
Un système hamiltonien est un système mécanique
régi par les équations de Hamilton

q̇1 = ∂ H

∂p1
, . . . , q̇n = ∂ H

∂pn
,

ṗ1 = −∂ H

∂q1
, . . . , ṗn = − ∂ H

∂qn
.

L’énergie totale H d’un tel système, fonction des
grandeurs q1, . . . , qn (penser à des positions) et
p1, . . . , pn (penser à des impulsions), est conservée au
cours du temps.

Il arrive que d’autres quantités que l’énergie soient
conservées, elles aussi. On les appelle des intégrales pre-
mières. 

S’il y en a assez (qui commutent, en un sens que je ne
veux pas préciser ici), Liouville a démontré au XIXe siècle
que l’on peut résoudre le système différentiel par des
quadratures (en calculant des intégrales). C’est pourquoi
on dit que le système est complètement intégrable. 

Il y a de nombreux exemples de systèmes hamilto-
niens complètement intégrables. Commençons par les
deux plus classiques :

LA TOUPIE

Tout le monde a déjà vu et touché une toupie (sinon,
en voici une – voir la figure 1).

On considère ici que c’est un solide avec un point fixe
(celui où la toupie est en contact avec le plan horizontal,
le point O de la figure) soumis à la seule pesanteur. Ce
solide a un axe de révolution. Le système mécanique a
été étudié par Lagrange à la fin du XVIIIe siècle. En plus

de l’énergie totale, il y a évidemment une deuxième
quantité conservée, le moment par rapport à l’axe de
symétrie. 

Comme tous les enfants le savent, l’extrémité de l’axe
de révolution oscille entre deux parallèles de la sphère
centrée au point fixe, comme indiqué sur la figure.

LE PENDULE « SPHÉRIQUE » 

Il s’agit d’un pendule, suspendu à un point fixe O par
une tige rigide, et soumis, lui aussi, à la seule pesanteur.
Il y a encore une deuxième intégrale première « évi-
dente », le moment par rapport à la verticale.

La boule tourne autour de l’axe vertical tout en oscil-
lant entre deux petits cercles parallèles de la sphère. La
figure ci-dessous représente la projection d’une trajec-
toire sur un plan horizontal.
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Le mouvement d’une toupie, celui d’un pendule sphérique, avec leur régularité et leur
presque périodicité, appartiennent au monde des systèmes intégrables.
Peut-on démontrer que tel ou tel système, apparemment plus chaotique (problème des
trois corps, système de Hénon-Heiles… ), n’est pas intégrable ?
Oui, grâce à un théorème de Morales et Ramis. L’outil ? La théorie de Galois différentielle.
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Figure 1 - Mouvement de l’axe d’une toupie.

Figure 2 - Le pendule sphérique.



GÉODÉSIQUES

On aura remarqué la similitude des deux situations
précédentes. Des comportements analogues (oscillation
dans une bande) apparaissent dans de nombreux autres
problèmes de mécanique, comme, par exemple, le mou-
vement d’une particule libre sur une surface de révolu-
tion ou sur un ellipsoïde. 

Une particule libre va au plus court et suit une géodé-
sique. Les figures ci-dessous représentent une géodé-
sique d’une surface de révolution et d’un ellipsoïde res-
pectivement. 

Dans le cas de la surface de révolution, le moment de
la particule par rapport à l’axe de révolution est une inté-
grale première. Pour un ellipsoïde « quelconque » (pas
de révolution), c’est moins évident, mais il y a aussi une
« deuxième » intégrale première (Jacobi, 1838, Uhlen-
beck, 1980).

comme sur la feuille de papier) où elle ressemble beau-
coup aux figures précédentes. 

LES SYSTÈMES HAMILTONIENS SONT-ILS TOUS INTÉGRABLES ?

On l’a vu, la physique peut fournir des intégrales pre-
mières, comme le moment par rapport à un axe de révo-
lution (toupie, pendule sphérique, particule libre sur une
surface de révolution...).

Il y a aussi beaucoup de systèmes hamiltoniens qui ne
sont pas intégrables.

LE PROBLÈME A  n CORPS

Le plus célèbre est le problème « de la Lune » (pro-
blème de trois corps en interaction gravitationnelle). On
sait que le problème à deux corps (Soleil-Terre) est inté-
grable. C’est même pour l’intégrer que Lagrange a intro-
duit les prémisses de la géométrie symplectique et de la
mécanique hamiltonienne. Poincaré a démontré que le
problème à trois corps ne pouvait avoir assez d’intégrales
premières analytiques, c’est-à-dire qui peuvent s’écrire
comme des sommes (éventuellement infinies) de
momomes faisant intervenir les positions et les moments
des trois corps. La méthode que je présente ici permet de
montrer qu’il n’en a pas assez, même si on autorise les
éventuelles intégrales à ne plus être tout à fait analy-
tiques, mais à avoir des dénominateurs (des pôles, on dit
qu’elles sont méromorphes). 

Il y a des systèmes hamiltoniens dont on soupçonne
qu’ils ne sont pas intégrables, parce que l’on n’a pas été
capable de leur trouver assez d’intégrales premières,
et surtout parce que des expériences ou simulations
numériques montrent un comportement chaotique
incompatible avec le théorème d’Arnold-Liouville
(figure de l’encadré 1). 

LE GROUPE DE GALOIS, UNE OBSTRUCTION A L’INTÉGRABILITÉ 

Selon une tradition remontant à la Mécanique céleste
de Poincaré, on considère l’équation aux variations,
décrivant les solutions « infinitésimalement proches »
d’une solution donnée. Je vais expliquer ceci de façon
heuristique, puis je donnerai un exemple. 

LES TRAJECTOIRES INFINIMENT PROCHES
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Figure 3 - Géodésiques d’une surface de révolution, d’un ellipsoïde.

DES BANDES ET DES TORES

Une expression géométrique ou dynamique de l’inté-
grabilité à la Liouville est la régularité des solutions. Le
mouvement décrit par un système hamiltonien intégrable
est extrêmement régulier. Les trajectoires s’enroulent sur
des tores (c’est le théorème dit d’Arnold-Liouville), cha-
cune revenant régulièrement près de son point initial, on
dit que le mouvement est « quasi périodique ».

C’est ce que montre la figure ci-dessous, que l’on peut
imaginer dessinée dans l’espace de phases (en volume,
sur un tore) ou dans l’espace de configuration (à plat,



On choisit une trajectoire (une solution du système
différentiel) x(t) et on écrit que y(t) est aussi une solu-
tion, très proche, de sorte que l’on peut écrire
y(t) = x(t) + Y (t) et que, à l’ordre 1, notre système dif-
férentiel devient linéaire en Y : on a, à l’ordre 1,

Ẏ = ẏ − ẋ

= X (y(t)) − X (x(t))

= (d X)x(t)(Y (t)).

Cette équation différentielle linéaire en Y est l’équa-
tion aux variations.

L’EXEMPLE DE HÉNON-HEILES

Dans le cas simple considéré dans l’encadré 1, le sys-
tème différentiel est

q̇1 = p1, q̇2 = p2,

ṗ1 = 2q1q2, ṗ2 = q2
1 .
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Encadré 1

LE SYSTÈME DE HÉNON-HEILES
Étant donné un système hamiltonien, il n’est pas facile en
général de décider s’il est, ou s’il n’est pas, intégrable. Je
vais essayer d’illustrer cette remarque à l’aide du système de
Hénon-Heiles.
C’est le système défini par le hamiltoniena

H = 1

2
(p2

1 + p2
2) + 1

2
(Aq2

1 + Bq2
2 ) − q2

1 q2 − λ

3
q3

2

où A, B et λ sont des paramètres à préciser. 
Le système différentiel des équations de Hamilton est

q̇1 = p1

q̇2 = p2

ṗ1 = −Aq1 + 2q1q2

ṗ2 = −Bq2 + q2
1 + λq2

2 .

Il existe des valeurs des paramètres pour lesquelles on sait
que ce système est intégrable.

– C’est le cas quand A = B et λ = 1 . Le hamiltonien s’écrit

H = 1

2
(y2

1 + y2
2 ) + Ax2

1 − 4

3
x3

1 + Ax2
2 + 4

3
x3

2

(où x1 + x2 = q1 , x1 − x2 = q2 et les yi sont les moments
correspondants) de sorte que la fonction

K = 1

2
y2

1 + Ax2
1 − 4

3
x3

1

est une intégrale première.

– Plus mystérieusement, quand λ = 6 , la fonction K définie
par Bountis, Segur et Vivaldi et par

K = q4
1 + 4q2

1 q2
2 + 4p1(p1q2 − p2q1)

− 4Aq2
1 q2 + (4A − B)(p2

1 + Aq2
1 )

est une intégrale première pour le hamiltonien de Hénon-
Heiles. 
La figure ci-dessus montre une partie de la dynamique (de
l’application de Poincaré, pour être précise) du système de
Hénon-Heiles pour A = B = 0 et λ = 3/2 . Sans entrer dans
les détails, elle semble indiquer que ce système est trop
chaotique pour entrer dans la famille des systèmes présentés
au début de cet article. 
La méthode que je vais présenter permet de montrer qu’en
effet, le système de Hénon-Heiles n’est pas intégrable en
général. 
Dans cet article, je ne considérerai que le cas simple où
A = B = 0 et λ = 0 , c’est-à-dire où

H = 1

2
(p2

1 + p2
2) − q2q2

1 .

a Ce hamiltonien sert notamment à modéliser le mouvement d’une étoile dans une galaxie cylindrique.



Parmi ses solutions, il y en a de très simples, les
droites paramétrées par

q1 = 0, p1 = 0,

q2(t) = at − b, p2(t) = a

où a et b sont des constantes d’intégration arbitraires.
L’équation aux variations le long d’une de ces solutions
est le système différentiel linéaire

Q̇1 = P1

Q̇2 = P2

Ṗ1 = 2q2(t)Q1

Ṗ2 = 0

obtenu en linéarisant le système hamiltonien. 

On se contente d’en étudier les solutions vérifiant
Q2 = P2 = 0. Le système linéaire Q̇1 = P1 ,
Ṗ1 = 2q2(t)Q1 est équivalent à l’équation différentielle

Q̈ − 2(at − b)Q = 0.

C’est une équation d’Airy, équation dont les solutions,
les « fonctions d’Airy », sont des fonctions analytiques
sur le plan complexe tout entier, mais dont aucune solu-
tion n’est une fraction rationnelle (quotient de deux poly-
nômes) ni même une fonction algébrique (par exemple
racine de fraction rationnelle). Pour ceux ou celles qui
aiment les formules, on peut les écrire

Q(t) =
∫ ∞

0
cos(x3 ± xt)dx .
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Encadré 2

LA THÉORIE DE GALOIS

Ouvrons ici une parenthèse.
Supposons que l’on ne connaisse que les nombres rationnels
et que l’on ait affaire à une équation algébrique. Il se peut
qu’elle n’ait pas de solution rationnelle. C’est le cas, par
exemple, pour x2 − 2 = 0 dont les solutions 

√
2,−√

2, sont
des nombres irrationnels. Pour travailler avec les solutions de
l’équation, on a besoin de considérer un ensemble de nombres
plus gros, dans lequel on puisse calculer comme avant et qui
contienne les vieux nombres (rationnels) ainsi que les
solutions de l’équation. 
Dans la théorie de Galois, on considère les transformations
qui permutent ces nouveaux nombres (en fixant les anciens).
Ces transformations forment un groupe. Dans l’exemple, on
peut seulement échanger 

√
2 et −√

2 , le groupe de Galois est
un groupe à deux éléments, formé de la transformation qui
fixe 

√
2 et −√

2 (transformation identique) et de celle qui les
échange.
Un des premiers succès de la théorie de Galois est d’avoir pu
montrer qu’une équation algébrique

xn + a1xn−1 + · · · + an = 0

est résoluble par radicaux, c’est-à-dire par des formules telles
que

x = −b ± √
b2 − 4ac

2a

pour les équations du second degré ou

x = 3

√√√√−q

2
+

√
q2

4
+ p3

27
− 3

√√√√q

2
+

√
q2

4
+ p3

27

pour l’équation

x3 + px + q = 0,

que cette équation, donc, est résoluble par radicaux si et
seulement si son groupe de Galois est… résoluble
(justement !), c’est-à-dire peut se dévisser en morceaux qui
sont tous des groupes commutatifs. Par exemple, pour une
équation assez générale de degré 5 ou plus, le groupe de
Galois n’est pas résoluble, il est donc inutile de chercher des
formules analogues à celles que je viens d’écrire pour les
équations de ces degrés.
Comme les équations algébriques, les équations différen-
tielles linéaires ont un groupe de Galois. Supposons que les
coefficients d’un système différentiel linéaire soient, comme
dans notre exemple, des fractions rationnelles. Il se peut que
les solutions soient, elles, beaucoup plus compliquées, comme
on l’a vu dans l’exemple de l’équation d’Airy. A l’arsenal de
fonctions dont nous sommes partis, on ajoute donc de
nouvelles fonctions. 
Le groupe de Galois (différentiel) est le groupe des
transformations de cet ensemble de fonctions qui fixent les
fractions rationnelles. Dans le cas d’une équation
différentielle d’ordre 2, c’est un groupe de matrices 2 × 2 .
Dans le cas d’Airy, les solutions (et plus précisément leur
comportement à l’infini) sont assez compliquées pour que le
groupe de Galois soit très gros. C’est le groupe de toutes les
matrices de déterminant 1. Refermons la parenthèse.



LE THÉORÈME DE MORALES ET RAMIS

Le groupe de Galois différentiel (encadré 2) est l’ac-
teur principal d’un théorème de non-intégrabilité dû à
Morales et Ramis, dans une lignée de travaux remontant
à Kowalevskaya (voir ci-dessous), Poincaré, Painlevé et
plus récemment Ziglin. Ce théorème peut être considéré
comme un analogue du théorème sur la résolubilité des
équations algébriques que j’ai mentionné dans l’encadré
2. Il affirme que, si un système hamiltonien est inté-
grable, alors le groupe de Galois du système différentiel
linéarisé le long de n’importe quelle solution doit être
presque commutatif, au sens où, à un groupe fini près, il
est commutatif1. 

Concrètement (si j’ose dire) : vous choisissez une
solution, vous linéarisez le système le long d’icelle, vous
calculez le groupe de Galois, s’il n’est pas (presque)
commutatif, vous pouvez conclure que le système n’était
pas intégrable. 

Encore faut-il avoir trouvé une solution, à la fois assez
simple pour que vous ayez été capable de calculer le
groupe de Galois et assez compliquée pour que celui-ci
ne soit pas (presque) commutatif. 

Toujours est-il que dans le cas simple considéré ici, le
groupe de Galois est le groupe des matrices de détermi-
nant 1, qui n’est pas commutatif et même pas presque
commutatif, ce qui permet de conclure à la non-

intégrabilité du système de Hénon-Heiles dans le cas
considéré.

CONCLUSION

La toute première approche à la non-intégrabilité est
due à S. Kowalevskaya en 1889. Elle étudiait l’intégrabi-
lité du système hamiltonien décrivant le mouvement d’un
solide avec un point fixe dans un champ de pesanteur
constant. Elle s’est demandé à quelle condition les solu-
tions du système sont des fonctions méromorphes2 du
temps, c’est-à-dire que leurs seules singularités sont des
pôles (pas de ramification, logarithme, etc). 

Elle a démontré que cette propriété n’est satisfaite que
dans trois cas, ceux d’un solide mobile autour de son
centre de gravité ou d’un solide avec un axe de révolution
(la toupie), où l’on savait que le système était intégrable
au sens utilisé dans ce texte, et un nouveau cas, qui porte
depuis son nom et dont elle a montré qu’il était, lui aussi,
intégrable, en exhibant l’intégrale première manquante.

La relation entre l’intégrabilité (au sens dit « de Liou-
ville » ) et la douceur des singularités des solutions n’est
toujours pas complètement élucidée (voir par exemple le
livre de Zakharov cité ci-après). Les méthodes d’algèbre
différentielle que j’ai présentées ici s’en approchent – à
l’ordre 1.
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1 Si on néglige les groupes finis, cette propriété est beaucoup plus forte pour un groupe que d’être résoluble. A l’origine, ce que Morales et Ramis pensaient
montrer, c’était la (presque) résolubilité de leurs groupes de Galois.
2 C’est ce que l’on appelle aujourd’hui la « propriété de Painlevé » ou le « test » de Painlevé (sans doute un plagiat par anticipation de la part de Kowalevskaya).
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