Intégrabilité de systemes

hamiltoniens

Le mouvement d’une toupie, celui d’'un pendule sphérique, avec leur régularité et leur
presque périodicité, appartiennent au monde des systemes intégrables.

Peut-on démontrer que tel ou tel systéeme, apparemment plus chaotique (probleme des
trois corps, systeme de Hénon-Heiles... ), n’est pas intégrable ?

Oui, grace a un théoreme de Morales et Ramis. L'outil ? La théorie de Galois différentielle.

n systeéme hamiltonien est un syst¢eme mécanique
régi par les équations de Hamilton

. dH . dH

ql = a_pl""’qn = apn’
. oH ) oH
plz—a—ql,,pn:—aqn

L’énergie totale H d’un tel systeme, fonction des
grandeurs ¢ip,...,q, (penser a des positions) et
P1,---, pn (penser a des impulsions), est conservée au
cours du temps.

Il arrive que d’autres quantités que 1’énergie soient
conservées, elles aussi. On les appelle des intégrales pre-
mieres.

S’il y en a assez (qui commutent, en un sens que je ne
veux pas préciser ici), Liouville a démontré au X1x° siecle
que I’on peut résoudre le systeme différentiel par des
quadratures (en calculant des intégrales). C’est pourquoi
on dit que le systeme est completement intégrable.

Il y a de nombreux exemples de systemes hamilto-
niens completement intégrables. Commengons par les
deux plus classiques :

LA TOUPIE

Tout le monde a déja vu et touché une toupie (sinon,
en voici une — voir la figure 1).

On considere ici que ¢’est un solide avec un point fixe
(celui ot la toupie est en contact avec le plan horizontal,
le point O de la figure) soumis a la seule pesanteur. Ce
solide a un axe de révolution. Le systéeme mécanique a
été étudié par Lagrange a la fin du xviue® siecle. En plus
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Figure 1 - Mouvement de I’axe d’une toupie.

de I’énergie totale, il y a évidemment une deuxieme
quantité conservée, le moment par rapport a I’axe de
symétrie.

Comme tous les enfants le savent, I’extrémité de 1’axe
de révolution oscille entre deux paralleles de la sphere
centrée au point fixe, comme indiqué sur la figure.

LE PENDULE « SPHERIQUE »

Il s’agit d’un pendule, suspendu a un point fixe O par
une tige rigide, et soumis, lui aussi, a la seule pesanteur.
Il y a encore une deuxieme intégrale premiére « évi-
dente », le moment par rapport a la verticale.

La boule tourne autour de 1’axe vertical tout en oscil-
lant entre deux petits cercles paralleles de la sphere. La
figure ci-dessous représente la projection d’une trajec-
toire sur un plan horizontal.

Figure 2 - Le pendule sphérique.
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GEODESIQUES

On aura remarqué la similitude des deux situations
précédentes. Des comportements analogues (oscillation
dans une bande) apparaissent dans de nombreux autres
problemes de mécanique, comme, par exemple, le mou-
vement d’une particule libre sur une surface de révolu-
tion ou sur un ellipsoide.

Une particule libre va au plus court et suit une géodé-
sique. Les figures ci-dessous représentent une géodé-
sique d’une surface de révolution et d’un ellipsoide res-
pectivement.

Dans le cas de la surface de révolution, le moment de
la particule par rapport a I’axe de révolution est une inté-
grale premiere. Pour un ellipsoide « quelconque » (pas
de révolution), c’est moins évident, mais il y a aussi une
« deuxieme » intégrale premiere (Jacobi, 1838, Uhlen-
beck, 1980).

N

Figure 3 - Géodésiques d’une surface de révolution, d’un ellipsoide.

DES BANDES ET DES TORES

Une expression géométrique ou dynamique de I’inté-
grabilité a la Liouville est la régularité des solutions. Le
mouvement décrit par un systeme hamiltonien intégrable
est extrémement régulier. Les trajectoires s’enroulent sur
des tores (c’est le théoréme dit d’ Arnold-Liouville), cha-
cune revenant régulicrement prés de son point initial, on
dit que le mouvement est « quasi périodique ».

C’est ce que montre la figure ci-dessous, que I’on peut
imaginer dessinée dans 1’espace de phases (en volume,
sur un tore) ou dans I’espace de configuration (a plat,

A

comme sur la feuille de papier) ou elle ressemble beau-
coup aux figures précédentes.

LES SYSTEMES HAMILTONIENS SONT-ILS TOUS INTEGRABLES ?

On I’a vu, la physique peut fournir des intégrales pre-
mieres, comme le moment par rapport a un axe de révo-
lution (toupie, pendule sphérique, particule libre sur une
surface de révolution...).

Il y a aussi beaucoup de systemes hamiltoniens qui ne
sont pas intégrables.

LE PROBLEME A n CORPS

Le plus célebre est le probleme « de la Lune » (pro-
bleme de trois corps en interaction gravitationnelle). On
sait que le probleme a deux corps (Soleil-Terre) est inté-
grable. C’est méme pour I’intégrer que Lagrange a intro-
duit les prémisses de la géométrie symplectique et de la
mécanique hamiltonienne. Poincaré a démontré que le
probléme a trois corps ne pouvait avoir assez d’intégrales
premieres analytiques, c’est-a-dire qui peuvent s’écrire
comme des sommes (éventuellement infinies) de
momomes faisant intervenir les positions et les moments
des trois corps. La méthode que je présente ici permet de
montrer qu’il n’en a pas assez, méme si on autorise les
éventuelles intégrales a ne plus étre tout a fait analy-
tiques, mais a avoir des dénominateurs (des pdles, on dit
qu’elles sont méromorphes).

Il y a des systemes hamiltoniens dont on soupgonne
qu’ils ne sont pas intégrables, parce que 1’on n’a pas été
capable de leur trouver assez d’intégrales premieres,
et surtout parce que des expériences ou simulations
numériques montrent un comportement chaotique
incompatible avec le théoreme d’Arnold-Liouville
(figure de I’encadré 1).

LE GROUPE DE GALOIS, UNE OBSTRUCTION A L'INTEGRABILITE

Selon une tradition remontant a la Mécanique céleste
de Poincaré, on considere 1’équation aux variations,
décrivant les solutions « infinitésimalement proches »
d’une solution donnée. Je vais expliquer ceci de fagcon
heuristique, puis je donnerai un exemple.

LES TRAJECTOIRES INFINIMENT PROCHES
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On choisit une trajectoire (une solution du systeme
différentiel) x(z) et on écrit que y(¢) est aussi une solu-
tion, trés proche, de sorte que 1’on peut écrire
y(t) = x(t) + Y(¢) etque, a ’ordre 1, notre systeme dif-
férentiel devient linéaire en Y: on a, a I’ordre 1,

Y=y—1x
= X(y() — X (x(1))
= (dX)x@)(Y (1)).

Intégrabilité de systémes hamiltoniens

Cette équation différentielle /inéaire en Y est I’équa-

tion aux variations.

L'EXEMPLE DE HENON-HEILES

Dans le cas simple considéré dans I’encadré 1, le sys-

teme différentiel est
q1=p1, q2=p2,

P =2q192, P2 =4}

Encadré 1

Etant donné un systéme hamiltonien, il n’est pas facile en
général de décider s’il est, ou s’il n’est pas, intégrable. Je
vais essayer d’illustrer cette remarque a [’aide du systeme de
Hénon-Heiles.

C’est le systeme défini par le hamiltonien®

A

| 1
H=_(pl+p)+ E(Aqf +Bg3) — qiqr — 3q§’

2

ou A, B et A sont des paramétres a préciser.
Le systeme différentiel des équations de Hamilton est

41 = pi

42 = p2

P1=—Aq1 +2q192

P2 = —Bqy +q} + g3
1l existe des valeurs des parameétres pour lesquelles on sait
que ce systeme est intégrable.
— C’est le cas quand A = B et A = 1. Le hamiltonien s’écrit

1 4 4
H= §(y12 +33) + Ax? — gx? +AX3 + gxg

(ou x1 + x2 = q1, X1 — X2 = q2 et les y; sont les moments
correspondants) de sorte que la fonction

1 4
K= 2yf+Axf - 2x]
est une intégrale premiere.
— Plus mystérieusement, quand ). = 6, la fonction K définie
par Bountis, Segur et Vivaldi et par
K =qi +441q3 +4p1(p1g2 — p2q1)
—4Aqiqy + (4A — B)(p} + Aq])

-0.02 |-

-0.08 I~

LE SYSTEME DE HENON-HEILES

0.03 — T T T T T T T

L L L
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est une intégrale premiere pour le hamiltonien de Hénon-
Heiles.

La figure ci-dessus montre une partie de la dynamique (de
I’application de Poincaré, pour étre précise) du systeme de
Hénon-Heiles pour A = B =0 et . = 3/2. Sans entrer dans
les détails, elle semble indiquer que ce systeme est trop
chaotique pour entrer dans la famille des systémes présentés
au début de cet article.

La méthode que je vais présenter permet de montrer qu’en
effet, le systeme de Hénon-Heiles n’est pas intégrable en
général.

Dans cet article, je ne considérerai que le cas simple ou
A=B=0etx =0, c’est-a-dire ou

1
H= E(p% +p3) — @24}

4 Ce hamiltonien sert notamment a modéliser le mouvement d’une étoile dans une galaxie cylindrique.
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Parmi ses solutions, il y en a de trés simples, les
droites paramétrées par

q1=0, p1=0,

q2(t) =at —b, pat)=a

ou a et b sont des constantes d’intégration arbitraires.
L’équation aux variations le long d’une de ces solutions
est le systeme différentiel linéaire

01="
O,="P,

P =2q(1) 0
P, =0

obtenu en linéarisant le systtme hamiltonien.

On se contente d’en étudier les solutions vérifiant
Q>=P,=0. Le systtme linéaire Q= Py,
P1 =2q>(t) Q1 est équivalent a I’équation différentielle

0 —2(at —b)Q = 0.

C’est une équation d’ Airy, équation dont les solutions,
les « fonctions d’Airy », sont des fonctions analytiques
sur le plan complexe tout entier, mais dont aucune solu-
tion n’est une fraction rationnelle (quotient de deux poly-
ndmes) ni méme une fonction algébrique (par exemple
racine de fraction rationnelle). Pour ceux ou celles qui
aiment les formules, on peut les écrire

o) = /oo cos(x> £ x1)dx.
0

Encadré 2

Ouvrons ici une parenthese.

Supposons que [’on ne connaisse que les nombres rationnels
et que l’on ait affaire a une équation algébrique. Il se peut
qu’elle n’ait pas de solution rationnelle. C’est le cas, par
exemple, pour x2 =2 =0 dont les solutions \f2, —ﬁ, sont
des nombres irrationnels. Pour travailler avec les solutions de
I’équation, on a besoin de considérer un ensemble de nombres
plus gros, dans lequel on puisse calculer comme avant et qui
contienne les vieux nombres (rationnels) ainsi que les
solutions de I’équation.

Dans la théorie de Galois, on considére les transformations
qui permutent ces nouveaux nombres (en fixant les anciens).
Ces transformations forment un groupe. Dans [’exemple, on
peut seulement échanger N2 et —/2, le groupe de Galois est
un groupe a deux éléments, formé de la transformation qui
fixe /2 et —/2 (transformation identique) et de celle qui les
échange.

Un des premiers succes de la théorie de Galois est d’avoir pu
montrer qu’une équation algébrique

X tapx™ M4, =0

est résoluble par radicaux, c’est-a-dire par des formules telles
que

_ —b + Vb2 —4ac
- 2a

pour les équations du second degré ou
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LA THEORIE DE GALOIS

pour I’équation
3 —
x’+px+q=0,

que cette équation, donc, est résoluble par radicaux si et
seulement si son groupe de Galois est... résoluble
(justement !), c’est-a-dire peut se dévisser en morceaux qui
sont tous des groupes commutatifs. Par exemple, pour une
équation assez générale de degré 5 ou plus, le groupe de
Galois n’est pas résoluble, il est donc inutile de chercher des
formules analogues a celles que je viens d’écrire pour les
équations de ces degrés.

Comme les équations algébriques, les équations différen-
tielles linéaires ont un groupe de Galois. Supposons que les
coefficients d’un systeme différentiel linéaire soient, comme
dans notre exemple, des fractions rationnelles. Il se peut que
les solutions soient, elles, beaucoup plus compliquées, comme
on l'a vu dans ’exemple de I’équation d’Airy. A I’arsenal de
fonctions dont nous sommes partis, on ajoute donc de
nouvelles fonctions.

Le groupe de Galois (différentiel) est le groupe des
transformations de cet ensemble de fonctions qui fixent les
fractions rationnelles. Dans le cas d’une équation
différentielle d’ordre 2, c’est un groupe de matrices 2 x 2.
Dans le cas d’Airy, les solutions (et plus précisément leur
comportement a l'infini) sont assez compliquées pour que le
groupe de Galois soit tres gros. C’est le groupe de toutes les
matrices de déterminant 1. Refermons la parenthése.
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LE THEOREME DE MORALES ET RAMIS

Le groupe de Galois différentiel (encadré 2) est I’ac-
teur principal d’un théoréme de non-intégrabilité di a
Morales et Ramis, dans une lignée de travaux remontant
a Kowalevskaya (voir ci-dessous), Poincaré, Painlevé et
plus récemment Ziglin. Ce théoréme peut €tre considéré
comme un analogue du théoreme sur la résolubilité des
équations algébriques que j’ai mentionné dans 1’encadré
2. 11 affirme que, si un systeme hamiltonien est inté-
grable, alors le groupe de Galois du systeme différentiel
linéarisé le long de n’importe quelle solution doit étre
presque commutatif, au sens ou, a un groupe fini pres, il
est commutatif?.

Concretement (si jose dire) : vous choisissez une
solution, vous linéarisez le systeme le long d’icelle, vous
calculez le groupe de Galois, s’il n’est pas (presque)
commutatif, vous pouvez conclure que le systeéme n’était
pas intégrable.

Encore faut-il avoir trouvé une solution, a la fois assez
simple pour que vous ayez été capable de calculer le
groupe de Galois et assez compliquée pour que celui-ci
ne soit pas (presque) commutatif.

Toujours est-il que dans le cas simple considéré ici, le
groupe de Galois est le groupe des matrices de détermi-
nant 1, qui n’est pas commutatif et méme pas presque

N

commutatif, ce qui permet de conclure a la non-

Intégrabilité de systémes hamiltoniens

intégrabilité du systtme de Hénon-Heiles dans le cas
considéré.

CONCLUSION

La toute premiere approche a la non-intégrabilité est
due a S. Kowalevskaya en 1889. Elle étudiait I’intégrabi-
lité du systeme hamiltonien décrivant le mouvement d’un
solide avec un point fixe dans un champ de pesanteur
constant. Elle s’est demandé a quelle condition les solu-
tions du systeme sont des fonctions méromorphes® du
temps, c’est-a-dire que leurs seules singularités sont des
poles (pas de ramification, logarithme, etc).

Elle a démontré que cette propriété n’est satisfaite que
dans trois cas, ceux d’un solide mobile autour de son
centre de gravité ou d’un solide avec un axe de révolution
(1a toupie), ou I’on savait que le systeme était intégrable
au sens utilisé dans ce texte, et un nouveau cas, qui porte
depuis son nom et dont elle a montré qu’il était, lui aussi,
intégrable, en exhibant I’intégrale premiere manquante.

La relation entre 1’intégrabilité (au sens dit « de Liou-
ville » ) et la douceur des singularités des solutions n’est
toujours pas completement élucidée (voir par exemple le
livre de Zakharov cité ci-apres). Les méthodes d’algebre
différentielle que j’ai présentées ici s’en approchent — a
I’ordre 1.
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1 Si on néglige les groupes finis, cette propriété est beaucoup plus forte pour un groupe que d’étre résoluble. A 1’origine, ce que Morales et Ramis pensaient

montrer, ¢’était la (presque) résolubilité de leurs groupes de Galois.

2 C’est ce que I’on appelle aujourd’hui la « propriété de Painlevé » ou le « test » de Painlevé (sans doute un plagiat par anticipation de la part de Kowalevskaya).

Note de I’auteur

La toupie utilisée dans les figures a été dessinée par Raymond Seroul. La figure illustrant I’encadré 1 est extraite du livre de Juan Morales et m’a été prétée par
son auteur. Qu’ils soient remerciés, ainsi que les lecteurs anonymes qui m’ont aidée & améliorer la rédaction de versions préliminaires de cet article.
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