Les cookies nous permettent de vous proposer nos services plus facilement. En utilisant nos services, vous nous donnez expressément votre accord pour exploiter ces cookies.En savoir plus OK

cd00253742.pdf

cd00253742.pdf Revenir à l'accueil

 

 

 

Voir également : 

 

Au format texte :

This is information on a product in full production. May 2015 DocID16554 Rev 4 1/136 STM32F103xF STM32F103xG XL-density performance line ARM®-based 32-bit MCU with 768 KB to 1 MB Flash, USB, CAN, 17 timers, 3 ADCs, 13 com. interfaces Datasheet - production data Features • Core: ARM® 32-bit Cortex®-M3 CPU with MPU – 72 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access – Single-cycle multiplication and hardware division • Memories – 768 Kbytes to 1 Mbyte of Flash memory – 96 Kbytes of SRAM – Flexible static memory controller with 4 Chip Select. Supports Compact Flash, SRAM, PSRAM, NOR and NAND memories – LCD parallel interface, 8080/6800 modes • Clock, reset and supply management – 2.0 to 3.6 V application supply and I/Os – POR, PDR, and programmable voltage detector (PVD) – 4-to-16 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC with calibration – 32 kHz oscillator for RTC with calibration • Low power – Sleep, Stop and Standby modes – VBAT supply for RTC and backup registers • 3 × 12-bit, 1 µs A/D converters (up to 21 channels) – Conversion range: 0 to 3.6 V – Triple-sample and hold capability – Temperature sensor • 2 × 12-bit D/A converters • DMA: 12-channel DMA controller – Supported peripherals: timers, ADCs, DAC, SDIO, I2Ss, SPIs, I2Cs and USARTs • Debug mode – Serial wire debug (SWD) & JTAG interfaces – Cortex®-M3 Embedded Trace Macrocell™ • Up to 112 fast I/O ports – 51/80/112 I/Os, all mappable on 16 external interrupt vectors and almost all 5 V-tolerant • Up to 17 timers – Up to ten 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input – 2 × 16-bit motor control PWM timers with dead-time generation and emergency stop – 2 × watchdog timers (Independent and Window) – SysTick timer: a 24-bit downcounter – 2 × 16-bit basic timers to drive the DAC • Up to 13 communication interfaces – Up to 2 × I2C interfaces (SMBus/PMBus) – Up to 5 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) – Up to 3 SPIs (18 Mbit/s), 2 with I2S interface multiplexed – CAN interface (2.0B Active) – USB 2.0 full speed interface – SDIO interface • CRC calculation unit, 96-bit unique ID • ECOPACK® packages Table 1. Device summary Reference Part number STM32F103xF STM32F103RF STM32F103VF STM32F103ZF STM32F103xG STM32F103RG STM32F103VG STM32F103ZG &"'! LQFP64 10 × 10 mm, LQFP100 14 × 14 mm, LQFP144 20 × 20 mm LFBGA144 10 × 10 mm www.st.com Contents STM32F103xF, STM32F103xG 2/136 DocID16554 Rev 4 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 ARM® Cortex®-M3 core with embedded Flash and SRAM . . . . . . . . . . 15 2.3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.4 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15 2.3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.6 FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.7 LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.8 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16 2.3.9 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.10 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.11 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.12 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.13 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.14 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.15 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.16 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.17 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 19 2.3.18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.19 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs) . 21 2.3.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.22 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.23 SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.24 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.25 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.26 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.27 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.28 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DocID16554 Rev 4 3/136 STM32F103xF, STM32F103xG Contents 4 2.3.29 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.30 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.31 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 45 5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 45 5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3.12 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 89 5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3.16 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3.18 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . 108 Contents STM32F103xF, STM32F103xG 4/136 DocID16554 Rev 4 5.3.19 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3.20 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.1 LFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 6.2 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 6.3 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.4 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.5.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 130 7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 DocID16554 Rev 4 5/136 STM32F103xF, STM32F103xG List of tables 6 List of tables Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2. STM32F103xF and STM32F103xG features and peripheral counts . . . . . . . . . . . . . . . . . 11 Table 3. STM32F103xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 4. STM32F103xF and STM32F103xG timer feature comparison. . . . . . . . . . . . . . . . . . . . . . 19 Table 5. STM32F103xF and STM32F103xG pin definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 6. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 7. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 8. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 9. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 10. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 11. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 12. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 13. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 14. Maximum current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 15. Maximum current consumption in Run mode, code with data processing running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 16. Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 49 Table 17. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 50 Table 18. Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 19. Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 20. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 21. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 22. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 23. HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 24. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 25. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 26. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 27. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 28. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 29. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 30. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 68 Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 69 Table 33. Asynchronous multiplexed read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 34. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 35. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Table 36. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Table 37. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table 38. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 39. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Table 40. Switching characteristics for PC Card/CF read and write cycles in attribute/common space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table 41. Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . . 84 Table 42. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 43. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 List of tables STM32F103xF, STM32F103xG 6/136 DocID16554 Rev 4 Table 44. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 45. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Table 46. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Table 47. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 48. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 49. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Table 50. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 51. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Table 52. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 53. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 54. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 55. SCL frequency (fPCLK1= 36 MHz.,VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 56. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Table 57. I2S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Table 58. SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Table 59. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 60. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Table 61. USB: full-speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Table 62. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 63. RAIN max for fADC = 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 64. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 65. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Table 66. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Table 67. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Table 68. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Table 69. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Table 70. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Table 71. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. . . . . . . . . 126 Table 72. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Table 73. STM32F103xF and STM32F103xG ordering information scheme . . . . . . . . . . . . . . . . . . 132 DocID16554 Rev 4 7/136 STM32F103xF, STM32F103xG List of figures 8 List of figures Figure 1. STM32F103xF and STM32F103xG performance line block diagram. . . . . . . . . . . . . . . . . 12 Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 3. STM32F103xF/G BGA144 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 4. STM32F103xF/G performance line LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 5. STM32F103xF/G performance line LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 6. STM32F103xF/G performance line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 7. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 8. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 9. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled . . . . . . . . . . . . . . . . . 48 Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V)- code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . 48 Figure 14. Typical current consumption on VBAT with RTC on vs. temperature at different VBAT values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 15. Typical current consumption in Stop mode with regulator in run mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 16. Typical current consumption in Stop mode with regulator in low-power mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 17. Typical current consumption in Standby mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 18. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 19. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 20. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 21. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 67 Figure 23. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 68 Figure 24. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 70 Figure 25. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 71 Figure 26. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Figure 27. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 28. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 77 Figure 29. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Figure 30. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . . 79 Figure 31. PC Card/CompactFlash controller waveforms for common memory write access. . . . . . . 80 Figure 32. PC Card/CompactFlash controller waveforms for attribute memory read access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Figure 33. PC Card/CompactFlash controller waveforms for attribute memory write access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure 34. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . . 82 Figure 35. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . . 83 Figure 36. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Figure 37. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Figure 38. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . . 86 Figure 39. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . . 86 Figure 40. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 List of figures STM32F103xF, STM32F103xG 8/136 DocID16554 Rev 4 Figure 41. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Figure 42. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Figure 43. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Figure 44. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Figure 45. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Figure 46. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Figure 47. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Figure 48. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Figure 49. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Figure 50. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Figure 51. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Figure 52. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Figure 53. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Figure 54. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Figure 55. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Figure 56. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Figure 57. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 111 Figure 58. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 112 Figure 59. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Figure 60. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Figure 61. LFBGA144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Figure 62. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 119 Figure 63. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Figure 64. LQFP144 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Figure 65. LFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 123 Figure 66. LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Figure 67. LQFP100 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Figure 68. LFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 126 Figure 69. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . 127 Figure 70. LQFP64 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Figure 71. LQFP100 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 DocID16554 Rev 4 9/136 STM32F103xF, STM32F103xG Introduction 132 1 Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F103xF and STM32F103xG XL-density performance line microcontrollers. For more details on the whole STMicroelectronics STM32F103xF/G family, please refer to Section 2.2: Full compatibility throughout the family. The XL-density STM32F103xF/G datasheet should be read in conjunction with the STM32F10xxx reference manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F10xxx Flash programming manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com. For information on the Cortex®-M3 core please refer to the Cortex®-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com. Description STM32F103xF, STM32F103xG 10/136 DocID16554 Rev 4 2 Description The STM32F103xF and STM32F103xG performance line family incorporates the highperformance ARM® Cortex®-M3 32-bit RISC core operating at a 72 MHz frequency, highspeed embedded memories (Flash memory up to 1 Mbyte and SRAM up to 96 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer three 12-bit ADCs, ten general-purpose 16-bit timers plus two PWM timers, as well as standard and advanced communication interfaces: up to two I2Cs, three SPIs, two I 2Ss, one SDIO, five USARTs, an USB and a CAN. The STM32F103xF/G XL-density performance line family operates in the –40 to +105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications. These features make the STM32F103xF/G high-density performance line microcontroller family suitable for a wide range of applications such as motor drives, application control, medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems and video intercom. DocID16554 Rev 4 11/136 STM32F103xF, STM32F103xG Description 132 2.1 Device overview The STM32F103xF/G XL-density performance line family offers devices in four different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. Figure 1 shows the general block diagram of the device family. Table 2. STM32F103xF and STM32F103xG features and peripheral counts Peripherals STM32F103Rx STM32F103Vx STM32F103Zx Flash memory 768 KB 1 MB 768 KB 1 MB 768 KB 1 MB SRAM in Kbytes 96 96 96 FSMC No Yes(1) 1. For the LQFP100 package, only FSMC Bank1 and Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. Yes Timers General-purpose 10 Advanced-control 2 Basic 2 Comm SPI(I2S)(2) 2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I 2S audio mode. 3(2) I 2C 2 USART 5 USB 1 CAN 1 SDIO 1 GPIOs 51 80 112 12-bit ADC Number of channels 3 16 3 16 3 21 12-bit DAC Number of channels 2 2 CPU frequency 72 MHz Operating voltage 2.0 to 3.6 V Operating temperatures Ambient temperatures: –40 to +85 °C /–40 to +105 °C (see Table 10) Junction temperature: –40 to + 125 °C (see Table 10) Package LQFP64 LQFP100 LQFP144, BGA144 Description STM32F103xF, STM32F103xG 12/136 DocID16554 Rev 4 Figure 1. STM32F103xF and STM32F103xG performance line block diagram 1. TA = –40 °C to +85 °C (suffix 6, see Table 73) or –40 °C to +105 °C (suffix 7, see Table 73), junction temperature up to 105 °C or 125 °C, respectively. 2. AF = alternate function on I/O port pin.9 3$>@ (;7,7 ::'* 19,& ELW $'&  $',1V FRPPRQ -7', -7&.6:&/. -7066:'$7 1-7567 -7'2  WR 9  $) $+% 026,6'0,62 :.83 )PD[0+] 966 ,& 6&/6'$60%$ *3 '0$ ;7$/ 26&  0+] ;7$/ N+] $3%  )PD[    0+] +&/. 3&/. DV $) )ODVK.% 92/7 5(* 9 72 9 32:(5 %DFNXS LQWHUIDFH DV $) %XVPDWUL[  ELW 57& 5& +6 &RUWH[0&38 ,EXV 'EXV REO 65$0 % 86$57 86$57 63,,6 E[&$1 GHYLFH  FKDQQHOV %DFNXS UHJ  FKDQQHOV 7,0  FRPSO ,& 6&/6'$60%$ DV $) 5;7; &76 576 86$57 7HPS VHQVRU  &K (75 DV $) )&/. 5& /6 6WDQGE\ ,:'* #96: 325  3'5 6833/< #9''$ 9%$7 9 WR 9 &. DV $) 5;7; &76 576 &. DV $) 5;7; &76 576 &. DV $) $3%  )PD[    0+] 19,& 63, 026,0,62 6&.166 DV $) ELW $'& ,) ,) LQWHUIDFH 683(59,6,21 39' 5HVHW ,QW $:8 325 7$03(557& 6\VWHP 6&.&.166:6 8$57 8$57 5;7; DV $) 5;7; DV $) 5HVHW FORFN FRQWUROOHU 3&/. 3// ,) ELW '$& ,) ELW '$& '$&B287DV$) WR WKH  $'&V  $',1V FRPPRQ WR WKH $'&  *3 '0$  FKDQQHOV $/$50 287 0&/. DV $) 026,6'0,62 6&.&.166:6 0&/. DV $) 6:-7$* 73,8 (70 7UDFH7ULJ 75$&(&/. 75$&(>@ DV$) 6',2 )60& 3&/. 65$0 .E\WH  ELW ELW $'& ,)  $',1V RQ $'&   FRPSO %.,1(75LQSXWDV$) 3%>@ 3&>@ 3'>@ 3(>@ 3)>@ 3*>@ 038  DV $)  DV $)  DV $)  &K (75 DV $)  &K (75 DV $)  &K '>@ &0' &. DV $) )ODVK.% $>@ '>@ &/. 12( 1:( 1(>@ 1%/>@ 1:$,7 1/ DV$) FKDQQHOV FKDQQHOVFKDQQHOV FKDQQHOV FKDQQHO FKDQQHO 7,0 7,0 7,0 7,0 95() 95()± 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 26&B,1 26&B287 26&B,1 26&B287 9'' #9'' 1567 9''$ 966$ 9'' #9'' #9''$ #9''$ )ODVK LQWHUIDFH )ODVK LQWHUIDFH REO FKDQQHOVDV$) FKDQQHODV$) FKDQQHODV$) DL9 #9''$ *3,2SRUW$ *3,2SRUW% *3,2SRUW& *3,2SRUW' *3,2SRUW( *3,2SRUW) *3,2SRUW* $3% $3% $3% %.,1(75LQSXWDV$) 86%)6GHYLFH 63,,6 '$&B287DV$) 86%B'3&$1B7; 86%B'0&$1B5; DocID16554 Rev 4 13/136 STM32F103xF, STM32F103xG Description 132 Figure 2. Clock tree 1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz. 2. For the USB function to be available, both HSE and PLL must be enabled, with the USBCLK at 48 MHz. 3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz. DL +6(26& 0+] 26&B,1 26&B287 26&B,1 26&B287 /6(26& N+] +6,5& 0+] /6,5& N+] WR,QGHSHQGHQW:DWFKGRJ ,:'* 3// [[[ 3//08/ +6( +LJKVSHHGH[WHUQDOFORFNVLJQDO /6( /6, +6, /HJHQG 0&2 &ORFN2XWSXW 0DLQ 3//;735(  [ $+% 3UHVFDOHU   3//&/. +6, +6( $3% 3UHVFDOHU  $'& 3UHVFDOHU  $'&&/. 3&/. +&/. 3//&/. WR$+%EXVFRUH PHPRU\DQG'0$ 86%&/. WR86%LQWHUIDFH 86% 3UHVFDOHU  WR$'&RU /6( /6, +6,   +6, +6( SHULSKHUDOV WR$3% 3HULSKHUDO&ORFN (QDEOH (QDEOH 3HULSKHUDO&ORFN $3% 3UHVFDOHU  3&/. 7,0 WR7,0 DQG7,0 SHULSKHUDOVWR$3% 3HULSKHUDO&ORFN (QDEOH (QDEOH 3HULSKHUDO&ORFN 0+] 0+]PD[ 0+] 0+]PD[ 0+]PD[ WR57& 3//65& 6: 0&2 &66  WR&RUWH[6\VWHPWLPHU &ORFN (QDEOH 6<6&/. PD[ 57&&/. 57&6(/>@ 7,0[&/. 7,0[&/. ,:'*&/. 6<6&/. )&/.&RUWH[ IUHHUXQQLQJFORFN  7,0 WR7,0 DQG7,0 7R6',2$+%LQWHUIDFH 3HULSKHUDOFORFN HQDEOH +&/. WR)60& )60&&/. WR6',2 3HULSKHUDOFORFN HQDEOH 3HULSKHUDOFORFN HQDEOH WR,6 WR,6 3HULSKHUDOFORFN HQDEOH 3HULSKHUDOFORFN HQDEOH ,6&/. ,6&/. 6',2&/. ,I $3%SUHVFDOHU  [ HOVH[ ,I $3%SUHVFDOHU  [ HOVH[ +LJKVSHHGLQWHUQDOFORFNVLJQDO /RZVSHHGLQWHUQDOFORFNVLJQDO /RZVSHHGH[WHUQDOFORFNVLJQDO )/,7)&/. WR)ODVKSURJUDPPLQJLQWHUIDFH Description STM32F103xF, STM32F103xG 14/136 DocID16554 Rev 4 2.2 Full compatibility throughout the family The STM32F103xF/G is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as medium-density devices, the STM32F103xF, STM32F103xD and STM32F103xG are referred to as high-density devices and the STM32F103xF and STM32F103xG are called XL-density devices. Low-density, high-density and XL-density devices are an extension of the STM32F103x8/B medium-density devices, they are specified in the STM32F103x4/6, STM32F103xC/D/E and STM32F103xF/G datasheets, respectively. Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I2S and DAC. XL-density devices bring even more Flash and RAM memory, and extra features, namely an MPU, a greater number of timers and a dual bank Flash structure while remaining fully compatible with the other members of the family. The STM32F103x4, STM32F103x6, STM32F103xF, STM32F103xD, STM32F103xG, STM32F103xF and STM32F103xG are a drop-in replacement for the STM32F103x8/B devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle. Moreover, the STM32F103xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices. Table 3. STM32F103xx family Pinout Low-density devices Medium-density devices High-density devices XL-density devices 16 KB Flash 32 KB Flash(1) 64 KB Flash 128 KB Flash 256 KB Flash 384 KB Flash 512 KB Flash 768 KB Flash 1 MB Flash 6 KB RAM 10 KB RAM 20 KB RAM 20 KB RAM 48 or 64 KB(2) RAM 64 KB RAM 64 KB RAM 96 KB RAM 96 KB RAM 144 5 × USARTs 4 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I2Ss, 2 × I2Cs USB, CAN, 2 × PWM timers 3 × ADCs, 2 × DACs, 1 × SDIO FSMC (100- and 144-pin packages(3)) 5 × USARTs 10 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I2Ss, 2 × I2Cs USB, CAN, 2 × PWM timers 3 × ADCs, 2 × DACs, 1 × SDIO, Cortex-M3 with MPU FSMC (100- and 144-pin packages(4)), dual bank Flash memory 100 3 × USARTs 3 × 16-bit timers 2 × SPIs, 2 × I2Cs, USB, CAN, 1 × PWM timer 2 × ADCs 64 2 × USARTs 2 × 16-bit timers 1 × SPI, 1 × I2C, USB, CAN, 1 × PWM timer 2 × ADCs 48 36 1. For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7), the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium-density devices. 2. 64 KB RAM for 256 KB Flash are available on devices delivered in CSP packages only. 3. Ports F and G are not available in devices delivered in 100-pin packages. 4. Ports F and G are not available in devices delivered in 100-pin packages. DocID16554 Rev 4 15/136 STM32F103xF, STM32F103xG Description 132 2.3 Overview 2.3.1 ARM® Cortex®-M3 core with embedded Flash and SRAM The ARM Cortex®-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM Cortex®-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. With its embedded ARM core, STM32F103xF and STM32F103xG performance line family is compatible with all ARM tools and software. Figure 1 shows the general block diagram of the device family. 2.3.2 Memory protection unit The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 2.3.3 Embedded Flash memory 768 Kbytes to 1 Mbyte of embedded Flash are available for storing programs and data. The Flash memory is organized as two banks. The first bank has a size of 512 Kbytes. The second bank is either 256 or 512 Kbytes depending on the device. This gives the device the capability of writing to one bank while executing code from the other bank (read-while-write capability). 2.3.4 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. Description STM32F103xF, STM32F103xG 16/136 DocID16554 Rev 4 2.3.5 Embedded SRAM 96 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. 2.3.6 FSMC (flexible static memory controller) The FSMC is embedded in the STM32F103xF and STM32F103xG performance line family. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR and NAND. Functionality overview: • The three FSMC interrupt lines are ORed in order to be connected to the NVIC • Write FIFO • Code execution from external memory except for NAND Flash and PC Card • The targeted frequency, fCLK, is HCLK/2, so external access is at 36 MHz when HCLK is at 72 MHz and external access is at 24 MHz when HCLK is at 48 MHz 2.3.7 LCD parallel interface The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or highperformance solutions using external controllers with dedicated acceleration. 2.3.8 Nested vectored interrupt controller (NVIC) The STM32F103xF and STM32F103xG performance line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M3) and 16 priority levels. • Closely coupled NVIC gives low latency interrupt processing • Interrupt entry vector table address passed directly to the core • Closely coupled NVIC core interface • Allows early processing of interrupts • Processing of late arriving higher priority interrupts • Support for tail-chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 2.3.9 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines. DocID16554 Rev 4 17/136 STM32F103xF, STM32F103xG Description 132 2.3.10 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator). Several prescalers allow the configuration of the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed APB domain is 36 MHz. See Figure 2 for details on the clock tree. 2.3.11 Boot modes At startup, boot pins are used to select one of three boot options: • Boot from user Flash: you have an option to boot from any of two memory banks. By default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash memory bank 2 by setting a bit in the option bytes. • Boot from system memory • Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1. 2.3.12 Power supply schemes • VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. • VSSA, VDDA = 2.0 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC is used). VDDA and VSSA must be connected to VDD and VSS, respectively. • VBAT = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. For more details on how to connect power pins, refer to Figure 10: Power supply scheme. 2.3.13 Power supply supervisor The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to Table 12: Embedded reset and power control block characteristics for the values of VPOR/PDR and VPVD. Description STM32F103xF, STM32F103xG 18/136 DocID16554 Rev 4 2.3.14 Voltage regulator The regulator has three operation modes: main (MR), low-power (LPR) and power down. • MR is used in the nominal regulation mode (Run) • LPR is used in the Stop modes. • Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost) This regulator is always enabled after reset. It is disabled in Standby mode. 2.3.15 Low-power modes The STM32F103xF and STM32F103xG performance line supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop mode Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB wakeup. • Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. 2.3.16 DMA The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-toperipheral transfers. The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. DocID16554 Rev 4 19/136 STM32F103xF, STM32F103xG Description 132 The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose, basic and advanced-control timers TIMx, DAC, I2S, SDIO and ADC. 2.3.17 RTC (real-time clock) and backup registers The RTC and the backup registers are supplied through a switch that takes power either on VDD supply when present or through the VBAT pin. The backup registers are forty-two 16-bit registers used to store 84 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode. The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. 2.3.18 Timers and watchdogs The XL-density STM32F103xF/G performance line devices include up to two advancedcontrol timers, up to ten general-purpose timers, two basic timers, two watchdog timers and a SysTick timer. Table 4 compares the features of the advanced-control, general-purpose and basic timers. Table 4. STM32F103xF and STM32F103xG timer feature comparison Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/compare channels Complementary outputs TIM1, TIM8 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 Yes TIM2, TIM3, TIM4, TIM5 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM9, TIM12 16-bit Up Any integer between 1 and 65536 No 2 No TIM10, TIM11 TIM13, TIM14 16-bit Up Any integer between 1 and 65536 No 1 No TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No Description STM32F103xF, STM32F103xG 20/136 DocID16554 Rev 4 Advanced-control timers (TIM1 and TIM8) The two advanced-control timers (TIM1 and TIM8) can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as a complete general-purpose timer. The 4 independent channels can be used for: • Input capture • Output compare • PWM generation (edge or center-aligned modes) • One-pulse mode output If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs. Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining. General-purpose timers (TIMx) There are10 synchronizable general-purpose timers embedded in the STM32F103xF and STM32F103xG performance line devices (see Table 4 for differences). • TIM2, TIM3, TIM4, TIM5 There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F103xF and STM32F103xG access line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. • TIM10, TIM11 and TIM9 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases. • TIM13, TIM14 and TIM12 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and TIM14 feature one independent channel, whereas TIM12 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases. DocID16554 Rev 4 21/136 STM32F103xF, STM32F103xG Description 132 Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base. Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: • A 24-bit down counter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0. • Programmable clock source 2.3.19 I²C bus Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes. They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus. 2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs) The STM32F103xF and STM32F103xG performance line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5). These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s. USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5. Description STM32F103xF, STM32F103xG 22/136 DocID16554 Rev 4 2.3.21 Serial peripheral interface (SPI) Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller. 2.3.22 Inter-integrated sound (I2S) Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available, that can be operated in master or slave mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 48 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. 2.3.23 SDIO An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with SD Memory Card Specifications Version 2.0. The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit. The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous. In addition to SD/SDIO/MMC, this interface is also fully compliant with the CE-ATA digital protocol Rev1.1. 2.3.24 Controller area network (CAN) The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks. 2.3.25 Universal serial bus (USB) The STM32F103xF and STM32F103xG performance line embed a USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). 2.3.26 GPIOs (general-purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high currentcapable. DocID16554 Rev 4 23/136 STM32F103xF, STM32F103xG Description 132 The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 2.3.27 ADC (analog to digital converter) Three 12-bit analog-to-digital converters are embedded into STM32F103xF and STM32F103xG performance line devices and each ADC shares up to 21 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. Additional logic functions embedded in the ADC interface allow: • Simultaneous sample and hold • Interleaved sample and hold • Single shunt The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIMx) and the advanced-control timers (TIM1 and TIM8) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers. 2.3.28 DAC (digital-to-analog converter) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration. This dual digital Interface supports the following features: • two DAC converters: one for each output channel • 8-bit or 12-bit monotonic output • left or right data alignment in 12-bit mode • synchronized update capability • noise-wave generation • triangular-wave generation • dual DAC channel independent or simultaneous conversions • DMA capability for each channel • external triggers for conversion • input voltage reference VREF+ Eight DAC trigger inputs are used in the STM32F103xF and STM32F103xG performance line family. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels. Description STM32F103xF, STM32F103xG 24/136 DocID16554 Rev 4 2.3.29 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value. 2.3.30 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 2.3.31 Embedded Trace Macrocell™ The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F10xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools. DocID16554 Rev 4 25/136 STM32F103xF, STM32F103xG Pinouts and pin descriptions 132 3 Pinouts and pin descriptions Figure 3. STM32F103xF/G BGA144 ballout 1. The above figure shows the package top view. AI14798b VDD_7 PC2 PC3 PF6 PF8 VSS_4 VDD_6 H VDD_1 D PG13 PG14 PE5 PE6 C PG10 PG11 VDD_5 PB8 NRST B PG15 PG12 PC15- OSC32_OUT PB9 A 1 2 3 4 5 6 7 8 VBAT OSC_IN OSC_OUT VSS_5 G F E PF7 PC0 PF0 PF1 PF2 PF3 PF4 VSS VSS_10 PG9 PF5 _3 VDD_4 VDD_3 VDD_8 VSS_8 PE4 PB5 PB6 BOOT0 PB7 VSS_11 PF10 PC1 VDD_11 VDD_10 PF9 9 10 K J VSS_2 PD3 PD4 PD1 PC12 PD5 PC11 PD2 PD0 VDD_9 VSS_9 VDD_2 PG1 PA5 PC5 PE9 PB2/ BOOT1 PA4 PC4 PE10 VREF– PF13 PG0 VSSA PE12 PA1 PE13 PA0-WKUP PD9 PD10 PG4 PD13 11 12 PG8 PA10 NC PA9 PA11 PC10 PA12 PC9 PA8 PC7 PC6 PC8 PD14 PG3 PG2 PD15 M L PF15 PA7 PB1 PE7 PA6 PB0 PF12 PE8 VDDA PF11 PF14 VREF+ PE14 PA3 PE15 PA2 PB10 PD8 PD12 PB11 PB12 PB14 PB15 PB13 PC13- TAMPER-RTC PE3 PE2 PE1 PE0 PB4 JTRST PB3 JTDO PD6 PD7 PA15 JTDI PA14 JTCK PA13 JTMS VSS PE11 _6 VSS_7 VSS_1 PD11 PG7 PG6 PG5 PC14- OSC32_IN Pinouts and pin descriptions STM32F103xF, STM32F103xG 26/136 DocID16554 Rev 4 Figure 4. STM32F103xF/G performance line LQFP144 pinout 1. The above figure shows the package top view. 6$$? 633? 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0' 6$$? 633? 0' 0' 0' 0' 0' 0' 0$ 0$ 6$$? 633? 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0! 0% 6$$? 0% 633? 0% .# 0% 0! 0% 0! 6"!4 0! 0# 4!-0%2 24# 0! 0# /3#?). 0! 0# /3#?/54 0! 0& 0# 0& 0# 0& 0# 0& 0# 0& 6$$? 0& 633? 633? 0' 6$$? 0' 0& 0' 0& 0' 0& 0' 0& 0' 0& 0' /3#?). 0$ /3#?/54 0$ .234 6$$? 0# 633? 0# 0$ 0# 0$ 0# 0$ 633! 0$ 62%& 0$ 62%& 0$ 6$$! 0" 0! 7+50 0" 0! 0" 0! 0" 0! 633? 6$$? 0! 0! 0! 0! 0# 0# 0" 0" 0" 0& 0& 633? 6$$? 0& 0& 0& 0' 0' 0% 0% 0% 633? 6$$? 0% 0% 0% 0% 0% 0% 0" 0" 633? 6$$?                                                                                                     ,1&0                                             AI DocID16554 Rev 4 27/136 STM32F103xF, STM32F103xG Pinouts and pin descriptions 132 Figure 5. STM32F103xF/G performance line LQFP100 pinout 1. The above figure shows the package top view. AI                                                                            6$$? 633? .# 0! 0! 0! 0! 0! 0! 0# 0# 0# 0# 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 0" 0" 0! 633? 6$$? 0! 0! 0! 0! 0# 0# 0" 0" 0" 0% 0% 0% 0% 0% 0% 0% 0% 0% 0" 0" 633? 6$$? 6$$? 633? 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0!                          0% 0% 0% 0% 0% 6"!4 0# 4!-0%2 24# 0# /3#?). 0# /3#?/54 633? Pinouts and pin descriptions STM32F103xF, STM32F103xG 28/136 DocID16554 Rev 4 Figure 6. STM32F103xF/G performance line LQFP64 pinout 1. The above figure shows the package top view. ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ???? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ? ? ? ? ? ? ? ? ? ?? ?? ?? ?? ?? ?? ?? sd W???dDWZ?Zd W ?? ?K ^ ???/E W ?? ?K ^ ???Kh d W  ??K^ ?/E W  ??K^ ?Khd EZ^d W? W? W? W? s^^ s W ??t< hW W ? W ? s?? s^^?? W ? W ? KK d ? W ? W ? W ? W ? W ? W? W?? W?? W?? W ?? W ?? s?? s^^?? W ?? W ?? W ?? W ?? W ? W ? W? W? W? W? W ?? W ?? W ?? W ?? W ? s^^?? s?? W ? W ? W ? W ? W? W? W ? W ? W ? W? ? W? ? s^^?? s?? >Y&W?? DL DocID16554 Rev 4 29/136 STM32F103xF, STM32F103xG Pinouts and pin descriptions 132 Table 5. STM32F103xF and STM32F103xG pin definitions Pins Pin name Type(1) I / O level(2) Main function(3) (after reset) Alternate functions(4) LFBGA144 LQFP64 LQFP100 LQFP144 Default Remap A3 - 1 1 PE2 I/O FT PE2 TRACECK / FSMC_A23 - A2 - 2 2 PE3 I/O FT PE3 TRACED0 / FSMC_A19 - B2 - 3 3 PE4 I/O FT PE4 TRACED1/ FSMC_A20 - B3 - 4 4 PE5 I/O FT PE5 TRACED2/ FSMC_A21 TIM9_CH1 B4 - 5 5 PE6 I/O FT PE6 TRACED3 / FSMC_A22 TIM9_CH2 C2 1 6 6 VBAT S VBAT - - A1 2 7 7 PC13-TAMPERRTC(5) I/O PC13(6) TAMPER-RTC - B1 3 8 8 PC14-OSC32_IN(5) I/O PC14(6) OSC32_IN - C1 4 9 9 PC15- OSC32_OUT(5) I/O PC15(6) OSC32_OUT - C3 - - 10 PF0 I/O FT PF0 FSMC_A0 - C4 - - 11 PF1 I/O FT PF1 FSMC_A1 - D4 - - 12 PF2 I/O FT PF2 FSMC_A2 - E2 - - 13 PF3 I/O FT PF3 FSMC_A3 - E3 - - 14 PF4 I/O FT PF4 FSMC_A4 - E4 - - 15 PF5 I/O FT PF5 FSMC_A5 - D2 - 10 16 VSS_5 S VSS_5 - - D3 - 11 17 VDD_5 S VDD_5 - - F3 - - 18 PF6 I/O PF6 ADC3_IN4 / FSMC_NIORD TIM10_CH1 F2 - - 19 PF7 I/O PF7 ADC3_IN5 / FSMC_NREG TIM11_CH1 G3 - - 20 PF8 I/O PF8 ADC3_IN6 / FSMC_NIOWR TIM13_CH1 G2 - - 21 PF9 I/O PF9 ADC3_IN7 / FSMC_CD TIM14_CH1 G1 - - 22 PF10 I/O PF10 ADC3_IN8 / FSMC_INTR - D1 5 12 23 OSC_IN I OSC_IN - PD0(7) E1 6 13 24 OSC_OUT O OSC_OUT - PD1(7) F1 7 14 25 NRST I/O NRST - - H1 8 15 26 PC0 I/O PC0 ADC123_IN10 - H2 9 16 27 PC1 I/O PC1 ADC123_IN11 - Pinouts and pin descriptions STM32F103xF, STM32F103xG 30/136 DocID16554 Rev 4 H3 10 17 28 PC2 I/O PC2 ADC123_IN12 - H4 11 18 29 PC3 I/O PC3 ADC123_IN13 - J1 12 19 30 VSSA S VSSA - - K1 - 20 31 VREF- S VREF- - - L1 - 21 32 VREF+ S VREF+ - - M1 13 22 33 VDDA S VDDA - - J2 14 23 34 PA0-WKUP I/O PA0 WKUP/USART2_CTS(8) / ADC123_IN0 / TIM2_CH1_ETR / TIM5_CH1 / TIM8_ETR - K2 15 24 35 PA1 I/O PA1 USART2_RTS(7) / ADC123_IN1 / TIM5_CH2 / TIM2_CH2(7) - L2 16 25 36 PA2 I/O PA2 USART2_TX(7) / TIM5_CH3 / ADC123_IN2 / TIM9_CH1 / TIM2_CH3 (7) - M2 17 26 37 PA3 I/O PA3 USART2_RX(7) / TIM5_CH4 / ADC123_IN3 / TIM2_CH4(7)/ TIM9_CH2 - G4 18 27 38 VSS_4 S VSS_4 - - F4 19 28 39 VDD_4 S VDD_4 - - J3 20 29 40 PA4 I/O PA4 SPI1_NSS(7) / USART2_CK(7) / DAC_OUT1 / ADC12_IN4 - K3 21 30 41 PA5 I/O PA5 SPI1_SCK(7) / DAC_OUT2 / ADC12_IN5 - L3 22 31 42 PA6 I/O PA6 SPI1_MISO(7) / TIM8_BKIN / ADC12_IN6 / TIM3_CH1(7)/ TIM13_CH1 TIM1_BKIN M3 23 32 43 PA7 I/O PA7 SPI1_MOSI(7)/ TIM8_CH1N / ADC12_IN7 / TIM3_CH2(7) / TIM14_CH1 TIM1_CH1N J4 24 33 44 PC4 I/O PC4 ADC12_IN14 - K4 25 34 45 PC5 I/O PC5 ADC12_IN15 - L4 26 35 46 PB0 I/O PB0 ADC12_IN8 / TIM3_CH3 / TIM8_CH2N TIM1_CH2N Table 5. STM32F103xF and STM32F103xG pin definitions (continued) Pins Pin name Type(1) I / O level(2) Main function(3) (after reset) Alternate functions(4) LFBGA144 LQFP64 LQFP100 LQFP144 Default Remap DocID16554 Rev 4 31/136 STM32F103xF, STM32F103xG Pinouts and pin descriptions 132 M4 27 36 47 PB1 I/O PB1 ADC12_IN9 / TIM3_CH4(7) / TIM8_CH3N TIM1_CH3N J5 28 37 48 PB2 I/O FT PB2/BOOT1 - - M5 - - 49 PF11 I/O FT PF11 FSMC_NIOS16 - L5 - - 50 PF12 I/O FT PF12 FSMC_A6 - H5 - - 51 VSS_6 S VSS_6 - - G5 - - 52 VDD_6 S VDD_6 - - K5 - - 53 PF13 I/O FT PF13 FSMC_A7 - M6 - - 54 PF14 I/O FT PF14 FSMC_A8 - L6 - - 55 PF15 I/O FT PF15 FSMC_A9 - K6 - - 56 PG0 I/O FT PG0 FSMC_A10 - J6 - - 57 PG1 I/O FT PG1 FSMC_A11 - M7 - 38 58 PE7 I/O FT PE7 FSMC_D4 TIM1_ETR L7 - 39 59 PE8 I/O FT PE8 FSMC_D5 TIM1_CH1N K7 - 40 60 PE9 I/O FT PE9 FSMC_D6 TIM1_CH1 H6 - - 61 VSS_7 S VSS_7 - - G6 - - 62 VDD_7 S VDD_7 - - J7 - 41 63 PE10 I/O FT PE10 FSMC_D7 TIM1_CH2N H8 - 42 64 PE11 I/O FT PE11 FSMC_D8 TIM1_CH2 J8 - 43 65 PE12 I/O FT PE12 FSMC_D9 TIM1_CH3N K8 - 44 66 PE13 I/O FT PE13 FSMC_D10 TIM1_CH3 L8 - 45 67 PE14 I/O FT PE14 FSMC_D11 TIM1_CH4 M8 - 46 68 PE15 I/O FT PE15 FSMC_D12 TIM1_BKIN M9 29 47 69 PB10 I/O FT PB10 I2C2_SCL / USART3_TX(7) TIM2_CH3 M10 30 48 70 PB11 I/O FT PB11 I2C2_SDA / USART3_RX(7) TIM2_CH4 H7 31 49 71 VSS_1 S VSS_1 - - G7 32 50 72 VDD_1 S VDD_1 - - M11 33 51 73 PB12 I/O FT PB12 SPI2_NSS / I2S2_WS / I2C2_SMBA / USART3_CK(7) / TIM1_BKIN(7) - Table 5. STM32F103xF and STM32F103xG pin definitions (continued) Pins Pin name Type(1) I / O level(2) Main function(3) (after reset) Alternate functions(4) LFBGA144 LQFP64 LQFP100 LQFP144 Default Remap Pinouts and pin descriptions STM32F103xF, STM32F103xG 32/136 DocID16554 Rev 4 M12 34 52 74 PB13 I/O FT PB13 SPI2_SCK / I2S2_CK / USART3_CTS(7) / TIM1_CH1N - L11 35 53 75 PB14 I/O FT PB14 SPI2_MISO / TIM1_CH2N / USART3_RTS(7)/ TIM12_CH1 - L12 36 54 76 PB15 I/O FT PB15 SPI2_MOSI / I2S2_SD / TIM1_CH3N(7) / TIM12_CH2 - L9 - 55 77 PD8 I/O FT PD8 FSMC_D13 USART3_TX K9 - 56 78 PD9 I/O FT PD9 FSMC_D14 USART3_RX J9 - 57 79 PD10 I/O FT PD10 FSMC_D15 USART3_CK H9 - 58 80 PD11 I/O FT PD11 FSMC_A16 USART3_CTS L10 - 59 81 PD12 I/O FT PD12 FSMC_A17 TIM4_CH1 / USART3_RTS K10 - 60 82 PD13 I/O FT PD13 FSMC_A18 TIM4_CH2 G8 - - 83 VSS_8 S VSS_8 - - F8 - - 84 VDD_8 S VDD_8 - - K11 - 61 85 PD14 I/O FT PD14 FSMC_D0 TIM4_CH3 K12 - 62 86 PD15 I/O FT PD15 FSMC_D1 TIM4_CH4 J12 - - 87 PG2 I/O FT PG2 FSMC_A12 - J11 - - 88 PG3 I/O FT PG3 FSMC_A13 - J10 - - 89 PG4 I/O FT PG4 FSMC_A14 - H12 - - 90 PG5 I/O FT PG5 FSMC_A15 - H11 - - 91 PG6 I/O FT PG6 FSMC_INT2 - H10 - - 92 PG7 I/O FT PG7 FSMC_INT3 - G11 - - 93 PG8 I/O FT PG8 - - G10 - - 94 VSS_9 S VSS_9 - - F10 - - 95 VDD_9 S VDD_9 - - G12 37 63 96 PC6 I/O FT PC6 I2S2_MCK / TIM8_CH1 / SDIO_D6 TIM3_CH1 F12 38 64 97 PC7 I/O FT PC7 I2S3_MCK / TIM8_CH2 / SDIO_D7 TIM3_CH2 F11 39 65 98 PC8 I/O FT PC8 TIM8_CH3 / SDIO_D0 TIM3_CH3 Table 5. STM32F103xF and STM32F103xG pin definitions (continued) Pins Pin name Type(1) I / O level(2) Main function(3) (after reset) Alternate functions(4) LFBGA144 LQFP64 LQFP100 LQFP144 Default Remap DocID16554 Rev 4 33/136 STM32F103xF, STM32F103xG Pinouts and pin descriptions 132 E11 40 66 99 PC9 I/O FT PC9 TIM8_CH4 / SDIO_D1 TIM3_CH4 E12 41 67 100 PA8 I/O FT PA8 USART1_CK / TIM1_CH1(7) / MCO - D12 42 68 101 PA9 I/O FT PA9 USART1_TX(7) / TIM1_CH2(7) - D11 43 69 102 PA10 I/O FT PA10 USART1_RX(7) / TIM1_CH3(7) - C12 44 70 103 PA11 I/O FT PA11 USART1_CTS / USB_DM / CAN_RX(7) / TIM1_CH4(7) - B12 45 71 104 PA12 I/O FT PA12 USART1_RTS / USB_DP / CAN_TX(7) / TIM1_ETR(7) - A12 46 72 105 PA13 I/O FT JTMSSWDIO - PA13 C11 - 73 106 Not connected G9 47 74 107 VSS_2 S VSS_2 - - F9 48 75 108 VDD_2 S VDD_2 - - A11 49 76 109 PA14 I/O FT JTCKSWCLK - PA14 A10 50 77 110 PA15 I/O FT JTDI SPI3_NSS / I2S3_WS TIM2_CH1_ETR PA15/ SPI1_NSS B11 51 78 111 PC10 I/O FT PC10 UART4_TX / SDIO_D2 USART3_TX B10 52 79 112 PC11 I/O FT PC11 UART4_RX / SDIO_D3 USART3_RX C10 53 80 113 PC12 I/O FT PC12 UART5_TX / SDIO_CK USART3_CK E10 - 81 114 PD0 I/O FT PD0 FSMC_D2(9) CAN_RX D10 - 82 115 PD1 I/O FT PD1 FSMC_D3(9) CAN_TX E9 54 83 116 PD2 I/O FT PD2 TIM3_ETR / UART5_RX / SDIO_CMD - D9 - 84 117 PD3 I/O FT PD3 FSMC_CLK USART2_CTS C9 - 85 118 PD4 I/O FT PD4 FSMC_NOE USART2_RTS B9 - 86 119 PD5 I/O FT PD5 FSMC_NWE USART2_TX E7 - - 120 VSS_10 S VSS_10 - - F7 - - 121 VDD_10 S VDD_10 - - A8 - 87 122 PD6 I/O FT PD6 FSMC_NWAIT USART2_RX Table 5. STM32F103xF and STM32F103xG pin definitions (continued) Pins Pin name Type(1) I / O level(2) Main function(3) (after reset) Alternate functions(4) LFBGA144 LQFP64 LQFP100 LQFP144 Default Remap Pinouts and pin descriptions STM32F103xF, STM32F103xG 34/136 DocID16554 Rev 4 A9 - 88 123 PD7 I/O FT PD7 FSMC_NE1 / FSMC_NCE2 USART2_CK E8 - - 124 PG9 I/O FT PG9 FSMC_NE2 / FSMC_NCE3 - D8 - - 125 PG10 I/O FT PG10 FSMC_NCE4_1 / FSMC_NE3 - C8 - - 126 PG11 I/O FT PG11 FSMC_NCE4_2 - B8 - - 127 PG12 I/O FT PG12 FSMC_NE4 - D7 - - 128 PG13 I/O FT PG13 FSMC_A24 - C7 - - 129 PG14 I/O FT PG14 FSMC_A25 - E6 - - 130 VSS_11 S VSS_11 - - F6 - - 131 VDD_11 S VDD_11 - - B7 - - 132 PG15 I/O FT PG15 - - A7 55 89 133 PB3 I/O FT JTDO SPI3_SCK / I2S3_CK/ PB3/TRACESWO TIM2_CH2 / SPI1_SCK A6 56 90 134 PB4 I/O FT NJTRST SPI3_MISO PB4/ TIM3_CH1 SPI1_MISO B6 57 91 135 PB5 I/O PB5 I2C1_SMBA / SPI3_MOSI / I2S3_SD TIM3_CH2 / SPI1_MOSI C6 58 92 136 PB6 I/O FT PB6 I2C1_SCL(8)/ TIM4_CH1(8) USART1_TX D6 59 93 137 PB7 I/O FT PB7 I2C1_SDA(8) / FSMC_NADV / TIM4_CH2(8) USART1_RX D5 60 94 138 BOOT0 I BOOT0 - - C5 61 95 139 PB8 I/O FT PB8 TIM4_CH3(8) / SDIO_D4 / TIM10_CH1 I2C1_SCL/ CAN_RX B5 62 96 140 PB9 I/O FT PB9 TIM4_CH4(8) / SDIO_D5 / TIM11_CH1 I2C1_SDA / CAN_TX A5 - 97 141 PE0 I/O FT PE0 TIM4_ETR / FSMC_NBL0 - A4 - 98 142 PE1 I/O FT PE1 FSMC_NBL1 - E5 63 99 143 VSS_3 S VSS_3 - - F5 64 100 144 VDD_3 S VDD_3 - - 1. I = input, O = output, S = supply. 2. FT = 5 V tolerant. 3. Function availability depends on the chosen device. Table 5. STM32F103xF and STM32F103xG pin definitions (continued) Pins Pin name Type(1) I / O level(2) Main function(3) (after reset) Alternate functions(4) LFBGA144 LQFP64 LQFP100 LQFP144 Default Remap DocID16554 Rev 4 35/136 STM32F103xF, STM32F103xG Pinouts and pin descriptions 132 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register). 5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED). 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 7. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and LQFP144/BGA144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual. 8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 9. For devices delivered in LQFP64 packages, the FSMC function is not available. Pinouts and pin descriptions STM32F103xF, STM32F103xG 36/136 DocID16554 Rev 4 Table 6. FSMC pin definition Pins FSMC LQFP100(1) CF CF/IDE NOR/PSRAM/ SRAM NOR/PSRAM Mux NAND 16 bit PE2 - - A23 A23 - Yes PE3 - - A19 A19 - Yes PE4 - - A20 A20 - Yes PE5 - - A21 A21 - Yes PE6 - - A22 A22 - Yes PF0 A0 A0 A0 - - - PF1 A1 A1 A1 - - - PF2 A2 A2 A2 - - - PF3 A3 - A3 - - - PF4 A4 - A4 - - - PF5 A5 - A5 - - - PF6 NIORD NIORD - - - PF7 NREG NREG - - - PF8 NIOWR NIOWR - - - PF9 CD CD - - - PF10 INTR INTR - - - PF11 NIOS16 NIOS16 - - - PF12 A6 - A6 - - - PF13 A7 - A7 - - - PF14 A8 - A8 - - - PF15 A9 - A9 - - - PG0 A10 - A10 - - - PG1 - - A11 - - - PE7 D4 D4 D4 DA4 D4 Yes PE8 D5 D5 D5 DA5 D5 Yes PE9 D6 D6 D6 DA6 D6 Yes PE10 D7 D7 D7 DA7 D7 Yes PE11 D8 D8 D8 DA8 D8 Yes PE12 D9 D9 D9 DA9 D9 Yes PE13 D10 D10 D10 DA10 D10 Yes PE14 D11 D11 D11 DA11 D11 Yes PE15 D12 D12 D12 DA12 D12 Yes PD8 D13 D13 D13 DA13 D13 Yes DocID16554 Rev 4 37/136 STM32F103xF, STM32F103xG Pinouts and pin descriptions 132 PD9 D14 D14 D14 DA14 D14 Yes PD10 D15 D15 D15 DA15 D15 Yes PD11 - - A16 A16 CLE Yes PD12 - - A17 A17 ALE Yes PD13 - - A18 A18 Yes PD14 D0 D0 D0 DA0 D0 Yes PD15 D1 D1 D1 DA1 D1 Yes PG2 - - A12 - - - PG3 - - A13 - - - PG4 - - A14 - - - PG5 - - A15 - - - PG6 - - - - INT2 - PG7 - - - - INT3 - PD0 D2 D2 D2 DA2 D2 Yes PD1 D3 D3 D3 DA3 D3 Yes PD3 - - CLK CLK - Yes PD4 NOE NOE NOE NOE NOE Yes PD5 NWE NWE NWE NWE NWE Yes PD6 NWAIT NWAIT NWAIT NWAIT NWAIT Yes PD7 - - NE1 NE1 NCE2 Yes PG9 - - NE2 NE2 NCE3 - PG10 NCE4_1 NCE4_1 NE3 NE3 - - PG11 NCE4_2 NCE4_2 - - - - PG12 - - NE4 NE4 - - PG13 - - A24 A24 - - PG14 - - A25 A25 - - PB7 - - NADV NADV - Yes PE0 - - NBL0 NBL0 - Yes PE1 - - NBL1 NBL1 - Yes 1. Ports F and G are not available in devices delivered in 100-pin packages. Table 6. FSMC pin definition (continued) Pins FSMC LQFP100(1) CF CF/IDE NOR/PSRAM/ SRAM NOR/PSRAM Mux NAND 16 bit Memory mapping STM32F103xF, STM32F103xG 38/136 DocID16554 Rev 4 4 Memory mapping The memory map is shown in Figure 7. DocID16554 Rev 4 39/136 STM32F103xF, STM32F103xG Memory mapping 132 Figure 7. Memory map AI  -BYTE BLOCK #ORTEX -gS INTERNAL PERIPHERALS  -BYTE BLOCK .OTUSED  -BYTE BLOCK &3-#REGISTER  -BYTE BLOCK &3-#BANK BANK  -BYTE BLOCK &3-#BANK BANK  -BYTE BLOCK 0ERIPHERALS  -BYTE BLOCK 32!- X X&&&&&&& X X&&&&&&& X X&&&&&&& X X&&&&&&& X X&&&&&&& X! X"&&&&&&& X# X$&&&&&&& X% X&&&&&&&&  -BYTE BLOCK #ODE &LASHMEMORYBANK +" X X X&&&$&&& X&&&% X&&&&&& X&&&& X&&&&& X X&&&& X X&&&&&& X X&&&&& 3YSTEMMEMORY 2ESERVED 2ESERVED !LIASEDTO&LASHORSYSTEM MEMORYDEPENDINGON "//4PINS 32!-+"ALIASED BYBIT BANDING 2ESERVED X X&&& X X&&&&&&& 4)- 4)- X X&& 4)- 4)- 4)- 4)- 2ESERVED X X&& X X"&& X# X&&& X X&& X X&& X X"&& 24# X X"&& 77$' X# X&&& )7$' X X&& 2ESERVED X X&& 30))3 X X"&& 30))3 X# X&&& 2ESERVED X X&& 53!24 X X&& 53!24 X X"&& 5!24 X# X&&& 5!24 X X&& )# X X&& )# X X"&& 2ESERVED X X"&& "+0 X# X&&& 072 X X&& $!# X X&& 2ESERVED X X&&&& !&)/ X X&& 0ORT! %84) X X&& X X"&& 0ORT" X# X&&& 0ORT# X X&& 0ORT$ X X&& 0ORT% X X"&& 0ORT& X# X&&& 0ORT' X X&& !$# X X&& X X"&& 30) X X&& X X&& 53!24 X X"&& 2ESERVED X X&&& $-! X X&& $-! X X&& 2ESERVED X X&&& 2## X X&& 2ESERVED X X&&& &LASHINTERFACES X X&& 2ESERVED X X&&& #2# X X&& 2ESERVED X X&&&&&&& &3-#BANK./2032!-X X&&&&&& &3-#BANK./2032!-X X&&&&&& &3-#BANK./2032!-X X"&&&&&& &3-#BANK./2032!-X# X&&&&&&& &3-#BANK.!.$.!.$ X X&&&&&&& &3-#BANK.!.$.!.$ X X&&&&&&& &3-#BANK0##!2$ X X&&&&&&& &3-#REGISTER X! X!&&& 2ESERVED X! X"&&&&&&& /PTIONBYTES 4)- !$# X X&& X X&&&& 3$)/ 2ESERVED !$# X# X&&& 4)- X# X&&& 53"REGISTERS Electrical characteristics STM32F103xF, STM32F103xG 40/136 DocID16554 Rev 4 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3S). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 2 V £ VDD £ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2S). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 8. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 9. Figure 8. Pin loading conditions Figure 9. Pin input voltage -36 #P& -#5PIN -36 -#5PIN DocID16554 Rev 4 41/136 STM32F103xF, STM32F103xG Electrical characteristics 132 5.1.6 Power supply scheme Figure 10. Power supply scheme Caution: In Figure 10, the 4.7 µF capacitor must be connected to VDD3. DL 9'' $QDORJ 5&V3//  3RZHUVZLWFK 9%$7 *3,2V 287 ,1 .HUQHOORJLF &38 'LJLWDO 0HPRULHV %DFNXSFLUFXLWU\ 26&.57& %DFNXSUHJLVWHUV :DNHXSORJLF îQ) î) 9 5HJXODWRU 966 9''$ 95() 95() 966$ $'& '$& /HYHOVKLIWHU ,2 /RJLF 9'' Q) ) 95() Q) ) 9'' Electrical characteristics STM32F103xF, STM32F103xG 42/136 DocID16554 Rev 4 5.1.7 Current consumption measurement Figure 11. Current consumption measurement scheme AI 6"!4 6$$ 6$$! ) $$?6"!4 ) $$ DocID16554 Rev 4 43/136 STM32F103xF, STM32F103xG Electrical characteristics 132 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 7: Voltage characteristics, Table 8: Current characteristics, and Table 9: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 7. Voltage characteristics Symbol Ratings Min Max Unit VDD–VSS External main supply voltage (including VDDA and VDD) (1) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. –0.3 4.0 V VIN(2) 2. VIN maximum must always be respected. Refer to Table 8: Current characteristics for the maximum allowed injected current values. Input voltage on five volt tolerant pin VSS - 0.3 VDD + 4.0 Input voltage on any other pin VSS - 0.3 4.0 |?VDDx| Variations between different VDD power pins - 50 mV |VSSX - VSS| Variations between all the different ground pins - 50 VESD(HBM) Electrostatic discharge voltage (human body model) see Section 5.3.12: Absolute maximum ratings (electrical sensitivity) Table 8. Current characteristics Symbol Ratings Max. Unit IVDD Total current into VDD/VDDA power lines (source)(1) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 150 mA IVSS Total current out of VSS ground lines (sink)(1) 150 IIO Output current sunk by any I/O and control pin 25 Output current source by any I/Os and control pin - 25 IINJ(PIN)(2) 2. Negative injection disturbs the analog performance of the device. See note 3 below Table 65 on page 110. Injected current on five volt tolerant pins(3) 3. Positive injection is not possible on these I/Os. A negative injection is induced by VINVDD while a negative injection is induced by VIN 8 MHz. 72 MHz 68 69 mA 48 MHz 51 51 36 MHz 41 41 24 MHz 29 30 16 MHz 22 22.5 8 MHz 12.5 14 External clock(2), all peripherals disabled 72 MHz 39 39 48 MHz 29.5 30 36 MHz 24 24.5 24 MHz 17.5 19 16 MHz 14 15 8 MHz 8.5 10.5 Table 15. Maximum current consumption in Run mode, code with data processing running from RAM Symbol Parameter Conditions fHCLK Max(1) 1. Guaranteed by characterization results, not tested in production at VDD max, fHCLK max. Unit TA = 85 °C TA = 105 °C IDD Supply current in Run mode External clock(2), all peripherals enabled 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 72 MHz 65 65.5 mA 48 MHz 46.5 47 36 MHz 37 37 24 MHz 26.5 27 16 MHz 19 20 8 MHz 11.5 13 External clock(2), all peripherals disabled 72 MHz 34.5 36 48 MHz 25 26 36 MHz 20.5 21 24 MHz 15 16 16 MHz 11 13 8 MHz 7.5 9 Electrical characteristics STM32F103xF, STM32F103xG 48/136 DocID16554 Rev 4 Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V)- code with data processing running from RAM, peripherals disabled AI              #ONSUMPTIONM! 4EMPERATURE # -(Z -(Z -(Z -(Z -(Z -(Z               #ONSUMPTIONM! 4EMPERATURE # -(Z -(Z -(Z -(Z -(Z -(Z AI DocID16554 Rev 4 49/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Table 16. Maximum current consumption in Sleep mode, code running from Flash or RAM Symbol Parameter Conditions fHCLK Max(1) 1. Guaranteed by characterization results, not tested in production at VDD max, fHCLK max with peripherals enabled. Unit TA = 85 °C TA = 105 °C IDD Supply current in Sleep mode External clock(2), all peripherals enabled 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 72 MHz 47.5 48.5 mA 48 MHz 34 35 36 MHz 27.5 27.5 24 MHz 20 20.5 16 MHz 15 16 8 MHz 9 11 External clock(2), all peripherals disabled 72 MHz 9.5 11.2 48 MHz 7.7 9.5 36 MHz 6.9 8.5 24 MHz 5.9 7.8 16 MHz 5.4 7.2 8 MHz 4.7 6.4 Electrical characteristics STM32F103xF, STM32F103xG 50/136 DocID16554 Rev 4 Figure 14. Typical current consumption on VBAT with RTC on vs. temperature at different VBAT values Table 17. Typical and maximum current consumptions in Stop and Standby modes Symbol Parameter Conditions Typ(1) Max Unit VDD/VBA T = 2.0 V VDD/VBA T = 2.4 V VDD/VBA T = 3.3 V TA = 85 °C TA = 105 °C IDD Supply current in Stop mode Regulator in run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog), fCK=8 MHz 44.8 45.3 46.4 810 1680 µA Regulator in low-power mode, lowspeed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 37.4 37.8 38.7 790 1660 Supply current in Standby mode Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF 1.8 2.0 2.5 5(2) 8(2) IDD_VBA T Backup domain supply current Low-speed oscillator and RTC ON 1.05 1.1 1.4 2(2) 2.3(2) 1. Typical values are measured at TA = 25 °C. 2. Guaranteed by characterization results, not tested in production..       ±    7HPSHUDWXUH ?& &RQVXPSWLRQ $ 9 9 9 9 9 DL DocID16554 Rev 4 51/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 15. Typical current consumption in Stop mode with regulator in run mode versus temperature at different VDD values        # # # # #ONSUMPTION?! 4EMPERATURE # 6 6 6 6 6 AI Electrical characteristics STM32F103xF, STM32F103xG 52/136 DocID16554 Rev 4 Figure 16. Typical current consumption in Stop mode with regulator in low-power mode versus temperature at different VDD values Figure 17. Typical current consumption in Standby mode versus temperature at different VDD values        # # # # #ONSUMPTION ?! 4EMPERATURE # 6 6 6 6 6 AI           # # # # #ONSUMPTION?! 4EMPERATURE # 6 6 6 6 6 AI DocID16554 Rev 4 53/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Typical current consumption The MCU is placed under the following conditions: • All I/O pins are in input mode with a static value at VDD or VSS (no load). • All peripherals are disabled except if it is explicitly mentioned. • The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHZ and 2 wait states above). • Ambient temperature and VDD supply voltage conditions summarized in Table 10. • Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling) When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4 Table 18. Typical current consumption in Run mode, code with data processing running from Flash Symbol Parameter Conditions fHCLK Typ(1) 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. Unit All peripherals enabled(2) 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). All peripherals disabled IDD Supply current in Run mode External clock(3) 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 72 MHz 52.5 33.5 mA 48 MHz 36.6 23.8 36 MHz 28.5 18.7 24 MHz 24.1 12.8 16 MHz 14 9.2 8 MHz 7.7 5.4 4 MHz 4.6 3.4 2 MHz 3 2.3 1 MHz 2.2 1.8 500 kHz 1.7 1.5 125 kHz 1.4 1.3 Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency 64 MHz 45.5 28.6 mA 48 MHz 35.1 22.4 36 MHz 27.5 17.5 24 MHz 18.9 11.6 16 MHz 12.2 8.2 8 MHz 7.2 4.8 4 MHz 4 2.7 2 MHz 2.3 1.7 1 MHz 1.5 1.2 500 kHz 1.1 0.9 125 kHz 0.75 0.7 Electrical characteristics STM32F103xF, STM32F103xG 54/136 DocID16554 Rev 4 Table 19. Typical current consumption in Sleep mode, code running from Flash or RAM Symbol Parameter Conditions fHCLK Typ(1) 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. Unit All peripherals enabled(2) 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). All peripherals disabled IDD Supply current in Sleep mode External clock(3) 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 72 MHz 32.5 7 mA 48 MHz 23 5 36 MHz 17.7 4 24 MHz 12.2 3.1 16 MHz 8.4 2.3 8 MHz 4.6 1.5 4 MHz 3 1.3 2 MHz 2.15 1.25 1 MHz 1.7 1.2 500 kHz 1.5 1.15 125 kHz 1.35 1.15 Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency 64 MHz 28.7 5.7 48 MHz 22 4.4 36 MHz 17 3.35 24 MHz 11.6 2.3 16 MHz 7.7 1.6 8 MHz 3.9 0.8 4 MHz 2.3 0.7 2 MHz 1.5 0.6 1 MHz 1.1 0.5 500 kHz 0.9 0.5 125 kHz 0.7 0.5 DocID16554 Rev 4 55/136 STM32F103xF, STM32F103xG Electrical characteristics 132 On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 20. The MCU is placed under the following conditions: • all I/O pins are in input mode with a static value at VDD or VSS (no load) • all peripherals are disabled unless otherwise mentioned • the given value is calculated by measuring the current consumption – with all peripherals clocked off – with only one peripheral clocked on • ambient operating temperature and VDD supply voltage conditions summarized in Table 7 Table 20. Peripheral current consumption(1) Peripheral Current consumption AHB (up to 72 MHz) DMA1 23,06 DMA2 18,47 FSMC 55,14 CRC 2,08 SDIO 32,22 BusMatrix(2) 11,67 Electrical characteristics STM32F103xF, STM32F103xG 56/136 DocID16554 Rev 4 APB1 (up to 36 MHz) APB1-Bridge 8,61 TIM2 37,22 TIM3 36,39 TIM4 35,56 TIM5 33,61 TIM6 7,78 TIM7 7,78 TIM12 19,17 TIM13 12,22 TIM14 13,33 SPI2/I2S2(3) 8,33 SPI3/I2S3(3) 8,33 USART2 12,22 USART3 12,22 UART4 12,22 UART5 12,22 I2C1 10,28 I2C2 10,28 USB 18,89 CAN1 18,89 DAC(4) 9,17 WWDG 3,06 PWR 2,50 BKP 2,78 IWDG 4,44 Table 20. Peripheral current consumption(1) (continued) Peripheral Current consumption DocID16554 Rev 4 57/136 STM32F103xF, STM32F103xG Electrical characteristics 132 5.3.6 External clock source characteristics High-speed external user clock generated from an external source The characteristics given in Table 21 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 10. APB2 (up to 72 MHz) APB2-Bridge 2,78 GPIOA 7,64 GPIOB 7,64 GPIOC 7,64 GPIOD 8,47 GPIOE 8,47 GPIOF 8,19 GPIOG 8,19 SPI1 5,14 USART1 16,67 TIM1 28,47 TIM8 24,31 TIM9 11,81 TIM10 8,47 TIM11 8,47 ADC1(5)(6) 17,68 ADC2(5)(6) 15,54 ADC3(5)(6) 16,43 1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral. 2. The BusMatrix is automatically active when at least one master peripheral is ON. 3. When the I2S is enabled, a current consumption equal to 0.02 mA must be added. 4. When DAC_OU1 or DAC_OUT2 is enabled, a current consumption equal to 0.36 mA must be added. 5. Specific conditions for ADC: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4/ When ADON bit in the ADC_CR2 register is set to 1, a current consumption equal to 0.59 mA must be added. 6. When the ADC is enabled, a current consumption equal to 0.1 mA must be added. Table 20. Peripheral current consumption(1) (continued) Peripheral Current consumption Electrical characteristics STM32F103xF, STM32F103xG 58/136 DocID16554 Rev 4 Low-speed external user clock generated from an external source The characteristics given in Table 22 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 10. Table 21. High-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fHSE_ext User external clock source frequency(1) 1. Guaranteed by design, not tested in production. - 1 8 25 MHz VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD V VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time(1) 5-- ns tr(HSE) tf(HSE) OSC_IN rise or fall time(1) - - 20 Cin(HSE) OSC_IN input capacitance(1) - - 5 - pF DuCy(HSE) Duty cycle - 45 - 55 % IL OSC_IN Input leakage current VSS = VIN = VDD - - ±1 µA Table 22. Low-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fLSE_ext User External clock source frequency(1) 1. Guaranteed by design, not tested in production. - - 32.768 1000 kHz VLSEH OSC32_IN input pin high level voltage 0.7VDD - VDD V VLSEL OSC32_IN input pin low level voltage VSS - 0.3VDD tw(LSE) tw(LSE) OSC32_IN high or low time(1) 450 - - ns tr(LSE) tf(LSE) OSC32_IN rise or fall time(1) - - 50 Cin(LSE) OSC32_IN input capacitance(1) - - 5 - pF DuCy(LSE) Duty cycle - 30 - 70 % IL OSC32_IN Input leakage current VSS = VIN = VD D - - ±1 µA DocID16554 Rev 4 59/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 18. High-speed external clock source AC timing diagram Figure 19. Low-speed external clock source AC timing diagram AI /3#?). %XTERNAL 34-& CLOCKSOURCE 6(3%( T F(3% T 7(3% ) ,     4(3% T T R(3% T 7(3% F (3%?EXT 6(3%, DL 26&B,1 ([WHUQDO 670) FORFNVRXUFH 9/6(+ W I /6( W : /6( , /   7/6( W W U /6( W : /6( I /6(BH[W 9/6( Electrical characteristics STM32F103xF, STM32F103xG 60/136 DocID16554 Rev 4 High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 23. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 20). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Table 23. HSE 4-16 MHz oscillator characteristics(1)(2) 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by characterization results, not tested in production. Symbol Parameter Conditions Min Typ Max Unit fOSC_IN Oscillator frequency - 4 8 16 MHz RF Feedback resistor - - 200 - kO C Recommended load capacitance versus equivalent serial resistance of the crystal (RS) (3) 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. RS = 30 O - 30 - pF i 2 HSE driving current VDD= 3.3 V, VIN = VSS with 30 pF load - - 1 mA gm Oscillator transconductance Startup 25 - - mA/V tSU(HSE)(4) 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Startup time VDD is stabilized - 2 - ms DocID16554 Rev 4 61/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 20. Typical application with an 8 MHz crystal 1. REXT value depends on the crystal characteristics. DL 26&B287 26&B,1 I +6( &/ 5) 670) 0+] UHVRQDWRU 5HVRQDWRUZLWK LQWHJUDWHGFDSDFLWRUV %LDV FRQWUROOHG JDLQ 5(;7  &/ Electrical characteristics STM32F103xF, STM32F103xG 62/136 DocID16554 Rev 4 Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 24. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 21). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF. Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL = 7 pF. Never use a resonator with a load capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF. Table 24. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)(2) Symbol Parameter Conditions Min Typ Max Unit RF Feedback resistor - - 5 - MO C(2) Recommended load capacitance versus equivalent serial resistance of the crystal (RS) RS = 30 kO - - 15 pF I2 LSE driving current VDD = 3.3 V, VIN = VSS - - 1.4 µA gm Oscillator transconductance - 5 - - µA/V tSU(LSE)(3) Startup time VDD is stabilized TA = 50 °C - 1.5 - s TA = 25 °C - 2.5 - TA = 10 °C - 4 - TA = 0 °C - 6 - TA = -10 °C - 10 - TA = -20 °C - 17 - TA = -30 °C - 32 - TA = -40 °C - 60 - 1. Guaranteed by characterization results, not tested in production. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) until a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer, PCB layout and humidity. DocID16554 Rev 4 63/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 21. Typical application with a 32.768 kHz crystal 5.3.7 Internal clock source characteristics The parameters given in Table 25 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. High-speed internal (HSI) RC oscillator DL 26&B287 26&B,1 I /6( &/ 5) 670) N+ ] UHVRQDWRU 5HVRQDWRUZLWK LQWHJUDWHGFDSDFLWRUV %LDV FRQWUROOHG JDLQ &/ Table 25. HSI oscillator characteristics(1) 1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit fHSI Frequency - - 8 MHz DuCy(HSI) Duty cycle - 45 - 55 % ACCHSI Accuracy of the HSI oscillator User-trimmed with the RCC_CR register(2) 2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the ST website www.st.com. - -1(3) 3. Guaranteed by design, not tested in production. % Factorycalibrated(4) 4. Guaranteed by characterization results, not tested in production. TA = –40 to 105 °C –2 - 2.5 % TA = –10 to 85 °C –1.5 - 2.2 % TA = 0 to 70 °C –1.3 - 2 % TA = 25 °C –1.1 - 1.8 % tsu(HSI)(4) HSI oscillator startup time - 1 - 2 µs IDD(HSI)(4) HSI oscillator power consumption - - 80 100 µA Electrical characteristics STM32F103xF, STM32F103xG 64/136 DocID16554 Rev 4 Low-speed internal (LSI) RC oscillator Wakeup time from low-power mode The wakeup times given in Table 27 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: • Stop or Standby mode: the clock source is the RC oscillator • Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 26. LSI oscillator characteristics (1) 1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified. Symbol Parameter Min Typ Max Unit fLSI(2) 2. Guaranteed by characterization results, not tested in production. Frequency 30 40 60 kHz tsu(LSI)(3) 3. Guaranteed by design, not tested in production. LSI oscillator startup time - - 85 µs IDD(LSI)(3) LSI oscillator power consumption - 0.65 1.2 µA Table 27. Low-power mode wakeup timings Symbol Parameter Typ Unit tWUSLEEP(1) 1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction. Wakeup from Sleep mode 1.8 µs tWUSTOP(1) Wakeup from Stop mode (regulator in run mode) 3.6 µs Wakeup from Stop mode (regulator in low-power mode) 5.4 tWUSTDBY(1) Wakeup from Standby mode 50 µs DocID16554 Rev 4 65/136 STM32F103xF, STM32F103xG Electrical characteristics 132 5.3.8 PLL characteristics The parameters given in Table 28 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. 5.3.9 Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 28. PLL characteristics Symbol Parameter Value Unit Min Typ Max(1) 1. Guaranteed by characterization results, not tested in production. fPLL_IN PLL input clock(2) 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 1 8.0 25 MHz PLL input clock duty cycle 40 - 60 % fPLL_OUT PLL multiplier output clock 16 - 72 MHz tLOCK PLL lock time - - 200 µs Jitter Cycle-to-cycle jitter - - 300 ps Table 29. Flash memory characteristics Symbol Parameter Conditions Min Typ Max(1) 1. Guaranteed by design, not tested in production. Unit tprog 16-bit programming time TA = –40 to +105 °C 40 52.5 70 µs tERASE Page (2 KB) erase time TA = –40 to +105 °C 20 - 40 ms tME Mass erase time TA = –40 to +105 °C 20 - 40 ms IDD Supply current Read mode fHCLK = 72 MHz with 2 wait states, VDD = 3.3 V - - 28 mA Write mode fHCLK = 72 MHz, VDD = 3.3 V - - 7 mA Erase mode fHCLK = 72 MHz, VDD = 3.3 V - - 5 mA Power-down mode / Halt, VDD = 3.0 to 3.6 V - - 50 µA Vprog Programming voltage - 2 - 3.6 V Electrical characteristics STM32F103xF, STM32F103xG 66/136 DocID16554 Rev 4 Table 30. Flash memory endurance and data retention Symbol Parameter Conditions Value Unit Min(1) 1. Guaranteed by characterization results, not tested in production. NEND Endurance TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 kcycles tRET Data retention 1 kcycle(2) at TA = 85 °C 2. Cycling performed over the whole temperature range. 30 1 kcycle Years (2) at TA = 105 °C 10 10 kcycles(2) at TA = 55 °C 20 DocID16554 Rev 4 67/136 STM32F103xF, STM32F103xG Electrical characteristics 132 5.3.10 FSMC characteristics Asynchronous waveforms and timings Figure 22 through Figure 25 represent asynchronous waveforms and Table 31 through Table 35 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: • AddressSetupTime = 0 • AddressHoldTime = 1 • DataSetupTime = 1 Note: On all tables, the tHCLK is the HCLK clock period. Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Note: FSMC_BusTurnAroundDuration = 0. 'DWD )60&B1( )60&B1%/>@ )60&B'>@ WY %/B1( W K 'DWDB1( )60&B12( $GGUHVV )60&B$>@ WY $B1( )60&B1:( WVX 'DWDB1( WZ 1( 069 Z 12( W W Y 12(B1( W K 1(B12( W K 'DWDB12( W K $B12( W K %/B12( WVX 'DWDB12( )60&B1$'9  W Y 1$'9B1( WZ 1$'9 Electrical characteristics STM32F103xF, STM32F103xG 68/136 DocID16554 Rev 4 Figure 23. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1) 1. CL = 15 pF. Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 5tHCLK + 0.5 5tHCLK + 2 ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0.5 1.5 ns tw(NOE) FSMC_NOE low time 5tHCLK – 1 5tHCLK + 1 ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 3 ns th(A_NOE) Address hold time after FSMC_NOE high 0 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0 ns th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0.5 - ns tsu(Data_NE) Data to FSMC_NEx high setup time 2tHCLK - 1 - ns tsu(Data_NOE) Data to FSMC_NOEx high setup time 2tHCLK - 1 - ns th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns th(Data_NE) Data hold time after FSMC_NEx high 0 - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 0 ns tw(NADV) FSMC_NADV low time - tHCLK + 2 ns 1%/ 'DWD )60&B1([ )60&B1%/>@ )60&B'>@ WY %/B1( W K 'DWDB1:( )60&B12( )60&B$>@ $GGUHVV WY $B1( WZ 1:( )60&B1:( WY 1:(B1( WK 1(B1:( W K $B1:( W K %/B1:( WY 'DWDB1( WZ 1( DL )60&B1$'9  WY 1$'9B1( WZ 1$'9 DocID16554 Rev 4 69/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1) 1. CL = 15 pF. Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 3tHCLK + 0.5 3tHCLK + 1.5 ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low tHCLK + 0.5 tHCLK + 1.5 ns tw(NWE) FSMC_NWE low time tHCLK – 0.5 tHCLK + 1 ns th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time tHCLK – 0.5 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns th(A_NWE) Address hold time after FSMC_NWE high tHCLK - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns th(BL_NWE) FSMC_BL hold time after FSMC_NWE high tHCLK – 1.5 - ns tv(Data_NE) FSMC_NEx low to Data valid - tHCLK ns th(Data_NWE) Data hold time after FSMC_NWE high tHCLK - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 0 ns tw(NADV) FSMC_NADV low time - tHCLK + 1.5 ns Table 33. Asynchronous multiplexed read timings Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 7tHCLK + 0.5 7tHCLK + 2 ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 3tHCLK + 0.5 3tHCLK + 1.5 tw(NOE) FSMC_NOE low time 4tHCLK – 1 4tHCLK + 1 th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0.5 - tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 0 1 tw(NADV) FSMC_NADV low time tHCLK + 0.5 tHCLK + 2 th(AD_NADV) FSMC_AD (address) valid hold time after FSMC NADV high tHCLK - th(A_NOE) Address hold time after FSMC_NOE high tHCLK – 2 - th(BL_NOE) FSMC_BL time after FSMC_NOE high 0.5 - tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0 tsu(Data_NE) Data to FSMC_NEx high setup time 4tHCLK – 0.5 - tsu(Data_NOE) Data to FSMC_NOE high setup time 4tHCLK – 1 - th(Data_NE) Data hold time after FSMC_NEx high 0 - th(Data_NOE) Data hold time after FSMC_NOE high 0 - Electrical characteristics STM32F103xF, STM32F103xG 70/136 DocID16554 Rev 4 Figure 24. Asynchronous multiplexed PSRAM/NOR read waveforms Table 34. Asynchronous multiplexed PSRAM/NOR read timings(1) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 7tHCLK + 0.5 7tHCLK + 2 ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 3tHCLK + 0.5 3tHCLK + 1.5 ns tw(NOE) FSMC_NOE low time 4tHCLK – 1 4tHCLK + 1 ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0.5 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 0 1 ns tw(NADV) FSMC_NADV low time tHCLK + 0.5 tHCLK + 2 ns th(AD_NADV) FSMC_AD (address) valid hold time after FSMC_NADV high tHCLK - ns th(A_NOE) Address hold time after FSMC_NOE high tHCLK -2 - ns th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0.5 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0 ns tsu(Data_NE) Data to FSMC_NEx high setup time 4tHCLK - 0.5 - ns tsu(Data_NOE) Data to FSMC_NOE high setup time 4tHCLK - 1 - ns .", $ATA &3-#?.",;= &3-#?!$;= TV",?.% TH$ATA?.% !DDRESS &3-#?!;= TV!?.% &3-#?.7% T V!?.% AIB !DDRESS &3-#?.!$6 T V.!$6?.% TW.!$6 TSU$ATA?.% TH!$?.!$6 &3-#?.% &3-#?./% TW.% T W./% TV./%?.% T H.%?./% TH!?./% TH",?./% T SU$ATA?./% TH$ATA?./% DocID16554 Rev 4 71/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 25. Asynchronous multiplexed PSRAM/NOR write waveforms th(Data_NE) Data hold time after FSMC_NEx high 0 - ns th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns 1. CL = 15 pF. Table 35. Asynchronous multiplexed PSRAM/NOR write timings(1) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 5tHCLK + 0.5 5tHCLK + 2 ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low tHCLK + 1 tHCLK + 1.5 ns tw(NWE) FSMC_NWE low time 3tHCLK + 0.5 3tHCLK + 1 ns th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time tHCLK – 0.5 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 3.5 ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 0 1 ns tw(NADV) FSMC_NADV low time tHCLK + 0.5 tHCLK + 1.5 ns th(AD_NADV) FSMC_AD (address) valid hold time after FSMC_NADV high tHCLK – 0.5 - ns Table 34. Asynchronous multiplexed PSRAM/NOR read timings(1) (continued) Symbol Parameter Min Max Unit 1%/ 'DWD )60&B1([ )60&B1%/>@ )60&B$'>@ WY %/B1( WK 'DWDB1:( )60&B12( $GGUHVV )60&B$>@ WY $B1( WZ 1:( )60&B1:( WY 1:(B1( WK 1(B1:( WK $B1:( WK %/B1:( WY $B1( WZ 1( DL% $GGUHVV )60&B1$'9 WY 1$'9B1( WZ 1$'9 WY 'DWDB1$'9 W K $'B1$'9 Electrical characteristics STM32F103xF, STM32F103xG 72/136 DocID16554 Rev 4 Synchronous waveforms and timings Figure 26 through Figure 29 represent synchronous waveforms and Table 37 through Table 39 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: • BurstAccessMode = FSMC_BurstAccessMode_Enable; • MemoryType = FSMC_MemoryType_CRAM; • WriteBurst = FSMC_WriteBurst_Enable; • CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual) • DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM th(A_NWE) Address hold time after FSMC_NWE high 4tHCLK – 2 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns th(BL_NWE) FSMC_BL hold time after FSMC_NWE high tHCLK – 1.5 - ns tv(Data_NADV) FSMC_NADV high to Data valid - tHCLK + 6 ns th(Data_NWE) Data hold time after FSMC_NWE high tHCLK – 0.5 - ns 1. CL = 15 pF. Table 35. Asynchronous multiplexed PSRAM/NOR write timings(1) Symbol Parameter Min Max Unit DocID16554 Rev 4 73/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 26. Synchronous multiplexed NOR/PSRAM read timings &3-#?#,+ &3-#?.%X &3-#?.!$6 &3-#?!;= &3-#?./% &3-#?!$;= !$;= $ $ &3-#?.7!)4 7!)4#&'B 7!)40/, B &3-#?.7!)4 7!)4#&'B 7!)40/, B T W#,+ T W#,+ $ATALATENCY "53452. T D#,+, .%X, TD#,+, .%X( T D#,+, .!$6, T D#,+, !6 T D#,+, .!$6( T D#,+, !)6 T D#,+( ./%, T D#,+, ./%( T D#,+, !$6 T D#,+, !$)6 T SU!$6 #,+( T H#,+( !$6 T SU!$6 #,+( T H#,+( !$6 T SU.7!)46 #,+( T H#,+( .7!)46 T SU.7!)46 #,+( T H#,+( .7!)46 T SU.7!)46 #,+( T H#,+( .7!)46 Electrical characteristics STM32F103xF, STM32F103xG 74/136 DocID16554 Rev 4 Table 36. Synchronous multiplexed NOR/PSRAM read timings(1) 1. CL = 15 pF. Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 27.6 - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - 0.5 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 1 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0.5 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) 1.5 - ns td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 14 ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1 - ns td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 11 ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0.5 - ns tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 2 - ns th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 - ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high 8 - ns th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 2 - ns DocID16554 Rev 4 75/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 27. Synchronous multiplexed PSRAM write timings &3-#?#,+ &3-#?.%X &3-#?.!$6 &3-#?!;= &3-#?.7% &3-#?!$;= !$;= $ $ &3-#?.7!)4 7!)4#&'B 7!)40/, B T W#,+ T W#,+ $ATALATENCY "53452. T D#,+, .%X, T D#,+, .%X( T D#,+, .!$6, T D#,+, !6 T D#,+, .!$6( T D#,+, !)6 T D#,+, .7%( T D#,+, .7%, T D#,+, .",( T D#,+, !$6 T D#,+, !$)6 T D#,+, $ATA T SU.7!)46 #,+( T H#,+( .7!)46 AIG T D#,+, $ATA Electrical characteristics STM32F103xF, STM32F103xG 76/136 DocID16554 Rev 4 Table 37. Synchronous multiplexed PSRAM write timings(1) 1. CL = 15 pF. Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 27.5 - ns td(CLKL-NExL) FSMC_CLK low to FSMC_Nex low (x = 0...2) - 0 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 1 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 1 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) 1 - ns td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 1.5 - ns td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 10 ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 1 - ns td(CLKL-Data) FSMC_A/D[15:0] valid after FSMC_CLK low - 6 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 1 - ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high 7 - ns th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 2 - ns DocID16554 Rev 4 77/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 28. Synchronous non-multiplexed NOR/PSRAM read timings Table 38. Synchronous non-multiplexed NOR/PSRAM read timings(1) Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 27.6 - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - 1.5 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 2 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0.5 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 1 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 0...25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 0...25) 2 - ns td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - tHCLK + 1 ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 - ns tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 3.5 - ns th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 0 - ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_SMCLK high 7 - ns th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 2 - ns &3-#?#,+ &3-#?.%X &3-#?!;= &3-#?./% &3-#?$;= $ $ &3-#?.7!)4 7!)4#&'B 7!)40/, B &3-#?.7!)4 7!)4#&'B 7!)40/, B T W#,+ T W#,+ $ATALATENCY "53452. T D#,+, .%X, T D#,+, .%X( T D#,+, !6 T D#,+, !)6 T D#,+( ./%, T D#,+, ./%( T SU$6 #,+( T H#,+( $6 T SU$6 #,+( T H#,+( $6 T SU.7!)46 #,+( T H#,+( .7!)46 T SU.7!)46 #,+( T H#,+( .7!)46 T SU.7!)46 #,+( T H#,+( .7!)46 AIH &3-#?.!$6 T D#,+, .!$6, T D Electrical characteristics STM32F103xF, STM32F103xG 78/136 DocID16554 Rev 4 Figure 29. Synchronous non-multiplexed PSRAM write timings 1. CL = 15 pF. Table 39. Synchronous non-multiplexed PSRAM write timings(1) Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 27.6 - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - 0.5 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 1.5 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0.5 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) 1.5 - ns td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 1.5 - ns td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 2.5 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 0.5 - ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high 7 - ns th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 2 - ns )60&B&/. )60&B1([ )60&B1$'9 )60&B$>@ )60&B12( )60&B$'>@ $'>@ ' ' )60&B1:$,7 :$,7&)* E:$,732/E )60&B1:$,7 :$,7&)* E:$,732/E W Z &/. W Z &/. 'DWDODWHQF\  %867851  W G &/./1([/ WG &/./1([+ W G &/./1$'9/ W G &/./$9 W G &/./1$'9+ W G &/./$,9 W G &/.+12(/ W G &/./12(+ W G &/./$'9 W G &/./$',9 W VX $'9&/.+ W K &/.+$'9 W VX $'9&/.+ W K &/.+$'9 W VX 1:$,79&/.+ W K &/.+1:$,79 W VX 1:$,79&/.+ W K &/.+1:$,79 W VX 1:$,79&/.+ W K &/.+1:$,79 DLK DocID16554 Rev 4 79/136 STM32F103xF, STM32F103xG Electrical characteristics 132 PC Card/CompactFlash controller waveforms and timings Figure 30 through Figure 35 represent synchronous waveforms and Table 42 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: • COM.FSMC_SetupTime = 0x04; • COM.FSMC_WaitSetupTime = 0x07; • COM.FSMC_HoldSetupTime = 0x04; • COM.FSMC_HiZSetupTime = 0x00; • ATT.FSMC_SetupTime = 0x04; • ATT.FSMC_WaitSetupTime = 0x07; • ATT.FSMC_HoldSetupTime = 0x04; • ATT.FSMC_HiZSetupTime = 0x00; • IO.FSMC_SetupTime = 0x04; • IO.FSMC_WaitSetupTime = 0x07; • IO.FSMC_HoldSetupTime = 0x04; • IO.FSMC_HiZSetupTime = 0x00; • TCLRSetupTime = 0; • TARSetupTime = 0; Figure 30. PC Card/CompactFlash controller waveforms for common memory read access 1. FSMC_NCE4_2 remains high (inactive during 8-bit access. 1. CL = 15 pF. )60&B1:( W Z 12( )60&B12( )60&B'>@ )60&B$>@ )60&B1&(B  )60&B1&(B )60&B15(* )60&B1,2:5 )60&B1,25' W G 1&(B12( W VX '12( W K 12(' W Y 1&([$ W G 15(*1&([ W G 1,25'1&([ W K 1&([$, W K 1&([15(* W K 1&([1,25' W K 1&([1,2:5 DLE Electrical characteristics STM32F103xF, STM32F103xG 80/136 DocID16554 Rev 4 Figure 31. PC Card/CompactFlash controller waveforms for common memory write access W G 1&(B1:( W Z 1:( W K 1:(' W Y 1&(B$ W G 15(*1&(B W G 1,25'1&(B W K 1&(B$, 0(0[+,=  W Y 1:(' W K 1&(B15(* W K 1&(B1,25' W K 1&(B1,2:5 DLE )60&B1:( )60&B12( )60&B'>@ )60&B$>@ )60&B1&(B )60&B15(* )60&B1,2:5 )60&B1,25' W G 1:(1&(B W G '1:( )60&B1&(B +LJK DocID16554 Rev 4 81/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 32. PC Card/CompactFlash controller waveforms for attribute memory read access 1. Only data bits 0...7 are read (bits 8...15 are disregarded). W G 1&(B12( W Z 12( W VX '12( W K 12(' W Y 1&(B$ W K 1&(B$, W G 15(*1&(B W K 1&(B15(* DLE )60&B1:( )60&B12( )60&B'>@  )60&B$>@ )60&B1&(B )60&B1&(B )60&B15(* )60&B1,2:5 )60&B1,25' W G 12(1&(B +LJK Electrical characteristics STM32F103xF, STM32F103xG 82/136 DocID16554 Rev 4 Figure 33. PC Card/CompactFlash controller waveforms for attribute memory write access 1. Only data bits 0...7 are driven (bits 8...15 remains HiZ). Figure 34. PC Card/CompactFlash controller waveforms for I/O space read access W Z 1:( W Y 1&(B$ W G 15(*1&(B W K 1&(B$, W K 1&(B15(* W Y 1:(' DLE )60&B1:( )60&B12( )60&B'>@  )60&B$>@ )60&B1&(B )60&B1&(B )60&B15(* )60&B1,2:5 )60&B1,25' W G 1:(1&(B +LJK W G 1&(B1:( W G 1,25'1&(B W Z 1,25' W VX '1,25' W G 1,25'' W Y 1&([$ W K 1&(B$, DL% )60&B1:( )60&B12( )60&B'>@ )60&B$>@ )60&B1&(B )60&B1&(B )60&B15(* )60&B1,2:5 )60&B1,25' DocID16554 Rev 4 83/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 35. PC Card/CompactFlash controller waveforms for I/O space write access W G 1&(B1,2:5 W Z 1,2:5 W Y 1&([$ W K 1&(B$, W K 1,2:5' $77[+,=  W Y 1,2:5' DLF )60&B1:( )60&B12( )60&B'>@ )60&B$>@ )60&B1&(B )60&B1&(B )60&B15(* )60&B1,2:5 )60&B1,25' Table 40. Switching characteristics for PC Card/CF read and write cycles in attribute/common space Symbol Parameter Min Max Unit tv(NCEx-A) FSMC_NCEx low to FSMC_Ay valid - 0 ns th(NCEx-AI) FSMC_NCEx high to FSMC_Ax invalid 0 - td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid - 2 th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid tHCLK + 4 - td(NCEx_NWE) FSMC_NCEx low to FSMC_NWE low - 5tHCLK + 1 td(NCEx_NOE) FSMC_NCEx low to FSMC_NOE low - 5tHCLK + 1 tw(NOE) FSMC_NOE low width 8tHCLK - 0.5 8tHCLK + 1 td(NOE-NCEx FSMC_NOE high to FSMC_NCEx high 5tHCLK - 0.5 - tsu(D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 32 - th(NOE-D) FSMC_NOE high to FSMC_D[15:0] invalid tHCLK - tw(NWE) FSMC_NWE low width 8tHCLK – 1 8tHCLK + 4 td(NWE_NCEx) FSMC_NWE high to FSMC_NCEx high 5tHCLK + 1.5 - td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5tHCLK + 1 tv(NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - 0 th(NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 11tHCLK - td(D-NWE) FSMC_D[15:0] valid before FSMC_NWE high 13tHCLK + 2.5 - Electrical characteristics STM32F103xF, STM32F103xG 84/136 DocID16554 Rev 4 NAND controller waveforms and timings Figure 36 through Figure 39 represent synchronous waveforms and Table 43 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: • COM.FSMC_SetupTime = 0x00; • COM.FSMC_WaitSetupTime = 0x02; • COM.FSMC_HoldSetupTime = 0x01; • COM.FSMC_HiZSetupTime = 0x00; • ATT.FSMC_SetupTime = 0x00; • ATT.FSMC_WaitSetupTime = 0x02; • ATT.FSMC_HoldSetupTime = 0x01; • ATT.FSMC_HiZSetupTime = 0x00; • Bank = FSMC_Bank_NAND; • MemoryDataWidth = FSMC_MemoryDataWidth_16b; • ECC = FSMC_ECC_Enable; • ECCPageSize = FSMC_ECCPageSize_512Bytes; • TCLRSetupTime = 0; • TARSetupTime = 0; Table 41. Switching characteristics for PC Card/CF read and write cycles in I/O space Symbol Parameter Min Max Unit tw(NIOWR) FSMC_NIOWR low width 8 THCLK - ns tv(NIOWR-D) FSMC_NIOWR low to FSMC_D[15:0] valid - 5 THCLK - 4 ns th(NIOWR-D) FSMC_NIOWR high to FSMC_D[15:0] invalid 11THCLK - 7 - ns td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid - 5THCLK + 1 ns th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid 5THCLK - 2.5 - ns td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid - 5THCLK - 0.5 ns th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD) valid 5 THCLK - 0.5 - ns tw(NIORD) FSMC_NIORD low width 8THCLK - ns tsu(D-NIORD) FSMC_D[15:0] valid before FSMC_NIORD high 28 - ns td(NIORD-D) FSMC_D[15:0] valid after FSMC_NIORD high 3 - ns DocID16554 Rev 4 85/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 36. NAND controller waveforms for read access Figure 37. NAND controller waveforms for write access )60&B1:( )60&B12( 15( )60&B'>@ W VX '12( W K 12(' DLE $/( )60&B$ &/( )60&B$ )60&B1&([ /RZ W G $/(12( W K 12($/( AIC W K 1:(' W Y 1:(' )60&B1:( )60&B12( 15( )60&B'>@ $/( )60&B$ &/( )60&B$ )60&B1&([ W G $/(1:( W K 1:($/( Electrical characteristics STM32F103xF, STM32F103xG 86/136 DocID16554 Rev 4 Figure 38. NAND controller waveforms for common memory read access Figure 39. NAND controller waveforms for common memory write access Table 42. Switching characteristics for NAND Flash read cycles(1) 1. CL = 15 pF. Symbol Parameter Min Max Unit tw(NOE) FSMC_NOE low width 3tHCLK – 1 3tHCLK + 1 ns tsu(D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 13 - ns th(NOE-D) FSMC_D[15:0] valid data after FSMC_NOE high 0 - ns td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 2tHCLK ns th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 2tHCLK - ns )60&B1:( )60&B12( )60&B'>@ W Z 12( W VX '12( W K 12(' DLE $/( )60&B$ &/( )60&B$ )60&B1&([ /RZ W G $/(12( W K 12($/( W Z 1:( W K 1:(' W Y 1:(' DLE )60&B1:( )60&B12( )60&B'>@ W G '1:( $/( )60&B$ &/( )60&B$ )60&B1&([ /RZ W G $/(1:( W K 1:($/( DocID16554 Rev 4 87/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Table 43. Switching characteristics for NAND Flash write cycles(1) 1. CL = 15 pF. Symbol Parameter Min Max Unit tw(NWE) FSMC_NWE low width 3tHCLK 3tHCLK ns tv(NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - 0 ns th(NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 2tHCLK + 2 - ns td(ALE-NWE) FSMC_ALE valid before FSMC_NWE low - 3tHCLK + 1.5 ns th(NWE-ALE) FSMC_NWE high to FSMC_ALE invalid 3tHCLK + 8 - ns td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 2tHCLK ns th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 2tHCLK - ns Electrical characteristics STM32F103xF, STM32F103xG 88/136 DocID16554 Rev 4 5.3.11 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 44. They are based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. Table 44. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 3.3 V, LQFP144, TA = +25 °C, fHCLK = 72 MHz conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP144, TA = +25 °C, fHCLK = 72 MHz conforms to IEC 61000-4-4 4A DocID16554 Rev 4 89/136 STM32F103xF, STM32F103xG Electrical characteristics 132 To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. 5.3.12 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 45. EMI characteristics Symbol Parameter Conditions Monitored frequency band Max vs. [fHSE/fHCLK] Unit 8/48 MHz 8/72 MHz SEMI Peak level VDD = 3.3 V, TA = 25 °C, LQFP144 package compliant with IEC 61967-2 0.1 to 30 MHz 8 12 30 to 130 MHz 31 21 dBµV 130 MHz to 1GHz 28 33 SAE EMI Level 4 4 - Table 46. ESD absolute maximum ratings Symbol Ratings Conditions Class Maximum value(1) 1. Guaranteed by characterization results, not tested in production. Unit VESD(HBM) Electrostatic discharge voltage (human body model) TA = +25 °C, conforming to JESD22-A114 2 2000 V VESD(CDM) Electrostatic discharge voltage (charge device model) TA = +25 °C, conforming to JESD22-C101 III 500 Electrical characteristics STM32F103xF, STM32F103xG 90/136 DocID16554 Rev 4 5.3.13 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation). The test results are given in Table 48 Table 47. Electrical sensitivities Symbol Parameter Conditions Class LU Static latch-up class TA = +105 °C conforming to JESD78A II level A Table 48. I/O current injection susceptibility Symbol Description Functional susceptibility Unit Negative injection Positive injection IINJ Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13 -0 +0 mA Injected current on all FT pins -5 +0 Injected current on any other pin -5 +5 DocID16554 Rev 4 91/136 STM32F103xF, STM32F103xG Electrical characteristics 132 5.3.14 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 49 are derived from tests performed under the conditions summarized in Table 10. All I/Os are CMOS and TTL compliant. All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 40 and Figure 41 for standard I/Os, and in Figure 42 and Figure 43 for 5 V tolerant I/Os. Table 49. I/O static characteristics Symbol Parameter Conditions Min Typ Max Unit VIL Standard IO input low level voltage - –0.3 - 0.28*(VDD-2 V)+0.8 V V IO FT(1) input low level voltage –0.3 - 0.32*(VDD-2 V)+0.75 V V VIH Standard IO input high level voltage - 0.41*(VDD-2 V)+1.3 V - VDD+0.3 V IO FT(1) input high level voltage VDD > 2 V 0.42*(VDD-2 V)+1 V - 5.5 V VDD = 2 V 5.2 Vhys Standard IO Schmitt trigger voltage hysteresis(2) - 200 - - mV IO FT Schmitt trigger voltage hysteresis(2) 5% VDD(3) - - mV Ilkg Input leakage current (4) VSS = VIN = VDD Standard I/Os - - ±1 µA VIN= 5 V, I/O FT - - 3 RPU Weak pull-up equivalent resistor(5) VIN = VSS 30 40 50 kO RPD Weak pull-down equivalent resistor(5) VIN = VDD 30 40 50 kO CIO I/O pin capacitance - - 5 - pF 1. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be disabled. 2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results, not tested in production. 3. With a minimum of 100 mV. 4. Leakage could be higher than max. if negative current is injected on adjacent pins. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). Electrical characteristics STM32F103xF, STM32F103xG 92/136 DocID16554 Rev 4 Figure 40. Standard I/O input characteristics - CMOS port Figure 41. Standard I/O input characteristics - TTL port Figure 42. 5 V tolerant I/O input characteristics - CMOS port AIB 6$$6     )NPUTRANGE NOTGUARANTEED    6)(6$$     #-/3STANDARDREQUIREMENT6)(6$$  6)(6),6 #-/3STANDARDREQUIREMENT6),6$$         7),MAX 7)(MIN 6 $$   6 ), AI   )NPUTRANGE NOTGUARANTEED 6)(6),6       44,REQUIREMENTS 6)(6 6)(6$$   6),6$$   44,REQUIREMENTS 6),6 6$$6 7),MAX 7)(MIN 6$$    #-/3STANDARDREQUIREMENTS6)(6$$ #-/3STANDARDREQUIRMENT6),6$$               6)(6),6 6$$6 )NPUTRANGE NOTGUARANTEED AIB 6)( DocID16554 Rev 4 93/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 43. 5 V tolerant I/O input characteristics - TTL port Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to ±3 mA. When using the GPIOs PC13 to PC15 in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 8). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 8). Output voltage levels Unless otherwise specified, the parameters given in Table 50 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. All I/Os are CMOS and TTL compliant.      NOTGUARANTEED )NPUTRANGE    44,REQUIREMENT6)(6 6)( 6$$   6), 6$$   44,REQUIREMENTS6),6 6)(6),6 6$$6 7),MAX 7)(MIN AI Table 50. Output voltage characteristics Symbol Parameter Conditions Min Max Unit VOL(1) Output low level voltage for an I/O pin when 8 pins are sunk at same time TTL port(3) IIO = +8 mA 2.7 V < VDD < 3.6 V - 0.4 V VOH(2) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - VOL (1) Output low level voltage for an I/O pin when 8 pins are sunk at same time CMOS port(3) IIO =+ 8mA 2.7 V < VDD < 3.6 V - 0.4 V VOH (2) Output high level voltage for an I/O pin when 8 pins are sourced at same Electrical characteristics STM32F103xF, STM32F103xG 94/136 DocID16554 Rev 4 VOL(1)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +20 mA 2.7 V < VDD < 3.6 V - 1.3 V VOH(2)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–1.3 - VOL(1)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +6 mA 2 V < VDD < 2.7 V - 0.4 V VOH(2)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 4. Guaranteed by characterization results, not tested in production. Table 50. Output voltage characteristics (continued) Symbol Parameter Conditions Min Max Unit DocID16554 Rev 4 95/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 44 and Table 51, respectively. Unless otherwise specified, the parameters given in Table 51 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 51. I/O AC characteristics(1) 1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register. MODEx[1:0] bit value(1) Symbol Parameter Conditions Min Max Unit 10 fmax(IO)out Maximum frequency(2) 2. The maximum frequency is defined in Figure 44. CL = 50 pF, VDD = 2 V to 3.6 V - 2 MHz tf(IO)out Output high to low level fall time CL = 50 pF, VDD = 2 V to 3.6 V - 125(3) 3. Guaranteed by design, not tested in production. ns tr(IO)out Output low to high level rise time - 125(3) 01 fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V - 10 MHz tf(IO)out Output high to low level fall time CL = 50 pF, VDD = 2 V to 3.6 V - 25(3) ns tr(IO)out Output low to high level rise time - 25(3) 11 Fmax(IO)out Maximum frequency(2) CL = 30 pF, VDD = 2.7 V to 3.6 V - 50 MHz CL = 50 pF, VDD = 2.7 V to 3.6 V - 30 MHz CL = 50 pF, VDD = 2 V to 2.7 V - 20 MHz tf(IO)out Output high to low level fall time CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) ns CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) tr(IO)out Output low to high level rise time CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) - tEXTIpw Pulse width of external signals detected by the EXTI controller - 10 - ns Electrical characteristics STM32F103xF, STM32F103xG 96/136 DocID16554 Rev 4 Figure 44. I/O AC characteristics definition 5.3.15 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 49). Unless otherwise specified, the parameters given in Table 52 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. DLG    W U ,2 RXW 287387 (;7(51$/ 21&/ 0D[LPXPIUHTXHQF\LVDFKLHYHGLI WUWI  7DQGLIWKHGXW\F\FOHLV  ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´    7 W I ,2 RXW Table 52. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit VIL(NRST)(1) 1. Guaranteed by design, not tested in production. NRST Input low level voltage - –0.5 - 0.8 V VIH(NRST)(1) NRST Input high level voltage - 2 - VDD+0.5 Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV RPU Weak pull-up equivalent resistor(2) 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). VIN = VSS 30 40 50 kO VF(NRST)(1) NRST Input filtered pulse - - - 100 ns VNF(NRST)(1) NRST Input not filtered pulse - 300 - - ns DocID16554 Rev 4 97/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 45. Recommended NRST pin protection 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 52. Otherwise the reset will not be taken into account by the device. 5.3.16 TIM timer characteristics The parameters given in Table 53 are guaranteed by design. Refer to Section 5.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). DLF 670) 538 1567  9'' )LOWHU ,QWHUQDO5HVHW ) ([WHUQDO UHVHWFLUFXLW  Table 53. TIMx(1) characteristics 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers. Symbol Parameter Conditions Min Max Unit tres(TIM) Timer resolution time - 1 -tTIMxCLK fTIMxCLK = 72 MHz 13.9 - ns fEXT Timer external clock frequency on CH1 to CH4 - 0fTIMxCLK/2 MHz fTIMxCLK = 72 MHz 0 36 MHz ResTIM Timer resolution - - 16 bit tCOUNTER 16-bit counter clock period when internal clock is selected - 1 65536 tTIMxCLK fTIMxCLK = 72 MHz 0.0139 910 µs tMAX_COUNT Maximum possible count - - 65536 × 65536 tTIMxCLK fTIMxCLK = 72 MHz - 59.6 s Electrical characteristics STM32F103xF, STM32F103xG 98/136 DocID16554 Rev 4 5.3.17 Communications interfaces I 2 C interface characteristics The STM32F103xF, STM32F103xD and STM32F103xGSTM32F103xF and STM32F103xG performance line I 2 C interface meets the requirements of the standard I2 C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2 C characteristics are described in Table 54. Refer also to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 54. I2C characteristics Symbol Parameter Standard mode I 2C(1)(2) 1. Guaranteed by design, not tested in production. Fast mode I2C(1)(2) 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve the fast mode I2C frequencies and it must be a multiple of 10 MHz in order to reach the I2C fast mode maximum clock speed of 400 kHz. Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - µs tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - ns th(SDA) SDA data hold time - 3450(3) - 900(3) 3. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region on the falling edge of SCL. tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) Start condition hold time 4.0 - 0.6 - µs tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - µs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - µs Cb Capacitive load for each bus line - 400 - 400 pF tSP Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode 0 50(4) 4. The minimum width of the spikes filtered by the analog filter is above tSP(max). 0 50(4) µs DocID16554 Rev 4 99/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 46. I2C bus AC waveforms and measurement circuit 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 2. Rs: Series protection resistors. 3. Rp: Pull-up resistors. 4. VDD_I2C : I2C bus supply Table 55. SCL frequency (fPCLK1= 36 MHz.,VDD_I2C = 3.3 V)(1)(2) 1. RP = External pull-up resistance, fSCL = I2C speed. 2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application. fSCL (kHz) I2C_CCR value RP = 4.7 kO 400 0x801E 300 0x8028 200 0x803C 100 0x00B4 50 0x0168 20 0x0384 As?????E ^ dZ d ^ ZW /?d?? s?/? ^dD?? ^ ^> l I;^? l ?;^? ^> l S;^d? l ?;^>,? l ?;^>>? l ??;^? l ?;^>? l I;^>? l S;^? ^ dZ dZWd ^ dZ d l ??;^d? l ??;^dK? ^ dKW l ?;^dK?^d? s?/? ZW Z^ Z^ Electrical characteristics STM32F103xF, STM32F103xG 100/136 DocID16554 Rev 4 I 2S - SPI characteristics Unless otherwise specified, the parameters given in Table 56 for SPI or in Table 57 for I2S are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 10. Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 56. SPI characteristics Symbol Parameter Conditions Min Max Unit fSCK 1/tc(SCK) SPI clock frequency Master mode - 18 MHz Slave mode - 18 tr(SCK) tf(SCK) SPI clock rise and fall time Capacitive load: C = 30 pF - 8 ns DuCy(SCK) SPI slave input clock duty cycle Slave mode 30 70 % tsu(NSS)(1) 1. Guaranteed by characterization results, not tested in production. NSS setup time Slave mode 4tPCLK - ns th(NSS)(1) NSS hold time Slave mode 2tPCLK - tw(SCKH)(1) tw(SCKL)(1) SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 50 60 tsu(MI) (1) tsu(SI)(1) Data input setup time Master mode 5 - Slave mode 5 - th(MI) (1) Data input hold time Master mode 5 - th(SI)(1) Slave mode 4 - ta(SO)(1)(2) 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. Data output access time Slave mode, fPCLK = 20 MHz 0 3tPCLK tdis(SO)(1)(3) 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z Data output disable time Slave mode 2 10 tv(SO) (1) Data output valid time Slave mode (after enable edge) - 25 tv(MO)(1) Data output valid time Master mode (after enable edge) - 5 th(SO)(1) Data output hold time Slave mode (after enable edge) 15 - th(MO)(1) Master mode (after enable edge) 2 - DocID16554 Rev 4 101/136 STM32F103xF, STM32F103xG Electrical characteristics 132 Figure 47. SPI timing diagram - slave mode and CPHA = 0 Figure 48. SPI timing diagram - slave mode and CPHA = 1(1) 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. DLF ^^ /E >^ Khd WK>?? WK>?? / d? /E E^^sYÐ?l l^h;E^^? lÐ;^? l|;^K? lS;^K? l?;^

Parent Directory - [TXT] Austin-Abstracts-vFi..> 2018-11-28 07:52 93K [TXT] Boston-abstracts-v3...> 2018-11-28 07:52 93K [TXT] Parent Directory.html 2018-11-28 07:52 93K [TXT] STMicroelectronics-e..> 2018-11-28 07:52 93K [TXT] SanDiego-Abstracts-v..> 2018-11-28 07:52 93K [TXT] Schaumburg-Abstracts..> 2018-11-28 07:52 93K [TXT] cd00253742.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00003681.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00004376.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00004531.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00004538.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00004556.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00004584.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00004587.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00004588.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00004589.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00004591.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00005024.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00005117.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00015447.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00043144.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00046664.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00049520.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00050624.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00053882.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00056470.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00059552.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00068381.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00068395.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00069353.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00074887.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00078926.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00083589.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00092182.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00092184.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00093849.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00259063.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00259527.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00261794.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00262339.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00262415.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00264812.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00265056.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00267141.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00268504.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00270292.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00270495.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00270706.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00271422.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00273258.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00274990.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00275188.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00277625.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00280375.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00280880.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00282230.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00283778.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00283786.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00283787.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00283975.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00285411.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00286479.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00286566.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00286932.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00288322.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00288442.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00288665.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00289278.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00290331.pdf.html 2018-11-28 07:52 80K [TXT] en.CD00291015.pdf.html 2018-11-28 07:52 64K [TXT] en.CD00291090.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00291593.pdf.html 2018-11-28 07:52 93K [TXT] en.CD00292882.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00055990.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00056491.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00056717.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00056722.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00056851.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00056884.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00057997.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00058837.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00059126.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00061842.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00061925.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00062066.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00062077.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00062592.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00062662.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00063145.pdf.html 2018-11-28 07:52 80K [TXT] en.DM00063243.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00063382.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00063425.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00063638.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00064161.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00065728.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00067131.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00067262.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00068695.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00068799.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00068893.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00068980.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00069214.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00070143.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00071188.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00071765.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00072014.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00072015.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00072019.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00072126.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00072262.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00100306.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00100309.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00100431.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00100994.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00101120.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00101232.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00101418.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00101792.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00101830.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00102166.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00102747.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00102750.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00102999.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00103145.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00103685.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00104043.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00104135.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00104233.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00104520.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00104543.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00104712.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00104991.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00105256.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00105446.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00105823.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00105879.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00105925.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00105928.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00106224.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00106518.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00107720.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00108086.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00108125.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00108281.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00108282.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00108473.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00108524.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00108526.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00108908.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00110868.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00111485.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00111791.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00113641.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00113672.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00113794.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00113898.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00113917.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00113930.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00114152.pdf.html 2018-11-28 07:52 93K [TXT] en.DM00114159.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00114438.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00114736.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00115135.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00115170.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00115249.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00115322.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00116132.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00116372.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00116575.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00116828.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00117320.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00117753.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00118702.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00118828.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00118829.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00154960.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00155732.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00155887.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00156746.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00157440.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00158917.pdf.html 2018-11-28 07:41 64K [TXT] en.DM00159659.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00160576.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00161857.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00162667.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00163313.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00164925.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00167057.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00167852.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00168396.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00169392.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00170030.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00171429.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00172179.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00172567.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00173145.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00175483.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00176526.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00178464.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00179358.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00180298.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00180369.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00181126.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00185455.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00185457.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00187403.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00187405.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00188260.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00188496.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00188617.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00189294.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00189702.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00206858.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00210526.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00211188.pdf.html 2018-11-28 07:41 80K [TXT] en.DM00211691.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00211709.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00213568.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00213619.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00214136.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00215061.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00216741.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00217184.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00218056.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00218846.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00219237.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00219329.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00219352.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00220163.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00222162.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00223149.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00224583.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00224855.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00226201.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00226315.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00226708.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00227061.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00228871.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00229679.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00230801.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00231402.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00231708.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00231744.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00232813.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00233579.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00235986.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00236106.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00237629.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00238427.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00245223.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00245237.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00245326.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00245767.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00245861.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00247120.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00247143.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00247432.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00247742.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00248407.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00249148.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00249385.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00250431.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00250990.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00251088.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00254687.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00254914.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00255309.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00257177.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00257192.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00257196.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00257198.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00260454.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00261648.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00263596.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00264045.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00264046.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00264048.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00264049.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00264056.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00265259.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00266629.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00266643.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00267830.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00268136.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00268486.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00268889.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00337870.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00338025.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00340446.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00341919.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00342318.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00343332.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00343692.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00344753.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00345688.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00345995.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00346336.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00346440.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00347450.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00347848.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00347861.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00348169.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00352032.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00353127.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00354355.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00358030.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00358345.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00358629.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00358639.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00359351.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00361065.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00361540.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00361801.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00363621.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00365435.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00365816.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00366364.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00366504.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00366911.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00368330.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00368350.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00369109.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00372763.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00409340.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00409384.pdf.html 2018-11-28 07:41 80K [TXT] en.DM00411203.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00412243.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00412716.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00414687.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00414904.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00415962.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00416654.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00417963.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00418905.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00420725.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00421316.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00426595.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00427990.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00427992.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00427997.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00428918.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00428919.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00431157.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00431163.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00431524.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00432311.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00434688.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00434788.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00437496.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00438534.pdf.html 2018-11-28 07:41 64K [TXT] en.DM00438897.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00441590.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00442920.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00443854.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00445236.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00445390.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00445400.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00446009.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00446043.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00446074.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00484414.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00484728.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00484753.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00485408.pdf.html 2018-11-28 07:41 64K [TXT] en.DM00485412.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00486148.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00487094.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00487098.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00487161.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00489771.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00492395.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00492401.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00492998.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00493783.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00496233.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00496875.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00498153.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00498829.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00500353.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00502232.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00505841.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00505984.pdf.html 2018-11-28 07:41 93K [TXT] en.DM00506836.pdf.html 2018-11-28 07