1d and
vslzcorrexec1d
C: const float[] for
vslsConvExec1D and
vslsCorrExec1D,
const double[] for
vsldConvExec1D and
vsldCorrExec1D,
const MKL_Complex8[] for
vslcConvExec1D and
vslcCorrExec1D,
const MKL_Complex16[] for
vslzConvExec1D and
vslzCorrExec1D
status FORTRAN 77: INTEGER
Fortran 90: INTEGER
C: int
FORTRAN 77: INTEGER
Fortran 90: INTEGER
C: int

Description

Pointer to the array that stores output data. See Data Allocation for more information.

Set to VSL_STATUS_OK if the task is executed successfully or set to non-zero error code otherwise.

Description

Each of the vslConvExec1D/vslCorrExec1D routines computes convolution or correlation of the data provided by the arrays x and y and then stores the results in the array z. These routines represent a special one-dimensional version of the operation, assuming that the value of the parameter dims is 1 . Using this version of execution routines can help speed up performance in case of one-dimensional data.

Parameters of the operation are read from the task descriptor created previously by a corresponding vslConvNewTask1D/vslCorrNewTask1D constructor and pointed to by task. If task is NULL, no operation is done.

vsIConvExecX/vsICorrExecX

Computes convolution or correlation for multidimensional case with the fixed first operand vector.

Syntax

Fortran:

```
status = vslsconvexecx(task, y, ystride, z, zstride)
status = vsldconvexecx(task, y, ystride, z, zstride)
status = vslcconvexecx(task, y, ystride, z, zstride)
status = vslzconvexecx(task, y, ystride, z, zstride)
status = vslscorrexecx(task, y, ystride, z, zstride)
status = vsldcorrexecx(task, y, ystride, z, zstride)
status = vslccorrexecx(task, y, ystride, z, zstride)
status = vslzcorrexecx(task, y, ystride, z, zstride)
```

C:

```
status = vslsConvExecX(task, y, ystride, z, zstride);
status = vsldConvExecX(task, y, ystride, z, zstride);
status = vslcConvExecX(task, y, ystride, z, zstride);
status = vslzConvExecX(task, y, ystride, z, zstride);
status = vslsCorrExecX(task, y, ystride, z, zstride);
status = vslcCorrExecX(task, y, ystride, z, zstride);
status = vslzCorrExecX(task, y, ystride, z, zstride);
status = vsldCorrExecX(task, y, ystride, z, zstride);
```


Include Files

- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

```
Name
task
```


Type

```
FORTRAN 77: INTEGER*4
task(2) for vslsconvexecx, vsldconvexecx, vslcconvexecx, vslzconvexecx INTEGER*4 task(2) for vslscorrexecx, vsldcorrexecx, vslccorrexecx, vslzcorrexecx
```

x, y

Fortran 90:

TYPE (VSL_CONV_TASK) for

 vslsconvexecx, vsldconvexecx, vslcconvexecx, vslzconvexecxTYPE (VSL_CORR_TASK) for vslscorrexecx, vsldcorrexecx, vslccorrexecx, vslzcorrexecx

C: VSLConvTaskPtr for vslsConvExecX, vsldConvExecX, vslcConvExecX, vslzConvExecX

VSLCorrTaskPtr for vslsCorrExecX, vsldCorrExecX, vslcCorrExecX, vslzCorrExecX
x, y

FORTRAN 77: REAL*4 for vslsconvexecx and vslscorrexecx, REAL*8 for vsldconvexecx and vsldcorrexecx, COMPLEX*8 forvslcconvexecx and vslccorrexecx, COMPLEX*16 forvslzconvexecx and vslzcorrexecx

Fortran 90: REAL (KIND=4), DIMENSION (*) for vslsconvexecx and vslscorrexecx,

Description

Pointer to the task descriptor.

Pointer to array containing input data (for the second operand vector). See Data Allocation for more information.

```
Name Type Description
REAL(KIND=8), DIMENSION(*)
for vsldconvexecx and
vsldcorrexecx,
COMPLEX(KIND=4), DIMENSION
    (*) forvslcconvexecx and
vslccorrexecx,
COMPLEX(KIND=8), DIMENSION
    (*) for vslzconvexecx and
vslzcorrexecx
C: const float[] for
vslsConvExecX and
vslsCorrExecX,
const double[] for
vsldConvExecX and
vsldCorrExecX,
const MKL_Complex8[] for
vslcConvExecX and
vslcCorrExecX,
const MKL_Complex16[] for
vslzConvExecX and
vslzCorrExecX
```

ystride ,z FORTRAN 77: INTEGER
stride
Fortran 90: INTEGER,
DIMENSION (*)
C: const int[]

Output Parameters

```
Name Type
z
    FORTRAN 77: REAL*4 for
    vslsconvexecx and
    vslscorrexecx,
    REAL*8 for vsldconvexecx and
    vsldcorrexecx,
    COMPLEX*8 forvslcconvexecx
    and vslccorrexecx,
    COMPLEX*16 forvslzconvexecx
    and vslzcorrexecx
    Fortran 90: REAL (KIND=4),
        DIMENSION(*) for
        vslsconvexecx and
        vslscorrexecx,
```

Strides for input and output data. For more information, see stride parameters.

Description

Pointer to the array that stores output data. See Data Allocation for more information.

```
Name Type Description
REAL(KIND=8), DIMENSION(*)
for vsldconvexecx and
vsldcorrexecx,
COMPLEX(KIND=4), DIMENSION
(*) forvslcconvexecx and
vslccorrexecx,
COMPLEX(KIND=8), DIMENSION
(*) for vslzconvexecx and
vslzcorrexecx
C: const float[] for
vslsConvExecX and
vslsCorrExecX,
const double[] for
vsldConvExecX and
vsldCorrExecX,
const MKL_Complex8[] for
vslcConvExecX and
vslcCorrExecX,
const MKL_Complex16[] for
vslzConvExecX and
vslzCorrExecX
status
FORTRAN 77: INTEGER
Fortran 90: INTEGER
C: int
FORTRAN 77: INTEGER
Fortran 90: INTEGER
Set to VSL_STATUS_OK if the task is executed successfully or set to non-zero error code otherwise.
C: int
```


Description

Each of the vslConvExecX/vslCorrExecX routines computes convolution or correlation of the data provided by the arrays x and y and then stores the results in the array z. These routines represent a special version of the operation, which assumes that the first operand vector was set on the task construction stage and the task object keeps the pointer to the array x.

Parameters of the operation are read from the task descriptor created previously by a corresponding vslConvNewTaskX/vslCorrNewTaskX constructor and pointed to by task. If task is NULL, no operation is done.
Using this form of execution routines is recommended when you need to compute multiple convolutions or correlations with the same data vector in array x against different vectors in array y. This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.

vsIConvExecX1D/vsICorrExecX1D

Computes convolution or correlation for onedimensional case with the fixed first operand vector.

Syntax

Fortran:

```
status = vslsconvexecxld(task, y, ystride, z, zstride)
```

```
status = vsldconvexecxld(task, y, ystride, z, zstride)
status = vslcconvexecxld(task, y, ystride, z, zstride)
status = vslzconvexecxld(task, y, ystride, z, zstride)
status = vslscorrexecxld(task, y, ystride, z, zstride)
status = vsldcorrexecxld(task, y, ystride, z, zstride)
status = vslccorrexecxld(task, y, ystride, z, zstride)
status = vslzcorrexecxld(task, y, ystride, z, zstride)
```

C:
status = vslsConvExecX1D(task, y, ystride, z, zstride);
status = vsldConvExecX1D(task, y, ystride, z, zstride);
status = vslcConvExecX1D(task, y, ystride, z, zstride);
status = vslzConvExecX1D(task, y, ystride, z, zstride);
status = vslsCorrExecX1D(task, y, ystride, z, zstride);
status $=$ vslcCorrExecX1D(task, y, ystride, $z, ~ z s t r i d e) ;$
status $=$ vslzCorrExecX1D(task, y, ystride, $z, ~ z s t r i d e) ;$
status $=$ vsldCorrExecX1D(task, y, ystride, $z, ~ z s t r i d e) ;$

Include Files

- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

Name	Type	Description
task	FORTRAN 77: INTEGER*4	Pointer to the task descriptor.
	task(2) for vslsconvexecxid,	
	vsldconvexecxld,	
	vslcconvexecx1d,	
	vslzconvexecx1d	
	INTEGER*4 task(2) for	
	vslscorrexecx1d,	
	vsldcorrexecxld,	
	vslccorrexecxld,	
	vslzcorrexecxld	

Fortran 90:

TYPE (VSL_CONV_TASK) for vslsconvexecx1d, vsldconvexecx1d, vslcconvexecx1d, vslzconvexecxld

```
Name Type Description
x,y
FORTRAN 77: REAL*4 for
vslsconvexecx1d and
vslscorrexecx1d,
REAL*8 for vsldconvexecx1d
and vsldcorrexecx1d,
COMPLEX*8
forvslcconvexecxld and
vslccorrexecx1d,
COMPLEX*16
forvslzconvexecx1d and
vslzcorrexecx1d
Fortran 90: REAL (KIND=4),
DIMENSION(*) for
vslsconvexecx1d and
vslscorrexecx1d,
REAL(KIND=8), DIMENSION(*)
for vsldconvexecx1d and
vsldcorrexecx1d,
COMPLEX(KIND=4), DIMENSION
    (*) forvslcconvexecx1d and
vslccorrexecx1d,
COMPLEX(KIND=8), DIMENSION
    (*) for vslzconvexecx1d and
vslzcorrexecxld
C: const float[] for
vslsConvExecX1D and
vslsCorrExecX1D,
const double[] for
vsldConvExecX1D and
vsldCorrExecX1D,
```

Pointer to array containing input data (for the second operand vector). See Data Allocation for more information.

Name

Type

const MKL_Complex8[] for vslcConvExecX1D and vslcCorrExecX1D, const MKL_Complex16[] for vslzConvExecX1D and vslzCorrExecX1D
ystride, FORTRAN 77: INTEGER zstride

Fortran 90: INTEGER
C: const int

Output Parameters

Name Type

z
FORTRAN 77: REAL*4 for vslsconvexecx1d and vslscorrexecx1d, REAL*8 for vsldconvexecx1d and vsldcorrexecx1d, COMPLEX* 8 forvslcconvexecx1d and vslccorrexecx1d, COMPLEX*16 forvslzconvexecx1d and vslzcorrexecxid

Fortran 90: REAL (KIND=4) , DIMENSION(*) for vslsconvexecxid and vslscorrexecx1d, REAL (KIND=8), DIMENSION(*) for vsldconvexecxid and vsldcorrexecx1d, COMPLEX(KIND=4), DIMENSION
(*) forvslcconvexecxid and vslccorrexecx1d, COMPLEX(KIND=8), DIMENSION
(*) for vslzconvexecxld and vslzcorrexecx1d

C: const float[] for vslsConvExecX1D and vslsCorrExecX1D, const double[] for vsldConvExecX1D and vsldCorrExecX1D,

Name Type Description

```
const MKL_Complex8[] for
vslcConvExecX1D and
vslcCorrExecX1D,
const MKL_Complex16[] for
vslzConvExecX1D and
vslzCorrExecX1D
```

status FORTRAN 77: INTEGER
Fortran 90: INTEGER

Set to VSL_STATUS_OK if the task is executed successfully or set to non-zero error code otherwise.

C: int

Description

Each of the vslConvExecX1D/vslCorrExecX1D routines computes convolution or correlation of onedimensional (assuming that dims $=1$) data provided by the arrays x and y and then stores the results in the array z. These routines represent a special version of the operation, which expects that the first operand vector was set on the task construction stage.
Parameters of the operation are read from the task descriptor created previously by a corresponding vslConvNewTaskX1D/vslCorrNewTaskX1D constructor and pointed to by task. If task is NULL, no operation is done.
Using this form of execution routines is recommended when you need to compute multiple one-dimensional convolutions or correlations with the same data vector in array x against different vectors in array y. This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.

Task Destructors

Task destructors are routines designed for deleting task objects and deallocating memory.

vsIConvDeleteTask/vsICorrDeleteTask

Destroys the task object and frees the memory.

Syntax

Fortran:

```
errcode = vslconvdeletetask(task)
errcode = vslcorrdeletetask(task)
```

C:

```
errcode = vslConvDeleteTask(task);
```

errcode $=$ vslCorrDeleteTask(task);

Include Files

- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

```
Name
task FORTRAN 77: INTEGER*4
task(2) for
vslconvdeletetask
INTEGER*4 task(2) for
vslcorrdeletetask
Fortran 90:
TYPE (VSL_CONV_TASK) for
vslconvdeletetask
TYPE (VSL_CORR_TASK) for
vslcorrdeletetask
C: vSLConvTaskPtr* for
vslConvDeleteTask
vSLCorrTaskPtr* for
vslCorrDeleteTask
```


Description

Pointer to the task descriptor.

Output Parameters

Name Type
errcode FORTRAN 77: INTEGER
Fortran 90: INTEGER
C: int

Description

Contains 0 if the task object is deleted successfully. Contains an error code if an error occurred.

Description

The vslConvDeleteTask/vslCorrvDeleteTask routine deletes the task descriptor object and frees any working memory and the memory allocated for the data structure. The task pointer is set to NULL.
Note that if the vslConvDeleteTask/vslCorrvDeleteTask routine does not delete the task successfully, the routine returns an error code. This error code has no relation to the task status code and does not change it.

NOTE You can use the NULL task pointer in calls to destructor routines. In this case, the routine terminates with no system crash.

Task Copy

The routines are designed for copying convolution and correlation task descriptors.
vsIConvCopyTask/vsICorrCopyTask
Copies a descriptor for convolution or correlation task.
Syntax

Fortran:

```
status = vslconvcopytask(newtask, srctask)
```

```
status = vslcorrcopytask(newtask, srctask)
```


C:

```
status = vslConvCopyTask(newtask, srctask);
status = vslCorrCopyTask(newtask, srctask);
```


Include Files

- FORTRAN 77: mkl_vsl.f77
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

Name srctask

Type

FORTRAN 77: INTEGER*4
srctask(2) for vslconvcopytask INTEGER*4 srctask(2) for vslcorrcopytask

Fortran 90:

TYPE (VSL_CONV_TASK) for vslconvcopytask
TYPE (VSL_CORR_TASK) for vslcorrcopytask

C: const VSLConvTaskPtr for vslConvCopyTask const VSLCorrTaskPtr for vslCorrCopyTask

Output Parameters

Name Type

```
newtask FORTRAN 77: INTEGER*4
srctask(2) for
vslconvcopytask
INTEGER*4 srctask(2) for
vslcorrcopytask
```


Fortran 90:

TYPE (VSL_CONV_TASK) for vslconvcopytask

TYPE (VSL_CORR_TASK) for
vslcorrcopytask
C: VSLConvTaskPtr* for vslConvCopyTask

VSLCorrTaskPtr* for vslCorrCopyTask
srctask(2) for vslconvcopytask

INTEGER*4 srctask(2) for vslcorrcopytask

Description

Pointer to the source task descriptor.

Description

Pointer to the new task descriptor.
Name Type Description
status FORTRAN 77: INTEGER Current status of the source task.

Fortran 90: INTEGER
C: int

Description

If a task object srctask already exists, you can use an appropriate vslConvCopyTask/vslCorrCopyTask routine to make its copy in newtask. After the copy operation, both source and new task objects will become committed (see Introduction to Convolution and Correlation for information about task commitment). If the source task was not previously committed, the commitment operation for this task is implicitly invoked before copying starts. If an error occurs during source task commitment, the task stores the error code in the status field. If an error occurs during copy operation, the routine returns a NULL pointer instead of a reference to a new task object.

Usage Examples

This section demonstrates how you can use the Intel MKL routines to perform some common convolution and correlation operations both for single-threaded and multithreaded calculations. The following two sample functions scond1 and sconf1 simulate the convolution and correlation functions SCOND and SCONF found in IBM ESSL* library. The functions assume single-threaded calculations and can be used with C or C++ compilers.

Function scond1 for Single-Threaded Calculations

```
#include "mkl_vsl.h"
int scondl(
    float h[], int inch,
    float x[], int incx,
    float y[], int incy,
    int nh, int nx, int iy0, int ny)
{
    int status;
    VSLConvTaskPtr task;
    vslsConvNewTask1D(&task,VSL_CONV_MODE_DIRECT,nh,nx,ny);
    vslConvSetStart(task, &iy0);
    status = vslsConvExec1D(task, h,inch, x,incx, y,incy);
    vslConvDeleteTask(&task);
    return status;
}
```


Function sconf1 for Single-Threaded Calculations

```
#include "mkl_vsl.h"
int sconf1(
    int init,
    float h[], int inc1h,
    float x[], int inc1x, int inc2x,
    float y[], int inc1y, int inc2y,
    int nh, int nx, int m, int iy0, int ny,
    void* aux1, int naux1, void* aux2, int naux2)
{
    int status;
    /* assume that aux1!=0 and naux1 is big enough */
    vSLConvTaskPtr* task = (VSLConvTaskPtr*)aux1;
    if (init != 0)
        /* initialization: */
        status = vslsConvNewTaskX1D(task,VSL_CONV_MODE_FFT,
        nh,nx,ny, h,inc1h);
    if (init == 0) {
        /* calculations: */
        int i;
        vslConvSetStart(*task, &iy0);
        for (i=0; i<m; i++) {
            float* xi = &x[inc2x * i];
            float* yi = &y[inc2y * i];
            /* task is implicitly committed at i==0 */
            status = vslsConvExecX1D(*task, xi, inc1x, yi, inc1y);
        };
    };
    vslConvDeleteTask(task);
    return status;
}
```


Using Multiple Threads

For functions such as sconf1 described in the previous example, parallel calculations may be more preferable instead of cycling. If $m>1$, you can use multiple threads for invoking the task execution against different data sequences. For such cases, use task copy routines to create m copies of the task object before the calculations stage and then run these copies with different threads. Ensure that you make all necessary parameter adjustments for the task (using Task Editors) before copying it.

The sample code in this case may look as follows:

```
if (init == 0) {
    int i, status, ss[M];
    VSLConvTaskPtr tasks[M];
    /* assume that M is big enough */
    vslConvSetStart(*task, &iy0);
    for (i=0; i<m; i++)
        /* implicit commitment at i==0 */
        vslConvCopyTask(&tasks[i],*task);
```

Then, m threads may be started to execute different copies of the task:
. . .

```
float* xi = &x[inc2x * i];
```

float* yi $=$ \&y[inc2y * i];
ss[i]=vslsConvExecX1D(tasks[i], xi,inc1x, yi,inc1y);

And finally, after all threads have finished the calculations, overall status should be collected from all task objects. The following code signals the first error found, if any:

```
for (i=0; i<m; i++) {
        status = ss[i];
        if (status != 0) /* O means "OK" */
        break;
};
return status;
}; /* end if init==0 */
```

Execution routines modify the task internal state (fields of the task structure). Such modifications may conflict with each other if different threads work with the same task object simultaneously. That is why different threads must use different copies of the task.

Mathematical Notation and Definitions

The following notation is necessary to explain the underlying mathematical definitions used in the text:

$R=(-\infty,+\infty)$	The set of real numbers.
$Z=\{0, \pm 1, \pm 2, \ldots\}$	The set of integer numbers.
$Z^{N}=Z \times \ldots \times Z$	The set of N-dimensional series of integer numbers.
$p=\left(p_{1}, \ldots, p_{N}\right) \in Z^{N}$	N-dimensional series of integers.
$u: \mathbf{Z}^{N} \rightarrow \mathbf{R}$	Function u with arguments from \mathbf{Z}^{N} and values from \mathbf{R}.
$u(p)=u\left(p_{1}, \ldots, p_{N}\right)$	The value of the function u for the argument $\left(p_{1}, \ldots, p_{N}\right)$.
$w=u^{\star} v$	Function w is the convolution of the functions u, v.

Given series $p, q \in \mathbf{Z}^{N}$:

- series $r=p+q$ is defined as $r^{n}=p^{n}+q^{n}$ for every $n=1, \ldots, N$
- series $r=p-q$ is defined as $r^{n}=p^{n}-q^{n}$ for every $n=1, \ldots, N$
- series $r=\sup \{p, q\}$ is defines as $r^{n}=\max \left\{p^{n}, q^{n}\right\}$ for every $n=1, \ldots, N$
- series $r=\inf \{p, q\}$ is defined as $r^{n}=\min \left\{p^{n}, q^{n}\right\}$ for every $n=1, \ldots, N$
- inequality $p \leq q$ means that $p^{n} \leq q^{n}$ for every $n=1, \ldots, N$.

A function $u(p)$ is called a finite function if there exist series $P^{\min ,} \mathrm{Pmax}^{\max } \in \mathbf{Z}^{\mathrm{N}}$ such that:

```
u(p) }=
implies
    Pmin}\leqp\leq P max.
```

Operations of convolution and correlation are only defined for finite functions.
Consider functions u, v and series $P^{\min }, P^{\max } Q^{\min }, Q^{\max } \in \mathbf{Z}^{N}$ such that:
$u(p) \neq 0$ implies $P^{\text {min }} \leq p \leq P^{\text {max }}$.
$v(q) \neq 0$ implies $Q^{\text {min }} \leq q \leq Q^{\max }$.
Definitions of linear correlation and linear convolution for functions u and v are given below.

Linear Convolution

If function $w=u^{\star} v$ is the convolution of u and v, then:

```
w(r) \not= 0 implies R min}\leqr\leq R max
where R }\mp@subsup{\textrm{R}}{}{\mathrm{ min }}=\mp@subsup{\textrm{P}}{}{\mathrm{ min}}+\mp@subsup{Q}{}{min}\mathrm{ and }\mp@subsup{\textrm{R}}{}{\mathrm{ max }}=\mp@subsup{\textrm{P}}{}{\mathrm{ max }}+\mp@subsup{Q}{}{\mathrm{ max }}\mathrm{ .
If \(\mathrm{R}^{\text {min }} \leq r \leq \mathrm{R}^{\max }\), then:
\(w(r)=\sum u(t) \cdot v(r-t)\) is the sum for all \(t \in \mathbf{Z}^{\mathrm{N}}\) such that \(\mathrm{T}^{\text {min }} \leq t \leq \mathrm{T}^{\text {max }}\), where \(T^{\min }=\sup \left\{\mathrm{P}^{\min }, r-Q^{\max }\right\}\) and \(\mathrm{T}^{\max }=\inf \left\{\mathrm{P}^{\max }, r-Q^{\min }\right\}\).
```


Linear Correlation

If function $w=u \bullet v$ is the correlation of u and v, then:

```
w(r) \not= 0 implies R Rin}\leqr\leq R max
```

where $R^{\min }=Q^{\min }-P^{\max }$ and $R^{\max }=Q^{\max }-P^{\min }$.

If $\mathrm{R}^{\min } \leq r \leq \mathrm{R}^{\max }$, then:
$w(r)=\sum u(t) \cdot v(r+t)$ is the sum for all $t \in Z^{N}$ such that $T^{\min } \leq t \leq \mathrm{T}^{\max }$, where $T^{\text {min }}=\sup \left\{\mathrm{P}^{\mathrm{min}}, \mathrm{Q}^{\min }-r\right\}$ and $\mathrm{T}^{\max }=\inf \left\{\mathrm{P}^{\max }, \mathrm{Q}^{\max }-r\right\}$.

Representation of the functions u, v, w as the input/output data for the Intel MKL convolution and correlation functions is described in the Data Allocation section below.

Data Allocation

This section explains the relation between:

- mathematical finite functions u, v, w introduced in the section Mathematical Notation and Definitions;
- multi-dimensional input and output data vectors representing the functions u, v, w;
- arrays u, v, w used to store the input and output data vectors in computer memory

The convolution and correlation routine parameters that determine the allocation of input and output data are the following:

- Data arrays x, y, z
- Shape arrays xshape, yshape, zshape
- Strides within arrays xstride, ystride, zstride
- Parameters start, decimation

Finite Functions and Data Vectors

The finite functions $u(p), v(q)$, and $w(r)$ introduced above are represented as multi-dimensional vectors of input and output data:

```
inputu(i}\mp@subsup{i}{1}{},\ldots,\mp@subsup{i}{\mathrm{ dims }}{})\mathrm{ for u(p
inputv(j1, ...,jodims) for v(q}\mp@subsup{q}{1}{},\ldots,\mp@subsup{q}{N}{}
output (k}\mp@subsup{k}{1}{},\ldots,\mp@subsup{k}{\mathrm{ dims }}{})\mathrm{ for w( }\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{N}{})
```

Parameter dims represents the number of dimensions and is equal to N .
The parameters xshape, yshape, and zshape define the shapes of input/output vectors:

```
inputu(i}\mp@subsup{i}{1}{},\ldots,\mp@subsup{i}{\mathrm{ dims }}{}\mathrm{ ) is defined if 1 }\leq\mp@subsup{i}{n}{}\leqx\operatorname{shape(n) for every n=1,\ldots, , dims
inputv(j}\mp@subsup{j}{1}{},\ldots,\mp@subsup{j}{\mathrm{ dims }}{})\mathrm{ is defined if 1 }\leq\mp@subsup{j}{n}{}\leqy\operatorname{yhape(n) for every n=1,\ldots, ., dims
output( }\mp@subsup{k}{1}{},\ldots,\mp@subsup{k}{\mathrm{ dims }}{}\mathrm{ ) is defined if 1 }\leq\mp@subsup{k}{n}{}\leq\operatorname{zshape( }n\mathrm{ ) for every n=1, ..., dims.
```

Relation between the input vectors and the functions u and v is defined by the following formulas:

```
inputu(i}\mp@subsup{i}{1}{},\ldots,\mp@subsup{i}{\mathrm{ dims }}{})=u(\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{N}{}),\mathrm{ where }\mp@subsup{p}{n}{}=\mp@subsup{P}{n}{min}+(\mp@subsup{i}{n}{}-1)\mathrm{ for every n
inputv (j}\mp@subsup{j}{1}{},\ldots,\mp@subsup{j}{\mathrm{ dims }}{})=v(\mp@subsup{q}{1}{},\ldots,\mp@subsup{q}{N}{}),\mathrm{ where }\mp@subsup{q}{n}{}=\mp@subsup{Q}{n}{}\mp@subsup{}{}{min}+(\mp@subsup{j}{n}{}-1) for every n. 
```

The relation between the output vector and the function $w(r)$ is similar (but only in the case when parameters start and decimation are not defined):
output $\left(k_{1}, \ldots, k_{\text {dims }}\right)=w\left(r_{1}, \ldots, r_{N}\right)$, where $r_{n}=R_{n}{ }^{\text {min }}+\left(k_{n}-1\right)$ for every n.
If the parameter start is defined, it must belong to the interval $R_{n}{ }^{\text {min }} \leq \operatorname{start}(n) \leq R_{n}{ }^{\text {max }}$. If defined, the start parameter replaces $R^{\text {min }}$ in the formula:
output $\left(k_{1}, \ldots, k_{\text {dims }}\right)=w\left(r_{1}, \ldots, r_{N}\right)$, where $r_{n}=\operatorname{start}(n)+\left(k_{n}-1\right)$
If the parameter decimation is defined, it changes the relation according to the following formula:
output $\left(k_{1}, \ldots, k_{\text {dims }}\right)=w\left(r_{1}, \ldots, r_{N}\right)$, where $r_{n}=R_{n}{ }^{\text {min }}+\left(k_{n}-1\right) * \operatorname{decimation}(n)$
If both parameters start and decimation are defined, the formula is as follows:
output $\left(k_{1}, \ldots, k_{\text {dims }}\right)=w\left(r_{1}, \ldots, r_{N}\right)$, where $r_{n}=\operatorname{start}(n)+\left(k_{n}-1\right)$ *decimation (n)
The convolution and correlation software checks the values of zshape, start, and decimation during task commitment. If r_{n} exceeds $R_{n}{ }^{\max }$ for some $k_{n}, n=1, \ldots$, dims, an error is raised.

Allocation of Data Vectors

Both parameter arrays x and y contain input data vectors in memory, while array z is intended for storing output data vector. To access the memory, the convolution and correlation software uses only pointers to these arrays and ignores the array shapes.

For parameters x, y, and z, you can provide one-dimensional arrays with the requirement that actual length of these arrays be sufficient to store the data vectors.

The allocation of the input and output data inside the arrays x, y, and z is described below assuming that the arrays are one-dimensional. Given multi-dimensional indices $i, j, k \in \mathbf{Z}^{N}$, one-dimensional indices $e, f, g \in$ \mathbf{Z} are defined such that:

```
inputu(i}\mp@subsup{1}{1}{},...,\mp@subsup{i}{\mathrm{ dims }}{})\mathrm{ is allocated at x(e)
inputv(j^1,...,jdims) is allocated at y(f)
```

output $\left(k_{1}, \ldots, k_{\text {dims }}\right)$ is allocated at $z(g)$.
The indices e, f, and g are defined as follows:
$e=1+\sum \operatorname{xstride}(\mathrm{n}) \cdot d x(\mathrm{n})$ (the sum is for all $\mathrm{n}=1, \ldots, \operatorname{dims}$)
$f=1+\sum y s t r i d e(n) \cdot d y(n)$ (the sum is for all $n=1, \ldots$, dims)
$g=1+\sum z s t r i d e(n) \cdot d z(n)$ (the sum is for all $\mathrm{n}=1, \ldots$, dims)
The distances $d x(n), d y(n)$, and $d z(n)$ depend on the signum of the stride:

```
dx(n) = in
dy(n) = j jn-1 if ystride(n)>0, or dy(n) = j_ -yshape(n) if ystride(n)<0
dz(n) = kn-1 if zstride(n)>0, or dz(n) = kn
```

The definitions of indices e, f, and g assume that indexes for arrays x, y, and z are started from unity:
$x(e)$ is defined for $e=1, \ldots$, length (x)
$y(f)$ is defined for $f=1, \ldots$, length (y)
$z(g)$ is defined for $g=1, \ldots, l e n g t h(z)$
Below is a detailed explanation about how elements of the multi-dimensional output vector are stored in the array z for one-dimensional and two-dimensional cases.

One-dimensional case. If dims=1, then zshape is the number of the output values to be stored in the array z . The actual length of array z may be greater than zshape elements.
If zstride>1, output values are stored with the stride: output (1) is stored to $z(1)$, output (2) is stored to $z(1+z s t r i d e)$, and so on. Hence, the actual length of z must be at least $1+$ zstride*(zshape-1) elements or more.
If zstride<0, it still defines the stride between elements of array z. However, the order of the used elements is the opposite. For the k-th output value, output(k) is stored in $z(1+|z s t r i d e| *(z s h a p e-k))$, where |zstride। is the absolute value of zstride. The actual length of the array z must be at least $1+\mid$ zstride|*(zshape - 1) elements.

Two-dimensional case. If dims=2, the output data is a two-dimensional matrix. The value zstride (1) defines the stride inside matrix columns, that is, the stride between the output ($\mathrm{k}_{1}, \mathrm{k}_{2}$) and output ($\mathrm{k}_{1}+1$, k_{2}) for every pair of indices k_{1}, k_{2}. On the other hand, zstride (2) defines the stride between columns, that is, the stride between output ($\mathrm{k}_{1}, \mathrm{k}_{2}$) and output ($\mathrm{k}_{1}, \mathrm{k}_{2}+1$).

If zstride (2) is greater than zshape (1), this causes sparse allocation of columns. If the value of zstride (2) is smaller than zshape (1), this may result in the transposition of the output matrix. For example, if zshape $=(2,3)$, you can define zstride $=(3,1)$ to allocate output values like transposed matrix of the shape 3×2.

Whether zstride assumes this kind of transformations or not, you need to ensure that different elements output ($k_{1}, \ldots, k_{\text {dims }}$) will be stored in different locations $z(g)$.

VSL Summary Statistics

The VSL Summary Statistics domain comprises a set of routines that compute basic statistical estimates for single and double precision multi-dimensional datasets.
See the definition of the supported operations in the Mathematical Notation and Definitions section.
The VSL Summary Statistics routines calculate:

- raw and central moments up to the fourth order
- skewness and excess kurtosis (further referred to as kurtosis for brevity)
- variation coefficient
- quantiles and order statistics
- minimum and maximum
- variance-covariance/correlation matrix
- pooled/group variance-covariance matrix and mean
- partial variance-covariance/correlation matrix
- robust estimators for variance-covariance matrix and mean in presence of outliers

The library also contains functions to perform the following tasks:

- Detect outliers in datasets
- Support missing values in datasets
- Parameterize correlation matrices
- Compute quantiles for streaming data

You can access the VSL Summary Statistics routines through the Fortran 90 and C89 language interfaces. You can also use the C89 interface with later versions of the C/C++, or Fortran 90 interface with programs written in Fortran 95.
For users of the C/C++ and Fortran languages, Intel MKL provides the mkl_vsl.h,mkl_vsl.f90, and mkl_vsl.f77 header files. All the header files are in the directory
\$ \{MKL\}/include
See more details about the Fortran header in the Random Number Generators section of this chapter.
You can find examples that demonstrate calculation of the VSL Summary Statistics estimates in the following directories:
\$\{MKL\}/examples/vslc
\$ \{MKL\}/examples/vslf
The VSL Summary Statistics API is implemented through task objects, or tasks. A task object is a data structure, or a descriptor, holding parameters that determine a specific VSL Summary Statistics operation. For example, such parameters may be precision, dimensions of user data, the matrix of the observations, or shapes of data arrays.
All the VSL Summary Statistics routines process a task object as follows:

1. Create a task.
2. Modify settings of the task parameters.
3. Compute statistical estimates.
4. Destroy the task.

The VSL Summary Statistics functions fall into the following categories:
Task Constructors - routines that create a new task object descriptor and set up most common parameters (dimension, number of observations, and matrix of the observations).
Task Editors - routines that can set or modify some parameter settings in the existing task descriptor.
Task Computation Routine - a routine that computes specified statistical estimates.
Task Destructor - a routine that deletes the task object and frees the memory.
A VSL Summary Statistics task object contains a series of pointers to the input and output data arrays. You can read and modify the datasets and estimates at any time but you should allocate and release memory for such data.
See detailed information on the algorithms, API, and their usage in the Inte ${ }^{\circledR}$ MKL Summary Statistics Library Application Notes on the Intel ${ }^{\circledR}$ MKL web page.

Naming Conventions

The names of the Fortran routines in the VSL Summary Statistics are in lowercase (vslssseditquantiles), while the names of types and constants are in uppercase. The names are not case-sensitive.

In C, the names of the routines, types, and constants are case-sensitive and can be lowercase and uppercase (vslsSSEditQuantiles).
The names of routines have the following structure:
vsl[datatype]SS<base name> for the C interface
vsl[datatype]ss<base name> for the Fortran interface
where

- vsl is a prefix indicating that the routine belongs to the Vector Statistical Library of Intel MKL.
- [datatype] specifies the type of the input and/or output data and can be s (single precision real type), d (double precision real type), or i (integer type).
- $\mathrm{SS} / \mathrm{ss}$ indicates that the routine is intended for calculations of the VSL Summary Statistics estimates.
- <base name> specifies a particular functionality that the routine is designed for, for example, NewTask, Compute, DeleteTask.

NOTE The VSL Summary Statistics routine vslDeleteTask for deletion of the task is independent of the data type and its name omits the [datatype] field.

Data Types

The VSL Summary Statistics routines use the following data types for the calculations:

Type	Data Object
Fortran 90: TYPE (VSL_SS_TASK)	Pointer to a VSL Summary Statistics task
C: VSLSSTaskPtr	
Fortran 90: REAL (KIND=4)	Input/output user data in single precision
C: float	
Fortran 90: REAL (KIND=8)	Input/output user data in double precision
C: double	
Fortran 90: INTEGER or	Other data
INTEGER (KIND=8)	
C: MKL_INT or long long	

NOTE The actual size of the generic integer type is platform-specific and can be 32 or 64 bits in length. Before you compile your application, set an appropriate size for integers. See details in the 'Using the ILP64 Interface vs. LP64 Interface' section of the Inte ${ }^{\circledR}$ MKL User's Guide.

Parameters

The basic parameters in the task descriptor (addresses of dimensions, number of observations, and datasets) are assigned values when the task editors create or modify the task object. Other parameters are determined by the specific task and changed by the task editors.

Task Status and Error Reporting

The task status is an integer value, which is zero if no error is detected, or a specific non-zero error code otherwise. Negative status values indicate errors, and positive values indicate warnings. An error can be caused by invalid parameter values or a memory allocation failure.

The status codes have symbolic names defined in the respective header files. For the C/C++ interface, these names are defined as macros via the \#define statements, and for the Fortran interface as integer constants via the PARAMETER operators.
If no error is detected, the function returns the VSL_STATUS_OK code, which is defined as zero:

```
C/C++: #define VSL_STATUS_OK 0
F90/F95: INTEGER, PARAMETER::VSL_STATUS_OK = 0
```

In the case of an error, the function returns a non-zero error code that specifies the origin of the failure. The header files for both C/C++ and Fortran languages define the following status codes for the VSL Summary Statistics error codes:

VSL Summary Statistics Status Codes

Status Code	Description
VSL_STATUS_OK	Operation is successfully completed.
VSL_SS_ERROR_ALLOCATION_FAILURE	Memory allocation has failed.
VSL_SS_ERROR_BAD_DIMEN	Dimension value is invalid.
VSL_SS_ERROR_BAD_OBSERV_N	Invalid number (zero or negative) of observations was obtained.
VSL_SS_ERROR_STORAGE_NOT_SUPPORTED	Storage format is not supported.
VSL_SS_ERROR_BAD_INDC_ADDR	Array of indices is not defined.
VSL_SS_ERROR_BAD_WEIGHTS	Array of weights contains negative values.
VSL_SS_ERROR_BAD_MEAN_ADDR	Array of means is not defined.
VSL_SS_ERROR_BAD_2R_MOM_ADDR	Array of the second order raw moments is not defined.
VSL_SS_ERROR_BAD_3R_MOM_ADDR	Array of the third order raw moments is not defined.
VSL_SS_ERROR_BAD_4R_MOM_ADDR	Array of the fourth order raw moments is not defined.
VSL_SS_ERROR_BAD_2C_MOM_ADDR	Array of the second order central moments is not defined.
VSL_SS_ERROR_BAD_3C_MOM_ADDR	Array of the third order central moments is not defined.
VSL_SS_ERROR_BAD_4C_MOM_ADDR	Array of the fourth order central moments is not defined.
VSL_SS_ERROR_BAD_KURTOSIS_ADDR	Array of kurtosis values is not defined.
VSL_SS_ERROR_BAD_SKEWNESS_ADDR	Array of skewness values is not defined.
VSL_SS_ERROR_BAD_MIN_ADDR	Array of minimum values is not defined.
VSL_SS_ERROR_BAD_MAX_ADDR	Array of maximum values is not defined.
VSL_SS_ERROR_BAD_VARIATION_ADDR	Array of variation coefficients is not defined.
VSL_SS_ERROR_BAD_COV_ADDR	Covariance matrix is not defined.
VSL_SS_ERROR_BAD_COR_ADDR	Correlation matrix is not defined.
VSL_SS_ERROR_BAD_QUANT_ORDER_ADDR	Array of quantile orders is not defined.

Status Code	Description
VSL_SS_ERROR_BAD_QUANT_ORDER	Quantile order value is invalid.
VSL_SS_ERROR_BAD_QUANT_ADDR	Array of quantiles is not defined.
VSL_SS_ERROR_BAD_ORDER_STATS_ADDR	Array of order statistics is not defined.
VSL_SS_ERROR_MOMORDER_NOT_SUPPORTED	Moment of requested order is not supported.
VSL_SS_NOT_FULL_RANK_MATRIX	Correlation matrix is not of full rank.
VSL_SS_ERROR_ALL_OBSERVS_OUTLIERS	All observations are outliers. (At least one observation must not be an outlier.)
VSL_SS_ERROR_BAD_ROBUST_COV_ADDR	Robust covariance matrix is not defined.
VSL_SS_ERROR_BAD_ROBUST_MEAN_ADDR	Array of robust means is not defined.
VSL_SS_ERROR_METHOD_NOT_SUPPORTED	Requested method is not supported.
VSL_SS_ERROR_NULL_TASK_DESCRIPTOR	Task descriptor is null.
VSL_SS_ERROR_BAD_OBSERV_ADDR	Dataset matrix is not defined.
VSL_SS_ERROR_BAD_ACCUM_WEIGHT_ADDR	Pointer to the variable that holds the value of accumulated weight is not defined.
VSL_SS_ERROR_SINGULAR_COV	Covariance matrix is singular.
VSL_SS_ERROR_BAD_POOLED_COV_ADDR	Pooled covariance matrix is not defined.
VSL_SS_ERROR_BAD_POOLED_MEAN_ADDR	Array of pooled means is not defined.
VSL_SS_ERROR_BAD_GROUP_COV_ADDR	Group covariance matrix is not defined.
VSL_SS_ERROR_BAD_GROUP_MEAN_ADDR	Array of group means is not defined.
VSL_SS_ERROR_BAD_GROUP_INDC_ADDR	Array of group indices is not defined.
VSL_SS_ERROR_BAD_GROUP_INDC	Group indices have improper values.
VSL_SS_ERROR_BAD_OUTLIERS_PARAMS_ADDR	Array of parameters for the outlier detection algorithm is not defined.
VSL_SS_ERROR_BAD_OUTLIERS_PARAMS_N_ADDR	Pointer to size of the parameter array for the outlier detection algorithm is not defined.
VSL_SS_ERROR_BAD_OUTLIERS_WEIGHTS_ADDR	Output of the outlier detection algorithm is not defined.
VSL_SS_ERROR_BAD_ROBUST_COV_PARAMS_ADDR	Array of parameters of the robust covariance estimation algorithm is not defined.
VSL_SS_ERROR_BAD_ROBUST_COV_PARAMS_N_ADDR	Pointer to the number of parameters of the algorithm for robust covariance is not defined.
VSL_SS_ERROR_BAD_STORAGE_ADDR	Pointer to the variable that holds the storage format is not defined.
VSL_SS_ERROR_BAD_PARTIAL_COV_IDX_ADDR	Array that encodes sub-components of a random vector for the partial covariance algorithm is not defined.

Description

Array that encodes sub-components of a random vector for partial covariance has improper values.

Partial covariance matrix is not defined.
Partial correlation matrix is not defined.
Array of parameters for the Multiple Imputation method is not defined.

Pointer to number of parameters for the Multiple Imputation method is not defined.

Size of the parameter array of the Multiple Imputation method is invalid.

Parameters of the Multiple Imputation method are invalid.

Pointer to the number of initial estimates in the Multiple Imputation method is not defined.

Array of initial estimates for the Multiple Imputation method is not defined.

Array of simulated missing values in the Multiple Imputation method is not defined.

Pointer to the size of the array of simulated missing values in the Multiple Imputation method is not defined.

Pointer to the number of parameter estimates in the Multiple Imputation method is not defined.

Array of parameter estimates in the Multiple Imputation method is not defined.

Invalid size of the array of simulated values in the Multiple Imputation method.

Invalid size of an array to hold parameter estimates obtained using the Multiple Imputation method.

Array of output parameters in the Multiple Imputation method is not defined.

Pointer to the number of prior parameters is not defined.

Array of prior parameters is not defined.
Invalid number of missing values was obtained.

Correlation matrix passed into the parameterization function is semi-definite.

Correlation matrix to be parameterized is not defined.

Status Code	Description
VSL_SS_ERROR_BAD_COR	All eigenvalues of the correlation matrix to be parameterized are non-positive.
VSL_SS_ERROR_BAD_STREAM_QUANT_PARAMS_N_ADDR	Pointer to the number of parameters for the quantile computation algorithm for streaming data is not defined.
VSL_SS_ERROR_BAD_STREAM_QUANT_PARAMS_ADDR	Array of parameters of the quantile computation algorithm for streaming data is not defined.
VSL_SS_ERROR_BAD_STREAM_QUANT_PARAMS_N	Invalid number of parameters of the quantile computation algorithm for streaming data has been obtained.
VSL_SS_ERROR_BAD_STREAM_QUANT_PARAMS	Invalid parameters of the quantile computation algorithm for streaming data have been passed.
VSL_SS_ERROR_BAD_STREAM_QUANT_ORDER_ADDR	Array of the quantile orders for streaming data is not defined.
VSL_SS_ERROR_BAD_STREAM_QUANT_ORDER	Invalid quantile order for streaming data is defined.
VSL_SS_ERROR_BAD_STREAM_QUANT_ADDR	Array of quantiles for streaming data is not defined.

Routines for robust covariance estimation, outlier detection, partial covariance estimation, multiple imputation, and parameterization of a correlation matrix can return internal error codes that are related to a specific implementation. Such error codes indicate invalid input data or other bugs in the Intel MKL routines other than the VSL Summary Statistics routines.

Task Constructors

Task constructors are routines intended for creating a new task descriptor and setting up basic parameters.

NOTE If the constructor fails to create a task descriptor, it returns the NULL task pointer.

vsISSNewTask

Creates and initializes a new summary statistics task descriptor.

Syntax

Fortran:

```
status = vslsssnewtask(task, p, n, xstorage, x, w, indices)
status = vsldssnewtask(task, p, n, xstorage, x, w, indices)
```

C:

```
status = vslsSSNewTask(&task, p, n, xstorage, x, w, indices);
```

status $=$ vsldSSNewTask(\&task, $p, n, x s t o r a g e, x, w, i n d i c e s) ;$

Include Files

- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

Name	Type	Description
p	Fortran: INTEGER	Dimension of the task, number of variables
	C: MKL_INT	
n	Fortran: Integer	Number of observations
	C: MKL_INT	
xstorage	Fortran: InTEGER	Storage format of matrix of observations
	C: MKL_INT	
x	Fortran: REAL (KIND=4) DIMENSION(*) for vslsssnewtask	Matrix of observations
	REAL (KIND=8) DIMENSION(*) for vsldssnewtask	
	C: float* for vslsSSNewTask	
	double* for vsldSSNewTask	
w	Fortran: REAL (KIND=4) DIMENSION(*) for vslsssnewtask	Array of weights of size n. Elements of the arrays are non-negative numbers. If a nULL pointer is passed, each observation is assigned weight equal to 1 .
	REAL (KIND=8) DIMENSION(*) for vsldssnewtask	
	C: float* for vslsSSNewTask	
	double* for vsldSSNewTask	
indices	Fortran: INTEGER, DIMENSION(*) C: MKL_INT*	Array of vector components that will be processed. Size of array is p. If a nULL pointer is passed, all components of random vector are processed.

Output Parameters

Name	Type	Description
task	Fortran: TYPE (VSL_SS_TASK)	Descriptor of the task
ctatus	Fortran: INTEGER	Set to VSL_STATUS_OK if the task is created successfully, otherwise a non-zero error code is returned.

Description

Each vslSSNewTask constructor routine creates a new summary statistics task descriptor with the userspecified value for a required parameter, dimension of the task. The optional parameters (matrix of observations, its storage format, number of observations, weights of observations, and indices of the random vector components) are set to their default values.

The observations of random p-dimensional vector $\xi=\left(\xi_{1}, \ldots, \xi_{i}, \ldots, \xi_{p}\right)$, which are n vectors of dimension p, are passed as a one-dimensional array x. The parameter xstorage defines the storage format of the observations and takes one of the possible values listed in Table "Storage format of matrix of observations and order statistics".

NOTE Since matrices in Fortran are stored by columns while in C they are stored by rows, initialization of the xstorage variable in Fortran is opposite to that in C. Set xstorage to VSL_SS_MATRIX_STORAGE_COLS, if the dataset is stored as a two-dimensional matrix that consists of p rows and n columns; otherwise, use the VSL_SS_MATRIX_STORAGE_ROWS constant.

Storage format of matrix of observations and order statistics

Parameter	Description
VSL_SS_MATRIX_STORAGE_ROWS	The observations of random vector ξ are packed by rows: n data points for the vector component ξ_{1} come first, n data points for the vector component ξ_{2} come second, and so forth.
VSL_SS_MATRIX_STORAGE_COLS	The observations of random vector ξ are packed by columns: the first $p-d i m e n s i o n a l ~ o b s e r v a t i o n ~ o f ~ t h e ~$
vector ξ comes first, the second p-dimensional	
observation of the vector comes second, and so forth.	

A one-dimensional array w of size n contains non-negative weights assigned to the observations. You can pass a NULL array into the constructor. In this case, each observation is assigned the default value of the weight.

You can choose vector components for which you wish to compute statistical estimates. If an element of the vector indices of size p contains 0 , the observations that correspond to this component are excluded from the calculations. If you pass the NULL value of the parameter into the constructor, statistical estimates for all random variables are computed.

If the constructor fails to create a task descriptor, it returns the NULL task pointer.

Task Editors

Task editors are intended to set up or change the task parameters listed in Table "Parameters of VSL Summary Statistics Task to Be Initialized or Modified". As an example, to compute the sample mean for a one-dimensional dataset, initialize a variable for the mean value, and pass its address into the task as shown in the example below:

```
#define DIM 1
#define N 1000
int main()
{
    VSLSSTaskPtr task;
    double x[N];
    double mean;
    MKL_INT p, n, xstorage;
    int status;
    /* initialize variables used in the computations of sample mean */
    p = DIM;
    n = N;
    xstorage = VSL_SS_MATRIX_STORAGE_ROWS;
    mean = 0.0;
    /* create task */
    status = vsldSSNewTask( &task, &p, &n, &xstorage, x, 0, 0 );
    /* initialize task parameters */
```

```
    status = vsldSSEditTask( task, VSL_SS_ED_MEAN, &mean );
    /* compute mean using SS fast method */
    status = vsldSSCompute(task, VSL_SS_MEAN, VSL_SS_METHOD_FAST );
    /* deallocate task resources */
    status = vslSSDeleteTask( &task );
    return 0;
```

\}

Use the single (vslsssedittask) or double (vsldssedittask) version of an editor, to initialize single or double precision version task parameters, respectively. Use an integer version of an editor (vslissedittask) to initialize parameters of the integer type.

Table "VSL Summary Statistics Task Editors" lists the task editors for VSL Summary Statistics. Each of them initializes and/or modifies a respective group of related parameters.

VSL Summary Statistics Task Editors

Editor

vslSSEditTask
vslSSEditMoments
vslSSEditCovCor
vslSSEditPartialCovCor
vslSSEditQuantiles
vslSSEditStreamQuantiles
vslSSEditPooledCovariance
vslSSEditRobustCovariance
vslSSEditOutliersDetection
vslSSEditMissingValues
vslSSEditCorParameterization

Description

Changes a pointer in the task descriptor.
Changes pointers to arrays associated with raw and central moments.

Changes pointers to arrays associated with covariance and/or correlation matrices.

Changes pointers to arrays associated with partial covariance and/ or correlation matrices.

Changes pointers to arrays associated with quantile/order statistics calculations.

Changes pointers to arrays for quantile related calculations for streaming data.

Changes pointers to arrays associated with algorithms related to a pooled covariance matrix.

Changes pointers to arrays for robust estimation of a covariance matrix and mean.

Changes pointers to arrays for detection of outliers.
Changes pointers to arrays associated with the method of supporting missing values in a dataset.

Changes pointers to arrays associated with the algorithm for parameterization of a correlation matrix.

NOTE You can use the NULL task pointer in calls to editor routines. In this case, the routine is terminated and no system crash occurs.

vsISSEditTask

Modifies address of an input/output parameter in the task descriptor.

Syntax

Fortran:

```
status = vslsssedittask(task, parameter, par addr)
```

```
status = vsldssedittask(task, parameter, par_addr)
status = vslissedittask(task, parameter, par_addr)
```

C:

```
status = vslsSSEditTask(task, parameter, par_addr);
status = vsldSSEditTask(task, parameter, par_addr);
status = vsliSSEditTask(task, parameter, par_addr);
```

Include Files

- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

Name	Type	Description
task	Fortran: TYPE (VSL_SS_TASK)	Descriptor of the task
	C: VSLSSTaskPtr	
parameter	Fortran: INTEGER	Parameter to change
	C: MKL_INT	
par_addr	Fortran: REAL (KIND=4) DIMENSION(*) for vslsssedittask	Address of the new parameter
	REAL (KIND=8) DIMENSION(*) for vsldssedittask	
	INTEGER DIMENSION(*) for vslissedittask	
	C: float* for vslsSSEditTask	
	double* for vsldSSEditTask	
	MKL_INT* for vsliSSEditTask	

Output Parameters

Name	Type
status	Fortran: INTEGER

Description

Current status of the task

Description

The vslSSEditTask routine replaces the pointer to the parameter stored in the VSL Summary Statistics task descriptor with the par_addr pointer. If you pass the NULL pointer to the editor, no changes take place in the task and a corresponding error code is returned. See Table "Parameters of VSL Summary Statistics Task to Be Initialized or Modified" for the predefined values of the parameter.
Use the single (vslsssedittask) or double (vsldssedittask) version of the editor, to initialize single or double precision version task parameters, respectively. Use an integer version of the editor (vslissedittask) to initialize parameters of the integer type.

Parameters of VSL Summary Statistics Task to Be Initialized or Modified

Parameter Value	Type	Purpose	Initialization
VSL_SS_ED_DIMEN	i	Address of a variable that holds the task dimension	Required. Positive integer value.
VSL_SS_ED_OBSERV_N	i	Address of a variable that holds the number of observations	Required. Positive integer value.

Parameter Value	Type	Purpose

Parameter Value	Type	Purpose

Parameter Value	Type	Purpose	Initialization
VSL_SS_ED_QUANT_QUANTILE S	d, s	Address of the array of quantiles	None.
VSL_SS_ED_ORDER_STATS	d, s	Address of the array of order statistics	None.
VSL_SS_ED_GROUP_INDC	i	Address of the array of group indices used in computation of a pooled covariance matrix	Required. Set entry i to integer value k if the observation belongs to group k. Values of k take values in the range [$0, ~ g-1$], where g is the number of groups.
$\begin{aligned} & \text { VSL_SS_ED_POOLED_COV_STO } \\ & \text { RAGE } \end{aligned}$	i	Address of a variable that holds the storage format for a pooled covariance matrix	Required. Provide a storage format supported by the library whenever you intend to compute pooled covariance. ${ }^{2}$
VSL_SS_ED_POOLED_MEAN	i	Address of an array of pooled means	None.
VSL_SS_ED_POOLED_COV	d, s	Address of pooled covariance matrices	None.
VSL_SS_ED_GROUP_COV_INDC	d, s	Address of an array of indices for which covariance/means should be computed	Optional. Set the k th entry of the array to 1 if you need group covariance and mean for group k; otherwise set it to zero.
VSL_SS_ED_GROUP_MEANS	i	Address of an array of group means	None.
$\begin{aligned} & \text { VSL_SS_ED_GROUP_COV_STOR } \\ & \text { AGE } \end{aligned}$	d, s	Address of a variable that holds the storage format for a group covariance matrix	Required. Provide a storage format supported by the library whenever you intend to get group covariance. ${ }^{2}$
VSL_SS_ED_GROUP_COV	i	Address of group covariance matrices	None.
$\begin{aligned} & \text { VSL_SS_ED_ROBUST_COV_STO } \\ & \text { RAGE } \end{aligned}$	d, s	Address of a variable that holds the storage format for a robust covariance matrix	Required. Provide a storage format supported by the library whenever you compute robust covariance ${ }^{2}$.
$\begin{aligned} & \text { VSL_SS_ED_ROBUST_COV_PAR } \\ & \text { AMS_N } \end{aligned}$	i	Address of a variable that holds the number of algorithmic parameters of the method for robust covariance estimation	Required. Set to the number of TBS parameters, VSL_SS_TBS_PARAMS_N.
$\begin{aligned} & \text { VSL_SS_ED_ROBUST_COV_PAR } \\ & \text { AMS } \end{aligned}$		Address of an array of parameters of the method for robust estimation of a covariance	Required. Set the entries of the array according to the description in EditRobustCovariance.

Parameter Value	Type	Purpose	Initialization
VSL_SS_ED_ROBUST_MEAN	i	Address of an array of robust means	None.
VSL_SS_ED_ROBUST_COV	d, s	Address of a robust covariance matrix	None.
VSL_SS_ED_OUTLIERS_PARAM S_N	d, s	Address of a variable that holds the number of parameters of the outlier detection method	Required. Set to the number of outlier detection parameters, VSL_SS_BACON_PARAMS_N.
VSL_SS_ED_OUTLIERS_PARAM S	i	Address of an array of algorithmic parameters for the outlier detection method	Required. Set the entries of the array according to the description in EditOutliersDetection.
VSL_SS_ED_OUTLIERS_WEIGH T	d, s	Address of an array of weights assigned to observations by the outlier detection method	None.
VSL_SS_ED_ORDER_STATS_ST ORAGE	d, s	Address of a variable that holds the storage format of an order statistics matrix	Required. Provide a storage format supported by the library whenever you compute a matrix of order statistics. ${ }^{1}$
$\begin{aligned} & \text { VSL_SS_ED_PARTIAL_COV_ID } \\ & \mathrm{x} \end{aligned}$	i	Address of an array that encodes subcomponents of a random vector	Required. Set the entries of the array according to the description in EditPartialCovCor.
VSL_SS_ED_PARTIAL_COV	d, s	Address of a partial covariance matrix	None.
VSL_SS_ED_PARTIAL_COV_ST ORAGE	i	Address of a variable that holds the storage format of a partial covariance matrix	Required. Provide a storage format supported by the library whenever you compute the partial covariance. ${ }^{2}$
VSL_SS_ED_PARTIAL_COR	d, s	Address of a partial correlation matrix	None.
VSL_SS_ED_PARTIAL_COR_ST ORAGE	i	Address of a variable that holds the storage format for a partial correlation matrix	Required. Provide a storage format supported by the library whenever you compute the partial correlation. ${ }^{2}$
VSL_SS_ED_MI_PARAMS_N	1	Address of a variable that holds the number of algorithmic parameters for the Multiple Imputation method	Required. Set to the number of MI parameters, VSL_SS_MI_PARAMS_SIZE.
VSL_SS_ED_MI_PARAMS	d, s	Address of an array of algorithmic parameters for the Multiple Imputation method	Required. Set entries of the array according to the description in EditMissingValues.

Parameter Value	Type	Purpose	Initialization
$\begin{aligned} & \text { VSL_SS_ED_MI_INIT_ESTIMA } \\ & \text { TES_N } \end{aligned}$	i	Address of a variable that holds the number of initial estimates for the Multiple Imputation method	Optional. Set to $p+p^{*}(p+1) / 2$, where p is the task dimension.
```VSL_SS_ED_MI_INIT_ESTIMA TES```	d, s	Address of an array of initial estimates for the Multiple Imputation method	Optional. Set the values of the array according to the description in "Basic Components of the Multiple Imputation Function in Summary Statistics Library" in the Intel® MKL Summary Statistics Library Application Notes document on the Intel ${ }^{\circledR}$ MKL web page.
$\begin{aligned} & \text { VSL_SS_ED_MI_SIMUL_VALS_ } \\ & \mathrm{N} \end{aligned}$	i	Address of a variable that holds the number of simulated values in the Multiple Imputation method	Optional. Positive integer indicating the number of missing points in the observation matrix.
VSL_SS_ED_MI_SIMUL_VALS	d, s	Address of an array of simulated values in the Multiple Imputation method	None.
VSL_SS_ED_MI_ESTIMATES_N	i	Address of a variable that holds the number of estimates obtained as a result of the Multiple Imputation method	Optional. Positive integer number defined according to the description in "Basic Components of the Multiple Imputation Function in Summary Statistics Library" in the Inte ${ }^{\circledR}$ MKL Summary Statistics Library Application Notes document on the Intel ${ }^{\circledR}$ MKL web page.
VSL_SS_ED_MI_ESTIMATES	d, s	Address of an array of estimates obtained as a result of the Multiple Imputation method	None.
VSL_SS_ED_MI_PRIOR_N	i	Address of a variable that holds the number of prior parameters for the Multiple Imputation method	Optional. If you pass a userdefined array of prior parameters, set this parameter to $\left(p^{2}+3^{*} p+4\right) /$ 2 , where $p$ is the task dimension.
VSL_SS_ED_MI_PRIOR	d, s	Address of an array of prior parameters for the Multiple Imputation method	Optional. Set entries of the array of prior parameters according to the description in "Basic Components of the Multiple Imputation Function in Summary Statistics Library" in the Inte/® MKL Summary Statistics Library Application Notes document on the Intel ${ }^{\circledR}$ MKL web page.


Parameter Value	Type	Purpose	Initialization
VSL_SS_ED_PARAMTR_COR	d, s	Address of a parameterized correlation matrix	None.
VSL_SS_ED_PARAMTR_COR_ST ORAGE	i	Address of a variable that holds the storage format of a parameterized correlation matrix	Required. Provide a storage format supported by the library whenever you compute the parameterized correlation matrix. ${ }^{2}$
VSL_SS_ED_STREAM_QUANT_P ARAMS_N	i	Address of a variable that holds the number of parameters of a quantile computation method for streaming data	Required. Set to the number of quantile computation parameters, VSL_SS_SQUANTS_ZW_PARAMS_N.
VSL_SS_ED_STREAM_QUANT_P ARAMS	d, s	Address of an array of parameters of a quantile computation method for streaming data	Required. Set the entries of the array according to the description in "Computing Quantiles for Streaming Data" in the Inte『 MKL Summary Statistics Library Application Notes document on the Intel ${ }^{\circledR}$ MKL web page.
VSL_SS_ED_STREAM_QUANT_O RDER_N	i	Address of a variable that holds the number of quantile orders for streaming data	Required. Positive integer value.
VSL_SS_ED_STREAM_QUANT_O RDER	d, s	Address of an array of quantile orders for streaming data	Required. Set entries of the array to values from the interval $(0,1)$. Provide this parameter whenever you compute quantiles.
VSL_SS_ED_STREAM_QUANT_Q UANTILES	d, s	Address of an array of quantiles for streaming data	None.

1. See Table: "Storage format of matrix of observations and order statistics" for storage formats.
2. See Table: "Storage formats of a variance-covariance/correlation matrix" for storage formats.

## vsISSEditMoments

Modifies the pointers to arrays that hold moment estimates.

## Syntax

## Fortran:

```
status = vslssseditmoments(task, mean, r2m, r3m, r4m, c 2m, c3m, c4m)
status = vsldsseditmoments(task, mean, r2m, r3m, r4m, c2m, c3m, c4m)
```

C:

```
status = vslsSSEditMoments(task, mean, r2m, r3m, r4m, c2m, c3m, c4m);
status = vsldSSEditMoments(task, mean, r2m, r3m, r4m,c2m,c3m,c4m);
```


## Include Files

- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h


## Input Parameters

Name
task
mean
$r 2 m$

Type
Fortran: TYPE (VSL_SS_TASK)
C: VSLSSTaskPtr

Fortran: REAL (KIND=4) DIMENSION (*) for vslssseditmoments

REAL (KIND=8) DIMENSION (*) for vsldsseditmoments

C: float* for vslsSSEditMoments double* for vsldSSEditMoments

Fortran: REAL (KIND=4) DIMENSION (*) for vslssseditmoments

REAL (KIND=8) DIMENSION (*) for vsldsseditmoments

C: float* for vslsSSEditMoments
double* for vsldSSEditMoments
Fortran: REAL (KIND=4) DIMENSION(*) for vslssseditmoments

REAL (KIND=8) DIMENSION (*) for vsldsseditmoments

C: float* for vslsSSEditMoments double* for vsldSSEditMoments

Fortran: REAL (KIND=4) DIMENSION (*) for vslssseditmoments

REAL (KIND=8) DIMENSION (*) for vsldsseditmoments

C: float* for vslsSSEditMoments
double* for vsldSSEditMoments
Fortran: REAL (KIND=4) DIMENSION (*) for vslssseditmoments

REAL (KIND=8) DIMENSION (*) for vsldsseditmoments

C: float* for vslsSSEditMoments double* for vsldSSEditMoments

Fortran: REAL (KIND=4) DIMENSION (*) for vslssseditmoments

## Description

Descriptor of the task

Pointer to the array of means

Pointer to the array of raw moments of the $2^{\text {nd }}$ order

Pointer to the array of raw moments of the $3^{\text {rd }}$ order

Pointer to the array of raw moments of the $4^{\text {th }}$ order

Pointer to the array of central moments of the $2^{\text {nd }}$ order

Name	Type	Description
	REAL (KIND=8) DIMENSION(*) for vsldsseditmoments	
	C: float* for vslsSSEditMoments	
	double* for vsldSSEditMoments	
c 4 m	Fortran: REAL (KIND=4) DIMENSION(*) for vslssseditmoments	Pointer to the array of central moments of the $4^{\text {th }}$ order
	REAL (KIND=8) DIMENSION(*) for vsldsseditmoments	
	C: float* for vslsSSEditMoments	
	double* for vsldSSEditMoments	

## Output Parameters

Name Type
status

Fortran: INTEGER
C: int

## Description

Current status of the task

## Description

The vslSSEditMoments routine replaces pointers to the arrays that hold estimates of raw and central moments with values passed as corresponding parameters of the routine. If an input parameter is NULL, the value of the relevant parameter remains unchanged.

## vsISSEditCovCor

Modifies the pointers to covariance/correlation
parameters.

## Syntax

## Fortran:

```
status = vslssseditcovcor(task, mean, cov, cov_storage, cor, cor_storage)
status = vsldsseditcovcor(task, mean, cov, cov_storage, cor, cor_storage)
```

C:

```
status = vslsSSEditCovCor(task, mean, cov, cov_storage, cor, cor_storage);
status = vsldSSEditCovCor(task, mean, cov, cov_storage, cor, cor_storage);
```


## Include Files

- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

Name	Type	Description
$t a s k$	Fortran: TYPE (VSL_SS_TASK)	Descriptor of the task


Name	Type	Description
	C: VSLSSTaskPtr	
mean	Fortran: REAL (KIND=4) DIMENSION(*) for vslssseditcovcor	Pointer to the array of means
	REAL (KIND=8) DIMENSION(*) for vsldsseditcovcor	
	C: float* for vslsSSEditCovCor	
	double* for vsldSSEditCovCor	
cov	Fortran: REAL (KIND=4) DIMENSION(*) for vslssseditcovcor	Pointer to a covariance matrix
	REAL (KIND=8) DIMENSION(*) for vsldsseditcovcor	
	C: float* for vslsSSEditCovCor	
	double* for vsldSSEditCovCor	
cov_storage	Fortran: INTEGER	Pointer to the storage format of the
	C: MKL_INT*	
cor	Fortran: REAL (KIND=4) DIMENSION(*) for vslssseditcovcor	Pointer to a correlation matrix
	REAL (KIND=8) DIMENSION(*) for vsldsseditcovcor	
	C: float* for vslsSSEditCovCor	
	double* for vsldSSEditCovCor	
cor_storage	Fortran: INTEGER   C: MKL_INT*	Pointer to the storage format of the correlation matrix

## Output Parameters

## Name

 status
## Type

Fortran: INTEGER
C: int

Pointer to the storage format of the correlation matrix

## Description

Current status of the task

## Description

The vslSSEditCovCor routine replaces pointers to the array of means, covariance/correlation arrays, and their storage format with values passed as corresponding parameters of the routine. See Table "Storage formats of a variance-covariance/correlation matrix" for possible values of the cov_storage and cor_storage parameters. If an input parameter is NULL, the old value of the parameter remains unchanged in the VSL Summary Statistics task descriptor.

## Storage formats of a variance-covariance/correlation matrix

Parameter	Description
VSL_SS_MATRIX_STORAGE_FULL	A symmetric variance-covariance/correlation matrix is a one-dimensional array with elements $c(i, j)$ stored as $c p(i * p+j)$. The size of the array is $p^{*} p$.
VSL_SS_MATRIX_STORAGE_L_PACKED	A symmetric variance-covariance/correlation matrix with elements $c(i, j)$ is packed as a one-dimensional array $c p(i+(2 n-j) *(j-1) / 2)$ for $j \leq i$. The size of the array is $p^{*}(p+1) / 2$.
VSL_SS_MATRIX_STORAGE_U_PACKED	A symmetric variance-covariance/correlation matrix with elements $c(i, j)$ is packed as a one-dimensional array $c p(i+j *(j-1) / 2)$ for $i \leq j$. The size of the array is $p^{*}(p+1) / 2$.

## vsISSEditPartialCovCor

Modifies the pointers to partial covariance/correlation parameters.

## Syntax

## Fortran:

```
status = vslssseditpartialcovcor(task, p_idx_array, cov, cov_storage, cor,
cor_storage, P_cov, P_cov_storage, P_cor, P_cor_storage)
status = vsldsseditpartialcovcor(task, p_idx_array, cov, cov_storage, cor,
cor_storage, p_cov, p_cov_storage, p_cor, p_cor_storage)
C:
status = vslsSSEditPartialCovCor(task, p_idx_array, cov, cov_storage, cor,
cor_storage, p_cov, p_cov_storage, p_cor, p_cor_storage);
status = vsldSSEditPartialCovCor(task, p_idx_array, Cov, cov_storage, cor,
cor_storage, p_cov, p_cov_storage, p_cor, p_cor_storage);
```

Include Files

- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h


## Input Parameters

## Name

task
Type
Fortran: TYPE (VSL_SS_TASK)
C: VSLSSTaskPtr
p_idx_array Fortran: INTEGER
C: MKL_INT*

## Description

Descriptor of the task

Pointer to the array that encodes indices of subcomponents $Z$ and $Y$ of the random vector as described in section Mathematical Notation and Definitions.
p_idx_array[i] equals to

Name	Type	Description
		-1 if the $i$-th component of the random vector belongs to $Z$
		1, if the $i$-th component of the random vector belongs to y .
cov	Fortran: REAL (KIND=4) DIMENSION (*)	Pointer to a covariance matrix
	for vslssseditpartialcovcor	
	REAL (KIND=8) DIMENSION(*)	
	for vsldsseditpartialcovcor	
	C: float*	
	for vslsSSEditPartialCovCor	
	double*	
	for vsldSSEditPartialCovCor	
cov_storage	Fortran: INTEGER	Pointer to the storage format of the covariance matrix
	C: MKL_INT*	
cor	Fortran: REAL (KIND=4) DIMENSION (*)	Pointer to a correlation matrix
	for vslssseditpartialcovcor	
	REAL (KIND=8) DIMENSION(*)	
	for vsldsseditpartialcovcor	
	C: float*	
	for vslsSSEditPartialCovCor	
	double*	
	for vsldSSEditPartialCovCor	
cor_storage	Fortran: InTEGER	Pointer to the storage format of the correlation matrix
	C: MKL_INT*	
p_cov	Fortran: REAL (KIND=4) DIMENSION(*)	Pointer to a partial covariance matrix
	for vslssseditpartialcovcor	
	REAL (KIND=8) DIMENSION(*)	
	for vsldsseditpartialcovcor	
	C: float*	
	for vslsSSEditPartialCovCor	
	double*	
	for vsldSSEditPartialCovCor	
p_cov_storage	Fortran: INTEGER	Pointer to the storage format of the partial covariance matrix
	C: MKL_INT*	
p_cor	Fortran: REAL (KIND=4) DIMENSION(*)	Pointer to a partial correlation matrix


Name	Type	Description
	for vslssseditpartialcovcor	
	REAL (KIND=8) DIMENSION (*)	
	Cor vsldsseditpartialcovcor	
	for vslsSSEditPartialCovCor	
	double*	
	for vsldSSEditPartialCovCor	Pointer to the storage format of the
P_Cor_storage	Fortran: INTEGER	partial correlation matrix

## Output Parameters

Name

Type
Fortran: INTEGER
C: int

## Description

Current status of the task

## Description

The vslSSEditPartialCovCor routine replaces pointers to covariance/correlation arrays, partial covariance/correlation arrays, and their storage format with values passed as corresponding parameters of the routine. See Table "Storage formats of a variance-covariance/correlation matrix" for possible values of the cov_storage, cor_storage, p_cov_storage, and p_cor_storage parameters. If an input parameter is NULL, the old value of the parameter remains unchanged in the VSL Summary Statistics task descriptor.

## vsISSEditQuantiles

Modifies the pointers to parameters related to quantile computations.

## Syntax

## Fortran:

```
status = vslssseditquantiles(task, quant_order_n, quant_order, quants, order_stats,
order_stats_storage)
status = vsldsseditquantiles(task, quant_order_n, quant_order, quants, order_stats,
order_stats_storage)
C:
```

```
status = vslsSSEditQuantiles(task, quant_order_n, quant_order, quants, order_stats,
```

status = vslsSSEditQuantiles(task, quant_order_n, quant_order, quants, order_stats,
order_stats_storage);
order_stats_storage);
status = vsldSSEditQuantiles(task, quant_order_n, quant_order, quants, order_stats,
status = vsldSSEditQuantiles(task, quant_order_n, quant_order, quants, order_stats,
order_stats_storage);

```
order_stats_storage);
```


## Include Files

- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

C: MKL_INT*

## Output Parameters

## Name

status

```
Name
task
quant_order_n
quant_order
```

quants
order_stats
order_stats_storage

Fortran: INTEGER
Type
Fortran: TYPE (VSL_SS_TASK)
C: VSLSSTaskPtr
Fortran: INTEGER
C: MKL_INT*
Fortran: REAL (KIND=4) DIMENSION(*) for vslssseditquantiles REAL (KIND=8) DIMENSION(*)
for vsldsseditquantiles
C: float*
for vslsSSEditQuantiles
double*
for vsldSSEditQuantiles
Fortran: REAL (KIND=4) DIMENSION(*) for vslssseditquantiles REAL (KIND=8) DIMENSION(*)
for vsldsseditquantiles
C: float*
for vslsSSEditQuantiles
double*
for vsldSSEditQuantiles
Fortran: REAL (KIND=4) DIMENSION(*
for vslssseditquantiles
REAL (KIND=8) DIMENSION(*)
for vsldsseditquantiles
C: float*
for vslsSSEditQuantiles
double*
for vsldSSEditQuantiles
order_stats_storage

## Description

Descriptor of the task

Pointer to the number of quantile orders

Pointer to the array of quantile orders

Pointer to the array of quantiles

Pointer to the array of order statistics

Pointer to the storage format of the order statistics array

## Description

Current status of the task

Name	Type
C: int	

## Description

The vslSSEditQuantiles routine replaces pointers to the number of quantile orders, the array of quantile orders, the array of quantiles, the array that holds order statistics, and the storage format for the order statistics with values passed into the routine. See Table "Storage format of matrix of observations and order statistics" for possible values of the order_statistics_storage parameter. If an input parameter is NULL, the corresponding parameter in the VSL Summary Statistics task descriptor remains unchanged.
vsISSEditStreamQuantiles
Modifies the pointers to parameters related to quantile computations for streaming data.

## Syntax

## Fortran:

```
status = vslssseditstreamquantiles(task, quant_order_n, quant_order, quants, nparams,
params)
status = vsldsseditstreamquantiles(task, quant_order_n, quant_order, quants, nparams,
params)
C:
```

```
status = vslsSSEditStreamQuantiles(task, quant_order_n, quant_order, quants, nparams,
```

status = vslsSSEditStreamQuantiles(task, quant_order_n, quant_order, quants, nparams,
params);
params);
status = vsldSSEditStreamQuantiles(task, quant_order_n, quant_order, quants, nparams,
status = vsldSSEditStreamQuantiles(task, quant_order_n, quant_order, quants, nparams,
params);

```
params);
```


## Include Files

- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h


## Input Parameters

Name	Type	Description
task	Fortran: TYPE (VSL_SS_TASK)	Descriptor of the task
	C: VSLSSTaskPtr	
quant_order_n	Fortran: INTEGER	Pointer to the number of quantile orders
	C: MKL_INT*	
quant_order	Fortran: REAL (KIND=4) DIMENSION(*)	Pointer to the array of quantile orders
	for vslssseditstreamquantiles	
	REAL (KIND=8) DIMENSION (*)	
	for vsldsseditstreamquantiles	
	C: float*	
	for vslsSSEditStreamQuantiles	


Name	Type	Description
	double*	
	for vsldSSEditStreamQuantiles	
quants	Fortran: REAL (KIND=4) DIMENSION(*)	Pointer to the array of quantiles
	for vslssseditstreamquantiles	
	REAL (KIND=8) DIMENSION (*)	
	for vsldsseditstreamquantiles	
	C: float*	
	for vslsSSEditStreamQuantiles	
	double*	
	for vsldSSEditStreamQuantiles	
nparams	Fortran: INTEGER	Pointer to the number of the algorithm
	C: MKL_INT*	
params	Fortran: REAL (KIND=4) DIMENSION(*) for vslssseditstreamquantiles	Pointer to the array of the algorithm parameters
	REAL (KIND=8) DIMENSION (*)	
	for vsldsseditstreamquantiles	
	C: float*	
	for vslsSSEditStreamQuantiles	
	double*	
	for vsldSSEditStreamQuantiles	
Output Parameters		
Name	Type	Description
status	Fortran: INTEGER	Current status of the task
	C: int	

## Description

The vslSSEditStreamQuantiles routine replaces pointers to the number of quantile orders, the array of quantile orders, the array of quantiles, the number of the algorithm parameters, and the array of the algorithm parameters with values passed into the routine. If an input parameter is NULL, the corresponding parameter in the VSL Summary Statistics task descriptor remains unchanged.
vsISSEditPooledCovariance
Modifies pooled/group covariance matrix array pointers.

## Syntax

## Fortran:

```
status = vslssseditpooledcovariance(task, grp_indices, pld_mean, pld_cov,
grp_cov_indices, grp_means, grp_cov)
status = vsldsseditpooledcovariance(task, grp_indices, pld_mean, pld_cov,
grp_cov_indices, grp_means, grp_cov)
C:
status = vslsSSEditPooledCovariance(task, grp_indices, pld_mean, pld_cov,
grp_cov_indices, grp_means, grp_cov);
status = vsldSSEditPooledCovariance(task, grp_indices, pld_mean, pld_cov,
grp_cov_indices, grp_means, grp_cov);
```


## Include Files

- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h


## Input Parameters

Name
task
grp_indices
pld_mean
pla_cov
vslssseditpooledcovariance
REAL (KIND=8) DIMENSION (*) for
vsldsseditpooledcovariance
C: float* for
vslsSSEditPooledCovariance
double* for

Type
Fortran: TYPE (VSL_SS_TASK)
C: VSLSSTaskPtr
Fortran: INTEGER DIMENSION(*)
C: MKL_INT*

Fortran: REAL (KIND=4) DIMENSION(*) for
vslssseditpooledcovariance
REAL (KIND=8) DIMENSION (*) for
vsldsseditpooledcovariance
C: float* for
vslsSSEditPooledCovariance
double* for
vsldSSEditPooledCovariance
Fortran: REAL (KIND=4) DIMENSION(*) Pointer to the array that holds a pooled for

## Description

Descriptor of the task

Pointer to an array of size $n$. The $i$-th element of the array contains the number of the group the observation belongs to.

Pointer to the array of pooled means
Pointer to the array of pooled means covariance matrix

Name	Type	Description
	vsldSSEditPooledCovariance	
grp_cov_indices	Fortran: INTEGER DIMENSION(*) C: MKL_INT*	Pointer to the array that contains indices of group covariance matrices to return
grp_means	Fortran: REAL (KIND=4) DIMENSION(*) for	Pointer to the array of group means
	vslssseditpooledcovariance	
	REAL (KIND=8) DIMENSION (*) for	
	vsldsseditpooledcovariance	
	C: float* for	
	vslsSSEditPooledCovariance	
	double* for	
	vsldSSEditPooledCovariance	
grp_cov	Fortran: REAL (KIND=4) DIMENSION(*) for	Pointer to the array that holds group covariance matrices
	vslssseditpooledcovariance	
	REAL (KIND=8) DIMENSION (*) for	
	vsldsseditpooledcovariance	
	C: float* for	
	vslsSSEditPooledCovariance	
	double* for	
	vsldSSEditPooledCovariance	

## Output Parameters

## Name

status

## Type

Fortran: INTEGER

## Description

Current status of the task

## Description

The vslSSEditPooledCovariance routine replaces pointers to the array of group indices, the array of pooled means, the array for a pooled covariance matrix, and pointers to the array of indices of group matrices, the array of group means, and the array for group covariance matrices with values passed in the editors. If an input parameter is NULL, the corresponding parameter in the VSL Summary Statistics task descriptor remains unchanged. Use the vslSSEditTask routine to replace the storage format for pooled and group covariance matrices.
vsISSEditRobustCovariance
Modifies pointers to arrays related to a robust covariance matrix.

## Syntax

## Fortran:

```
status = vslssseditrobustcovariance(task, rcov_storage, nparams, params, rmean, rcov)
status = vsldsseditrobustcovariance(task, rcov_storage, nparams, params, rmean, rcov)
C:
status = vslsSSEditRobustCovariance(task, rcov_storage, nparams, params, rmean, rcov);
status = vsldSSEditRobustCovariance(task, rcov_storage, nparams, params, rmean, rcov);
Include Files
```

- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

Name	Type	Description
task	Fortran: TYPE (VSL_SS_TASK)	Descriptor of the task
	C: VSLSSTaskPtr	
rcov_storage	Fortran: INTEGER	Pointer to the storage format of a robust
	C: MKL_INT*	m
nparams	Fortran: INTEGER	Pointer to the number of method
	C: MKL_INT*	
params	Fortran: REAL (KIND=4) DIMENSION(*) for	Pointer to the array of method parameters
	vslssseditrobustcovariance	
	REAL (KIND=8) DIMENSION (*) for	
	vsldsseditrobustcovariance	
	C: float* for	
	vslsSSEditRobustCovariance	
	double* for	
	vsldSSEditRobustCovariance	
rmean	Fortran: REAL (KIND=4) DIMENSION(*) for	Pointer to the array of robust means
	vslssseditrobustcovariance	
	REAL (KIND=8) DIMENSION (*) for	
	vsldsseditrobustcovariance	
	C: float* for	
	vslsSSEditRobustCovariance	
	double* for	


Name	Type	Description
rCov	vsldSSEditRobustCovariance	
	Fortran: REAL(KIND=4) DIMENSION(*)	Pointer to a robust covariance matrix
	vslssseditrobustcovariance	
	REAL(KIND=8) DIMENSION(*) for	
	vsldsseditrobustcovariance	
	C: float* for	
	vslsSSEditRobustCovariance	
	double* for	
	vsldSSEditRobustCovariance	

## Output Parameters

Name	Type	Description
status	Fortran: INTEGER	Current status of the task
	C: int	

## Description

The vslSSEditRobustCovariance routine uses values passed as parameters of the routine to replace:

- pointers to covariance matrix storage
- pointers to the number of method parameters and to the array of the method parameters of size nparams
- pointers to the arrays that hold robust means and covariance

See Table "Storage formats of a variance-covariance/correlation matrix" for possible values of the rcov_storage parameter. If an input parameter is NULL, the corresponding parameter in the task descriptor remains unchanged.
Intel MKL provides a Translated Biweight S-estimator (TBS) for robust estimation of a variance-covariance matrix and mean [Rocke96]. Use one iteration of the Maronna algorithm with the reweighting step [Maronna02] to compute the initial point of the algorithm. Pack the parameters of the TBS algorithm into the params array and pass them into the editor. Table "Structure of the Array of TBS Parameters" describes the params structure.
Structure of the Array of TBS Parameters

Array Position	Algorithm   Parameter	Description
0	$\varepsilon$	Breakdown point, the number of outliers the algorithm can   hold. By default, the value is $(n-p) /(2 n)$.   1
$\alpha$	Asymptotic rejection probability, see details in [Rocke96]. By   default, the value is 0.001.	
3	$\delta$	Stopping criterion: the algorithm is terminated if weights are   changed less than $\delta$. By default, the value is 0.001.
max_iter	Maximum number of iterations. The algorithm terminates after   max_iter iterations. By default, the value is 10.	


Array Position	Algorithm   Parameter	Description

If you set this parameter to zero, the function returns a robust estimate of the variance-covariance matrix computed using the Maronna method [Maronna02] only.

See additional details of the algorithm usage model in the Inte ${ }^{\circledR}$ MKL Summary Statistics Library Application Notes document on the Intel ${ }^{\circledR}$ MKL web page.

## vsISSEditOutliersDetection

Modifies array pointers related to multivariate outliers detection.

## Syntax

## Fortran:

```
status = vslssseditoutliersdetection(task, nparams, params, w)
status = vsldsseditoutliersdetection(task, nparams, params, w)
```

C:

```
status = vslsSSEditOutliersDetection(task, nparams, params, w);
status = vsldSSEditOutliersDetection(task, nparams, params, w);
```


## Include Files

- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h


## Input Parameters

Name	Type	Description
task	Fortran: TYPE (VSL_SS_TASK)	Descriptor of the task
nparams	C: VSLSSTaskPtr	
params	C: MKL_INT*	Pointer to the number of method   parameters
	Fortran: REAL(KIND=4) DIMENSION(*)	Pointer to the array of method   parameters
	Vslssseditoutliersdetection	
	VEAL(KIND=8) DIMENSION(*) for	
	C: float* for	
	vslsSSEditoutliersDetection	
	vsldSSEditoutliersDetection	


Name	Type	Description
w	Fortran: REAL (KIND=4) DIMENSION(*) for	Pointer to an array of size $n$. The array holds the weights of observations to be marked as outliers.
	vslssseditoutliersdetection	
	REAL (KIND=8) DIMENSION (*) for	
	vsldsseditoutliersdetection	
	C: float* for	
	vslsSSEditOutliersDetection	
	double* for	
	vsldSSEditoutliersDetection	
Output Parameters		
Name	Type	Description
status	Fortran: INTEGER	Current status of the task
	C: int	

## Description

The vslSSEditOutliersDetection routine uses the parameters passed to replace

- the pointers to the number of method parameters and to the array of the method parameters of size nparams
- the pointer to the array that holds the calculated weights of the observations

If an input parameter is NULL, the corresponding parameter in the task descriptor remains unchanged.
Intel MKL provides the BACON algorithm ([Billor00]) for the detection of multivariate outliers. Pack the parameters of the BACON algorithm into the params array and pass them into the editor. Table "Structure of the Array of BACON Parameters" describes the params structure.

## Structure of the Array of BACON Parameters

Array Position	Algorithm Parameter	Description
0	Method to start the algorithm	The parameter takes one of the following possible values: VSL_SS_METHOD_BACON_MEDIAN_INIT, if the algorithm is started using the median estimate. This is the default value of the parameter.
		VSL_SS_METHOD_BACON_MAHALANOBIS_INIT, if the algorithm is started using the Mahalanobis distances.
1	$\alpha$	One-tailed probability that defines the $(1-\alpha)$ quantile of $\chi^{2}$ distribution with $p$ degrees of freedom. The recommended value is $\alpha / n$, where $n$ is the number of observations. By default, the value is 0.05 .
2	$\delta$	Stopping criterion; the algorithm is terminated if the size of the basic subset is changed less than $\delta$. By default, the value is 0.005 .

Output of the algorithm is the vector of weights, BaconWeights, such that BaconWeights(i) = 0 if $i$-th observation is detected as an outlier. Otherwise BaconWeights(i) $=w(i)$, where $w$ is the vector of input weights. If you do not provide the vector of input weights, BaconWeights(i) is set to 1 if the $i$-th observation is not detected as an outlier.

See additional details about usage model of the algorithm in the Intel(R) MKL Summary Statistics Library Application Notes document on the Intel ${ }^{\circledR}$ MKL web page.

## vsISSEditMissingValues

Modifies pointers to arrays associated with the method of supporting missing values in a dataset.

## Syntax

## Fortran:

```
status = vslssseditmissingvalues(task, nparams, params, init_estimates_n,
init_estimates, prior_n, prior, simul_missing_vals_n, simul_missing_vals, estimates_n,
estimates)
status = vsldsseditmissingvalues(task, nparams, params, init_estimates_n,
init_estimates, prior_n, prior, simul_missing_vals_n, simul_missing_vals, estimates_n,
estimates)
```

C:

```
status = vslsSSEditMissingValues(task, nparams, params, init_estimates_n,
init_estimates, prior_n, prior, simul_missing_vals_n, simul_missing_vals, estimates_n,
estimates);
status = vsldSSEditMissingValues(task, nparams, params, init_estimates_n,
init_estimates, prior_n, prior, simul_missing_vals_n, simul_missing_vals, estimates_n,
estimates);
```


## Include Files

- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h


## Input Parameters

Name	Type	Description
task	Fortran: TYPE (VSL_SS_TASK)	Descriptor of the task
	C: VSLSSTaskPtr	
nparams	Fortran: INTEGER	Pointer to the number of method
	C: MKL_INT*	
params	Fortran: REAL (KIND=4) DIMENSION(*) for	Pointer to the array of method parameters
	vslssseditmissingvalues	
	REAL (KIND=8) DIMENSION(*) for	
	vsldsseditmissingvalues	
	C: float* for	



Name	Type	Description
double* for		
estimates_n	vsldSSEditMissingValues	
estimates	Fortran: INTEGER	Pointer to the number of estimates
to be returned by the routine		

## Output Parameters

Name	Type	Description
status	Fortran: INTEGER	Current status of the task
	C: int	

## Description

The vslSSEditMissingValues routine uses values passed as parameters of the routine to replace pointers to the number and the array of the method parameters, pointers to the number and the array of initial mean/variance-covariance estimates, the pointer to the number and the array of prior parameters, pointers to the number and the array of simulated missing values, and pointers to the number and the array of the intermediate mean/covariance estimates. If an input parameter is NULL, the corresponding parameter in the task descriptor remains unchanged.

Before you call the VSL Summary Statistics routines to process missing values, preprocess the dataset and denote missing observations with one of the following predefined constants:

- VSL_SS_SNAN, if the dataset is stored in single precision floating-point arithmetic
- VSL_SS_DNAN, if the dataset is stored in double precision floating-point arithmetic

Intel MKL provides the VSL_SS_METHOD_MI method to support missing values in the dataset based on the Multiple Imputation (MI) approach described in [Schafer97]. The following components support Multiple Imputation:

- Expectation Maximization (EM) algorithm to compute the start point for the Data Augmentation (DA) procedure
- DA function

NOTE The DA component of the MI procedure is simulation-based and uses the VSL_BRNG_MCG59 basic random number generator with predefined seed $=2^{50}$ and the Gaussian distribution generator (ICDF method) available in Intel MKL [Gaussian].

Pack the parameters of the MI algorithm into the params array. Table "Structure of the Array of MI Parameters" describes the params structure.
Structure of the Array of MI Parameters

Array Position	Algorithm Parameter	Description
0	em_iter_num	Maximal number of iterations for the EM algorithm.   By default, this value is 50.
1	da_iter_num	Maximal number of iterations for the DA algorithm.   By default, this value is 30.
2	m	Stopping criterion for the EM algorithm. The   algorithm terminates if the maximal module of the   element-wise difference between the previous and   current parameter values is less than $\varepsilon$. By default,   this value is 0.001.
3	missing_vals_num	Number of sets to impute
4	Total number of missing values in the datasets	

You can also pass initial estimates into the EM algorithm by packing both the vector of means and the variance-covariance matrix as a one-dimensional array init_estimates. The size of the array should be at least $p+p(p+1) / 2$. For $i=0, \ldots, p-1$, the init_estimates[ $\bar{i}$ ] array contains the initial estimate of means. The remaining positions of the array are occupied by the upper triangular part of the variance-covariance matrix.

If you provide no initial estimates for the EM algorithm, the editor uses the default values, that is, the vector of zero means and the unitary matrix as a variance-covariance matrix. You can also pass prior parameters for $\mu$ and $\Sigma$ into the library: $\mu_{0}, \tau, m$, and $\Lambda^{-1}$. Pack these parameters as a one-dimensional array prior with a size of at least
$\left(p^{2}+3 p+4\right) / 2$.
The storage format is as follows:

- prior [0], ..., prior[p-1] contain the elements of the vector $\mu_{0}$.
- prior $[p]$ contains the parameter $\tau$.
- prior $[p+1]$ contains the parameter $m$.
- The remaining positions are occupied by the upper-triangular part of the inverted matrix $\Lambda^{-1}$.

If you provide no prior parameters, the editor uses their default values:

- The array of $p$ zeros is used as $\mu_{0}$.
- $\tau$ is set to 0 .
- $m$ is set to $p$.
- The zero matrix is used as an initial approximate of $\Lambda^{-1}$.

The EditMissingValues editor returns $m$ sets of imputed values and/or a sequence of parameter estimates drawn during the DA procedure.
The editor returns the imputed values as the simul_missing_vals array. The size of the array should be sufficient to hold $m$ sets each of the missing_vals_num size, that is, at least $m *$ missing_vals_num in total. The editor packs the imputed values one by one in the order of their appearance in the matrix of observations.

For example, consider a task of dimension 4. The total number of observations $n$ is 10 . The second observation vector misses variables 1 and 2 , and the seventh observation vector lacks variable 1 . The number of sets to impute is $m=2$. Then, simul_missing_vals[0] and simul_missing_vals[1] contains the first and the second points for the second observation vector, and simul_missing_vals[2] holds the first point for the seventh observation. Positions 3, 4, and 5 are formed similarly.

To estimate convergence of the DA algorithm and choose a proper value of the number of DA iterations, request the sequence of parameter estimates that are produced during the DA procedure. The editor returns the sequence of parameters as a single array. The size of the array is
$m^{\star}$ da_iter_num* $\left(p+\left(p^{2}+p\right) / 2\right)$
where

- $m$ is the number of sets of values to impute.
- da_iter_num is the number of DA iterations.
- The value $p+\left(p^{2}+p\right) / 2$ determines the size of the memory to hold one set of the parameter estimates.

In each set of the parameters, the vector of means occupies the first $p$ positions and the remaining $\left(p^{2}+p\right) / 2$ positions are intended for the upper triangular part of the variance-covariance matrix.

Upon successful generation of $m$ sets of imputed values, you can place them in cells of the data matrix with missing values and use the VSL Summary Statistics routines to analyze and get estimates for each of the $m$ complete datasets.

$\square$
NOTE Intel MKL implementation of the MI algorithm rewrites cells of the dataset that contain the VSL_SS_SNAN/VSL_SS_DNAN values. If you want to use the VSL Summary Statistics routines to process the data with missing values again, mask the positions of the empty cells.

See additional details of the algorithm usage model in the Inte ${ }^{\circledR}$ MKL Summary Statistics Library Application Notes document on the Intel ${ }^{\circledR}$ MKL web page.

## vsISSEditCorParameterization

Modifies pointers to arrays related to the algorithm of correlation matrix parameterization.

Syntax

## Fortran:

```
status = vslssseditcorparameterization(task, cor, cor_storage, pcor, pcor_storage)
status = vsldsseditcorparameterization(task, cor, cor_storage, pcor, pcor_storage)
```

C:

```
status = vslsSSEditCorParameterization(task, cor, cor_storage, pcor, pcor_storage);
status = vsldSSEditCorParameterization(task, cor, cor_storage, pcor, pcor_storage);
```


## Include Files

- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters

## Name

task

## Type

Fortran: TYPE (VSL_SS_TASK)

## Description

Descriptor of the task

Name	Type	Description
cor	C: VSLSSTaskPtr	
	Fortran: REAL (KIND=4)	DIMENSION (*)

## Description

The vslSSEditCorParameterization routine uses values passed as parameters of the routine to replace pointers to the correlation matrix, pointers to the correlation matrix storage format, a pointer to the parameterized correlation matrix, and a pointer to the parameterized correlation matrix storage format. See Table "Storage formats of a variance-covariance/correlation matrix" for possible values of the cor_storage and pcor_storage parameters. If an input parameter is NULL, the corresponding parameter in the VSL Summary Statistics task descriptor remains unchanged.

## Task Computation Routines

Task computation routines calculate statistical estimates on the data provided and parameters held in the task descriptor. After you create the task and initialize its parameters, you can call the computation routines as many times as necessary. Table "VSL Summary Statistics Estimates Obtained with vslSSCompute Routine" lists the statistical estimates that you can obtain using the vslSSCompute routine.

$\square$
NOTE The VSL Summary Statistics computation routines do not signal floating-point errors, such as overflow or gradual underflow, or operations with NaNs (except for the missing values in the observations).

VSL Summary Statistics Estimates Obtained with vsISSCompute Routine

Estimate	Support of Observations Available in Blocks	Description
VSL_SS_MEAN	Yes	Computes the array of means.
VSL_SS_2R_MOM	Yes	Computes the array of the $2^{\text {nd }}$ order raw moments.
VSL_SS_3R_MOM	Yes	Computes the array of the $3^{\text {rd }}$ order raw moments.
VSL_SS_4R_MOM	Yes	Computes the array of the $4^{\text {th }}$ order raw moments.
VSL_SS_2C_MOM	Yes	Computes the array of the $2^{\text {nd }}$ order central moments.
VSL_SS_3C_MOM	Yes	Computes the array of the $3^{\text {rd }}$ order central moments.
VSL_SS_4C_MOM	Yes	Computes the array of the $4^{\text {th }}$ order central moments.
VSL_SS_KURTOSIS	Yes	Computes the array of kurtosis values.
VSL_SS_SKEWNESS	Yes	Computes the array of skewness values.
VSL_SS_MIN	Yes	Computes the array of minimum values.
VSL_SS_MAX	Yes	Computes the array of maximum values.
VSL_SS_VARIATION	Yes	Computes the array of variation coefficients.
VSL_SS_COV	Yes	Computes a covariance matrix.
VSL_SS_COR	Yes	Computes a correlation matrix.
VSL_SS_POOLED_COV	No	Computes a pooled covariance matrix.
VSL_SS_GROUP_COV	No	Computes group covariance matrices.
VSL_SS_QUANTS	No	Computes quantiles.
VSL_SS_ORDER_STATS	No	Computes order statistics.
VSL_SS_ROBUST_COV	No	Computes a robust covariance matrix.
VSL_SS_OUTLIERS	No	Detects outliers in the dataset.


Estimate	Support of   Observations   Available in Blocks	Description
VSL_SS_PARTIAL_COV	No	Computes a partial covariance matrix.
VSL_SS_PARTIAL_COR	No	Computes a partial correlation matrix.
VSL_SS_MISSING_VALS	No	Supports missing values in datasets.
VSL_SS_PARAMTR_COR	No	Computes a parameterized correlation matrix.
VSL_SS_STREAM_QUANTS	Yes	Computes quantiles for streaming data.

Table "VSL Summary Statistics Computation Methods" lists estimate calculation methods supported by Intel MKL. See the Intel(R) MKL Summary Statistics Library Application Notes document on the Intel ${ }^{8}$ MKL web page for a detailed description of the methods.

## VSL Summary Statistics Computation Method

Method	Description
VSL_SS_METHOD_FAST	Fast method for calculation of the estimates
VSL_SS_METHOD_1PASS	One-pass method for calculation of estimates
VSL_SS_METHOD_TBS	TBS method for robust estimation of covariance and   mean
VSL_SS_METHOD_BACON	BACON method for detection of multivariate outliers
VSL_SS_METHOD_MI	Multiple imputation method for support of missing values   VSL_SS_METHOD_SD
VSL_SS_METHOD_SQUANTS_ZW	Correlation matrix
Zhang-Wang (ZW) method for quantile estimation for	
Streaming data	

You can calculate all requested estimates in one call of the routine. For example, to compute a kurtosis and covariance matrix using a fast method, pass a combination of the pre-defined parameters into the compute routine as shown in the example below:

```
method = VSL SS METHOD FAST;
task_params = V\overline{SL_SS_KÜRTOSIS|VSL_SS_COV;}
status = vsldSSCompute(task, task_params, method);
```

To compute statistical estimates for the next block of observations, you can do one of the following:

- copy the observations to memory, starting with the address available to the task
- use one of the appropriate Editors to modify the pointer to the new dataset in the task.

The library does not detect your changes of the dataset and computed statistical estimates. To obtain statistical estimates for a new matrix, change the observations and initialize relevant arrays. You can follow this procedure to compute statistical estimates for observations that come in portions. See Table "VSL Summary Statistics Estimates Obtained with vslSSCompute Routine" for information on such observations supported by the Intel MKL VSL Summary Statistics estimators.
To modify parameters of the task using the Task Editors, set the address of the targeted matrix of the observations or change the respective vector component indices. After you complete editing the task parameters, you can compute statistical estimates in the modified environment.

If the task completes successfully, the computation routine returns the zero status code. If an error is detected, the computation routine returns an error code. In particular, an error status code is returned in the following cases:

- the task pointer is NULL
- memory allocation has failed
- the calculation has failed for some other reason

D
NOTE You can use the NULL task pointer in calls to editor routines. In this case, the routine is terminated and no system crash occurs.

## vsISSCompute

Computes VSL Summary Statistics estimates.

## Syntax

## Fortran:

```
status = vslssscompute(task, estimates, method)
status = vsldsscompute(task, estimates, method)
C:
```

```
status = vslsSSCompute(task, estimates, method);
```

status = vslsSSCompute(task, estimates, method);
status = vsldSSCompute(task, estimates, method);

```

\section*{Include Files}
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
task & Fortran: TYPE (VSL_SS_TASK) & Descriptor of the task \\
& C: VSLSSTaskPtr & \\
estimates & Fortran: INTEGER (KIND=8) & List of statistical estimates to compute \\
& C: unsigned long long & \\
method & Fortran: INTEGER & Method to be used in calculations \\
& C: MKL_INT &
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
status & Fortran: INTEGER & Current status of the task
\end{tabular}

\section*{Description}

The vslSSCompute routine calculates statistical estimates passed as the estimates parameter using the algorithms passed as the method parameter of the routine. The computations are done in the context of the task descriptor that contains pointers to all required and optional, if necessary, properly initialized arrays. In
one call of the function, you can compute several estimates using proper methods for their calculation. See Table "VSL Summary Statistics Estimates Obtained with Compute Routine" for the list of the estimates that you can calculate with the vslSSCompute routine. See Table "VSL Summary Statistics Computation Methods" for the list of possible values of the method parameter.

To initialize single or double precision version task parameters, use the single (vslssscompute) or double (vsldsscompute) version of the editor, respectively. To initialize parameters of the integer type, use an integer version of the editor (vslisscompute).

NOTE Requesting a combination of the VSL_SS_MISSING_VALS value and any other estimate parameter in the compute function results in processing only the missing values.

\section*{Task Destructor}

Task destructor is the vslSSDeleteTask routine intended to delete task objects and release memory.
vsISSDeleteTask
Destroys the task object and releases the memory.
Syntax

\section*{Fortran:}
```

status = vslssdeletetask(task)

```

C:
```

status = vslSSDeleteTask(\&task);

```

\section*{Include Files}
- Fortran 90: mkl_vsl.f90
- C: mkl_vsl_functions.h

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
task & Fortran: TYPE (VSL_SS_TASK) & Descriptor of the task to destroy \\
& C: VSLSSTaskPtr* &
\end{tabular}

\section*{Output Parameters}
Name

Type
Fortran: INTEGER
C: int

\section*{Description}

Sets to VSL_STATUS_OK if the task is deleted; otherwise a non-zero code is returned.

\section*{Description}

The vslSSDeleteTask routine deletes the task descriptor object, releases the memory allocated for the structure, and sets the task pointer to NULL. If vslSSDeleteTask fails to delete the task successfully, it returns an error code.

NOTE Call of the destructor with the NULL pointer as the parameter results in termination of the function with no system crash.

\section*{Usage Examples}

The following examples show various standard operations with Summary Statistics routines.

\section*{Calculating Fixed Estimates for Fixed Data}

The example shows recurrent calculation of the same estimates with a given set of variables for the complete life cycle of the task in the case of a variance-covariance matrix. The set of vector components to process remains unchanged, and the data comes in blocks. Before you call the vslSSCompute routine, initialize pointers to arrays for mean and covariance and set buffers.
```

...
double w[2];
double indices[DIM] = {1, 0, 1};
/* calculating mean for 1st and 3d random vector components */
/* Initialize parameters of the task */
p = DIM;
n = N;
xstorage = VSL_SS_MATRIX_STORAGE_ROWS;
covstorage = VSL_SS_MATRIX_STORAGE_FULL;
W[0] = 0.0; W[1] = 0.0;
for ( i = 0; i < p; i++ ) mean[i] = 0.0;
for ( i = 0; i < p*p; i++ ) cov[i] = 0.0;
status = vsldSSNewTask( \&task, \&p, \&n, \&xstorage, x, 0, indices );
status = vsldSSEditTask ( task, VSL_SS_ED_ACCUM_WEIGHT, w );
status = vsldSSEditCovCor( task, meañ, \overline{cov, \&covstorage, 0, 0 );}

```

You can process data arrays that come in blocks as follows:
```

for ( i = 0; i < num_of_blocks; i++ )
{
status = vsldSSCompute( task, VSL_SS_COV, VSL_SS_METHOD_FAST );
/* Read new data block into array }\mp@subsup{}{}{-}\textrm{x}\mathrm{ ₹/
}

```

\section*{Calculating Different Estimates for Variable Data}

The context of your calculation may change in the process of data analysis. The example below shows the data that comes in two blocks. You need to estimate a covariance matrix for the complete data, and the third central moment for the second block of the data using the weights that were accumulated for the previous datasets. The second block of the data is stored in another array. You can proceed as follows:
```

/* Set parameters for the task */
p = DIM;
n = N;
xstorage = VSL_SS_MATRIX_STORAGE_ROWS;
covstorage = VSL_-SS_MATRIX_STORAGE_FULL;
w[0] = 0.0; w[1] = 0.0;
for ( i = 0; i < p; i++ ) mean[i] = 0.0;
for ( i = 0; i < p*p; i++ ) cov[i] = 0.0;
/* Create task */
status = vsldSSNewTask( \&task, \&p, \&n, \&xstorage, x1, 0, indices );

```
```

/* Initialize the task parameters */
status = vsldSSEditTask( task, VSL_SS_ED_ACCUM_WEIGHT, w );
status = vsldSSEditCovCor( task, mēan, cōv, \&cōvstorage, 0, 0 );
/* Calculate covariance for the xl data */
status = vsldSSCompute( task, VSL_SS_COV, VSL_SS_METHOD_FAST );
/* Initialize array of the 3d central moments and pass the pointer to the task */
for ( i = 0; i < p; i++ ) c3_m[i] = 0.0;
/* Modify task context */
status = vsldSSEditTask( task, VSL_SS_ED_3C_MOM, c3_m );
status = vsldSSEditTask( task, VSL_SS_ED_OB\overline{SERV, x2-);}
/* Calculate covariance for the x1 \& x2 data block */
/* Calculate the 3d central moment for the 2nd data block using earlier accumulated weight */
status = vsldSSCompute(task, VSL_SS_COV|VSL_SS_3C_MOM, VSL_SS_METHOD_FAST );
status = vslSSDeleteTask( \&task );

```

Similarly, you can modify indices of the variables to be processed for the next data block.

\section*{Mathematical Notation and Definitions}

The following notations are used in the mathematical definitions and the description of the Intel MKL VSL Summary Statistics functions.

\section*{Matrix and Weights of Observations}

For a random \(p\)-dimensional vector \(\xi=\left(\xi_{1}, \ldots, \xi_{i}, \ldots, \xi_{p}\right)\), this manual denotes the following:
- \((X)_{i}=\left(x_{i j}\right)_{j=1 \ldots n}\) is the result of \(n\) independent observations for the \(i\)-th component \(\xi_{i}\) of the vector \(\xi\).
- The two-dimensional array \(X=\left(x_{i j}\right)_{p \times n}\) is the matrix of observations.
- The column \([X]_{j}=\left(x_{i j}\right)_{i=1 . . p}\) of the matrix \(x\) is the \(j\)-th observation of the random vector \(\xi\).

Each observation \([X]_{j}\) is assigned a non-negative weight \(w_{j}\), where
- The vector \(\left(w_{j}\right)_{j=1 \ldots n}\) is a vector of weights corresponding to \(n\) observations of the random vector \(\xi\).
-
\[
W=\sum_{i=1}^{n} w_{i}
\]
is the accumulated weight corresponding to observations \(X\).

\section*{Vector of sample means}
\[
M(X)=\left(M_{1}(X), \ldots, M_{p}(X)\right) \text { with } M_{i}(X)=\frac{1}{w} \sum_{j=1}^{n} w_{j} x_{i j}
\]
for all \(i=1, \ldots, p\).
Vector of sample variances
\[
V(X)=\left(V_{1}(X), \ldots, V_{p}(X)\right) \text { with } V_{i}(X)=\frac{1}{\mathrm{~B}} \sum_{j=1}^{n} w_{j}\left(x_{i j}-M_{i}(X)\right)^{2}, \mathrm{~B}=W-\sum_{j=1}^{n} w_{i}^{2} / W
\]
for all \(i=1, \ldots, p\).
Vector of sample raw/algebraic moments of \(k\)-th order, \(k \geq 1\)
\[
R^{(k)}(X)=\left(R_{1}^{(k)}(X), \ldots, R_{p}^{(k)}(X)\right) \text { with } R_{i}^{(k)}(X)=\frac{1}{W} \sum_{j=1}^{n} w_{j} x_{i j}^{k}
\]
for all \(i=1, \ldots, p\).
Vector of sample central moments of the third and the fourth order
\[
C^{(k)}(X)=\left(C_{1}^{(k)}(X), \ldots, C_{p}^{(k)}(X)\right) \text { with } C_{i}^{(k)}(X)=\frac{1}{B} \sum_{j=1}^{n} w_{j}\left(x_{i j}-M_{i}(X)\right)^{k}, B=\sum_{j=1}^{n} w_{j}
\]
for all \(i=1, \ldots, p\) and \(k=3,4\).
Vector of sample excess kurtosis values
\[
\mathrm{B}(X)=\left(\mathrm{B}_{1}(X), \ldots, \mathrm{B}_{p}(X)\right) \text { with } \mathrm{B}_{i}(X)=\frac{C_{i}^{(4)}(X)}{V_{i}^{2}(X)}-3
\]
for all \(i=1, \ldots, p\).
Vector of sample skewness values
\[
\Gamma(X)=\left(\Gamma_{1}(X), \ldots, \Gamma_{p}(X)\right) \text { with } \Gamma_{i}(X)=\frac{C_{i}^{(3)}(X)}{V_{i}^{1.5}(X)}
\]
for all \(i=1, \ldots, p\).
Vector of sample variation coefficients
\[
V C(X)=\left(V C_{1}(X), \ldots, V C_{p}(X)\right) \text { with } V C_{i}(X)=\frac{V_{i}^{0.5}(X)}{M_{i}(X)}
\]
for all \(i=1, \ldots, p\).

\section*{Matrix of order statistics}

Matrix \(Y=\left(y_{i j}\right)_{p \times n}\), in which the \(i\)-th row \((Y)_{i}=\left(y_{i j}\right){ }_{j=1} \ldots n\) is obtained as a result of sorting in the ascending order of row \((X)_{i}=\left(x_{i j}\right)_{j=1 \ldots n}\) in the original matrix of observations.

Vector of sample minimum values
\[
\operatorname{Min}(X)=\left(\operatorname{Min}_{1}(X), \ldots, \operatorname{Min} n_{p}(X)\right), \text { where } \operatorname{Min} n_{i}(X)=y_{i 1}
\]
for all \(i=1, \ldots, p\).
Vector of sample maximum values
\[
\operatorname{Max}(X)=\left(\operatorname{Max}_{1}(X), \ldots, \operatorname{Max}_{p}(X)\right), \text { where } \operatorname{Max}_{i}(X)=y_{i n}
\]
for all \(i=1, \ldots, p\).
Vector of sample median values
\(\operatorname{Med}(X)=\left(\operatorname{Med}_{1}(X), \ldots, \operatorname{Med}_{p}(X)\right)\), where \(\operatorname{Med}_{i}(X)=\left\{\begin{array}{cc}y_{i,(n+1) / 2}, & \text { if } n \text { is odd } \\ \left(y_{i, n / 2}+y_{i, n / 2+1}\right) / 2, & \text { if } n \text { is even }\end{array}\right.\)
for all \(i=1, \ldots, p\).
Vector of sample quantile values
For a positive integer number \(q\) and \(k\) belonging to the interval [\(0, q-1\)], point \(z_{i}\) is the \(k\)-th \(q\) quantile of the random variable \(\xi_{i}\) if \(P\left\{\xi_{i} \leq z_{i}\right\} \geq \beta\) and \(P\left\{\xi_{i} \leq z_{i}\right\} \geq 1-\beta\), where
- \(\quad P\) is the probability measure.
- \(\beta=k / n\) is the quantile order.

The calculation of quantiles is as follows:
\(j=[(n-1) \beta]\) and \(f=\{(n-1) \beta\}\) as integer and fractional parts of the number \((n-1) \beta\), respectively, and the vector of sample quantile values is
\(Q(X, \beta)=\left(Q_{1}(X, \beta), \ldots, Q_{p}(X, \beta)\right)\)
where
\(\left(Q_{i}(X, \beta)=y_{i, j+1}+f\left(y_{i, j+2}-y_{i, j+1}\right)\right.\)
for all \(i=1, \ldots, p\).

\section*{Variance-covariance matrix}
\(C(X)=\left(C_{i j}(X)\right)_{p \times p}\)
where
\[
c_{i j}(X)=\frac{1}{B} \sum_{k=1}^{n} w_{k}\left(x_{i k}-M_{i}(X)\right)\left(x_{j k}-M_{j}(X)\right), B=W-\sum_{j=1}^{n} w_{j}^{2} / W
\]

Pooled and group variance-covariance matrices
The set \(N=\{1, \ldots, n\}\) is partitioned into non-intersecting subsets
\[
G_{i}, i=1 . . g, N=\bigcup_{i=1}^{g} G_{i}
\]

The observation \([X]_{j}=\left(x_{i j}\right)_{i=1 \ldots p}\) belongs to the group \(r\) if \(j \in G_{r}\). One observation belongs to one group only. The group mean and variance-covariance matrices are calculated similarly to the formulas above:
\[
M^{(r)}(X)=\left(M_{1}^{(r)}(X), \ldots, M_{p}^{(r)}(X)\right) \text { with } M_{i}^{(r)}(X)=\frac{1}{W^{(r)}} \sum_{j \in G_{r}} w_{j} x_{i j}, W^{(r)}=\sum_{j \in G_{r}} w_{j}
\]
for all \(i=1, \ldots, p\),
\[
C^{(r)}(X)=\left(c_{i j}^{(r)}(X)\right)_{p \times p}
\]
where
\[
c_{i j}^{(r)}(X)=\frac{1}{B^{(r)}} \sum_{k \in G_{r}} w_{k}\left(x_{i k}-M_{i}^{(r)}(X)\right)\left(x_{j k}-M_{j}^{(r)}(X)\right), B^{(r)}=W^{(r)}-\sum_{j \in G_{r}} w_{j}^{2} / W^{(r)}
\]
for all \(i=1, \ldots, p\) and \(j=1, \ldots, p\).
A pooled variance-covariance matrix and a pooled mean are computed as weighted mean over group covariance matrices and group means, correspondingly:
\[
M^{p o o l e d}(X)=\left(M_{1}^{\text {pooled }}(X), \ldots, M_{p}^{\text {pooled }}(X)\right) \text { with } M_{i}^{p o o l e d}(X)=\frac{1}{W^{(1)}+\ldots+W^{(g)}} \sum_{r=1}^{g} W^{(r)} M_{i}^{(r)}(X)
\]
for all \(i=1, \ldots, p\),
\[
C^{p o o l e d}(X)=\left(c_{i j}^{p o o l e d}(X)\right)_{p x p}, c_{i j}^{p o o l e d}(X)=\frac{1}{B^{(1)}+\ldots+B^{(g)}} \sum_{r=1}^{g} B^{(r)} c_{i j}^{(r)}(X)
\]
for all \(i=1, \ldots, p\) and \(j=1, \ldots, p\).

\section*{Correlation matrix}
\[
R(X)=\left(r_{i j}(X)\right)_{p \times p}, \text { where } r_{i j}(X)=\frac{c_{i j}}{\sqrt{C_{i j} c_{i j}}}
\]
for all \(i=1, \ldots, p\) and \(j=1, \ldots, p\).

\section*{Partial variance-covariance matrix}

For a random vector \(\xi\) partitioned into two components \(Z\) and \(Y\), a variance-covariance matrix \(C\) describes the structure of dependencies in the vector \(\xi\) :
\[
C(X)=\left[\begin{array}{cc}
C_{Z}(X) & C_{Z Y}(X) \\
C_{Y Z}(X) & C_{Y}(X)
\end{array}\right]
\]

The partial covariance matrix \(P(X)=\left(p_{i j}(X)\right)_{k \times k}\) is defined as
\[
P(X)=C_{Y}(X)-C_{Y Z}(X) C_{Z}^{-1}(X) C_{Z Y}(X)
\]
where \(k\) is the dimension of \(Y\).

\section*{Partial correlation matrix}

The following is a partial correlation matrix for all \(i=1, \ldots, k\) and \(j=1, \ldots, k\) :
\[
R P(X)=\left(r p_{i j}(X)\right)_{k x k}, \text { where } r p_{i j}(X)=\frac{p_{i j}(X)}{\sqrt{p_{i j}(X) p_{i j}(X)}}
\]
where
- \(k\) is the dimension of \(Y\).
- \(p_{i j}(X)\) are elements of the partial variance-covariance matrix.

\section*{Fourier Transform Functions}

The general form of the discrete Fourier transform is
\[
Z_{k_{1}, k_{2}, \ldots, k_{\alpha}}=\sigma \times \sum_{j_{d}=0}^{n_{d}-1} \ldots \sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{1}=0}^{n_{1}-1} w_{j_{1}, j_{2}, \ldots, j_{d}} \exp \left(\delta i 2 \pi \sum_{1=1}^{d} j_{j_{1}} k_{1} / n_{1}\right)
\]
for \(k_{1}=0, \ldots n_{1}-1 \quad(1=1, \ldots, d)\), where \(\sigma\) is a scale factor, \(\delta=-1\) for the forward transform, and \(\delta=\) +1 for the inverse (backward) transform. In the forward transform, the input (periodic) sequence \(\left\{w_{j_{1}}\right.\), \(\left.j_{2}, \ldots, j_{d}\right\}\) typically belongs to the set of complex-valued sequences and real-valued sequences (forward domain). Respective domains for the backward transform, or backward domains, are represented by complex-valued sequences and complex-valued conjugate-even sequences.

Math Kernel Library (Inte \({ }^{\circledR}\) MKL) provides an interface for computing a discrete Fourier transform through the fast Fourier transform algorithm. This chapter describes the following implementations of the fast Fourier transform functions available in Intel MKL:
- Fast Fourier transform (FFT) functions for single-processor or shared-memory systems (see FFT Functions below)
- Cluster FFT functions for distributed-memory architectures (available with Intel \({ }^{\circledR}\) MKL for the Linux* and Windows* operating systems only).

NOTE Intel MKL also supports the FFTW3* interfaces to the fast Fourier transform functionality for symmetric multiprocessing (SMP) systems.

Both FFT and Cluster FFT functions support a five-stage usage model for computing an FFT:
1. Allocate a fresh descriptor for the problem with a call to the DftiCreateDescriptor or DfticreateDescriptorDM function. The descriptor captures the configuration of the transform, such as the dimensionality (or rank), sizes, number of transforms, memory layout of the input/output data (defined by strides), and scaling factors. Many of the configuration settings are assigned default values in this call and may need modification depending on your application.
2. Optionally adjust the descriptor configuration with a call to the DftiSetValue or DftiSetValueDM function as needed. Typically, you must carefully define the data storage layout for an FFT or the data distribution among processes for a Cluster FFT. The configuration settings of the descriptor, such as the default values, can be obtained with the DftiGetValue or DftiGetValueDM function.
3. Commit the descriptor with a call to the DftiCommitDescriptor or DftiCommitDescriptorDM function, that is, make the descriptor ready for the transform computation. Once the descriptor is committed, the parameters of the transform, such as the type and number of transforms, strides and distances, the type and storage layout of the data, and so on, are "frozen" in the descriptor.
4. Compute the transform with a call to the DftiComputeForward/DftiComputeBackward or DftiComputeForwardDM/DftiComputeBackwardDM functions as many times as needed. With the committed descriptor, the compute functions only accept pointers to the input/output data and compute the transform as defined. To modify any configuration parameters later on, use DftiSetValue followed by DftiCommitDescriptor (DftiSetValueDM followed by DftiCommitDescriptorDM) or create and commit another descriptor.
5. Deallocate the descriptor with a call to the DftiFreeDescriptor or DftiFreeDescriptorDM function. This will return the memory internally consumed by the descriptor to the operating system.
All the above functions return an integer status value, which is zero upon successful completion of the operation. You can interpret a non-zero status with the help of the DftiErrorClass or DftiErrorMessage function.

The FFT functions support lengths with arbitrary factors. You can improve performance of the Intel MKL FFT if the length of your data vector permits factorization into powers of optimized radices. See the Intel MKL User's Guide for specific radices supported efficiently and the length constraints.

NOTE The FFT functions assume the Cartesian representation of complex data (that is, the real and imaginary parts define a complex number). The Intel MKL Vector Mathematical Functions provide an efficient tool for conversion to and from the polar representation (see Example "Conversion from Cartesian to polar representation of complex data" and Example "Conversion from polar to Cartesian representation of complex data").

\section*{Optimization Notice}

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

\section*{FFT Functions}

The fast Fourier transform function library of Intel MKL provides one-dimensional, two-dimensional, and multi-dimensional transforms (of up to seven dimensions); and both Fortran and C interfaces for all transform functions.

Table "FFT Functions in Intel MKL" lists FFT functions implemented in Intel MKL:

\section*{FFT Functions in Intel MKL}
\begin{tabular}{ll}
Function Name & Operation \\
\hline Descriptor Manipulation Functions & \\
DftiCreateDescriptor & \begin{tabular}{l}
Allocates the descriptor data structure and initializes it with default \\
configuration values.
\end{tabular} \\
DftiCommitDescriptor & Performs all initialization for the actual FFT computation. \\
DftiFreeDescriptor & Frees memory allocated for a descriptor. \\
DftiCopyDescriptor & Makes a copy of an existing descriptor. \\
FFT Computation Functions & Computes the forward FFT. \\
DftiComputeForward & Computes the backward FFT. \\
DftiComputeBackward & \begin{tabular}{l}
Sets one particular configuration parameter with the specified \\
Descriptor Configuration Functions
\end{tabular} \\
DftiSetValue & Gets the value of one particular configuration parameter. \\
DftiGetValue & Checks if the status reflects an error of a predefined class. \\
Status Checking Functions & Translates the numeric value of an error status into a message. \\
DftiErrorClass &
\end{tabular}

\section*{Computing an FFT}

The FFT functions described later in this chapter are provided with the Fortran and C interfaces. Fortran 95 is required because it offers features that have no counterpart in FORTRAN 77.

\(\square\)
NOTE The Fortran interface of the FFT computation functions requires one-dimensional data arrays for any dimension of FFT problem. For multidimensional transforms, you can pass the address of the first column of the multidimensional data to the computation functions.

The materials presented in this chapter assume the availability of native complex types in C as they are specified in C9X.
You can find code examples that use FFT interface functions to compute transform results in the Fourier Transform Functions Code Examples section in the Appendix C.
For most common situations, an FFT computation can be effected by four function calls (refer to the usage model for details). A single data structure, the descriptor, stores configuration parameters that can be changed independently.
The descriptor data structure, when created, contains information about the length and domain of the FFT to be computed, as well as the setting of several configuration parameters. Default settings for some of these parameters are as follows:
- The FFT to be computed does not have a scale factor;
- There is only one set of data to be transformed;
- The data is stored contiguously in memory;
- The computed result overwrites the input data (the transform is in-place);

The default settings can be changed one-at-a-time through the function DftiSetValue as illustrated in the Example "Changing Default Settings (Fortran)" and Example "Changing Default Settings (C)".

\section*{FFT Interface}

To use the FFT functions, you need to access the module MKL_DFTI through the "use" statement in Fortran; or include the header file mkl_dfti.h in C.
The Fortran interface provides a derived type DFTI_DESCRIPTOR, named constants representing various names of configuration parameters and their possible values, and overloaded functions through the generic functionality of Fortran 95.
The C interface provides the DFTI_DESCRIPTOR_HANDLE type, named constants of two enumeration types DFTI_CONFIG_PARAM and DFTI_CONFIG_VALUE, and functions, some of which accept different numbers of input arguments.

NOTE The current version of the library may not support some of the FFT functions or functionality described in the subsequent sections of this chapter. You can find the complete list of the implementation-specific exceptions in the Intel MKL Release Notes.

For the main categories of Intel MKL FFT functions, see FFT Functions.

\section*{Descriptor Manipulation Functions}

There are four functions in this category: create a descriptor, commit a descriptor, copy a descriptor, and free a descriptor.

\section*{DftiCreateDescriptor}

Allocates the descriptor data structure and initializes it with default configuration values.

Syntax

\section*{Fortran:}
```

status = DftiCreateDescriptor( desc_handle, precision, forward_domain, dimension,

```
length)

C:
```

status = DftiCreateDescriptor(\&desc_handle, precision, forward_domain, dimension,
length);

```

Include Files
- FORTRAN 90: mkl_dfti.f90
- C: mkl_dfti.h

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline precision & \begin{tabular}{l}
FORTRAN: INTEGER \\
C: enum
\end{tabular} & Precision of the transform: DFTI_SINGLE or DFTI_DOUBLE. \\
\hline forward_domain & \begin{tabular}{l}
FORTRAN: INTEGER \\
C: enum
\end{tabular} & Forward domain of the transform: DFTI_COMPLEX or DFTI_REAL. \\
\hline dimension & \begin{tabular}{l}
FORTRAN: INTEGER \\
C: MKL_LONG
\end{tabular} & Dimension of the transform. \\
\hline length & \begin{tabular}{l}
FORTRAN: \\
INTEGER if dimension \(=1\). \\
Array INTEGER, DIMENSION(*) otherwise. \\
C: \\
MKL_LONG if dimension \(==1\). \\
Array of type MKL_LONG otherwise.
\end{tabular} & Length of the transform for a one-dimensional transform. Lengths of each dimension for a multi-dimensional transform. \\
\hline Output Parameters & & \\
\hline Name & Type & Description \\
\hline desc_handle & \begin{tabular}{l}
FORTRAN: DFTI_DESCRIPTOR \\
C: DFTI \(\square\) DESCRIPTOR HANDLE
\end{tabular} & FFT descriptor. \\
\hline status & \begin{tabular}{l}
FORTRAN: INTEGER \\
C: MKL_LONG
\end{tabular} & Function completion status. \\
\hline
\end{tabular}

\section*{Description}

This function allocates memory for the descriptor data structure and instantiates it with all the default configuration settings with respect to the precision, forward domain, dimension, and length of the desired transform. Because memory is allocated dynamically, the result is actually a pointer to the created descriptor. This function is slightly different from the "initialization" function that can be found in software packages or libraries that implement more traditional algorithms for computing FFT. This function does not perform any significant computational work such as computation of twiddle factors. The function DftiCommitDescriptor does this work after the function DftiSetValue has set values of all needed parameters.
The function returns the zero status when it completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Interface and Prototype}
```

Fortran interface.
Note that the body provided below only illustrates the list of different
parameters and the types of dummy parameters. You can rely only on the function
name following keyword INTERFACE. For the precise definition of the
interface, see the include/mkl_dfti.f90 file in the Intel MKL directory.
INTERFACE DftiCreateDescriptor
FUNCTION some_actual_function_1d(desc, precision, domain, dim, length)
INTEGER :: some_ac\overline{tual_func\overline{tion_1d}}\mathbf{~}=1
INTEGER, INTENT(IN) :: length
END FUNCTION some_actual_function_1d
FUNCTION some_actual_function_md(desc, precision, domain, dim, lengths)
INTEGER :: some_ac\overline{tual_func\overline{tion_md}}\mathbf{\}=\mp@code{m}
INTEGER, INTENT(IN), DIMENSION(*) :: lengths
END FUNCTION some_actual_function_md
END INTERFACE DftiCreateDescriptor

```

Note that the function is overloaded, because the actual parameter for the formal parameter length can be a scalar or a rank-one array.
The function is also overloaded with respect to the type of the precision parameter to provide an option of using a precision-specific function for the generic name. Using more specific functions can reduce the size of statically linked executable for the applications using only single-precision FFTs or only double-precision FFTs. To use this option, change the "USE MKL_DFTI" statement in your program unit to one of the following:
```

USE MKL_DFTI, FORGET=>DFTI_SINGLE, DFTI_SINGLE=>DFTI_SINGLE_R
USE MKL_DFTI, FORGET=>DFTI_DOUBLE, DFTI_DOUBLE=>DFTI_DOUBLE_R

```
where the name "FORGET" can be replaced with any name that is not used in the program unit.
```

/* C prototype.
* Note that the preprocessor definition provided below only illustrates
* that the actual function called may be determined at compile time.
* You can rely only on the declaration of the function.
* For precise definition of the preprocessor macro, see the include/mkl_dfti.h
* file in the Intel MKL directory.
*/
MKL_LONG DftiCreateDescriptor(DFTI_DESCRIPTOR_HANDLE * pHandle,
enum DFTI_CONFIG VALUE precision,
enum DFTI_CONFIG_VALUE domain,
MKL_LONG dimensiōn, ... /* length/lengths */ );

```
```

\#define DftiCreateDescriptor(desc,prec,domain,dim,sizes) \
((prec)==DFTI_SINGLE \&\& (dim)==1) ? \
some_actual_fünction_sld((desc),(domain),(MKL_LONG)(sizes)) : \
...

```

Variable length/lengths is interpreted as a scalar (MKL_LONG) or an array (MKL_LONG*), depending on the value of parameter dimension. If the value of parameter precision is known at compile time, an optimizing compiler retains only the call to the respective specific function, thereby reducing the size of the statically linked application. Avoid direct calls to the specific functions used in the preprocessor macro definition, because their interface may change in future releases of the library. If the use of the macro is undesirable, you can safely undefine it after inclusion of the Intel MKL FFT header file, as follows:
```

\#include "mkl_dfti.h"
\#undef DftiCrēateDescriptor

```

\section*{See Also}

DFTI_PRECISION
DFTI_FORWARD_DOMAIN
DFTI_DIMENSION, DFTI_LENGTHS
Configuration Parameters

\section*{DftiCommitDescriptor}

Performs all initialization for the actual FFT computation.

\section*{Syntax}

\section*{Fortran:}
```

status = DftiCommitDescriptor( desc_handle )

```

C:
```

status = DftiCommitDescriptor(desc_handle);

```

\section*{Include Files}
- FORTRAN 90: mkl_dfti.f90
- C: mkl_dfti.h

\section*{Input Parameters}

Name
desc_handle

\section*{Type}

FORTRAN: DFTI_DESCRIPTOR
C: DFTI_DESCRIPTOR_HANDLE

\section*{Output Parameters}

\section*{Name}
```

desc_handle

```
status

\section*{Type}

FORTRAN: DFTI_DESCRIPTOR
C: DFTI_DESCRIPTOR_HANDLE
FORTRAN: INTEGER

\section*{Description}

FFT descriptor.

\section*{Description}

Updated FFT descriptor.

Function completion status.

C: MKL_LONG

\section*{Description}

This function completes initialization of a previously created descriptor, which is required before the descriptor can be used for FFT computations. Typically, this committal performs all initialization that facilitates the actual FFT computation. This initialization may involve exploring many different factorizations of the input length to find the optimal computation method.

Any changes of configuration parameters of a committed descriptor via the set value function (see Descriptor Configuration) requires a re-committal of the descriptor before a computation function can be invoked.
Typically, this committal function call is immediately followed by a computation function call (see FFT Computation).
The function returns the zero status when it completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Interface and Prototype}
```

! Fortran interface
INTERFACE DftiCommitDescriptor
!Note that the body provided here is to illustrate the different
!argument list and types of dummy arguments. The interface
!does not guarantee what the actual function names are.
!Users can only rely on the function name following the
! keyword INTERFACE
FUNCTION some_actual function_1 ( Desc_Handle )
INTEGER :: som}e actual functiōn 1
TYPE (DFTI DESCRIPTOR), POINTER :: Desc_Handle
END FUNCTİON some actual function 1
END INTERFACE Dfti\overline{CommitDescriptor-}

```
/* C prototype */
MKL_LONG DftiCommitDescriptor (DFTI_DESCRIPTOR_HANDLE);

\section*{DftifreeDescriptor}

Frees the memory allocated for a descriptor.

\section*{Syntax}

\section*{Fortran:}
```

status = DftiFreeDescriptor( desc_handle )

```

C:
status \(=\) DftiFreeDescriptor(\&desc_handle);
Include Files
- FORTRAN 90: mkl_dfti.f90
- C: mkl_dfti.h

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
desc_handle & FORTRAN: DESCRIPTOR_HANDLE & FFT descriptor. \\
& C: DFTI_DESCRIPTOR_HANDLE &
\end{tabular}

\section*{Output Parameters}

\section*{Name}
```

desc_handle

``` status

\section*{Type}

FORTRAN: DESCRIPTOR_HANDLE
C: DFTI_DESCRIPTOR_HANDLE

\section*{Description}

Memory for the FFT descriptor is released.

Function completion status.

FORTRAN: INTEGER
C: MKL_LONG

\section*{Description}

This function frees all memory allocated for a descriptor.

NOTE Memory allocation/deallocation inside Intel MKL is managed by Intel MKL memory management software. So, even after successful completion of FreeDescriptor, the memory space may continue being allocated for the application because the memory management software sometimes does not return the memory space to the OS, but considers the space free and can reuse it for future memory allocation. See Example "mkl_free_buffers Usage with FFT Functions" in the description of the service function FreeBuffers on how to use Intel MKL memory management software and release memory to the OS.

The function returns the zero status when it completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Interface and Prototype}
```

! Fortran interface
INTERFACE DftiFreeDescriptor
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
FUNCTION some_actual_function_3( Desc_Handle )
INTEGER :: some_actu\overline{al_functiōn_3}
TYPE (DFTI DESCRİPTOR), -POINTER \: Desc_Handle
END FUNCT\overline{I}ON some_actual_function_3
END INTERFACE Dfti\overline{FreeDes}\overline{C}riptor

```
/* C prototype */
MKL_LONG DftiFreeDescriptor (DFTI_DESCRIPTOR_HANDLE *);

\section*{DftiCopyDescriptor}

Makes a copy of an existing descriptor.

\section*{Syntax}

\section*{Fortran:}
```

status = DftiCopyDescriptor( desc_handle_original, desc_handle_copy )

```

C:
```

status = DftiCopyDescriptor(desc_handle_original, \&desc_handle_copy);

```

\section*{Include Files}
- FORTRAN 90: mkl_dfti.f90
- C: mkl_dfti.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
desc_handle_original & FORTRAN: DESCRIPTOR_HANDLE & The FFT descriptor to make a copy of. \\
& C: DFTI_DESCRIPTOR_HANDLE &
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
desc_handle_copy & FORTRAN: DESCRIPTOR_HANDLE & The copy of the FFT descriptor. \\
C: DFTI_DESCRIPTOR_HANDLE & \\
status & FORTRAN: INTEGER & Function completion status. \\
& C: MKL_LONG &
\end{tabular}

\section*{Description}

This function makes a copy of an existing descriptor and provides a pointer to it. The purpose is that all information of the original descriptor will be maintained even if the original is destroyed via the free descriptor function DftiFreeDescriptor.
The function returns the zero status when it completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Interface and Prototype}
```

! Fortran interface
INTERFACE DftiCopyDescriptor
! Note that the body provided here is to illustrate the different
!argument list and types of dummy arguments. The interface
!does not guarantee what the actual function names are.
!Users can only rely on the function name following the
! keyword INTERFACE
FUNCTION some_actual_function_2( Desc_Handle_Original,
Desc_Handle_Copy )
INTEGER :: some_actual_function_2
TYPE(DFTI_DESCRI\overline{PTOR), -POINTER \: Desc_Handle_Original, Desc_Handle_Copy}
END FUNCTION some_actual_function_2
END INTERFACE Dfti\overline{CopyDescriptor}

```
```

/* C prototype */
MKL_LONG DftiCopyDescriptor( DFTI_DESCRIPTOR_HANLDE, DFTI_DESCRIPTOR_HANDLE * );

```

\section*{FFT Computation Functions}

There are two functions in this category: compute the forward transform, and compute the backward transform.

\section*{DftiComputeForward \\ Computes the forward FFT.}

\section*{Syntax}

\section*{Fortran:}
```

status = DftiComputeForward( desc_handle, x_inout )
status = DftiComputeForward( desc_handle, x_in, y_out )
status = DftiComputeForward( desc_handle, xre_inout, xim_inout )
status = DftiComputeForward( desc_handle, xre_in, xim_in, yre_out, yim_out )

```

C:
```

status = DftiComputeForward(desc_handle, x_inout);
status = DftiComputeForward(desc_handle, x_in, y_out);
status = DftiComputeForward(desc_handle, xre_inout, xim_inout);
status = DftiComputeForward(desc_handle, xre_in, xim_in, yre_out, yim_out);

```

\section*{Input Parameters}

Name
```

desc_handle

```
x_inout, x_in
xre_inout,
xim_inout,
xre_in, xim_in

\section*{Type}

FORTRAN: DFTI_DESCRIPTOR C: DFTI_DESCRIPTOR_HANDLE

\section*{Description}

FFT descriptor.

Data to be transformed in case of a real forward domain, specified in the DFTI_FORWARD_DOMAIN configuration setting.

FORTRAN: Array REAL (KIND=WP) or COMPLEX (KIND=WP), DIMENSION(*), where type and working precision WP must be consistent with the forward domain and precision specified in the descriptor. C: Array of type float or double depending on the precision of the transform.
FORTRAN: Array REAL (KIND=WP) or COMPLEX (KIND=WP), DIMENSION(*), where type and working precision WP must be consistent with the forward domain and precision specified in the descriptor.

C: Array of type float or double depending on the precision of the transform, specified in the DFTI_PRECISION configuration setting.

Real and imaginary parts of the data to be transformed in case of a complex forward domain, specified in the DFTI_FORWARD_DOMAIN configuration setting.

The suffix in parameter names corresponds to the value of the configuration parameter DFTI_PLACEMENT as follows:
- _inout to DFTI_INPLACE
- _in or _out to DFTI_NOT_INPLACE

\section*{Output Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline y_out & \begin{tabular}{l}
FORTRAN: Array REAL (KIND=WP) or COMPLEX (KIND=WP), DIMENSION(*), where type and working precision WP must be consistent with the forward domain and precision specified in the descriptor. \\
C: Array of type float or double depending on the precision of the transform.
\end{tabular} & The transformed data in case of a real backward domain, determined by the DFTI_FORWARD_DOMAIN configuration setting. \\
\hline \begin{tabular}{l}
xre_inout, \\
xim_inout, \\
yre_out, yim_out
\end{tabular} & \begin{tabular}{l}
FORTRAN: Array REAL (KIND=WP) or COMPLEX (KIND=WP), DIMENSION(*), where type and working precision WP must be consistent with the forward domain and precision specified in the descriptor. \\
C: Array of type float or double depending on the precision of the transform.
\end{tabular} & Real and imaginary parts of the transformed data in case of a complex backward domain, determined by the DFTI_FORWARD_DOMAIN configuration setting. \\
\hline status & \begin{tabular}{l}
FORTRAN: INTEGER \\
C: MKL_LONG
\end{tabular} & Function completion status. \\
\hline
\end{tabular}

The suffix in parameter names corresponds to the value of the configuration parameter DFTI_PLACEMENT as follows:
- _inout to DFTI_INPLACE
- _in or _out to DFTI_NOT_INPLACE

\section*{Include Files}
- FORTRAN 90: mkl_dfti.f90
- C: mkl_dfti.h

\section*{Description}

The DftiComputeForward function accepts the descriptor handle parameter and one or more data parameters. Provided the descriptor is configured and committed successfully, this function computes the forward FFT, that is, the transform with the minus sign in the exponent, \(\delta=-1\).
The number and types of the data parameters that the function requires may vary depending on the configuration of the descriptor. This variation is accommodated by variable parameters in \(C\) and the generic interface in Fortran. The generic Fortran interface to the function is based on a set of specific functions. These functions can check for inconsistency between the required and actual number of parameters. However, the specific functions disregard the type of the actual parameters and instead use the interpretation defined in the descriptor by configuration parameters FTI_FORWARD_DOMAIN, DFTI_INPUT_STRIDES, DFTI_INPUT_DISTANCE, and so on.
The function returns the zero status when completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Interface and Prototype}

\footnotetext{
! Fortran interface.
! Note that the body provided below only illustrates the list of different
! parameters and the types of dummy parameters. You can rely only on the function
}
```

! name following keyword INTERFACE. For the precise definition of the
! interface, see the include/mkl_dfti.f90 file in the Intel MKL directory.
INTERFACE DftiComputeForward
FUNCTION some_actual_function_1 (desc,sSrcDst)
INTEGER som\overline{e actual function 1}
REAL(4), INTE\overline{NT (INOUTT), DIMEN\overline{NION(*) :: sSrcDst}}\mathbf{N}\mathrm{ (*)}
END FUNCTION some_actual_function_1
FUNCTION some_actual_function_2(desc,cSrcDst)
INTEGER some_ actual_function_2
COMPLEX(8), \overline{INTENT(\overline{INOUT), D\overline{IMENSION(*) : : cSrcDst}}\mathbf{N}=(})=
...
END FUNCTION some_actual_function_2
FUNCTION some_actual_function_3(desc,sSrcDstRe,sSrcDstIm)
INTEGER some_ actual_function_3
REAL(4), INTE\overline{NT (INOŪT), DIMEN}\textrm{NION(*) :: sSrcDstRe}
REAL(4), INTENT(INOUT), DIMENSION(*) :: sSrcDstIm
END FUNCTION some_actual_function_3
...
END INTERFACE DftiComputeForward

```

The Fortran interface requires that the data parameters have the type of assumed-size rank-1 array, even for multidimensional transforms. The implementations of the FFT interface require the data stored linearly in memory with a regular "stride" pattern capable of describing multidimensional array layout (discussed more fully in DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES, see also [3]), and the function requires that the data parameters refer to the first element of the data. Consequently, the data arrays should be specified with the DIMENSION (*) attribute and the storage associated with the actual multidimensional arrays via the EQUIVALENCE statement.
```

/* C prototype */
MKL_LONG DftiComputeForward( DFTI_DESCRIPTOR_HANDLE, void*, ... );

```

\section*{See Also}

DFTI_FORWARD_DOMAIN
DFTI_PLACEMENT
DFTI_PACKED_FORMAT
DFTI_DIMENSION, DFTI_LENGTHS
DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES
DftiComputeBackward

\section*{DftiComputeBackward}

Computes the backward FFT.

\section*{Syntax}

\section*{Fortran:}
```

status = DftiComputeBackward( desc_handle, x_inout )
status = DftiComputeBackward( desc_handle, y_in, x_out )
status = DftiComputeBackward( desc_handle, xre_inout, xim_inout )
status = DftiComputeBackward( desc_handle, yre_in, yim_in, xre_out, xim_out )

```

C:
status \(=\) DftiComputeBackward(desc_handle, x_inout);
```

status = DftiComputeBackward(desc_handle, y_in, x_out);
status = DftiComputeBackward(desc_handle, xre_inout, xim_inout);
status = DftiComputeBackward(desc_handle, yre_in, yim_in, xre_out, xim_out);

```

Input Parameters

Name
```

desc_handle

```
x_inout, y_in
xre_inout,
xim_inout,
yre_in, yim_in
x_inout, y_in
xre_inout,
xim_inout,
yre_in, yim_in

\section*{Type}

FORTRAN: DFTI_DESCRIPTOR C: DFTI_DESCRIPTOR_HANDLE

FORTRAN: Array REAL (KIND=WP) or COMPLEX (KIND=WP), DIMENSION(*), where type and working precision WP must be consistent with the forward domain and precision specified in the descriptor.

C: Array of type float or double depending on the precision of the transform, specified in the DFTI_PRECISION configuration setting.

FORTRAN: Array REAL (KIND=WP) or COMPLEX (KIND=WP), DIMENSION(*), where type and working precision wP must be consistent with the forward domain and precision specified in the descriptor.

\section*{Description}

FFT descriptor.

Data to be transformed in case of a real backward domain, determined by the DFTI_FORWARD_DOMAIN configuration setting.

C: Array of type float or double depending on the precision of the transform.

Real and imaginary parts of the data to be transformed in case of a complex backward domain, determined by the DFTI_FORWARD_DOMAIN configuration setting.

The suffix in parameter names corresponds to the value of the configuration parameter DFTI_PLACEMENT as follows:
- _inout to DFTI_INPLACE
- _in or _out to DFTI_NOT_INPLACE

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
x_out & \begin{tabular}{l}
FORTRAN: Array REAL (KIND=WP) or \\
\\
COMPLEX (KIND=WP), DIMENSION (*), \\
where type and working precision wP must \\
be consistent with the forward domain and \\
precision specified in the descriptor.
\end{tabular} \\
& \begin{tabular}{l}
C: Array of type float or double \\
depending on the precision of the \\
transform.
\end{tabular} \\
xre_inout, & \begin{tabular}{l}
FORTRAN: Array REAL (KIND=WP) or \\
xim_inout, \\
xre_out, xim_out
\end{tabular} \\
& \begin{tabular}{l}
COMPLEX (KIND=WP), DIMENSION (*), \\
where type and working precision wP must \\
be consistent with the forward domain and \\
precision specified in the descriptor.
\end{tabular}
\end{tabular}

\section*{Description}

The transformed data in case of a real forward domain, specified in the DFTI_FORWARD_DOMAIN configuration setting.

Real and imaginary parts of the transformed data in case of a complex forward domain, specified in the DFTI_FORWARD_DOMAIN configuration setting.
\begin{tabular}{lll}
Name & Type & Description \\
C: Array of type float or double \\
depending on the precision of the \\
transform.
\end{tabular}\(\quad\)\begin{tabular}{l}
FORTRAN: INTEGER \\
C: MKL_LONG
\end{tabular}

The suffix in parameter names corresponds to the value of the configuration parameter DFTI_PLACEMENT as follows:
- _inout to DFTI_INPLACE
- _in or _out to DFTI_NOT_INPLACE

\section*{Include Files}
- FORTRAN 90: mkl_dfti.f90
- C: mkl_dfti.h

\section*{Description}

The function accepts the descriptor handle parameter and one or more data parameters. Provided the descriptor is configured and committed successfully, the DftiComputeBackward function computes the inverse FFT, that is, the transform with the plus sign in the exponent, \(\delta=+1\).
The number and types of the data parameters that the function requires may vary depending on the configuration of the descriptor. This variation is accommodated by variable parameters in \(C\) and the generic interface in Fortran. The generic Fortran interface to the computation function is based on a set of specific functions. These functions can check for inconsistency between the required and actual number of parameters. However, the specific functions disregard the type of the actual parameters and instead use the interpretation defined in the descriptor by configuration parameters DFTI_FORWARD_DOMAIN, DFTI_INPUT_STRIDES, DFTI_INPUT_DISTANCE, and so on.

The function returns the zero status when completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Interface and Prototype}
```

! Fortran interface.
! Note that the body provided below only illustrates the list of different
! parameters and the types of dummy parameters. You can rely only on the function
! name following keyword INTERFACE. For the precise definition of the
! interface, see the include/mkl_dfti.f90 file in the Intel MKL directory.
INTERFACE DftiComputeBackward
FUNCTION some_actual_function_1(desc,sSrcDst)
INTEGER some actual function_1
REAL(4), INTE\overline{NT (INOUTT), DIMEN̄SION (*) :: sSrcDst}
...
END FUNCTION some_actual_function_1
FUNCTION some_actual_function_2(desc,cSrcDst)
INTEGER some_ actual_function_2

```

```

    ...
    END FUNCTION some_actual_function_2
FUNCTION some_actual_function_3(desc,sSrcDstRe,sSrcDstIm)
INTEGER somē_actual_function_3

```

```

    REAL(4), INTENT(INOUT), DIMENSION(*) :: sSrcDstIm
    END FUNCTION some_actual_function_3

```
```

END INTERFACE DftiComputeBackward

```

The Fortran interface requires that the data parameters have the type of assumed-size rank-1 array, even for multidimensional transforms. The implementations of the FFT interface require the data stored linearly in memory with a regular "stride" pattern capable of describing multidimensional array layout (discussed more fully in DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES, see also [3]), and the function requires that the data parameters refer to the first element of the data. Consequently, the data arrays should be specified with the DIMENSION (*) attribute and the storage associated with the actual multidimensional arrays via the EQUIVALENCE statement.
```

/* C prototype */
MKL_LONG DftiComputeBackward( DFTI_DESCRIPTOR_HANDLE, void *, ... );

```

\section*{See Also}
```

DFTI_FORWARD_DOMAIN
DFTI_PLACEMENT
DFTI_PACKED_FORMAT
DFTI_DIMENSION, DFTI_LENGTHS
DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES
DftiComputeForward

```

\section*{Descriptor Configuration Functions}

There are two functions in this category: the value setting function DftiSetValue sets one particular configuration parameter to an appropriate value, and the value getting function DftiGetValue reads the value of one particular configuration parameter. While all configuration parameters are readable, you cannot set a few of them. Some of these contain fixed information of a particular implementation such as version number, or dynamic information, which is derived by the implementation during execution of one of the functions. See Configuration Settings for details.

\section*{DftiSetValue}

Sets one particular configuration parameter with the specified configuration value.

\section*{Syntax}

\section*{Fortran:}
```

status = DftiSetValue( desc_handle, config_param, config_val )

```

C:
```

status = DftiSetValue(desc_handle, config_param, config_val);

```

\section*{Include Files}
- FORTRAN 90: mkl_dfti.f90
- C: mkl_dfti.h

Input Parameters
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{2}{*}{desc_handle} & FORTRAN: DFTI_DESCRIPTOR & FFT descriptor. \\
\hline & C: DFTI_DESCRIPTOR_HANDLE & \\
\hline \multirow[t]{2}{*}{config_param} & FORTRAN: INTEGER & Configuration parameter. \\
\hline & C: enum & \\
\hline config_val & Depends on the configuration parameter. & Configuration value. \\
\hline
\end{tabular}
\begin{tabular}{lll}
Name & Type & Description \\
desc_handle & FORTRAN: DFTI_DESCRIPTOR & Updated FFT descriptor. \\
& C: DFTI_DESCRIPTOR_HANDLE & \\
status & FORTRAN: INTEGER & Function completion status. \\
& C: MKL_LONG &
\end{tabular}

\section*{Description}

This function sets one particular configuration parameter with the specified configuration value. Each configuration parameter is a named constant, and the configuration value must have the corresponding type, which can be a named constant or a native type. For available configuration parameters and the corresponding configuration values, see:
- DFTI_PRECISION
- DFTI_FORWARD_DOMAIN
- DFTI_DIMENSION, DFTI_LENGTH
- DFTI_PLACEMENT
- DFTI_FORWARD_SCALE, DFTI_BACKWARD_SCALE
- DFTI_NUMBER_OF_USER_THREADS
- DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES
- DFTI_NUMBER_OF_TRANSFORMS
- DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
- DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE
- DFTI_PACKED_FORMAT
- DFTI_WORKSPACE
- DFTI_ORDERING

The DftiSetValue function cannot be used to change configuration parameters DFTI_FORWARD_DOMAIN, DFTI_PRECISION, DFTI_DIMENSION, and DFTI_LENGTHS. Use the DftiCreateDescriptor function to set them.

The function returns the zero status when it completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Interface and Prototype}
```

! Fortran interface
INTERFACE DftiSetValue
//Note that the body provided here is to illustrate the different

```
```

//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
FUNCTION some_actual_function_6_INTVAL( Desc_Handle, Config_Param, INTVAL )
INTEGER :: some actuāl functiōn``}6 INTVAL
Type(DFTI_DESCRIPTOR), POINTER ::-Desc_Handle
INTEGER, \overline{INTENT(IN) :: Config Param}
INTEGER, INTENT(IN) :: INTVAL
END FUNCTION some actual function 6 INTVAL
FUNCTION some_actūal_func̄tion_6_S\overline{G}L\overline{V}AL( Desc_Handle, Config_Param, SGLVAL )
INTEGER :: some_actual_function__6_SGLVAL
Type(DFTI DESCR\overline{IPTOR), -POINTER %:- Desc Handle}
INTEGER, \overline{INTENT(IN) :: Config Param}
REAL, INTENT(IN) :: SGLVAL
END FUNCTION some_actual_function_6 SGLVAL

```

```

    INTEGER :: some actual_function_6_DBLVAL
    Type (DFTI_DESCR\overline{IPTOR), -POINTER `: - Desc_Handle}
    INTEGER, INTENT(IN) :: Config_Param
    REAL (KIND(ODO)), INTENT (IN) : : DBLVAL
    END FUNCTION some_actual_function_6_DBLVAL
    FUNCTION some actūal func
    INTEGER :: somen_actuāl_functiōn_6_INTVEC
    Type (DFTI DESCRIPTOR), POINTER -:- Desc Handle
    INTEGER, \overline{INTENT(IN) :: Config_Param}
    INTEGER, INTENT(IN) :: INTVEC\overline{(*)}
    END FUNCTION some_actual_function_6_INTVEC
    FUNCTION some actūal fun\overline{ction }6\mathrm{ C }\overline{H}A\overline{R}S( Desc Handle, Config Param, CHARS )
    INTEGER :: some_actuāl_functiōn_6_CHARS
    Type (DFTI DESCRİPTOR), POINTER -:- Desc Handle
    INTEGER, \overline{INTENT(IN) :: Config_Param}
    CHARCTER(*), INTENT(IN) :: CHA}R
    END FUNCTION some_actual_function_6_CHARS
    END INTERFACE DftiS\overline{SetValue}

```
/* C prototype */
MKL_LONG DftiSetValue(DFTI_DESCRIPTOR_HANDLE, DFTI_CONFIG_PARAM , ...);

\section*{See Also}

\section*{Configuration Settings}

DftiCreateDescriptor
DftiGetValue

\section*{DftiGetValue}

Gets the configuration value of one particular configuration parameter.

\section*{Syntax}

\section*{Fortran:}
```

status = DftiGetValue( desc_handle, config_param, config_val )

```

C:
```

status = DftiGetValue(desc_handle, config_param, \&config_val);

```

\section*{Include Files}
- FORTRAN 90: mkl_dfti.f90
- C: mkl_dfti.h

Input Parameters

\section*{Name}
```

desc_handle

```
config_param

\section*{Type}

FORTRAN: DFTI_DESCRIPTOR
C: DFTI_DESCRIPTOR_HANDLE
FORTRAN: INTEGER
C: enum

\section*{Description}

FFT descriptor.

Configuration parameter. See Table
"Configuration Parameters" for allowable values of config_param.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
config_val & \begin{tabular}{l}
Depends on the configuration \\
parameter.
\end{tabular}
\end{tabular}

\section*{Description}

Configuration value.

Function completion status.

\section*{Description}

This function gets the configuration value of one particular configuration parameter. Each configuration parameter is a named constant, and the configuration value must have the corresponding type, which can be a named constant or a native type. For available configuration parameters and the corresponding configuration values, see:
- DFTI_PRECISION
- DFTI_FORWARD_DOMAIN
- DFTI_DIMENSION, DFTI_LENGTH
- DFTI_PLACEMENT
- DFTI_FORWARD_SCALE, DFTI_BACKWARD_SCALE
- DFTI_NUMBER_OF_USER_THREADS
- DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES
- DFTI_NUMBER_OF_TRANSFORMS
- DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
- DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE
- DFTI_PACKED_FORMAT
- DFTI_WORKSPACE
- DFTI_COMMIT_STATUS
- DFTI_ORDERING

The function returns the zero status when it completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Interface and Prototype}
```

! Fortran interface
INTERFACE DftiGetValue
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
FUNCTION some_actual_function_7_INTVAL( Desc_Handle, Config_Param, INTVAL )
INTEGER :: som}e_actu\overline{al_functiōn_7_INTVAL

```
```

Type(DFTI DESCRIPTOR), POINTER : : Desc_Handle
INTEGER, \overline{INTENT(IN) :: Config Param}
INTEGER, INTENT(OUT) : : INTVA\overline{L}
END FUNCTION DFTI GET VALUE INTVAL
FUNCTION some_actūal_function_7_SGLVAL( Desc_Handle, Config_Param, SGLVAL )
INTEGER :: som}e_actu\overline{al_functiōn``_7_SGLVAL
Type(DFTI_DESCRİPTOR), -POINTER \: : Desc_Handle
INTEGER, \overline{INTENT(IN) :: Config_Param}
REAL, INTENT (OUT) :: SGLVAL
END FUNCTION some actual function }7\mathrm{ SGLVAL
FUNCTION some actūal func
INTEGER :: some_actu\overline{al_functiōn_7 DBLVAL}
Type (DFTI_DESCR\overline{IPTOR), -POINTER %:- Desc_Handle}
INTEGER, \overline{INTENT(IN) :: Config Param}
REAL (KIND(ODO)), INTENT (OUT) :: DBLVAL
END FUNCTION some_actual_function_7 DBLVAL
FUNCTION some_actūal_func̄tion_7_INTTV}EC( Desc_Handle, Config_Param, INTVEC ),
INTEGER :: some_actuàl_functiōn_7 INTVEC
Type(DFTI_DESCR\overline{IPTOR), -POINTER `:- Desc_Handle}
INTEGER, INTENT(IN) :: Config_Param
INTEGER, INTENT (OUT) : : INTVE\overline{C}(*)
END FUNCTION some_actual_function_7_INTVEC
FUNCTION some_actūal_function_7 INTTPNT( Desc_Handle, Config_Param, INTPNT )
INTEGER :: some_actuāl_functiōn_
Type(DFTI DESCR\overline{IPTOR), POINTER -: - Desc Handle}
INTEGER, \overline{INTENT(IN) :: Config_Param}
INTEGER, DIMENSION(*), POINTE\overline{R}:: INTPNT
END FUNCTION some_actual_function_7_INTPNT
FUNCTION some actūal fun\overline{ction }7\mathrm{ C }\overline{H}A\overline{R}S( Desc Handle, Config Param, CHARS )
INTEGER :: some_actu\overline{l}_functiōn_}\mp@subsup{\}{}{7
Type (DFTI DESCRIPTOR), -POINTER -:-Desc_Handle
INTEGER, INNTENT(IN) :: Config_Param
CHARCTER(*), INTENT (OUT) : : CH\overline{A}RS
END FUNCTION some_actual_function_7_CHARS
END INTERFACE DftiG\overline{GetValue}

```
```

/* C prototype */
MKL_LONG DftiGetValue( DFTI_DESCRIPTOR_HANDLE,
DFTI_CONFIG_PARAM ,
... \;

```

\section*{See Also}

Configuration Settings

\section*{DftiSetValue}

\section*{Status Checking Functions}

All of the descriptor manipulation, FFT computation, and descriptor configuration functions return an integer value denoting the status of the operation. Two functions serve to check the status. The first function is a logical function that checks if the status reflects an error of a predefined class, and the second is an error message function that returns a character string.

\section*{DftiErrorClass}

Checks whether the status reflects an error of a predefined class.

\section*{Syntax}

\section*{Fortran:}
```

predicate = DftiErrorClass( status, error_class )

```

C:
predicate \(=\) DftiErrorClass(status, error_class);
Include Files
- FORTRAN 90: mkl_dfti.f90
- C: mkl_dfti.h

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
status & FORTRAN: INTEGER & Completion status of an FFT function. \\
C: MKL_LONG & \\
error_class & FORTRAN: INTEGER & Predefined error class. \\
& C: MKL_LONG &
\end{tabular}

\section*{Output Parameters}

\section*{Name}
predicate

\section*{Type}

FORTRAN: LOGICAL
C: MKL_LONG

\section*{Description}

Result of checking.

\section*{Description}

The FFT interface in Intel MKL provides a set of predefined error classes listed in Table "Predefined Error Classes". They are named constants and have the type INTEGER in Fortran and MKL_LONG in C.

Predefined Error Classes
\begin{tabular}{ll}
\hline Named Constants & Comments \\
\hline DFTI_NO_ERROR & No error. The zero status belongs to this class. \\
DFTI_MEMORY_ERROR & Usually associated with memory allocation \\
DFTI_INVALID_CONFIGURATION & Invalid settings of one or more configuration parameters \\
DFTI_INCONSISTENT_CONFIGURATION & Inconsistent configuration or input parameters \\
DFTI_NUMBER_OF_THREADS_ERROR & \begin{tabular}{l}
Number of OMP threads in the computation function is \\
not equal to the number of OMP threads in the \\
initialization stage (commit function)
\end{tabular} \\
DFTI_MULTITHREADED_ERROR & \begin{tabular}{l}
Usually associated with a value that OMP routines return \\
in case of errors
\end{tabular} \\
DFTI_BAD_DESCRIPTOR & \begin{tabular}{l}
Descriptor is unusable for computation
\end{tabular} \\
DFTI_UNIMPLEMENTED & \begin{tabular}{l}
Unimplemented legitimate settings; implementation \\
dependent
\end{tabular} \\
DFTI_MKL_INTERNAL_ERROR & Internal library error \\
DFTI_1D_LENGTH_EXCEEDS_INT32 & \begin{tabular}{l}
Length of one of dimensions exceeds 232
\end{tabular} \\
\hline
\end{tabular}

The DftiErrorClass function returns a non-zero value in C or the value of .TRUE. in Fortran if the status belongs to a predefined error class. To check whether a function call was successful, call DftiErrorClass with a specific error class. However, the zero value of the status belongs to the DFTI_NO_ERROR class and thus the zero status indicates successful completion of an operation. See Example "Using Status Checking Functions" for an illustration of correct use of the status checking functions.

\(\square\)
NOTE It is incorrect to directly compare a status with a predefined class.

\section*{Interface and Prototype}
```

//Fortran interface
INTERFACE DftiErrorClass
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
FUNCTION some_actual function_8( Status, Error_Class )
LOGICAL some_\overline{a}ctual__
INTEGER, INT\overline{ENT(IN)}}\mp@subsup{}{-}{:}: Statu\overline{S}, Error Clas
END FUNCTION some actual function_8
END INTERFACE DftiE\overline{ErorClāSs}

```
/* C prototype */
MKL_LONG DftiErrorClass(MKL_LONG , MKL_LONG);

\section*{DftiErrorMessage}

Generates an error message.

\section*{Syntax}

\section*{Fortran:}
```

error_message = DftiErrorMessage( status )

```

C:
```

error_message = DftiErrorMessage(status);

```

Include Files
- FORTRAN 90: mkl_dfti.f90
- C: mkl_dfti.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
status & FORTRAN: INTEGER & Completion status of a function.
\end{tabular}

C: MKL_LONG

\section*{Output Parameters}

\section*{Name}
error_message

Type
FORTRAN:
CHARACTER (LEN=DFTI_MAX_MESSAGE_LENGTH
)
C: Array of char

\section*{Description}

The character string with the error message.

\section*{Description}

The error message function generates an error message character string. In Fortran, use a character string of length DFTI_MAX_MESSAGE_LENGTH as a target for the error message. In C, the function returns a pointer to a constant character string, that is, a character array with terminating ' \(\backslash 0\) ' character, and you do not need to free this pointer.

Example "Using Status Checking Function" shows how this function can be used.

\section*{Interface and Prototype}
```

//Fortran interface
INTERFACE DftiErrorMessage
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
FUNCTION some actual function 9( Status )

```

```

    INTEGER, INTENT(IN\overline{) :: Status}
    END FUNCTION some_actual_function_9
    END INTERFACE Dfti\overline{ErrorMesssage}

```
/* C prototype */
char *DftiErrorMessage(MKL_LONG);

\section*{Configuration Settings}

Each of the configuration parameters is identified by a named constant in the MKL_DFTI module. In C, these named constants have the enumeration type DFTI_CONFIG_PARAM.
All the Intel MKL FFT configuration parameters are readable. Some of them are read-only, while others can be set using the DftiCreateDescriptor or DftiSetValue function.

Values of the configuration parameters fall into the following groups:
- Values that have native data types. For example, the number of simultaneous transforms requested has an integer value, while the scale factor for a forward transform is a single-precision number.
- Values that are discrete in nature and are provided in the MKL_DFTI module as named constants. For example, the domain of the forward transform requires values to be named constants. In C, the named constants for configuration values have the enumeration type DFTI_CONFIG_VALUE.

Table "Configuration Parameters" summarises the information on configuration parameters, along with their types and values. For more details of each configuration parameter, see the subsection describing this parameter.

\section*{Configuration Parameters}
\begin{tabular}{|c|c|c|}
\hline Configuration Parameter & Type/Value & Comments \\
\hline \multicolumn{3}{|l|}{Most common configuration parameters, no default, must be set explicitly by DftiCreateDescriptor} \\
\hline DFTI_PRECISION & Named constant DFTI SINGLE or DFTI DOUBLE & Precision of the computation. \\
\hline DFTI_FORWARD_DOMAIN & Named constant DFTI COMPLEX or DFTI_REAL & Type of the transform. \\
\hline DFTI_DIMENSION & Integer scalar & Dimension of the transform. \\
\hline DFTI_LENGTH & Integer scalar/array & Lengths of each dimension. \\
\hline \multicolumn{3}{|l|}{Common configuration parameters, settable by DftiSetValue} \\
\hline DFTI_PLACEMENT & Named constant DFTI INPLACE or DFTI_NOT_INPLACE & Defines whether the result overwrites the input data. Default value: DFTI_INPLACE. \\
\hline DFTI_FORWARD_SCALE & Floating-point scalar & \begin{tabular}{l}
Scale factor for the forward transform. \\
Default value: 1.0. \\
Precision of the value should be the same as defined by DFTI_PRECISION.
\end{tabular} \\
\hline DFTI_BACKWARD_SCALE & Floating-point scalar & \begin{tabular}{l}
Scale factor for the backward transform. \\
Default value: 1.0. \\
Precision of the value should be the same as defined by DFTI_PRECISION.
\end{tabular} \\
\hline DFTI_NUMBER_OF_USER_THREADS & Integer scalar & Number of threads that concurrently use the same descriptor to compute FFT. \\
\hline DFTI_DESCRIPTOR_NAME & Character string & \begin{tabular}{l}
Assigns a name to a descriptor. Assumed length of the string is \\
DFTI_MAX_NAME_LENGTH. \\
Default value: empty string.
\end{tabular} \\
\hline
\end{tabular}

Data layout configuration parameters for single and multiple transforms. Settable by DftiSetValue
\begin{tabular}{lll}
DFTI_INPUT_STRIDES & Integer array & Defines the input data layout. \\
DFTI_OUTPUT_STRIDES & Integer array & Defines the output data layout. \\
DFTI_NUMBER_OF_TRANSFORMS & Integer scalar & \begin{tabular}{l}
Number of transforms. \\
DFTI_INPUT_DISTANCE
\end{tabular} \\
& Integer scalar & \begin{tabular}{l}
Default value: 1. \\
Defines the distance between input data \\
sets for multiple transforms.
\end{tabular} \\
DFTI_OUTPUT_DISTANCE & Integer scalar & \begin{tabular}{l}
Default value: 0. \\
\\
\end{tabular} \\
& & \begin{tabular}{l}
Defines the distance between output \\
data sets for multiple transforms.
\end{tabular} \\
& Default value: 0.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Configuration Parameter & Type/Value & Comments \\
\hline DFTI_COMPLEX_STORAGE & \begin{tabular}{l}
Named constant \\
DFTI_COMPLEX_COMPLE \\
X or DFTI_REAL_REAL
\end{tabular} & \begin{tabular}{l}
Defines whether the real and imaginary parts of data for a complex transform are interleaved in one array or split in two arrays. \\
Default value: DFTI_COMPLEX_COMPLEX.
\end{tabular} \\
\hline DFTI_REAL_STORAGE & Named constant DFTI_REAL_REAL & Defines how real data for a real transform is stored. Only the DFTI_REAL_REAL value is supported. \\
\hline DFTI_CONJUGATE_EVEN_STORAGE & Named constant
```

DFTI_COMPLEX_COMPLE
X or
DFTI_COMPLEX_REAL

``` & \begin{tabular}{l}
Defines whether the complex data in the backward domain of a real transform is stored as complex elements or as real elements. \\
For the default value, see the detailed description.
\end{tabular} \\
\hline DFTI_PACKED_FORMAT & \begin{tabular}{l}
Named constant \\
DFTI_CCE_FORMAT, \\
DFTI_CCS_FORMAT, \\
DFTI_PACK_FORMAT, or \\
DFTI_PERM_FORMAT
\end{tabular} & Defines the layout of real elements in the backward domain of a onedimensional or two-dimensional real transform. \\
\hline \multicolumn{3}{|l|}{Advanced configuration parameters, settable by DftisetValue} \\
\hline DFTI_WORKSPACE & \begin{tabular}{l}
Named constant \\
DFTI_ALLOW or DFTI_AVOID
\end{tabular} & \begin{tabular}{l}
Defines whether the library should prefer algorithms using additional memory. \\
Default value: DFTI_ALLOW.
\end{tabular} \\
\hline DFTI_ORDERING & \begin{tabular}{l}
Named constant \\
DFTI_ORDERED or \\
DFTI_BACKWARD_SCRAM \\
BLED
\end{tabular} & \begin{tabular}{l}
Defines whether the result of a complex transform is ordered or permuted. \\
Default value: DFTI_ORDERED.
\end{tabular} \\
\hline \multicolumn{3}{|l|}{Read-Only configuration parameters} \\
\hline DFTI_COMMIT_STATUS & \begin{tabular}{l}
Named constant \\
DFTI_UNCOMMITTED or \\
DFTI_COMMITTED
\end{tabular} & Readiness of the descriptor for computation. \\
\hline DFTI_VERSION & String & Version of Intel MKL. Assumed length of the string is DFTI_VERSION_LENGTH. \\
\hline
\end{tabular}

\section*{DFTI_PRECISION}

The configuration parameter DFTI_PRECISION denotes the floating-point precision in which the transform is to be carried out. A setting of DFTI_SINGLE stands for single precision, and a setting of DFTI_DOUBLE stands for double precision. The data must be presented in this precision, the computation is carried out in this precision, and the result is delivered in this precision.
DFTI_PRECISION does not have a default value. Set it explicitly by calling the DftiCreateDescriptor function.

NOTE Fortran module MKL_DFTI also defines named constants DFTI_SINGLE_R and DFTI_DOUBLE_R, with the same semantics as DFTI_SINGLE and DFTI_DOUBLE, respectively. Do not use these constants to set the DFTI_PRECISION configuration parameter. Use them only as described in section DftiCreateDescriptor.

\section*{See Also}

DFTI_FORWARD_DOMAIN
DFTI_DIMENSION, DFTI_LENGTHS

\section*{DftiCreateDescriptor}

\section*{DFTI_FORWARD_DOMAIN}

The general form of a discrete Fourier transform is
\[
Z_{k_{1}, k_{2}, \ldots, k_{\alpha}}=\sigma \times \sum_{j_{d}=0}^{n_{d}-1} \ldots \sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{1}=0}^{n_{1}-1} w_{j_{1}, j_{2}, \ldots, j_{d}} \exp \left(\delta i 2 \pi \sum_{1=1}^{d} j_{1} k_{1} / n_{2}\right)
\]
where \(w\) is the input sequence, \(z\) is the output sequence, both indexed by \(k_{1}=0, \ldots n_{1}-1\), for \(1=1, \ldots\), \(d\), scale factor \(\sigma\) is an arbitrary real number with the default value of \(1.0, \delta\) is the sign in the exponent, and \(\delta\) \(=-1\) for the forward transform and \(\delta=+1\) for the backward transform.

The Intel MKL implementation of the FFT algorithm, used for fast computation of discrete Fourier transforms, supports forward transforms on input sequences of two domains, as specified by configuration parameter DFTI_FORWARD_DOMAIN: general complex-valued sequences (DFTI_COMPLEX domain) and general realvalued sequences (DFTI_REAL domain). The forward transform maps the forward domain to the corresponding backward domain, as shown in Table "Correspondence of Forward and Backward Domain".
The conjugate-even domain covers complex-valued sequences with the symmetry property:
\[
x\left(k_{1}, k_{2}, \ldots, k_{d}\right)=\operatorname{conjugate}\left(x\left(n_{1}-k_{1}, n_{2}-k_{2}, \ldots, n_{d}-k_{d}\right)\right)
\]
where the index arithmetic is performed modulo respective size, that is,
\[
x\left(\ldots,{e x p r_{s}} \ldots\right) \equiv x\left(\ldots, \bmod \left(e x p r_{s}, n_{s}\right), \ldots\right)
\]
and therefore
\[
x\left(\ldots, n_{s}, \ldots\right) \equiv x(\ldots, 0, \ldots)
\]

Due to this property of conjugate-even sequences, only a part of such sequence is stored in the computer memory, as described in DFTI_CONJUGATE_EVEN_STORAGE.

\section*{Correspondence of Forward and Backward Domain}
\begin{tabular}{ll}
\hline Forward Domain & Implied Backward Domain \\
\hline Complex (DFTI_COMPLEX) & Complex (DFTI_COMPLEX) \\
Real (DFTI_REAL) & Conjugate-even \\
\hline
\end{tabular}

DFTI_FORWARD_DOMAIN does not have a default value. Set it explicitly by calling the DftiCreateDescriptor function.

\section*{See Also}

DFTI_PRECISION
DFTI_DIMENSION, DFTI_LENGTHS
DftiCreateDescriptor

\section*{DFTI_DIMENSION, DFTI_LENGTHS}

The dimension of the transform is a positive integer value represented in an integer scalar of Integer data type in Fortran and MKL_LONG data type in C. For a one-dimensional transform, the transform length is specified by a positive integer value represented in an integer scalar of Integer data type in Fortran and MKL_LONG data type in C. For multi-dimensional (\(\geq 2\)) transform, the lengths of each of the dimensions are supplied in an integer array (Integer data type in Fortran and MKL_LONG data type in C).

DFTI_DIMENSION and DFTI_LENGTHS do not have a default value. To set them, use the DftiCreateDescriptor function and not the DftiSetValue function.

\section*{See Also}

DFTI_FORWARD_DOMAIN
DFTI_PRECISION
DftiCreateDescriptor
DftiSetValue

\section*{DFTI_PLACEMENT}

By default, the computational functions overwrite the input data with the output result. That is, the default setting of the configuration parameter DFTI_PLACEMENT is DFTI_INPLACE. You can change that by setting it to DFTI_NOT_INPLACE.

NOTE The data sets have no common elements.

\section*{See Also}

DftiSetValue

\section*{DFTI_FORWARD_SCALE, DFTI_BACKWARD_SCALE}

The forward transform and backward transform are each associated with a scale factor \(\sigma\) of its own having the default value of 1 . You can specify the scale factors using one or both of the configuration parameters DFTI_FORWARD_SCALE and DFTI_BACKWARD_SCALE. For example, for a one-dimensional transform of length \(n\), you can use the default scale of 1 for the forward transform and set the scale factor for the backward transform to be \(1 / n\), thus making the backward transform the inverse of the forward transform.
Set the scale factor configuration parameter using a real floating-point data type of the same precision as the value for DFTI_PRECISION.

NOTE For inquiry of the scale factor with the DftiGetValue function in C, the config_val parameter must have the same floating-point precision as the descriptor.

\author{
See Also \\ DftiSetValue \\ DFTI_PRECISION \\ DftiGetValue
}

\section*{DFTI_NUMBER_OF_USER_THREADS}

Use one of the following techniques to parallelize your application:
a. You specify the parallel mode within the FFT module of Intel MKL instead of creating threads in your application. See Intel MKL User's Guide for more information on how to do this. See also Example "Using Intel MKL Internal Threading Mode".
b. You create threads in the application yourself and have each thread perform all stages of FFT implementation, including descriptor initialization, FFT computation, and descriptor deallocation. In this case, each descriptor is used only within its corresponding thread. In this case, set single-threaded mode for Intel MKL. See Example "Using Parallel Mode with Multiple Descriptors Initialized in a Parallel Region".
C. You create threads in the application yourself after initializing all FFT descriptors. This implies that threading is employed for parallel FFT computation only, and the descriptors are released upon return from the parallel region. In this case, each descriptor is used only within its corresponding thread. You must explicitly set the single-threaded mode for Intel MKL, otherwise, the actual number of threads may differ from one, because the DftiCommitDescriptor function is not in a parallel region. See Example "Using Parallel Mode with Multiple Descriptors Initialized in One Thread".
d. You create threads in the application yourself after initializing the only FFT descriptor. This implies that threading is employed for parallel FFT computation only, and the descriptor is released upon return from the parallel region. In this case, each thread uses the same descriptor. See Example "Using Parallel Mode with a Common Descriptor".
In cases "a", "b", and "c", listed above, set the parameter DFTI_NUMBER_OF_USER_THREADS to 1 (its default value), since each particular descriptor instance is used only in à single thread.
In case "d", use the DftiSetValue () function to set the DFTI_NUMBER_OF_USER_THREADS to the actual number of FFT computation threads, because multiple threads will be using the same descriptor. If this setting is not done, your program will work incorrectly or fail, since the descriptor contains individual data for each thread.

\section*{WARNING}
- Avoid parallelizing your program and employing the Intel MKL internal threading simultaneously because this will slow down the performance. Note that in case "d" above, FFT computation is automatically initiated in a single-threading mode.
- Do not change the number of threads after the DftiCommitDescriptor () function completes FFT initialization.

\section*{Optimization Notice}

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

\section*{See Also}

DftiSetValue

\section*{DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES}

The FFT interface provides configuration parameters that define the layout of multidimensional data in the computer memory. For \(d\)-dimensional data set \(x\) defined by dimensions \(N_{1} \times N_{2} \times \ldots \times N_{d}\), the layout describes where a particular element \(x\left(k_{1}, k_{2}, \ldots, k_{d}\right)\) of the data set is located. The memory address of the element \(x\left(k_{1}, k_{2}, \ldots, k_{d}\right)\) is expressed by the formula
\[
\begin{aligned}
\text { address of } x\left(k_{1}, k_{2}, \ldots, k_{d}\right)= & \text { address of } x(0,0, \ldots, 0)+\text { offset } \\
& =\text { address of } x(0,0, \ldots, 0)+s_{0}+k_{1} *_{s_{1}}+k_{2} *_{s_{2}}+\ldots+k_{d} s_{d}
\end{aligned}
\]
where \(s_{0}\) is the displacement and \(s_{1}, \ldots, s_{d}\) are generalized strides. The configuration parameters DFTI_INPUT_STRIDES and DFTI_OUTPUT_STRIDES enable you to get and set these values. The configuration value is an array of values \(\left(s_{0}, s_{1}, \ldots, s_{d}\right)\) of INTEGER data type in Fortran and MKL_LONG data type in C.
The offset is counted in elements of the data type defined by the descriptor configuration (rather than by the type of the variable passed to the computation functions). Specifically, the DFTI_FORWARD_DOMAIN, DFTI_COMPLEX_STORAGE, and DFTI_CONJUGATE_EVEN_STORAGE configuration parameters define the type of the elements as shown in Table "Assumed Element Types of the Input/Output Data":
\begin{tabular}{|c|c|c|}
\hline Descriptor Configuration & Element Type in the Forward Domain & \begin{tabular}{l}
Element \\
Type in the Backward Domain
\end{tabular} \\
\hline \begin{tabular}{l}
DFTI_FORWARD_DOMAIN=DFTI_COMPLEX \\
DFTI_COMPLEX_STORAGE=DFTI_COMPLEX_COMPLEX
\end{tabular} & Complex & Complex \\
\hline DFTI_FORWARD_DOMAIN=DFTI_COMPLEX DFTI_COMPLEX_STORAGE=DFTI_REAL_REAL & Real & Real \\
\hline \begin{tabular}{l}
DFTI_FORWARD_DOMAIN=DFTI_REAL \\
DFTI_CONJUGATE_EVEN_STORĀGE=DFTI_COMPLEX_REAL
\end{tabular} & Real & Real \\
\hline \begin{tabular}{l}
DFTI_FORWARD_DOMAIN=DFTI_REAL \\
DFTI_CONJUGATE_EVEN_STORAGE=DFTI_COMPLEX_COMPLEX
\end{tabular} & Real & Complex \\
\hline
\end{tabular}

The DFTI_INPUT_STRIDES configuration parameter describes the layout of the input data, and the element type is defined by the forward domain for the DftiComputeForward function, and by the backward domain for the DfticomputeBackward function. The DFTI_OUTPUT_STRIDES configuration parameter describes the layout of the output data, and the element type is defined by the backward domain for the DftiComputeForward function, and by the forward domain for DftiComputeBackward function.
For in-place transforms, the configuration set by DFTI_OUTPUT_STRIDES is ignored except when the element types in forward and backward domains are different. \(\overline{\text { If }}\) they \(\overline{\text { are }}\) different, set DFTI_OUTPUT_STRIDES explicitly (even though the transform is in-place). For in-place transforms, the configuration \(\bar{m} u s t\) be consistent, that is, the locations of the first elements in input and output must coincide in each dimension. The DFTI_PLACEMENT Configuration parameter defines whether the transform is in-place or out-of-place.
The configuration parameters define the layout of input and output data, and not the forward-domain and backward-domain data. If the data layouts in forward domain and backward domain differ, set DFTI_INPUT_STRIDES and DFTI_OUTPUT_STRIDES explicitly and then commit the descriptor before calling computation functions.
The FFT interface supports both positive and negative stride values. If you use negative strides, set the displacement of the data as follows:
\[
s_{0}=\sum_{i=1}^{d}\left(N_{i}-1\right) \cdot \max \left(-S_{i}, 0\right)
\]

The default setting of strides in a general multi-dimensional case assumes that the array that contains the data has no padding. The order of the strides depends on the programming language. For example:
```

/* C/C++ */
MKL_LONG dims[] = { nd, ..., n2, n1 };
DftïCreateDescriptor( \&hand, precision, domain, d, dims );
// The above call assumes data declaration: type X[nd]...[n2][n1]
// Default strides are { 0, nd*...*n2*n1, ..., n2*n1, n1, 1 }
! Fortran
INTEGER :: dims(d) = [n1, n2, ..., nd]
status = DftiCreateDescriptor( hand, precision, domain, d, dims)
! The above call assumes data declaration: type X(n1,n2,...nd)
! Default strides are [ 0, 1, n1, n1*n2, ..., n1*n2*...*nd]

```

Note that in case of a real FFT (DFTI_DOMAIN=DFTI_REAL), where different data layouts in the backward domain are available (see DFTI_PACKED_FORMAT), the default value of the strides is not intuitive for the recommended CCE format (configuration setting
DFTI_CONJUGATE_EVEN_STORAGE=DFTI_COMPLEX_COMPLEX). In case of an in-place real transform with the CCE format, set the strides explicitly, as follows:
```

/* C/C++ */
MKL_LONG dims[] = { nd, ..., n2, n1 };
MKL_LONG rstrides[] = { 0, nd*...*n2*(n1/2+1), ..., 2*n2*(n1/2+1), 2*(n1/2+1), 1 };
MKL_LONG cstrides[] = { 0, nd*...*n2* (n1/2+1), ..., n2*(n1/2+1), (n1/2+1), 1 };
DftīCreateDescriptor( \&hand, precision, DFTI_REAL, d, dims );
DftiSetValue(hand, DFTI_CONJUGATE EVEN_STORAG\overline{E, DFTI COMPLEX COMPLEX);}
// Set the strides appropriately for forward/backward transform
! Fortran
INTEGER :: dims(d) = [n1, n2, ..., nd]
INTEGER :: rstrides (1+d) = [0, 1, 2*(n1/2+1), 2*(n1/2+1)*n2, ... ]
INTEGER :: cstrides (1+d) = [0, 1, (n1/2+1), (n1/2+1)*n2, ... ]
status = DftiCreateDescriptor( hand, precision, domain, d, dims)
status = DftiSetValue( hand, DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX)
! Set the strides appropriately forr forward/backw

```

\section*{See Also}

DFTI_FORWARD_DOMAIN
DFTI_PLACEMENT
DftiSetValue
DftiCommitDescriptor
DftiComputeForward
DftiComputeBackward

\section*{DFTI_NUMBER_OF_TRANSFORMS}

In some situations, you may need to perform a number of FFTs of the same dimension and lengths. For example, you may need to transform a number of one-dimensional data sets of the same length. To specify this number, use the DFTI_NUMBER_OF_TRANSFORMS parameter, which has the default value of 1 . You can set this parameter to a positive integer value using the Integer data type in Fortran and MKL_LONG data type in C.

NOTE The data sets to be transformed must not have common elements. Therefore one (or both) of the configuration parameters DFTI_INPUT_DISTANCE and DFTI_OUTPUT_DISTANCE is required if DFTI_NUMBER_OF_TRANSFORMS is greater than one.

\section*{See Also}

DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
DftiSetValue

\section*{DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE}

The FFT interface in Intel MKL enables computation of multiple transforms. To compute multiple transforms, you need to specify the data distribution of the multiple sets of data. The distance between the first data elements of consecutive data sets, DFTI_INPUT_DISTANCE for input data or DFTI_OUTPUT_DISTANCE for output data, specifies the distribution. The configuration setting is a value of INTEGER data type in Fortran and MKL_LONG data type in C.
The default value for both configuration settings is one. You must set this parameter explicitly if the number of transforms is greater than one (see DFTI_NUMBER_OF_TRANSFORMS).
The distance is counted in elements of the data type defined by the descriptor configuration (rather than by the type of the variable passed to the computation functions). Specifically, the DFTI_FORWARD_DOMAIN, DFTI_COMPLEX_STORAGE, and DFTI_CONJUGATE_EVEN_STORAGE configuration parameters define the type of the elements as shown in Table "Assumed Element Types of the Input/Output Data".

For in-place transforms, the configuration set by DFTI_OUTPUT_DISTANCE is ignored except when the element types in forward and backward domains are different. If they are different, set
DFTI_OUTPUT_DISTANCE explicitly (even though the transform is in-place). For in-place transforms, the configuration must be consistent, that is, the locations of the data sets on input and output must coincide. The DFTI_PLACEMENT configuration parameter defines whether the transform is in-place or out-of-place.

The configuration parameters define the distance within input and output data, and not within the forwarddomain and backward-domain data. If the distances in the forward and backward domains differ, set DFTI_INPUT_DISTANCE and DFTI_OUTPUT_DISTANCE explicitly and then commit the descriptor before calling computation functions.
The following examples illustrate setting of the DFTI_INPUT_DISTANCE configuration parameter:
```

MKL_LONG dims[] = { nd, ..., n2, n1 };
MKL_LONG distance = nd*...*n2*n1;
DftīCreateDescriptor( \&hand, precision, DFTI COMPLEX, d, dims );
DftiSetValue( hand, DFTI_NUMBER_OF TRANSFORMS, (MLK_LONG)howmany );

```

```

! Fortran
INTEGER :: dims(d) = [n1, n2, ..., nd]
INTEGER :: distance = n1*n2*...*nd
status = DftiCreateDescriptor( hand, precision, DFTI_COMPLEX, d, dims)
status = DftiSetValue( hand, DFTI NUMBER OF TRANSFORMM, howmany )
status = DftiSetValue( hand, DFTI_INPUT_DIST̄ANCE, distance );

```

\section*{See Also}

DFTI_PLACEMENT
DftiSetValue
DftiCommitDescriptor
DftiComputeForward
DftiComputeBackward

\section*{DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE}

Depending on the value of configuration parameter DFTI_FORWARD_DOMAIN, the implementation of FFT supports several storage schemes for input and output data (see document [3] for the rationale behind the definition of the storage schemes). The data elements are placed within contiguous memory blocks, defined with generalized strides (see DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES). For multiple transforms, each nth set of data (where \(n t h \geq 0\)) should be located within the same memory block, and the data sets should be placed at a distance from each other (see DFTI_NUMBER_OF TRANSFORMS and DFTI_INPUT DISTANCE, DFTI_OUTPUT_DISTANCE).

NOTE In C/C++, avoid setting up multidimensional arrays with lists of pointers to one-dimensional arrays. Instead use a one-dimensional array with the explicit indexing to access the data elements.

C notation is used in this section to describe association of mathematical entities with the data elements stored in memory. FFT Examples demonstrate the usage of storage formats in both C and Fortran.
Storage schemes for complex domain. For the DFTI_COMPLEX forward domain, both input and output sequences belong to the complex domain. In this case, the configuration parameter DFTI_COMPLEX_STORAGE can have one of the two values: DFTI_COMPLEX_COMPLEX (default) or DFTI_REAL_REAL.

NOTE In the Intel MKL FFT implementation, storage schemes for a forward complex domain and the respective backward complex domain are the same.

With DFTI_COMPLEX_COMPLEX storage, the complex-valued data sequence is referenced by a single complex parameter Z so that complex-valued element \(z_{k_{1}, k_{2}, \ldots, k_{d}}\) of the sequence is located at Z [nth*distance + stride \(0+k_{1}{ }^{*}\) stride \(e_{1}+k_{2}{ }^{*}\) stride \(2^{+} \ldots k_{d}\) stride \(\left._{d}\right]\) as a structure consisting of the real and imaginary parts.

The following example illustrates a typical usage of the DFTI_COMPLEX_COMPLEX storage:
```

complex :: x(n)
! on input, for i=1,···.,N: x(i) = ri-1
status = DftiComputeForward( desc_handle, x )
! on output, for i=1,...,N: x(i) = zi-1

```

With the DFTI_REAL_REAL storage, the complex-valued data sequence is referenced by two real parameters ZRe and ZIm so that complex-valued element \(z_{k_{1}, k_{2}, \ldots, k_{d}}\) of the sequence is computed as
ZRe[nth*distance + stride \(0+k_{1} * s t r i d e 1+k_{2} *\) stride \(2+\ldots k^{*}\) *strided] \(+\sqrt{ }(-1) \times\)
ZIm[nth*distance + stride0 + k1*stride1 + k2*stride \(2+\ldots\)... \(\mathrm{k}_{\mathrm{d}}{ }^{*}\) strided].
A typical usage of the DFTI_REAL_REAL storage is illustrated by the following example:
```

real :: xre(n), xim(n)
status = DftiSetValue( desc_handle, DFTI_COMPLEX_STORAGE, DFTI_REAL_REAL)
! on input, for i=1,···.,N: cmplx(xre(i),xim(i)) = ri-1
status = DftiComputeForward( desc_handle, xre, xim )
! on output, for i=1,...,N: cmplx(xre(i),xim(i)) = zi-1

```

Storage scheme for the real and conjugate-even domains. The setting for the storage schemes for real and conjugate-even domains is recorded in the configuration parameters DFTI_REAL_STORAGE and DFTI_CONJUGATE_EVEN_STORAGE. Since a forward real domain corresponds to a conjugate-even backward domain, they are considered together. The example below uses one-, two- and three-dimensional real to conjugate-even transforms. In-place computation is assumed whenever possible (that is, when the input data type matches the output data type).

\section*{One-Dimensional Transform}

Consider a one-dimensional \(n\)-length transform of the form
\(Z_{k}=\sum_{j=0}^{n-1} r_{j} e^{-i 2 \pi j k / n}, \quad r_{j} \in R, Z_{k} \in C\).

There is a symmetry:
For even \(n: ~ z(n / 2+i)=\operatorname{conjg}(z(n / 2-i)), 1 \leq i \leq n / 2-1\), and moreover \(z(0)\) and \(z(n / 2)\) are real values.
For odd \(n\) : \(z(m+i)=\operatorname{conjg}(z(m-i+1)), m=f l o o r(n / 2), 1 \leq i \leq m\), and moreover \(z(0)\) is real value.
Comparison of the Storage Effects of Complex-to-Complex and Real-to-Complex FFTs for a Forward Transform
\begin{tabular}{llllll}
\hline N=8 & & & & \\
\hline Input Vectors & Real FFT & Complex FFT & Real FFT & & \\
Complex FFT & \begin{tabular}{lllll}
Real \\
Data
\end{tabular} & Complex Data & Real Data & & \\
Complex Data & & Real & Imaginary & CCS & Pack
\end{tabular}
\begin{tabular}{llllllll}
\hline \hline \(\mathbf{N = 8}\) & & & & & & \\
\hline r0 & 0.000000 & r0 & \(z 0\) & 0.000000 & \(z 0\) & \(z 0\) & \(z 0\) \\
r1 & 0.000000 & r1 & \(\operatorname{Re}(z 1)\) & \(\operatorname{Im}(z 1)\) & 0.000000 & \(\operatorname{Re}(z 1)\) & \(z 4\) \\
r2 & 0.000000 & r2 & \(\operatorname{Re}(z 2)\) & \(\operatorname{Im}(z 2)\) & \(\operatorname{Re}(z 1)\) & \(\operatorname{Im}(z 1)\) & \(\operatorname{Re}(z 1)\) \\
r3 & 0.000000 & r3 & \(\operatorname{Re}(z 3)\) & \(\operatorname{Im}(z 3)\) & \(\operatorname{Im}(z 1)\) & \(\operatorname{Re}(z 2)\) & \(\operatorname{Im}(z 1)\) \\
r4 & 0.000000 & r4 & \(z 4\) & 0.000000 & \(\operatorname{Re}(z 2)\) & \(\operatorname{Im}(z 2)\) & \(\operatorname{Re}(z 2)\) \\
r5 & 0.000000 & r5 & \(\operatorname{Re}(z 3)\) & \(-\operatorname{Im}(z 3)\) & \(\operatorname{Im}(z 2)\) & \(\operatorname{Re}(z 3)\) & \(\operatorname{Im}(z 2)\) \\
r6 & 0.000000 & \(r 6\) & \(\operatorname{Re}(z 2)\) & \(-\operatorname{Im}(z 2)\) & \(\operatorname{Re}(z 3)\) & \(\operatorname{Im}(z 3)\) & \(\operatorname{Re}(z 3)\) \\
r7 & 0.000000 & \(r 7\) & \(\operatorname{Re}(z 1)\) & \(-\operatorname{Im}(z 1)\) & \(\operatorname{Im}(z 3)\) & \(z 4\) & \(\operatorname{Im}(z 3)\) \\
& & & & & \(z 4\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\(\mathrm{N}=7\)} \\
\hline \multicolumn{3}{|l|}{Input Vectors} & \multicolumn{5}{|l|}{Output Vectors} \\
\hline \multicolumn{2}{|l|}{Complex FFT} & Real FFT & \multicolumn{2}{|l|}{Complex FFT} & \multicolumn{3}{|l|}{Real FFT} \\
\hline Comp & & \begin{tabular}{l}
Real \\
Data
\end{tabular} & Compl & Data & Real Data & & \\
\hline Real & Imaginary & & Real & Imaginary & CCS & Pack & Perm \\
\hline r0 & 0.000000 & r0 & z0 & 0.000000 & z0 & z0 & z0 \\
\hline r1 & 0.000000 & r1 & \(\operatorname{Re}(z 1)\) & \(\operatorname{Im}(z 1)\) & 0.000000 & \(\operatorname{Re}(z 1)\) & \(\operatorname{Re}(\mathrm{z} 1)\) \\
\hline r2 & 0.000000 & r2 & \(\operatorname{Re}(z 2)\) & \(\operatorname{Im}(z 2)\) & \(\operatorname{Re}(z 1)\) & \(\operatorname{Im}(z 1)\) & \(\operatorname{Im}(z 1)\) \\
\hline r3 & 0.000000 & r3 & \(\operatorname{Re}(z 3)\) & \(\operatorname{Im}(\mathrm{z3})\) & \(\operatorname{Im}(z 1)\) & \(\operatorname{Re}(z 2)\) & \(\operatorname{Re}(z 2)\) \\
\hline r4 & 0.000000 & r4 & \(\operatorname{Re}(z 3)\) & \(-\operatorname{Im}(z 3)\) & \(\operatorname{Re}(z 2)\) & \(\operatorname{Im}(\mathrm{z2})\) & \(\operatorname{Im}(z 2)\) \\
\hline r5 & 0.000000 & r5 & \(\operatorname{Re}(z 2)\) & -Im(z2) & \(\operatorname{Im}(z 2)\) & \(\operatorname{Re}(z 3)\) & \(\operatorname{Re}(z 3)\) \\
\hline \multirow[t]{2}{*}{r6} & 0.000000 & r6 & \(\operatorname{Re}(z 1)\) & \(-\operatorname{Im}(\mathrm{z1})\) & \(\operatorname{Re}(z 3)\) & \(\operatorname{Im}(\mathrm{z} 3)\) & \(\operatorname{Im}(z 3)\) \\
\hline & & & & & \(\operatorname{Im}(z 3)\) & & \\
\hline
\end{tabular}

Comparison of the Storage Effects of Complex-to-Complex and Complex-to-Real FFTs for Backward Transform
\(\mathrm{N}=8\)
\begin{tabular}{llll}
\hline Input Vectors & & Output Vectors & \\
Complex FFT & Real FFT & Complex FFT & Real FFT \\
Complex Data & \begin{tabular}{l}
Real \\
Data
\end{tabular} & Complex Data & Real Data \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Real & Imaginary & & Real & Imaginary & CCS & Pack & Perm \\
\hline r0 & 0.000000 & ro & z0 & 0.000000 & z0 & z0 & z0 \\
\hline r1 & 0.000000 & r1 & \(\operatorname{Re}(\mathrm{z} 1)\) & Im(z1) & 0.000000 & \(\mathrm{Re}(\mathrm{z} 1)\) & z4 \\
\hline r2 & 0.000000 & r2 & \(\operatorname{Re}(z 2)\) & Im(z2) & \(\operatorname{Re}(\mathrm{z} 1)\) & Im(z1) & \(\operatorname{Re}(\mathrm{z} 1)\) \\
\hline r3 & 0.000000 & r3 & \(\operatorname{Re}(\mathrm{z} 3)\) & Im(z3) & Im(z1) & \(\mathrm{Re}(\mathrm{z2})\) & Im(z1) \\
\hline r4 & 0.000000 & r4 & z4 & & \(\mathrm{Re}(\mathrm{z} 2)\) & Im(z2) & \(\mathrm{Re}(\mathrm{z} 2)\) \\
\hline r5 & 0.000000 & r5 & \(\mathrm{Re}(\mathrm{z} 3)\) & -Im(z3) & Im(z2) & \(\mathrm{Re}(\mathrm{z} 3)\) & Im(z2) \\
\hline r6 & 0.000000 & r6 & \(\mathrm{Re}(\mathrm{z} 2)\) & -Im(z2) & \(\operatorname{Re}(\mathrm{z} 3)\) & Im(z3) & \(\mathrm{Re}(\mathrm{z} 3)\) \\
\hline \multirow[t]{3}{*}{r7} & 0.00000 & r7 & \(\operatorname{Re}(\mathrm{z} 1)\) & -Im(z1) & Im(z3) & z4 & Im(z3) \\
\hline & & & & & z4 & & \\
\hline & & & & & 0.000000 & & \\
\hline \multicolumn{8}{|l|}{\(\mathrm{N}=7\)} \\
\hline \multicolumn{2}{|l|}{Input Vectors} & & \multicolumn{2}{|l|}{Output Vectors} & & & \\
\hline \multicolumn{2}{|l|}{Complex FFT} & Real FFT & \multicolumn{2}{|l|}{Complex FFT} & Real FFT & & \\
\hline \multicolumn{2}{|l|}{Complex Data} & Real Data & \multicolumn{2}{|l|}{Complex Data} & Real Data & & \\
\hline Real & Imaginary & & Real & Imaginary & CCS & Pack & Perm \\
\hline r0 & 0.000000 & r0 & z0 & 0.000000 & z0 & z0 & z0 \\
\hline r1 & 0.000000 & r1 & \(\mathrm{Re}(\mathrm{z1})\) & Im(z1) & 0.000000 & \(\mathrm{Re}(\mathrm{z1})\) & \(\operatorname{Re}(\mathrm{z} 1)\) \\
\hline r2 & 0.000000 & r2 & \(\mathrm{Re}(\mathrm{z} 2)\) & Im(z2) & \(\operatorname{Re}(\mathrm{z} 1)\) & Im(z1) & \(\operatorname{Im}(\mathrm{z1})\) \\
\hline r3 & 0.000000 & r3 & \(\mathrm{Re}(\mathrm{z} 3)\) & Im(z3) & Im(z1) & \(\mathrm{Re}(\mathrm{z2})\) & \(\operatorname{Re}(\mathrm{z} 2)\) \\
\hline r4 & 0.000000 & r4 & \(\mathrm{Re}(\mathrm{z} 3)\) & -Im(z3) & \(\operatorname{Re}(z 2)\) & Im(z2) & Im(z2) \\
\hline r5 & 0.000000 & r5 & \(\mathrm{Re}(\mathrm{z2})\) & -Im(z2) & Im(z2) & \(\mathrm{Re}(\mathrm{z} 3)\) & \(\mathrm{Re}(\mathrm{z} 3)\) \\
\hline \multirow[t]{2}{*}{r6} & 0.000000 & r6 & \(\operatorname{Re}(z 1)\) & -Im(z1) & \(\mathrm{Re}(\mathrm{z3})\) & \(\operatorname{Im}(\mathrm{z3})\) & Im(z3) \\
\hline & & & & & Im(z3) & & \\
\hline
\end{tabular}

Assume that the stride has the default value of one.
This complex conjugate symmetric vector can be stored in the complex array of size \(m+1\) or in the real array of size \(2 m+2\) or \(2 m\) depending on which packed format is used.
Two-Dimensional Transform
Each of the real-to-complex functions computes the forward FFT of a two-dimensional real matrix according to the mathematical equation
\[
\begin{aligned}
& z_{j, p}=\sum_{k=0}^{m-1} \sum_{1=0}^{n-1} r_{k, l} * e^{-i 2 \pi j k / m} * e^{-i 2 \pi p 1 / n}, \\
& 0 \leq j \leq m-1,0 \leq p \leq n-1
\end{aligned}
\]

The mathematical result \(z_{j, p}, \quad 0 \leq j \leq m-1, \quad 0 \leq p \leq n-1\), is the complex matrix of size \((m, n)\).
This mathematical result can be stored in the real two-dimensional array of size:
```

(m+2,n+2) (CCS format), or
(m,n) (Pack or Perm formats), or
(2* (m/2+1), n) (CCE format, Fortran interface),
(m, 2* (n/2+1)) (CCE format, C interface)

```
or in the complex two-dimensional array of size:
```

(m/2+1, n) (CCE format, Fortran interface),
(m, n/2+1) (CCE format, C interface)

```

Since the multidimensional array data are arranged differently in Fortran and C (see DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES), the output array that holds the computational result contains complex conjugatesymmetric columns (for Fortran) or complex conjugate-symmetric rows (for C).

The following tables give examples of output data layout in Pack format for a forward two-dimensional real-to-complex FFT of a 6-by-4 real matrix. Note that the same layout is used for the input data of the corresponding backward complex-to-real FFT.
\begin{tabular}{lll}
Fortran-interface Data Layout for a 6-by-4 Matrix & \\
\hline\(z(1,1)\) & \(\operatorname{Re} z(1,2)\) & \(\operatorname{Im} z(1,2)\) \\
\(\operatorname{Re} z(2,1)\) & \(\operatorname{Re} z(2,2)\) & \(\operatorname{Re} z(2,3)\) \\
\(\operatorname{Im} z(2,1)\) & \(\operatorname{Im} z(2,2)\) & \(\operatorname{Re} z(2,4)\) \\
\(\operatorname{Re} z(3,1)\) & \(\operatorname{Re} z(3,2)\) & \(\operatorname{Re} z(3,3)\) \\
\(\operatorname{Im} z(3,1)\) & \(\operatorname{Im} z(3,2)\) & \(\operatorname{Im} z(3,3)\) \\
\(z(4,1)\) & \(\operatorname{Re} z(4,2)\) & \(\operatorname{Im} z(4,2)\) \\
\hline
\end{tabular}

For the above example, the stride array is (\(0,1,6\)).
C-interface Data Layout for a 6-by-4 Matrix
\begin{tabular}{llll}
\hline\(z(1,1)\) & \(\operatorname{Re} z(1,2)\) & \(\operatorname{Im} z(1,2)\) & \(z(1,3)\) \\
\(\operatorname{Re} z(2,1)\) & \(\operatorname{Re} z(2,2)\) & \(\operatorname{Im} z(2,2)\) & \(\operatorname{Re} z(2,3)\) \\
\(\operatorname{Im} z(2,1)\) & \(\operatorname{Re} z(3,2)\) & \(\operatorname{Im} z(3,2)\) & \(\operatorname{Im} z(2,3)\) \\
\(\operatorname{Re} z(3,1)\) & \(\operatorname{Re} z(4,2)\) & \(\operatorname{Im} z(4,2)\) & \(\operatorname{Im} z(3,3)\) \\
\(\operatorname{Im} z(3,1)\) & \(\operatorname{Re} z(5,2)\) & \(\operatorname{Im} z(5,2)\) & \(z(4,3)\) \\
\hline
\end{tabular}

For the second example, the stride array is \((0,4,1)\). See DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES for details.

See also DFTI_PACKED_FORMAT.
Three-Dimensional Transform

Each of the real-to-complex functions computes the forward FFT of a three-dimensional real matrix according to the mathematical equation
\(z_{j, t, q}=\sum_{p=0}^{m-1} \sum_{i=0}^{n-1} \sum_{s=0}^{k-1} r_{p, 2, s} * e^{-i 2 \pi j p / \mu} * e^{-i 2 \pi t 2 / n} * e^{-i 2 \pi q s / k}\),
\(0 \leq j \leq m-1,0 \leq t \leq n-1,0 \leq q \leq k-1\)

The mathematical result \(z_{j, t, q}, 0 \leq j \leq m-1,0 \leq t \leq n-1,0 \leq q \leq k-1\) is the complex matrix of size (\(m, n, k\)), which is a complex conjugate-symmetric, or conjugate-even, matrix as follows:
\(z_{\mathrm{m} 1, \mathrm{n} 1, \mathrm{k} 1}=\operatorname{conjg}\left(\mathrm{z}_{\mathrm{m}-\mathrm{m} 1, \mathrm{n}-\mathrm{n} 1, \mathrm{k}-\mathrm{k} 1}\right)\), where each dimension is periodic.
This mathematical result can be stored in the real three-dimensional array of size:
(\(\mathrm{m} / 2+1, \mathrm{n}, \mathrm{k}\)) (CCE format, Fortran interface),
(\(m, n, k / 2+1\)) (CCE format, C interface).
Since the multidimensional array data are arranged differently in Fortran and C (see DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES), the output array that holds the computational result contains complex conjugatesymmetric columns (for Fortran) or complex conjugate-symmetric rows (for C).

NOTE CCE is the only packed format for a three-dimensional real FFT. In both in-place and out-ofplace REAL FFT, for real data, the stride and distance parameters are in REAL units and for complex data, they are in COMPLEX units. So elements of the input and output data can be placed in different elements of input-output array of the in-place FFT.
1. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_REAL for conjugate-even domain (by default). It is used for 1D and 2D REAL FFT.
- A typical usage of in-place transform is as follows:
// m = floor (\(\mathrm{n} / 2\))
REAL : : X \(0: 2 * m+1\))
...some other code...
...assuming inplace transform...
Status \(=\) DftiComputeForward(Desc_Handle, X)

On input,
\(X(p)=r_{p}, p=0,1, \ldots, n-1\).
On output,
Output data stored in one of formats: Pack, Perm or CCS (see DFTI_PACKED_FORMAT).
CCS format: \(\mathrm{X}(2 * \mathrm{k})=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{X}(2 * \mathrm{k}+1)=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=0,1, \ldots, \mathrm{~m}\).
Pack format:
even \(\mathrm{n}: \mathrm{X}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{X}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{X}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}-1\), and \(\mathrm{X}(\mathrm{n}-1)\)
\(=\operatorname{Re}\left(z_{\mathrm{m}}\right)\)
odd \(\mathrm{n}: \mathrm{X}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{X}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{X}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}\)

\section*{Perm format:}
even \(\mathrm{n}: \mathrm{X}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{X}(1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{m}}\right), \mathrm{X}(2 * \mathrm{k})=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{X}(2 * \mathrm{k}+1)=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=\) 1,...,m-1,
```

odd n: X (0) = Re(zo), X(2*k-1) = Re( }\mp@subsup{\textrm{z}}{\textrm{k}}{}),\textrm{X}(2*\textrm{k})=\operatorname{Im}(\mp@subsup{\textrm{z}}{\textrm{k}}{\prime}),\textrm{k}=1,···,\mp@code{m}

```

See Example "One-dimensional In-place FFT (Fortran Interface)", Example "One-dimensional In-place FFT (C Interface)", Example "Two-dimensional FFT (Fortran Interface)", and Example "Twodimensional FFT (C Interface)".

Input and output data exchange roles in the backward transform.
- A typical usage of out-of-place transform is as follows:
```

// m = floor( n/2 )
REAL :: X(0:n-1)
REAL :: Y(0:2*m+1)
...some other code...
...assuming out-of-place transform...
Status = DftiComputeForward( Desc_Handle, X, Y )

```

On input, \(x(p)=r_{p}, p=0,1, \ldots, n-1\).
On output,
Output data stored in one of formats: Pack, Perm or CCS (see DFTI_PACKED_FORMAT).
CCS format: \(Y(2 * k)=\operatorname{Re}\left(z_{k}\right), Y(2 \star k+1)=\operatorname{Im}\left(z_{k}\right), k=0,1, \ldots, m\).
Pack format:

```

= Re(zm

```


\section*{Perm format:}
```

even $\mathrm{n}: \mathrm{Y}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{Y}(1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{m}}\right), \mathrm{Y}(2 * \mathrm{k})=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{Y}(2 * \mathrm{k}+1)=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=$ 1,..., m-1,
odd $\mathrm{n}: \mathrm{Y}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{Y}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{Y}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}$.

```

Notice that if the stride of the output array is not set to the default value unit stride, the real and imaginary parts of one complex element will be placed with this stride.

For example:
CCS format: \(Y(2 * k * s)=\operatorname{Re}\left(z_{k}\right), Y((2 * k+1) * s)=\operatorname{Im}\left(z_{k}\right), k=0,1, \ldots, m, s-s t r i d e\).
See Example "One-dimensional Out-of-place FFT (Fortran Interface)" and Example "One-dimensional Out-of-place FFT (C Interface)".

Input and output data exchange roles in the backward transform.
2. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_COMPLEX for conjugate-even domain. It is used for 1D, 2D and 3D REAL FFT. The CCE format is set by default. You must explicitly set the storage scheme in this case, because its value is not the default one.
- A typical usage of in-place transform is as follows:
```

// m = floor( n/2 )
REAL :: X (0:m*2)
...some other code...
...assuming in-place transform...
Status = DftiSetValue( Desc_Handle, DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX)
Status = DftiComputeForward( Desc_Handle, X)

```

On input,
```

X(p)= rp, p = 0,1,···,n-1.

```

On output,
```

X(2*k) = Re( zk ), X(2*k+1) = Im( zk

```

See Example "Two-Dimensional REAL In-place FFT (Fortran Interface)".
Input and output data exchange roles in the backward transform.
- A typical usage of out-of-place transform is as follows:
```

// m = floor( n/2 )
REAL :: X(0:n-1)
COMPLEX :: Y(0:m)
...some other code...
...assuming out-of-place transform...
Status = DftiSetValue( Desc_Handle, DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX)
Status = DftiComputeForward( Desc_Handle, X, Y )

```

On input,
\(X(p)=r_{p}, p=0,1, \ldots, n-1\).
On output,
\(Y(k)=z_{k}, k=0,1, \ldots, m\).
See Example "Two-Dimensional REAL Out-of-place FFT (Fortran Interface)" and Example "ThreeDimensional REAL FFT (C Interface)"

Input and output data exchange roles in the backward transform.

\section*{See Also}

\section*{DftiSetValue}

\section*{DFTI_PACKED_FORMAT}

The result of the forward transform (that is, in the frequency domain) of real data is represented in several possible packed formats: Pack, Perm, CCS, or CCE. The data can be packed due to the symmetry property of the FFT of real data.

Use the following non-default settings for real transforms of all ranks:
- The configuration parameter DFTI_CONJUGATE_EVEN_STORAGE has the value of DFTI_COMPLEX_COMPLEX.
- Elements of the result in the conjugate-even domain have a complex type.
- The configuration parameter DFTI_PACKED_FORMAT has the value of DFTI_CCE_FORMAT.

The following setting is the default for one-dimensional and two-dimensional real transforms:
- The configuration parameter DFTI_CONJUGATE_EVEN_STORAGE has the value of DFTI_COMPLEX_REAL.
- Data elements in the frequency domain have a real type.
- The value of DFTI_PACKED_FORMAT defines how real and imaginary parts of the data are laid out in the result.

NOTE This setting does not apply to three-dimensional and higher-rank transforms. Though not recommended, it is the default for backward compatibility.

The CCE format stores the values of the first half of the output complex conjugate-even signal resulting from the forward FFT. For a multi-dimensional real transform, n1 * n2 * n3 * ... * nk the size of complex matrix in CCE format is \((n 1 / 2+1) * n 2 * n 3 * \ldots\) * \(n k\) for Fortran and \(n 1 * n 2\) * \(\ldots\) * (\(n k / 2+1\)) for C.

The CCS format is similar to the CCE format and is the same format for one-dimensional transform. It differs slightly for multi-dimensional real transforms. In CCS format, the output samples of the FFT are arranged as shown in Table "Packed Format Output Samples" for a one-dimensional FFT and in Table "CCS Format Output Samples (Two-Dimensional Matrix \((m+2)\)-by- \((n+2)\))" for a two-dimensional FFT.
The Pack format is a compact representation of a complex conjugate-symmetric sequence, but the elements are arranged intuitively for complex FFT algorithms rather than for real FFTs. In the Pack format, the output samples of the FFT are arranged as shown in Table "Packed Format Output Samples" for one-dimensional FFT and in Table "Pack Format Output Samples (Two-Dimensional Matrix m-by-n)" for two-dimensional FFT.
The Perm format is a permutation of the Pack format for even lengths and is the same as the Pack format for odd lengths. In Perm format, the output samples of the FFT are arranged as shown in Table "Packed Format Output Samples" for a one-dimensional FFT and in Table "Perm Format Output Samples (Two-Dimensional Matrix \(m\)-by- \(n\))" for a two-dimensional FFT.

\section*{Packed Format Output Samples}
\begin{tabular}{llllllllll}
\hline For \(\mathbf{n}=\mathbf{2} \boldsymbol{*}\) & & & & & & & & & \\
\hline FFT Real & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\ldots\) & \(\mathbf{n - 2}\) & \(\mathbf{n - 1}\) & \(\mathbf{n}\) & \(\mathbf{n + 1}\) \\
CCS & \(\mathrm{R}_{0}\) & 0 & \(\mathrm{R}_{1}\) & \(\mathrm{I}_{1}\) & \(\ldots\) & \(\mathrm{R}_{\mathrm{n} / 2-1}\) & \(\mathrm{I}_{\mathrm{n} / 2-1}\) & \(\mathrm{R}_{\mathrm{n} / 2}\) & 0 \\
Pack & \(\mathrm{R}_{0}\) & \(\mathrm{R}_{1}\) & \(\mathrm{I}_{1}\) & \(\mathrm{R}_{2}\) & \(\ldots\) & \(\mathrm{I}_{\mathrm{n} / 2-1}\) & \(\mathrm{R}_{\mathrm{n} / 2}\) & & \\
Perm & \(\mathrm{R}_{0}\) & \(\mathrm{R}_{\mathrm{n} / 2}\) & \(\mathrm{R}_{1}\) & \(\mathrm{I}_{1}\) & \(\ldots\) & \(\mathrm{R}_{\mathrm{n} / 2-1}\) & \(\mathrm{I}_{\mathrm{n} / 2-1}\) & & \\
\hline \hline
\end{tabular}
\begin{tabular}{lcllllllllll}
\hline For \(\mathbf{n}=\mathbf{2 *}^{*} \mathbf{+} \mathbf{1}\) & & & & & & & & & \\
\hline FFT Real & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\ldots\) & \(\mathbf{n - 4}\) & \(\mathbf{n - 3}\) & \(\mathbf{n - 2}\) & \(\mathbf{n - 1}\) & \(\mathbf{n}\) & \(\mathbf{n + 1}\) \\
CCS & \(\mathrm{R}_{0}\) & 0 & \(\mathrm{R}_{1}\) & \(\mathrm{I}_{1}\) & \(\ldots\) & \(\mathrm{I}_{\mathrm{s}-2}\) & \(\mathrm{R}_{\mathrm{s}-1}\) & \(\mathrm{I}_{\mathrm{s}-1}\) & \(\mathrm{R}_{\mathrm{s}}\) & \(\mathrm{I}_{\mathrm{s}}\) & \\
Pack & \(\mathrm{R}_{0}\) & \(\mathrm{R}_{1}\) & \(\mathrm{I}_{1}\) & \(\mathrm{R}_{2}\) & \(\ldots\) & \(\mathrm{R}_{\mathrm{s}-1}\) & \(\mathrm{I}_{\mathrm{s}-1}\) & \(\mathrm{R}_{\mathrm{s}}\) & \(\mathrm{I}_{\mathrm{s}}\) & & \\
Perm & \(\mathrm{R}_{0}\) & \(\mathrm{R}_{1}\) & \(\mathrm{I}_{1}\) & \(\mathrm{R}_{2}\) & \(\ldots\) & \(\mathrm{R}_{\mathrm{s}-1}\) & \(\mathrm{I}_{\mathrm{s}-1}\) & \(\mathrm{R}_{\mathrm{s}}\) & \(\mathrm{I}_{\mathrm{s}}\) & & \\
\hline
\end{tabular}

Note that Table "Packed Format Output Samples" uses the following notation for complex data entries:
\(R_{j}=\operatorname{Re} z_{j}\)
\(\mathrm{I}_{\mathrm{j}}=\operatorname{Im} \mathrm{z}_{\mathrm{j}}\)
See also Table "Comparison of the Storage Effects of Complex-to-Complex and Real-to-Complex FFTs for Forward Transform" and Table "Comparison of the Storage Effects of Complex-to-Complex and Complex-toReal FFTs for Backward Transform".

CCS Format Output Samples (Two-Dimensional Matrix (m+2)-by-(\(n+2\)))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{For \(\mathrm{m}=2 * \mathrm{~s}, \mathrm{n}=2 * \mathrm{k}\)} \\
\hline \(z(1,1)\) & 0 & REz \((1,2)\) & \(\operatorname{IMz}(1,2)\) & .. & REz \((1, k)\) & \(\mathrm{IMz}(1, \mathrm{k})\) & \(z(1, k+1)\) & 0 \\
\hline 0 & 0 & 0 & 0 & .. & 0 & 0 & 0 & 0 \\
\hline REz \((2,1)\) & REz \((2,2)\) & REz \((2,3)\) & REz \((2,4)\) & . & \(\mathrm{REz}(2, \mathrm{n}-1)\) & REz \((2, n)\) & n/u* & \(\mathrm{n} / \mathrm{u}\) \\
\hline \(\mathrm{IMz}(2,1)\) & \(\mathrm{IMz}(2,2)\) & \(\mathrm{IMz}(2,3)\) & \(\mathrm{IMz}(2,4)\) & . & \(\operatorname{IMz}(2, n-1)\) & \(\mathrm{IMz}(2, n)\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \(\cdots\) & .. & \(\ldots\) & .. & .. & \(\ldots\) & ... & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \[
\begin{aligned}
& \mathrm{REz}(\mathrm{~m} / \\
& 2,1)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{REz}(\mathrm{~m} / \\
& 2,2)
\end{aligned}
\] & \(\mathrm{REz}(\mathrm{m} / 2,3)\) & \(\operatorname{REz}(\mathrm{m} / 2,4)\) & \(\cdots\) & \[
\begin{aligned}
& \text { REz(m/ } \\
& 2, \mathrm{n}-1)
\end{aligned}
\] & \(\operatorname{REz}(\mathrm{m} / 2, \mathrm{n})\) & \(\mathrm{n} / \mathrm{u}\) & n/u \\
\hline \[
\begin{aligned}
& \text { IMz(m/ } \\
& 2,1)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IMz}(\mathrm{~m} / \\
& 2,2)
\end{aligned}
\] & \(\mathrm{IMz}(\mathrm{m} / 2,3)\) & \(\mathrm{IMz}(\mathrm{m} / 2,4)\) & . & \[
\begin{aligned}
& \mathrm{IMz}(\mathrm{~m} / \\
& 2, \mathrm{n}-1)
\end{aligned}
\] & \(\mathrm{IMz}(\mathrm{m} / 2, \mathrm{n})\) & \(\mathrm{n} / \mathrm{u}\) & n/u \\
\hline \[
\begin{aligned}
& z(m / \\
& 2+1,1)
\end{aligned}
\] & 0 & \[
\begin{aligned}
& \mathrm{REz}(\mathrm{~m} / \\
& 2+1,2)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IMz}(\mathrm{~m} / \\
& 2+1,2)
\end{aligned}
\] & . & \[
\begin{aligned}
& \mathrm{REz}(\mathrm{~m} / \\
& 2+1, \mathrm{k})
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IMz}(\mathrm{~m} / \\
& 2+1, \mathrm{k})
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{z}(\mathrm{~m} / 2+1, \mathrm{k} \\
& +1)
\end{aligned}
\] & 0 \\
\hline 0 & 0 & 0 & 0 & \(\cdots\) & 0 & 0 & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \multicolumn{9}{|l|}{For m \(=2 * s+1, n=2 * k\)} \\
\hline \(z(1,1)\) & 0 & REz \((1,2)\) & \(\mathrm{IMz}(1,2)\) & .. & REz \((1, k)\) & \(\mathrm{IMz}(1, \mathrm{k})\) & \(z(1, k+1)\) & 0 \\
\hline 0 & 0 & 0 & 0 & .. & 0 & 0 & 0 & 0 \\
\hline REz \((2,1)\) & REz \((2,2)\) & REz \((2,3)\) & \(\operatorname{REz}(2,4)\) & . & \(\operatorname{REz}(2, n-1)\) & \(\operatorname{REz}(2, n)\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \(\mathrm{IMz}(2,1)\) & \(\mathrm{IMz}(2,2)\) & \(\operatorname{IMz}(2,3)\) & \(\mathrm{IMz}(2,4)\) & .. & \(\mathrm{IMz}(2, \mathrm{n}-1)\) & \(\mathrm{IMz}(2, n)\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline ... & \(\ldots\) & \(\ldots\) & \(\ldots\) & . & \(\ldots\) & ... & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline REz(s,1) & REz(s,2) & REz(s,3) & REz \((\mathrm{s}, 4)\) & .. & \(\mathrm{REz}(\mathrm{s}, \mathrm{n}-1)\) & REz (s,n) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \(\mathrm{IMz}(\mathrm{s}, 1)\) & \(\mathrm{IMz}(\mathrm{s}, 2)\) & IMz(s,3) & IMz (s,4) & \(\cdots\) & \(\mathrm{IMz}(\mathrm{s}, \mathrm{n}-1)\) & \(\mathrm{IMz}(\mathrm{s}, \mathrm{n})\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{For \(m=2 * s, n=2 * k+1\)} \\
\hline \(z(1,1)\) & 0 & REz \((1,2)\) & \(\mathrm{IMz}(1,2)\) & .. & \(\mathrm{IMz}(1, \mathrm{k}-1)\) & REz \((1, k)\) & IM \(z(1, k)\) \\
\hline 0 & 0 & 0 & 0 & .. & 0 & 0 & 0 \\
\hline \(\mathrm{REz}(2,1)\) & REz \((2,2)\) & REz \((2,3)\) & \(\mathrm{REz}(2,4)\) & .. & REz \((2, n-1)\) & REz \((2, n)\) & n/u* \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{For \(\mathrm{m}=2 * \mathrm{~s}, \mathrm{n}=2 * \mathrm{k}+1\)} \\
\hline \(\mathrm{IMz}(2,1)\) & \(\mathrm{IMz}(2,2)\) & \(\mathrm{IMz}(2,3)\) & \(\mathrm{IMz}(2,4)\) & .. & \(\mathrm{IMz}(2, \mathrm{n}-1)\) & \(\mathrm{IMz}(2, \mathrm{n})\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline ... & ... & \(\ldots\) & \(\ldots\) & .. & \(\ldots\) & \(\ldots\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \[
\begin{aligned}
& \text { REz(m/m/ } \\
& 2,1)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{REz}(\mathrm{~m} / \\
& 2,2)
\end{aligned}
\] & REz(m/2,3) & \(\mathrm{REz}(\mathrm{m} / 2,4)\) & . & \(\operatorname{REz}(\mathrm{m} / 2, \mathrm{n}-1)\) & \(\operatorname{REz}(\mathrm{m} / 2, \mathrm{n})\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \[
\begin{aligned}
& \text { IMz(m/ } \\
& 2,1)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IMz}(\mathrm{~m} / \\
& 2,2)
\end{aligned}
\] & \(\mathrm{IMz}(\mathrm{m} / 2,3)\) & \(\mathrm{IMz}(\mathrm{m} / 2,4)\) & \(\cdots\) & \(\mathrm{IMz}(\mathrm{m} / 2, \mathrm{n}-1)\) & \(\mathrm{IMz}(\mathrm{m} / 2, \mathrm{n})\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \[
\begin{aligned}
& z(m / \\
& 2+1,1)
\end{aligned}
\] & 0 & \[
\begin{aligned}
& \text { REz(m/ } \\
& 2+1,2)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IMz}(\mathrm{~m} / \\
& 2+1,2)
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{IMz}(\mathrm{~m} / \\
& 2+1, \mathrm{k}-1)
\end{aligned}
\] & \[
\begin{aligned}
& \text { REz(m/ } \\
& 2+1, k)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IMz}(\mathrm{~m} / \\
& 2+1, \mathrm{k})
\end{aligned}
\] \\
\hline 0 & 0 & 0 & 0 & \[
\begin{aligned}
& \text {. } \\
& .
\end{aligned}
\] & 0 & 0 & \(\mathrm{n} / \mathrm{u}\) \\
\hline \multicolumn{8}{|l|}{For m \(=2 * s+1, n=2 * k+1\)} \\
\hline \(z(1,1)\) & 0 & REz \((1,2)\) & \(\mathrm{IMz}(1,2)\) & . & \(\mathrm{IMz}(1, \mathrm{k}-1)\) & REz (1,k) & \(\mathrm{IMz}(1, \mathrm{k})\) \\
\hline 0 & 0 & 0 & 0 & .. & 0 & 0 & 0 \\
\hline \(\mathrm{REz}(2,1)\) & \(\mathrm{REz}(2,2)\) & REz \((2,3)\) & REz \((2,4)\) & .. & \(\operatorname{REz}(2, n-1)\) & REz \((2, n)\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \(\operatorname{IMz}(2,1)\) & \(\operatorname{IMz}(2,2)\) & \(\operatorname{IMz}(2,3)\) & \(\mathrm{IMz}(2,4)\) & .. & \(\operatorname{IMz}(2, n-1)\) & \(\mathrm{IMz}(2, n)\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline ... & \(\ldots\) & ... & ... & \(\cdots\) & \(\ldots\) & \(\ldots\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \(\mathrm{REz}(\mathrm{s}, 1)\) & \(\mathrm{REz}(\mathrm{s}, 2)\) & REz \((\mathrm{s}, 3)\) & REz \((\mathrm{s}, 4)\) & .. & REz(s,n-1) & REz(s,n) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \(\mathrm{IMz}(\mathrm{s}, 1)\) & \(\mathrm{IMz}(\mathrm{s}, 2)\) & IMz(s,3) & \(\mathrm{IMz}(\mathrm{s}, 4)\) & \(\ldots\) & \(\operatorname{IMz}(\mathrm{s}, \mathrm{n}-1)\) & \(\mathrm{IMz}(\mathrm{s}, \mathrm{n})\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline
\end{tabular}
* n/u - not used.

Note that in the Table "CCS Format Output Samples (Two-Dimensional Matrix (\(m+2\))-by- \((n+2)\))", \((n+2)\) columns are used for even \(n=k \star 2\), while \(n\) columns are used for odd \(n=k \star 2+1\).

Pack Format Output Samples (Two-Dimensional Matrix m-by-n)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{For m \(=2 * s, n=2 * k\)} \\
\hline \(\mathrm{z}(1,1)\) & REz \((1,2)\) & \(\mathrm{IMz}(1,2)\) & REz \((1,3)\) & \(\ldots\) & \(\mathrm{IMz}(1, k)\) & \(z(1, k+1)\) \\
\hline \(\operatorname{REz}(2,1)\) & REz \((2,2)\) & REz \((2,3)\) & \(\operatorname{REz}(2,4)\) & \(\ldots\) & \(\operatorname{REz}(2, n-1)\) & \(\operatorname{REz}(2, n)\) \\
\hline \(\operatorname{IMz}(2,1)\) & \(\mathrm{IMz}(2,2)\) & \(\mathrm{IMz}(2,3)\) & \(\mathrm{IMz}(2,4)\) & \(\ldots\) & \(\mathrm{IMz}(2, \mathrm{n}-1)\) & \(\operatorname{IMz}(2, n)\) \\
\hline \(\ldots\) & ... & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\cdots\) & \(\cdots\) \\
\hline \(\mathrm{REz}(\mathrm{m} / 2,1)\) & \(\mathrm{REz}(\mathrm{m} / 2,2)\) & \(\mathrm{REz}(\mathrm{m} / 2,3)\) & \(\mathrm{REz}(\mathrm{m} / 2,4)\) & \(\ldots\) & \(\operatorname{REz}(\mathrm{m} / 2, \mathrm{n}-1)\) & \(\mathrm{REz}(\mathrm{m} / 2, \mathrm{n})\) \\
\hline \(\mathrm{IMz}(\mathrm{m} / 2,1)\) & \(\mathrm{IMz}(\mathrm{m} / 2,2)\) & \(\mathrm{IMz}(\mathrm{m} / 2,3)\) & \(\mathrm{IMz}(\mathrm{m} / 2,4)\) & \(\ldots\) & \(\mathrm{IMz}(\mathrm{m} / 2, \mathrm{n}-1)\) & \(\mathrm{IMz}(\mathrm{m} / 2, \mathrm{n})\) \\
\hline \(z(m / 2+1,1)\) & \[
\begin{aligned}
& \mathrm{REz}(\mathrm{~m} / \\
& 2+1,2)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IMz}(\mathrm{~m} / \\
& 2+1,2)
\end{aligned}
\] & \(\mathrm{REz}(\mathrm{m} / 2+1,3)\) & ... & \(\mathrm{IMz}(\mathrm{m} / 2+1, \mathrm{k})\) & \(z(m / 2+1, k+1)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{For m \(=2 * s+1, n=2 * k\)} \\
\hline \(z(1,1)\) & REz \((1,2)\) & \(\operatorname{IMz}(1,2)\) & \(\operatorname{REz}(1,3)\) & \(\ldots\) & \(\mathrm{IMz}(1, \mathrm{k})\) & \(z(1, n / 2+1)\) \\
\hline REz \((2,1)\) & REz \((2,2)\) & REz \((2,3)\) & REz \((2,4)\) & \(\ldots\) & \(\operatorname{REz}(2, n-1)\) & \(\operatorname{REz}(2, \mathrm{n})\) \\
\hline \(\mathrm{IMz}(2,1)\) & \(\mathrm{IMz}(2,2)\) & \(\operatorname{IMz}(2,3)\) & \(\operatorname{IMz}(2,4)\) & \(\ldots\) & \(\operatorname{IMz}(2, n-1)\) & \(\operatorname{IMz}(2, n)\) \\
\hline \(\ldots\) & ... & \(\ldots\) & ... & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline REz \((\mathrm{s}, 1)\) & REz(s,2) & REz(s,3) & REz(s,4) & \(\ldots\) & REz(s,n-1) & REz(s,n) \\
\hline \(\mathrm{IMz}(\mathrm{s}, 1)\) & \(\mathrm{IMz}(\mathrm{s}, 2)\) & \(\mathrm{IMz}(\mathrm{s}, 3)\) & \(\mathrm{IMz}(\mathrm{s}, 4)\) & ... & \(\mathrm{IMz}(\mathrm{s}, \mathrm{n}-1)\) & \(\mathrm{IMz}(\mathrm{s}, \mathrm{n})\) \\
\hline \multicolumn{7}{|l|}{Perm Format Output Samples (Two-Dimensional Matrix m-by-n)} \\
\hline \multicolumn{7}{|l|}{For m = 2*s, \(\mathrm{n}=2 * \mathrm{k}+1\)} \\
\hline \(\mathrm{z}(1,1)\) & \(z(1, k+1)\) & REz \((1,2)\) & \(\operatorname{IMz}(1,2)\) & \(\ldots\) & REz \((1, k)\) & \(\mathrm{IMz}(1, \mathrm{k})\) \\
\hline \(z(m / 2+1,1)\) & \[
\begin{aligned}
& z(m / 2+1, k \\
& +1)
\end{aligned}
\] & \[
\begin{aligned}
& \text { REz(m/ } \\
& 2+1,2)
\end{aligned}
\] & \(\mathrm{IMz}(\mathrm{m} / 2+1,2)\) & \(\ldots\) & \(\operatorname{REz}(\mathrm{m} / 2+1, \mathrm{k})\) & \(\mathrm{IMz}(\mathrm{m} / 2+1, \mathrm{k})\) \\
\hline REz \((2,1)\) & REz \((2,2)\) & REz \((2,3)\) & REz \((2,4)\) & \(\cdots\) & \(\operatorname{REz}(2, n-1)\) & \(\operatorname{REz}(2, n)\) \\
\hline \(\mathrm{IMz}(2,1)\) & \(\mathrm{IMz}(2,2)\) & \(\operatorname{IMz}(2,3)\) & \(\operatorname{IMz}(2,4)\) & \(\ldots\) & \(\operatorname{IMz}(2, n-1)\) & \(\operatorname{IMz}(2, n)\) \\
\hline \(\cdots\) & ... & ... & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline \(\operatorname{REz}(\mathrm{m} / 2,1)\) & REz(m/2,2) & \(\operatorname{REz}(\mathrm{m} / 2,3)\) & REz(m/2,4) & \(\ldots\) & \(\operatorname{REz}(\mathrm{m} / 2, \mathrm{n}-1)\) & \(\operatorname{REz}(\mathrm{m} / 2, \mathrm{n})\) \\
\hline \(\mathrm{IMz}(\mathrm{m} / 2,1)\) & \(\mathrm{IMz}(\mathrm{m} / 2,2)\) & \(\mathrm{IMz}(\mathrm{m} / 2,3)\) & \(\mathrm{IMz}(\mathrm{m} / 2,4)\) & \(\ldots\) & \(\mathrm{IMz}(\mathrm{m} / 2, \mathrm{n}-1)\) & \(\mathrm{IMz}(\mathrm{m} / 2, \mathrm{n})\) \\
\hline \multicolumn{7}{|l|}{For m \(=2 * s+1, n=2 * k+1\)} \\
\hline \(z(1,1)\) & \(z(1, k+1)\) & REz \((1,2)\) & \(\operatorname{IMz}(1,2)\) & \(\cdots\) & REz \((1, k)\) & \(\mathrm{IMz}(1, \mathrm{k})\) \\
\hline REz(2,1) & REz \((2,2)\) & REz \((2,3)\) & REz \((2,4)\) & \(\ldots\) & \(\operatorname{REz}(2, n-1)\) & \(\operatorname{REz}(2, n)\) \\
\hline \(\operatorname{IMz}(2,1)\) & \(\mathrm{IMz}(2,2)\) & \(\operatorname{IMz}(2,3)\) & \(\operatorname{IMz}(2,4)\) & \(\ldots\) & \(\mathrm{IMz}(2, \mathrm{n}-1)\) & \(\operatorname{IMz}(2, n)\) \\
\hline \(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\) \\
\hline REz(s,1) & REz (s,2) & REz(s,3) & REz(s,4) & \(\ldots\) & \(\operatorname{REz}(\mathrm{s}, \mathrm{n}-1)\) & REz(s,n) \\
\hline \(\mathrm{IMz}(\mathrm{s}, 1)\) & \(\mathrm{IMz}(\mathrm{s}, 2)\) & \(\mathrm{IMz}(\mathrm{s}, 3)\) & \(\mathrm{IMz}(\mathrm{s}, 4)\) & \(\cdots\) & \(\mathrm{IMz}(\mathrm{s}, \mathrm{n}-1)\) & \(\mathrm{IMz}(\mathrm{s}, \mathrm{n})\) \\
\hline
\end{tabular}

The tables for two-dimensional FFT use Fortran-interface conventions. For C-interface specifics in storing packed data, see DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE. See also Table "Fortran-interface Data Layout for a 6-by-4 Mätrix" and Table " \(\bar{C}\)-interface Data Layout for a 6-by-4 Matrix" for examples of Fortran-interface and C-interface formats.
To better understand packed formats for two-dimensional transforms, refer to these examples in your Intel MKL directory:

C:
./examples/dftc/source/config_conjugate_even_storage.c
Fortran:
./examples/dftf/source/config_conjugate_even_storage.f90

\section*{See Also}

\section*{DftiSetValue}

\section*{DFTI_WORKSPACE}

The computation step for some FFT algorithms requires a scratch space for permutation or other purposes. To manage the use of the auxiliary storage, Intel MKL enables you to set the configuration parameter DFTI_WORKSPACE with the following values:
\begin{tabular}{ll}
DFTI_ALLOW & (default) Permits the use of the auxiliary storage. \\
DFTI_AVOID & Instructs Intel MKL to avoid using the auxiliary storage if possible.
\end{tabular}

\section*{See Also}

DftiSetValue

\section*{DFTI_COMMIT_STATUS}

The DFTI_COMMIT_STATUS configuration parameter indicates whether the descriptor is ready for computation. The parameter has two possible values:
```

DFTI_UNCOMMITTED

```

Default value, set after a successful call of DftiCreateDescriptor.
DFTI_COMMITTED The value after a successful call to DftiCommitDescriptor.
A computation function called with an uncommitted descriptor returns an error.
You cannot directly set this configuration parameter in a call to DftiSetValue, but a change in the configuration of a committed descriptor may change the commit status of the descriptor to DFTI_UNCOMMITTED.

\section*{See Also}

\section*{DftiCreateDescriptor}

DftiCommitDescriptor
DftiSetValue

\section*{DFTI_ORDERING}

Some FFT algorithms apply an explicit permutation stage that is time consuming [4]. The exclusion of this step is similar to applying an FFT to input data whose order is scrambled, or allowing a scrambled order of the FFT results. In applications such as convolution and power spectrum calculation, the order of result or data is unimportant and thus using scrambled data is acceptable if it leads to better performance. The following options are available in Intel MKL:
- DFTI_ORDERED: Forward transform data ordered, backward transform data ordered (default option).
- DFTI_BACKWARD_SCRAMBLED: Forward transform data ordered, backward transform data scrambled.

Table "Scrambled Order Transform" tabulates the effect of this configuration setting.

\section*{Scrambled Order Transform}
\begin{tabular}{lll}
\hline & DftiComputeForward & DftiComputeBackward \\
\hline DFTI_ORDERING & Input \(\rightarrow\) Output & Input \(\rightarrow\) Output \\
DFTI_ORDERED & ordered \(\rightarrow\) ordered & ordered \(\rightarrow\) ordered \\
DFTI_BACKWARD_SCRAMBLED & ordered \(\rightarrow\) scrambled & scrambled \(\rightarrow\) ordered \\
\hline
\end{tabular}

NOTE The word "scrambled" in this table means "permit scrambled order if possible". In some situations permitting out-of-order data gives no performance advantage and an implementation may choose to ignore the suggestion.

\section*{See Also}

DftiSetValue

\section*{Cluster FFT Functions}

This section describes the cluster Fast Fourier Transform (FFT) functions implemented in Intel MKL.

The cluster FFT function library was designed to perform fast Fourier transforms on a cluster, that is, a group of computers interconnected via a network. Each computer (node) in the cluster has its own memory and processor(s). Data interchanges between the nodes are provided by the network.

One or more processes may be running in parallel on each cluster node. To organize communication between different processes, the cluster FFT function library uses the Message Passing Interface (MPI). To avoid dependence on a specific MPI implementation (for example, MPICH, Intel® MPI, and others), the library works with MPI via a message-passing library for linear algebra called BLACS.
Cluster FFT functions of Intel MKL provide one-dimensional, two-dimensional, and multi-dimensional (up to the order of 7) functions and both Fortran and C interfaces for all transform functions.
To develop applications using the cluster FFT functions, you should have basic skills in MPI programming.
The interfaces for the Intel MKL cluster FFT functions are similar to the corresponding interfaces for the conventional Intel MKL FFT functions, described earlier in this chapter. Refer there for details not explained in this section.
Table "Cluster FFT Functions in Intel MKL" lists cluster FFT functions implemented in Intel MKL:
Cluster FFT Functions in Intel MKL

Function Name
Descriptor Manipulation Functions
DftiCreateDescriptorDM

DftiCommitDescriptorDM
DftiFreeDescriptorDM
FFT Computation Functions
DftiComputeForwardDM
DftiComputeBackwardDM
Descriptor Configuration Functions
DftiSetValueDM

DftiGetValueDM

Allocates memory for the descriptor data structure and preliminarily initializes it.

Performs all initialization for the actual FFT computation.
Frees memory allocated for a descriptor.

Computes the forward FFT.
Computes the backward FFT.

Sets one particular configuration parameter with the specified configuration value.

Gets the value of one particular configuration parameter.

\section*{Computing Cluster FFT}

The cluster FFT functions described later in this section are provided with Fortran and C interfaces. Fortran stands for Fortran 95.

Cluster FFT computation is performed by DftiComputeForwardDM and DftiComputeBackwardDM functions, called in a program using MPI, which will be referred to as MPI program. After an MPI program starts, a number of processes are created. MPI identifies each process by its rank. The processes are independent of one another and communicate via MPI. A function called in an MPI program is invoked in all the processes. Each process manipulates data according to its rank. Input or output data for a cluster FFT transform is a sequence of real or complex values. A cluster FFT computation function operates local part of the input data, i.e. some part of the data to be operated in a particular process, as well as generates local part of the output data. While each process performs its part of computations, running in parallel and communicating through MPI, the processes perform the entire FFT computation. FFT computations using the Intel MKL cluster FFT functions are typically effected by a number of steps listed below:
1. Initiate MPI by calling MPI_Init in C/C++ or MPI_INIT in Fortran (the function must be called prior to calling any FFT function and any MPI function).
2. Allocate memory for the descriptor and create it by calling DftiCreateDescriptorDM.
3. Specify one of several values of configuration parameters by one or more calls to DftiSetValueDM.
4. Obtain values of configuration parameters needed to create local data arrays; the values are retrieved by calling DftiGetValueDM.
5. Initialize the descriptor for the FFT computation by calling DftiCommitDescriptorDM.
6. Create arrays for local parts of input and output data and fill the local part of input data with values. (For more information, see Distributing Data among Processes.)
7. Compute the transform by calling DftiComputeForwardDM or DftiComputeBackwardDM.
8. Gather local output data into the global array using MPI functions. (This step is optional because you may need to immediately employ the data differently.)
9. Release memory allocated for the descriptor by calling DftiFreeDescriptorDM.

10Finalize communication through MPI by calling MPI_Finalize in C/C++ or MPI_FINALIZE in Fortran (the function must be called after the last call to a cluster FFT function and the last call to an MPI function).

Several code examples in the "Examples for Cluster FFT Functions" section in Appendix C illustrate cluster FFT computations.

\section*{Distributing Data among Processes}

The Intel MKL cluster FFT functions store all input and output multi-dimensional arrays (matrices) in onedimensional arrays (vectors). The arrays are stored in the row-major order in C/C++ and in the columnmajor order in Fortran. For example, a two-dimensional matrix A of size \((m, n)\) is stored in a vector B of size \(m * n\) so that
- B[i*n+j]=A[i][j]in C/C++(i=0,..., m-1, \(j=0, \ldots, n-1)\)
- \(B(j * m+i)=A(i, j)\) in Fortran \((i=1, \ldots, m, j=1, \ldots, n)\).

NOTE Order of FFT dimensions is the same as the order of array dimensions in the programming language. For example, a 3-dimensional FFT with Lengths \(=(m, n, l)\) can be computed over an array \(\operatorname{Ar}[m][n][l]\) in \(C / C++\) or \(\operatorname{AR}(m, n, l)\) in Fortran.

All MPI processes involved in cluster FFT computation operate their own portions of data. These local arrays make up the virtual global array that the fast Fourier transform is applied to. It is your responsibility to properly allocate local arrays (if needed), fill them with initial data and gather resulting data into an actual global array or process the resulting data differently. To be able do this, see sections below on how the virtual global array is composed of the local ones.

\section*{Multi-dimensional transforms}

If the dimension of transform is greater than one, the cluster FFT function library splits data in the dimension whose index changes most slowly, so that the parts contain all elements with several consecutive values of this index. It is the first dimension in \(C\) and the last one in Fortran. If the global array is two-dimensional, in C, it gives each process several consecutive rows. The term "rows" will be used regardless of the array dimension and programming language. Local arrays are placed in memory allocated for the virtual global array consecutively, in the order determined by process ranks. For example, in case of two processes, during the computation of a three-dimensional transform whose matrix has size \((11,15,12)\), the processes may store local arrays of sizes \((6,15,12)\) and \((5,15,12)\), respectively.
If \(p\) is the number of MPI processes and the matrix of a transform to be computed has size (\(m, n, 1\)), in \(C\), each MPI process works with local data array of size \(\left(m_{q}, n, 1\right)\), where \(\Sigma m_{q}=m, q=0, \ldots, p-1\). Local input arrays must contain appropriate parts of the actual global input array, and then local output arrays will contain appropriate parts of the actual global output array. You can figure out which particular rows of the global array the local array must contain from the following configuration parameters of the cluster FFT interface: CDFT_LOCAL_NX, CDFT_LOCAL_START_X, and CDFT_LOCAL_SIZE. To retrieve values of the parameters, use the DftiGetValueDM function:
- CDFT_LOCAL_NX specifies how many rows of the global array the current process receives.
- CDFT_LOCAL_START_X specifies which row of the global input or output array corresponds to the first row of the local input or output array. If \(A\) is a global array and \(L\) is the appropriate local array, then
- L[i][j][k]=A[i+cdft_local_start_x][j][k], where \(i=0, \ldots, m_{q}-1, j=0, \ldots, n-1\), \(k=0, \ldots, 1-1\) for \(\mathrm{C} / \mathrm{C}++\)
- L(i,j,k)=A(i,j,k+cdft_local_start_x-1), where \(i=1, \ldots, m, j=1, \ldots, n, k=1, \ldots, l_{q}\) for Fortran.

Example "2D Out-of-place Cluster FFT Computation" in Appendix C shows how the data is distributed among processes for a two-dimensional cluster FFT computation.

\section*{One-dimensional transforms}

In this case, input and output data are distributed among processes differently and even the numbers of elements stored in a particular process before and after the transform may be different. Each local array stores a segment of consecutive elements of the appropriate global array. Such segment is determined by the number of elements and a shift with respect to the first array element. So, to specify segments of the global input and output arrays that a particular process receives, four configuration parameters are needed: CDFT_LOCAL_NX, CDFT_LOCAL_START_X, CDFT_LOCAL_OUT_NX, and CDFT_LOCAL_OUT_START_X. Use the Dfti \(\bar{G} e t V a l u e D M\) function to retrieve their values. The meaning of the four configuration parameters depends upon the type of the transform, as shown in Table "Data Distribution Configuration Parameters for 1D Transforms":

\section*{Data Distribution Configuration Parameters for 1D Transforms}
\begin{tabular}{lll}
\hline Meaning of the Parameter & Forward Transform & Backward Transform \\
\hline \begin{tabular}{l}
Number of elements in input \\
array
\end{tabular} & CDFT_LOCAL_NX & CDFT_LOCAL_OUT_NX \\
Elements shift in input array & CDFT_LOCAL_START_X & \\
\begin{tabular}{l}
Number of elements in output \\
array
\end{tabular} & CDFT_LOCAL_OUT_NX \(^{\text {Elements shift in output array }}\) & CDFT_LOCAL_OUT_START_X
\end{tabular}

\section*{Memory size for local data}

The memory size needed for local arrays cannot be just calculated from CDFT_LOCAL_NX (CDFT_LOCAL_OUT_NX), because the cluster FFT functions sometimes require allocating a little bit more memory for local data than just the size of the appropriate sub-array. The configuration parameter CDFT_LOCAL_SIZE specifies the size of the local input and output array in data elements. Each local input and output arrays must have size not less than CDFT_LOCAL_SIZE*size_of_element. Note that in the current implementation of the cluster FFT interface, data elements can be real or complex values, each complex value consisting of the real and imaginary parts. If you employ a user-defined workspace for inplace transforms (for more information, refer to Table "Settable configuration Parameters"), it must have the same size as the local arrays. Example "1D In-place Cluster FFT Computations" in Appendix C illustrates how the cluster FFT functions distribute data among processes in case of a one-dimensional FFT computation effected with a user-defined workspace.

\section*{Available Auxiliary Functions}

If a global input array is located on one MPI process and you want to obtain its local parts or you want to gather the global output array on one MPI process, you can use functions MKL_CDFT_ScatterData and MKL_CDFT_GatherData to distribute or gather data among processes, respectively. These functions are defined in a file that is delivered with Intel MKL and located in the following subdirectory of the Intel MKL installation directory: examples/cdftc/source/cdft_example_support.c for C/C++ and examples/ cdftf/source/cdft_example_support.f90 for Fortran.

\section*{Restriction on Lengths of Transforms}

The algorithm that the Intel MKL cluster FFT functions use to distribute data among processes imposes a restriction on lengths of transforms with respect to the number of MPI processes used for the FFT computation:
- For a multi-dimensional transform, lengths of the first two dimensions in C/C++ or of the last two dimensions in Fortran must be not less than the number of MPI processes.
- Length of a one-dimensional transform must be the product of two integers each of which is not less than the number of MPI processes.

Non-compliance with the restriction causes an error CDFT_SPREAD_ERROR (refer to Error Codes for details). To achieve the compliance, you can change the transform lengths and/or the number of MPI processes, which is specified at start of an MPI program. MPI-2 enables changing the number of processes during execution of an MPI program.

\section*{Cluster FFT Interface}

To use the cluster FFT functions, you need to access the module MKL_CDFT through the "use" statement in Fortran; or access the header file mkl_cdft.h through "include" in C/C++.
The Fortran interface provides a derived type DFTI_DESCRIPTOR_DM; a number of named constants representing various names of configuration parameters and their possible values; and a number of overloaded functions through the generic functionality of Fortran 95.
The C interface provides a structure type DFTI_DESCRIPTOR_DM_HANDLE and a number of functions, some of which accept a different number of input arguments.
To provide communication between parallel processes through MPI, the following include statement must be present in your code:
- Fortran:
```

INCLUDE "mpif.h"

```
(for some MPI versions, "mpif90.h" header may be used instead).
- C/C++:
\#include "mpi.h"
There are three main categories of the cluster FFT functions in Intel MKL:
1. Descriptor Manipulation. There are three functions in this category. The DftiCreateDescriptorDM function creates an FFT descriptor whose storage is allocated dynamically. The DftiCommitDescriptorDM function "commits" the descriptor to all its settings. The
DftiFreeDescriptorDM function frees up the memory allocated for the descriptor.
2. FFT Computation. There are two functions in this category. The DftiComputeForwardDM function performs the forward FFT computation, and the DftiComputeBackwardDM function performs the backward FFT computation.
3. Descriptor Configuration. There are two functions in this category. The DftiSetValueDM function sets one specific configuration value to one of the many configuration parameters. The DftiGetValueDM function gets the current value of any of these configuration parameters, all of which are readable. These parameters, though many, are handled one at a time.

\section*{Descriptor Manipulation Functions}

There are three functions in this category: create a descriptor, commit a descriptor, and free a descriptor.

\section*{DftiCreateDescriptorDM}

Allocates memory for the descriptor data structure and preliminarily initializes it.

\section*{Syntax}

\section*{Fortran:}
```

Status = DftiCreateDescriptorDM(comm, handle, v1, v2, dim, size)
Status = DftiCreateDescriptorDM(comm, handle, v1, v2, dim, sizes)

```

C:
```

status = DftiCreateDescriptorDM(comm, shandle, v1, v2, dim, size );
status = DftiCreateDescriptorDM(comm, \&handle, v1, v2, dim, sizes );

```

\section*{Include Files}
- FORTRAN 90: mkl_cdft.f90
- C: mkl_cdft.h

\section*{Input Parameters}
\begin{tabular}{ll}
comm & MPI communicator, e.g. MPI_COMM_WORLD. \\
v1 & Precision of the transform. \\
v2 & \begin{tabular}{l}
Type of the forward domain. Must be DFTI_COMPLEX for complex-to- \\
complex transforms or DFTI_REAL for real-to-complex transforms.
\end{tabular} \\
dim & Dimension of the transform. \\
size & Length of the transform in a one-dimensional case. \\
sizes & Lengths of the transform in a multi-dimensional case.
\end{tabular}

\section*{Output Parameters}
handle Pointer to the descriptor handle of transform. If the function completes successfully, the pointer to the created handle is stored in the variable.

\section*{Description}

This function allocates memory in a particular MPI process for the descriptor data structure and instantiates it with default configuration settings with respect to the precision, domain, dimension, and length of the desired transform. The domain is understood to be the domain of the forward transform. The result is a pointer to the created descriptor. This function is slightly different from the "initialization" function DftiCommitDescriptorDM in a more traditional software packages or libraries used for computing the FFT. This function does not perform any significant computation work, such as twiddle factors computation, because the default configuration settings can still be changed using the function DftiSetValueDM.

The value of the parameter v1 is specified through named constants DFTI_SINGLE and DFTI_DOUBLE. It corresponds to precision of input data, output data, and computation. A setting of DFTI_SINGLE indicates single-precision floating-point data type and a setting of DFTI_DOUBLE indicates double-precision floatingpoint data type.
The parameter dim is a simple positive integer indicating the dimension of the transform.
In \(\mathrm{C} / \mathrm{C}++\), for one-dimensional transforms, length is a single integer value of the parameter size having type MKL_LONG; for multi-dimensional transforms, length is supplied with the parameter sizes, which is an array of integers having type MKL_LONG. In Fortran, length is an integer or an array of integers.

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. In this case, the pointer to the created descriptor handle is stored in handle. If the function fails, it returns a value of another error class constant Interface and Prototype
```

! Fortran Interface
INTERFACE DftiCreateDescriptorDM
INTEGER(4) FUNCTION DftiCreateDescriptorDMn(C,H,P1, P2, D, L)
TYPE(DFTI_DESCRIPTOR_DM), POINTER : : H
INTEGER(4) C,P1,P2,D,L(*)
END FUNCTION
INTEGER(4) FUNCTION DftiCreateDescriptorDM1 (C,H,P1, P2, D, L)
TYPE(DFTI_DESCRIPTOR_DM), POINTER : : H
INTEGER (4) C, P1, P2,D, L
END FUNCTION
END INTERFACE

```
```

/* C/C++ prototype */
MKL_LONG DftiCreateDescriptorDM(MPI_Comm,DFTI_DESCRIPTOR_DM_HANDLE*,
enum DFTI_CONFIG_VALUE,enum DFTI_CONFIG_VALUE,MKL_LONG, . . ) ;

```

\section*{DftiCommitDescriptorDM}

Performs all initialization for the actual FFT
computation.

\section*{Syntax}

\section*{Fortran:}

Status = DftiCommitDescriptorDM (handle)
C:
status \(=\) DftiCommitDescriptorDM(handle);

\section*{Include Files}
- FORTRAN 90: mkl_cdft.f90
- C: mkl_cdft.h

\section*{Input Parameters}
handle The descriptor handle. Must be valid, that is, created in a call to DftiCreateDescriptorDM.

\section*{Description}

The cluster FFT interface requires a function that completes initialization of a previously created descriptor before the descriptor can be used for FFT computations in a particular MPI process. The DftiCommitDescriptorDM function performs all initialization that facilitates the actual FFT computation. For the current implementation, it may involve exploring many different factorizations of the input length to search for highly efficient computation method.
Any changes of configuration parameters of a committed descriptor via the set value function (see Descriptor Configuration) requires a re-committal of the descriptor before a computation function can be invoked. Typically, this committal function is called right before a computation function call (see FFT Computation).

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to the Error Codes section).

\section*{Interface and Prototype}
```

! Fortran Interface
INTERFACE DftiCommitDescriptorDM
INTEGER(4) FUNCTION DftiCommitDescriptorDM(handle);
TYPE (DFTI_DESCRIPTOR_DM), POINTER :: handle
END FUNCTION
END INTERFACE

```
/* C/C++ prototype */
MKL_LONG DftiCommitDescriptorDM(DFTI_DESCRIPTOR_DM_HANDLE handle);

\section*{DftiFreeDescriptorDM}

Frees memory allocated for a descriptor.

\section*{Syntax}

\section*{Fortran:}
```

Status = DftiFreeDescriptorDM(handle)

```

C:
status \(=\) DftiFreeDescriptorDM(\&handle);
Include files
- FORTRAN 90: mkl_cdft.f90
- C: mkl_cdft.h

\section*{Input Parameters}

\section*{Output Parameters}
\[
\text { handle } \quad \text { The descriptor handle. Memory allocated for the handle is released on }
\] output.

\section*{Description}

This function frees up all memory allocated for a descriptor in a particular MPI process. Call the DftiFreeDescriptorDM function to delete the descriptor handle. Upon successful completion of DftiFreeDescriptorDM the descriptor handle is no longer valid.

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to the Error Codes section).

\section*{Interface and Prototype}
```

! Fortran Interface
INTERFACE DftiFreeDescriptorDM
INTEGER(4) FUNCTION DftiFreeDescriptorDM(handle)
TYPE(DFTI_DESCRIPTOR_DM), POINTER :: handle
END FUNCTION
END INTERFACE

```
/* C/C++ prototype */
MKL_LONG DftiFreeDescriptorDM(DFTI_DESCRIPTOR_DM_HANDLE *handle);

\section*{FFT Computation Functions}

There are two functions in this category: compute the forward transform and compute the backward transform.

\section*{DftiComputeForwardDM}

Computes the forward FFT.

\section*{Syntax}

\section*{fortran:}
```

Status = DftiComputeForwardDM(handle, in_X, out_X)
Status = DftiComputeForwardDM(handle, in_out_X)

```

C:
status = DftiComputeForwardDM(handle, in_X, out_X);
status = DftiComputeForwardDM(handle, in_out_X);
Include Files
- FORTRAN 90: mkl_cdft.f90
- C: mkl_cdft.h

\section*{Input Parameters}
```

handle
in_X, in_out_X

```

\section*{Output Parameters}
```

out_X, in_out_X

```

The descriptor handle.
Local part of input data. Array of complex values. Refer to the Distributing Data among Processes section on how to allocate and initialize the array.

Local part of output data. Array of complex values. Refer to the Distributing Data among Processes section on how to allocate the array.

\section*{Description}

The DftiComputeForwardDM function computes the forward FFT. Forward FFT is the transform using the factor \(e^{-i 2 \pi / n}\).

Before you call the function, the valid descriptor, created by DftiCreateDescriptorDM, must be configured and committed using the DftiCommitDescriptorDM function.
The computation is carried out by calling the DftiComputeForward function. So, the functions have very much in common, and details not explicitly mentioned below can be found in the description of DftiComputeForward.
Local part of input data, as well as local part of the output data, is an appropriate sequence of complex values (each complex value consists of two real numbers: real part and imaginary part) that a particular process stores. See the Distributing Data Among Processes section for details.

Refer to the Configuration Settings section for the list of configuration parameters that the descriptor passes to the function.
The configuration parameter DFTI_PRECISION determines the precision of input data, output data, and transform: a setting of DFTI_SINGLE indicates single-precision floating-point data type and a setting of DFTI_DOUBLE indicates double-precision floating-point data type.
The configuration parameter DFTI_PLACEMENT informs the function whether the computation should be inplace. If the value of this parameter is DFTI_INPLACE (default), you must call the function with two parameters, otherwise you must supply three parameters. If DFTI_PLACEMENT = DFTI_INPLACE and three parameters are supplied, then the third parameter is ignored.

CAUTION Even in case of an out-of-place transform, local array of input data in_X may be changed. To save data, make its copy before calling DftiComputeForwardDM.

In case of an in-place transform, DftiComputeForwardDM dynamically allocates and deallocates a work buffer of the same size as the local input/output array requires.

\(\square\)
NOTE You can specify your own workspace of the same size through the configuration parameter CDFT_WORKSPACE to avoid redundant memory allocation.

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to the Error Codes section).

\section*{Interface and Prototype}
```

! Fortran Interface
INTERFACE DftiComputeForwardDM
INTEGER(4) FUNCTION DftiComputeForwardDM(h, in_X, out_X)
TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
COMPLEX(8), DIMENSION(*) :: in_x, out_X
END FUNCTION DftiComputeForwardDM
INTEGER(4) FUNCTION DftiComputeForwardDMi(h, in_out_X)
TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
COMPLEX(8), DIMENSION(*) :: in_out_X
END FUNCTION DftiComputeForwardDMi
INTEGER(4) FUNCTION DftiComputeForwardDMs(h, in_X, out_X)
TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
COMPLEX(4), DIMENSION(*) :: in_x, out_X
END FUNCTION DftiComputeForwardDMs
INTEGER(4) FUNCTION DftiComputeForwardDMis(h, in_out_X)
TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
COMPLEX(4), DIMENSION(*) :: in_out_X
END FUNCTION DftiComputeForwardDMis
END INTERFACE
/* C/C++ prototype */
MKL_LONG DftiComputeForwardDM(DFTI_DESCRIPTOR_DM_HANDLE handle, void *in_X,...);

```

\section*{DftiComputeBackwardDM}

Computes the backward FFT.

\section*{Syntax}

\section*{Fortran:}

Status = DftiComputeBackwardDM(handle, in_X, out_X)
Status = DftiComputeBackwardDM(handle, in_out_X)
C:
status = DftiComputeBackwardDM(handle, in_X, out_X);
status = DftiComputeBackwardDM(handle, in_out_X);
Include Files
- FORTRAN 90: mkl_cdft.f90
- C: mkl_cdft.h

Input Parameters
```

handle
in_X, in_out_X

```

The descriptor handle.
Local part of input data. Array of complex values. Refer to the Distributing Data among Processes section on how to allocate and initialize the array.

\section*{Output Parameters}
```

out_X, in_out_X

```

Local part of output data. Array of complex values. Refer to the Distributing Data among Processes section on how to allocate the array.

\section*{Description}

The DftiComputeBackwardDM function computes the backward FFT. Backward FFT is the transform using the factor \(e^{i 2 \pi / n}\).

Before you call the function, the valid descriptor, created by DftiCreateDescriptorDM, must be configured and committed using the DftiCommitDescriptorDM function.

The computation is carried out by calling the DftiComputeBackward function. So, the functions have very much in common, and details not explicitly mentioned below can be found in the description of DftiComputeBackward.

Local part of input data, as well as local part of the output data, is an appropriate sequence of complex values (each complex value consists of two real numbers: real part and imaginary part) that a particular process stores. See the Distributing Data among Processes section for details.

Refer to the Configuration Settings section for the list of configuration parameters that the descriptor passes to the function.
The configuration parameter DFTI_PRECISION determines the precision of input data, output data, and transform: a setting of DFTI_SINGLE indicates single-precision floating-point data type and a setting of DFTI_DOUBLE indicates double-precision floating-point data type.
The configuration parameter DFTI_PLACEMENT informs the function whether the computation should be inplace. If the value of this parameter is DFTI_INPLACE (default), you must call the function with two parameters, otherwise you must supply three parameters. If DFTI_PLACEMENT = DFTI_INPLACE and three parameters are supplied, then the third parameter is ignored.

CAUTION Even in case of an out-of-place transform, local array of input data in_x may be changed. To save data, make its copy before calling DftiComputeBackwardDM.

In case of an in-place transform, DftiComputeBackwardDM dynamically allocates and deallocates a work buffer of the same size as the local input/output array requires.

NOTE You can specify your own workspace of the same size through the configuration parameter CDFT_WORKSPACE to avoid redundant memory allocation.

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to the Error Codes section).

\section*{Interface and Prototype}
```

! Fortran Interface
INTERFACE DftiComputeBackwardDM
INTEGER(4) FUNCTION DftiComputeBackwardDM(h, in_X, out_X)
TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
COMPLEX(8), DIMENSION(*) :: in_x, out_X
END FUNCTION DftiComputeBackwardDM
INTEGER(4) FUNCTION DftiComputeBackwardDMi (h, in_out_X)
TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
COMPLEX(8), DIMENSION(*) :: in_out_X
END FUNCTION DftiComputeBackwardDMi
INTEGER(4) FUNCTION DftiComputeBackwardDMS (h, in_X, out_X)
TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
COMPLEX(4), DIMENSION(*) :: in_x, out_X
END FUNCTION DftiComputeBackwardDMs
INTEGER(4) FUNCTION DftiComputeBackwardDMis(h, in_out_X)
TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
COMPLEX(4), DIMENSION(*) :: in_out_X
END FUNCTION DftiComputeBackwardDMis
END INTERFACE
/* C/C++ prototype */
MKL_LONG DftiComputeBackwardDM(DFTI_DESCRIPTOR_DM_HANDLE handle, void *in_X,....);

```

\section*{Descriptor Configuration Functions}

There are two functions in this category: the value setting function \(D f t i S e t V a l u e D M\) sets one particular configuration parameter to an appropriate value, the value getting function DftiGetValueDM reads the value of one particular configuration parameter.
Some configuration parameters used by cluster FFT functions originate from the conventional FFT interface (see Configuration Settings subsection in the "FFT Functions" section for details).
Other configuration parameters are specific to the cluster FFT. Integer values of these parameters have type MKL_LONG in C/C++ and INTEGER (4) in Fortran. The exact type of the configuration parameters being floating-point scalars is float or double in C/C++ and REAL (4) or REAL (8) in Fortran. The configuration parameters whose values are named constants have the enum type in C/C++ and INTEGER in Fortran. They are defined in the mkl_cdft. h header file in C/C++ and MKL_CDFT module in Fortran.

Names of the configuration parameters specific to the cluster FFT interface have prefix CDFT.

\section*{DftiSetValueDM}

Sets one particular configuration parameter with the specified configuration value.

\section*{Syntax}

\section*{Fortran:}
```

Status = DftiSetValueDM (handle, param, value)

```

C:
```

status = DftiSetValueDM (handle, param, value);

```

Include Files
- FORTRAN 90: mkl_cdft.f90
- C: mkl_cdft.h

\section*{Input Parameters}
\begin{tabular}{ll}
handle & \begin{tabular}{l}
The descriptor handle. Must be valid, that is, created in a call to \\
DfticreateDescriptorDM.
\end{tabular} \\
param & Name of a parameter to be set up in the descriptor handle. See \\
Table "Settable Configuration Parameters" for the list of available \\
value & \begin{tabular}{l}
parameters. \\
Value of the parameter.
\end{tabular}
\end{tabular}

\section*{Description}

This function sets one particular configuration parameter with the specified configuration value. The configuration parameter is one of the named constants listed in the table below, and the configuration value must have the corresponding type. See Configuration Settings for details of the meaning of each setting and for possible values of the parameters whose values are named constants.

\section*{Settable Configuration Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Parameter Name & Data Type & Description & Default Value \\
\hline DFTI_FORWARD_SCALE & Floating-point scalar & Scale factor of forward transform. & 1.0 \\
\hline DFTI_BACKWARD_SCALE & Floating-point scalar & Scale factor of backward transform. & 1.0 \\
\hline DFTI_PLACEMENT & Named constant & Placement of the computation result. & DFTI_INPLACE \\
\hline DFTI_ORDERING & Named constant & Scrambling of data order. & DFTI_ORDERED \\
\hline DFTI_WORKSPACE & Array of an appropriate type & Auxiliary buffer, a userdefined workspace. Enables saving memory during inplace computations. & NULL (allocate workspace dynamically). \\
\hline DFTI_PACKED_FORMAT & Named constant & Packed format, real data. & - DFTI_PERM_FORMAT - default and the only available value for one-dimensional transforms \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Parameter Name & Data Type & Description \\
\hline & & \begin{tabular}{l}
Default Value \\
DFTI_TRANSPOSE \\
default and the only \\
available value for \\
multi-dimensional \\
transforms
\end{tabular} \\
& Named constant & \begin{tabular}{l}
This parameter determines \\
how the output data is \\
located for multi-dimensional \\
transforms. If the parameter \\
value is DFTI_NONE, the data \\
is located in a usual manner \\
described in this manual. If
\end{tabular} \\
the value is DFTI_ALLOW, the
\end{tabular}

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to the Error Codes section).

\section*{Interface and Prototype}
```

! Fortran Interface
INTERFACE DftiSetValueDM
INTEGER(4) FUNCTION DftiSetValueDM(h, p, v)
TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
INTEGER(4) :: p, v
END FUNCTION
INTEGER(4) FUNCTION DftiSetValueDMd(h, p, v)
TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
INTEGER(4) :: p
REAL(8) :: v
END FUNCTION
INTEGER(4) FUNCTION DftiSetValueDMs(h, p, v)
TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
INTEGER(4) :: p
REAL(4) :: v
END FUNCTION
INTEGER(4) FUNCTION DftiSetValueDMsw(h, p, v)
TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
INTEGER(4) : : p
COMPLEX(4) :: v(*)
END FUNCTION
INTEGER(4) FUNCTION DftiSetValueDMdw(h, p, v)
TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
INTEGER(4) :: p
COMPLEX(8) :: v(*)
END FUNCTION
END INTERFACE

```
/* C/C++ prototype */
MKL_LONG DftiSetValueDM(DFTI_DESCRIPTOR_DM_HANDLE handle, int param,...);

\section*{DftiGetValueDM}

Gets the value of one particular configuration
parameter.

\section*{Syntax}

\section*{Fortran:}
```

Status = DftiGetValueDM(handle, param, value)

```

C:
```

status = DftiGetValueDM(handle, param, \&value);

```

\section*{Include Files}
- FORTRAN 90: mkl_cdft.f90
- C: mkl_cdft.h

\section*{Input Parameters}
\begin{tabular}{ll}
handle & The descriptor handle. Must be valid, that is, created in a call to \\
param & \begin{tabular}{l}
DfticreateDescriptorDM.
\end{tabular} \\
& \begin{tabular}{l}
Name of a parameter to be retrieved from the descriptor. See Table \\
\\
\\
"Retrievable Configuration Parameters" for the list of available \\
parameters.
\end{tabular}
\end{tabular}

\section*{Output Parameters}
value \(\quad\) Value of the parameter.

\section*{Description}

This function gets the configuration value of one particular configuration parameter. The configuration parameter is one of the named constants listed in the table below, and the configuration value is the corresponding appropriate type, which can be a named constant or a native type. Possible values of the named constants can be found in Table "Configuration Parameters" and relevant subsections of the Configuration Settings section.
Retrievable Configuration Parameters
\begin{tabular}{lll}
\hline Parameter Name & Data Type & Description \\
\hline DFTI_PRECISION & Named constant & \begin{tabular}{l}
Precision of computation, input data and \\
output data.
\end{tabular} \\
DFTI_DIMENSION & Integer scalar & Dimension of the transform \\
DFTI_LENGTHS & Array of integer values & \begin{tabular}{l}
Array of lengths of the transform. Number of \\
lengths corresponds to the dimension of the \\
transform.
\end{tabular} \\
DFTI_FORWARD_SCALE & Floating-point scalar & Scale factor of forward transform. \\
DFTI_BACKWARD_SCALE & Floating-point scalar & \begin{tabular}{l}
Scale factor of backward transform.
\end{tabular} \\
DFTI_PLACEMENT & Named constant & Placement of the computation result. \\
DFTI_COMMIT_STATUS & Named constant & \begin{tabular}{l}
Shows whether descriptor has been \\
committed.
\end{tabular} \\
DFTI_FORWARD_DOMAIN & Named constant & \begin{tabular}{l}
Forward domain of transforms, has the value \\
of DFTI_COMPLEX or DFTI_REAL.
\end{tabular} \\
DFTI_ORDERING & Named constant & Scrambling of data order.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Parameter Name & Data Type & Description \\
\hline CDFT_MPI_COMM & Type of MPI communicator & MPI communicator used for transforms. \\
\hline CDFT_LOCAL_SIZE & Integer scalar & Necessary size of input, output, and buffer arrays in data elements. \\
\hline CDFT_LOCAL_X_START & Integer scalar & Row/element number of the global array that corresponds to the first row/element of the local array. For more information, see Distributing Data among Processes. \\
\hline CDFT_LOCAL_NX & Integer scalar & The number of rows/elements of the global array stored in the local array. For more information, see Distributing Data among Processes. \\
\hline CDFT_LOCAL_OUT_X_START & Integer scalar & Element number of the appropriate global array that corresponds to the first element of the input or output local array in a 1D case. For details, see Distributing Data among Processes. \\
\hline CDFT_LOCAL_OUT_NX & Integer scalar & The number of elements of the appropriate global array that are stored in the input or output local array in a 1D case. For details, see Distributing Data among Processes. \\
\hline
\end{tabular}

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to the Error Codes section).

\section*{Interface and Prototype}
```

! Fortran Interface
INTERFACE DftiGetValueDM
INTEGER(4) FUNCTION DftiGetValueDM(h, p, v)
TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
INTEGER(4) :: p, v
END FUNCTION
INTEGER(4) FUNCTION DftiGetValueDMar(h, p, v)
TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
INTEGER(4) :: p, v(*)
END FUNCTION
INTEGER(4) FUNCTION DftiGetValueDMd(h, p, v)
TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
INTEGER(4) : : p
REAL(8) :: v
END FUNCTION
INTEGER(4) FUNCTION DftiGetValueDMs(h, p, v)
TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
INTEGER(4) : : p
REAL(4) :: v
END FUNCTION
END INTERFACE

```
/* C/C++ prototype */
MKL_LONG DftiGetValueDM (DFTI_DESCRIPTOR_DM_HANDLE handle, int param,...);

\section*{Error Codes}

All the cluster FFT functions return an integer value denoting the status of the operation. These values are identified by named constants. Each function returns DFTI_NO_ERROR if no errors were encountered during execution. Otherwise, a function generates an error code. Ì addition to FFT error codes, the cluster FFT interface has its own ones. Named constants specific to the cluster FFT interface have prefix "CDFT" in names. Table "Error Codes that Cluster FFT Functions Return" lists error codes that the cluster FFT functions may return.
Error Codes that Cluster FFT Functions Return
Named Constants Comments
\begin{tabular}{ll}
DFTI_NO_ERROR & No error. \\
DFTI_MEMORY_ERROR & Usually associated with memory allocation.
\end{tabular}
\begin{tabular}{ll}
\hline Named Constants & Comments \\
\hline DFTI_INVALID_CONFIGURATION & Invalid settings of one or more configuration parameters. \\
DFTI_INCONSISTENT_CONFIGURA & Inconsistent configuration or input parameters. \\
TION & \\
DFTI_NUMBER_OF_THREADS_ERRO & \begin{tabular}{l}
Number of OMP threads in the computation function is not equal to \\
the number of OMP threads in the initialization stage (commit \\
R
\end{tabular} \\
function).
\end{tabular}

11 Inter \(^{\text {Natht Kemel LLbrary Reference Manual }}\)

\section*{PBLAS Routines}

This chapter describes the Intel \({ }^{\circledR}\) Math Kernel Library implementation of the PBLAS (Parallel Basic Algebra Subprograms) routines from the ScaLAPACK package for distributed-memory architecture. PBLAS is intended for using in vector-vector, matrix-vector, and matrix-matrix operations to simplify the parallelization of linear codes. The design of PBLAS is as consistent as possible with that of the BLAS. The routine descriptions are arranged in several sections according to the PBLAS level of operation:
- PBLAS Level 1 Routines (distributed vector-vector operations)
- PBLAS Level 2 Routines (distributed matrix-vector operations)
- PBLAS Level 3 Routines (distributed matrix-matrix operations)

Each section presents the routine and function group descriptions in alphabetical order by the routine group name; for example, the p?asum group, the p?axpy group. The question mark in the group name corresponds to a character indicating the data type (\(s, d, c\), and \(z\) or their combination); see Routine Naming Conventions.

NOTE PBLAS routines are provided only with Intel® MKL versions for Linux* and Windows* OSs.

Generally, PBLAS runs on a network of computers using MPI as a message-passing layer and a set of prebuilt communication subprograms (BLACS), as well as a set of PBLAS optimized for the target architecture. The Intel MKL version of PBLAS is optimized for Intel® processors. For the detailed system and environment requirements see Intel® MKL Release Notes and Intel® MKL User's Guide.

For full reference on PBLAS routines and related information, see http://www.netlib.org/scalapack/html/ pblas_qref.html.

\section*{Optimization Notice}

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

\section*{Overview}

The model of the computing environment for PBLAS is represented as a one-dimensional array of processes or also a two-dimensional process grid. To use PBLAS, all global matrices or vectors must be distributed on this array or grid prior to calling the PBLAS routines.
PBLAS uses the two-dimensional block-cyclic data distribution as a layout for dense matrix computations. This distribution provides good work balance between available processors, as well as gives the opportunity to use PBLAS Level 3 routines for optimal local computations. Information about the data distribution that is required to establish the mapping between each global array and its corresponding process and memory location is contained in the so called array descriptor associated with each global array. Table "Content of the array descriptor for dense matrices" gives an example of an array descriptor structure.

\section*{Content of Array Descriptor for Dense Matrices}
\begin{tabular}{lll}
\hline Array Element \# & Name & Definition \\
\hline 1 & dtype & Descriptor type (=1 for dense matrices) \\
2 & ctst & BLACS context handle for the process grid
\end{tabular}
\begin{tabular}{lll}
\hline Array Element \# & Name & Definition \\
\hline 3 & \(m\) & Number of rows in the global array \\
4 & \(n\) & Number of columns in the global array \\
5 & \(m b\) & Row blocking factor \\
6 & \(n b\) & Column blocking factor \\
7 & rsrc & Process row over which the first row of the global array is distributed \\
8 & \(\operatorname{csrc}\) & \begin{tabular}{l}
Process column over which the first column of the global array is \\
distributed
\end{tabular} \\
9 & Leading dimension of the local array
\end{tabular}

The number of rows and columns of a global dense matrix that a particular process in a grid receives after data distributing is denoted by \(\operatorname{LOCr}()\) and \(\operatorname{LOCC}()\), respectively. To compute these numbers, you can use the ScaLAPACK tool routine numroc.

After the block-cyclic distribution of global data is done, you may choose to perform an operation on a submatrix of the global matrix \(A\), which is contained in the global subarray sub (\(A\)), defined by the following 6 values (for dense matrices):
```

m The number of rows of sub (A)
n The number of columns of sub (A)
a A pointer to the local array containing the entire global array }
ia The row index of sub (A) in the global array
ja The column index of sub (A) in the global array
desca The array descriptor for the global array A

```

Intel MKL provides the PBLAS routines with interface similar to the interface used in the Netlib PBLAS (see http://www.netlib.org/scalapack/html/pblas_qref.html).

\section*{Routine Naming Conventions}

The naming convention for PBLAS routines is similar to that used for BLAS routines (see Routine Naming Conventions in Chapter 2). A general rule is that each routine name in PBLAS, which has a BLAS equivalent, is simply the BLAS name prefixed by initial letter \(p\) that stands for "parallel".

The Intel MKL PBLAS routine names have the following structure:
```

p <character> <name> <mod> ( )

```

The <character> field indicates the Fortran data type:
\[
\begin{array}{ll}
s & \text { real, single precision } \\
c & \text { complex, single precision } \\
d & \text { real, double precision } \\
z & \text { complex, double precision } \\
i & \text { integer }
\end{array}
\]

Some routines and functions can have combined character codes, such as sc or dz.
For example, the function pscasum uses a complex input array and returns a real value.
The <name> field, in PBLAS level 1, indicates the operation type. For example, the PBLAS level 1 routines \(p\) ? dot, p?swap, p?copy compute a vector dot product, vector swap, and a copy vector, respectively.

In PBLAS level 2 and 3, <name> reflects the matrix argument type:
\begin{tabular}{ll}
ge & general matrix \\
sy & symmetric matrix \\
he & Hermitian matrix \\
tr & triangular matrix
\end{tabular}

In PBLAS level 3, the <name>=tran indicates the transposition of the matrix.

The <mod> field, if present, provides additional details of the operation. The PBLAS level 1 names can have the following characters in the <mod> field:
\begin{tabular}{ll}
\(c\) & conjugated vector \\
\(u\) & unconjugated vector
\end{tabular}

The PBLAS level 2 names can have the following additional characters in the <mod> field:
\begin{tabular}{ll}
mv & matrix-vector product \\
Sv & solving a system of linear equations with matrix-vector operations \\
r & rank-1 update of a matrix \\
r2 & rank-2 update of a matrix.
\end{tabular}

The PBLAS level 3 names can have the following additional characters in the <mod> field:
\begin{tabular}{ll}
mm & matrix-matrix product \\
sm & solving a system of linear equations with matrix-matrix operations \\
rk & rank- \(k\) update of a matrix \\
\(r 2 k\) & rank- \(2 k\) update of a matrix.
\end{tabular}

The examples below show how to interpret PBLAS routine names:
\begin{tabular}{|c|c|}
\hline pddot & <p> <d> <dot>: double-precision real distributed vector-vector dot product \\
\hline pcdotc & <p> <c> <dot> <c>: complex distributed vector-vector dot product, conjugated \\
\hline pscasum & <p> <sc> <asum>: sum of magnitudes of distributed vector elements, single precision real output and single precision complex input \\
\hline pcdotu & <p> <c> <dot> <u>: distributed vector-vector dot product, unconjugated, complex \\
\hline psgemv & <p> <s> <ge> <mv>: distributed matrix-vector product, general matrix, single precision \\
\hline pztrmm & <p> <z> <tr> <mm>: distributed matrix-matrix product, triangular matrix, double-precision complex. \\
\hline
\end{tabular}

\section*{PBLAS Level 1 Routines}

PBLAS Level 1 includes routines and functions that perform distributed vector-vector operations. Table "PBLAS Level 1 Routine Groups and Their Data Types" lists the PBLAS Level 1 routine groups and the data types associated with them.

PBLAS Level 1 Routine Groups and Their Data Types
\begin{tabular}{lll}
\hline \begin{tabular}{l}
Routine or \\
Function Group
\end{tabular} & Data Types & Description \\
\hline p?amax & s, d, c, z & \begin{tabular}{l}
Calculates an index of the distributed vector element with \\
maximum absolute value
\end{tabular} \\
p?asum & s, d, sc, dz & Calculates sum of magnitudes of a distributed vector \\
p?axpy & s, d, c, z & Calculates distributed vector-scalar product \\
p?copy & s, d, c, z & Copies a distributed vector \\
p?dot & s, d & \begin{tabular}{l}
Calculates a dot product of two distributed real vectors
\end{tabular} \\
p?dotc & \begin{tabular}{l}
Calculates a dot product of two distributed complex \\
vectors, one of them is conjugated
\end{tabular}
\end{tabular}
\begin{tabular}{lll}
\hline \begin{tabular}{l}
Routine or \\
Function Group
\end{tabular} & Data Types & Description \\
\hline p?dotu & c, z & \begin{tabular}{l}
Calculates a dot product of two distributed complex \\
vectors
\end{tabular} \\
\(p ? n r m 2\) & s,d, sc, dz & \begin{tabular}{l}
Calculates the 2-norm (Euclidean norm) of a distributed \\
vector
\end{tabular} \\
p?scal & s,d, c, z, cs, zd & Calculates a product of a distributed vector by a scalar \\
p?swap & s,d, c, z & Swaps two distributed vectors \\
\hline
\end{tabular}

\section*{p?amax}

Computes the global index of the element of a distributed vector with maximum absolute value.

\section*{Syntax}
```

call psamax(n, amax, indx, x, ix, jx, descx, incx)
call pdamax(n, amax, indx, x, ix, jx, descx, incx)
call pcamax(n, amax, indx, x, ix, jx, descx, incx)
call pzamax(n, amax, indx, x, ix, jx, descx, incx)

```

Include Files
- C: mkl_pblas.h

\section*{Description}

The functions p?amax compute global index of the maximum element in absolute value of a distributed vector sub (\(x\)), where sub \((x)\) denotes \(X(i x, j x: j x+n-1)\) if \(i_{n c x}=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx= 1 . Input Parameters
```

n (global) INTEGER. The length of distributed vector sub (x), n\geq0.
x (local) REAL for psamax
DOUBLE PRECISION for pdamax
COMPLEX for pcamax
DOUBLE COMPLEX for pzamax
Array, DIMENSION (jx-1)*m_x + ix+(n-1)*abs(incx)).
This array contains the entries of the distributed vector sub (x).
ix, jx (global) INTEGER. The row and column indices in the distributed matrix }
indicating the first row and the first column of the submatrix sub ( }X\mathrm{ ),
respectively.
descx (global and local) INTEGER array of dimension 8. The array descriptor of the
distributed matrix }X\mathrm{ .
(global) INTEGER. Specifies the increment for the elements of sub (x). Only
two values are supported, namely 1 and m_x. incx must not be zero.

```

\section*{Output Parameters}
DOUBLE PRECISION for pdamax.
COMPLEX for pcamax.
DOUBLE COMPLEX for pzamax.
Maximum absolute value (magnitude) of elements of the distributed vector
indx \begin{tabular}{l}
only in its scope. \\
(global) INTEGER. The global index of the maximum element in absolute \\
value of the distributed vector sub \((x)\) only in its scope.
\end{tabular}

\section*{p?asum}

Computes the sum of magnitudes of elements of a distributed vector.

\section*{Syntax}
```

call psasum(n, asum, x, ix, jx, descx, incx)
call pscasum(n, asum, x, ix, jx, descx, incx)
call pdasum(n, asum, x, ix, jx, descx, incx)
call pdzasum(n, asum, x, ix, jx, descx, incx)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The functions p?asum compute the sum of the magnitudes of elements of a distributed vector sub (x), where sub(x) denotes \(X(i x, j x: j x+n-1)\) if incx=m_x, and \(X(i x: i x+n-1, j x)\) if incx= 1 .

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & (global) INTEGER. The length of distributed vector sub (x), \(n \geq 0\). \\
\hline \multirow[t]{6}{*}{X} & (local) REAL for psasum \\
\hline & DOUBLE PRECISION for pdasum \\
\hline & COMPLEX for pscasum \\
\hline & DOUBLE COMPLEX for pdzasum \\
\hline & Array, DIMENSION (jx-1)*m_x + ix+ (n-1)*abs (incx)). \\
\hline & This array contains the entries of the distributed vector sub (x). \\
\hline ix, jx & (global) INTEGER. The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (\(X\)), respectively. \\
\hline descx & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\). \\
\hline \multirow[t]{2}{*}{incx} & (global) INTEGER. Specifies the increment for the elements of sub (x). \\
\hline & Only two values are supported, namely 1 and m_x. incx must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}

\footnotetext{
asum
}
(local) REAL for psasum and pscasum.
DOUBLE PRECISION for pdasum and pdzasum
Contains the sum of magnitudes of elements of the distributed vector only in its scope.
```

p?axpy
Computes a distributed vector-scalar product and
adds the result to a distributed vector.

```

\section*{Syntax}
```

call psaxpy(n, a, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pdaxpy(n, a, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pcaxpy(n, a, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pzaxpy(n, a, x, ix, jx, descx, incx, y, iy, jy, descy, incy)

```

Include Files
- C: mkl_pblas.h

\section*{Description}

The p?axpy routines perform the following operation with distributed vectors:
```

sub(y) := sub (y) + a*sub(x)

```
where:
```

a is a scalar;

```
sub (\(x\)) and sub (\(y\)) are \(n\)-element distributed vectors.
sub(x) denotes \(x(i x, j x: j x+n-1)\) if \(i n c x=m_{-} x\), and \(x(i x: i x+n-1, j x)\) if \(i n c x=1\);
sub (y) denotes \(Y(i y, j y: j y+n-1)\) if \(i n c y=m _y\), and \(Y(i y: i y+n-1, j y)\) if incy \(=1\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & (global) INTEGER. The length of distributed vectors, \(n \geq 0\). \\
\hline a & (local) REAL for psaxpy \\
\hline & DOUBLE PRECISION for pdaxpy \\
\hline & COMPLEX for pcaxpy \\
\hline & DOUBLE COMPLEX for pzaxpy \\
\hline & Specifies the scalar \(a\). \\
\hline \(x\) & (local) REAL for psaxpy \\
\hline & DOUBLE PRECISION for pdaxpy \\
\hline & COMPLEX for pcaxpy \\
\hline & DOUBLE COMPLEX for pzaxpy \\
\hline & Array, DIMENSION (\(j x-1\)) \(m_{\text {m }} x+i x+(n-1) * a b s(i n c x)\)). \\
\hline & This array contains the entries of the distributed vector sub (x). \\
\hline ix, jx & (global) INTEGER. The row and column indices in the distributed matrix \(x\) indicating the first row and the first column of the submatrix sub (\(X\)), respectively. \\
\hline descx & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\). \\
\hline incx & (global) INTEGER. Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and m_x. incx must not be zero. \\
\hline Y & (local) REAL for psaxpy \\
\hline & DOUBLE PRECISION for pdaxpy \\
\hline & COMPLEX for pcaxpy \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & DOUBLE COMPLEX for pzaxpy \\
\hline & Array, DIMENSION (jy-1)*m_y + iy+(n-1)*abs (incy) . \\
\hline & This array contains the entries of the distributed vector sub \((y)\). \\
\hline iy, jy & (global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub (Y), respectively. \\
\hline descy & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix Y. \\
\hline incy & (global)INTEGER. Specifies the increment for the elements of sub (\(y\)). Only two values are supported, namely 1 and m_y. incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

y Overwritten by sub (y) := sub (y) + a*sub (x).

```
p?copy
Copies one distributed vector to another vector.

\section*{Syntax}
```

call pscopy(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pdcopy(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pccopy(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pzcopy(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call picopy(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)

```

Include Files
- C: mkl_pblas.h

\section*{Description}

The p?copy routines perform a copy operation with distributed vectors defined as
```

sub (y) = sub (x),

```
where sub (\(x\)) and sub (\(y\)) are \(n\)-element distributed vectors.
```

sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1;
sub(y) denotes Y(iy, jy:jy+n-1) if incy=m_y, and Y(iy: iy+n-1, jy) if incy= 1.
Input Parameters

```
n
X
(global) INTEGER. The length of distributed vectors, \(n \geq 0\).
(local) REAL for pscopy
DOUBLE PRECISION for pdcopy
COMPLEX for pccopy
DOUBLE COMPLEX for pzcopy
INTEGER for picopy
Array, DIMENSION (\(j x-1\)) *m_x \(+i x+(n-1) * a b s(i n c x))\).
This array contains the entries of the distributed vector sub (\(x\)).
\begin{tabular}{|c|c|}
\hline ix, jx & (global) INTEGER. The row and column indices in the distributed matrix \(x\) indicating the first row and the first column of the submatrix sub (\(X\)), respectively. \\
\hline descx & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\). \\
\hline incx & (global) INTEGER. Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and \(m_{-}\). incx must not be zero. \\
\hline Y & (local) REAL for pscopy \\
\hline & DOUBLE PRECISION for pdcopy \\
\hline & COMPLEX for pccopy \\
\hline & DOUBLE COMPLEX for pzcopy \\
\hline & INTEGER for picopy \\
\hline & Array, DIMENSION (jy-1)*m_y +iy+(n-1)*abs(incy)). \\
\hline & This array contains the entries of the distributed vector sub \((y)\). \\
\hline iy, jy & (global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub (Y), respectively. \\
\hline descy & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(Y\). \\
\hline incy & (global)INTEGER. Specifies the increment for the elements of sub (\(y\)). Only two values are supported, namely 1 and \(m y\). incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten with the distributed vector sub (x).

\section*{p?dot}

Computes the dot product of two distributed real vectors.

\section*{Syntax}
```

call psdot(n, dot, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pddot(n, dot, x, ix, jx, descx, incx, y, iy, jy, descy, incy)

```

Include Files
- C: mkl_pblas.h

\section*{Description}

The ? dot functions compute the dot product dot of two distributed real vectors defined as
```

dot = sub(x)'*sub (y)

```
where sub (\(x\)) and sub (\(y\)) are \(n\)-element distributed vectors.
```

sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1;
sub(y) denotes Y(iy, jy:jy+n-1) if incy=m_y, and Y(iy: iy+n-1, jy) if incy= 1.
Input Parameters

```
n
\(x\)
(global) INTEGER. The length of distributed vectors, \(n \geq 0\).
(local) REAL for psdot
\begin{tabular}{|c|c|}
\hline & DOUBLE PRECISION for pddot \\
\hline & Array, DIMENSION (jx-1)*m_x + ix+(n-1)*abs (incx)). \\
\hline & This array contains the entries of the distributed vector sub (x). \\
\hline ix, jx & (global) INTEGER. The row and column indices in the distributed matrix \(x\) indicating the first row and the first column of the submatrix sub (\(X\)), respectively. \\
\hline descx & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\). \\
\hline incx & (global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m x\). incx must not be zero. \\
\hline Y & (local) REAL for psdot \\
\hline & DOUBLE PRECISION for pddot \\
\hline & Array, DIMENSION (\(j y-1\)) \(m_{\text {m_l }} y+i y+(n-1) *\) abs (incy)). \\
\hline & This array contains the entries of the distributed vector sub (\(y\)). \\
\hline iy, jy & (global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub (Y), respectively. \\
\hline descy & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(Y\). \\
\hline incy & (global) INTEGER. Specifies the increment for the elements of sub (\(y\)). Only two values are supported, namely 1 and \(m _y\). incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

dot
(local) REAL for psdot
DOUBLE PRECISION for pddot
Dot product of sub (x) and sub (y) only in their scope.

```

\section*{p?dotc}

Computes the dot product of two distributed complex vectors, one of them is conjugated.

\section*{Syntax}
```

call pcdotc(n, dotu, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pzdotc(n, dotu, x, ix, jx, descx, incx, y, iy, jy, descy, incy)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?dotu functions compute the dot product dotc of two distributed vectors one of them is conjugated:
```

dotc = conjg(sub (x)')*sub (y)

```
where sub (\(x\)) and sub (\(y\)) are \(n\)-element distributed vectors.
```

sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1;
sub(y) denotes Y(iy, jy:jy+n-1) if incy=m_y, and Y(iy: iy+n-1, jy) if incy= 1.

```

Input Parameters
\(n\)
\(x\)
ix, jx
descx
incx

Y
iy, jy
descy
incy
(global) INTEGER. The length of distributed vectors, \(n \geq 0\).
(local) COMPLEX for pcdotc
DOUBLE COMPLEX for pzdotc
Array, DIMENSION \(\left.(j x-1){ }^{m_{2}} x+i x+(n-1) * a b s(i n c x)\right)\).
This array contains the entries of the distributed vector sub (\(x\)).
(global) INTEGER. The row and column indices in the distributed matrix \(x\) indicating the first row and the first column of the submatrix sub (\(X\)), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(X\).
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
(local) COMPLEX for pcdotc
DOUBLE COMPLEX for pzdotc
Array, DIMENSION (jy-1)*m_y +iy+(n-1)*abs(incy)).
This array contains the entries of the distributed vector sub \((y)\).
(global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub (Y), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(Y\).
(global) INTEGER. Specifies the increment for the elements of sub (\(y\)).
Only two values are supported, namely 1 and \(m _y\). incy must not be zero.

\section*{Output Parameters}
```

dotc
(local) COMPLEX for pcdotc
DOUBLE COMPLEX for pzdotc
Dot product of sub (x) and sub (y) only in their scope.

```

\section*{p?dotu}

Computes the dot product of two distributed complex vectors.

\section*{Syntax}
```

call pcdotu(n, dotu, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pzdotu(n, dotu, x, ix, jx, descx, incx, y, iy, jy, descy, incy)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?dotu functions compute the dot product dotu of two distributed vectors defined as
```

dotu = sub(x)'*sub (y)

```
where sub (\(x\)) and sub (\(y\)) are \(n\)-element distributed vectors.
```

sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1;
sub(y) denotes Y(iy, jy:jy+n-1) if incy=m_y, and Y(iy: iy+n-1, jy) if incy= 1.

```

Input Parameters
```

n
x
ix, jx
descx
incx
y
iy, jy
descy
incy

```
(global) INTEGER. The length of distributed vectors, \(n \geq 0\).
(local) COMPLEX for pcdotu
DOUBLE COMPLEX for pzdotu
Array, DIMENSION (jx-1)*m_x +ix+(n-1)*abs(incx)).
This array contains the entries of the distributed vector sub (\(x\)).
(global) INTEGER. The row and column indices in the distributed matrix \(x\) indicating the first row and the first column of the submatrix sub (\(X\)), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(X\).
(global) INTEGER. Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
(local) COMPLEX for pcdotu
DOUBLE COMPLEX for pzdotu
Array, DIMENSION (jy-1)*m_y +iy+(n-1)*abs(incy)).
This array contains the entries of the distributed vector sub \((y)\).
(global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub (Y), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(Y\).
(global) INTEGER. Specifies the increment for the elements of sub (\(y\)).
Only two values are supported, namely 1 and \(m _y\). incy must not be zero.
(local) COMPLEX for pcdotu
DOUBLE COMPLEX for pzdotu
Dot product of sub (x) and sub (y) only in their scope.

\section*{Output Parameters}
```

dotu

```
p?nrm2
Computes the Euclidean norm of a distributed vector.

\section*{Syntax}
```

call psnrm2(n, norm2, x, ix, jx, descx, incx)
call pdnrm2(n, norm2, x, ix, jx, descx, incx)
call pscnrm2(n, norm2, x, ix, jx, descx, incx)
call pdznrm2(n, norm2, x, ix, jx, descx, incx)

```

\section*{Include files}
- C: mkl_pblas.h

\section*{Description}

The p?nrm2 functions compute the Euclidean norm of a distributed vector sub (x), where sub (\(x\)) is an \(n\)-element distributed vector.
```

sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1.

```

\section*{Input Parameters}
```

n
x
ix, jx
descx
incx

```

\section*{Output Parameters}
norm2
(local) REAL for psnrm2 and pscnrm2.
DOUBLE PRECISION for pdnrm2 and pdznrm2
Contains the Euclidean norm of a distributed vector only in its scope.
p?scal
Computes a product of a distributed vector by a scalar.

Syntax
```

call psscal(n, a, x, ix, jx, descx, incx)
call pdscal(n, a, x, ix, jx, descx, incx)
call pcscal(n, a, x, ix, jx, descx, incx)
call pzscal(n, a, x, ix, jx, descx, incx)
call pcsscal(n, a, x, ix, jx, descx, incx)
call pzdscal(n, a, x, ix, jx, descx, incx)

```

Include Files
- C: mkl_pblas.h

\section*{Description}

The p?scal routines multiplies a \(n\)-element distributed vector sub \((x)\) by the scalar \(a\) :
\(\operatorname{sub}(x)=a^{*} \operatorname{sub}(x)\),
where sub(x) denotes \(x(i x, j x: j x+n-1)\) if \(i n c x=m_{-} x\), and \(x(i x: i x+n-1, j x)\) if incx= 1 .

\section*{Input Parameters}
```

n
a
(global) INTEGER. The length of distributed vector $\operatorname{sub}(x), n \geq 0$.
(global) REAL for psscal and pcsscal
DOUBLE PRECISION for pdscal and pzdscal

```
\begin{tabular}{|c|c|}
\hline & COMPLEX for pcscal \\
\hline & DOUBLE COMPLEX for pzscal \\
\hline & Specifies the scalar a. \\
\hline \(x\) & (local) REAL for psscal \\
\hline & DOUBLE PRECISION for pdscal \\
\hline & COMPLEX for pcscal and pcsscal \\
\hline & DOUBLE COMPLEX for pzscal and pzdscal \\
\hline & Array, DIMENSION (jx-1)*m_x + ix+(n-1)*abs (incx)). \\
\hline & This array contains the entries of the distributed vector sub (x). \\
\hline ix, jx & (global) INTEGER. The row and column indices in the distributed matrix \(x\) indicating the first row and the first column of the submatrix sub (\(X\)), respectively. \\
\hline descx & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\). \\
\hline incx & (global) INTEGER. Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and \(m x\). incx must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
x
Overwritten by the updated distributed vector sub (x)

\section*{p?swap}

Swaps two distributed vectors.

\section*{Syntax}
```

call psswap(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pdswap(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pcswap(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pzswap(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)

```

Include Files
- C: mkl_pblas.h

\section*{Description}

Given two distributed vectors sub (x) and sub (y), the p? swap routines return vectors sub (\(y\)) and sub (\(x\)) swapped, each replacing the other.
```

Here sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1;
sub(y) denotes Y(iy, jy:jy+n-1) if incy=m_y, and Y(iy: iy+n-1, jy) if incy= 1.
Input Parameters

```
\(n \quad\) (global) INTEGER. The length of distributed vectors, \(n \geq 0\).
\(x\) (local) REAL for psswap
 DOUBLE PRECISION for pdswap
 COMPLEX for pcswap
 DOUBLE COMPLEX for pzswap
 Array, DIMENSION (jx-1)*m_x +ix+(n-1)*abs(incx)).
 This array contains the entries of the distributed vector sub (x).
```

ix, jx
descx
incx
Y
iy, jy
descy
incy

```

\section*{Output Parameters}
```

x

```
\(y \quad\) Overwritten by distributed vector sub (x).

\section*{PBLAS Level 2 Routines}

This section describes PBLAS Level 2 routines, which perform distributed matrix-vector operations. Table "PBLAS Level 2 Routine Groups and Their Data Types" lists the PBLAS Level 2 routine groups and the data types associated with them.

\section*{PBLAS Level 2 Routine Groups and Their Data Types}
\begin{tabular}{|c|c|c|}
\hline Routine Groups & Data Types & Description \\
\hline p? gemv & s, d, c, z & Matrix-vector product using a distributed general matrix \\
\hline p?agemv & s, d, c, z & Matrix-vector product using absolute values for a distributed general matrix \\
\hline p?ger & s, d & Rank-1 update of a distributed general matrix \\
\hline p?gerc & c, z & Rank-1 update (conjugated) of a distributed general matrix \\
\hline p?geru & c, z & Rank-1 update (unconjugated) of a distributed general matrix \\
\hline p?hemv & c, z & Matrix-vector product using a distributed Hermitian matrix \\
\hline p?ahemv & C, z & Matrix-vector product using absolute values for a distributed Hermitian matrix \\
\hline p?her & C, z & Rank-1 update of a distributed Hermitian matrix \\
\hline p?her2 & C, z & Rank-2 update of a distributed Hermitian matrix \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Routine Groups & Data Types & Description \\
\hline p?symv & \(s, d\) & \begin{tabular}{l}
Matrix-vector product using a distributed symmetric \\
matrix
\end{tabular} \\
p?asymv & s,d & \begin{tabular}{l}
Matrix-vector product using absolute values for a \\
distributed symmetric matrix
\end{tabular} \\
p?syr & s,d & Rank-1 update of a distributed symmetric matrix \\
p?syr2 & s,d & \begin{tabular}{l}
Rank-2 update of a distributed symmetric matrix \\
p?trmv
\end{tabular} \\
p?atrmv & s,d, c, z & \begin{tabular}{l}
Distributed matrix-vector product using a triangular \\
for a triangular matrix
\end{tabular} \\
p?trsv & s, d, c, z & \begin{tabular}{l}
Solves a system of linear equations whose coefficients are \\
in a distributed triangular matrix
\end{tabular} \\
\hline
\end{tabular}

\section*{p?gemv \\ Computes a distributed matrix-vector product using a general matrix.}

\section*{Syntax}
```

call psgemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y,
iy, jy, descy, incy)
call pdgemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y,
iy, jy, descy, incy)
call pcgemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y,
iy, jy, descy, incy)
call pzgemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y,
iy, jy, descy, incy)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?gemv routines perform a distributed matrix-vector operation defined as
```

sub(y) := alpha*sub (A)*sub (x) + beta*sub (y),

```
or
```

sub(y) := alpha*sub(A)'*sub(x) + beta*sub(y),

```
or
\(\operatorname{sub}(y) \quad:=a l p h a^{*} \operatorname{conjg}\left(\operatorname{sub}(A)^{\prime}\right) * \operatorname{sub}(x)+\operatorname{beta} \operatorname{sub}(y)\),
where
alpha and beta are scalars,
sub \((A)\) is a \(m-b y-n\) submatrix, \(\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)\),
sub (x) and sub (y) are subvectors.

When trans \(=\) ' N' or 'n', sub (x) denotes \(X(i x, j x: j x+n-1)\) if incx \(=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\), sub \((y)\) denotes \(Y(i y, j y: j y+m-1)\) if \(i n c y=m _y\), and \(Y(i y: i y+m-1, j y)\) if incy \(=1\).

When trans \(=\) 'T' or 't', or 'C', or 'c', sub \((x)\) denotes \(X(i x, j x: j x+m-1)\) if incx \(=m \times x\), and \(X(i x:\) \(i x+m-1, j x)\) if incx \(=1\), sub (y) denotes \(Y(i y, j y: j y+n-1)\) if incy \(=m \ldots y\), and \(Y(i y\) : iy+m-1, jy) if incy \(=1\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline trans & (global) CHARACTER*1. Specifies the operation:
```

if trans= 'N' or 'n', then sub(y) := alpha*sub(A)'*sub(x) +
beta*sub (y);
if trans= 'T' or 't', then sub (y) := alpha*sub (A)'*sub (x) +
beta*sub (y);
if trans= 'C' or 'c', then sub(y) := alpha*conjg(subA)')*sub(x) +
beta*sub (y).

``` \\
\hline m & (global) INTEGER. Specifies the number of rows of the distributed matrix sub (A), \(m \geq 0\). \\
\hline \(n\) & (global) INTEGER. Specifies the number of columns of the distributed matrix sub (A), \(n \geq 0\). \\
\hline \multirow[t]{5}{*}{alpha} & (global) REAL for psgemv \\
\hline & DOUBLE PRECISION for pdgemv \\
\hline & COMPLEX for pcgemv \\
\hline & DOUBLE COMPLEX for pzgemv \\
\hline & Specifies the scalar alpha. \\
\hline \multirow[t]{5}{*}{a} & (local) REAL for psgemv \\
\hline & DOUBLE PRECISION for pdgemv \\
\hline & COMPLEX for pcgemv \\
\hline & DOUBLE COMPLEX for pzgemv \\
\hline & Array, DIMENSION (Ild_a, LOCq(ja+n-1)). Before entry this array must contain the local pieces of the distributed matrix sub (\(A\)). \\
\hline ia, ja & (global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (\(A\)), respectively. \\
\hline desca & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\). \\
\hline \multirow[t]{6}{*}{\(x\)} & (local) REAL for psgemv \\
\hline & DOUBLE PRECISION for pdgemv \\
\hline & COMPLEX for pcgemv \\
\hline & DOUBLE COMPLEX for pzgemv \\
\hline & Array, DIMENSION (jx-1)*m_x \(+i x+(n-1) * a b s(i n c x))\) when trans \(=\) 'N' or 'n', and (jx-1)*m_x +ix+(m-1)*abs(incx)) otherwise. \\
\hline & This array contains the entries of the distributed vector sub (x). \\
\hline ix, jx & (global) INTEGER. The row and column indices in the distributed matrix \(x\) indicating the first row and the first column of the submatrix sub (\(x\)), respectively. \\
\hline descx & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\). \\
\hline incx & (global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero. \\
\hline beta & (global) REAL for psgemv \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & DOUBLE PRECISION for pdgemv \\
\hline & COMPLEX for pcgemv \\
\hline & DOUBLE COMPLEX for pzgemv \\
\hline & Specifies the scalar beta. When beta is set to zero, then sub (\(y\)) need not be set on input. \\
\hline Y & (local) REAL for psgemv \\
\hline & DOUBLE PRECISION for pdgemv \\
\hline & COMPLEX for pcgemv \\
\hline & DOUBLE COMPLEX for pzgemv \\
\hline & Array, DIMENSION (jy-1)*m_y + iy+(m-1)*abs(incy)) when trans = 'N' or 'n', and (jy-1)*m_y +iy+(n-1)*abs(incy)) otherwise. \\
\hline & This array contains the entries of the distributed vector sub (\(y\)). \\
\hline iy, jy & (global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively. \\
\hline descy & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(Y\). \\
\hline incy & (global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and \(m_{_} y\). incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
y
Overwritten by the updated distributed vector sub (y).

\section*{p?agemv}

Computes a distributed matrix-vector product using absolute values for a general matrix.

\section*{Syntax}
```

call psagemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y,
iy, jy, descy, incy)
call pdagemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y,
iy, jy, descy, incy)
call pcagemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y,
iy, jy, descy, incy)
call pzagemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y,
iy, jy, descy, incy)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?agemv routines perform a distributed matrix-vector operation defined as
```

sub(y) := abs(alpha)*abs(sub (A)')*abs(sub (x)) + abs(beta*sub (y)),

```
or
\(\operatorname{sub}(y) \quad:=a b s(a l p h a) * a b s\left(\operatorname{sub}(A)^{\prime}\right) * a b s(\operatorname{sub}(x))+a b s(b e t a * s u b(y))\),
or
\(\operatorname{sub}(y) \quad:=a b s(a l p h a) * a b s(\operatorname{conjg}(\operatorname{sub}(A) ')) * a b s(\operatorname{sub}(x))+a b s(b e t a * \operatorname{sub}(y))\),
where
```

alpha and beta are scalars,
sub(A) is a m-by-n submatrix, sub(A) = A(ia:ia+m-1, ja:ja+n-1),
sub(x) and sub (y) are subvectors.
When trans = 'N' or 'n',
sub(x) denotes x(ix:ix, jx:jx+n-1) if incx = m_x, and
X(ix:ix+n-1, jx:jx) if incx = 1,
sub(y) denotes Y(iy:iy, jy:jy+m-1) if incy = m_y, and
Y(iy:iy+m-1, jy:jy) if incy = 1.
When trans = 'T' or't', or 'C', or 'c',
sub(x) denotes x(ix:ix, jx:jx+m-1) if incx = m_x, and
x(ix:ix+m-1, jx:jx) if incx = 1,
sub(y) denotes Y(iy:iy, jy:jy+n-1) if incy = m_y, and
Y(iy:iy+m-1, jy:jy) if incy = 1.

```

\section*{Input Parameters}
```

trans
m
n
alpha
a
ia, ja
desca
x
(global) CHARACTER*1. Specifies the operation:
if trans= 'N' or 'n', then sub(y) := |alpha|*|sub(A)|*|sub(x)| +
| beta*sub (y) |
if trans= 'T' or't', then sub(y) := |alpha|*|sub(A)'|*|sub(x)| +
| beta*sub (y)|
if trans= 'C' or 'c', then sub(y) := |alpha|*|sub(A)'|*|sub(x)| +
| beta*sub (y)|.
(global) INTEGER. Specifies the number of rows of the distributed matrix sub ( $A$ ) , $m \geq 0$.
(global) INTEGER. Specifies the number of columns of the distributed matrix sub ( $A$ ), $n \geq 0$.
(global) REAL for psagemv
DOUBLE PRECISION for pdagemv
COMPLEX for pcagemv
DOUBLE COMPLEX for pzagemv
Specifies the scalar alpha.
a
(local) REAL for psagemv
DOUBLE PRECISION for pdagemv
COMPLEX for pcagemv
DOUBLE COMPLEX for pzagemv
Array, DIMENSION (lld_a, LOCq (ja+n-1)). Before entry this array must contain the local pieces of the distributed matrix sub (A).
ia, ja (global) INTEGER. The row and column indices in the distributed matrix $A$ indicating the first row and the first column of the submatrix sub (A), respectively.

```
desca

X
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\).
(local) REAL for psagemv
DOUBLE PRECISION for pdagemv

\section*{Output Parameters}
```

y Overwritten by the updated distributed vector sub (y).

```
p?ger
Performs a rank-1 update of a distributed general
matrix.

\section*{Syntax}
```

call psger(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)
call pdger(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)

```

Include Files
- C: mkl_pblas.h

\section*{Description}

The p?ger routines perform a distributed matrix-vector operation defined as
```

sub (A) := alpha*sub (x)*sub (y)' + sub(A),

```
where:
```

alpha is a scalar,
sub(A) is a m-by-n distributed general matrix, sub(A)=A(ia:ia+m-1, ja:ja+n-1),
sub (x) is an m-element distributed vector, sub(y) is an n-element distributed vector,
sub(x) denotes X(ix, jx:jx+m-1) if incx = m_x, and X(ix: ix+m-1, jx) if incx = 1,
sub(y) denotes Y(iy, jy:jy+n-1) if incy = my, and Y(iy: iy+n-1, jy) if incy = 1.
Input Parameters

```
\(m\) (global) INTEGER. Specifies the number of rows of the distributed matrix
sub (\(A\)), \(m \geq 0\).
 (global) INTEGER. Specifies the number of columns of the distributed matrix
 sub (A), \(n \geq 0\).
alpha
x
ix, jx
descx
incx
y
iy, jy
descy
incy
a
(global) REAL for psger
DOUBLE REAL for pdger
Specifies the scalar alpha.
(local) REAL for psger
DOUBLE REAL for pdger
Array, DIMENSION at least (jx-1)*m_x +ix+(m-1)*abs(incx)).
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix \(x\)
indicating the first row and the first column of the submatrix \(\operatorname{sub}(x)\),
respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of
the distributed matrix \(x\).
(global) INTEGER. Specifies the increment for the elements of sub (\(x\)).
Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
(local) REAL for psger
DOUBLE REAL for pdger
Array, DIMENSION at least (jy-1)*m_y +iy+(n-1)*abs(incy)).
This array contains the entries of the distributed vector sub \((y)\).
(global) INTEGER. The row and column indices in the distributed matrix \(Y\)
indicating the first row and the first column of the submatrix sub \((y)\),
respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(Y\).
(global) INTEGER. Specifies the increment for the elements of sub (\(y\)).
Only two values are supported, namely 1 and m_y. incy must not be zero.
(local) REAL for psger
DOUBLE REAL for pdger
Array, DIMENSION (lld_a, LOCq(ja+n-1)).
Before entry this array contains the local pieces of the distributed matrix
sub (A).
\begin{tabular}{ll}
ia, ja & \begin{tabular}{l}
(global) INTEGER. The row and column indices in the distributed matrix \(A\) \\
indicating the first row and the first column of the submatrix sub (\(A\)) ,
\end{tabular} \\
respectively. \\
(global and local) INTEGER array of dimension 8. The array descriptor of the \\
distributed matrix \(A\).
\end{tabular}

\section*{Output Parameters}
a
Overwritten by the updated distributed matrix sub (A).

\section*{p?gerc}

Performs a rank-1 update (conjugated) of a
distributed general matrix.

\section*{Syntax}
```

call pcgerc(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)
call pzgerc(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)

```

Include files
- C: mkl_pblas.h

\section*{Description}

The p?gerc routines perform a distributed matrix-vector operation defined as
```

sub(A) := alpha*sub (x)*conjg(sub(y)') + sub (A),

```
where:
```

alpha is a scalar,
sub (A) is a m-by-n distributed general matrix, sub (A) = A(ia:ia+m-1, ja:ja+n-1),
sub(x) is an m-element distributed vector, sub (y) is ann-element distributed vector,
sub(x) denotes X(ix, jx:jx+m-1) if incx = m_x, and X(ix: ix+m-1, jx) if incx = 1,
sub(y) denotes Y(iy, jy:jy+n-1) if incy = m_y, and Y(iy: iy+n-1, jy) if incy = 1.

```

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & (global) INTEGER. Specifies the number of rows of the distributed matrix \(\operatorname{sub}\) (\(A\)), \(m \geq 0\). \\
\hline \(n\) & (global) INTEGER. Specifies the number of columns of the distributed matrix sub (\(A\)), \(n \geq 0\). \\
\hline \multirow[t]{3}{*}{alpha} & (global) COMPLEX for pcgerc \\
\hline & DOUBLE COMPLEX for pzgerc \\
\hline & Specifies the scalar alpha. \\
\hline \multirow[t]{4}{*}{\(x\)} & (local) COMPLEX for pcgerc \\
\hline & DOUBLE COMPLEX for pzgerc \\
\hline & Array, DIMENSION at least (jx-1)*m_x + ix+(n-1)*abs(incx)). \\
\hline & This array contains the entries of the distributed vector sub (x). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ix, jx & (global) INTEGER. The row and column indices in the distributed matrix \(x\) indicating the first row and the first column of the submatrix sub (x), respectively. \\
\hline descx & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\). \\
\hline incx & (global) INTEGER. Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and \(m x\). incx must not be zero. \\
\hline Y & \begin{tabular}{l}
(local) COMPLEX for pcgerc \\
DOUBLE COMPLEX for pzgerc \\
Array, DIMENSION at least (jy-1)*m_y +iy+(n-1)*abs(incy)). \\
This array contains the entries of the distributed vector sub \((y)\).
\end{tabular} \\
\hline iy, jy & (global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub (y), respectively. \\
\hline descy & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(Y\). \\
\hline incy & (global) INTEGER. Specifies the increment for the elements of sub (\(y\)). Only two values are supported, namely 1 and \(m _y\). incy must not be zero. \\
\hline a & \begin{tabular}{l}
(local) COMPLEX for pcgerc \\
DOUBLE COMPLEX for pzgerc \\
Array, DIMENSION at least (lld_a, LOCq (ja+n-1)). Before entry this array contains the local pieces of the distributed matrix sub (A).
\end{tabular} \\
\hline ia, ja & (global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively. \\
\hline desca & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
Overwritten by the updated distributed matrix sub (\(A\)).
```

p?geru
Performs a rank-1 update (unconjugated) of a
distributed general matrix.

```

\section*{Syntax}
```

call pcgeru(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,

```
call pcgeru(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)
desca)
call pzgeru(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
call pzgeru(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)
```

desca)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?geru routines perform a matrix-vector operation defined as
\(\operatorname{sub}(A):=a l p h a * \operatorname{sub}(x) * \operatorname{sub}(y){ }^{\prime}+\operatorname{sub}(A)\),
where:

\section*{Output Parameters}
a
Overwritten by the updated distributed matrix sub (\(A\)).
```

p?hemv
Computes a distributed matrix-vector product using a
Hermitian matrix.

```

\section*{Syntax}
```

call pchemv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,

```
call pchemv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)
jy, descy, incy)
call pzhemv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
call pzhemv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)
```

jy, descy, incy)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?hemv routines perform a distributed matrix-vector operation defined as
```

sub (y) := alpha*sub (A)*sub(x) + beta*sub (y),

```
where:
```

alpha and beta are scalars,
sub (A) is a n-by-n Hermitian distributed matrix, sub (A)=A(ia:ia+n-1, ja:ja+n-1),
sub (x) and sub (y) are distributed vectors.
sub(x) denotes X(ix, jx:jx+n-1) if incx = m_x, and X(ix: ix+n-1, jx) if incx = 1,
sub(y) denotes Y(iy, jy:jy+n-1) if incy = m_y, and Y(iy: iy+n-1, jy) if incy = 1.
Input Parameters

```

triangular part of the distributed matrix sub (A) must contain the lower triangular part of the Hermitian distributed matrix and the strictly upper triangular part of sub \((A)\) is not referenced.
ia, ja
desca
x
ix, jx
descx
incx
beta
y
iy, jy
descy
incy
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
(global and local)INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\).
(local) COMPLEX for pchemv
DOUBLE COMPLEX for pzhemv
Array, DIMENSION at least (jx-1)*m_x \(+i x+(n-1) * a b s(i n c x))\). This array contains the entries of the distributed vector sub (\(x\)).
(global) INTEGER. The row and column indices in the distributed matrix \(x\) indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\).
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and m_x. incx must not be zero.
(global) COMPLEX for pchemv
DOUBLE COMPLEX for pzhemv
Specifies the scalar beta. When beta is set to zero, then sub (\(y\)) need not be set on input.
(local) COMPLEX for pchemv
DOUBLE COMPLEX for pzhemv
Array, DIMENSION at least (jy-1)*m_y +iy+(n-1)*abs(incy)). This array contains the entries of the distributed vector sub \((y)\).
(global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(Y\).
(global) INTEGER. Specifies the increment for the elements of sub (\(y\)). Only two values are supported, namely 1 and \(m_{_} y\). incy must not be zero.

\section*{Output Parameters}
y
Overwritten by the updated distributed vector sub (y).

\section*{p?ahemv}

Computes a distributed matrix-vector product using
absolute values for a Hermitian matrix.

\section*{Syntax}
```

call pcahemv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)
call pzahemv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The \(p\) ? ahemv routines perform a distributed matrix-vector operation defined as \(\operatorname{sub}(y):=a b s(a l p h a) * a b s(\operatorname{sub}(A)) * a b s(\operatorname{sub}(x))+a b s(b e t a * s u b(y))\),
where:
alpha and beta are scalars,
sub (A) is a \(n-b y-n\) Hermitian distributed matrix, \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\),
sub (\(x\)) and sub (\(y\)) are distributed vectors.
sub (x) denotes \(X(i x, j x: j x+n-1)\) if incx \(=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\),
sub (y) denotes \(Y(i y, j y: j y+n-1)\) if incy \(=m_{_} y\), and \(Y(i y: i y+n-1, j y)\) if incy \(=1\).

\section*{Input Parameters}
uplo
n
alpha
a
ia, ja
desca

X
ix, jx
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub (\(A\)) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub \((A)\) is used.
If uplo = 'L' or 'l', then the low triangular part of the sub (\(A\)) is used.
(global) INTEGER. Specifies the order of the distributed matrix sub (A), \(n \geq\) 0.
(global) COMPLEX for pcahemv
DOUBLE COMPLEX for pzahemv
Specifies the scalar alpha.
(local) COMPLEX for pcahemv
DOUBLE COMPLEX for pzahemv
Array, DIMENSION (Ild_a, LOCq(ja+n-1)). This array contains the local pieces of the distributed matrix sub (\(A\)).
Before entry when uplo = 'U' or 'u', the \(n\)-by-n upper triangular part of the distributed matrix sub (\(A\)) must contain the upper triangular part of the Hermitian distributed matrix and the strictly lower triangular part of sub (\(A\)) is not referenced, and when uplo = 'L' or 'l', the \(n\)-by-n lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the Hermitian distributed matrix and the strictly upper triangular part of sub (\(A\)) is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local)INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\).
(local) COMPLEX for pcahemv
DOUBLE COMPLEX for pzahemv
Array, DIMENSION at least \(\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)\).
This array contains the entries of the distributed vector sub (\(x\)).
(global) INTEGER. The row and column indices in the distributed matrix \(x\) indicating the first row and the first column of the submatrix sub (x), respectively.
\begin{tabular}{|c|c|}
\hline descx & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\). \\
\hline incx & (global) INTEGER. Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero. \\
\hline beta & \begin{tabular}{l}
(global) COMPLEX for pcahemv \\
DOUBLE COMPLEX for pzahemv \\
Specifies the scalar beta. When beta is set to zero, then sub (\(y\)) need not be set on input.
\end{tabular} \\
\hline Y & \begin{tabular}{l}
(local) COMPLEX for pcahemv \\
DOUBLE COMPLEX for pzahemv \\
Array, DIMENSION at least (jy-1)*m_y +iy+(n-1)*abs(incy)). \\
This array contains the entries of the distributed vector sub \((y)\).
\end{tabular} \\
\hline iy, jy & (global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively. \\
\hline descy & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(Y\). \\
\hline incy & (global) INTEGER. Specifies the increment for the elements of sub \((y)\). Only two values are supported, namely 1 and \(m_{_} y\). incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
y
Overwritten by the updated distributed vector sub (y).

\section*{p?her}

Performs a rank-1 update of a distributed Hermitian matrix.

Syntax
```

call pcher(uplo, n, alpha, x, ix, jx, descx, incx, a, ia, ja, desca)
call pzher(uplo, n, alpha, x, ix, jx, descx, incx, a, ia, ja, desca)

```

Include Files
- C: mkl_pblas.h

\section*{Description}

The p?her routines perform a distributed matrix-vector operation defined as
```

sub (A) := alpha*sub (x)*\operatorname{conjg(sub(x)') + sub (A),}

```
where:
```

alpha is a real scalar,
sub (A) is a n-by-n distributed Hermitian matrix, sub (A)=A(ia:ia+n-1, ja:ja+n-1),
sub (x) is distributed vector.
sub(x) denotes X(ix, jx:jx+n-1) if incx = m_x, and X(ix: ix+n-1, jx) if incx = 1.
Input Parameters

```
uplo
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub (\(A\)) is used:

\section*{Output Parameters}
a
With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated distributed matrix sub (A).
With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated distributed matrix sub (A).

\section*{p?her2}

Performs a rank-2 update of a distributed Hermitian matrix.

\section*{Syntax}
```

call pcher2(uplo, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia,
ja, desca)
call pzher2(uplo, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia,
ja, desca)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?her2 routines perform a distributed matrix-vector operation defined as
```

sub(A) := alpha*sub (x)*\operatorname{conj (sub (y)') + conj(alpha)*sub (y)*conj(sub (x)') + sub(A),}

```
where:
```

alpha is a scalar,
sub (A) is a n-by-n distributed Hermitian matrix, sub (A)=A(ia:ia+n-1, ja:ja+n-1),
sub (x) and sub (y) are distributed vectors.
sub(x) denotes X(ix, jx:jx+n-1) if incx = m_x, and X(ix: ix+n-1, jx) if incx = 1,
sub(y) denotes Y(iy, jy:jy+n-1) if incy = m_y, and Y(iy: iy+n-1, jy) if incy = 1.

```
Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & (global) CHARACTER*1. Specifies whether the upper or lower triangular part of the distributed Hermitian matrix sub (\(A\)) is used: \\
\hline & If uplo = 'U' or 'u', then the upper triangular part of the sub \((A)\) is used. \\
\hline & If uplo = 'L' or 'l', then the low triangular part of the sub \((A)\) is used. \\
\hline \(n\) & (global) INTEGER. Specifies the order of the distributed matrix sub (A), \(n \geq\) 0. \\
\hline \multirow[t]{3}{*}{alpha} & (global) COMPLEX for pcher2 \\
\hline & DOUBLE COMPLEX for pzher2 \\
\hline & Specifies the scalar alpha. \\
\hline \multirow[t]{4}{*}{\(x\)} & (local) COMPLEX for pcher2 \\
\hline & DOUBLE COMPLEX for pzher2 \\
\hline & Array, DIMENSION at least (jx-1)*m_x + ix+(n-1)*abs(incx)). \\
\hline & This array contains the entries of the distributed vector sub (x). \\
\hline ix, jx & (global) INTEGER. The row and column indices in the distributed matrix \(x\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(x)\), respectively. \\
\hline descx & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\). \\
\hline incx & (global) INTEGER. Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and \(m_{-x}\). incx must not be zero. \\
\hline \multirow[t]{4}{*}{Y} & (local) COMPLEX for pcher2 \\
\hline & DOUBLE COMPLEX for pzher2 \\
\hline & Array, DIMENSION at least (jy-1)*m_y +iy+(n-1)*abs(incy) . \\
\hline & This array contains the entries of the distributed vector sub \((y)\). \\
\hline
\end{tabular}
```

iy, jy
descy
incy
a
ia,ja
desca

```

\section*{Output Parameters}
a
With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated distributed matrix sub (A).
With uplo = 'L' or 'l', the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated distributed matrix sub (A).
p?symv
Computes a distributed matrix-vector product using a symmetric matrix.

\section*{Syntax}
```

call pssymv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)
call pdsymv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?symv routines perform a distributed matrix-vector operation defined as
```

sub (y) := alpha*sub (A)*sub (x) + beta*sub (y),

```
where:

\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{Y} & (local) REAL for pssymv \\
\hline & DOUBLE REAL for pdsymv \\
\hline & Array, DIMENSION at least (jy-1)*m_y +iy+(n-1)*abs(incy)). \\
\hline & This array contains the entries of the distributed vector sub \((y)\). \\
\hline iy, jy & (global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively. \\
\hline descy & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(Y\). \\
\hline \multirow[t]{2}{*}{incy} & (global) INTEGER. Specifies the increment for the elements of sub \((y)\). \\
\hline & Only two values are supported, namely 1 and m_y. incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
\(y \quad\) Overwritten by the updated distributed vector sub \((y)\).
p?asymv
Computes a distributed matrix-vector product using absolute values for a symmetric matrix.

\section*{Syntax}
```

call psasymv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)
call pdasymv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?symv routines perform a distributed matrix-vector operation defined as
```

sub (y) := abs(alpha)*abs(sub (A))*abs(sub (x)) + abs(beta*sub(y)),

```
where:
```

alpha and beta are scalars,

```
sub (A) is a \(n\)-by- \(n\) symmetric distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\),
sub (\(x\)) and sub (\(y\)) are distributed vectors.
sub (\(x\)) denotes \(X(i x, j x: j x+n-1)\) if incx \(=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\),
sub (y) denotes \(Y(i y, j y: j y+n-1)\) if incy \(=m_{-} y\), and \(Y(i y: i y+n-1, j y)\) if incy \(=1\).
Input Parameters
uplo (global) CHARACTER*1. Specifies whether the upper or lower triangular part
 of the symmetric distributed matrix sub (\(A\)) is used:
 If uplo = 'U' or 'u', then the upper triangular part of the sub \((A)\) is
 used.
 If uplo = 'L' or 'l', then the low triangular part of the sub \((A)\) is used.
n
 (global) INTEGER. Specifies the order of the distributed matrix sub (\(A\)), \(n \geq\)
 0 .

\section*{Output Parameters}

Y
Overwritten by the updated distributed vector sub (y).
```

p?syr
Performs a rank-1 update of a distributed symmetric
matrix.

```

\section*{Syntax}
```

call pssyr(uplo, n, alpha, x, ix, jx, descx, incx, a, ia, ja, desca)
call pdsyr(uplo, n, alpha, x, ix, jx, descx, incx, a, ia, ja, desca)

```

Include Files
- C: mkl_pblas.h

\section*{Description}

The p?syr routines perform a distributed matrix-vector operation defined as
```

sub (A) := alpha*sub (x)*sub (x)' + sub (A),

```
where:
```

alpha is a scalar,
sub(A) is a n-by-n distributed symmetric matrix, sub (A)=A(ia:ia+n-1, ja:ja+n-1),
sub(x) is distributed vector.
sub(x) denotes X(ix, jx:jx+n-1) if incx = m_x, and X(ix: ix+n-1, jx) if incx = 1,
Input Parameters
uplo (global) CHARACTER*1. Specifies whether the upper or lower triangular part
of the symmetric distributed matrix sub (A) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub (A) is
used.
If uplo = 'L' or 'l', then the low triangular part of the sub (A) is used.
n
alpha
x
ix,jx
descx
incx
a
(global) INTEGER. Specifies the order of the distributed matrix sub (A), n\geq
0.
(global) REAL for pssyr
DOUBLE REAL for pdsyr
Specifies the scalar alpha.
(local) REAL for pssyr
DOUBLE REAL for pdsyr
Array, DIMENSION at least (jx-1)*m_x + ix+(n-1)*abs(incx)).
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix }
indicating the first row and the first column of the submatrix sub (x),
respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of
the distributed matrix x.
(global) INTEGER. Specifies the increment for the elements of sub (x).
Only two values are supported, namely 1 and m_x. incx must not be zero.
(local) REAL for pssyr
DOUBLE REAL for pdsyr
Array, DIMENSION (lld_a, LOCq(ja+n-1)). This array contains the local
pieces of the distributed matrix sub (A).

```

Before entry with uplo = 'U' or 'u', the \(n-b y-n\) upper triangular part of the distributed matrix sub (\(A\)) must contain the upper triangular part of the symmetric distributed matrix and the strictly lower triangular part of sub \((A)\) is not referenced, and with uplo = 'L' or 'l', the \(n\)-by-n lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the symmetric distributed matrix and the strictly upper triangular part of sub (\(A\)) is not referenced.
ia, ja
desca

\section*{Output Parameters}
a
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\).

With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated distributed matrix sub (A).
With uplo = 'L' or 'l', the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated distributed matrix sub (A).
p?syr2
Performs a rank-2 update of a distributed symmetric matrix.

\section*{Syntax}
```

call pssyr2(uplo, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia,
ja, desca)
call pdsyr2(uplo, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia,
ja, desca)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?syr2 routines perform a distributed matrix-vector operation defined as
```

sub (A) := alpha*sub (x)*sub (y)'+ alpha*sub (y)*sub (x)' + sub (A),

```
where:
```

alpha is a scalar,

```
sub \((A)\) is a \(n\)-by- \(n\) distributed symmetric matrix, \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\),
sub (\(x\)) and sub (\(y\)) are distributed vectors.
sub (\(x\)) denotes \(x\left(i x, j x: j x+n-1\right.\)) if incx \(=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\),
sub \((y)\) denotes \(Y(i y, j y: j y+n-1)\) if incy \(=m_{_} y\), and \(Y(i y\) : iy+n-1, jy) if incy \(=1\).
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the distributed symmetric matrix sub (\(A\)) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub \((A)\) is used.
If uplo = 'L' or 'l', then the low triangular part of the sub \((A)\) is used.
(global) INTEGER. Specifies the order of the distributed matrix sub (A), \(n \geq\) 0.
(global) REAL for pssyr2
DOUBLE REAL for pdsyr2
Specifies the scalar alpha.
(local) REAL for pssyr2
DOUBLE REAL for pdsyr2
Array, DIMENSION at least (jx-1)*m_x \(+i x+(n-1) * a b s(i n c x))\). This array contains the entries of the distributed vector sub (\(x\)).
(global) INTEGER. The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(x)\), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\).
(global) INTEGER. Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
(local) REAL for pssyr2
DOUBLE REAL for pdsyr2
Array, DIMENSION at least (jy-1)*m_y +iy+(n-1)*abs(incy)).
This array contains the entries of the distributed vector sub \((y)\).
(global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(Y\).
(global) INTEGER. Specifies the increment for the elements of sub (\(y\)). Only two values are supported, namely 1 and \(m_{-} y\). incy must not be zero.
(local) REAL for pssyr2
DOUBLE REAL for pdsyr2
Array, DIMENSION (Ild_a, LOCq(ja+n-1)). This array contains the local pieces of the distributed matrix sub (\(A\)).
Before entry with uplo = 'U' or 'u', the \(n\)-by- \(n\) upper triangular part of the distributed matrix sub (\(A\)) must contain the upper triangular part of the distributed symmetric matrix and the strictly lower triangular part of sub (A) is not referenced, and with uplo = 'L' or 'l', the \(n\)-by-n lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the distributed symmetric matrix and the strictly upper triangular part of sub \((A)\) is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local)INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\).

\section*{Output Parameters} a

With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated distributed matrix sub (A).
With uplo = 'L' or 'l', the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated distributed matrix sub (A).
```

p?trmv
Computes a distributed matrix-vector product using a
triangular matrix.

```

\section*{Syntax}
```

call pstrmv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)

```
call pstrmv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pdtrmv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pdtrmv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pctrmv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pctrmv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pztrmv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
```

call pztrmv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)

```

\section*{Include files}
- C: mkl_pblas.h

\section*{Description}

The p?trmv routines perform one of the following distributed matrix-vector operations defined as
```

sub (x) := sub (A)* sub (x), or sub (x) := sub (A)'*sub (x), or sub (x) := conjg(sub (A)')*sub (x),

``` where:
sub (\(A\)) is a \(n-b y-n\) unit, or non-unit, upper or lower triangular distributed matrix, sub (\(A\)) \(=A(i a: i a+n-1\), ja:ja+n-1),
sub (\(x\)) is an \(n\)-element distributed vector.
sub \((x)\) denotes \(X(i x, j x: j x+n-1)\) if \(i n c x=m_{-}\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\),

\section*{Input Parameters}
```

uplo
trans
diag

```
(global) CHARACTER*1. Specifies whether the distributed matrix sub (\(A\)) is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
trans
diag
(global) CHARACTER*1. Specifies the form of op (sub (A)) used in the matrix equation:
if transa \(=\) 'N' or 'n', then sub (x) \(:=\operatorname{sub}(A) * \operatorname{sub}(x)\);
if transa \(=\) 'T' or 't', then sub (x) \(:=\operatorname{sub}(A)\) '*sub (x);
if transa \(=\) 'C' or 'c', then sub (x) \(:=\operatorname{conjg}(\operatorname{sub}(A)\) ')*sub (x).
(global) CHARACTER*1. Specifies whether the matrix sub \((A)\) is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag = 'N' or 'n', then the matrix is not unit triangular.
(global) INTEGER. Specifies the order of the distributed matrix sub (\(A\)) , \(n \geq 0\).
\begin{tabular}{|c|c|}
\hline \multirow[t]{8}{*}{a} & (local) REAL for pstrmv \\
\hline & DOUBLE PRECISION for pdtrmv \\
\hline & COMPLEX for pctrmv \\
\hline & DOUBLE COMPLEX for pztrmv \\
\hline & Array, DIMENSION at least (lld_a, LOCq (1, ja+n-1)). \\
\hline & Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub (\(A\)), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub \((A)\) is not referenced. \\
\hline & Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub (A), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix \(\operatorname{sub}(A)\) is not referenced. \\
\hline & When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub (A) are not referenced either, but are assumed to be unity. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (A), respectively. \\
\hline desca & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\). \\
\hline \multirow[t]{6}{*}{\(x\)} & (local) REAL for pstrmv \\
\hline & DOUBLE PRECISION for pdtrmv \\
\hline & COMPLEX for pctrmv \\
\hline & DOUBLE COMPLEX for pztrmv \\
\hline & Array, DIMENSION at least (jx-1)* \(m_{-} x+i x+(n-1) * a b s(i n c x)\)). \\
\hline & This array contains the entries of the distributed vector sub \((x)\). \\
\hline ix, jx & (global) INTEGER. The row and column indices in the distributed matrix \(x\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(x)\), respectively. \\
\hline descx & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\). \\
\hline incx & (global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m x\). incx must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
\(x\)
Overwritten by the transformed distributed vector sub (x).

\section*{p?atrmv \\ Computes a distributed matrix-vector product using absolute values for a triangular matrix.}

\section*{Syntax}
```

call psatrmv(uplo, trans, diag, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx,
beta, y, iy, jy, descy, incy)
call pdatrmv(uplo, trans, diag, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx,
beta, y, iy, jy, descy, incy)
call pcatrmv(uplo, trans, diag, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx,
beta, y, iy, jy, descy, incy)

```
```

call pzatrmv(uplo, trans, diag, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx,
beta, y, iy, jy, descy, incy)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?atrmv routines perform one of the following distributed matrix-vector operations defined as
```

sub(y) := abs(alpha)*abs(sub(A))*abs(sub(x))+ abs(beta*sub (y)), or
sub(y) := abs(alpha)*abs(sub(A)')*abs(sub(x))+ abs(beta*sub (y)), or
sub(y) := abs(alpha)*abs(conjg(sub(A)'))*abs(sub(x))+ abs(beta*sub (y)),
where:

```
alpha and beta are scalars,
sub (A) is a \(n-b y-n\) unit, or non-unit, upper or lower triangular distributed matrix, sub (A) \(=A(i a: i a+n-1\), ja:ja+n-1),
sub (\(x\)) is an \(n\)-element distributed vector.
sub \((x)\) denotes \(X(i x, j x: j x+n-1)\) if \(i n c x=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if \(i n c x=1\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
(global) CHARACTER*1. Specifies whether the distributed matrix sub \((A)\) is upper or lower triangular: \\
if uplo = 'U' or 'u', then the matrix is upper triangular; \\
if uplo = 'L' or 'l', then the matrix is low triangular.
\end{tabular} \\
\hline trans & \begin{tabular}{l}
(global) CHARACTER*1. Specifies the form of op (sub (\(A\))) used in the matrix equation: \\
if trans \(=\) 'N' or 'n', then sub (y) :=|alpha|*|sub (A) |*|sub (x) \(|+|\) beta*sub(\(y\)) ; \\
if trans \(=\) 'T' or 't', then sub(y) \(:=|a l p h a| *|\operatorname{sub}(A) '| *|\operatorname{sub}(x)|\) \(+\mid\) beta*sub \((y) \mid\); \\
if trans \(=\) 'C' or 'c', then sub (y) :=|alpha|*|conjg(sub (A)')|*| sub (x) |+|beta*sub (y) |.
\end{tabular} \\
\hline diag & \begin{tabular}{l}
(global) CHARACTER*1. Specifies whether the matrix \(\operatorname{sub}(A)\) is unit triangular: \\
if diag = 'U' or 'u' then the matrix is unit triangular; \\
if diag = 'N' or 'n', then the matrix is not unit triangular.
\end{tabular} \\
\hline \(n\) & (global) INTEGER. Specifies the order of the distributed matrix sub (\(A\)), \(n \geq 0\). \\
\hline alpha & (global) REAL for psatrmv \\
\hline & DOUBLE PRECISION for pdatrmv \\
\hline & COMPLEX for pcatrmv \\
\hline & DOUBLE COMPLEX for pzatrmv \\
\hline & Specifies the scalar alpha. \\
\hline a & (local) REAL for psatrmv \\
\hline & DOUBLE PRECISION for pdatrmv \\
\hline & COMPLEX for pcatrmv \\
\hline & DOUBLE COMPLEX for pzatrmv \\
\hline & Array, DIMENSION at least (lld_a, LOCq (1, ja+n-1)). \\
\hline
\end{tabular}

Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub (A), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix \(\operatorname{sub}(A)\) is not referenced. Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub (\(A\)), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix \(\operatorname{sub}(A)\) is not referenced. When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub (\(A\)) are not referenced either, but are assumed to be unity.
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
desca
\(x\)
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\).
(local) REAL for psatrmv
DOUBLE PRECISION for pdatrmv
COMPLEX for pcatrmv
Double complex for pzatrmv
Array, DIMENSION at least (\(j x-1){ }^{2} m_{-} x+i x+(n-1) * a b s(i n c x)\)). This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix \(x\) indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\).
(global) INTEGER. Specifies the increment for the elements of sub (\(x\)).
Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
(global) REAL for psatrmv
DOUBLE PRECISION for pdatrmv
COMPLEX for pcatrmv
DOUbLe COMPLEX for pzatrmv
Specifies the scalar beta. When beta is set to zero, then sub (\(y\)) need not be set on input.
(local) REAL for psatrmv
DOUBLE PRECISION for pdatrmv
COMPLEX for pcatrmv
double Complex for pzatrmv
Array, DIMENSION \(\left.(j y-1) * m_{_} y+i y+(m-1) * a b s(i n c y)\right)\) when trans \(=\) 'N' or 'n', and (\(j y-1\))* \(\left.m_{-} y+i y+(n-1) * a b s(i n c y)\right)\) otherwise.
This array contains the entries of the distributed vector sub \((y)\).
(global) INTEGER. The row and column indices in the distributed matrix \(y\) indicating the first row and the first column of the submatrix sub (\(y\)), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix y.
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and \(m_{-} y\). incy must not be zero.

\section*{Output Parameters}

X
Overwritten by the transformed distributed vector sub (x).

\section*{p?trsv}

Solves a system of linear equations whose coefficients are in a distributed triangular matrix.

\section*{Syntax}
```

call pstrsv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pdtrsv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pctrsv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pztrsv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)

```

\section*{Include files}
- C: mkl_pblas.h

\section*{Description}

The p?trsv routines solve one of the systems of equations:
```

sub(A)*sub (x) = b, or sub (A)'*sub (x) = b, or conjg(sub (A)')*sub (x) = b,

```
where:
sub (\(A\)) is a \(n-b y-n\) unit, or non-unit, upper or lower triangular distributed matrix, sub (\(A\)) \(=A(i a: i a+n-1\), ja:ja+n-1),
\(b\) and sub (\(x\)) are \(n\)-element distributed vectors,
sub (x) denotes \(X(i x, j x: j x+n-1)\) if incx \(=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\), .
The routine does not test for singularity or near-singularity. Such tests must be performed before calling this routine.

Input Parameters
uplo
trans
diag
n
a
(global) CHARACTER*1. Specifies whether the distributed matrix sub (\(A\)) is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
(global) CHARACTER*1. Specifies the form of the system of equations:
if transa \(=\) 'N' or 'n', then \(\operatorname{sub}(A) * \operatorname{sub}(x)=b\);
if transa \(=\) 'T' or 't', then sub (A)'*sub \((x)=b\);
if transa \(=\) 'C' or 'c', then conjg(sub (A)')*sub \((x)=b\).
(global) CHARACTER*1. Specifies whether the matrix sub \((A)\) is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag \(=\) ' \(N\) ' or ' n ', then the matrix is not unit triangular.
(global) INTEGER. Specifies the order of the distributed matrix sub (A), \(n \geq\) 0.
(local) REAL for pstrsv
DOUBLE PRECISION for pdtrsv
COMPLEX for pctrsv

DOUBLE COMPLEX for pztrsv
Array, DIMENSION at least (lld_a, LOCq(1, ja+n-1)).
Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub (\(A\)), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub \((A)\) is not referenced. Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub (\(A\)), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix sub \((A)\) is not referenced. When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub (\(A\)) are not referenced either, but are assumed to be unity.
ia, ja
desca

X
ix, jx
descx
incx
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\).
(local) REAL for pstrsv
DOUBLE PRECISION for pdtrsv
COMPLEX for pctrsv
DOUBLE COMPLEX for pztrsv
Array, DIMENSION at least (jx-1)*m_x \(+i x+(n-1) * a b s(i n c x))\). This array contains the entries of the distributed vector sub (x). Before entry, sub (\(x\)) must contain the \(n\)-element right-hand side distributed vector \(b\).
(global) INTEGER. The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (\(x\)), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(x\).
(global) INTEGER. Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.

\section*{Output Parameters}

X
Overwritten with the solution vector.

\section*{PBLAS Level 3 Routines}

The PBLAS Level 3 routines perform distributed matrix-matrix operations. Table "PBLAS Level 3 Routine Groups and Their Data Types" lists the PBLAS Level 3 routine groups and the data types associated with them.

PBLAS Level 3 Routine Groups and Their Data Types
\begin{tabular}{lll}
\hline Routine Group & Data Types & Description \\
\hline p?geadd & \(s, d, c, z\) & Distributed matrix-matrix sum of general matrices \\
p?tradd & \(s, d, c, z\) & Distributed matrix-matrix sum of triangular matrices \\
p?gemm & \(s, d, c, z\) & Distributed matrix-matrix product of general matrices
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Routine Group & Data Types & Description \\
\hline p?hemm & c, z & Distributed matrix-matrix product, one matrix is Hermitian \\
\hline p?herk & c, z & Rank-k update of a distributed Hermitian matrix \\
\hline p ?her 2 k & c, z & Rank-2k update of a distributed Hermitian matrix \\
\hline p?symm & s, d, c, z & Matrix-matrix product of distributed symmetric matrices \\
\hline p?syrk & \(s, d, c, z\) & Rank-k update of a distributed symmetric matrix \\
\hline p?syr2k & \(s, d, c, z\) & Rank-2k update of a distributed symmetric matrix \\
\hline p?tran & s, d & Transposition of a real distributed matrix \\
\hline p?tranc & c, z & Transposition of a complex distributed matrix (conjugated) \\
\hline p?tranu & c, z & Transposition of a complex distributed matrix \\
\hline p?trmm & s, d, c, z & Distributed matrix-matrix product, one matrix is triangular \\
\hline p?trsm & \(s, d, c, z\) & Solution of a distributed matrix equation, one matrix is triangular \\
\hline
\end{tabular}

\section*{p?geadd}

Performs sum operation for two distributed general
matrices.

\section*{Syntax}
```

call psgeadd(trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pdgeadd(trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pcgeadd(trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pzgeadd(trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

```

\section*{Include files}
- C: mkl_pblas.h

\section*{Description}

The p?geadd routines perform sum operation for two distributed general matrices. The operation is defined as
sub \((C):=b e t a * \operatorname{sub}(C)+\) alpha*op \((\operatorname{sub}(A))\),
where:
\(\mathrm{op}(x)\) is one of \(\mathrm{op}(x)=x\), or \(\mathrm{op}(x)=x^{\prime}\),
alpha and beta are scalars,
sub (\(C\)) is an m-by-n distributed matrix, sub (\(C\)) \(=C(i c: i c+m-1, j c: j c+n-1)\).
sub \((A)\) is a distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+m-1)\).
Input Parameters
trans
(global) CHARACTER*1. Specifies the operation:
\begin{tabular}{|c|c|}
\hline & \\
\hline m & (global) INTEGER. Specifies the number of rows of the distributed matrix sub (\(C\)) and the number of columns of the submatrix \(\operatorname{sub}(A), m \geq 0\). \\
\hline \(n\) & (global) INTEGER. Specifies the number of columns of the distributed matrix sub (\(C\)) and the number of rows of the submatrix \(\operatorname{sub}(A), n \geq 0\). \\
\hline alpha & (global) REAL for psgeadd \\
\hline & DOUBLE PRECISION for pdgeadd \\
\hline & COMPLEX for pcgeadd \\
\hline & DOUBLE COMPLEX for pzgeadd \\
\hline & Specifies the scalar alpha. \\
\hline a & (local) REAL for psgeadd \\
\hline & DOUBLE PRECISION for pdgeadd \\
\hline & COMPLEX for pcgeadd \\
\hline & DOUBLE COMPLEX for pzgeadd \\
\hline & Array, DIMENSION (Ild_a, LOCq(ja+m-1)). This array contains the local pieces of the distributed matrix sub (A). \\
\hline ia, ja & (global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively. \\
\hline desca & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\). \\
\hline beta & (global) REAL for psgeadd \\
\hline & DOUBLE PRECISION for pdgeadd \\
\hline & COMPLEX for pcgeadd \\
\hline & DOUBLE COMPLEX for pzgeadd \\
\hline & Specifies the scalar beta. \\
\hline & When beta is equal to zero, then sub (\(C\)) need not be set on input. \\
\hline C & (local) REAL for psgeadd \\
\hline & DOUBLE PRECISION for pdgeadd \\
\hline & COMPLEX for pcgeadd \\
\hline & DOUBLE COMPLEX for pzgeadd \\
\hline & Array, DIMENSION (lld_c, LOCq (jc+n-1)). \\
\hline & This array contains the local pieces of the distributed matrix sub (\(C\)). \\
\hline ic, jc & (global) INTEGER. The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub (\(C\)), respectively. \\
\hline descc & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(c\). \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by the updated submatrix.
p?tradd
Performs sum operation for two distributed triangular matrices.

\section*{Syntax}
```

call pstradd(uplo, trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pdtradd(uplo, trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pctradd(uplo, trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pztradd(uplo, trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

```

Include files
- C: mkl_pblas.h

\section*{Description}

The p?tradd routines perform sum operation for two distributed triangular matrices. The operation is defined as
sub (C) :=beta*sub (C) + alpha*op(sub (A)),
where:
```

op(x) is one of op (x) = x, or op (x) = x', or op (x) = conjg(x').
alpha and beta are scalars,
sub (C) is an m-by-n distributed matrix, sub (C)=C(ic:ic+m-1, jc:jc+n-1).
sub (A) is a distributed matrix, sub (A)=A(ia:ia+n-1, ja:ja+m-1).
Input Parameters

```
uplo
trans
m
n
alpha
a
ia, ja
(global) CHARACTER*1. Specifies whether the distributed matrix sub (\(C\)) is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
(global) CHARACTER*1. Specifies the operation:
if trans \(=\) 'N' or 'n', then op (sub (A)) \(:=\operatorname{sub}(A)\);
if trans \(=\) 'T' or 't', then op (sub (A)) \(:=\operatorname{sub}(A)\) ';
if trans \(=\) 'C' or 'c', then op (sub (A)) \(:=\operatorname{conjg(sub(A)').~}\)
(global) INTEGER. Specifies the number of rows of the distributed matrix sub (\(C\)) and the number of columns of the submatrix sub (\(A\)), \(m \geq 0\).
(global) INTEGER. Specifies the number of columns of the distributed matrix sub (\(C\)) and the number of rows of the submatrix sub (\(A\)), \(n \geq 0\).
(global) REAL for pstradd
DOUBLE PRECISION for pdtradd
COMPLEX for pctradd
DOUBLE COMPLEX for pztradd
Specifies the scalar alpha.
(local) REAL for pstradd
DOUBLE PRECISION for pdtradd
COMPLEX for pctradd
DOUBLE COMPLEX for pztradd
Array, DIMENSION (Ild_a, LOCq(ja+m-1)). This array contains the local pieces of the distributed matrix sub (\(A\)).
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
```

desca (global and local) INTEGER array of dimension 8. The array descriptor of the
distributed matrix A.
beta (global) REAL for pstradd
DOUBLE PRECISION for pdtradd
COMPLEX for pctradd
DOUBLE COMPLEX for pztradd
Specifies the scalar beta.
When beta is equal to zero, then sub (C) need not be set on input.
c (local) REAL for pstradd
DOUBLE PRECISION for pdtradd
COMPLEX for pctradd
DOUBLE COMPLEX for pztradd
Array, DIMENSION (lld_c, LOCq(jc+n-1)).
This array contains the local pieces of the distributed matrix sub (C).
ic, jc (global) INTEGER. The row and column indices in the distributed matrix C
indicating the first row and the first column of the submatrix sub (C),
respectively.
descc
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix $C$.

```

\section*{Output Parameters}
c
Overwritten by the updated submatrix.

\section*{p?gemm}

Computes a scalar-matrix-matrix product and adds the result to a scalar-matrix product for distributed matrices.

\section*{Syntax}
```

call psgemm(transa, transb, m, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta,
c, ic, jc, descc)
call pdgemm(transa, transb, m, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta,
c, ic, jc, descc)
call pcgemm(transa, transb, m, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta,
c, ic, jc, descc)
call pzgemm(transa, transb, m, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta,
c, ic, jc, descc)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?gemm routines perform a matrix-matrix operation with general distributed matrices. The operation is defined as
sub \((C)\) := alpha*op (sub (A))*op (sub (B)) + beta*sub (C),
where:
op \((x)\) is one of \(o p(x)=x\), or op \((x)=x^{\prime}\),
alpha and beta are scalars,
```

sub $(A)=A(i a: i a+m-1, j a: j a+k-1)$, sub $(B)=B(i b: i b+k-1, j b: j b+n-1)$, and $\operatorname{sub}(C)=C(i c: i c+m-1$,
$j c: j c+n-1)$, are distributed matrices.

```

\section*{Input Parameters}

```

(global) CHARACTER*1. Specifies the form of op (sub (A) ) used in the matrix multiplication:
if transa $=$ 'N' or 'n', then op (sub $(A))=\operatorname{sub}(A)$;
if transa $=$ 'T' or 't', then op (sub $(A))=\operatorname{sub}(A)$ ';
if transa $=$ 'C' or 'C', then op (sub $(A))=\operatorname{sub}(A)$ '.
(global) CHARACTER*1. Specifies the form of op (sub ( $B$ ) ) used in the matrix multiplication:

```
```

C

```
C
if transb = 'C' or 'c', then op(sub (B)) = sub(B)'.
```

if transb = 'C' or 'c', then op(sub (B)) = sub(B)'.

```
m
n
k

> alpha
a
ia, ja
desca
b
(global) INTEGER. Specifies the number of rows of the distributed matrices op (sub (A)) and sub (\(C\)), \(m \geq 0\).
(global) INTEGER. Specifies the number of columns of the distributed matrices op (sub (\(B\))) and sub (\(C\)), \(n \geq 0\).
The value of \(n\) must be at least zero.
(global) INTEGER. Specifies the number of columns of the distributed matrix op (sub (A)) and the number of rows of the distributed matrix op (sub (B)). The value of \(k\) must be greater than or equal to 0 .
(global) REAL for psgemm
DOUBLE PRECISION for pdgemm
COMPLEX for pcgemm
DOUBLE COMPLEX for pzgemm
Specifies the scalar alpha.
When alpha is equal to zero, then the local entries of the arrays \(a\) and \(b\) corresponding to the entries of the submatrices sub (\(A\)) and sub (\(B\)) respectively need not be set on input.
(local) REAL for psgemm
DOUBLE PRECISION for pdgemm
COMPLEX for pcgemm
DOUBLE COMPLEX for pzgemm
Array, DIMENSION (Ild_a,kla), where kla is LOCc (ja+k-1) when transa \(=\) 'N' or 'n', and is LOCq (\(j a+m-1\)) otherwise. Before entry this array must contain the local pieces of the distributed matrix sub (\(A\)).
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (A), respectively
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\).
(local)REAL for psgemm
DOUBLE PRECISION for pdgemm
COMPLEX for pcgemm
DOUBLE COMPLEX for pzgemm
Array, DIMENSION (lld_b, klb), where \(k l b\) is LOCc (\(j b+n-1\)) when transb \(=\) 'N' or 'n', and is LOCq (\(j b+k-1\)) otherwise. Before entry this array must contain the local pieces of the distributed matrix sub (\(B\)).
```

ib, jb (global) INTEGER. The row and column indices in the distributed matrix B
indicating the first row and the first column of the submatrix sub (B),
respectively
descb (global and local) INTEGER array of dimension 8. The array descriptor of the
distributed matrix B.
beta (global) REAL for psgemm
DOUBLE PRECISION for pdgemm
COMPLEX for pcgemm
DOUBLE COMPLEX for pzgemm
Specifies the scalar beta.
When beta is equal to zero, then sub (C) need not be set on input.
(local)REAL for psgemm
DOUBLE PRECISION for pdgemm
COMPLEX for pcgemm
DOUBLE COMPLEX for pzgemm
Array, DIMENSION (lld_a, LOCq(jc+n-1)). Before entry this array must
contain the local pieces of the distributed matrix sub ( C).
ic, jc
descc

```

\section*{Output Parameters}

Overwritten by the m-by-n distributed matrix
alpha*op (sub (A)) *op (sub(B)) + beta*sub(C).

\section*{p?hemm}

Performs a scalar-matrix-matrix product (one matrix operand is Hermitian) and adds the result to a scalarmatrix product.

\section*{Syntax}
```

call pchemm(side, uplo, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic,
jc, descc)
call pzhemm(side, uplo, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic,
jc, descc)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The \(p\) ? hemm routines perform a matrix-matrix operation with distributed matrices. The operation is defined as \(\operatorname{sub}(C):=a l p h a * \operatorname{sub}(A) * \operatorname{sub}(B)+b e t a * s u b(C)\),
or
sub (C) : =alpha*sub (\(B\)) *sub (\(A\)) + beta*sub (\(C\)),
where:
alpha and beta are scalars,
```

sub(A) is a Hermitian distributed matrix, sub (A)=A(ia:ia+m-1, ja:ja+m-1), if side = 'L', and
sub(A)=A(ia:ia+n-1, ja:ja+n-1), if side = 'R'.
sub (B) and sub (C) are m-by-n distributed matrices.
sub (B)=B(ib:ib+m-1, jb:jb+n-1), sub (C)=C(ic:ic+m-1, jc:jc+n-1).

```

\section*{Input Parameters}

m
\(n\)
alpha
a
ia, ja
desca
b
ib, jb
descb
beta
(global) CHARACTER*1. Specifies whether the Hermitian distributed matrix sub (\(A\)) appears on the left or right in the operation:
if side = 'L' or 'l', then sub(C) := alpha*sub (A) *sub (B) +
beta*sub (C);
if side \(=\) ' \(R\) ' or 'r', then sub (C) := alpha*sub (\(B\)) *sub (\(A\)) +
beta*sub (C).
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub (\(A\)) is used:
if uplo = 'U' or 'u', then the upper triangular part is used;
if uplo = 'L' or 'l', then the lower triangular part is used.
(global) INTEGER. Specifies the number of rows of the distribute submatrix sub (\(C\)), \(m \geq 0\).
(global) INTEGER. Specifies the number of columns of the distribute submatrix sub (\(C\)), \(n \geq 0\).
(global) COMPLEX for pchemm
DOUBLE COMPLEX for pzhemm
Specifies the scalar alpha.
(local) COMPLEX for pchemm
DOUBLE COMPLEX for pzhemm
Array, DIMENSION (Ild_a, LOCq(ja+na-1)).
Before entry this array must contain the local pieces of the symmetric distributed matrix \(\operatorname{sub}(A)\), such that when uplo \(=\) 'U' or 'u', the na-byna upper triangular part of the distributed matrix sub (\(A\)) must contain the upper triangular part of the Hermitian distributed matrix and the strictly lower triangular part of sub \((A)\) is not referenced, and when uplo = 'L' or 'l', the na-by-na lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the Hermitian distributed matrix and the strictly upper triangular part of sub \((A)\) is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\).
(local) COMPLEX for pchemm
DOUBLE COMPLEX for pzhemm
Array, DIMENSION (lld_b, LOCq (jb+n-1)). Before entry this array must contain the local pieces of the distributed matrix sub (\(B\)).
(global) INTEGER. The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub (\(B\)), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(B\).
(global) COMPLEX for pchemm
\begin{tabular}{|c|c|}
\hline & DOUBLE COMPLEX for pzhemm \\
\hline & Specifies the scalar beta. \\
\hline & When beta is set to zero, then sub(\(C\)) need not be set on input. \\
\hline c & (local) COMPLEX for pchemm \\
\hline & DOUBLE COMPLEX for pzhemm \\
\hline & Array, DIMENSION (lld_c, LOCq (jc+n-1)). Before entry this array must contain the local pieces of the distributed matrix sub (\(C\)). \\
\hline ic, jc & (global) INTEGER. The row and column indices in the distributed matrix indicating the first row and the first column of the submatrix sub (\(C\)), respectively \\
\hline descc & (global and local)INTEGER array of dimension 8. The array descriptor of the distributed matrix \(C\). \\
\hline
\end{tabular}

\section*{Output Parameters}
c
Overwritten by the \(m-b y-n\) updated distributed matrix.
p?herk
Performs a rank-k update of a distributed Hermitian matrix.

\section*{Syntax}
```

call pcherk(uplo, trans, n, k, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pzherk(uplo, trans, n, k, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?herk routines perform a distributed matrix-matrix operation defined as
```

sub (C):=alpha*sub (A)*Conjg(sub (A)')+ beta*sub (C),

```
or
sub \((C)\) : =alpha*conjg(sub (A) ') *sub (A) + beta*sub (C),
where:
```

alpha and beta are scalars,
sub(C) is an n-by-n Hermitian distributed matrix, sub (C)=C(ic:ic+n-1, jc:jc+n-1).
sub(A) is a distributed matrix, sub(A)=A(ia:ia+n-1, ja:ja+k-1), if trans = 'N' or 'n', and
sub(A)=A(ia:ia+k-1, ja:ja+n-1) otherwise.

```

\section*{Input Parameters}
uplo
trans
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub (\(C\)) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub \((C)\) is used.
If uplo = 'L' or 'l', then the low triangular part of the sub \((C)\) is used.
(global) CHARACTER*1. Specifies the operation:
\begin{tabular}{|c|c|}
\hline & ```
if trans = 'N' or 'n', then sub(C) := alpha*sub (A)*conjg(sub (A)')
+ beta*sub (C);
if trans = 'C' or 'c', then sub(C) := alpha*conjg(sub (A)')*sub (A)
+ beta*sub (C).
``` \\
\hline \(n\) & (global) INTEGER. Specifies the order of the distributed matrix sub ( \(C\) ), \(n \geq\) 0. \\
\hline k & (global) INTEGER. On entry with trans \(=\) ' \(N\) ' or ' \(n\) ', \(k\) specifies the number of columns of the distributed matrix sub ( \(A\) ), and on entry with trans \(=\) 'T' or 't' or 'C' or 'c', \(k\) specifies the number of rows of the distributed matrix sub \((A), k \geq 0\). \\
\hline alpha & (global) REAL for pcherk DOUBLE PRECISION for pzherk Specifies the scalar alpha. \\
\hline a & \begin{tabular}{l}
(local) COMPLEX for pcherk \\
DOUBLE COMPLEX for pzherk \\
Array, DIMENSION (lld_a, kla), where kla is LOCq (ja+k-1) when \\
trans \(=\) 'N' or 'n', and is LOCq (ja+n-1) otherwise. Before entry with \\
trans \(=\) ' \(N\) ' or ' \(n\) ', this array contains the local pieces of the distributed \\
matrix sub (A).
\end{tabular} \\
\hline ia, ja & (global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively. \\
\hline desca & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\). \\
\hline beta & (global) REAL for pcherk DOUBLE PRECISION for pzherk Specifies the scalar beta. \\
\hline C & \begin{tabular}{l}
(local) COMPLEX for pcherk \\
DOUBLE COMPLEX for pzherk \\
Array, DIMENSION (lld_c, LOCq(jc+n-1)). \\
Before entry with uplo = 'U' or 'u', this array contains \(n\)-by- \(n\) upper triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly lower triangular part is not referenced. \\
Before entry with uplo = 'L' or 'l', this array contains n-by-n lower triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly upper triangular part is not referenced.
\end{tabular} \\
\hline ic, jc & (global) INTEGER. The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively. \\
\hline descc & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(C\). \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{c}

With uplo = 'U' or 'u', the upper triangular part of sub ( \(C\) ) is overwritten by the upper triangular part of the updated distributed matrix. With uplo = 'L' or 'l', the lower triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.
```

p?her2k
Performs a rank-2k update of a Hermitian distributed
matrix.

```

\section*{Syntax}

\section*{Fortran 77:}
```

call pcher2k(uplo, trans, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c,
ic, jc, descc)
call pzher2k(uplo, trans, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c,
ic, jc, descc)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?her 2 k routines perform a distributed matrix-matrix operation defined as
```

sub (C):=alpha*sub (A)*conjg(sub (B)') + conjg(alpha)*sub (B)*conjg(sub (A)') +beta*sub (C),

```
or
sub \((C):=a l p h a * \operatorname{conjg}(\operatorname{sub}(A) ') * \operatorname{sub}(A)+\operatorname{conjg}(a l p h a) * \operatorname{conjg}(\operatorname{sub}(B) ') * \operatorname{sub}(A)+\) beta*sub (C),
where:
alpha and beta are scalars,
sub \((C)\) is an \(n-b y-n\) Hermitian distributed matrix, sub \((C)=C(i c: i c+n-1, j c: j c+n-1)\).
sub ( \(A\) ) is a distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+k-1)\), if trans \(=\) ' \(N^{\prime}\) or ' \(n\) ', and sub \((A)=\) A(ia:ia+k-1, ja:ja+n-1) otherwise.
sub ( \(B\) ) is a distributed matrix, sub \((B)=B(i b: i b+n-1, j b: j b+k-1)\), if trans \(=\) ' \(N\) ' or ' \(n\) ', and sub \((B)=B(i b: i b+k-1, j b: j b+n-1)\) otherwise.

\section*{Input Parameters}
uplo
trans
n
k
alpha
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub ( \(C\) ) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub \((C)\) is used.
If uplo = 'L' or 'l', then the low triangular part of the sub \((C)\) is used.
(global) CHARACTER*1. Specifies the operation:
if trans \(=\) 'N' or 'n', then sub (C) := alpha*sub \((A) * \operatorname{conjg}\left(\operatorname{sub}(B)^{\prime}\right)\)
+ conjg(alpha)*sub (B)*conjg(sub(A)') + beta*sub(C);
if trans \(=\) ' C' or 'C', then sub (C) := alpha*conjg(sub (A)')*sub (A)
\(+\operatorname{conjg}(a l p h a) *\) conjg (sub ( \(\left.B)^{\prime}\right) *\) sub ( \(A\) ) + beta*sub ( \(C\) ).
(global) INTEGER. Specifies the order of the distributed matrix sub ( \(C\) ), \(n \geq\) 0 .
(global) INTEGER. On entry with trans \(=\) ' \(N\) ' or ' \(n\) ', \(k\) specifies the number of columns of the distributed matrices sub ( \(A\) ) and sub ( \(B\) ), and on entry with trans \(=\) ' \(C\) ' or ' \(C\) ' , \(k\) specifies the number of rows of the distributed matrices sub ( \(A\) ) and sub ( \(B\) ), \(k \geq 0\).
(global) COMPLEX for pcher2k
\begin{tabular}{|c|c|}
\hline \multirow{4}{*}{a} & double Complex for pzher2k \\
\hline & Specifies the scalar alpha. \\
\hline & (local) COMPLEX for pcher2k DOUBLE COMPLEX for pzher \(2 k\) \\
\hline & Array, DIMENSION (lld_a, kla), where kla is LOCq (ja+k-1) when trans \(=\) 'N' or 'n', and is LOCq(ja+n-1) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', this array contains the local pieces of the distributed matrix sub (A). \\
\hline ia, ja & (global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (A), respectively. \\
\hline desca & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\). \\
\hline \multirow[t]{2}{*}{b} & \begin{tabular}{l}
(local) Complex for pcher2k \\
DOUBLE COMPLEX for pzher2k
\end{tabular} \\
\hline & Array, DIMENSION ( \(11 d \_b, k l b\) ), where \(k l b\) is LOCq ( \(j b+k-1\) ) when trans \(=\) 'N' or 'n', and is LOCq \((j b+n-1)\) otherwise. Before entry with trans = 'N' or ' n ', this array contains the local pieces of the distributed matrix sub ( \(B\) ). \\
\hline ib, jb & (global) INTEGER. The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub ( \(B\) ), respectively. \\
\hline descb & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(B\). \\
\hline \multirow[t]{3}{*}{beta} & (global) REAL for pcher2k \\
\hline & DOUBLE PRECISION for pzher 2 k \\
\hline & Specifies the scalar beta. \\
\hline \multirow[t]{5}{*}{c} & (local) COMPLEX for pcher2k \\
\hline & DOUBLE COMPLEX for pzher2k \\
\hline & Array, DIMENSION (lld_c, LOCq (jc+n-1)). \\
\hline & Before entry with uplo = 'U' or 'u', this array contains \(n\)-by- \(n\) upper triangular part of the symmetric distributed matrix sub \((C)\) and its strictly lower triangular part is not referenced. \\
\hline & Before entry with uplo = 'L' or 'l', this array contains \(n\)-by- \(n\) lower triangular part of the symmetric distributed matrix sub (C) and its strictly upper triangular part is not referenced. \\
\hline ic, jc & (global) INTEGER. The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub (C), respectively. \\
\hline descc & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(c\). \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{C}

With uplo = 'U' or 'u', the upper triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix. With uplo = 'L' or 'l', the lower triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.
```

p?symm
Performs a scalar-matrix-matrix product (one matrix operand is symmetric) and adds the result to a scalarmatrix product for distribute matrices.

```

\section*{Syntax}

\section*{Fortran 77:}
```

call pssymm(side, uplo, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic,
jc, descc)
call pdsymm(side, uplo, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic,
jc, descc)
call pcsymm(side, uplo, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic,
jc, descc)
call pzsymm(side, uplo, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic,
jc, descc)

```

Include Files
- C: mkl_pblas.h

\section*{Description}

The p?symm routines perform a matrix-matrix operation with distributed matrices. The operation is defined as \(\operatorname{sub}(C):=a l p h a \star \operatorname{sub}(A) * \operatorname{sub}(B)+\) beta*sub ( \(C\) ),
or
sub (C) : =alpha*sub (B) *sub (A) + beta*sub (C),
where:
alpha and beta are scalars,
sub \((A)\) is a symmetric distributed matrix, sub \((A)=A(i a: i a+m-1, j a: j a+m-1)\), if side \(=' L\) ', and sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\), if side \(=\) 'R'.
sub ( \(B\) ) and sub ( \(C\) ) are m-by-n distributed matrices.
sub \((B)=B(i b: i b+m-1, j b: j b+n-1), \operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline side & \begin{tabular}{l}
(global) CHARACTER*1. Specifies whether the symmetric distributed matrix \\
sub ( \(A\) ) appears on the left or right in the operation: \\
if side \(=\) 'L' or 'l', then sub (C) \(:=\) alpha*sub (A) *sub \((B)+\) beta*sub (C); \\
if side = 'R' or 'r', then sub(C) := alpha*sub ( \(B\) ) *sub ( \(A\) ) + beta*sub (C).
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub ( \(A\) ) is used: \\
if uplo = 'U' or 'u', then the upper triangular part is used; \\
if uplo = 'L' or 'l', then the lower triangular part is used.
\end{tabular} \\
\hline m & (global) INTEGER. Specifies the number of rows of the distribute submatrix sub ( \(C\) ) , \(m \geq 0\). \\
\hline
\end{tabular}

```

ic, jc (global) INTEGER. The row and column indices in the distributed matrix C
indicating the first row and the first column of the submatrix sub (C),
respectively.
descc
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix c.

```

\section*{Output Parameters}

Overwritten by the m-by-n updated matrix.

\section*{p?syrk}

Performs a rank-k update of a symmetric distributed
matrix.

\section*{Syntax}
```

call pssyrk(uplo, trans, n, k, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pdsyrk(uplo, trans, n, k, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pcsyrk(uplo, trans, n, k, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pzsyrk(uplo, trans, n, k, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p?syrk routines perform a distributed matrix-matrix operation defined as \(\operatorname{sub}(C):=a l p h a * \operatorname{sub}(A) * \operatorname{sub}(A) '+b e t a * \operatorname{sub}(C)\),
or
\(\operatorname{sub}(C):=a l p h a * s u b(A) ' * s u b(A)+b e t a * s u b(C)\),
where:
alpha and beta are scalars,
sub \((C)\) is an \(n-b y-n\) symmetric distributed matrix, sub \((C)=C(i c: i c+n-1, j c: j c+n-1)\).
sub ( \(A\) ) is a distributed matrix, sub (A) =A(ia:ia+n-1, ja:ja+k-1), if trans = 'N' or 'n', and sub \((A)=A(i a: i a+k-1, j a: j a+n-1)\) otherwise.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & (global) CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub ( \(C\) ) is used: \\
\hline & If uplo = 'U' or 'u', then the upper triangular part of the sub \((C)\) is used. \\
\hline & If uplo = 'L' or 'l', then the low triangular part of the sub ( \(C\) ) is used. \\
\hline \multirow[t]{4}{*}{trans} & \begin{tabular}{l}
(global) CHARACTER*1. Specifies the operation: \\
if trans \(=\) 'N' or 'n', then sub(C) := alpha*sub (A)*sub(A)' +
\end{tabular} \\
\hline & beta*sub ( \(C\) ); \\
\hline & if trans \(=\) 'T' or 't', then sub (C) := alpha*sub (A)'*sub (A) + \\
\hline & beta*sub ( \(C\) ). \\
\hline
\end{tabular}
```

n
k
alpha
a
ia, ja
desca
beta
c
ic, jc
descc

```
(global) INTEGER. Specifies the order of the distributed matrix sub ( \(C\) ) , \(n \geq\) 0 .
(global) INTEGER. On entry with trans \(=\) 'N' or ' \(n\) ', \(k\) specifies the number of columns of the distributed matrix sub (A), and on entry with trans \(=\) 'T' or 't', \(k\) specifies the number of rows of the distributed matrix \(\operatorname{sub}(A), k \geq 0\).
(global) REAL for pssyrk
DOUBLE PRECISION for pdsyrk
COMPLEX for pcsyrk
DOUBLE COMPLEX for pzsyrk
Specifies the scalar alpha.
(local) REAL for pssyrk
DOUBLE PRECISION for pdsyrk
COMPLEX for pcsyrk
DOUBLE COMPLEX for pzsyrk
Array, DIMENSION (lld_a, kla), where kla is LOCq ( \(j a+k-1\) ) when trans \(=\) 'N' or 'n', and is LOCq(ja+n-1) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', this array contains the local pieces of the distributed matrix sub ( \(A\) ).
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\).
(global) REAL for pssyrk
DOUBLE PRECISION for pdsyrk
COMPLEX for pcsyrk
DOUBLE COMPLEX for pzsyrk
Specifies the scalar beta.
(local) REAL for pssyrk
DOUBLE PRECISION for pdsyrk
COMPLEX for pcsyrk
DOUBLE COMPLEX for pzsyrk
Array, DIMENSION (lld_c, LOCq(jc+n-1)).
Before entry with uplo = 'U' or 'u', this array contains \(n\)-by- \(n\) upper triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly lower triangular part is not referenced.
Before entry with uplo = 'L' or 'l', this array contains n-by-n lower triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly upper triangular part is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(C\).

With uplo = 'U' or 'u', the upper triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.

\section*{Output Parameters}

With uplo = 'L' or 'l', the lower triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.
```

p?syr2k
Performs a rank-2k update of a symmetric distributed
matrix.

```

\section*{Syntax}
```

call pssyr2k(uplo, trans, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c,
ic, jc, descc)
call pdsyr2k(uplo, trans, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c,
ic, jc, descc)
call pcsyr2k(uplo, trans, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c,
ic, jc, descc)
call pzsyr2k(uplo, trans, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c,
ic, jc, descc)

```

\section*{Include files}
- C: mkl_pblas.h

\section*{Description}

The p?syr 2 k routines perform a distributed matrix-matrix operation defined as \(\operatorname{sub}(C):=a l p h a * s u b(A) * \operatorname{sub}(B)\) '+alpha*sub \((B) * \operatorname{sub}(A)\) ' + beta*sub (C),
or
sub (C) :=alpha*sub (A)'*sub (B) +alpha*sub (B)'*sub (A) + beta*sub (C),
where:
alpha and beta are scalars,
sub (C) is an \(n\)-by- \(n\) symmetric distributed matrix, sub \((C)=C(i c: i c+n-1, j c: j c+n-1)\).
sub ( \(A\) ) is a distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+k-1)\), if trans \(={ }^{\prime} N^{\prime}\) or ' \(n^{\prime}\), and sub \((A)=A(i a: i a+k-1, j a: j a+n-1)\) otherwise.
sub ( \(B\) ) is a distributed matrix, sub \((B)=B(i b: i b+n-1, j b: j b+k-1)\), if trans \(={ }^{\prime} N^{\prime}\) or ' \(n^{\prime}\), and sub \((B)=B(i b: i b+k-1, j b: j b+n-1)\) otherwise.

\section*{Input Parameters}
uplo
trans
n
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub ( \(C\) ) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub \((C)\) is used.
If uplo = 'L' or 'l', then the low triangular part of the sub ( \(C\) ) is used.
(global) CHARACTER*1. Specifies the operation:
if trans \(=\) 'N' or 'n', then sub (C) := alpha*sub (A)*sub (B)' + alpha*sub ( \(B\) ) *sub(A)' + beta*sub(C);
if trans \(=\) 'T' or 't', then sub (C) := alpha*sub (B)'*sub (A) + alpha*sub(A)'*sub (B) + beta*sub (C).
(global) INTEGER. Specifies the order of the distributed matrix sub ( \(C\) ) , \(n \geq\) 0 .
\begin{tabular}{|c|c|}
\hline k & (global) INTEGER. On entry with trans \(=\) 'N' or 'n', \(k\) specifies the number of columns of the distributed matrices \(\operatorname{sub}(A)\) and \(\operatorname{sub}(B)\), and on entry with trans \(=\) ' \(T\) ' or ' \(t\) ', \(k\) specifies the number of rows of the distributed matrices sub ( \(A\) ) and \(\operatorname{sub}(B), k \geq 0\). \\
\hline alpha & (global) REAL for pssyr2k \\
\hline & DOUBLE PRECISION for pdsyr2k \\
\hline & COMPLEX for pcsyr2k \\
\hline & DOUBLE COMPLEX for pzsyr2k \\
\hline & Specifies the scalar alpha. \\
\hline a & (local) REAL for pssyr2k \\
\hline & DOUBLE PRECISION for pdsyr2k \\
\hline & COMPLEX for pcsyr \(2 k\) \\
\hline & DOUBLE COMPLEX for pzsyr2k \\
\hline & Array, DIMENSION (lld_a, kla), where kla is LOCq ( \(j a+k-1\) ) when trans \(=\) ' \(N\) ' or ' \(n\) ', and is LOCq ( \(j a+n-1\) ) otherwise. Before entry with trans \(=\) 'N' or 'n', this array contains the local pieces of the distributed matrix sub ( \(A\) ). \\
\hline ia, ja & (global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively. \\
\hline desca & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\). \\
\hline b & (local) REAL for pssyr2k \\
\hline & DOUBLE PRECISION for pdsyr2k \\
\hline & COMPLEX for pcsyr 2 k \\
\hline & DOUBLE COMPLEX for pzsyr2k \\
\hline & Array, DIMENSION ( \(11 d \_b, k l b\) ), where \(k l b\) is LOCq \((j b+k-1)\) when trans \(=\) ' \(N\) ' or ' \(n\) ', and is LOCq ( \(j b+n-1\) ) otherwise. Before entry with trans \(=\) ' \(N\) ' or 'n', this array contains the local pieces of the distributed matrix sub ( \(B\) ). \\
\hline ib, jb & (global) INTEGER. The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub ( \(B\) ), respectively. \\
\hline descb & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(B\). \\
\hline beta & (global) REAL for pssyr2k \\
\hline & DOUBLE PRECISION for pdsyr2k \\
\hline & COMPLEX for pcsyr2k \\
\hline & DOUBLE COMPLEX for pzsyr2k \\
\hline & Specifies the scalar beta. \\
\hline C & (local) REAL for pssyr2k \\
\hline & DOUBLE PRECISION for pdsyr2k \\
\hline & COMPLEX for pcsyr2k \\
\hline & DOUBLE COMPLEX for pzsyr2k \\
\hline & Array, DIMENSION (lld_c, LOCq(jc+n-1)). \\
\hline & Before entry with uplo = 'U' or 'u', this array contains \(n\)-by- \(n\) upper triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly lower triangular part is not referenced. \\
\hline
\end{tabular}

Before entry with uplo = 'L' or 'l', this array contains \(n\)-by- \(n\) lower triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly upper triangular part is not referenced.
ic, jc (global) INTEGER. The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively.
descc (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(C\).

\section*{Output Parameters}

C
With uplo = 'U' or 'u', the upper triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.
With uplo = 'L' or 'l', the lower triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.
p?tran
Transposes a real distributed matrix.

\section*{Syntax}
```

call pstran(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pdtran(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

```

Include files
- C: mkl_pblas.h

\section*{Description}

The p?tran routines transpose a real distributed matrix. The operation is defined as sub (C) :=beta*sub (C) + alpha*sub (A)',
where:
alpha and beta are scalars,
sub \((C)\) is an m-by-n distributed matrix, sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\).
sub \((A)\) is a distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+m-1)\).

\section*{Input Parameters}
m
n
alpha
a
(global) INTEGER. Specifies the number of rows of the distributed matrix sub ( \(C\) ), \(m \geq 0\).
(global) INTEGER. Specifies the number of columns of the distributed matrix sub ( \(C\) ) , \(n \geq 0\).
(global) REAL for pstran
DOUBLE PRECISION for pdtran
Specifies the scalar alpha.
(local) REAL for pstran
DOUBLE PRECISION for pdtran
Array, DIMENSION (lld_a, LOCq (ja+m-1)). This array contains the local pieces of the distributed matrix sub ( \(A\) ).
\begin{tabular}{|c|c|}
\hline ia, ja & (global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively. \\
\hline desca & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\). \\
\hline beta & (global) REAL for pstran \\
\hline & DOUBLE PRECISION for pdtran \\
\hline & Specifies the scalar beta. \\
\hline & When beta is equal to zero, then sub ( \(C\) ) need not be set on input. \\
\hline C & (local) REAL for pstran \\
\hline & DOUBLE PRECISION for pdtran \\
\hline & Array, DIMENSION (lld_c, LOCq (jc+n-1)). \\
\hline & This array contains the local pieces of the distributed matrix sub ( \(C\) ). \\
\hline ic, jc & (global) INTEGER. The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively. \\
\hline descc & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(c\). \\
\hline
\end{tabular}

\section*{Output Parameters}
c
Overwritten by the updated submatrix.

\section*{p?tranu}

Transposes a distributed complex matrix.

\section*{Syntax}
```

call pctranu(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pztranu(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

```

\section*{Include Files}
- C: mkl_pblas.h

\section*{Description}

The p? tranu routines transpose a complex distributed matrix. The operation is defined as \(\operatorname{sub}(C):=b e t a * \operatorname{sub}(C)+a l p h a * s u b(A)\) ',
where:
alpha and beta are scalars,
sub \((C)\) is an \(m\)-by- \(n\) distributed matrix, sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\).
sub ( \(A\) ) is a distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+m-1)\).

\section*{Input Parameters}
\begin{tabular}{ll}
\(m\) & (global) INTEGER. Specifies the number of rows of the distributed matrix \\
& sub \((C), m \geq 0\). \\
\(n\) & (global) INTEGER. Specifies the number of columns of the distributed matrix \\
sub \((C), n \geq 0\). \\
alpha & (global) COMPLEX for pctranu
\end{tabular}
\begin{tabular}{|c|c|}
\hline & DOUBLE COMPLEX for pztranu \\
\hline & Specifies the scalar alpha. \\
\hline a & (local) COMPLEX for pctranu \\
\hline & DOUBLE COMPLEX for pztranu \\
\hline & Array, DIMENSION (Ild_a, LOCq(ja+m-1)). This array contains the local pieces of the distributed matrix sub (A). \\
\hline ia, ja & (global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively. \\
\hline desca & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\). \\
\hline beta & (global) COMPLEX for pctranu \\
\hline & DOUBLE COMPLEX for pztranu \\
\hline & Specifies the scalar beta. \\
\hline & When beta is equal to zero, then sub ( \(C\) ) need not be set on input. \\
\hline C & (local) COMPLEX for pctranu \\
\hline & DOUBLE COMPLEX for pztranu \\
\hline & Array, DIMENSION (lld_c, LOCq (jc+n-1)). \\
\hline & This array contains the local pieces of the distributed matrix sub ( \(C\) ) . \\
\hline ic, jc & (global) INTEGER. The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively. \\
\hline descc & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(c\). \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{p?tranc}

Transposes a complex distributed matrix, conjugated.

\section*{Syntax}
```

call pctranc(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pztranc(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

```

Include Files
- C: mkl_pblas.h

\section*{Description}

The p?tranc routines transpose a complex distributed matrix. The operation is defined as \(\operatorname{sub}(C):=\operatorname{beta}^{*} \operatorname{sub}(C)+\) alpha*conjg(sub (A)'),
where:
```

alpha and beta are scalars,
sub (C) is an m-by-n distributed matrix, sub (C)=C(ic:ic+m-1, jc:jc+n-1).
sub(A) is a distributed matrix, sub (A)=A(ia:ia+n-1, ja:ja+m-1).

```

\section*{Input Parameters}
```

m
n
alpha
a
ia,ja
desca
beta
c
ic,jc
descc

```

\section*{Output Parameters}
c
Overwritten by the updated submatrix.
p?trmm
Computes a scalar-matrix-matrix product (one matrix operand is triangular) for distributed matrices.

\section*{Syntax}
```

call pstrmm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
call pdtrmm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
call pctrmm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
call pztrmm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)

```

Include Files
- C: mkl_pblas.h

\section*{Description}

The p?trmm routines perform a matrix-matrix operation using triangular matrices. The operation is defined as
```

sub(B) := alpha*op(sub (A))*sub (B)

```
or
sub (B) := alpha*sub (B) *op (sub (A))
where:
alpha is a scalar,
sub \((B)\) is an m-by-n distributed matrix, sub \((B)=B(i b: i b+m-1, j b: j b+n-1)\).
\(A\) is a unit, or non-unit, upper or lower triangular distributed matrix, sub \((A)=A(i a: i a+m-1, j a: j a+m-1)\), if side \(=\) 'L' or 'l', and sub \((A)=A(i a: i a+n-1\), ja:ja+n-1), if side = 'R' or 'r'.
op (sub \((A)\) ) is one of op (sub \((A))=\operatorname{sub}(A), \operatorname{or} \operatorname{op}(\operatorname{sub}(A))=\operatorname{sub}(A)^{\prime}, \operatorname{or} \operatorname{op}(\operatorname{sub}(A))=\)
conjg(sub (A)').
Input Parameters
\begin{tabular}{|c|c|}
\hline side & \begin{tabular}{l}
(global)CHARACTER*1. Specifies whether op (sub (A)) appears on the left or right of sub ( \(B\) ) in the operation: \\
if side \(=\) 'L' or 'l', then \(\operatorname{sub}(B):=a l p h a * o p(\operatorname{sub}(A)) * \operatorname{sub}(B)\); \\
if side = 'R' or 'r', then sub ( \(B\) ) := alpha*sub ( \(B\) )*op (sub ( \(A\) )).
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
(global) CHARACTER*1. Specifies whether the distributed matrix sub ( \(A\) ) is upper or lower triangular: \\
if uplo = 'U' or 'u', then the matrix is upper triangular; \\
if uplo = 'L' or 'l', then the matrix is low triangular.
\end{tabular} \\
\hline transa & \begin{tabular}{l}
(global) CHARACTER*1. Specifies the form of op (sub (A)) used in the matrix multiplication: \\
if transa \(=\) ' \(N\) ' or ' n ', then op (sub \((A)\) ) \(=\operatorname{sub}(A)\); \\
if transa \(=\) 'T' or 't', then op (sub (A)) \(=\operatorname{sub}(A)\) ' ; \\
if transa \(=\) 'C' or 'C', then op(sub \((A))=\operatorname{conjg(sub(A)').~}\)
\end{tabular} \\
\hline diag & \begin{tabular}{l}
(global) CHARACTER*1. Specifies whether the matrix \(\operatorname{sub}(A)\) is unit triangular: \\
if diag = 'U' or 'u' then the matrix is unit triangular; \\
if diag = 'N' or 'n', then the matrix is not unit triangular.
\end{tabular} \\
\hline m & (global) INTEGER. Specifies the number of rows of the distributed matrix sub ( \(B\) ), \(m \geq 0\). \\
\hline \(n\) & (global) INTEGER. Specifies the number of columns of the distributed matrix sub ( \(B\) ), \(n \geq 0\). \\
\hline alpha & (global) REAL for pstrmm \\
\hline & DOUBLE PRECISION for pdtrmm \\
\hline & COMPLEX for pctrmm \\
\hline & DOUBLE COMPLEX for pztrmm \\
\hline & Specifies the scalar alpha. \\
\hline & When alpha is zero, then the arrayb need not be set before entry. \\
\hline a & (local) REAL for pstrmm \\
\hline & DOUBLE PRECISION for pdtrmm \\
\hline & COMPLEX for pctrmm \\
\hline & DOUBLE COMPLEX for pztrmm \\
\hline
\end{tabular}

Array, DIMENSION (Ild_a,ka), where ka is at least LOCq(1, ja+m-1) when side \(=\) 'L' or 'l' and is at least LOCq(1, ja+n-1) when side = 'R' or 'r'.
Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub ( \(A\) ), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub \((A)\) is not referenced. Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub ( \(A\) ), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix sub \((A)\) is not referenced. When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub ( \(A\) ) are not referenced either, but are assumed to be unity.
\begin{tabular}{|c|c|}
\hline ia, ja & (global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively. \\
\hline desca & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\). \\
\hline b & (local) REAL for pstrmm \\
\hline & DOUBLE PRECISION for pdtrmm \\
\hline & COMPLEX for pctrmm \\
\hline & DOUBLE COMPLEX for pztrmm \\
\hline & Array, DIMENSION (Ild_b, LOCq ( \(1, ~ j b+n-1)\) ). \\
\hline & Before entry, this array contains the local pieces of the distributed matrix sub ( \(B\) ). \\
\hline ib, jb & (global) INTEGER. The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub ( \(B\) ), respectively. \\
\hline descb & (global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(B\). \\
\hline
\end{tabular}

\section*{Output Parameters}
b
Overwritten by the transformed distributed matrix.
```

p?trsm
Solves a distributed matrix equation (one matrix
operand is triangular).

```

\section*{Syntax}
```

call pstrsm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)

```
call pstrsm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
call pdtrsm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
call pdtrsm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
call pctrsm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
call pctrsm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
call pztrsm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
```

call pztrsm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)

```
Include files
- C: mkl_pblas.h

\section*{Description}

The p?trsm routines solve one of the following distributed matrix equations:
```

op(\operatorname{sub}(A))*X=alpha*sub (B),

```
or
\(X^{\star}\) op (sub \(\left.(A)\right)=a l p h a^{*} \operatorname{sub}(B)\),
where:
```

alpha is a scalar,
X and sub (B) are m-by-n distributed matrices, sub (B)=B(ib:ib+m-1, jb:jb+n-1);
A is a unit, or non-unit, upper or lower triangular distributed matrix, sub (A)=A(ia:ia+m-1, ja:ja+m-1), if
side = 'L' or 'l', and sub (A)=A(ia:ia+n-1, ja:ja+n-1), if side = 'R' or 'r';
op(sub (A)) is one of op (sub (A))=sub (A), or op(sub (A))= sub (A)',or op (sub(A))=
conjg(sub (A)').

```

The distributed matrix sub \((B)\) is overwritten by the solution matrix \(x\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline side & \begin{tabular}{l}
(global)CHARACTER*1. Specifies whether op (sub (A)) appears on the left or right of \(X\) in the equation: \\
if side \(=\) 'L' or 'l', then op(sub (A))*X = alpha*sub (B); \\
if side \(=\) 'R' or 'r', then \(X^{\star}\) op (sub ( \(A\) ) ) = alpha*sub ( \(B\) ).
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
(global) CHARACTER*1. Specifies whether the distributed matrix sub ( \(A\) ) is upper or lower triangular: \\
if uplo = 'U' or 'u', then the matrix is upper triangular; \\
if uplo = 'L' or 'l', then the matrix is low triangular.
\end{tabular} \\
\hline transa & \begin{tabular}{l}
(global) CHARACTER*1. Specifies the form of op (sub (A)) used in the matrix equation: \\
if transa \(=\) 'N' or 'n', then op(sub (A)) \(=\operatorname{sub}(A)\); \\
if transa \(=\) 'T' or 't', then op (sub (A)) \(=\operatorname{sub}(A)\) '; \\

\end{tabular} \\
\hline diag & \begin{tabular}{l}
(global) CHARACTER*1. Specifies whether the matrix sub \((A)\) is unit triangular: \\
if diag = 'U' or 'u' then the matrix is unit triangular; \\
if diag \(=\) ' \(N\) ' or ' n ', then the matrix is not unit triangular.
\end{tabular} \\
\hline m & (global) INTEGER. Specifies the number of rows of the distributed matrix sub ( \(B\) ), \(m \geq 0\). \\
\hline \(n\) & (global) INTEGER. Specifies the number of columns of the distributed matrix sub ( \(B\) ), \(n \geq 0\). \\
\hline alpha & (global) REAL for pstrsm \\
\hline & DOUBLE PRECISION for pdtrsm \\
\hline & COMPLEX for pctrsm \\
\hline & DOUBLE COMPLEX for pztrsm \\
\hline & Specifies the scalar alpha. \\
\hline & When alpha is zero, then \(a\) is not referenced and \(b\) need not be set before entry. \\
\hline a & (local) REAL for pstrsm \\
\hline & DOUBLE PRECISION for pdtrsm \\
\hline & COMPLEX for pctrsm \\
\hline & DOUBLE COMPLEX for pztrsm \\
\hline
\end{tabular}

Array, DIMENSION (Ild_a, ka), where \(k a\) is at least LOCq(1, ja+m-1) when side \(=\) 'L' or 'l' and is at least \(\operatorname{LOCq}(1, j a+n-1)\) when side \(=\) 'R' or 'r'.
Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub ( \(A\) ), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub \((A)\) is not referenced. Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub \((A)\), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix sub \((A)\) is not referenced. When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub (A) are not referenced either, but are assumed to be unity.
ia, ja
desca
b
ib, jb
descb

\section*{Output Parameters}
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(A\).
(local) REAL for pstrsm
DOUBLE PRECISION for pdtrsm
COMPLEX for pctrsm
DOUBLE COMPLEX for pztrsm
Array, DIMENSION (lld_b, LOCq (1, jb+n-1)).
Before entry, this array contains the local pieces of the distributed matrix sub ( \(B\) ).
(global) INTEGER. The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub ( \(B\) ), respectively.
(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix \(B\).
b
Overwritten by the solution distributed matrix \(x\).

12
Intel Math Kernel Library Reference Manual

\title{
Partial Differential Equations Support
}

\begin{abstract}
The Inte \({ }^{\circledR}\) Math Kernel Library (Intel \({ }^{\circledR}\) MKL) provides tools for solving Partial Differential Equations (PDE). These tools are Trigonometric Transform interface routines (see Trigonometric Transform Routines) and Poisson Library (see Poisson Library Routines).
Poisson Library is designed for fast solving of simple Helmholtz, Poisson, and Laplace problems. The solver is based on the Trigonometric Transform interface, which is, in turn, based on the Intel MKL Fast Fourier Transform (FFT) interface (refer to Fourier Transform Functions), optimized for Intel \({ }^{\circledR}\) processors.
Direct use of the Trigonometric Transform routines may be helpful to those who have already implemented their own solvers similar to the one that the Poisson Library provides. As it may be hard enough to modify the original code so as to make it work with Poisson Library, you are encouraged to use fast (staggered) sine/cosine transforms implemented in the Trigonometric Transform interface to improve performance of your solver.

Both Trigonometric Transform and Poisson Library routines can be called from C and Fortran 90, although the interfaces description uses Convention. Fortran 90 users can find routine calls specifics in the "Calling PDE Support Routines from Fortran 90" section.
\end{abstract}

\section*{Optimization Notice}

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

\section*{Trigonometric Transform Routines}

In addition to the Fast Fourier Transform (FFT) interface, described in chapter "Fast Fourier Transforms", Intele MKL supports the Real Discrete Trigonometric Transforms (sometimes called real-to-real Discrete Fourier Transforms) interface. In this manual, the interface is referred to as TT interface. It implements a group of routines ( \(T\) routines) used to compute sine/cosine, staggered sine/cosine, and twice staggered sine/cosine transforms (referred to as staggered2 sine/cosine transforms, for brevity). The \(\Pi\) interface provides much flexibility of use: you can adjust routines to your particular needs at the cost of manual tuning routine parameters or just call routines with default parameter values. The current Intel MKL implementation of the \(\Pi\) interface can be used in solving partial differential equations and contains routines that are helpful for Fast Poisson and similar solvers.
To describe the Intel MKL TT interface, the C convention is used. Fortran users should refer to Calling PDE Support Routines from Fortran 90.
For the list of Trigonometric Transforms currently implemented in Intel MKL TT interface, see Transforms Implemented.

If you have got used to the FFTW interface (www.fftw.org), you can call the TT interface functions through real-to-real FFTW to Intel MKL wrappers without changing FFTW function calls in your code (refer to the "FFTW to Intel \({ }^{\oplus}\) MKL Wrappers for FFTW 3.x" section in Appendix F for details). However, you are strongly encouraged to use the native \(T\) interface for better performance. Another reason why you should use the wrappers cautiously is that TT and the real-to-real FFTW interfaces are not fully compatible and some features of the real-to-real FFTW, such as strides and multidimensional transforms, are not available through wrappers.

\section*{Transforms Implemented}

TT routines allow computing the following transforms:
Forward sine transform
\[
F(k)=\frac{2}{n} \sum_{i=1}^{n-1} f(i) \sin \frac{k i \pi}{n}, k=1, \ldots, n-1
\]

Backward sine transform
\[
f(i)=\sum_{k=1}^{n-1} F(k) \sin \frac{k i \pi}{n}, i=1, \ldots, n-1
\]

Forward staggered sine transform
\[
F(k)=\frac{1}{n} \sin \frac{(2 k-1) \pi}{2} f(n)+\frac{2}{n} \sum_{i=1}^{n-1} f(i) \sin \frac{(2 k-1) i \pi}{2 n}, k=1, \ldots, n
\]

Backward staggered sine transform
\[
f(i)=\sum_{k=1}^{n} F(k) \sin \frac{(2 k-1) i \pi}{2 n}, i=1, \ldots, n
\]

Forward staggered2 sine transform
\[
F(k)=\frac{2}{n} \sum_{i=1}^{n} f(i) \sin \frac{(2 k-1)(2 i-1) \pi}{4 n}, k=1, \ldots, n
\]

Backward staggered2 sine transform
\[
f(i)=\sum_{k=1}^{n} F(k) \sin \frac{(2 k-1)(2 i-1) \pi}{4 n}, i=1, \ldots, n
\]

Forward cosine transform
\[
F(k)=\frac{1}{n}[f(0)+f(n) \cos k \pi]+\frac{2}{n} \sum_{i=1}^{n-1} f(i) \cos \frac{k i \pi}{n}, k=0, \ldots, n
\]

Backward cosine transform
\[
f(i)=\frac{1}{2}[F(0)+F(n) \cos i \pi]+\sum_{k=1}^{n-1} F(k) \cos \frac{k i \pi}{n}, i=0, \ldots, n
\]

Forward staggered cosine transform
\[
F(k)=\frac{1}{n} f(0)+\frac{2}{n} \sum_{i=1}^{n-1} f(i) \cos \frac{(2 k+1) i \pi}{2 n}, k=0, \ldots, n-1
\]

Backward staggered cosine transform
\[
f(i)=\sum_{k=0}^{n-1} F(k) \cos \frac{(2 k+1) i \pi}{2 n}, i=0, \ldots, n-1
\]

Forward staggered2 cosine transform
\[
F(k)=\frac{2}{n} \sum_{i=1}^{n} f(i) \cos \frac{(2 k-1)(2 i-1) \pi}{4 n}, k=1, \ldots, n
\]

Backward staggered2 cosine transform
\[
f(i)=\sum_{k=1}^{n} F(k) \cos \frac{(2 k-1)(2 i-1) \pi}{4 n}, i=1, \ldots, n
\]

\(\square\)
NOTE The size of the transform \(n\) can be any integer greater or equal to 2 .

\section*{Sequence of Invoking TT Routines}

Computation of a transform using \(\Pi\) interface is conceptually divided into four steps, each of which is performed via a dedicated routine. Table "TT Interface Routines" lists the routines and briefly describes their purpose and use.
Most \(T T\) routines have versions operating with single-precision and double-precision data. Names of such routines begin respectively with "s" and "d". The wildcard "?" stands for either of these symbols in routine names.
TT Interface Routines
\begin{tabular}{ll}
\hline Routine & Description \\
\hline ?_init_trig_transform & Initializes basic data structures of Trigonometric \\
Transforms. \\
?_commit_trig_transform & Checks consistency and correctness of user-defined data \\
& as well as creates a data structure to be used by Intel MKL \\
& FFT interface \({ }^{1}\).
\end{tabular}

\section*{Routine}
?_forward_trig_transform
?_backward_trig_transform
free_trig_transform

\section*{Description}

Computes a forward/backward Trigonometric Transform of a specified type using the appropriate formula (see Transforms Implemented).

Cleans the memory used by a data structure needed for calling FFT interface \({ }^{1}\).
\({ }^{1}\) TT routines call Intel MKL FFT interface for better performance.
To find a transformed vector for a particular input vector only once, the Intel MKL TT interface routines are normally invoked in the order in which they are listed in Table "TT Interface Routines".

NOTE Though the order of invoking TT routines may be changed, it is highly recommended to follow the above order of routine calls.

The diagram in Figure "Typical Order of Invoking TT Interface Routines" indicates the typical order in which \(T\) interface routines can be invoked in a general case (prefixes and suffixes in routine names are omitted).

Typical Order of Invoking TT Interface Routines


A general scheme of using \(T T\) routines for double-precision computations is shown below. A similar scheme holds for single-precision computations with the only difference in the initial letter of routine names.
```

. ..
d_init_trig_transform(\&n, \&tt_type, ipar, dpar, \&ir);
/* Change parameters in ipar if necessary. */
/* Note that the result of the Transform will be in f ! If you want to preserve the data stored in f,
save them before this place in your code */
d_commit_trig_transform(f, \&handle, ipar, dpar, \&ir);
d_forward_trig_transform(f, \&handle, ipar, dpar, \&ir);
d_backward_trig_transform(f, \&handle, ipar, dpar, \&ir);
free_trig_transform(\&handle, ipar, \&ir);
/* here the user may clean the memory used by f, dpar, ipar */

```

You can find examples of Fortran 90 and C code that use TT interface routines to solve one-dimensional Helmholtz problem in the examples \(\backslash p \operatorname{dettf} \backslash\) source and examples \(\backslash p d e t t c \backslash\) source folders of your Intel MKL directory.

\section*{Interface Description}

All types in this documentation are standard C types: int, float, and double. Fortran 90 users can call the routines with INTEGER, REAL, and DOUBLE PRECISION Fortran types, respectively (see examples in the examples \pdettf\source and examples \pdettc \source folders of your Intel MKL directory).
The interface description uses the built-in type int for integer values. If you employ the ILP64 interface, read this type as long long int (or INTEGER*8 for Fortran). For more information, refer to the Intel MKL User's Guide.

\section*{Routine Options}

All TT routines use parameters to pass various options to one another. These parameters are arrays ipar, dpar and spar. Values for these parameters should be specified very carefully (see Common Parameters). You can change these values during computations to meet your needs.

WARNING To avoid failure or wrong results, you must provide correct and consistent parameters to the routines.

\section*{User Data Arrays}

TT routines take arrays of user data as input. For example, user arrays are passed to the routine d_forward_trig_transform to compute a forward Trigonometric Transform. To minimize storage requirements and improve the overall run-time efficiency, Intel MKL TT routines do not make copies of user input arrays.

D
NOTE If you need a copy of your input data arrays, save them yourself.

\section*{TT Routines}

The section gives detailed description of TT routines, their syntax, parameters and values they return. Double-precision and single-precision versions of the same routine are described together.
TT routines call Intel MKL FFT interface (described in section "FFT Functions" in chapter "Fast Fourier Transforms"), which enhances performance of the routines.
```

?_init_trig_transform
Initializes basic data structures of a Trigonometric
Transform.

```

\section*{Syntax}
```

void d_init_trig_transform(int *n, int *tt_type, int ipar[], double dpar[], int *stat);
void s_init_trig_transform(int *n, int *tt_type, int ipar[], float spar[], int *stat);

```

\section*{Include Files}
- FORTRAN 90: mkl_trig_transforms.f90
- C: mkl_trig_transforms.h
int*. Contains the size of the problem, which should be a positive integer greater than 1. Note that data vector of the transform, which other \(T T\) routines will use, must have size \(n+1\) for all but staggered 2 transforms. Staggered 2 transforms require the vector of size \(n\).
int*. Contains the type of transform to compute, defined via a set of named constants. The following constants are available in the current implementation of TT interface: MKL_SINE_TRANSFORM, MKL_STAGGERED_SINE_TRANSFORM, MKL_STAGGERED2_SINE_TRANSFORM; MKL_COSINE_TRANSFORM, MKL_STAGGERED_COSINE_TRANSFORM, MKL_STAGGERED2_COSINE_TRANSFORM.

\section*{Output Parameters}
```

ipar
dpar
spar
stat

```
int array of size 128. Contains integer data needed for Trigonometric Transform computations.
double array of size \(5 n / 2+2\). Contains double-precision data needed for Trigonometric Transform computations.
float array of size \(5 n / 2+2\). Contains single-precision data needed for Trigonometric Transform computations.
int*. Contains the routine completion status, which is also written to ipar[6]. The status should be 0 to proceed to other TT routines.

\section*{Description}

The ?_init_trig_transform routine initializes basic data structures for Trigonometric Transforms of appropriate precision. After a call to ?_init_trig_transform, all subsequently invoked TT routines use values of ipar and dpar (spar) array parameters returned by ?_init_trig_transform. The routine initializes the entire array ipar. In the dpar or spar array, ?_init_trig_transform initializes elements that do not depend upon the type of transform. For a detailed description of arrays ipar, dpar and spar, refer to the Common Parameters section. You can skip calling the initialization routine in your code. For more information, see Caveat on Parameter Modifications.

\section*{Return Values}
```

stat=0
stat= -99999
The routine successfully completed the task. In general, to proceed with computations, the routine should complete with this stat value.
stat $=-99999$ The routine failed to complete the task.

```

\section*{?_commit_trig_transform}
```

Checks consistency and correctness of user's data as well as initializes certain data structures required to perform the Trigonometric Transform.

```

\section*{Syntax}
```

void d_commit_trig_transform(double f[], DFTI_DESCRIPTOR_HANDLE *handle, int ipar[],

```
void d_commit_trig_transform(double f[], DFTI_DESCRIPTOR_HANDLE *handle, int ipar[],
double dpar[], int *stat);
double dpar[], int *stat);
void s_commit_trig_transform(float f[], DFTI_DESCRIPTOR_HANDLE *handle, int ipar[],
void s_commit_trig_transform(float f[], DFTI_DESCRIPTOR_HANDLE *handle, int ipar[],
float spar[], int *stat);
```

float spar[], int *stat);

```

Include Files
- FORTRAN 90: mkl_trig_transforms.f90

\section*{- C: mkl_trig_transforms.h}

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline f & \begin{tabular}{l}
double for d_commit_trig_transform, float fors_commit_trig_transform, array of size \(n\) for staggered 2 transforms and of size \(n+1\) for all other transforms, where \(n\) is the size of the problem. Contains data vector to be transformed. Note that the following values should be 0.0 up to rounding errors: \\
- \(\quad f[0]\) and \(f[n]\) for sine transforms \\
- \(f[n]\) for staggered cosine transforms \\
- \(\quad f[0]\) for staggered sine transforms. \\
Otherwise, the routine will produce a warning, and the result of the computations for sine transforms may be wrong. These restrictions meet the requirements of the Poisson Library (described in the Poisson Library Routines section), which the \(\Pi\) interface is primarily designed for.
\end{tabular} \\
\hline ipar & int array of size 128. Contains integer data needed for Trigonometric Transform computations. \\
\hline dpar & double array of size \(5 n / 2+2\). Contains double-precision data needed for Trigonometric Transform computations. The routine initializes most elements of this array. \\
\hline spar & float array of size \(5 n / 2+2\). Contains single-precision data needed for Trigonometric Transform computations. The routine initializes most elements of this array. \\
\hline
\end{tabular}

\section*{Output Parameters}
handle
ipar
dpar
spar
stat

DFTI_DESCRIPTOR_HANDLE*. The data structure used by Intel MKL FFT interface (for details, refer to section "FFT Functions" in chapter "Fast Fourier Transforms").
Contains integer data needed for Trigonometric Transform computations. On output, ipar [6] is updated with the stat value.
Contains double-precision data needed for Trigonometric Transform computations. On output, the entire array is initialized.
Contains single-precision data needed for Trigonometric Transform computations. On output, the entire array is initialized.
int*. Contains the routine completion status, which is also written to ipar[6].

\section*{Description}

The routine ?_commit_trig_transform checks consistency and correctness of the parameters to be passed to the transform routines ?_forward_trig_transform and/or?_backward_trig_transform. The routine also initializes the following data structures: handle, dpar in case of d_commit_trig_transform, and spar in case of s_commit_trig_transform. The ?_commit_trig_transform routine initializes only those elements of dpar or spar that depend upon the type of transform, defined in the ? init_trig_transform routine and passed to ?_commit_trig_transform with the ipar array. The size of the problem n, which determines sizes of the array parameters, is also passed to the routine with the ipar array and defined in the previously called ?_init_trig_transform routine. For a detailed description of arrays ipar, dpar and spar, refer to the Common Parameters section. The routine performs only a basic check for correctness and
consistency of the parameters. If you are going to modify parameters of TT routines, see the Caveat on Parameter Modifications section. Unlike ?_init_trig_transform, the ?_commit_trig_transform routine is mandatory, and you cannot skip calling it in your code.

\section*{Return Values}
```

stat= 11
stat= 10
stat= 1
stat=0
stat=-100

```
stat \(=-1000\)
stat \(=-10000\)
stat \(=11\)
stat= 1
stat \(=0\)
stat \(=-100\)
stat= -1000
stat \(=-10000\)

The routine produced some warnings and made some changes in the parameters to achieve their correctness and/or consistency. You may proceed with computations by assigning ipar[6]=0 if you are sure that the parameters are correct.
The routine made some changes in the parameters to achieve their correctness and/or consistency. You may proceed with computations by assigning ipar[6]=0 if you are sure that the parameters are correct.
The routine produced some warnings. You may proceed with computations by assigning ipar [6]=0 if you are sure that the parameters are correct.

The routine completed the task normally.
The routine stopped for any of the following reasons:
- An error in the user's data was encountered.
- Data in ipar, dpar or spar parameters became incorrect and/or inconsistent as a result of modifications.

The routine stopped because of an FFT interface error.
The routine stopped because the initialization failed to complete or the parameter ipar[0] was altered by mistake.

NOTE Although positive values of stat usually indicate minor problems with the input data and Trigonometric Transform computations can be continued, you are highly recommended to investigate the problem first and achieve stat=0.

\section*{?_forward_trig_transform}

Computes the forward Trigonometric Transform of type specified by the parameter.

\section*{Syntax}
```

void d_forward_trig_transform(double f[], DFTI_DESCRIPTOR_HANDLE *handle, int ipar[],
double dpar[], int *stat);
void s_forward_trig_transform(float f[], DFTI_DESCRIPTOR_HANDLE *handle, int ipar[],
float spar[], int *stat);

```

Include Files
- FORTRAN 90: mkl_trig_transforms.f90
- C: mkl_trig_transforms.h

Input Parameters
f
double ford_forward_trig_transform,
float for s_forward_trig_transform, array of size \(n\) for staggered 2 transforms and of size \(n+1\) for all other transforms, where \(n\) is the size of the problem. On input, contains data vector to be transformed. Note that the following values should be 0.0 up to rounding errors:
- \(f[0]\) and \(f[n]\) for sine transforms
- \(\quad f[n]\) for staggered cosine transforms
- \(\quad f[0]\) for staggered sine transforms.

Otherwise, the routine will produce a warning, and the result of the computations for sine transforms may be wrong. The above restrictions meet the requirements of the Poisson Library (described in the Poisson Library Routines section), which the TT interface is primarily designed for.
handle
ipar
dpar
spar
DFTI_DESCRIPTOR_HANDLE*. The data structure used by Intel MKL FFT interface (for details, refer to section "FFT Functions" in chapter "Fast Fourier Transforms").
int array of size 128. Contains integer data needed for Trigonometric Transform computations.
double array of size \(5 n / 2+2\). Contains double-precision data needed for Trigonometric Transform computations.
float array of size \(5 n / 2+2\). Contains single-precision data needed for Trigonometric Transform computations.

\section*{Output Parameters}
\begin{tabular}{ll}
\(f\) & Contains the transformed vector on output. \\
ipar & Contains integer data needed for Trigonometric Transform computations. \\
On output, ipar \([6]\) is updated with the stat value. \\
stat & int*. Contains the routine completion status, which is also written to \\
ipar[6].
\end{tabular}

\section*{Description}

The routine computes the forward Trigonometric Transform of type defined in the ? init_trig_transform routine and passed to ?_forward_trig_transform with the ipar array. The size of the problem n, which determines sizes of the array parameters, is also passed to the routine with the ipar array and defined in the previously called ?_init_trig_transform routine. The other data that facilitates the computation is created by ?_commit_trig_transform and supplied in dpar or spar. For a detailed description of arrays ipar, dpar and spar, refer to the Common Parameters section. The routine has a commit step, which calls the ?_commit_trig_transform routine. The transform is computed according to formulas given in the Transforms Implemented section. The routine replaces the input vector \(f\) with the transformed vector.
-
NOTE If you need a copy of the data vector \(f\) to be transformed, make the copy before calling the ? _forward_trig_transform routine.

\section*{Return Values}
```

stat=0
stat= -100

```

The routine completed the task normally.
The routine stopped for any of the following reasons:
- An error in the user's data was encountered.
```

stat= -1000
stat=-10000

```
- Data in ipar, dpar or spar parameters became incorrect and/or inconsistent as a result of modifications.

The routine stopped because of an FFT interface error.
The routine stopped because its commit step failed to complete or the parameter ipar [0] was altered by mistake.

\section*{?_backward_trig_transform \\ Computes the backward Trigonometric Transform of type specified by the parameter.}

\section*{Syntax}
```

void d_backward_trig_transform(double f[], DFTI_DESCRIPTOR_HANDLE *handle, int ipar[],
double dpar[], int *stat);
void s_backward_trig_transform(float f[], DFTI_DESCRIPTOR_HANDLE *handle, int ipar[],
float spar[], int *stat);

```

Include Files
- FORTRAN 90: mkl_trig_transforms.f90
- C: mkl_trig_transforms.h

Input Parameters
\begin{tabular}{|c|c|}
\hline f & \begin{tabular}{l}
double for d_backward_trig_transform, float fors_backward_trig_transform, array of size \(n\) for staggered 2 transforms and of size \(n+1\) for all other transforms, where \(n\) is the size of the problem. On input, contains data vector to be transformed. Note that the following values should be 0.0 up to rounding errors: \\
- \(\quad f[0]\) and \(f[n]\) for sine transforms \\
- \(\quad f[n]\) for staggered cosine transforms \\
- \(f[0]\) for staggered sine transforms. \\
Otherwise, the routine will produce a warning, and the result of the computations for sine transforms may be wrong. The above restrictions meet the requirements of the Poisson Library (described in the Poisson Library Routines section), which the TT interface is primarily designed for.
\end{tabular} \\
\hline handle & DFTI_DESCRIPTOR_HANDLE*. The data structure used by Intel MKL FFT interface (for details, refer to section "FFT Functions" in chapter "Fast Fourier Transforms"). \\
\hline ipar & int array of size 128. Contains integer data needed for Trigonometric Transform computations. \\
\hline dpar & double array of size \(5 n / 2+2\). Contains double-precision data needed for Trigonometric Transform computations. \\
\hline spar & float array of size \(5 n / 2+2\). Contains single-precision data needed for Trigonometric Transform computations. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
\(f\) & Contains the transformed vector on output. \\
ipar & Contains integer data needed for Trigonometric Transform computations. \\
stat & On output, ipar [6] is updated with the stat value. \\
& int*. Contains the routine completion status, which is also written to \\
ipar[6].
\end{tabular}

\section*{Description}

The routine computes the backward Trigonometric Transform of type defined in the ? _init_trig_transform routine and passed to ?_backward_trig_transform with the ipar array. The size of the problem \(n\), which determines sizes of the array parameters, is also passed to the routine with the ipar array and defined in the previously called ?_init_trig_transform routine. The other data that facilitates the computation is created by ?_commit_trig_transform and supplied in dpar or spar. For a detailed description of arrays ipar, dpar and spar, refer to the Common Parameters section. The routine has a commit step, which calls the ?_commit_trig_transform routine. The transform is computed according to formulas given in the Transforms Implemented section. The routine replaces the input vector \(f\) with the transformed vector.

NOTE If you need a copy of the data vector \(f\) to be transformed, make the copy before calling the ? _backward_trig_transform routine.

\section*{Return Values}
```

stat=0
stat= -100

```
stat \(=-1000\)
stat \(=-10000\)
free_trig_transform
Cleans the memory allocated for the data structure used by the FFT interface.

\section*{Syntax}
```

void free_trig_transform(DFTI_DESCRIPTOR_HANDLE *handle, int ipar[], int *stat);

```

\section*{Include Files}
- FORTRAN 90: mkl_trig_transforms.f90
- C: mkl_trig_transforms.h

\section*{Input Parameters}
int array of size 128. Contains integer data needed for Trigonometric Transform computations.

DFTI_DESCRIPTOR_HANDLE*. The data structure used by Intel MKL FFT interface (for details, refer to section "FFT Functions" in chapter "Fast Fourier Transforms").

\section*{Output Parameters}
handle
ipar
stat
The data structure used by Intel MKL FFT interface. Memory allocated for the structure is released on output.
Contains integer data needed for Trigonometric Transform computations. On output, ipar [6] is updated with the stat value.
int*. Contains the routine completion status, which is also written to ipar[6].

\section*{Description}

The free_trig_transform routine cleans the memory used by the handle structure, needed for Intel MKL FFT functions. To release the memory allocated for other parameters, include cleaning of the memory in your code.

\section*{Return Values}
```

stat=0 The routine completed the task normally.
stat=-1000 The routine stopped because of an FFT interface error.
stat=-99999 The routine failed to complete the task.

```

\section*{Common Parameters}

This section provides description of array parameters that hold TT routine options: ipar, dpar and spar.

NOTE Initial values are assigned to the array parameters by the appropriate ?
_init_trig_transform and ?_commit_trig_transform routines.
ipar int array of size 128, holds integer data needed for Trigonometric Transform computations. Its elements are described in Table "Elements of the ipar Array":

\section*{Elements of the ipar Array}
Index Description

0
Contains the size of the problem to solve. The ?_init_trig_transform routine sets ipar [0]=n, and all subsequently called TT routines use ipar[0] as the size of the transform.

1
Contains error messaging options:
- ipar[1]=-1 indicates that all error messages will be printed to the file MKL_Trig_Transforms_log.txt in the folder from which the routine is called. If the file does not exist, the routine tries to create it. If the attempt fails, the routine prints information that the file cannot be created to the standard output device.
- ipar[1]=0 indicates that no error messages will be printed.
- ipar[1]=1 (default) indicates that all error messages will be printed to the preconnected default output device (usually, screen).

In case of errors, each TT routine assigns a non-zero value to stat regardless of the ipar[1] setting.
Index Description

3 through \(4 \quad\) Reserved for future use.
Contains warning messaging options: device. the ipar[2] setting. of the transform. parameter. Parameter Modifications.
- ipar[2]=-1 indicates that all warning messages will be printed to the file MKL_Trig_Transforms_log.txt in the directory from which the routine is called. If the file does not exist, the routine tries to create it. If the attempt fails, the routine prints information that the file cannot be created to the standard output
- ipar[2]=0 indicates that no warning messages will be printed.
- ipar[2]=1 (default) indicates that all warning messages will be printed to the preconnected default output device (usually, screen).

In case of warnings, the stat parameter will acquire a non-zero value regardless of

Contains the type of the transform. The ? init_trig_transform routine sets ipar[5]=tt_type, and all subsequently called TT routines use ipar[5] as the type

Contains the stat value returned by the last completed TT routine. Used to check that the previous call to a TT routine completed with stat=0.

Informs the ?_commit_trig_transform routines whether to initialize data structures dpar (spar) and handle. ipar[7]=0 indicates that the routine should skip the initialization and only check correctness and consistency of the parameters. Otherwise, the routine initializes the data structures. The default value is 1 .
The possibility to check correctness and consistency of input data without initializing data structures dpar, spar and handle enables avoiding performance losses in a repeated use of the same transform for different data vectors. Note that you can benefit from the opportunity that ipar [7] gives only if you are sure to have supplied proper tolerance value in the dpar or spar array. Otherwise, avoid tuning this

Contains message style options for TT routines. If ipar [8]=0 then TT routines print all error and warning messages in Fortran-style notations. Otherwise, TT routines print the messages in C-style notations. The default value is 1 .
When selecting between these notations, mind that by default, numbering of elements in C arrays starts from 0 and in Fortran, it starts from 1. For example, for a C-style message "parameter ipar[0]=3 should be an even integer", the corresponding Fortran-style message will be "parameter ipar(1)=3 should be an even integer". The use of ipar [8] enables you to view messages in a more convenient style.

Specifies the number of OpenMP threads to run TT routines in the OpenMP environment of the Poisson Library. The default value is 1 . You are highly recommended not to alter this value. See also Caveat on Parameter Modifications.

Specifies the mode of compatibility with FFTW. The default value is 0 . Set the value to 1 to invoke compatibility with FFTW. In the latter case, results will not be normalized, because FFTW does not do this. It is highly recommended not to alter this value, but rather use real-to-real FFTW to MKL wrappers, described in the "FFTW to Intel® MKL Wrappers for FFTW 3.x" section in Appendix F. See also Caveat on

NOTE You may declare the ipar array in your code as int ipar[11]. However, for compatibility with later versions of Intel MKL TT interface, which may require more ipar values, it is highly recommended to declare ipar as int ipar[128].

Arrays dpar and spar are the same except in the data precision:
\begin{tabular}{ll} 
dpar & double array of size \(5 n / 2+2\), holds data needed for double-precision routines to \\
& perform TT computations. This array is initialized in the \\
d_init_trig_transform and d_commit_trig_transform routines. \\
spar & float array of size \(5 n / 2+2\), holds data needed for single-precision routines to \\
& perform TT computations. This array is initialized in the \\
& s_init_trig_transform and s_commit_trig_transform routines.
\end{tabular}

As dpar and spar have similar elements in respective positions, the elements are described together in Table "Elements of the dpar and spar Arrays":
Elements of the dpar and spar Arrays
\begin{tabular}{ll} 
Index & Description \\
\hline 0 & Contains the first absolute tolerance used by the appropriate ?
\end{tabular}

Contains the first absolute tolerance used by the appropriate ?
_commit_trig_transform routine. For a staggered cosine or a sine transform, \(f[n]\) should be equal to 0.0 and for a staggered sine or a sine transform, \(f[0]\) should be equal to 0.0. The ?_commit_trig_transform routine checks whether absolute values of these parameters are below dpar[0]*n or spar[0]*n, depending on the routine precision. To suppress warnings resulting from tolerance checks, set dpar [0] or spar [0] to a sufficiently large number.

1
Reserved for future use.
2 through \(5 n / 2+1\) Contain tabulated values of trigonometric functions. Contents of the elements depend upon the type of transform tt_type, set up in the? commit_trig_transform routine:
- If \(t t\) _ type=MKL_SINE_TRANSFORM, the transform uses only the first \(n / 2\) array elements, which contain tabulated sine values.
- If \(t t\) _ \(t y p e=M K L \_S T A G G E R E D \_S I N E \_T R A N S F O R M\), the transform uses only the first \(3 n / 2\) array elements, which contain tabulated sine and cosine values.
- If \(t t\) _type=MKL_STAGGERED2_SINE_TRANSFORM, the transform uses all the \(5 n / 2\) array elements, which contain tabulated sine and cosine values.
- If \(t t\) _ \(t y p e=M K L_{1} C O S I N E\) TRANSFORM, the transform uses only the first \(n\) array elements, which contain tabulated cosine values.
- If \(t t\) _type=MKL_STAGGERED_COSINE_TRANSFORM, the transform uses only the first \(\overline{3} n / 2\) elements, which contain tabulated sine and cosine values.
 2 elements, which contain tabulated sine and cosine values.

NOTE To save memory, you can define the array size depending upon the type of transform.

\section*{Caveat on Parameter Modifications}

Flexibility of the TT interface enables you to skip calling the ?_init_trig_transform routine and to initialize the basic data structures explicitly in your code. You may also need to modify the contents of ipar, dpar and spar arrays after initialization. When doing so, provide correct and consistent data in the arrays. Mistakenly altered arrays cause errors or wrong computation. You can perform a basic check for correctness and consistency of parameters by calling the ?_commit_trig_transform routine; however, this does not ensure the correct result of a transform but only reduces the chance of errors or wrong results.

NOTE To supply correct and consistent parameters to TT routines, you should have considerable experience in using the \(\Pi\) interface and good understanding of elements that the ipar, spar and dpar arrays contain and dependencies between values of these elements.

However, in rare occurrences, even advanced users might fail to compute a transform using TT routines after the parameter modifications. In cases like these, refer for technical support at http://www.intel.com/ software/products/support/ .

WARNING The only way that ensures proper computation of the Trigonometric Transforms is to follow a typical sequence of invoking the routines and not change the default set of parameters. So, avoid modifications of ipar, dpar and spar arrays unless a strong need arises.

\section*{Implementation Details}

Several aspects of the Intel MKL TT interface are platform-specific and language-specific. To promote portability across platforms and ease of use across different languages, users are provided with the TT language-specific header files to include in their code. Currently, the following of them are available:
- mkl_trig_transforms.h, to be used together with mkl_dfti.h, for C programs.
- mkl_trig_transforms.f90, to be used together with mkl_dfti.f90, for Fortran 90 programs.

\(\square\)
NOTE Use of the Intel MKL TT software without including one of the above header files is not supported.

\section*{C-specific Header File}

The C-specific header file defines the following function prototypes:
```

void d_init_trig_transform(int *, int *, int *, double *, int *);
void d_commit_trig_transform(double *, DFTI_DESCRIPTOR_HANDLE *, int *, double *, int *);
void d_forward_trig_transform(double *, DFTI_DESCRIPTOR_HANDLE *, int *, double *, int *);
void d_backward_trig_transform(double *, DFTI_DESCRIPTOR_HANDLE *, int *, double *, int *);
void s_init_trig_transform(int *, int *, int *, float *, int *);
void s_commit_trig_transform(float *, DFTI_DESCRIPTOR_HANDLE *, int *, float *, int *);
void s_forward_trig_transform(float *, DFTI_DESCRIPTOR_HANDLE *, int *, float *, int *);
void s_backward_trig_transform(float *, DFTI_DESCRIPTOR_HANDLE *, int *, float *, int *);

```
void free_trig_transform(DFTI_DESCRIPTOR_HANDLE *, int *, int *);

\section*{Fortran-Specific Header File}

The Fortran90-specific header file defines the following function prototypes:
SUBROUTINE D_INIT_TRIG_TRANSFORM(n, tt_type, ipar, dpar, stat)
INTEGER, INTENT(IN) : : n, tt_type
INTEGER, INTENT(INOUT) :: ipar(*)
REAL (8), INTENT (INOUT) :: dpar(*)
INTEGER, INTENT (OUT) :: stat
END SUBROUTINE D_INIT_TRIG_TRANSFORM

SUBROUTINE D_COMMIT_TRIG_TRANSFORM(f, handle, ipar, dpar, stat)
REAL (8), INTENT (INOUT) : : f(*)
TYPE(DFTI_DESCRIPTOR), POINTER :: handle
INTEGER, INTENT(INOUT) :: ipar(*)
REAL (8), INTENT (INOUT) :: dpar(*)
INTEGER, INTENT (OUT) :: stat
END SUBROUTINE D_COMMIT_TRIG_TRANSFORM

SUBROUTINE D_FORWARD_TRIG_TRANSFORM(f, handle, ipar, dpar, stat)
REAL (8), INTENT (INOUT) : : f(*)
TYPE (DFTI_DESCRIPTOR), POINTER :: handle
INTEGER, INTENT(INOUT) :: ipar(*)
REAL (8), INTENT (INOUT) :: dpar(*)
INTEGER, INTENT (OUT) :: stat
END SUBROUTINE D_FORWARD_TRIG_TRANSFORM

SUBROUTINE D_BACKWARD_TRIG_TRANSFORM(f, handle, ipar, dpar, stat)
REAL (8), INTENT (INOUT) : : f(*)
TYPE(DFTI_DESCRIPTOR), POINTER :: handle
INTEGER, INTENT (INOUT) :: ipar(*)
REAL (8), INTENT (INOUT) :: dpar(*)
INTEGER, INTENT (OUT) :: stat
END SUBROUTINE D_BACKWARD_TRIG_TRANSFORM

SUBROUTINE S_INIT_TRIG_TRANSFORM(n, tt_type, ipar, spar, stat)
INTEGER, INTENT(IN) : : n, tt_type
INTEGER, INTENT(INOUT) :: ipar(*)
REAL (4), INTENT (INOUT) :: spar(*)
INTEGER, INTENT (OUT) :: stat
END SUBROUTINE S_INIT_TRIG_TRANSFORM

SUBROUTINE S_COMMIT_TRIG_TRANSFORM(f, handle, ipar, spar, stat)
REAL (4), INTENT (INOUT) : : f(*)
2456E(DFTI_DESCRIPTOR), POINTER :: handle

Fortran 90 specifics of the TT routines usage are similar for all Intel MKL PDE support tools and described in the Calling PDE Support Routines from Fortran 90 section.

\section*{Poisson Library Routines}

In addition to Real Discrete Trigonometric Transforms (TT) interface (refer to Trigonometric Transform Routines), Intel \({ }^{\circledR}\) MKL supports the Poisson Library interface, referred to as PL interface. The interface implements a group of routines (PL routines) used to compute a solution of Laplace, Poisson, and Helmholtz problems of special kind using discrete Fourier transforms. Laplace and Poisson problems are special cases of a more general Helmholtz problem. The problems being solved are defined more exactly in the Poisson Library Implemented subsection. The PL interface provides much flexibility of use: you can adjust routines to your particular needs at the cost of manual tuning routine parameters or just call routines with default parameter values. The interface can adjust style of error and warning messages to \(C\) or Fortran notations by setting up a dedicated parameter. This adds convenience to debugging, because users can read information in the way that is natural for their code. The Intel MKL PL interface currently contains only routines that implement the following solvers:
- Fast Laplace, Poisson and Helmholtz solvers in a Cartesian coordinate system
- Fast Poisson and Helmholtz solvers in a spherical coordinate system.

To describe the Intel MKL PL interface, the C convention is used. Fortran usage specifics can be found in the Calling PDE Support Routines from Fortran 90 section.

NOTE Fortran users should mind that respective array indices in Fortran increase by 1.

\section*{Poisson Library Implemented}

PL routines enable approximate solving of certain two-dimensional and three-dimensional problems. Figure "Structure of the Poisson Library" shows the general structure of the Poisson Library.

Structure of the Poisson Library


Sections below provide details of the problems that can be solved using Intel MKL PL.

\section*{Two-Dimensional Problems}

\section*{Notational Conventions}

The PL interface description uses the following notation for boundaries of a rectangular domain \(a_{x}<x<b_{x}\), \(a_{y}<y<b_{y}\) on a Cartesian plane:
\(b d_{-} a_{x}=\left\{x=a_{x}, a_{y} \leq y \leq b_{y}\right\}, b d_{-} b_{x}=\left\{x=b_{x}, a_{y} \leq y \leq b_{y}\right\}\)
\(b d_{-} a_{y}=\left\{a_{x} \leq x \leq b_{x}, y=a_{y}\right\}, b d_{-} b_{y}=\left\{a_{x} \leq x \leq b_{x}, y=b_{y}\right\}\).
The wildcard "+" may stand for any of the symbols \(a_{x}, b_{x}, a_{y}, b_{y}\), so that bd_+ denotes any of the above boundaries.

The PL interface description uses the following notation for boundaries of a rectangular domain \(a_{\varphi}<\varphi<b_{\varphi}\), \(a_{\theta}<\theta<b_{\theta}\) on a sphere \(0 \leq \varphi \leq 2 \pi, 0 \leq \theta \leq \pi\) :
\(b d_{-} a_{\varphi}=\left\{\varphi=a_{\varphi}, a_{\theta} \leq \theta \leq b_{\theta}\right\}, b d_{-} b_{\varphi}=\left\{\varphi=b_{\varphi}, a_{\theta} \leq \theta \leq b_{\theta}\right\}\)
\(b d_{-} a_{\theta}=\left\{a_{\varphi} \leq \varphi \leq b_{\varphi}, \theta=a_{\theta}\right\}, b d_{-} b_{\theta}=\left\{a_{\varphi} \leq \varphi \leq b_{\varphi}, \theta=b_{\theta}\right\}\).
The wildcard " \(\sim\) " may stand for any of the symbols \(a_{\varphi}, b_{\varphi}, a_{\theta}, b_{\theta}\), so that bd_~ denotes any of the above boundaries.

\section*{Two-dimensional (2D) Helmholtz problem on a Cartesian plane}

The 2D Helmholtz problem is to find an approximate solution of the Helmholtz equation
\[
-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}+q u=f(x, y), q=\mathrm{const} \geq 0
\]
in a rectangle, that is, a rectangular domain \(a_{x}<x<b_{x}, a_{y}<y<b_{y}\), with one of the following boundary conditions on each boundary bd_+:
- The Dirichlet boundary condition
\[
u(x, y)=G(x, y)
\]
- The Neumann boundary condition
\[
\frac{\partial u}{\partial n}(x, y)=g(x, y)
\]
where
\[
\begin{aligned}
& n=-x \text { on } b d_{-} a_{x}, n=x \text { on } b d_{-} b_{x}, \\
& n=-y \text { on } b d_{-} a_{y}, n=y \text { on } b d_{-} b_{y} .
\end{aligned}
\]

\section*{Two-dimensional (2D) Poisson problem on a Cartesian plane}

The Poisson problem is a special case of the Helmholtz problem, when \(q=0\). The 2D Poisson problem is to find an approximate solution of the Poisson equation
\(-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=f(x, y)\)
in a rectangle \(a_{x}<x<b_{x}, a_{y}<y<b_{y}\) with the Dirichlet or Neumann boundary condition on each boundary bd_+. In case of a problem with the Neumann boundary condition on the entire boundary, you can find the solution of the problem only up to a constant. In this case, the Poisson Library will compute the solution that provides the minimal Euclidean norm of a residual.

\section*{Two-dimensional (2D) Laplace problem on a Cartesian plane}

The Laplace problem is a special case of the Helmholtz problem, when \(q=0\) and \(f(x, y)=0\). The 2D Laplace problem is to find an approximate solution of the Laplace equation
\(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0\)
in a rectangle \(a_{x}<x<b_{x \prime}, a_{y}<y<b_{y}\) with the Dirichlet or Neumann boundary condition on each boundary bd_+.

\section*{Helmholtz problem on a sphere}

The Helmholtz problem on a sphere is to find an approximate solution of the Helmholtz equation
\[
\begin{aligned}
& -\Delta_{s} u+q u=f, q=\text { const } \geq 0, \\
& \Delta_{s}=\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)
\end{aligned}
\]
in a spherical rectangle that is, a domain bounded by angles \(a_{\varphi} \leq \varphi \leq b_{\varphi}, a_{\theta} \leq \theta \leq b_{\theta}\), with boundary conditions for particular domains listed in Table "Details of Helmholtz Problem on a Sphere".

\section*{Details of Helmholtz Problem on a Sphere}
\begin{tabular}{|c|c|c|}
\hline Domain on a sphere & Boundary condition & Periodic/nonperiodic case \\
\hline Rectangular, that is, \(b_{\varphi}-a_{\varphi}<2 \pi\) and \(b_{\theta}\)
\[
-a_{\theta}<\pi
\] & Homogeneous Dirichlet boundary conditions on each boundary bd & non-periodic \\
\hline Where \(a_{\varphi}=0, b_{\varphi}=2 \pi\), and \(b_{\theta}-a_{\theta}<\pi\) & Homogeneous Dirichlet boundary conditions on the boundaries \(b d_{-} a_{\theta}\) and bd \(b_{\theta}\) & periodic \\
\hline \multirow[t]{3}{*}{Entire sphere, that is, \(a_{\varphi}=0, b_{\varphi}=2 \pi\), \(a_{\theta}=0\), and \(b_{\theta}=\pi\)} & Boundary condition & periodic \\
\hline & \[
\left(\sin \theta \frac{\partial u}{\partial \theta}\right)_{\substack{\theta \rightarrow 0 \\ \theta \rightarrow \pi}}=0
\] & \\
\hline & at the poles. & \\
\hline
\end{tabular}

\section*{Poisson problem on a sphere}

The Poisson problem is a special case of the Helmholtz problem, when \(q=0\). The Poisson problem on a sphere is to find an approximate solution of the Poisson equation
\(-\Delta_{s} h=f, \Delta_{s}=\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)\)
in a spherical rectangle \(a_{\varphi} \leq \varphi \leq b_{\varphi}, a_{\theta} \leq \theta \leq b_{\theta}\) in cases listed in Table "Details of Helmholtz Problem on a Sphere". The solution to the Poisson problem on the entire sphere can be found up to a constant only. In this case, Poisson Library will compute the solution that provides the minimal Euclidean norm of a residual.

\section*{Approximation of 2D problems}

To find an approximate solution for any of the 2D problems, a uniform mesh is built in the rectangular domain:
\[
\begin{aligned}
& \left\{x_{i}=a_{x}+i h_{x}, y_{j}=a_{y}+j h_{y}\right\} \\
& i=0, \ldots, n_{x}, j=0, \ldots, n_{y}, h_{x}=\frac{b_{x}-a_{x}}{n_{x}}, h_{y}=\frac{b_{y}-a_{y}}{n_{y}}
\end{aligned}
\]
in the Cartesian case and
\[
\begin{aligned}
& \left\{\varphi_{i}=a_{\psi}+i h_{\psi}, \theta_{j}=a_{\theta}+j h_{\theta}\right\}, \\
& i=0, \ldots, n_{\psi}, j=0, \ldots, n_{\theta}, h_{\psi}=\frac{b_{\psi}-a_{\psi}}{n_{\psi}}, h_{\theta}=\frac{b_{\theta}-a_{\theta}}{n_{\theta}}
\end{aligned}
\]
in the spherical case.
Poisson Library uses the standard five-point finite difference approximation on this mesh to compute the approximation to the solution:
- In the Cartesian case, the values of the approximate solution will be computed in the mesh points ( \(x_{i}\), \(y_{j}\) ) provided that the user knows the values of the right-hand side \(f(x, y)\) in these points and the values of the appropriate boundary functions \(G(x, y)\) and/or \(g(x, y)\) in the mesh points laying on the boundary of the rectangular domain.
- In the spherical case, the values of the approximate solution will be computed in the mesh points ( \(\varphi_{i}, \theta_{j}\) ) provided that the user knows the values of the right-hand side \(f(\varphi, \theta)\) in these points.

NOTE The number of mesh intervals \(n_{\varphi}\) in the \(\varphi\) direction of a spherical mesh must be even in the periodic case. The current implementation of the Poisson Library does not support meshes with the number of intervals that does not meet this condition.

\section*{Three-Dimensional Problems}

\section*{Notational Conventions}

The PL interface description uses the following notation for boundaries of a parallelepiped domain \(a_{x}<x<\) \(b_{X^{\prime}} a_{y}<y<b_{y}, a_{z}<z<b_{z}\) :
\(b d_{-} a_{x}=\left\{x=a_{x}, a_{y} \leq y \leq b_{y}, a_{z} \leq z \leq b_{z}\right\}, b d_{-} b_{x}=\left\{x=b_{x}, a_{y} \leq y \leq b_{y}, a_{z} \leq z \leq b_{z}\right\}\)
\(b d_{-} a_{y}=\left\{a_{x} \leq x \leq b_{x \prime} y=a_{y}, a_{z} \leq z \leq b_{z}\right\}, b d_{-} b_{y}=\left\{a_{x} \leq x \leq b_{x}, y=b_{y}, a_{z} \leq z \leq b_{z}\right\}\)
\(b d_{\_} a_{z}=\left\{a_{x} \leq x \leq b_{x}, a_{y} \leq y \leq b_{y}, z=a_{z}\right\}, b d_{-} b_{x}=\left\{a_{x} \leq x \leq b_{x}, a_{y} \leq y \leq b_{y}, z=b_{z}\right\}\).
The wildcard "+" may stand for any of the symbols \(a_{x}, b_{x}, a_{y}, b_{y}, a_{z}, b_{z}\), so that bd_+ denotes any of the above boundaries.

\section*{Three-dimensional (3D) Helmholtz problem}

The 3D Helmholtz problem is to find an approximate solution of the Helmholtz equation
\[
-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial^{2} u}{\partial z^{2}}+q u=f(x, y, z), q=\text { const } \geq 0
\]
in a parallelepiped, that is, a parallelepiped domain \(a_{x}<x<b_{x \prime}, a_{y}<y<b_{y}, a_{z}<z<b_{z}\), with one of the following boundary conditions on each boundary bd_+:
- The Dirichlet boundary condition
\[
u(x, y, z)=G(x, y, z)
\]
- The Neumann boundary condition
\[
\frac{\partial u}{\partial n}(x, y, z)=g(x, y, z)
\]
where
\[
\begin{aligned}
& n=-x \text { on } b d_{-} a_{x}, n=x \text { on } b d_{-} b_{x}, \\
& n=-y \text { on } b d_{-} a_{y}, n=y \text { on } b d_{-} b_{y}, \\
& n=-z \text { on } b d_{-} a_{z}, n=z \text { on } b d_{-} b_{z} .
\end{aligned}
\]

\section*{Three-dimensional (3D) Poisson problem}

The Poisson problem is a special case of the Helmholtz problem, when \(q=0\). The 3D Poisson problem is to find an approximate solution of the Poisson equation
\[
-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial^{2} u}{\partial z^{2}}=f(x, y, z)
\]
in a parallelepiped \(a_{x}<x<b_{x}, a_{y}<y<b_{y}, a_{z}<z<b_{z}\) with Dirichlet or Neumann boundary condition on each boundary bd_+.

\section*{Three-dimensional (3D) Laplace problem}

The Laplace problem is a special case of the Helmholtz problem, when \(q=0\) and \(f(x, y, z)=0\). The 3D Laplace problem is to find an approximate solution of the Laplace equation
\(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0\)
in a parallelepiped \(a_{x}<x<b_{x}, a_{y}<y<b_{y}, a_{z}<z<b_{z}\) with the Dirichlet or Neumann boundary condition on each boundary bd_+.

\section*{Approximation of 3D problems}

To find an approximate solution for each of the 3D problems, a uniform mesh is built in the parallelepiped domain
\(\left\{x_{i}=a_{x}+i h_{x}, y_{j}=a_{y}+j h_{y}, z_{k}=a_{z}+k h_{z}\right\}\)
where
\(i=0, \ldots, n_{x}, j=0, \ldots, n_{y}, k=0, \ldots, n_{z}\)
\[
h_{x}=\frac{b_{x}-a_{x}}{n_{x}}, h_{y}=\frac{b_{y}-a_{y}}{n_{y}}, h_{z}=\frac{b_{z}-a_{z}}{n_{z}}
\]

The Poisson Library uses the standard seven-point finite difference approximation on this mesh to compute the approximation to the solution. The values of the approximate solution will be computed in the mesh points \(\left(x_{i}, y_{j}, z_{k}\right)\), provided that the user knows the values of the right-hand side \(f(x, y, z)\) in these points and the values of the appropriate boundary functions \(G(x, y, z)\) and/or \(g(x, y, z)\) in the mesh points laying on the boundary of the parallelepiped domain.

\section*{Sequence of Invoking PL Routines}

NOTE This description always considers the solution process for the Helmholtz problem, because Fast Poisson Solver and Fast Laplace Solver are special cases of Fast Helmholtz Solver (see Poisson Library Implemented).

Computation of a solution of the Helmholtz problem using the PL interface is conceptually divided into four steps, each of which is performed via a dedicated routine. Table "PL Interface Routines" lists the routines and briefly describes their purpose.
Most PL routines have versions operating with single-precision and double-precision data. Names of such routines begin respectively with "s" and "d". The wildcard "?" stands for either of these symbols in routine names. The routines for Cartesian coordinate system have 2D and 3D versions. Their names end respectively in "2D" and "3D". The routines for spherical coordinate system have periodic and non-periodic versions. Their names end respectively in "p" and "np"
\begin{tabular}{|c|c|}
\hline Routine & Description \\
\hline ?_init_Helmholtz_2D/?_init_Helmholtz_3D/? _init_sph_p/?_init_sph_np & Initializes basic data structures of Poisson Library for Fast Helmholtz Solver in the 2D/3D/periodic/non-periodic case, respectively. \\
\hline ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D/? _commit_sph_p/?_commit_sph_np & Checks consistency and correctness of user's data, creates and initializes data structures to be used by the Intel MKL FFT interface \({ }^{1}\), as well as other data structures needed for the solver. \\
\hline ? Helmholtz_2D/?_Helmholtz_3D/?_sph_p/? sph_np & Computes an approximate solution of 2D/ 3D/periodic/non-periodic Helmholtz problem (see Poisson Library Implemented) specified by the parameters. \\
\hline free_Helmholtz_2D/free_Helmholtz_3D/free_sph_p/ free_sph_np & Cleans the memory used by the data structures needed for calling the Intel MKL FFT interface \({ }^{1}\). \\
\hline
\end{tabular}
\({ }^{1}\) PL routines call the Intel MKL FFT interface for better performance.
To find an approximate solution of Helmholtz problem only once, the Intel MKL PL interface routines are normally invoked in the order in which they are listed in Table "PL Interface Routines".

NOTE Though the order of invoking PL routines may be changed, it is highly recommended to follow the above order of routine calls.

The diagram in Figure "Typical Order of Invoking PL Routines" indicates the typical order in which PL routines can be invoked in a general case.

\section*{Typical Order of Invoking PL Routines}

```

A general scheme of using PL routines for double-precision computations in a 3D Cartesian case is shown
below. A similar scheme holds for single-precision computations with the only difference in the initial letter of
routine names. The general scheme in a 2D Cartesian case differs form the one below in the set of routine
parameters and the ending of routine names: "2D" instead of "3D".
...
d_init_Helmholtz_3D(\&ax, \&bx, \&ay, \&by, \&az, \&bz, \&nx, \&ny, \&nz, BCtype, ipar, dpar, \&stat);
/* change parameters in ipar and/or dpar if necessary. */
/* note that the result of the Fast Helmholtz Solver will be in f! If you want to keep the data stored
in f,
save it before the function call below */
d_commit_Helmholtz_3D(f, bd_ax, bd_bx, bd_ay, bd_by, bd_az, bd_bz, \&xhandle, \&yhandle, ipar, dpar,
\&stat);
d_Helmholtz_3D(f, bd_ax, bd_bx, bd_ay, bd_by, bd_az, bd_bz, \&xhandle, \&yhandle, ipar, dpar, \&stat);
free_Helmholtz_3D (\&xhandle, \&yhandle, ipar, \&stat);
/* here you may clean the memory used by f, dpar, ipar */
...

```

A general scheme of using PL routines for double-precision computations in a spherical periodic case is shown below. Similar scheme holds for single-precision computations with the only difference in the initial letter of routine names. The general scheme in a spherical non-periodic case differs from the one below in the set of routine parameters and the ending of routine names: "np" instead of " p ".
```

d_init_sph_p(\&ap,\&bp,\&at,\&bt,\&np,\&nt,\&q,ipar,dpar,\&stat);
/* change parameters in ipar and/or dpar if necessary. */
/* note that the result of the Fast Helmholtz Solver will be in f! If you want to
keep the data stored in f, save it before the function call below */
d_commit_sph_p(f,\&handle_s,\&handle_c,ipar,dpar,\&stat);
d_sph_p(f,\&handle_s,\&handle_c,ipar,dpar,\&stat);
free_sph_p(\&handle_s,\&handle_c,ipar,\&stat);
/* here you may clean the memory used by f, dpar, ipar */
...

```

You can find examples of Fortran 90 and C code that use PL routines to solve Helmholtz problem (in both Cartesian and spherical cases) in the examples \(\backslash p d e p o i s s o n f \backslash\) source and examples \(\backslash p d e p o i s s o n c\) \source folders of your Intel MKL directory.

\section*{Interface Description}

All types in this documentation are standard C types: int, float, and double. Fortran 90 users can call the routines with INTEGER, REAL, and DOUBLE PRECISION Fortran types, respectively (see examples in the examples \pdepoissonf \source and examples \pdepoissonc \(\backslash\) source folders of your Intel MKL directory.
The interface description uses the built-in type int for integer values. If you employ the ILP64 interface, read this type as long long int (or INTEGER*8 for Fortran). For more information, refer to the \(\operatorname{Intel}(R)\) MKL User's Guide.

\section*{Routine Options}

All PL routines use parameters for passing various options to the routines. These parameters are arrays ipar, dpar and spar. Values for these parameters should be specified very carefully (see Common Parameters). You can change these values during computations to meet your needs.

WARNING To avoid failure or wrong results, you must provide correct and consistent parameters to the routines.

\section*{User Data Arrays}

PL routines take arrays of user data as input. For example, user arrays are passed to the routine d_Helmholtz_3D to compute an approximate solution to 3D Helmholtz problem. To minimize storage requirements and improve the overall run-time efficiency, Intel MKL PL routines do not make copies of user input arrays.

NOTE If you need a copy of your input data arrays, save them yourself.

\section*{PL Routines for the Cartesian Solver}

The section gives detailed description of Cartesian PL routines, their syntax, parameters and values they return. All flavors of the same routine, namely, double-precision and single-precision, 2D and 3D, are described together.

NOTE Some of the routine parameters are used only in the 3D Fast Helmholtz Solver.

PL routines call the Intel MKL FFT interface (described in section "FFT Functions" in chapter "Fast Fourier Transforms"), which enhances performance of the routines.

\section*{?_init_Helmholtz_2D/?_init_Helmholtz_3D}

Initializes basic data structures of the Fast 2D/3D Helmholtz Solver.

\section*{Syntax}
```

void d_init_Helmholtz_2D(double* ax, double* bx, double* ay, double* by, int* nx, int*
ny, char* BCtype, double* q, int* ipar, double* dpar, int* stat);
void s_init_Helmholtz_2D(float* ax, float* bx, float* ay, float* by, int* nx, int* ny,
char* BCtype, float* q, int* ipar, float* spar, int* stat);
void d_init_Helmholtz_3D(double* ax, double* bx, double* ay, double* by, double* az,
double* bz, int* nx, int* ny, int* nz, char* BCtype, double* q, int* ipar, double*
dpar, int* stat);
void s_init_Helmholtz_3D(float* ax, float* bx, float* ay, float* by, float* az, float*
bz, int* nx, int* ny, int* nz, char* BCtype, float* q, int* ipar, float* spar, int*
stat);

```

\section*{Include Files}
- FORTRAN 90: mkl_poisson.f90
- C: mkl_poisson.h

\section*{Input Parameters}
```

ax
bx double* ford_init_Helmholtz_2D/d_init_Helmholtz_3D,
double* ford_init_Helmholtz_2D/d_init_Helmholtz_3D,
float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the leftmost boundary of the domain along x-axis.

```
float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D. The coordinate of the rightmost boundary of the domain along x-axis.
\(a y\)
by
\(a z\)
bz
q
double* for d_init_Helmholtz_2D/d_init_Helmholtz_3D, float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the leftmost boundary of the domain along \(y\)-axis.
double* for d_init_Helmholtz_2D/d_init_Helmholtz_3D, float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D. The coordinate of the rightmost boundary of the domain along \(y\)-axis.
double* for d_init_Helmholtz_2D/d_init_Helmholtz_3D, float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the leftmost boundary of the domain along z-axis. This parameter is needed only for the ?_init_Helmholtz_3D routine.
double* for d_init_Helmholtz_2D/d_init_Helmholtz_3D, float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the rightmost boundary of the domain along z-axis. This parameter is needed only for the ?_init_Helmholtz_3D routine.
int*. The number of mesh intervals along x-axis.
int*. The number of mesh intervals along \(y\)-axis.
int*. The number of mesh intervals along z-axis. This parameter is needed only for the ?_init_Helmholtz_3D routine.
char*. Contains the type of boundary conditions on each boundary. Must contain four characters for ?_init_Helmholtz_2D and six characters for ? _init_Helmholtz_3D. Each of the characters can be 'N' (Neumann boundary condition) or 'D' (Dirichlet boundary condition). Types of boundary conditions for the boundaries should be specified in the following order: \(b d_{-} a_{x}, b d_{-} b_{x}, b d_{-} a_{y}, b d_{-} b_{y}, b d_{-} a_{z}, b d_{-} b_{z}\). Boundary condition types for the last two boundaries should be specified only in the 3D case.
double* for d_init_Helmholtz_2D/d_init_Helmholtz_3D, float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D.
The constant Helmholtz coefficient. Note that to solve Poisson or Laplace problem, you should set the value of \(q\) to 0 .

\section*{Output Parameters}
ipar
dpar
spar
stat
int array of size 128. Contains integer data to be used by Fast Helmholtz Solver (for details, refer to Common Parameters).
double array of size \(5^{*} n x / 2+7\) in the 2D case or \(5^{*}(n x+n y) / 2+9\) in the 3D case. Contains double-precision data to be used by Fast Helmholtz Solver (for details, refer to Common Parameters).
float array of size \(5^{*} n x / 2+7\) in the 2 D case or \(5^{*}(n x+n y) / 2+9\) in the 3 D case. Contains single-precision data to be used by Fast Helmholtz Solver (for details, refer to Common Parameters).
int*. Routine completion status, which is also written to ipar[0]. The status should be 0 to proceed to other PL routines.

\section*{Description}

The ?_init_Helmholtz_2D/?_init_Helmholtz_3D routines initialize basic data structures for Poisson Library computations of the appropriate precision. All routines invoked after a call to a ?
_init_Helmholtz_2D/?_init_Helmholtz_3D routine use values of the ipar, dpar and spar array parameters returned by the routine. Detailed description of the array parameters can be found in Common Parameters.

WARNING Data structures initialized and created by 2D/3D flavors of the routine cannot be used by 3D/2D flavors of any PL routines, respectively.

You can skip calling this routine in your code. However, see Caveat on Parameter Modifications before doing so.

\section*{Return Values}
```

stat=0
stat= -99999
The routine successfully completed the task. In general, to proceed with computations, the routine should complete with this stat value.
The routine failed to complete the task because of a fatal error.

```
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D
Checks consistency and correctness of user's data as well as initializes certain data structures required to solve 2D/3D Helmholtz problem.

\section*{Syntax}
```

void d_commit_Helmholtz_2D(double* f, double* bd_ax, double* bd_bx, double* bd_ay,
double* bd_by, DFTI_DESCRIPTOR_HANDLE* xhandle, int* ipar, double* dpar, int* stat);
void s_commit_Helmholtz_2D(float* f, float* bd_ax, float* bd_bx, float* bd_ay, float*
bd_by, DFTI_DESCRIPTOR_HANDLE* xhandle, int* ipar, float* spar, int* stat);
void d_commit_Helmholtz_3D(double* f, double* bd_ax, double* bd_bx, double* bd_ay,
double* bd_by, double* bd_az, double* bd_bz, DFTI_DESCRIPTOR_HANDLE* xhandle,
DFTI_DESCRIPTOR_HANDLE* yhandle, int* ipar, double* dpar, int* stat);
void s_commit_Helmholtz_3D(float* f, float* bd_ax, float* bd_bx, float* bd_ay, float*
bd_by, float* bd_az, float* bd_bz, DFTI_DESCRIPTOR_HANDLE* xhandle,
DFTI_DESCRIPTOR_HANDLE* yhandle, int* ipar, float* spar, int* stat);

```

Include Files
- FORTRAN 90: mkl_poisson.f90
- C: mkl_poisson.h

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline f & \begin{tabular}{l}
double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D, float* for s_commit_Helmholtz_2D/s_commit_Helmholtz_3D. Contains the right-hand side of the problem packed in a single vector. The size of the vector for the 2D problem is \((n x+1)^{*}(n y+1)\). In this case, the value of the right-hand side in the mesh point ( \(i, j\) ) is stored in \(f[i\) \(\left.+j^{*}(n x+1)\right]\). \\
The size of the vector for the 3D problem is \((n x+1) *(n y+1) *(n z+1)\). In this case, value of the right-hand side in the mesh point ( \(i, j, k\) ) is stored in \(f\left[i+j^{*}(n x+1)+k^{*}(n x+1) *(n y+1)\right]\). \\
Note that to solve the Laplace problem, you should set all the elements of the array \(f\) to 0 . \\
Note also that the array \(f\) may be altered by the routine. To preserve the vector, save it in another memory location.
\end{tabular} \\
\hline ipar & int array of size 128. Contains integer data to be used by Fast Helmholtz Solver (for details, refer to Common Parameters). \\
\hline
\end{tabular}
dpar
spar
bd_ax
bd bx
bd_ay
double array of size \(5^{*} n x / 2+7\) in the 2D case or \(5 *(n x+n y) / 2+9\) in the 3 D case. Contains double-precision data to be used by Fast Helmholtz Solver (for details, refer to Common Parameters).
float array of size \(5^{*} n x / 2+7\) in the 2D case or \(5^{*}(n x+n y) / 2+9\) in the 3D case. Contains single-precision data to be used by Fast Helmholtz Solver (for details, refer to Common Parameters).
double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D, float* fors_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
Contains values of the boundary condition on the leftmost boundary of the domain along \(x\)-axis.
For ?_commit_Helmholtz_2D, the size of the array is ny+1. In case of the Dirichlet boundary condition (value of BCtype[0] is 'D'), it contains values of the function \(G\left(a x, y_{j}\right), j=0, \ldots, n y\). In case of the Neumann boundary condition (value of BCtype[0] is ' N '), it contains values of the function \(g(a x\), \(\left.y_{j}\right), j=0, \ldots, n y\). The value corresponding to the index \(j\) is placed in bd_ax[j].
For ? commit_Helmholtz_3D, the size of the array is \((n y+1) *(n z+1)\). In case of the Dirichlet boundary condition (value of BCtype[0] is ' D '), it contains values of the function \(G\left(a x, y_{j}, z_{k}\right), j=0, \ldots, n y, k=0, \ldots, n z\). In case of the Neumann boundary condition (value of BCtype[0] is ' N '), it contains the values of the function \(g\left(a x, y_{j}, z_{k}\right), j=0, \ldots, n y, k=0, \ldots, n z\). The values are packed in the array so that the value corresponding to indices ( \(j, k\) ) is placed in bd_ax[j+k* \((n y+1)]\).
double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D, float* fors_commit_Helmholtz_2D/s_commit_Helmholtz_3D. Contains values of the boundary condition on the rightmost boundary of the domain along \(x\)-axis.
For ?_commit_Helmholtz_2D, the size of the array is ny+1. In case of the Dirichlet boundary condition (value of BCtype[1] is 'D'), it contains values of the function \(G\left(b x, y_{j}\right), j=0, \ldots, n y\). In case of the Neumann boundary condition (value of BCtype[1] is ' N '), it contains values of the function \(g(b x\), \(\left.y_{j}\right), j=0, \ldots, n y\). The value corresponding to the index \(j\) is placed in bd_bx[j].
For ? _commit_Helmholtz_3D, the size of the array is \((n y+1) *(n z+1)\). In case of the Dirichlet boundary condition (value of BCtype[1] is ' D '), it contains values of the function \(G\left(b x, y_{j}, z_{k}\right), j=0, \ldots, n y, k=0, \ldots, n z\). In case of the Neumann boundary condition (value of BCtype[1] is ' N '), it contains the values of the function \(g\left(b x, y_{j}, z_{k}\right), j=0, \ldots, n y, k=0, \ldots, n z\). The values are packed in the array so that the value corresponding to indices ( \(j, k\) ) is placed in \(b d_{-} b x\left[j+k^{*}(n y+1)\right]\).
double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D, float* fors_commit_Helmholtz_2D/s_commit_Helmholtz_3D. Contains values of the boundary condition on the leftmost boundary of the domain along \(y\)-axis.
For ?_commit_Helmholtz_2D, the size of the array is \(n x+1\). In case of the Dirichlet boundary condition (value of BCtype[2] is 'D'), it contains values of the function \(G\left(x_{i}, a y\right), i=0, \ldots, n x\). In case of the Neumann boundary condition (value of BCtype[2] is ' N '), it contains values of the function \(g\left(x_{i}\right.\), \(a y), i=0, \ldots, n x\). The value corresponding to the index \(i\) is placed in bd_ay[i].

For ?_commit_Helmholtz_3D, the size of the array is \((n x+1)^{*}(n z+1)\). In case of the Dirichlet boundary condition (value of BCtype[2] is ' D '), it contains values of the function \(G\left(x_{i}, a y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z\). In case of the Neumann boundary condition (value of BCtype[2] is ' N '), it contains the values of the function \(g\left(x_{i}, a y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z\). The values are packed in the array so that the value corresponding to indices ( \(i, k\) ) is placed in bd_ay[i+k* \((n x+1)]\).
double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D, float* for s_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
Contains values of the boundary condition on the rightmost boundary of the domain along \(y\)-axis.
For ?_commit_Helmholtz_2D, the size of the array is \(n x+1\). In case of the Dirichlet boundary condition (value of BCtype[3] is 'D'), it contains values of the function \(G\left(x_{i}, b y\right), i=0, \ldots, n x\). In case of the Neumann boundary condition (value of BCtype[3] is ' N '), it contains values of the function \(g\left(x_{i}\right.\), by), \(i=0, \ldots, n x\). The value corresponding to the index \(i\) is placed in bd_by[i].
For ?_commit_Helmholtz_3D, the size of the array is \((n x+1) *(n z+1)\). In case of the Dirichlet boundary condition (value of BCtype[3] is ' D '), it contains values of the function \(G\left(x_{i}, b y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z\). In case of the Neumann boundary condition (value of BCtype[3] is ' N '), it contains the values of the function \(g\left(x_{i}, b y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z\). The values are packed in the array so that the value corresponding to indices ( \(i, k\) ) is placed in bd_by[i+k* \((n x+1)]\).
double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D, float* fors_commit_Helmholtz_2D/s_commit_Helmholtz_3D. This parameter is neē्रed only for ? commit_Helmholtz_3D. Contains values of the boundary condition on the leftmost boundary of the domain along \(z\)-axis.
The size of the array is \((n x+1) *(n y+1)\). In case of the Dirichlet boundary condition (value of BCtype[4] is 'D'), it contains values of the function \(G\left(x_{i}\right.\), \(\left.y_{j}, a z\right), i=0, \ldots, n x, j=0, \ldots, n y\). In case of the Neumann boundary condition (value of BCtype[4] is ' N '), it contains the values of the function \(g\left(x_{i}, y_{j}, a z\right), i=0, \ldots, n x, j=0, \ldots, n y\). The values are packed in the array so that the value corresponding to indices \((i, j)\) is placed in bd_az[i \(+j *(n x+1)]\).
double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D, float* fors_commit_Helmholtz_2D/s_commit_Helmholtz_3D. This parameter is needed only for ? commit_Helmholtz_3D. Contains values of the boundary condition on the rightmost boundary of the domain along \(z\)-axis.
The size of the array is \((n x+1)^{*}(n y+1)\). In case of the Dirichlet boundary condition (value of BCtype[5] is 'D'), it contains values of the function \(G\left(x_{i}\right.\), \(\left.y_{j}, b z\right), i=0, \ldots, n x, j=0, \ldots, n y\). In case of the Neumann boundary condition (value of BCtype[5] is ' N '), it contains the values of the function \(g\left(x_{i}, y_{j}, b z\right), i=0, \ldots, n x, j=0, \ldots, n y\). The values are packed in the array so that the value corresponding to indices \((i, j)\) is placed in bd_bz[i \(+j *(n x+1)]\).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline ipar & Contains integer data to be used by Fast Helmholtz Solver. Modified on output as explained in Common Parameters. \\
\hline dpar & Contains double-precision data to be used by Fast Helmholtz Solver. Modified on output as explained in Common Parameters. \\
\hline spar & Contains single-precision data to be used by Fast Helmholtz Solver. Modified on output as explained in Common Parameters. \\
\hline xhandle, yhandle & DFTI_DESCRIPTOR_HANDLE*. Data structures used by the Intel MKL FFT interface (for details, refer to section "FFT Functions" in chapter "Fast Fourier Transforms"). yhandle is used only by ?_commit_Helmholtz_3D. \\
\hline stat & int*. Routine completion status, which is also written to ipar[0]. The status should be 0 to proceed to other PL routines. \\
\hline
\end{tabular}

\section*{Description}

The ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routines check consistency and correctness of the parameters to be passed to the solver routines ? Helmholtz_2D/?_Helmholtz_3D. They also initialize data structures xhandle, yhandle as well as arrays ipar and dpar/spar, depending upon the routine precision. Refer to Common Parameters to find out which particular array elements the ?_commit_Helmholtz_2D/? _commit_Helmholtz_3D routines initialize and what values are written there.

The routines perform only a basic check for correctness and consistency. If you are going to modify parameters of PL routines, see the Caveat on Parameter Modifications section. Unlike ? _init_Helmholtz_2D/?_init_Helmholtz_3D, the routines ?_commit_Helmholtz_2D/? _commit_Helmholtz_3D are mandatory, and you cannot skip calling them in your code. Values of \(a x, b x\), \(a y, b y, a z, b z, n x, n y, n z\), and BCtype are passed to each of the routines with the ipar array and defined in a previous call to the appropriate ? _init_Helmholtz_2D/?_init_Helmholtz_3D routine.

\section*{Return Values}
```

stat=1 The routine completed without errors and produced some warnings.
The routine successfully completed the task.
The routine stopped because an error in the user's data was found or the data in the dpar, spar or ipar array was altered by mistake.
stat $=-1000$
stat $=-10000$
stat $=-99999$
The routine stopped because of an Intel MKL FFT or $T T$ interface error.
The routine stopped because the initialization failed to complete or the parameter ipar[0] was altered by mistake.
The routine failed to complete the task because of a fatal error.

```
?_Helmholtz_2D/?_Helmholtz_3D
Computes the solution of 2D/3D Helmholtz problem specified by the parameters.

\section*{Syntax}
```

void d_Helmholtz_2D(double* f, double* bd_ax, double* bd_bx, double* bd_ay, double*
bd_by, DFTI_DESCRIPTOR_HANDLE* xhandle, int* ipar, double* dpar, int* stat);
void s_Helmholtz_2D(float* f, float* bd_ax, float* bd_bx, float* bd_ay, float* bd_by,
DFTI_DESCRIPTOR_HANDLE* xhandle, int* ipar, float* spar, int* stat);

```
```

void d_Helmholtz_3D(double* f, double* bd_ax, double* bd_bx, double* bd_ay, double*
bd_by, double* bd_az, double* bd_bz, DFTI_DESCRIPTOR_HANDLE* xhandle,
DFTI_DESCRIPTOR_HANDLE* yhandle, int* ipar, double* dpar, int* stat);
void s_Helmholtz_3D(float* f, float* bd_ax, float* bd_bx, float* bd_ay, float* bd_by,
float* bd_az, float* bd_bz, DFTI_DESCRIPTOR_HANDLE* xhandle, DFTI_DESCRIPTOR_HANDLE*
yhandle, int* ipar, float* spar, int* stat);

```

\section*{Include Files}
- FORTRAN 90: mkl_poisson.f90
- C: mkl_poisson.h

\section*{Input Parameters}
\[
f
\]
double* for d_Helmholtz_2D/d_Helmholtz_3D, float* fors_Helmholtz_2D/s_Helmholtz_3D.
Contains the right-hand side of the problem packed in a single vector and modified by the appropriate ?_commit_Helmholtz_2D/?
_commit_Helmholtz_3D routine. Note that an attempt to substitute the original right-hand side vector at this point will result in a wrong solution. The size of the vector for the 2D problem is \((n x+1) *(n y+1)\). In this case, value of the right-hand side in the mesh point ( \(i, j\) ) is stored in \(f[i+j *(n x\) \(+1)]\). The size of the vector for the 3D problem is \((n x+1) *(n y+1) *(n z+1)\). In this case, value of the right-hand side in the mesh point ( \(i, j, k\) ) is stored in \(f\left[i+j^{*}(n x+1)+k^{*}(n x+1)^{*}(n y+1)\right]\).
\begin{tabular}{|c|c|}
\hline xhandle, yhandle & DFTI_DESCRIPTOR_HANDLE*. Data structures used by the Intel MKL FFT interface (for details, refer to section "FFT Functions" in chapter "Fast Fourier Transforms"). yhandle is used only by ?_Helmholtz_3D. \\
\hline ipar & int array of size 128. Contains integer data to be used by Fast Helmholtz Solver (for details, refer to Common Parameters). \\
\hline dpar & double array of size \(5^{*} n x / 2+7\) in the 2D case or \(5^{*}(n x+n y) / 2+9\) in the 3D case. Contains double-precision data to be used by Fast Helmholtz Solver (for details, refer toCommon Parameters \\
\hline spar & float array of size \(5^{*} n x / 2+7\) in the 2 D case or \(5^{*}(n x+n y) / 2+9\) in the 3D case. Contains single-precision data to be used by Fast Helmholtz Solver (for details, refer to Common Parameters). \\
\hline bd_ax & double* for d_Helmholtz_2D/d_Helmholtz_3D, float* fors Helmholtz 2D/s Helmholtz 3D. \\
\hline
\end{tabular}

Contains values of the boundary condition on the leftmost boundary of the domain along \(x\)-axis.
For ?_Helmholtz_2D, the size of the array is ny+1. In case of the the Dirichlet boundary condition (value of BCtype[0] is 'D'), it contains values of the function \(G\left(a x, y_{j}\right), j=0, \ldots, n y\). In case of the the Neumann boundary condition (value of BCtype[0] is ' N '), it contains values of the function \(g\left(a x, y_{j}\right), j=0, \ldots, n y\). The value corresponding to the index \(j\) is placed in bd_ax[j].
For ? _Helmholtz_3D, the size of the array is \((n y+1) *(n z+1)\). In case of the the Dirichlet boundary condition (value of BCtype[0] is ' D '), it contains values of the function \(G\left(a x, y_{j}, z_{k}\right), j=0, \ldots, n y, k=0, \ldots, n z\). In case of the Neumann boundary condition (value of BCtype[0] is ' N '), it contains the values of the function \(g\left(a x, y_{j}, z_{k}\right), j=0, \ldots, n y, k=0, \ldots, n z\). The values are packed in the array so that the value corresponding to indices ( \(j, k\) ) is placed in \(b d_{-} a x\left[j+k^{*}(n y+1)\right]\).
bd_bx
bd_ay
bd_by
bd_az
double* for d_Helmholtz_2D/d_Helmholtz_3D, float* fors_Helmholtz_2D/s_Helmholtz_3D.
Contains values of the boundary condition on the rightmost boundary of the domain along \(x\)-axis.
For ?_Helmholtz_2D, the size of the array is ny+1. In case of the Dirichlet boundary condition (value of BCtype[1] is ' D '), it contains values of the function \(G\left(b x, y_{j}\right), j=0, \ldots, n y\). In case of the Neumann boundary condition (value of BCtype[1] is ' N '), it contains values of the function \(g\left(b x, y_{j}\right)\), \(j=0, \ldots, n y\). The value corresponding to the index \(j\) is placed in bd_bx[j]. For ? _Helmholtz_3D, the size of the array is \((n y+1) *(n z+1)\). In case of the Dirichlet boundary condition (value of BCtype[1] is ' D '), it contains values of the function \(G\left(b x, y_{j}, z_{k}\right), j=0, \ldots, n y, k=0, \ldots, n z\). In case of the Neumann boundary condition (value of BCtype[1] is ' N '), it contains the values of the function \(g\left(b x, y_{j}, z_{k}\right), j=0, \ldots, n y, k=0, \ldots, n z\). The values are packed in the array so that the value corresponding to indices ( \(j, k\) ) is placed in bd_bx[j+k* \((n y+1)]\).
double* for d_Helmholtz_2D/d_Helmholtz_3D, float* fors_Helmholtz_2D/s_Helmholtz_3D.
Contains values of the boundary condition on the leftmost boundary of the domain along \(y\)-axis.
For ?_Helmholtz_2D, the size of the array is \(n x+1\). In case of the Dirichlet boundary condition (value of BCtype[2] is 'D'), it contains values of the function \(G\left(x_{i}, a y\right), i=0, \ldots, n x\). In case of the Neumann boundary condition (value of BCtype[2] is ' N '), it contains values of the function \(g\left(x_{i}, a y\right)\), \(i=0, \ldots, n x\). The value corresponding to the index \(i\) is placed in bd_ay[i]. For ?_Helmholtz_3D, the size of the array is \((n x+1) *(n z+1)\). In case of the Dirichlet boundary condition (value of BCtype[2] is ' D '), it contains values of the function \(G\left(x_{i}, a y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z\). In case of the Neumann boundary condition (value of BCtype[2] is ' N '), it contains the values of the function \(g\left(x_{i}, a y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z\). The values are packed in the array so that the value corresponding to indices ( \(i, k\) ) is placed in bd_ay[i+k* \((n x+1)]\).
double* for d_Helmholtz_2D/d_Helmholtz_3D, float* fors_Helmholtz_2D/s_Helmholtz_3D.
Contains values of the boundary condition on the rightmost boundary of the domain along \(y\)-axis.
For ? Helmholtz_2D, the size of the array is \(n x+1\). In case of the Dirichlet boundary condition (value of BCtype[3] is 'D'), it contains values of the function \(G\left(x_{i}, b y\right), i=0, \ldots, n x\). In case of the Neumann boundary condition (value of BCtype[3] is ' N '), it contains values of the function \(g\left(x_{i}\right.\), by \()\), \(i=0, \ldots, n x\). The value corresponding to the index \(i\) is placed in bd_by[i]. For ?_Helmholtz_3D, the size of the array is \((n x+1)^{*}(n z+1)\). In case of the Dirichlet boundary condition (value of BCtype[3] is 'D'), it contains values of the function \(G\left(x_{i}, b y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z\). In case of the Neumann boundary condition (value of BCtype[3] is ' N '), it contains the values of the function \(g\left(x_{i}, b y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z\). The values are packed in the array so that the value corresponding to indices ( \(i, k\) ) is placed in \(b d_{-} b y\left[i+k^{*}(n x+1)\right]\).
double* for d_Helmholtz_2D/d_Helmholtz_3D, float* fors_Helmholtz_2D/s_Helmholtz_3D.
This parameter is needed only for ? Helmholtz_3D. Contains values of the boundary condition on the leftmost boundary of the domain along \(z\)-axis.

The size of the array is \((n x+1) *(n y+1)\). In case of the Dirichlet boundary condition (value of BCtype[4] is ' \(D\) '), it contains values of the function \(G\left(x_{i}\right.\), \(\left.y_{j}, a z\right), i=0, \ldots, n x, j=0, \ldots, n y\). In case of the Neumann boundary condition (value of BCtype[4] is ' N '), it contains the values of the function \(g\left(x_{i}, y_{j}, a z\right), i=0, \ldots, n x, j=0, \ldots, n y\). The values are packed in the array so that the value corresponding to indices (i, \(j\) ) is placed in bd_az[i \(+j *(n x+1)]\).
double* for d_Helmholtz_2D/d_Helmholtz_3D, float* fors_Helmholtz_2D/s_Helmholtz_3D.
This parameter is needed only for ? Helmholtz_3D. Contains values of the boundary condition on the rightmost boundary of the domain along \(z\)-axis. The size of the array is \((n x+1)^{*}(n y+1)\). In case of the Dirichlet boundary condition (value of BCtype[5] is ' \(D\) '), it contains values of the function \(G\left(x_{i}\right.\), \(\left.y_{j}, b z\right), i=0, \ldots, n x, j=0, \ldots, n y\). In case of the Neumann boundary condition (value of BCtype[5] is ' N '), it contains the values of the function \(g\left(x_{i}, y_{j}, b z\right), i=0, \ldots, n x, j=0, \ldots, n y\). The values are packed in the array so that the value corresponding to indices (i, \(j\) ) is placed in bd_bz[i \(\left.+j^{*}(n x+1)\right]\).

NOTE To avoid wrong computation results, do not change arrays bd_ax, bd_bx, bd_ay, bd_by, \(b d \_a z, b d \_b z\) between a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine and a subsequent call to the appropriate ?_Helmholtz_2D/?_Helmholtz_3D routine.

\section*{Output Parameters}
```

f
xhandle, yhandle
ipar

```
dpar Contains double-precision data to be used by Fast Helmholtz Solver.
    Modified on output as explained in Common Parameters
    Contains single-precision data to be used by Fast Helmholtz Solver.
    Modified on output as explained in Common Parameters.
    int*. Routine completion status, which is also written to ipar[0]. The
    status should be 0 to proceed to other PL routines.

\section*{Description}

The Helmholtz_2D-Helmholtz_3D routines compute the approximate solution of Helmholtz problem defined in the previous calls to the corresponding initialization and commit routines. The solution is computed according to formulas given in the Poisson Library Implemented section. The \(f\) parameter, which initially holds the packed vector of the right-hand side of the problem, is replaced by the computed solution packed in the same way. Values of \(a x, b x, a y, b y, a z, b z, n x, n y, n z\), and BCtype are passed to each of the routines with the ipar array and defined in the previous call to the appropriate ? init_Helmholtz_2D/? _init_Helmholtz_3D routine.

\section*{Return Values}
```

stat=1
stat=0

```

The routine completed without errors and produced some warnings.
The routine successfully completed the task.
```

stat= -2
stat= -3
stat=-100
stat=-1000
stat=-10000
stat= -99999
The routine stopped because division by zero occurred. It usually happens if the data in the dpar or spar array was altered by mistake.
The routine stopped because the memory was insufficient to complete the computations.
The routine stopped because an error in the user's data was found or the data in the dpar, spar or ipar array was altered by mistake.
The routine stopped because of the Intel MKL FFT or TT interface error.
The routine stopped because the initialization failed to complete or the parameter ipar[0] was altered by mistake.
The routine failed to complete the task because of a fatal error.

```
free_Helmholtz_2D/free_Helmholtz_3D
Cleans the memory allocated for the data structures used by the FFT interface.

\section*{Syntax}
```

void free_Helmholtz_2D(DFTI_DESCRIPTOR_HANDLE* xhandle, int* ipar, int* stat);
void free_Helmholtz_3D(DFTI_DESCRIPTOR_HANDLE* xhandle, DFTI_DESCRIPTOR_HANDLE*
yhandle, int* ipar, int* stat);

```

\section*{Include Files}
- FORTRAN 90: mkl_poisson.f90
- C: mkl_poisson.h

\section*{Input Parameters}
```

xhandle, yhandle DFTI_DESCRIPTOR_HANDLE*. Data structures used by the Intel MKL FFT
interface (for details, refer to section "FFT Functions" in chapter "Fast
Fourier Transforms"). The structure yhandle is used only by
free_Helmholtz_3D.
ipar int array of size 128. Contains integer data to be used by Fast Helmholtz
Solver (for details, refer to Common Parameters).

```

\section*{Output Parameters}
```

xhandle, yhandle Data structures used by the Intel MKL FFT interface. Memory allocated for
the structures is released on output.
Contains integer data to be used by Fast Helmholtz Solver. Status of the
routine call is written to ipar[0].
int*. Routine completion status, which is also written to ipar[0].

```

\section*{Description}

The free_Helmholtz_2D-free_Helmholtz_3D routine cleans the memory used by the xhandle and yhandle structures, needed for calling the Intel MKL FFT functions. To release memory allocated for other parameters, include cleaning of the memory in your code.

\section*{Return Values}
```

stat=0
stat= -1000
stat= -99999

```

The routine successfully completed the task.
The routine stopped because of an Intel MKL FFT or TT interface error.
The routine failed to complete the task because of a fatal error.

\section*{PL Routines for the Spherical Solver}

The section gives detailed description of spherical PL routines, their syntax, parameters and values they return. All flavors of the same routine, namely, double-precision and single-precision, periodic (having names ending in " p ") and non-periodic (having names ending in "np"), are described together.
These PL routines also call the Intel MKL FFT interface (described in section "FFT Functions" in chapter "Fast Fourier Transforms"), which enhances performance of the routines.

\section*{?_init_sph_p/?_init_sph_np \\ Initializes basic data structures of the Fast periodic and non-periodic Helmholtz Solver on a sphere.}

\section*{Syntax}
```

void d_init_sph_p(double* ap, double* at, double* bp, double* bt, int* np, int* nt,
double* q, int* ipar, double* dpar, int* stat);
void s_init_sph_p(float* ap, float* at, float* bp, float* bt, int* np, int* nt, float*
q, int* ipar, float* spar, int* stat);
void d_init_sph_np(double* ap, double* at, double* bp, double* bt, int* np, int* nt,
double* q, int* ipar, double* dpar, int* stat);
void s_init_sph_np(float* ap, float* at, float* bp, float* bt, int* np, int* nt, float*
q, int* ipar, float* spar, int* stat);

```

\section*{Include Files}
- FORTRAN 90: mkl_poisson.f90
- C: mkl_poisson.h

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{ap} & double* for d_init_sph_p/d_init_sph_np, \\
\hline & float* fors_init_sph_p/s_init_sph_np. \\
\hline & The coordinate (angle) of the leftmost boundary of the domain along \(\varphi\) - \\
\hline \multirow[t]{3}{*}{bp} & double* ford_init_sph_p/d_init_sph_np, \\
\hline & float* fors_init_sph_p/s_init_sph_np. \\
\hline & The coordinate (angle) of the rightmost boundary of the domain along \(\varphi\) axis. \\
\hline \multirow[t]{3}{*}{at} & double* ford_init_sph_p/d_init_sph_np, \\
\hline & float* fors_init_sph_p/s_init_sph_np. \\
\hline & The coordinate (angle) of the leftmost boundary of the domain along \(\theta\)-axis. \\
\hline \multirow[t]{3}{*}{bt} & double* ford_init_sph_p/d_init_sph_np, \\
\hline & float* fors_init_sph_p/s_init_sph_np. \\
\hline & The coordinate (angle) of the rightmost boundary of the domain along \(\theta\) axis. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(n p\) & \begin{tabular}{l} 
int*. The number of mesh intervals along \(\varphi\)-axis. Must be even in the \\
periodic case.
\end{tabular} \\
nt \\
int*. The number of mesh intervals along \(\theta\)-axis. \\
& double* for d_init_sph_p/d_init_sph_np, \\
float* fors_init_sph_p/s_init_sph_np. \\
The constant Helmholtz coefficient. Note that to solve Poisson problem, you \\
should set the value of \(q\) to 0.
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
ipar & \begin{tabular}{l} 
int array of size 128. Contains integer data to be used by Fast Helmholtz \\
Solver on a sphere (for details, refer to Common Parameters).
\end{tabular} \\
dpar & \begin{tabular}{l} 
double array of size \(5^{*} n p / 2+n t+10\). Contains double-precision data to be \\
used by Fast Helmholtz Solver on a sphere (for details, refer to Common \\
Parameters).
\end{tabular} \\
spar & \begin{tabular}{l} 
float array of size \(5^{*} n p / 2+n t+10\). Contains single-precision data to be \\
used by Fast Helmholtz Solver on a sphere (for details, refer to Common \\
Parameters).
\end{tabular} \\
& \begin{tabular}{l} 
int*. Routine completion status, which is also written to ipar [0]. The \\
status should be 0 to proceed to other PL routines.
\end{tabular}
\end{tabular}

\section*{Description}

The ?_init_sph_p/?_init_sph_np routines initialize basic data structures for Poisson Library computations of the appropriate precision. All routines invoked after a call to a ? init_Helmholtz_2D/?
_init_Helmholtz_3D routine use values of the ipar, dpar and spar array parameters returned by the routine. Detailed description of the array parameters can be found in Common Parameters.

> WARNING Data structures initialized and created by periodic/non-periodic flavors of the routine cannot be used by non-periodic/periodic flavors of any PL routines for Helmholtz Solver on a sphere, respectively.

You can skip calling this routine in your code. However, see Caveat on Parameter Modifications before doing so.

\section*{Return Values}
```

stat=0 The routine successfully completed the task. In general, to
proceed with computations, the routine should complete
with this stat value.
The routine failed to complete the task because of fatal
error.

```

\section*{?_commit_sph_p/?_commit_sph_np \\ Checks consistency and correctness of user's data as well as initializes certain data structures required to solve periodic/non-periodic Helmholtz problem on a sphere.}

\section*{Syntax}
```

void d_commit_sph_p(double* f, DFTI_DESCRIPTOR_HANDLE* handle_s,
DFTI_DESCRIPTOR_HANDLE* handle_c, int* ipar, double* dpar, int* stat);
void s_commit_sph_p(float* f, DFTI_DESCRIPTOR_HANDLE* handle_s, DFTI_DESCRIPTOR_HANDLE*
handle_c, int* ipar, float* spar, int* stat);

```
```

void d_commit_sph_np(double* f, DFTI_DESCRIPTOR_HANDLE* handle, int* ipar, double*
dpar, int* stat);
void s_commit_sph_np(float* f, DFTI_DESCRIPTOR_HANDLE* handle, int* ipar, float* spar,
int* stat);

```

\section*{Include Files}
- FORTRAN 90: mkl_poisson.f90
- C: mkl_poisson.h

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(f\) & \begin{tabular}{l}
double* for d_commit_sph_p/d_commit_sph_np, float* for s_commit_sph_p/s_commit_sph_np. \\
Contains the right-hand side of the problem packed in a single vector. The size of the vector is \((n p+1) *(n t+1)\) and value of the right-hand side in the mesh point ( \(i, j\) ) is stored in \(f\left[i+j^{*}(n p+1)\right]\). \\
Note that the array \(f\) may be altered by the routine. Please save this vector in another memory location if you want to preserve it.
\end{tabular} \\
\hline ipar & int array of size 128. Contains integer data to be used by Fast Helmholtz Solver on a sphere (for details, refer to Common Parameters). \\
\hline dpar & double array of size \(5^{*} n p / 2+n t+10\). Contains double-precision data to be used by Fast Helmholtz Solver on a sphere (for details, refer to Common Parameters). \\
\hline spar & float array of size \(5^{*} n p / 2+n t+10\). Contains single-precision data to be used by Fast Helmholtz Solver on a sphere (for details, refer to Common Parameters). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

f
ipar
dpar
spar
handle_s, handle_c,
handle

```
stat

Vector of the right-hand side of the problem. Possibly, altered on output. Contains integer data to be used by Fast Helmholtz Solver on a sphere. Modified on output as explained in Common Parameters.
Contains double-precision data to be used by Fast Helmholtz Solver on a sphere. Modified on output as explained in Common Parameters.
Contains single-precision data to be used by Fast Helmholtz Solver on a sphere. Modified on output as explained in Common Parameters.
DFTI_DESCRIPTOR_HANDLE*. Data structures used by the Intel MKL FFT interface (for details, refer to section "FFT Functions" in chapter "Fast Fourier Transforms"). handle_s and handle_c are used only in ? _commit_sph_p and handle is used only in ?_commit_sph_np.
int*. Routine completion status, which is also written to ipar[0]. The status should be 0 to proceed to other PL routines.

\section*{Description}

The ?_commit_sph_p/?_commit_sph_np routines check consistency and correctness of the parameters to be passed to the solver routines ? _sph_p/?_sph_np, respectively. They also initialize certain data structures. The routine ?_commit_sph_p initializes structures handle_s and handle_c, and ? _commit_sph_np initializes handle. The routines also initialize arrays ipar and dpar/spar, depending upon the routine precision. Refer to Common Parameters to find out which particular array elements the ?
_commit_sph_p/?_commit_sph_np routines initialize and what values are written there.

The routines perform only a basic check for correctness and consistency. If you are going to modify parameters of PL routines, see the Caveat on Parameter Modifications section. Unlike ?_init_sph_p/? _init_sph_np, the routines ?_commit_sph_p/?_commit_sph_np are mandatory, and you cannot skip calling them in your code. Values of \(n p\) and \(n t\) are passed to each of the routines with the ipar array and defined in a previous call to the appropriate ?_init_sph_p/?_init_sph_np routine.

\section*{Return Values}
```

stat=1
stat=0
stat=-100
stat= -1000
stat= -10000
stat= -99999

```

The routine completed without errors and produced some warnings.
The routine successfully completed the task.
The routine stopped because an error in the user's data was found or the data in the dpar, spar or ipar array was altered by mistake.
The routine stopped because of an Intel MKL FFT or \(\Pi T\) interface error.
The routine stopped because the initialization failed to complete or the parameter ipar[0] was altered by mistake.

The routine failed to complete the task because of a fatal error.
```

?_sph_p/?_sph_np
Computes the solution of a spherical Helmholtz
problem specified by the parameters.

```

\section*{Syntax}
```

void d_sph_p(double* f, DFTI_DESCRIPTOR_HANDLE* handle_s, DFTI_DESCRIPTOR_HANDLE*
handle_c, int* ipar, double* dpar, int* stat);
void s_sph_p(float* f, DFTI_DESCRIPTOR_HANDLE* handle_s, DFTI_DESCRIPTOR_HANDLE*
handle_c, int* ipar, float* spar, int* stat);
void d_sph_np(double* f, DFTI_DESCRIPTOR_HANDLE* handle, int* ipar, double* dpar, int*
stat);
void s_sph_np(float* f, DFTI_DESCRIPTOR_HANDLE* handle, int* ipar, float* spar, int*
stat);

```

\section*{Include Files}
- FORTRAN 90: mkl_poisson.f90
- C: mkl_poisson.h

\section*{Input Parameters}
```

f double* ford_sph_p/d_sph_np,
float* fors_sph_p/s_sph_np.

```

Contains the right-hand side of the problem packed in a single vector and modified by the appropriate ?_commit_sph_p/?_commit_sph_np routine. Note that an attempt to substitute the original right-hand side vector at this point will result in a wrong solution.
The size of the vector is \((n p+1)^{*}(n t+1)\) and value of the right-hand side in the mesh point \((i, j)\) is stored in \(f\left[i+j^{*}(n p+1)\right]\).
\begin{tabular}{|c|c|}
\hline handle_s, handle_c, handle & DFTI_DESCRIPTOR_HANDLE*. Data structures used by Intel MKL FFT interface (for details, refer to section "FFT Functions" in chapter "Fast Fourier Transforms"). handle_s and handle_c are used only in ?_sph_p and handle is used only in ?_sph_np. \\
\hline ipar & int array of size 128. Contains integer data to be used by Fast Helmholtz Solver on a sphere (for details, refer to Common Parameters). \\
\hline dpar & double array of size \(5^{*} n p / 2+n t+10\). Contains double-precision data to be used by Fast Helmholtz Solver on a sphere (for details, refer to Common Parameters). \\
\hline spar & float array of size \(5^{*} n p / 2+n t+10\). Contains single-precision data to be used by Fast Helmholtz Solver on a sphere (for details, refer to Common Parameters). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

f
handle_s, handle_c,
handle
ipar
dpar
spar
stat

```

On output, contains the approximate solution to the problem packed the same way as the right-hand side of the problem was packed on input. Data structures used by the Intel MKL FFT interface.

Contains integer data to be used by Fast Helmholtz Solver on a sphere. Modified on output as explained in Common Parameters.
Contains double-precision data to be used by Fast Helmholtz Solver on a sphere. Modified on output as explained in Common Parameters.
Contains single-precision data to be used by Fast Helmholtz Solver on a sphere. Modified on output as explained in Common Parameters.
int*. Routine completion status, which is also written to ipar[0]. The status should be 0 to proceed to other PL routines.

\section*{Description}

The sph_p-sph_np routines compute the approximate solution on a sphere of the Helmholtz problem defined in the previous calls to the corresponding initialization and commit routines. The solution is computed according to formulas given in the Poisson Library Implemented section. The \(f\) parameter, which initially holds the packed vector of the right-hand side of the problem, is replaced by the computed solution packed in the same way. Values of \(n p\) and \(n t\) are passed to each of the routines with the ipar array and defined in the previous call to the appropriate ?_init_sph_p/?_init_sph_np routine.

\section*{Return Values}
```

stat=1
stat=0
stat=-2
stat= -3
stat= -100
stat= -1000

```

The routine completed without errors and produced some warnings.
The routine successfully completed the task.
The routine stopped because division by zero occurred. It usually happens if the data in the dpar or spar array was altered by mistake.
The routine stopped because the memory was insufficient to complete the computations.
The routine stopped because an error in the user's data was found or the data in the dpar, spar or ipar array was altered by mistake.
The routine stopped because of an Intel MKL FFT or TT interface error.
```

stat=-10000 The routine stopped because the initialization failed to
complete or the parameter ipar[0] was altered by
mistake.
The routine failed to complete the task because of a fatal
error.

```
free_sph_p/free_sph_np
Cleans the memory allocated for the data structures used by the FFT interface.

\section*{Syntax}
```

void free_sph_p(DFTI_DESCRIPTOR_HANDLE* handle_s, DFTI_DESCRIPTOR_HANDLE* handle_c,
int* ipar, int* stat);
void free_sph_np(DFTI_DESCRIPTOR_HANDLE* handle, int* ipar, int* stat);

```

Include files
- FORTRAN 90: mkl_poisson.f90
- C: mkl_poisson.h

\section*{Input Parameters}

\section*{Output Parameters}
```

handle_s, handle_c,
handle
ipar
DFTI_DESCRIPTOR_HANDLE*. Data structures used by the Intel MKL FFT interface (for details, refer to section "FFT Functions" in chapter "Fast Fourier Transforms"). The structures handle_s and handle_c are used only in free_sph_p, and handle is used only in free_sph_np.
int array of size 128. Contains integer data to be used by Fast Helmholtz Solver on a sphere (for details, refer to Common Parameters).

```
```

handle_s, handle_c, Data structures used by the Intel MKL FFT interface. Memory allocated for
handle
ipar
stat
Data structures used by the Intel MKL FFT interface. Memory allocated for the structures is released on output.
Contains integer data to be used by Fast Helmholtz Solver on a sphere. Status of the routine call is written to ipar[0].
int*. Routine completion status, which is also written to ipar[0].

```

\section*{Description}

The free_sph_p-free_sph_np routine cleans the memory used by the handle_s, handle_c or handle structures, needed for calling the Intel MKL FFT functions. To release memory allocated for other parameters, include cleaning of the memory in your code.

\section*{Return Values}
```

stat=0
stat= -1000
stat= -99999

```

The routine successfully completed the task.
The routine stopped because of the Intel MKL FFT or TT interface error.

The routine failed to complete the task because of a fatal error.

\section*{Common Parameters}

This section provides description of array parameters ipar, dpar and spar, which hold PL routine options in both Cartesian and spherical cases.

NOTE Initial values are assigned to the array parameters by the appropriate ?
init_Helmholtz_2D/?_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np and ?

int array of size 128, holds integer data needed for Fast Helmholtz Solver (both for Cartesian and spherical coordinate systems). Its elements are described in Table "Elements of the ipar Array":
Elements of the ipar Array

\section*{Index Description}
\(0 \quad\) Contains status value of the last called PL routine. In general, it should be 0 to proceed with Fast Helmholtz Solver. The element has no predefined values. This element can also be used to inform the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D/?_commit_sph_p/? _commit_sph_np routines of how the Commit step of the computation should \(\bar{b} e\) carried out (see Figure "Tȳpical Order of Invoking PL Routines"). A non-zero value of ipar[0] with decimal representation
\[
\overline{a b c}=100 a+10 b+c
\]
where each of \(a, b\), and \(c\) is equal to 0 or 9 , indicates that some parts of the Commit step should be omitted.
- If \(c=9\), the routine omits checking of parameters and initialization of the data structures.
- If \(b=9\), then in the Cartesian case, the routine omits the adjustment of the right-hand side vector \(f\) to the Neumann boundary condition (multiplication of boundary values by 0.5 as well as incorporation of the boundary function \(g\) ) and/or the Dirichlet boundary condition (setting boundary values to 0 as well as incorporation of the boundary function \(G\) ). In this case, the routine also omits the adjustment of the right-hand side vector \(f\) to the particular boundary functions. For the Helmholtz solver on a sphere, the routine omits computation of the spherical weights for the dpar/spar array.
- If \(a=9\), then the routine omits the normalization of the right-hand side vector \(f\). In the 2D Cartesian case, it is the multiplication by \(h y^{2}\), where hy is the mesh size in the \(y\) direction (for details, see Poisson Library Implemented). In the 3D (Cartesian) case, it is the multiplication by \(h z^{2}\), where \(h z\) is the mesh size in the \(z\) direction. For the Helmholtz solver on a sphere, it is the multiplication by \(h_{\theta}{ }^{2}\), where \(h_{\theta}\) is the mesh size in the \(\theta\) direction (for details, see Poisson Library Implemented).

Using ipar [0] you can adjust the routine to your needs and gain efficiency in solving multiple Helmholtz problems that differ only in the right-hand side. You must be cautious using this opportunity, because misunderstanding of the commit process may cause wrong results or program failure (see also Caveat on Parameter Modifications).
1
Contains error messaging options:
- ipar[1]=-1 indicates that all error messages will be printed to the file MKL_Poisson_Library_log.txt in the folder from which the routine is called. If the file does not exist, the routine tries to create it. If the attempt fails, the routine prints information that the file cannot be created to the standard output device.
- ipar[1]=0 indicates that no error messages will be printed.
- ipar[1]=1 is the default value. It indicates that all error messages will be printed to the preconnected default output device (usually, screen).

\section*{Index Description}

In case of errors, the stat parameter will acquire a non-zero value regardless of the ipar[1] setting.

Parameters 4 through 9 are used only in Cartesian case.
Contains warning messaging options: ipar[2] setting.
- In the 2D case,

0 corresponds to 'DDDD'
1 corresponds to 'DDDN'
15 corresponds to 'NNNN'
- In the 3D case,

0 corresponds to 'DDDDDD'
1 corresponds to 'DDDDDN'
63 corresponds to 'NNNNNN'. determine its value:
- 0 corresponds to the problem without poles.
- 1 corresponds to the problem on the entire sphere. parameter is used only in the 3D case. parameter is used only in the 3D case.

Takes the value of

Takes the value of
- ipar[2]=-1 indicates that all warning messages will be printed to the file MKL_Poisson_Library_log.txt in the directory from which the routine is called. If the file does not exist, the routine tries to create it. If the attempt fails, the routine prints information that the file cannot be created to the standard output device.
- ipar[2]=0 indicates that no warning messages will be printed.
- ipar[2]=1 is the default value. It indicates that all warning messages will be printed to the preconnected default output device (usually, screen).
In case of warnings, the stat parameter will acquire a non-zero value regardless of the

3 Contains the number of the combination of boundary conditions. In the Cartesian case, it corresponds to the value that the BCtype parameter holds:

The Helmholtz solver on a sphere uses this parameter only in a periodic case. The bp and bt parameters of the ? init_sph_p/?_init_sph_np routine, which initializes ipar [3],

4 Takes the value of 1 if BCtype [0]=' N ', 0 if BCtype [0]='D', and -1 otherwise.
Takes the value of 1 if BCtype [1]=' N ', 0 if BCtype [1]='D', and -1 otherwise.
Takes the value of 1 if BCtype [2]=' N ', 0 if BCtype [2]='D', and -1 otherwise.
Takes the value of 1 if BCtype [3]=' N ', 0 if BCtype [3]='D', and -1 otherwise.
Takes the value of 1 if BCtype [4]='N', 0 if BCtype [4]='D', and -1 otherwise. This

Takes the value of 1 if BCtype [5] =' N ', 0 if BCtype [5]='D', and -1 otherwise. This
- \(n x\), that is, the number of intervals along \(x\)-axis, in the Cartesian case.
- \(n p\), that is, the number of intervals along \(\varphi\)-axis, in the spherical case.

\section*{Index Description}
- ny, that is, the number of intervals along \(y\)-axis, in the Cartesian case
- \(n t\), that is, the number of intervals along \(\theta\)-axis, in the spherical case.

12 Takes the value of \(n z\), the number of intervals along \(z\)-axis. This parameter is used only in the 3D case (Cartesian).

13 Takes the value of 6, which specifies the internal partitioning of the dpar/spar array.
14 Takes the value of ipar[13]+ipar[10]+1, which specifies the internal partitioning of the dpar/spar array.

Subsequent values of ipar depend upon the dimension of the problem or upon whether the solver on a sphere is periodic.
2D case 3D case Periodic case Non-periodic case

Unused

16

17
7 Takes the value of ipar[14]+1, which specifies the internal partitioning of the dpar/spar array.

18 Takes the value of ipar[14]+3*ipar[10 ] / \(2+1\), which specifies the internal partitioning of the dpar/spar array.

Unused
\begin{tabular}{|c|c|c|}
\hline Takes the value of ipar[16]+3* & Takes the value of ipar[16]+3 & Takes the value of ipar[16] \\
\hline ipar[10]/2+1, & *ipar[10]/4+1, which & +3*ipar[10]/ \\
\hline which specifies the & specifies the internal & \(2+1\), which \\
\hline internal & partitioning of the & specifies the \\
\hline partitioning of the & dpar/spar array. & internal \\
\hline dpar/spar array. & & partitioning of the dpar/spar array. \\
\hline es the value & 1, which & Unused \\
\hline
\end{tabular} specifies the internal partitioning of the dpar/spar array.
\(\begin{array}{ll}\text { Takes the value of } & \text { Takes the value of } \\ \text { ipar }[18]+ & \text { ipar }[18]+3^{*} \text { ipar }[10\end{array}\)
] /4+1, which specifies
the internal partitioning of the dpar/spar array.

3*ipar[11]/2+1, which specifies the internal partitioning of the dpar/spar array.

Takes the value of ipar[14]+1, which specifies the internal partitioning of the dpar/spar array.
Takes the value of ipar[14]+ ipar[11]+1, which specifies the internal partitioning of the dpar/spar array.
Takes the value of ipar[16]+1, which specifies the internal partitioning of the dpar/spar array.

Unused

Subsequent values of ipar are assigned regardless.
21 Contains message style options:
- ipar[21]=0 indicates that PL routines print all error and warning messages in Fortranstyle notations.
- ipar[21]=1 (default) indicates that PL routines print the messages in C-style notations.

Contains the number of threads to be used for computations in a multithreaded environment. The default value is 1 in the serial mode, and the result returned by the mkl_get_max_threads function otherwise.
\begin{tabular}{ll}
\hline Index & Description \\
\hline \begin{tabular}{l}
23 \\
through \\
39
\end{tabular} & Unused in the current implementation of the Poisson Library. \\
40 & \\
through & \begin{tabular}{l} 
Contain the first twenty elements of the ipar array of the first Trigonometric Transform that \\
59
\end{tabular} \\
\begin{tabular}{ll} 
the Solver uses. (For details, see Common Parameters in the "Trigonometric Transform
\end{tabular} \\
60 & \begin{tabular}{l} 
Contain the first twenty elements of the ipar array of the second Trigonometric Transform \\
through \\
79
\end{tabular} \\
\begin{tabular}{ll} 
that the 3D and periodic solvers use. (For details, see Common Parameters in the
\end{tabular} \\
\hline "Trigonometric Transform Routines" chapter.)
\end{tabular}

NOTE You may declare the ipar array in your code as int ipar[80]. However, for compatibility with later versions of Intel MKL Poisson Library, which may require more ipar values, it is highly recommended to declare ipar as int ipar[128].

Arrays dpar and spar are the same except in the data precision:
Holds data needed for double-precision Fast Helmholtz Solver computations.
- For the Cartesian solver, double array of size \(5^{*} n x / 2+7\) in the 2D case or 5* \((n x+n y) / 2+9\) in the 3D case; initialized in the d_init_Helmholtz_2D/ d_init_Helmholtz_3D and d_commit_Helmholtz_2D/ d_commit_Helmholtz_3D routines.
- For the spherical solver, double array of size \(5^{*} n p / 2+n t+10\); initialized in the d_init_sph_p/d_init_sph_np and d_commit_sph_p/ d_commit_sph_np routines.

Holds data needed for single-precision Fast Helmholtz Solver computations.
- For the Cartesian solver, float array of size \(5^{*} n x / 2+7\) in the 2D case or 5* \((n x+n y) / 2+9\) in the 3D case; initialized in the s_init_Helmholtz_2D/ s_init_Helmholtz_3D and s_commit_Helmholtz_2D/ s_commit_Helmholtz_3D routines.
- For the spherical solver, float array of size \(5^{*} n p / 2+n t+10\); initialized in the s_init_sph_p/s_init_sph_np and s_commit_sph_p/s_commit_sph_np routines.

As dpar and spar have similar elements in respective positions, the elements are described together in Table "Elements of the dpar and spar Arrays":

Elements of the dpar and spar Arrays

\section*{Index \\ Description}

In the Cartesian case, contains the length of the interval along \(x\)-axis right after a call to the ? _init_Helmholtz_2D/?_init_Helmholtz_3D routine or the mesh size \(h_{x}\) in the \(x\) direction (for details, see Poisson Library Implemented) after a call to the ? _commit_Helmholtz_2D/?_commit_Helmholtz_3D routine.
In the spherical case, contains the length of the interval along \(\varphi\)-axis right after a call to the ? init_sph_p/?_init_sph_np routine or the mesh size \(h_{\varphi}\) in the \(\varphi\) direction (for details, see Poisson Library Implemented) after a call to the ?_commit_sph_p/? _commit_sph_np routine.

1
In the Cartesian case, contains the length of the interval along \(y\)-axis right after a call to the ? _init_Helmholtz_2D/?_init_Helmholtz_3D routine or the mesh size \(h_{y}\) in the \(y\) direction (for details, see Poisson Library Implemented) after a call to the ? _commit_Helmholtz_2D/?_commit_Helmholtz_3D routine.

\section*{Index Description}

In the spherical case, contains the length of the interval along \(\theta\)-axis right after a call to the ?_init_sph_p/?_init_sph_np routine or the mesh size \(h_{\theta}\) in the \(\theta\) direction (for details, see Poisson Library Implemented) after a call to the ?_commit_sph_p/? _commit_sph_np routine.
ipar[13]-1 through
ipar[14]-1
ipar[15]-1 through ipar[16]-1
ipar[17]-1
through
ipar[18]-1

In the Cartesian case, contains the length of the interval along \(z\)-axis right after a call to the ?_init_Helmholtz_2D/?_init_Helmholtz_3D routine or the mesh size \(h_{z}\) in the \(z\) direction (for details, \({ }^{-}\)see Poisson Library Implemented) after a call to the ? _commit_Helmholtz_2D/?_commit_Helmholtz_3D routine. In the Cartesian solver, \(\overline{\text { this }}\) parameter is used only \(\overline{\text { in }}\) the 3D case.

In the spherical solver, contains the coordinate of the leftmost boundary along \(\theta\)-axis after a call to the ?_init_sph_p/?_init_sph_np routine.

Contains the value of the coefficient \(q\) after a call to the ?_init_Helmholtz_2D/? _init_Helmholtz_3D/?_init_sph_p/?_init_sph_np routine.
Contains the tolerance parameter after a call to the ?_init_Helmholtz_2D/?
_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np routine.
- In the Cartesian case, this value is used only for the pure Neumann boundary conditions ( BCtype="NNNN" in the 2D case; BCtype="NNNNNN" in the 3D case). This is a special case, because the right-hand side of the problem cannot be arbitrary if the coefficient \(q\) is zero. Poisson Library verifies that the classical solution exists (up to rounding errors) using this tolerance. In any case, Poisson Library computes the normal solution, that is, the solution that has the minimal Euclidean norm of residual. Nevertheless, the ?_Helmholtz_2D/?_Helmholtz_3D routine informs the user that the solution may not exist in a classical sense (up to rounding errors).
- In the spherical case, the value is used for the special case of a periodic problem on the entire sphere. This special case is similar to the above described Cartesian case with pure Neumann boundary conditions. So, here Poisson Library computes the normal solution as well. The parameter is also used to detect whether the problem is periodic up to rounding errors.

The default value for this parameter is \(1.0 \mathrm{E}-10\) in case of double-precision computations or \(1.0 \mathrm{E}-4\) in case of single-precision computations. You can increase the value of the tolerance, for instance, to avoid the warnings that may appear.

In the Cartesian case, contain the spectrum of the 1D problem along \(x\)-axis after a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine.
In the spherical case, contains the spectrum of the 1D problem along \(\varphi\)-axis after a call to the ?_commit_sph_p/?_commit_sph_np routine.

In the Cartesian case, contain the spectrum of the 1D problem along \(y\)-axis after a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine. These elements are used only in the 3D case.
In the spherical case, contains the spherical weights after a call to the ?
_commit_sph_p/?_commit_sph_np routine.
Take the values of the (staggered) sine/cosine in the mesh points:
- along \(x\)-axis after a call to the ?_commit_Helmholtz_2D/?
_commit_Helmholtz_3D routine for a Cartesian solver
- along \(\varphi\)-axis after a call to the ? _commit_sph_p/?_commit_sph_np routine for a spherical solver.

\section*{Index}

\section*{Description}
ipar[19]-1
through
ipar[20]-1

Take the values of the (staggered) sine/cosine in the mesh points:
- along \(y\)-axis after a call to the ?_commit_Helmholtz_2D/?
_commit_Helmholtz_3D routine for a Cartesian 3D solver
- along \(\varphi\)-axis after a call to the ? commit_sph_p routine for a spherical periodic solver.

These elements are not used in the 2D Cartesian case and in the non-periodic spherical case.

NOTE You may define the array size depending upon the type of the problem to solve.

\section*{Caveat on Parameter Modifications}

Flexibility of the PL interface enables you to skip calling the ? _init_Helmholtz_2D/? _init_Helmholtz_3D/?_init_sph_p/?_init_sph_np routine and to initialize the basic data structures explicitly in your code. You may also need to modify contents of ipar, dpar and spar arrays after initialization. When doing so, provide correct and consistent data in the arrays. Mistakenly altered arrays cause errors or wrong computation. You can perform a basic check for correctness and consistency of parameters by calling the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine; however, this does not ensure the correct solution but only reduces the chance of errors or wrong results.

NOTE To supply correct and consistent parameters to PL routines, you should have considerable experience in using the PL interface and good understanding of the solution process as well as elements that the ipar, spar and dpar arrays contain and dependencies between values of these elements.

However, in rare occurrences, even advanced users might fail in tuning parameters for the Fast Helmholtz Solver. In cases like these, refer for technical support at http://www.intel.com/software/products/support/ .

> WARNING The only way that ensures a proper solution of a Helmholtz problem is to follow a typical sequence of invoking the routines and not change the default set of parameters. So, avoid modifications of ipar, dpar and spar arrays unless a strong need arises.

\section*{Implementation Details}

Several aspects of the Intel MKL PL interface are platform-specific and language-specific. To promote portability across platforms and ease of use across different languages, users are provided with the PL language-specific header files to include in their code. Currently, the following header files are available:
- mkl_poisson.h, to be used together with mkl_dfti.h, for C programs.
- mkl_poisson.f90, to be used together with mkl_dfti.f90, for Fortran 90 programs.

Use of the Intel MKL PL software without including one of the above header files is not supported.
The include files define function prototypes for appropriate languages.

\section*{C-specific Header File}

\section*{The C-specific header file defines the following function prototypes for the Cartesian solver:}
void d_init_Helmholtz_2D(double*, double*, double*, double*, int*, int*, char*, double*, int*, double*, int*);
void d_commit_Helmholtz_2D(double*, double*, double*, double*, double*, DFTI_DESCRIPTOR_HANDLE*, int*, double", int*);
void d_Helmholtz_2D(double*, double*, double*, double*, double*, DFTI_DESCRIPTOR_HANDLE*, int*, double末, int*);
void s_init_Helmholtz_2D(float*, float*, float*, float*, int*, int*, char*, float*, int*, float*, int*);
void s_commit_Helmholtz_2D(float*, float*, float*, float*, float*, DFTI_DESCRIPTOR_HANDLE*, int*, float*, int*) \(;\)
void s_Helmholtz_2D(float*, float*, float*, float*, float*, DFTI_DESCRIPTOR_HANDLE*, int*, float*, int*);
void free_Helmholtz_2D(DFTI_DESCRIPTOR_HANDLE*, int*, int*);
void d_init Helmholtz 3D(double*, double*, double*, double*, double*, double*, int*, int*, int*, char*, double \(\left.{ }^{\bar{\star}}, ~ i n \bar{t} *, ~ d o u b l e \bar{*}, ~ i n t *\right) ; ~\)
void d_commit_Helmholtz_3D(double*, double*, double*, double*, double*, double*, double*, DFTI_DESSCRIPTŌR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*, double*, int*);
void d Helmholtz 3D(double*, double*, double*, double*, double*, double*, double*, DFTI_DESCRIPTOR_̄̄ANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*, double*, int*);
void s_init_Helmholtz_3D(float*, float*, float*, float*, float*, float*, int*, int*, int*, char*, float*, int*, float*, \({ }^{\bar{*}}\) int*);
void s commit Helmholtz 3D(float*, float*, float*, float*, float*, float*, float*,
DFTI_DESSCRIPTORR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*, float*, int*);
void s_Helmholtz_3D(float*, float*, float*, float*, float*, float*, float*, DFTI_DESCRIPTOR_HANDLE*, DFTI_DESSCRIPTOR_FHNDLE*, int*, float*, int*);
void free_Helmholtz_3D(DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*, int*);

The C-specific header file defines the following function prototypes for the spherical solver:
void d_init_sph_p (double*, double*, double*, double*, int*, int*, double*, int*, double*, int*); void d_commit_sph_p (double*, DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*, double*, int*); void d_sph_p(double*, DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*, double*, int*); void s_init_sph_p(float*, float*, float*, float*, int*, int*, float*, int*, float*, int*); void s_commit_sph_p(float*, DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*, float*, int*); void s_sph_p(float*, DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*, float*, int*); void free_sph_p(DFTI_DESCRIPTOR_HANDLE*, DFTI_DESCRIPTOR_HANDLE*, int*, int*);
void d_init_sph_np(double*, double*, double*, double*, int*, int*, double*, int*, double*, int*); void d_commit_sph_np(double*, DFTI_DESCRIPTOR_HANDLE*, int*, double*, int*); void d_sph_np (double*, DFTI_DESCRIPTOR_HANDLE*, int*, double*, int*);
void s_init_sph_np(float*, float*, float*, float*, int*, int*, float*, int*, float*, int*);
void s_commit_sph_np(float*, DFTI_DESCRIPTOR_HANDLE*, int*, float*, int*);
void s_sph_np(float*, DFTI_DESCRIPTOR_HANDLE*, int*, float*, int*);
void free_sph_np(DFTI_DESCRIPTOR_HANDLE*, int*, int*);

\section*{Fortran-Specific Header File}

The Fortran90-specific header file defines the following function prototypes for the Cartesian solver:
SUBROUTINE D_INIT_HELMHOLTZ_2D (AX, BX, AY, BY, NX, NY, BCTYPE, Q, IPAR, DPAR, STAT)
USE MKL_DFTI

INTEGER NX, NY, STAT
INTEGER IPAR(*)
DOUBLE PRECISION AX, BX, AY, BY, Q
DOUBLE PRECISION DPAR(*)
CHARACTER (4) BCTYPE
End SUBROUTINE
```

SUBROUTINE D_COMMIT_HELMHOLTZ_2D (F, BD_AX, BD_BX, BD_AY, BD_BY, XHANDLE, IPAR, DPAR, STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
DOUBLE PRECISION F(IPAR(11)+1,*)
DOUBLE PRECISION DPAR(*)
DOUBLE PRECISION BD_AX(*), BD_BX(*), BD_AY(*), BD_BY(*)
TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE
END SUBROUTINE

```
SUBROUTINE D_HELMHOLTZ_2D ( \(F\), BD_AX, BD_BX, BD_AY, BD_BY, XHANDLE, IPAR, DPAR, STAT)
    USE MKL_DFTI
    INTEGER STAT
    INTEGER IPAR (*)
    DOUBLE PRECISION F (IPAR (11) 1 , * *
    DOUBLE PRECISION DPAR(*)
    DOUBLE PRECISION BD_AX(*), BD_BX(*), BD_AY(*), BD_BY(*)
    TYPE (DFTI_DESCRIPTOR), POINTER :: XHANDLE
END SUBROUTINE
SUBROUTINE S_INIT_HELMHOLTZ_2D (AX, BX, AY, BY, NX, NY, BCTYPE, Q, IPAR,
SPAR,
STAT)

USE MKL_DFTI

INTEGER NX, NY, STAT
\(\not{ }^{2} 488_{G E R} \operatorname{IPAR}(*)\)
```

DPAR, STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
DOUBLE PRECISION F(IPAR(11)+1,IPAR(12)+1,*)
DOUBLE PRECISION DPAR(*)
DOUBLE PRECISION BD_AX(IPAR(12)+1,*), BD_BX(IPAR(12)+1,*), BD_AY(IPAR(11)+1,*)
DOUBLE PRECISION BD_BY(IPAR(11)+1,*), BD_AZ(IPAR(11)+1,*), BD_BZ(IPAR(11)+1,*)
TYPE (DFTI_DESCRIPTOR), POINTER :: XHANDLE, YHANDLE
END SUBROUTINE
SUBROUTINE D_HELMHOLTZ_3D (F, BD_AX, BD_BX, BD_AY, BD_BY, BD_AZ, BD_BZ, XHANDLE, YHANDLE, IPAR, DPAR,
STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
DOUBLE PRECISION F(IPAR(11)+1,IPAR(12)+1,*)
DOUBLE PRECISION DPAR(*)
DOUBLE PRECISION BD_AX(IPAR(12)+1,*), BD_BX(IPAR(12)+1,*), BD_AY(IPAR(11) +1,*)
DOUBLE PRECISION BD_BY(IPAR(11)+1,*), BD_AZ(IPAR(11)+1,*), BD_BZ(IPAR(11)+1,*)
TYPE (DFTI_DESCRIPTOR), POINTER :: XHANDLE, YHANDLE
END SUBROUTINE

```
SUBROUTINE S_INIT_HELMHOLTZ_3D (AX, BX, AY, BY, AZ, BZ, NX, NY, NZ, BCTYPE, Q, IPAR, SPAR, STAT)
    USE MKL DFTI
    INTEGER NX, NY, NZ, STAT
    INTEGER IPAR(*)
    REAL AX, BX, AY, BY, AZ, BZ, Q
    REAL SPAR(*)
    CHARACTER (6) BCTYPE
END SUBROUTINE
SUBROUTINE S_COMMIT_HELMHOLTZ_3D (F, BD_AX, BD_BX, BD_AY, BD_BY, BD_AZ, BD_BZ, XHANDLE, YHANDLE, IPAR,
SPAR, STAT)
    USE MKL_DFTI
    INTEGER STAT
    INTEGER IPAR(*)

USE MKL_DFTI

INTEGER STAT
INTEGER IPAR(*)
REAL \(\operatorname{F}(\operatorname{IPAR}(11)+1, \operatorname{IPAR}(12)+1, *)\)
REAL SPAR(*)
REAL BD_AX (IPAR(12)+1,*), BD_BX(IPAR(12)+1,*), BD_AY(IPAR(11)+1,*)
REAL BD_BY(IPAR(11)+1,*), BD_AZ(IPAR(11)+1,*), BD_BZ(IPAR(11)+1,*)
TYPE (DFTI_DESCRIPTOR), POINTER : : XHANDLE, YHANDLE
END SUBROUTINE

SUBROUTINE FREE_HELMHOLTZ_3D (XHANDLE, YHANDLE, IPAR, STAT)
USE MKL_DFTI

INTEGER STAT
INTEGER IPAR (*)
TYPE (DFTI_DESCRIPTOR), POINTER : : XHANDLE, YHANDLE
END SUBROUTINE
```

The Fortran90-specific header file defines the following function prototypes for the spherical solver:
SUBROUTINE D_INIT_SPH_P(AP,BP,AT,BT,NP,NT,Q,IPAR,DPAR,STAT)
USE MKL_DFTI
INTEGER NP, NT, STAT
INTEGER IPAR(*)
DOUBLE PRECISION AP,BP,AT,BT,Q
DOUBLE PRECISION DPAR(*)
END SUBROUTINE
SUBROUTINE D_COMMIT_SPH_P(F,HANDLE_S,HANDLE_C,IPAR,DPAR,STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
DOUBLE PRECISION DPAR(*)
DOUBLE PRECISION F(IPAR(11)+1,*)
TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE_C, HANDLE_S
END SUBROUTINE
SUBROUTINE D_SPH_P(F,HANDLE_S,HANDLE_C,IPAR,DPAR,STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
DOUBLE PRECISION DPAR(*)
DOUBLE PRECISION F(IPAR(11)+1,*)
TYPE (DFTI_DESCRIPTOR), POINTER :: HANDLE_C, HANDLE_S
END SUBROUTINE
SUBROUTINE S_INIT_SPH_P(AP,BP,AT,BT,NP,NT,Q,IPAR,SPAR,STAT)
USE MKL_DFTI
INTEGER NP, NT, STAT
INTEGER IPAR(*)
REAL AP,BP,AT,BT,Q
REAL SPAR(*)
END SUBROUTINE

```
```

F(IPAR(11)+1,*)
TYPE (DFTI_DESCRIPTOR), POINTER :: HANDLE

```
END SUBROUTINE
SUBROUTINE S_SPH_NP(F,HANDLE, IPAR, SPAR, STAT)
    USE MKL_DFTI
    INTEGER STAT
    INTEGER IPAR(*)
    REAL SPAR(*)
    REAL F (IPAR (11) +1 , *)
TYPE (DFTI_DESCRIPTOR), POINTER : : HANDLE
END SUBROUTINE
SUBROUTINE FREE_SPH_NP(HANDLE,IPAR,STAT)
    USE MKL_DFTI
    INTEGER STAT
    INTEGER IPAR (*)
    TYPE (DFTI_DESCRIPTOR), POINTER : : HANDLE
END SUBROUTINE

Fortran 90 specifics of the PL routines usage are similar for all Intel MKL PDE support tools and described in the Calling PDE Support Routines from Fortran 90 section.

\section*{Calling PDE Support Routines from Fortran 90}

The calling interface for all the Intel MKL TT and PL routines is designed to be easily used in C. However, you can invoke each \(\Pi T\) or PL routine directly from Fortran 90 if you are familiar with the inter-language calling conventions of your platform.
The \(T T\) or PL interface cannot be invoked from Fortran 77 due to restrictions imposed by the use of the Intel MKL FFT interface.
The inter-language calling conventions include, but are not limited to, the argument passing mechanisms for the language, the data type mappings from C to Fortran 90 and how C external names are decorated on the platform.
To promote portability and relieve a user of dealing with the calling conventions specifics, Fortran 90 header file mkl_trig_transforms.f90 for TT routines and mkl_poisson.f90 for PL routines, used together with mkl_dfti.f90, declare a set of macros and introduce type definitions intended to hide the inter-language calling conventions and provide an interface to the routines that looks natural in Fortran 90.

For example, consider a hypothetical library routine, foo, which takes a double-precision vector of length \(n\). \(C\) users access such a function as follows:
```

int n;
double *x;
foo(x, \&n);

```

As noted above, to invoke foo, Fortran 90 users would need to know what Fortran 90 data types correspond to \(C\) types int and double (or float in case of single-precision), what argument-passing mechanism the C compiler uses and what, if any, name decoration is performed by the \(C\) compiler when generating the external symbol foo. However, with the Fortran 90 header files mkl_trig_transforms.f90/ mkl poisson.f90 and mkl_dfti.f90 included, the invocation of foo within a Fortran 90 program will look as follows:
- For TT interface,
```

use mkl_dfti
use mkl_trig_transforms
INTEGER n
DOUBLE PRECISION, ALLOCATABLE :: x
CALL FOO (x,n)

```
- For PL interface,
    use mkl_dfti
    use mkl_poisson
    INTEGER n
    DOUBLE PRECISION, ALLOCATABLE : : x
    CALL FOO ( \(\mathrm{x}, \mathrm{n}\) )

Note that in the above example, the header files mkl_trig_transforms.f90/mkl_poisson.f90 and mkl_dfti.f90 provide a definition for the subroutine FOO. To ease the use of PL or TT routines in Fortran 90, the general approach of providing Fortran 90 definitions of names is used throughout the libraries. Specifically, if a name from a PL or TT interface is documented as having the C-specific name foo, then the Fortran 90 header files provide an appropriate Fortran 90 language type definition FOO.

One of the key differences between Fortran 90 and C is the language argument-passing mechanism: C programs use pass-by-value semantics and Fortran 90 programs use pass-by-reference semantics. The Fortran 90 headers ensure proper treatment of this difference. In particular, in the above example, the header files mkl_trig_transforms.f90 / mkl_poisson.f90 and mkl_dfti.f90 hide the difference by defining a macro FOO that takes the address of the appropriate arguments.

\section*{Nonlinear Optimization Problem Solvers}

Inte \({ }^{\circledR}\) Math Kernel Library (Intel \({ }^{\circledR}\) MKL) provides tools for solving nonlinear least squares problems using the Trust-Region (TR) algorithms. The solver routines are grouped according to their purpose as follows:
- Nonlinear Least Squares Problem without Constraints
- Nonlinear Least Squares Problem with Linear (Boundary) Constraints
- Jacobian Matrix Calculation Routines

For more information on the key concepts required to understand the use of the Intel MKL nonlinear least squares problem solver routines, see [Conn00].

\section*{Organization and Implementation}

The Intel MKL solver routines for nonlinear least squares problems use reverse communication interfaces (RCI). That means you need to provide the solver with information required for the iteration process, for example, the corresponding Jacobian matrix, or values of the objective function. RCI removes the dependency of the solver on specific implementation of the operations. However, it does require that you organize a computational loop.

Typical order for invoking RCI solver routines


The nonlinear least squares problem solver routines, or Trust-Region (TR) solvers, are implemented with the OpenMP* support. You can manage the threads using threading control functions.

\section*{Memory Allocation and Handles}

To make the TR solver routines easy to use, you are not required to allocate temporary working storage. The solver allocates any required memory. To allow multiple users to access the solver simultaneously, the solver keeps track of the storage allocated for a particular application by using a data object called a handle. Each TR solver routine creates, uses, or deletes a handle. To declare a handle, include mkl_rci.h or mkl_rci.fi.
For a C and C++ program, declare a handle as one of the following:
\#include "mkl_rci.h"
_TRNSP_HANDLE_t handle;
or
_TRNSPBC_HANDLE_t handle;
The first declaration is used for nonlinear least squares problems without boundary constraints, and the second is used for nonlinear least squares problems with boundary constraints.

For a Fortran program using compilers that support eight byte integers, declare a handle as:
INCLUDE "mkl_rci.fi"
INTEGER*8 handle

\section*{Routine Naming Conventions}

The TR routine names have the following structure:
<character><name>_<action>( )
where
- <character> indicates the data type:
\begin{tabular}{ll}
\(s\) & real, single precision \\
\(d\) & real, double precision
\end{tabular}
- <name> indicates the task type:
trnlsp nonlinear least squares problem without constraints
trnlspbc nonlinear least squares problem with boundary constraints
jacobi computation of the Jacobian matrix using central differences
- <action> indicates an action on the task:
init initializes the solver
check checks correctness of the input parameters
solve solves the problem
get retrieves the number of iterations, the stop criterion, the initial residual, and the final residual
delete releases the allocated data

\section*{Nonlinear Least Squares Problem without Constraints}

The nonlinear least squares problem without constraints can be described as follows:
\[
\min _{x \in R^{n}}\|F(x)\|_{2}^{2}=\min _{x \in R^{n}}\|y-f(x)\|_{2}^{2}, y \in R^{m}, x \in R^{n}, f: R^{n} \rightarrow R^{m}, m \geq n,
\]
where
\(F(x): R^{n} \rightarrow R^{m}\) is a twice differentiable function in \(R^{n}\).

Solving a nonlinear least squares problem means searching for the best approximation to the vector y with the model function \(f_{i}(x)\) and nonlinear variables \(x\). The best approximation means that the sum of squares of residuals \(y_{i}-f_{i}(x)\) is the minimum.
See usage examples in FORTRAN and \(C\) in the examples \(\backslash\) solver \(\backslash\) source folder of your Intel MKL directory (ex_nlsqp_f.f and ex_nlsqp_c.c, respectively).
RCI TR Routines
\begin{tabular}{ll} 
Routine Name & Operation \\
\hline ?trnlsp_init & Initializes the solver. \\
?trnlsp_check & Checks correctness of the input parameters. \\
?trnlsp_solve & \begin{tabular}{l} 
Solves a nonlinear least squares problem using the Trust-Region \\
algorithm.
\end{tabular} \\
?trnlsp_get & \begin{tabular}{l} 
Retrieves the number of iterations, stop criterion, initial residual, and \\
final residual.
\end{tabular} \\
?trnlsp_delete & Releases allocated data. \\
\hline
\end{tabular}

\section*{?trnlsp_init \\ Initializes the solver of a nonlinear least squares problem.}

\section*{Syntax}

\section*{Fortran:}
```

res = strnlsp_init(handle, n, m, x, eps, iterl, iter2, rs)
res = dtrnlsp_init(handle, n, m, x, eps, iter1, iter2, rs)

```
c:
```

res = strnlsp_init(\&handle, \&n, \&m, x, eps, \&iterl, \&iter2, \&rs);
res = dtrnlsp_init(\&handle, \&n, \&m, x, eps, \&iterl, \&iter2, \&rs);

```

\section*{Include Files}
- Fortran: mkl_rci.fi
- C: mkl_rci.h

\section*{Description}

The ?trnlsp_init routine initializes the solver.
After initialization, all subsequent invocations of the ?trnlsp_solve routine should use the values of the handle returned by ?trnlsp_init.
The eps array contains the stopping criteria:
\begin{tabular}{ll}
\hline\(e p s\) Value & Description \\
\hline \(\mathbf{1}\) & \(\Delta<\operatorname{eps}(1)\) \\
\(\mathbf{2}\) & \(||F(x)||_{2}<\operatorname{eps}(2)\) \\
3 & The Jacobian matrix is singular. \\
& \(\left|\mid J(x)_{(1: m, j)| |_{2}<\operatorname{eps}(3), j=1, \ldots, n}\right.\)
\end{tabular}
eps Value Description
```

4 ||s||2<eps(4)
5 ||F(x)||2-|F(x)-J(x)S|| | <eps(5)

```
6

The trial step precision. If \(\operatorname{eps}(6)=0\), then the trial step meets the required precision ( \(\leq 1.0 \mathrm{D}-10\) ).

\section*{Note:}
- \(J(x)\) is the Jacobian matrix.
- \(\Delta\) is the trust-region area.
- \(F(x)\) is the value of the functional.
- \(s\) is the trial step.

\section*{Input Parameters}
```

n INTEGER. Length of }x\mathrm{ .
m INTEGER. Length of F(x).
x REAL for strnlsp_init
DOUBLE PRECISION for dtrnlsp_init
Array of size n. Initial guess.
eps REAL forstrnlsp_init
DOUBLE PRECISION for dtrnlsp_init
Array of size 6; contains stopping criteria. See the values in the Description section.
iter1 INTEGER. Specifies the maximum number of iterations.
iter2 INTEGER. Specifies the maximum number of iterations of trial step calculation.
rs REAL for strnlsp_init
DOUBLE PRECISION for dtrnlsp_init
Definition of initial size of the trust region (boundary of the trial step). The minimum value is 0.1 , and the maximum value is 100.0 . Based on your knowledge of the objective function and initial guess you can increase or decrease the initial trust region. It can influence the iteration process, for example, the direction of the iteration process and the number of iterations. The default value is 100.0 .

```

\section*{Output Parameters}
handle
res

Type _TRNSP_HANDLE_t in C/C++ and INTEGER*8 in FORTRAN.
INTEGER. Indicates task completion status.
- res \(=\) TR_SUCCESS - the routine completed the task normally.
- res \(=\) TR_INVALID_OPTION - there was an error in the input parameters.
- res = TR_OUT_OF_MEMORY - there was a memory error.

TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in mkl_rci.fi (Fortran) and mkl_rci.h (C) include files.

\section*{See Also}
?trnlsp_solve

\title{
?trnlsp_check \\ Checks the correctness of handle and arrays containing Jacobian matrix, objective function, and stopping criteria.
}

\section*{Syntax}

\section*{Fortran:}
```

res = strnlsp_check(handle, n, m, fjac, fvec, eps, info)
res = dtrnlsp_check(handle, n, m, fjac, fvec, eps, info)

```

C:
```

res = strnlsp_check(\&handle, \&n, \&m, fjac, fvec, eps, info);
res = dtrnlsp_check(\&handle, \&n, \&m, fjac, fvec, eps, info);

```

Include Files
- Fortran: mkl_rci.fi
- C: mkl_rci.h

\section*{Description}

The ? trnlsp_check routine checks the arrays passed into the solver as input parameters. If an array contains any INF or NaN values, the routine sets the flag in output array info (see the description of the values returned in the Output Parameters section for the info array).

\section*{Input Parameters}
```

handle Type _TRNSPBC_HANDLE_t in C/C++ and INTEGER*8 in FORTRAN.
n
m
fjac
fvec REAL for strnlsp_check
eps
INTEGER.Length of }x\mathrm{ .
INTEGER. Length of F(x).
REAL for strnlsp_check
DOUBLE PRECISION for dtrnlsp_check
Array of size m by n. Contains the Jacobian matrix of the function.
DOUBLE PRECISION for dtrnlsp_check
Array of size m. Contains the function values at X, where fvec(i) = (y (
fi(x)).
REAL for strnlsp_check
DOUBLE PRECISION for dtrnlsp_check
Array of size 6; contains stopping criteria. See the values in the Description section of the ?trnlsp_init.

```

\section*{Output Parameters}

\section*{info}

INTEGER
Array of size 6.
Results of input parameter checking:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Parameter} & \multirow[t]{2}{*}{Used for} & \multirow[t]{2}{*}{Val ue} & \multirow[t]{2}{*}{Description} \\
\hline \begin{tabular}{l}
\[
\mathbf{C}
\] \\
Language
\end{tabular} & Fortran Language & & & \\
\hline \multirow[t]{2}{*}{info(0)} & \multirow[t]{2}{*}{info(1)} & \multirow[t]{2}{*}{Flags for handle} & 0 & The handle is valid. \\
\hline & & & 1 & The handle is not allocated. \\
\hline \multirow[t]{4}{*}{info(1)} & \multirow[t]{4}{*}{info(2)} & \multirow[t]{4}{*}{Flags for \(f j a c\)} & 0 & The fjac array is valid. \\
\hline & & & 1 & The fjac array is not allocated \\
\hline & & & 2 & The fjac array contains NaN. \\
\hline & & & 3 & The fjac array contains Inf. \\
\hline \multirow[t]{4}{*}{info(2)} & \multirow[t]{4}{*}{info(3)} & \multirow[t]{4}{*}{Flags for \(f_{\text {vec }}\)} & 0 & The fvec array is valid. \\
\hline & & & 1 & The fvec array is not allocated \\
\hline & & & 2 & The fvec array contains NaN. \\
\hline & & & 3 & The fvec array contains Inf. \\
\hline \multirow[t]{5}{*}{info(3)} & \multirow[t]{5}{*}{info(4)} & \multirow[t]{5}{*}{Flags for eps} & 0 & The eps array is valid. \\
\hline & & & 1 & The eps array is not allocated \\
\hline & & & 2 & The eps array contains NaN. \\
\hline & & & 3 & The eps array contains Inf. \\
\hline & & & 4 & The eps array contains a value less than or equal to zero. \\
\hline
\end{tabular}

INTEGER. Information about completion of the task. res \(=\) TR_SUCCESS - the routine completed the task normally.
TR_SUCCESS is defined in the mkl _rci.h and mkl _rci.fi include files.

\section*{?trnlsp_solve}

Solves a nonlinear least squares problem using the \(T R\) algorithm.

\section*{Syntax}

\section*{Fortran:}
```

res = strnlsp_solve(handle, fvec, fjac, RCI_Request)
res = dtrnlsp_solve(handle, fvec, fjac, RCI_Request)

```

C:
```

res = strnlsp_solve(\&handle, fvec, fjac, \&RCI_Request);
res = dtrnlsp_solve(\&handle, fvec, fjac, \&RCI_Request);

```

Include Files
- Fortran: mkl_rci.fi
- C: mkl_rci.h

\section*{Description}

The ?trnlsp_solve routine uses the TR algorithm to solve nonlinear least squares problems.
The problem is stated as follows:
\[
\min _{x \in R^{n}}\|F(x)\|_{2}^{2}=\min _{x \in R^{n}}\|y-f(x)\|_{2}^{2}, y \in R^{m}, x \in R^{n}, f: R^{n} \rightarrow R^{m}, m \geq n,
\]
where
- \(F(x): R^{n} \rightarrow R^{m}\)
- \(m \geq n\)

From a current point \(x_{\text {current }}\), the algorithm uses the trust-region approach:
\[
\min _{x \in R^{n}}\left\|F\left(x_{c u r r e n t}\right)+J\left(x_{c u r v e r t}\right)\left(x_{n e w}-x_{c u r r e n t}\right)\right\|_{2}^{2} \quad \text { subject to }\left\|x_{n e w}-x_{c u r r e n t}\right\| \leq \Delta_{\text {current }}
\]
to get \(x_{\text {new }}=x_{\text {Current }}+s\) that satisfies
\[
\min _{x \in R^{n}}\left\|J^{T}(x) J(x) s+J^{T} F(x)\right\|_{2}^{2}
\]
where
- \(J(x)\) is the Jacobian matrix
- \(s\) is the trial step
- \(\left|\mid s \|_{2} \leq \Delta_{\text {current }}\right.\)

The RCI_Request parameter provides additional information:
\begin{tabular}{|c|c|}
\hline RCI_Request Value & Description \\
\hline 2 & Request to calculate the Jacobian matrix and put the result into fjac \\
\hline 1 & Request to recalculate the function at vector X and put the result into \(\mathrm{f}_{\mathrm{vec}}\) \\
\hline 0 & One successful iteration step on the current trust-region radius (that does not mean that the value of \(x\) has changed) \\
\hline -1 & The algorithm has exceeded the maximum number of iterations \\
\hline -2 & \(\Delta<\operatorname{eps}(1)\) \\
\hline -3 & \(||F(x)||_{2}<\operatorname{eps}(2)\) \\
\hline -4 & The Jacobian matrix is singular. \\
\hline & \(\| J \mathcal{J}(x)_{(1: m, j)}| |_{2}<\operatorname{eps}(3), j=1, \ldots, n\) \\
\hline -5 & \(||s||_{2}<\operatorname{eps}(4)\) \\
\hline -6 & \(\left\|F(x)\left|\left.\right|_{2}-| | F(x)-J(x) s \|_{2}<\operatorname{eps}(5)\right.\right.\) \\
\hline
\end{tabular}

Note:
- \(J(x)\) is the Jacobian matrix.
- \(\Delta\) is the trust-region area.
- \(F(x)\) is the value of the functional.
- \(s\) is the trial step.

\section*{Input Parameters}
\begin{tabular}{ll} 
handle & Type_TRNSP_HANDLE_t in C/C++ and INTEGER*8 in FORTRAN. \\
fvec & REAL for strnlsp_solve \\
& DOUBLE PRECISION for dtrnlsp_solve \\
& Array of size m. Contains the function values at \(X\), where \(f v e c(i)=\left(y_{i}-\right.\) \\
fjac & \(\left.f_{i}(x)\right)\). \\
& REAL for strnlsp_solve \\
& DOUBLE PRECISION for dtrnlsp_solve \\
& Array of size \((m, n)\). Contains the Jacobian matrix of the function.
\end{tabular}

\section*{Output Parameters}
fvec
REAL for strnlsp_solve
DOUBLE PRECISION for dtrnlsp_solve
Array of size \(m\). Updated function evaluated at x .
RCI_Request INTEGER. Informs about the task stage.
See the Description section for the parameter values and their meaning.
res INTEGER. Indicates the task completion.
res \(=\) TR_SUCCESS - the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.h and mkl_rci.fi include files.

\section*{?trnlsp_get \\ Retrieves the number of iterations, stop criterion, initial residual, and final residual.}

\section*{Syntax}

\section*{Fortran:}
```

res = strnlsp_get(handle, iter, st_cr, rl, r2)
res = dtrnlsp_get(handle, iter, st_cr, rl, r2)

```

C:
```

res = strnlsp_get(\&handle, \&iter, \&st_cr, \&r1, \&r2);

```
res \(=\) dtrnlsp_get(\&handle, \&iter, \&st_cr, \&r1, \&r2);

\section*{Include Files}
- Fortran: mkl_rci.fi
- C: mkl_rci.h

\section*{Description}

The routine retrieves the current number of iterations, the stop criterion, the initial residual, and final residual.

The initial residual is the value of the functional \((||y-f(x)||)\) of the initial \(x\) values provided by the user.

The final residual is the value of the functional \((||y-f(x)||)\) of the final \(x\) resulting from the algorithm operation.
The st_cr parameter contains the stop criterion:
\begin{tabular}{ll}
\hline\(s t_{-c r}\) Value & Description \\
\hline \(\mathbf{1}\) & The algorithm has exceeded the maximum number of iterations \\
\(\mathbf{2}\) & \(\Delta<e p s(1)\) \\
3 & \(||F(x)||_{2}<\operatorname{eps}(2)\) \\
4 & The Jacobian matrix is singular. \\
& \(||J(x)(1: m, j)||_{2}<e p s(3), j=1, \ldots, n\) \\
5 & \(\left||s|_{2}<e p s(4)\right.\) \\
6 & \(||F(x)||_{2}-| | F(x)-J(x) s \|_{2}<e p s(5)\) \\
\hline
\end{tabular}

Note:
- \(J(x)\) is the Jacobian matrix.
- \(\Delta\) is the trust-region area.
- \(F(x)\) is the value of the functional.
- \(s\) is the trial step.

\section*{Input Parameters}
```

handle Type _TRNSP_HANDLE_t in C/C++ and INTEGER*8 in FORTRAN.

```

\section*{Output Parameters}
```

iter INTEGER. Contains the current number of iterations.
st_cr INTEGER. Contains the stop criterion.
See the Description section for the parameter values and their meanings.
r1 REAL for strnlsp_get
DOUBLE PRECISION for dtrnlsp_get
Contains the residual, (||y-f(x)||) given the initial x.
r2 REAL for strnlsp_get
DOUBLE PRECISION for dtrnlsp_get
Contains the final residual, that is, the value of the functional (||y - f(x)||)
of the final }x\mathrm{ resulting from the algorithm operation.
res INTEGER. Indicates the task completion.
res = TR_SUCCESS - the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.h and mkl_rci.fi include files.

```

\section*{?trnlsp_delete}

Releases allocated data.

\section*{Syntax}

\section*{Fortran:}
```

res = strnlsp_delete(handle)
res = dtrnlsp_delete(handle)

```

C:
res \(=\) strnlsp_delete (\&handle);
res \(=\) dtrnlsp_delete (\&handle);
Include Files
- Fortran: mkl_rci.fi
- C: mkl_rci.h

\section*{Description}

The ?trnlsp_delete routine releases all memory allocated for the handle.
This routine flags memory as not used, but to actually release all memory you must call the support function mkl_free_buffers.

\section*{Input Parameters}
handle Type _TRNSP_HANDLE_t in C/C++ and INTEGER* 8 in FORTRAN.

\section*{Output Parameters}

INTEGER. Indicates the task completion.
res \(=\) TR_SUCCESS means the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.h and mkl_rci.fi include files.

\section*{Nonlinear Least Squares Problem with Linear (Bound) Constraints}

The nonlinear least squares problem with linear bound constraints is very similar to the nonlinear least squares problem without constraints but it has the following constraints:
\[
l_{i} \leq x_{i} \leq u_{i}, i=1, \ldots, n, \quad l, u \in R^{n}
\]

See usage examples in FORTRAN and \(C\) in the examples \(\backslash\) solver \(\backslash\) source folder of your Intel MKL directory (ex_nlsqp_bc_f.f and ex_nlsqp_bc_c.c, respectively).
RCI TR Routines for Problem with Bound Constraints
\begin{tabular}{ll}
\hline Routine Name & Operation \\
\hline ?trnlspbc_init & Initializes the solver. \\
?trnlspbc_check & Checks correctness of the input parameters. \\
?trnlspbc_solve & \begin{tabular}{l} 
Solves a nonlinear least squares problem using RCI and the Trust- \\
Region algorithm. \\
?trnlspbc_get
\end{tabular} \\
\begin{tabular}{l} 
Retrieves the number of iterations, stop criterion, initial residual, and \\
final residual.
\end{tabular} \\
\hline Releases allocated data. \\
\hline
\end{tabular}

\section*{?trnlspbc_init \\ Initializes the solver of nonlinear least squares problem with linear (boundary) constraints.}

\section*{Syntax}

\section*{Fortran:}
```

res = strnlspbc_init(handle, n, m, x, LW, UP, eps, iterl, iter2, rs)
res = dtrnlspbc_init(handle, n, m, x, LW, UP, eps, iterl, iter2, rs)

```

C:
```

res = strnlspbc_init(\&handle, \&n, \&m, x, LW, UP, eps, \&iterl, \&iter2, \&rs);
res = dtrnlspbc_init(\&handle, \&n, \&m, x, LW, UP, eps, \&iterl, \&iter2, \&rs);

```

\section*{Include Files}
- Fortran: mkl_rci.fi
- C: mkl_rci.h

\section*{Description}

The ?trnlsp.bc_init routine initializes the solver.
After initialization all subsequent invocations of the ?trnlspbc_solve routine should use the values of the handle returned by ?trnlspbc_init.

The eps array contains the stopping criteria:
```

eps Value Description

```

1
2
3

4
5
6
\(\Delta<\operatorname{eps}(1)\)
\(||F(x)||_{2}<\operatorname{eps}(2)\)
The Jacobian matrix is singular.
\(\left|\mid J(x)_{(1: m, j)} \|_{2}<\operatorname{eps}(3), j=1, \ldots, n\right.\)
\(||s||_{2}<\operatorname{eps}(4)\)
\(||F(x)||_{2}-||F(x)-J(x) s||_{2}<e p s(5)\)
The trial step precision. If \(e p s(6)=0\), then the trial step meets the required precision ( \(\leq 1.0 \mathrm{D}-10\) ).

\section*{Note:}
- \(J(x)\) is the Jacobian matrix.
- \(\Delta\) is the trust-region area.
- \(F(x)\) is the value of the functional.
- \(s\) is the trial step.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. Length of \(x\). \\
\(m\) & INTEGER. Length of \(F(x)\). \\
\(x\) & REAL for strnlspbc_init
\end{tabular}
\begin{tabular}{|c|c|}
\hline & DOUBLE PRECISION for dtrnlspbc_init Array of size \(n\). Initial guess. \\
\hline LW & \begin{tabular}{l}
REAL for strnlspbc_init \\
DOUBLE PRECISION for dtrnlspbc_init \\
Array of size \(n\). \\
Contains low bounds for \(x\left(l w_{i}<x_{i}\right)\).
\end{tabular} \\
\hline \(U P\) & \begin{tabular}{l}
REAL for strnlspbc_init \\
DOUBLE PRECISION for dtrnlspbc_init \\
Array of size \(n\). \\
Contains upper bounds for \(x\left(u p_{i}>x_{i}\right)\).
\end{tabular} \\
\hline eps & \begin{tabular}{l}
REAL for strnlspbc_init \\
DOUBLE PRECISION for dtrnlspbc_init \\
Array of size 6; contains stopping criteria. See the values in the Description section.
\end{tabular} \\
\hline iter1 & INTEGER. Specifies the maximum number of iterations. \\
\hline iter2 & INTEGER. Specifies the maximum number of iterations of trial step calculation. \\
\hline rs & \begin{tabular}{l}
REAL for strnlspbc_init \\
DOUBLE PRECISION for dtrnlspbc_init \\
Definition of initial size of the trust region (boundary of the trial step). The minimum value is 0.1 , and the maximum value is 100.0 . Based on your knowledge of the objective function and initial guess you can increase or decrease the initial trust region. It can influence the iteration process, for example, the direction of the iteration process and the number of iterations. The default value is 100.0.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

\author{
handle
}
res
Type _TRNSPBC_HANDLE_t in C/C++ and INTEGER*8 in FORTRAN.
INTEGER. Informs about the task completion.
- res \(=\) TR_SUCCESS - the routine completed the task normally.
- res \(=\) TR_INVALID_OPTION - there was an error in the input parameters.
- res \(=\) TR_OUT_OF_MEMORY - there was a memory error.

TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in mkl_rci.fi (Fortran) and mkl_rci.h (C) include files.

\section*{?trnlspbc_check}

Checks the correctness of handle and arrays containing Jacobian matrix, objective function, lower
and upper bounds, and stopping criteria.

\section*{Syntax}

\section*{Fortran:}
```

res = strnlspbc_check(handle, n, m, fjac, fvec, LW, UP, eps, info)
res = dtrnlspbc_check(handle, n, m, fjac, fvec, LW, UP, eps, info)

```

C:
```

res = strnlspbc_check(\&handle, \&n, \&m, fjac, fvec, LW, UP, eps, info);
res = dtrnlspbc_check(\&handle, \&n, \&m, fjac, fvec, LW, UP, eps, info);

```

\section*{Include Files}
- Fortran: mkl_rci.fi
- C: mkl_rci.h

\section*{Description}

The ?trnlspbc_check routine checks the arrays passed into the solver as input parameters. If an array contains any INF or NaN values, the routine sets the flag in output array info (see the description of the values returned in the Output Parameters section for the info array).

\section*{Input Parameters}

\section*{Output Parameters}

\section*{info}
```

handle Type _TRNSPBC_HANDLE_t in C/C++ and INTEGER*8 in FORTRAN.
n
m
fjac
fvec
LW
UP
eps
Type _TRNSPBC_HANDLE_t in C/C++ and INTEGER*8 in FORTRAN.
INTEGER. Length of x.
INTEGER. Length of $F(x)$.
REAL for strnlspbc_check
DOUBLE PRECISION for dtrnlspbc_check
Array of size m by n. Contains the Jacobian matrix of the function.
REAL for strnlspbc_check
DOUBLE PRECISION for dtrnlspbc_check
Array of size m. Contains the function values at X , where $\operatorname{fvec}(i)=\left(y_{i}-\right.$ $\left.f_{i}(x)\right)$.
REAL for strnlspbc_check
DOUBLE PRECISION for dtrnlspbc_check
Array of size n.
Contains low bounds for $x\left(l w_{i}<x_{i}\right)$.
REAL for strnlspbc_check
DOUBLE PRECISION for dtrnlspbc_check
Array of size n.
Contains upper bounds for $x\left(u p_{i}>x_{i}\right)$.
REAL for strnlspbc_check
DOUBLE PRECISION for dtrnlspbc_check
Array of size 6; contains stopping criteria. See the values in the Description section of the ?trnlspbc_init.

```

INTEGER
Array of size 6.
Results of input parameter checking:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Parameter} & \multirow[t]{2}{*}{Used for} & \multirow[t]{2}{*}{Val ue} & \multirow[t]{2}{*}{Description} \\
\hline \begin{tabular}{l}
C \\
Language
\end{tabular} & \begin{tabular}{l}
Fortran \\
Language
\end{tabular} & & & \\
\hline \multirow[t]{2}{*}{info(0)} & \multirow[t]{2}{*}{info(1)} & \multirow[t]{2}{*}{Flags for handle} & 0 & The handle is valid. \\
\hline & & & 1 & The handle is not allocated. \\
\hline \multirow[t]{3}{*}{info(1)} & \multirow[t]{3}{*}{info(2)} & \multirow[t]{3}{*}{Flags for \(f j a c\)} & 0 & The \(f\) jac array is valid. \\
\hline & & & 1 & The fjac array is not allocated \\
\hline & & & 2 & The fjac array contains NaN. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Parameter} & \multirow[t]{2}{*}{Used for} & \multirow[t]{2}{*}{Val ue} & \multirow[t]{2}{*}{Description} \\
\hline \begin{tabular}{l}
C \\
Language
\end{tabular} & Fortran Language & & & \\
\hline & & & 3 & The fjac array contains Inf. \\
\hline \multirow[t]{4}{*}{info(2)} & info(3) & Flags for \(\mathrm{fvec}^{\text {c }}\) & 0 & The fvec array is valid. \\
\hline & & & 1 & The fvec array is not allocated \\
\hline & & & 2 & The fvec array contains NaN. \\
\hline & & & 3 & The fvec array contains Inf. \\
\hline \multirow[t]{5}{*}{info(3)} & info(4) & Flags for LW & 0 & The LW array is valid. \\
\hline & & & 1 & The LW array is not allocated \\
\hline & & & 2 & The LW array contains NaN. \\
\hline & & & 3 & The LW array contains Inf. \\
\hline & & & 4 & The lower bound is greater than the upper bound. \\
\hline \multirow[t]{5}{*}{info(4)} & info(5) & Flags for up & 0 & The up array is valid. \\
\hline & & & 1 & The up array is not allocated \\
\hline & & & 2 & The up array contains NaN. \\
\hline & & & 3 & The up array contains Inf. \\
\hline & & & 4 & The upper bound is less than the lower bound. \\
\hline \multirow[t]{5}{*}{info(5)} & info(6) & Flags for eps & 0 & The eps array is valid. \\
\hline & & & 1 & The eps array is not allocated \\
\hline & & & 2 & The eps array contains NaN. \\
\hline & & & 3 & The eps array contains Inf. \\
\hline & & & 4 & The eps array contains a value less than or equal to zero. \\
\hline
\end{tabular}
res
INTEGER. Information about completion of the task.
res \(=\) TR_SUCCESS - the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.h and mkl_rci.fi include files.

\section*{?trnlspbc_solve}

Solves a nonlinear least squares problem with linear (bound) constraints using the Trust-Region algorithm.

\section*{Syntax}

\section*{Fortran:}
```

res = strnlspbc_solve(handle, fvec, fjac, RCI_Request)
res = dtrnlspbc_solve(handle, fvec, fjac, RCI_Request)

```

C:
```

res = strnlspbc_solve(\&handle, fvec, fjac, \&RCI_Request);

```
res \(=\) dtrnlspbc_solve(\&handle, fvec, fjac, \&RCI_Request);

\section*{Include Files}
- Fortran: mkl_rci.fi
- C: mkl_rci.h

\section*{Description}

The ?trnlspbc_solve routine, based on RCI, uses the Trust-Region algorithm to solve nonlinear least squares problems with linear (bound) constraints. The problem is stated as follows:
\[
\min _{x \in R^{n}}\|F(x)\|_{2}^{2}=\min _{x \in K^{n}}\|y-f(x)\|_{2}^{2}, y \in R^{m}, x \in R^{n}, f: R^{n} \rightarrow R^{m}, m \geq n
\]
where
\[
\begin{aligned}
& I_{i} \leq x_{i} \leq u_{i} \\
& i=1, \ldots, n
\end{aligned}
\]

The RCI_Request parameter provides additional information:
\begin{tabular}{|c|c|}
\hline RCI_Request Value & Description \\
\hline 2 & Request to calculate the Jacobian matrix and put the result into fjac \\
\hline 1 & Request to recalculate the function at vector X and put the result into fvec \\
\hline 0 & One successful iteration step on the current trust-region radius (that does not mean that the value of \(x\) has changed) \\
\hline -1 & The algorithm has exceeded the maximum number of iterations \\
\hline -2 & \(\Delta<\operatorname{eps}(1)\) \\
\hline -3 & \(\left||F(x)| \|_{2}<\operatorname{eps}(2)\right.\) \\
\hline -4 & The Jacobian matrix is singular. \\
\hline & \(\left\|J(x)_{(1: m, j)}\right\|_{2}<\operatorname{eps}(3), j=1, \ldots, n\) \\
\hline -5 & \(||s||_{2}<\operatorname{eps}(4)\) \\
\hline -6 & \(||F(x)||_{2}-||F(x)-J(x) s||_{2}<\operatorname{eps}(5)\) \\
\hline
\end{tabular}

Note:
- \(J(x)\) is the Jacobian matrix.
- \(\Delta\) is the trust-region area.
- \(F(x)\) is the value of the functional.
- \(s\) is the trial step.

Input Parameters
\begin{tabular}{ll} 
handle & Type_TRNSPBC_HANDLE_t in C/C++ and INTEGER* 8 in FORTRAN. \\
fvec & REAL for strnlspbc_solve \\
& DOUBLE PRECISION for dtrnlspbc_solve \\
& Array of size \(m\). Contains the function values at \(X\), where \(f_{v e c}(i)=\left(y_{i}-\right.\) \\
& \(\left.f_{i}(x)\right)\). \\
& REAL for strnlspbc_solve \\
& DOUBLE PRECISION for dtrnlspbc_solve \\
& Array of size \(m\) by \(n\). Contains the Jacobian matrix of the function.
\end{tabular}

\section*{Output Parameters}
```

RCI_Request
res

```
fvec REAL for strnlspbc_solve
    DOUBLE PRECISION for dtrnlspbc_solve
Array of size m. Updated function evaluated at x .

INTEGER. Informs about the task stage.
See the Description section for the parameter values and their meaning.
INTEGER. Informs about the task completion.
res \(=\) TR_SUCCESS means the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.h and mkl_rci.fi include files.

\section*{?trnlspbc_get}

Retrieves the number of iterations, stop criterion, initial residual, and final residual.

\section*{Syntax}

\section*{Fortran:}
```

res = strnlspbc_get(handle, iter, st_cr, r1, r2)
res = dtrnlspbc_get(handle, iter, st_cr, r1, r2)

```

C:
```

res = strnlspbc_get(\&handle, \&iter, \&st_cr, \&r1, \&r2);
res = dtrnlspbc_get(\&handle, \&iter, \&st_cr, \&r1, \&r2);

```

\section*{Include Files}
- Fortran: mkl_rci.fi
- C: mkl_rci.h

\section*{Description}

The routine retrieves the current number of iterations, the stop criterion, the initial residual, and final residual.

The st_cr parameter contains the stop criterion:
```

 st_crValue Description
    ```
    1
\begin{tabular}{|c|c|}
\hline st_cr Value & Description \\
\hline 2 & \(\Delta<\operatorname{eps}(1)\) \\
\hline 3 & \(||F(x)||_{2}<\operatorname{eps}(2)\) \\
\hline 4 & The Jacobian matrix is singular.
\[
\left|\mid J(x)_{(1: m, j)} \|_{2}<\operatorname{eps}(3), j=1, \ldots, n\right.
\] \\
\hline 5 & \(||s||_{2}<\operatorname{eps}(4)\) \\
\hline 6 & \(||F(x)||_{2}-\left||F(x)-J(x) s|_{2}<\operatorname{eps}(5)\right.\) \\
\hline
\end{tabular}

Note:
- \(J(x)\) is the Jacobian matrix.
- \(\Delta\) is the trust-region area.
- \(F(x)\) is the value of the functional.
- \(s\) is the trial step.

\section*{Input Parameters}
```

handle Type _TRNSPBC_HANDLE_t in C/C++ and INTEGER*8 in FORTRAN.

```

\section*{Output Parameters}
```

iter INTEGER. Contains the current number of iterations.
st_cr INTEGER. Contains the stop criterion.
See the Description section for the parameter values and their meanings.
r1 REAL for strnlspbc_get
DOUBLE PRECISION for dtrnlspbc_get
Contains the residual, (||y-f(x)||) given the initial x.
REAL for strnlspbc_get
DOUBLE PRECISION for dtrnlspbc_get
Contains the final residual, that is, the value of the function (||y - f(x)||) of
the final }x\mathrm{ resulting from the algorithm operation.
res
INTEGER. Informs about the task completion.
res = TR_SUCCESS - the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.h and mkl_rci.fi include files.

```

\section*{?trnlspbc_delete}

Releases allocated data.

\section*{Syntax}

\section*{fortran:}
```

res = strnlspbc_delete(handle)
res = dtrnlspbc_delete(handle)
C:

```
```

res = strnlspbc_delete(\&handle);

```
res = strnlspbc_delete(&handle);
res = dtrnlspbc_delete(&handle);
```


Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The ?trnlspbc_delete routine releases all memory allocated for the handle.

NOTE This routine flags memory as not used, but to actually release all memory you must call the support function mkl_free_buffers.

Input Parameters

handle Type _TRNSPBC_HANDLE_t in C/C++ and INTEGER*8 in FORTRAN.

Output Parameters

INTEGER. Informs about the task completion.

 res $=T R _S U C C E S S$ means the routine completed the task normally. TR_SUCCESS is defined in the mkl_rci.h and mkl_rci.fi include files.
Jacobian Matrix Calculation Routines

This section describes routines that compute the Jacobian matrix using the central difference algorithm. Jacobian matrix calculation is required to solve a nonlinear least squares problem and systems of nonlinear equations (with or without linear bound constraints). Routines for calculation of the Jacobian matrix have the "Black-Box" interfaces, where you pass the objective function via parameters. Your objective function must have a fixed interface.

Jacobian Matrix Calculation Routines

| Routine Name | Operation |
| :--- | :--- |
| ?jacobi_init | Initializes the solver. |
| ?jacobi_solve | Computes the Jacobian matrix of the function on the basis of RCI
 using the central difference algorithm. |
| ?jacobi_delete | Removes data. |
| ?jacobi | Computes the Jacobian matrix of the fcn function using the central
 difference algorithm. |
| ?jacobix | Presents an alternative interface for the ?jacobi function enabling
 you to pass additional data into the objective function. |

?jacobi_init

Initializes the solver for Jacobian calculations.

Syntax

Fortran:

```
res = sjacobi_init(handle, n, m, x, fjac, esp)
res = djacobi_init(handle, n, m, x, fjac, esp)
```

C:

```
res = sjacobi_init(&handle, &n, &m, x, fjac, &eps);
res = djacobi_init(&handle, &n, &m, x, fjac, &eps);
```

Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The routine initializes the solver.

Input Parameters

| n | INTEGER. Length of x. |
| :---: | :---: |
| m | INTEGER. Length of F. |
| x | REAL for sjacobi_init
 DOUBLE PRECISION for djacobi_init
 Array of size n. Vector, at which the function is evaluated. |
| eps | REAL for sjacobi_init
 DOUBLE PRECISION for djacobi_init
 Precision of the Jacobian matrix calculation. |
| fjac | REAL for sjacobi_init
 DOUBLE PRECISION for djacobi_init
 Array of size (m, n). Contains the Jacobian matrix of the function. |

Output Parameters

handle Data object of the _JACOBIMATRIX_HANDLE_t type in C/C++ and INTEGER* 8 in FORTRAN.
res INTEGER. Indicates task completion status.

- res $=$ TR_SUCCESS - the routine completed the task normally.
- res $=$ TR_INVALID_OPTION - there was an error in the input parameters.
- res = TR_OUT_OF_MEMORY - there was a memory error.

TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in mkl_rci.fi (Fortran) and mkl_rci.h (C) include files.

?jacobi_solve

Computes the Jacobian matrix of the function using
RCI and the central difference algorithm.

Syntax

Fortran:

```
res = sjacobi_solve(handle, f1, f2, RCI_Request)
res = djacobi_solve(handle, f1, f2, RCI_Request)
```

C:

```
res = sjacobi_solve(&handle, f1, f2, &RCI_Request);
res = djacobi_solve(&handle, f1, f2, &RCI_Request);
```


Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The ?jacobi_solve routine computes the Jacobian matrix of the function using RCI and the central difference algorothm.
See usage examples in FORTRAN and C in the examples \backslash solver \backslash source folder of your Intel MKL directory (sjacobi_rci_f.f, djacobi_rci_f.f and sjacobi_rci_c.c, djacobi_rci_c.c, respectively).
Input Parameters
handle
Type _JACOBIMATRIX_HANDLE_t in C/C++ and INTEGER*8 in FORTRAN.

Output Parameters

f1 REAL for sjacobi_solve
DOUBLE PRECISION for djacobi_solve
Contains the updated function values at $x+e p s$.
f2 REAL for sjacobi_solve
DOUBLE PRECISION for djacobi_solve
Array of size m. Contains the updated function values at $x-e p s$.
RCI_Request
res
INTEGER. Informs about the task completion. When equal to 0 , the task has completed successfully.
RCI_Request $=1$ indicates that you should compute the function values at the current x point and put the results into $f 1$.
RCI_Request $=2$ indicates that you should compute the function values at the current x point and put the results into $f 2$.
INTEGER. Indicates the task completion status.

- res $=$ TR_SUCCESS - the routine completed the task normally.
- res $=$ TR_INVALID_OPTION - there was an error in the input parameters.

TR_SUCCESS and TR_INVALID_OPTION are defined in mkl_rci.fi (Fortran) and mkl_rci.h (C) include files.

See Also

?jacobi_init
?jacobi_delete
Releases allocated data.
Syntax

Fortran:

```
res = sjacobi_delete(handle)
res = djacobi_delete(handle)
```

C:
res = sjacobi_delete(\&handle);

```
res = djacobi_delete(&handle);
```

Include files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The ? jacobi_delete routine releases all memory allocated for the handle.
This routine flags memory as not used, but to actually release all memory you must call the support function mkl_free_buffers.

Input Parameters

handle Type _JACOBIMATRIX_HANDLE_t in C/C++ and INTEGER* 8 in FORTRAN.

Output Parameters

res INTEGER. Informs about the task completion.
res $=$ TR_SUCCESS means the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.h and mkl_rci.fi include files.

?jacobi

Computes the Jacobian matrix of the objective
function using the central difference algorithm.

Syntax

Fortran:

```
res = sjacobi(fcn, n, m, fjac, x, jac_eps)
res = djacobi(fcn, n, m, fjac, x, jac_eps)
```

C:

```
res = sjacobi(fcn, &n, &m, fjac, x, &jac_eps);
res = djacobi(fcn, &n, &m, fjac, x, &jac_eps);
```

Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The ?jacobi routine computes the Jacobian matrix for function $f_{C n}$ using the central difference algorithm. This routine has a "Black-Box" interface, where you input the objective function via parameters. Your objective function must have a fixed interface.

See calling and usage examples in FORTRAN and C in the examples \solver \source folder of your Intel MKL directory (ex_nlsqp_f.f, ex_nlsqp_bc_f.f and ex_nlsqp_c.c, ex_nlsqp_bc_c.c, respectively).

Input Parameters

fen
User-supplied subroutine to evaluate the function that defines the least squares problem. Call fen (m, n, x, f) with the following parameters:

| Parameter | Type | Description |
| :---: | :---: | :---: |
| Input Parameters | | |
| m | INTEGER | Length of f |
| n | INTEGER | Length of x |
| x | REAL for sjacobi
 DOUBLE PRECISION for djacobi | Array of size n. Vector, at which the function is evaluated. The f cn function should not change this parameter. |
| Output Parameters | | |
| f | REAL for sjacobix
 DOUBLE PRECISION
 for djacobix | Array of size m; contains the function values at x. |

n
m
x

eps

You need to declare fon as EXTERNAL in the calling program.
INTEGER. Length of x.
INTEGER. Length of F.
REAL for sjacobi
DOUBLE PRECISION for djacobi
Array of size n. Vector at which the function is evaluated.
REAL for sjacobi
DOUBLE PRECISION for djacobi
Precision of the Jacobian matrix calculation.

Output Parameters

REAL for sjacobi
DOUBLE PRECISION for djacobi
Array of size (m, n). Contains the Jacobian matrix of the function.
res
INTEGER. Indicates task completion status.

- res = TR_SUCCESS - the routine completed the task normally.
- res $=$ TR_INVALID_OPTION - there was an error in the input parameters.
- res = TR_OUT_OF_MEMORY - there was a memory error.

TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in mkl_rci.fi (Fortran) and mkl_rci.h (C) include files.

See Also
?jacobix

? jacobix

Alternative interface for ?jacobi function for passing additional data into the objective function.

Syntax

Fortran:

```
res = sjacobix(fcn, n, m, fjac, x, jac_eps, user_data)
res = djacobix(fcn, n, m, fjac, x, jac_eps, user_data)
```

C:

```
res = sjacobix(fcn, &n, &m, fjac, x, &jac_eps, user_data);
res = djacobix(fcn, &n, &m, fjac, x, &jac_eps, user_data);
```

Include Files

- Fortran: mkl_rci.fi
- C: mkl_rci.h

Description

The ?jacobix routine presents an alternative interface for the ?jacobi function that enables you to pass additional data into the objective function $f_{C n}$.

See calling and usage examples in FORTRAN and C in the examples \backslash solver \backslash source folder of your Intel MKL directory (ex_nlsqp_f_x.f, ex_nlsqp_bc_f_x.f and ex_nlsqp_c_x.c, ex_nlsqp_bc_c_x.c, respectively).

Input Parameters

fen

User-supplied subroutine to evaluate the function that defines the least squares problem. Call $\operatorname{fcn}\left(m, n, x, f, u s e r _d a t a\right)$ with the following parameters:

| Parameter | Type | Description |
| :---: | :---: | :---: |
| Input Parameters | | |
| m | INTEGER | Length of f |
| n | INTEGER | Length of x |
| x | REAL for sjacobix
 DOUBLE PRECISION
 for djacobix | Array of size n. Vector, at which the function is evaluated. The f fon function should not change this parameter. |
| user_data | INTEGER*8, for Fortran void*, for C | (Fortran) Your additional data, if any. Otherwise, a dummy argument.
 (C) Pointer to your additional data, if any. Otherwise, a dummy argument. |

Output Parameters
$f \quad$ REAL for sjacobix
DOUBLE PRECISION for djacobix

Array of size m; contains the function values at x.

You need to declare fon as EXTERNAL in the calling program.
INTEGER. Length of x.
INTEGER. Length of F.
REAL for sjacobix
DOUBLE PRECISION for djacobix
Array of size n. Vector at which the function is evaluated.
REAL for sjacobix
DOUBLE PRECISION for djacobix
Precision of the Jacobian matrix calculation.
user_data

Output Parameters
fjac
res
(Fortran) INTEGER*8. Contains your additional data. If there is no additional data, this is a dummy argument.
(C) void*. Pointer to your additional data. If there is no additional data, this is a dummy argument.

REAL for sjacobix
DOUBLE PRECISION for djacobix
Array of size (m, n). Contains the Jacobian matrix of the function.
INTEGER. Indicates task completion status.

- res $=$ TR_SUCCESS - the routine completed the task normally.
- res $=$ TR_INVALID_OPTION - there was an error in the input parameters.
- res = TR_OUT_OF_MEMORY - there was a memory error.

TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in mkl_rci.fi (Fortran) and mkl_rci.h (C) include files.

See Also
?jacobi

Support Functions

Inte ${ }^{\circledR}$ Math Kernel Library (Intel ${ }^{\circledR}$ MKL) support functions are used to:

- retrieve information about the current Intel MKL version
- additionally control the number of threads
- handle errors
- test characters and character strings for equality
- measure user time for a process and elapsed CPU time
- measure CPU frequency
- free memory allocated by Intel MKL memory management software
- facilitate easy linking

Functions described below are subdivided according to their purpose into the following groups:
Version Information Functions
Threading Control Functions
Error Handling Functions
Equality Test Functions
Timing Functions
Memory Functions
Miscellaneous Utility Functions
Functions Supporting the Single Dynamic Library
Table "Intel MKL Support Functions" contains the list of support functions common for Intel MKL.
Intel MKL Support Functions

Function Name
 Operation

Version Information Functions

```
mkl_get_version
mkl_get_version_string
```


Threading Control Functions

```
mkl_set_num_threads
mkl_domain_set_num_threads
mkl set dynamic
mkl_get_max_threads
mkl_domain_get_max_threads
mkl_get_dynamic
```

Returns information about the active library version.
Returns information about the library version string.

Suggests the number of threads to use.
Suggests the number of threads for a particular function domain.

Enables Intel MKL to dynamically change the number of threads.

Inquires about the number of threads targeted for parallelism.

Inquires about the number of threads targeted for parallelism in different domains.

Returns the current value of the MKL_DYNAMIC variable.

| Function Name | Operation |
| :---: | :---: |
| xerbla | Handles error conditions for the BLAS, LAPACK, VSL, VML routines. |
| pxerbla | Handles error conditions for the ScaLAPACK routines. |
| Equality Test Functions | |
| Isame | Tests two characters for equality regardless of the case. |
| 1samen | Tests two character strings for equality regardless of the case. |
| Timing Functions | |
| second/dseend | Returns user time for a process. |
| mkl_get_cpu_clocks | Returns full precision elapsed CPU clocks. |
| mkl_get_cpu_frequency | Returns CPU frequency value in GHz. |
| mkl_get_max_cpu_frequency | Returns the maximum CPU frequency value in GHz . |
| mkl_get_clocks_frequency | Returns the frequency value in GHz based on constantrate Time Stamp Counter. |
| Memory Functions | |
| mkl_free_buffers | Frees memory buffers. |
| mkl_thread_free_buffers | Frees memory buffers allocated only in the current thread. |
| mkl_mem_stat | Reports an amount of memory utilized by Intel MKL memory management software. |
| mkl_disable_fast_mm | Enables Intel MKL to dynamically turn off memory management. |
| mkl_malloc | Allocates the aligned memory buffer. |
| mkl_free | Frees the aligned memory buffer allocated by MKL_malloc. |
| Miscellaneous Utility Functions | |
| mkl_progress | Tracks computational progress of selective MKL routines. |
| mkl_enable_instructions | Allows Intel MKL to dispatch Inte ${ }^{\circledR}$ Advanced Vector Extensions (Intel® AVX) if run on the respective hardware (or simulation). |

Functions Supporting the Single Dynamic Library (SDL)

```
mkl_set_interface_layer
mkl_set_threading_layer
mkl_set_xerbla
mkl_set_progress
```

Sets the interface layer for Intel MKL at run time.
Sets the threading layer for Intel MKL at run time.
Replaces the error handling routine. Use with SDL on Windows* OS.

Replaces the progress information routine. Use with SDL on Windows* OS.

Version Information Functions

Intel ${ }^{8}$ MKL provides two methods for extracting information about the library version number:

- extracting a version string using the mkl_get_version_string function
- using the mkl_get_version function to obtain an MKLVersion structure that contains the version information

A makefile is also provided to automatically build the examples and output summary files containing the version information for the current library.

mkl_get_version

Returns information about the active library C version.

Syntax

```
void mkl_get_version( MKLVersion* pVersion );
```


Include Files

- C: mkl_service.h

Output Parameters

pVersion Pointer to the MKLVersion structure.

Description

The mkl_get_version function collects information about the active C version of the Intel MKL software and returns this information in a structure of MKLVersion type by the pVersion address. The MKLVersion structure type is defined in the mkl_types.h file. The following fields of the MKLVersion structure are available:

MajorVersion
MinorVersion
UpdateVersion
Productstatus

Build

Processor
is the major number of the current library version.
is the minor number of the current library version.
is the update number of the current library version.
is the status of the current library version. Possible variants could be "Beta", "Product".
is the string that contains the build date and the internal build number.
is the processor optimization that is targeted for the specific processor. It is not the definition of the processor installed in the system, rather the MKL library detection that is optimal for the processor installed in the system.

NOTE MKLGetVersion is an obsolete name for the mkl_get_version function that is referenced in the library for back compatibility purposes but is deprecated and subject to removal in subsequent releases.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for

Optimization Notice

use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

mkl_get_version Usage

```
#include <stdio.h>
#include <stdlib.h>
#include "mkl_service.h"
int main(void)
    {
        MKLVersion Version;
        mkl_get_version(&Version);
    // MKL_Get_Version(&Version);
        printf("Major version: %d\n",Version.MajorVersion);
        printf("Minor version: %d\n",Version.MinorVersion);
        printf("Update version: %d\n",Version.UpdateVersion);
        printf("Product status: %s\n",Version.ProductStatus);
        printf("Build: %s\n",Version.Build);
        printf("Processor optimization: %s\n",Version.Processor);
        printf("===================================================================\n");
    printf("\n");
    return 0;
}
Output:
\begin{tabular}{ll} 
Major Version & 9 \\
Minor Version & 0 \\
Update Version & 0 \\
Product status & Product \\
Build & 061909.09 \\
Processor optimization & Intel \(^{\circledR}\) Xeon \({ }^{\circledR}\) Processor with Intel \({ }^{\circledR} 64\) architecture
\end{tabular}
```


mkl_get_version_string

Gets the library version string.
Syntax

Fortran:

```
call mkl_get_version_string( buf )
```

C:
mkl_get_version_string(buf, len);
Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| buf | FORTRAN: CHARACTER*198 | Source string |
| | C: char* | |
| len | FORTRAN: INTEGER | Length of the source string |

C: int

Description

The function returns a string that contains the library version information.

\square
NOTE MKLGetVersionString is an obsolete name for the mkl_get_version_string function that is referenced in the library for back compatibility purposes but is deprecated and subject to removal in subsequent releases.

See example below:

Examples

Fortran Example

```
program mkl_get_version_string
character*198 buf
call mkl_get_version_string(buf)
write(*,''(a)
end
```

C Example
\#include <stdio.h>
\#include "mkl_service.h"
int main(void)
\{
int len=198;
char buf[198];
mkl_get_version_string(buf, len);
printf("\%s\n",būf);

```
    printf("\n");
    return 0;
}
```


Threading Control Functions

Intel ${ }^{\otimes}$ MKL provides optional threading control functions that take precedence over OpenMP* environment variable settings with the same purpose (see Inte॥ ${ }^{\circledR}$ MKL User's Guide for details).
These functions enable you to specify the number of threads for Intel MKL independently of the OpenMP* settings and takes precedence over them. Although Intel MKL may actually use a different number of threads from the number suggested, the controls also enable you to instruct the library to try using the suggested number when the number used in the calling application is unavailable.
See the following examples of Fortran and C usage:

Fortran Usage

```
call mkl_set_num_threads( foo )
ierr = mkl_domain_set_num_threads( num, MKL_DOMAIN_BLAS )
call mkl_set_dynamic ( 1 )
num = mkl_get_max_threads()
num = mkl_domain_get_max_threads( MKL_DOMAIN_BLAS );
ret = mkl_get_dynamic()
```


C Usage

```
#include "mkl.h" // Mandatory to make these definitions work!
```

mkl_set_num_threads (num) ;
return_code = mkl_domain_set_num_threads (num, MKL_DOMAIN_FFT);
mkl_set_dynamic (1);
num $=m k l _g e t _m a x _$threads () ;
num $=$ mkl_domain_get_max_threads (MKL_DOMAIN_FFT);
return_code = mkl_get_dynamic();

NOTE Always remember to add \#include "mkl.h" to use the C usage syntax.

mkl_set_num_threads

Suggests the number of threads to use.

Syntax

fortran:

call mkl_set_num_threads(number)
C:
void mkl_set_num_threads(number);
Include files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Input Parameters

Name Type Description
number FORTRAN: INTEGER
C: int

Description

Number of threads suggested by user

Description

This function allows you to specify how many threads Intel MKL should use. The number is a hint, and there is no guarantee that exactly this number of threads will be used. Enter a positive integer. This routine takes precedence over the MKL_NUM_THREADS environment variable.

NOTE Always remember to add \#include "mkl.h" to use the C usage syntax.

See Intel MKL User's Guide for implementation details.
mkl_domain_set_num_threads
Suggests the number of threads for a particular function domain.

Syntax

Fortran:

```
ierr = mkl_domain_set_num_threads( num, mask )
```

C:

```
ierr = mkl_domain_set_num_threads( num, mask );
```

Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| num | FORTRAN: INTEGER | Number of threads suggested by user |
| | C: int | |
| mask | FORTRAN: INTEGER | Name of the targeted domain |
| | C: int | |

Description

This function allows you to request different domains of Intel MKL to use different numbers of threads. The currently supported domains are:

- MKL_DOMAIN_BLAS - BLAS
- MKL_DOMAIN_FFT - FFT (excluding cluster FFT)
- MKL_DOMAIN_VML - Vector Math Library
- MKL_DOMAIN_PARDISO - PARDISO
- MKL_DOMAIN_ALL - another way to do what mkl_set_num_threads does

This is only a hint, and use of this number of threads is not guaranteed. Enter a valid domain and a positive integer for the number of threads. This routine has precedence over the MKL_DOMAIN_NUM_THREADS environment variable.

See Intel MKL User's Guide for implementation details.

Return Values

| 1 (true) | Indicates no error, execution is successful. |
| :--- | :--- |
| 0 (false) | Indicates failure, possibly because the inputs were invalid. |

mkl_set_dynamic
Enables Intel MKL to dynamically change the number of threads.

Syntax

Fortran:

```
call mkl_set_dynamic( boolean_var )
```

C:

```
void mkl_set_dynamic( boolean_var );
```


Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Input Parameters

| Name | Type |
| :--- | :--- |
| boolean_v | FORTRAN: INTEGER |
| ar | C: int |

Description

The parameter that determines whether dynamic adjustment of the number of threads is enabled or disabled.

Description

This function indicates whether or not Intel MKL can dynamically change the number of threads. The default for this is true, regardless of how the OMP_DYNAMIC variable is set. This will also hold precedent over the OMP_DYNAMIC variable.

A value of false does not guarantee that the user's requested number of threads will be used. But it means that Intel MKL will attempt to use that value. This routine takes precedence over the environment variable MKL_DYNAMIC.
Note that if Intel MKL is called from within a parallel region, Intel MKL may not thread unless MKL_DYNAMIC is set to false, either with the environment variable or by this routine call.

See Intel MKL User's Guide for implementation details.
mkl_get_max_threads
Inquires about the number of threads targeted for parallelism.

Syntax

Fortran:

```
num = mkl_get_max_threads ()
```

C:

```
num = mkl_get_max_threads();
```

Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Description

This function allows you to inquire independently of OpenMP* how many threads Intel MKL is targeting for parallelism. The number is a hint, and there is no guarantee that exactly this number of threads will be used.
See Intel MKL User's Guide for implementation details.

Return Values

The output is INTEGER equal to the number of threads.

mkl_domain_get_max_threads

Inquires about the number of threads targeted for parallelism in different domains.

Syntax

Fortran:

```
ierr = mkl_domain_get_max_threads( mask )
```

C:

```
ierr = mkl_domain_get_max_threads( mask );
```

Include files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| mask | FORTRAN: INTEGER | The name of the targeted domain |
| | C: int | |

Description

This function allows the user of different domains of Intel MKL to inquire what number of threads is being used as a hint. The inquiry does not imply that this is the actual number of threads used. The number may vary depending on the value of the MKL_DYNAMIC variable and/or problem size, system resources, etc. But the function returns the value that MKL is targeting for a given domain.

The currently supported domains are:

- MKL_DOMAIN_BLAS - BLAS
- MKL_DOMAIN_FFT - FFT (excluding cluster FFT)
- MKL_DOMAIN_VML - Vector Math Library
- MKL_DOMAIN_PARDISO - PARDISO
- MKL_DOMAIN_ALL - another way to do what mkl_get_max_threads does.

You are supposed to enter a valid domain.
See Intel MKL User's Guide for implementation details.

Return Values

Returns the hint about the number of threads for a given domain.

mkl_get_dynamic

Returns current value of MKL_DYNAMIC variable.

Syntax

Fortran:

```
ret = mkl_get_dynamic()
```

C:

```
ret = mkl_get_dynamic();
```

Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Description

This function returns the current value of the MKL_DYNAMIC variable. This variable can be changed by manipulating the MKL_DYNAMIC environment variable before the Intel MKL run is launched or by calling mkl_set_dynamic (). Doing the latter has precedence over the former.
The function returns a value of 0 or 1 : 1 indicates that MKL_DYNAMIC is true, 0 indicates that MKL_DYNAMIC is false. This variable indicates whether or not Intel MKL can dynamically change the number of threads. A value of false does not guarantee that the number of threads you requested will be used. But it means that Intel MKL will attempt to use that value.

Note that if Intel MKL is called from within a parallel region, Intel MKL may not thread unless MKL_DYNAMIC is set to false, either with the environment variable or by this routine call.

See Intel MKL User's Guide for implementation details.

Return Values

```
1 Indicates MKL_DYNAMIC is true.
0 Indicates MKL_DYNAMIC is false.
```


Error Handling Functions

xerbla

Error handling routine called by BLAS, LAPACK, VML, VSL routines.

Syntax

Fortran:

```
call xerbla( srname, info )
```

C:

```
xerbla( srname, info, len );
```


Include Files

- FORTRAN 77: mkl_blas.fi
- C: mkl_blas.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| srname | FORTRAN: CHARACTER* (*) | The name of the routine that called xerbla |
| | C: char* | |
| info | FORTRAN: INTEGER | The position of the invalid parameter in the parameter list
 of the calling routine |
| | C: int* | Length of the source string |

Description

The routine xerbla is an error handler for the BLAS, LAPACK, VSL, and VML routines. It is called by a BLAS, LAPACK, VSL or VML routine if an input parameter has an invalid value. If an issue is found with an input parameter, xerbla prints a message similar to the following:

```
MKL ERROR: Parameter 6 was incorrect on entry to DGEMM
```

and then returns to your application. Comments in the LAPACK reference code (http://www.netlib.org/ lapack/explore-html/xerbla.f.html) suggest this behavior though the LAPACK User's Guide recommends that the execution should stop when an error is found.

Note that xerbla is an internal function. You can change or disable printing of an error message by providing your own xerbla function. See the FORTRAN and C examples below.

Examples

```
subroutine xerbla (srname, info)
character*(*) srname !Name of subprogram that called xerbla
integer*4 info !Position of the invalid parameter in the
parameter list
return !Return to the calling subprogram
end
```

```
void xerbla(char* srname, int* info, int len){
// srname - name of the function that called xerbla
// info - position of the invalid parameter in the parameter list
// len - length of the name in bytes
printf("\nXERBLA is called :%s: %d\n",srname,*info);
```

pxerbla
Error handling routine called by ScaLAPACK routines.
Syntax

```
call pxerbla(ictxt, srname, info)
```

Include Files

- C: mkl_scalapack.h

Input Parameters

| ictxt | (global) INTEGER |
| :--- | :--- |
| The BLACS context handle, indicating the global context of the operation. | |
| The context itself is global. | |
| srname | (global) CHARACTER* 6 |
| The name of the routine which called pxerbla. | |
| info | (global) INTEGER. |
| | The position of the invalid parameter in the parameter list of the calling |
| routine. | |

Description

This routine is an error handler for the ScaLAPACK routines. It is called if an input parameter has an invalid value. A message is printed and program execution continues. For ScaLAPACK driver and computational routines, a RETURN statement is issued following the call to pxerbla.

Control returns to the higher-level calling routine, and you can determine how the program should proceed. However, in the specialized low-level ScaLAPACK routines (auxiliary routines that are Level 2 equivalents of computational routines), the call to pxerbla() is immediately followed by a call to BLACS_ABORT () to terminate program execution since recovery from an error at this level in the computation is not possible.

It is always good practice to check for a nonzero value of info on return from a ScaLAPACK routine. Installers may consider modifying this routine in order to call system-specific exception-handling facilities.

Equality Test Functions

Isame
Tests two characters for equality regardless of the case.

Syntax

Fortran:

```
val = lsame( ca, cb )
```

C:

```
val = lsame( ca, cb );
```

Include Files

- FORTRAN 77: mkl_blas.fi
- C: mkl_blas.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| $c a, c b$ | FORTRAN: CHARACTER*1 | FORTRAN: The single characters to be compared |
| | C: const char* | C: Pointers to the single characters to be compared |

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| val | FORTRAN: LOGICAL | Result of the comparison |
| | C: int | |

Description

This logical function returns. TRUE. if ca is the same letter as cb regardless of the case, and. FALSE. otherwise.

Isamen
Tests two character strings for equality regardless of the case.

Syntax

Fortran:

```
val = lsamen( n, ca, cb )
```

C:
val $=\operatorname{lsamen}(n, c a, c b)$;
Include Files

- FORTRAN 77: mkl_lapack.fi
- C: mkl_lapack.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| n | FORTRAN: INTEGER | FORTRAN: The number of characters in ca and cb to be |
| compared. | | |

Name Type Description

FORTRAN: CHARACTER* (*)
C: const char*

Output Parameters

| Name | Type |
| :--- | :--- |
| val | FORTRAN: LOGICAL |
| | C: int |

Description

FORTRAN: Result of the comparison. .TRUE. if $c a$ and $c b$ are equivalent except for the case, and.FALSE. otherwise. The function also returns.FALSE. if len(ca) or len $(c b)$ is less than n.
C: Result of the comparison. Non-zero if $c a$ and $c b$ are equivalent except for the case, and zero otherwise.

Description

This logical function tests if the first n letters of one string are the same as the first n letters of another string, regardless of the case.

Timing Functions

second/dsecnd

Returns elapsed CPU time in seconds.
Syntax

Fortran:

```
val = second()
val = dsecnd()
```

C:

```
val = second();
```

val = dsecnd();

Include Files

- FORTRAN 77: mkl_lapack.fi
- C: mkl_lapack.h

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| val | FORTRAN: REAL for second | Elapsed CPU time in seconds |
| | DOUBLE PRECISION for dsecnd | |

Name Type Description

C: float for second

double for dsecnd

Description

The second/dsecnd functions return the elapsed CPU time in seconds. The difference between these functions is that dsecnd returns the result with double precision.

Apply each function in pairs: the first time, directly before a call to the routine to be measured, and the second time - after the measurement. The difference between the returned values is the time spent in the routine.

The second/dsecnd functions get the time from the elapsed CPU clocks divided by frequency. Obtaining the frequency may take some time when the second/dsecnd function runs for the first time. To eliminate the effect of this extra time on your measurements, make the first call to second/dsecnd in advance.

Do not use second for measuring short time intervals because the single-precision format is not capable of holding sufficient timer precision.

mkl_get_cpu_clocks

Returns full precision elapsed CPU clocks.

Syntax

Fortran:

```
call mkl get cpu clocks( clocks )
```

C:
mkl_get_cpu_clocks(\&clocks);
Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| clocks | FORTRAN: INTEGER*8 | Elapsed CPU clocks |
| | C: unsigned MKL_INT64 | |

Description

The mkl_get_cpu_clocks function returns the elapsed CPU clocks.
This may be useful when timing short intervals with high resolution. The mkl_get_cpu_clocks function is also applied in pairs like second/dsecnd. Note that out-of-order code execution on IA-32 or Intel ${ }^{\circledR} 64$ architecture processors may disturb the exact elapsed CPU clocks value a little bit, which may be important while measuring extremely short time intervals.

NOTE getcpuclocks is an obsolete name for the mkl_get_cpu_clocks function that is referenced in the library for back compatibility purposes but is deprecated and subject to removal in subsequent releases.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

mkl_get_cpu_frequency

Returns the current CPU frequency value in GHz .

Syntax

Fortran:

```
freq = mkl_get_cpu_frequency()
```

C:
freq = mkl_get_cpu_frequency();

Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| freq | FORTRAN: DOUBLE PRECISION | Current CPU frequency value in GHz |
| | C: double | |

Description

The function mkl_get_cpu_frequency returns the current CPU frequency in GHz.

\square
NOTE getcpufrequency is an obsolete name for the mkl_get_cpu_frequency function that is referenced in the library for back compatibility purposes but is deprecated and subject to removal in subsequent releases.
mkl_get_max_cpu_frequency
Returns the maximum CPU frequency value in GHz .

Syntax

Fortran:

```
freq = mkl_get_max_cpu_frequency()
```

C:
freq = mkl_get_max_cpu_frequency();

Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| freq | FORTRAN: DOUBLE PRECISION | Maximum CPU frequency value in GHz |
| | C: double | |

Description

The function mkl_get_max_cpu_frequency returns the maximum CPU frequency in GHz.

mkl_get_clocks_frequency

Returns the frequency value in GHz based on constant-rate Time Stamp Counter.

Syntax

Fortran:

```
freq = mkl_get_clocks_frequency()
```

C:

```
freq = mkl_get_clocks_frequency();
```

Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| freq | FORTRAN: DOUBLE PRECISION | Frequency value in GHz |
| | C: double | |

Description

The function mkl_get_clocks_frequency returns the CPU frequency value (in GHz) based on constant-rate Time Stamp Counter (TSC). Use of the constant-rate TSC ensures that each clock tick is constant even if the CPU frequency changes. Therefore, the returned frequency is constant.

\square
NOTE Obtaining the frequency may take some time when mkl_get_clocks_frequency is called for the first time. The same holds for functions second/dsecnd, which call mkl_get_clocks_frequency.

See Also

second/dsecnd

Memory Functions

This section describes the Intel MKL memory support functions. See the Intel® MKL User's Guide for details of the Intel MKL memory management.

mkl_free_buffers

Frees memory buffers.

Syntax

Fortran:

```
call mkl_free_buffers
```

C:
mkl_free_buffers();
Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Description

The mkl_free_buffers function frees the memory allocated by the Intel MKL memory management software. The memory management software allocates new buffers if no free buffers are currently available. Call mkl_free_buffers () to free all memory buffers and to avoid memory leaking on completion of work with the Intel MKL functions, that is, after the last call of an Intel MKL function from your application.
See Inte® ${ }^{\circledR}$ MKL User's Guide for details.

NOTE MKL_FreeBuffers is an obsolete name for the mkl_free_buffers function that is referenced in the library for back compatibility purposes but is deprecated and subject to removal in subsequent releases.

```
mkl_free_buffers Usage with FFT Functions
DFTI_DESCRIPTOR_HANDLE hand1;
DFTI_DESCRIPTOR_HANDLE hand2;
void mkl_free_buffers(void);
/* Using MKL FFT */
Status = DftiCreateDescriptor(&hand1, DFTI_SINGLE, DFTI_COMPLEX, dim, m1);
Status = DftiCommitDescriptor(hand1);
Status = DftiComputeForward(hand1, s_array1);
Status = DftiCreateDescriptor(&hand2, DFTI_SINGLE, DFTI_COMPLEX, dim, m2);
Status = DftiCommitDescriptor(hand2);
Status = DftiFreeDescriptor(&hand1);
/* Do not call mkl_free_buffers() here as the hand2 descriptor will be corrupted! */
Status = DftiComputeBackward(hand2, s_array2));
Status = DftiFreeDescriptor(&hand2);
/* Here user finishes the MKL FFT usage */
/* Memory leak will be triggered by any memory control tool */
/* Use mkl_free_buffers() to avoid memory leaking */
mkl_free_buffers();
```

If the memory space is sufficient, use mkl_free_buffers after the last call of the MKL functions. Otherwise, a drop in performance can occur due to reallocation of buffers for the subsequent MKL functions.

WARNING For FFT calls, do not use mkl_free_buffers between DftiCreateDescriptor (hand) and DftiFreeDescriptor (\&hand).
mkl_thread_free_buffers
Frees memory buffers allocated in the current thread.
Syntax

Fortran:

```
call mkl_thread_free_buffers
```

C:
mkl_thread_free_buffers();

Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Description

The mkl_thread_free_buffers function frees the memory allocated by the Intel MKL memory management in the current thread only. Memory buffers allocated in other threads are not affected. Call mkl_thread_free_buffers () to avoid memory leaking if you are unable to call the mkl_free_buffers function in the multi-threaded application when you are not sure if all the other running Intel MKL functions completed operation.

mkl_disable_fast_mm

Enables Intel MKL to dynamically turn off memory
management.

Syntax

Fortran:

```
mm = mkl_disable_fast_mm
```

C:
$m m=m k l _d i s a b l e _f a s t _m m() ;$
Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Description

The Intel MKL memory management software is turned on by default. To turn it off dynamically before any Intel MKL function call, you can use the mkl_disable_fast_mm function similarly to the MKL_DISABLE_FAST_MM environment variable (See Inte ${ }^{\circledR}$ MKL User's Guide for details.) Run $m k l _d i s a b l e _f a s t _m m$ function to allocate and free memory from call to call. Note that disabling the Intel MKL memory management software negatively impacts performance of some Intel MKL routines, especially for small problem sizes.

The function return value 1 indicates that the Intel MKL memory management was turned off successfully. The function return value 0 indicates a failure.

mkl_mem_stat

Reports amount of memory utilized by Intel MKL memory management software.

Syntax

Fortran:

```
AllocatedBytes = mkl_mem_stat( AllocatedBuffers )
```

C:

```
AllocatedBytes = mkl_mem_stat( &AllocatedBuffers );
```


Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| AllocatedBytes | FORTRAN: INTEGER*8 | Amount of allocated bytes |
| C: MKL_INT64 | | |
| AllocatedBuffers | FORTRAN: INTEGER*4, | Number of allocated buffers |
| | C: int | |

Description

The function returns the amount of the allocated memory in the AllocatedBuffers buffers. If there are no allocated buffers at the moment, the function returns 0 . Call the mkl_mem_stat () function to check the Intel MKL memory status.

Note that after calling mkl_free_buffers there should not be any allocated buffers.
See Example "mkl_malloc(), mkl_free(), mkl_mem_stat() Usage".

[
NOTE MKL_MemStat is an obsolete name for the MKL_Mem_Stat function that is referenced in the library for back compatibility purposes but is deprecated and subject to removal in subsequent releases.
mkl_malloc
Allocates the aligned memory buffer.
Syntax

Fortran:

```
a_ptr = mkl_malloc( alloc_size, alignment )
```

C:

```
a_ptr = mkl_malloc( alloc_size, alignment );
```

Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| alloc_size | FORTRAN: INTEGER*4 | Size of the buffer to be allocated |
| | C: size_t | Note that Fortran type INTEGER*4 is given for
 the 32 -bit systems. Otherwise, it is INTEGER*8. |
| alignment | FORTRAN: INTEGER*4 | Alignment of the allocated buffer |

| Name | Type | Description |
| :--- | :--- | :--- |
| | C: int | |

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| a_ptr | FORTRAN: POINTER | Pointer to the allocated buffer |

Description

The function allocates a size-bytes buffer, aligned on the alignment boundary, and returns a pointer to this buffer.

The function returns NULL if size < 1. If alignment is not power of 2 , the alignment 32 is used.
See Example "mkl_malloc(), mkl_free(), mkl_mem_stat() Usage".
mkl_free
Frees the aligned memory buffer allocated by
mkl_malloc.
Syntax
fortran:

```
call mkl_free( a_ptr )
```

C:
mkl_free(a_ptr);
Include files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Input Parameters
Name Type Description
a_ptr FORTRAN: POINTER Pointer to the buffer to be freed

C: void*

Description

The function frees the buffer pointed by ptr and allocated by mkl_malloc ().
See Example "mkl_malloc(), mkl_free(), mkl_mem_stat() Usage".

Examples of mkl_malloc(), mkl_free(), mkl_mem_stat() Usage
Usage Example in Fortran

```
PROGRAM FOO
```

REAL* 8
A, B, C

```
POINTER (A_PTR,A(1)), (B_PTR,B(1)), (C_PTR,C(1)
INTEGER N,}\mp@subsup{}{}{-
REAL*8 ALPHA, BETA
INTEGER*8 ALLOCATED BYTES
INTEGER*4 ALLOCATED_BUFFERS
#ifdef SYSTEM_BITS32
    I\overline{NTTEGER*\overline{4}}\textrm{MKL}MALLOC
    INTEGER*4 ALLO
#else
    INTEGER*8 MKL_MALLOC
    INTEGER*8 ALLO\overline{C_SIZE}
#endif
INTEGER MKL_MEM_STAT
EXTERNAL MKL_MALEOOC, MKL_FREE, MKL_MEM_STAT
ALPHA = 1.1; BETA = -1.2
N = 1000
ALLOC_SIZE = 8*N*N
A_PTR = MKL_MALLOC(ALLOC_SIZE,64)
B_PTR = MKL_MALLOC (ALLOC_SIZE,64)
C-PTR = MKL-MALLOC (ALLOC-SIZE,64)
D\overline{O}}\textrm{I}=1,N*
    A(I) = I
    B(I) = -I
    C(I) = 0.0
END DO
CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BETA,C,N);
ALLOCATED_BYTES = MKL_MEM_STAT(ALLOCATED_BUFFERS)
PRINT *,'DGGEMM uses ',ALLŌCATED BYTES,' \overline{bytes in ',}
$ ALLOCATED_BUFFERS,' buffers '-
CALL MKL_FREE_BUFFERS
ALLOCATED_BYTES = MKL_MEM_STAT(ALLOCATED_BUFFERS)
```



```
    PRINT *,'MKĒ MEMORY LEAK!'
    PRINT *,'AFTER MKL_FREE_BUFFERS there are ',
$ ALLOCATED_BYTES,'' bytēs in ',
$ ALLOCATED_BUFFERS,' buffers'
END IF
CALL MKL_FREE (A_PTR)
CALL MKL_FREE (B_PTR)
CALL MKL_FREE (C_PTR)
STOP
END
```


Usage Example in C

```
#include <stdio.h>
#include <mkl.h>
int main(void) {
    double *a, *b, *c;
    int n, i;
    double alpha, beta;
    MKL_INT64 AllocatedBytes;
    int N_N_AllocatedBuffers;
    alpha = 1.1; beta = -1.2;
    n = 1000;
    a = (double*)mkl_malloc(n*n*sizeof(double),64);
    b = (double*)mkl_malloc(n*n*sizeof(double),64);
    c = (double*)mkl_malloc(n*n*sizeof(double),64);
    for (i=0;i<(n*n);i++) {
        a[i] = (double) (i+1);
        b[i] = (double)(-i-1);
```

```
    c[i] = 0.0;
}
    dgemm("N","N",&n,&n,&n,&alpha,a,&n,b,&n,&beta,c,&n);
    AllocatedBytes = mkl_mem_stat(&N_AllocatedBuffers);
    printf("\nDGEMM uses %ld`bytes in %d buffers",(long)AllocatedBytes,N_AllocatedBuffers);
    mkl_free_buffers();
    AllocatedBytes = mkl_mem_stat(&N_AllocatedBuffers);
    if (AllocatedBytes >- 0) \
        printf("\nMKL memory leak!");
        printf("\nAfter mkl_free_buffers there are %ld bytes in %d buffers",
            (long) AllocatedBȳtes,\overline{N}_AllocatedBuffers);
    }
    mkl_free(a);
    mkl_free(b);
    mkl_free(c);
    return 0;
```

\}

Miscellaneous Utility Functions

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

mkl_progress

Provides progress information.

Syntax

Fortran:

```
stopflag = mkl_progress( thread, step, stage )
```

C:

```
stopflag = mkl_progress( thread, step, stage, lstage );
```

Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_lapack.h and mkl_service.h

Input Parameters

| Name | Type |
| :--- | :--- |
| thread | FORTRAN: INTEGER*4 |

Description

FORTRAN: The number of the thread the progress routine is called from. 0 is passed for sequential code.
Name Type Description

C: Pointer to the number of the thread the progress routine is called from. 0 is passed for sequential code.

FORTRAN: The linear progress indicator that shows the amount of work done. Increases from 0 to the linear size of the problem during the computation.

C: Pointer to the linear progress indicator that shows the amount of work done. Increases from 0 to the linear size of the problem during the computation.

Message indicating the name of the routine or the name of the computation stage the progress routine is called from.

The length of a stage string excluding the trailing NULL character.

Description

The stopping flag. A non-zero flag forces the routine to be interrupted. The zero flag is the default return value.

Description

The mkl_progress function is intended to track progress of a lengthy computation and/or interrupt the computation. By default this routine does nothing but the user application can redefine it to obtain the computation progress information. You can set it to perform certain operations during the routine computation, for instance, to print a progress indicator. A non-zero return value may be supplied by the redefined function to break the computation.

The progress function mkl_progress is regularly called from some LAPACK and DSS/PARDISO functions during the computation. Refer to a specific LAPACK or DSS/PARDISO function description to see whether the function supports this feature or not.

Application Notes

Note that mkl_progress is a Fortran routine, that is, to redefine the progress routine from C, the name should be spelt differently, parameters should be passed by reference, and an extra parameter meaning the length of the stage string should be considered. The stage string is not terminated with the NULL character. The C interface of the progress routine is as follows:

```
int mkl progress ( int* thread, int* step, char* stage, int lstage ); // Linux, Mac
int MKL_PROGRESS( int* thread, int* step, char* stage, int lstage ); // WindowS
```

See further the examples of printing a progress information on the standard output in Fortran and C languages:

Examples

Fortran example:

```
integer function mkl_progress( thread, step, stage )
integer*4 thread, step
character*(*) stage
print*,'Thread:',thread,',stage:',stage,',step:',step
mkl_progress = 0
retürn
end
```


C example:

```
#include <stdio.h>
#include <string.h>
#define BUFLEN 16
int mkl_progress_( int* ithr, int* step, char* stage, int lstage )
{
    char buf[BUFLEN];
    if( lstage >= BUFLEN ) lstage = BUFLEN-1;
    strncpy( buf, stage, lstage );
    buf[lstage] = '\0';
    printf( "In thread %i, at stage %s, steps passed %i\n", *ithr, buf, *step );
    return 0;
}
```


mkl_enable_instructions

Allows dispatching Intel® Advanced Vector Extensions.

Syntax

Fortran:

```
irc = mkl_enable_instructions(MKL_AVX_ENABLE)
```

C:

```
irc = mkl_enable_instructions(MKL_AVX_ENABLE);
```


Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Input Parameters

MKL_AVX_ENABLE Parameter indicating which new instructions the user needs to enable.

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| irc | FORTRAN: INTEGER*4 | Value reflecting AVX usage status: |
| C: int | $=1$ | MKL uses the AVX code, if the hardware
 supports Intel® AVX. |
| | $=0$ | The request is rejected. Most likely,
 mkl_enable_instructions has been
 called after another Intel MKL function. |

Description

This function is currently void and deprecated but can be used in future Intel MKL releases.

NOTE Always remember to add \#include "mkl.h" to use the C usage syntax.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

Optimization Notice

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision \#20110804

Functions Supporting the Single Dynamic Library

Intel ${ }^{\circledR}$ MKL provides the Single Dynamic Library (SDL), which enables setting the interface and threading layer for Intel MKL at run time. See Intel® MKL User's Guide for details of SDL and layered model concept. This section describes the functions supporting SDL.

mkl_set_interface_layer

Sets the interface layer for Intel MKL at run time. Use with the Single Dynamic Library.

Syntax

Fortran:

interface = mkl_set_interface_layer(required_interface)
C:
interface = mkl_set_interface_layer(required_interface);

Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| required_interface | FORTRAN: | Determines the interface layer. Possible values: |
| | INTEGER | MKL_INTERFACE_LP64 for the LP64 interface. |
| | C: int | MKL_INTERFACE_ILP64 for the ILP64 interface. |

Description

If you are using the Single Dynamic Library (SDL), the mkl_set_interface_layer function sets LP64 or ILP64 interface for Intel MKL at run time.

Call this function prior to calling any other Intel MKL function in your application except mkl_set_threading_layer. You can call mkl_set_interface_layer and mkl_set_threading_layer in any order.

The mkl_set_interface_layer function takes precedence over the MKL_INTERFACE_LAYER environment variable.
See Intel MKL User's Guide for the layered model concept and usage details of SDL.

mkl_set_threading_layer

Sets the threading layer for Intel MKL at run time. Use with the Single Dynamic Library (SDL).

Syntax

fortran:

```
threading = mkl_set_threading_layer( required_threading )
```

C:

```
threading = mkl_set_threading_layer( required_threading );
```

Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Input Parameters

| Name | Type | Description |
| :---: | :---: | :---: |
| required_threading | FORTRAN:
 INTEGER | Determines the threading layer. Possible values: MKL_THREADING_INTEL for Intel threading. |
| | C: int | MKL_THREADING_SEQUENTIAL for the sequential mode of Intel MKL. |
| | | MKL_THREADING_PGI for PGI threading on Windows* or Linux* operating system only. |
| | | MKL_THREADING_GNU for GNU threading on Linux* operating system only. |

Description

If you are using the Single Dynamic Library (SDL), the mkl_set_threading_layer function sets the specified threading layer for Intel MKL at run time.
Call this function prior to calling any other Intel MKL function in your application except
mkl_set_interface_layer.
You can call mkl_set_threading_layer and mkl_set_interface_layer in any order.
The mkl_set_threading_layer function takes precedence over the MKL_THREADING_LAYER environment variable.

See Intel MKL User's Guide for the layered model concept and usage details of SDL.
mkl_set_xerbla
Replaces the error handling routine. Use with the
Single Dynamic Library on Windows* OS.
Syntax

Fortran:

```
old_xerbla_ptr = mkl_set_xerbla( new_xerbla_ptr )
```

C:
old_xerbla_ptr = mkl_set_xerbla(new_xerbla_ptr);
Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Input Parameters

Name Type Description

```
new_xerbla_ptr XerblaEntry Pointer to the error handling routine to be used.
```


Description

If you are linking with the Single Dynamic Library (SDL) mkl_rt.lib on Windows* OS, the mkl_set_xerbla function replaces the error handling routine that is called by Intel MKL functions with the routine specified by the parameter.
See Intel MKL User's Guide for details of SDL.

Return Values

The function returns the pointer to the replaced error handling routine.

See Also

xerbla

mkl_set_progress

Replaces the progress information routine. Use with the Single Dynamic Library (SDL) on Windows* OS.

Syntax

Fortran:

```
old_progress_ptr mkl_set_progress( new_progress_ptr )
```

C:

```
old_progress_ptr mkl_set_progress( new_progress_ptr );
```


Include Files

- FORTRAN 77: mkl_service.fi
- C: mkl_service.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| new_progress_ptr | ProgressEntry | Pointer to the progress information routine to be used. |

Description

If you are linking with the Single Dynamic Library (SDL) mkl_rt.lib on Windows* OS, the $m k l _s e t$ progress function replaces the currently used progress information routine with the routine specified by the parameter.
See Intel MKL User's Guide for details of SDL.

Return Values

The function returns the pointer to the replaced progress information routine.
See Also
mkl_progress

BLACS Routines

This chapter describes the Intel ${ }^{\circledR}$ Math Kernel Library implementation of FORTRAN 77 routines from the BLACS (Basic Linear Algebra Communication Subprograms) package. These routines are used to support a linear algebra oriented message passing interface that may be implemented efficiently and uniformly across a large range of distributed memory platforms.
The BLACS routines make linear algebra applications both easier to program and more portable. For this purpose, they are used in Intel MKL intended for the Linux* and Windows* OSs as the communication layer of ScaLAPACK and Cluster FFT.

On computers, a linear algebra matrix is represented by a two dimensional array (2D array), and therefore the BLACS operate on 2D arrays. See description of the basic matrix shapes in a special section.
The BLACS routines implemented in Intel MKL are of four categories:

- Combines
- Point to Point Communication
- Broadcast
- Support.

The Combines take data distributed over processes and combine the data to produce a result. The Point to Point routines are intended for point-to-point communication and Broadcast routines send data possessed by one process to all processes within a scope.
The Support routines perform distinct tasks that can be used for initialization, destruction, information, and miscellaneous tasks.

Matrix Shapes

The BLACS routines recognize the two most common classes of matrices for dense linear algebra. The first of these classes consists of general rectangular matrices, which in machine storage are 2D arrays consisting of m rows and n columns, with a leading dimension, lda, that determines the distance between successive columns in memory.
The general rectangular matrices take the following parameters as input when determining what array to operate on:

| m | (input) INTEGER. The number of matrix rows to be operated on. |
| :--- | :--- |
| n | (input) INTEGER. The number of matrix columns to be operated on. |
| a | (input/output) TYPE (depends on routine), array of dimension (lda, $n)$.
 A pointer to the beginning of the (sub)array to be sent. |
| $I d a$ | (input) INTEGER. The distance between two elements in matrix row. |

The second class of matrices recognized by the BLACS are trapezoidal matrices (triangular matrices are a sub-class of trapezoidal). Trapezoidal arrays are defined by m, n, and $l d a$, as above, but they have two additional parameters as well. These parameters are:

```
uplo (input) CHARACTER*1. Indicates whether the matrix is upper or lower
    trapezoidal, as discussed below.
    (input) CHARACTER*1 . Indicates whether the diagonal of the matrix is unit
    diagonal (will not be operated on) or otherwise (will be operated on).
```

The shape of the trapezoidal arrays is determined by these parameters as follows:

Trapezoidal Arrays Shapes

The packing of arrays, if required, so that they may be sent efficiently is hidden, allowing the user to concentrate on the logical matrix, rather than on how the data is organized in the system memory.

BLACS Combine Operations

This section describes BLACS routines that combine the data to produce a result.
In a combine operation, each participating process contributes data that is combined with other processes' data to produce a result. This result can be given to a particular process (called the destination process), or to all participating processes. If the result is given to only one process, the operation is referred to as a leave-on-one combine, and if the result is given to all participating processes the operation is referenced as a leave-on-all combine.
At present, three kinds of combines are supported. They are:

- element-wise summation
- element-wise absolute value maximization
- element-wise absolute value minimization
of general rectangular arrays.
Note that a combine operation combines data between processes. By definition, a combine performed across a scope of only one process does not change the input data. This is why the operations (max/min/sum) are specified as element-wise. Element-wise indicates that each element of the input array will be combined with the corresponding element from all other processes' arrays to produce the result. Thus, a 4×2 array of inputs produces a 4×2 answer array.
When the max/min comparison is being performed, absolute value is used. For example, -5 and 5 are equivalent. However, the returned value is unchanged; that is, it is not the absolute value, but is a signed value instead. Therefore, if you performed a BLACS absolute value maximum combine on the numbers $-5,3$, 1,8 the result would be -8 .
The initial symbol ? in the routine names below masks the data type:

```
i integer
s single precision real
```

| d | double precision real
 single precision complex
 double precision complex. |
| :--- | :--- |
| z BLACS Combines | Results of operation |
| Routine name | Entries of result matrix will have the value of the greatest absolute
 value found in that position. |
| gamx2d | Entries of result matrix will have the value of the smallest absolute
 value found in that position. |
| gamn2d | Entries of result matrix will have the summation of that position. |

?gamx2d
Performs element-wise absolute value maximization.

Syntax

```
call igamx2d( icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest )
call sgamx2d( icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest )
call dgamx2d( icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest )
call cgamx2d( icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest )
call zgamx2d( icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest )
```


Input Parameters

| icontxt | INTEGER. Integer handle that indicates the context. |
| :---: | :---: |
| scope | CHARACTER*1. Indicates what scope the combine should proceed on. Limited to ROW, COLUMN, or ALL. |
| top | CHARACTER*1. Communication pattern to use during the combine operation. |
| m | INTEGER. The number of matrix rows to be combined. |
| n | INTEGER. The number of matrix columns to be combined. |
| a | TYPE array (Ida, n). Matrix to be compared with to produce the maximum. |
| Ida | INTEGER. The leading dimension of the matrix A, that is, the distance between two successive elements in a matrix row. |
| rcflag | INTEGER.
 If rcflag $=-1$, the arrays ra and ca are not referenced and need not exist. Otherwise, rcflag indicates the leading dimension of these arrays, and so must be $\geq m$. |
| rdest | INTEGER.
 The process row coordinate of the process that should receive the result. If rdest or cdest $=-1$, all processes within the indicated scope receive the answer. |
| cdest | INTEGER.
 The process column coordinate of the process that should receive the result. If rdest or cdest $=-1$, all processes within the indicated scope receive the answer. |

Output Parameters

a
ra
ca

TYPE array (lda, n). Contains the result if this process is selected to receive the answer, or intermediate results if the process is not selected to receive the result.
INTEGER array (rcflag, n).
If rcflag $=-1$, this array will not be referenced, and need not exist. Otherwise, it is an integer array (of size at least rcflag $x n$) indicating the row index of the process that provided the maximum. If the calling process is not selected to receive the result, this array will contain intermediate (useless) results.

INTEGER array (rcflag, n).
If rcflag $=-1$, this array will not be referenced, and need not exist. Otherwise, it is an integer array (of size at least rcflag x n) indicating the row index of the process that provided the maximum. If the calling process is not selected to receive the result, this array will contain intermediate (useless) results.

Description

This routine performs element-wise absolute value maximization, that is, each element of matrix A is compared with the corresponding element of the other process's matrices. Note that the value of A is returned, but the absolute value is used to determine the maximum (the 1-norm is used for complex numbers). Combines may be globally-blocking, so they must be programmed as if no process returns until all have called the routine.

See Also
BLACS Routines Usage Example

?gamn2d

Performs element-wise absolute value minimization.

Syntax

```
call igamn2d( icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest )
call sgamn2d( icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest )
call dgamn2d( icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest )
call cgamn2d( icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest )
call zgamn2d( icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest )
```

Input Parameters

| icontxt | INTEGER. Integer handle that indicates the context. |
| :---: | :---: |
| scope | CHARACTER*1. Indicates what scope the combine should proceed on. Limited to ROW, COLUMN, or ALL. |
| top | CHARACTER*1. Communication pattern to use during the combine operation. |
| m | INTEGER. The number of matrix rows to be combined. |
| n | INTEGER. The number of matrix columns to be combined. |
| a | TYPE array (Ida, n). Matrix to be compared with to produce the minimum. |

| Ida | INTEGER. The leading dimension of the matrix A, that is, the distance |
| :--- | :--- |
| between two successive elements in a matrix row. | |
| rcflag | INTEGER. |
| | If rcflag $=-1$, the arrays ra and ca are not referenced and need not exist. |
| | Otherwise, rcflag indicates the leading dimension of these arrays, and so |
| must be $\geq m$. | |
| rdest | INTEGER. |
| | The process row coordinate of the process that should receive the result. If |
| | rdest or cdest $=-1$, all processes within the indicated scope receive the |
| answer. | |
| cdest | INTEGER. |
| | The process column coordinate of the process that should receive the |
| | result. If rdest or cdest $=-1$, all processes within the indicated scope |
| receive the answer. | |

Output Parameters

a
ra
TYPE array (lda, n). Contains the result if this process is selected to receive the answer, or intermediate results if the process is not selected to receive the result.
INTEGER array (rcflag, n).
If rcflag $=-1$, this array will not be referenced, and need not exist. Otherwise, it is an integer array (of size at least rcflag $x n$) indicating the row index of the process that provided the minimum. If the calling process is not selected to receive the result, this array will contain intermediate (useless) results.
ca
INTEGER array (rcflag, n).
If rcflag $=-1$, this array will not be referenced, and need not exist. Otherwise, it is an integer array (of size at least rcflag $\times n$) indicating the row index of the process that provided the minimum. If the calling process is not selected to receive the result, this array will contain intermediate (useless) results.

Description

This routine performs element-wise absolute value minimization, that is, each element of matrix A is compared with the corresponding element of the other process's matrices. Note that the value of A is returned, but the absolute value is used to determine the minimum (the 1-norm is used for complex numbers). Combines may be globally-blocking, so they must be programmed as if no process returns until all have called the routine.

See Also
BLACS Routines Usage Example

?gsum2d

Performs element-wise summation.

Syntax

```
call igsum2d( icontxt, scope, top, m, n, a, lda, rdest, cdest )
call sgsum2d( icontxt, scope, top, m, n, a, lda, rdest, cdest )
call dgsum2d( icontxt, scope, top, m, n, a, lda, rdest, cdest )
call cgsum2d( icontxt, scope, top, m, n, a, lda, rdest, cdest )
```

```
call zgsum2d( icontxt, scope, top, m, n, a, lda, rdest, cdest )
```


Input Parameters

| icontxt | INTEGER. Integer handle that indicates the context. |
| :---: | :---: |
| scope | CHARACTER*1. Indicates what scope the combine should proceed on. Limited to ROW, COLUMN, or ALL. |
| top | CHARACTER*1. Communication pattern to use during the combine operation. |
| m | INTEGER. The number of matrix rows to be combined. |
| n | INTEGER. The number of matrix columns to be combined. |
| a | TYPE array (1 da, n). Matrix to be added to produce the sum. |
| Ida | INTEGER. The leading dimension of the matrix A, that is, the distance between two successive elements in a matrix row. |
| rdest | INTEGER.
 The process row coordinate of the process that should receive the result. If rdest or cdest $=-1$, all processes within the indicated scope receive the answer. |
| cdest | INTEGER.
 The process column coordinate of the process that should receive the result. If rdest or cdest $=-1$, all processes within the indicated scope receive the answer. |

Output Parameters

a
TYPE array (lda, n). Contains the result if this process is selected to receive the answer, or intermediate results if the process is not selected to receive the result.

Description

This routine performs element-wise summation, that is, each element of matrix A is summed with the corresponding element of the other process's matrices. Combines may be globally-blocking, so they must be programmed as if no process returns until all have called the routine.

See Also

BLACS Routines Usage Example

BLACS Point To Point Communication

This section describes BLACS routines for point to point communication.
Point to point communication requires two complementary operations. The send operation produces a message that is then consumed by the receive operation. These operations have various resources associated with them. The main such resource is the buffer that holds the data to be sent or serves as the area where the incoming data is to be received. The level of blocking indicates what correlation the return from a send/receive operation has with the availability of these resources and with the status of message.

Non-blocking

The return from the send or receive operations does not imply that the resources may be reused, that the message has been sent/received or that the complementary operation has been called. Return means only that the send/receive has been started, and will be completed at some later date. Polling is required to determine when the operation has finished.

In non-blocking message passing, the concept of communication/computation overlap (abbreviated C/C overlap) is important. If a system possesses C/C overlap, independent computation can occur at the same time as communication. That means a nonblocking operation can be posted, and unrelated work can be done while the message is sent/received in parallel. If C/C overlap is not present, after returning from the routine call, computation will be interrupted at some later date when the message is actually sent or received.

Locally-blocking

Return from the send or receive operations indicates that the resources may be reused. However, since this only depends on local information, it is unknown whether the complementary operation has been called. There are no locally-blocking receives: the send must be completed before the receive buffer is available for re-use.

If a receive has not been posted at the time a locally-blocking send is issued, buffering will be required to avoid losing the message. Buffering can be done on the sending process, the receiving process, or not done at all, losing the message.

Globally-blocking

Return from a globally-blocking procedure indicates that the operation resources may be reused, and that complement of the operation has at least been posted. Since the receive has been posted, there is no buffering required for globally-blocking sends: the message is always sent directly into the user's receive buffer.

Almost all processors support non-blocking communication, as well as some other level of blocking sends. What level of blocking the send possesses varies between platforms. For instance, the Intel ${ }^{\circledR}$ processors support locally-blocking sends, with buffering done on the receiving process. This is a very important distinction, because codes written assuming locally-blocking sends will hang on platforms with globallyblocking sends. Below is a simple example of how this can occur:

```
IAM = MY_PROCESS_ID()
    IF (IAM .EQ. O) THEN
        SEND TO PROCESS 1
        RECV FROM PROCESS 1
ELSE IF (IAM .EQ. 1) THEN
    SEND TO PROCESS O
    RECV FROM PROCESS O
END IF
```

If the send is globally-blocking, process 0 enters the send, and waits for process 1 to start its receive before continuing. In the meantime, process 1 starts to send to 0 , and waits for 0 to receive before continuing. Both processes are now waiting on each other, and the program will never continue.

The solution for this case is obvious. One of the processes simply reverses the order of its communication calls and the hang is avoided. However, when the communication is not just between two processes, but rather involves a hierarchy of processes, determining how to avoid this kind of difficulty can become problematic.

For this reason, it was decided the BLACS would support locally-blocking sends. On systems natively supporting globally-blocking sends, non-blocking sends coupled with buffering is used to simulate locallyblocking sends. The BLACS support globally-blocking receives.
In addition, the BLACS specify that point to point messages between two given processes will be strictly ordered. If process 0 sends three messages (label them A, B, and C) to process 1 , process 1 must receive A before it can receive B, and message C can be received only after both A and B. The main reason for this restriction is that it allows for the computation of message identifiers.

Note, however, that messages from different processes are not ordered. If processes 0, . ., 3 send messages A, \ldots, D to process 4 , process 4 may receive these messages in any order that is convenient.

Convention

The convention used in the communication routine names follows the template ?xxyy 2 d , where the letter in the ? position indicates the data type being sent, $x x$ is replaced to indicate the shape of the matrix, and the yy positions are used to indicate the type of communication to perform:

```
i integer
s single precision real
d double precision real
c single precision complex
z double precision complex
ge The data to be communicated is stored in a general rectangular matrix.
tr The data to be communicated is stored in a trapezoidal matrix.
sd Send. One process sends to another.
rv Receive. One process receives from another.
```


BLACS Point To Point Communication

| Routine name | Operation performed |
| :--- | :--- |
| gesd2d Take the indicated matrix and send it to the destination process.
 trsd2d
 gerv2d Receive a message from the process into the matrix.
 trrv2d | |

As a simple example, the pseudo code given above is rewritten below in terms of the BLACS. It is further specifed that the data being exchanged is the double precision vector x, which is 5 elements long.
CALL GRIDINFO (NPROW, NPCOL, MYPROW, MYPCOL)

```
IF (MYPROW.EQ.O .AND. MYPCOL.EQ.0) THEN
    CALL DGESD2D (5, 1, X, 5, 1, 0)
    CALL DGERV2D (5, 1, X, 5, 1, 0)
ELSE IF (MYPROW.EQ.1 .AND. MYPCOL.EQ.0) THEN
    CALL DGESD2D (5, 1, X, 5, 0, 0)
    CALL DGERV2D (5, 1, X, 5, 0, 0)
END IF
```


?gesd2d

Takes a general rectangular matrix and sends it to the destination process.

Syntax

```
call igesd2d( icontxt, m, n, a, lda, rdest, cdest )
call sgesd2d( icontxt, m, n, a, lda, rdest, cdest )
call dgesd2d( icontxt, m, n, a, lda, rdest, cdest )
call cgesd2d( icontxt, m, n, a, lda, rdest, cdest )
call zgesd2d( icontxt, m, n, a, lda, rdest, cdest )
Input Parameters
```

icontxt INTEGER. Integer handle that indicates the context.
$m, n, a, l d a$

Describe the matrix to be sent. See Matrix Shapes for details.

| rdest | INTEGER. |
| :--- | :--- |
| | The process row coordinate of the process to send the message to. |
| cdest | INTEGER. |
| | The process column coordinate of the process to send the message to. |

Description

This routine takes the indicated general rectangular matrix and sends it to the destination process located at \{RDEST, CDEST\} in the process grid. Return from the routine indicates that the buffer (the matrix A) may be reused. The routine is locally-blocking, that is, it will return even if the corresponding receive is not posted.

See Also
BLACS Routines Usage Example
?trsd2d
Takes a trapezoidal matrix and sends it to the destination process.

Syntax

```
call itrsd2d( icontxt, uplo, diag, m, n, a, lda, rdest, cdest )
call strsd2d( icontxt, uplo, diag, m, n, a, lda, rdest, cdest )
call dtrsd2d( icontxt, uplo, diag, m, n, a, lda, rdest, cdest)
call ctrsd2d( icontxt, uplo, diag, m, n, a, lda, rdest, cdest )
call ztrsd2d( icontxt, uplo, diag, m, n, a, lda, rdest, cdest )
```


Input Parameters

```
icontxt INTEGER. Integer handle that indicates the context.
uplo, diag,m, Describe the matrix to be sent. See Matrix Shapes for details.
n, a, lda
rdest INTEGER.
The process row coordinate of the process to send the message to.
cdest INTEGER.
    The process column coordinate of the process to send the message to.
```


Description

This routine takes the indicated trapezoidal matrix and sends it to the destination process located at \{RDEST, CDEST\} in the process grid. Return from the routine indicates that the buffer (the matrix A) may be reused. The routine is locally-blocking, that is, it will return even if the corresponding receive is not posted.

?gerv2d

Receives a message from the process into the general rectangular matrix.

Syntax

```
call igerv2d( icontxt, m, n, a, lda, rsrc, csrc )
call sgerv2d( icontxt, m, n, a, lda, rsrc, csrc )
call dgerv2d( icontxt, m, n, a, lda, rsrc, csrc )
call cgerv2d( icontxt, m, n, a, lda, rsrc, csrc )
```

```
call zgerv2d( icontxt, m, n, a, lda, rsrc, csrc )
```


Input Parameters

```
icontxt
    INTEGER. Integer handle that indicates the context.
m,n, lda Describe the matrix to be sent. See Matrix Shapes for details.
rsrc INTEGER.
    The process row coordinate of the source of the message.
    INTEGER.
    The process column coordinate of the source of the message.
```


Output Parameters

An array of dimension (lda, n) to receive the incoming message into.

Description

This routine receives a message from process $\{R S R C, C S R C\}$ into the general rectangular matrix A. This routine is globally-blocking, that is, return from the routine indicates that the message has been received into A.

See Also
BLACS Routines Usage Example

?trru2d

Receives a message from the process into the trapezoidal matrix.

Syntax

```
call itrrv2d( icontxt, uplo, diag, m, n, a, lda, rsrc, csrc )
call strrv2d( icontxt, uplo, diag, m, n, a, lda, rsrc, csrc )
call dtrrv2d( icontxt, uplo, diag, m, n, a, lda, rsrc, csrc )
call ctrrv2d( icontxt, uplo, diag, m, n, a, lda, rsrc, csrc )
call ztrrv2d( icontxt, uplo, diag, m, n, a, lda, rsrc, csrc )
```


Input Parameters

```
icontxt INTEGER. Integer handle that indicates the context.
uplo, diag, m, n, lda Describe the matrix to be sent. See Matrix Shapes for details.
rsrc
csrc
    INTEGER.
    The process row coordinate of the source of the message.
    INTEGER.
    The process column coordinate of the source of the message.
```


Output Parameters

a
An array of dimension (lda, n) to receive the incoming message into.

Description

This routine receives a message from process $\{R S R C, C S R C\}$ into the trapezoidal matrix A. This routine is globally-blocking, that is, return from the routine indicates that the message has been received into A.

BLACS Broadcast Routines

This section describes BLACS broadcast routines.
A broadcast sends data possessed by one process to all processes within a scope. Broadcast, much like point to point communication, has two complementary operations. The process that owns the data to be broadcast issues a broadcast/send. All processes within the same scope must then issue the complementary broadcast/receive.
The BLACS define that both broadcast/send and broadcast/receive are globally-blocking. Broadcasts/ receives cannot be locally-blocking since they must post a receive. Note that receives cannot be locallyblocking. When a given process can leave, a broadcast/receive operation is topology dependent, so, to avoid a hang as topology is varied, the broadcast/receive must be treated as if no process can leave until all processes have called the operation.
Broadcast/sends could be defined to be locally-blocking. Since no information is being received, as long as locally-blocking point to point sends are used, the broadcast/send will be locally blocking. However, defining one process within a scope to be locally-blocking while all other processes are globally-blocking adds little to the programmability of the code. On the other hand, leaving the option open to have globally-blocking broadcast/sends may allow for optimization on some platforms.
The fact that broadcasts are defined as globally-blocking has several important implications. The first is that scoped operations (broadcasts or combines) must be strictly ordered, that is, all processes within a scope must agree on the order of calls to separate scoped operations. This constraint falls in line with that already in place for the computation of message IDs, and is present in point to point communication as well.

A less obvious result is that scoped operations with SCOPE = 'ALL' must be ordered with respect to any other scoped operation. This means that if there are two broadcasts to be done, one along a column, and one involving the entire process grid, all processes within the process column issuing the column broadcast must agree on which broadcast will be performed first.

The convention used in the communication routine names follows the template ?xxyy 2 d , where the letter in the ? position indicates the data type being sent, $x x$ is replaced to indicate the shape of the matrix, and the yy positions are used to indicate the type of communication to perform:

```
i integer
s single precision real
d double precision real
c single precision complex
z double precision complex
ge The data to be communicated is stored in a general rectangular matrix.
tr The data to be communicated is stored in a trapezoidal matrix.
bs Broadcast/send. A process begins the broadcast of data within a scope.
br Broadcast/receive A process receives and participates in the broadcast of data
    within a scope.
```


BLACS Broadcast Routines

| Routine name | Operation performed |
| :--- | :--- |
| gebs2d
 trbs2d | Start a broadcast along a scope. |
| gebr2d | Receive and participate in a broadcast along a scope. |
| trbr2d | |
| Optimization Notice | |
| Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
 not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
 optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
 microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for | |

Optimization Notice

use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision \#20110804

?gebs2d

Starts a broadcast along a scope for a general rectangular matrix.

Syntax

```
call igebs2d( icontxt, scope, top, m, n, a, lda )
call sgebs2d( icontxt, scope, top, m, n, a, lda )
call dgebs2d( icontxt, scope, top, m, n, a, lda )
call cgebs2d( icontxt, scope, top, m, n, a, lda )
call zgebs2d( icontxt, scope, top, m, n, a, lda )
```


Input Parameters

| icontxt | INTEGER. Integer handle that indicates the context. |
| :--- | :--- |
| scope | CHARACTER*1. Indicates what scope the broadcast should proceed on. |
| Limited to 'Row', 'Column', or 'All'. | |
| top | CHARACTER* 1. Indicates the communication pattern to use for the
 broadcast. |
| | Describe the matrix to be sent. See Matrix Shapes for details. |

Description

This routine starts a broadcast along a scope. All other processes within the scope must call broadcast/ receive for the broadcast to proceed. At the end of a broadcast, all processes within the scope will possess the data in the general rectangular matrix A.

Broadcasts may be globally-blocking. This means no process is guaranteed to return from a broadcast until all processes in the scope have called the appropriate routine (broadcast/send or broadcast/receive).

See Also

BLACS Routines Usage Example

?trbs2d

Starts a broadcast along a scope for a trapezoidal matrix.

Syntax

```
call itrbs2d( icontxt, scope, top, uplo, diag, m, n, a, lda )
call strbs2d( icontxt, scope, top, uplo, diag, m, n, a, lda )
call dtrbs2d( icontxt, scope, top, uplo, diag, m, n, a, lda )
call ctrbs2d( icontxt, scope, top, uplo, diag, m, n, a, lda )
call ztrbs2d( icontxt, scope, top, uplo, diag, m, n, a, lda )
```


Input Parameters

```
icontxt
scope
uplo, diag,m,
n, a, lda
```

top CHARACTER*1. Indicates the communication pattern to use for the
broadcast.
Describe the matrix to be sent. See Matrix Shapes for details.

INTEGER. Integer handle that indicates the context.
CHARACTER*1. Indicates what scope the broadcast should proceed on. Limited to 'Row', 'Column', or 'All'.

CHARACTER*1. Indicates the communication pattern to use for the broadcast.
Describe the matrix to be sent. See Matrix Shapes for details.

Description

This routine starts a broadcast along a scope. All other processes within the scope must call broadcast/ receive for the broadcast to proceed. At the end of a broadcast, all processes within the scope will possess the data in the trapezoidal matrix A.

Broadcasts may be globally-blocking. This means no process is guaranteed to return from a broadcast until all processes in the scope have called the appropriate routine (broadcast/send or broadcast/receive).

?gebr2d

Receives and participates in a broadcast along a scope for a general rectangular matrix.

Syntax

```
call igebr2d( icontxt, scope, top, m, n, a, lda, rsrc, csrc )
call sgebr2d( icontxt, scope, top, m, n, a, lda, rsrc, csrc )
call dgebr2d( icontxt, scope, top, m, n, a, lda, rsrc, csrc )
call cgebr2d( icontxt, scope, top, m, n, a, lda, rsrc, csrc )
call zgebr2d( icontxt, scope, top, m, n, a, lda, rsrc, csrc )
```

Input Parameters

```
icontxt INTEGER. Integer handle that indicates the context.
scope CHARACTER*1. Indicates what scope the broadcast should proceed on.
    Limited to 'Row', 'Column', or 'All'.
    CHARACTER*1. Indicates the communication pattern to use for the
    broadcast.
    Describe the matrix to be sent. See Matrix Shapes for details.
    INTEGER.
    The process row coordinate of the process that called broadcast/send.
    INTEGER.
    The process column coordinate of the process that called broadcast/send.
```


Output Parameters

a
An array of dimension (Ida, n) to receive the incoming message into.

Description

This routine receives and participates in a broadcast along a scope. At the end of a broadcast, all processes within the scope will possess the data in the general rectangular matrix A. Broadcasts may be globallyblocking. This means no process is guaranteed to return from a broadcast until all processes in the scope have called the appropriate routine (broadcast/send or broadcast/receive).

See Also

BLACS Routines Usage Example

?trbr2d

Receives and participates in a broadcast along a scope for a trapezoidal matrix.

Syntax

```
call itrbr2d( icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc )
call strbr2d( icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc )
call dtrbr2d( icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc )
call ctrbr2d( icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc )
call ztrbr2d( icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc )
```


Input Parameters

| icontxt | INTEGER. Integer handle that indicates the context. |
| :---: | :---: |
| scope | CHARACTER*1. Indicates what scope the broadcast should proceed on. Limited to 'Row', 'Column', or 'All'. |
| top | CHARACTER*1. Indicates the communication pattern to use for the broadcast. |
| uplo, diag, m, n, lda | Describe the matrix to be sent. See Matrix Shapes for details. |
| rsrc | INTEGER. |
| | The process row coordinate of the process that called broadcast/send. |
| csrc | INTEGER. |
| | The process column coordinate of the process that called broadcast/se |

Output Parameters

a
An array of dimension (Ida, n) to receive the incoming message into.

Description

This routine receives and participates in a broadcast along a scope. At the end of a broadcast, all processes within the scope will possess the data in the trapezoidal matrix A. Broadcasts may be globally-blocking. This means no process is guaranteed to return from a broadcast until all processes in the scope have called the appropriate routine (broadcast/send or broadcast/receive).

BLACS Support Routines

The support routines perform distinct tasks that can be used for:
Initialization
Destruction
Information Purposes
Miscellaneous Tasks.

Initialization Routines

This section describes BLACS routines that deal with grid/context creation, and processing before the grid/ context has been defined.

BLACS Initialization Routines

| Routine name | Operation performed |
| :--- | :--- |
| blacs_pinfo | Returns the number of processes available for use. |
| blacs_setup | Allocates virtual machine and spawns processes. |
| blacs_get | Gets values that BLACS use for internal defaults. |
| blacs_set | Sets values that BLACS use for internal defaults. |
| blacs_gridinit | Assigns available processes into BLACS process grid. |
| blacs_gridmap | Maps available processes into BLACS process grid. |

blacs_pinfo
Returns the number of processes available for use.
Syntax

```
call blacs_pinfo( mypnum, nprocs )
```


Output Parameters

mypnum \quad INTEGER. An integer between 0 and (nprocs - 1) that uniquely identifies each process.
nprocs INTEGER.The number of processes available for BLACS use.

Description

This routine is used when some initial system information is required before the BLACS are set up. On all platforms except PVM, nprocs is the actual number of processes available for use, that is, nprows * npcols <= nprocs. In PVM, the virtual machine may not have been set up before this call, and therefore no parallel machine exists. In this case, nprocs is returned as less than one. If a process has been spawned via the keyboard, it receives mypnum of 0 , and all other processes get mypnum of -1 . As a result, the user can distinguish between processes. Only after the virtual machine has been set up via a call to BLACS_SETUP, this routine returns the correct values for mypnum and nprocs.

See Also

BLACS Routines Usage Example

blacs_setup

Allocates virtual machine and spawns processes.
Syntax

```
call blacs_setup( mypnum, nprocs )
```


Input Parameters

```
nprocs
```

INTEGER. On the process spawned from the keyboard rather than from pvmspawn, this parameter indicates the number of processes to create when building the virtual machine.

Output Parameters

mypnum

INTEGER. An integer between 0 and (nprocs-1) that uniquely identifies each process.

INTEGER. For all processes other than spawned from the keyboard, this parameter means the number of processes available for BLACS use.

Description

This routine only accomplishes meaningful work in the PVM BLACS. On all other platforms, it is functionally equivalent to blacs_pinfo. The BLACS assume a static system, that is, the given number of processes does not change. PVM supplies a dynamic system, allowing processes to be added to the system on the fly.
blacs_setup is used to allocate the virtual machine and spawn off processes. It reads in a file called blacs_setup. dat, in which the first line must be the name of your executable. The second line is optional, but if it exists, it should be a PVM spawn flag. Legal values at this time are 0 (PvmTaskDefault), 4 (PvmTaskDebug), 8 (PvmTaskTrace), and 12 (PvmTaskDebug + PvmTaskTrace). The primary reason for this line is to allow the user to easily turn on and off PVM debugging. Additional lines, if any, specify what machines should be added to the current configuration before spawning nprocs-1 processes to the machines in a round robin fashion.
nprocs is input on the process which has no PVM parent (that is, mypnum=0), and both parameters are output for all processes. So, on PVM systems, the call to blacs_pinfo informs you that the virtual machine has not been set up, and a call to blacs_setup then sets up the machine and returns the real values for mypnum and nprocs.

Note that if the file blacs_setup. dat does not exist, the BLACS prompt the user for the executable name, and processes are spawned to the current PVM configuration.

See Also

BLACS Routines Usage Example
blacs_get
Gets values that BLACS use for internal defaults.
Syntax
call blacs_get(icontxt, what, val)
Input Parameters
icontxt
INTEGER. On values of what that are tied to a particular context, this parameter is the integer handle indicating the context. Otherwise, ignored.
what
INTEGER. Indicates what BLACS internal(s) should be returned in val. Present options are:

- what $=0$: Handle indicating default system context
- what $=1$: The BLACS message ID range
- what $=2$: The BLACS debug level the library was compiled with
- what $=10$: Handle indicating the system context used to define the BLACS context whose handle is icontxt
- what = 11: Number of rings multiring topology is presently using
- what $=12$: Number of branches general tree topology is presently using.

Output Parameters

Description

This routine gets the values that the BLACS are using for internal defaults. Some values are tied to a BLACS context, and some are more general. The most common use is in retrieving a default system context for input into blacs_gridinit or blacs_gridmap.
Some systems, such as MPI*, supply their own version of context. For those users who mix system code with BLACS code, a BLACS context should be formed in reference to a system context. Thus, the grid creation routines take a system context as input. If you wish to have strictly portable code, you may use blacs_get to retrieve a default system context that will include all available processes. This value is not tied to a BLACS context, so the parameter icontxt is unused.
blacs_get returns information on three quantities that are tied to an individual BLACS context, which is passed in as icontxt. The information that may be retrieved is:

- The handle of the system context upon which this BLACS context was defined
- The number of rings for $T O P=$ 'M' (multiring broadcast)
- The number of branches for $T O P=$ ' T ' (general tree broadcast/general tree gather).

See Also

BLACS Routines Usage Example

blacs_set

Sets values that BLACS use for internal defaults.

Syntax

```
call blacs_set( icontxt, what, val )
```


Input Parameters

| icontxt | INTEGER. For values of what that are tied to a particular context, this |
| :--- | :--- |
| what | inTEGER. Indicates what BLACS internal(s) should be set. Present values |
| | are: |
| | - $1=$ The BLACS message ID range |
| val | - $11=$ Number of rings for multiring topology to use |
| | - $12=$ Number of branches for general tree topology to use. |
| | INTEGER. Array of dimension (*). Indicates the value(s) the internals |
| | should be set to. The specific meanings depend on what values, as
 discussed in Description below. |

Description

This routine sets the BLACS internal defaults depending on what values:

```
what = 1 Setting the BLACS message ID range.
```

If you wish to mix the BLACS with other message-passing packages, restrict the BLACS to a certain message ID range not to be used by the non-BLACS routines. The message ID range must be set before the first call to blacs_gridinit or blacs_gridmap. Subsequent calls will have no effect. Because the message ID range is not tied to a particular context, the parameter icontxt is ignored, and val is defined as:
VAL (input) INTEGER array of dimension (2)
VAL (1) : The smallest message ID (also called message type or message tag) the BLACS should use.

VAL (2) : The largest message ID (also called message type or message tag) the BLACS should use.
what $=11$
what $=12$

Set number of rings for $T O P=$ ' M ' (multiring broadcast). This quantity is tied to a context, so icontxt is used, and val is defined as:
VAL (input) INTEGER array of dimension (1)
VAL (1) : The number of rings for multiring topology to use.
Set number of rings for $T O P=$ ' T ' (general tree broadcast/general tree gather). This quantity is tied to a context, so icontxt is used, and val is defined as: VAL (input) INTEGER array of dimension (1)

VAL (1) : The number of branches for general tree topology to use.
blacs_gridinit
Assigns available processes into BLACS process grid.
Syntax

```
call blacs_gridinit( icontxt, order, nprow, npcol )
```

Input Parameters
icontxt
order
nprow
npcol

Output Parameters

icontxt

INTEGER. Integer handle indicating the system context to be used in creating the BLACS context. Call blacs_get to obtain a default system context.
CHARACTER*1. Indicates how to map processes to BLACS grid. Options are:

- 'R' : Use row-major natural ordering
- 'C' : Use column-major natural ordering
- ELSE : Use row-major natural ordering

INTEGER. Indicates how many process rows the process grid should contain.

INTEGER. Indicates how many process columns the process grid should contain.

Description

All BLACS codes must call this routine, or its sister routine blacs_gridmap. These routines take the available processes, and assign, or map, them into a BLACS process grid. In other words, they establish how the BLACS coordinate system maps into the native machine process numbering system. Each BLACS grid is contained in a context, so that it does not interfere with distributed operations that occur within other grids/ contexts. These grid creation routines may be called repeatedly to define additional contexts/grids.

The creation of a grid requires input from all processes that are defined to be in this grid. Processes belonging to more than one grid have to agree on which grid formation will be serviced first, much like the globally blocking sum or broadcast.

These grid creation routines set up various internals for the BLACS, and one of them must be called before any calls are made to the non-initialization BLACS.
Note that these routines map already existing processes to a grid: the processes are not created dynamically. On most parallel machines, the processes are actual processors (hardware), and they are "created" when you run your executable. When using the PVM BLACS, if the virtual machine has not been set up yet, the routine blacs_setup should be used to create the virtual machine.

This routine creates a simple nprow x npcol process grid. This process grid uses the first nprow * npcol processes, and assigns them to the grid in a row- or column-major natural ordering. If these process-to-grid mappings are unacceptable, call blacs_gridmap.

See Also
BLACS Routines Usage Example
blacs_get
blacs_gridmap
blacs_setup
blacs_gridmap
Maps available processes into BLACS process grid.

Syntax

```
call blacs_gridmap( icontxt, usermap, ldumap, nprow, npcol )
```

Input Parameters

| icontxt | INTEGER. Integer handle indicating the system context to be used in
 creating the BLACS context. Call blacs_get to obtain a default system
 context. |
| :--- | :--- |
| usermap | INTEGER. Array, dimension (Idumap, npcol), indicating the process-to-grid |
| mapping. | |
| Idumap | INTEGER. Leading dimension of the 2 D array usermap. 1 dumap \geq nprow. |
| npcol | INTEGER. Indicates how many process rows the process grid should |
| | contain. |
| | INTEGER. Indicates how many process columns the process grid should |
| contain. | |

Output Parameters

icontxt
INTEGER. Integer handle to the created BLACS context.

Description

All BLACS codes must call this routine, or its sister routine blacs_gridinit. These routines take the available processes, and assign, or map, them into a BLACS process grid. In other words, they establish how the BLACS coordinate system maps into the native machine process numbering system. Each BLACS grid is contained in a context, so that it does not interfere with distributed operations that occur within other grids/ contexts. These grid creation routines may be called repeatedly to define additional contexts/grids.
The creation of a grid requires input from all processes that are defined to be in this grid. Processes belonging to more than one grid have to agree on which grid formation will be serviced first, much like the globally blocking sum or broadcast.

These grid creation routines set up various internals for the BLACS, and one of them must be called before any calls are made to the non-initialization BLACS.

Note that these routines map already existing processes to a grid: the processes are not created dynamically. On most parallel machines, the processes are actual processors (hardware), and they are "created" when you run your executable. When using the PVM BLACS, if the virtual machine has not been set up yet, the routine blacs_setup should be used to create the virtual machine.
This routine allows the user to map processes to the process grid in an arbitrary manner. usermap (i,j) holds the process number of the process to be placed in $\{i, j\}$ of the process grid. On most distributed systems, this process number is a machine defined number between $0 \ldots$ nprow-1. For PVM, these node numbers are the PVM TIDS (Task IDs). The blacs_gridmap routine is intended for an experienced user. The blacs_gridinit routine is much simpler. blacs_gridinit simply performs a gridmap where the first
nprow * npcol processes are mapped into the current grid in a row-major natural ordering. If you are an experienced user, blacs_gridmap allows you to take advantage of your system's actual layout. That is, you can map nodes that are physically connected to be neighbors in the BLACS grid, etc. The blacs_gridmap routine also opens the way for multigridding: you can separate your nodes into arbitrary grids, join them together at some later date, and then re-split them into new grids. blacs_gridmap also provides the ability to make arbitrary grids or subgrids (for example, a "nearest neighbor" grid), which can greatly facilitate operations among processes that do not fall on a row or column of the main process grid.

```
See Also
BLACS Routines Usage Example
blacs_get
blacs_gridinit
blacs_setup
```


Destruction Routines

This section describes BLACS routines that destroy grids, abort processes, and free resources.
BLACS Destruction Routines

| Routine name | Operation performed |
| :--- | :--- |
| blacs_freebuff | Frees BLACS buffer. |
| blacs_gridexit | Frees a BLACS context. |
| blacs_abort | Aborts all processes. |
| blacs_exit | Frees all BLACS contexts and releases all allocated memory. |

blacs_freebuff
Frees BLACS buffer.

Syntax

```
call blacs_freebuff( icontxt, wait )
```


Input Parameters

```
icontxt
wait
```

INTEGER. Integer handle that indicates the BLACS context.
INTEGER. Parameter indicating whether to wait for non-blocking operations or not. If equals 0 , the operations should not be waited for; free only unused buffers. Otherwise, wait in order to free all buffers.

Description

This routine releases the BLACS buffer.
The BLACS have at least one internal buffer that is used for packing messages. The number of internal buffers depends on what platform you are running the BLACS on. On systems where memory is tight, keeping this buffer or buffers may become expensive. Call freebuff to release the buffer. However, the next call of a communication routine that requires packing reallocates the buffer.
The wait parameter determines whether the BLACS should wait for any non-blocking operations to be completed or not. If wait $=0$, the BLACS free any buffers that can be freed without waiting. If wait is not 0 , the BLACS free all internal buffers, even if non-blocking operations must be completed first.

```
blacs_gridexit
Frees a BLACS context.
```

Syntax
call blacs_gridexit(icontxt)
Input Parameters
icontxt INTEGER. Integer handle that indicates the BLACS context to be freed.

Description

This routine frees a BLACS context.
Release the resources when contexts are no longer needed. After freeing a context, the context no longer exists, and its handle may be re-used if new contexts are defined.
blacs_abort
Aborts all processes.
Syntax

```
call blacs abort( icontxt, errornum )
```


Input Parameters

icontxt INTEGER. Integer handle that indicates the BLACS context to be aborted.
errornum INTEGER. User-defined integer error number.

Description

This routine aborts all the BLACS processes, not only those confined to a particular context.
Use blacs_abort to abort all the processes in case of a serious error. Note that both parameters are input, but the routine uses them only in printing out the error message. The context handle passed in is not required to be a valid context handle.
blacs_exit
Frees all BLACS contexts and releases all allocated
memory.
Syntax

```
call blacs_exit( continue )
```

Input Parameters
continue

INTEGER. Flag indicating whether message passing continues after the BLACS are done. If continue is non-zero, the user is assumed to continue using the machine after completing the BLACS. Otherwise, no message passing is assumed after calling this routine.

Description

This routine frees all BLACS contexts and releases all allocated memory.
This routine should be called when a process has finished all use of the BLACS. The continue parameter indicates whether the user will be using the underlying communication platform after the BLACS are finished. This information is most important for the PVM BLACS. If continue is set to 0 , then pvm_exit is called;
otherwise, it is not called. Setting continue not equal to 0 indicates that explicit PVM send/recvs will be called after the BLACS routines are used. Make sure your code calls pvm_exit. PVM users should either call blacs_exit or explicitly call pvm_exit to avoid PVM problems.

See Also
BLACS Routines Usage Example

Informational Routines

This section describes BLACS routines that return information involving the process grid.

| BLACS Informational Routines | |
| :--- | :--- |
| Routine name | Operation performed |
| blacs_gridinfo | Returns information on the current grid. |
| blacs_pnum | Returns the system process number of the process in the process grid. |
| blacs_pcoord | Returns the row and column coordinates in the process grid. |

blacs_gridinfo
 Returns information on the current grid.

Syntax

```
call blacs_gridinfo( icontxt, nprow, npcol, myprow, mypcol )
```


Input Parameters

icontxt INTEGER. Integer handle that indicates the context.

Output Parameters

```
nprow INTEGER. Number of process rows in the current process grid.
npcol INTEGER. Number of process columns in the current process grid.
myprow INTEGER. Row coordinate of the calling process in the process grid.
mypcol INTEGER. Column coordinate of the calling process in the process grid.
```


Description

This routine returns information on the current grid. If the context handle does not point at a valid context, all quantities are returned as -1 .

See Also

BLACS Routines Usage Example
blacs_pnum
Returns the system process number of the process in the process grid.

Syntax

```
call blacs_pnum( icontxt, prow, pcol )
```

Input Parameters
icontxt INTEGER. Integer handle that indicates the context.

| prow | INTEGER. Row coordinate of the process the system process number of |
| :--- | :--- |
| which is to be determined. | |
| pCol | INTEGER. Column coordinate of the process the system process number of
 which is to be determined. |

Description

This function returns the system process number of the process at \{PROW, PCOL\} in the process grid.

See Also

BLACS Routines Usage Example
blacs_pcoord
Returns the row and column coordinates in the process grid.

Syntax

```
call blacs_pcoord( icontxt, pnum, prow, pcol )
```

Input Parameters
icontxt INTEGER. Integer handle that indicates the context.
pnum INTEGER. Process number the coordinates of which are to be determined. This parameter stand for the process number of the underlying machine, that is, it is a tid for PVM.

Output Parameters

prow INTEGER. Row coordinates of the pnum process in the BLACS grid.
pcol INTEGER. Column coordinates of the pnum process in the BLACS grid.

Description

Given the system process number, this function returns the row and column coordinates in the BLACS process grid.

See Also
BLACS Routines Usage Example

Miscellaneous Routines

This section describes blacs_barrier routine.

BLACS Informational Routines

| Routine name | Operation performed |
| :--- | :--- |
| blacs_barrier | Holds up execution of all processes within the indicated scope until
 they have all called the routine. |

blacs_barrier
Holds up execution of all processes within the indicated scope.

Syntax

```
call blacs_barrier( icontxt, scope )
```


Input Parameters

```
icontxt
scope
```

INTEGER. Integer handle that indicates the context.
CHARACTER*1. Parameter that indicates whether a process row (scope='R'), column ('C'), or entire grid ('A') will participate in the barrier.

Description

This routine holds up execution of all processes within the indicated scope until they have all called the routine.

Examples of BLACS Routines Usage

Example. BLACS Usage. Hello World

The following routine takes the available processes, forms them into a process grid, and then has each process check in with the process at $\{0,0\}$ in the process grid.

```
PROGRAM HELLO
-- BLACS example code --
Written by Clint Whaley 7/26/94
Performs a simple check-in type hello world
.. External Functions ..
INTEGER BLACS PNUM
EXTERNAL BLACS_PNUM
.. Variable Declaration ..
INTEGER CONTXT, IAM, NPROCS, NPROW, NPCOL, MYPROW, MYPCOL
INTEGER ICALLER, I, J, HISROW, HISCOL
Determine my process number and the number of processes in
machine
CALL BLACS_PINFO(IAM, NPROCS)
If in PVM, create virtual machine if it doesn't exist
IF (NPROCS .LT. 1) THEN
    IF (IAM .EQ. O) THEN
        WRITE(*, 1000)
        READ(*, 2000) NPROCS
    END IF
    CALL BLACS_SETUP(IAM, NPROCS)
END IF
Set up process grid that is as close to square as possible
NPROW = INT( SQRT( REAL (NPROCS) ) )
NPCOL = NPROCS / NPROW
Get default system context, and define grid
CALL BLACS GET(0, 0, CONTXT)
CALL BLACS_GRIDINIT (CONTXT, 'Row', NPROW, NPCOL)
CALL BLACS_GRIDINFO (CONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
If I'm not in grid, go to end of program
IF ( (MYPROW.GE.NPROW) .OR. (MYPCOL.GE.NPCOL) ) GOTO 30
Get my process ID from my grid coordinates
```

```
ICALLER = BLACS_PNUM(CONTXT, MYPROW, MYPCOL)
If I am process {0,0}, receive check-in messages from
all nodes
IF ( (MYPROW.EQ.O) .AND. (MYPCOL.EQ.0) ) THEN
        WRITE(*,*) ' '
        DO 20 I = 0, NPROW-1
            DO 10 J = 0, NPCOL-1
                IF ( (I.NE.O) .OR. (J.NE.O) ) THEN
                    CALL IGERV2D(CONTXT, 1, 1, ICALLER, 1, I, J)
            END IF
                    Make sure ICALLER is where we think in process grid
                CALL BLACS PCOORD (CONTXT, ICALLER, HISROW, HISCOL)
                IF ( (HISRŌW.NE.I) .OR. (HISCOL.NE.J) ) THEN
                    WRITE(*,*) 'Grid error! Halting . . .'
                    STOP
                END IF
                WRITE (*, 3000) I, J, ICALLER
            CONTINUE
        CONTINUE
        WRITE (*,*) ' '
        WRITE(*,*) 'All processes checked in. Run finished.'
    All processes but {0,0} send process ID as a check-in
    ELSE
        CALL IGESD2D(CONTXT, 1, 1, ICALLER, 1, 0, 0)
    END IF
    CONTINUE
    CALL BLACS_EXIT(0)
    FORMAT('How many processes in machine?')
    FORMAT (I)
    FORMAT('Process {',i2,',',i2,'} (node number =',I,
    $ ') has checked in.')
    STOP
    END
```


Example. BLACS Usage. PROCMAP

This routine maps processes to a grid using blacs_gridmap.

```
    SUBROUTINE PROCMAP(CONTEXT, MAPPING, BEGPROC, NPROW, NPCOL, IMAP)
```

*
* -- BLACS example code --
* Written by Clint Whaley 7/26/94
* \quad.
* .. Scalar Arguments ..
INTEGER CONTEXT, MAPPING, BEGPROC, NPROW, NPCOL

```
* .. Array Arguments ..
    INTEGER IMAP(NPROW, *)
    Purpose
    =======
* PROCMAP maps NPROW*NPCOL processes starting from process BEGPROC to
* the grid in a variety of ways depending on the parameter MAPPING.
Arguments
=========
CONTEXT (output) INTEGER
        This integer is used by the BLACS to indicate a context.
        A context is a universe where messages exist and do not
        interact with other context's messages. The context
        includes the definition of a grid, and each process's
        coordinates in it.
MAPPING (input) INTEGER
        Way to map processes to grid. Choices are:
        1 : row-major natural ordering
        2 : column-major natural ordering
BEGPROC (input) INTEGER
        The process number (between 0 and NPROCS-1) to use as
            {0,0}. From this process, processes will be assigned
            to the grid as indicated by MAPPING.
NPROW (input) INTEGER
        The number of process rows the created grid
            should have
NPCOL (input) INTEGER
        The number of process columns the created grid
        should have
        (workspace) INTEGER array of dimension (NPROW, NPCOL)
        Workspace, where the array which maps the
        processes to the grid will be stored for the
        call to GRIDMAP
```



```
    .. External Functions ..
    INTEGER BLACS_PNUM
    EXTERNAL BLACS_PNUM
    .. External Subroutines ..
    EXTERNAL BLACS_PINFO, BLACS_GRIDINIT, BLACS_GRIDMAP
* ..
    .. Local Scalars ..
    INTEGER TMPCONTXT, NPROCS, I, J, K
    .. Executable Statements ..
    See how many processes there are in the system
    CALL BLACS_PINFO( I, NPROCS )
```

```
IF (NPROCS-BEGPROC .LT. NPROW*NPCOL) THEN
        WRITE(*,*) 'Not enough processes for grid'
        STOP
END IF
* Temporarily map all processes into 1 x NPROCS grid
CALL BLACS GET( 0, 0, TMPCONTXT )
CALL BLACS_GRIDINIT( TMPCONTXT, 'Row', 1, NPROCS )
K = BEGPRO\overline{C}
* If we want a row-major natural ordering
IF (MAPPING .EQ. 1) THEN
        DO I = 1, NPROW
            DO J = 1, NPCOL
                IMAP(I, J) = BLACS_PNUM(TMPCONTXT, 0, K)
                K = K + 1W
            END DO
        END DO
* If we want a column-major natural ordering
    ELSE IF (MAPPING .EQ. 2) THEN
        DO J = 1, NPCOL
            DO I = 1, NPROW
            IMAP(I, J) = BLACS_PNUM(TMPCONTXT, 0, K)
            K= K + 1
            END DO
        END DO
    ELSE
        WRITE(*,*) 'Unknown mapping.'
        STOP
    END IF
* Free temporary context
CALL BLACS_GRIDEXIT(TMPCONTXT)
* Apply the new mapping to form desired context
CALL BLACS GET( 0, 0, CONTEXT )
CALL BLACS_GRIDMAP( CONTEXT, IMAP, NPROW, NPROW, NPCOL )
RETURN
END
```

*
*

$*$

Example. BLACS Usage. PARALLEL DOT PRODUCT

This routine does a bone-headed parallel double precision dot product of two vectors. Arguments are input on process $\{0,0\}$, and output everywhere else.

```
    DOUBLE PRECISION FUNCTION PDDOT( CONTEXT, N, X, Y )
    -- BLACS example code --
    Written by Clint Whaley 7/26/94
    .. Scalar Arguments .
    INTEGER CONTEXT, N
    .. Array Arguments ..
    DOUBLE PRECISION X(*), Y(*)
Purpose
=======
PDDOT is a restricted parallel version of the BLAS routine
DDOT. It assumes that the increment on both vectors is one,
and that process {0,0} starts out owning the vectors and
has N. It returns the dot product of the two N-length vectors
X and Y, that is, PDDOT = X' Y.
Arguments
=========
CONTEXT (input) INTEGER
This integer is used by the BLACS to indicate a context.
A context is a universe where messages exist and do not
interact with other context's messages. The context
includes the definition of a grid, and each process's
coordinates in it.
(input/output) INTEGER
The length of the vectors X and Y. Input
for {0,0}, output for everyone else.
(input/output) DOUBLE PRECISION array of dimension (N)
The vector X of PDDOT = X' Y. Input for {0,0},
output for everyone else.
(input/output) DOUBLE PRECISION array of dimension (N)
The vector Y of PDDOT = X' Y. Input for {0,0},
output for everyone else.
    ================================================================
    . External Functions ..
    DOUBLE PRECISION DDOT
    EXTERNAL DDOT
* .. External Subroutines ..
    EXTERNAL BLACS_GRIDINFO, DGEBS2D, DGEBR2D, DGSUM2D
    . Local Scalars ..
    INTEGER IAM, NPROCS, NPROW, NPCOL, MYPROW, MYPCOL, I, LN
    DOUBLE PRECISION LDDOT
```

```
* .. Executable Statements ..
Find out what grid has been set up, and pretend it is 1-D
    CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYPROW, MYPCOL )
    IAM = MYPROW*NPCOL + MYPCOL
    NPROCS = NPROW * NPCOL
    Temporarily map all processes into 1 x NPROCS grid
    CALL BLACS_GET( 0, 0, TMPCONTXT )
    CALL BLACS_GRIDINIT( TMPCONTXT, 'Row', 1, NPROCS )
    K = BEGPRO\overline{C}
*
* Do bone-headed thing, and just send entire X and Y to
    everyone
    IF ( (MYPROW.EQ.O) .AND. (MYPCOL.EQ.O) ) THEN
        CALL IGEBS2D (CONTXT, 'All', 'i-ring', 1, 1, N, 1 )
        CALL DGEBS2D (CONTXT, 'All', 'i-ring', N, 1, X, N )
        CALL DGEBS2D (CONTXT, 'All', 'i-ring', N, 1, Y, N )
    ELSE
        CALL IGEBR2D(CONTXT, 'All', 'i-ring', 1, 1, N, 1, 0, 0 )
        CALL DGEBR2D(CONTXT, 'All', 'i-ring', N, 1, X, N, 0, 0 )
        CALL DGEBR2D(CONTXT, 'All', 'i-ring', N, 1, Y, N, 0, 0 )
    ENDIF
* *
* Find out the number of local rows to multiply (LN), and
* where in vectors to start (I)
    LN = N / NPROCS
    I = 1 + IAM * LN
    Last process does any extra rows
    IF (IAM .EQ. NPROCS-1) LN = LN + MOD(N, NPROCS)
* Figure dot product of my piece of }X\mathrm{ and Y
    LDDOT = DDOT( LN, X(I), 1,Y(I), 1 )
    Add local dot products to get global dot product;
    give all procs the answer
    CALL DGSUM2D( CONTXT, 'All', '1-tree', 1, 1, LDDOT, 1, -1, 0 )
    PDDOT = LDDOT
    RETURN
```


Example. BLACS Usage. PARALLEL MATRIX INFINITY NORM

This routine does a parallel infinity norm on a distributed double precision matrix. Unlike the PDDOT example, this routine assumes the matrix has already been distributed.

```
    DOUBLE PRECISION FUNCTION PDINFNRM(CONTXT, LM, LN, A, LDA, WORK)
* -- BLACS example code --
    Written by Clint Whaley.
    .. Scalar Arguments ..
    INTEGER CONTEXT, LM, LN, LDA
* .. Array Arguments ..
    DOUBLE PRECISION A(LDA, *), WORK(*)
*
*
Purpose
* =======
* Compute the infinity norm of a distributed matrix, where
* the matrix is spread across a 2D process grid. The result is
* left on all processes.
* Arguments
==========
*
CONTEXT (input) INTEGER
            This integer is used by the BLACS to indicate a context.
            A context is a universe where messages exist and do not
            interact with other context's messages. The context
            includes the definition of a grid, and each process's
            coordinates in it.
LM (input) INTEGER
            Number of rows of the global matrix owned by this
            process.
            (input) INTEGER
            Number of columns of the global matrix owned by this
            process.
            (input) DOUBLE PRECISION, dimension (LDA,N)
            The matrix whose norm you wish to compute.
LDA (input) INTEGER
            Leading Dimension of A.
WORK (temporary) DOUBLE PRECISION array, dimension (LM)
            Temporary work space used for summing rows.
    .. External Subroutines .
    EXTERNAL BLACS_GRIDINFO, DGEBS2D, DGEBR2D, DGSUM2D, DGAMX2D
    . External Functions ..
    INTEGER IDAMAX
    DOUBLE PRECISION DASUM
```

```
* .. Local Scalars ..
    INTEGER NPROW, NPCOL, MYROW, MYCOL, I, J
    DOUBLE PRECISION MAX
    .. Executable Statements ..
    Get process grid information
    CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYPROW, MYPCOL )
    Add all local rows together
    DO 20 I = 1, LM
        WORK(I) = DASUM(LN, A(I,1), LDA)
    CONTINUE
    Find sum of global matrix rows and store on column 0 of
    process grid
    CALL DGSUM2D(CONTXT, 'Row', '1-tree', LM, 1, WORK, LM, MYROW, 0)
* *
    Find maximum sum of rows for supnorm
    IF (MYCOL .EQ. O) THEN
        MAX = WORK(IDAMAX(LM,WORK,1))
        IF (LM .LT. 1) MAX = 0.0D0
        CALL DGAMX2D (CONTXT, 'Col', 'h', 1, 1, MAX, 1, I, I, -1, -1, 0)
    END IF
* Process column 0 has answer; send answer to all nodes
    IF (MYCOL .EQ. O) THEN
        CALL DGEBS2D(CONTXT, 'Row', ' ', 1, 1, MAX, 1)
    ELSE
        CALL DGEBR2D (CONTXT, 'Row', ' ', 1, 1, MAX, 1, 0, 0)
    END IF
    PDINFNRM = MAX
```

RETURN

* End of PDINFNRM

END

Data Fitting Functions

Data Fitting functions in Intel ${ }^{\circledR}$ MKL provide spline-based interpolation capabilities that you can use to approximate functions, function derivatives or integrals, and perform cell search operations.
The Data Fitting component is task based. The task is a data structure or descriptor that holds the parameters related to a specific Data Fitting operation. You can modify the task parameters using the task editing functionality of the library.

For definition of the implemented operations, see Mathematical Conventions.
Data Fitting routines use the following workflow to process a task:

1. Create a task or multiple tasks.
2. Modify the task parameters.
3. Perform a Data Fitting computation.
4. Destroy the task or tasks.

All Data Fitting functions fall into the following categories:
Task Creation and Initialization Routines - routines that create a new Data Fitting task descriptor and initialize the most common parameters, such as partition of the interpolation interval, values of the vectorvalued function, and the parameters describing their structure.

Task Editors - routines that set or modify parameters in an existing Data Fitting task.
Computational Routines - routines that perform Data Fitting computations, such as construction of a spline, interpolation, computation of derivatives and integrals, and search.

Task Destructors - routines that delete Data Fitting task descriptors and deallocate resources.
You can access the Data Fitting routines through the Fortran and C89/C99 language interfaces. You can also use the C89 interface with more recent versions of C/C++, or the Fortran 90 interface with programs written in Fortran 95
The $\$\{M K L\} / i n c l u d e ~ d i r e c t o r y ~ o f ~ t h e ~ I n t e l ~ ® ~ M K L ~ c o n t a i n s ~ t h e ~ f o l l o w i n g ~ D a t a ~ F i t t i n g ~ h e a d e r ~ f i l e s: ~$

- C/C++: mkl_df.h
- Fortran: mkl_df.f90 and mkl_df.f77

You can find examples that demonstrate C/C++ and Fortran usage of Data Fitting routines in the \$ $\{$ MKL \}/ examples/datafittingc and \$\{MKL\}/examples/datafittingf directories, respectively.

Naming Conventions

The Fortran interfaces of the Data Fitting functions are in lowercase, while the names of the types and constants are in uppercase.

The C/C++ interface of the Data Fitting functions, types, and constants are case-sensitive and can be in lowercase, uppercase, and mixed case.
The names of all routines have the following structure:
df[datatype]<base_name>
where

- df is a prefix indicating that the routine belongs to the Data Fitting component of Intel MKL.
- [datatype] field specifies the type of the input and/or output data and can be s (for the single precision real type), d (for the double precision real type), or i (for the integer type). This field is omitted in the names of the routines that are not data type dependent.
- <base_name> field specifies the functionality the routine performs. For example, this field can be NewTask1D, Interpolate1D, or DeleteTask.

Data Types

The Data Fitting component provides routines for processing single and double precision real data types. The results of cell search operations are returned as a generic integer data type.
All Data Fitting routines use the following data type:

Type
Fortran: TYPE (DF_TASK)
C: DFTaskPtr

Data Object

Pointer to a task

NOTE The actual size of the generic integer type is platform-dependent. Before compiling your application, you need to set an appropriate byte size for integers. For details, see section Using the ILP64 Interface vs. LP64 Interface of the Intel® MKL User's Guide.

Mathematical Conventions

This section explains the notation used for Data Fitting function descriptions. Spline notations are based on the terminology and definitions of [deBoor2001]. The definition of Subbotin quadratic splines follows the conventions of [StechSub76].
Mathematical Notation in the Data Fitting Component

| Concept |
| :--- |
| Partition of interpolation interval $[a, b]$, where |
| - $\quad x_{i}$ denotes breakpoints. |
| - $\quad\left[x_{i}, x_{i+1}\right)$ denotes a sub-interval (cell) of size |
| $\Delta x_{i+1}-x_{i}$. |

Vector-valued function of dimension p being fit
Piecewise polynomial (PP) function f of order $k+1$

Function p agrees with function g at the points $\left\{x_{i}\right\}_{i=1, \ldots, n}$.

The k-th divided difference of function g at points $x_{i}, \ldots, x_{i}+k$. This difference is the leading coefficient of the polynomial of order $k+1$ that agrees with g at $x_{i}, \ldots, x_{i}+k$.

A k-order derivative of interpolant $f(x)$ at interpolation site ${ }^{\tau}$.

Mathematical Notation

$\left\{x_{i}\right\}_{i=1, \ldots, n}$, where $a=x_{1}<x_{2}<\ldots<x_{n}=b$

- x_{i} denotes breakpoints.
- $\left[x_{i}, x_{i+1}\right)$ denotes a sub-interval (cell) of size $\Delta x_{i+1}-x_{i}$.
$f(x)=\left(f_{1}(x), \ldots, f_{p}(x)\right)$
$f(x):=P_{i}(x)$, if $x \in\left[x_{i}, x_{i+1}\right), i=1, \ldots, n-1$
where
- $\left\{x_{i}\right\}_{i=1, \ldots, n}$ is a strictly increasing sequence of breakpoints.
- $P_{i}(x)=c_{i, 0}+c_{i, 1}\left(x-x_{i}\right)+\ldots+c_{i, k}\left(x-x_{i}\right)^{k}$ is a polynomial of degree k (order $k+1$) over the interval $x \in\left[x_{i}, x_{i+1}\right)$.

For every point ζ in sequence $\left\{x_{i}\right\}_{i=1, \ldots, n}$ that occurs m times, the equality $p^{(i-1)}(\zeta)=g^{(i-1)}(\zeta)$ holds for all $i=1, \ldots, m$, where $p^{(i)}(t)$ is the derivative of the i-th order.
$\left[x_{i}, \ldots, x_{i}+k\right] g$
In particular,

- $\left[x_{1}\right] g=g\left(x_{1}\right)$
- $\left[x_{1}, x_{2}\right] g=\left(g\left(x_{1}\right)-g\left(x_{2}\right)\right) /\left(x_{1}-x_{2}\right)$
$f^{(k)}(\tau)$

| Concept |
| :--- |
| Linear interpolant |
| Piecewise parabolic interpolant |

Piecewise parabolic Subbotin interpolant

Piecewise cubic Hermite interpolant

Mathematical Notation
$P_{i}(x)=c_{1, i}+c_{2, i}\left(x-x_{i}\right)$,
where

- $x \in\left[x_{i}, x_{i+1}\right)$
- $c_{1, i}=g\left(x_{i}\right)$
- $c_{2, i}=\left[x_{i}, x_{i+1}\right] g$
- $i=1, \ldots, n-1$
$P_{i}(x)=c_{1, i}+c_{2, i}\left(x-x_{i}\right)+c_{3, i}\left(x-x_{i}\right)^{2}, x \in\left[x_{i}, x_{i+1}\right)$
Coefficients $c_{1, i}, c_{2, i}$, and $c_{3, i}$ depend on the conditions:
- $P_{i}\left(x_{i}\right)=g\left(x_{i}\right)$
- $P_{i}\left(x_{i+1}\right)=g\left(x_{i+1}\right)$
- $P_{i}\left(\left(x_{i+1}+x_{i}\right) / 2\right)=v_{i+1}$
where parameter v_{i+1} depends on the interpolant being continuously differentiable:
$P_{i-1}{ }^{(1)}\left(x_{i}\right)=P_{i}{ }^{(1)}\left(x_{i}\right)$
$P(x)=P_{i}(x)=c_{1, i}+c_{2, i}\left(x-x_{i}\right)+c_{3, i}\left(x-x_{i}\right)^{2}+d_{3, i}\left(\left(x-t_{i}\right)_{+}\right)^{2}$,
where
- $x \in\left[t_{i}, t_{i+1}\right)$
- $\left\{t_{i}\right\}_{i=1, \ldots, n+1}$ is a sequence of knots such that
- $t_{1}=x_{1}, t_{n+1}=x_{n}$
- $t_{i} \in\left(x_{i-1}, x_{i}\right), i=2, \ldots, n$
$x_{+}=f(x)=\left\{\begin{array}{l}0, \text { if } x<0 \\ x, \text { if } x \geq 0\end{array}\right.$
Coefficients $c_{1, i}, c_{2, i}, c_{3, i}$, and $d_{3, i}$ depend on the following conditions:
- $P_{i}\left(x_{i}\right)=g\left(x_{i}\right), P_{i}\left(x_{i+1}\right)=g\left(x_{i+1}\right)$
- $P(x)$ is a continuously differentiable polynomial of the second degree on $\left[t_{i}, t_{i+1}\right), i=1, \ldots, n$.
$P_{i}(x)=c_{1, i}+c_{2, i}\left(x-x_{i}\right)+c_{3, i}\left(x-x_{i}\right)^{2}+c_{4, i}\left(x-x_{i}\right)^{3}$, where
- $x \in\left[x_{i}, x_{i+1}\right)$
- $c_{1, i}=g\left(x_{i}\right)$
- $c_{2, i}=s_{i}$
- $c_{3, i}=\left(\left[x_{i}, x_{i+1}\right] g-s_{i}\right) /\left(\Delta x_{i}\right)-c_{4, i}\left(\Delta x_{i}\right)$
- $c_{4, i}=\left(s_{i}+s_{i+1}-2\left[x_{i}, x_{i+1}\right] g\right) /\left(\Delta x_{i}\right)^{2}$
- $i=1, \ldots, n-1$
- $s_{i}=g^{(1)}\left(x_{i}\right)$

Piecewise cubic Bessel interpolant
$P_{i}(x)=c_{1, i}+c_{2, i}\left(x-x_{i}\right)+c_{3, i}\left(x-x_{i}\right)^{2}+c_{4, i}\left(x-x_{i}\right)^{3}$,
where

- $x \in\left[x_{i}, x_{i+1}\right)$
- $c_{1, i}=g\left(x_{i}\right)$
- $\quad c_{2, i}=s_{i}$
- $c_{3, i}=\left(\left[x_{i}, x_{i+1}\right] g-s_{i}\right) /\left(\Delta x_{i}\right)-c_{4, i}\left(\Delta x_{i}\right)$
- $c_{4, i}=\left(s_{i}+s_{i+1}-2\left[x_{i}, x_{i+1}\right] g\right) /\left(\Delta x_{i}\right)^{2}$
- $i=1, \ldots, n-1$
- $s_{i}=\left(\Delta x_{i}\left[x_{i-1}, x_{i}\right] g+\Delta x_{i-1}\left[x_{i}, x_{i+1}\right] g\right) /\left(\Delta x_{i}+\Delta x_{i+1}\right)$

Piecewise cubic Akima interpolant

Piecewise natural cubic interpolant

Not-a-knot boundary condition.

Free-end boundary condition.
Look-up interpolator for discrete set of points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.

Step-wise constant continuous right interpolator.
$P_{i}(x)=c_{1, i}+c_{2, i}\left(x-x_{i}\right)+c_{3, i}\left(x-x_{i}\right)^{2}+c_{4, i}\left(x-x_{i}\right)^{3}$,
where

- $x \in\left[x_{i}, x_{i+1}\right)$
- $c_{1, i}=g\left(x_{i}\right)$
- $c_{2, i}=s_{i}$
- $c_{3, i}=\left(\left[x_{i}, x_{i+1}\right] g-s_{i}\right) /\left(\Delta x_{i}\right)-c_{4, i}\left(\Delta x_{i}\right)$
- $c_{4, i}=\left(s_{i}+s_{i+1}-2\left[x_{i}, x_{i+1}\right] g\right) /\left(\Delta x_{i}\right)^{2}$
- $i=1, \ldots, n-1$
- $s_{i}=\left(w_{i+1}\left[x_{i-1}, x_{i}\right] g+w_{i-1}\left[x_{i}, x_{i+1}\right] g\right) /\left(w_{i+1}+w_{i-1}\right)$,
where

$$
w_{i}=\left|\left[x_{i}, x_{i+1}\right] g-\left[x_{i-1}, x_{i}\right] g\right|
$$

$P_{i}(x)=c_{1, i}+c_{2, i}\left(x-x_{i}\right)+c_{3, i}\left(x-x_{i}\right)^{2}+c_{4, i}\left(x-x_{i}\right)^{3}$,
where

- $x \in\left[x_{i}, x_{i+1}\right)$
- $c_{1, i}=g\left(x_{i}\right)$
- $c_{2, i}=s_{i}$
- $c_{3, i}=\left(\left[x_{i}, x_{i+1}\right] g-s_{i}\right) /\left(\Delta x_{i}\right)-c_{4, i}\left(\Delta x_{i}\right)$
- $c_{4, i}=\left(s_{i}+s_{i+1}-2\left[x_{i}, x_{i+1}\right] g\right) /\left(\Delta x_{i}\right)^{2}$
- $i=1, \ldots, n-1$
- Parameter s_{i} depends on the condition that the interpolant is twice continuously differentiable: $P_{i-1}^{(2)}\left(x_{i}\right)=P_{i}^{(2)}\left(x_{i}\right)$.

Parameters s_{1} and s_{n} provide $P_{1}=P_{2}$ and $P_{n-1}=P_{n}$, so that the first and the last interior breakpoints are inactive.

$$
f^{\prime \prime}\left(x_{1}\right)=f^{\prime \prime}\left(x_{n}\right)=0
$$

$$
y(x)= \begin{cases}y_{1}, & \text { if } x=x_{1} \\ y_{2}, & \text { if } x=x_{2} \\ & \cdots \\ y_{n}, & \text { if } x=x_{n} \\ \text { error, } & \text { otherwise }\end{cases}
$$

$$
y(x)=\left\{\begin{array}{cc}
y_{1}, & \text { if } x_{1} \leq x<x_{2} \\
y_{2}, & \text { if } x_{2} \leq x<x_{3} \\
y_{n-1}, & \text { if } x_{n-1} \leq x<x_{n} \\
y_{n}, & \text { if } x=x_{n}
\end{array}\right.
$$

| Concept | Mathematical Notation |
| :--- | :--- |
| Step-wise constant continuous left
 interpolator. | $y(x)=\left\{\begin{array}{cc}y_{1}, & \text { if } x=x_{1} \\ y_{2}, & \text { if } x_{1}<x \leq x_{2} \\ y_{3}, & \text { if } x_{2}<x \leq x_{3} \\ & \ldots \\ y_{n}, & \text { if } x_{n-1}<x \leq x_{n} \\ \hline\end{array}\right.$ |

Data Fitting Usage Model

Consider an algorithm that uses the Data Fitting functions. Typically, such algorithms consist of four steps or stages:

1. Create a task. You can call the Data Fitting function several times to create multiple tasks.
status = dfdNewTask1D(\&task, nx, x, xhint, ny, y, yhint);
2. Modify the task parameters.
status = dfdEditPPSpline1D(task, s_order, c_type, bc_type, bc, ic_type, ic, scoeff, scoeffhint);
3. Perform Data Fitting spline-based computations. You may reiterate steps 2-3 as needed.
status $=$ dfdInterpolatelD(task, estimate, method, nsite, site, sitehint, ndorder, dorder, datahint, r, rhint, cell);
4. Destroy the task or tasks.
status $=$ dfDeleteTask (\&task);

See Also

Data Fitting Usage Examples

Data Fitting Usage Examples

The examples below illustrate several operations that you can perform with Data Fitting routines. If you want to run or reuse similar examples, you can get both C and Fortran source code in the . \examples \datafittingc and . \examples \datafittingf subdirectories of the Intel MKL installation directory.
The following C example demonstrates the construction of a linear spline using Data Fitting routines. The spline approximates a scalar function defined on non-uniform partition. The coefficients of the spline are returned as a one-dimensional array:

C Example of Linear Spline Construction

```
#include "mkl.h"
#define N 500 /* Size of partition, number of breakpoints */
#define SPLINE_ORDER DF_PP_LINEAR /* Linear spline to construct */
int main()
{
    int status; /* Status of a Data Fitting operation */
    DFTaskPtr task; /* Data Fitting operations are task based */
    /* Parameters describing the partition */
    MKL_INT nx; /* The size of partition x */
    dou\overline{ble x[N]; /* Partition x */}
    MKL_INT xhint; /* Additional information about the structure of breakpoints */
    /* Parameters describing the function */
    MKL_INT ny; /* Function dimension */
    dou\overline{ble y[N]; /* Function values at the breakpoints */}
```

MKL_INT yhint; /* Additional information about the function */
/* Parameters describing the spline */
MKL_INT s_order; /* Spline order */
MKL_INT s_type; /* Spline type */
MKL_INT ic_type; /* Type of internal conditions */
MKL_INT* ic; /* Array of internal conditions */
MKL_INT bc_type; /* Type of boundary conditions */
MKL_INT* bc; /* Array of boundary conditions */
double scoeff[(N-1)* ORDER]; /* Array of spline coefficients */
MKL_INT scoeffhint; /* Additional information about the coefficients */
/* Initialize the partition */
$\mathrm{nx}=\mathrm{N}$;
/* Set values of partition x */
xhint = DF_NO_HINT; /* No additional information about the function is provided. By default, the partition is non-uniform. */
/* Initialize the function */
ny = 1; /* The function is scalar. */
/* Set function values */
...
yhint = DF_NO_HINT; /* No additional information about the function is provided. */
/* Create a Data Fitting task */
status = dfdNewTask1D(\&task, nx, x, xhint, ny, y, yhint);
/* Check the Data Fitting operation status */
...
/* Initialize spline parameters */
s_order = DF PP LINEAR; /* Spline is of the second order. */
s_{-}^{-}type $=\mathrm{DF}_{-} \overline{\mathrm{P}} \mathrm{P}_{-} \mathrm{D} E F A U L T ; \quad / *$ Spline is of the default type. */
/* Define internal conditions for linear spline construction (none in this example) */
ic_type = DF_NO_IC;
ic = NULL;
/* Define boundary conditions for linear spline construction (none in this example) */
bc_type = DF_NO_BC;
bc = NULL;
scoeffhint = DF_NO_HINT; /* No additional information about the spline. */
/* Set spline parameters in the Data Fitting task */
status $=$ dfdEditPPSpline1D(task, s_order, s_type, bc_type, bc, ic_type,
ic, scoēff, scoefffhint);
/* Check the Data Fitting operation status */
...
/* Use a standard computation method to construct a linear spline: */
$/ * P_{i}(x)=c_{1, i}+c_{2, i}\left(x-x_{i}\right), i=0, \ldots, N-2 * /$
/* The library packs spline coefficients to array scoeff. */
$/ * \operatorname{scoeff}[2 * i+0]=c_{1, i}$ and scoeff $[2 * i+1]=C_{2, i}, i=0, \ldots, N-2$ */
status = dfdConstruct1D (task, DF_PP_SPLINE, DF_METHOD_STD);
/* Check the Data Fitting operation status */
...
/* Process spline coefficients */
...
/* Deallocate Data Fitting task resources */
status $=$ dfDeleteTask (\&task) ;
/* Check the Data Fitting operation status */
return 0 ;

The following C example demonstrates cubic spline-based interpolation using Data Fitting routines. In this example, a scalar function defined on non-uniform partition is approximated by Bessel cubic spline using not-a-knot boundary conditions. Once the spline is constructed, you can use the spline to compute spline values at the given sites. Computation results are packed by the Data Fitting routine in row-major format.

C Example of Cubic Spline-Based Interpolation

```
#include "mkl.h"
#define NX 100 l* Size of partition, number of breakpoints */
#define SPLINE_ORDER DF_PP_CUBIC /* A cubic spline to construct */
int main()
{
    int status; /* Status of a Data Fitting operation */
    DFTaskPtr task; /* Data Fitting operations are task based */
    /* Parameters describing the partition */
    MKL_INT nx; /* The size of partition x */
    doublle x[N]; /* Partition x */
    MKL_INT xhint; /* Additional information about the structure of breakpoints */
    /* Parameters describing the function */
    MKL_INT ny; /* Function dimension */
    double y[N]; /* Function values at the breakpoints */
    MKL_INT yhint; /* Additional information about the function */
    /* Parameters describing the spline */
    MKL_INT s_order; /* Spline order */
    MKL_INT S_type; /* Spline type */
    MKL_INT ic_type; /* Type of internal conditions */
    MKL_INT* ic; /* Array of internal conditions */
    MKL_INT bc_type; /* Type of boundary conditions */
    MKL_INT* bc\overline{; /* Array of boundary conditions */}
    double scoeff[(N-1)* ORDER]; /* Array of spline coefficients */
    MKL_INT scoeffhint; /* Additional information about the coefficients */
    /* Parameters describing interpolation computations */
    MKL_INT nsite; /* Number of interpolation sites */
    double site[NSITE]; /* Array of interpolation sites */
    MKL_INT sitehint; /* Additional information about the structure of
                                    interpolation sites */
    MKL_INT ndorder, dorder; /* Parameters defining the type of interpolation */
    double* datahint; /* Additional information on partition and interpolation sites */
    double r[NSITE]; /* Array of interpolation results */
    MKL_INT* rhint; /* Additional information on the structure of the results */
    MKL_INT* cell; /* Array of cell indices */
    /* Initialize the partition */
    nx = N;
    /* Set values of partition x */
    ...
    xhint = DF_NON_UNIFORM_PARTITION; /* The partition is non-uniform. */
    /* Initialize the function */
    ny = 1; /* The function is scalar. */
    /* Set function values */
    yhint = DF_NO_HINT; /* No additional information about the function is provided. */
    /* Create a Data Fitting task */
    status = dfdNewTask1D( &task, nx, x, xhint, ny, y, yhint );
    /* Check the Data Fitting operation status */
```

```
    /* Initialize spline parameters */
    s_order = DF PP CUBIC; /* Spline is of the fourth order (cubic spline). */
    s_type = DF_\overline{PP_\overline{B}ESSEL; /* Spline is of the Bessel cubic type. */}
    /* Define internal conditions for linear spline construction (none in this example) */
    ic_type = DF_NO_IC;
    ic}\mp@subsup{}{}{-}=NULL
    /* Use not-a-knot boundary conditions. In this case, the is first and the last
    interior breakpoints are inactive, no additional values are provided. */
    bc_type = DF_BC_NOT_A_KNOT;
    bc-}= NULL
    scoeffhint = DF_NO_HINT; /* No additional information about the spline. */
    /* Set spline parameters in the Data Fitting task */
    status = dfdEditPPSpline1D( task, s_order, s_type, bc_type, bc, ic_type,
    ic, scoēff, scoe\overline{ffhint );}
    /* Check the Data Fitting operation status */
    ...
    /* Use a standard method to construct a cubic Bessel spline: */
    /* P}\mp@subsup{P}{i}{}(x)=\mp@subsup{C}{1,i}{}+\mp@subsup{C}{2,i}{}(x-\mp@subsup{x}{i}{})+\mp@subsup{C}{3,i}{}(x-\mp@subsup{x}{i}{}\mp@subsup{)}{}{2}+\mp@subsup{C}{4,i}{}(x-\mp@subsup{x}{i}{}\mp@subsup{)}{}{3}, *
    /* The library packs spline coefficients to array scoeff: */
```



```
    /* scoeff[4*i+2] = c c,i, scoef[4*i+1] = cci,i,
/* i=0,...,N-2 */
status = dfdConstruct1D( task, DF_PP_SPLINE, DF_METHOD_STD );
/* Check the Data Fitting operation status */
    ...
    /* Initialize interpolation parameters */
nsite = NSITE;
/* Set site values */
...
sitehint = DF NON_UNIFORM_PARTITION; /* Partition of sites is non-uniform */
/* Request to compute spline values */
ndorder = 1;
dorder = 1;
datahint = DF NO_APRIORI_INFO; /* No additional information about breakpoints or
                                    sites is provided. */
rhint = DF_MATRIX_STORAGE_ROWS; /* The library packs interpolation results
cell = NULL; /* Cell indices are not required. */
/* Solve interpolation problem using the default method: compute the sline values
    at the points site(i), i=0,..., nsite-1 and place the results to array r */
status = dfdInterpolate1D( task, DF INTERP, DF METHOD STD, nsite, site,
sitehint, ndorder, &dorder, datahin\overline{t, r, rhint, cell );}
/* Check Data Fitting operation status */
    ...
/* De-allocate Data Fitting task resources */
    status = dfDeleteTask( &task );
/* Check Data Fitting operation status */
return 0;
}
```

The following C example demonstrates how to compute indices of cells containing given sites. This example uses uniform partition presented with two boundary points. The sites are in the ascending order.

C Example of Cell Search

\#include "mkl.h"

```
#define NX 100 /* Size of partition, number of breakpoints */
#define NSITE 1000 /* Number of interpolation sites */
int main()
{
    int status; /* Status of a Data Fitting operation */
    DFTaskPtr task; /* Data Fitting operations are task based */
    /* Parameters describing the partition */
    MKL INT nx; /* The size of partition x */
    dou\overline{ble x[2]; /* Partition x is uniform and holds endpoints}
        of interpolation interval [a, b] */
    MKL_INT xhint; /* Additional information about the structure of breakpoints */
    /* Parameters describing the function */
    MKL_INT ny; /* Function dimension */
    floāt *y; /* Function values at the breakpoints */
    MKL_INT yhint; /* Additional information about the function */
    /* Parameters describing cell search */
    MKL INT nsite; /* Number of interpolation sites */
    doub\overline{le site[NSITE]; /* Array of interpolation sites */}
    MKL_INT sitehint; /* Additional information about the structure of sites */
    float* datahint; /* Additional information on partition and interpolation sites */
    MKL_INT cell[NSITE]; /* Array for cell indices */
    /* Initialize a uniform partition */
    nx = N;
    /* Set values of partition x: for uniform partition, */
    /* provide end-points of the interpolation interval [-1.0,1.0] */
    x[0] = -1.0f; x[1] = 1.0f;
    xhint = DF_UNIFORM_PARTITION; /* Partition is uniform */
    /* Initialize function parameters */
    /* In cell search, function values are not necessary and are set to zero/NULL values */
    ny = 0;
    y = NULL;
    yhint = DF_NO_HINT;
    /* Create a Data Fitting task */
    status = dfdNewTask1D( &task, nx, x, xhint, ny, y, yhint );
    /* Check Data Fitting operation status */
    ...
    /* Initialize interpolation (cell search) parameters */
    nsite = NSITE;
    /* Set sites in the ascending order */
    sitehint = DF_SORTED_DATA; /* Sites are provided in the ascending order. */
    datahint = DF_NO_APR\overline{I}ORI_INFO; /* No additional information
                                about breakpoints/sites is provided.*/
    /* Use a standard method to compute indices of the cells that contain
        interpolation sites. The library places the index of the cell containing
        site(i) to the cell(i), i=0,...,nsite-1 */
    status = dfsSearchCells1D( task, DF_METHOD_STD, nsite, site, sitehint,
                datahint, cèll );
    /* Check Data Fitting operation status */
    ...
    /* Process cell indices */
    ...
```

```
/* Deallocate Data Fitting task resources */
status = dfDeleteTask( &task );
/* Check Data Fitting operation status */
    ...
    return 0;
```

\}

Task Status and Error Reporting

The Data Fitting routines report a task status through integer values. Negative status values indicate errors, while positive values indicate warnings. An error can be caused by invalid parameter values or a memory allocation failure.
The status codes have symbolic names predefined in the respective header files. For the C/C++ interface, these names are defined as macros via the \#define statements. For the Fortran interface, the names are defined as integer constants via the PARAMETER operators.

If no error occurred, the function returns the DF_STATUS_OK code defined as zero:

```
C/C++: #define DF_STATUS_OK 0
F90/F95: INTEGER, PARAMETER::DF_STATUS_OK = 0
```

In case of an error, the function returns a non-zero error code that specifies the origin of the failure. Header files for both C/C++ and Fortran languages define the following status codes:
Status Codes in the Data Fitting Component

Status Code
 Description

Common Status Codes

```
DF_STATUS_OK
DF_ERROR_NULL_TASK
DF_ERROR_MEM_FAILURE
DF_ERROR_METHOD_NOT_SUPPORTED
DF_ERROR_COMP_TYPE_NOT_SUPPORTED
```

Operation completed successfully.
Data Fitting task is a NULL pointer.
Memory allocation failure.
Requested method is not supported.
Requested computation type is not supported.

Data Fitting Task Creation and Initialization, and Generic Editing Operations

```
DF_ERROR_BAD_NX
DF_ERROR_BAD_X
DF_ERROR_BAD_X_HINT
DF_ERROR_BAD_NY
DF_ERROR_BAD_Y
DF_ERROR_BAD_Y_HINT
```


Data Fitting Task-Specific Editing Operations

Invalid number of breakpoints.
Array of breakpoints is invalid.
Invalid hint describing the platform structure.
Invalid dimension of vector-valued function y.
Array of function values is invalid.
Invalid flag describing the structure of function y

```
DF_ERROR_BAD_SPLINE_ORDER
```

DF_ERROR_BAD_SPLINE_ORDER
DF_ERROR_BAD_SPLINE_TYPE
DF_ERROR_BAD_SPLINE_TYPE
DF_ERROR_BAD_IC_TYPE

```
DF_ERROR_BAD_IC_TYPE
```

Invalid spline order.
Invalid spline type.
Type of internal conditions used for spline construction is invalid.

| Status Code | Description |
| :---: | :---: |
| DF_ERROR_BAD_IC | Array of internal conditions for spline construction is not defined. |
| DF_ERROR_BAD_BC_TYPE | Type of boundary conditions used in spline construction is invalid. |
| DF_ERROR_BAD_BC | Array of boundary conditions for spline construction is not defined. |
| DF_ERROR_BAD_PP_COEFF | Array of piecewise polynomial spline coefficients is not defined. |
| DF_ERROR_BAD_PP_COEFF_HINT | Invalid flag describing the structure of the piecewise polynomial spline coefficients. |
| DF_ERROR_BAD_PERIODIC_VAL | Function values at the endpoints of the interpolation interval are not equal as required in periodic boundary conditions. |
| DF_ERROR_BAD_DATA_ATTR | Invalid attribute of the pointer to be set or modified in Data Fitting task descriptor with the df? editidxptr task editor. |
| DF_ERROR_BAD_DATA_IDX | Index of the pointer to be set or modified in the Data Fitting task descriptor with the df? editidxptr task editor is out of the pre-defined range. |
| Data Fitting Computation Operations | |
| DF_ERROR_BAD_NSITE | Invalid number of interpolation sites. |
| DF_ERROR_BAD_SITE | Array of interpolation sites is not defined. |
| DF_ERROR_BAD_SITE_HINT | Invalid flag describing the structure of interpolation sites. |
| DF_ERROR_BAD_NDORDER | Invalid size of the array defining derivative orders to be computed at interpolation sites. |
| DF_ERROR_BAD_DORDER | Array defining derivative orders to be computed at interpolation sites is not defined. |
| DF_ERROR_BAD_DATA_HINT | Invalid flag providing additional information about partition or interpolation sites. |
| DF_ERROR_BAD_INTERP | Array of spline-based interpolation results is not defined. |
| DF_ERROR_BAD_INTERP_HINT | Invalid flag defining the structure of spline-based interpolation results. |
| DF_ERROR_BAD_CELL_IDX | Array of indices of partition cells containing interpolation sites is not defined. |
| DF_ERROR_BAD_NLIM | Invalid size of arrays containing integration limits. |
| DF_ERROR_BAD_LLIM | Array of the left-side integration limits is not defined. |
| DF_ERROR_BAD_RLIM | Array of the right-side integration limits is not defined. |

| Status Code | Description |
| :--- | :--- |
| DF_ERROR_BAD_INTEGR | Array of spline-based integration results is not
 defined. |
| DF_ERROR_BAD_INTEGR_HINT | Invalid flag providing the structure of the array of
 spline-based integration results. |
| DF_ERROR_BAD_LOOKUP_INTERP_SITE | Bad site provided for interpolation with look-up
 interpolator. |

NOTE The routine that estimates piecewise polynomial cubic spline coefficients can return internal error codes related to the specifics of the implementation. Such error codes indicate invalid input data or other issues unrelated to Data Fitting routines.

Task Creation and Initialization Routines

Task creation and initialization routines are functions used to create a new task descriptor and initialize its parameters. The Data Fitting component provides the df?newtask1d routine that creates and initializes a new task descriptor for a one-dimensional Data Fitting task.

df?newtask1d

Creates and initializes a new task descriptor for a one-
dimensional Data Fitting task.

Syntax

Fortran:

```
status = dfsnewtaskld(task, nx, x, xhint, ny, y, yhint)
status = dfdnewtaskld(task, nx, x, xhint, ny, y, yhint)
```

C:

```
status = dfsNewTask1D(&task, nx, x, xhint, ny, y, yhint)
status = dfdNewTask1D(&task, nx, x, xhint, ny, y, yhint)
```


Include Files

- Fortran: mkl_df.f90 and mkl_df.f77
- C: mkl_df.h

Input Parameters

| Name | Type |
| :--- | :--- |
| $n x$ | Fortran: INTEGER |
| | C: MKL_INT* |
| x | Fortran: REAL (KIND=4) |
| | DIMENSION (*) for |
| | dfsnewtask1d |
| | REAL (KIND=8) DIMENSION (*) |
| | for dfdnewtaskid |

Description

Number of breakpoints representing partition of interpolation interval [a, b].

One-dimensional array containing the sorted breakpoints from interpolation interval $[a, b]$. The structure of the array is defined by parameter xhint:

- If partition is non-uniform or quasi-uniform, the array should contain $n x$ ordered values.

| Name | Type |
| :---: | :---: |
| | C: float* for dfsNewTask1D
 double* for dfdNewTask1D |
| xhint | Fortran: INTEGER |
| | C: MKL_INT |
| $n y$ | Fortran: INTEGER |
| | C: MKL_INT |
| y | Fortran: REAL (KIND=4) |
| | DIMENSION(*) for |
| | dfsnewtaskld |
| | REAL (KIND=8) DIMENSION(*) for dfdnewtaskld |
| | C: float* for dfsNewTask |
| | double* for dfdNewTask |
| yhint | Fortran: INTEGER |
| | C: MKL_INT |

A flag describing the structure of array y. Valid hint values are listed in table "Hint Values for Vector-Valued Function $y^{\prime \prime}$. If you set the flag to the DF_NO_HINT value, the library assumes that all ny coordinates of the vector-valued function y are provided and stored in row-major format.

Description

- If partition is uniform, the array should contain two entries that represent endpoints of interpolation interval [a, b].

A flag describing the structure of partition x. For the list of possible values of xhint, see table "Hint Values for Partition $x^{\prime \prime}$. If you set the flag to the DF_NO_HINT value, the library interprets the partition as non-uniform.

Dimension of vector-valued function y.

Vector-valued function y, array of size $n x^{*} n y$.
The storage format of function values in the array is defined by the value of flag yhint.

Description

Descriptor of the task.

Status of the routine:

- DF_STATUS_OK if the task is created successfully.
- Non-zero error code if the task creation failed. See "Task Status and Error Reporting" for error code definitions.

Output Parameters

| Name | Type |
| :--- | :--- |
| task | Fortran: TYPE (DF_TASK) |
| | C: DFTaskPtr |
| status | Fortran: INTEGER |
| | C: int |

Description

The df?newtaskld routine creates and initializes a new Data Fitting task descriptor with user-specified parameters for a one-dimensional Data Fitting task. The x and $n x$ parameters representing the partition of interpolation interval $[a, b]$ are mandatory. If you provide invalid values for these parameters, such as a NULL pointer x or the number of breakpoints smaller than two, the routine does not create the Data Fitting task and returns an error code.

If you provide a vector-valued function y, make sure that the function dimension ny and the array of function values y are both valid. If any of these parameters are invalid, the routine does not create the Data Fitting task and returns an error code.

If you store coordinates of the vector-valued function y in non-contiguous memory locations, you can set the yhint flag to DF_1ST_COORDINATE, and pass only the first coordinate of the function into the task creation routine. After successful creation of the Data Fitting task, you can pass the remaining coordinates using the df?editidxptr task editor.

If the routine fails to create the task descriptor, it returns a NULL task pointer.
The routine supports the following hint values for partition x :
Hint Values for Partition x

| Value | Description |
| :--- | :--- |
| DF_NON_UNIFORM_PARTITION | Partition is non-uniform. |
| DF_QUASI_UNIFORM_PARTITION | Partition is quasi-uniform. |
| DF_UNIFORM_PARTITION | Partition is uniform. |
| DF_NO_HINT | No hint is provided. By default, partition is interpreted as non-
 uniform. |

The routine supports the following hint values for the vector-valued function:
Hint Values for Vector-Valued Function y

| Value | Description |
| :--- | :--- |
| DF_MATRIX_STORAGE_ROWS | Data is stored in row-major format according to C conventions. |
| DF_MATRIX_STORAGE_COLS | Data is stored in column-major format according to Fortran
 conventions. |
| DF_1ST_COORDINATE | The first coordinate of vector-valued data is provided. |
| DF_NO_HINT | No hint is provided. By default, the coordinates of vector-valued
 function y are provided and stored in row-major format. |

Task Editors

Task editors initialize or change the predefined Data Fitting task parameters. You can use task editors to initialize or modify pointers to arrays or parameter values.
Task editors can be task-specific and generic. Task-specific editors can modify more than one parameter related to a specific task. Generic editors modify a single parameter at a time.
The Data Fitting component of the Intel MKL provides the following task editors:

Data Fitting Task Editors

| Editor | Description | Type |
| :--- | :--- | :--- |
| df?
 editppspline1d | Changes parameters of the piecewise polynomial
 spline. | Task-specific |
| df?editptr | Changes a pointer in the task descriptor. | Generic |
| dfieditval | Changes a value in the task descriptor. | Generic |
| df?editidxptr | Changes a coordinate of data represented in
 matrix format. For example, a vector-valued
 function or spline coefficients. | Generic |

df?editppspline1d
 Modifies parameters representing a spline in a Data
 Fitting task descriptor.

Syntax

Fortran:

```
status = dfseditppsplineld(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
scoeffhint)
status = dfdeditppsplineld(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
scoeffhint)
C:
```

```
status = dfsEditPPSplinelD(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
```

status = dfsEditPPSplinelD(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
scoeffhint)
scoeffhint)
status = dfdEditPPSpline1D(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
status = dfdEditPPSpline1D(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
scoeffhint)

```
scoeffhint)
```


Include Files

- Fortran: mkl_df.f90 and mkl_df.f77
- C: mkl_df.h

Input Parameters

| Name | Type |
| :---: | :---: |
| task | Fortran: TYPE (DF_TASK) |
| | C: DFTaskPtr |
| s_order | Fortran: INTEGER |
| | C: MKL_INT |
| s_type | Fortran: INTEGER |
| | C: MKL_INT |
| bc_type | Fortran: INTEGER |
| | C: MKL_INT |
| bc | Fortran: REAL (KIND=4) |
| | DIMENSION(*) for |
| | dfseditppspline1d |
| | REAL (KIND=8) DIMENSION(*) for dfdeditppspline1d |
| | C: float* for dfsEditPPSpline1D |
| | double* for dfdEditPPSpline1D |

Description

Descriptor of the task.

Spline order. The parameter takes one of the values described in table "Spline Orders Supported by Data Fitting Functions".

Spline type. The parameter takes one of the values described in table "Spline Types Supported by Data Fitting Functions".

Type of boundary conditions. The parameter takes one of the values described in table "Boundary Conditions Supported by Data Fitting Functions".

Pointer to boundary conditions. The size of the array is defined by the value of parameter bc_type:

- If you set free-end or not-a-knot boundary conditions, pass the NULL pointer to this parameter.
- If you combine boundary conditions at the endpoints of the interpolation interval, pass an array of two elements.
- If you set a boundary condition for the default quadratic spline or a periodic condition for Hermite or the default cubic spline, pass an array of one element.

| Name | |
| :---: | :---: |
| ic_type | Fortran: INTEGER
 C: MKL_INT |
| ic | ```Fortran: REAL (KIND=4) DIMENSION(*) for dfseditppspline1d REAL(KIND=8) DIMENSION(*) for dfdeditppspline1d C: float* for dfsEditPPSpline1D double* for dfdEditPPSpline1D``` |
| scoeff | ```Fortran: REAL (KIND=4) DIMENSION(*) for dfseditppspline1d REAL(KIND=8) DIMENSION(*) for dfdeditppspline1d C: float* for dfsEditPPSpline1D double* for dfdEditPPSpline1D``` |

scoeffhint Fortran: INTEGER
C: MKL_INT

Description

Type of internal conditions. The parameter takes one of the values described in table "Internal Conditions Supported by Data Fitting Functions".

A non-NULL pointer to the array of internal conditions. The size of the array is defined by the value of parameter ic_type:

- If you set first derivatives or second derivatives internal conditions (ic_type=DF_IC_1ST_DER or ic_type=DF_IC_2ND_DER), pass an array of n-1 derivative values at the internal points of the interpolation interval.
- If you set the knot values internal condition for Subbotin spline (ic_type=DF_IC_Q_KNOT) and the knot partition is non-uniform, pass an array of $n+1$ elements.
- If you set the knot values internal condition for Subbotin spline (ic_type=DF_IC_Q_KNOT) and the knot partition is uniform, pass an array of four elements.

Spline coefficients. An array of size s_order* ($n x-1$). The storage format of the coefficients in the array is defined by the value of flag scoeffhint.

A flag describing the structure of the array of spline coefficients. For valid hint values, see table "Hint Values for Spline Coefficients". The library stores the coefficients in row-major format. The default value is DF_NO_HINT.

Output Parameters

Name Type
status Fortran: INTEGER
C: int

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

Description

The editor modifies parameters that describe the order, type, boundary conditions, internal conditions, and coefficients of a spline. The spline order definition is provided in the "Mathematical Conventions" section. You can set the spline order to any value supported by Data Fitting functions. The table below lists the available values:

Spline Orders Supported by the Data Fitting Functions

| Order | Description |
| :--- | :--- |
| DF_PP_STD | Artificial value. Use this value for look-up and step-
 wise constant interpolants only. |
| DF_PP_LINEAR | Piecewise polynomial spline of the second order
 (linear spline). |
| $D F_{-} P P_{-}$QUADRATIC | Piecewise polynomial spline of the third order
 (quadratic spline). |
| DF_PP_CUBIC | Piecewise polynomial spline of the fourth order
 (cubic spline). |

To perform computations with a spline not supported by Data Fitting routines, set the parameter defining the spline order and pass the spline coefficients to the library in one of the supported formats. For formats description, see table "Storage Formats for Spline Coefficients".
The table below lists the supported spline types:

Spline Types Supported by Data Fitting Functions

| Type | Description |
| :--- | :--- |
| DF_PP_DEFAULT | The default spline type. You can use this type with
 linear, quadratic, or user-defined splines. |
| DF_PP_SUBBOTINQuadratic splines based on Subbotin algorithm,
 [StechSub76]. | |
| DF_PP_NATURAL | Natural cubic spline. |
| DF_PP_HERMITE | Hermite cubic spline. |
| DF_PP_BESSEL | Bessel cubic spline. |
| DF_PP_AKIMA | Akima cubic spline. |
| DF_LOOKUP_INTERPOLANT | Look-up interpolant. |
| DF_CR_STEPWISE_CONST_INTERPOLANT | Continuous right step-wise constant interpolant. |
| DF_CL_STEPWISE_CONST_INTERPOLANT | Continuous left step-wise constant interpolant. |

If you perform computations with look-up or step-wise constant interpolants, set the spline order to the DF_PP_STD value.

Construction of specific splines may require boundary or internal conditions. To compute coefficients of such splines, you should pass boundary or internal conditions to the library by specifying the type of the conditions and providing the necessary values. For splines that do not require additional conditions, such as linear splines, set condition types to $\mathrm{DF}_{-} \mathrm{NO}_{-} \mathrm{BC}$ and DF _NO_IC, and pass NULL pointers to the conditions. The table below defines the supported boundary conditions:

| Boundary Condition | Description | Spline |
| :--- | :--- | :--- |
| DF_BC_NOT_A_KNOT | Not-a-knot boundary conditions. | Akima, Bessel, Hermite, natural
 cubic |
| DF_BC_FREE_END | Free-end boundary conditions. | Akima, Bessel, Hermite, natural
 cubic, quadratic Subbotin |
| DF_BC_1ST_LEFT_DER | The first derivative at the left
 endpoint is zero. | Akima, Bessel, Hermite, natural
 cubic, quadratic Subbotin |
| DF_BC_1ST_RIGHT_DER | The first derivative at the right
 endpoint is zero. | Akima, Bessel, Hermite, natural
 cubic, quadratic Subbotin |
| DF_BC_2ST_LEFT_DER | The second derivative at the left
 endpoint is zero. | Akima, Bessel, Hermite, natural
 cubic, quadratic Subbotin |
| DF_BC_2ND_RIGHT_DER | The second derivative at the right
 endpoint is zero. | Akima, Bessel, Hermite, natural
 cubic, quadratic Subbotin |
| DF_BC_PERIODIC | Periodic boundary conditions. | Linear, all cubic splines |

You can combine the values of boundary conditions with a bitwise or operation. This permits you to pass combinations of first and second derivatives at the endpoints of the interpolation interval into the library. To pass a first derivative at the left endpoint and a second derivative at the right endpoint, set the boundary conditions to DF_BC_1ST_LEFT_DER OR DF_BC_2ND_RIGHT_DER.

You should pass the combined boundary conditions as an array of two elements. The first entry of the array contains the value of the boundary condition for the left endpoint of the interpolation interval, and the second entry - for the right endpoint. Pass other boundary conditions as arrays of one element.

For the conditions defined as a combination of valid values, the library applies the following rules to identify the boundary condition type:

- If not required for spline construction, the value of boundary conditions is ignored.
- Not-a-knot condition has the highest priority. If set, other boundary conditions are ignored.
- Free-end condition has the second priority after the not-a-knot condition. If set, other boundary conditions are ignored.
- Periodic boundary condition has the next priority after the free-end condition.
- The first derivative has higher priority than the second derivative at the right and left endpoints.

If you set the periodic boundary condition, make sure that function values at the endpoints of the interpolation interval are identical. Otherwise, the library returns an error code. The table below specifies the values to be provided for each type of spline if the periodic boundary condition is set.

Boundary Requirements for Periodic Conditions

| Spline Type | Periodic Boundary Condition
 Support | Boundary Value |
| :--- | :--- | :--- |
| Linear | Yes | Not required |
| Default quadratic | No | |
| Subbotin quadratic | No | Not required |
| Natural cubic | Yes | |

| Spline Type | Periodic Boundary Condition
 Support | Boundary Value |
| :--- | :--- | :--- |
| Bessel | Yes | Not required |
| Akima | Yes | Not required |
| Hermite cubic | Yes | First derivative |
| Default cubic | Yes | Second derivative |
| Internal conditions supported in the Data Fitting domain that you can use for the ic_type parameter are the | | |
| following: | Description | |
| Internal Conditions Supported by | | |
| Internal Condition | Array of first derivatives of size
 $n-2$, where n is the number of | Hermite cubic |
| DF_IC_1ST_DER | breakpoints. Derivatives are
 applicable to each coordinate of
 the vector-valued function. | |
| DF_IC_2ND_DER | Array of second derivatives of
 size $n-2$, where n is the number
 of breakpoints. Derivatives are
 applicable to each coordinate of
 the vector-valued function. | Default cubic |

To construct a Subbotin quadratic spline, you have three options to get the array of knots in the library:

- If you do not provide the knots, the library uses the default values of knots $t=\left\{t_{i}\right\}, i=0, \ldots, n$ according to the rule:
$t_{0}=x_{0}, t_{n}=x_{n-1}, t_{i}=\left(x_{i}+x_{i-1}\right) / 2, i=1, \ldots, n-1$.
- If you provide the knots in an array of size $n+1$, the knots form a non-uniform partition. Make sure that the knot values you provide meet the following conditions:
$t_{0}=x_{0}, t_{n}=x_{n-1}, t_{i} \in\left(x_{i-1}, x_{i}\right), i=1, \ldots, n-1$.
- If you provide the knots in an array of size 4 , the knots form a uniform partition
$t_{0}=x_{0}, t_{1}=1, t_{2}=r_{1} t_{3}=x_{n-1}$, where $l \in\left(x_{0}, x_{1}\right)$ and $r \in\left(x_{n-2}, x_{n-1}\right)$.
In this case, you need to set the value of the ic_type parameter holding the type of internal conditions to DF_IC_Q_KNOT OR DF_UNIFORM_PARTITION.

NOTE Since the partition is uniform, perform an OR operation with the DF_UNIFORM_PARTITION partition hint value described in Table Hint Values for Partition x .

For computations based on look-up and step-wise constant interpolants, you can avoid calling the df ? editppspline1d editor and directly call one of the routines for spline-based computation of spline values, derivatives, or integrals. For example, you can call the df?construct1d routine to construct the required spline with the given attributes, such as order or type.
The memory location of the spline coefficients is defined by the scoeff parameter. Make sure that the size of the array is sufficient to hold s_order * ($n x-1$) values.

The $d f$?editppspline1d routine supports the following hint values for spline coefficients:

| Order | Description |
| :--- | :--- |
| DF_1ST_COORDINATE | The first coordinate of vector-valued data is
 provided. |
| $\mathrm{DF}_{-} \mathrm{NO}_{-} \mathrm{HINT}$ | No hint is provided. By default, all sets of spline
 coefficients are stored in row-major format. |

The coefficients for all coordinates of the vector-valued function are packed in memory one by one in successive order, from function y_{1} to function $y n y$.
Within each coordinate, the library stores the coefficients as an array, in row-major format:
$c_{1}, 0, c_{1}, 1, \ldots, c_{1}, k, c_{2}, 0, c_{2}, 1, \ldots, c_{2}, k, \ldots, c_{n-1}, 0, c_{n-1}, 1, \ldots, c_{n-1}, k$
Mapping of the coefficients to storage in the scoeff array is described below, where $c_{i, j}$ is the j th coefficient of the function
$P_{i}(x)=c_{i, 0}+c_{i, 1}\left(x-x_{i}\right)+\ldots+c_{i, k}\left(x-x_{i}\right)^{k}$.
See Mathematical Conventions for more details on nomenclature and interpolants.

Row-major Coefficient Storage Format

If you store splines corresponding to different coordinates of the vector-valued function at non-contiguous memory locations, do the following:

1. Set the scoeffhint flag to DF_1ST_COORDINATE and provide the spline for the first coordinate.
2. Pass the spline coefficients for the remaining coordinates into the Data Fitting task using the af? editidxptr task editor.

Using the df?editppspline1d task editor, you can provide to the Data Fitting task an already constructed spline that you want to use in computations. To ensure correct interpretation of the memory content, you should set the following parameters:

- Spline order and type, if appropriate. If the spline is not supported by the library, set the s_type parameter to DF_PP_DEFAULT.
- Pointer to the array of spline coefficients in row-major format.
- The scoeffhint parameter describing the structure of the array:
- Set the scoeffhint flag to the DF_1ST_COORDINATE value to pass spline coefficients stored at different memory locations. In this case, you can set the parameters that describe boundary and internal conditions to zero.
- Use the default value DF_NO_HINT for all other cases.

After you provide the spline to the Data Fitting task, you can run computations that use this spline.

df?editptr

Modifies a pointer to an array held in a Data Fitting task descriptor.

Syntax

Fortran:

```
status = dfseditptr(task, ptr_type, ptr)
status = dfdeditptr(task, ptr_type, ptr)
status = dfieditptr(task, ptr_type, ptr)
```

C:

```
status = dfsEditPtr(task, ptr_type, ptr)
status = dfdEditPtr(task, ptr_type, ptr)
status = dfiEditPtr(task, ptr_type, ptr)
```

Include Files

- Fortran: mkl_df.f90 and mkl_df.f77
- C: mkl_df.h

Input Parameters

| Name | Type |
| :--- | :--- |
| task | Fortran: TYPE (DF_TASK) |
| ptr_type | Fortran: INTEGER |
| | C: MKL_INT |
| ptr | Fortran: REAL (KIND=4) |
| | DIMENSION (*) for dfseditptr |
| | REAL(KIND=8) DIMENSION(*) |
| | for dfdeditptr |
| | INTEGER DIMENSION (*) for |
| | dfieditptr |
| | C: float* for dfsEditPtr |
| | double* for dfdEditPtr |
| | MKL_INT* for dfiEditPtr |

Description

Descriptor of the task.

The parameter to change. For details, see the Pointer Type column in table "Pointers Supported by the df?editptr Task Editor".

New pointer. For details, see the Purpose column in table "Pointers Supported by the df?editptr Task Editor".
for dfdeditptr
INTEGER DIMENSION(*) for
dfieditptr
C: float* for dfsEditPtr
double* for dfdEditPtr
MKL_INT* for dfiEditPtr

Output Parameters

Name

status
Fortran: INTEGER
C: int

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

Description

The df?editptr editor replaces the pointer of type ptr_type stored in a Data Fitting task descriptor with a new pointer ptr. The table below describes types of pointers supported by the editor:

Pointers Supported by the df?editptr Task Editor

| Pointer Type | Purpose |
| :--- | :--- |
| $D_{-} \mathrm{X}$ | Partition x of the interpolation interval |
| DF_Y | Vector-valued function y |
| $D F_{-} I C$ | Internal conditions for spline construction. For details, see table |
| | "Internal Conditions Supported by Data Fitting Functions". |
| DF_BC | Boundary conditions for spline construction. For details, see table
 "Boundary Conditions Supported by Data Fitting Functions". |
| DF_PP_SCOEFF | Spline coefficients |

You can use df?editptr to modify different types of pointers including pointers to the vector-valued function and spline coefficients stored in contiguous memory. Use the df?editidxptr editor if you need to modify pointers to coordinates of the vector-valued function or spline coefficients stored at non-contiguous memory locations.

If you pass a NULL pointer to the df?editptr task editor, the task remains unchanged and the routine returns an error code. For the predefined error codes, please see "Task Status and Error Reporting".

dfieditval

Modifies a parameter value in a Data Fitting task descriptor.

Syntax

Fortran:

```
status = dfieditval(task, val_type, val)
```

C:

```
status = dfiEditVal(task, val_type, val)
```

Include Files

- Fortran: mkl_df.f90 and mkl_df.f77
- C: mkl_df.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| task | Fortran: TYPE (DF_TASK) | Descriptor of the task. |
| C: DFTaskPtr | | |
| val_type | Fortran: INTEGER | The parameter to change. See table "Parameters Supported
 C: MKL_INT |
| val the dfieditval Task Editor". | | |

Output Parameters

| Name | Type |
| :--- | :--- |
| status | Fortran: INTEGER |

C: int

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

Description

The dfieditval task editor replaces the parameter of type val_type stored in a Data Fitting task descriptor with a new value val. The table below describes valid types of parameter val_type supported by the editor:
Parameters Supported by the dfieditval Task Editor

| Parameter | Purpose |
| :---: | :---: |
| DF_NX | Number of breakpoints |
| DF_XHINT | A flag describing the structure of partition. See table "Hint Values for Partition $x^{\prime \prime}$ for the list of available values. |
| DF_NY | Dimension of the vector-valued function |
| DF_YHINT | A flag describing the structure of the vector-valued function. See table "Hint Values for Vector Function y " for the list of available values. |
| DF_SPLINE_ORDER | Spline order. See table "Spline Orders Supported by Data Fitting Functions" for the list of available values. |
| DF_SPLINE_TYPE | Spline type. See table "Spline Types Supported by Data Fitting Functions" for the list of available values. |
| DF_BC_TYPE | Type of boundary conditions used in spline construction. See table "Boundary Conditions Supported by Data Fitting Functions" for the list of available values. |
| DF_IC_TYPE | Type of internal conditions used in spline construction. See table "Internal Conditions Supported by Data Fitting Functions" for the list of available values. |

| Parameter | Purpose |
| :--- | :--- |
| $\mathrm{DF}_{-} \mathrm{PP}_{-} \mathrm{COEFF}_{-} \mathrm{HINT}$ | A flag describing the structure of spline coefficients. See table "Hint |
| | Values for Spline Coefficients" for the list of available values. |

If you pass a zero value for the parameter describing the size of the arrays that hold coefficients for a partition, a vector-valued function, or a spline, the parameter held in the Data fitting task remains unchanged and the routine returns an error code. For the predefined error codes, see "Task Status and Error Reporting".
If you modify the parameter describing dimensions of the arrays that hold the vector-valued function or spline coefficients in contiguous memory, you should call the df?editptr task editor with the corresponding pointers to the vector-valued function or spline coefficients even when this pointer remains unchanged. Call the df?editidxptr editor if those arrays are stored in non-contiguous memory locations.

df?editidxptr

Modifies a pointer to the memory representing a coordinate of the data stored in matrix format.

Syntax

fortran:

```
status = dfseditidxptr(task, type, idx, ptr)
status = dfdeditidxptr(task, type, idx, ptr)
C:
status = dfsEditIdxPtr(task, type, idx, ptr)
status = dfdEditIdxPtr(task, type, idx, ptr)
```

Include Files

- Fortran: mkl_df.f90 and mkl_df.f77
- C: mkl_df.h

Input Parameters

| Name | Type | Description |
| :---: | :---: | :---: |
| task | Fortran: TYPE (DF_TASK) | Descriptor of the task. |
| | C: DFTaskPtr | |
| type | Fortran: INTEGER
 C: MKL_INT | Type of the data to be modified. The parameter takes one of the values described in "Data Attributes Supported by the df?editidxptr Task Editor". |
| $i d x$ | Fortran: INTEGER | Index of the coordinate whose pointer is to be modified. |
| | C: MKL_INT | |
| ptr | Fortran: REAL (KIND=4) | Pointer to the data that holds values of coordinate idx. For |
| | DIMENSION(*) for | details, see table "Data Attributes Supported by the df? |
| | | editidxptr Task Editor". |
| | REAL (KIND=8) DIMENSION(*) for dfdeditidxptr | |

Name Type Description

C: float* for dfsEditIdxPtr
double* for dfdEditIdxPtr

Output Parameters

Name

status

Type

Fortran: INTEGER
C: int

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

Description

The routine modifies a pointer to the array that holds the idx coordinate of vector-valued function y or the pointer to the array of spline coefficients corresponding to the given coordinate.

You can use the editor if you need to pass into a Data Fitting task or modify the pointer to coordinates of the vector-valued function or spline coefficients held at non-contiguous memory locations.
Before calling this editor, make sure that you have created and initialized the task using a task creation function or a relevant editor such as the generic or specific df?editppspline1d editor.

Data Attributes Supported by the df?editidxptr Task Editor

| Data Attribute | Description |
| :--- | :--- |
| $D F_{-} Y$ | Vector-valued function y |
| $D F _P P _S C O E F F$ | Piecewise polynomial spline coefficients |

When using df?editidxptr, you might receive an error code in the following cases:

- You passed an unsupported parameter value into the editor.
- The value of the index exceeds the predefined value that equals the dimension ny of the vector-valued function.
- You pass a NULL pointer to the editor. In this case, the task remains unchanged.

The code example below demonstrates how to use the editor for providing values of a vector-valued function stored in two non-contiguous arrays:

```
#define NX 1000 /* number of break points */
#define NY 2 /* dimension of vector-valued function */
int main()
{
    DFTaskPtr task;
    double x[NX];
    double y1[NX], y2[NX]; /* vector-valued function is stored as two arrays */
    /* Provide first coordinate of two-dimensional function y into creation routine */
    status = dfdNewTask1D( &task, NX, x, DF NON_UNIFORM_PARTITION, NY, y1,
        DF_1ST_COORDINAT\overline{E );}
    /* Provide second coordiañte of two-dimensional function */
    status = dfdEditIdxPtr(task, DF_Y, 1, y2 );
}
```


Computational Routines

Data Fitting computational routines are functions used to perform spline-based computations, such as:

- spline construction
- computation of values, derivatives, and integrals of the predefined order
- cell search

Once you create a Data Fitting task and initialize the required parameters, you can call computational routines as many times as necessary.

The table below lists the available computational routines:
Data Fitting Computational Routines

| Routine | Description |
| :--- | :--- |
| df?construct1d | Constructs a spline for a one-dimensional Data |
| df?interpolate1d | Fitting task. |
| df?interpolateex1d | Computes spline values and derivatives.
 user-provided interpolants. |
| df?integrateld | Computes spline-based integrals. |
| df?integrateex1d | Computes spline-based integrals by calling user-
 provided integrators. |
| df?searchcellsld | Finds indices of cells containing interpolation sites. |
| df?searchcellsex1d | Finds indices of cells containing interpolation sites
 by calling user-provided cell searchers. |

If a Data Fitting computation completes successfully, the computational routines return the DF_STATUS_OK code. If an error occurs, the routines return an error code specifying the origin of the failure. Some possible errors are the following:

- The task pointer is NULL.
- Memory allocation failed.
- The computation failed for another reason.

For the list of available status codes, see "Task Status and Error Reporting".

NOTE Data Fitting computational routines do not control errors for floating-point conditions, such as overflow, gradual underflow, or operations with Not a Number (NaN) values.

df?construct1d

Constructs a spline of the given type.

Syntax

Fortran:

```
status = dfsconstructld(task, s_format, method)
status = dfdconstructld(task, s_format, method)
C:
```

```
status = dfsConstruct1D(task, s_format, method)
```

status = dfsConstruct1D(task, s_format, method)
status = dfdConstruct1D(task, s_format, method)

```
status = dfdConstruct1D(task, s_format, method)
```


Include Files

- Fortran: mkl_df.f90 and mkl_df.f77
- C: mkl_df.h

Input Parameters

| Name | Type | Description |
| :---: | :---: | :---: |
| task | Fortran: TYPE (DF_TASK) | Descriptor of the task. |
| | C: DFTaskPtr | |
| s_format | Fortran: INTEGER | Spline format. The supported value is $\mathrm{DF}_{-} \mathrm{PP}{ }_{-}$SPLINE. |
| | C: MKL_INT | |
| method | Fortran: INTEGER | Construction method. The supported value is |
| | C: MKL_INT | DF_METHOD_STD. |

Output Parameters

| Name | Type |
| :--- | :--- |
| status | Fortran: INTEGER |
| | C: int |

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

Description

Before calling df?construct1d, you need to create and initialize the task, and set the parameters representing the spline. Then you can call the df?construct1d routine to construct the spline. The format of the spline is defined by parameter s_format. The method for spline construction is defined by parameter method. Upon successful construction, the spline coefficients are available in the user-provided memory location in the format you set through the Data Fitting editor. For the available storage formats, see table "Hint Values for Spline Coefficients".

df?interpolate1d/df?interpolateex1d

Runs data fitting computations.

Syntax

Fortran:

```
status = dfsinterpolateld(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell)
status = dfdinterpolateld(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell)
status = dfsinterpolateexld(task, type, method, nsite, site, sitehint, ndorder,
dorder, datahint, r, rhint, cell, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)
```

```
status = dfdinterpolateexld(task, type, method, nsite, site, sitehint, ndorder,
dorder, datahint, r, rhint, cell, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)
```

C:

```
status = dfsInterpolatelD(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell)
status = dfdInterpolatelD(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell)
status = dfsInterpolateEx1D(task, type, method, nsite, site, sitehint, ndorder,
dorder, datahint, r, rhint, cell, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)
status = dfdInterpolateEx1D(task, type, method, nsite, site, sitehint, ndorder,
dorder, datahint, r, rhint, cell, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)
```

Include Files

- Fortran: mkl_df.f90 and mkl_df.f77
- C: mkl_df.h

Input Parameters

| Name | Type | Description |
| :---: | :---: | :---: |
| task | Fortran: TYPE (DF_TASK) | Descriptor of the task. |
| | C: DFTaskPtr | |
| type | Fortran: INTEGER
 C: MKL_INT | Type of spline-based computations. The parameter takes one or more values combined with an OR operation. For the list of possible values, see table "Computation Types Supported by the df?interpolate1d/ df?interpolate1d Routines". |
| method | Fortran: INTEGER
 C: MKL_INT | Computation method. The supported value is DF_METHOD_PP. |
| nsite | Fortran: INTEGER | Number of interpolation sites. |
| | C: MKL_INT | |
| site | Fortran: REAL (KIND=4)
 DIMENSION(*) for dfsinterpolate1d/ dfsinterpolateex1d | Array of interpolation sites of size nsite. The structure of the array is defined by the sitehint parameter:
 - If sites form a non-uniform partition, the array should contain nsite values. |
| | REAL (KIND=8)
 DIMENSION (*) for
 dfdinterpolate1d/
 dfdinterpolateex1d | - If sites form a uniform partition, the array should contain two entries that represent the left and the right interpolation sites. The first entry of the array contains the left-most interpolation point. The second entry of the |
| | ```C: float* for dfsInterpolate1D/ dfsInterpolateEx1D``` | array contains the right-most interpolation point. |

| Name | Type |
| :---: | :---: |
| | ```double* for dfdInterpolate1D/ dfdInterpolateEx1D``` |
| sitehint | Fortran: INTEGER |
| | C: MKL_INT |
| ndorder | Fortran: INTEGER |
| | C: MKL_INT |
| dorder | Fortran: INTEGER |
| | DIMENSION(*) |
| | C: MKL_INT* |
| datahint | Fortran: REAL (KIND=4) |
| | DIMENSION(*) for |
| | dfsinterpolateld/ dfsinterpolateex1d |
| | REAL (KIND=8) |
| | DIMENSION(*) for |
| | dfdinterpolateld/ dfdinterpolateex1d |
| | C: float* for |
| | dfsInterpolate1D/ |
| | dfsInterpolateEx1D |
| | double* for |
| | dfdInterpolate1D/ |
| | dfdInterpolateEx1D |
| r | Fortran: REAL (KIND=4) |
| | DIMENSION(*) for |
| | dfsinterpolateld/ |
| | dfsinterpolateex1d |
| | REAL (KIND=8) |
| | DIMENSION (*) for |
| | dfdinterpolate1d/ |
| | dfdinterpolateexld |
| | C: float* for |
| | dfsInterpolate1D/ |
| | dfsInterpolateEx1D |
| | double* for |
| | dfdInterpolate1D/ |
| | dfdInterpolateEx1D |

Description

A flag describing the structure of the interpolation sites. For the list of possible values of sitehint, see table "Hint Values for Interpolation Sites". If you set the flag to DF_NO_HINT, the library interprets the site-defined partition as non-uniform.

Maximal derivative order increased by one to be computed at interpolation sites.

Array of size ndorder that defines the order of the derivatives to be computed at the interpolation sites. If all the elements in dorder are zero, the library computes the spline values only. If you do not need interpolation computations, set ndorder to zero and pass a NULL pointer to dorder.

Array that contains additional information about the structure of partition x and interpolation sites. This data helps to speed up the computation. If you provide a NULL pointer, the routine uses the default settings for computations. For details on the datahint array, see table "Structure of the datahint Array".

Array that contains results of computations at the interpolation sites. If you do not need spline-based interpolation or integration, set this pointer to NULL.

| Name | Type | Description |
| :---: | :---: | :---: |
| rhint | Fortran: INTEGER
 C: MKL_INT | A flag describing the structure of the results. For the list of possible values of rhint, see table "Hint Values for the rhint Parameter". If you set the flag to DF_NO_HINT, the library stores the result in row-major format. |
| cell | Fortran: INTEGER DIMENSION(*)
 C: MKL_INT* | Array of cell indices in partition x that contain the interpolation sites. If you do not need cell indices, set this parameter to NULL. |
| $l e _c b$ | Fortran: INTEGER
 C: dfsInterpCallBack for dfsInterpolateEx1D
 dfdInterpCallBack for dfdInterpolateEx1D | User-defined callback function for extrapolation at the sites to the left of the interpolation interval. |
| le_params | Fortran: INTEGER DIMENSION(*)
 C: void* | Pointer to additional user-defined parameters passed by the library to the le_cb function. |
| re_cb | Fortran: INTEGER
 C: dfsInterpCallBack for dfsInterpolateEx1D dfdInterpCallBack for dfdInterpolateEx1D | User-defined callback function for extrapolation at the sites to the right of the interpolation interval. |
| re_params | Fortran: INTEGER DIMENSION(*)
 C: void* | Pointer to additional user-defined parameters passed by the library to the re_cb function. |
| i_cb | Fortran: INTEGER
 C: dfsInterpCallBack for dfsInterpolateEx1D
 dfdInterpCallBack for dfdInterpolateEx1D | User-defined callback function for interpolation within the interpolation interval. |
| i_params | Fortran: INTEGER DIMENSION(*)
 C: void* | Pointer to additional user-defined parameters passed by the library to the i_cb function. |
| search_cb | Fortran: INTEGER
 C:
 dfsSearchCellsCallBack for dfsInterpolateEx1D
 dfdSearchCellsCallBack for dfdInterpolateEx1D | User-defined callback function for computing indices of cells that can contain interpolation sites. |
| search_params | Fortran: INTEGER DIMENSION(*) | Pointer to additional user-defined parameters passed by the library to the search_cb function. |

| Name | Type | Description |
| :--- | :--- | :--- |
| | C: void | |

Output Parameters

| Name | Type |
| :--- | :--- |
| status | Fortran: INTEGER |
| | C: int |

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

Description

The df?interpolate1d/df?interpolateex1d routine performs spline-based computations with userdefined settings. The routine supports two types of computations for interpolation sites provided in array site:
Computation Types Supported by the df?interpolate1d/df?interpolateex1d Routines

| Type | Description |
| :--- | :--- |
| DF_INTERP | Compute derivatives of predefined order. The
 derivative of the zero order is the spline value. |
| DF_CELL | Compute indices of cells in partition x that contain
 the sites. |

If the sites do not belong to interpolation interval $[a, b]$, the library uses:

- polynomial P_{0} of the spline constructed on interval $\left[x_{0}, x_{1}\right.$] for computations at the sites to the left of a.
- polynomial P_{n-2} of the spline constructed on interval $\left[x_{n-2}, x_{n-1}\right]$ for computations at the sites to the right of b.
Interpolation sites support the following hints:
Hint Values for Interpolation Sites

| Value | Description |
| :--- | :--- |
| DF_NON_UNIFORM_PARTITION | Partition is non-uniform. |
| DF_UNIFORM_PARTITION | Partition is uniform. |
| DF_SORTED_DATA | Interpolation sites are sorted in the ascending order and define
 a non-uniform partition. |
| DF_NO_HINT | No hint is provided. By default, the partition defined by
 interpolation sites is interpreted as non-uniform. |

NOTE If you pass a sorted array of interpolation sites to the Intel MKL, set the sitehint parameter to the DF_SORTED_DATA value. The library uses this information when choosing the search algorithm and ignores any other data hints about the structure of the interpolation sites.

Data Fitting computation routines can use the following hints to speed up the computation:

- DF_UNIFORM_PARTITION describes the structure of breakpoints and the interpolation sites.
- DF_QUASI_UNIFORM_PARTITION describes the structure of breakpoints.

Pass the above hints to the library when appropriate.
The r pointer defines the memory location for the sets of interpolation and integration results for all coordinates of function y. The sets are stored one by one, in the successive order of the function coordinates from y_{1} to $y_{n y}$.
You can define the following settings for packing the results within each set:

- Computation type: interpolation, integration, or both.
- Computation parameters: derivative orders.
- Storage format for the results. You can specify the format using the rhint parameter values described in the table below:

Hint Values for the rhint Parameter

| Value | Description |
| :--- | :--- |
| DF_MATRIX_STORAGE_ROWS | Data is stored in row-major format according to C conventions. |
| DF_MATRIX_STORAGE_COLS | Data is stored in column-major format according to Fortran
 conventions. |
| DF_NO_HINT | No hint is provided. By default, the results are stored in row-
 major format. |

For spline-based interpolation, you should set the derivatives whose values are required for the computation. You can provide the derivatives by setting the dorder array of size ndorder as follows:
dorder $[i]=\left\{\begin{array}{l}1, \text { if derivative of the } i-\text { th order is required } \\ 0, \text { otherwise }\end{array} \quad i=0, \ldots\right.$, ndorder -1
See below a common structure of the storage formats of the interpolation results within each set r for computing derivatives of order $i_{1}, i_{2}, \ldots, i_{m}$ at nsite interpolation sites. In this description, j is the coordinate of the vector-valued function:

- Row-major format

| $r_{j}\left(i_{1}, 0\right)$ | $r_{j}\left(i_{2}, 0\right)$ | \ldots | $r_{j}\left(i_{m}, 0\right)$ |
| :--- | :--- | :--- | :--- |
| $r_{j}\left(i_{1}, 1\right)$ | $r_{j}\left(i_{2}, 1\right)$ | \ldots | $r_{j}\left(i_{m}, 1\right)$ |
| \ldots | \ldots | \ldots | \ldots |
| $r_{j}\left(i_{1}\right.$, nsite -1$)$ | $r_{j}\left(i_{2}\right.$, nsite -1$)$ | \ldots | $r_{j}\left(i_{m}, n s i t e-1\right)$ |

- Column-major format

| $r_{j}\left(i_{1}, 0\right)$ | $r_{j}\left(i_{1}, 1\right)$ | \ldots | $r_{j}\left(i_{1}, n s i t e-1\right)$ |
| :--- | :--- | :--- | :--- |
| $r_{j}\left(i_{2}, 0\right)$ | $r_{j}\left(i_{2}, 1\right)$ | \ldots | $r_{j}\left(i_{2}, n s i t e-1\right)$ |
| \ldots | \ldots | \ldots | \ldots |
| $r_{j}\left(i_{m}, 0\right)$ | $r_{j}\left(i_{m}, 1\right)$ | \ldots | $r_{j}\left(i_{m,} n s i t e-1\right)$ |

To speed up Data Fitting computations, use the datahint parameter that provides additional information about the structure of the partition and interpolation sites. This data represents a floating-point or a double array with the following structure:

| Structure of the datahint Array | |
| :--- | :--- |
| Element Number | Description |
| 0 | Task dimension |
| 1 | Type of additional information |
| 2 | Reserved field |
| 3 | The total number q of elements containing additional information. |
| 4 | Element (1) |
| \ldots | \ldots |
| $q+3$ | Element (q) |

Data Fitting computation functions support the following types of additional information for datahint[1]:
Types of Additional Information

| Type | Element Number | Parameter |
| :--- | :--- | :--- |
| DF_NO_APRIORI_INFO | 0 | No parameters are provided.
 Information about the data
 structure is absent. |
| DF_APRIORI_MOST_LIKELY_CELL | 1 | Index of the cell that is likely to
 contain interpolation sites. |

To compute indices of the cells that contain interpolation sites, provide the pointer to the array of size nsite for the results. The library supports the following scheme of cell indexing for the given partition $\left\{x_{i}\right\}$,
$i=1, \ldots, n x$:
cell[j] = 1 , if site[j] $\in\left[x_{i}, x_{i+1}\right), i=0, \ldots, n x$,
where

- $x_{0}=-\infty$
- $x_{n x+1}=+\infty$
- $j=0, \ldots$, nsite- 1

To perform interpolation computations with spline types unsupported in the Data Fitting component, use the extended version of the routine df? interpolateex1d. With this routine, you can provide user-defined callback functions for computations within, to the left of, or to the right of interpolaton interval $[a, b]$. The callback functions compute indices of the cells that contain the specified interpolation sites or can serve as an approximation for computing the exact indices of such cells.
If you do not pass any function for computations at the sites outside the interval $[a, b]$, the routine uses the default settings.

See Also

df?interpcallback
df?searchcellscallback

df?integrate1d/df?integrateex1d
 Computes a spline-based integral.

Syntax

Fortran:

```
status = dfsintegrateld(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint)
status = dfdintegrateld(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint)
status = dfsintegrateexld(task, method, nlim, llim, llimhint, rlim, rlimhint,
ldatahint, rdatahint, r, rhint, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)
status = dfdintegrateexld(task, method, nlim, llim, llimhint, rlim, rlimhint,
Idatahint, rdatahint, r, rhint, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)
C:
status = dfsIntegratelD(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint)
status = dfdIntegratelD(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint)
status = dfsIntegrateExlD(task, method, nlim, llim, llimhint, rlim, rlimhint,
ldatahint, rdatahint, r, rhint, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)
status = dfdIntegrateExlD(task, method, nlim, llim, llimhint, rlim, rlimhint,
ldatahint, rdatahint, r, rhint, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)
```


Include Files

- Fortran: mkl_df.f90 and mkl_df.f77
- C: mkl_df.h

Input Parameters

| Name | Type | Description |
| :---: | :---: | :---: |
| task | Fortran: TYPE (DF_TASK) | Descriptor of the task. |
| | C: DFTaskPtr | |
| method | Fortran: Integer | Integration method. The supported value is DF_METHOD_PP. |
| | C: MKL_INT | |
| nlim | Fortran: Integer | Number of pairs of integraion limits. |
| | C: MKL_INT | |
| Ilim | Fortran: REAL (KIND=4) DIMENSION(*) for dfsintegrate1d/ dfsintegrateex1d | Array of size nlim that defines the left-side integration limits. |

| Name | Type | Description |
| :---: | :---: | :---: |
| | REAL (KIND=8) | |
| | DIMENSION (*) for | |
| | dfdintegrateld/ | |
| | dfdintegrateex1d | |
| | C: float* for | |
| | dfsIntegrate1D/ | |
| | dfsIntegrateEx1D | |
| | double* for | |
| | dfdIntegrate1D/ | |
| | dfdIntegrateEx1D | |
| llimhint | Fortran: INTEGER | A flag describing the structure of the left-side integration |
| | C: MKL_INT | limits llim. For the list of possible values of llimhint, see table "Hint Values for Integration Limits". If you set the flag to the DF_NO_HINT value, the library assumes that the leftside integration limits define a non-uniform partition. |
| rlim | Fortran: REAL (KIND=4) | Array of size nlim that defines the right-side integration |
| | DIMENSION(*) for | limits. |
| | dfsintegrate1d/ | |
| | dfsintegrateex1d | |
| | REAL (KIND=8) | |
| | DIMENSION(*) for | |
| | dfdintegrateld/ | |
| | dfdintegrateex1d | |
| | C: float* for | |
| | dfsIntegrate1D/ | |
| | dfsIntegrateEx1D | |
| | double* for | |
| | dfdIntegrate1D/ | |
| | dfdintegrateEx1D | |
| rlimhint | Fortran: INTEGER | A flag describing the structure of the right-side integration |
| | C: MKL_INT | limits rlim. For the list of possible values of rlimhint, see table "Hint Values for Integration Limits". If you set the flag to the DF_NO_HINT value, the library assumes that the right-side integration limits define a non-uniform partition. |
| Idatahint | Fortran: REAL (KIND=4) | Array that contains additional information about the |
| | DIMENSION (*) for | structure of partition x and left-side integration limits. For |
| | dfsintegrate1d/ | details on the Idatahint array, see table "Structure of the |
| | dfsintegrateex1d | datahint Array" in the description of the df? |
| | REAL (KIND=8) | Intepolate1D function. |
| | DIMENSION(*) for | |
| | dfdintegrateld/ | |
| | dfdintegrateex1d | |
| | C: float* for | |
| | dfsIntegrate1D/ | |
| | dfsIntegrateEx1D | |

| Name | Type | Description |
| :---: | :---: | :---: |
| | ```double* for dfdIntegrate1D/ dfdIntegrateEx1D``` | |
| rdatahint | Fortran: REAL (KIND=4)
 DIMENSION(*) for dfsintegrate1d/ dfsintegrateex1d | Array that contains additional information about the structure of partition x and right-side integration limits. For details on the rdatahint array, see table "Structure of the datahint Array" in the description of the df? Intepolate1D function. |
| | REAL (KIND=8) | |
| | DIMENSION (*) for dfdintegrate1d/ dfdintegrateex1d | |
| | $\begin{aligned} & \text { C: float* for } \\ & \text { dfsIntegrate1D/ } \\ & \text { dfsIntegrateEx1D } \end{aligned}$ | |
| | double* for | |
| | dfdIntegrate1D/ | |
| | dfdintegrateEx1D | |
| r | Fortran: REAL (KIND=4) | Array of integration results. The size of the array should be sufficient to hold nlim*ny values, where ny is the dimension of the vector-valued function. The integration results are packed according to the settings in rhint. |
| | DIMENSION(*) for | |
| | dfsintegrate1d/ | |
| | | |
| | REAL (KIND=8) | |
| | DIMENSION(*) for | |
| | dfdintegrateld/ | |
| | dfdintegrateex1d | |
| | C: float* for | |
| | dfsIntegrate1D/ | |
| | dfsIntegrateEx1D | |
| | double* for | |
| | dfdintegrate1D/ | |
| | dfdintegrateEx1D | |
| rhint | Fortran: REAL (KIND=4) | A flag describing the structure of the results. For the list of possible values of rhint, see table "Hint Values for Integration Results". If you set the flag to the DF_NO_HINT value, the library stores the results in row-major format. |
| | DIMENSION(*) for | |
| | dfsintegrate1d/ | |
| | dfsintegrateex1d | |
| | REAL (KIND=8) | |
| | DIMENSION(*) for | |
| | dfdintegrate1d/ | |
| | dfdintegrateex1d | |
| | C: float* for | |
| | dfsIntegrate1D/ | |
| | dfsIntegrateEx1D | |

| Name | | Description |
| :---: | :---: | :---: |
| | ```double* for dfdIntegrate1D/ dfdIntegrateEx1D``` | |
| $l e _c b$ | Fortran: INTEGER
 C: dfsIntegrCallBack for dfsIntegrateEx1D
 dfdIntegrCallBack for dfdIntegrateEx1D | User-defined callback function for integration on interval [llim[i], min(rlim[i], a)) for llim[i] <a. |
| le_params | Fortran: INTEGER DIMENSION(*)
 C: void* | Pointer to additional user-defined parameters passed by the library to the le_cb function. |
| re_cb | Fortran: INTEGER
 C: dfsInterpCallBack for dfsIntegrateEx1D dfdInterpCallBack for dfdIntegrateEx1D | User-defined callback function for integration on interval [max(llim[i], b), rlim[i]) for rlim[i] $\geq b$. |
| re_params | Fortran: INTEGER DIMENSION (*)
 C: void* | Pointer to additional user-defined parameters passed by the library to the re_cb function. |
| i_cb | Fortran: INTEGER
 C: dfsIntegrCallBack for dfsIntegrateEx1D
 dfdIntegrCallBack for dfdIntegrateEx1D | User-defined callback function for integration on interval [max(a, llim[i],), min(rlim[i], b)). |
| i_params | Fortran: INTEGER
 DIMENSION(*)
 C: void* | Pointer to additional user-defined parameters passed by the library to the i_cb function. |
| search_cb | Fortran: INTEGER
 C:
 dfsSearchCellsCallBack
 for dfsIntegrateEx1D
 dfdSearchCellsCallBack for dfdintegrateEx1D | User-defined callback function for computing indices of cells that can contain interpolation sites. |
| search_params | Fortran: INTEGER
 DIMENSION(*)
 C: void* | Pointer to additional user-defined parameters passed by the library to the search_cb function. |

Output Parameters

Name Type Description

status
 Fortran: INTEGER

C: int

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

Description

The df?integrate1d/df?integrateex1d routine computes spline-based integral on user-defined intervals

$$
I(i, j)=\int_{\omega_{j=}[i]}^{r \bar{d} m[i]} f_{j}(x) d x, i=0, \ldots, n l i m-1, j=0, \ldots, n y-1
$$

If rlim[i] < llim[i], the routine returns

The routine supports the following hint values for integration results:
Hint Values for Integration Results

| Value | Description |
| :--- | :--- |
| DF_MATRIX_STORAGE_ROWS | Data is stored in row-major format according to C conventions. |
| DF_MATRIX_STORAGE_COLS | Data is stored in column-major format according to Fortran
 conventions. |
| DF_NO_HINT | No hint is provided. By default, the coordinates of vector-valued
 function y are provided and stored in row-major format. |

A common structure of the storage formats for the integration results is as follows:

- Row-major format

| $I(0,0)$ | \ldots | $I(0, n \lim -1])$ |
| :--- | :--- | :--- |
| \ldots | \ldots | \ldots |
| $I(n y-1,0)$ | \cdots | $I(n y-1, n l i m-1])$ |

- Column-major format

| $I(0,0)$ | \ldots | $I(n y-1,0)$ |
| :--- | :--- | :--- |
| \ldots | \ldots | \cdots |
| $I(0, n l i m-1])$ | \ldots | $I(n y-1, n l i m-1])$ |

Using the llimhint and rlimhint parameters, you can provide the following hint values for integration limits:

Hint Values for Integration Limits

| Value | Description |
| :--- | :--- |
| DF_SORTED_DATA | Integration limits are sorted in the ascending order and define a
 non-uniform partition. |
| DF_NON_UNIFORM_PARTITION | Partition defined by integration limits is non-uniform. |
| DF_UNIFORM_PARTITION | Partition defined by integration limits is uniform. |
| DF_NO_HINT | No hint is provided. By default, partition defined by integration
 limits is interpreted as non-uniform. |

To compute integration with splines unsupported in the Data Fitting component, use the extended version of the routine df?integrateexld. With this routine, you can provide user-defined callback functions that compute:

- integrals within, to the left of, or to the right of the interpolation interval $[a, b]$
- indices of cells that contain the provided integration limits or can serve as an approximation for computing the exact indices of such cells

If you do not pass a callback function, the routine uses the default settings.

```
See Also
df?interpolate1d/df?interpolateex1d
df?integrcallback
df?searchcellscallback
```


df?searchcells1d/df?searchcellsex1d

Searches sub-intervals containing interpolation sites.

Syntax

Fortran:

```
status = dfssearchcellsld(task, method, nsite, site, sitehint, datahint, cell)
status = dfdsearchcellsld(task, method, nsite, site, sitehint, datahint, cell)
status = dfssearchcellsexld(task, method, nsite, site, sitehint, datahint, cell,
search_cb, search_params)
status = dfdsearchcellsexld(task, method, nsite, site, sitehint, datahint, cell,
search_cb, search_params)
C:
```

```
status = dfsSearchCellslD(task, method, nsite, site, sitehint, datahint, cell)
```

status = dfsSearchCellslD(task, method, nsite, site, sitehint, datahint, cell)
status = dfdSearchCellslD(task, method, nsite, site, sitehint, datahint, cell)
status = dfdSearchCellslD(task, method, nsite, site, sitehint, datahint, cell)
status = dfsSearchCellsExlD(task, method, nsite, site, sitehint, datahint, cell,
status = dfsSearchCellsExlD(task, method, nsite, site, sitehint, datahint, cell,
search_cb, search_params)
search_cb, search_params)
status = dfdSearchCellsExlD(task, method, nsite, site, sitehint, datahint, cell,
status = dfdSearchCellsExlD(task, method, nsite, site, sitehint, datahint, cell,
search_cb, search_params)

```
search_cb, search_params)
```

Include Files

- Fortran: mkl_df.f90 and mkl_df.f77
- C: mkl_df.h

Input Parameters

| Name | Type |
| :---: | :---: |
| task | Fortran: TYPE (DF_TASK) |
| | C: DFTaskPtr |
| method | Fortran: INTEGER |
| | C: MKL_INT |
| nsite | Fortran: INTEGER |
| | C: MKL_INT* |
| site | Fortran: REAL (KIND=4) |
| | DIMENSION (*) for |
| | dfssearchcellsld/ |
| | dfssearchcellsex1d |
| | ```REAL(KIND=8) DIMENSION(*) for dfdsearchcells1d/ dfdsearchcellsex1d``` |
| | C: float* for |
| | dfsSearchCells1D/ |
| | dfsSearchCellsEx1D |
| | double* for |
| | dfdSearchCells1D/ |
| | dfdSearchCellsEx1D |
| sitehint | Fortran: INTEGER |
| | C: MKL_INT |
| datahint | Fortran: REAL (KIND=4) |
| | DIMENSION (*) for |
| | dfssearchcells1d/ |
| | dfssearchcellsex1d |
| | REAL (KIND=8) DIMENSION (*) |
| | for dfdsearchcellsld/ |
| | dfdsearchcellsex1d |
| | C: float* for |
| | dfsSearchCellsid/ |
| | dfsSearchCellsEx1D |
| | double* for |
| | dfdSearchCells1D/ |
| | dfdSearchCellsEx1D |
| cell | Fortran: INTEGER |
| | DIMENSION(*) |
| | C: MKL_INT* |

Description

Descriptor of the task.

Search method. The supported value is DF_METHOD_STD.

Number of interpolation sites.

Array of interpolation sites of size nsite. The structure of the array is defined by the sitehint parameter:

- If the sites form a non-uniform partition, the array should contain nsite values.
- If the sites form a uniform partition, the array should contain two entries that represent the left-most and the right-most interpolation sites. The first entry of the array contains the left-most interpolation point. The second entry of the array contains the right-most interpolation point.

A flag describing the structure of the interpolation sites. For the list of possible values of sitehint, see table "Hint Values for Interpolation Sites". If you set the flag to DF_NO_HINT, the library interprets the site-defined partition as non-uniform.

Array that contains additional information about the structure of partition x and interpolation sites. This data helps to speed up the computation. If you provide a NULL pointer, the routine uses the default settings for computations. For details on the datahint array, see table "Structure of the datahint Array".

Array of cell indices in partition x that contain the interpolation sites.

| Name | Type | Description |
| :---: | :---: | :---: |
| search_cb | Fortran: INTEGER
 C: dfsSearchCellsCallBack for dfsSearchCellsEx1D
 dfdSearchCellsCallBack for dfdSearchCellsEx1D | User-defined callback function for computing indices of cells that can contain interpolation sites. |
| $\begin{aligned} & \text { search_pa } \\ & \text { rams } \end{aligned}$ | Fortran: INTEGER DIMENSION (*) | Pointer to additional user-defined parameters passed by the library to the search_cb function. |
| | C: void* | |

Output Parameters

Name Type

 status Fortran: INTEGERC: int

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

Description

The df?searchcellsld/df?searchcellsexld routines return array cell of indices of sub-intervals (cells) in partition x that contain interpolation sites available in array site. For details on the cell indexing scheme, see the description of the df?interpolateld/df?interpolateexld computation routines.

Use the datahint parameter to provide additional information about the structure of the partition and/or interpolation sites. The definition of the datahint parameter is availalbe in the description of the df? interpolate1d/df?interpolateexld computation routines.
For description of the user-defined callback for computation of cell indices, see df?searchcellscallback.

See Also

df?interpolate1d/df?interpolateex1d
df?searchcellscallback

df?interpcallback

A callback function for user-defined interpolation to be passed into df?interpolateex1d.

Syntax

Fortran:

```
status = dfsinterpcallback(n, cell, site, r, params)
status = dfdinterpcallback(n, cell, site, r, params)
```

C:

```
status = dfsInterpCallBack(n, cell, site, r, params)
status = dfdInterpCallBack(n, cell, site, r, params)
```


Include Files

- Fortran: mkl_df.f90 and mkl_df.f77
- C: mkl_df.h

Input Parameters

Fortran: INTEGER (KIND=8)
C: long long*

Name

n
cell
site
params

Type

Fortran: INTEGER (KIND=8) DIMENSION (*)

C: long long*
Fortran: REAL (KIND=4)
DIMENSION(*) for dfsinterpcallback

REAL (KIND=8) DIMENSION(*) for dfdinterpcallback

C: float* for dfsInterpCallBack
double* for dfdInterpCallBack

Fortran: REAL (KIND=4)
DIMENSION(*) for dfsinterpcallback REAL (KIND=8) DIMENSION(*)
for dfdinterpcallback
C: float* for dfsInterpCallBack
double* for dfdInterpCallBack

Fortran: INTEGER
DIMENSION(*)
C: void*

Description

Number of interpolation sites.

Array of size n containing indices of the cells to which the interpolation sites in array site belong.

Array of interpolation sites of size n.

Array of the computed interpolation results packed in rowmajor format.

Pointer to user-defined parameters of the callback function.

Description

The status returned by the callback function:

- Zero indicates successful completion of the callback operation.
- A negative value indicates an error.
- A positive value indicates a warning.

| Name Type | Description |
| :--- | :--- |
| | See "Task Status and Error Reporting" for error code |
| definitions. | |

Description

When passed into the df?interpolateexld routine, this function performs user-defined interpolation operation.

See Also

df?interpolate1d/df?interpolateex1d
df?searchcellscallback

df?integrcallback

A callback function that you can pass into df?
integrateex1d to define integration computations.

Syntax

Fortran:

```
status = dfsintegrcallback(n, lcell, llim, rcell, rlim, r, params)
status = dfdintegrcallback(n, lcell, llim, rcell, rlim, r, params)
```

C:

```
status = dfsIntegrCallBack(n, lcell, llim, rcell, rlim, r, params)
status = dfdIntegrCallBack(n, lcell, llim, rcell, rlim, r, params)
```

Include Files

- Fortran: mkl_df.f90 and mkl_df.f77
- C: mkl_df.h

Input Parameters

| Name | Type | Description |
| :---: | :---: | :---: |
| n | Fortran: INTEGER (KIND=8) | Number of pairs of integration limits. |
| | C: long long* | |
| Icell | Fortran: INTEGER (KIND=8) DIMENSION(*) | Array of size n with indices of the cells that contain the leftside integration limits in array llim. |
| | C: long long* | |
| Ilim | Fortran: REAL (KIND=4) | Array of size n that holds the left-side integration limits. |
| | DIMENSION(*) for | |
| | dfsintegrcallback | |
| | REAL (KIND=8) DIMENSION(*) | |
| | for dfdintegrcallback | |
| | C: float* for | |
| | dfsIntegrCallBack | |

Name

Type

```
double* for
dfdIntegrCallBack
```

rcell Fortran: INTEGER (KIND=8) DIMENSION(*)

C: long long*
rlim Fortran: REAL (KIND=4)
DIMENSION (*) for dfsintegrcallback

REAL (KIND=8) DIMENSION(*) for dfdintegrcallback

C: float* for dfsIntegrCallBack
double* for dfdIntegrCallBack
r
params
Fortran: REAL (KIND=4)
DIMENSION (*) for dfsintegrcallback

REAL (KIND=8) DIMENSION(*) for dfdintegrcallback
C: float* for dfsIntegrCallBack double* for dfdIntegrCallBack

DIMENSION(*)
C: void*

Description

Array of size n with indices of the cells that contain the right-side integration limits in array rlim.

Array of size n that holds the right-side integration limits.

Array of integration results. For packing the results in rowmajor format, follow the instructions described in df?
interpolateld/df?interpolateexld.

Pointer to user-defined parameters of the callback function.

Output Parameters

| Name | Type |
| :--- | :--- |
| status | Fortran: INTEGER |
| | C: int |

Description

The status returned by the callback function:

- Zero indicates successful completion of the callback operation.
- A negative value indicates an error.
- A positive value indicates a warning.

See "Task Status and Error Reporting" for error code definitions.

Description

When passed into the df?integrateex1d routine, this function defines integration computations. If at least one of the integration limits is outside the interpolation interval [a, b], the library decomposes the integration into sub-intervals that belong to the extrapolation range to the left of a, the extrapolation range to the right of b, and the interpolation interval $[a, b]$, as follows:

- If the left integration limit is to the left of the interpolation interval (llim<a), the df?integrateexld routine passes llim as the left integration limit and $\min (r l i m, a)$ as the right integration limit to the user-defined callback function.
- If the right integration limit is to the right of the interpolation interval (rlim>b), the df?integrateexld routine passes max (llim, b) as the left integration limit and rlim as the right integration limit to the user-defined callback function.
- If the left and the right integration limits belong to the interpolation interval, the df?integrateexid routine passes them to the user-defined callback function unchanged.

The value of the integral is the sum of integral values obtained on the sub-intervals.

```
See Also
df?integrate1d/df?integrateex1d
df? integrcallback
df?searchcellscallback
```


df?searchcellscallback

A callback function for user-defined search to be passed into df?interpolateex1d or df?
searchcellsex1d.

Syntax

Fortran:

```
status = dfssearchcellscallback(n, site, cell, flag, params)
status = dfdsearchcellscallback(n, site, cell, flag, params)
```

C:

```
status = dfsSearchCellsCallBack(n, site, cell, flag, params)
status = dfdSearchCellsCallBack(n, site, cell, flag, params)
```


Include Files

- Fortran: mkl_df.f90 and mkl_df.f77
- C: mkl_df.h

Input Parameters

| Name | Type | Description |
| :---: | :---: | :---: |
| n | Fortran: INTEGER (KIND=8) | Number of interpolation sites. |
| | C: long long* | |
| site | Fortran: REAL (KIND=4) DIMENSION(*) for dfssearchcellscallback | Array of interpolation sites of size n. |

| Name | Type | Description |
| :---: | :---: | :---: |
| | REAL (KIND=8) DIMENSION(*) for dfdsearchcellscallback | |
| | C: float* for dfsSearchCellsCallBack | |
| | double* for dfdSearchCellsCallBack | |
| cell | Fortran: INTEGER (KIND=8) DIMENSION(*) | Array of size n that returns indices of the cells computed by the callback function. |
| | C: long long* | |
| flag | Fortran: INTEGER (KIND=4) | Array of size n, with values set as follows: |
| | DIMENSION(*)
 C: int* | - If the cell with index cell[i] contains site[i], set flag[i] to 1. |
| | | - Otherwise, set flag[i] to zero. In this case, the library interprets the index as an approximation and computes the index of the cell containing site[i] by using the provided index as a starting point for the search. |
| params | Fortran: INTEGER | Pointer to user-defined parameters of the callback function. |
| | DIMENSION(*) | |
| | C: void* | |

Output Parameters

| Name | Type |
| :--- | :--- |
| status | Fortran: INTEGER |
| | C: int |

Description

The status returned by the callback function:

- Zero indicates successful completion of the callback operation.
- A negative value indicates an error.
- The DF_STATUS_EXACT_RESULT status indicates that cell indices returned by the callback function are exact. In this case, you do not need to initialize entries of the flag array.
- A positive value indicates a warning.

See "Task Status and Error Reporting" for error code definitions.

Description

When passed into the df?interpolateexld or df?searchcellsexld routine, this function performs a user-defined search.

```
See Also
df?interpolate1d/df?interpolateex1d
df?interpcallback
```


Task Destructors

Task destructors are routines used to delete task descriptors and deallocate the corresponding memory resources. The Data Fitting task destructor dfdeletetask destroys a Data Fitting task and frees the memory.

dfdeletetask

Destroys a Data Fitting task object and frees the memory.

Syntax

Fortran:

```
status = dfdeletetask(task)
```

C:

```
status = dfDeleteTask(&task)
```

Include files

- Fortran: mkl_df.f90 and mkl_df.f77
- C: mkl_df.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| task | Fortran: TYPE $\left(\mathrm{DF}_{-}\right.$TASK $)$ | Descriptor of the task to destroy. |
| | C: DFTaskPtr | |

Output Parameters

Name Type

status Fortran: INTEGER
C: int

Description

Status of the routine:

- DF_STATUS_OK if the task is deleted successfully.
- Non-zero error code if the operation failed. See "Task Status and Error Reporting" for error code definitions.

Description

Given a pointer to a task descriptor, this routine deletes the Data Fitting task descriptor and frees the memory allocated for the structure. If the task is deleted successfully, the routine sets the task pointer to NULL. Otherwise, the routine returns an error code.

Linear Solvers Basics

Many applications in science and engineering require the solution of a system of linear equations. This problem is usually expressed mathematically by the matrix-vector equation, $A x=b$, where A is an $m-b y-n$ matrix, x is the n element column vector and b is the m element column vector. The matrix A is usually referred to as the coefficient matrix, and the vectors x and b are referred to as the solution vector and the right-hand side, respectively.
Basic concepts related to solving linear systems with sparse matrices are described in section Sparse Linear Systems that follows.

Sparse Linear Systems

In many real-life applications, most of the elements in A are zero. Such a matrix is referred to as sparse. Conversely, matrices with very few zero elements are called dense. For sparse matrices, computing the solution to the equation $A x=b$ can be made much more efficient with respect to both storage and computation time, if the sparsity of the matrix can be exploited. The more an algorithm can exploit the sparsity without sacrificing the correctness, the better the algorithm.
Generally speaking, computer software that finds solutions to systems of linear equations is called a solver. A solver designed to work specifically on sparse systems of equations is called a sparse solver. Solvers are usually classified into two groups - direct and iterative.
Iterative Solvers start with an initial approximation to a solution and attempt to estimate the difference between the approximation and the true result. Based on the difference, an iterative solver calculates a new approximation that is closer to the true result than the initial approximation. This process is repeated until the difference between the approximation and the true result is sufficiently small. The main drawback to iterative solvers is that the rate of convergence depends greatly on the values in the matrix A. Consequently, it is not possible to predict how long it will take for an iterative solver to produce a solution. In fact, for illconditioned matrices, the iterative process will not converge to a solution at all. However, for wellconditioned matrices it is possible for iterative solvers to converge to a solution very quickly. Consequently for the right applications, iterative solvers can be very efficient.
Direct Solvers, on the other hand, often factor the matrix A into the product of two triangular matrices and then perform a forward and backward triangular solve.
This approach makes the time required to solve a systems of linear equations relatively predictable, based on the size of the matrix. In fact, for sparse matrices, the solution time can be predicted based on the number of non-zero elements in the array A.

Matrix Fundamentals

A matrix is a rectangular array of either real or complex numbers. A matrix is denoted by a capital letter; its elements are denoted by the same lower case letter with row/column subscripts. Thus, the value of the element in row i and column j in matrix A is denoted by $a(i, j)$. For example, a 3 by 4 matrix A, is written as follows:

$$
A=\left[\begin{array}{l}
a(1,1) a(1,2) a(1,3) a(1,4) \\
a(2,1) a(2,2) a(2,3) a(2,4) \\
a(3,1) a(3,2) a(3,3) a(3,4)
\end{array}\right]
$$

Note that with the above notation, we assume the standard Fortran programming language convention of starting array indices at 1 rather than the C programming language convention of starting them at 0 .
A matrix in which all of the elements are real numbers is called a real matrix. A matrix that contains at least one complex number is called a complex matrix. A real or complex matrix A with the property that $a(i, j)=$ $a(j, i)$, is called a symmetric matrix. A complex matrix A with the property that $a(i, j)=\operatorname{conj}(a(j, i))$, is called a Hermitian matrix. Note that programs that manipulate symmetric and Hermitian matrices need only store half of the matrix values, since the values of the non-stored elements can be quickly reconstructed from the stored values.

A matrix that has the same number of rows as it has columns is referred to as a square matrix. The elements in a square matrix that have same row index and column index are called the diagonal elements of the matrix, or simply the diagonal of the matrix.

The transpose of a matrix A is the matrix obtained by "flipping" the elements of the array about its diagonal. That is, we exchange the elements $a(i, j)$ and $a(j, i)$. For a complex matrix, if we both flip the elements about the diagonal and then take the complex conjugate of the element, the resulting matrix is called the Hermitian transpose or conjugate transpose of the original matrix. The transpose and Hermitian transpose of a matrix A are denoted by A^{T} and A^{H} respectively.

A column vector, or simply a vector, is a $n \times 1$ matrix, and a row vector is a $1 \times n$ matrix. A real or complex matrix A is said to be positive definite if the vector-matrix product $x^{T} A x$ is greater than zero for all non-zero vectors x. A matrix that is not positive definite is referred to as indefinite.
An upper (or lower) triangular matrix, is a square matrix in which all elements below (or above) the diagonal are zero. A unit triangular matrix is an upper or lower triangular matrix with all 1 's along the diagonal.
A matrix P is called a permutation matrix if, for any matrix A, the result of the matrix product $P A$ is identical to A except for interchanging the rows of A. For a square matrix, it can be shown that if $P A$ is a permutation of the rows of A, then $A P^{T}$ is the same permutation of the columns of A. Additionally, it can be shown that the inverse of P is P^{T}.

In order to save space, a permutation matrix is usually stored as a linear array, called a permutation vector, rather than as an array. Specifically, if the permutation matrix maps the i-th row of a matrix to the j-th row, then the i-th element of the permutation vector is j.
A matrix with non-zero elements only on the diagonal is called a diagonal matrix. As is the case with a permutation matrix, it is usually stored as a vector of values, rather than as a matrix.

Direct Method

For solvers that use the direct method, the basic technique employed in finding the solution of the system $A x$ $=b$ is to first factor A into triangular matrices. That is, find a lower triangular matrix L and an upper triangular matrix U, such that $A=L U$. Having obtained such a factorization (usually referred to as an $L U$ decomposition or $L U$ factorization), the solution to the original problem can be rewritten as follows.

$$
\begin{array}{ll}
& A x=b \\
\Rightarrow & L U x=b \\
\Rightarrow & L(U x)=b
\end{array}
$$

This leads to the following two-step process for finding the solution to the original system of equations:

1. Solve the systems of equations $L y=b$.
2. Solve the system $U_{X}=y$.

Solving the systems $L y=b$ and $U x=y$ is referred to as a forward solve and a backward solve, respectively.
If a symmetric matrix A is also positive definite, it can be shown that A can be factored as $L L^{T}$ where L is a lower triangular matrix. Similarly, a Hermitian matrix, A, that is positive definite can be factored as $A=L L^{H}$. For both symmetric and Hermitian matrices, a factorization of this form is called a Cholesky factorization.

In a Cholesky factorization, the matrix U in an $L U$ decomposition is either L^{T} or L^{H}. Consequently, a solver can increase its efficiency by only storing L, and one-half of A, and not computing U. Therefore, users who can express their application as the solution of a system of positive definite equations will gain a significant performance improvement over using a general representation.
For matrices that are symmetric (or Hermitian) but not positive definite, there are still some significant efficiencies to be had. It can be shown that if A is symmetric but not positive definite, then A can be factored as $A=L D L^{T}$, where D is a diagonal matrix and L is a lower unit triangular matrix. Similarly, if A is Hermitian, it can be factored as $A=L D L^{H}$. In either case, we again only need to store L, D, and half of A and we need not compute U. However, the backward solve phases must be amended to solving $L^{T} X=D^{-1} y$ rather than $L^{T} X=y$.

Fill-In and Reordering of Sparse Matrices

Two important concepts associated with the solution of sparse systems of equations are fill-in and reordering. The following example illustrates these concepts.

Consider the system of linear equation $A x=b$, where A is a symmetric positive definite sparse matrix, and A and b are defined by the following:

$$
A=\left[\begin{array}{ccccc}
9 & \frac{3}{2} & 6 & \frac{3}{4} & 3 \\
\frac{3}{2} & \frac{1}{2} & \star & \star & \star \\
6 & \star & 12 & \star & \star \\
\frac{3}{4} & \star & \star & \frac{5}{8} & \star \\
3 & \star & \star & \star & 16
\end{array}\right], b=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right]
$$

A star $\left(^{*}\right)$ is used to represent zeros and to emphasize the sparsity of A. The Cholesky factorization of A is: A $=L L^{T}$, where L is the following:

$$
L=\left[\begin{array}{ccccc}
3 & \star & \star & \star & \star \\
\frac{1}{2} & \frac{1}{2} & \star & \star & \star \\
2 & -2 & 2 & \star & \star \\
\frac{1}{4} & \frac{1}{-4} & \frac{1}{-2} & \frac{1}{2} & \star \\
1 & -1 & -2 & -3 & 1
\end{array}\right]
$$

Notice that even though the matrix A is relatively sparse, the lower triangular matrix L has no zeros below the diagonal. If we computed L and then used it for the forward and backward solve phase, we would do as much computation as if A had been dense.

The situation of L having non-zeros in places where A has zeros is referred to as fill-in. Computationally, it would be more efficient if a solver could exploit the non-zero structure of A in such a way as to reduce the fill-in when computing L. By doing this, the solver would only need to compute the non-zero entries in L. Toward this end, consider permuting the rows and columns of A. As described in Matrix Fundamentals section, the permutations of the rows of A can be represented as a permutation matrix, P. The result of permuting the rows is the product of P and A. Suppose, in the above example, we swap the first and fifth row
of A, then swap the first and fifth columns of A, and call the resulting matrix B. Mathematically, we can express the process of permuting the rows and columns of A to get B as $B=P A P^{T}$. After permuting the rows and columns of A, we see that B is given by the following:

$$
B=\left[\begin{array}{ccccc}
16 & \star & \star & \star & 3 \\
\star & \frac{1}{2} & \star & \star & \frac{3}{2} \\
\star & \star & 12 & \star & 6 \\
\star & \star & \star & \frac{5}{8} & \frac{3}{4} \\
3 & \frac{3}{2} & 6 & \frac{3}{4} & 9
\end{array}\right]
$$

Since B is obtained from A by simply switching rows and columns, the numbers of non-zero entries in A and B are the same. However, when we find the Cholesky factorization, $B=L L^{T}$, we see the following:

$$
L=\left[\begin{array}{ccccc}
4 & \star & \star & \star & \star \\
\star & \frac{1}{\sqrt{2}} & \star & \star & \star \\
\star & \star & 2(\sqrt{3}) & \star & \star \\
\star & \star & \star & \frac{\sqrt{10}}{4} & \star \\
\frac{3}{4} & \frac{3}{\sqrt{2}} & \sqrt{3} & \frac{3}{\sqrt{10}} & \frac{\sqrt{\frac{3}{5}}}{4}
\end{array}\right]
$$

The fill-in associated with B is much smaller than the fill-in associated with A. Consequently, the storage and computation time needed to factor B is much smaller than to factor A. Based on this, we see that an efficient sparse solver needs to find permutation P of the matrix A, which minimizes the fill-in for factoring $B=P A P^{T}$, and then use the factorization of B to solve the original system of equations.

Although the above example is based on a symmetric positive definite matrix and a Cholesky decomposition, the same approach works for a general $L U$ decomposition. Specifically, let P be a permutation matrix, $B=$ $P A P^{T}$ and suppose that B can be factored as $B=L U$. Then
$A x=b$
$\Rightarrow \quad P A\left(P^{-1} P\right) x=P b$
$\Rightarrow \quad P A\left(P^{T} P\right) x=P b$
$\Rightarrow\left(P A P^{T}\right)(P X)=P b$
$\Rightarrow \quad B(P X)=P b$
$\Rightarrow L U(P x)=P b$
It follows that if we obtain an $L U$ factorization for B, we can solve the original system of equations by a three step process:

1. Solve $L y=P b$.
2. Solve $U z=y$.
3. Set $x=P^{T} z$.

If we apply this three-step process to the current example, we first need to perform the forward solve of the systems of equation $L y=P b$:

$$
L y=\left[\begin{array}{ccccc}
4 & \star & \star & \star & * \\
\star & \frac{1}{\sqrt{2}} & \star & \star & * \\
\star & \star & 2(\sqrt{3}) & \star & \star \\
\star & \star & \star & \frac{\sqrt{10}}{4} & \star \\
\frac{3}{4} & \frac{3}{\sqrt{2}} & \sqrt{3} & \frac{3}{\sqrt{10}} & \frac{\sqrt{\frac{3}{5}}}{4}
\end{array}\right] *\left[\begin{array}{l}
y 1 \\
y 2 \\
y^{3} \\
y^{4} \\
y 5
\end{array}\right]=\left[\begin{array}{l}
5 \\
2 \\
3 \\
4 \\
1
\end{array}\right]
$$

This gives: $Y^{T}=\frac{5}{4}, 2 \sqrt{2}, \frac{\sqrt{3}}{2}, \frac{16}{\sqrt{10}}, \frac{-979 \sqrt{\frac{3}{5}}}{12}$.
The second step is to perform the backward solve, $U z=y$. Or, in this case, since a Cholesky factorization is used, $L^{T} z=y$.

$$
\left[\begin{array}{ccccc}
4 & \star & \star & * & * \\
\star & \frac{1}{\sqrt{2}} & \star & \star & * \\
\star & \star & 2(\sqrt{3}) & \star & \star \\
\star & \star & \star & \frac{\sqrt{10}}{4} & \star \\
\frac{3}{4} & \frac{3}{\sqrt{2}} & \sqrt{3} & \frac{3}{\sqrt{10}} & \frac{\sqrt{\frac{3}{5}}}{4}
\end{array}\right]^{T} *\left[\begin{array}{c}
z 1 \\
z 2 \\
z 3 \\
z 4 \\
z 5
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{4} \\
2(\sqrt{2}) \\
\frac{\sqrt{3}}{2} \\
\frac{16}{\sqrt{10}} \\
-979 \sqrt{\frac{3}{5}} \\
\frac{12}{}
\end{array}\right]
$$

This gives $z^{T}=\frac{123}{2}, 983, \frac{1961}{12}, 398, \frac{-979}{3}$.
The third and final step is to set $x=P^{T} z$. This gives $X^{T}=\frac{-979}{3}, 983, \frac{1961}{12}, 398, \frac{123}{2}$.

Sparse Matrix Storage Formats

As discussed above, it is more efficient to store only the non-zero elements of a sparse matrix. There are a number of common storage formats used for sparse matrices, but most of them employ the same basic technique. That is, store all non-zero elements of the matrix into a linear array and provide auxiliary arrays to describe the locations of the non-zero elements in the original matrix.

Storage Formats for the Direct Sparse Solvers

The storing the non-zero elements of a sparse matrix into a linear array is done by walking down each column (column-major format) or across each row (row-major format) in order, and writing the non-zero elements to a linear array in the order they appear in the walk.
For symmetric matrices, it is necessary to store only the upper triangular half of the matrix (upper triangular format) or the lower triangular half of the matrix (lower triangular format).

The Intel MKL direct sparse solvers use a row-major upper triangular storage format: the matrix is compressed row-by-row and for symmetric matrices only non-zero elements in the upper triangular half of the matrix are stored.
The Intel MKL sparse matrix storage format for direct sparse solvers is specified by three arrays: values, columns, and rowIndex. The following table describes the arrays in terms of the values, row, and column positions of the non-zero elements in a sparse matrix.

| values | A real or complex array that contains the non-zero elements of a sparse matrix.
 The non-zero elements are mapped into the values array using the row-major
 upper triangular storage mapping described above.
 columns
 Element i of the integer array columns is the number of the column that
 contains the i-th element in the values array. |
| :--- | :--- |
| | Element j of the integer array rowIndex gives the index of the element in the
 values array that is first non-zero element in a row j. |

The length of the values and columns arrays is equal to the number of non-zero elements in the matrix.
As the rowIndex array gives the location of the first non-zero element within a row, and the non-zero elements are stored consecutively, the number of non-zero elements in the i-th row is equal to the difference of rowIndex(i) and rowIndex (i+1).

To have this relationship hold for the last row of the matrix, an additional entry (dummy entry) is added to the end of rowIndex. Its value is equal to the number of non-zero elements plus one. This makes the total length of the rowIndex array one larger than the number of rows in the matrix.

NOTE The Intel MKL sparse storage scheme for the direct sparse solvers supports both with onebased indexing and zero-based indexing.

Consider the symmetric matrix A :

$$
A=\left[\begin{array}{ccccc}
1 & -1 & * & -3 & * \\
-1 & 5 & * & * & * \\
* & * & 4 & 6 & 4 \\
-3 & * & 6 & 7 & * \\
* & * & 4 & * & -5
\end{array}\right]
$$

Only elements from the upper triangle are stored. The actual arrays for the matrix A are as follows:

Storage Arrays for a Symmetric Matrix

| one-based indexing | $=$ | $(1$ | -1 | -3 | 5 | 4 | 6 | 4 | 7 | $-5)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| values | $=$ | $(1$ | 2 | 4 | 2 | 3 | 4 | 5 | 4 | $5)$ |
| columns | $=$ | $(1$ | 4 | 5 | 8 | 9 | $10)$ | | | |
| rowIndex | | | | | | | | | | |
| zero-based indexing | $=$ | $(1$ | -1 | -3 | 5 | 4 | 6 | 4 | 7 | $-5)$ |
| values | $=$ | $(0$ | 1 | 3 | 1 | 2 | 3 | 4 | 3 | $4)$ |
| columns | $=$ | $(0$ | 3 | 4 | 7 | 8 | $9)$ | | | |
| rowIndex | | | | | | | | | | |

For a non-symmetric or non-Hermitian matrix, all non-zero elements need to be stored. Consider the nonsymmetric matrix B :

$$
B=\left[\begin{array}{ccccc}
1 & -1 & \star & -3 & \star \\
-2 & 5 & \star & \star & \star \\
\star & \star & 4 & 6 & 4 \\
-4 & \star & 2 & 7 & \star \\
\star & 8 & \star & \star & -5
\end{array}\right]
$$

The matrix B has 13 non-zero elements, and all of them are stored as follows:

Storage Arrays for a Non-Symmetric Matrix

one-based
 indexing

| values | $=$ | $(1$ | -1 | -3 | -2 | 5 | 4 | 6 | 4 | -4 | 2 | 7 | 8 | $-5)$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| columns | $=$ | $(1$ | 2 | 4 | 1 | 2 | 3 | 4 | 5 | 1 | 3 | 4 | 2 | $5)$ | | |
| rowIndex | $=$ | $(1$ | 4 | 6 | 9 | 12 | $14)$ | | | | | | | | | |
| zero-based
 indexing | | | | | | | | | | | | | | | | |
| values | $=$ | $(1$ | -1 | -3 | -2 | 5 | 4 | 6 | 4 | -4 | 2 | 7 | 8 | $-5)$ | | |
| columns | $=$ | $(0$ | 1 | 3 | 0 | 1 | 2 | 3 | 4 | 0 | 2 | 3 | 1 | $4)$ | | |
| rowIndex | $=$ | $(0$ | 3 | 5 | 8 | 11 | $13)$ | | | | | | | | | |

Direct sparse solvers can also solve symmetrically structured systems of equations. A symmetrically structured system of equations is one where the pattern of non-zero elements is symmetric. That is, a matrix has a symmetric structure if $a(j, i)$ is not zero if and only if $a(j, i)$ is not zero. From the point of view of the solver software, a "non-zero" element of a matrix is any element stored in the values array, even if its value
is equal to 0 . In that sense, any non-symmetric matrix can be turned into a symmetrically structured matrix by carefully adding zeros to the values array. For example, the above matrix B can be turned into a symmetrically structured matrix by adding two non-zero entries:

$$
B=\left[\begin{array}{ccccc}
1 & -1 & \star & -3 & \star \\
-2 & 5 & \star & \star & 0 \\
\star & \star & 4 & 6 & 4 \\
-4 & \star & 2 & 7 & \star \\
\star & 8 & 0 & \star & -5
\end{array}\right]
$$

The matrix B can be considered to be symmetrically structured with 15 non-zero elements and represented as:
Storage Arrays for a Symmetrically Structured Matrix

| one-based indexing | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| values | $=$ | (1 | -1 | -3 | -2 | 5 | 0 | 4 | 6 | 4 | -4 | 2 | 7 | 8 | 0 | -5) |
| columns | = | (1 | 2 | 4 | 1 | 2 | 5 | 3 | 4 | 5 | 1 | 3 | 4 | 2 | 3 | 5) |
| rowIndex | = | (1 | 4 | 7 | 10 | 13 | 16) | | | | | | | | | |
| zero-based indexing | | | | | | | | | | | | | | | | |
| values | = | (1 | -1 | -3 | -2 | 5 | 0 | 4 | 6 | 4 | -4 | 2 | 7 | 8 | 0 | -5) |
| columns | = | (0) | 1 | 3 | 0 | 1 | 4 | 2 | 3 | 4 | 0 | 2 | 3 | 1 | 2 | 4) |
| rowIndex | = | (0) | 3 | 6 | 9 | 12 | 15) | | | | | | | | | |

Storage Format Restrictions

The storage format for the sparse solver must conform to two important restrictions:

- the non-zero values in a given row must be placed into the values array in the order in which they occur in the row (from left to right);
- no diagonal element can be omitted from the values array for any symmetric or structurally symmetric matrix.

The second restriction implies that if symmetric or structurally symmetric matrices have zero diagonal elements, then they must be explicitly represented in the values array.

Sparse Matrix Storage Formats for Sparse BLAS Levels 2 and Level 3

This section describes in detail the sparse matrix storage formats supported in the current version of the Intel MKL Sparse BLAS Level 2 and Level 3.

CSR Format

The Intel MKL compressed sparse row (CSR) format is specified by four arrays: the values, columns, pointerB, and pointerE. The following table describes the arrays in terms of the values, row, and column positions of the non-zero elements in a sparse matrix A.
values A real or complex array that contains the non-zero elements of A. Values of the non-zero elements of A are mapped into the values array using the row-major storage mapping described above.
columns Element i of the integer array columns is the number of the column in A that contains the i-th value in the values array.
pointerB
pointere

Element j of this integer array gives the index of the element in the values array that is first non-zero element in a row j of A. Note that this index is equal to pointerB(j) - pointerB(1)+1.
An integer array that contains row indices, such that pointere(j) pointerB(1) is the index of the element in the values array that is last nonzero element in a row j of A.

The length of the values and columns arrays is equal to the number of non-zero elements in A. The length of the pointerB and pointerE arrays is equal to the number of rows in A.

NOTE Note that the Intel MKL Sparse BLAS routines support the CSR format both with one-based indexing and zero-based indexing.

The matrix B

$$
B=\left[\begin{array}{ccccc}
1 & -1 & \star & -3 & \star \\
-2 & 5 & \star & \star & \star \\
\star & \star & 4 & 6 & 4 \\
-4 & \star & 2 & 7 & \star \\
\star & 8 & \star & \star & -5
\end{array}\right]
$$

can be represented in the CSR format as:

Storage Arrays for a Matrix in CSR Format

| one-based indexing | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| values | = | (1) | -1 | -3 | -2 | 5 | 4 | 6 | 4 | -4 | 2 | 7 | 8 | -5) |
| columns | = | (1 | 2 | 4 | 1 | 2 | 3 | 4 | 5 | 1 | 3 | 4 | 2 | 5) |
| pointerB | = | (1 | 4 | 6 | 9 | 12) | | | | | | | | |
| pointere | = | (4 | 6 | 9 | 12 | 14) | | | | | | | | |
| zero-based indexing | | | | | | | | | | | | | | |
| values | $=$ | (1 | -1 | -3 | -2 | 5 | 4 | 6 | 4 | -4 | 2 | 7 | 8 | -5) |
| columns | = | (0) | 1 | 3 | 0 | 1 | 2 | 3 | 4 | 0 | 2 | 3 | 1 | 4) |
| pointerB | = | (0) | 3 | 5 | 8 | 11) | | | | | | | | |
| pointerE | $=$ | (3 | 5 | 8 | 11 | 13) | | | | | | | | |

This storage format is used in the NIST Sparse BLAS library [Rem05].
Note that the storage format accepted for the direct sparse solvers and described above (see Storage Formats for the Direct Sparse Solvers) is a variation of the CSR format. It also is used in the Intel MKL Sparse BLAS Level 2 both with one-based indexing and zero-based indexing. The above matrix B can be represented in this format (referred to as the 3-array variation of the CSR format) as:

Storage Arrays for a Matrix in CSR Format (3-Array Variation)

| one-based indexing | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| values | $=$ | (1 | -1 | -3 | -2 | 5 | 4 | 6 | 4 | -4 | 2 | 7 | 8 | -5) |
| columns | = | (1 | 2 | 4 | 1 | 2 | 3 | 4 | 5 | 1 | 3 | 4 | 2 | 5) |
| rowIndex | = | (1 | 4 | 6 | 9 | 12 | 14) | | | | | | | |
| zero-based indexing | | | | | | | | | | | | | | |
| values | $=$ | (1 | -1 | -3 | -2 | 5 | 4 | 6 | 4 | -4 | 2 | 7 | 8 | -5) |

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

| columns | $=$ | $(0$ | 1 | 3 | 0 | 1 | 2 | 3 | 4 | 0 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The 3-array variation of the CSR format has a restriction: all non-zero elements are stored continuously, that is the set of non-zero elements in the row J goes just after the set of non-zero elements in the row $J-1$.

There are no such restrictions in the general (NIST) CSR format. This may be useful, for example, if there is a need to operate with different submatrices of the matrix at the same time. In this case, it is enough to define the arrays pointerB and pointere for each needed submatrix so that all these arrays are pointers to the same array values.

Comparing the array rowIndex from the Table "Storage Arrays for a Non-Symmetric Example Matrix" with the arrays pointerB and pointerE from the Table "Storage Arrays for an Example Matrix in CSR Format" it is easy to see that

```
pointerB(i) = rowIndex(i) for i=1, ..5;
```

```
pointerE(i) = rowIndex(i+1) for i=1, ..5.
```

This enables calling a routine that has values, columns, pointerB and pointere as input parameters for a sparse matrix stored in the format accepted for the direct sparse solvers. For example, a routine with the interface:

Subroutine name_routine(.... , values, columns, pointerB, pointerE, ...)
can be called with parameters values, columns, rowIndex as follows:

```
call name_routine(.... , values, columns, rowIndex, rowindex(2), ...).
```


CSC Format

The compressed sparse column format (CSC) is similar to the CSR format, but the columns are used instead the rows. In other words, the CSC format is identical to the CSR format for the transposed matrix. The CSR format is specified by four arrays: values, columns, pointerB, and pointerE. The following table describes the arrays in terms of the values, row, and column positions of the non-zero elements in a sparse matrix A.

| values | A real or complex array that contains the non-zero elements of A. Values of the non-zero elements of A are mapped into the values array using the columnmajor storage mapping. |
| :---: | :---: |
| rows | Element i of the integer array rows is the number of the row in A that contains the i-th value in the values array. |
| pointerB | Element j of this integer array gives the index of the element in the values array that is first non-zero element in a column j of A. Note that this index is equal to pointerB(j) - pointerB(1)+1. |
| pointere | An integer array that contains column indices, such that pointere(j) pointerB(1) is the index of the element in the values array that is last nonzero element in a column j of A. |

The length of the values and columns arrays is equal to the number of non-zero elements in A. The length of the pointer B and pointerE arrays is equal to the number of columns in A.

NOTE Note that the Intel MKL Sparse BLAS routines support the CSC format both with one-based indexing and zero-based indexing.

The above matrix B can be represented in the CSC format as:

Storage Arrays for a Matrix in CSC Format

one-based indexing

| values | $=$ | $(1$ | -2 | -4 | -1 | 5 | 8 | 4 | 2 | -3 | 6 | 7 | 4 | $-5)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| rows | $=$ | $(1$ | 2 | 4 | 1 | 2 | 5 | 3 | 4 | 1 | 3 | 4 | 2 | $5)$ |
| pointerB | $=$ | $(1$ | 4 | 7 | 9 | $12)$ | | | | | | | | |
| pointerE | $=$ | $(4$ | 7 | 9 | 12 | $14)$ | | | | | | | | |
| zero-based indexing | | | | | | | | | | | | | | |
| values | $=$ | $(1$ | -2 | -4 | -1 | 5 | 8 | 4 | 2 | -3 | 6 | 7 | 4 | $-5)$ |
| rows | $=$ | $(0$ | 1 | 3 | 0 | 1 | 4 | 2 | 3 | 0 | 2 | 3 | 1 | $4)$ |
| pointerB | $=$ | $(0$ | 3 | 6 | 8 | $11)$ | | | | | | | | |
| pointerE | $=$ | $(3$ | 6 | 8 | 11 | $13)$ | | | | | | | | |

Coordinate Format

The coordinate format is the most flexible and simplest format for the sparse matrix representation. Only non-zero elements are stored, and the coordinates of each non-zero element are given explicitly. Many commercial libraries support the matrix-vector multiplication for the sparse matrices in the coordinate format.

The Intel MKL coordinate format is specified by three arrays: values, rows, and column, and a parameter $n n z$ which is number of non-zero elements in A. All three arrays have dimension nnz. The following table describes the arrays in terms of the values, row, and column positions of the non-zero elements in a sparse matrix A.
values A real or complex array that contains the non-zero elements of A in any order.
rows Element i of the integer array rows is the number of the row in A that contains the i-th value in the values array.
columns
Element i of the integer array columns is the number of the column in A that contains the i-th value in the values array.

NOTE Note that the Intel MKL Sparse BLAS routines support the coordinate format both with onebased indexing and zero-based indexing.

For example, the sparse matrix C

$$
c=\left[\begin{array}{ccccc}
1 & -1 & -3 & 0 & 0 \\
-2 & 5 & 0 & 0 & 0 \\
0 & 0 & 4 & 6 & 4 \\
-4 & 0 & 2 & 7 & 0 \\
0 & 8 & 0 & 0 & -5
\end{array}\right]
$$

can be represented in the coordinate format as follows:

Storage Arrays for an Example Matrix in case of the coordinate format

one-based indexing

| values | $=$ | $(1$ | -1 | -3 | -2 | 5 | 4 | 6 | 4 | -4 | 2 | 7 | 8 | $-5)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| rows | $=$ | $(1$ | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | $5)$ |
| columns | $=$ | $(1$ | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 1 | 3 | 4 | 2 | $5)$ |

zero-based indexing

| values | $=$ | $(1$ | -1 | -3 | -2 | 5 | 4 | 6 | 4 | -4 | 2 | 7 | 8 | $-5)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| rows | $=$ | $(0$ | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | $4)$ |

| columns | $=$ | $(0$ | 1 | 2 | 0 | 1 | 2 | 3 | 4 | 0 | 2 | 3 | 1 | $4)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Diagonal Storage Format

If the sparse matrix has diagonals containing only zero elements, then the diagonal storage format can be used to reduce the amount of information needed to locate the non-zero elements. This storage format is particularly useful in many applications where the matrix arises from a finite element or finite difference discretization. The Intel MKL diagonal storage format is specified by two arrays: values and distance, and two parameters: ndiag, which is the number of non-empty diagonals, and lval, which is the declared leading dimension in the calling (sub)programs. The following table describes the arrays values and distance:

A real or complex two-dimensional array is dimensioned as lval by ndiag. Each column of it contains the non-zero elements of certain diagonal of A. The key point of the storage is that each element in values retains the row number of the original matrix. To achieve this diagonals in the lower triangular part of the matrix are padded from the top, and those in the upper triangular part are padded from the bottom. Note that the value of distance(i) is the number of elements to be padded for diagonal i.
An integer array with dimension ndiag. Element i of the array distance is the distance between i-diagonal and the main diagonal. The distance is positive if the diagonal is above the main diagonal, and negative if the diagonal is below the main diagonal. The main diagonal has a distance equal to zero.

The above matrix can be represented in the diagonal storage format as follows:

$$
\begin{aligned}
\text { distance } & =\left(\begin{array}{llllll}
-3 & -1 & 0 & 1 & 2
\end{array}\right) \\
\text { values } & =\left[\begin{array}{ccccc}
t & t & 1 & -1 & -3 \\
* & -2 & 5 & 0 & 0 \\
t & 0 & 4 & 6 & 4 \\
-4 & 2 & 7 & 0 & t \\
8 & 0 & -5 & t & t
\end{array}\right]
\end{aligned}
$$

where the asterisks denote padded elements.
When storing symmetric, Hermitian, or skew-symmetric matrices, it is necessary to store only the upper or the lower triangular part of the matrix.

For the Intel MKL triangular solver routines elements of the array distance must be sorted in increasing order. In all other cases the diagonals and distances can be stored in arbitrary order.

Skyline Storage Format

The skyline storage format is important for the direct sparse solvers, and it is well suited for Cholesky or LU decomposition when no pivoting is required.

The skyline storage format accepted in Intel MKL can store only triangular matrix or triangular part of a matrix. This format is specified by two arrays: values and pointers. The following table describes these arrays:

A scalar array. For a lower triangular matrix it contains the set of elements from each row of the matrix starting from the first non-zero element to and including the diagonal element. For an upper triangular matrix it contains the set of elements from each column of the matrix starting with the first non-zero element down to and including the diagonal element. Encountered zero elements are included in the sets.
An integer array with dimension $(m+1)$, where m is the number of rows for lower triangle (columns for the upper triangle). pointers(i) - pointers(1)+1 gives the index of element in values that is first non-zero element in row (column) i. The value of pointers $(m+1)$ is set to $n n z+$ pointers(1), where $n n z$ is the number of elements in the array values.

For example, the low triangle of the matrix c given above can be stored as follows:

```
values =}\begin{array}{lllllllllllll}{1}&{-2}&{5}&{4}&{-4}&{0}&{2}&{7}&{8}&{0}&{0}&{-5}\end{array}
pointers =(\begin{array}{lllllll}{1}&{2}&{4}&{5}&{9}&{13}\end{array})
```

and the upper triangle of this matrix C can be stored as follows:
values $=\left(\begin{array}{lllllllllll}1 & -1 & 5 & -3 & 0 & 4 & 6 & 7 & 4 & 0 & -5\end{array}\right)$
pointers $=\left(\begin{array}{lllllll}1 & 2 & 4 & 7 & 9 & 12\end{array}\right)$

This storage format is supported by the NIST Sparse BLAS library [Rem05].
Note that the Intel MKL Sparse BLAS routines operating with the skyline storage format does not support general matrices.

BSR Format

The Intel MKL block compressed sparse row (BSR) format for sparse matrices is specified by four arrays: values, columns, pointerB, and pointerE. The following table describes these arrays.
values A real array that contains the elements of the non-zero blocks of a sparse matrix. The elements are stored block-by-block in row-major order. A non-zero block is the block that contains at least one non-zero element. All elements of non-zero blocks are stored, even if some of them is equal to zero. Within each non-zero block elements are stored in column-major order in the case of one-based indexing, and in row-major order in the case of the zero-based indexing.
columns Element i of the integer array columns is the number of the column in the block matrix that contains the i-th non-zero block.
Element j of this integer array gives the index of the element in the columns array that is first non-zero block in a row j of the block matrix.
pointere Element j of this integer array gives the index of the element in the columns array that contains the last non-zero block in a row j of the block matrix plus 1.

The length of the values array is equal to the number of all elements in the non-zero blocks, the length of the columns array is equal to the number of non-zero blocks. The length of the pointerB and pointerE arrays is equal to the number of block rows in the block matrix.

NOTE Note that the Intel MKL Sparse BLAS routines support BSR format both with one-based indexing and zero-based indexing.

For example, consider the sparse matrix D

$$
D=\left[\begin{array}{llllll}
1 & 0 & 6 & 7 & * & * \\
2 & 1 & 8 & 2 & * & * \\
* & * & 1 & 4 & * & * \\
* & * & 5 & 1 & * & * \\
* & * & 4 & 3 & 7 & 2 \\
\star & * & 0 & 0 & 0 & 0
\end{array}\right]
$$

If the size of the block equals 2 , then the sparse matrix D can be represented as a 3×3 block matrix E with the following structure:

$$
E=\left[\begin{array}{lll}
L & M & \star \\
\star & N & \star \\
\star & P & Q
\end{array}\right]
$$

where

$$
L=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right], M=\left[\begin{array}{ll}
6 & 7 \\
8 & 2
\end{array}\right], N=\left[\begin{array}{ll}
1 & 4 \\
5 & 1
\end{array}\right], P=\left[\begin{array}{ll}
4 & 3 \\
0 & 0
\end{array}\right], Q=\left[\begin{array}{ll}
7 & 2 \\
0 & 0
\end{array}\right]
$$

The matrix D can be represented in the BSR format as follows: one-based indexing


```
columns =(1 (1)2 2 2 3 3
pointerB = (1 lll
pointerE = (\begin{array}{lll}{3}&{4}&{6}\end{array})
```

zero-based indexing

```
values =(lllllllllllllllllllllll
columns =( (\begin{array}{llllll}{0}&{1}&{1}&{1}&{2}\end{array})
pointerB = (lll}
pointerE = (\begin{array}{ll}{2}&{3}\end{array})
```

This storage format is supported by the NIST Sparse BLAS library [Rem05].
Intel MKL supports the variation of the BSR format that is specified by three arrays: values, columns, and rowIndex. The following table describes these arrays.
rowIndex

A real array that contains the elements of the non-zero blocks of a sparse matrix. The elements are stored block by block in row-major order. A non-zero block is the block that contains at least one non-zero element. All elements of non-zero blocks are stored, even if some of them is equal to zero. Within each non-zero block the elements are stored in column major order in the case of the onebased indexing, and in row major order in the case of the zero-based indexing. Element i of the integer array columns is the number of the column in the block matrix that contains the i-th non-zero block.

Element j of this integer array gives the index of the element in the columns array that is first non-zero block in a row j of the block matrix.

The length of the values array is equal to the number of all elements in the non-zero blocks, the length of the columns array is equal to the number of non-zero blocks.

As the rowIndex array gives the location of the first non-zero block within a row, and the non-zero blocks are stored consecutively, the number of non-zero blocks in the i-th row is equal to the difference of rowIndex(i) and rowIndex(i+1).

To retain this relationship for the last row of the block matrix, an additional entry (dummy entry) is added to the end of rowIndex with value equal to the number of non-zeros blocks plus one. This makes the total length of the rowIndex array one larger than the number of rows of the block matrix.

The above matrix D can be represented in this 3-array variation of the BSR format as follows:
one-based indexing

```
values = (1 2 0 1 6 8 7 2 1 5 4 2 4 0 3 0 7 0 2 0)
```

columns $=\left(\begin{array}{lllll}1 & 2 & 2 & 2 & 3\end{array}\right)$
rowIndex $=\left(\begin{array}{llll}1 & 3 & 4 & 6\end{array}\right)$
zero-based indexing

```
values =(lllllllllllllllllllllll
columns =( (0)}
rowIndex = (\begin{array}{lll}{0}&{2}&{3}\end{array})
```

When storing symmetric matrices, it is necessary to store only the upper or the lower triangular part of the matrix.

For example, consider the symmetric sparse matrix F :

$$
F=\left[\begin{array}{llllll}
1 & 0 & 6 & 7 & * & * \\
2 & 1 & 8 & 2 & * & * \\
6 & 8 & 1 & 4 & * & * \\
7 & 2 & 5 & 2 & * & * \\
* & * & * & * & 7 & 2 \\
* & * & * & * & 0 & 0
\end{array}\right]
$$

If the size of the block equals 2 , then the sparse matrix F can be represented as a 3×3 block matrix G with the following structure:

$$
G=\left[\begin{array}{ccc}
L & M & \star \\
M^{\prime} & N & \star \\
\star & \star & Q
\end{array}\right]
$$

where

$$
L=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right], M=\left[\begin{array}{ll}
6 & 7 \\
8 & 2
\end{array}\right], M^{\prime}=\left[\begin{array}{ll}
6 & 8 \\
7 & 2
\end{array}\right], N=\left[\begin{array}{ll}
1 & 4 \\
5 & 2
\end{array}\right], Q=\left[\begin{array}{ll}
7 & 2 \\
0 & 0
\end{array}\right]
$$

The symmetric matrix F can be represented in this 3-array variation of the BSR format (storing only upper triangular) as follows:
one-based indexing

```
values = (1 2 0 1 6 8 7 2 1 5 4 2 7 0 2 0)
columns =(llll}
rowIndex = (\begin{array}{llll}{1}&{3}&{4}&{5}\end{array})
```

zero-based indexing

```
values =(llllllllllllllll
columns =( (0 1 1 1 2 2)
rowIndex =( (0 2 3 3 4)
```


Routine and Function Arguments

The major arguments in the BLAS routines are vector and matrix, whereas VML functions work on vector arguments only. The sections that follow discuss each of these arguments and provide examples.

Vector Arguments in BLAS

Vector arguments are passed in one-dimensional arrays. The array dimension (length) and vector increment are passed as integer variables. The length determines the number of elements in the vector. The increment (also called stride) determines the spacing between vector elements and the order of the elements in the array in which the vector is passed.
A vector of length n and increment incx is passed in a one-dimensional array x whose values are defined as $x(1), x(1+\mid$ incx $\mid), \ldots, x(1+(n-1) *|i n c x|)$

If incx is positive, then the elements in array x are stored in increasing order. If incx is negative, the elements in array x are stored in decreasing order with the first element defined as $x(1+(n-1)$ * \mid incx|). If incx is zero, then all elements of the vector have the same value, $x(1)$. The dimension of the onedimensional array that stores the vector must always be at least
idimx $=1+(n-1)$ * |incx |

Example. One-dimensional Real Array

Let $x(1: 7)$ be the one-dimensional real array
$x=(1.0,3.0,5.0,7.0,9.0,11.0,13.0)$.
If incx $=2$ and $n=3$, then the vector argument with elements in order from first to last is (1.0, 5.0, 9.0).

If incx $=-2$ and $n=4$, then the vector elements in order from first to last is (13.0, 9.0, 5.0, 1.0).
If incx $=0$ and $n=4$, then the vector elements in order from first to last is ($1.0,1.0,1.0,1.0$).
One-dimensional substructures of a matrix, such as the rows, columns, and diagonals, can be passed as vector arguments with the starting address and increment specified. In Fortran, storing the m-by n matrix is based on column-major ordering where the increment between elements in the same column is 1 , the increment between elements in the same row is m, and the increment between elements on the same diagonal is $m+1$.

Example. Two-dimensional Real Matrix

Let a be the real 5×4 matrix declared as REAL A $(5,4)$.
To scale the third column of a by 2.0 , use the BLAS routine sscal with the following calling sequence: callsscal (5, 2.0, a (1,3), 1)

To scale the second row, use the statement:

```
callsscal (4, 2.0, a(2,1), 5)
```

To scale the main diagonal of A by 2.0 , use the statement:
callsscal (5, 2.0, a(1,1), 6)

NOTE The default vector argument is assumed to be 1 .

Vector Arguments in VML

Abstract

Vector arguments of VML mathematical functions are passed in one-dimensional arrays with unit vector increment. It means that a vector of length n is passed contiguously in an array a whose values are defined as a[0], a[1], ..., a[n-1] (for the C interface).

To accommodate for arrays with other increments, or more complicated indexing, VML contains auxiliary pack/unpack functions that gather the array elements into a contiguous vector and then scatter them after the computation is complete.
Generally, if the vector elements are stored in a one-dimensional array a as
$a[m 0], a[m 1], \ldots, a[m n-1]$
and need to be regrouped into an array y as
$y[k 0], y[k 1], \ldots, y[k n-1]$,
VML pack/unpack functions can use one of the following indexing methods:

Positive Increment Indexing

kj = incy * j, mj = inca * j, j = $0, \ldots, n-1$
Constraint: incy > 0 and inca >0.
For example, setting incy $=1$ specifies gathering array elements into a contiguous vector.
This method is similar to that used in BLAS, with the exception that negative and zero increments are not permitted.

Index Vector Indexing

```
kj = iy[j], mj = ia[j], j = 0 ,..., n-1,
```

where ia and iy are arrays of length n that contain index vectors for the input and output arrays a and y, respectively.

Mask Vector Indexing

Indices kj, mj are such that:
$m y[k j] \neq 0, m a[m j] \neq 0, j=0, \ldots, n-1$,
where ma and my are arrays that contain mask vectors for the input and output arrays a and y, respectively.

Matrix Arguments

Matrix arguments of the Inte ${ }^{『}$ Math Kernel Library routines can be stored in either one- or two-dimensional arrays, using the following storage schemes:

- conventional full storage (in a two-dimensional array)
- packed storage for Hermitian, symmetric, or triangular matrices (in a one-dimensional array)
- band storage for band matrices (in a two-dimensional array)
- rectangular full packed storage for symmetric, Hermitian, or triangular matrices as compact as the Packed storage while maintaining efficiency by using Level 3 BLAS/LAPACK kernels.
Full storage is the following obvious scheme: a matrix A is stored in a two-dimensional array a, with the matrix element $a_{i j}$ stored in the array element $a(i, j)$.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the relevant triangle are stored; the remaining elements of the array need not be set.
Routines that handle symmetric or Hermitian matrices allow for either the upper or lower triangle of the matrix to be stored in the corresponding elements of the array:
$\begin{array}{ll}\text { if uplo ='U', } & a_{i j} \text { is stored in } a(i, j) \text { for } i \leq j \text {, other elements of a need not be set. } \\ \text { if uplo ='L', } & a_{i j} \text { is stored in } a(i, j) \text { for } j \leq i \text {, other elements of a need not be set. }\end{array}$
Packed storage allows you to store symmetric, Hermitian, or triangular matrices more compactly: the relevant triangle (again, as specified by the argument uplo) is packed by columns in a one-dimensional array ap:
if uplo ='U', $a_{i j}$ is stored in $a p(i+j(j-1) / 2)$ for $i \leq j$
if uplo ='L', $a_{i j}$ is stored in $a p(i+(2 * n-j) *(j-1) / 2)$ for $j \leq i$.
In descriptions of LAPACK routines, arrays with packed matrices have names ending in p.
Band storage is as follows: an m-by-n band matrix with $k l$ non-zero sub-diagonals and $k u$ non-zero superdiagonals is stored compactly in a two-dimensional array $a b$ with $k l+k u+1$ rows and n columns. Columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array. Thus,
$a_{i j}$ is stored in $a b(k u+1+i-j, j)$ for $\max (1, j-k u) \leq i \leq \min (n, j+k l)$.
Use the band storage scheme only when $k l$ and $k u$ are much less than the matrix size n. Although the routines work correctly for all values of $k I$ and $k u$, using the band storage is inefficient if your matrices are not really banded.

The band storage scheme is illustrated by the following example, when
$m=n=6, k l=2, k u=1$
Array elements marked * are not used by the routines:
$\left[\begin{array}{cccccc}a_{11} & a_{12} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} & a_{34} & 0 & 0 \\ 0 & a_{42} & a_{43} & a_{44} & a_{45} & 0 \\ 0 & 0 & a_{53} & a_{54} & a_{55} & a_{56} \\ 0 & 0 & 0 & a_{64} & a_{65} & a_{66}\end{array}\right]$

Band storage of A

| $*$ | a_{12} | a_{23} | a_{34} | a_{45} | a_{56} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a_{11} | a_{22} | a_{33} | a_{44} | a_{55} | a_{66} |
| a_{21} | a_{32} | a_{43} | a_{54} | a_{65} | $*$ |
| a_{31} | a_{42} | a_{53} | a_{64} | $*$ | $*$ |

When a general band matrix is supplied for $L U$ factorization, space must be allowed to store $k l$ additional super-diagonals generated by fill-in as a result of row interchanges. This means that the matrix is stored according to the above scheme, but with $k l+k u$ super-diagonals. Thus,
$a_{i j}$ is stored in $a b(k l+k u+1+i-j, j)$ for $\max (1, j-k u) \leq i \leq \min (n, j+k l)$.
The band storage scheme for LU factorization is illustrated by the following example, whenm $=n=6, \mathrm{kl}=$ 2, $k u=1$:

| | Banded matrix A | | | | | Band storage of A | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left[a_{11}\right.$ | a_{12} | 0 | 0 | 0 | 0 | * | * | * | + | + | + |
| a_{21} | a_{22} | a_{23} | 0 | 0 | 0 | * | * | + | + | + | + |
| a_{31} | a_{32} | a_{33} | a_{34} | 0 | 0 | * | a_{12} | a_{23} | a_{34} | a_{45} | a_{56} |
| 0 | a_{42} | a_{43} | a_{44} | a_{45} | 0 | a_{11} | a_{22} | a_{33} | a_{44} | a_{55} | a_{66} |
| 0 | 0 | a_{53} | a_{54} | a_{55} | a_{56} | a_{21} | a_{32} | a_{43} | a_{54} | a_{65} | * |
| 0 | 0 | 0 | a_{64} | a_{65} | a_{66} | a_{31} | a_{42} | a_{53} | a_{64} | * | * |

Array elements marked * are not used by the routines; elements marked + need not be set on entry, but are required by the LU factorization routines to store the results. The input array will be overwritten on exit by the details of the LU factorization as follows:

| $: *$ | $: *$ | $*:$ | u_{14} | u_{25} | u_{36} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| : | $: *$ | u_{13} | u_{24} | u_{35} | u_{46} |
| $: *$ | u_{12} | u_{23} | u_{34} | u_{45} | u_{56} |
| u_{11} | u_{22} | u_{33} | u_{44} | u_{55} | u_{66} |
| m_{21} | m_{32} | m_{43} | m_{54} | m_{65} | $*$ |
| m_{31} | m_{42} | m_{53} | m_{64} | $*$ | $*$ |

where $u_{i j}$ are the elements of the upper triangular matrix U, and $m_{i j}$ are the multipliers used during factorization.

Triangular band matrices are stored in the same format, with either $k l=0$ if upper triangular, or $k u=0$ if lower triangular. For symmetric or Hermitian band matrices with k sub-diagonals or super-diagonals, you need to store only the upper or lower triangle, as specified by the argument uplo:
if uplo $=$ 'U', $a_{i j}$ is stored in $a b(k+1+i-j, j)$ for $\max (1, j-k) \leq i \leq j$
if uplo $=$ 'L', $a_{i j}$ is stored in $a b(1+i-j, j)$ for $j \leq i \leq \min (n, j+k)$.
In descriptions of LAPACK routines, arrays that hold matrices in band storage have names ending in b.
In Fortran, column-major ordering of storage is assumed. This means that elements of the same column occupy successive storage locations.
Three quantities are usually associated with a two-dimensional array argument: its leading dimension, which specifies the number of storage locations between elements in the same row, its number of rows, and its number of columns. For a matrix in full storage, the leading dimension of the array must be at least as large as the number of rows in the matrix.
A character transposition parameter is often passed to indicate whether the matrix argument is to be used in normal or transposed form or, for a complex matrix, if the conjugate transpose of the matrix is to be used.

The values of the transposition parameter for these three cases are the following:

```
'N' or 'n'
normal (no conjugation, no transposition)
'T' or 't' transpose
'C' or 'C' conjugate transpose.
```


Example. Two-Dimensional Complex Array

Suppose $A(1: 5,1: 4)$ is the complex two-dimensional array presented by matrix

$$
\left[\begin{array}{llll}
(1.1,0.11) & (1.2,0.12) & (1.3,0.13) & (1.4,0.14) \\
(2.1,0.21) & (2.2,0.22) & (2.3,0.23) & (1.4,0.24) \\
(3.1,0.31) & (3.2,0.32) & (3.3,0.33) & (1.4,0.34) \\
(4.1,0.41) & (4.2,0.42) & (4.3,0.43) & (1.4,0.44) \\
(5.1,0.51) & (5.2,0.52) & (5.3,0.53) & (1.4,0.54)
\end{array}\right]
$$

Let transa be the transposition parameter, m be the number of rows, n be the number of columns, and $l d a$ be the leading dimension. Then if
transa $=' N$ ', $m=4, n=2$, and $l d a=5$, the matrix argument would be

$$
\left[\begin{array}{ll}
(1.1,0.11) & (1.2,0.12) \\
(2.1,0.21) & (2.2,0.22) \\
(3.1,0.31) & (3.2,0.32) \\
(4.1,0.41) & (4.2,0.42)
\end{array}\right]
$$

If transa $=' T$ ', $m=4, n=2$, and $\operatorname{lda}=5$, the matrix argument would be

$$
\left[\begin{array}{llll}
(1.1,0.11) & (2.1,0.21) & (3.1,0.31) & (4.1,0.41) \\
(1.2,0.12) & (2.2,0.22) & (3.2,0.32) & (4.2,0.42)
\end{array}\right]
$$

If transa $=' C^{\prime}, m=4, n=2$, and $l d a=5$, the matrix argument would be

$$
\left[\begin{array}{llll}
(1.1,-0.11) & (2.1,-0.21) & (3.1,-0.31) & (4.1,-0.41) \\
(1.2,-0.12) & (2.2,-0.22) & (3.2,-0.32) & (4.2,-0.42)
\end{array}\right]
$$

Note that care should be taken when using a leading dimension value which is different from the number of rows specified in the declaration of the two-dimensional array. For example, suppose the array A above is declared as COMPLEX A $(5,4)$.

Then if transa $=' N$ ', $m=3, n=4$, and $l d a=4$, the matrix argument will be

$$
\left[\begin{array}{llll}
(1.1,0.11) & (5.1,0.51) & (4.2,0.42) & (3.3,0.33) \\
(2.1,0.21) & (1.2,0.12) & (5.2,0.52) & (4.3,0.43) \\
(3.1,0.31) & (2.2,0.22) & (1.3,0.13) & (5.3,0.53)
\end{array}\right]
$$

Rectangular Full Packed storage allows you to store symmetric, Hermitian, or triangular matrices as compact as the Packed storage while maintaining efficiency by using Level 3 BLAS/LAPACK kernels. To store an n-by- n triangle (and suppose for simplicity that n is even), you partition the triangle into three parts: two $n / 2$-by- $n / 2$ triangles and an $n / 2$-by- $n / 2$ square, then pack this as an $n-$ by- $n / 2$ rectangle (or $n / 2-$ by- n rectangle), by transposing (or transpose-conjugating) one of the triangles and packing it next to the other triangle. Since the two triangles are stored in full storage, you can use existing efficient routines on them.
There are eight cases of RFP storage representation: when n is even or odd, the packed matrix is transposed or not, the triangular matrix is lower or upper. See below for all the eight storage schemes illustrated:
n is odd, A is lower triangular

RFP (transposed)
$a_{11} \quad a_{21} \quad a_{31} \quad a_{41} \quad \mathbf{a}_{\mathbf{5 1}} \quad \mathbf{a}_{\mathbf{6 1}} \quad \mathbf{a}_{\mathbf{7 1}}$ $\begin{array}{lllllll}a_{55} & a_{22} & a_{32} & a_{42} & \mathbf{a}_{\mathbf{5 2}} & \mathbf{a}_{\mathbf{6 2}} & \mathbf{a}_{\mathbf{7 2}} \\ a_{65} & a_{66} & a_{33} & a_{43} & \mathbf{a}_{\mathbf{5 3}} & \mathbf{a}_{\mathbf{6 3}} & \mathbf{a}_{\mathbf{7 3}}\end{array}$
$\begin{array}{lllllll}a_{65} & a_{66} & a_{33} & a_{43} & \mathbf{a}_{\mathbf{5 3}} & \mathbf{a}_{\mathbf{6 3}} & \mathbf{a}_{\mathbf{7 3}} \\ a_{75} & a_{76} & a_{77} & a_{44} & \mathbf{a}_{\mathbf{5 4}} & \mathbf{a}_{\mathbf{6 4}} & \mathbf{a}_{\mathbf{7 4}}\end{array}$ $\begin{array}{lllllll}\mathbf{a}_{\mathbf{6 1}} & \mathbf{a}_{\mathbf{6 2}} & \mathbf{a}_{\mathbf{6 3}} & \mathbf{a}_{\mathbf{6 4}} & a_{65} & a_{66} & X \\ \mathbf{a}_{71} & \mathbf{a}_{72} & \mathbf{a}_{73} & \mathbf{a}_{74} & a_{75} & a_{76} & a_{77}\end{array}$
$a_{71} a_{72} a_{73} a_{74}$
n is even, A is lower triangular

n is odd, A is upper triangular

n is even, A is upper triangular

Intel MKL provides a number of routines such as ?hfrk, ?sfrk performing BLAS operations working directly on RFP matrices, as well as some conversion routines, for instance, ?tpttf goes from the standard packed format to RFP and ?trttf goes from the full format to RFP.
Please refer to the Netlib site for more information.
Note that in the descriptions of LAPACK routines, arrays with RFP matrices have names ending in fp .

Code Examples

This appendix presents code examples of using some Intel MKL routines and functions. You can find here example code written in both Fortran and C .

Please refer to respective chapters in the manual for detailed descriptions of function parameters and operation.

BLAS Code Examples

Example. Using BLAS Level 1 Function

The following example illustrates a call to the BLAS Level 1 function sdot. This function performs a vectorvector operation of computing a scalar product of two single-precision real vectors x and y.

Parameters

```
n
incx
incy
```

```
program dot_main
```

program dot_main
real x(10), y(10), sdot, res
real x(10), y(10), sdot, res
integer n, incx, incy, i
integer n, incx, incy, i
external sdot
external sdot
n = 5
n = 5
incx = 2
incx = 2
incy = 1
incy = 1
do i = 1, 10
do i = 1, 10
x(i) = 2.0e0
x(i) = 2.0e0
y(i) = 1.0e0
y(i) = 1.0e0
end do
end do
res = sdot (n, x, incx, y, incy)
res = sdot (n, x, incx, y, incy)
print*, `SDOT = `, res
print*, `SDOT = `, res
end

```
end
```

Specifies the number of elements in vectors x and y.
Specifies the increment for the elements of x.
Specifies the increment for the elements of y.

As a result of this program execution, the following line is printed:
SDOT $=10.000$

Example. Using BLAS Level 1 Routine

The following example illustrates a call to the BLAS Level 1 routine scopy. This routine performs a vectorvector operation of copying a single-precision real vector x to a vector y.

Parameters

```
n
incx
incy
```

```
program copy main
```

program copy main
real x(10), y
real x(10), y
integer n, incx, incy, i
integer n, incx, incy, i
n = 3

```
n = 3
```

Specifies the number of elements in vectors x and y.
Specifies the increment for the elements of x.
Specifies the increment for the elements of y.

```
incx = 3
incy = 1
do i = 1, 10
    x(i) = i
end do
call scopy (n, x, incx, y, incy)
print*, `Y = `, (y(i), i = 1, n)
end
```

As a result of this program execution, the following line is printed:
$Y=1.000004 .000007 .00000$

Example. Using BLAS Level 2 Routine

The following example illustrates a call to the BLAS Level 2 routine sger. This routine performs a matrixvector operation
$a:=a l p h a^{\star} x^{\star} y^{\prime}+a$.

Parameters

```
alpha Specifies a scalar alpha.
x m-element vector.
y n-element vector.
a m-by-n matrix.
```

```
program ger_main
real a(5,3), x(10), y(10), alpha
integer m, n, incx, incy, i, j, lda
m = 2
    n = 3
lda = 5
incx = 2
incy = 1
alpha = 0.5
do i = 1, 10
    x(i) = 1.0
    y ( i ) = 1 . 0
end do
do i = 1, m
    do j = 1, n
        a(i,j)= j
    end do
end do
call sger (m, n, alpha, x, incx, y, incy, a, lda)
print*, `Matrix A:
do i = 1, m
    print*, (a(i,j), j = 1, n)
end do
end
```

As a result of this program execution, matrix a is printed as follows:

Matrix A:

1.500002 .500003 .50000
1.500002 .500003 .50000

Example. Using BLAS Level 3 Routine

The following example illustrates a call to the BLAS Level 3 routine ssymm. This routine performs a matrixmatrix operation
$c:=a l p h a^{*} a^{*} b^{\prime}+b^{\prime}{ }^{*} c$.

Parameters

| alpha | Specifies a scalar alpha. |
| :--- | :--- |
| beta | Specifies a scalar beta. |
| a | Symmetric matrix |
| b | m-by- n matrix |
| c | m-by $-n$ matrix |

```
program symm_main
real a(3,3), b(3,2), c(3,3), alpha, beta
integer m, n, lda, ldb, ldc, i, j
character uplo, side
uplo = 'u'
side = 'l'
m = 3
n = 2
lda = 3
ldb = 3
ldc = 3
alpha = 0.5
beta = 2.0
do i = 1, m
    do j = 1, m
        a(i,j) = 1.0
    end do
end do
do i = 1, m
    do j = 1, n
            c(i,j) = 1.0
            b(i,j) = 2.0
        end do
end do
call ssymm (side, uplo, m, n, alpha,
a, lda, b, ldb, beta, c, ldc)
print*, `Matrix C:
do i = 1, m
    print*, (c(i,j), j = 1, n)
end do
end
```

As a result of this program execution, matrix c is printed as follows:
Matrix C:
5.000005 .00000
5.000005 .00000
5.000005 .00000

The following example illustrates a call from a C program to the complex BLAS Level 1 function zdotc (). This function computes the dot product of two double-precision complex vectors.

Example. Calling a Complex BLAS Level 1 Function from C

In this example, the complex dot product is returned in the structure c.

```
#include <cstdio>
#include "mkl_blas.h"
#define N 5
void main()
{
    int n, inca = 1, incb = 1, i;
    MKL_Complex16 a[N], b[N], c;
    voi\overline{d} zdotc();
    n = N;
    for( i = 0; i < n; i++ ){
        a[i].real = (double)i; a[i].imag = (double)i * 2.0;
        b[i].real = (double)(n - i); b[i].imag = (double)i * 2.0;
    }
```

```
zdotc( &c, &n, a, &inca, b, &incb );
printf( "The complex dot product is: ( %6.2f, %6.2f )\n", c.real, c.imag );
```

\}

NOTE Instead of calling BLAS directly from C programs, you might wish to use the CBLAS interface; this is the supported way of calling BLAS from C. For more information about CBLAS, see Appendix D, which presents CBLAS, the C interface to the Basic Linear Algebra Subprograms (BLAS) implemented in Intel ${ }^{\circledR}$ MKL.

Fourier Transform Functions Code Examples

This section presents code examples of functions described in the "FFT Functions" and "Cluster FFT Functions" sections in the "Fourier Transform Functions" chapter. The examples are grouped in subsections

- Examples for FFT Functions, including Examples of Using Multi-Threading for FFT Computation
- Examples for Cluster FFT Functions
- Auxiliary data transformations.

FFT Code Examples

This section presents code examples of using the FFT interface functions described in "Fourier Transform Functions" chapter. Here are the examples of two one-dimensional computations. These examples use the default settings for all of the configuration parameters, which are specified in "Configuration Settings".

One-dimensional In-place FFT (Fortran Interface)

```
! Fortran example.
! 1D complex to complex, and real to conjugate-even
Use MKL DFTI
Complex : : X(32)
Real :: Y(34)
type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle
Integer :: Status
!...put input data into X(1),...,X(32); Y(1),...,Y(32)
! Perform a complex to complex transform
Status = DftiCreateDescriptor( My_Desc1_Handle, DFTI_SINGLE,&
    DFTI_COMPLEX, 1, 32 )
Status = DftiCommitDescriptor( My_Desc1_Handle )
Status = DftiComputeForward( My Dēsc1 Händle, X )
Status = DftiFreeDescriptor (My D Desc1 \overline{Handle)}
! result is given by {X(1),X(2),...,\overline{X}(32)}
! Perform a real to complex conjugate-even transform
Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,&
    DFTI_REAL, 1, 32)
Status = DftiCommitDescriptor(My_Desc2_Handle)
Status = DftiComputeForward (My Desc2 Händle, Y)
Status = DftiFreeDescriptor(My_Desc2_Handle)
! result is given in CCS format.
```


One-dimensional Out-of-place FFT (Fortran Interface)

```
! Fortran example.
! 1D complex to complex, and real to conjugate-even
Use MKL DFTI
Complex }\mp@subsup{}{}{-}:= X_in(32
Complex :: X_out(32)
Real :: Y_in(32)
Real :: Y out(34)
type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle
```

```
Integer :: Status
...put input data into X_in(1),...,X_in(32); Y_in(1),...,Y_in(32)
! Perform a complex to cōmplex transform
Status = DftiCreateDescriptor( My_Desc1_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32 )
Statūs = DftiSetValue( My_Desc1_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)
Status = DftiCommitDescriptor( M
Status = DftiComputeForward( My Dēscl Händle, X_in, X_out )
Status = DftiFreeDescriptor(My_Desc1_H_Handle)
! result is given by {X_out(1),X_out(2),...,X_out (32)}
! Perform a real to comp\overline{lex conjügate-even trānsform}
Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,
DFTI_REAL, 1, 32)
Statūs = DftiSetValue( My_Desc2 Handle, DFTI PLACEMENT, DFTI_NOT_INPLACE)
Status = DftiCommitDescri\overline{p}tor(M\overline{y}_Desc2_Handl\overline{e})
Status = DftiComputeForward(My_Dēsc2_Hāndle, Y_in, Y_out)
Status = DftiFreeDescriptor (My_Desc2_Handle)
! result is given by Y_out in \overline{C}CS format.
```


One-dimensional In-place FFT (C Interface)

```
/* C example, float Complex is defined in C9X */
#include "mkl_dfti.h"
float Comple\overline{x x[32];}
float y[34];
DFTI_DESCRIPTOR_HANDLE my_desc1_handle;
DFTI-DESCRIPTOR-HANDLE my desc2-handle;
MKL_\overline{LONG status;}
//...put input data into x[0],...,x[31]; y[0],...,y[31]
status = DftiCreateDescriptor( &my_desc1_handle, DFTI_SINGLE,
    DFTI COMPLEX, 1, 32);
status = DftiCommitDescriptor( my_desc1_handle );
status = DftiComputeForward( my_dēscl_hāndle, x);
status = DftiFreeDescriptor(&my_desc1_handle);
/* result is x[0], ..., x[31]*/
status = DftiCreateDescriptor( &my_desc2_handle, DFTI_SINGLE,
    DFTI_REAL, 1, 32);
status = DftiCommitDescriptor( my desc2 handle);
status = DftiComputeForward( my_desc2_händle, y);
status = DftiFreeDescriptor(&my_desc2_handle);
/* result is given in CCS format*/
```


One-dimensional Out-of-place FFT (C Interface)

```
/* C example, float Complex is defined in C9X */
#include "mkl_dfti.h"
float _Comple\overline{x x_in[32];}
float _Complex x_out[32];
float \overline{y_in[32];}
float y_out[34];
DFTI DESCRIPTOR_HANDLE my_desc1_handle;
DFTI_DESCRIPTOR_HANDLE my_desc2_handle;
MKL_\overline{LONG status;}
//...put input data into x_in[0],...,x_in[31]; y_in[0],...,y_in[31]
status = DftiCreateDescriptor( &my_desc\overline{c}1_handle,-DFTI_SINGLE,
    DFTI_COMPLEX, 1, 32);
status = DftiSētValue( my_desc1_handle, DFTI PLACEMENT, DFTI_NOT_INPLACE);
status = DftiCommitDescriptor( \overline{my_desc1_hand\overline{le );}}\mathbf{ ;}
status = DftiComputeForward( my_desc1_händle, x_in, x_out);
status = DftiFreeDescriptor(&my_desc1_handle);
/* result is x_out[0], ..., x_out[31]`/
status = DftiC\overline{reateDescriptor`` &my_desc2_handle, DFTI_SINGLE,}
        DFTI_REAL, 1, 32);
Status = DftiSētValue( My_Desc2_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE);
status = DftiCommitDescrip
```

```
status = DftiComputeForward( my_desc2_handle, y_in, y_out);
status = DftiFreeDescriptor(&my desc2-handle);
/* result is given by y_out in \overline{C}CS for}m\mathrm{ (at*/
```


Two-dimensional FFT (Fortran Interface)

The following is an example of two simple two-dimensional transforms. Notice that the data and result parameters in computation functions are all declared as assumed-size rank-1 array DIMENSION ($0: *$). Therefore two-dimensional array must be transformed to one-dimensional array by EQUIVALENCE statement or other facilities of Fortran.

```
! Fortran example.
! 2D complex to complex, and real to conjugate-even
Use MKL_DFTI
Complex : : X 2D(32,100)
Real :: Y_2D(\overline{34, 102)}
Complex :: X(3200)
Real :: Y(3468)
Equivalence (X_2D, X)
Equivalence (Y-}2\textrm{D},\textrm{Y}
type(DFTI_DESC\overline{RIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle}
Integer := Status, L(2)
!...put input data into X_2D(j,k), Y_2D(j,k), 1<=j=32,1<=k<=100
!...set L(1) = 32, L(2) = 
!...the transform is a 32-by-100
! Perform a complex to complex transform
Status = DftiCreateDescriptor( My_Desc1_Handle, DFTI_SINGLE,&
    DFTI_COMPLEX, 2, L)
Status = DftiCōmmitDescriptor( My_Desc1_Handle)
Status = DftiComputeForward( My Dēscl_Hāndle, X)
Status = DftiFreeDescriptor (My_Desc1_\overline{Handle)}
! result is given by X_2D(j,k), 1<=j<= 32, 1<=k<=100
! Perform a real to complex conjugate-even transform
Status = DftiCreateDescriptor( My_Desc2_Handle, DFTI_SINGLE,&
    DFTI_REAL, 2, L)
Status = DftiCommitDescriptor( My_Desc2_Handle)
Status = DftiComputeForward( My_Dēsc2_Hāndle, Y)
Status = DftiFreeDescriptor (My_Desc2_\overline{Handle)}
! result is given by the compl\overline{ex valu}e z(j,k) 1<=j<=32; 1<=k<=100
! and is stored in CCS format
```


Two-dimensional FFT (C Interface)

```
/* C99 example */
#include "mkl_dfti.h"
float _Complex x[32][100];
float \overline{y[34][102];}
DFTI_DESCRIPTOR_HANDLE my_desc1_handle;
DFTI_DESCRIPTOR_HANDLE my_desc2_handle;
MKL_\overline{LONG status, l[2];}
//.-.put input data into x[j][k] 0<=j<=31, 0<=k<=99
//...put input data into y[j][k] 0<=j<<=31, 0<=k<=99
l[0] = 32; l[1] = 100;
status = DftiCreateDescriptor( &my_desc1_handle, DFTI_SINGLE,
    DFTI COMPLEX, 2, 1);
status = DftiCommitDescriptor( my_desc1_handle);
status = DftiComputeForward( my_descl_hāndle, x);
status = DftiFreeDescriptor(&my_desc1_handle);
/* result is the complex value x \ [j][k], 0<=j<=31, 0<=k<=99 */
status = DftiCreateDescriptor( &my_desc2_handle, DFTI_SINGLE,
        DFTI REAL, 2, 1);
status = DftiCommitDescriptor( my_desc2_handle);
status = DftiComputeForward( my_desc2_hāndle, y);
```

```
status = DftiFreeDescriptor(&my_desc2_handle);
/* result is the complex value \overline{z}(j,k) - 0<=j<=31; 0<=k<=99
/* and is stored in CCS format*/
```

The following examples demonstrate how you can change the default configuration settings by using the DftiSetValue function.

For instance, to preserve the input data after the FFT computation, the configuration of the DFTI_PLACEMENT should be changed to "not in place" from the default choice of "in place."

Changing Default Settings (Fortran)

The code below illustrates how this can be done:

```
! Fortran example
! 1D complex to complex, not in place
Use MKL DFTI
Complex -: X_in(32), X_out(32)
type(DFTI_DE\overline{SCRIPTOR),}\mp@subsup{}{}{-}POINTER :: My_Desc_Handle
Integer :: Status
!...put input data into X_in(j), 1<=j<=32
Status = DftiCreateDescriptor( My_Desc_Handle,& DFTI_SINGLE, DFTI_COMPLEX, 1, 32)
Status = DftiSetValue( My_Desc_Handle,_DFTI_PLACEMEN\overline{T}, DFTI_NOT_IN}PLACE
Status = DftiCommitDescri\overline{p}tor(-My Desc Handle)
Status = DftiComputeForward( My_Dēsc_Händle, X_in, X_out)
Status = DftiFreeDescriptor (My_Desc_Handle)
! result is X_out(1),X_out(2),...,X_out(32)
```


Changing Default Settings (C)

```
/* C99 example */
#include "mkl dfti.h"
float Compl\overline{ex x_in[32], x_out[32];}
DFTI_DE\overline{SCRIPTOR_HA\overline{NDLE my_desc_handle;}}\mathbf{~}=\mp@code{_}
MKL_\overline{LONG status;}
//.-.put input data into x_in[j], 0 <= j < 32
status = DftiCreateDescriptor( &my_desc_handle, DFTI_SINGLE,
    DFTI_COMPLEX, 1, 32);
status = DftiSetValue( my_desc_handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE);
status = DftiCommitDescri\overline{ptor(-my_desc_handle);}
status = DftiComputeForward( my_desc_hāndle, x_in, x_out);
status = DftiFreeDescriptor(&my_desc_handle);
/* result is x_out[0], x_out[1], ..., x_out[31] */
```


Using Status Checking Functions

The example illustrates the use of status checking functions described in Chapter 11.

```
/* C */
DFTI DESCRIPTOR HANDLE desc;
MKL_\overline{LONG status;}
// . . . descriptor creation and other code
status = DftiCommitDescriptor(desc);
if (status && !DftiErrorClass(status,DFTI_NO_ERROR))
{
    printf ('Error: %s\n', DftiErrorMessage(status));
}
! Fortran
type(DFTI_DESCRIPTOR), POINTER :: desc
integer status
! ...descriptor creation and other code
status = DftiCommitDescriptor(desc)
```

```
if (status .ne. 0) then
    if (.not. DftiErrorClass(status,DFTI NO ERROR) then
        print *, 'Error: ', DftiErrorMessāge``(status)
    endif
endif
```


Computing 2D FFT by One-Dimensional Transforms

Below is an example where a 20-by-40 two-dimensional FFT is computed explicitly using one-dimensional transforms. Notice that the data and result parameters in computation functions are all declared as assumedsize rank-1 array DIMENSION $(0: *)$. Therefore two-dimensional array must be transformed to onedimensional array by EQUIVALENCE statement or other facilities of Fortran.

```
! Fortran
use mkl_dfti
Complex :: X_2D(20,40)
Complex :: X(800)
Equivalence (X_2D, X)
INTEGER :: STRİDE (2)
type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim1
type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim2
! ...
Status = DftiCreateDescriptor(Desc_Handle_Dim1, DFTI_SINGLE,&
    D\overline{FTTI_COMP̄LEX, 1, 20-}
Status = DftiCreateDescriptor(Desc_Handle_Dim2, DFTI_SINGLE,&
    D\overline{FTI_COMP\overline{LEX, 1, 40-)}}\mathbf{}\mathrm{ )}
! perform 40 one-dimensional transforms along 1st dimension
Status = DftiSetValue( Desc_Handle_Dim1, DFTI_NUMBER_OF_TRANSFORMS, 40 )
Status = DftiSetValue( Desc_Handle_Dim1, DFTI_INPUT_DIST\ANCE, 20 )
Status = DftiSetValue( Desc_Handle_Dim1, DFTI_OUTPUT̄_DISTANCE, 20 )
Status = DftiCommitDescriptōr( Desc̄_Handle_Dim}1 
Status = DftiComputeForward( Desc_Händle_Dīm1, X )
! perform 20 one-dimensional transforms along 2nd dimension
Stride(1) = 0; Stride(2) = 20
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_NUMBER_OF_TRANSFORMS, 20 )
Status = DftiSetValue( Desc_Handle_Dim2, DFTI-INPUT DIST̄ANCE, 1 )
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_OUTPU\overline{_}_DISTANCE, 1 )
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_INPUT_STTRIDES, Stride )
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_OUTPUT\_STRIDES, Stride )
Status = DftiCommitDescriptōr( Des\overline{c}_Handle_Di\overline{m}2 )
Status = DftiComputeForward( Desc_Hāndle_Dīm2, X )
Status = DftiFreeDescriptor( Desc_Handle_Dim1 )
Status = DftiFreeDescriptor( Desc_Handle_Dim2 )
/* C */
#include "mkl dfti.h"
float Complex x[20][40];
MKL_LON̄G stride[2];
MKL-
DFT\overline{I_}DESCRIPTOR_HANDLE desc_handle_dim1;
DFTI_DESCRIPTOR_HANDLE desc_handle_dim2;
//...
status = DftiCreateDescriptor( &desc_handle_dim1, DFTI_SINGLE,
    DFTI_COMPLEX, 1, 20 );
status = DftiCreateDescriptor( &desc_handle_dim2, DFTI_SINGLE,
    DFTI_COMPLEX, 1, 40 );
/* perform 40 one-dimensional transforms along 1st dimension */
/* note that the 1st dimension data are not unit-stride */
stride[0] = 0; stride[1] = 40;
status = DftiSetValue( desc_handle_dim1, DFTI_NUMBER_OF_TRANSFORMS, 40 );
status = DftiSetValue( desc_handle_dim1, DFTI_INPUT_DIST\overline{ANCE, 1 );}
status = DftiSetValue( desc_handle_dim1, DFTI-OUTPUT DISTANCE, 1 );
status = DftiSetValue( desc_handle_dim1, DFTI_INPUT_\overline{STRIDES, stride );}
status = DftiSetValue( desc_handle_dim1, DFTI_OUTPUT_STRIDES, stride );
status = DftiCommitDescriptōr( desc
status = DftiComputeForward( desc_hāndle_dim1, x );
```

```
/* perform 20 one-dimensional transforms along 2nd dimension */
/* note that the 2nd dimension is unit stride */
status = DftiSetValue( desc_handle_dim2, DFTI_NUMBER_OF_TRANSFORMS, 20 );
status = DftiSetValue( desc_handle_dim2,
DFTI_INPUT_DISTANCE, 40 );
statūs = D\overline{f}tiSetValue( desc_handle_dim2,
DFTI_OUTPUT DISTANCE, 40 );
statūs = Dft̄iCommitDescriptor( desc_handle_dim2 );
status = DftiComputeForward( desc_hāndle_dim2, x );
status = DftiFreeDescriptor( &des\overline{c_handl\overline{e_dim1 );}}\mathbf{~}\mathrm{ ;}
status = DftiFreeDescriptor( &desc_handle_dim2 );
```

The following are examples of real multi-dimensional transforms with CCE format storage of conjugate-even complex matrix. Example "Two-Dimensional REAL In-place FFT (Fortran Interface)" is two-dimensional inplace transform and Example "Two-Dimensional REAL Out-of-place FFT (Fortran Interface)" is twodimensional out-of-place transform in Fortran interface. Example "Three-Dimensional REAL FFT (C Interface)" is three-dimensional out-of-place transform in C interface. Note that the data and result parameters in computation functions are all declared as assumed-size rank-1 array DIMENSION ($0: *$). Therefore two-dimensional array must be transformed to one-dimensional array by EQUIVALENCE statement or other facilities of Fortran.

Two-Dimensional REAL In-place FFT (Fortran Interface)

```
! Fortran example.
! 2D and real to conjugate-even
Use MKL_DFTI
Real ::-X 2D (34,100) ! 34=(32/2 + 1)*2
Real :: X\overline{(3400)}
Equivalence (X 2D, X)
type(DFTI_DESC\overline{RIPTOR), POINTER :: My_Desc_Handle}
Integer :\ Status, L(2)
Integer :: strides in(3)
Integer :: strides_out(3)
! ...put input datà into X_2D(j,k), 1<=j=32,1<=k<=100
    ...set L(1) = 32, L(2) =- }10
    ...set strides_in(1) = 0, strides_in(2) = 1, strides_in(3) = 34
    ...set strides_out(1) = 0, strides_out(2) = 1, stridés_out(3) = 17
    ...the transform is a 32-by-100
! Perform a real to complex conjugate-even transform
Status = DftiCreateDescriptor( My_Desc_Handle, DFTI_SINGLE,&
DFTI_REAL, 2, L )
Statūs = DftiSetValue (My_Desc_Handle, DFTI_CONJUGATE_EVEN_STORAGE,&
DFTI_COMPLEX_COMPLEX)
Statūs = DftīSetValue (My_Desc_Handle, DFTI_INPUT_STRIDES, strides_in)
Status = DftiSetValue (My_Desc_Handle, DFTI-_OUTPU\overline{T}_STRIDES, strides_out)
Status = DftiCommitDescriptor( My_Desc_Hand}le
Status = DftiComputeForward( My_Dēsc_Händle, X )
Status = DftiFreeDescriptor (My_Desc_Handle)
! result is given by the complex value z(j,k) 1<=j<=17; 1<=k<=100 and
! is stored in real matrix X_2D in CCE format.
```


Two-Dimensional REAL Out-of-place FFT (Fortran Interface)

```
! Fortran example.
! 2D and real to conjugate-even
Use MKL DFTI
Real ::-X_2D(32,100)
Complex :: Y 2D(17, 100) ! 17 = 32/2 + 1
Real :: X(32\overline{0}0)
Complex :: Y(1700)
Equivalence (X_2D, X)
Equivalence ( }\mp@subsup{Y}{-}{-}2\textrm{D},\textrm{Y}
type(DFTI_DESCRIPTOR), POINTER :: My_Desc_Handle
Integer :\overline{: Status, L(2)}
Integer :: strides_out(3)
```

```
! ...put input data into X_2D(j,k), 1<=j=32,1<=k<==100
...set L(1) = 32, L (2) =-100
! ...set strides_out(1) = 0, strides_out(2) = 1, strides_out(3) = 17
! ...the transform is a 32-by-100
! Perform a real to complex conjugate-even transform
Status = DftiCreateDescriptor( My_Desc_Handle, DFTI_SINGLE,&
DFTI REAL, 2, L )
Statūs = DftiSetValue (My_Desc_Handle,&
DFTI CONJUGATE EVEN STORA}GE, \overline{DFTI COMPLEX COMPLEX)
Statūs = DftiS\overline{e}tValūe( My_Desc_Hañdle, DF\overline{TI_PLACEMENT, DFTI_NOT_INPLACE )}
Status = DftiSetValue (My_Desc___Handle,&
DFTI_OUTPUT_STRIDES, strīdes_out)
Status = DftiCommitDescriptor (My Desc Handle)
Status = DftiComputeForward (My_Desc_Handle, X, Y)
Status = DftiFreeDescriptor (My_Desc_Handle)
! result is given by the complex value z(j,k) 1<=j<=17; 1<=k<=100 and
! is stored in complex matrix Y_2D in CCE format.
```


Three-Dimensional REAL FFT (C Interface)

```
/* C99 example */
#include "mkl dfti.h"
float x[32][100][19];
float Complex y[32][100][10]; /* 10 = 19/2 + 1 */
DFTI_DE\overline{ECRIPTOR_HANDLE my_desc_handle;}
MKL_\overline{LONG status, l[3];}
MKL_LONG strides_out[4];
//...put input data into x[j][k][s] 0<=j<=31, 0<=k<=99, 0<=s<=18
l[0] = 32; l[1] = 100; l[2] = 19;
strides_out[0] = 0; strides_out[1] = 1000;
strides_out[2] = 10; stride\overline{s_out[3] = 1;}
status = DftiCreateDescriptor( &my_desc_handle, DFTI_SINGLE,
DFTI REAL, 3, l );
status = DftiSetValue (my desc handle,
DFTI_CONJUGATE_EVEN_STORA\overline{AE, D}\TTI_COMPLEX_COMPLEX);
statūs = DftiS\overline{e}valūe( my_desc_handle, DF\overline{TI_PLACEMENT, DFTI_NOT_INPLACE );}
status = DftiSetValue (my_desc_\overline{handle,}
DFTI_OUTPUT_STRIDES, strīdes_out);
status = DftiCommitDescriptor(my desc handle);
status = DftiComputeForward(my_dēsc_hāndle, x, y);
status = DftiFreeDescriptor(&my des\overline{c}}\mathrm{ handle);
/* result is the complex value \overline{z}(j,k,s) 0<=j<=31; 0<=k<=99, 0<=s<=9
and is stored in complex matrix y in CCE format. */
```


Examples of Using Multi-Threading for FFT Computation

The following sample program shows how to employ internal threading in Intel MKL for FFT computation (see case "a" in "Number of user threads").
To specify the number of threads inside Intel MKL, use the following settings:
set MKL_NUM_THREADS = 1 for one-threaded mode;
set MKL_NUM_THREADS = 4 for multi-threaded mode.
Note that the configuration parameter DFTI_NUMBER_OF_USER_THREADS must be equal to its default value 1.

Using Intel MKL Internal Threading Mode

```
#include "mkl_dfti.h"
int main ()
{
    float x[200][100];
    DFTI DESCRIPTOR HANDLE fft;
    MKL_\overline{LONG len[2]}}
    // initialize x
    DftiCreateDescriptor ( &fft, DFTI_SINGLE, DFTI_REAL, 2, len );
    DftiCommitDescriptor ( fft );
    DftiComputeForward ( fft, x );
    DftiFreeDescriptor ( &fft );
    return 0;
}
```

The following Example "Using Parallel Mode with Multiple Descriptors Initialized in a Parallel Region" and Example "Using Parallel Mode with Multiple Descriptors Initialized in One Thread" illustrate a parallel customer program with each descriptor instance used only in a single thread (see cases "b" and "c" in Number of user threads).
Specify the number of threads for Example "Using Parallel Mode with Multiple Descriptors Initialized in a Parallel Region" like this:
set MKL_NUM_THREADS = 1 for Intel MKL to work in the single-threaded mode (recommended);
set OMP_NUM_THREADS = 4 for the customer program to work in the multi-threaded mode.
The configuration parameter DFTI_NUMBER_OF_USER_THREADS must have its default value of 1 .

Using Parallel Mode with Multiple Descriptors Initialized in a Parallel Region

Note that in this example, the program can be transformed to become single-threaded at the customer level but using parallel mode within Intel MKL (case "a"). To achieve this, you need to set the parameter DFTI_NUMBER_OF_TRANSFORMS = 4 and to set the corresponding parameter DFTI_INPUT_DISTANCE = 5000 .

C code for the example is as follows:

```
#include "mkl_dfti.h"
#include <omp.h>
#define ARRAY_LEN(a) sizeof(a)/sizeof(a[0])
int main ()
{
    // 4 OMP threads, each does 2D FFT 50x100 points
    MKL_Complex8 x[4][50][100];
    int nth = ARRAY_LEN(x);
    MKL_LONG len[2] = {ARRAY_LEN(x[0]), ARRAY_LEN(x[0][0])};
    int th;
    // assume x is initialized and do 2D FFTs
#pragma omp parallel for shared(len, x)
    for (th = 0; th < nth; th++)
    {
        DFTI_DESCRIPTOR_HANDLE myFFT;
        DftiCreateDescriptor (&myFFT, DFTI_SINGLE, DFTI_COMPLEX, 2, len);
        DftiCommitDescriptor (myFFT);
        DftiComputeForward (myFFT, x[th]);
        DftiFreeDescriptor (&myFFT);
    }
    return 0;
}
```

Fortran code for the example is as follows:

```
program fft2d_private_descr_main
```

 use mkl_dftī
    ```
    integer nth, len(2)
! 4 OMP threads, each does 2D FFT 50x100 points
    parameter (nth = 4, len = (/50, 100/))
    complex x(len(2)*len(1), nth)
    type(dfti_descriptor), pointer :: myFFT
    integer t\overline{h}, myStatus
! assume x is initialized and do 2D FFTs
! $OMP PARALLEL DO SHARED(len, x) PRIVATE (myFFT, myStatus)
    do th = 1, nth
        myStatus = DftiCreateDescriptor (myFFT, DFTI_SINGLE, DFTI_COMPLEX, 2, len)
        myStatus = DftiCommitDescriptor (myFFT)
        myStatus = DftiComputeForward (myFFT, x(:, th))
        myStatus = DftiFreeDescriptor (myFFT)
    end do
!$OMP END PARALLEL DO
end
```

Specify the number of threads for Example "Using Parallel Mode with Multiple Descriptors Initialized in One Thread" like this:
set MKL_NUM_THREADS = 1 for Intel MKL to work in the single-threaded mode (obligatory);
set OMP_NUM_THREADS = 4 for the customer program to work in the multi-threaded mode.
The configuration parameter DFTI_NUMBER_OF_USER_THREADS must have the default value of 1 .

Using Parallel Mode with Multiple Descriptors Initialized in One Thread

C code for the example is as follows:

```
#include "mkl_dfti.h"
#include <omp.h>
#define ARRAY_LEN(a) sizeof(a)/sizeof(a[0])
int main ()
{
    // 4 OMP threads, each does 2D FFT 50x100 points
    MKL_Complex8 x[4][50][100];
    int nth = ARRAY LEN(x);
    MKL_LONG len[2] = {ARRAY_LEN(x[0]), ARRAY_LEN(x[0][0])};
    DFT\overline{I}_DESCRIPTOR_HANDLE F\overline{FT}[ARRAY_LEN(x)];
    int \overline{th;}
    for (th = 0; th < nth; th++)
        DftiCreateDescriptor (&FFT[th], DFTI_SINGLE, DFTI_COMPLEX, 2, len);
    for (th = 0; th < nth; th++)
        DftiCommitDescriptor (FFT[th]);
    // assume x is initialized and do 2D FFTs
#pragma omp parallel for shared(FFT, x)
    for (th = 0; th < nth; th++)
        DftiComputeForward (FFT[th], x[th]);
    for (th = 0; th < nth; th++)
        DftiFreeDescriptor (&FFT[th]);
    return 0;
}
```

Fortran code for the example is as follows:

```
program fft2d_array_descr_main
    use mkl_dft\overline{i}
    integer nth, len(2)
! 4 OMP threads, each does 2D FFT 50x100 points
    parameter (nth = 4, len = (/50, 100/))
    complex x(len(2)*len(1), nth)
    type thread_data
        type(dfti_descriptor), pointer :: FFT
    end type th\overline{read_data}
    type(thread_dat\overline{a}) :: workload(nth)
```

```
    integer th, status, myStatus
    do th = 1, nth
        status = DftiCreateDescriptor (workload(th)%FFT, DFTI_SINGLE, DFTI_COMPLEX, 2, len)
        status = DftiCommitDescriptor (workload(th) %FFT)
    end do
! assume x is initialized and do 2D FFTs
!$OMP PARALLEL DO SHARED(len, x, workload) PRIVATE(myStatus)
    do th = 1, nth
    myStatus = DftiComputeForward (workload(th)%FFT, x(:, th))
    end do
!$OMP END PARALLEL DO
    do th = 1, nth
    status = DftiFreeDescriptor (workload(th) %FFT)
    end do
end
```

The following Example "Using Parallel Mode with a Common Descriptor" illustrates a parallel customer program with a common descriptor used in several threads (see case "d" in "Number of user threads").
In this case, the number of threads, as well as any other configuration parameter, must not be changed after FFT initialization by the DftiCommitDescriptor() function is done.

Using Parallel Mode with a Common Descriptor

C code for the example is as follows:

```
#include "mkl_dfti.h"
#include <omp.'.}
#define ARRAY_LEN(a) sizeof(a)/sizeof(a[0])
int main ()
{
    // 4 OMP threads, each does 2D FFT 50x100 points
    MKL_Complex8 x[4][50][100];
    int nth = ARRAY LEN(x);
    MKL_LONG len[2] = {ARRAY_LEN(x[0]), ARRAY_LEN(x[0][0])};
    DFT\overline{I}_DESCRIPTOR_HANDLE F\overline{FT};
    int \overline{th;}
    DftiCreateDescriptor (&FFT, DFTI_SINGLE, DFTI_COMPLEX, 2, len);
    DftiSetValue (FFT, DFTI NUMBER_O\overline{F}_USER_THREADS\overline{S}
    DftiCommitDescriptor (F\overline{FT);}
    // assume x is initialized and do 2D FFTs
#pragma omp parallel for shared(FFT, x)
    for (th = 0; th < nth; th++)
        DftiComputeForward (FFT, x[th]);
    DftiFreeDescriptor (&FFT);
    return 0;
}
```

Fortran code for the example is as follows:

```
program fft2d_shared_descr_main
    use mkl_dfti
    integer nth, len(2)
! 4 OMP threads, each does 2D FFT 50x100 points
    parameter (nth = 4, len = (/50, 100/))
    complex x(len(2)*len(1), nth)
    type(dfti_descriptor), pointer :: FFT
    integer th, status, myStatus
    status = DftiCreateDescriptor (FFT, DFTI SINGLE, DFTI COMPLEX, 2, len)
    status = DftiSetValue (FFT, DFTI NUMBER_\overline{OF_USER_THREAD}\overline{D}, nth)
    status = DftiCommitDescriptor (F\overline{FT})
! assume x is initialized and do 2D FFTs
!$OMP PARALLEL DO SHARED(len, x, FFT) PRIVATE (myStatus)
    do th = 1, nth
        myStatus = DftiComputeForward (FFT, x(:, th))
    end do
```

```
!$OMP END PARALLEL DO
    status = DftiFreeDescriptor (FFT)
end
```


Examples for Cluster FFT Functions

The following C example computes a 2-dimensional out-of-place FFT using the cluster FFT interface:

2D Out-of-place Cluster FFT Computation

```
DFTI_DESCRIPTOR_DM HANDLE desc;
MKL_\overline{LONG len[2],v,\overline{i},j,n,s;}
Complex *in,*out;
MPI_Init(...);
// Create descriptor for 2D FFT
len[0]=nx;
len[1]=ny;
DftiCreateDescriptorDM(MPI_COMM_WORLD,&desc,DFTI_DOUBLE,DFTI_COMPLEX,2,len);
// Ask necessary length of in an}d out arrays and allocate memory
DftiGetValueDM(desc,CDFT_LOCAL_SIZE,&v);
in=(Complex*)malloc(v*sizeof(Complex));
out=(Complex*)malloc (v*sizeof (Complex)) ;
// Fill local array with initial data. Current process performs n rows,
// O row of in corresponds to s row of virtual global array
DftiGetValueDM(desc,CDFT_LOCAL_NX,&n);
DftiGetValueDM(desc,CDFT_LOCAL_X_START,&s);
// Virtual global array g}lobal\overline{I}N-is defined by function f a
// globalIN[i*ny+j]=f(i,j)
for(i=0;i<n;i++)
    for(j=0;j<ny;j++) in[i*ny+j]=f(i+s,j);
// Set that we want out-of-place transform (default is DFTI_INPLACE)
DftiSetValueDM(desc,DFTI PLACEMENT,DFTI NOT INPLACE);
// Commit descriptor, cal}culate FFT, frēe dēscriptor
DftiCommitDescriptorDM(desc);
DftiComputeForwardDM(desc,in,out);
// Virtual global array globalOUT is defined by function g as
// globalOUT[i*ny+j]=g(i,j)
// Now out contains result of FFT. out[i*ny+j]=g(i+s,j)
DftiFreeDescriptorDM(&desc);
free(in);
free(out);
MPI_Finalize();
```


1D In-place Cluster FFT Computations

The C example below illustrates one-dimensional in-place cluster FFT computations effected with a userdefined workspace:

```
DFTI DESCRIPTOR DM_HANDLE desc;
```

MKL_ĪONG len, v, í, n_out, s_out;
Complex *in,*work;
MPI_Init(...);
// C̄reate descriptor for 1D FFT
DftiCreateDescriptorDM (MPI_COMM_WORLD,\&desc,DFTI_DOUBLE,DFTI_COMPLEX,1,len);
// Ask necessary length of array and workspace and allocate memory
DftiGetValueDM (desc, CDFT_LOCAL_SIZE, \&v) ;
in=(Complex*) malloc (v*siz̄eof (Complex));
work=(Complex*) malloc (v*sizeof (Complex));
// Fill local array with initial data. Local array has n elements,
// O element of in corresponds to s element of virtual global array
DftiGetValueDM (desc, CDFT LOCAL NX, $\& n$);
DftiGetValueDM (desc, CDFT_LOCAL_X_START, \&s);
// Set work array as a workspace-
DftiSetValueDM(desc,CDFT_WORKSPACE, work);
// Virtual global array globalin is defined by function f as globalin[i]=f(i)
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}++$) in $[\mathrm{i}]=\mathrm{f}(\mathrm{i}+\mathrm{s})$;

```
// Commit descriptor, calculate FFT, free descriptor
DftiCommitDescriptorDM(desc);
DftiComputeForwardDM(desc,in);
DftiGetValueDM(desc,CDFT LOCAL OUT NX,&n out);
DftiGetValueDM(desc,CDFT_LOCAL_
// Virtual global array globalöUT is defined b
// Now in contains result of FFT. Local array has n_out elements,
// 0 element of in corresponds to s_out element of virtual global array.
// in[i]==g(i+s_out)
DftiFreeDescriptorDM(&desc);
free(in);
free(work);
MPI_Finalize();
```


Auxiliary Data Transformations

This section presents code examples for conversion from the Cartesian to polar representation of complex data and vice versa.

Conversion from Cartesian to polar representation of complex data

```
// Cartesian->polar conversion of complex data
// Cartesian representation: z = re + I*im
// Polar representation: z = r * exp( I*phi )
#include <mkl_vml.h>
void
variant1_Cartesian2Polar(int n,const double *re,const double *im,
    double *r,double *phi)
{
    vdHypot(n,re,im,r); // compute radii r[]
    vdAtan2(n,im,re,phi); // compute phases phi[]
}
void
variant2_Cartesian2Polar(int n,const MKL_Complex16 *z,double *r,double *phi,
                        double *temp_re,double *temp_im)
{
    vzAbs(n,z,r); // compute radii r[]
    vdPackI(n, (double*)z + 0, 2, temp re);
    vdPackI (n, (double*)z + 1, 2, temp_im);
    vdAtan2(n,temp_im,temp_re,phi); // compute phases phi[]
}
```


Conversion from polar to Cartesian representation of complex data

```
// Polar->Cartesian conversion of complex data.
// Polar representation: z = r * exp( I*phi )
// Cartesian representation: z = re + I*im
#include <mkl_vml.h>
void
variant1_Polar2Cartesian(int n,const double *r,const double *phi,
    double *re,double *im)
{
    vdSinCos(n,phi,im,re); // compute direction, i.e. z[]/abs(z[])
    vdMul(n,r,re,re); // scale real part
    vdMul(n,r,im,im); // scale imaginary part
}
void
variant2_Polar2Cartesian(int n,const double *r,const double *phi,
    MKL_Complex16 *z,
    dou\overline{ble *temp_re,double *temp_im)}
{
```

vdSinCos(n, phi, temp im, temp_re); // compute direction, i.e. z[]/abs(z[])
vdMul (n,r,temp im,tēmp im); // scale imaginary part
vdMul (n,r,temp_re,temp_re); // scale real part
vdUnpackI (n,temp_re, (dōuble*)z + 0, 2); // fill in result.re
vdUnpackI (n,temp_im, (double*)z + 1, 2); // fill in result.im
\}

CBLAS Interface to the BLAS

This appendix presents CBLAS, the C interface to the Basic Linear Algebra Subprograms (BLAS) implemented in Intel ${ }^{\circledR}$ MKL.

Similar to BLAS, the CBLAS interface includes the following levels of functions:

- "Level 1 CBLAS" (vector-vector operations)
- "Level 2 CBLAS" (matrix-vector operations)
- "Level 3 CBLAS" (matrix-matrix operations).
- "Sparse CBLAS" (operations on sparse vectors).

To obtain the C interface, the Fortran routine names are prefixed with cblas (for example, dasum becomes cblas_dasum). Names of all CBLAS functions are in lowercase letters.

Complex functions ?dotc and ?dotu become CBLAS subroutines (void functions); they return the complex result via a void pointer, added as the last parameter. CBLAS names of these functions are suffixed with _sub. For example, the BLAS function cdotc corresponds to cblas_cdotc_sub.

WARNING Users of the CBLAS interface should be aware that the CBLAS are just a C interface to the BLAS, which is based on the FORTRAN standard and subject to the FORTRAN standard restrictions. In particular, the output parameters should not be referenced through more than one argument.

In the descriptions of CBLAS interfaces, links provided for each function group lead to the descriptions of the respective Fortran-interface BLAS functions.

CBLAS Arguments

The arguments of CBLAS functions comply with the following rules:

- Input arguments are declared with the const modifier.
- Non-complex scalar input arguments are passed by value.
- Complex scalar input arguments are passed as void pointers.
- Array arguments are passed by address.
- BLAS character arguments are replaced by the appropriate enumerated type.
- Level 2 and Level 3 routines acquire an additional parameter of type CBLAS_ORDER as their first argument. This parameter specifies whether two-dimensional arrays are row-major (CblasRowMajor) or column-major (CblasColMajor).

Enumerated Types

The CBLAS interface uses the following enumerated types:

```
enum CBLAS_ORDER {
    CblasRowMMajor=101, /* row-major arrays */
    CblasColMajor=102}; /* column-major arrays */
enum CBLAS TRANSPOSE {
    CblasNoT
    CblasTrans=112, /* trans='T' */
    CblasConjTrans=113}; /* trans='C' */
enum CBLAS_UPLO {
    CblasUpper=121, /* uplo ='U' */
    CblasLower=122}; /* uplo ='L' */
enum CBLAS DIAG {
    CblasNonUnit=131, /* diag ='N' */
    CblasUnit=132}; /* diag ='U' */
```

```
enum CBLAS_SIDE {
    CblasLe\overline{f}t=141, /* side ='L' */
    CblasRight=142}; /* side ='R' */
```


Level 1 CBLAS

This is an interface to "BLAS Level 1 Routines and Functions", which perform basic vector-vector operations.
? asum
float cblas sasum(const int N, const float *X, const int incX);
double cblas_dasum(const int N, const double $* X$, const int incX);

double cblas _dzasum(const int N, const void *X, const int incX);
?axpy
void cblas_saxpy(const int N, const float alpha, const float *X, const int incX, float *Y, const int incy);
void cblas_daxpy(const int N, const double alpha, const double *X, const int incX, double *Y, const int incY);
void cblas_caxpy(const int N, const void *alpha, const void *X, const int incX, void *Y, const int incY);
void cblas zaxpy(const int N, const void *alpha, const void *X, const int incX, void *Y, const int incY);
?copy
void cblas_scopy(const int N, const float *X, const int incX, float *Y, const int incY);
void cblas_dcopy(const int N, const double *X, const int incX, double *Y, const int incY);
void cblas ccopy (const int N, const void *X, const int incX, void *Y, const int incY);
void cblas_zcopy(const int N, const void *X, const int incX, void *Y, const int incY);
?dot
float cblas_sdot(const int N, const float *X, const int incX, const float *Y, const int incY); double cblas_ddot (const int N, const double *X, const int incX, const double *Y, const int incY);
?sdot
float cblas_sdsdot(const int N, const float $S B$, const float *SX, const int incX, const float *SY, const int incY);
double cblas_dsdot(const int N, const float *SX, const int incX, const float *SY, const int incY);
?dotc
void cblas_cdotc_sub(const int N, const void *X, const int incX, const void *Y, const int incy, void *dotc) ;
void cblas_zdotc_sub(const int N, const void *X, const int incX, const void *Y, const int incY, void
*dotc) ;
? dotu
void cblas_cdotu_sub(const int N, const void *X, const int incX, const void *Y, const int incy, void *dotu) ;
void cblas_zdotu_sub(const int N, const void *X, const int incX, const void *Y, const int incY, void *dotu);
?nrm2
float cblas snrm2 (const int N, const float *X, const int incX);
double cblas dnrm2(const int N, const double *X, const int incX);
float cblas $\bar{s} c n r m 2($ const int N, const void *X, const int incX);
double cblas _dznrm2 (const int N, const void *X, const int incX);
?rot
void cblas srot (const int N, float *X, const int incX, float *Y, const int incY, const float c, const float s);
void cblas_drot (const int N, double *X, const int incX, double *Y, const int incY, const double c, const double s);

```
?rotg
void cblas_srotg(float *a, float *b, float *c, float *s);
void cblas_drotg(double *a, double *b, double *c, double *s);
```

?rotm
void cblas_srotm(const int N, float *X, const int incX, float *Y, const int incY, const float *P); void cblas_drotm(const int N, double *X, const int incX, double *Y, const int incY, const double *P);

?rotmg

void cblas_srotmg (float *d1, float *d2, float *b1, const float b2, float *P);
void cblas_drotmg (double *d1, double *d2, double *b1, const double b2, double *P);

```
?scal
void cblas_sscal(const int N, const float alpha, float *X, const int incX);
void cblas_dscal(const int N, const double alpha, double *X, const int incX);
void cblas_cscal(const int N, const void *alpha, void *X, const int incX);
void cblas_zscal(const int N, const void *alpha, void *X, const int incX);
void cblas_csscal (const int N, const float alpha, void *X, const int incX);
void cblas_zdscal(const int N, const double alpha, void *X, const int incX);
```

?swap
void cblas_sswap(const int N, float *X, const int incX, float *Y, const int incY);
void cblas_dswap(const int N, double *X, const int incX, double *Y, const int incY);
void cblas_cswap(const int N, void *X, const int incX, void *Y, const int incY);
void cblas_zswap (const int N, void *X, const int incX, void *Y, const int incY);
i?amax
CBLAS INDEX cblas isamax (const int N, const float *X, const int incX);
CBLAS_INDEX cblas_idamax (const int N, const double *X, const int incX);
CBLAS ${ }^{-}$INDEX cblas icamax (const int N, const void *X, const int incX);
CBLAS_INDEX cblas_izamax(const int N, const void *X, const int incX);
i?amin
CBLAS_INDEX cblas_isamin(const int N, const float *X, const int incX);
CBLAS_INDEX cblas_idamin(const int N, const double *X, const int incX);
CBLAS_INDEX cblas_icamin(const int N, const void *X, const int incX);
CBLAS_INDEX cblas_izamin(const int N, const void *X, const int incX);

Level 2 CBLAS

This is an interface to "BLAS Level 2 Routines", which perform basic matrix-vector operations. Each C routine in this group has an additional parameter of type CBLAS_ORDER (the first argument) that determines whether the two-dimensional arrays use column-major or row-major storage.

```
?.gbmv
void cblas sgbmv(const enum CBLAS ORDER order, const enum CBLAS TRANSPOSE TransA, const int M, const int \(N\), cons̄t int KL, const int KU, const float alpha, const floāt *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY);
void cblas_dgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int \(N\), cons̄t int KL, const int KU, const double alpha, const doūble *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incY);
void cblas_cgbmv(const enum CBLAS_ORDER order, const enum CBLAS TRANSPOSE TransA, const int M, const int \(N\), cons̄t int KL, const int KU, const void *alpha, const voi \(\bar{d} * A, ~ c o n s t ~ i n t ~ l d a, ~ c o n s t ~ v o i d ~ * X, ~\) const int incX, const void *beta, void *Y, const int incY);
void cblas_zgbmv(const enum CBLAS_ORDER order, const enum CBLAS TRANSPOSE TransA, const int M, const int \(N\), cons̄t int KL, const int KU, const void *alpha, const voi \(\bar{d}{ }^{*} A\), const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY);
```


? gemv

void cblas sgemv (const enum CBLAS ORDER order, const enum CBLAS TRANSPOSE TransA, const int M, const int N, cons \bar{s} float alpha, const float ${ }^{*} A$, const int lda, const $\bar{f} l o a t ~ * X, ~ c o n s t ~ i n t ~ i n c X, ~ c o n s t ~ f l o a t ~$ beta, float *Y, const int incY);
void cblas_dgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const double alpha, const $\overline{d o u b l e}{ }^{*} A$, const int lda, const double *X, const int incX, const double beta, double *Y, const int incY);
void cblas_cgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, cons̄t void *alpha, const vōid *A, const int lda, const vōid *X, const int incX, const void *beta, void *Y, const int incY);
void cblas_zgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, cons̄t void *alpha, const vōid *A, const int lda, const vōid *X, const int incX, const void *beta, void *Y, const int incY);
? ger
void cblas sger (const enum CBLAS ORDER order, const int M, const int N, const float alpha, const float *X, const int incX, const float ${ }^{\star} Y$, const int incY, float *A, const int lda); void cblas dger (const enum CBLAS ORDER order, const int M, const int N, const double alpha, const double *X, ${ }^{-}$const int incX, const ${ }^{-}$double *Y, const int incY, double *A, const int lda);
? gerc
void cblas_cgerc (const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda); void cblas zgerc(const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda);
? geru
void cblas_cgeru(const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda);
void cblas zgeru(const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda);
?hbmv
void cblas_chbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const void ${ }^{-}$alpha, const void *A, ${ }^{-}$const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY);
void cblas zhbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY);
? hemv
void cblas_chemv(const enum CBLAS ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, con̄st void *A, const int $\bar{l} d a, ~ c o n s t ~ v o i d ~ * X, ~ c o n s t ~ i n t ~ i n c X, ~ c o n s t ~ v o i d ~ * b e t a, ~ v o i d ~ * Y, ~ c o n s t ~$ int incy);
void cblas_zhemv(const enum CBLAS ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *A, const int la, const void *X, const int incX, const void *beta, void *y, const int incY);

?her

void cblas_cher (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, cons̄t void *X, const int īncX, void ${ }^{*} A$, const int lda);
void cblas_zher (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, cons̄t void *X, const int īncX, void *A, const int lda);
?her2
void cblas_cher2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X, const int íncX, const void *Y, const int incY, void *A, const int lda); void cblas_zher2 (const enum CBLAS ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incy, void *A, const int lda);
?hpmv
void cblas_chpmv(const enum CBLAS ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *Ap, const voī̀ *X, const int incX, const voīd *beta, void *Y, const int incY); void cblas_zhpmv(const enum CBLAS ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *Ap, const voī *X, const int incX, const voīd *beta, void *y, const int incy);
?hpr
void cblas_chpr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, cons̄t void *X, const int incX, void *A);
void cblas_zhpr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, cons̄t void *X, const int īncX, void *A);
?hpr2
void cblas_chpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, cō̄st void *X, const int īncX, const void *Y, const int incy, void *Ap);
void cblas zhpr2 (const enum CBLAS ORDER order, const enum CBLAS UPLO Uplo, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incy, void *Ap);
?sbmv
void cblas_ssbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const floa \bar{t} alpha, const float ${ }^{*} A^{-}$, const int lda, const float $* \bar{X}$, const int incX, const float beta, float *Y, const int incy);
void cblas_dsbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const double alpha, const double $\bar{\star}^{A}$, const int lda, const double \bar{e}^{\prime}, const int incX, const double beta, double *Y, const int incY);
?spmv
void cblas_sspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *Ap, const floāt *X, const int incX, const float beta, float *y, const int incY); void cblas_dspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *Ap, const double *X, const int incX, const double beta, double *Y, const int incY);
?spr
void cblas_sspr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, float *Ap);
void cblas_dspr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, cons̄t double *X, const in̄ incX, double *Ap);
? spr2
void cblas_sspr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, cons̄t float *X, const int incX, const float *Y, const in̄ incy, float *A);
void cblas_dspr2(const enum CBLAS_ORDER order, const enum CBLAS UPLO Uplo, const int N, const double alpha, const double *X, const int incX, const double *Y, const int incY, double *A);
?symv
void cblas_ssymv (const enum CBLAS ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY);
void cblas_dsymv (const enum CBLAS ORDER order, const enum CBLAS UPLO Uplo, const int N, const double alpha, cons̄t double *A, const int ${ }^{-}$lda, const double *X, const int incX, const double beta, double *Y, const int incY);
?syr
void cblas_ssyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, cons̄t float *X, const int incX, float *A, const int lda);
void cblas_dsyr (const enum CBLAS ORDER order, const enum CBLAS UPLO Uplo, const int N, const double alpha, cons̄t double *X, const in \bar{t} incX, double *A, const int l $\bar{d} a)$;
?syr2
void cblas_ssyr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, const float *Y, const in \bar{t} incy, float *A, const int lda); void cblas_dsyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, cons̄t double *X, const int incX, const double *Y, const īnt incY, double *A, const int lda);
? t.bmv
void cblas_stbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diaḡ, const int N, const int K, cōnst float *A, const int lda, float *X, const int incX);
void cblas_dtbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diaḡ, const int N, const int K, cōnst double *A, const int ldā, double *X, const int incX);
void cblas_ctbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, con̄st enum CBLAS_DIAG Diaḡ, const int N, const int K, cōnst void *A, const int lda, void *X, const int incX);
void cblas_ztbmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diaḡ, const int N, const int K, cōnst void *A, const int lda, - void *X, const int incX);
?tbsv
void cblas_stbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diaḡ, const int N, const int K, cōnst float *A, const int lda, float *X, const int incX);
void cblas_dtbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS TRANSPOSE TransA, const enum CBLAS_DIAG Diag , const int N, const int K, cōnst double *A, const int ldā, double *X, const int incX);
void cblas_ctbsv(const enum CBLAS ORDER order, const enum CBLAS UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diaḡ, const int N, const int K, cōnst void *A, const int lda, ${ }^{-}$void *X, const int incX);
void cblas_ztbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diaḡ, const int N, const int K, cōnst void *A, const int lda, - void *X, const int incX);

?tpmv

void cblas_stpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag , const int N, const float *A \bar{p}, float *X, const int incX) $\overline{\text {; }}$ void cblas_dtpmv(const enum CBLAS_ORDER order, const enum CBLAS UPLO Uplo, const enum CBLAS TRANSPOSE TransA, const enum CBLAS_DIAG Diag , const int N, const double * $\bar{A} p$, double *X, const int inc \bar{X}); void cblas_ctpmv(const eñum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag , const int N, const void *Ap, - void *X, const int incX); void cblas_ztpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diağ, const int N, const void *Ap, void *X, const int incX);

?tpsv

void cblas_stpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diağ, const int N, const float *Ap, float *X, const int incX); void cblas_dtpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag , const int N, const double *Ap, double *X, const int incX) ; void cblas_ctpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diağ, const int N, const void *Ap, void *X, const int incX); void cblas_ztpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diağ, const int N, const void *Ap, void *X, const int incX);

?trmv

void cblas_strmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE
 incX);
void cblas_dtrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const double *A, const int lda, double *X, \bar{c} onst int incX);
void cblas_ctrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diağ, const int N, const void *A, Const int lda, void *X, const int incX); void cblas_ztrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diağ, const int N, const void *A, $\bar{c} o n s t ~ i n t ~ l d a, ~ v o i d ~ * X, ~ c o n s \bar{t} ~ i n t ~ i n c X) ; ~$

?trsv

void cblas_strsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag , const int N, const float *A, const int lda, float *X, const int incX);
void cblas dtrsv(const enum CBLAS ORDER order, const enum CBLAS UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag , const int N, const double *A, const int lda, double *X, \bar{c} onst int incX);
void cblas_ctrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE

TransA, const enum CBLAS_DIAG Diag, const int N, const void *A, const int lda, void *X, const int incX); void cblas ztrsv(const enum CBLAS ORDER order, const enum CBLAS UPLO Uplo, const enum CBLAS TRANSPOSE TransA, const enum CBLAS_DIAG Dia \bar{g}, const int N, const void *A, $\bar{c} o n s t ~ i n t ~ l d a, ~ v o i d ~ * X, ~ c o n s \bar{t}$ int incX);

Level 3 CBLAS

This is an interface to "BLAS Level 3 Routines", which perform basic matrix-matrix operations. Each C routine in this group has an additional parameter of type CBLAS_ORDER (the first argument) that determines whether the two-dimensional arrays use column-major or row-major storage.

? gemm

void cblas sgemm (const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS TRANS SOSE TransB, const int ${ }^{-} \mathrm{M}$, const int N , const int K , $\overline{\text { const }}$ float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc);
void cblas dgemm (const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_TRANS̄POSE TransB, const int ${ }^{-} M$, const int N, const int K, \bar{c} onst double alpha, const double *A, const ${ }^{-}$int lda, const double ${ }^{*} \mathrm{~B}$, const int ldb, const double beta, double ${ }^{*} \mathrm{C}$, const int ldc); void cblas_cgemm (const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS TRANS $\bar{P} P O S E$ TransB, const int ${ }^{-} M$, const int N, const int K, $\overline{c o n s t ~ v o i d ~ * a l p h a, ~ c o n s t ~ v o i d ~ * A, ~ c o n s t ~}$ int l $\bar{d} a, ~ c o n s t ~ v o i d ~ * B, ~ c o n s t ~ i n t ~ l d b, ~ c o n s t ~ v o i d ~ * b e t a, ~ v o i d ~ * C, ~ c o n s t ~ i n t ~ l d c) ; ~$ void cblas zgemm (const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS TRANS̄POSE TransB, const int ${ }^{-} \mathrm{M}$, const int N , const int K , \bar{c} onst void *alpha, const void *A, const int l $\bar{d} a, ~ c o n s t ~ v o i d ~ * B, ~ c o n s t ~ i n t ~ l d b, ~ c o n s t ~ v o i d ~ * b e t a, ~ v o i d ~ * C, ~ c o n s t ~ i n t ~ l d c) ; ~$

? hemm

void cblas chemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int \bar{M}, const int N, const vōid *alpha, const void *A, cons $\begin{gathered}\text { int lda, const void *B, cōnst int }\end{gathered}$ ldb, const void *beta, void *C, const int ldc);
void cblas zhemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS UPLO Uplo, const int \bar{M}, const int N, const vōid *alpha, const void *A, cons̄t int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc);
?herk
void cblas_cherk (const enum CBLAS_ORDER Order, const enum CBLAS UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, \bar{c} onst float alpha, const void ${ }^{\star} A$, const int lda, const floāt beta, void *C, const int ldc);
void cblas_zherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const void ${ }^{-} A_{\text {, }}$ const int lda, const double beta, void *C, const int ldc);

?her2k

void cblas_cher2k (const enum CBLAS_ORDER Order, const enum CBLAS UPLO Uplo, const enum CBLAS TRANSPOSE Trans, cons̄t int N, const int K, cōnst void *alpha, const void * \bar{A}, const int lda, const void ${ }^{-} * B$, const int ldb, const float beta, void *C, const int ldc);
void cblas_zher2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, cons̄t int N, const int K, cōnst void *alpha, const void * \bar{A}, const int lda, const void ${ }^{-} * B$, const int ldb, const double beta, void *C, const int ldc);
?symm
void cblas_ssymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int \bar{M}, const int N, const float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc) ;
void cblas dsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int \bar{M}, const int N, const double alpha, const double ${ }^{*} A$, \bar{c} onst int lda, const double $\bar{*}_{B}$, const int ldb, const double beta, double ${ }^{*} \mathrm{C}$, const int ldc);
void cblas_csymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int \bar{M}, const int N, const vōid *alpha, const void *A, cons̄t int lda, const void *B, const int
ldb, const void *beta, void *C, const int ldc);
void cblas zsymm(const enum CBLAS_ORDER Order, const enum CBLAS SIDE Side, const enum CBLAS UPLO Uplo, const int \bar{M}, const int N, const vōid *alpha, const void *A, cons̄t int lda, const void *B, cōnst int ldb, const void *beta, void *C, const int ldc);
?syrk
void cblas_ssyrk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS TRANSPOSE Trans, cons̄t int N, const int K, \bar{c} onst float alpha, const float ${ }^{-}{ }^{A}$, const int lda, const flōat beta, float *C, const int ldc);
void cblas_dsyrk(const enum CBLAS_ORDER Order, const enum CBLAS UPLO Uplo, const enum CBLAS TRANSPOSE Trans, const int N, const int K, \bar{c} onst double alpha, const double *A, const int lda, const $\bar{d} o u b l e ~ b e t a, ~$ double *C, const int ldc);
void cblas_csyrk (const enum CBLAS_ORDER Order, const enum CBLAS UPLO Uplo, const enum CBLAS TRANSPOSE Trans, const int N, const int K, \bar{C} onst void *alpha, const void ${ }^{\star} A$, const int lda, const voī ${ }^{*}$ beta, void *C, const int ldc);
void cblas_zsyrk(const enum CBLAS_ORDER Order, const enum CBLAS UPLO Uplo, const enum CBLAS TRANSPOSE Trans, const int N, const int K, \bar{c} onst void *alpha, const void ${ }^{\star}$ A, const int lda, const voi $\bar{d}{ }^{*}$ beta, void *C, const int ldc);

?syr2k

void cblas_ssyr2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, cōnst float alpha, const float ${ }^{\star} A$, const int lda, const floāt ${ }^{*} B$, const int ldb, const float beta, float *C, const int ldc);
void cblas_dsyr2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS TRANSPOSE Trans, const int N, const int K, cōnst double alpha, const double *A, const int lda, const double *B, const int ldb, const double beta, double ${ }^{*}$ C, const int ldc);
void cblas_csyr2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSP SE Trans, cons̄t int N, const int K, cōnst void *alpha, const void *A, const int lda, const void ${ }^{\mathrm{B}} \mathrm{B}$, const int ldb, const void *beta, void *C, const int ldc);
void cblas_zsyr2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, cons̄t int N, const int K, cōnst void *alpha, const void * \bar{A}, const int lda, const void ${ }^{-} * B$, const int ldb, const void *beta, void *C, const int ldc);

?trmm

void cblas_strmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum ${ }^{\text {CBLAS_TRANSPOSE TransA, }}$, const enum CBLAS_DIAG Diag, \bar{c} onst int M, const int N , const float alpha, const floāt *A, const int lda, float *B, const int ldb);
void cblas_dtrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS UPLO Uplo, const enum ${ }^{-}$CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, \bar{c} onst int M, const int N, const double alpha, const double *A, const int lda, double *B, const int ldb) ;
void cblas_ctrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum ${ }^{-}$CBLAS TRANSPOSE TransA, const enum CBLAS DIAG Diag, $\overline{\text { const }}$ int M, const int N, const void *alpha, const voīd *A, const int lda, void *B, cons \bar{t} int ldb);
void cblas_ztrmm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum ${ }^{-}$CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, \bar{c} onst int M, const int N, const void *alpha, const voíd *A, const int lda, void *B, const int ldb);

?trsm

void cblas_strsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum ${ }^{\text {CBLAS_TRANSPOSE TransA, }}$ const enum CBLAS_DIAG Diag, \bar{c} onst int M, const int N, const float alpha, const floāt *A, const int lda, float *B, const int ldb);
void cblas_dtrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum ${ }^{-}$CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, \bar{c} onst int M, const int N, const double alpha, const double *A, const int lda, double *B, const int ldb) ;
void cblas_ctrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS TRANSPOSE TransA, const enum CBLAS DIAG Diag, \bar{c} onst int M, const int N, const void *alpha, const voīd *A, const int lda, void *B, cons \bar{t} int ldb);
void cblas_ztrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS UPLO Uplo, const enum ${ }^{-}$CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, \bar{c} onst int M, const int N, const void *alpha, const voīd *A, const int lda, void *B, cons \bar{t} int ldb);

Sparse CBLAS

This is an interface to Sparse BLAS Level 1 Routines, which perform a number of common vector operations on sparse vectors stored in compressed form.

Note that all index parameters, indx, are in C-type notation and vary in the range [0..N-1].

```
?axpyi
void cblas_saxpyi(const int N, const float alpha, const float *X, const int *indx, float *Y);
void cblas_daxpyi(const int N, const double alpha, const double *X, const int *indx, double *Y);
void cblas_caxpyi(const int N, const void *alpha, const void *X, const int *indx, void *Y);
void cblas_zaxpyi(const int N, const void *alpha, const void *X, const int *indx, void *Y);
```

?doti
float cblas_sdoti (const int N, const float *X, const int *indx, const float *Y); double cblas_ddoti(const int N, const double *X, const int *indx, const double *Y);

```
?dotci
void cblas_cdotci_sub(const int N, const void *X, const int *indx, const void *Y, void *dotui);
void cblas_zdotci_sub(const int N, const void *X, const int *indx, const void *Y, void *dotui);
```

?dotui
void cblas_cdotui_sub(const int N, const void *X, const int *indx, const void *y, void *dotui);
void cblas_zdotui_sub(const int N, const void *X, const int *indx, const void *Y, void *dotui);
?gthr
void cblas sgthr(const int N, const float *Y, float *X, const int *indx);
void cblas_dgthr (const int N, const double *Y, double *X, const int *indx);
void cblas_cgthr (const int N, const void *Y, void *X, const int *indx);
void cblas_zgthr(const int N, const void *Y, void *X, const int *indx);

```
?gthrz
void cblas sgthrz(const int N, float *Y, float *X, const int *indx);
void cblas_dgthrz(const int N, double *Y, double *X, const int *indx);
void cblas cgthrz(const int N, void *Y, void *X, const int *indx);
void cblas_zgthrz(const int N, void *Y, void *X, const int *indx);
```

?roti
void cblas_sroti(const int N, float *X, const int *indx, float *Y, const float c, const float s);
void cblas_droti(const int N, double *X, const int *indx, double *Y, const double c, const double s);

```
?sctr
void cblas_ssctr(const int N, const float *X, const int *indx, float *Y);
void cblas-dsctr(const int N, const double *X, const int *indx, double *Y);
void cblas_csctr(const int N, const void *X, const int *indx, void *Y);
void cblas_zsctr(const int N, const void *X, const int *indx, void *Y);
```

D

Specific Features of Fortran 95 Interfaces for LAPACK Routines

Intel ${ }^{\circledR}$ MKL implements Fortran 95 interface for LAPACK package, further referred to as MKL LAPACK95, to provide full capacity of MKL FORTRAN 77 LAPACK routines. This is the principal difference of Intel MKL from the Netlib Fortran 95 implementation for LAPACK.
A new feature of MKL LAPACK95 by comparison with Intel MKL LAPACK77 implementation is presenting a package of source interfaces along with wrappers that make the implementation compiler-independent. As a result, the MKL LAPACK package can be used in all programming environments intended for Fortran 95.
Depending on the degree and type of difference from Netlib implementation, the MKL LAPACK95 interfaces fall into several groups that require different transformations (see "MKL Fortran 95 Interfaces for LAPACK Routines vs. Netlib Implementation"). The groups are given in full with the calling sequences of the routines and appropriate differences from Netlib analogs.
The following conventions are used:
<interface> ::= <name of interface> '(' <arguments list>')'
<arguments list> ::= <first argument> \{<argument>\}*
<first argument> ::= < identifier >
<argument> ::= <required argument>|<optional argument>
<required argument> ::= ',' <identifier>
<optional argument> ::= '[,' <identifier> ']'
<name of interface> ::= <identifier>
where defined notions are separated from definitions by $::=$, notion names are marked by angle brackets, terminals are given in quotes, and $\{\ldots\}^{*}$ denotes repetition zero, one, or more times.
<first argument> and each <required argument> should be present in all calls of denoted interface, <optional argument> may be omitted. Comments to interface definitions are provided where necessary. Comment lines begin with character!.
Two interfaces with one name are presented when two variants of subroutine calls (separated by types of arguments) exist.

Interfaces Identical to Netlib

```
GERFS (A,AF,IPIV,B,X[,TRANS][,FERR][,BERR][, INFO])
GETRI (A, IPIV[,INFO])
GEEQU (A, R, C [, ROWCND] [ , COLCND] [, AMAX] [ , INFO] )
GESV (A, B [,IPIV] [,INFO])
GESVX (A, B, X[,AF][,IPIV] [, FACT][,TRANS] [, EQUED] [,R][,C][,FERR] [,BERR]
[,RCOND][,RPVGRW][,INFO])
GTSV (DL, D, DU, B [,INFO])
GTSVX(DL,D,DU,B,X[,DLF] [,DF][,DUF][,DU2][,IPIV] [,FACT] [,TRANS] [,FERR]
[,BERR][,RCOND] [,INFO])
POSV (A, B [,UPLO] [, INFO])
POSVX(A,B,X[,UPLO][,AF][,FACT][,EQUED][,S [ [, FERR][,BERR][,RCOND][, INFO])
PTSV (D, E, B[,INFO])
PTSVX(D,E,B,X[,DF][,EF][,FACT][,FERR][,BERR][,RCOND][,INFO])
SYSV (A, B[,UPLO] [,IPIV][,INFO])
SYSVX(A,B,X[,UPLO] [,AF][,IPIV] [,FACT] [,FERR] [,BERR] [,RCOND][,INFO])
HESVX (A,B,X[,UPLO][,AF][,IPIV][,FACT] [,FERR][,,BERR][,RCOND][,INFO])
HESV (A, B [,UPLO] [,IPIV] [,INFO])
SPSV(AP,B [, UPLO][,IPIV][,INFO])
HPSV (AP, B [, UPLO] [,IPIV] [, INFO])
SYTRD (A, TAU [, UPLO][,INFO])
ORGTR (A,TAU [,UPLO] [,INFO])
HETRD (A,TAU[,UPLO][,INFO])
UNGTR (A,TAU [,UPLO] [,INFO])
SYGST (A,B [,ITYPE][,UPLO][,INFO])
HEGST (A, B [,ITYPE] [,UPLO][,INFO])
```

```
GELS (A, B [,TRANS ] [, INFO] )
GELSY (A, B [, RANK] [, JPVT] [, RCOND] [, INFO])
GELSS (A,B [, RANK][,S][,RCOND][,INFO])
GELSD (A, B [, RANK] [, S] [,,RCOND] [,INFO])
GGLSE (A,B,C,D,X[,INFO])
GGGLM (A,B,D,X,Y[,INFO])
SYEV (A,W[,JOBZ] [, UPLO] [, INFO])
HEEV (A,W[,JOBZ] [,UPLO] [, INFO])
SYEVD (A,W [, JOBZ][,UPLO] [,INFO])
HEEVD (A,W[, JOBZ] [,UPLO] [, INFO])
STEV(D,E[,Z][,INFO])
STEVD(D,E[,Z][,INFO])
STEVX (D, E,W[,Z][,VL][,VU][,IL][,IU] [,M] [,IFAIL] [,ABSTOL][,INFO])
STEVR(D,E,W[,Z][,VL][,VU][,IL][,IU] [,M] [,ISUPPZ][,ABSTOL][,INFO])
GEES (A,WR,WI[,VS] [, SELECT][,SDIM][,INFO])
GEES (A,W[,VS] [, SELECT] [, SDIM] [, INFO] )
GEESX (A,WR,WI [,VS] [,SELECT] [, SDIM] [, RCONDE] [,RCONDV] [, INFO])
GEESX (A,W[,VS] [, SELECT] [, SDIM] [, RCONDE] [, RCONDV] [, INFO])
GEEV (A,WR,WI[,VL][,VR][,INFO])
GEEV (A,W[,VL] [,VR] [,INFO])
GEEVX (A,WR,WI [,VL][,VR][,BALANC][,ILO][,IHI][,SCALE] [, ABNRM] [, RCONDE][,RCONDV][,INFO])
GEEVX (A,W[,VL][,VR] [, BALANC] [,ILO] [,IHI] [, SCALE] [,ABNRM] [, RCONDE ]
[,RCONDV] [, INFO])
GESVD (A, S [, U] [,VT] [,WW] [, JOB] [, INFO] )
GGSVD (A, B, ALPHA, BETA [, K][,L][,U][,V][,Q][,IWORK][,INFO])
SYGV (A, B,W[,ITYPE][, JOBZ] [,UPLO][,INFO])
HEGV (A, B, W[,ITYPE] [, JOBZ] [, UPLO][,INFO])
SYGVD (A, B,W [,ITYPE] [, JOBZ ] [, UPLO] [, INFO])
HEGVD (A, B,W[,ITYPE] [, JOBZ ] [, UPLO] [,INFO])
SPGVD (AP,BP,W[,ITYPE] [,UPLO] [, Z][,INFO])
HPGVD (AP, BP,W[,ITYPE] [,UPLO] [, Z] [,INFO])
SPGVX (AP, BP,W[,ITYPE] [, UPLO][,Z][,VL] [,VU][,IL] [,IU] [,M] [,IFAIL] [,ABSTOL][,INFO])
HPGVX (AP, BP,W[,ITYPE] [, UPLO][,Z][,VL][,VU][,IL] [,IU][,M] [,IFAIL][,ABSTOL][,INFO])
SBGVD (AB, BB,W[, UPLO] [, Z] [, INFO])
HBGVD (AB, BB,W[,UPLO] [, Z][,INFO])
SBGVX (AB, BB,W[,UPLO][,Z][,VL][,VU][,IL] [,IU][,M] [,IFAIL][,Q][,ABSTOL][,INFO])
HBGVX (AB, BB,W[, UPLO] [, Z] [,VL] [,VU][,IL] [,IU][,M] [,IFAIL] [, Q] [,ABSTOL][,INFO])
GGES (A, B, ALPHAR,ALPHAI, BETA [,VSL] [,VSR] [, SELECT] [, SDIM] [,INFO])
GGES (A, B, ALPHA, BETA [,VSL] [,VSR] [, SELECT] [, SDIM] [,INFO])
GGESX (A, B, ALPHAR, ALPHAI, BETA [,VSL][,VSR] [,SELECT] [, SDIM] [, RCONDE] [,RCONDV] [, INFO])
GGEV (A, B, ALPHAR,ALPHAI, BETA [,VL] [,VR] [, INFO])
GGEV (A, B, ALPHA, BETA [,VL][,VR] [, INFO])
GGEVX (A, B, ALPHAR, ALPHAI, BETA [,VL] [,VR] [,BALANC] [,ILO] [,IHI] [, LSCALE] [,RSCALE] [,ABNRM]
[, BBNRM] [, RCONDE][,RCONDV][,INFO])
GGEVX (A, B,ALPHA, BETA [,VL] [,VR] [,BALANC] [,ILO] [, IHI] [,LSCALE] [, RSCALE] [,ABNRM]
[, BBNRM][, RCONDE][, RCONDV][,INFO])
```


Interfaces with Replaced Argument Names

Argument names in the routines of this group are replaced as follows:

Netlib Argument Name	MKL Argument Name
A	AB
A	AP
AF	AFB
AF	AFP
B	BB
B	BP
K	KL

GBSV (AB, B [, KL] [, IPIV] [, INFO])
! netlib: (A, B, K, IPIV,INFO)

```
GBSVX (AB, B, X[,KL][,AFB][,IPIV][,FACT][,TRANS][,EQUED][,R][,C][,FERR]
[,BERR] [,RCOND] [,RPVGRW][,INFO])
! netlib: (A, B, X, KL,AF,IPIV,FACT, TRANS, EQUED, R, C,FERR,
! BERR,RCOND,RPVGRW,INFO)
```

```
PPSV(AP,B[,UPLO][,INFO])
! netlib: (A, B, UPLO,INFO)
PPSVX(AP, B, X[,UPLO] [,AFP] [,FACT] [,EQUED][,S][,FERR] [,BERR] [,RCOND] [,INFO])
! netlib: (A, B, X,UPLO,AF,FACT,EQUED,S,FERR,BERR,RCOND, INFO)!
PBSV (AB,B[,UPLO][,INFO])
! netlib: (A, B, UPLO,INFO)
PBSVX(AB,B,X[,UPLO] [,AFB] [,FACT][,EQUED][,S][,FERR][,BERR][,RCOND] [,INFO])
! netlib: (A, B, X,UPLO,AF,FACT,EQUED,S,FERR,BERR,RCOND, INFO)!
SPSVX (AP, B, X[,UPLO] [,AFP] [,IPIV][,FACT][,FERR][,BERR][,RCOND][,INFO])
! netlib: (A, B, X, UPLO,AF,IPIV,FACT, FERR,BERR, RCOND,INFO)
HPSVX (AP, B, X[,UPLO] [,AFP] [,IPIV][,FACT] [,FERR][,BERR][,RCOND][,INFO])
! netlib: (A, B, X, UPLO,AF, IPIV, FACT, FERR, BERR, RCOND, INFO)
SPEV(AP,W[,UPLO][,Z][,INFO])
! netlib: (A,W,UPLO, Z, INFO)
HPEV(AP,W[,UPLO][,Z][,INFO])
! netlib: (A,W, UPLO, Z, INFO)
SPEVD(AP,W[,UPLO][,Z][,INFO])
! netlib: (A,W,UPLO,Z,INFO)
HPEVD (AP,W[,UPLO][,Z][,INFO])
! netlib: (A,W,UPLO,Z,INFO)
SPEVX (AP,W[,UPLO] [,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])
! netlib: (A, B,W, UPLO,Z,VL, VU,IL,IU,M,IFAIL,ABSTOL,INFO)
HPEVX(AP,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M] [,IFAIL][,ABSTOL][, INFO])
! netlib: (A, B,W,UPLO,Z,VL,VU,IL,IU,M,IFAIL,ABSTOL,INFO)
SBEV(AB,W[,UPLO][,Z][,INFO])
! netlib: (A,W,UPLO,Z,INFO)
HBEV (AB,W[,UPLO][, Z][,INFO])
! netlib: (A,W,UPLO, Z, INFO)
SBEVD (AB,W[,UPLO] [,Z][,INFO])
! netlib: (A,W,UPLO,Z, INFO)
HBEVD (AB,W[,UPLO] [,Z][,INFO])
! netlib: (A,W,UPLO,Z,INFO)
SBEVX (AB,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,Q][,ABSTOL][,INFO])
! netlib: (A,B,W,UPLO,Z,VL,VU,IL,IU,M,IFAIL,Q,ABSTOL,INFO)
HBEVX (AB,W[,UPLO] [,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,Q][,ABSTOL][,INFO])
! netlib: (A,B,W,UPLO,Z,VL,VU,IL,IU,M,IFAIL, Q, ABSTOL, INFO)
SPGV (AP,BP,W[,ITYPE][,UPLO][,Z][,INFO])
! netlib: (A,B,W,ITYPE,UPLO,Z,INFO)
HPGV(AB, BP,W[,ITYPE][,UPLO][,Z][,INFO])
! netlib: (A, B,W,ITYPE,UPLO,Z,INFO)
SBGV (AB,BB,W[,UPLO] [,Z][,INFO])
! netlib: (A, B, W, UPLO, Z, INFO)
HBGV (AB, BB,W[,UPLO] [,Z] [, INFO])
! netlib: (A, B,W, UPLO,Z,INFO)
```


Modified Netlib Interfaces

```
SYEVX (A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])
! Interface netlib95 exists, parameters:
    netlib: (A,W, JOBZ,UPLO,VL,VU,IL,IU, M, IFAIL, ABSTOL, INFO)
    Different order for parameter UPLO, netlib: 4, mkl: 3
    Absent mkl parameter: JOBZ
! Extra mkl parameter: Z
HEEVX (A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,W, JOBZ,UPLO,VL,VU, IL,IU,M, IFAIL, ABSTOL, INFO)
    Different order for parameter UPLO, netlib: 4, mkl: 3
    Absent mkl parameter: JOBZ
! Extra mkl parameter: Z
SYEVR(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,ISUPPZ][,ABSTOL][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,W, JOBZ, UPLO,VL,VU, IL,IU,M, ISUPPZ, ABSTOL, INFO)
! Different order for parameter UPLO, netlib: 4, mkl: 3
! Absent mkl parameter: JOBZ
! Extra mkl parameter: Z
HEEVR(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,ISUPPZ][,ABSTOL][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,W, JOBZ, UPLO, VL, VU, IL,IU, M, ISUPPZ, ABSTOL, INFO)
! Different order for parameter UPLO, netlib: 4, mkl: 3
! Absent mkl parameter: JOBZ
! Extra mkl parameter: Z
```

```
GESDD (A,S [,U] [,VT] [,JOBZ] [,INFO])
```

GESDD (A,S [,U] [,VT] [,JOBZ] [,INFO])
! Interface netlib95 exists, parameters:
! Interface netlib95 exists, parameters:
! netlib: (A, S,U,VT,WW, JOB, INFO)
! netlib: (A, S,U,VT,WW, JOB, INFO)
Different number for parameter, netlib: 7, mkl: 6
Different number for parameter, netlib: 7, mkl: 6
Absent mkl parameter: WW
Absent mkl parameter: WW
Absent mkl parameter: JOB
Absent mkl parameter: JOB
Different order for parameter INFO, netlib: 7, mkl: 6
Different order for parameter INFO, netlib: 7, mkl: 6
! Extra mkl parameter: JOBZ
! Extra mkl parameter: JOBZ
SYGVX(A,B,W[,ITYPE][,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A, B,W,ITYPE, JOBZ,UPLO,VL,VU,IL, IU, M, IFAIL, ABSTOL, INFO)
Different order for parameter UPLO, netlib: 6, mkl: 5
Absent mkl parameter: JOBZ
Extra mkl parameter: Z
HEGVX(A,B,W[,ITYPE][,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A, B,W,ITYPE, JOBZ,UPLO,VL,VU,IL,IU,M, IFAIL,ABSTOL, INFO)
! Different order for parameter UPLO, netlib: 6, mkl: 5
! Absent mkl parameter: JOBZ
! Extra mkl parameter: Z
GETRS (A,IPIV,B[,TRANS][,INFO])
! Interface netlib95 exists:
! Different intents for parameter A, netlib: INOUT, mkl: IN

```

\section*{Interfaces Absent From Netlib}
```

GTTRF (DL, D, DU, DU2 [, IPIV][, INFO])
PPTRF (A [, UPLO][,INFO])
PBTRF (A [, UPLO][,INFO])
PTTRF (D,E[,INFO])
SYTRF(A[,UPLO][,IPIV][,INFO])
HETRF (A[,UPLO][,IPIV][,INFO])

```
```

SPTRF (A[,UPLO][,IPIV][,INFO])
HPTRF (A[,UPLO][,IPIV][,INFO])
GBTRS (A,B,IPIV[,KL][,TRANS][,INFO])
GTTRS (DL, D, DU, DU2, B,IPIV [,TRANS][,INF0])
POTRS (A, B[,UPLO][,INFO])
PPTRS (A, B [, UPLO] [,INFO])
PBTRS (A,B[,UPLO][,INFO])
PTTRS (D,E,B[,INFO])
PTTRS (D,E,B[,UPLO][,INFO])
SYTRS (A,B,IPIV[,UPLO][,INFO])
HETRS (A, B, IPIV[,UPLO] [, INFO])
SPTRS (A,B,IPIV [,UPLO][,INFO])
HPTRS (A, B, IPIV[,UPLO] [, INFO])
TRTRS (A,B[,UPLO][,TRANS][,DIAG][,INFO])
TPTRS (A, B[,UPLO][,TRANS][,DIAG][,INFO])
TBTRS (A,B[,UPLO][,TRANS][,DIAG][,INFO])
GECON (A, ANORM, RCOND [, NORM] [, INFO])
GBCON (A,IPIV, ANORM, RCOND [,KL] [,NORM] [,INFO])
GTCON (DL, D, DU, DU2,IPIV, ANORM, RCOND [,NORM] [, INFO])
POCON (A, ANORM, RCOND [, UPLO] [,INFO])
PPCON (A, ANORM, RCOND [, UPLO] [, INFO])
PBCON (A, ANORM, RCOND [, UPLO] [, INFO])
PTCON (D, E, ANORM, RCOND [, INFO])
SYCON (A, IPIV, ANORM, RCOND [, UPLO] [, INFO])
HECON (A, IPIV, ANORM, RCOND [, UPLO] [, INFO])
SPCON (A, IPIV, ANORM, RCOND [,UPLO] [, INFO])
HPCON (A, IPIV, ANORM, RCOND [, UPLO] [, INFO])
TRCON (A,RCOND [,UPLO][,DIAG] [,NORM] [,INFO])
TPCON (A, RCOND [,UPLO] [,DIAG] [,NORM] [, INFO])
TBCON (A, RCOND [, UPLO] [,DIAG] [,NORM] [, INFO])
GBRFS (A,AF,IPIV,B,X[,KL][,TRANS][,FERR][,BERR][,INFO])
GTRFS (DL, D, DU, DLF,DF, DUF, DU2,IPIV,B,X[,TRANS][,FERR] [,BERR][,INFO])
PORFS (A,AF, B, X[,UPLO][,FERR][,BERR][,INFO])
PPRFS (A, AF, B, X[,UPLO] [,FERR][,BERR][, INFO])
PBRFS (A,AF,B,X[,UPLO][,FERR][,BERR][,INFO])
PTRFS (D,DF,E,EF,B,X[,FERR][,BERR][,INFO])
PTRFS(D,DF, E,EF,B,X[,UPLO][,FERR] [,BERR][,INFO])
SYRFS (A,AF,IPIV,B, X [, UPLO] [,FERR] [,BERR][,INFO])
HERFS (A, AF, IPIV,B,X[, UPLO] [,FERR] [,BERR] [,INF0])
SPRFS (A,AF,IPIV,B,X[,UPLO][,FERR] [,BERR][,INFO])
HPRFS (A,AF,IPIV,B,X[,UPLO] [,FERR] [,BERR][,INF0])
TRRFS (A, B, X [, UPLO] [,TRANS][,DIAG] [,FERR] [,BERR] [, INFO])
TPRFS (A,B,X[, UPLO][,TRANS][,DIAG] [,FERR][,BERR] [,INFO])
TBRFS (A, B, X[,UPLO] [,TRANS][,DIAG][,FERR][,BERR] [, INFO])
POTRI (A[,UPLO][,INFO])
PPTRI (A[,UPLO] [, INFO])
SYTRI (A,IPIV [,UPLO] [, INFO])
HETRI (A,IPIV [,UPLO] [, INFO])
SPTRI (A,IPIV [,UPLO] [, INFO])
HPTRI (A, IPIV [,UPLO] [, INFO])
TRTRI (A[,UPLO][,DIAG][, INFO])
TPTRI (A[,UPLO][,DIAG][, INFO])
GBEQU (A,R,C [, KL] [,ROWCND] [,COLCND] [,AMAX] [, INFO])
POEQU (A, S [, SCOND] [, AMAX] [,INFO])
PPEQU (A, S[,SCOND] [, AMAX] [,UPLO][,INFO])
PBEQU (A, S [, SCOND] [, AMAX] [,UPLO] [, INFO])
HESV (A, B[,UPLO][,IPIV][,INFO])
HPSV (A, B[,UPLO][,IPIV][,INFO])
GEQRF (A [, TAU] [, INFO])
GEQPF (A,JPVT[,TAU][,INFO])
GEQP3 (A, JPVT[,TAU][,INFO])
ORGQR (A,TAU [,INFO])
ORMQR (A,TAU,C [,SIDE] [,TRANS] [, INFO])
UNGQR (A,TAU[, INFO])
UNMQR (A, TAU, C [,SIDE][,TRANS] [, INFO])
GELQF (A [,TAU] [, INFO])
ORGLQ (A,TAU[,INFO])
ORMLQ (A,TAU,C[,SIDE][,TRANS][,INFO])
UNGLQ (A, TAU [, INFO])
UNMLQ (A, TAU,C[,SIDE][,TRANS][,INFO])
GEQLF (A [,TAU] [,INFO])

```
```

ORGQL (A,TAU[,INFO])
UNGQL (A, TAU [, INFO])
ORMQL (A,TAU,C[,SIDE][,TRANS][,INFO])
UNMQL (A, TAU,C[,SIDE][,TRANS][,INFO])
GERQF (A [,TAU] [,INFO])
ORGRQ (A,TAU[,INFO])
UNGRQ (A, TAU [, INFO])
ORMRQ (A,TAU,C [,SIDE] [,TRANS] [,INFO])
UNMRQ (A,TAU,C[,SIDE][,TRANS][,INFO])
TZRZF (A[,TAU][,INFO])
ORMRZ (A,TAU,C,L[,SIDE][,TRANS][,INFO])
UNMRZ (A,TAU,C,L[,SIDE][,TRANS][,INFO])
GGQRF (A, B [,TAUA][,TAUB][,INFO])
GGRQF (A, B [,TAUA][,TAUB] [,INFO])
GEBRD (A[,D] [,E][,TAUQ][,TAUP][,INFO])
GBBRD (A [,C][,D][,E][,Q][,PT][,KL][,M][,INFO])
ORGBR (A,TAU [,VECT][,INFO])
ORMBR (A,TAU,C[,VECT][,SIDE][,TRANS][,INFO])
ORMTR (A, TAU, C[,SIDE][,UPLO] [, TRANS] [, INFO])
UNGBR (A,TAU[,VECT][,INFO])
UNMBR (A, TAU, C [,VECT][,SIDE] [, TRANS][, INFO])
BDSQR (D,E[,VT][,U][,C][,UPLO][,INFO])
BDSDC (D, E[,U][,VT][,Q][,IQ][,UPLO][,INFO])
UNMTR (A,TAU,C[,SIDE][,UPLO][,TRANS][,INFO])
SPTRD (A,TAU [, UPLO][,INFO])
OPGTR (A,TAU,Q[,UPLO][,INFO])
OPMTR (A,TAU,C [, SIDE][,UPLO] [, TRANS] [, INFO])
HPTRD (A,TAU[,UPLO][,INFO])
UPGTR (A,TAU, Q[,UPLO][,INFO])
UPMTR (A,TAU, C[,SIDE][,UPLO][,TRANS][,INFO])
SBTRD (A[,Q] [,VECT] [,UPLO] [, INFO])
HBTRD (A[,Q] [,VECT][,UPLO][,INFO])
STERF (D,E[, INFO])
STEQR(D,E[,Z][,COMPZ][,INFO])
STEDC (D, E[,Z][,COMPZ][,INFO])
STEGR(D,E,W[, Z] [,VL][,VU][,IL][,IU][,M] [,ISUPPZ][,ABSTOL][,INFO])
PTEQR (D,E[,Z] [,COMPZ][,INFO])
STEBZ (D,E,M,NSPLIT,W,IBLOCK,ISPLIT[,ORDER][,VL][,VU][,IL][,IU][,ABSTOL][,INFO])
STEIN(D,E,W,IBLOCK,ISPLIT, Z[,IFAILV][,INFO])
DISNA (D, SEP [, JOB] [,MINMN] [,INFO])
SPGST (A,B[,ITYPE][,UPLO][,INFO])
HPGST (A, B [,ITYPE] [,UPLO][,INFO])
SBGST (A,B [, X] [, UPLO][, INFO])
HBGST (A, B [, X] [, UPLO] [, INFO])
PBSTF (B [,UPLO][,INFO])
GEHRD (A[,TAU][,ILO] [,IHI][,INFO])
ORGHR (A,TAU[,ILO] [,IHI][,INFO])
ORMHR (A, TAU, C[,ILO] [,IHI] [,SIDE][,TRANS][,INFO])
UNGHR (A,TAU[,ILO] [,IHI] [,INFO])
UNMHR (A, TAU,C[,ILO] [,IHI][,SIDE] [,TRANS] [,INFO])
GEBAL (A[,SCALE][,ILO][,IHI][,JOB][,INFO])
GEBAK (V,SCALE [,ILO] [,IHI] [, JOB] [,SIDE] [,INF0])
HSEQR (H,WR,WI [,ILO] [,IHI][, Z] [, JOB] [, COMPZ] [, INFO])
HSEQR (H,W [,ILO] [, IHI] [, Z] [, JOB] [, COMPZ] [, INFO])
HSEIN(H,WR,WI,SELECT[,VL] [,VR][,IFAILL][,IFAILR][,INITV][,EIGSRC][,M][,INFO])
HSEIN (H,W,SELECT[,VL][,VR][,IFAILL][,IFAILR][,INITV][,EIGSRC][,M][,INFO])
TREVC (T [, HOWMNY] [,SELECT] [,VL][,VR] [,M] [, INFO])
TRSNA(T[,S][,SEP][,VL][,VR][,SELECT][,M][,INFO])
TREXC (T,IFST, ILST [,Q] [, INFO])
TRSEN(T,SELECT[,WR][,WI][,M][,S][,SEP][,Q][,INFO])
TRSEN(T,SELECT[,W][,M][,S][,SEP][,Q][,INFO])
TRSYL (A, B, C,SCALE [,TRANA] [,TRANB] [,ISGN] [,INFO])
GGHRD (A, B [, ILO] [, IHI] [,Q] [, Z] [, COMPQ] [, COMPZ] [, INFO])
GGBAL (A, B[,ILO] [,IHI] [, LSCALE][,RSCALE] [,JOB] [,INFO])
GGBAK (V [, ILO] [, IHI] [, LSCALE] [, RSCALE] [, JOB] [, INFO])
HGEQZ (H,T[,ILO][,IHI][,ALPHAR][,ALPHAI][,BETA][,Q][, Z][,JOB][,COMPQ][,COMPZ][,INFO])
HGEQZ (H,T[,ILO][,IHI][,ALPHA][,BETA][,Q][,Z][,JOB][,COMPQ][,COMPZ][,INFO])
TGEVC (S, P [, HOWMNY] [,SELECT] [,VL][,VR] [,M] [,INFO])
TGEXC (A, B [,IFST][,ILST] [, Z] [, Q] [, INFO])
TGSEN(A,B,SELECT[,ALPHAR][,ALPHAI][,BETA][,IJOB][,Q][,Z][,PL][,PR][,DIF][,M][,INFO])
TGSEN (A, B, SELECT[,ALPHA][,BETA][,IJOB][,Q][,Z][,PL][,PR][,DIF][,M][,INFO])

```

\section*{Interfaces of New Functionality}
```

GETRF (A [,IPIV][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,IPIV,RCOND,NORM, INFO)
! Different number for parameter, netlib: 5, mkl: 3
! Different order for parameter INFO, netlib: 5, mkl: 3
! Absent mkl parameter: NORM
! Absent mkl parameter: RCOND

```
GBTRF (A [, KL] [, M] [, IPIV] [, INFO])
! Interface netlib95 exists, parameters:
! netlib: (A, K, M, IPIV, RCOND, NORM, INFO)
! Different number for parameter, netlib: 7, mkl: 5
! Different order for parameter INFO, netlib: 7, mkl: 5
! Absent mkl parameter: NORM
! Replace parameter name: netlib: K: mkl: KL
! Absent mkl parameter: RCOND
POTRF (A [, UPLO][, INFO])
! Interface netlib95 exists, parameters:
! netlib: (A, UPLO, RCOND, NORM, INFO)
! Different number for parameter, netlib: 5, mkl: 3
! Different order for parameter INFO, netlib: 5, mkl: 3
! Absent mkl parameter: NORM
! Absent mkl parameter: RCOND

\section*{FFTW Interface to Intel® Math Kernel Library}

\begin{abstract}
Intel \({ }^{\circledR}\) Math Kernel Library (Intel \({ }^{\circledR}\) MKL) offers FFTW2 and FFTW3 interfaces to Intel MKL Fast Fourier Transform and Trigonometric Transform functionality. The purpose of these interfaces is to enable applications using FFTW (www.fftw.org) to gain performance with Intel MKL without changing the program source code.

Both FFTW2 and FFTW3 interfaces are provided in open source as FFTW wrappers to Intel MKL. For ease of use, FFTW3 interface is also integrated in Intel MKL.
\end{abstract}

\section*{Notational Conventions}

This appendix typically employs path notations for Windows* OS.

\section*{FFTW2 Interface to Intel® Math Kernel Library}

This section describes a collection of wrappers providing FFTW 2.x interface to Intel MKL. The wrappers translate calls to FFTW 2.x functions into the calls of the Intel MKL Fast Fourier Transform interface (FFT interface).

The wrappers correspond to the FFTW version \(2 . x\) and the Intel MKL versions 7.0 or higher.
Because of differences between FFTW and Intel MKL FFT functionalities, there are restrictions on using wrappers instead of the FFTW functions. Some FFTW functions have empty wrappers. However, many typical FFTs can be computed using these wrappers.
Refer to chapter 11 "Fourier Transform Functions", for better understanding the effects from the use of the wrappers.

More wrappers may be added in the future to extend FFTW functionality available with Intel MKL.

\section*{Wrappers Reference}

The section provides a brief reference for the FFTW 2.x C interface. For details please refer to the original FFTW 2.x documentation available at www.fftw.org.

Each FFTW function has its own wrapper. Some of them, which are not expressly listed in this section, are empty and do nothing, but they are provided to avoid link errors and satisfy the function calls.
Intel MKL FFT interface operates on both float and double-precision data types.

\section*{One-dimensional Complex-to-complex FFTs}

The following functions compute a one-dimensional complex-to-complex Fast Fourier transform.
```

fftw_plan fftw_create_plan(int n, fftw_direction dir, int flags);
fftw_plan fftw_create_plan_specific(int n, fftw_direction dir, int flags, fftw_complex
*in, int istride, fftw_complex *out, int ostride);
void fftw(fftw_plan plan, int howmany, fftw_complex *in, int istride, int idist,
fftw_complex *out, int ostride, int odist);
void fftw_one(fftw_plan plan, fftw_complex *in , fftw_complex *out);
void fftw_destroy_plan(fftw_plan plan);

```

\section*{Multi-dimensional Complex-to-complex FFTs}

The following functions compute a multi-dimensional complex-to-complex Fast Fourier transform.
```

fftwnd_plan fftwnd_create_plan(int rank, const int *n, fftw_direction dir, int flags);
fftwnd_plan fftw2d_create_plan(int nx, int ny, fftw_direction dir, int flags);
fftwnd_plan fftw3d_create_plan(int nx, int ny, int nz, fftw_direction dir, int flags);
fftwnd_plan fftwnd_create_plan_specific(int rank, const int *n, fftw_direction dir, int
flags, fftw_complex *in, int istride, fftw_complex *out, int ostride);
fftwnd_plan fftw2d_create_plan_specific(int nx, int ny, fftw_direction dir, int flags,
fftw_complex *in, int istride, fftw_complex *out, int ostride);
fftwnd_plan fftw3d_create_plan_specific(int nx, int ny, int nz, fftw_direction dir, int
flags, fftw_complex *in, int istride, fftw_complex *out, int ostride);
void fftwnd(fftwnd_plan plan, int howmany, fftw_complex *in, int istride, int idist,
fftw_complex *out, int ostride, int odist);
void fftwnd_one(fftwnd_plan plan, fftw_complex *in, fftw_complex *out);
void fftwnd_destroy_plan(fftwnd_plan plan);

```

\section*{One-dimensional Real-to-half-complex/Half-complex-to-real FFTs}

Half-complex representation of a conjugate-even symmetric vector of size \(N\) in a real array of the same size \(N\) consists of \(N / 2+1\) real parts of the elements of the vector followed by non-zero imaginary parts in the reverse order. Because the Intel MKL FFT interface does not currently support this representation, all wrappers of this kind are empty and do nothing.
Nevertheless, you can perform one-dimensional real-to-complex and complex-to-real transforms using rfftwnd functions with rank=1.

\section*{See Also}

Multi-dimensional Real-to-complex/Complex-to-real FFTs

\section*{Multi-dimensional Real-to-complex/Complex-to-real FFTs}

The following functions compute multi-dimensional real-to-complex and complex-to-real Fast Fourier transforms.
```

rfftwnd_plan rfftwnd_create_plan(int rank, const int *n, fftw_direction dir, int
flags);
rfftwnd_plan rfftw2d_create_plan(int nx, int ny, fftw_direction dir, int flags);
rfftwnd_plan rfftw3d_create_plan(int nx, int ny, int nz, fftw_direction dir, int
flags);
rfftwnd_plan rfftwnd_create_plan_specific(int rank, const int *n, fftw_direction dir,
int flags, fftw_real *in, int istride, fftw_real *out, int ostride);
rfftwnd_plan rfftw2d_create_plan_specific(int nx, int ny, fftw_direction dir, int
flags, fftw_real *in, int istride, fftw_real *out, int ostride);
rfftwnd_plan rfftw3d_create_plan_specific(int nx, int ny, int nz, fftw_direction dir,
int flags, fftw_real *in, int istride, fftw_real *out, int ostride);
void rfftwnd_real_to_complex(rfftwnd_plan plan, int howmany, fftw_real *in, int

```

```

void rfftwnd_complex_to_real(rfftwnd_plan plan, int howmany, fftw_complex *in, int
istride, int idist, fftw_real *out, int ostride, int odist);
void rfftwnd_one_real_to_complex(rfftwnd_plan plan, fftw_real *in, fftw_complex *out);

```
```

void rfftwnd_one_complex_to_real(rfftwnd_plan plan, fftw_complex *in, fftw_real *out);
void rfftwnd_destroy_plan(rfftwnd_plan plan);

```

\section*{Multi-threaded FFTW}

This section discusses multi-threaded FFTW wrappers only. MPI FFTW wrappers, available only with Intel MKL for the Linux* and Windows* operating systems, are described in section "MPI FFTW Wrappers".
Unlike the original FFTW interface, every computational function in the FFTW2 interface to Intel MKL provides multithreaded computation by default, with the number of threads defined by the number of processors available on the system (see section "Managing Performance and Memory" in the Intel MKL User's Guide). To limit the number of threads that use the FFTW interface, call the threaded FFTW computational functions:
```

void fftw_threads(int nthreads, fftw_plan plan, int howmany, fftw_complex *in, int
istride, int idist, fftw_complex *out, int ostride, int odist);
void fftw_threads_one(int nthreads, rfftwnd_plan plan, fftw_complex *in, fftw_complex
*out);
void rfftwnd_threads_real_to_complex(int nthreads, rfftwnd_plan plan, int howmany,
fftw_real *in

```

Compared to its non-threaded counterpart, every threaded computational function has threads_ as the second part of its name and additional first parameter nthreads. Set the nthreads parameter to the thread limit to ensure that the computation requires at most that number of threads.

\section*{FFTW Support Functions}

The FFTW wrappers provide memory allocation functions to be used with FFTW:
```

void* fftw_malloc(size_t n);
void fftw_free(void* x);

```

The fftw_malloc wrapper aligns the memory on a 16-byte boundary.
If fftw_malloc fails to allocate memory, it aborts the application. To override this behavior, set a global variable fftw_malloc_hook and optionally the complementary variable fftw_free_hook:
void *(*fftw_malloc_hook) (size_t n);
void (*fftw_free_hook) (void *p);
The wrappers use the function fftw_die to abort the application in cases when a caller cannot be informed of an error otherwise (for example, in computational functions that return void). To override this behavior, set a global variable fftw_die_hook:
void (*fftw_die_hook) (const char *error_string);
void fftw_die(const char *s);

\section*{Limitations of the FFTW2 Interface to Intel MKL}

The FFTW2 wrappers implement the functionality of only those FFTW functions that Intel MKL can reasonably support. Other functions are provided as no-operation functions, whose only purpose is to satisfy link-time symbol resolution. Specifically, no-operation functions include:
- Real-to-half-complex and respective backward transforms
- Print plan functions
- Functions for importing/exporting/forgetting wisdom
- Most of the FFTW functions not covered by the original FFTW2 documentation

Because the Intel MKL implementation of FFTW2 wrappers does not use plan and plan node structures declared in fftw.h, the behavior of an application that relies on the internals of the plan structures defined in that header file is undefined.

FFTW2 wrappers define plan as a set of attributes, such as strides, used to commit the Intel MKL FFT descriptor structure. If an FFTW2 computational function is called with attributes different from those recorded in the plan, the function attempts to adjust the attributes of the plan and recommit the descriptor. Thus, repeated calls of a computational function with the same plan but different strides, distances, and other parameters may be performance inefficient.
Plan creation functions disregard most planner flags passed through the flags parameter. These functions take into account only the following values of flags:
- FFTW_IN_PLACE

If this value of flags is supplied, the plan is marked so that computational functions using that plan ignore the parameters related to output (out, ostride, and odist). Unlike the original FFTW interface, the wrappers never use the out parameter as a scratch space for in-place transforms.
- FFTW_THREADSAFE

If this value of flags is supplied, the plan is marked read-only. An attempt to change attributes of a read-only plan aborts the application.
FFTW wrappers are generally not thread safe. Therefore, do not use the same plan in parallel user threads simultaneously.

\section*{Calling Wrappers from Fortran}

The FFTW2 wrappers to Intel MKL provide the following subroutines for calling from Fortran:
```

call fftw_f77_create_plan(plan, n, dir, flags)
call fftw_f77(plan, howmany, in, istride, idist, out, ostride, odist)
call fftw_f77_one(plan, in, out)
call fftw_f77_threads(nthreads, plan, howmany, in, istride, idist, out, ostride,
odist)
call fftw_f77_threads_one(nthreads, plan, in, out)
call fftw_f77_destroy_plan(plan)
call fftwnd_f77_create_plan(plan, rank, n, dir, flags)
call fftw2d_f77_create_plan(plan, nx, ny, dir, flags)
call fftw3d_f77_create_plan(plan, nx, ny, nz, dir, flags)
call fftwnd_f77(plan, howmany, in, istride, idist, out, ostride, odist)
call fftwnd_f77_one(plan, in, out)
call fftwnd_f77_threads(nthreads, plan, howmany, in, istride, idist, out, ostride,
odist)
call fftwnd_f77_threads_one(nthreads, plan, in, out)
call fftwnd_f77_destroy_plan(plan)
call rfftw_f77_create_plan(plan, n, dir, flags)
call rfftw_f77(plan, howmany, in, istride, idist, out, ostride, odist)
call rfftw_f77_one(plan, in, out)
call rfftw_f77_threads(nthreads, plan, howmany, in, istride, idist, out, ostride,
odist)
call rfftw_f77_threads_one(nthreads, plan, in, out)
call rfftw_f77_destroy_plan(plan)
call rfftwnd_f77_create_plan(plan, rank, n, dir, flags)

```
```

call rfftw2d_f77_create_plan(plan, nx, ny, dir, flags)
call rfftw3d_f77_create_plan(plan, nx, ny, nz, dir, flags)
call rfftwnd_f77_complex_to_real(plan, howmany, in, istride, idist, out, ostride,
odist)
call rfftwnd_f77_one_complex_to_real (plan, in, out)
call rfftwnd_f77_real_to_complex(plan, howmany, in, istride, idist, out, ostride,
odist)
call rfftwnd_f77_one_real_to_complex (plan, in, out)
call rfftwnd_f77_threads_complex_to_real(nthreads, plan, howmany, in, istride, idist,
out, ostride, odist)
call rfftwnd_f77_threads_one_complex_to_real(nthreads, plan, in, out)
call rfftwnd_f77_threads_real_to_complex(nthreads, plan, howmany, in, istride, idist,
out, ostride, odist)
call rfftwnd_f77_threads_one_real_to_complex(nthreads, plan, in, out)
call rfftwnd_f77_destroy_plan(plan)
call fftw_f77_threads_init(info)

```

The FFTW Fortran functions are actually the wrappers to FFTW C functions. So, their functionality and limitations are the same as of the corresponding C wrappers.

\section*{See Also}

\section*{Wrappers Reference}

Limitations of the FFTW2 Interface to Intel MKL

\section*{Installation}

Wrappers are delivered as source code, which you must compile to build the wrapper library. Then you can substitute the wrapper and Intel MKL libraries for the FFTW library. The source code for the wrappers and makefiles with the wrapper list files are located in the . \interfaces \(\backslash f f t w 2 x c\) and . \(\backslash\) interfaces \(\backslash f f t w 2 x f\) subdirectory in the Intel MKL directory for C and Fortran wrappers, respectively.

\section*{Creating the Wrapper Library}

Two header files are used to compile the C wrapper library: fftw2_mkl.h and fftw.h. The fftw2_mkl.h file is located in the . \(\backslash\) interfaces \(\backslash f f t w 2 \mathrm{xc} \backslash\) wrappers subdirectory in the Intel MKL directory.
Three header files are used to compile the Fortran wrapper library: fftw2_mkl.h, fftw2_f77_mkl.h, and fftw.h. The fftw2_mkl.h and fftw2_f77_mkl.h files are located in the . \interfaces \(\backslash f f t w 2 x f\) \(\backslash\) wrappers subdirectory in the Intel MKL directory.
The file fftw.h, used to compile libraries for both interfaces and located in the . \(\backslash i n c l u d e \backslash f f t w\) subdirectory in the Intel MKL directory, slightly differs from the original FFTW (www.fftw.org) header file fftw.h.
The source code for the wrappers, makefiles, and function list files are located in subdirectories . \interfaces \(\backslash f f t w 2 \mathrm{xc}\) and. interfaces \(\backslash f f t w 2 \mathrm{xf}\) in the Intel MKL directory for C and Fortran wrappers, respectively.
A wrapper library contains C or Fortran wrappers for complex and real transforms in a serial and multithreaded mode for one of the two data types (double or float). A makefile parameter manages the data type.
The makefile parameters specify the platform (required), compiler, and data precision. Specifying the platform is required. The makefile comment heading provides the exact description of these parameters.

Because a C compiler builds the Fortran wrapper library, function names in the wrapper library and Fortran object module may be different. The file fftw2_f77_mkl.h in the . \interfaces \fftw \(2 \times f \backslash\) source subdirectory in the Intel MKL directory defines function names according to the names in the Fortran module. If a required name is missing in the file, you can modify the file to add the name before building the library.

To build the library, run the make command on Linux* OS and Mac OS* \(X\) or the nmake command on Windows* OS with appropriate parameters.
For example, the command
make libintel64
builds on Linux OS a double-precision wrapper library for Intel \({ }^{\circledR} 64\) architecture based applications using the Intel \({ }^{\circledR}\) C++ Compiler or the Intel \({ }^{\circledR}\) Fortran Compiler version 9.1 or higher (compilers and data precision are chosen by default.).

Each makefile creates the library in the directory with the Intel MKL libraries corresponding to the used platform. For example, ./lib/ia32 (on Linux OS and Mac OS X) or . \lib\ia32 (on Windows* OS).
In the wrapper library names, the suffix corresponds to the used compiler, the letter " \(f\) " precedes the underscore for Fortran, and the letter "c" precedes the underscore for C .

For example,
fftw2xf_intel.lib (on Windows OS); libfftw2xf_intel.a (on Linux OS and Mac OS X);
fftw2xc_intel.lib (on Windows OS); libfftw2xc_intel.a (on Linux OS and Mac OS X);
fftw2xc_ms.lib (on Windows OS); libfftw2xc_gnu.a (on Linux OS and Mac OS X).

\section*{Application Assembling}

Use the necessary original FFTW (www.fftw.org) header files without any modifications. Use the created wrapper library and the Intel MKL library instead of the FFTW library.

\section*{Running Examples}

Intel MKL provides examples to demonstrate how to use the MPI FFTW wrapper library. The source code for the examples, makefiles used to run them, and the example list files are located in the . \examples \(\backslash f f t w 2 x c\) and . \(\backslash e x a m p l e s \backslash f f t w 2 x f\) subdirectories in the Intel MKL directory for C and Fortran, respectively. To build examples, several additional files are needed: fftw.h, fftw_threads.h, rfftw.h, rfftw_threads.h, and fftw_f77.I. These files are distributed with permission from FFTW and are available in . \include fftw . The original files can also be found in FFTW 2.1 .5 at http://www.fftw.org/ download.html.
An example makefile uses the function parameter in addition to the parameters that the respective wrapper library makefile uses (see Creating a Wrapper Library). The makefile comment heading provides the exact description of these parameters.
An example makefile normally invokes examples. However, if the appropriate wrapper library is not yet created, the makefile first builds the library the same way as the wrapper library makefile does and then proceeds to examples.
If the parameter function=<example_name> is defined, only the specified example runs. Otherwise, all examples from the appropriate subdirectory run. The subdirectory . \(\backslash\) _results is created, and the results are stored there in the <example_name>. res files.

\section*{MPI FFTW Wrappers}

MPI FFTW wrappers for FFTW 2 are available only with Intel \({ }^{\circledR}\) MKL for the Linux* and Windows* operating systems.

\section*{MPI FFTW Wrappers Reference}

The section provides a reference for MPI FFTW C interface.

\section*{Complex MPI FFTW}

\section*{Complex One-dimensional MPI FFTW Transforms}
```

fftw_mpi_plan fftw_mpi_create_plan(MPI_Comm comm, int n, fftw_direction dir, int
flags);
void fftw_mpi(fftw_mpi_plan p, int n_fields, fftw_complex *local_data, fftw_complex
*Work);
void fftw_mpi_local_sizes(fftw_mpi_plan p, int *local_n, int *local_start, int
*local_n_after_transform, int *local_start_after_transform, int *total_local_size);
void fftw_mpi_destroy_plan(fftw_mpi_plan plan);

```

Argument restrictions:
- Supported values of flags are FFTW_ESTIMATE, FFTW_MEASURE, FFTW_SCRAMBLED_INPUT and FFTW_SCRAMBLED_OUTPUT. The same algorithm corresponds to all these values of the flags parameter. If any other flags value is supplied, the wrapper library reports an error 'CDFT error in wrapper: unknown flags'.
- The only supported value of \(n_{-} f i e l d s\) is 1 .

\section*{Complex Multi-dimensional MPI FFTW Transforms}
```

fftwnd_mpi_plan fftw2d_mpi_create_plan(MPI_Comm comm, int nx, int ny, fftw_direction
dir, int flags);
fftwnd_mpi_plan fftw3d_mpi_create_plan(MPI_Comm comm, int nx, int ny, int nz,
fftw_direction dir, int flags);
fftwnd_mpi_plan fftwnd_mpi_create_plan(MPI_Comm comm, int dim, int *n, fftw_direction
dir, int flags);
void fftwnd_mpi(fftwnd_mpi_plan p, int n_fields, fftw_complex *local_data, fftw_complex
*work, fftwnd_mpi_output_order output_order);
void fftwnd_mpi_local_sizes(fftwnd_mpi_plan p, int *local_nx, int *local_x_start, int
*local_ny_after_transpose, int *local_y_start_after_transpose, int *total_local_size);
void fftwnd_mpi_destroy_plan(fftwnd_mpi_plan plan);

```

\section*{Argument restrictions:}
- Supported values of flags are FFTw_ESTIMATE and FFTW_MEASURE. If any other value of flags is supplied, the wrapper library reports an error 'CDFT error in wrapper: unknown flags'.
- The only supported value of \(n_{-} f i e l d s\) is 1 .

\section*{Real MPI FFTW}

\section*{Real-to-Complex MPI FFTW Transforms}
```

rfftwnd_mpi_plan rfftw2d_mpi_create_plan(MPI_Comm comm, int nx, int ny, fftw_direction
dir, int flags);
rfftwnd_mpi_plan rfftw3d_mpi_create_plan(MPI_Comm comm, int nx, int ny, int nz,
fftw_direction dir, int flags);
rfftwnd_mpi_plan rfftwnd_mpi_create_plan(MPI_Comm comm, int dim, int *n, fftw_direction
dir, int flags);
void rfftwnd_mpi(rfftwnd_mpi_plan p, int n_fields, fftw_real *local_data, fftw_real
*work, fftwnd_mpi_output_order output_order);

```
void rfftwnd_mpi_local_sizes(rfftwnd_mpi_plan p, int *local_nx, int *local_x_start, int
*local_ny_after_transpose, int *local_y_start_after_transpose, int *total_local_size);
void rfftwnd_mpi_destroy_plan(rfftwnd_mpi_plan plan);
Argument restrictions:
- Supported values of flags are FFTW_ESTIMATE and FFTW_MEASURE. If any other value of flags is supplied, the wrapper library reports an error 'CDFT error in wrapper: unknown flags'.
- The only supported value of \(n_{-} f i e l d s\) is 1 .

\(\square\)
- Function rfftwnd_mpi_create_plan can be used for both one-dimensional and multi-dimensional transforms.
- Both values of the output_order parameter are supported: FFTW_NORMAL_ORDER and FFTW_TRANSPOSED_ORDER.

\section*{Creating MPI FFTW Wrapper Library}

The source code for the wrappers, makefile, and wrapper list file are located in the . \interfaces \(\backslash f f t w 2 x\) _cdft subdirectory in the Intel MKL directory.
A wrapper library contains C wrappers for Complex One-dimensional MPI FFTW Transforms and Complex Multi-dimensional MPI FFTW Transforms. The library also contains empty C wrappers for Real Multidimensional MPI FFTW Transforms. For details, see MPI FFTW Wrappers Reference.
The makefile parameters specify the platform (required), compiler, and data precision. Specifying the platform is required. The makefile comment heading provides the exact description of these parameters.

To build the library, run the make command on Linux* OS and Mac OS* X or the nmake command on Windows* OS with appropriate parameters.
For example, the command
make libintel64
builds on Linux OS a double-precision wrapper library for Intel 64 architecture based applications using Intel MPI 2.0 and the Intel \({ }^{\ominus}\) C++ Compiler version 9.1 or higher (compilers and data precision are chosen by default.).
The makefile creates the wrapper library in the directory with the Intel MKL libraries corresponding to the used platform. For example, ./lib/ia32 (on Linux OS) or . \lib\ia32 (on Windows* OS).
In the wrapper library names, the suffix corresponds to the used data precision. For example,
fftw2x_cdft_SINGLE.lib on Windows OS;
libfftw2x_cdft_DOUBLE. a on Linux OS.

\section*{Application Assembling with MPI FFTW Wrapper Library}

Use the necessary original FFTW (www.fftw.org) header files without any modifications. Use the created MPI FFTW wrapper library and the Intel MKL library instead of the FFTW library.

\section*{Running Examples}

There are some examples that demonstrate how to use the MPI FFTW wrapper library for FFTW2. The source C code for the examples, makefiles used to run them, and the example list files are located in the .
\examples \(\backslash f f t w 2 x\) cdft subdirectory in the Intel MKL directory. To build examples, one additional file fftw_mpi.h is needed. This file is distributed with permission from FFTW and is available in . \include \fftw. The original file can also be found in FFTW 2.1.5 at http://www.fftw.org/download.html.
Parameters for the example makefiles are described in the makefile comment headings and are similar to the wrapper library makefile parameters (see Creating MPI FFTW Wrapper Library).

The table below lists examples available in the . \examples \(\backslash f f t w 2 x \_c d f t \backslash s o u r c e ~ s u b d i r e c t o r y\).
```

Examples of MPI FFTW Wrappers
Source file for the example Description
wrappers_c1d.c
wrappers_c2d.c
wrappers_c3d.c
wrappers_c4d.c
wrappers_r1d.c
wrappers_r2d.c
wrappers_r3d.c
wrappers_r4d.c

```

\section*{Description}

One-dimensional Complex MPI FFTW transform, using plan = fftw_mpi_create_plan(...)

Two-dimensional Complex MPI FFTW transform, using plan = fftw2d_mpi_create_plan(...)

Three-dimensional Complex MPI FFTW transform, using plan = fftw3d_mpi_create_plan(...)

Four-dimensional Complex MPI FFTW transform, using plan = fftwnd_mpi_create_plan(...)

One-dimensional Real MPI FFTW transform, using plan = rfftw_mpi_create_plan(...)

Two-dimensional Real MPI FFTW transform, using plan = rfftw2d_mpi_create_plan(...)

Three-dimensional Real MPI FFTW transform, using plan = rfftw3d_mpi_create_plan(...)

Four-dimensional Real MPI FFTW transform, using plan = rfftwnd_mpi_create_plan(...)

\section*{FFTW3 Interface to Intel® Math Kernel Library}

This section describes a collection of FFTW3 wrappers to Intel MKL. The wrappers translate calls of FFTW3 functions to the calls of the Intel MKL Fourier transform (FFT) or Trigonometric Transform (TT) functions. The purpose of FFTW3 wrappers is to enable developers whose programs currently use the FFTW3 library to gain performance with the Intel MKL Fourier transforms without changing the program source code.
The wrappers correspond to the FFTW release 3.2 and the Intel MKL releases starting with 10.2. For a detailed description of FFTW interface, refer to www.fftw.org. For a detailed description of Intel MKL FFT and TT functionality the wrappers use, see chapter 11 and section "Trigonometric Transform Routines" in chapter 13, respectively.
The FFTW3 wrappers provide a limited functionality compared to the original FFTW 3.2 library, because of differences between FFTW and Intel MKL FFT and TT functionality. This section describes limitations of the FFTW3 wrappers and hints for their usage. Nevertheless, many typical FFT tasks can be performed using the FFTW3 wrappers to Intel MKL. More functionality may be added to the wrappers and Intel MKL in the future to reduce the constraints of the FFTW3 interface to Intel MKL.
The FFTW3 wrappers are integrated in Intel MKL. The only change required to use Intel MKL through the FFTW3 wrappers is to link your application using FFTW3 against Intel MKL.

A reference implementation of the FFTW3 wrappers is also provided in open source. You can find it in the interfaces directory of the Intel MKL distribution. You can use the reference implementation to create your own wrapper library (see Building Your Own Wrapper Library)

\section*{Using FFTW3 Wrappers}

The FFTW3 wrappers are a set of functions and data structures depending on one another. The wrappers are not designed to provide the interface on a function-per-function basis. Some FFTW3 wrapper functions are empty and do nothing, but they are present to avoid link errors and satisfy function calls.

This manual does not list the declarations of the functions that the FFTW3 wrappers provide (you can find the declarations in the fftw3.h header file). Instead, this section comments particular limitations of the wrappers and provides usage hints:
- The FFTW3 wrappers do not support long double precision because Intel MKL FFT functions operate only on single- and double-precision floating-point data types (float and double, respectively). Therefore the functions with prefix fftwl_, supporting the long double data type, are not provided.
- The wrappers provide equivalent implementation for double- and single-precision functions (those with prefixes \(f f t w\) _ and \(£ f t w f_{\text {_ }}\), respectively). So, all these comments equally apply to the double- and single-precision functions and will refer to functions with prefix \(f f t w\), , that is, double-precision functions, for brevity.
- The FFTW3 interface that the wrappers provide is defined in header files fftw3.h and fftw3.f. These files are borrowed from the FFTW3.2 package and distributed within Intel MKL with permission. Additionally, files \(f f t w 3\) _mkl.h, fftw3_mkl.f, and fftw3_mkl_f77.h define supporting structures, supplementary constants and macros, and expose Fortran interface in C.
- Actual functionality of the plan creation wrappers is implemented in guru64 set of functions. Basic interface, advanced interface, and guru interface plan creation functions call the guru64 interface functions. Thus, all types of the FFTW3 plan creation interface in the wrappers are functional.
- Plan creation functions may return a NULL plan, indicating that the functionality is not supported. So, please carefully check the result returned by plan creation functions in your application. In particular, the following problems return a NULL plan:
- c2r and r2c problems with a split storage of complex data.
- r2r problems with kind values FFTW_R2HC, FFTW_HC2R, and FFTW_DHT. The only supported r2r kinds are even/odd DFTs (sine/cosine transforms).
- Multidimensional r2r transforms.
- Transforms of multidimensional vectors. That is, the only supported values for parameter howmany_rank in guru and guru64 plan creation functions are 0 and 1.
- Multidimensional transforms with rank > MKL_MAXRANK.
- The MKL_RODFTOO value of the kind parameter is introduced by the FFTW3 wrappers. For better performance, you are strongly encouraged to use this value rather than FFTW_RODFTOO. To use this kind value, provide an extra first element equal to 0.0 for the input/output vectors. Consider the following example:
plan1 \(=\) fftw_plan_r2r_1d(n, in1, out1, FFTW RODFT00, FFTW ESTIMATE);
plan2 \(=\) fftw plan r2r_1d(n, in2, out2, MKL RODFT00, FFTW ESTIMATE);
plan2 = fftw_plan_r2r_1d(n, in2, out2, MKL_RODFTOO, FFTW_ESTIMATE);
Both plans perform the same transform, except that the in2/out2 arrays have one extra zero element at location 0 . For example, if \(n=3\), in \(1=\{x, y, z\}\) and out \(1=\{u, v, w\}\), then in \(2=\{0, x, y, z\}\) and out \(2=\{0, u, v, w\}\).
- The flags parameter in plan creation functions is always ignored. The same algorithm is used regardless of the value of this parameter. In particular, flags values FFTW_ESTIMATE, FFTW_MEASURE, etc. have no effect.
- For multithreaded plans, use normal sequence of calls to the fftw_init_threads() and fftw_plan_with_nthreads () functions (refer to FFTW documentation).
- FFTW \(\overline{3}\) wrappers are not fully thread safe. If the new-array execute functions, such as
fftw_execute_dft (), share the same plan from parallel user threads, set the number of the sharing threads before creation of the plan. For this purpose, the FFTW3 wrappers provide a header file fftw3_mkl.h, which defines a global structure fftw3_mkl with a field to be set to the number of sharing thread \(\bar{s}\). Below is an example of setting the number of sharing threads:
\#include "fftw3.h"
\#include "fftw3_mkl.h"
fftw3_mkl.number_of_user_threads = 4;
plan \(\equiv\) fftw_plan_dft (...);
- Memory allocation function fftw_malloc returns memory aligned at a 16 -byte boundary. You must free the memory with fftw_free.
- The FFTW3 wrappers to Intel MKL use the 32-bit int type in both LP64 and ILP64 interfaces of Intel MKL. Use guru64 FFTW3 interfaces for 64-bit sizes.
- Fortran wrappers (see Calling Wrappers from Fortran) use the INTEGER type, which is 32-bit in LP64 interfaces and 64-bit in ILP64 interfaces.
- The wrappers typically indicate a problem by returning a NULL plan. In a few cases, the wrappers may report a descriptive message of the problem detected. By default the reporting is turned off. To turn it on, set variable fftw3_mkl. verbose to a non-zero value, for example:
\#include "fftw3.h"
\#include "fftw3 mkl.h"
fftw3_mkl.verbose \(=0\);
plan =fftw_plan_r2r(...);
- The following functions are empty:
- For saving, loading, and printing plans
- For saving and loading wisdom
- For estimating arithmetic cost of the transforms.
- Do not use macro FFTW_DLL with the FFTW3 wrappers to Intel MKL.
- Do not use negative stride values. Though FFTW3 wrappers support negative strides in the part of advanced and guru FFTW interface, the underlying implementation does not.

\section*{Calling Wrappers from Fortran}

Intel MKL also provides Fortran 77 interfaces of the FFTW3 wrappers. The Fortran wrappers are available for all FFTW3 interface functions and are based on C interface of the FFTW3 wrappers. Therefore they have the same functionality and restrictions as the corresponding C interface wrappers.

The Fortran wrappers use the default INTEGER type for integer arguments. The default INTEGER is 32-bit in Intel MKL LP64 interfaces and 64-bit in ILP64 interfaces. Argument plan in a Fortran application must have type INTEGER*8.
The wrappers that are double-precision subroutines have prefix dfftw_, single-precision subroutines have prefix sfftw_ and provide an equivalent functionality. Long double subroutines (with prefix lfftw_) are not provided.
The Fortran FFTW3 wrappers use the default Intel \({ }^{\circledR}\) Fortran compiler convention for name decoration. If your compiler uses a different convention, or if you are using compiler options affecting the name decoration (such as /Qlowercase), you may need to compile the wrappers from sources, as described in section Building Your Own Wrapper Library.
For interoperability with C, the declaration of the Fortran FFTW3 interface is provided in header file include/ fftw/fftw3_mkl_f77.h.
You can call Fortran wrappers from a FORTRAN 77 or Fortran 90 application, although Intel MKL does not provide a Fortran 90 module for the wrappers. For a detailed description of the FFTW Fortran interface, refer to FFTW3 documentation (www.fftw.org).
The following example illustrates calling the FFTW3 wrappers from Fortran:
```

INTEGER*8 plan
INTEGER N
INCLUDE 'fftw3.f'
COMPLEX*16 IN(*), OUT(*)
!...initialize array IN
CALL DFFTW_PLAN_DFT_1D(PLAN, N, IN, OUT, -1, FFTW_ESTIMATE)
IF (PLAN .\overline{EQ. O)}
CALL DFFTW_EXECUTE
!...result is in array OUT

```

\section*{Building Your Own Wrapper Library}

The FFTW3 wrappers to Intel MKL are delivered both integrated in Intel MKL and as source code, which can be compiled to build a standalone wrapper library with exactly the same functionality. Normally you do not need to build the wrappers yourself. However, if your Fortran application is compiled with a compiler that uses a different name decoration than the Intel® Fortran compiler or if you are using compiler options altering the Fortran name decoration, you may need to build the wrappers that use the appropriate name changing convention.

The source code for the wrappers, makefiles, and function list files are located in subdirectories.
\interfaces \(\backslash f f t w 3 x c\) and . \(\backslash i n t e r f a c e s \backslash f f t w 3 x f\) in the Intel MKL directory for C and Fortran wrappers, respectively.
To build the wrappers,
1. Change the current directory to the wrapper directory
2. Run the make command on Linux* OS and Mac OS* \(X\) or the nmake command on Windows* OS with a required target and optionally several parameters.

The target, that is, one of \{libia32, libintel64\}, defines the platform architecture, and the other parameters facilitate selection of the compiler, size of the default INTEGER type, and placement of the resulting wrapper library. You can find a detailed and up-to-date description of the parameters in the makefile.

In the following example, the make command is used to build the FFTW3 Fortran wrappers to MKL for use from the GNU g77 Fortran compiler on Linux OS based on Intel \({ }^{\circledR} 64\) architecture:
```

cd interfaces/fftw3xf
make libintel64 compiler=gnu fname=a_name__ install_to=/my/path

```

This command builds the wrapper library using the GNU gcc compiler, decorates the name with the second underscore, and places the result, named libfftw3xf_gcc.a, into directory/my/path. The name of the resulting library is composed of the name of the compiler used and may be changed by an optional parameter.

\section*{Building an Application}

Normally, the only change needed to build your application with FFTW3 wrappers replacing original FFTW library is to add Intel MKL at the link stage (see section "Linking Your Application with Intel® Math Kernel Library" in the Intel MKL User's Guide).
If you recompile your application, add subdirectory include \(\backslash f f t w\) to the search path for header files to avoid FFTW3 version conflicts.

Sometimes, you may have to modify your application according to the following recommendations:
- The application requires
\#include "fftw3.h",
which it probably already includes.
- The application does not require
\#include "mkl_dfti.h" .
- The application does not require
\#include "fftw3_mkl.h".
It is required only in case you want to use the MKL_RODFTOO constant.
- If the application does not check whether a NULL plan is returned by plan creation functions, this check must be added, because the FFTW3 to Intel MKL wrappers do not provide \(100 \%\) of FFTW3 functionality.
- If the application is threaded, take care about shared plans, because the execute functions in the wrappers are not thread safe, unlike the original FFTW3 functions. See a note about setting fftw3_mkl.number_of_user_threads in section "Using FFTW3 wrappers".

\section*{Running Examples}

There are some examples that demonstrate how to use the wrapper library. The source code for the examples, makefiles used to run them, and the example list files are located in the . \examples \(\backslash f f t w 3 x c\) and . \examples \(\backslash f f t w 3 x f\) subdirectories in the Intel MKL directory. To build Fortran examples, one additional file \(f f t w 3 . f\) is needed. This file is distributed with permission from FFTW and is available in the . \include \fftw subdirectory of the Intel MKL directory. The original file can also be found in FFTW 3.2 at http://www.fftw.org/download.html.

Example makefile parameters are similar to the wrapper library makefile parameters. Example makefiles normally build and invoke the examples. If the parameter function=<example_name> is defined, then only the specified example will run. Otherwise, all examples will be executed. Results of running the examples are saved in subdirectory . \_results in files with extension .res.
For detailed information about options for the example makefile, refer to the makefile.

\section*{MPI FFTW Wrappers}

This section describes a collection of MPI FFTW wrappers to Intel® MKL. The wrappers correspond to the FFTW 3.3 Alpha release and the Intel MKL releases starting with 10.3. For a detailed description of the MPI FFTW interface, refer to www.fftw.org.
MPI FFTW wrappers are available only with Intel MKL for the Linux* and Windows* operating systems.
These wrappers translate calls of MPI FFTW functions to the calls of the Intel MKL cluster Fourier transform (CFFT) functions. The purpose of the wrappers is to enable users of MPI FFTW functions improve performance of the applications without changing the program source code.
Although the MPI FFTW wrappers provide less functionality than the original FFTW 3.3 because of differences between MPI FFTW and Intel MKL CFFT, the wrappers cover many typical CFFT use cases.
The MPI FFTW wrappers are provided as source code. To use the wrappers, you need to build your own wrapper library (see Building Your Own Wrapper Library).

\section*{See Also}

\section*{Cluster FFT Functions}

\section*{Building Your Own Wrapper Library}

The MPI FFTW wrappers for FFTW3 are delivered as source code, which can be compiled to build a wrapper library.
The source code for the wrappers, makefiles, and function list files are located in subdirectory . \interfaces fftw3x_cdft in the Intel MKL directory.

To build the wrappers,
1. Change the current directory to the wrapper directory
2. Run the make command on Linux* OS or the nmake command on Windows* OS with a required target and optionally several parameters.
The target, that is, one of \{libia32, libintel64\}, defines the platform architecture, and the other parameters specify the compiler, size of the default INTEGER type, as well as the name and placement of the resulting wrapper library. You can find a detailed and up-to-date description of the parameters in the makefile.
In the following example, the make command is used to build the MPI FFTW wrappers to Intel MKL for use from the GNU C compiler on Linux OS based on Intel \({ }^{\circledR} 64\) architecture:
```

cd interfaces/fftw3x cdft
make libintel64 compíler=gnu mpi=openmpi INSTALL_DIR=/my/path

```

This command builds the wrapper library using the GNU gcc compiler so that the final user executable can use Open MPI and places the result, named libfftw3x_cdft_DOUBLE. a, into directory /my/path.

\section*{Building an Application}

Normally, the only change needed to build your application with MPI FFTW wrappers replacing original FFTW3 library is to add Intel MKL and the wrapper library at the link stage (see section "Linking Your Application with Inte \({ }^{\circledR}\) Math Kernel Library" in the Intel MKL User's Guide).
When you are recompiling your application, add subdirectory include \(\backslash f f t w\) to the search path for header files to avoid FFTW3 version conflicts.

\section*{Running Examples}

There are some examples that demonstrate how to use the MPI FFTW wrapper library for FFTW3. The source code for the examples, makefiles used to run them, and the example list files are located in the . \examples \(\backslash f f t w 3 x\) _cdft subdirectory in the Intel MKL directory.

Example makefile parameters are similar to the wrapper library makefile parameters. Example makefiles normally build and invoke the examples. Results of running the examples are saved in subdirectory . \_results in files with extension .res.
For detailed information about options for the example makefile, refer to the makefile.

\section*{See Also}

Building Your Own Wrapper Library

\section*{Bibliography}

For more information about the BLAS, Sparse BLAS, LAPACK, ScaLAPACK, Sparse Solver, VML, VSL, FFT, and Non-Linear Optimization Solvers functionality, refer to the following publications:
- BLAS Level 1
C. Lawson, R. Hanson, D. Kincaid, and F. Krough. Basic Linear Algebra Subprograms for Fortran Usage, ACM Transactions on Mathematical Software, Vol.5, No. 3 (September 1979) 308-325.
- BLAS Level 2
J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended Set of Fortran Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.14, No. 1 (March 1988) 1-32.
- BLAS Level 3
J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling. A Set of Level 3 Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software (December 1989).
- Sparse BLAS
D. Dodson, R. Grimes, and J. Lewis. Sparse Extensions to the FORTRAN Basic Linear Algebra Subprograms, ACM Transactions on Math Software, Vol.17, No. 2 (June 1991).
D. Dodson, R. Grimes, and J. Lewis. Algorithm 692: Model Implementation and Test Package for the Sparse Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.17, No. 2 (June 1991).
[Duff86]
[CXML01]
[Rem05]
[Saad94]
[Saad96]
- LAPACK
[AndaPark94]
[Bischof92]
[Demmel92]
[deRijk98]
[Dhillon04]
[Dhillon04-02]
[Dhillon97]
[Drmac08-1]
I.S.Duff, A.M.Erisman, and J.K.Reid. Direct Methods for Sparse Matrices. Clarendon Press, Oxford, UK, 1986.
Compaq Extended Math Library. Reference Guide, Oct. 2001.
K.Remington. A NIST FORTRAN Sparse Blas User's Guide. (available on http:// math.nist.gov/~KRemington/fspblas/)
Y.Saad. SPARSKIT: A Basic Tool-kit for Sparse Matrix Computation. Version 2, 1994.(http://www.cs.umn.edu/~saad)
Y.Saad. Iterative Methods for Linear Systems. PWS Publishing, Boston, 1996.
A. A. Anda and H. Park. Fast plane rotations with dynamic scaling, SIAM J. matrix Anal. Appl., Vol. 15 (1994), pp. 162-174.
http://citeseer.ist.psu.edu/bischof92framework.html
J. Demmel and K. Veselic. Jacobi's method is more accurate than QR, SIAM J. Matrix Anal. Appl. 13(1992):1204-1246.
P. P. M. De Rijk. A one-sided Jacobi algorithm for computing the singular value decomposition on a vector computer, SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371.
I. Dhillon, B. Parlett. Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices, Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
I. Dhillon, B. Parlett. Orthogonal Eigenvectors and * Relative Gaps, SIAM Journal on Matrix Analysis and Applications, Vol. 25, 2004. (Also LAPACK Working Note 154.)
I. Dhillon. A new \(O\left(n^{\wedge} 2\right)\) algorithm for the symmetric tridiagonal eigenvalue/ eigenvector problem, Computer Science Division Technical Report No. UCB/ CSD-97-971, UC Berkeley, May 1997.
Z. Drmac and K. Veselic. New fast and accurate Jacobi SVD algorithm I, SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. LAPACK Working note 169.
[Drmac08-2]
[Drmac08-3]
[Drmac08-4]
[Golub96]
[LUG]
[Kahan66]
[Marques06]
[Sutton09]
- ScaLAPACK
[SLUG]

\section*{- Sparse Solver}
[Duff99]
[Dong95]
[Karypis98]
[Li99]
[Liu85]
[Menon98]
[Saad03]
[Schenk00]
[Schenk00-2]
Z. Drmac and K. Veselic. New fast and accurate Jacobi SVD algorithm II, SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. LAPACK Working note 170.
Z. Drmac and K. Bujanovic. On the failure of rank-revealing \(Q R\) factorization software - a case study, ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28. LAPACK Working note 176.
Z. Drmac. Implementation of Jacobi rotations for accurate singular value computation in floating point arithmetic, SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222.
G. Golub and C. Van Loan. Matrix Computations, Johns Hopkins University Press, Baltimore, third edition,1996.
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide, Third Edition, Society for Industrial and Applied Mathematics (SIAM), 1999.
W. Kahan. Accurate Eigenvalues of a Symmetric Tridiagonal Matrix, Report CS41, Computer Science Dept., Stanford University, July 21, 1966.
O.Marques, E.J.Riedy, and Ch.Voemel. Benefits of IEEE-754 Features in Modern Symmetric Tridiagonal Eigensolvers, SIAM Journal on Scientific Computing, Vol.28, No.5, 2006. (Tech report version in LAPACK Working Note 172 with the same title.)
Brian D. Sutton. Computing the complete CS decomposition, Numer. Algorithms, 50(1):33-65, 2009.
L. Blackford, J. Choi, A.Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K.Stanley, D. Walker, and R. Whaley. ScaLAPACK Users' Guide, Society for Industrial and Applied Mathematics (SIAM), 1997.
I. S. Duff and J. Koster. The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices. SIAM J. Matrix Analysis and Applications, 20(4):889-901, 1999.
J. Dongarra, V.Eijkhout, A.Kalhan. Reverse Communication Interface for Linear Algebra Templates for Iterative Methods. UT-CS-95-291, May 1995. http:// www.netlib.org/lapack/lawnspdf/lawn99.pdf
G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing, 20(1): 359-392, 1998.
X.S. Li and J.W. Demmel. A Scalable Sparse Direct Solver Using Static Pivoting. In Proceeding of the 9th SIAM conference on Parallel Processing for Scientific Computing, San Antonio, Texas, March 22-34,1999.
J.W.H. Liu. Modification of the Minimum-Degree algorithm by multiple elimination. ACM Transactions on Mathematical Software, 11(2):141-153, 1985.
R. Menon L. Dagnum. OpenMP: An Industry-Standard API for Shared-Memory Programming. IEEE Computational Science \& Engineering, 1:46-55, 1998. http://www.openmp.org.
Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd edition, SIAM, Philadelphia, PA, 2003.
O. Schenk. Scalable Parallel Sparse LU Factorization Methods on Shared Memory Multiprocessors. PhD thesis, ETH Zurich, 2000.
O. Schenk, K. Gartner, and W. Fichtner. Efficient Sparse LU Factorization with Left-right Looking Strategy on Shared Memory Multiprocessors. BIT, 40(1): 158-176, 2000.
[Schenk01]
[Schenk02]
[Schenk03]
[Schenk04]
[Sonn89]
[Young71]

\section*{- VSL}
[Billor00]
[Bratley87]
[Bratley88]
[Bratley92]
[Coddington94]
[Gentle98]
[L'Ecuyer94]
[L'Ecuyer99]
[L'Ecuyer99a]
[L'Ecuyer01]
[Kirkpatrick81]
[Knuth81]
[Maronna02]
[Matsumoto98]
O. Schenk and K. Gartner. Sparse Factorization with Two-Level Scheduling in PARDISO. In Proceeding of the 10th SIAM conference on Parallel Processing for Scientific Computing, Portsmouth, Virginia, March 12-14, 2001.
O. Schenk and K. Gartner. Two-level scheduling in PARDISO: Improved Scalability on Shared Memory Multiprocessing Systems. Parallel Computing, 28:187-197, 2002.
O. Schenk and K. Gartner. Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO. Journal of Future Generation Computer Systems, 20(3):475-487, 2004.
O. Schenk and K. Gartner. On Fast Factorization Pivoting Methods for Sparse Symmetric Indefinite Systems. Technical Report, Department of Computer Science, University of Basel, 2004, submitted.
P. Sonneveld. CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 10:36-52, 1989.
D.M.Young. Iterative Solution of Large Linear Systems. New York, Academic Press, Inc., 1971.

Nedret Billor, Ali S. Hadib, and Paul F. Velleman. BACON: blocked adaptive computationally efficient outlier nominators. Computational Statistics \& Data Analysis, 34, 279-298, 2000.
Bratley P., Fox B.L., and Schrage L.E. A Guide to Simulation. 2nd edition. Springer-Verlag, New York, 1987.
Bratley P. and Fox B.L. Implementing Sobol's Quasirandom Sequence Generator, ACM Transactions on Mathematical Software, Vol. 14, No. 1, Pages 88-100, March 1988.
Bratley P., Fox B.L., and Niederreiter H. Implementation and Tests of LowDiscrepancy Sequences, ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 3, Pages 195-213, July 1992.
Coddington, P. D. Analysis of Random Number Generators Using Monte Carlo Simulation. Int. J. Mod. Phys. C-5, 547, 1994.
Gentle, James E. Random Number Generation and Monte Carlo Methods, Springer-Verlag New York, Inc., 1998.
L'Ecuyer, Pierre. Uniform Random Number Generation. Annals of Operations Research, 53, 77-120, 1994.
L'Ecuyer, Pierre. Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure. Mathematics of Computation, 68, 225, 249-260, 1999.

L'Ecuyer, Pierre. Good Parameter Sets for Combined Multiple Recursive Random Number Generators. Operations Research, 47, 1, 159-164, 1999. L'Ecuyer, Pierre. Software for Uniform Random Number Generation: Distinguishing the Good and the Bad. Proceedings of the 2001 Winter Simulation Conference, IEEE Press, 95-105, Dec. 2001.
Kirkpatrick, S., and Stoll, E. A Very Fast Shift-Register Sequence Random Number Generator. Journal of Computational Physics, V. 40. 517-526, 1981. Knuth, Donald E. The Art of Computer Programming, Volume 2, Seminumerical Algorithms. 2nd edition, Addison-Wesley Publishing Company, Reading, Massachusetts, 1981.
Maronna, R.A., and Zamar, R.H., Robust Multivariate Estimates for HighDimensional Datasets, Technometrics, 44, 307-317, 2002.
Matsumoto, M., and Nishimura, T. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, Pages 3-30, January 1998.
[Matsumoto00]
[NAG]
[Rocke96]
[Saito08]
[Schafer97]
[Sobol76]
[VSL Notes]
[VSL Data]
- VML
[C99]
[Muller97]
[IEEE754]
[VML Data]

\section*{- FFT}

\section*{- Optimization Solvers}
[Conn00]
[Dong95] J. Dongarra, V. Eijkhout, A. Kalhan. Reverse communication interface for linear algebra templates for iterative methods. 1995.

\section*{- Data Fitting Functions}
[deBoor2001]
Carl deBoor. A Practical Guide to Splines. Revised Edition. Springer-Verlag New York Berlin Heidelberg, 2001
[StechSub76] S.B. Stechhkin, and Yu Subbotin. Splines in Numerical Mathematics. Izd. Nauka, Moscow, 1976

For a reference implementation of BLAS, sparse BLAS, LAPACK, and ScaLAPACK packages (without platformspecific optimizations) visit www.netlib.org
\(\int\) Intel® Math Kernel Library Reference Manual
\(A^{H}\)
\(A^{T}\)
band matrix
band storage

BLAS

BRNG

BRNG registration

Bunch-Kaufman factorization
c
CBLAS
CDF

Cholesky factorization
condition number
conjugate matrix

Denotes the conjugate transpose of a general matrix A. See also conjugate matrix.
Denotes the transpose of a general matrix A. See also transpose.
A general \(m\)-by- \(n\) matrix \(A\) such that \(a_{i j}=0\) for \(|i-j|>1\), where \(1<l<\min (m, n)\). For example, any tridiagonal matrix is a band matrix.
A special storage scheme for band matrices. A matrix is stored in a two-dimensional array: columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.
Abbreviation for Basic Linear Algebra Subprograms. These subprograms implement vector, matrix-vector, and matrix-matrix operations.
Abbreviation for Basic Random Number Generator. Basic random number generators are pseudorandom number generators imitating i.i.d. random number sequences of uniform distribution. Distributions other than uniform are generated by applying different transformation techniques to the sequences of random numbers of uniform distribution.
Standardized mechanism that allows a user to include a user-designed BRNG into the VSL and use it along with the predefined VSL basic generators.
Representation of a real symmetric or complex Hermitian matrix \(A\) in the form \(A=P U D U^{\mathrm{H}} P^{\mathrm{T}}\) ( or \(A=P L D L^{\mathrm{H}} P^{\mathrm{T}}\) ) where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of \(D\).
When found as the first letter of routine names, c indicates the usage of single-precision complex data type.
C interface to the BLAS. See BLAS.
Cumulative Distribution Function. The function that determines probability distribution for univariate or multivariate random variable \(x\). For univariate distribution the cumulative distribution function is the function of real argument \(x\), which for every \(x\) takes a value equal to probability of the event \(A: X \leq x\). For multivariate distribution the cumulative distribution function is the function of a real vector \(x=\) \(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\), which, for every \(x\), takes a value equal to probability of the event \(A=\left(X_{1} \leq x_{1} \& X_{2} \leq x_{2}, \& \ldots, \& X_{\mathrm{n}} \leq\right.\) \(x_{n}\) ).
Representation of a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix \(A\) in the form \(A=U^{\mathbb{H}} U\) or \(A=L L^{H}\), where \(L\) is a lower triangular matrix and \(U\) is an upper triangular matrix.
The number \(\kappa(A)\) defined for a given square matrix \(A\) as follows: \(\kappa(A)\) \(=\| A| || | A^{-1}| |\).
The matrix \(A^{H}\) defined for a given general matrix \(A\) as follows: \(\left(A^{\mathrm{H}}\right)_{\mathrm{ij}}\) \(=\left(a_{j i}\right)^{*}\).
\begin{tabular}{|c|c|}
\hline conjugate number & The conjugate of a complex number \(z=a+b i\) is \(z^{*}=a-b i\). \\
\hline d & When found as the first letter of routine names, \(d\) indicates the usage of double-precision real data type. \\
\hline dot product & \begin{tabular}{l}
The number denoted \(x \cdot y\) and defined for given vectors \(x\) and \(y\) as follows: \(x \cdot y=\Sigma_{i} x_{i} y_{i}\). \\
Here \(x_{i}\) and \(y_{i}\) stand for the \(i\)-th elements of \(x\) and \(y\), respectively.
\end{tabular} \\
\hline double precision & A floating-point data type. On Intel \({ }^{\circledR}\) processors, this data type allows you to store real numbers \(x\) such that \(2.23 * 10^{-308}<|x|<\) \(1.79 * 10^{308}\). For this data type, the machine precision \(\varepsilon\) is approximately \(10^{-15}\), which means that double-precision numbers usually contain no more than 15 significant decimal digits. For more information, refer to Intel \({ }^{\circledR} 64\) and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture. \\
\hline eigenvalue & See eigenvalue problem. \\
\hline eigenvalue problem & A problem of finding non-zero vectors \(x\) and numbers \(\lambda\) (for a given square matrix \(A\) ) such that \(A x=\lambda x\). Here the numbers \(\lambda\) are called the eigenvalues of the matrix \(A\) and the vectors \(x\) are called the eigenvectors of the matrix \(A\). \\
\hline eigenvector & See eigenvalue problem. \\
\hline elementary reflector(Householder matrix) & Matrix of a general form \(H=I-\tau V V^{T}\), where \(v\) is a column vector and \(\tau\) is a scalar. In LAPACK elementary reflectors are used, for example, to represent the matrix \(Q\) in the \(Q R\) factorization (the matrix \(Q\) is represented as a product of elementary reflectors). \\
\hline factorization & Representation of a matrix as a product of matrices. See also BunchKaufman factorization, Cholesky factorization, \(L U\) factorization, \(L Q\) factorization, \(Q R\) factorization, Schur factorization. \\
\hline FFTs & Abbreviation for Fast Fourier Transforms. See Chapter 11 of this book. \\
\hline full storage & A storage scheme allowing you to store matrices of any kind. A matrix \(A\) is stored in a two-dimensional array \(a\), with the matrix element \(a_{i j}\) stored in the array element \(a(i, j)\). \\
\hline Hermitian matrix & A square matrix \(A\) that is equal to its conjugate matrix \(A^{H}\). The conjugate \(A^{\mathrm{H}}\) is defined as follows: \(\left(A^{\mathrm{H}}\right)_{\mathrm{ij}}=\left(a_{j \mathrm{i}}\right)^{*}\). \\
\hline I & See identity matrix. \\
\hline identity matrix & A square matrix I whose diagonal elements are 1, and off-diagonal elements are 0 . For any matrix \(A, A I=A\) and \(I A=A\). \\
\hline i.i.d. & Independent Identically Distributed. \\
\hline in-place & Qualifier of an operation. A function that performs its operation inplace takes its input from an array and returns its output to the same array. \\
\hline Intel MKL & Abbreviation for Intel \({ }^{\text {® }}\) Math Kernel Library. \\
\hline inverse matrix & The matrix denoted as \(A^{-1}\) and defined for a given square matrix \(A\) as follows: \(A A^{-1}=A^{-1} A=I\). \(A^{-1}\) does not exist for singular matrices \(A\). \\
\hline \(L Q\) factorization & Representation of an m-by-n matrix \(A\) as \(A=L Q\) or \(A=\left(\begin{array}{ll}L & 0\end{array}\right) Q\). Here \(Q\) is an \(n\)-by- \(n\) orthogonal (unitary) matrix. For \(m \leq n, L\) is an \(m\)-by- \(m\) lower triangular matrix with real diagonal elements; for \(m>n\), \\
\hline & \(L=\left[\begin{array}{l}L_{1} \\ L_{2}\end{array}\right]\) \\
\hline
\end{tabular}
where \(L_{1}\) is an \(n\)-by- \(n\) lower triangular matrix, and \(L_{2}\) is a rectangular matrix.

LU factorization
machine precision

MPI

MPICH
orthogonal matrix
packed storage

PDF

Representation of a general \(m\)-by- \(n\) matrix \(A\) as \(A=P L U\), where \(P\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>n\) ) and \(U\) is upper triangular (upper trapezoidal if \(m<n\) ).
The number \(\varepsilon\) determining the precision of the machine representation of real numbers. For Inte \({ }^{\circledR}\) architecture, the machine precision is approximately \(10^{-7}\) for single-precision data, and approximately \(10^{-15}\) for double-precision data. The precision also determines the number of significant decimal digits in the machine representation of real numbers. See also double precision and single precision.
Message Passing Interface. This standard defines the user interface and functionality for a wide range of message-passing capabilities in parallel computing.
A freely available, portable implementation of MPI standard for message-passing libraries.
A real square matrix \(A\) whose transpose and inverse are equal, that is, \(A^{T}=A^{-1}\), and therefore \(A A^{T}=A^{T} A=I\). All eigenvalues of an orthogonal matrix have the absolute value 1.
A storage scheme allowing you to store symmetric, Hermitian, or triangular matrices more compactly. The upper or lower triangle of a matrix is packed by columns in a one-dimensional array.
Probability Density Function. The function that determines probability distribution for univariate or multivariate continuous random variable \(x\). The probability density function \(f(x)\) is closely related with the cumulative distribution function \(F(x)\).
For univariate distribution the relation is
\[
F(x)=\int_{-\infty}^{x} f(t) d t
\]

For multivariate distribution the relation is
\[
F\left(X_{1}, X_{2}, \ldots, X_{n 2}\right)=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} \ldots \int_{-\infty}^{x_{n}} f\left(t_{1}, t_{2}, \ldots, t_{n 2}\right) d t_{1} d t_{2} \ldots d t_{n 2}
\]

A square matrix \(A\) such that \(A x \cdot x>0\) for any non-zero vector \(x\). Here • denotes the dot product.
A completely deterministic algorithm that imitates truly random sequences.
Representation of an \(m\)-by-n matrix \(A\) as \(A=Q R\), where \(Q\) is an \(m\)-by- \(m\) orthogonal (unitary) matrix, and \(R\) is \(n\)-by-n upper triangular with real diagonal elements (if \(m \geq n\) ) or trapezoidal (if \(m<n\) ) matrix.
An abstract source of independent identically distributed random numbers of uniform distribution. In this manual a random stream points to a structure that uniquely defines a random number sequence generated by a basic generator associated with a given random stream.
Abbreviation for Random Number Generator. In this manual the term "random number generators" stands for pseudorandom number generators, that is, generators based on completely deterministic algorithms imitating truly random sequences.
\begin{tabular}{|c|c|}
\hline Rectangular Full Packed (RFP) storage & A storage scheme combining the full and packed storage schemes for the upper or lower triangle of the matrix. This combination enables using half of the full storage as packed storage while maintaining efficiency by using Level 3 BLAS/LAPACK kernels as the full storage. \\
\hline s & When found as the first letter of routine names, s indicates the usage of single-precision real data type. \\
\hline ScaLAPACK & Stands for Scalable Linear Algebra PACKage. \\
\hline Schur factorization & Representation of a square matrix \(A\) in the form \(A=Z T Z^{\text {H }}\). Here T is an upper quasi-triangular matrix (for complex \(A\), triangular matrix) called the Schur form of \(A\); the matrix \(z\) is orthogonal (for complex \(A\), unitary). Columns of \(z\) are called Schur vectors. \\
\hline single precision & A floating-point data type. On Intel \({ }^{\circledR}\) processors, this data type allows you to store real numbers \(x\) such that \(1.18 * 10^{-38}<1 x\) \(3.40 * 10^{38}\). For this data type, the machine precision ( \(\varepsilon\) ) is approximately \(10^{-7}\), which means that single-precision numbers usually contain no more than 7 significant decimal digits. For more information, refer to Inte/ 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture. \\
\hline singular matrix & A matrix whose determinant is zero. If \(A\) is a singular matrix, the inverse \(A^{-1}\) does not exist, and the system of equations \(A x=b\) does not have a unique solution (that is, there exist no solutions or an infinite number of solutions). \\
\hline singular value & The numbers defined for a given general matrix \(A\) as the eigenvalues of the matrix \(A A^{\mathrm{H}}\). See also SVD. \\
\hline SMP & Abbreviation for Symmetric MultiProcessing. The MKL offers performance gains through parallelism provided by the SMP feature. \\
\hline sparse BLAS & Routines performing basic vector operations on sparse vectors. Sparse BLAS routines take advantage of vectors' sparsity: they allow you to store only non-zero elements of vectors. See BLAS. \\
\hline sparse vectors & Vectors in which most of the components are zeros. \\
\hline storage scheme & The way of storing matrices. See full storage, packed storage, and band storage. \\
\hline SVD & Abbreviation for Singular Value Decomposition. See also Singular value decomposition section in Chapter 5. \\
\hline symmetric matrix & A square matrix \(A\) such that \(a_{i j}=a_{j i}\). \\
\hline transpose & The transpose of a given matrix \(A\) is a matrix \(A^{T}\) such that \(\left(A^{T}\right)_{i j}=\) \(a_{j i}\) (rows of \(A\) become columns of \(A^{\top}\), and columns of \(A\) become rows of \(A^{\mathrm{T}}\) ). \\
\hline trapezoidal matrix & A matrix \(A\) such that \(A=\left(A_{1} A_{2}\right)\), where \(A_{1}\) is an upper triangular matrix, \(A_{2}\) is a rectangular matrix. \\
\hline triangular matrix & A matrix \(A\) is called an upper (lower) triangular matrix if all its subdiagonal elements (superdiagonal elements) are zeros. Thus, for an upper triangular matrix \(a_{i j}=0\) when \(i>j\); for a lower triangular matrix \(a_{i j}=0\) when \(i<j\). \\
\hline tridiagonal matrix & A matrix whose non-zero elements are in three diagonals only: the leading diagonal, the first subdiagonal, and the first super-diagonal. \\
\hline unitary matrix & A complex square matrix \(A\) whose conjugate and inverse are equal, that is, that is, \(A^{\mathrm{H}}=A^{-1}\), and therefore \(A A^{\mathrm{H}}=A^{\mathrm{H}} A=I\). All eigenvalues of a unitary matrix have the absolute value 1 . \\
\hline VML & Abbreviation for Vector Mathematical Library. See Chapter 9 of this book. \\
\hline VSL & Abbreviation for Vector Statistical Library. See Chapter 10 of this book. \\
\hline z & When found as the first letter of routine names, z indicates the usage of double-precision complex data type. \\
\hline
\end{tabular}

\section*{Index}
?_backward_trig_transform 2450
?_commit_Helmholtz_2D 2467
?_commit_Helmholtz_3D 2467
?_commit_sph_np 2476
?_commit_sph_p 2476
?_commit_trig_transform 2446
?_forward_trig_transform 2448
?_Helmholtz_2D 2470
?_Helmholtz_3D 2470
?_init_Helmholtz_2D 2465
?_init_Helmholtz_3D 2465
?_init_sph_np 2475
?_init_sph_p 2475
?_init_trig_transform 2445
?_sph_np 2478
?_sph_p 2478
?asum 54
?axpby 327
?axpy 55
?axpyi 141
?bdsdc 756
?bdsqr 752
?cabs1 73
?ConvExec 2239
?ConvExec1D 2242
?ConvExecX 2246
?ConvExecX1D 2249
?ConvNewTask 2220
?ConvNewTask1D 2223
?ConvNewTaskX 2225
?copy 56
?CorrExec 2239
?CorrExec1D 2242
?CorrExecX 2246
?CorrExecX1D 2249
?CorrNewTask 2220
?CorrNewTask1D 2223
?CorrNewTaskX 2225
?CorrNewTaskX1D 2228
?dbtf2 1872
?dbtrf 1873
?disna 818
?dot 58
?dotc 60
?dotci 144
?doti 143
?dotu 61
?dotui 145
?dtsvb 595
?dttrf 1874
?dttrfb 363
?dttrsb 392
?dttrsv 1875
?gamn2d 2552
?gamx2d 2551
?gbbrd 739
?gbcon 422
?gbequ 542
?gbequb 545
?gbmv 75
?gbrfs 458
?gbrfsx 461
?gbsv 574
?gbsvx 576
?gbsvxx 582
?gbtf2 1166
?gbtrf 359
?gbtrs 387
?gebak 849
?gebal 847
?gebd2 1167
?gebr2d 2561
?gebrd 736
?gebs2d 2560
?gecon 420
?geequ 538
?geequb 540
?gees 1020
?geesx 1024
?geev 1028
?geevx 1032
?gehd2 1168
?gehrd 835
?gejsv 1045
?gelq2 1170
?gelqf 689
?gels 930
?gelsd 939
?gelss 937
?gelsy 933
?gem2vc 331
?gem2vu 329
?gemm 119
?gemm3m 333
?gemv 77
?geql2 1171
?geqlf 700
?geqp3 678
?geqpf 676
?geqr2 1172
?geqr2p 1174
?geqrf 671
?geqrfp 674
?ger 79
?gerc 81
?gerfs 449
?gerfsx 452
?gerq2 1175
?gerqf 710
?geru 82
?gerv2d 2557
?gesc2 1176
?gesd2d 2556
?gesdd 1041
?gesv 558
?gesvd 1037
?gesvj 1051
?gesvx 561
?gesvxx 567
?getc2 1177
?getf2 1178
?getrf 357
?getri 514
?getrs 385
?ggbak 883
?ggbal 880
?gges 1121
?ggesx 1126
?ggev 1132
?ggevx 1136
?ggglm 946
?gghrd 878
?gglse 943
?ggqrf 728
?ggraf 731
?ggsvd 1055
?ggsvp 910
?gsum2d 2553
?gsvj0 1432
?gsvj1 1434
?gtcon 424
?gthr 146
?gthrz 147
?gtrfs 467
?gtsv 589
?gtsvx 591
?gttrf 361
?gttrs 389
?gtts2 1179
?hbev 993
?hbevd 998
?hbevx 1004
?hbgst 829
?hbgv 1105
?hbgvd 1110
?hbgvx 1117
?hbtrd 791
?hecon 438
?heequb 556
?heev 951
?heevd 956
?heevr 970
?heevx 963
?heft2 1419
?hegst 822
?hegv 1068
?hegvd 1074
?hegvx 1081
?hemm 122
?hemv 86
?her 87
?her2 89
?her2k 126
?herdb 766
?herfs 494
?herfsx 496
?herk 124
?hesv 642
?hesvx 645
?hesvxx 649
?heswapr 1413
?hetrd 772
?hetrf 378
?hetri 522
?hetri2 525
?hetri2x 529
?hetrs 404
?hetrs2 408
?hfrk 1438
?hgeqz 885
?hpcon 441
?hpev 977
?hpevd 981
?hpevx 988
?hpgst 825
?hpgv 1087
?hpgvd 1092
?hpgvx 1099
?hpmv 91
?hpr 92
?hpr2 94
?hprfs 504
?hpsv 661
?hpsvx 663
?hptrd 784
?hptrf 383
?hptri 532
?hptrs 411
?hsein 855
?hseqr 851
?isnan 1180
?jacobi 2515
?jacobi_delete 2514
?jacobi_init 2512
?jacobi_solve 2513
?jacobix 2516
?la_gbamv 1455
?la_gbrcond 1457
?la_gbrcond_c 1459
?la_gbrcond_x 1460
?la_gbrfsx_extended 1462
?la_gbrpvgrw 1467
?la_geamv 1468
?la_gercond 1470
?la_gercond_c 1471
?la_gercond_x 1472
?la_gerfsx_extended 1473
?la_heamv 1478
?la_hercond_c 1480
?la_hercond_x 1481
?la_herfsx_extended 1482
?la_herpvgrw 1487
?la_porcond 1489
?la_porcond_c 1490
?la_porcond_x 1492
?la_porfsx_extended 1493
?la_porpvgrw 1498
?la_rpvgrw 1503
?la_syamv 1431, 1505
?la_syrcond 1507
?la_syrcond_c 1508
?la_syrcond_x 1509
?la_syrfsx_extended 1511
?la_syrpvgrw 1516
?la_wwaddw 1517
?labrd 1181
?lacgv 1155
?lacn2 1184
?lacon 1185
?lacp2 1455
?lacpy 1186
?lacrm 1156
?lacrt 1156
?ladiv 1187
?lae2 1188
?laebz 1189
?laed0 1192
?laed1 1194
?laed2 1195
?laed3 1197
?laed4 1199
?laed5 1200
?laed6 1200
?laed7 1202
?laed8 1204
?laed9 1207
?laeda 1208
?laein 1209
?laesy 1157
?laev2 1212
?laexc 1213
?lag2 1214
?lags2 1216
?lagtf 1218
?lagtm 1220
?lagts 1221
?lagv2 1223
?lahef 1378
?lahqr 1224
?lahr2 1228
?lahrd 1226
?laic1 1230
?laisnan 1181
?laln2 1232
?lals0 1234
?lalsa 1236
?lalsd 1239
?lamc1 1526
?lamc2 1526
?lamc3 1527
?lamc4 1528
?lamc5 1528
?lamch 1525
?lamrg 1241
?lamsh 1866
?laneg 1242
?langb 1243
?lange 1244
?langt 1245
?lanhb 1248
?lanhe 1253
?lanhf 1443
?lanhp 1250
?lanhs 1246
?lansb 1247
?lansf 1442
?lansp 1249
?lanst/?lanht 1251
?lansy 1252
?lantb 1255
?lantp 1256
?lantr 1257
?lanv2 1259
?lapll 1259
?lapmr 1260
?lapmt 1262
?lapy2 1262
?lapy3 1263
?laqgb 1264
?laqge 1265
?laqhb 1266
?laqhe 1499
?laqhp 1501
?laqp2 1268
?laqps 1269
?laqr0 1270
?laqr1 1273
?laqr2 1274
?laqr3 1277
?laqr4 1280
?laqr5 1282
?laqsb 1285
?laqsp 1286
?laqsy 1287
?laqtr 1289
?lar1v 1290
?lar2v 1293
?larcm 1502
?laref 1867
?larf 1294
?larfb 1295
?larfg 1298
?larfgp 1299
?larfp 1429
?larft 1300
?larfx 1302
?largv 1304
?larnv 1305
?larra 1306
?larrb 1307
?larrc 1309
?larrd 1310
?larre 1312
?larrf 1315
?larrj 1317
?larrk 1318
?larrr 1319
?larrv 1320
?larscl2 1504
?lartg 1323
?lartgp 1324
?lartgs 1326
?lartv 1327
?laruv 1328
?larz 1329
?larzb 1330
?larzt 1332
?las2 1334
?lascl 1335
?lascl2 1504
?lasd0 1336
?lasd1 1338
?lasd2 1340
?lasd3 1342
?lasd4 1344
?lasd5 1346
?lasd6 1347
?lasd7 1350
?lasd8 1353
?lasd9 1354
?lasda 1356
?lasdq 1358
?lasdt 1360
?laset 1361
?lasorte 1868
?lasq1 1362
?lasq2 1363
?lasq3 1364
?lasq4 1365
?lasq5 1366
?lasq6 1367
?lasr 1368
?lasrt 1371
?lasrt2 1869
?lassq 1372
?lasv2 1373
?laswp 1374
?lasy2 1375
?lasyf 1377
?latbs 1380
?latdf 1382
?latps 1383
?latrd 1385
?latrs 1387
?latrz 1390
?lauu2 1392
?lauum 1393
?nrm2 62
?opgtr 781
?opmtr 782
?orbdb/?unbdb 925
?orcsd/?uncsd 1060
?org21/?ung2l 1394
?org2r/?ung2r 1395
?orgbr 742
?orghr 837
?orgl2/?ungl2 1396
?orglq 692
?orgql 702
?orgqr 681
?orgr2/?ungr2 1397
?orgrq 712
?orgtr 768
?orm2I/?unm2l 1399
?orm2r/?unm2r 1400
?ormbr 744
?ormhr 839
?orml2/?unml2 1402
?ormlq 694
?ormql 706
?ormqr 683
?ormr2/?unmr2 1404
?ormr3/?unmr3 1405
?ormrq 716
?ormrz 723
?ormtr 770
?pbcon 430
?pbequ 552
?pbrfs 480
?pbstf 831
?pbsv 617
?pbsvx 619
?pbtf2 1407
?pbtrf 371
?pbtrs 398
?pftrf 368
?pftri 517
?pftrs 395
?pocon 426
?poequ 547
?poequb 549
?porfs 469
?porfsx 472
?posv 596
?posvx 599
?posvxx 604
?potf2 1408
?potrf 364
?potri 516
?potrs 393
?ppcon 428
?ppequ 550
?pprfs 478
?ppsv 611
?ppsvx 612
?pptrf 369
?pptri 519
?pptrs 396
?pstf2 1451
?pstrf 366
?ptcon 432
?pteqr 810
?ptrfs 483
?ptsv 623
?ptsvx 625
?pttrf 373
?pttrs 400
?pttrsv 1876
?ptts2 1409
?rot 63, 1158
?rotg 64
?roti 148
?rotm 65
?rotmg 67
?rscl 1411
?sbev 991
?sbevd 995
?sbevx 1001
?sbgst 827
?sbgv 1103
?sbgvd 1107
?sbgvx 1113
?sbmv 95
?sbtrd 789
?scal 69
?sctr 149
?sdot 59
?sfrk 1437
?spcon 439
?spev 975
?spevd 979
?spevx 985
?spgst 823
?spgv 1085
?spgvd 1089
?spgvx 1096
?spmv 98, 1159
?spr 99, 1161
?spr2 101
?sprfs 501
?spsv 655
?spsvx 657
?sptrd 779
?sptrf 381
?sptri 530
?sptrs 409
?stebz 813
?stedc 801
?stegr 805
?stein 815
?stemr 798
?steqr 795
?steqr2 1878
?sterf 793
?stev 1008
?stevd 1009
?stevr 1015
?stevx 1012
?sum1 1165
?swap 70
?sycon 434
?syconv 436
?syequb 554
?syev 949
?syevd 954
?syevr 966
?syevx 959
?sygs2/?hegs2 1415
?sygst 820
?sygv 1066
?sygvd 1071
?sygvx 1077
?symm 128
?symv 102, 1162
?syr 104, 1163
?syr2 106
?syr2k 133
?syrdb 764
?syrfs 485
?syrfsx 488
?syrk 131
?sysv 629
?sysvx 631
?sysvxx 635
?syswapr 1411
?syswapr1 1414
?sytd2/?hetd2 1417
?sytf2 1418
?sytrd 762
?sytrf 374
?sytri 520
?sytri2 523
?sytri2x 527
?sytrs 402
?sytrs2 406
?tbcon 447
?tbmv 107
?tbsv 109
?tbtrs 418
?tfsm 1440
?tftri 535
?tfttp 1444
?tfttr 1445
?tgevc 890
?tgex2 1421
?tgexc 894
?tgsen 896
?tgsja 914
?tgsna 906
?tgsy2 1423
?tgsyl 902
?tpcon 445
?tpmv 112
?tprfs 508
?tpsv 113
?tptri 536
?tptrs 416
?tpttf 1446
?tpttr 1448
?trbr2d 2562
?trbs2d 2560
?trcon 443
?trevc 860
?trexc 868
?trmm 135
?trmv 115
?trnlsp_check 2499
?trnlsp_delete 2503
?trnlsp_get 2502
?trnlsp_init 2497
?trnlsp_solve 2500
?trnlspbc_check 2506
?trnlspbc_delete 2511
?trnlspbc_-get 2510
?trnlspbc_init 2505
?trnlspbc_solve 2508
?trrfs 506
?trrv2d 2558
?trsd2d 2557
?trsen 870
?trsm 138
?trsna 864
?trsv 117
?trsyl 874
?trti2 1426
?trtri (LAPACK) 534
?trtrs (LAPACK) 413
?trttf 1449
?trttp 1450
?tzrzf 720
?ungbr 747
?unghr 842
?unglq 696
?ungql 704
?ungqr 685
?ungrq 714
?ungtr 775
?unmbr 749
?unmhr 844
?unmlq 698
?unmql 708
?unmqr 687
?unmrq 718
?unmrz 725
?unmtr 776
?upgtr 786
?upmtr 787

1-norm value
complex Hermitian matrix
packed storage 1250
complex Hermitian matrix in RFP format 1443
complex Hermitian tridiagonal matrix 1251
complex symmetric matrix 1252
general rectangular matrix 1244, 1779
general tridiagonal matrix 1245
Hermitian band matrix 1248
real symmetric matrix 1252,1782
real symmetric matrix in RFP format 1442
real symmetric tridiagonal matrix 1251
symmetric band matrix 1247
symmetric matrix
packed storage 1249
trapezoidal matrix 1257
triangular band matrix 1255 triangular matrix
packed storage 1256
upper Hessenberg matrix 1246, 1780

\section*{A}
absolute value of a vector element
largest 71
smallest 72
accuracy modes, in VML 1969
adding magnitudes of elements of a distributed vector 2377
adding magnitudes of the vector elements 54
arguments
matrix 2646
sparse vector 140
vector 2645
array descriptor 1535, 2373
auxiliary functions
?la_lin_berr 1488
auxiliary routines
LAPACK
ScaLAPACK 1739
B
backward error 1488
balancing a matrix 847
band storage scheme 2646
basic quasi-number generator
Niederreiter 2121
Sobol 2121
basic random number generators
GFSR 2121
MCG, 32-bit 2121
MCG, 59-bit 2121
Mersenne Twister
MT19937 2121
MT2203 2121
MRG 2121
Wichmann-Hill 2121
bdsdc 756
Bernoulli 2195
Beta 2186
bidiagonal matrix
LAPACK 734
ScaLAPACK 1666
Binomial 2198
bisection 1307
BLACS
broadcast 2559
combines 2550
destruction routines 2568
informational routines 2570
initialization routines 2562
miscellaneous routines 2571
point to point communication 2554
?gamn2d 2552
?gamx2d 2551
?gebr2d 2561
?gebs2d 2560
?gerv2d 2557
?gesd2d 2556
?gsum2d 2553
?trbr2d 2562
?trbs2d 2560
?trrv2d 2558
?trsd2d 2557
blacs_abort 2569
blacs_barrier 2571
blacs_exit 2569
blacs_freebuff 2568
blacs_get 2564
blacs_gridexit 2569
blacs_gridinfo 2570
blacs_gridinit 2566
blacs_gridmap 2567
blacs_pcoord 2571
blacs_pinfo 2563
blacs_pnum 2570
blacs_set 2565
blacs_setup 2563
usage examples 2572
BLACS routines
matrix shapes 2549
blacs_abort 2569
blacs_barrier 2571
blacs_exit 2569
blacs_freebuff 2568
blacs_get 2564
blacs_gridexit 2569
blacs_gridinfo 2570
blacs_gridinit 2566
blacs_gridmap 2567
blacs_pcoord 2571
blacs_pinfo 2563
blacs_pnum 2570
blacs_set 2565
blacs_setup 2563
BLAS Code Examples 2653
BLAS Level 1 routines
?asum 53, 54
?axpby 327
?axpy 53, 55
?cabs1 53, 73
?copy 53, 56
?dot 53, 58
?dotc 53, 60
?dotu 53, 61
?nrm2 53, 62
?rot 53, 63
?rotg 53, 64
?rotm 53, 65
?rotmg 67
?rotmq 53
?scal 53, 69
?sdot 53, 59
?swap 53, 70
code example 2653
i?amax 53, 71
i?amin 53, 72
BLAS Level 2 routines
?gbmv 74, 75
?gem2vc 331
?gem2vu 329
? \({ }^{\text {? }}\) emv 74, 77
?ger 74, 79
?gerc 74, 81
?geru 74, 82
?hbmv 74, 84
?hemv 74, 86
?her 74, 87
?her2 74, 89
?hpmv 74, 91
?hpr 74, 92
?hpr2 74, 94
?sbmv 74, 95
?spmv 74, 98
?spr 74, 99
?spr2 74, 101
?symv 74, 102
?syr 74, 104
?syr2 74, 106
?tbmv 74, 107
?tbsv 74, 109
?tpmv 74, 112
?tpsv 74, 113
?trmv 74, 115
?trsv 74, 117
code example 2654
BLAS Level 3 routines
?gemm 118, 119
?gemm3m 333
?hemm 118, 122
?her2k 118, 126
?herk 118, 124
?symm 118, 128
?syr2k 118, 133
?syrk 118, 131
?tfsm 1440
?trmm 118, 135
?trsm 118, 138
code example 2654
BLAS routines
routine groups
BLAS-like extensions 327
BLAS-like transposition routines
mkl_? imatcopy 335
mkl_?omatadd 344
mkl_?omatcopy 338
mkl_?omatcopy2 341
block reflector

\section*{general matrix}

LAPACK 1330
ScaLAPACK 1807
general rectangular matrix
LAPACK 1295
ScaLAPACK 1795
triangular factor
LAPACK 1300, 1332
ScaLAPACK 1802, 1813
block-cyclic distribution 1535, 2373
block-splitting method 2121
BRNG 2115, 2116, 2121
Bunch-Kaufman factorization
Hermitian matrix
packed storage 383
symmetric matrix
packed storage 381

\section*{C}

C Datatypes 49
C interface conventions
LAPACK 348
Cauchy 2173
cbbcsd 920
CBLAS
arguments 2669
level 1 (vector operations) 2670
level 2 (matrix-vector operations) 2672
level 3 (matrix-matrix operations) 2676
sparse BLAS 2678
CBLAS to the BLAS 2669
cgbcon 422
cgbrfsx 461
cgbsvx 576
cgbtrs 387
cgecon 420
cgeqpf 676
cgtrfs 467
chegs2 1415
cheswapr 1413
chetd2 1417
chetri2 525
chetri2x 529
chetrs2 408
chgeqz 885
chla_transtype 1529
Cholesky factorization
Hermitian positive semi-definite matrix 1451
Hermitian positive semidefinite matrix 366
Hermitian positive-definite matrix
band storage 371, 398, 619, 1546, 1558
packed storage 369, 612
split 831
symmetric positive semi-definite matrix 1451
symmetric positive semidefinite matrix 366
symmetric positive-definite matrix
band storage 371, 398, 619, 1546, 1558
packed storage 369, 612
chseqr 851
cla_gbamv 1455
cla_gbrcond_c 1459
cla_gbrcond_x 1460
cla_gbrfsx_extended 1462
cla_gbrpvgrw 1467
cla_geamv 1468
cla_gercond_c 1471
cla_gercond_x 1472
cla_gerfsx_extended 1473
cla_heamv 1478
cla_hercond_c 1480
cla_hercond_x 1481
cla_herfsx_extended 1482
cla_herpvgrw 1487
cla_lin_berr 1488
cla_porcond_c 1490
cla_porcond_x 1492
cla_porfsx_extended 1493
cla_porpvgrw 1498
cla_rpvgrw 1503
cla_syamv 1505
cla_syrcond_c 1508
cla_syrcond_x 1509
cla_syrfsx_extended 1511
cla_syrpvgrw 1516
cla_wwaddw 1517
clag2z 1427
clapmr 1260
clapmt 1262
clarfb 1295
clarft 1300
clarscl2 1504
clascl2 1504
clatps 1383
clatrd 1385
clatrs 1387
clatrz 1390
clauu2 1392
clauum 1393
code examples
BLAS Level 1 function 2653
BLAS Level 1 routine 2653
BLAS Level 2 routine 2654
BLAS Level 3 routine 2654
communication subprograms
complex division in real arithmetic 1187
complex Hermitian matrix
1-norm value
LAPACK 1253
ScaLAPACK 1782
factorization with diagonal pivoting method 1419
Frobenius norm
LAPACK 1253
ScaLAPACK 1782
infinity- norm
LAPACK 1253
ScaLAPACK 1782
largest absolute value of element LAPACK 1253 ScaLAPACK 1782
complex Hermitian matrix in packed form
1-norm value 1250
Frobenius norm 1250
infinity- norm 1250
largest absolute value of element 1250
complex Hermitian tridiagonal matrix
1 -norm value 1251
Frobenius norm 1251
infinity- norm 1251
largest absolute value of element 1251
complex matrix complex elementary reflector ScaLAPACK 1809
complex symmetric matrix
1-norm value 1252
Frobenius norm 1252
infinity- norm 1252
largest absolute value of element 1252
complex vector 1 -norm using true absolute value

\section*{LAPACK 1165 \\ ScaLAPACK 1745}
conjugation
LAPACK 1155
ScaLAPACK 1743
complex vector conjugation
LAPACK 1155
ScaLAPACK 1743
component-wise relative error 1488
compressed sparse vectors 140
computational node 2117
Computational Routines 669
condition number
band matrix 422
general matrix
LAPACK 420
ScaLAPACK 1564, 1566, 1568
Hermitian matrix
packed storage 441
Hermitian positive-definite matrix
band storage 430
packed storage 428
tridiagonal 432
symmetric matrix packed storage 439
symmetric positive-definite matrix
band storage 430
packed storage 428
tridiagonal 432
triangular matrix
band storage 447
packed storage 445
tridiagonal matrix 424
configuration parameters, in FFT interface 2313
Configuration Settings, for Fourier transform functions 2332
Continuous Distribution Generators 2153
Continuous Distributions 2156
ConvCopyTask 2254
ConvDeleteTask 2253
converting a DOUBLE COMPLEX triangular matrix to COMPLEX 1454
converting a double-precision triangular matrix to singleprecision 1453
converting a sparse vector into compressed storage form and writing zeros to the original vector 147
converting compressed sparse vectors into full storage form 149
ConvInternalPrecision 2234
Convolution and Correlation 2214
Convolution Functions
?ConvExec 2239
?ConvExec1D 2242
?ConvExecX 2246
?ConvExecX1D 2249
?ConvNewTask 2220
?ConvNewTask1D 2223
?ConvNewTaskX 2225
?ConvNewTaskX1D 2228
ConvCopyTask 2254
ConvDeleteTask 2253
ConvSetDecimation 2237
ConvSetInternalPrecision 2234
ConvSetMode 2232
ConvSetStart 2235
CorrCopyTask 2254
CorrDeleteTask 2253
ConvSetMode 2232
ConvSetStart 2235
copying
distributed vectors 2379
matrices
distributed 1770
global parallel 1772
local replicated 1772 two-dimensional LAPACK 1186, 1455
ScaLAPACK 1773
vectors 56
copying a matrix 1444-1446, 1448-1450
CopyStream 2138
CopyStreamState 2139
CorrCopyTask 2254
CorrDeleteTask 2253
Correlation Functions
?CorrExec 2239
?CorrExec1D 2242
?CorrExecX 2246
?CorrExecX1D 2249
?CorrNewTask 2220
?CorrNewTask1D 2223
?CorrNewTaskX 2225
?CorrNewTaskX1D 2228
CorrSetDecimation 2237
CorrSetInternalPrecision 2234
CorrSetMode 2232
CorrSetStart 2235
CorrSetInternalDecimation 2237
CorrSetInternalPrecision 2234
CorrSetMode 2232
CorrSetStart 2235
cosine-sine decomposition
LAPACK 919, 1060
cpbtf2 1407
cporfsx 472
cpotf2 1408
cpprfs 478
cpptrs 396
cptts2 1409
Cray 1879
crscl 1411
cs decomposition
See also LAPACK routines, cs decomposition 919
CSD (cosine-sine decomposition)
LAPACK 919, 1060
csyconv 436
csyswapr 1411
csyswapr1 1414
csytf2 1418
csytri2 523
csytri2x 527
csytrs2 406
ctgex2 1421
ctgsy2 1423
ctrexc 868
ctrti2 1426
cunbdb 925
cuncsd 1060
cung2l 1394
cung2r 1395
cungbr 747
cungl2 1396
cungr2 1397
cunm2l 1399
cunm2r 1400
cunml2 1402
cunmr2 1404
cunmr3 1405

\section*{D}
data type
in VML 1969
shorthand 41
Data Types 2124
Datatypes, C language 49
dbbcsd 920
dbdsdc 756
dcg_check 1946
dcg_get 1948
dcg_init 1945
dcgmrhs_check 1949
dcgmrhs_get 1952
dcgmrhs_init 1948
DeleteStream 2137
descriptor configuration cluster FFT 2356
descriptor manipulation cluster FFT 2356
DF task
dfdconstruct1d 2606
dfdConstruct1D 2606
dfdeditidxptr 2604
dfdEditIdxPtr 2604
dfdeditppspline1d 2595
dfdEditPPSpline1D 2595
dfdeditptr 2601
dfdEditPtr 2601
dfdeletetask 2627
dfDeleteTask 2627
dfdintegrate1d 2613
dfdIntegrate1D 2613
dfdintegrateex1d 2613
dfdIntegrateEx1D 2613
dfdintegrcallback 2623
dfdIntegrCallBack 2623
dfdinterpcallback 2621
dfdInterpCallBack 2621
dfdinterpolate1d 2607
dfdInterpolate1D 2607
dfdinterpolateex1d 2607
dfdInterpolateEx1D 2607
dfdnewtask1d 2592
dfdNewTask1D 2592
dfdsearchcells1d 2619
dfdSearchCells1D 2619
dfdsearchcellscallback 2625
dfdSearchCellsCallBack 2625
dfdsearchcellsex1d 2619
dfdSearchCellsEx1D 2619
dfgmres_check 1953
dfgmres_get 1956
dfgmres_init 1952
dfieditptr 2601
dfiEditPtr 2601
dfieditval 2602
dfiEditVal 2602
dfsconstruct1d 2606
dfsConstruct1D 2606
dfseditidxptr 2604
dfsEditIdxPtr 2604
dfseditppspline1d 2595
dfsEditPPSpline1D 2595
dfseditptr 2601
dfsEditPtr 2601
dfsintegrate1d 2613
dfsIntegrate1D 2613
dfsintegrateex1d 2613
dfsIntegrateEx1D 2613
dfsintegrcallback 2623
dfsIntegrCallBack 2623
dfsinterpcallback 2621
dfsInterpCallBack 2621
dfsinterpolate1d 2607
dfsInterpolate1D 2607
dfsinterpolateex1d 2607
dfsInterpolateEx1D 2607
dfsnewtask1d 2592
dfsNewTask1D 2592
dfssearchcells1d 2619
dfsSearchCells1D 2619
dfssearchcellscallback 2625
dfsSearchCellsCallBack 2625
dfssearchcellsex1d 2619
dfsSearchCellsEx1D 2619
DFT routines
descriptor configuration
DftiSetValue 2325
DftiCommitDescriptor 2316
DftiCommitDescriptorDM 2358
DftiComputeBackward 2322
DftiComputeBackwardDM 2362
DftiComputeForward 2320
DftiComputeForwardDM 2360
DftiCopyDescriptor 2318
DftiCreateDescriptor 2314
DftiCreateDescriptorDM 2357
DftiErrorClass 2329
DftiErrorMessage 2331
DftiFreeDescriptor 2317
DftiFreeDescriptorDM 2359
DftiGetValue 2327
DftiGetValueDM 2367
DftiSetValue 2325
DftiSetValueDM 2365
dgbcon 422
dgbrfsx 461
dgbsvx 576
dgbtrs 387
dgecon 420
dgejsv 1045
dgeqpf 676
dgesvj 1051
dgtrfs 467
dhgeqz 885
dhseqr 851
diagonal elements
LAPACK 1361
ScaLAPACK 1817
diagonal pivoting factorization
Hermitian indefinite matrix 649
symmetric indefinite matrix 635
diagonally dominant tridiagonal matrix solving systems of linear equations 392
diagonally dominant-like banded matrix solving systems of linear equations 1553
diagonally dominant-like tridiagonal matrix solving systems of linear equations 1555
dimension 2645
Direct Sparse Solver (DSS) Interface Routines 1914
Discrete Distribution Generators 2153, 2154
Discrete Distributions 2189
Discrete Fourier Transform DftiSetValue 2325
distributed complex matrix transposition 2433, 2434
distributed general matrix matrix-vector product 2387, 2389
rank-1 update 2391
rank-1 update, unconjugated 2394
rank-I update, conjugated 2393
distributed Hermitian matrix
matrix-vector product 2396, 2397
rank-1 update 2399
rank-2 update 2400
rank-k update 2422
distributed matrix equation
AX = B 2437
distributed matrix-matrix operation
rank-k update
distributed Hermitian matrix 2422
transposition
complex matrix 2433
complex matrix, conjugated 2434
real matrix 2432
distributed matrix-vector operation product

Hermitian matrix 2396, 2397
symmetric matrix 2402, 2404
triangular matrix 2409, 2410
rank-1 update
Hermitian matrix 2399
symmetric matrix 2406
rank-1 update, conjugated 2393
rank-1 update, unconjugated 2394
rank-2 update
Hermitian matrix 2400
symmetric matrix 2407
distributed real matrix
transposition 2432
distributed symmetric matrix
matrix-vector product 2402, 2404
rank-1 update 2406
rank-2 update 2407
distributed triangular matrix
matrix-vector product 2409, 2410
solving systems of linear equations 2413
distributed vector-scalar product 2384
distributed vectors
adding magnitudes of vector elements 2377
copying 2379
dot product
complex vectors 2382
complex vectors, conjugated 2381
real vectors 2380
Euclidean norm 2383
global index of maximum element 2376
linear combination of vectors 2378
sum of vectors 2378
swapping 2385
vector-scalar product 2384
distributed-memory computations
Distribution Generators 2153
Distribution Generators Supporting Accurate Mode 2154
divide and conquer algorithm 1706, 1715
djacobi 2515
djacobi_delete 2514
djacobi_init 2512
djacobi_solve 2513
djacobix 2516
dla_gbamv 1455
dla_gbrcond 1457
dla_gbrfsx_extended 1462
dla_gbrpvgrw 1467
dla_geamv 1468
dla_gercond 1470
dla_gerfsx_extended 1473
dla_lin_berr 1488
dla_porcond 1489
dla_porfsx_extended 1493
dla_porpvgrw 1498
dla_rpvgrw 1503
dla_syamv 1505
dla_syrcond 1507
dla_syrfsx_extended 1511
dla_syrpvgrw 1516
dla_wwaddw 1517
dlag2s 1427
dlapmr 1260
dlapmt 1262
dlarfb 1295
dlarft 1300
dlarscl2 1504
dlartgp 1324
dlartgs 1326
dlascl2 1504
dlat2s 1453
dlatps 1383
dlatrd 1385
dlatrs 1387
dlatrz 1390
dlauu2 1392
dlauum 1393
dNewAbstractStream 2133
dorbdb 925
dorcsd 1060
dorg2l 1394
dorg2r 1395
dorgl2 1396
dorgr2 1397
dorm2l 1399
dorm2r 1400
dorml2 1402
dormr2 1404
dormr3 1405
dot product
complex vectors, conjugated 60
complex vectors, unconjugated 61
distributed complex vectors, conjugated 2381
distributed complex vectors, unconjugated 2382
distributed real vectors 2380
real vectors 58
real vectors (extended precision) 59
sparse complex vectors 145
sparse complex vectors, conjugated 144
sparse real vectors 143
dpbtf2 1407
dporfsx 472
dpotf2 1408
dpprfs 478
dpptrs 396
dptts2 1409
driver
expert 1536
simple 1536
Driver Routines 557, 930
drscl 1411
dss_create 1916
dsyconv 436
dsygs2 1415
dsyswapr 1411
dsyswapr1 1414
dsytd2 1417
dsytf2 1418
dsytri2 523
dsytri2x 527
dsytrs2 406
dtgex2 1421
dtgsy2 1423
dtrexc 868
dtrnlsp_check 2499
dtrnlsp_delete 2503
dtrnlsp_get 2502
dtrnlsp_init 2497
dtrnlsp_solve 2500
dtrnlspbc_check 2506
dtrnlspbc_delete 2511
dtrnlspbc_get 2510
dtrnlspbc_init 2505
dtrnlspbc_solve 2508
dtrti2 1426
dzsum1 1165

\section*{E}
eigenpairs, sorting 1868
eigenvalue problems
general matrix \(833,877,1656\)
generalized form 819
Hermitian matrix 758
symmetric matrix 758
symmetric tridiagonal matrix 1870, 1878
eigenvalues
eigenvalue problems 758
eigenvectors
eigenvalue problems 758
elementary reflector
complex matrix 1809
general matrix 1329, 1804 general rectangular matrix LAPACK 1294, 1302 ScaLAPACK 1793, 1798
LAPACK generation 1298, 1299
ScaLAPACK generation 1800
error diagnostics, in VML 1973
error estimation for linear equations
distributed tridiagonal coefficient matrix 1576
error handling
pxerbla 1882, 2530
xerbla 1973
errors in solutions of linear equations
banded matrix 461, 1462, 1493
distributed tridiagonal coefficient matrix 1576 general matrix band storage 458
Hermitian indefinite matrix 496, 1482
Hermitian matrix
packed storage 504
Hermitian positive-definite matrix band storage 480 packed storage 478
symmetric indefinite matrix 488, 1511 symmetric matrix packed storage 501
symmetric positive-definite matrix band storage 480 packed storage 478
triangular matrix
band storage 511
packed storage 508
tridiagonal matrix 467
Estimates 2606
Euclidean norm
of a distributed vector 2383
of a vector 62
expert driver 1536
Exponential 2165

\section*{F}
factorization Bunch-Kaufman

LAPACK 357
ScaLAPACK 1538
Cholesky
LAPACK 357, 1407, 1408
ScaLAPACK 1857
diagonal pivoting
Hermitian matrix
complex 1419
packed 663
symmetric matrix
indefinite 1418
packed 657
LU
LAPACK 357
ScaLAPACK 1538
orthogonal
LAPACK 670
ScaLAPACK 1586
partial
complex Hermitian indefinite matrix 1378
real/complex symmetric matrix 1377
triangular factorization 357, 1538
upper trapezoidal matrix 1390
fast Fourier transform
DftiCommitDescriptor 2316
DftiCommitDescriptorDM 2358
DftiComputeBackward 2322
DftiComputeBackwardDM 2362
DftiComputeForwardDM 2360
DftiCopyDescriptor 2318
DftiCreateDescriptor 2314
DftiCreateDescriptorDM 2357
DftiErrorClass 2329
DftiErrorMessage 2331
DftiFreeDescriptor 2317
DftiFreeDescriptorDM 2359
DftiGetValue 2327
DftiGetValueDM 2367
DftiSetValueDM 2365
fast Fourier Transform
DftiComputeForward 2320
FFT computation
cluster FFT 2356
FFT functions
descriptor manipulation
DftiCommitDescriptor 2316
DftiCommitDescriptorDM 2358
DftiCopyDescriptor 2318
DftiCreateDescriptor 2314
DftiCreateDescriptorDM 2357
DftiFreeDescriptor 2317
DftiFreeDescriptorDM 2359
DFT computation
DftiComputeBackward 2322
DftiComputeForward 2320
FFT computation
DftiComputeForwardDM 2360
status checking
DftiErrorClass 2329
DftiErrorMessage 2331
FFT Interface 2313
FFT routines
descriptor configuration
DftiGetValue 2327
DftiGetValueDM 2367
DftiSetValueDM 2365

FFT computation
DftiComputeBackwardDM 2362
FFTW interface to Intel(R) MKL
for FFTW2 2689
for FFTW3 2697
fill-in, for sparse matrices 2631
finding
index of the element of a vector with the largest absolute value of the real part 1744
element of a vector with the largest absolute value 71 element of a vector with the largest absolute value of the real part and its global index 1745
element of a vector with the smallest absolute value 72
font conventions 41
Fortran 95 interface conventions
BLAS, Sparse BLAS 52
LAPACK 351
Fortran 95 Interfaces for LAPACK
absent from Netlib 2684
identical to Netlib 2681
modified Netlib interfaces 2684
new functionality 2687
with replaced Netlib argument names 2682
Fortran 95 Interfaces for LAPACK Routines
specific MKL features
Fortran 95 LAPACK interface vs. Netlib 352
free_Helmholtz_2D 2474
free_Helmholtz_3D 2474
free_sph_np 2480
free_sph_p 2480
free_trig_transform 2451
Frobenius norm
complex Hermitian matrix packed storage 1250
complex Hermitian matrix in RFP format 1443
complex Hermitian tridiagonal matrix 1251
complex symmetric matrix 1252
general rectangular matrix 1244, 1779
general tridiagonal matrix 1245
Hermitian band matrix 1248
real symmetric matrix 1252, 1782
real symmetric matrix in RFP format 1442
real symmetric tridiagonal matrix 1251
symmetric band matrix 1247
symmetric matrix packed storage 1249
trapezoidal matrix 1257
triangular band matrix 1255
triangular matrix
packed storage 1256
upper Hessenberg matrix 1246, 1780
full storage scheme 2646
full-storage vectors 140
function name conventions, in VML 1970

\section*{G}

Gamma 2183
gathering sparse vector's elements into compressed form and writing zeros to these elements 147
Gaussian 2159
GaussianMV 2161
gbcon 422
gbsvx 576
gbtrs 387
gecon 420
general distributed matrix
scalar-matrix-matrix product 2418
```

general matrix
block reflector 1330, 1807
eigenvalue problems $833,877,1656$
elementary reflector 1329, 1804
estimating the condition number
band storage 422
inverting matrix
LAPACK 514
ScaLAPACK 1578
LQ factorization 689, 1598
LU factorization
band storage 359, 1166, 1540, 1542, 1872,
1873
matrix-vector product
band storage 75
multiplying by orthogonal matrix
from LQ factorization 1402, 1846
from QR factorization 1400, 1843
from RQ factorization 1404, 1849
from RZ factorization 1405
multiplying by unitary matrix
from LQ factorization 1402, 1846
from QR factorization 1400, 1843
from RQ factorization 1404, 1849
from RZ factorization 1405
QL factorization
LAPACK 700
ScaLAPACK 1608
QR factorization
with pivoting 676, 678, 1589
rank-1 update 79
rank-1 update, conjugated 81
rank-1 update, unconjugated 82
reduction to bidiagonal form 1167, 1181, 1751
reduction to upper Hessenberg form 1754
RQ factorization
LAPACK 710
ScaLAPACK 1636
scalar-matrix-matrix product 119, 333
solving systems of linear equations
band storage
LAPACK 387
ScaLAPACK 1551
general rectangular distributed matrix
computing scaling factors 1583
equilibration 1583
general rectangular matrix
1 -norm value
LAPACK 1244
ScaLAPACK 1779
block reflector
LAPACK 1295
ScaLAPACK 1795
elementary reflector
LAPACK 1294, 1798
ScaLAPACK 1793
Frobenius norm
LAPACK 1244
ScaLAPACK 1779
infinity- norm
LAPACK 1244
ScaLAPACK 1779
largest absolute value of element
LAPACK 1244
ScaLAPACK 1779
LQ factorization
LAPACK 1170
ScaLAPACK 1756
multiplication
LAPACK 1335

```

\section*{ScaLAPACK 1815}

QL factorization
LAPACK 1171
ScaLAPACK 1758
QR factorization
LAPACK 1172, 1174
ScaLAPACK 1760
reduction of first columns
LAPACK 1226, 1228
ScaLAPACK 1775
reduction to bidiagonal form 1765
row interchanges
LAPACK 1374
ScaLAPACK 1821
RQ factorization
LAPACK 1175
ScaLAPACK 1617, 1762
scaling 1787
general square matrix
reduction to upper Hessenberg form 1168
trace 1822
general triangular matrix
LU factorization
band storage 1746
general tridiagonal matrix
1-norm value 1245
Frobenius norm 1245
infinity- norm 1245
largest absolute value of element 1245
general tridiagonal triangular matrix
LU factorization
band storage 1748
generalized eigenvalue problems
complex Hermitian-definite problem
band storage 829
packed storage 825
real symmetric-definite problem
band storage 827
packed storage 823
See also LAPACK routines, generalized eigenvalue problems 819
Generalized LLS Problems 943
Generalized Nonsymmetric Eigenproblems 1120
generalized Schur factorization 1223, 1293, 1304, 1305
Generalized Singular Value Decomposition 910
generalized Sylvester equation 902
Generalized SymmetricDefinite Eigenproblems 1065
generation methods 2116
Geometric 2196
geqpf 676
GetBrngProperties 2210
getcpuclocks 2533
getcpufrequency 2534
GetNumRegBrngs 2152
GetStreamSize 2145
GetStreamStateBrng 2151
GFSR 2118
Givens rotation
modified Givens transformation parameters 67
of sparse vectors 148
parameters 64
global array 1535, 2373
global index of maximum element of a distributed vector 2376
gtrfs 467
Gumbel 2181

\section*{H}

Helmholtz problem
three-dimensional 2461
two-dimensional 2458

Helmholtz problem on a sphere
non-periodic 2459
periodic 2459
Hermitian band matrix
1-norm value 1248
Frobenius norm 1248
infinity- norm 1248
largest absolute value of element 1248
Hermitian distributed matrix
rank-n update 2424
scalar-matrix-matrix product 2420
Hermitian indefinite matrix
matrix-vector product 1478
Hermitian matrix
Bunch-Kaufman factorization packed storage 383
eigenvalues and eigenvectors 1713, 1715, 1717
estimating the condition number packed storage 441
generalized eigenvalue problems 819
inverting the matrix packed storage 532
matrix-vector product band storage 84 packed storage 91
rank-1 update packed storage 92
rank-2 update packed storage 94
rank-2k update 126
rank-k update 124
reducing to standard form LAPACK 1415 ScaLAPACK 1859
reducing to tridiagonal form LAPACK 1385, 1417 ScaLAPACK 1823, 1861
scalar-matrix-matrix product 122
scaling 1789
solving systems of linear equations packed storage 411
Hermitian positive definite distributed matrix
computing scaling factors 1584
equilibration 1584
Hermitian positive semidefinite matrix
Cholesky factorization 366
Hermitian positive-definite band matrix
Cholesky factorization 1407
Hermitian positive-definite distributed matrix
inverting the matrix 1580
Hermitian positive-definite matrix
Cholesky factorization band storage 371, 1546 packed storage 369
estimating the condition number band storage 430
packed storage 428
inverting the matrix packed storage 519
solving systems of linear equations band storage 398, 1558 packed storage 396
Hermitian positive-definite tridiagonal matrix
solving systems of linear equations 1560
heswapr 1413
hetri2 525
hetri2 2529
hgeqz 885
Householder matrix
LAPACK 1298, 1299

ScaLAPACK 1800
Householder reflector 1867
hseqr 851
Hypergeometric 2200

\section*{I}
i?amax 71
i?amin 72
i?max1 1164
IBM ESSL library 2214
IEEE arithmetic 1778
IEEE standard
implementation 1880
signbit position 1882
ila?lr 1432
iladiag 1530
ilaenv 1520
ilaprec 1531
ilatrans 1531
ilauplo 1532
ilaver 1519
ILUO preconditioner 1958
Incomplete LU Factorization Technique 1958
increment 2645
iNewAbstractStream 2131
infinity-norm
complex Hermitian matrix packed storage 1250
complex Hermitian matrix in RFP format 1443
complex Hermitian tridiagonal matrix 1251
complex symmetric matrix 1252
general rectangular matrix 1244, 1779
general tridiagonal matrix 1245
Hermitian band matrix 1248
real symmetric matrix 1252,1782
real symmetric matrix in RFP format 1442
real symmetric tridiagonal matrix 1251
symmetric band matrix 1247
symmetric matrix
packed storage 1249
trapezoidal matrix 1257
triangular band matrix 1255
triangular matrix
packed storage 1256
upper Hessenberg matrix 1246, 1780
Interface Consideration 153
inverse matrix. inverting a matrix 514, 1578, 1580, 1581
inverting a matrix
general matrix
LAPACK 514
ScaLAPACK 1578
Hermitian matrix
packed storage 532
Hermitian positive-definite matrix
LAPACK 516
packed storage 519
ScaLAPACK 1580
symmetric matrix
packed storage 530
symmetric positive-definite matrix
LAPACK 516
packed storage 519
ScaLAPACK 1580
triangular distributed matrix 1581
triangular matrix
packed storage 536
iparmq 1522
Iterative Sparse Solvers 1932
Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS) 1932

\section*{J}

Jacobi plane rotations 1051
Jacobian matrix calculation routines
?jacobi 2515
?jacobi_delete 2514
?jacobi_init 2512
?jacobi_solve 2513
?jacobix 2516

\section*{L}
la_gbamv 1455
la_gbrcond 1457
la_gbrcond_c 1459
la_gbrcond_x 1460
la_gercond 1470
la_gercond_c 1471
la_gercond_x 1472
la_hercond_c 1480
la_hercond_x 1481
la_lin_berr 1488
la_porcond 1489
la_porcond_c 1490
la_porcond_x 1492
la_syrcond 1507
la_syrcond_c 1508
la_syrcond_x 1509
LAPACK
naming conventions 347
LAPACK auxiliary routines
?la_geamv 1468
?la_heamv 1478
?la_syamv 1505
?larscl2 1504
?lascl2 1504
LAPACK routines
?gsvj0 1432
?gsvj1 1434
?hfrk 1438
?larfp 1429
?sfrk 1437
2-by-2 generalized eigenvalue problem 1214 2-by-2 Hermitian matrix plane rotation 1293
2-by-2 orthogonal matrices 1216 2-by-2 real matrix generalized Schur factorization 1223 2-by-2 real nonsymmetric matrix Schur factorization 1259
2-by-2 symmetric matrix
plane rotation 1293
2-by-2 triangular matrix singular values 1334 SVD 1373
approximation to smallest eigenvalue 1365 auxiliary routines
?gbtf2 1166
?gebd2 1167
?gehd2 1168
?gelq2 1170
?geql2 1171
?geqr2 1172
?geqr2p 1174
?gerq2 1175
?gesc2 1176
?getc2 1177
?getf2 1178
?gtts2 1179
?hetf2 1419
?hfrk 1438
?isnan 1180
?la_gbrpvgrw 1467
?la_herpvgrw 1487
?la_porpvgrw 1498
?la_rpvgrw 1503
?la_syrpvgrw 1516
?la_wwaddw 1517
?labrd 1181
?lacgv 1155
?lacn2 1184
?lacon 1185
?lacp2 1455
?lacpy 1186
?lacrm 1156
?lacrt 1156
?ladiv 1187
?lae2 1188
?laebz 1189
?laed0 1192
?laed1 1194
?laed2 1195
?laed3 1197
?laed4 1199
?laed5 1200
?laed6 1200
?laed7 1202
?laed8 1204
?laed9 1207
?laeda 1208
?laein 1209
?laesy 1157
?laev2 1212
?laexc 1213
?lag2 1214
?lags2 1216
?lagtf 1218
?lagtm 1220
?lagts 1221
?lagv2 1223
?lahef 1378
?lahqr 1224
?lahr2 1228
?lahrd 1226
?laic1 1230
?laisnan 1181
?laln2 1232
?lals0 1234
?lalsa 1236
?lalsd 1239
?lamrg 1241
?laneg 1242
?langb 1243
?lange 1244
?langt 1245
?lanhb 1248
?lanhe 1253
?lanhf 1443
?lanhp 1250
?lanhs 1246
?lansb 1247
?lansf 1442
?lansp 1249
?lanst/?lanht 1251
?lansy 1252
?lantb 1255
?lantp 1256
?lantr 1257
?lanv2 1259
?lapll 1259
?lapmr 1260
?lapmt 1262
?lapy2 1262
?lapy3 1263
?laqgb 1264
?laqge 1265
?laqhb 1266
?laqhe 1499
?laqhp 1501
?laqp2 1268
?laqps 1269
?laqr0 1270
?laqr1 1273
?laqr2 1274
?laqr3 1277
?laqr4 1280
?laqr5 1282
?laqsb 1285
?laqsp 1286
?laqsy 1287
?laqtr 1289
?lar1v 1290
?lar2v 1293
?larcm 1502
?larf 1294
?larfb 1295
?larfg 1298
?larfgp 1299
?larfp 1429
?larft 1300
?larfx 1302
?largv 1304
?larnv 1305
?larra 1306
?larrb 1307
?larrc 1309
?larrd 1310
?larre 1312
?larrf 1315
?larrj 1317
?larrk 1318
?larrr 1319
?larrv 1320
?lartg 1323
?lartgp 1324
?lartgs 1326
?lartv 1327
?laruv 1328
?larz 1329
?larzb 1330
?larzt 1332
?las2 1334
?lascl 1335
?lasd0 1336
?lasd1 1338
?lasd2 1340
?lasd3 1342
?lasd4 1344
?lasd5 1346
?lasd6 1347
?lasd7 1350
?lasd8 1353
?lasd9 1354
?lasda 1356
?lasdq 1358
?lasdt 1360
?laset 1361
?lasq1 1362
?lasq2 1363
?lasq3 1364
?lasq4 1365
?lasq5 1366
?lasq6 1367
?lasr 1368
?lasrt 1371
?lassq 1372
?lasv2 1373
?laswp 1374
?lasy2 1375
?lasyf 1377
?latbs 1380
?latdf 1382
?latps 1383
?latrd 1385
?latrs 1387
?latrz 1390
?lauu2 1392
?lauum 1393
?orbdb/?unbdb 925
?orcsd/?uncsd 1060
?org21/?ung21 1394
?org2r/?ung2r 1395
?org|21/?ungl2 1396
?orgr2/?ungr2 1397
?orm21/?unm21 1399
?orm2r/?unm2r 1400
?orml2/?unml2 1402
?ormr2/?unmr2 1404
?ormr3/?unmr3 1405
?pbtf2 1407
?potf2 1408
?pstf2 1451
?ptts2 1409
?rot 1158
?rscl 1411
?sfrk 1437
?spmv 1159
?spr 1161
?sum1 1165
?sygs2/?hegs2
1415
?symv 1162
?syr 1163
?sytd2/?hetd2 1417
?sytf2 1418
?tfttp 1444
?tfttr 1445
?tgex2 1421
?tgsy2 1423
?tpttf 1446
?tpttr 1448
?trti2 1426
?trttf 1449
?trttp 1450
clag2z 1427
dlag2s 1427
dlat2s 1453
i? \(\max 1164\)
ila?lc 1431
ila? Ir 1432
slag2d 1428
zlag2c 1429
zlat2c 1454
banded matrix equilibration
?gbequ 542
?gbequb 545
bidiagonal divide and conquer 1360 block reflector
triangular factor 1300, 1332
checking for safe infinity 1523
checking for strings equality 1524
complex Hermitian matrix
packed storage 1250
complex Hermitian matrix in RFP format 1443
complex Hermitian tridiagonal matrix 1251
complex matrix multiplication 1156, 1502
complex symmetric matrix
computing eigenvalues and
eigenvectors 1157
matrix-vector product 1162
symmetric rank-1 update 1163
complex symmetric packed matrix
symmetric rank-1 update 1161
complex vector
1-norm using true absolute value 1165
index of element with max absolute value 1164
linear transformation 1156
matrix-vector product 1159
plane rotation 1158
complex vector conjugation 1155
condition number estimation
?disna 818
?gbcon 422
?gecon 420
?gtcon 424
?hecon 438
?hpcon 441
?pbcon 430
?pocon 426
?ppcon 428
?ptcon 432
?spcon 439
?sycon 434
?tbcon 447
?tpcon 445
?trcon 443
determining machine parameters 1526
diagonally dominant triangular factorization
?dttrfb 363
dqd transform 1367
dqds transform 1366
driver routines
generalized LLS problems
?ggglm 946
?gglse 943
generalized nonsymmetric
eigenproblems
?gges 1121
?ggesx 1126
?ggev 1132
?ggevx 1136
generalized symmetric
definite eigenproblems
?hbgv 1105
?hbgvd 1110
?hbgvx 1117
?hegv 1068
?hegvd 1074
?hegvx 1081
?hpgv 1087
?hpgvd 1092
?hpgvx 1099
?sbgv 1103
?sbgvd 1107
?sbgvx 1113
?spgv 1085
?spgvd 1089
?spgvx 1096
?sygv 1066
?sygvd 1071
?sygvx 1077
linear least squares problems
?gels 930
?gelsd 939
?gelss 937
?gelsy 933
?lals0 (auxiliary) 1234
?lalsa (auxiliary) 1236
?lalsd (auxiliary) 1239
nonsymmetric
eigenproblems
?gees 1020
?geesx 1024
?geev 1028
?geevx 1032
singular value decomposition
?gejsv 1045
?gelsd 939
?gesdd 1041
?gesvd 1037
?gesvj 1051
?ggsvd 1055
solving linear equations
?dtsvb 595
?gbsv 574
?gbsvx 576
?gbsvxx 582
?gesv 558
?gesvx 561
?gesvxx 567
?gtsv 589
?gtsvx 591
?hesv 642
?hesvx 645
?hesvxx 649
?hpsv 661
?hpsvx 663
?pbsv 617
?pbsvx 619
?posv 596
?posvx 599
?posvxx 604
?ppsv 611
?ppsvx 612
?ptsv 623
?ptsvx 625
?spsv 655
?spsvx 657
?sysv 629
?sysvx 631
?sysvxx 635
symmetric eigenproblems
?hbev 993
?hbevd 998
?hbevx 1004
?heev 951
?heevd 956
?heevr 970
?heevx 963
?hpev 977
?hpevd 981
?hpevx 988
?sbev 991
?sbevd 995
?sbevx 1001
?spev 975
?spevd 979
?spevx 985
?stev 1008
?stevd 1009
?stevr 1015
?stevx 1012
?syev 949
?syevd 954
?syevr 966
?syevx 959
environmental enquiry 1520,1522
finding a relatively isolated eigenvalue 1315
general band matrix
equilibration 1264
general matrix
block reflector 1330
elementary reflector 1329
reduction to bidiagonal form 1167, 1181
general matrix equilibration
?geequ 538
?geequb 540
general rectangular matrix
block reflector 1295
elementary reflector 1294, 1302
equilibration 1265, 1499, 1501
LQ factorization 1170
plane rotation 1368
QL factorization 1171
QR factorization 1172, 1174
row interchanges 1374
RQ factorization 1175
general square matrix reduction to upper Hessenberg form 1168
general tridiagonal matrix \(1218,1220,1221\), 1245, 1312, 1320
generalized eigenvalue problems
?hbgst 829
?hegst 822
?hpgst 825
?pbstf 831
?sbgst 827
?spgst 823
?sygst 820
generalized SVD
?ggsvp 910
?tgsja 914
generalized Sylvester equation
?tgsyl 902
Hermitian band matrix
equilibration 1266, 1287

Hermitian band matrix in packed storage equilibration 1286
Hermitian indefinite matrix equilibration ?heequb 556
Hermitian matrix computing eigenvalues and
eigenvectors 1212
Hermitian positive-definite matrix equilibration
?poequ 547
?poequb 549
Householder matrix elementary reflector 1298, 1299
ila?lc 1431
ila?lr 1432
incremental condition estimation 1230
linear dependence of vectors 1259
LQ factorization
?gelq2 1170
?gelqf 689
?orglq 692
?ormlq 694
?unglq 696
?unmla 698
LU factorization
general band matrix 1166
matrix equilibration
?laqgb 1264
?laqge 1265
?laqhb 1266
?laqhe 1499
?laqhp 1501
?laqsb 1285
?laqsp 1286
?laqsy 1287
?pbequ 552
?ppequ 550
matrix inversion
?getri 514
?hetri 522
?hetri2 525
?hetri2x 529
?hptri 532
?potri 516
?pptri 519
?sptri 530
?sytri 520
?sytri2 523
?sytri2x 527
?tptri 536
?trtri 534
matrix-matrix product
?lagtm 1220
merging sets of singular values 1340, 1350
mixed precision iterative refinement
subroutines 558, 596, 1427-1429
nonsymmetric eigenvalue problems
?gebak 849
?gebal 847
?gehrd 835
?hsein 855
?hseqr 851
? orghr 837
?ormhr 839
?trevc 860
?trexc 868
?trsen 870
?trsna 864
?unghr 842
?unmhr 844
off-diagonal and diagonal elements 1361
permutation list creation 1241
permutation of matrix columns 1262
permutation of matrix rows 1260
plane rotation 1323, 1324, 1326, 1327, 1368
plane rotation vector 1304
QL factorization
?geql2 1171
?geqlf 700
?orgql 702
?ormal 706
?ungql 704
?unmql 708
QR factorization
?geqp3 678
?geqpf 676
?geqr2 1172
?geqr2p 1174
?geqrf 671
?geqrfp 674
?ggqrf 728
?ggrqf 731
?laqp2 1268
?laqps 1269
?orgqr 681
?ormqr 683
?ungqr 685
?unmqr 687
p?geqrf 1587
random numbers vector 1305
real lower bidiagonal matrix
SVD 1358
real square bidiagonal matrix
singular values 1362
real symmetric matrix 1252
real symmetric matrix in RFP format 1442
real symmetric tridiagonal matrix 1189, 1251
real upper bidiagonal matrix
singular values 1336
SVD 1338, 1356, 1358
real upper quasi-triangular matrix
orthogonal similarity transformation 1213
reciprocal condition numbers for eigenvalues and/or eigenvectors
?tgsna 906
rectangular full packed format 368, 395
RQ factorization
?geqr2 1175
?gerqf 710
?orgrq 712
?ormrq 716
?ungrq 714
?unmrq 718
RZ factorization
?ormrz 723
?tzrzf 720
?unmrz 725
singular value decomposition
?bdsdc 756
?bdsqr 752
?gbbrd 739
?gebrd 736
?orgbr 742
?ormbr 744
?ungbr 747
?unmbr 749
solution refinement and error estimation
?gbrfs 458
```

?gbrfsx 461
?gerfs 449
?gerfsx 452
?gtrfs 467
?herfs 494
?herfsx 496
?hprfs 504
?la_gbrfsx_extended 1462
?la_gerfsx_extended 1473
?la_herfsx_extended 1482
?la_porfsx_extended 1493
?la_syrfsx_extended 1511
?pbrfs 480
?porfs 469
?porfsx 472
?pprfs 478
?ptrfs 483
?sprfs 501
?syrfs 485
?syrfsx 488
?tbrfs 511
?tprfs 508
?trrfs 506
solving linear equations
?dttrsb 392
?gbtrs 387
?getrs 385
?gttrs 389
?heswapr 1413
?hetrs 404
?hetrs2 408
?hptrs 411
?laln2 1232
?laqtr 1289
?pbtrs 398
?pftrs 395
?potrs 393
?pptrs 396
?pttrs 400
?sptrs 409
?syswapr 1411
?syswapr1 1414
?sytrs 402
?sytrs2 406
?tbtrs 418
?tptrs 416
?trtrs 413
sorting numbers 1371
square root 1262, 1263
square roots $1342,1344,1346,1353,1354$, 1524
Sylvester equation
?lasy2 1375
?tgsy2 1423
?trsyl 874
symmetric band matrix
equilibration 1285, 1287
symmetric band matrix in packed storage
equilibration 1286
symmetric eigenvalue problems
?disna 818
?hbtrd 791
?herdb 766
?hetrd 772
?hptrd 784
?opgtr 781
?opmtr 782
?orgtr 768
?ormtr 770

```
?pteqr 810
?sbtrd 789
?sptrd 779
?stebz 813
?stedc 801
?stegr 805
?stein 815
?stemr 798
?steqr 795
?sterf 793
?syrdb 764
?sytrd 762
? ungtr 775
?unmtr 776
?upgtr 786
?upmtr 787 auxiliary
?lae2 1188
?laebz 1189
?laed0 1192
?laed1 1194
?laed2 1195
?laed3 1197
?laed4 1199
?laed5 1200
?laed6 1200
?laed7 1202
?laed8 1204
?laed9 1207
?laeda 1208
symmetric indefinite matrix equilibration
?syequb 554
symmetric matrix
computing eigenvalues and
eigenvectors 1212
packed storage 1249
symmetric positive-definite matrix
equilibration
?poequ 547
?poequb 549
symmetric positive-definite tridiagonal matrix
eigenvalues 1363
trapezoidal matrix 1257, 1390
triangular factorization
?gbtrf 359
?getrf 357
?gttrf 361
?hetrf 378
?hptrf 383
?pbtrf 371
?potrf 364
?pptrf 369
?pstrf 366
?pttrf 373
?sptrf 381
?sytrf 374
p?dbtrf 1542
triangular matrix
packed storage 1256
triangular matrix factorization
?pftrf 368
?pftri 517
?tftri 535
triangular system of equations 1383, 1387
tridiagonal band matrix 1255
uniform distribution 1328
unreduced symmetric tridiagonal matrix
1192
updated upper bidiagonal matrix

SVD 1347
updating sum of squares 1372
upper Hessenberg matrix
computing a specified eigenvector 1209
eigenvalues 1224
Schur factorization 1224
utility functions and routines
?labad 1524
?lamc1 1526
?lamc2 1526
?lamc3 1527
?lamc4 1528
?lamc5 1528
?lamch 1525
chla_transtype 1529
ieeeck 1523
iladiag 1530
ilaenv 1520
ilaprec 1531
ilatrans 1531
ilauplo 1532
ilaver 1519
iparmq 1522
Isamen 1524
second/dsecnd 1529
xerbla_array 1532
Laplace 2168
Laplace problem
three-dimensional 2461
two-dimensional 2459
largest absolute value of element
complex Hermitian matrix packed storage 1250
complex Hermitian matrix in RFP format 1443
complex Hermitian tridiagonal matrix 1251
complex symmetric matrix 1252
general rectangular matrix 1244, 1779
general tridiagonal matrix 1245
Hermitian band matrix 1248
real symmetric matrix 1252, 1782
real symmetric matrix in RFP format 1442
real symmetric tridiagonal matrix 1251
symmetric band matrix 1247
symmetric matrix packed storage 1249
trapezoidal matrix 1257
triangular band matrix 1255
triangular matrix packed storage 1256
upper Hessenberg matrix 1246, 1780
leading dimension 2648
leapfrog method 2121
LeapfrogStream 2146
least squares problems
length. dimension 2645
library version 2521
Library Version Obtaining 2521
library version string 2523
linear combination of distributed vectors 2378
linear combination of vectors 55, 327
Linear Congruential Generator 2118
linear equations, solving
tridiagonal symmetric positive-definite matrix

\section*{LAPACK 623}

ScaLAPACK 1699
band matrix
LAPACK 574, 576
ScaLAPACK 1685
banded matrix
extra precise interative refinement
LAPACK 582
extra precise iterative refinement 461, 1462, 1493 LAPACK 582
Cholesky-factored matrix LAPACK 398
ScaLAPACK 1558
diagonally dominant tridiagonal matrix
LAPACK 392, 595
diagonally dominant-like matrix
banded 1553
tridiagonal 1555
general band matrix
ScaLAPACK 1687
general matrix
band storage 387, 1551
extra precise interative refinement 452
extra precise iterative refinement 1473
general tridiagonal matrix
ScaLAPACK 1689
Hermitian indefinite matrix
extra precise interative refinement LAPACK 649
extra precise iterative refinement 1482
LAPACK 649
Hermitian matrix
error bounds 645, 663
packed storage 411, 661, 663
Hermitian positive-definite matrix
band storage
LAPACK 617
ScaLAPACK 1697
error bounds
LAPACK 599
ScaLAPACK 1693
extra precise interative refinement
LAPACK 604
LAPACK
linear equations, solving
packed storage 396, 611, 612
ScaLAPACK 1693
Hermitian positive-definite tridiagonal linear equations 1876
Hermitian positive-definite tridiagonal matrix 1560
multiple right-hand sides
band matrix
LAPACK 574, 576
ScaLAPACK 1685
banded matrix

\section*{LAPACK 582}
diagonally dominant tridiagonal matrix 595
Hermitian indefinite matrix LAPACK 649
Hermitian matrix 642, 661
Hermitian positive-definite matrix band storage 617
square matrix
LAPACK 558, 561, 567
ScaLAPACK 1679, 1681
symmetric indefinite matrix
LAPACK 635
symmetric matrix 629, 655
symmetric positive-definite matrix band storage 617
```

 symmetric/Hermitian positive-definite matrix
 LAPACK 604
 tridiagonal matrix 589,591
 overestimated or underestimated system 1701
 square matrix
 error bounds
 LAPACK 561, }57
 ScaLAPACK 1681
 extra precise interative refinement
 LAPACK }56
 LAPACK 558, 561, }56
 ScaLAPACK 1679,1681
 symmetric indefinite matrix
 extra precise interative refinement
 LAPACK }63
 extra precise iterative refinement }151
 LAPACK }63
 symmetric matrix
 error bounds 631,657
 packed storage 409, 655,657
 symmetric positive-definite matrix
 band storage
 LAPACK 617
 ScaLAPACK }169
 error bounds
 LAPACK }59
 ScaLAPACK 1693
 extra precise interative refinement
 LAPACK 472,604
 LAPACK 596, 599,604
 packed storage 396, 611,612
 ScaLAPACK 1691, 1693
 symmetric positive-definite tridiagonal linear equations 1878atrix one-dimensional substructures 2645
 triangular matrix
 band storage 418, 1851
 packed storage 416
 tridiagonal Hermitian positive-definite matrix
 error bounds }62
 LAPACK }62
 ScaLAPACK 1699
 tridiagonal matrix
 error bounds 591
 LAPACK 389, 400, 589, }59
 LAPACK auxiliary 1290
 ScaLAPACK auxiliary }187
 tridiagonal symmetric positive-definite matrix
 error bounds }62
 Linear Least Squares (LLS) Problems }93
LoadStreamF }214
LoadStreamM 2144
Lognormal }217
LQ factorization
computing the elements of
orthogonal matrix Q 692
real orthogonal matrix Q 1600
unitary matrix Q 696,1602
general rectangular matrix 1170,1756
Isame 2530
Isamen 1524, 2531
LU factorization
band matrix
blocked algorithm 1873
unblocked algorithm }187
diagonally dominant tridiagonal matrix }36
diagonally dominant-like tridiagonal matrix }154
general band matrix }116
general matrix 1178,1763
solving linear equations
general matrix }117
square matrix }168

```
real symmetric matrix packed storage 98
symmetric matrix band storage 95
triangular matrix band storage 107 packed storage 112
matrix-vector operation:rank-1 update
Hermitian matrix packed storage 92
real symmetric matrix packed storage 99
matrix-vector operation:rank-2 update
Hermitian matrix
packed storage 94
symmetric matrix packed storage 101
mkl_?bsrgemv 164
mkl_?bsrmm 246
mkl_?bsrmv 218
mkl_?bsrsm 268
mkl_?bsrsv 232
mkl_?bsrsymv 173
mkl_?bsrtrsv 184
mkl_?coogemv 166
mkl_?coomm 254
mkl_?coomv 225
mkl_?coosm 265
mkl_?coosv 239
mkl_?coosymv 176
mkl_?cootrsv 186
mkl_?cscmm 250
mkl_?cscmv 222
mkl_?cscsm 261
mkl_?cscsv 235
mkl_?csradd 316
mkl_?csrbsr 304
mkl_?csrcoo 301
mkl_? csrcsc 307
mkl_?csrdia 309
mkl_?csrgemv 161
mkl_?csrmm 242
mkl_?csrmultcsr 320
mkl_?csrmultd 324
mkl_?csrmv 215
mkl_?csrsky 313
mkl_?csrsm 257
mkl_?csrsv 228
mkl_?csrsymv 171
mkl_?csrtrsv 181
mkl_?diagemv 169
mkl_?diamm 284
mkl_?diamv 272
mkl_?diasm 291
mkl_?diasv 278
mkl_? \({ }^{2}\) iasymv 178
mkl_?diatrsv 189
mkl_?dnscsr 298
mkl_? imatcopy 335
mkl_?omatadd 344
mkl_?omatcopy 338
mkl_?omatcopy2 341
mkl_?skymm 288
mkl_?skymv 275
mkl_?skysm 295
mkl_?skysv 281
mkl_cspblas_?bsrgemv 194
mkl_cspblas_?bsrsymv 202
mkl_cspblas_?bsrtrsv 209
mkl_cspblas_?coogemv 197
mkl_cspblas_?coosymv 204
mkl_cspblas_?csrgemv 192
mkl_cspblas_?csrsymv 199
mkl_cspblas_?csrtrsv 207
mkl_cspblas_?dcootrsv 212
mkl_disable_fast_mm 2538
MKL_Disable_Fast_MM 2538
mkl_domain_get_max_threads 2527
MKL_Domain_Get_Max_Threads 2527
mkl_domain_set_num_threads 2525
MKL_Domain_Set_Num_Threads 2525
mkl_enable_instructions 2544
MKL_Enable_Instructions 2544
mkl_free
usage example 2540
MKL_free 2540
mkl_free_buffers 2536
MKL_Free_Buffers 2536
MKL_FreeBuffers 2536
mkl_get_clocks_frequency 2535
MKL_Get_Clocks_Frequency 2535
mkl_get_cpu_clocks 2533
MKL_Get_Cpu_Clocks 2533
mkl_get_cpu_frequency 2534
MKL_Get_Cpu_Frequency 2534
mkl_get_dynamic 2528
MKL_Get_Dynamic 2528
mkl_get_max_cpu_frequency 2534
MKL_Get_Max_Cpu_Frequency 2534
mkl_get_max_threads 2526
MKL_Get_Max_Threads 2526
mkl_get_version 2521
MKL_Get_Version 2521
mkl_get_version_string 2523
mkl_malloc usage example 2540
MKL_malloc 2539
mkl_mem_stat usage example 2540
MKL_Mem_Stat 2538
MKL_MemStat 2538
mkl_progress 2542
mkl_set_dynamic 2526
MKL_Set_Dynamic 2526
mkl_set_interface_layer 2545
mkl_set_num_threads 2524
MKL_Set_Num_Threads 2524
mkl_set_progress 2547
mkl_set_threading_layer 2546
mkl_set_xerbla 2546
mkl_thread_free_buffers 2537
MKL_Thread_Free_Buffers 2537
MKLGetVersion 2521
MKLGetVersionString 2523
MPI
Multiplicative Congruential Generator 2118

\section*{N}
naming conventions
BLAS 51
LAPACK 668, 1536
Nonlinear Optimization Solvers 2496
PBLAS 2374
Sparse BLAS Level 1140
Sparse BLAS Level 2151
Sparse BLAS Level 3151
VML 1970
negative eigenvalues 1778
NegBinomial 2206

NewStream 2128
NewStreamEx 2129
NewTaskX1D 2228
Nonsymmetric Eigenproblems 1019

\section*{0}
off-diagonal elements initialization 1817 LAPACK 1361
ScaLAPACK 1817
one-dimensional FFTs storage effects 2341-2343
orthogonal matrix
CS decomposition
LAPACK 920, 925, 1060
from LQ factorization
LAPACK 1396 ScaLAPACK 1836
from QL factorization
LAPACK 1394, 1399
ScaLAPACK 1833, 1840
from QR factorization
LAPACK 1395
ScaLAPACK 1835
from RQ factorization
LAPACK 1397
ScaLAPACK 1838

\section*{P}
p?agemv 2389
p?ahemv 2397
p?amax 2376
p?asum 2377
p?asymv 2404
p?atrmv 2410
p?axpy 2378
p?copy 2379
p?dbsv 1687
p?dbtrf 1542
p?dbtrs 1553
p?dbtrsv 1746
p?dot 2380
p?dotc 2381
p?dotu 2382
p?dtsv 1689
p?dttrf 1543
p?dttrs 1555
p?dttrsv 1748
p?gbsv 1685
p?gbtrf 1540
p?gbtrs 1551
p?geadd 2415
p?gebd2 1751
p?gebrd 1666
p?gecon 1564
p?geequ 1583
p?gehd2 1754
p?gehrd 1657
p?gelq2 1756
p?gelqf 1598
p?gels 1701
p?gemm 2418
p?gemv 2387
p?geql2 1758
p?geqlf 1608
p?geqpf 1589
p?geqr2 1760
p?geqrf 1587
p?ger 2391
p?gerc 2393
p?gerfs 1570
p?gerq2 1762
p?gerqf 1617
p?geru 2394
p?gesv 1679
p?gesvd 1723
p?gesvx 1681
p?getf2 1763
p?getrf 1538
p?getri 1578
p?getrs 1550
p?ggqrf 1633
p?ggrqf 1636
p?heev 1713
p?heevd 1715
p?heevx 1717
p?hegst 1677
p?hegvx 1732
p?hemm 2420
p?hemv 2396
p?her 2399
p?her2 2400
p?her2k 2424
p?herk 2422
p?hetrd 1646
p?labad 1879
p?labrd 1765
p?lachkieee 1880
p?lacon 1768
p?laconsb 1769
p?lacp2 1770
p?lacp3 1772
p?lacpy 1773
p?laevswp 1774
p?lahqr 1664
p?lahrd 1775
p?laiect 1778
p?lamch 1881
p?lange 1779
p? lanhs 1780
p?lantr 1783
p?lapiv 1785
p?laqge 1787
p?laqsy 1789
p?lared1d 1791
p?lared2d 1792
p?larf 1793
p?larfb 1795
p?larfc 1798
p?larfg 1800
p?larft 1802
p?larz 1804
p?larzb 1807
p?larzt 1813
p?lascl 1815
p?laset 1817
p?lasmsub 1818
p?lasnbt 1882
p?lassq 1819
p?laswp 1821
p?latra 1822
p?latrd 1823
p?latrz 1828
p?lauu2 1830
p?lauum 1831
p?lawil 1832
p? \(\max 1744\)
p?nrm2 2383
p?org21/p?ung21 1833
p?org2r/p?ung2r 1835
p?orgl2/p?ungl2 1836
p?orglq 1600
p?orgql 1609
p?orgqr 1591
p?orgr2/p?ungr2 1838
p?orgrq 1619
p?orm21/p?unm2l 1840
p?orm2r/p?unm2r 1843
p?ormbr 1669
p?ormhr 1659
p?orml2/p?unml2 1846
p?ormlq 1603
p?ormql 1612
p?ormqr 1594
p?ormr2/p?unmr2 1849
p?ormrq 1622
p?ormrz 1628
p?ormtr 1643
p?pbsv 1697
p?pbtrf 1546
p?pbtrs 1558
p?pbtrsv 1851
p?pocon 1566
p?poequ 1584
p?porfs 1573
p?posv 1691
p?posvx 1693
p?potf2 1857
p?potrf 1545
p?potri 1580
p? potrs 1557
p?ptsv 1699
p?pttrf 1548
p?pttrs 1560
p?pttrsv 1854
p?rscl 1858
p?scal 2384
p?stebz 1651
p?stein 1653
p?sum1 1745
p?swap 2385
p?syev 1704
p?syevd 1706
p?syevx 1708
p?sygs2/p?hegs2 1859
p?sygst 1676
p?sygvx 1726
p?symm 2426
p?symv 2402
p?syr 2406
p?syr2 2407
p?syr2k 2430
p?syrk 2428
p?sytd2/p?hetd2 1861
p?sytrd 1640
p?tradd 2416
p? tran 2432
p?tranc 2434
p?tranu 2433
p?trcon 1568
p?trmm 2435
p?trmv 2409
p?trrfs 1576
p?trsm 2437
p?trsv 2413
p?trti2 1864
p?trtri 1581
p?trtrs 1562
p?tzrzf 1626
p?unglq 1602
p?ungql 1611
p?ungqr 1592
p?ungrq 1620
p?unmbr 1672
p?unmhr 1662
p?unmlq 1605
p?unmql 1615
p?unmqr 1596
p?unmrq 1624
p?unmrz 1631
p?unmtr 1648
Packed formats 2347
packed storage scheme 2646
parallel direct solver (Pardiso) 1885
parallel direct sparse solver interface pardiso 1886
pardiso_64 1903
pardiso_getenv 1904
pardiso_setenv 1904
pardisoinit 1902
parameters
for a Givens rotation 64
modified Givens transformation 67
pardiso 1886
PARDISO parameters 1905
pardiso_64 1903
pardiso_getenv 1904
pardiso_setenv 1904
PARDISO* solver 1885
pardisoinit 1902
Partial Differential Equations support
Helmholtz problem on a sphere 2459
Poisson problem on a sphere 2460
three-dimensional Helmholtz problem 2461
three-dimensional Laplace problem 2461
three-dimensional Poisson problem 2461
two-dimensional Helmholtz problem 2458
two-dimensional Laplace problem 2459
two-dimensional Poisson problem 2458
PBLAS Level 1 functions
p?amax 2376
p?asum 2377
p?dot 2380
p?dotc 2381
p?dotu 2382
p?nrm2 2383
PBLAS Level 1 routines
p?amax 2375
p?asum 2375
p?axpy 2375, 2378
p?copy 2375, 2379
p?dot 2375
p?dotc 2375
p?dotu 2375
p?nrm2 2375
p?scal 2375, 2384
p?swap 2375, 2385
PBLAS Level 2 routines
?agemv 2386
?asymv 2386
?gemv 2386
?ger 2386
?gerc 2386
?geru 2386
?hemv 2386
?her 2386
?her2 2386
?symv 2386
?syr 2386
?syr2 2386
?trmv 2386
?trsv 2386
p?agemv 2389
p?ahemv 2397
p?asymv 2404
p?atrmv 2410
p?gemv 2387
p?ger 2391
p?gerc 2393
p?geru 2394
p?hemv 2396
p?her 2399
p?her2 2400
p?symv 2402
p?syr 2406
p?syr2 2407
p?trmv 2409
p?trsv 2413
PBLAS Level 3 routines
p?geadd 2415
p?gemm 2414, 2418
p?hemm 2414, 2420
p?her2k 2414, 2424
p?herk 2414, 2422
p?symm 2414, 2426
p?syr2k 2414, 2430
p?syrk 2414, 2428
p?tradd 2416
p? tran 2432
p?tranc 2434
p?tranu 2433
p?trmm 2414, 2435
p?trsm 2414, 2437
PBLAS routines
routine groups
pcagemv 2389
pcahemv 2397
pcamax 2376
pcatrmv 2410
pcaxpy 2378
pccopy 2379
pcdotc 2381
pcdotu 2382
pcgeadd 2415
pcgecon 1564
pcgemm 2418
pcgemv 2387
pcgerc 2393
pcgeru 2394
pchemm 2420
pchemv 2396
pcher 2399
pcher2 2400
pcher2k 2424
pcherk 2422
pcnrm2 2383
pcscal 2384
pcsscal 2384
pcswap 2385
pcsymm 2426
pcsyr2k 2430
pcsyrk 2428
pctradd 2416
pctranu 2433
pctrmm 2435
pctrmv 2409
pctrsm 2437
pctrsv 2413
pdagemv 2389
pdamax 2376
pdasum 2377
pdasymv 2404
pdatrmv 2410
pdaxpy 2378
pdcopy 2379
pddot 2380
PDE support
pdgeadd 2415
pdgecon 1564
pdgemm 2418
pdgemv 2387
pdger 2391
pdlaiectb 1778
pdlaiectl 1778
pdnrm2 2383
pdscal 2384
pdswap 2385
pdsymm 2426
pdsymv 2402
pdsyr 2406
pdsyr2 2407
pdsyr2k 2430
pdsyrk 2428
pdtradd 2416
pdtran 2432
pdtranc 2434
pdtrmm 2435
pdtrmv 2409
pdtrsm 2437
pdtrsv 2413
pdzasum 2377
permutation matrix 2630
picopy 2379
pivoting matrix rows or columns 1785
PL Interface 2457
points rotation
in the modified plane 65
in the plane 63
Poisson 2202
Poisson Library
routines
?_commit_Helmholtz_2D 2467
?_commit_Helmholtz_3D 2467
?_commit_sph_np 2476
?_commit_sph_p 2476
?_Helmholtz_2D 2470
?_Helmholtz_3D 2470
?_-init_Helmholtz_2D 2465
?_init_Helmholtz_3D 2465
?_init_sph_np 2475
?_init_sph_p 2475
?_sph_np 2478
?_sph_p 2478
free_Helmholtz_2D 2474
free_Helmholtz_3D 2474
free_sph_np 2480
free_sph_p 2480
structure 2457
Poisson problem
on a sphere 2460
three-dimensional 2461
two-dimensional 2458
PoissonV 2204
pprfs 478
pptrs 396
preconditioned Jacobi SVD 1045
preconditioners based on incomplete LU factorization
dcsrilu0 1961
dcsrilut 1963
Preconditioners Interface Description 1960
process grid 1535, 2373
product
distributed matrix-vector
general matrix 2387, 2389
distributed vector-scalar 2384
matrix-vector
distributed Hermitian matrix 2396, 2397
distributed symmetric matrix 2402, 2404
distributed triangular matrix 2409, 2410
general matrix 75, 77, 329, 331, 1468
Hermitian indefinite matrix 1478
Hermitian matrix 84, 86, 91
real symmetric matrix 98, 102
symmetric indefinite matrix 1505
triangular matrix 107, 112, 115
scalar-matrix
general distributed matrix 2418
general matrix 119, 333
Hermitian distributed matrix 2420
Hermitian matrix 122
scalar-matrix-matrix
general distributed matrix 2418
general matrix 119, 333
Hermitian distributed matrix 2420
Hermitian matrix 122
symmetric distributed matrix 2426
symmetric matrix 128
triangular distributed matrix 2435
triangular matrix 135
vector-scalar 69
product:matrix-vector
general matrix
band storage 75
Hermitian matrix
band storage 84
packed storage 91
real symmetric matrix
packed storage 98
symmetric matrix
band storage 95
triangular matrix
band storage 107
packed storage 112
psagemv 2389
psamax 2376
psasum 2377
psasymv 2404
psatrmv 2410
psaxpy 2378
pscasum 2377
pscopy 2379
psdot 2380
pseudorandom numbers
psgeadd 2415
psgecon 1564
psgemm 2418
psgemv 2387
psger 2391
pslaiect 1778
psnrm2 2383
psscal 2384
psswap 2385
pssymm 2426
pssymv 2402
pssyr 2406
pssyr2 2407
pssyr2k 2430
pssyrk 2428
pstradd 2416
pstran 2432
pstranc 2434
pstrmm 2435
pstrmv 2409
pstrsm 2437
pstrsv 2413
pxerbla 1882, 2530
pzagemv 2389
pzahemv 2397
pzamax 2376
pzatrmv 2410
pzaxpy 2378
pzcopy 2379
pzdotc 2381
pzdotu 2382
pzdscal 2384
pzgeadd 2415
pzgecon 1564
pzgemm 2418
pzgemv 2387
pzgerc 2393
pzgeru 2394
pzhemm 2420
pzhemv 2396
pzher 2399
pzher2 2400
pzher2k 2424
pzherk 2422
pznrm2 2383
pzscal 2384
pzswap 2385
pzsymm 2426
pzsyr2k 2430
pzsyrk 2428
pztradd 2416
pztranu 2433
pztrmm 2435
pztrmv 2409
pztrsm 2437
pztrsv 2413

\section*{Q}

QL factorization
computing the elements of complex matrix Q 704 orthogonal matrix Q 1609 real matrix Q 702
unitary matrix Q 1611
general rectangular matrix LAPACK 1171 ScaLAPACK 1758
multiplying general matrix by orthogonal matrix Q 1612 unitary matrix Q 1615
QR factorization
computing the elements of orthogonal matrix Q 681, 1591 unitary matrix Q 685, 1592
general rectangular matrix LAPACK 1172, 1174, 1175 ScaLAPACK 1760, 1762
with pivoting ScaLAPACK 1589
quasi-random numbers
quasi-triangular matrix
LAPACK 833, 877
ScaLAPACK 1656
quasi-triangular system of equations 1289

\section*{R}
random number generators 2115
random stream 2123
random stream descriptor 2117
Random Streams 2123
rank-1 update
conjugated, distributed general matrix 2393
conjugated, general matrix 81
distributed general matrix 2391
distributed Hermitian matrix 2399
distributed symmetric matrix 2406
general matrix 79
Hermitian matrix packed storage 92
real symmetric matrix packed storage 99
unconjugated, distributed general matrix 2394
unconjugated, general matrix 82
rank-2 update
distributed Hermitian matrix 2400
distributed symmetric matrix 2407
Hermitian matrix packed storage 94
symmetric matrix packed storage 101
rank-2k update
Hermitian distributed matrix 2424
Hermitian matrix 126
symmetric distributed matrix 2430
symmetric matrix 133
rank-k update
distributed Hermitian matrix 2422
Hermitian matrix 124
symmetric distributed matrix 2428
rank-n update
symmetric matrix 131
Rayleigh 2175
RCI CG Interface 1933
RCI CG sparse solver routines
dcg 1946, 1950
dcg_check 1946
dcg_get 1948
dcg_init 1945
dcgmrhs_check 1949
dcgmrhs_get 1952
dcgmrhs_init 1948
RCI FGMRES Interface 1938
RCI FGMRES sparse solver routines
dfgmres_check 1953
dfgmres_get 1956
dfgmres_init 1952
RCI GFMRES sparse solver routines dfgres 1954
RCI ISS 1932
RCI ISS interface 1932
RCI ISS sparse solver routines
implementation details 1957
real matrix
QR factorization with pivoting 1269
real symmetric matrix
1-norm value 1252
Frobenius norm 1252
infinity- norm 1252
largest absolute value of element 1252
real symmetric tridiagonal matrix
1-norm value 1251

Frobenius norm 1251
infinity- norm 1251
largest absolute value of element 1251
reducing generalized eigenvalue problems
LAPACK 820
ScaLAPACK 1676
reduction to upper Hessenberg form
general matrix 1754
general square matrix 1168
refining solutions of linear equations
band matrix 458
banded matrix 461, 1462, 1493
general matrix 449, 452, 1473, 1570
Hermitian indefinite matrix 496, 1482
Hermitian matrix
packed storage 504
Hermitian positive-definite matrix band storage 480 packed storage 478
symmetric indefinite matrix 488, 1511 symmetric matrix packed storage 501
symmetric positive-definite matrix band storage 480 packed storage 478
symmetric/Hermitian positive-definite distributed matrix 1573
tridiagonal matrix 467
RegisterBrng 2209
registering a basic generator 2208
reordering of matrices 2631
Reverse Communication Interface 1932
rotation
of points in the modified plane 65
of points in the plane 63
of sparse vectors 148
parameters for a Givens rotation 64
parameters of modified Givens transformation 67
routine name conventions

\section*{BLAS 51}

Nonlinear Optimization Solvers 2496
PBLAS 2374
Sparse BLAS Level 1140
Sparse BLAS Level 2151
Sparse BLAS Level 3151
RQ factorization computing the elements of
complex matrix Q 714
orthogonal matrix Q 1619
real matrix Q 712
unitary matrix Q 1620

\section*{S}

SaveStreamF 2140
SaveStreamM 2142
sbbcsd 920
sbdsdc 756
ScaLAPACK
ScaLAPACK routines
1D array redistribution 1791, 1792 auxiliary routines
?combamax1 1745
?dbtf2 1872
?dbtrf 1873
?dttrf 1874
?dttrsv 1875
?lamsh 1866
?laref 1867
?lasorte 1868
?lasrt2 1869
?pttrsv 1876
?stein2 1870
?steqr2 1878
p?dbtrsv 1746
p?dttrsv 1748
p?gebd2 1751
p?gehd2 1754
p?gelq2 1756
p?geql2 1758
p?geqr2 1760
p?gerq2 1762
p?getf2 1763
p?labrd 1765
p?lacgv 1743
p?lacon 1768
p?laconsb 1769
p?lacp2 1770
p?lacp3 1772
p?lacpy 1773
p?laevswp 1774
p?lahrd 1775
p?laiect 1778
p?lange 1779
p?lanhs 1780
p?lansy, p?lanhe 1782
p?lantr 1783
p?lapiv 1785
p?laqge 1787
p?laqsy 1789
p?lared1d 1791
p?lared2d 1792
p?larf 1793
p?larfb 1795
p?larfc 1798
p?larfg 1800
p?larft 1802
p?larz 1804
p?larzb 1807
p?larzc 1809
p?larzt 1813
p?lascl 1815
p?laset 1817
p?lasmsub 1818
p?lassq 1819
p?laswp 1821
p? latra 1822
p?latrd 1823
p?latrs 1826
p?latrz 1828
p?lauu2 1830
p?lauum 1831
p?lawil 1832
p?max1 1744
p?org21/p?ung21 1833
p?org2r/p?ung2r 1835
p?orgl2/p?ungl2 1836
p?orgr2/p?ungr2 1838
p?orm21/p?unm2l 1840
p?orm2r/p?unm2r 1843
p?orml2/p?unml2 1846
p?ormr2/p?unmr2 1849
p?pbtrsv 1851
p?potf2 1857
p?pttrsv 1854
p?rscl 1858
p?sum1 1745
p?sygs2/p?hegs2 1859
p?sytd2/p?hetd2 1861
p?trti2 1864
pdlaiectb 1778
pdlaiectl 1778
pslaiect 1778
block reflector
triangular factor 1802, 1813
Cholesky factorization 1548
complex matrix
complex elementary reflector 1809
complex vector
1 -norm using true absolute value 1745
complex vector conjugation 1743
condition number estimation
p?gecon 1564
p?pocon 1566
p? trcon 1568
driver routines
p?dbsv 1687
p?dtsv 1689
p?gbsv 1685
p?gels 1701
p?gesv 1679
p?gesvd 1723
p?gesvx 1681
p?heev 1713
p?heevd 1715
p?heevx 1717
p?hegvx 1732
p?pbsv 1697
p?posv 1691
p?posvx 1693
p?ptsv 1699
p?syev 1704
p?syevd 1706
p?syevx 1708
p?sygvx 1726
error estimation
p?trrfs 1576
error handling
pxerbla 1882, 2530
general matrix
block reflector 1807
elementary reflector 1804
LU factorization 1763
reduction to upper Hessenberg form 1754
general rectangular matrix
elementary reflector 1793
LQ factorization 1756
QL factorization 1758
QR factorization 1760
reduction to bidiagonal form 1765
reduction to real bidiagonal form 1751
row interchanges 1821
RQ factorization 1762
generalized eigenvalue problems
p?hegst 1677
p?sygst 1676
Householder matrix
elementary reflector 1800
LQ factorization
p?gelq2 1756
p?gelqf 1598
p?orglq 1600
p?ormlq 1603
p?unglq 1602
p?unmlq 1605
LU factorization
p?dbtrsv 1746
p?dttrf 1543
p?dttrsv 1748
p?getf2 1763
matrix equilibration
p?geequ 1583
p?poequ 1584
matrix inversion
p?getri 1578
p?potri 1580
p?trtri 1581
nonsymmetric eigenvalue problems
p?gehrd 1657
p?lahqr 1664
p?ormhr 1659
p?unmhr 1662
QL factorization
?geqlf 1608
?ungql 1611
p?geql2 1758
p?orgql 1609
p?ormql 1612
p?unmql 1615
QR factorization
p?geqpf 1589
p?geqr2 1760
p?ggqrf 1633
p?orgqr 1591
p?ormqr 1594
p?ungqr 1592
p?unmqr 1596
RQ factorization
p?gerq2 1762
p?gerqf 1617
p?ggrqf 1636
p?orgrq 1619
p?ormrq 1622
p?ungrq 1620
p?unmrq 1624
RZ factorization
p?ormrz 1628
p?tzrzf 1626
p?unmrz 1631
singular value decomposition
p?gebrd 1666
p?ormbr 1669
p?unmbr 1672
solution refinement and error estimation
p?gerfs 1570
p?porfs 1573
solving linear equations
?dttrsv 1875
?pttrsv 1876
p?dbtrs 1553
p?dttrs 1555
p?gbtrs 1551
p?getrs 1550
p? potrs 1557
p?pttrs 1560
p? trtrs 1562
symmetric eigenproblems
p?hetrd 1646
p?ormtr 1643
p?stebz 1651
p?stein 1653
p?sytrd 1640
p? unmtr 1648
symmetric eigenvalue problems
?stein2 1870
?steqr2 1878
trapezoidal matrix 1828
triangular factorization
?dbtrf 1873
?dttrf 1874
p?dbtrsv 1746
p?dttrsv 1748
p?gbtrf 1540
p?getrf 1538
p?pbtrf 1546
p?potrf 1545
p?pttrf 1548
triangular system of equations 1826
updating sum of squares 1819
utility functions and routines
p?labad 1879
p?lachkieee 1880
p?lamch 1881
p?lasnbt 1882
pxerbla 1882, 2530
scalar-matrix product \(119,122,128,333,2418,2420\), 2426
scalar-matrix-matrix product
general distributed matrix 2418
general matrix 119, 333
symmetric distributed matrix 2426
symmetric matrix 128
triangular distributed matrix 2435
triangular matrix 135
scaling
general rectangular matrix 1787
symmetric/Hermitian matrix 1789
scaling factors
general rectangular distributed matrix 1583
Hermitian positive definite distributed matrix 1584
symmetric positive definite distributed matrix 1584
scattering compressed sparse vector's elements into full storage form 149
Schur decomposition 894, 896
Schur factorization 1223, 1224, 1259
scsum1 1165
second/dsecnd 2532
Service Functions 1972
Service Routines 2127
SetInternalDecimation 2237
sgbcon 422
sgbrfsx 461
sgbsvx 576
sgbtrs 387
sgecon 420
sgejsv 1045
sgeqpf 676
sgesvj 1051
sgtrfs 467
shgeqz 885
shseqr 851
simple driver 1536
Single Dynamic Library
mkl_set_interface_layer 2545
mkl_set_progress 2547
mkl_set_threading_layer 2546
mkl_set_xerbla 2546
single node matrix 1866
singular value decomposition
LAPACK 734
LAPACK routines, singular value decomposition 1666
ScaLAPACK 1666, 1723
See also LAPACK routines, singular value decomposition 734
Singular Value Decomposition 1037
sjacobi 2515
sjacobi_delete 2514
sjacobi_init 2512
sjacobi_solve 2513
sjacobix 2516
SkipAheadStream 2148
sla_gbamv 1455
sla_gbrcond 1457
sla_gbrfsx_extended 1462
sla_gbrpvgrw 1467
sla_geamv 1468
sla_gercond 1470
sla_gerfsx_extended 1473
sla_lin_berr 1488
sla_porcond 1489
sla_porfsx_extended 1493
sla_porpvgrw 1498
sla_rpvgrw 1503
sla_syamv 1505
sla_syrcond 1507
sla_syrfsx_extended 1511
sla_syrpvgrw 1516
sla_wwaddw 1517
slag2d 1428
slapmr 1260
slapmt 1262
slarfb 1295
slarft 1300
slarscl2 1504
slartgp 1324
slartgs 1326
slascl2 1504
slatps 1383
slatrd 1385
slatrs 1387
slatrz 1390
slauu2 1392
slauum 1393
small subdiagonal element 1818
smallest absolute value of a vector element 72
sNewAbstractStream 2135
solver
direct 2629
iterative 2629
Solver
Sparse 1885
solving linear equations 387
solving linear equations. linear equations 1551
solving linear equations. See linear equations 1232
sorbdb 925
sorcsd 1060
sorg2l 1394
sorg2r 1395
sorgl2 1396
sorgr2 1397
sorm2l 1399
sorm2r 1400
sorml2 1402
sormr2 1404
sormr3 1405
sorting
eigenpairs 1868
numbers in increasing/decreasing order LAPACK 1371
ScaLAPACK 1869
Sparse BLAS Level 1
data types 140
naming conventions 140
Sparse BLAS Level 1 routines and functions
?axpyi 141
?dotci 144
?doti 143
?dotui 145
?gthr 146
?gthrz 147
?roti 148
?sctr 149
Sparse BLAS Level 2
naming conventions 151
sparse BLAS Level 2 routines
mkl_?bsrgemv 164
mkl_?bsrmv 218
mkl_? bsrsv 232
mkl_?bsrsymv 173
mkl_?bstrtsv 184
mkl_?coogemv 166
mkl_?coomv 225
mkl_?coosv 239
mkl_?coosymv 176
mkl_?cootrsv 186
mkl_?cscmv 222
mkl_?cscsv 235
mkl_?csrgemv 161
mkl_?csrmv 215
mkl_?csrsv 228
mkl_?csrsymv 171
mkl_?cstrssv 181
mkl_?diagemv 169
mkl_?diamv 272
mkl_? diasv 278
mkl_?diasymv 178
mkl_?diatrsv 189
mkl_?skymv 275
mkl_?skysv 281
mkl_cspblas_?bsrgemv 194
mkl_cspblas_?bsrsymv 202
mkl_cspblas_?bsrtrsv 209
mkl_cspblas_?coogemv 197
mkl_cspblas_?coosymv 204
mkl_cspblas_?cootrsv 212
mkl_cspblas_?csrgemv 192
mkl_cspblas_?csrsymv 199
mkl_cspblas_?cstrsv 207
Sparse BLAS Level 3
naming conventions 151
sparse BLAS Level 3 routines
mkl_?bsrmm 246
mkl_?bsrsm 268
mkl_?coomm 254
mkl_?coosm 265
mkl_?cscmm 250
mkl_?cscsm 261
mkl_?csradd 316
mkl_?csrmm 242
mkl_?csrmultcsr 320
mkl_?csrmultd 324
mkl_?csrsm 257
mkI_? diamm 284
mkl_?diasm 291
mkI_?skymm 288
mkl_?skysm 295
sparse BLAS routines
mkl_?csrbsr 304
mkl_?csrcoo 301
mkl_?csrcsc 307
mkl_?csrdia 309
mkl_?csrsky 313
mkl_?dnscsr 298
sparse matrices 151
sparse matrix 151
Sparse Matrix Storage Formats 152
sparse solver
parallel direct sparse solver interface
pardiso 1886
```

 pardiso_64 1903
 pardiso_getenv 1904
 pardiso_setenv 1904
 pardisoinit }190
 Sparse Solver
direct sparse solver interface
dss_create 1916
dss_define_structure
dss_define_structure 1918
dss_delete 1926
dss_factor 1921
dss_factor_complex 1921
dss_factor_real 1921
dss_reorder 1920
dss_solve 1923
dss_solve_complex 1923
dss solve real 1923
dss_statistics 1927
mkl_cvt_to_null_terminated_str 1930
iterative sparse solver interface
dcg }194
dcg_check 1946
dcg_get 1948
dcg_init 1945
dcgmrhs }195
dcgmrhs_check 1949
dcgmrhs_get 1952
dcgmrhs_init 1948
dfgmres }195
dfgmres_check 1953
dfgmres_get 1956
dfgmres_init 1952
preconditioners based on incomplete LU
factorization
dcsrilu0 }196
dcsrilut }196
Sparse Solvers }190
sparse vectors
adding and scaling 141
complex dot product, conjugated 144
complex dot product, unconjugated }14
compressed form 140
converting to compressed form 146,147
converting to full-storage form 149
full-storage form 140
Givens rotation }14
norm 140
passed to BLAS level 1 routines }14
real dot product }14
scaling }14
spbtf2 }140
specific hardware support
mkl_enable_instructions 2544
Spline Methods }260
split Cholesky factorization (band matrices) }83
sporfsx 472
spotf2 }140
spprfs 478
spptrs }39
sptts2 }140
square matrix
1-norm estimation
LAPACK 1184, }118
ScaLAPACK 1768
srscl 1411
ssyconv 436
ssygs2 }141
ssyswapr 1411
ssyswapr1 }141
ssytd2 }141

```
ssytf2 1418
ssytri2 523
ssytri2x 527
ssytrs2 406
stgex2 1421
stgsy2 1423
stream 2123
strexc 868
stride. increment 2645
strnlsp_check 2499
strnlsp_delete 2503
strnlsp_get 2502
strnlsp_init 2497
strnlsp_solve 2500
strnlspbc_check 2506
strnlspbc_delete 2511
strnlspbc_get 2510
strnlspbc_init 2505
strnlspbc_solve 2508
strti2 1426
sum
of distributed vectors 2378
of magnitudes of elements of a distributed vector 2377
of magnitudes of the vector elements 54
of sparse vector and full-storage vector 141
of vectors 55, 327
sum of squares updating

LAPACK 1372
ScaLAPACK 1819
summary statistics
vsidsscompute 2302
vsldSSCompute 2302
vsIdsseditcorparameterization 2298
vsIdSSEditCorParameterization 2298
vsidsseditcovcor 2280
vsIdSSEditCovCor 2280
vsidsseditmissingvalues 2294
vsldSSEditMissingValues 2294
vsldsseditmoments 2278
vsldSSEditMoments 2278
vsIdsseditoutliersdetection 2292
vsIdSSEditOutliersDetection 2292
vsldsseditpartialcovcor 2282
vsIdSSEditPartialCovCor 2282
vsldsseditpooledcovariance 2287
vsIdSSEditPooledCovariance 2287
vsIdsseditquantiles 2284
vsIdSSEditQuantiles 2284
vsIdsseditrobustcovariance 2289
vsIdSSEditRobustCovariance 2289
vsldsseditstreamquantiles 2286
vsIdSSEditStreamQuantiles 2286
vsIdssedittask 2270
vsIdSSEditTask 2270
vsidssnewtask 2267
vsIdSSNewTask 2267
vslissedittask 2270
vsliSSEditTask 2270
vsIssdeletetask 2303
vsISSDeleteTask 2303
vslssscompute 2302
vslsSSCompute 2302
vslssseditcorparameterization 2298
vslsSSEditCorParameterization 2298
vsIssseditcovcor 2280
vslsSSEditCovCor 2280
vslssseditmissingvalues 2294
vslsSSEditMissingValues 2294
vslssseditmoments 2278
vsIsSSEditMoments 2278
vslssseditoutliersdetection 2292
vsIsSSEditOutliersDetection 2292
vslssseditpartialcovcor 2282
vslsSSEditPartialCovCor 2282
vslssseditpooledcovariance 2287
vslsSSEditPooledCovariance 2287
vslssseditquantiles 2284
vslsSSEditQuantiles 2284
vslssseditrobustcovariance 2289
vsIsSSEditRobustCovariance 2289
vslssseditstreamquantiles 2286
vslsSSEditStreamQuantiles 2286
vslsssedittask 2270
vslsSSEditTask 2270
vsIsssnewtask 2267
vsIsSSNewTask 2267
summary statistics usage examples 2304
support functions
mkl_free 2540
mkl_malloc 2539
mkl_mem_stat 2538
mkl_progress 2542
support routines
mkl_disable_fast_mm 2538
mkl_free_buffers 2536
mkl_thread_free_buffers 2537
progress information 2542
SVD (singular value decomposition)
LAPACK 734
ScaLAPACK 1666
swapping adjacent diagonal blocks 1213, 1421
swapping distributed vectors 2385
swapping vectors 70
Sylvester's equation 874
symmetric band matrix
1-norm value 1247
Frobenius norm 1247
infinity- norm 1247
largest absolute value of element 1247
symmetric distributed matrix
rank-n update 2428, 2430
scalar-matrix-matrix product 2426
Symmetric Eigenproblems 948
symmetric indefinite matrix
factorization with diagonal pivoting method 1418
matrix-vector product 1505
symmetric matrix
Bunch-Kaufman factorization packed storage 381
eigenvalues and eigenvectors \(1704,1706,1708\)
estimating the condition number packed storage 439
generalized eigenvalue problems 819
inverting the matrix packed storage 530
matrix-vector product band storage 95 packed storage 98, 1159
rank-1 update packed storage 99, 1161
rank-2 update packed storage 101
rank-2k update 133
rank-n update 131
reducing to standard form
LAPACK 1415 ScaLAPACK 1859
reducing to tridiagonal form

LAPACK 1385
ScaLAPACK 1823
scalar-matrix-matrix product 128
scaling 1789
solving systems of linear equations
packed storage 409
symmetric matrix in packed form
1-norm value 1249
Frobenius norm 1249
infinity- norm 1249
largest absolute value of element 1249
symmetric positive definite distributed matrix
computing scaling factors 1584
equilibration 1584
symmetric positive semidefinite matrix
Cholesky factorization 366
symmetric positive-definite band matrix
Cholesky factorization 1407
symmetric positive-definite distributed matrix
inverting the matrix 1580
symmetric positive-definite matrix
Cholesky factorization
band storage 371, 1546
LAPACK 1408
packed storage 369
ScaLAPACK 1545, 1857
estimating the condition number
band storage 430
packed storage 428
tridiagonal matrix 432
inverting the matrix
packed storage 519
solving systems of linear equations
band storage 398, 1558
LAPACK 393
packed storage 396
ScaLAPACK 1557
symmetric positive-definite tridiagonal matrix solving systems of linear equations 1560
system of linear equations
with a distributed triangular matrix 2413
with a triangular matrix
band storage 109
packed storage 113
systems of linear equations
linear equations 1875
systems of linear equationslinear equations 1550
syswapr 1411
syswapr1 1414
sytri2 523
sytri2x 527

\section*{T}

Task Computation Routines 2606
Task Creation and Initialization
NewTask1d 2592
Task Status 2590
threading control
mkl_domain_get_max_threads 2527
mkl_domain_set_num_threads 2525
mkl_get_dynamic 2528
mkl_get_max_threads 2526
mkl_set_dynamic 2526
mkl_set_num_threads 2524
Threading Control 2524
timing functions
mkl_get_clocks_frequency 2535
MKL_Get_Cpu_Clocks 2533
mkl_get_cpu_frequency 2534
mkl_get_max_cpu_frequency 2534
second/dsecnd 2532
TR routines
?trnlsp_check 2499
?trnlsp_delete 2503
?trnlsp_get 2502
?trnlsp_init 2497
?trnlsp_solve 2500
?trnlspbc_check 2506
?trnlspbc_delete 2511
?trnlspbc_get 2510
?trnlspbc_init 2505
?trnlspbc_solve 2508
nonlinear least squares problem with linear bound constraints 2504 without constraints 2496
organization and implementation 2495
transposition
distributed complex matrix 2433
distributed complex matrix, conjugated 2434
distributed real matrix 2432
Transposition and General Memory Movement Routines 327
transposition parameter 2648
trapezoidal matrix
1-norm value 1257
Frobenius norm 1257
infinity- norm 1257
largest absolute value of element 1257
reduction to triangular form 1828 RZ factorization

LAPACK 720
ScaLAPACK 1626
trexc 868
triangular band matrix
1-norm value 1255
Frobenius norm 1255
infinity- norm 1255
largest absolute value of element 1255
triangular banded equations
LAPACK 1380
ScaLAPACK 1851
triangular distributed matrix
inverting the matrix 1581
scalar-matrix-matrix product 2435
triangular factorization
band matrix 359, 1540, 1542, 1746, 1873
diagonally dominant tridiagonal matrix LAPACK 363
general matrix 357, 1538
Hermitian matrix packed storage 383
Hermitian positive semidefinite matrix 366
Hermitian positive-definite matrix
band storage 371, 1546
packed storage 369
tridiagonal matrix 373, 1548
symmetric matrix
packed storage 381
symmetric positive semidefinite matrix 366
symmetric positive-definite matrix
band storage 371, 1546
packed storage 369
tridiagonal matrix 373, 1548
tridiagonal matrix
LAPACK 361
ScaLAPACK 1874
triangular matrix
1-norm value

LAPACK 1257
ScaLAPACK 1783
copying 1444-1446, 1448-1450
estimating the condition number
band storage 447
packed storage 445
Frobenius norm
LAPACK 1257
ScaLAPACK 1783
infinity- norm
LAPACK 1257
ScaLAPACK 1783
inverting the matrix
LAPACK 1426
packed storage 536
ScaLAPACK 1864
largest absolute value of element
LAPACK 1257
ScaLAPACK 1783
matrix-vector product
band storage 107
packed storage 112
product
blocked algorithm 1393, 1831
LAPACK 1392, 1393
ScaLAPACK 1830, 1831
unblocked algorithm 1392
ScaLAPACK 1656
scalar-matrix-matrix product 135 solving systems of linear equations
band storage 109, 418
packed storage 113, 416
ScaLAPACK 1562
swapping adjacent diagonal blocks 1421
triangular matrix factorization
Hermitian positive-definite matrix 364
symmetric positive-definite matrix 364
triangular matrix in packed form
1-norm value 1256
Frobenius norm 1256
infinity- norm 1256
largest absolute value of element 1256
triangular system of equations solving with scale factor

LAPACK 1387
ScaLAPACK 1826
tridiagonal matrix
estimating the condition number 424 solving systems of linear equations ScaLAPACK 1875
tridiagonal system of equations 1409
tridiagonal triangular factorization
band matrix 1748
tridiagonal triangular system of equations 1854
trigonometric transform
backward cosine 2442
backward sine 2442
backward staggered cosine 2443
backward staggered sine 2442
backward twice staggered cosine 2443
backward twice staggered sine 2442
forward cosine 2442
forward sine 2442
forward staggered cosine 2443
forward staggered sine 2442
forward twice staggered cosine 2443
forward twice staggered sine 2442
Trigonometric Transform interface routines
?_backward_trig_transform 2450
?_commit_trig_transform 2446
?_forward_trig_transform 2448
?_init_trig_transform 2445
free_trig_transform 2451
Trigonometric Transforms interface 2445
TT interface 2441
TT routines 2445
two matrices

> QR factorization
> LAPACK 728
> ScaLAPACK 1633

\section*{U}
ungbr 747
Uniform (continuous) 2156
Uniform (discrete) 2189
UniformBits 2191
UniformBits32 2192
UniformBits64 2193
unitary matrix
CS decomposition
LAPACK 920, 925, 1060
from LQ factorization
LAPACK 1396
ScaLAPACK 1836
from QL factorization
LAPACK 1394, 1399
ScaLAPACK 1833, 1840
from QR factorization
LAPACK 1395
ScaLAPACK 1835
from RQ factorization
LAPACK 1397
ScaLAPACK 1838
ScaLAPACK 1656, 1666
Unpack Functions 1972
updating
rank-1
distributed general matrix 2391
distributed Hermitian matrix 2399
distributed symmetric matrix 2406
general matrix 79
Hermitian matrix 87, 92
real symmetric matrix 99, 104
rank-1, conjugated
distributed general matrix 2393
general matrix 81
rank-1, unconjugated
distributed general matrix 2394
general matrix 82
rank-2
distributed Hermitian matrix 2400
distributed symmetric matrix 2407
Hermitian matrix 89, 94
symmetric matrix 101, 106
rank-2k
Hermitian distributed matrix 2424
Hermitian matrix 126
symmetric distributed matrix 2430
symmetric matrix 133
rank-k
distributed Hermitian matrix 2422
Hermitian matrix 124
symmetric distributed matrix 2428
rank-n
symmetric matrix 131
updating: rank-1
Hermitian matrix
packed storage 92
real symmetric matrix
packed storage 99
updating: rank-2
Hermitian matrix
packed storage 94
symmetric matrix
packed storage 101
upper Hessenberg matrix
1 -norm value
LAPACK 1246
ScaLAPACK 1780
Frobenius norm
LAPACK 1246
ScaLAPACK 1780
infinity- norm
LAPACK 1246
ScaLAPACK 1780
largest absolute value of element
LAPACK 1246
ScaLAPACK 1780
ScaLAPACK 1656
user time 1529
V
v?Abs 1989
v?Acos 2042
v?Acosh 2061
v?Add 1976
v?Arg 1991
v?Asin 2045
v?Asinh 2064
v?Atan 2047
v?Atan2 2050
v?Atanh 2067
v?Cbrt 2004
v?CdfNorm 2075
v?CdfNormInv 2082
v?Ceil 2089
v?CIS 2038
v?Conj 1987
v?Cos 2031
v?Cosh 2052
v?Div 1997
v?Erf 2070
v?Erfc 2073
v?ErfcInv 2080
v?ErfInv 2077
v?Exp 2019
v?Expm1 2022
v?Floor 2088
v?Hypot 2017
v?Inv 1995
v?InvCbrt 2006
v?InvSqrt 2002
v?Igamma 2084
v?LGamma 2084
v?LinearFrac 1993
v?Ln 2024
v?Log10 2027
v?Log1p 2030
v?Modf 2098
v?Mul 1983
v?MulByConj 1986
v?NearbyInt 2094
v?Pack 2100
v?Pow 2011
v?Pow203 2007
v?Pow3o2 2009
v?Powx 2014
v?Rint 2096
v?Round 2093
v ?Sin 2034
v?SinCos 2036
v?Sinh 2055
v?Sqr 1981
v?Sqrt 2000
v?Sub 1979
v?Tan 2040
v?Tanh 2058
v?tgamma 2086
v?TGamma 2086
v?Trunc 2091
v?Unpack 2103
vcAdd 1976
vcPackI 2100
vcPackM 2100
vcPackV 2100
vcSin 2034
vcSub 1979
vcUnpackI 2103
vcUnpackM 2103
vcUnpackV 2103
vdAdd 1976
vdlgamma 2084
vdLGamma 2084
vdPackI 2100
vdPackM 2100
vdPackV 2100
vdSin 2034
vdSub 1979
vdtgamma 2086
vdTGamma 2086
vdUnpackI 2103
vdUnpackM 2103
vdUnpackV 2103
vector arguments
array dimension 2645
default 2646
examples 2645
increment 2645
length 2645
matrix one-dimensional substructures 2645
sparse vector 140
vector conjugation 1155, 1743
vector indexing 1973
vector mathematical functions
absolute value 1989
addition 1976
argument 1991
complementary error function value 2073
complex exponent of real vector elements 2038
computing a rounded integer value and raising inexact result exception 2096
computing a rounded integer value in current rounding mode 2094
computing a truncated integer value 2098
conjugation 1987
cosine 2031
cube root 2004
cumulative normal distribution function value 2075
denary logarithm 2027
division 1997
error function value 2070
exponential 2019
exponential of elements decreased by 12022
four-quadrant arctangent 2050
gamma function 2084, 2086
hyperbolic cosine 2052
hyperbolic sine 2055
hyperbolic tangent 2058
inverse complementary error function value 2080
inverse cosine 2042
inverse cube root 2006
inverse cumulative normal distribution function value 2082
inverse error function value 2077
inverse hyperbolic cosine 2061
inverse hyperbolic sine 2064
inverse hyperbolic tangent 2067
inverse sine 2045
inverse square root 2002
inverse tangent 2047
inversion 1995
linear fraction transformation 1993
multiplication 1983
multiplication of conjugated vector element 1986
natural logarithm 2024
natural logarithm of vector elements increased by 1 2030
power 2011
power (constant) 2014
power 2/3 2007
power 3/2 2009
rounding to nearest integer value 2093
rounding towards minus infinity 2088
rounding towards plus infinity 2089
rounding towards zero 2091
scaling 1504
scaling, reciprocal 1504
sine 2034
sine and cosine 2036
square root 2000
square root of sum of squares 2017
squaring 1981
subtraction 1979
tangent 2040
Vector Mathematical Functions
vector multiplication
LAPACK 1411
ScaLAPACK 1858
vector pack function 2100
vector statistics functions
Bernoulli 2195
Beta 2186
Binomial 2198
Cauchy 2173
CopyStream 2138
CopyStreamState 2139
DeleteStream 2137
dNewAbstractStream 2133
Exponential 2165
Gamma 2183
Gaussian 2159
GaussianMV 2161
Geometric 2196
GetBrngProperties 2210
GetNumRegBrngs 2152
GetStreamSize 2145
GetStreamStateBrng 2151
Gumbel 2181
Hypergeometric 2200
iNewAbstractStream 2131
Laplace 2168
LeapfrogStream 2146
LoadStreamF 2141
LoadStreamM 2144
Lognormal 2178
NegBinomial 2206

NewStream 2128
NewStreamEx 2129
Poisson 2202
PoissonV 2204
Rayleigh 2175
RegisterBrng 2209
SaveStreamF 2140
SaveStreamM 2142
SkipAheadStream 2148
sNewAbstractStream 2135
Uniform (continuous) 2156
Uniform (discrete) 2189
UniformBits 2191
UniformBits32 2192
UniformBits64 2193
Weibull 2170
vector unpack function 2103
vector-scalar product
sparse vectors 141
vectors
adding magnitudes of vector elements 54
copying 56 dot product
complex vectors 61
complex vectors, conjugated 60
real vectors 58
element with the largest absolute value 71
element with the largest absolute value of real part
and its index 1745
element with the smallest absolute value 72
Euclidean norm 62
Givens rotation 64
linear combination of vectors 55, 327
modified Givens transformation parameters 67
rotation of points 63
rotation of points in the modified plane 65
sparse vectors 140
sum of vectors 55, 327
swapping 70
vector-scalar product 69
viRngUniformBits 2191
viRngUniformBits32 2192
viRngUniformBits64 2193
vmcAdd 1976
vmcSin 2034
vmcSub 1979
vmdAdd 1976
vmdSin 2034
vmdSub 1979
vml
Functions Interface 1971
Input Parameters 1972
Output Parameters 1973
VML 1969
VML arithmetic functions 1976
VML exponential and logarithmic functions 2019
VML functions mathematical functions
v?Abs 1989
v?Acos 2042
v?Acosh 2061
v?Add 1976
v?Arg 1991
v?Asin 2045
v?Asinh 2064
v?Atan 2047
v?Atan2 2050
v?Atanh 2067
v?Cbrt 2004
v?CdfNorm 2075
v?CdfNormInv 2082
v?Ceil 2089
v?CIS 2038
v?Conj 1987
v?Cos 2031
v?Cosh 2052
v?Div 1997
v?Erf 2070
v?Erfc 2073
v?ErfcInv 2080
v?ErfInv 2077
v?Exp 2019
v?Expm1 2022
v?Floor 2088
v?Hypot 2017
v?Inv 1995
v?InvCbrt 2006
v?InvSqrt 2002
v?LGamma 2084
v?LinearFrac 1993
v?Ln 2024
v?Log10 2027
v?Log1p 2030
v?Modf 2098
v?Mul 1983
v?MulByConj 1986
v?NearbyInt 2094
v?Pow 2011
v?Pow2o3 2007
v?Pow3o2 2009
v?Powx 2014
v?Rint 2096
v?Round 2093
v?Sin 2034
v?SinCos 2036
v?Sinh 2055
v?Sqr 1981
v?Sqrt 2000
v?Sub 1979
v?Tan 2040
v?Tanh 2058
v?TGamma 2086
v?Trunc 2091
pack/unpack functions v?Pack 2100 v?Unpack 2103
service functions
ClearErrorCallBack 2114
ClearErrStatus 2111
GetErrorCallBack 2114
GetErrStatus 2110
GetMode 2108
SetErrorCallBack 2111
SetErrStatus 2109
SetMode 2106
VML hyperbolic functions 2052
VML mathematical functions
arithmetic 1976
exponential and logarithmic 2019
hyperbolic 2052
power and root 1995
rounding 2088
special 2070
special value notations 1976
trigonometric 2031
VML Mathematical Functions 1971
VML Pack Functions 1971
VML Pack/Unpack Functions 2100
VML power and root functions 1995
VML rounding functions 2088

VML Service Functions 2106
VML special functions 2070
VML trigonometric functions 2031
vmIClearErrorCallBack 2114
vmIClearErrStatus 2111
vmIGetErrorCallBack 2114
vmIGetErrStatus 2110
vmIGetMode 2108
vmISetErrorCallBack 2111
vmISetErrorStatus 2109
vmISetMode 2106
vmsAdd 1976
vmsSin 2034
vmsSub 1979
vmzAdd 1976
vmzSin 2034
vmzSub 1979
vsAdd 1976
VSL Fortran header 2115
VSL routines advanced service routines GetBrngProperties 2210 RegisterBrng 2209 convolution/correlation

CopyTask 2254
DeleteTask 2253
Exec 2239
Exec1D 2242
ExecX 2246
ExecX1D 2249
NewTask 2220
NewTask1D 2223
NewTaskX 2225
NewTaskX1D 2228
SetInternalPrecision 2234
generator routines
Bernoulli 2195
Beta 2186
Binomial 2198
Cauchy 2173
Exponential 2165
Gamma 2183
Gaussian 2159
GaussianMV 2161
Geometric 2196
Gumbel 2181
Hypergeometric 2200
Laplace 2168
Lognormal 2178
NegBinomial 2206
Poisson 2202
PoissonV 2204
Rayleigh 2175
Uniform (continuous) 2156
Uniform (discrete) 2189
UniformBits 2191
UniformBits32 2192
UniformBits64 2193
Weibull 2170
service routines
CopyStream 2138
CopyStreamState 2139
DeleteStream 2137
dNewAbstractStream 2133
GetNumRegBrngs 2152
GetStreamSize 2145
GetStreamStateBrng 2151
iNewAbstractStream 2131
LeapfrogStream 2146
LoadStreamF 2141

LoadStreamM 2144
NewStream 2128
NewStreamEx 2129
SaveStreamF 2140
SaveStreamM 2142
SkipAheadStream 2148
sNewAbstractStream 2135
summary statistics
Compute 2302
DeleteTask 2303
EditCorParameterization 2298
EditCovCor 2280
EditMissingValues 2294
EditMoments 2278
EditOutliersDetection 2292
EditPartialCovCor 2282
EditPooledCovariance 2287
EditQuantiles 2284
EditRobustCovariance 2289
EditStreamQuantiles 2286
EditTask 2270
NewTask 2267
VSL routines: convolution/correlation
SetInternalDecimation 2237
SetMode 2232
SetStart 2235
VSL Summary Statistics 2261
VSL task 2115
vsIConvCopyTask 2254
vsICorrCopyTask 2254
vsIdsscompute 2302
vsldSSCompute 2302
vsidsseditcorparameterization 2298
vsIdSSEditCorParameterization 2298
vsldsseditcovcor 2280
vsIdSSEditCovCor 2280
vsIdsseditmissingvalues 2294
vsIdSSEditMissingValues 2294
vsldsseditmoments 2278
vsIdSSEditMoments 2278
vsIdsseditoutliersdetection 2292
vsIdSSEditOutliersDetection 2292
vsldsseditpartialcovcor 2282
vsIdSSEditPartialCovCor 2282
vsIdsseditpooledcovariance 2287
vsIdSSEditPooledCovariance 2287
vsIdsseditquantiles 2284
vsIdSSEditQuantiles 2284
vsIdsseditrobustcovariance 2289
vsIdSSEditRobustCovariance 2289
vsIdsseditstreamquantiles 2286
vsIdSSEditStreamQuantiles 2286
vsIdssedittask 2270
vsIdSSEditTask 2270
vsIdssnewtask 2267
vsldSSNewTask 2267
vslgamma 2084
vsLGamma 2084
vslissedittask 2270
vsliSSEditTask 2270
vsILoadStreamF 2141
vsISaveStreamF 2140
vslssdeletetask 2303
vsISSDeleteTask 2303
vslssscompute 2302
vslsSSCompute 2302
vsIssseditcorparameterization 2298
vslsSSEditCorParameterization 2298
vslssseditcovcor 2280
vslsSSEditCovCor 2280
vslssseditmissingvalues 2294
vslsSSEditMissingValues 2294
vslssseditmoments 2278
vslsSSEditMoments 2278
vslssseditoutliersdetection 2292
vsIsSSEditOutliersDetection 2292
vslssseditpartialcovcor 2282
vslsSSEditPartialCovCor 2282
vslssseditpooledcovariance 2287
vslsSSEditPooledCovariance 2287
vslssseditquantiles 2284
vslsSSEditQuantiles 2284
vslssseditrobustcovariance 2289
vslsSSEditRobustCovariance 2289
vslssseditstreamquantiles 2286
vsIsSSEditStreamQuantiles 2286
vslsssedittask 2270
vslsSSEditTask 2270
vsIsssnewtask 2267
vsIsSSNewTask 2267
vsPackI 2100
vsPackM 2100
vsPackV 2100
vsSin 2034
vsSub 1979
vstgamma 2086
vsTGamma 2086
vsUnpackI 2103
vsUnpackM 2103
vsUnpackV 2103
vzAdd 1976
vzPackI 2100
vzPackM 2100
vzPackV 2100
vzSin 2034
vzSub 1979
vzUnpackI 2103
vzUnpackM 2103
vzUnpackV 2103

\section*{W}

Weibull 2170
Wilkinson transform 1832

\section*{X}
xerbla 2529
xerbla_array 1532
xerbla, error reporting routine 1973

\section*{Z}
zbbcsd 920
zdla_gercond_c 1471
zdla_gercond_x 1472
zgbcon 422
zgbrfsx 461
zgbsvx 576
zgbtrs 387
zgecon 420
zgeqpf 676
zgtrfs 467
zhegs2 1415
zheswapr 1413
zhetd2 1417
zhetri2 525
zhetri2x 529
zhetrs2 408
zhgeqz 885
zhseqr 851
zla_gbamv 1455
zla_gbrcond_c 1459
zla_gbrcond_x 1460
zla_gbrfsx_extended 1462
zla_gbrpvgrw 1467
zla_geamv 1468
zla_gerfsx_extended 1473
zla_heamv 1478
zla_hercond_c 1480
zla_hercond_x 1481
zla_herfsx_extended 1482
zla_herpvgrw 1487
zla_lin_berr 1488
zla_porcond_c 1490
zla_porcond_x 1492
zla_porfsx_extended 1493
zla_porpvgrw 1498
zla_rpvgrw 1503
zla_syamv 1505
zla_syrcond_c 1508
zla_syrcond_x 1509
zla_syrfsx_extended 1511
zla_syrpvgrw 1516
zla_wwaddw 1517
zlag2c 1429
zlapmr 1260
zlapmt 1262
zlarfb 1295
zlarft 1300
zlarscl2 1504
zlascl2 1504
zlat2c 1454
zlatps 1383
zlatrd 1385
zlatrs 1387
zlatrz 1390
zlauu2 1392
zlauum 1393
zpbtf2 1407
zporfsx 472
zpotf2 1408
zpprfs 478
zpptrs 396
zptts2 1409
zrscl 1411
zsyconv 436
zsyswapr 1411
zsyswapr1 1414
zsytf2 1418
zsytri2 523
zsytri2x 527
zsytrs2 406
ztgex2 1421
ztgsy2 1423
ztrexc 868
ztrti2 1426
zunbdb 925
zuncsd 1060
zung2l 1394
zung2r 1395
zungbr 747
zungl2 1396
zungr2 1397
zunm2l 1399
zunm2r 1400
zunml2 1402
zunmr2 1404
zunmr3 1405```


[^0]:    err_bnds_comp

[^1]:    lwork $\geq \max \left(2^{*} m+n, n+1\right.$ work $(s g e q p 3), n+l$ work $\left.(s g e q r f), 7\right)$ for sgejsv
    lwork $\geq \max (2 * m+n, n+l$ work (dgeqp3), $n+l$ work(dgeqrf), 7) for dgejsv

[^2]:    Notes:

[^3]:    Notes:

