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ABSTRACT

It is well known that a real analytic symplectic diffeomorphism of the 2d-dimensional disk (¢ > 1) admitting
the origin as a non-resonant elliptic fixed point can be formally conjugated to its Birkhoff Normal Form, a formal power
series defining a formal integrable symplectic diffeomorphism at the origin. We prove in this paper that this Birkhoff Normal
Form is in general divergent. This solves, in any dimension, the question of determining which of the two alternatives of
Pérez-Marco’s theorem (Ann. Math. (2) 157:557-574, 2003) is true and answers a question by H. Eliasson. Our result is
a consequence of the fact that when d = 1 the convergence of the formal object that is the BNF has strong dynamical
consequences on the Lebesgue measure of the set of invariant circles in arbitrarily small neighborhoods of the origin. Our
proof, as well as our results, extend to the case of real analytic diffcomorphisms of the annulus admitting a Diophantine
invariant torus.
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2 RAPHAEL KRIKORIAN

1. Introduction

We consider in this paper real analytic diffeomorphisms defined on an open set of the
2d-cartesian space R? x R? or respectively of the 2d-cylinder (or annulus) (R/27Z)? x R?
(d > 1), which are symplectic with respect to the canonical symplectic forms Zj:l dx; N dyj,
(x,7) € R x R’ resp. Zj‘-i:l do; A dr, (0,7) € (R/27Z)! x R’ and leave invariant
{(0,0)} € R x R, resp. the torus Ty := (R/2wZ)" x {0} C (R/27Z)? x R?. We shall
assume that the invariant sets {(0, 0)} € R? x R?, resp. (R/27Z) x {0}, are elliptic equilib-
rium sets in the following sense: there exists @ = (wy, ...w,) € RY, the fiequency vector, such
that

R xR (0,0)) O, £ =Df(0,0) o (id + O*(x,))

<1-1> SpCC(Df(O, O)) — {e:I:QH\/—_le, 1 f] E d}

and respectively
(1.2) fi(R/21Z) xR, Tp) ©, £O,1) =0+ 2mw,7)+ (O@), O@F)).

If w; # w; for i # j (stronger non-resonance condition will be made later), the deriva-
tive Df(0,0) of / at the fixed point (0, 0) in (1.1) can be symplectically conjugated to
a symplectic rotation and we can thus assume Df(0, 0) is a symplectic rotation: for any
x= ey %), =015 00), X= (&1, ..., %), 7= (01, ..., V) one has (i = \/—_1)

%+ 0 = 7 (% + )

DI0.0)- () = (53) = 1oy oy

We shall refer to situation (1.1) as the Elliptic fixed point or the Cartesian Coordinates
((CC) for short) case and to situation (1.2) as the Action-Angle (AA) for short) case.

Important examples of such diffeomorphisms are provided by flows (®{;)cr, or by
suitable Poincaré sections on some energy level, of Hamiltonian systems

=) == =220, = 0.1)
- 8)) X)), V= ax X, ), resp. == 87’ ,7), r= 89 , T

where H: (R? x R?, (0,0)) = Rresp. H: (R/27Z)! xR?,Ty) > R (d' =dord =
d + 1) 1s real analytic and satisfies

(1.3) (CC)-case H(x,y) = 27 Zw ;4

J=1

+ O’ (x,),

(1.4) (AA)y-case  H(O,n) =21 Y ay+O0?).
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If we denote by @y the time-1 map of a Hamiltonian H and define the observable
71 (X, ) > (1/2)(;942 +yj-2), resp. 75 . 7+> 17 (1 <j < d) we can write (1.1), resp. (1.2), as

(1.5) (CC)-case f: (R? x R%, (0,0)) ©, S =Poriwn + Og(x,y)
(1.6) (AA)»case f:((R/27Z)' xR, T) D,  f=Porin + (O@),0(?)

where (w, 7) = Zjil wr,r=(r,...,1).

The representations (1.5), resp. (1.6), give a very rough understanding of the be-
havior of the finite time dynamics of the diffeomorphism f in a neighborhood of the elliptic
equilibrium sets {(0, 0)}, resp. To: it is interpolated' by the dynamics of @y, ,, which is
quasi-periodic in the sense that all its orbits are quasi-periodic with frequencies w;, ..., @,.
Improving this approximation is an old and important problem (it was a central theme
of research of the astronomers of the XIXth century; see the references of the very in-
structive introduction by Pérez-Marco in [36]) that has a solution at least in the (CC)-case
(1.5) if the frequency vector w is non-resonant: any relation ky 4+ kjw, + - - - + kyw, = 0 with
ko, ki, ..., ks € Z implies that ky = k) = -+ = k; = 0. Indeed, after using nice changes of
coordinates (symplectic transformations) one can interpolate, in small neighborhoods of the
onigin, the dynamics of f by quasi-periodic ones with much better orders of approxima-
tion and for much longer times. There are two remarkable features of this interpolation:
the first, is that the frequencies of the interpolating quasi-periodic motions now depend
on the initial point and do not necessarily coincide with the frequencies at the origin; the
second, is that if we push the order of approximation, these frequencies stabilize in a way.
This is the content of the famous Birkhoff Normal Form Theorem, formalized by Birkhoff in
the 1920°s [5], [4], [49] and which paved the way to the major achievements of the KAM
theory (named after Kolmogorov, Arnold and Moser) in the 1960’s, on the existence of
(infinite time) quasi-periodic motions for a wide class of diffeomorphisms of the form
(1.1), (1.2); see [29], [1], [32] (and [34] for finite time approximations). We now describe

in more details the Birkhoff Normal Form Theorem.

1.1. Burkhoff Normal Forms. — From now on, we assume that w is non-resonant.

We begin with the Elliptic fixed point case (CC)-case). The first statement of the
Birkhoftf Normal Form Theorem is the following. For any N € N*, there exist a poly-
nomial By € R[ry, ..., 7], Bx(r) = 27 (o, r) + O(?), of total degree N and a symplec-
tic diffeomorphism Zy : (R? x R, (0, 0)) ©O (preserving the standard symplectic form
Zzzl dx; A dy; and tangent to the identity Zy = id + O*(x, »)) such that

(1.7) Zxof o7y (x,9) = Dy (x,9) + O (x, ).

! For (x, ) e-close to (0, 0) and n € N not too large n = O(¢7%), 0 < < 1 the itcratesfk(x,y), k<n (f}‘ denotes
the composition f o - - - of, k times) stay £2~close to those of the symplectic rotation, ®%_ () (X.0).
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The diffeomorphism @ : (R x R?, 0) O is a generalized symplectic rotation

X+ = GUBND) (. 4 ;)
1.8 16} — J J J J
(1.8) B () = (X)) < Vi<j<d
(recall r = ((1/2)(¥* 4+ ), ..., (1/2)(¥2 4+ ?))) and defines an integrable dynamics in a
strong sense: every orbit of ®p is quasi-periodic and, in addition, the origin is Lyapunov
stable. Indeed, for each ¢ = (¢1, ..., ¢;) € (Rj)d , the d-dimensional torus

To={(x) eR* V1 <j<d, 1;:= (/D +)) =g}

is globally invariant by ®p, and the restricted dynamics of @ on the torus 7, >~ T? :=
R’/(27Z)" is conjugated to a translation T? 2 0 +> 0 + 2w w(c) € T with frequency vector
w(c) = (271)"'VBx(¢). The dynamics of ®p, is thus completely understood on the whole
phase space’ R? x R?.

Here comes the second part of the statement. The polynomials By and the com-
ponents of Zx — id converge as_formal power series when N goes to infinity: By = Bo, €
R([r, ..., 7], Zn = Z~ € R[[x, 7]] and, in the set of formal power series R[[x, y]], one
has the following formal conjugacy relation

(1.9) ZooofoZ ' (x,y) = Dy (x,9).

The formal power series By, 1s unique if Z., is tangent to the identity and is therefore
mvariant by (smooth or formal) comjugations tangent to the identity; it is called the Bukhoff
Normal Form (BNT for short) of / and we shall denote it by BNF(f):

BNF(f) =Bs(r1, ..., 70) € R[[ry, ..., 4]l

On the other hand the formal conjugacy Z,, which is called the normalization transforma-
tion, 1s not unique (but if properly normalized is unique).

The preceding results hold in the Action-Angle case (1.6) but under a Diophantine
assumption on  (this is stronger than mere non-resonance):

K
|kI*

(1.10) ¥ ke Z' (0}, min|(k o) — 1| = (t > d).
€

The positive numbers T and « are called respectively the exponent and the constant of the
Diophantine condition.” One can then prove similarly the existence: (a) for any N € N*,

2 When ¢ has some zero components, 7, is a d,-dimensional torus, 0 < d, < d, and the restricted dynamics of Gy
on 7, is again conjugate to a translation on a torus.

% The set of vectors of R? satisfying a Diophantine condition with fixed exponent 7 and fixed constant « has
positive Lebesgue measure if T > ¢ and if « > 0 is small enough; for each T > d, the union of these sets on all ¥ > 0 has
full Lebesgue measure in RY.
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of a polynomial By € R[ry, ..., 7], Bx(r) = 27 (w, r) + O(+*) and of a symplectic dif-
feomorphism Zy : (R/27Z)* x R?, Ty) O (preserving the standard symplectic form
Z::1 dO; A dr, Zx = id + (O(r), O(r*))) such that

(1.11) Znof oZ3 (6,1) = Py (0, 1) 4+ (O (r), ON' (1)

(1.12) Py (0,7) = (0 + VBx(7), 1)

(®py 18 called an ntegrable twist); and: (b) of a formal power series By, € R[[r, ..., 7/]l,
the Birkhoft Normal Form, and of a formal symplectic transformation Z., = id +
(O(), O@?) in C*(TH[[r,...,r]] (the set of formal power series with coefficients in
the set of real analytic functions T! — T) such that one has in Co(TH][r, ..., 7] the

formal conjugation relation
(1.13) ZowofoZ 1 (0,1)= (0 + VBs(r), 7).

Again we denote BNF(f) =B (r1, ..., 7) € R[[r, ..., 74]].
All the preceding discussion on Birkhoff Normal Forms holds if we only assume /
to be smooth.* We can summarize this:

Theorem (Birkhoff). — Any smooth symplectic diffeomorphism f : (R x R, (0,0)) ©
(@d>1) (resp. f: (R/2Z)" x R, Ty) D) admitting the origin as a non-resonant elliptic fixed
pownt (resp. of the form (1.6) with @ Diophantine) s formally (strongly) integrable: it is conjugated in
R([x, y]] (resp. C((R/2xZ)")[[r]]) to the formal generalized symplectic rotation (resp. the formal
integrable twist) @y The formal series BN (f) is an invariant of formal conjugation.

We refer to [4] and [49] (Section 24) for a proof of the preceding theorem in the
case of symplectic diffeomorphisms of the disk admitting a non-resonant elliptic fixed
point and to [13] for the case of Hamiltonian systems admitting a Diophantine KAM
torus. We shall reformulate (in the real analytic case) this theorem in Section 6, ¢/ Propo-
sitions 6.1-6.2, and shall give a proof of it in Section E of the Appendix where we mainly
concentrate on the AA-case.

These formal (and approximate) Birkhoff' Normal Forms can be defined in the
more classical setting of Hamiltonian flows x = %(x, ), = —%(x, ) (or 6 =
%(9, r, 1= —%(9, 7). f and ®p (B = BNF(f)) are then replaced by (®4),cr and
(PL)cr in (1.9), (1.13) (we shall then write B= BNF(H)").

In the Hamiltonian case, there is a weaker notion of integrability, usually called
Poisson integrability, which corresponds to the situation where the considered Hamiltonian
has a complete system of functionally independent integrals (observables constant under
the motion) which commute for the Poisson bracket. Poincaré discovered [37] that, in

" In the C* category, one can define By and Zy up to some order N depending on £ but one cannot define in
general BNF(f).
> A more classic equivalent formulation is H=B o Z.
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general, real analytic Hamiltonian flows do not admit other analytic first integrals than
the Hamiltonian itself and hence that in general no relation like (1.9) can hold with con-
verging Z., and By. Siegel proved [48] in 1954 (see also [47], [49], [52], [36]) that,
whatever the fixed non-resonant frequency vector at the origin w is, the normalizing con-
jugation Z,, cannot in general® define a convergent series. Indeed, the existence of a
convergent normalizing transformation yields real analytic Poisson integrability” a fact
(known to Birkhoff [5]) that is not compatible with the richness® of a generic dynamics
near a non-resonant elliptic equilibrium. Note that the converse statement is true: real
analytic Poisson integrability implies the existence of a real analytic normalizing Birkhoff
transformation (¢f. [25], [28], [56]).

As for the Birkhoff Normal Form itself, H. Eliasson formulated the following natu-
ral question [11], [10] (see also the references in [36]):

Question A (Elasson). — Are there examples of real analytic symplectic diffeomorphisms or
Hamultonans admatting divergent (i.e. with a null radius of convergence) Burkhoff Normal Form?

The preceding question has an easy positive answer in the smooth case (the map /
1s only assumed to be smooth): indeed, one can choose f to be of the form f = &g where
Q: (R?,0) — R is smooth with a divergent Taylor series at the origin; since equalities
(1.9) (1.13) only depend on the infinite jet J(f) of / at 0, the special integrable form of
J implies BNF(f) = J(f) thus BNF(f) is diverging. The situation is not so clear if / is
real analytic. In contrast with the aforementioned generic divergence of the normalizing
transformation, there seems’ to be a priori no obvious dynamical obstruction'’ to the
divergence of the Birkhoff Normal Form.

The first breakthrough in connection with Eliasson’s question came from R. Pérez-
Marco [36] who proved, in the setting of Hamiltonian systems having a non-resonant
elliptic fixed point, the following dichotomy:

Theorem (Pérez-Marco [36]). — For any fixed non-resonant fiequency vector @ € R?,
d'" > 2, one has the following dichotomy: either for all real analytic Hamultonian H of the form (1.5)

BNF(H) converges (defines a converging analytic series) or there is a “prevalent” set of such H_for which
BNF(H) duwerges.

We refer to Section 1.4 for a precise definition of “prevalent”. A similar dichotomy
holds in the setting of real analytic symplectic diffeomorphisms in the (CC)-case, and,

% Here it means G;-dense in some set of real analytic functions with fixed radius of convergence. This phenomenon
is even “prevalent” as shown by Pérez-Marco [36].

" If Zs, converges the observables 170 Zo,j =1, ..., d" are a complete set of real analytic and functionally indepen-
dent Poisson commuting integrals.

% By which we mean the coexistence of quasi-periodic motions and hyperbolic behavior in any neighborhood of
the equilibrium; see for a global view on these topics and references the book [2].

9 We shall in fact see in this paper that there are such dynamical obstructions.

10 Like the accumulation at the origin of hyperbolic periodic points or normally hyperbolic tori.
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both in the Hamiltonian or diffeomorphism framework, it can be extended to the (AA)-
case (but under the stronger assumption that w is Diophantine); ¢/ Theorem 1.3 of our
paper.

Pérez-Marco’s argument is not based on an analysis of the dynamics of f but rather
focuses on the coefficients of the BNF and exploits their polynomial dependence on the
coefficients of the initial perturbation by using techniques from potential theory.!'

The following two Theorems are an answer (in the symplectomorphism setting) to
Eliasson’s question and decide which of the two assertions of Pérez-Marco’s alternative
holds (see Theorem D of Section 1.4 for a more precise statement).

Man Theorem 1 ((CC)-Case). — For any d > 1 and any non-resonant frequency vector
w € R, there exists a “prevalent” set of real analytic symplectic diffeomorphism f : (R? x RY,
(0,0)) O of the form (1.5) the Burkhoff Normal Forms of which are divergent.

In the Action-Angle Case (1.6) it takes the following form:

Man Theorem 1° ((AA)-Case). — For any d > 1 and any Diophantine frequency vector
w € RY, there exists a “prevalent” set of real analytic symplectic diffeomorphism f : (R/2mwZ)* x
RY, To) of the form (1.6) the Birkhoff Normal Forms of which are divergent.

Main Theorems 1, 1’ also extend to the Hamiltonian case (1.3)—(1.4) (with 4" =
d 4+ 1)."” Note that from Pérez-Marco’s Theorem (and its analogue in the symplectomor-
phism case), in order to prove that the divergence of the Birkhoff Normal Form holds in
a prevalent way; it is enough to provide, for each fixed frequency vector @, one example
for which the BNF is divergent. On the other hand, if one is able to construct one such
example for some d), then it is easy to construct other such examples for any d > d, (see
for example the proof of Theorem D). Proving Main Theorem 1 (resp. 1°) thus amounts
to constructing when & = 1, for each irrational (resp. Diophantine) w € R, one example
of a real analytic symplectic diffeomorphism with a diverging BNF.

Gong already provided in [17] (by a direct analysis of the coefficients of the BNF)
examples of real analytic Hamiltonians (, 7) + F: (R x R?, 0) — R, F = O%(x, »), with
Liouvillian frequency @ € R? at the origin and a divergent BNF and Yin [54] produced
analogue of Gong’s examples in the diffeomorphism case (area preserving map of (R?, 0)
with a very Liouvillian elliptic fixed point). In these examples the divergence of the BNF is
caused by the presence of very small denominators (due to the Liouvillian character of w)
appearing in the coefficients of the BNF. After our result was announced, Fayad [15] con-
structed simple examples of real analytic Hamiltonian systems in (R%,0) (¢’ =d + 1 =4

! The idea of using potential theory in problems of small denominators was first introduced by Yu. Ilyashenko [23].
See [35] for further references.

2 Tt is not clear whether one can, for general systems, deduce the case of Hamiltonian flows from the case of
diffeomorphisms and vice versa. On the other hand the proofs of Main Theorems 1, 1’ and in particular the proofs of Main
Theorem 2 and of Theorems A-B, A—B’ below extend to Hamiltonian flows with 1 + 1 degrees of freedom.
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degrees of freedom) with any fixed non-resonant frequency vector at the origin and diver-
gent BNE The argument again is based on an analysis of the coefficients of the BNF; one
considers Hamiltonians with two degrees of freedom where two extra action variables
are added as formal parameters, one of them appearing later in the denominators of the
BNE. These types of examples can be constructed in the diffeomorphism case for d > 3.
In a different context, that of reversible systems, let us mention a result of divergence of
normal forms in [19] based on a different method (control of coefficients growth) and a
result of divergence of normalizing transformations in [33].
We now formulate Eliasson’s question in a stronger form:

Question B. — Does the convergence of a formal conjugacy invariant like the Burkhoff Normal
Form of a real analytic symplectic diffeomorphism (or Hamiltonian) have consequences on the dynamics
of the diffeomorphism (or Hamiltonian)?

Note that the convergence of the normalizing transformation has an obvious con-
sequence, namely, integrability. As for Question B, there are various results pointing to
some kind of rigidity phenomena if analyticity (and some arithmetic properties on w) is
assumed. To be more specific, let us mention a striking one: Bruno [7] and Rissmann
[42] proved that if f is real analytic and if its BNF is #riwvial, BNY(f) = 27 (w, 7) (in par-
ticular BNF(f) converges), then f is real analytically conjugated to ®oy (., provided the
frequency vector at the origin w satisfies a Diophantine condition. We refer to [53], [25],
[L1], [9], [51], [18], [13], [12] for generalizations of the Bruno-Rissmann Theorem and
related results.

The Main Result of our paper is in some sense one answer, amongst possibly oth-
ers, to the previous question at least when d =1 and if / is assumed to satisfy some fwust
condition.

Let us say that a diffeomorphism of the form (R?,0) © (1.1) or (R x T, Tp) O

is twist (or satisfies a twist condition) if the second order term of its BNF is not zero:'?

(27) ' BNF() () = wr + bor* + O(r*), by # 0.

Man Theorem 2. — If the Burkhoff Normal Form of a real analytic symplectic twist diffeomor-
phism (R?,0) O (1.1) or R x T, To) O (1.2) converges then the measure of the complement of the
union of all invariant curves accumulating the origin is much smaller than what it is_for a general such
diffeomorphism.

In other words, the convergence of a formal object like the BNI has consequences
on the dynamics of the diffeomorphism. Precise statements are given in Theorems A-B,
A-B’) of Section 1.2 and Theorems E and E’ of Section 1.4. Combined with (the exten-
sion to the diffeomorphism case of) Pérez-Marco’s Theorem [36], this gives that in any
number of degrees of freedom, a general real analytic symplectic diffeomorphism admit-

13 An easily checkable condition.
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ting the origin as an non-resonant elliptic equilibrium has a divergent Birkhoff Normal
Form (see Theorem D).

Having in mind the aforementioned result by Bruno and Riissmann, a natural
stronger question is whether the following rgidity result is true:

Question G — Is it true that a real analytic symplectic diffeomorphism or Hamaltonian system
having a Diophantine elliptic equilibrium and a non degenerate and convergent BNF is (real analytically)
integrable (in some neighborhood of the origin)?

The examples by Farré and Fayad in [14] of real analytic Hamiltonians on
T x R with convergent BNF and with an unstable Diophantine elliptic torus show
that such a generalization is not true for d > 2, at least in the (AA) case'* and if by non de-
generate we mean that BNF(f) is not trivial. The question is still open for d < 2. Note that
though in Farré-Fayad’s examples the BNF (which is explicit) is not degenerate (the rank
of its quadratic part is not zero unlike in the Bruno-Rissmann Theorem), its quadratic
part is not of maximal rank. If one drops in Question C the Diophantine assumption and
assumes the BNT to be trivial (like in Bruno-Riissmann’s Theorem) the question is open
(this question is related to a question of Birkhoff on pseudo-rotations'® and to the problem
of constructing real analytic Anosov-Katok examples; ¢/ [16] for details and references).

When d =1 the situation might be more favorable. To any twist area preserving
diffeomorphism f : (R?,0) © (I.1) or £ : (R x T, Ty) ©© (1.2) one can associate (we use
the notations and terminology of [46]) its minimal action ¢ : I — R (I is an open interval
containing ) that assigns to each ¢ € I the average action of any minimal orbit with ro-
tation number ¢. The function « is strictly convex (in fact differentiable at any irrational)
and one can thus define its Legendre conjugate function o : 7 = sup,,(¢r — a(¢)) 16
(see [30], [31], [46] for further details). The function r — a*(r) (defined on a neighbor-
hood of 0) can be seen as a_frequency map in the sense that if y is an invariant circle for
S with “symplectic height” (area with respect to the origin) ¢ then a*(¢) is the rotation
number of / restricted on y. It has the following properties: the Taylor series of a* at 0
coincides with the Birkhoff Normal Form of f/; moreover, if a* (hence «) is differentiable
then f is C’-integrable (see [46]). This C’-integrability often yields rigidity (we refer to
[3], [27] for an illustration of this fact in the context of billiard maps). The techniques de-
veloped in our paper are probably enough to prove that if the function a* is real analytic
then f is in fact real analytically integrable. A more delicate issue is to establish real an-
alyticity of a* by only knowing that its Taylor series at 0 (the BNF) defines a converging
series. Note that if / is real analytic one can construct dynamically relevant holomor-
phic functions (frequency maps) defined on complex domains having positive Lebesgue
measure intersections (Cantor sets) with the real axis (see [8], [38]) and which coincide

" Tt seems that the (CC) case is not yet settled.
15 Area preserving maps with no periodic points except the origin.
16 The functions o and o* (also denoted 8 and a) are called Mather’s functions.
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on these intersections with a*. The restrictions of these holomorphic functions on these
Cantor sets have some quasi-analyticity properties but it seems that there are not strong
enough to deduce that a* behaves like a genuine quasi-analytic function (in particular
that the convergence of the Taylor series at 0 implies analyticity); we refer to [8] for
references and for more details.

We conclude this subsection by the following question.

Question D . — Is a given real analytic symplectic diffeomorphism accumulated'’ by real analytic
symplectic diffeomorphisms having convergent BNFs? (We do not ask the radii of convergence of the BNF’s
to be bounded below).

Positive answers to Questions C, D would imply that any real analytic symplectic
diffeomorphism admitting an elliptic equilibrium set is accumulated in the strong real
analytic topology by diffeomorphisms of the same type that are in addition integrable in
a neighborhood of the equilibrium set.

1.2. Invariant circles. — As suggest (1.7), (1.11) the BNF (more precisely its approx-
imate version By) is, as we have already mentioned, a precious tool to study the problem
of the existence of quasi-periodic motions in the neighborhood of an elliptic equilibrium.
A bright illustration of this fact is certainly the KAM Theorem ([29], [1], [32]) that yields,
under suitable non-degeneracy conditions on the BNF (non-planarity), the existence of many
KAM tori'® accumulating the origin (see [13], [12] for results under much weaker non-
degeneracy assumptions).

We shall be mainly concerned with the 2-dimensional case (¢ = 1) and we restrict
to this case in this subsection. Recall our notation T = R/27Z for the 1-dimensional
torus. An wmvariant circle (or also invariant curve) for a real analytic (or smooth) diffeomor-
phism f/: (R x R, (0,0)) © of the form (1.5) is the image y = g(T) of an injective
C!' map g: T — R* ~ {0} with index £1 at 0 such that f(y) = y. Likewise, in the
(AA) case, an wmovariant circle or wmvariant curve) for a real analytic (or smooth) diffeomor-
phism f : (T x R, Tg) O of the form (1.6) is the image y = g(T) of an injective C' map
g: T — T x R which is homotopic to the circle Ty =T x {0} and such that f(y) = y."
Note that in this latter case, by a theorem of Birkhoft (¢f [4], [21]), invariant circles close
enough to Ty are in fact graphs if [ satisfies a twist condition:

(1.14) by(f) #0  if  (21)T'BNF(f) = wr + by(f)r* +--- .

'7 This means that if the given diffeomorphism / has a holomorphic extension to some complex domain W there
exists a slightly smaller subdomain WcWanda sequence of real-symmetric holomorphic diffeomorphisms f, defined on
W such that lim,_, o supg |/ — /ol =0.

18 A KAM torus is an invariant Lagrangian torus on which the dynamics is conjugated to a linear translation with a
Diophantine frequency vector.

19 These curves are also called essential curves.
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In both cases, we denote by Cf the set of f-invariant curves and, for ¢ > 0, by Zf(t) the

set of points in Mg :=R? or T x R which belong to an invariant curve y € Gf such that
y C MR N {|7| < t}QO

o= J

Veaf
y CMRrNO({|r|<t}

We then define Mg =R x Ror T x R)
my (1) = Lebyg (Mg N {[7] < £) \ L£(20)).

Notation 1.1. — We shall use the following notations: if a > 0 and b > O are two real numbers
we write a 'S b_for: “there exists a constant C. > 0 independent of a and b such that a < Cb”. If we
want to insist on the fact that this constant C. depends on a quantity B we write a Sp b. We shall also
write a <K b to say that a/b s small enough and a g b to express the fact that this smallness condition
depends on B. The notations b 2 a, b 2 a, b > a and b > a are defined in the same way. When
one has a S b and b < a we write a < b.

The 2-dimensional version of the KAM Theorem i1s the celebrated Moser’s twist
Theorem [32] (see also [43]):

Theorem (Moser). — Let | be a symplectic smooth diffeomorphism like (1.5) or (1.6) satisfying
the twist condition (1.14). If f admits Birkhoff Normal Forms at the origin to all orders*" then, for any
constant a > 0,

(1.15) my(t) St

Let us comment on the previous result. In the (CC) case, it is in fact enough to as-
sume that w in (1.5) is non-resonant since under this condition /" admits Birkhoff Normal
Forms to all orders. On the other hand, in the (AA) case the existence of the BNF to all
orders, more precisely the existence of solutions to the related cohomological equations
(see Lemma E.7), requires @ in (1.6) to be Diophantine; in the real analytic case a weaker
arithmetic condition is enough,” see [44], [45]. If in the (CC) case w is non-resonant
only up to some low order, (1.15) holds only for some a > 0 (see [38]). If in the (AA) case
we drop the assumption that w is Diophantine (but we assume @ to be non-resonant)
then, though no BNF is available, m;(¢) m (1.15) goes to zero as ¢ goes to zero but not
necessarily as a power of ¢: indeed, in the corresponding (AA) case of sufficiently smooth
Hamiltonian systems, Bounemoura proves in [6], in any number of degrees of freedom

2 In the (AA) case Mg N {|r] <} ={(@,7) € T xR, |r| <t} and in the (CC) case Mg N {|7] <} = {(x,») €
R xR, (1/2)(* 4+ < 1}.

21 This means one can define Bx(f) for any N > 2.

2 Ifwe denote p,/q, the convergents of w, it reads In ¢,+1 = 0(¢,). In comparison, the classical Diophantine condition
amounts to In¢,4; = O(Ing,).
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and under a Kolmogorov non-degeneracy condition, that the origin is KAM stable* (see
[13] for a previous similar result in two degrees of freedom and in the real analytic case)
and provides measure estimates for the complement of the set of the invariant tori. Let
us add that the twist condition (1.14) in Moser’s Theorem can be considerably weak-
ened (see for example [13], [12]). When d = 1, symplecticity (area preservation) can be
replaced by the weaker wmtersection property.

When f is real analytic and @ (both in the (CC) and (AA) cases) is Diophantine one
can get, by pushing to its limit the “standard” KAM method, a better estimate: for any
0 <B <K 1land?<g 1 onehas

1.16) my () S exp(—(1/) @ )
where we have defined for any irrational @

— Inmingez [kw — { Ing,
(1.17) £ (@) = limsup ez o = 0

00 Ink oo Ang, T

in the preceding formula (p,/¢,).=0 is the sequence of convergents®' of w. Note that if
T(w) < 00, then w is Diophantine with exponent 7’ for any v’ > 7(w) (¢f (1.10)). In this
case, the inequality (1.16) is known to be true with the exponent 1/(1 + t’) on the right
hand side (see for example [26] and the references therein). If 7 (@) = 00 we say that w is
Liouvillian.

1.3. Optimal and improved measure estimates. — The main results of our paper are
that: (A) one can improve the exponent in (1.16) if BNF(f) converges; (B) in the “general
case” the exponent in (1.16) is almost optimal. More precisely

Theorem A. — Let | be a real analytic symplectic diffeomorphism f: (R x R, (0, 0)) O like
(1.5) or f : (T x R, To) O like (1.6) satisfying the twist condition (1.14) and assume that in both
cases @ is Diophantine. Then, if BNF(f) defines a converging series one has for any 0 < B <K 1 and
0< t<<'3 |

1 (1/t(w))—B
(1.18) () S exp(— (;) )

On the other hand general real analytic twist symplectic diffeomorphisms like (1.5),
(1.6) behave quite differently:

Theorem B. — Let @ € R be Diophantine. There exist real analytic twist symplectic diffeo-
morphisms [ : (R x R, (0, 0))  lke (1.5) or f : (T x R, T) O like (1.6) satisfying the twist

% T.e. accumulated by a positive measure set of invariant quasi-periodic tori.
 Asusual, if o = 1/(a; + 1/(ag + 1/(-++))), a; € N*, we define p,/q, = 1/(a1 + 1 /(as + 1/(-- - + 1/a,)).
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condition (1.14) and a sequence of positive numbers () converging to zero such that forany 0 < f < 1,
0< tk <K B 1

1 (|++(w))+/3
(1.19) my(t) 2 exp(— <t_) )
i

As we already mentioned in the previous subsection, when w is very Liouvillian,
for example when lim infn(qﬂ_1 Ing,;+;) > 0, it is not clear, in the (AA) case, how to define
BNF(f). On the other hand, in the (CC) case, BNF(f) is defined whenever @ is non-
resonant and as we will soon see in Theorem A’ below, the result of Theorem A extends to
this situation. One might still wonder whether a weaker Diophantine condition In ¢, =
0(¢g,) (or something slightly stronger) is enough to ensure the validity of Theorem A in
the (AA) case (remember that in this case, BNF(f) is well defined). It seems possible that
adapting Propositions 5.3, 5.5 to this situation (using e.g. [44], [45]) provides estimates
that are still good enough to make the proof of Theorem A work.

Let us define foro e R\ Q

S5min(|by ()], [ba(HI™")
Gn+19n

Theorem A . — Let @ be Liouvillian and f - (R x R, (0, 0)) O be a real analytic symplectic

diffeomorphism of the form (1.5) satisfying the twist condition (1.14). Then, if BNF(f) defines a
converging series, one has for every k € N large enough such that ¢z, > q;°

(1.21) my (1)) S exp(—g,).

Note that if w is Liouvillian, one has for infinitely many &, ¢4, > ¢,°.
On the other hand:

(1.20) 1(w) =

Theorem B, — For any w € R . Q, there exist real analytic symplectic diffeomorphisms
S R xR, (0,0)) O of the form (1.5) satisfying the twist condition (1.14) such that for every
B > 0 and infinitely many k € N

1.22) my (1)) 2 exp(=i.1).
Theorem A is a consequence of the following theorem:

Theorem G (Small holes). — Let @ be Diophantine and let f : (R X R, (0, 0)) D of the form
(1.5) or f : (T x R, Ty) O of the form (1.6) be a real analytic symplectic diffeomorphisms satisfying
the twist condition (1.14). Then, for t > 0, there exists a finite collection Zsz of parrwise disjoint disks
D of the complex plane centered on the real axis such that, for any 0 < B K 1,0 < t KLg 1 one has:
(1) The number #13 of disks in the collection 15[ satisfies

(1.23) #D, < (1/1)'*
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and one has
(1.24) vDeD, [DNR|Sexp(—(1/)7@F)
(1.25) my(8) S exp(—(1/H" @)+ 3" DR

DeD,
(2) If BNE(f) converges, then for any t <Kg 1 one has for each De 5;
(1.26) IDNAR| < exp(—(1 /0@ =5y,

Estimate (1.24) explains why in general (without the assumption that BNF(f) con-
verges) one only gets the estimate (1.16). We shall explain in Section 1.5.1 where these
disks D come from.

There is a corresponding theorem in the Liouvillian (CC) case that implies The-
orem A’. We shall not state it but we mention that it is a consequence of Theorem 12.6
and Corollary 13.6.

Theorems A, A, C are proved in Section 14 as consequences of Theorems 12.3,
12.6 and Corollaries 13.2, 13.6.

Theorems B and B’ are consequences of Theorems E and E” which are stated in
the next Section 1.4. These Theorems are proved in Section 16 which uses results from
Section 15.

Because

l/t>1/(1+71),

Theorems A-B, A—B’ clearly imply, in the (AA) and (CC) case, when d = 1, the exustence
of a diffeomorphism f of the form (1.5)—(1.6) with divergent BNE. We explain in the next
Section 1.4, see Theorem D, that this implies Main Theorems 1-1" in the elliptic fixed
point case and the action-angle case for any d > 1 and in a prevalent way.

1.4. Prevalence of diergent BNFs.

1.4.1. The Dichotomy Theorem. — Let us explain more precisely the dichotomy of
R. Pérez-Marco mentioned in Section 1.1

Definition 1.2, — A subset A of a real affine space E is (PM)-prevalent™ if there exists
Fo € A such that for any ¥ € € the set {t € R, tFy + (1 — )F ¢ A} has 0 Lebesgue measure.*®

Pérez-Marco’s dichotomy for Hamiltonians having a non-resonant elliptic fixed
point can be reformulated the following way: let &, be the affine space of real analytic

% See [22] for the concept of prevalence.
% We can replace zero Lebesgue measure by zero (logarithmic) capacity like in Pérez-Marco’s paper.
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Hamiltonians

p
H(xp) =27 ) o6 +)/2+F(x)),  Fx) =0"(x)

j=1
which are perturbations of a given non-resonant quadratic part

,
Q,(1) =2 (@, 1) =27 ) ;] +37)/2

J=!

and let A, be the set of those Hamiltonians which have a divergent BNE. Then, Pérez-
Marco’s dichotomy is: either for any H € &,, BNF(H) converges or A,, is (PM)-prevalent.
We now discuss the extension of Pérez-Marco’s dichotomy to the case of symplectic
diffeomorphisms in the (AA) and (CC)-cases.
Any real analytic symplectic diffeomorphism f : (R? x R, (0, 0)) O of the form
(1.5) or f : (T x R?, Ty) © of the form (1.6) can be parametrized in the following con-
venient form:

(1.27) f = qDQﬂ(a),?‘) Oﬁ1

where, F: (RY x RY, (0,0)) - R, F = 0%(x,)) or F: (T? x R%, T;) - R, F = O*() is
some real analytic function and where we denote f; : (x, ) = (x,) or (0, 7) — (6,7) the
exact-symplectic map (see Section 4.5) defined implicitly by

X=x+&Fx)y), »=y+0F(x)y (CC case)
(1.28) or

~

0=0+&F0,7), r=7+9F@O, 7 (AA case).

For d > 1, w € R? non-resonant, we define S,,(R? x R?) (resp. S,,(T? x RY)) the set of real
analytic symplectic diffeomorphisms f : (R? x R?, (0, 0)) © (resp. f : (T x R, Ty) ©O)
of the form f = @y, o fr with F: (R? x R?, (0,0)) = R, F = O%(x, ») (resp. F: (T x
R, Ty) = R, F = O%(y)) real analytic. We then say that a subset of S, (R? x RY) (resp.
So(T? x RY)) is (PM)-prevalent if it is of the form {®or (0. oS, F e A} for some (PM)-
prevalent subset A of C*(R? x R?, R) N O%(x, y) (resp. C*(T? x R?,R) N O?(7)).

Here is the version of Pérez-Marco’s Dichotomy Theorem [36] for real analytic
symplectic diffeomorphisms of the 24-disk or the 2d-cylinder.

Theorem 1.3 (Dichotomy Theorem). — Let d > 1 and @ € R? be a non-resonant_frequency
vector. Then, either for any f € S, (R? x RY), the formal series BNF(f) converges (i.e. the series it
defines has a positive radius of convergence), or there exists a (PM)-prevalent subset of S,,(R? x R?)
such that for any f in this subset BNF(f) diverges.

The same dichotomy holds in S,,(T? x RY) provided w is Diophantine.
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As we mentioned earlier Pérez-Marco’s Dichotomy Theorem was proved in the
setting of real analytic Hamiltonians having an elliptic fixed point. Its extension to the dif-
feomorphism setting follows essentially Pérez-Marco’s arguments. We refer to Section 6.2
for further details in particular in the Action-Angle case (¢f Lemma 6.3).

1.4.2. Prevalence of the divergence of the BNF: Main Theorems 1, 1°. — As a Corollary
of Theorem 1.3 we now obtain, using Theorems A and B, Theorems A" and B’, the
following precise formulation of Main Theorems 1, 17

Theorem D. — For any d > 1 and any non-resonant o € R, the set of f € S,,(R? x R?)
with a divergent BNF is (PM)-prevalent. If w is Diophantine the same result holds with S,,(T? x R?)
i place of S,,(R? x RY).

Progf: — We give the proof in the case of real analytic symplectic diffeomorphisms
of the 2d-disk.

Let = (wi,...,w;) € R? be non-resonant. According to Pérez-Marco’s di-
chotomy (Theorem 1.3) it is enough to provide one example of a real analytic symplectic
diffeomorphism of the 2d-disk with diverging BNF and frequency vector @ at the ori-
gin to get the conclusion. Since w is non-resonant, there exists 1 <j < d such that w; is
irrational. According to whether w; is Diophantine or Liouvillian we use Theorems A
and B or Theorems A" and B’ to produce a real analytic symplectic diffeomorphism
/1 (R?,0) O with frequency w; at the origin and with a divergent BNE. We now define

f:(RdXRd9 (0,0))©be(xl,-~-1xd’))1,'--,))d):Ogl,'--%d,}l»u-,}d)p

fork#j, G+ —1p) = PVl (e +~—1yp)

This diffeomorphism is real analytic, symplectic and

is diverging since BNF(f)) is. O

1.4.3. Prevalence of optimal estimates: Main Theorem 2. — We now present two theo-
rems (Theorems E and E’) stating that the measure estimates (1.19) of Theorem B and
(1.22) of Theorem B’ are prevalent. Together with Theorems A, A" and the fact that
1/(r + 1) < 1/, this gives a more precise meaning to our Main Theorem 2.

We shall treat the (AA) and (CC) cases separately.

Let X be the set ([—1, 1PN = {(C14 Cop) € [—1, 11, k € N*} endowed with the
product measure o, = (Lebp_j 12)®N .
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(AA) Case. Let f = @y, 0 fo(,2) be a real analytic symplectic twist map of the annulus of
the form (1.6) and satisfying the twist condition (1.14).
For ¢ € X and /> 0 we define G, € C*(T x R) (&> 0 fixed)

G (0,7r)=7r ﬁf" Z e_lk”‘({l,k cos(kB) + &y sin(kO))
keN*

where @; is some universal integer (appearing in Proposition G.1 of Appendix G).

Theorem E ((AA) case). — For any Diophantine @ and for any 0 < B < 1, there exists an
infinite set N, s C N such that if t, = t;(w) 15 the sequence defined by (1.20), then for (io-almost
¢ € X, the estimate (1.19) of Theorem B with f replaced by f; is satisfied for infinitely many k € N.
In particular, using Theorem A, the BNF of f; := f o fi, 15 divergent for jLoo-almost § € X.

(CC) Case. We formulate the corresponding result in the (CC) Case in a less general setting
than in the (AA) Case. We assume that

S =Paqmn) + O +°)%)
where
@) 'Q () = wr + byr* + O@°), by # 0.

We shall denote sign(by) = £1 if £by > 0.
For ¢ € X, let G} be the real analytic function

x2+y2 a3 00 i x+i U X—1i I
G*(X, ) = < ) X <<—€_ln/4> + < elj‘[/4—> )
=) 25 72

$ok <(x +v m/4>(]k <x — in/4)9k>
+ — X — — | —F—¢
2\ 2 NG

Je=fo®q;.

Theorem E ((CC) Case). — For any non-resonant”’ (resp. Diophantine) w and any 0 < B <K

1, there exist a non-empty set s(w) € {—1, 1} (resp. sg(w) € {—1, 1}) and an ifinite set N'CN

(resp. N é C N) such that the following holds. If sign(by) € s(w) (resp. sign(by) € sg(w)), then, for

Uoo-almost & € X, the estimate (1.22) of Theorem B’ (resp. (1.19) of Theorem B) with | replaced by

J; is satisfied for infinitely many k € N (resp. k € N g)- In particular, using Theorems A, A’, for any
non-resonant w, the BNF of f; :=f o D is divergent for [Loo-almost ¢ € X.

and

We refer to Section 16 for the proof of Theorems E and E’.

%7 In the non-resonant case, the sets s(w) and AN’ C N do not depend on 8.
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1.5. Some words on the proofs. — The starting point of the proofs of Theorems A,
A, and C is a KAM scheme that we implement on a holomorphic extension of the real
analytic diffeomorphism /. This allows to work with holomorphic functions defined on
complex domains “with holes” (i.e. disks which are removed). If these domains are “nice”
we can use some quantitative form of the analytic continuation principle to propagate
informations in the neighborhood of the origin, like the convergence of the BNE to the
neighborhoods of each hole. We illustrate this with the proof of Theorem C.

1.5.1. Sketch of the proof of Theorem C. — We describe it in the (AA) case. Let f :
(T xR, Ty D, To =T x {0}, be a real analytic symplectic diffeomorphism of the form
(1.27) with by(f) # 0 and @ Diophantine. After performing some steps of the Birkhoff

Normal Form procedure mentioned in the introduction, we can assume that
(1.29) f=®q0f, Q) 'Qr)=wr+by’+---, F=00G"

where m is large enough and where f; is the exact symplectic map (¢f- (1.28)) associated
to some real symmetric*® holomorphic function F : T, x D(0,p) — C (k5 > 0); the
notations T, D(0, p) are for T, := ((R+¢] — 4, A)) /(2 Z)), D0, p) ={re C, |r| < p}.

Adapted KAM Normal Form. — Theorem C can be seen as an improved version of the
classic KAM Theorem on the positive Lebesgue measure of the set of points lying on
invariant curves (¢f. Moser’s Theorem of Section 1.2). There are several ways to prove this
standard KAM Theorem. A direct approach (which goes back to Arnold in his proof of
Kolmogorov’s theorem) is to find a sequence of (real symmetric) holomorphic symplectic
diffeomorphisms g close to the identity, defined on smaller and smaller complex domains
T, xU; (hiy > hi > /2, U; C U;_; C D(0, p)) and such that gi_l of og; gets closer and
closer to some integrable’ models ®g, :

(1.30) [T, x Uj] g 'ofog="®q of, |F;|| < 1

(in the preceding formula, the set written on the left is a domain where the conjugation
relation holds); see Figure 1. One then proves that g; and €2; converge (in some sense)
on T x (Uy, NR) (Uy :=(),U;) to some limits g, 2o and that U, N R (in general a
Cantor set) has positive Lebesgue measure. The searched for set of f-invariant curves is

then UeroomR oo ({r = ¢}) and one has for some fixed constant ¢ > 0 and any p <p

(1.31) my(p) S NFI".

We refer to Theorem 12.1 for more details. The domains U; can be chosen to be
holed domains 1.e. disks D (0, p;) (p; & p) from which a finite number of small complex disks

2 This means that it takes real values when 6 and 7 are real.
2 This means that €; depends only on the  variable.
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FiG. 1. — The holed domains U; where the KAM-Normal Form UX*M is defined (the holes, caused by resonances, are the
grey disks)

centered on the real axis (the “holes” of U,) have been removed. Removing these small
disks is due to the necessity of avoiding resonances when one inductively construct g;, £2;, F;
from g, ,_1, F;,_,. More precisely, U, is essentially obtained from U,_; by removing
“resonant disks” z.e. disks where the “frequency map” (27r)7'9€2,_; is close to a ratio-
nal number of the form [/k, (I, k) € Z x N*, max(|{|, k) < N,_; (N; is an exponentially
increasing (in ¢) sequence which is defined at the beginning of the inductive procedure).
The sizes of the holes of U; created by removing a finite number of disks from U,_; decay
very fast with 2. We shall call a conjugation relation like (1.30) a(n) (approximate) KAM
Normal Form for f. Its construction is presented in Section 7.

A useful observation (¢f Section 10) is that, depending on p < p, one can choose
indices i_(p) < 2;.(p) such that all the holes D of the domain Uj, (, that intersect D(0, p),
are disjoint and are created at some step ¢ — 1 =i € [i_(p), 11 (p)] (hence D C U,));
moreover, i_(p) is large enough to ensure that the size of D is small. Writing (1.30) with
1 =1,(p) we get (note the change of notations)

(1.32) [Tis X UST g O ©8isipy = Parart o fran, IFS I < 1.

H it(p) it(p)

This 1s what we call our adapted KAM Normal Form (adapted to D (0, p)); see Section 10.
With the choice we make for i, (p) we have

(1.33) IFE ) I S exp(=(1/p) 07,

i+(p)

where the last formula means: “for any 8 > 0, ||F§‘(\})\)I|| <pexp(—(1/p) /Oy,

Hamlton-jacobt Normal Forms. — (. Section 8. A hole D C U, of the domain U, (,, that
1s created at step ip corresponds as we have mentioned to a resonance (27‘[)_189;{)"“\’I ~
l/k, (I, k) € Z x N*, max(|{|, k) S N;, that appears when one constructs the KAM Nor-
mal Form (1.30) from step ip to step ip + 1. In this resonant situation we are able to
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F1G. 2. — Hamilton-Jacobi Normal Form ng close to a resonance (271)_189};\‘“(6) = [/k. The holomorphic function

QW is defined on the annulus D ~ D

associate to D a Hamulton-Jacobi Normal Form, ¢f. Section 8, Proposition 8.1: there exists an
annulus D \. D (D, D are disks), D C U;;,, D D> D, D D D (D is small but much bigger
than D) on which one has

ey =~ HJ. — H
(1.34) [Tyox DNDI ()" o o ofiy o (en) = Do o fuy,
(1.35) IER IS IFSR).

See Figure 2. This H] Normal Form also satisfies the important Extension Property which in
some situation allows to bound above the size of D (note that in general the sizes of D and
D are comparable). It states that if the holomorphic function ng, which is defined on
the annulus D ~ ]3, coincides to some very good order of approximation with a bounded
holomorphic function defined on the disk D, then D can be chosen to be small (see the
quantitative statement of Proposition 8.1).

Proof of the furst part (1.25) of Theorem C. —  Applying the aforementioned standard KAM
estimate (1.31) on the holed domain U, () to g, , 0 frm(zl) (¢f (1.32)) and on each annulus
i+

DD to q)Qlk;J ) ‘]i,ﬁj, (¢f (1.34)) together with the estimate (1.35) we get that outside a

set of measure ZDer |D NR| the invariant curves of f cover a set the complement of

which in D(0, p) has a measure < ||FE‘?§§||“ for some a > 0; hence the inequality (1.25)

by (1.33). For more details see the proof of Theorem 12.3.

Burkhoff Normal Forms. —  Cf. Section 6. To prove the second part of Theorem C, (1.26) we
need to introduce one further approximate Normal Form, namely the approximate Birkhoff
Normal Form (¢f. Section 6) valid on T}, » x D(0, o) (b =T + 1), D(0, p’) Cc UKAM

14+ (p)
(1.36) [T;2 x D(0, p’)] (@) o f o (&) = Daur o fymw,
(1.37) IENE S IES -

See Figure 3.
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o 0O\ o o m o o0\
. A4 u A4 A4 A A4 A4 u A4
R-axis W

F1G. 3. — The approximate Birkhoff Normal Form QENF is defined on D(0, p’7). It coexists with the KAM Normal Form

in‘}/\f) defined on the holed domain U, (,)

Fic. 4. — The three Normal Forms. The holomorphic function QﬁNF is defined on D(0, p’7); associated to each hole D

the holomorphic function QEJ is defined on the annulus D \. D. These Normal Form coincide with the KAM Normal

Form QKM defined on the holed domain UKAM
it (p) it+(p)

Proof of the second part (1.26) of Theorem €. — Having the three Normal Forms (1.32),
(1.36), (1.34) in hand (see Figure 4) the proof of the second part of Theorem C relies on
the following three principles.
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. . . . . . KAI\/I
— Comparison Principle ¢f: Section 9: since Fi-¢ )y,

previous Normal Forms almost coincide on the intersections of their respective domains

Fgl FENF are equally very small, all the

of definition (this is done in Proposition 9.1); more precisely their frequency maps almost
coincide

(1.38) QBNF ~ QKAM ~ ng

P iy () e~
D(0,pb* )mUﬁ*(I;I) U}i‘}l))g ND-D)

where the symbol a > b (a, b are functions and V is an open set) means here: for all z € V,

la(z) — b(2)| S exp(—(1/p)/P7), p and T being fixed. Moreover, if the formal BNF
converges and equals a holomorphic function & defined on, say, D(0, 1), one has also (¢f.
Corollary 6.7)

E o~ QbW
D(0,1)ND(0,p’7)

: ; br KAM
and in particular from (1.38) (we have D(0, p™) C U ())

N KAM
DO, HADO, ey +P)

(1.39)

[l

— No-Screening Principle, ¢f- Section 3: Since B and QXM almost coincide on D(0, p’7) and
4 p i+(p)

UKAM
it(p)?
they also almost coincide on this latter domain. A difficulty could appear here: an exces-

are holomorphic on the bigger domain D(0, 1) N one can be tempted to infer that

sive number of holes of D(0, 1) N Uﬁ‘?g)’l (in comparison to their sizes) could cause some

“screening effect” (like in Electrostatics) that prevents the propagation of the information
given by (1.39) to “most of ” the domain D(0, 1) N Uf:(%’)[; see Section 3.2 for more details.
This is the reason why, instead of working on the whole domain D(0, 1) we work on the

smaller one D(0, p). In this situation, the choice we make for ¢, (p) (¢f (10.301)) is such

that the number of holes of D(0, 1) N Uq?}}/)l is not too big in comparison to their sizes;

this is studied in Section 10, Proposition 10.4. This allows us to apply Proposition 3.1
and to extend the domain of validity of the approximate equality (1.39) to (a good part
of) D(0, 1) N URM:

it(p)*
N KAM
—_ i+(p) "

KAM
D(0,HNUKS

(1.40)

(]

— Residue or Extension Principle cf- Section 8.8: From (1.38), (1.40) one has

HJ
KAM:A 3 QD
UK BINMD~D)

(1.41)

]

or, in other words, Qg‘l, which is defined on the annulus D ~ D, coincides with a very good
approximation with a holomorphic function defined on the whole disk D. The aforementioned
Extension Principle of Proposition 8.1, which essentially amounts to the computation of
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a residue (done in Paragraph 8.8.1), then tells us that the radius of D is much smaller
than what we expected it to be: finally, [D NR| < exp(—(1/p)"/?7). This is (1.26).
For more details we refer to Proposition 10.7 and Corollary 13.2.

1.5.2. On the proof of Theorem C in the elliptic fixed point case. — The proof in the non-
resonant elliptic fixed point case, f : (R?,0) O, follows the same strategy especially if
the frequency w is Diophantine. A technical point is that to be able to implement the
No-Screening Principle of Section 3 we need to work with domains UE’(\}})I D UﬁNF where
UENF 1s a disk around O (the estimate on the analytic capacity of this disk is then favorable).
This is the reason why we cannot in this situation use Action-Angle variables since this
would force us to work on angular sector domains and not disks.” Instead, we define
our approximate BNF and KAM Normal Forms directly in Cartesian Coordinates. The
formalism turns out to be the same as in the Action-Angle case (see Section 5), so we treat
these two cases simultaneously. The case where w is Liouvillian is done in a similar (and
even simpler) way.

1.5.3. On the proofs of Theorems B, B’, E and E°. — The proofs are more classical and
based on the fact that, in the general case, resonances are associated to the existence of
hyperbolic periodic points in the neighborhood of which no (*horizontal”) invariant circle
can exist. To see this in a special situation (we describe it in the (AA)-case) let f/ = P g o fp,
where R 3 7> (27)7'Q() = (p/q)r + br*/2 + --- € R with p € Z, ¢ € N* mutually
prime and, say, b > 0 (for example 4 = 1); we also assume that T xR > (6, 7) — F(09, 1) =
O(r*) € R and is (277 /q)-periodic in 0. The origin is thus resonant since (271) 7192 (0) = p/q
1s rational. One can approximate g o fr by

S i=(0,1) = 21 (p/q, 0) + D1 (6, 7)

where @}, is the time-1 map of the Hamiltonian H(, r) = br*/2 + F(0, r). Observe that
because we have assumed that F(0,r) is 27 /¢-periodic in 0, the same is true for @y,
hence the maps @}, and (0, 7) — (0, 7) + 27(p/q, 0) commute; thus, understanding the
dynamics of / essentially amounts to understanding that of ®j;. This latter dynamics is
easy to analyze since it is the time-1 map of a Hamiltonian vector field in dimension 2,
namely a pendulum on the cylinder T x R. Indeed, if I 1s “typical”, a change of coordinates
leads us to the case where 95F(0, 0) = 0 and 9;F(0, 0) < 0 hence H(0, ) = cst+ br%/2 —
(1/2)|3§F(O, 0)|6* + h.o.t. Under this form it is clear that (0, 0) is a hyperbolic fixed
point for ®}; and since H is 27 /¢-periodic, the same is true for the points (27k/q, 0),
k=0,...,q— 1. Since these points are permuted by (6, 7) = (0, 7) + 27 (p/q, 0), this
shows that (0, 0) is a hyperbolic ¢g-periodic point for f (this means a hyperbolic fixed
point for 7). If [07F(0, 0)| is not too small compared to the approximation ||f — /||, the

%0 To say it shortly, in Poisson-Jensen’s formula on subharmonic functions (see Section 3.1), the “weight” of a small
disk D(0, p) C D(0, 1) is 1/|1In p| while the “weight” of D(0, p) N A C A, A being an angular sector at 0 is only p*, a > 0.
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point (0,0) will also be a g-periodic hyperbolic point for /. However, a horizontal invariant
circle cannot cross the stable or invariant manifolds of this periodic point; this establishes
the existence of a zone in which horizontal invariant circles cannot pass. To quantify the
size of this zone one just has to estimate the strength of the hyperbolicity of the periodic
point and the size of the corresponding local stable and unstable manifolds.

The more general case where we do not assume a prior: that F(0, r) 1s 27 / g-periodic
nor F(0, r) = O(r*) can essentially be reduced to the preceding example, provided F is
small with respect to 1/¢. This requires the use of a resonant normal form described
in Appendix G. For “generic” symplectic diffeomorphisms of the form (1.6) satisfying a
twist condition (1.14) one can establish the existence of hyperbolic zones associated to
any best rational approximation p,/¢, of w; these zones accumulate the origin. We refer
to Sections 15 and 16 for more details.

1.6. Organization of the paper. — Section 2 is essentially dedicated to fixing some
notations and introducing the notion of domains with holes that plays a central role in
the KAM approach (a la Arnold). We discuss Cauchy’s estimates and Whitney’s extension
Theorem in this framework. The not so standard notations used in the text are summa-
rized in Section 2.6.

In Section 3 we give a brief account of what is the screening effect and we provide a
no-screening criterion which will be useful for our purpose. It is based on Poisson-Jensen’s
formula on subharmonic functions applied in a domain with not too many holes (w.r.t.
their sizes).

In Section 4 our main purpose is to check that estimates on compositions of gener-
ating functions hold in the case of domains with holes. We treat in a unified way the CC
and AA cases. We also discuss invariant curves.

In Section 5 we study the (cohomological equations and state a proposition on the
basic KAM step (Proposition 5.5).

Birkhoft' Normal Forms (approximate and formal) are presented in Section 6 and
Appendix E. We explain in Section 6.2 how Pérez-Marco’s dichotomy extends to the
diffeomorphism case.

Section 7 is dedicated to the KAM scheme which is central in our paper; we pay
particular attention to the location of the holes of the KAM-domains.

In Section 8 we present the Hamilton-Jacobi Normal Form associated to each
resonance appearing during the KAM scheme. Their construction is based on a Res-
onant Normal Form and an argument of approximation by vector fields the proofs of
which are left in the Appendix, Sections G and H. The most important property of these
Hamilton-Jacobi Normal Forms is the Extension Property that states that if the correspond-
ing frequency map defined on a annulus is very close to a holomorphic function defined
on a bigger disk containing the annulus, the domain of validity of this Normal Form is
essentially this disk.

The Matching or Comparison Principle is presented in Section 9. It quantifies the
fact that (exact) symplectic maps have essentially one frequency map.
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; Residue/Extension
No screening /L
(Section 3) Principle
(Section 8)

HJ-NF~ X |
onD~D
(Section 8)

HJ-NF on
D ~\ D (Section 8)

I

Resonant NF
(Appendix G)
)
Resonances,
Holes D € D
(Section 8)

R <

KAM

procedure
(Section 7)

KAM NF on

U, =D(0, p) ~ UDeD D
(Sections 7, 10))

Matching
Principle
(Section 9)

~

D small
(Sections 8, 13)

Positive
measure

estimates
(Section 12)

( Approx. BNF Formal BNF Improved
e | _ converges measure
on D(.O’ P @ =X on D(0, 1). estimates
(Section 6) A
; (Assumption) (Conclusion)

F16. 5. — Plan of the proof of the improved measure estimate (1.26) of Theorem C

We construct in Section 10 and 11 our coexisting adapted KAM, BNF and HJ
Normal Forms in the respective cases @ Diophantine or Liouvillian, the latter being easier
to treat.

In Section 12 we first state a generalization of the classical KAM estimate on the
measure of the set of invariant curves that hold on domains with holes (Theorem 12.1)
and we apply it to our adapted KAM and HJ Normal forms to get measure estimates
on the set of invariant curves lying in the union of the domains of definitions of these
Normal Forms. This provides Theorems 12.3 and 12.6 which play an important role in
the proofs of Theorems C, A and A'.
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In Section 13 we use the Extension Principle of Section 8 to show that if the BNF
converges the measure estimates provided by Theorems 12.3 and 12.6 improve consid-
erably.

In Section 14 we conclude the proofs of Theorems C, A and A

The mechanism for the creation of zones of the phase space that do not intersect
the set of invariant circles is presented in Section 15 (Proposition 15.1). This allows us to
construct (prevalent) examples that satisty Theorems B, B’, E and E’ in Section 16.

Finally, an Appendix completes the text by giving more details on the proofs of
some statements or by presenting more or less classical methods that had to be adapted
to our more specific situation.

2. Notations, preliminaries

Let T be the 1-dimensional torus T :=R/(27Z) ={x+ 27Z, x € R} and for 0 <
h<o0

T,=TU{x+ip+ (27Z), x,y€R, |y| < i} @#=-1)

the complex cylinder of width 24. If 6, = (x; +v)) + 27 Z), 0y = x0 + 10+ (27 Z) € T
we set |6 — O]t :=mingez |(x; —x — 2 ]) + 1(y; — 99)|.

If p > 0 we denote by D(z, p) C G the open disk of center z and radius p and by
D(z, p) its closure;®! sometimes for short we shall write D, for D(0, p) (and by ﬁp its
closure).

Ifz=x+ipeC,(i=+—1)xpeR, (resp. 0 =x+iy+ (27 Z) € T,), we denote
by Z=x— iy (resp. 6 = x — iy + (2 Z)) its complex conjugate.

We define the wmvolutions oy, 09 : G> — G? and 03 : Too X G — T x C by

<2°42) 2| (XJ’) = (%?j)’ UQ(Z, w) = (iw’ 22)7 O—3(0’ 7) = (5’ ?)

For w = (wy, wy), w' = (w], wj) € C x G (resp. € Ty, x C) we define the distance
d(w, w') = max(|lw, — wil, [ws — w;]) (resp. d(w, w') = max(|lw, — wilr,, [ws — wyl)).
If W is an open subset of G x G or of Too X G and if F: W — G we set

[ Fllw = sup |F]|
W

(with the convention that ||[F|lyw =0 if W 1s empty). If a function W > (w;, wy)
F(w;, wy) is differentiable enough (for the standard real differentiable structure on W)

we can as usual define its partial derivatives®? af}l 8%1 85}2 G%F (k1, ko, 1, Iy € N) and its

31 With this notation D(z, 0) = @. B
 Here we use the standard notation: if w = ¢ + s, (1,5) € R?, 8, = (1/2)(3, — id,) and dr = 3,, = (1/2)(3, + id,).
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total) y-th derivative = (0! 2 b4+t +h= J € N). We then define
1) j-th derivative D'F = (8% 8 8% 82 F), 4111 16— (i € N). We then defi

w] CW] P wy YWy

IDFlw= " max 13} a5 372 8 Fllw, IFllcrewy = max [|D'Flw.
(k. kg lp)eN? O<j=n
k+h+ko+h=)

We denote by C"(W) the set of functions I : W — G such that ||F||cxw) < 00 and by

O(W) the set of holomorphic functions F: W — C (all the preceding partial derivatives

of the form 9,, = 8- then vanish).

We say that an open set W of M := G? or of M := Ty, x C is o;-symmetric (i =
1,2, 3) if it is invariant by o; (0;:(W) = W); if W is 0;-symmetric we say that a function
F: W — C is o;-symmetric if F o 0; = F (the complex conjugate of F) and we denote
by G, (W), resp. Oy, (W), the set of C" resp. holomorphic functions F: W — C that are
o;-symmetric. When no confusion is possible on the nature of the relevant o; involved, we
shall often say o-symmetric or even real symmetric instead of o;-symmetric. If W is o -
symmetric we use the notation Wg = {w € W, o(w) = w}; if Wg # ¥ then F € O, (W)
defines by restriction a map (still denoted by F) F : Wg — R. Note that a function F :
(R?, 0) — R which is real analytic is in O,, (D(0, p) x D(0, p)) for some p > 0.

Let W be a open set of M := C* or T, x C. We denote by Diff"(W), resp.
Diff® (W), the set of C", resp. holomorphic, diffeomorphism f : W — f (W) C M defined
on an open neighborhood W of W containing the closure of W.

Note that there exists a constant C depending only on M such that for any C!-
diffeomorphisms f;, o : M — M satistying ||f; — d||c: <1 one has

(2.43) (2o fi) —wdllcr = (A — wller + /s = dllcr).

If now W is a o-symmetric open set of (M, o) we denote by Diff] (W) resp.
Diff? (W) the set of /' € Diff'(W), resp. / € Diff? (W), such that f 0 0 = o o f. It then
defines by restriction a C", resp. real analytic, diffeomorphism (that we still denote f)
fZWR—>f(WR) CMR.

When f, g are two o -symmetric holomorphic diffeomorphisms we write

(2.44) Wl f=g

(W possibly empty) to say that /', g € Diﬂ? (W) coincide on an open neighborhood of W
containing the closure of W.

2.1. Domains W, y. — Let k> 0 and U an open connected set of C; we shall define
domains W% of M = M =T, x C (AA stands for “Action-Angle”) and W,(j([j, We
of M = M““ = M““* = C? (CC for “Cartesian Coordinates”) the following way:

— Cartesian Coordinates (CCx): if py := sup{|r|, r € U}, the set W(”(** CcCxCis

2+
2

(2.45) WO = {(x,0) € €2, [x £ 9] < V20", e U};
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1/2
~ max(|z], lw]) < d'py

L -
-

- —urzwelU

FiG. 7. — Schematic representation of the domain Wi, (and W5 if one makes the change of coordinates z = — (x+ ),
w= (i)

— Cartesian Coordinates (CC): if py := sup{|r|, r € U}, the set ij(,: cCxCis
(2.46) WS = {(z,w) € D(0, &'p /) x D(0, ' p/*), —izw € U};
— Action Angle coordinates (AA): the set W‘,?% of Ty x Cis
(2.47) Wit =T, x U.
In all these three cases we denote by 7 the observable (x,») — (1/2)(x*> + %), (2, w) >

—zw, (0,7) 1.
In Section 4.1 we shall see how one goes from (CC) (or (CC*)) to (AA) coordinates.

2.2. Cauchy estimates. — If § > 0 we denote by Us(W) = {w € W, B(w, §) C W}
(here B(w, §) is the ball {z € M, d(z, w) < §}). Assume that F € O(W). By differentiating
(k1 + k9)- times Cauchy complex integration formula

I F(L1, &)
F(w,, wy) = —— dcid
(i wa) = Gy /wl_m:aflwg_m:a w1 — ) (ws — )
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one sees that if Us(W) is not empty

(2.48) 191 9% Fllogsowy < Ckl,k257(kl+k2)||F||w-

wy “w2

2.3. Holed domains.
2.3.1. Holed domain of G. — A holed domain of G is an open set of G of the form

(2.49) U=D(c.p)~ | D p).

1€l
for some ¢ € G, p > 0, ¢; € G, p; > 0 and where I is a finite set which is either empty
or such that for any ¢ € I, D(¢;, p;) N D(c, p) # ?. Note that the disks D(¢;, p;) are not
supposed to be included in D(0, p). It is not difficult to see that there exists a unique
minimal Jy C I (for the inclusion) such that |_J i D, pi) = .. D(c;, p;) and that the
representation (2.49) with I replaced by Ju is then unique:

1€l

(2.50) U=D(. p)~ [ JD( ).
€Ju

We then denote by

(2.51) DU) ={D(c;, p)), i €]Ju}-

We shall call D(¢, p) the external disk of U. We then set

pu:=radU:=p, rad(U)=miny, p;

Q(U) = (ZZGJU IOZQ)I/2

card(U) =#Ju

d(U) =rad(U) if Jy =¥, d(U) =min(rad(U), rad(U)) if Jy # @.

(2.52)

If Ju 1s empty or if all the disks D(¢;, p;), ¢ € Ju, are pairwise disjoint and included in
D(c, p) we say that the holed domain U has disjoint holes and we call D(¢;, p;) the holes
of U (the bounded connected components of G ~\. U). We denote by D(U) the set of all
these disks.

Note: We shall only consider in this paper holed domains (2.49) where the ¢; are on the
real axis.

2.3.2. Holed domains of G x G or Tog x G. — These are by definition sets of the
form W),y where 2> 0 and U is a holed domain; see (2.46) or (2.47). We then define

d(W,u) = min(%, d(U)).
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2.3.3. Deflation of a holed domain. — If § € R we use the notation ¢ °D(c, p) for
¢ ’D(c, p) =D(c, e’ p).

If U C C is a holed domain of the form (2.50) and if § > 0 we denote by ¢ U C U the
(possibly empty) open set

U =D(,e°p) U D(c¢, & p)).
i€Ju

Similarly if 0 < 6 < £
W,u = Wi—s/2,-5uU-

We make the following simple observations (the first two items are proved by area
considerations):

Lemma 2.1. — For 1 > § > 0 one has:
(1) Forany z € D(c, p), dist(z, U) < 2a(U).
(2) If p* > 2¢% Zieju o7 then ¢=°U is not empty.
(3) If e°U is not empty, then for any z € e=*U one has

D(z, (1/2)64(U)) C U.

2.3.4. Reformulation of Cauchy’s Inequalities. — Using item 3 of Lemma 2.1 we can in
particular reformulate inequalities (2.48) when W is of the form W),y and F € O(W,,):

(2.53) ID"F|[-sw,, < Cud ™" d(Wi0) "I Fllw, .-

One can sometimes obtain better estimates.

— In the (AA)-case, if 0 < § < &, one has

(2.54) 185 F Nl S 87 IF llw

U ~

— In thg (CC)-C&SC, fU=D(,p) and § < 1/2 one has 678W}h])(0,p) - UE(W/Z’D(()”O))
with § = p'/2¢7"8 /4 and thus

(2.55) IVFll-ow,o S8 o7 21 Fllw, .-

2.4. Whatney type extensions on domains with holes. — The discussion that follows will
be useful in the construction of the KAM Normal Form of Section 7.
Let U be a real symmetric holed domain

(2.56) U=D(0.p)~ D ). ¢ €R,

i€Ju
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h > 0, W,y one of the domains de_ﬁned in Section 2.1 and F: W,y — C be a C'
o-symmetric function i.e. F o o = F (the complex conjugate of F). We say that a C*,
o-symmetric function®* V" : W, ¢ — G is a Whitney extension® for (F, W, v) if

VmeW,u, FYm) =F(m).

Note that since U is open this implies that for all 0 <j < k£, D'F and DVF"" coincide on
W/l,U'
We shall construct such Whitney’s extensions in two situations.

Lemma2.2. — Let F € O, (W,v). For any 8 €)0, 1[, there exists a C*, o -symmetric func-
tion FV" : W), ¢ — C such that

(2.57) Vme e W,u, FY'(n)=F(m)
(2.58) sup [[DVF™ ||y, o < C(1 + #]u)" (8 4(U) ™ max IDFllw, 310, -
0<j<k = ' )
Progf. — See Section B.1 of the Appendix. 0

Notation 2.3. — We denote by 60 (Wy.v) the set of C?, o -symmetric maps F : W), ¢ — C
such that the restriction of ¥ on Wy, 1s holomorphuc.

Defimition 2.4, — Let A> 1, B> 1, U C C a o-symmetric holed domain. We say that a
o -symmetric C3_function 2 : U — G satisfies an (A, B)-twist condition on U if

| |
(2.59) VreUNR, A < —3’Q() <A, and |—D’Q|c <B.
2w 2w

If U is a disk D(0, py) one can construct for some 0 < p < py a C?, o-symmetric
Whitney extension for 2 on D(0, p) that satisfies an (A, B)-twist condition on D(0, p).

Lemma 2.5. — Let Q2 € O, (D(0, po)) (po <2)
2m) 7 'Q(2) = woz + by + O(2), 121lp0.p0) = 1, with by > 0.

There exists 0 < < po, B> 0 and a C2, real symmetric extension Q™" € 50 (C) of (2,D(0, p))
that satisfies an (A, B)-twist condition on G with A = 3max(by, by h.

Progf. — See Appendix B.2. O

Notation 2.6. — We denote by TC(A, B) the set of C*, real symmetric maps 2 : C — G
satispying an (A, B)-twist condition (2.59) with U = C.

% Differentiability here is related to the real differentiable structure of W), ¢.
3 The exponent W# stands for “Whitney”.
% See [55], [50].
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Let U C C be a o-symmetric connected holed domain as in (2.56).
Proposition 2.7. — IfQ € O, (U) N TC(A, B) with
(2.60) 8 x max(p, a(U)) x Ax B <1
then the following holds. For any v €10, (6A?B)~'[ and any B € R, either for any z € U
(2.61) 0@ —Bl=v  (@=(21)"0Q)

or there exists a umique cg €] — p — 2Av, p + 2Av[ such that w(cp) = B and for any z € U \
D (¢, 3Av) one has

lw(z) — Bl > v.
Progf. — See Appendix B.3. UJ

2.5. Notation ©,. — Let A > 0, U be a holed domain, functions Fy,...,F, €
O(W,v) and [ € N*. We define the relation

G:D[(Fl,...,Fn)

as follows: there exist « € N*, C > 0 and Q(X,,...,X,) a homogeneous polynomial
(independent of U) of degree / in the variables (X, ..., X,) such thatforany 0 < § < #/2
satistying

(2.62) CAWi) ™8™ max [Fl < 1

one has G € O(¢°W,,y) and
(2.63) 1Gll—sw,0 < dWro) 6 “QUIF1lIw,ps - - - Fullw,o)-

We shall use the notation QZ(FI, ..., I, if the polynomial Q) is null when X, =0
ie. Q(0,Xo, ..., X,) =0; for example if [ =n =2, Q(X|, Xy) = X; X, + X°.

When we want to keep track of the exponent a appearing in (2.62), (2.63) we shall
use the symbol O,

When § satisfies (2.62) we write

(2.64) §=0"C(Fy,....F,; W,0)
and we use the short hand notation
(2-65) ) ZD(FI, ...,Fn;Wh,U)

to say that (2.64) holds for some positive constants a, C large enough and independent of
Fla ceey Frla c_l(W/Z,U)'
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Remark 2.1. — Note that if U =D(0, py) is a disk containing 0 and I € O(W};U),
* = CC, AA, one has

F(Z, UJ) = O/)(z, w) <— Vo0 = p = Po, ”FHW/:,D((MJ) ’S '01]/2
F(O.1)=0/0) &= 0= p < po. [Flh, e, S 0

hence if Fy, ..., F, € (’)(Wg%) (resp. € O(W‘h\f&)) satisty F;(z, w) = Of(z, w) (resp. F; =
O(7)), 1 <7< n, one has

O,(F,....,F)=0""2 w) (resp. O™~(7)).

2.6. Summary of the various notations used in the text.
—aSbaSgh akb,a<kgb, axbet. See Notation 1.1,
— a S exp(b—) means: for all B > 0, one has a g exp(b — B).
—A(z; A, ) ={w e C, A <|w—z] <A}
~T,={x+p+CrZ), x,yeR, |p|<h} (#=-1). T=R/(2rZ).
— pu,d(U), a(U), Ju, Dy: see Section 2.3.1.
~ W =T, x U, W = {(z, w) e D(0, /' p/*) x D(0, ¢ p/*), —izw € U}.
— W, v = Wiss/2.-50-
— O, (W): the set of o-symmetric holomorphic function on W.
— 50 (W,.v): see Notation 2.3. S/y_\rerU (W,.v): see Notation 4.8.
— 8§ =0"C(F; W,.1), § =0(F; W,.1), O,(F, G), O4(F, G): Section 2.5.
— TC(A, B), (A, B)-twist condition: see Notation 2.6 and Definition 2.4.
— G(f, W), L(f, W): see Notation 4.1.
- Op= ¢JIVF. For the canonical map f see (4.87) and (4.88).
—[R2] ' Y=Yo Py —Y. See Section 4.7.
— M, (F), TxF, RyF: see Section 5.1.
— AAB=(AUB) < (ANB).

3. A no-screening criterion on domains with holes

3.1. Harmonic measures. — Let U be a bounded open set of the complex plane with
boundary dU. We can define its Green _function, gy : U x U — R as follows: for any z € U,
—g(z, -) 1s the function equal to 0 on the boundary 0U of U, which is subharmonic on U,
harmonic on U \ {z} and which behaves like log|z — w| when w € U goes to z (this
means that g(z, w) + log |z — w| stays bounded when w goes to z). The Green function
gu 1s thus nonnegative. We denote by wy : U x Bor(dU) — [0, 1] the harmonic measure
of U (here Bor(dU) is the set of borelian subsets of dU) defined as follows: if z € U and
I € Bor(0U) (one can assume I is an arc for example if U is a union of circles) then
the function wy (-, 1) is the unique harmonic function defined on U, having a continuous
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extension to U and such that wu(z,I) =11fzeland 01t z € U \ 1. Poisson-fensen formula
(¢f [39]) asserts that for any subharmonic function : U — G

u(z)=/ u(w)dwy(z, w)—fgu(z, w) Au(w)
U U

where Au is the usual Laplacian of «. In particular, if / is a holomorphic function on U,
the application of this formula to u(z) =1In|f(2)| gives

1nlf(z)|=/ In|f (w)ldou(z, w) = Y gz w)
au

wif (w)=0
and thus since gy 1s nonnegative
(3.66) In|f(2)| < f In|f(w)|dwy(z, w).
U

Though we shall not use it in this paper we mention the fact that the harmonic
measure @y (z, -) can also be defined in a probabilistic way by using Brownian motions:
if W,(?) 1s the value at time ¢ of a Brownian motion issued from the point z (at time 0)
and T, is the stopping time adapted to the filtration F, of hitting I before U \ I, then
wu(z, ) =E(1;(W_(T_1))); hence

(3.67) In |/ ()] < E(In |[f (W.(T.))D).

This probabilistic interpretation is often useful in trying to get a hunch of the behavior of
the harmonic measures.

3.2. Screeming effect. — Assume now that || < 1 on U and that |[f| < 1 on some
nonempty open subset B C U. Does this imply that / 1s small on “most” of U? Formula
(3.66) applied to the domain U X\ B in place of U yields for any z € U\ B

(3.68) In|f(2)| < wy 5z, 0B) x In||/]ls

and answering the preceding question amounts to getting good estimates from below on
the nonnegative function wy._g(z, 9B).

For example take U =D(0, 1) and B=D(0,0) (a(U \ B) is then the union of the
two circles of center 0 and radii o and 1). It is easy to see that for [z| < 1/2

(3.69) oy g5(z,0B) =In|z|/Inc >1In(1/2)/Inc

and the preceding formula (3.68) applied to the domain U . B shows that

(3.70) In (| lp.1/2) S

In D .
|1HO’| ”f” 0,0)
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If we assume for instance

Il < e, N <o < 1/10, 0<B<a, N> 1

this yields
(3.71) v ez 0D(0,0)) Z N7
(3.72) In |/ Ip.1/2 S —N*F < —1.

Our aim in the next Section 3.3 will be to generalize to more general domains U,
in particular to holed disks

N
(3.73) U=D(0.p) | JD(. p) 2D(0.0)

J=1

g=1,....,N,D(, pj) CD(0, p), pj K o), the bound from below (3.69) and its immedi-
ate consequence inequality (3.70).

However, the spectral properties of the Laplacian (with Dirichlet boundary condi-
tions for example) on a domain U obtained from removing disks from a simply connected
domain Q € R* 2~ C (say the unit disk), and, in particular, the possibility of having useful
estimates such as (3.71), (3.72), depend(s) on the number and the sizes of the holes of U.
This fact, well known in Electrostatics under the name of screening effect, was mathemat-
ically studied by Rauch and Taylor in [40] (see also [41]) where they highlight two dif-
ferent regimes: on the one hand, if the sizes of the holes of U are (very) small compared
with their number, the spectral properties of the Laplacian on U are very similar to that
of €2; on the other hand, if the holes are not so small and become dense (in some sense)
in a region X C €2 (which can be of codimension 1 in €2) the spectral properties of the
Laplacian are similar to those of €2\ X. In this latter case, the holes may act like a screen
that prevents the propagation of the information “In/ < —1 on D(0, 0)” to the rest of
the holed domain U. In Appendix C we illustrate this phenomenon on an example.

We now give conditions under which this screening phenomenon is not effective.

3.3. The no-screening criterion.

Proposition 3.1. — Let U be a domain U =D(0, p) (UIS].SND(,@-, &), D(z,¢) C
D(0, p) (p €10, 1[) and let B C U, B=D(0, o). Assume that f € O(U) satisfies

fllv=1

and

\f llog < m.
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Then for any point z € U :=D(0, p) \ (U, xD(3.4)), 26, < d: < 1
In(121/p) <= In(d/2p)
3.74 In|f(2)] < <7 SN2 N inm
3.74) 4 In(a/p) ; In(g;/p)

Progf. — Replacing z/p by z, zj/p by 2, 0/p by o, &;/p by & and d;/p by d;, we
can reduce to the case p = 1. We then denote D =D(0, 1), D; =D(3;, ¢;), B=D(0, 0).
By Poisson-Jensen formula

(3.75) In|f(2)| < / In|f(w)|dwy 5(z, w)

3(U~B)

< wy 3k, 0B) Inm.

We now compare oy (2, 0B) with op g(z, 0B). We observe that the function z
oy §(z, 0B) 1s the unique harmonic function defined on U \ B which is 1 on 3B and 0
on 8D U (D . U); since 3(U~B) =dBUID U (D ~ U) we deduce by the Maximum
Principle that it takes its values in [0, 1]. Similarly, the function z = wp 5(z, 9B) is the
unique harmonic function defined on D ~\. B which is 1 on 3B and 0 on 8D, hence it
takes also its values in [0, 1]. So

(3'76) U() = wU\E(" aB) - a)D\E('v aB)

is a harmonic function defined on U~ B, —1 < v < 1, which is 0 on dBUdD.
For 1 <j <N, let v; be the harmonic function defined on D \ (B U D;) which is 0
on d(D~B)=9dDU3JB and —1 on 0D;; by the Maximum Principle —1 < v; < 0.

Lemma 3.2. — The function Zjlil vj is harmonic on U \. B and on this set

Proof. — We notice that the function Z}il vj is defined and harmonic on D\ (BU
Ujlil D;) = U \ B. We want to compare v and Zjlil vj on the boundary 3(U \ B) =
0DU9BUI(D \ U). On 9D U 9B the two functions v and Z}il v; are equal (they are
both equal to 0). To compare them on 9(D . U) we notice that (D \ U) C U]il oD;
and since Vj | op; = —1 and for 1 #j, v; < 0 we have at each point z € (D ~\ U) which is
in dD);, Zil v;(z) < —1 hence ZZ\LI Vi | ao~v) < —1. But we have seen that —1 <v <1
on U \ B. We have thus proven that on (U \ B) one has Z;IL v; < v and we conclude
the proof by the Maximum Principle. O
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Because of the Maximum Principle, one has on D \ (BU ﬁj)

In|z —zj| —In2

<v;(2).
In 8j - Uj(z)

Using Lemma 3.2 we hence get for z € U,

N N

N
v(z)zzvj(z)z_Zlnlz—zjl—an Z—Zln(df/Q).

- 5 11’18/' - In &
J=1 J=1 ' J=1 ‘

On the other hand

In|z|
wp-(z, B) = E,

so that from (3.76) one has for z € U

In|z N In(d;/2)
wU\E(za B) Z | | - ]/ .
Ino = Ing;

Finally since Inm < 0, (3.75) gives that for any z € U

Infzl < In(d/2)

J=1

In particular, if for example

N
YRR _ (gl
Ineg; Ino

J=1 J

then In|f(2)| < (1/2) % In m, an inequality which 1s quite similar to (3.70).

3.4. Good triples.
Defination 3.3. — Let U, Uy, Uy be three nonempty open sets of G such that,

U1CU, UQCU

37

We say that the triple (U, Uy, Uy) s A-good (A > 0) if for any f € O(U) such that supy; |f] < 1,

one has

In||fllv, = Aln|f1ly,.
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FiG. 8. — A triple (U, U}, Uy)

Remark 3.1. — Notice that if there exists an open set U C U, U, c U, U, C U
such that (U’, U}, Uy) is A-good, then (U, U, Uj) is also A-good.

Remark 3.2. — In general the fact (U, U;, Uy) is A-good does not imply that
(U, Uy, Uy) 1s A'-good with A and A’ comparable. For example, if U=D(0, 1), U, =
D(1/4,0,) Uy = D(3/4, 09) with 01,09 < 1/10, (U, U, Uy) 1s C/|Inoy|-good while
(U, Uy, Uy) 1s C/|Ino|-good.

We denote by A(z; A1, Ao), 0 < A < Ay, the annulus D(z, 1o) ~ D(z, ).
Here is an immediate corollary of Proposition 3.1:

Corollary 3.4. — Assume that the assumptions of Proposition 3.1 hold with o = p°/2
(b>1). Then for all 1 < i <N such that d; > 20&; and D(z;, d;) C D(0,e°p) (8 > 0), the
triple

(U, A(z; (d;/10), ), DO, pb/2)>

s A-good with

A8 = In(d;/20)
Hinpl & In(g/p) |

4. Symplectic diffeomorphisms on holed domains

4.1. Cartesian Coordinates (CC) and Action-Angle variables (AA). — We define on
R? :={(x,9), x,y € R} (resp. T x R:={(0,7), 0 € T, r € R}) the canonical sym-
plectic structure (area) BEC* := dx A dy (resp. Bp> := dO A dr). This space as well as
its symplectic structure can be complexified: the space C? := {(x,7), x, y € C} (resp.

Too x CG:={(0,7), 0 € To, r € C}) carries the symplectic structure BG* := dx A dy (resp.



ON THE DIVERGENCE OF BIRKHOFF NORMAL FORMS 39

B&Y :=dO A dr) and the involution oy (resp. 03) defined in (2.42) preserves (C?, BG%*)
(resp. (T x G, ,BéA)> and fixes (R?, ,Bﬁc*) (resp. (T xR, ,BQA)).

When working in the elliptic fixed point case, it will be more convenient to use
other Cartesian coordinates. Let’s introduce the (holomorphic) complex change of coor-
dinates ¢ : G* — C?, ¢ : (x,9) — (2, w),

e=L+i) v= L —iw)

(4.77) - ) Ve )
w=—75(x—1) =7+ w).

We see that (09 is as in (2.42)) with the notations of Section 2.1
dx A dy = @*(dz A dw), pooop ! =0y, e(W, T =W, G

We shall denote (MY, BCC, ay), resp. (MYC*, BCY" ), (CC stands for Carte-
sian Coordinates) the space C? endowed with the symplectic structure B := dz A dw,
resp. BYC* = dx A dy, and the involution o9, resp. o1. Similarly, (M*?, B4, 03) (AA for
Action-Angle coordinates) is the space To, x G endowed with the symplectic structure
B := dO A dr and the involution o3. We shall use for short the generic notation (M, 8, o)
to denote either of the preceding sets endowed with their symplectic structure and invo-
lution. We also use the notation Mg or (M)g for M N o (M). The 2-form B restricted
to Mg is still a symplectic form. We shall call the origin O in Mg, the set O = {(0, 0)} if
M=C>=MorM*“ and O=T x {0} if M=M** =T, x C.

If W is a nonempty open set of M (resp. Mg) we say that £ € Diff® (W) (resp.
f € Dift" I(W)) is symplectic if it preserves the canonical symplectic form B: /B = B.
We denote by Symp® (W) (resp. SympCI(W)) the set of such symplectic holomorphic
(resp. C!) diffeomorphisms. If furthermore f o 0 = o o f we write / € SympZ(W).
We shall say that a symplectic diffeomorphism f is exact symplectic if there exists a 1-
form A, the Liouville form, such that dA = B and f*A — X is exact: there exists a function
S such that f*A — A =dS; S is called the generating function of f (w.r.t. A). We then denote
S € Sympe(f”g (W) (resp. [ € Sympg (W)). In our case the relevant Liouville forms will be

(4.78) AA)A=1d0, (CC)A=(1/2)(wdz—zdw), (CC* A= (1/2)(xdy—ydx).

Let W C M be o-symmetric (06 (W) = W) and such that (W)g :=WNo (W) =WN Mg
is a nonempty open set of Mg. Then, if / € Sympgwo (W), its restriction fjwyg : Mr D
W)r = f((W)r) C Mg defines a real analytic (exact) symplectic diffeomorphism. If
S C W is f-invariant (f(S) = S) the set (S)r := S N Mg 1is also left invariant by f|w)g-
Notice that if U C C is a real symmetric open set such that U N R # (J we have

(W;ZA’%)R =T, xU)r=Tx (UNR) = W%QR
(Wi = ((2.0) € Wipn, w =2} = (Wirm,Jn
WEEIR = (1) € R, 2 €UNR,) = Wil
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In any case (W, v)r ={re Uy NMgr ={re UNR} N Mg.

There are symplectic changes of coordinates ¥ that allow to pass from the (z, w)-
coordinates ((CC)-coordinates) to the (8, r)-coordinates (AA)-coordinates). They are de-
fined as follows. The maps 7+ 7'/2, " > ("/?¢*/? for t > 0 and —7 < 5 < 7 (resp. for
t> 0 and 0 < s < 27) define holomorphic functions on G\ R_ (resp. on G\ R;). We
can thus define the biholomorphic diffeomorphisms

To x (CNRY) 3 (0, 1) -5 (2, w) € (2 w) € €L —izw ¢ Ry}
(4.79) 2= o/ y1/2 0 r=—izw
=

in/4,1/9 0 0 i w4 (—igw) /2
r/4e ¢ =e Tz =€ .

w=¢
which satisfy
dz N dw = do /\drandlpioagolpj:1 = 03.
Notice thatif' 4> 0

(4.80) T, x (D0, p) ~ Ry) 5 {(z’ )€ G2 { —izw € D(0, p) ~ Ri}

< |z/w| < e
hence with the notations of Section 2.1
(4.81) Wit R, D Ve (Wit ry)-

4.2. Symplectic vector fields. — If (M, B) = (M®“, B) or (M**, B) and F € O, (M)
we define the holomorphic symplectic vector field X by B = dF. If J is the matrix

0 1
(_1 0) one has
Xy =]JVF.

We denote by ¢y the flow at time ¢ € R of the vector field JVF and &y = ¢le its
time 1-map. It is a symplectic diffeomorphism.

If G: M — R or C is another smooth observable we define the Poisson bracket of ¥
and G by the formula {F, G} = B(Xy, X) or equivalently

{F, G} := (VF,JVG).
One then has
d
%(G o cDi?)\l:O = LJVFG ={F, G}, [LXF, LX(;] = LX{y_g;-

If / is a symplectic diffeomorphism one has

(4.82) fo®pof ' =dy, where ,F = (f ") F=Fof "
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4.3. Integrable models. — We assume that (M, 8, o) is (C?, dx A dy, 01), (C?, dz A
dw, 09) or (T X G, d0 A dr, 03). In all these examples there exists a natural (Lagrangian)
foliation given by the level lines of the observable r: M — G

2+ P

5
which has the property that for every m € M, such that r(m) € R, the map R> ¢ —
¢jV,(m) is 27 -periodic. In particular, for ¢ € R, the set {r = ¢} C M is itself foliated by the
27 -periodic orbits of the flow ¢jy,; they are either points or homeomorphic to S'. We
shall say that a symplectic diffeomorphism of M is wtegrable if it is symplectically conju-
gated to a diffeomorphism that leaves globally invariant each level line of the preceding
function . It 1s not difficult to see that a diffeomorphism satisfying the previous condition
1s of the form & where H=Q o7,

Let U be a o-symmetric holed domain of G and Q2 € O, (U). Then,

(4.83) 7(x,9) =

r(z,w)=—wzw, r@,r)=r,

(CC): Polz, w) = (e 720z, 72 Ow),
(4.84) (AA): ©u0,7) =0+ 02(r), 1),
(CCx) 1 Po(x, ) = (R0 (x 4+ ), I(e 720 (x + iy)))

and in any case
Co(Wiu) CW,u, h="h—[3(32) .
On the other hand, since €2 is o-symmetric, one has whenever U is o -symmetric,

Qo ((Wiu)r) = (W), u)R).

Notice that in all cases ®g 1s an integrable diffeomorphism of M.

4.4. KAM circles. — A circle of Mg (Mg equals M@ =R?* MEC, Ma* =T x R) is
any set of the form ({r = ¢})r = ({r = ¢)} " MR, ¢ € R, of cardinal > 1 (r is the observable
of (4.83)). In the (AA) resp. (CC*) cases this set coincides with the usual circle T x {r = ¢}
resp. {(x,9) € R%, (1/2)(x* +»*) = r}; in the (CC) or (CC*) cases ({r = ¢})r is a circle if
and only if ¢ > 0 (it is empty if ¢ < 0 and reduced to {(0, 0} if ¢ = 0).

Let W be an open subset of Mg and [ € Sympgc_l (W) a C' symplectic diffeo-
morphism W — f(W). For example f could be the restriction on W = (W, y)r of
VS SympS’U(Wk,U), W,.u C M. A KAM-circle (or KAM-curve) for f is the image g(({r =
¢Hr) C W of a circle ({r = ¢})r, ¢ € R, by a C! symplectic diffeomorphism g : Mg — Mg
fixing the origin (g({r = O}g) = {r = O}r) and such that

g_l Ofog:q)Qﬂwr"i_O(r_C), CUGR\Q
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The set g(({r = ¢})r) C W is then f-invariant, homeomorphic to 8! and non homotopi-
cally trivial in the following sense: in the (AA)-case it is homotopic to {r = 0}g =T x {0}
and in the (CC) or (CC¥*) case it has degree £1 wirt. to the origin {r = 0}gr = {(0, 0)}.
Moreover, the restriction of / on g(({r = ¢})r) C W is conjugated to a rotation on a circle
with frequency w € R.

Notation 4.1. — We denote by G(f, W) the set of [ -invariant KAM-circles y C (W)r and
by L(f, W) C (W)r their union: L(f, W) =, cg ) V-

Remark 4.1. — Let g,f,fi,f : Mg — Mg be C!' symplectic diffeomorphisms
where g({r = 0}g) = {r = O}g. Then,
(1) IfA C B C (M)g, then L(f, A) C L(f, B).
(2) If /1, /o coincide on a set A, L(f1, A) = L(fz, A).
(3) For any set A C Mg

(4.85) gL A =Ligof og ', g(A)).
(4) If g7 o f 0 g and f; coincide on a set A one has
(4.86) L, g(A) = g(L(fr, A)).

Definition 4.2. — If A C G we define Wy = {r e AN Mg ={r e ANR} N Mg.

Let us now state a criterion that ensures the existence of KAM-circles. Assume that
there exist

p#LcA=IN|JLcACR,

JeJ

where L is compact and A 1s of the form I \ Uj-EJ I; where I C R is an interval and the I
are pairwise disjoint intervals.

Proposition 4.3. — Let f € SympCl (W3R) and suppose that there exist 2 € C'(R) and a
C! symplectic diffeomorphism g : Mg — Mg fixing the origin, ||g — id||cv < C™' (C depends only
on M), such that

on W, g ofog="dqq and g(Wp) C Wx.
Then, QFZJ-GJ IL|'% < 1, one has

Lebyg, (Wa ~ £(/, W3)) < C x (Lebr(A N L) + |lg — id| ;).

Progf. — Since Wy, = L(Pg(,), W1) one has from (4.86) g(Wy) =g(L(Pq(), W) =
L(f,g(Wp)) and since g(Wy) C Wx one has g(Wy) C L(f, Wx). On the other hand
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if we define E by Wy = W, U E, one has g(W,) = g(Wp) U g(E) and thus g(W,) C
L(f, W) U g(E). We therefore have

Lebyg (Wa N L(f, WR)) S Lebyig (g(E)) + Lebag (Wa A g(Wa)).

Since A =1\ UJ.EJ I; and Z;’e_]|lj|1/2 < 1, Lemma J.1 from the Appendix yields

Leby (Wa A g(Wo)) < llg — id||J; and since Lebyig (¢(E)) = Lebag (E) we get the con-
clusion. O

4.5. Generating functions. — Let & > 0, U C G be a real symmetric holed domain
and Wyt and Wi, the domains defined in (2.47) and (2.46)

W =T, x U
WS = {(z, w) € D(0, ¢'p/) x D(0, &' p/%), 7= —izw € U}.

We shall associate to each F € O, (W, ) small enough a real symmetric holomorphic
symplectic diffeomorphism f of W), y which is exact with respect to the respective Liouville
forms as defined in (4.78)). It is defined as follows: in the (AA)-case

(4.87) Je0,1) =@, R) = {7:R+ 3, F (0, R)

and in the (CC)-case

- Z=2z+03F(z, w)
4.88 (z,w) =k, w) < ~ ~
(4.88) iz w) = &) {w=w+3wF(Z,w)~
Lemma 4.4. — There exists a constant C such that fFe O, (W, u) and 0 < § < h satisfy
(4.89) CE AW, I I, < 1,

the map fy defined by (4.87), (4.88) is a real symmetric holomorphic exact symplectic diffeomorphism
Srom e”*W,, s onto ils image and

(4.90) ¢ *Wu C (e Wyu) CWu.
We shall call fi the generating map of ¥'. Moreover
(4.91) S = frroqryir-

Progf. — See Appendix A.1. OJ
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Remark 4.2. — The symplectic change of coordinates ¥+ introduced in Sec-
tion 4.1 preserves exact symplecticity: if f9C is exact symplectic the same is true for
M = xp; 0 fYC o)., Indeed, if Y.(0, 1) = (2, w), 2 = ™27 w = ¢™/*1/%0%  one
computes the Liouville form (1/2)(wdz — zdw) = rd6f.

Conversely, if a diffeomorphism (6,7) = (¢, R) is exact symplectic and close
enough to the identity, it admits this type of parametrization.
More precisely:

Lemma 4.5, — Let | € Sympgg (Wyu) be an exact symplectic diffeomorphism close enough
to the identity. Then, if § = 0(f —id, W), ) (recall the notation (2.64)) there exists F € Oy (¢ W, 1)
such that on e *W, v one has

S=f  F=0(Df —id]) =O:(f —d).

This ¥ is unique up to the addition of a constant.
Conversely, given F € O(W,, ) one has

(4.92) Ji = ®r 0 foo,q = id +JVF + O(|D*F|| DF|).

Proof. — See Appendix A.2. OJ

The composition of two exact symplectic maps is again exact symplectic and more
precisely

Lemma 4.6. — Let F, G € O(W,.v). If § =0(F, G; W, v) then on ¢ W, u,
(4.93) JE 0 J6 = Je+G+O(IDE,uIDG,0)
(4.94) Jo+G = SerDF), 016 0J6 = 06 InGl,u 0 ()-
In the Action-Angle case, if S2 depends only on the variable r then ®q = fq and
(4.95) @q o fr = farr

Progf: — See the Appendix, Section A.3. 0J

4.6. Parametrization. — We shall parametrize perturbations of integrable symplectic
diffeomorphisms defined on a domain W, iy by

S =Pau of

where Q € O, (U) and F € O, (W,v). Note that if = id + O?*(z, w) or f(0,r) =id +
(O(r), O(?)) then:

Case (CC) F(z,w) = O%(z, w), Case (AA) F(4,r) =0O@).
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4.7. Transformation by conjugation. — We now define
(4.96) Q2] Y=Yod,-Y.
Note that

(AA)-case fY=Y(#,r), ([P]-Y)O,r)=Y(O+0R2((),r)—Y(O,7r);
(4.97) (CCO)-case f Y =Y(z, w),
([P]-Y)(z, w) =Y(e 920z, 220w) — Y(z, w).

If W =W, is a holed domain and § > 0 we introduce the notation
WZ?L‘ = W/?{ZJ =W,u U @o(W,u).
The main result of this section is the following:

Proposition 4.7. — Let Q@ € O,(U), T € O,(Wy0), Y € Op(WE). Then, if 8 =
o(F, W,.uv) No(Y, W,?U) there exists F € O, (e W), ) such that

[(°Wiul  fo(Peofi)ofy' =Dqof
(see the notation (2.44)) and
F=F+[Q]-Y + [[DFwO,(Y)
=F+[Q] Y +9,Y.F).

Progf. — See the Appendix, Section A.4. UJ

Remark 4.3. — A direct computation shows that if Q(r) = 2w wyr + O(?) and
Case (CC) F(z,w) =0z, w) and Y(z w)=0"z w),
Case (AA) F(@,rn)=0(0" and Y@, =00
then

Case (CC) ﬁ(z, w) = 0*2(z, w), Case (AA) F(Q, r) = 0" (7).

4.8. Symplectic Whitney extensions. — Let U C G be a real symmetric holed domain
W,uv CM, Fe O, (W,u) and F¥ : M — C be a o-symmetric C* Whitney extension of
(F, W4 u) (¢f Section 2.4). There exists a constant G > 0 (depending only on M) such that
if |FY*| 2y < C7', Equations (4.87), (4.88) define a C'-diffeomorphism fiw: : M — M
such that

. -1 - —1 | Wh
(4.98) max(||fpwi — |1 s |[]me, —dlcron) < CIFlc2an-
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Note that fpwi and fbﬁ, are C! o-symmetric extensions of (f¢, e W, ) and (£, e *W,1)
for any § satisfying (4.89), ¢/ Lemma 4.4.

In general, the diffeomorphism fpw: is not symplectic on M but since F™* takes real
values on Mg, frwi : Mr — Mg 1s an exact symplectic diffeomorphism of Mg.

Notation 4.8. — We shall denote by Symp, (W;.1), resp. Symp, , (W,.v), the set of C!
o -symmetric diffeomorphisms M — M that are in Symp? (Wyu), resp. Sympg’s(Wh,U), (hence
holomorphic on W, ) and symplectic, resp. exact symplectic, when restricted to Mg — MRg.

5. Cohomological equations and conjugations

Our aim in this section is to provide a unified treatment, both in the (AA) and (CC)
cases, of the resolution of the (co)homological equations (Proposition 5.3) involved in the
Fundamental conjugation step (Proposition 5.5) that we shall use to construct all our dif-
ferent Normal Forms (for instance the approximate Birkhoff Normal Form of Section 6,
the KAM Normal Forms of Section 7 and the resonant Normal Form of Appendix G).

5.1. [Fourier coefficients and their generalization. — In this section we assume that either:
— Case (CC): (M, B) = (C x G, dz A dw) and we denote by r(z, w) = —izw
— or, Case (AA): (M, B) = (T x G, dO A dr) and we denote by 7: (6, r) = 7.
In both cases the flow ¢ — ¢va7 1s 27 -periodic wirt. £ € R (¢f (4.84)).
Let U be a connected open set of C and F € O(W,,iy). For any m € W,y and any
te R, (],’)jw(m) < W;,,Ui

(CO): By, (2 w) = (¢72, d'w),
(AA): ¢J[V,(9, =0 +1tr).

We can hence define { +— F ((#fvr(m)) which is a 27 -periodic function R — G and for
n € Z we introduce its n-th Fourier coefficient M, (F)(m):

1 o —nt [
(5.99) M, E)(m) = o fo ¢ o Ly (m)dr

(5.100) F(¢fe,(m) =Y M, (F)(m)e".

neZ

The dependence of M, (F)(m) is holomorphic in m and we have thus defined M, (F) €
O(W,.u). We observe that

(5.101) M, (F) o ¢g/" = M, (F)
and

Ve R, Mo(F) o fy, = My(F).
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5.1.1. Case (CC). — One has
(5.102) Do, (2o w) = (7", d'w)
and if I = F(z, w), (5.99) becomes

1 2 . _ »
M,F)(z, w) = — / e "F(e "z, ¢'w)dt.
2 J,

If furthermore F(z, w) = Y, ene F; 7w’ is converging on some polydisk D(0, u) x
D(0, i) one has

(5.103) M,B)(zw)= Y Fdw'

(k,))eN?
l—k=n

hence, if for some p € N*, F(z, w) = O’(z, w), then for any n € N, M,(F)(z, w) =
O'(z, w).

5.1.2. (44) Case. — In that case

Blo, (0,7 = (O +1,7)
and if F =F(0, r) we define

2w
M, ()@, r) = (271)_1/ ¢ "F (O + 1, 1)dt
0

= f(n, r) "

where
F(n,7r) = Q2m)~! f e ™F(O, r)do
0

is the n-th Fourier coefficient of F(-, 7). Notice that though F is only defined on T, x U,
M, (F) is defined in T, x U.

Remark 5.1. — We see from (5.99) that if for some p > 0, F = O’(r) (which means
that for any m € W,y one has |F(m)| < Clr(m)|’ for some C > 0) then M,F = O’(r) for
any n € N.

Remark 5.2. — Using the fact that M, (F) o ng,/ "= M, (F) one can show that
Srodpe!" =¢/" o fi both in the (AA) and (CC) Case.”

% For example in the (CC)-case, since (]5}57/"(/:, w) = (%2, /"w), the condition on F implies

F(e 2™/ z, #™/"i) = F(z, W) and the conclusion follows from (4.88).
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5.1.3. Form of Mo(F).

Lemma 5.1. — If ¥ € O, (W,,v) there exists M(F) € O, (U) such that

(5.104) My(F) =MT) o, IM®E)[lv < IFll,u-
Moreover
(5.105) Sy = P ©fo,m)-

Progf. — By definition of M (F) we see that for every 1 € R
MO(F) o ¢Jtv,, = MO(F)-

Lemma D.1 of the Appendix provides us with M(F) € O, (U) such that My(F) =
M(F) o 7. We just have to prove (5.105) in the (CC) case. If (Z, W) = fua) (2, w) one has

Z=(1+0(M(F))(zw))z, w=(1+woM(®P)(zw))"'w
and since w(z, w) = w + O(F) we get

G, W) = (¢ ?MOGw) . ANy 4O, (), -

5.1.4. Decay of the M, (F). — We observe that
— 1n Case (AA), for m = (0, r) fixed in W, i, the function

Th7|%€| — C
L F(¢ly, (m) = F(O + 1, 7)

is well defined and holomorphic;
— 1n Case (CC), for (z, w) € W,y fixed (recall (5.102) and the definition (2.46) ofWhC:%),
the function

{R+ i1 —In(é"p'/2/|w]), In('p'/2/|2))[— C

(5.106) o
t = F(gyy,(m) = F(e™"z, e'w)

(with p = sup{|r|, r € U}) is also a well defined 27 Z-periodic holomorphic func-
tion. Furthermore, if m = (z, w) € W,(E_CBU one has max(|z], |lw|) < ¢72p'/? thus
min(in(Zp!2/[w]), In(ep!2/|2])) > .
Hence, in any case, for m € W,_; v the function ¢ — Fo d)jw(m) 1s 277 -periodic, holomor-
phic on T and bounded in module by ||F|lw, . The Fourier coefficients M, (F)(m) of
the function ¢ = F o ¢y, (m)

hU"

(5.107) Foglo, =Y ¢"M,(F)

neZ
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thus satisfy

1/2
(5.108) (Z |M,Z<F)(m)|2) < [1Fllw,,

nel

and 1in fact (¢f for example [44])
1/2
(5.109) (Z 62'"'8|M,Z(F)(M)|2> < 2"2)[Fllw, -
nel

5.1.5. Truncations operators. — Let us define for N € N U {00},

TNF = Z M, (F), RyF=TF — TyF.

|n|<N

Lemma 5.2. — If F € O(W,.v) one has

(5.110) o Wiu, F=Y M,(®F)
neZ
(5.111) IM®) w0 S e 1F w0
(5.112) IRNF w0 S 87 ¢ ™ [ Fllw,.»
(5.113) ITNFllw,_s0 S 1Flw,e s '™ <1).

Furthermore, of for some p > 0, F = OP(r) then

(5.114) RyF = O(r);

in the (CC Case), if F € O(W,.1) N O*(z, w), one has
(5.115) (RxF) (2, w) = ON(z, w).

49

Progf. — Inequality (5.111) is a straightforward consequence of (5.109). Equality
(5.110) comes from taking ¢ =0 in (5.100). (5.112) is a consequence of (5.111) and (5.113)

is clear from (5.112). Inequalities (5.114) and (5.115) are consequences respectively of

O

Remark 5.1 and of identity (5.103).

5.2. Solution of the truncated cohomological equation. — We assume that 0 < p <1 and

that U 1s a o-symmetric open connected set of D.

We recall that we have defined in (4.96) (¢f Proposition 4.7) for any Q2 € O(U) and

Y € O(Wi)
[Q] -Y=Yo CDQ(,) -Y.

The main Proposition is the following:
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Proposition 5.3. — Let Tt > 0, Q € O,(U), K> 0, N € N* U {00} be such that one has
onU

1
(5.116) VU )eN' xZ, | <k<N — |k2—89(-)—l|zK‘l|k|".
T

Then, for any ¥ € O, (W,,0), there exists Y € O, (W,?L) such that, on Wy, one has My(Y) = 0,
M (Y) =0 for |k| > N and

(5.117) TaF — Mo(F) =[2]-Y.

This Y satisfies forany 0 < 8 < h

(5.118) IYllwe, < Kmin(@@™ 2, N |[F|], v

h—8,u ™

Moreover, if we assume in addition that S2 s of the form 2 (r) = 2w wor, wy € R, then one can improve
the exponent in (5.118):

(5.119) IYlle, , < Kmin(™ NO[|Fll;u.

Proof. — We observe that both in Case (A4) or Case (CC) one has on W,y N {r € R}
(of (4.84)

¢asz(;»)

Qo =Py, -

Hence, if G is a function in O(W,,y) one has on W,y N {r € R}

1 2 ) ‘
M, (G) o Dg() = o / e "Go ¢f$fg(’)dt
0

21
_ nd(r) 1 7intG 3 di
= - i e ° ¢y,

— einf)Q(r)Mn (G)

and since M, (G) € O(W,,u), the left hand side of the preceding equations can be holo-
morphically extended to a function in O(W,, ). We then have in O(W,, 1)

[Q]- M, (G) = ("% = HM,(G).

Note that from Lemma M.1 one has for r € U, |¢"¢") — 1| > K~!|n|~". If we define Y by

1
(5.120) V=) e M®)

0<|n|<N
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we have from Lemma 5.2

—|n|é
Y w0 SK Y (a7 "™ F]l0

1<|n|<N

<min(Ks™ "7, KN ||F|l,.u
and
[Q]-Y=Yodq—Y=TyF— M,(F).

This last formula shows that if we define Y on Do (W)s.u) by Yo dq) =TNF —
My(F) + Y the functions Y and Y coincide on @) (W)—s.u) N W,_s.uv and thus Y can
be holomorphically extended to @ g ) (W)—s.u) UW,_su =: Wff_ s.v and

. —(1 1
IYllye, , S min(Ks~00, KNT)|[F],0,

which is (5.118).

The fact that My(Y) = 0 and its uniqueness (under the condition M(Y) = 0)
comes again from Lemma 5.2. Finally, the o-symmetry of Y on W,y is clear.

To conclude the proof of the Proposition we just have to check that if (277)~'Q(r) =
wy € R satisfies (5.116) then (5.119) holds. This is a result due to Riissmann [45] that we
now recall for completeness. In fact, Riissmann proves that if

D, = min |nw, — |, D} = min D;
leZ 1<j<n
one has
N
(5.121) Y D<@ /3HDY
n=1

27T 1w

From Lemma M.1 one has |e — 1| > 4minjez |nwy — [| = 4D,. Thus, if we apply

Cauchy-Schwarz inequality to (5.120) we have for v=0or v =24

1/2
-2 ) 2|n 2
||Y||w;,,g,U5< > D, ) ( > e'"'“||Mn<F>||w,la,U)
1<|n|<N

1<[n|<N

1/2

1/2
5( > e‘“’”D;?) Fllw,, (o (5.108), (5.109)).

1<[n]<N
— If N < 00, we take v =0 and (5.121) gives
1Y llw, 0 < DR IF 0

S KN Fu.
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— If N = 00 we take v = §. Taking into account (5.121), we perform an Abel summa-
tion (discrete integration by part) on the sums >, _ e 2""D 2 3~ e~ AMD-2

this yields

1/2
—2|n|§ __ —2 1)é -2
||Y||w,,w~< > @ (n+03 (D) ) ¥l

1<|n|<o0

1/2
—2|n|8 2
5( > 8Kl ) ¥l

1<|n|<o0

S KT Flu-

Remark 5.3. — If in Proposition 5.3 U =D(0, p) is a disk centered at 0 and

(AA)-case F(0,r) = Z Zf‘k(l)ede v

keN [eZ

(CC)-case F(z, w) = Z Fkvlzkwl

(k,)eN

one has the more explicit expressions

i/
(AA)-case Y(0.1) =Y m’;f)_l 10k

keN leZ*

(5.122) Fop
(CCease Yz w) = ) —mot——2w',
(k,)eN
Ik

In particular, if

(CC)-case F(z, w) =0"(z, w)

Q(r) =2mwwyr and
(AA)-case F(@,r) =0"()
then Y satisfies also (see the remarks at the end of Sections 5.1.1 and 5.1.2)

(CC)-case Y(z, w) = O0"(z, w)
(AA)-case Y@@, r)=0"(r).

5.3. Fundamental comjugation step. — We begin by the following consequence of

Proposition 4.7. Let U be a holed domain, /4 > 0.

Lemma 5.4. — There exists a > 2 and C. > 0 such that if Q € O, (U), F € O, (W,v),

YeO, (W,?U) and 8 =0(F,Y; W,v), 8 > 0 satisfies
(5.123) Cd(W,0) 8 ||Flw

}L—
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then one has on e W,y (cf Lemma 5.1 for the definition of M(F))
(5.124) Ao®oofiofy! = Painm OfF—MO(F)+[Q+M(F)]-Y+D§)(Y,F)'

Proof: — We first observe that since F = F — My(F) + M (F), we have by (4.94)
and Lemma 5.1

Jr =S Mo®) O Jr—Mo)+9s(F)
= CDM(F) OfDQ(F) OfF—Mo(F)+Dg(F)
= Drr) O fr— Mo @) +02(F)

and thus

Dq o fr = PorMmE) OSr—MoF)+O:(F)-

Now we use Proposition 4.7 and make explicit the notations 9 and O: for some @ > 0 that
we can choose > 2 and some C > 0, if (5.123) is satisfied, one has

(9.125) v 0 Do) O fi-Mo)+0:) OS5

= Paiwm °fF—Mo(F)+[Q+M<F)]-Y+bgﬁ)(Y,F)'

0

Proposition 5.5. — Let 4y = a+ 4 (a_from Lemma 5.4). There exists C > O such that the
Jollowing holds. Let U be a holed domain, Q2 € O, (U), and ¥ € Oy (W), ). Assume that there exists
a holed domain V.C U, N € N* U {oo} and K > 0 such that on V the following non-resonance
condition (cf- (5.116)) 1s satisfied:

1
(5.126) V) eN XZ 1 <k<N — |/f2—asz(-)—1|zK—1|k|-f
T

and assume that CN~' < 8 < min(4, 6_1) is such that e W~ is not empty and
(5.127) (8 dW;) Kl < T
Then there exists Y € O (W,?V) solution on W}SZV of the cohomological equation (¢f. (5.117), (5.118)):
(5.128) TxF = Mo(E)=—[Q1-Y, Y], -sewa, SKS O,
and Q € O(e°W,v), Fe Oy (W,.v) such that one has on e W, v,
fro®apofiofy =®apofi  Q=Q+MF)

(5.129) ~ —(@+7) 9 —N&/2
[ Fllcse-swv) < K8 d(W)v)) ™ IEWy +e ¥l -
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Proof. — We apply Proposition 5.3 to obtain some Y satisfying (5.128) and we
apply Lemma 5.4 with § equal to §/2. Since (¢f (4.97)) [2+MI)] - Y =[R2]-Y +
O(IVY||[VIM(F)|) =[] - Y + O (Y, F), we get using [Q] - Y 4+ F — M (F) = RyF (¢f
(5.117)),

Wy, Jo®gofrofy! =: dgof

with
(5.130) Q=Q+ M)
(5.131) F=RyF+ O (Y, F).

The definition of the symbol Dg), (5.112) and (5.128) show that there exists a universal
positive constant C such that if (5.127) is satisfied one has

(5.132) IFl -2, S K™ dWiy) ™ )INFIG o+ 87 e F L.

Inequalities (5.129), comes from (5.132) and Cauchy’s inequality (2.53) of Section 2.3.4
(applied with ¢ °W, v and ¢"*?W,, y in place of [ SW,.u and W, i) because d(e ?/*W,,y) >
(1/2) d(W,.y) if 6 < 1/10 (which is the case if C is large enough). O

6. Birkhoff Normal Forms

6.1. Formal Normal Forms. — We recall in this subsection the classical results on
(formal) Birkhoff Normal Forms. For more details on the related formal aspects we refer
to Appendix E. We also explain how Pérez-Marco’s dichotomy extends to the diffeomor-
phism case (in particular in the (AA)-case).

6.1.1. BNF near a non-resonant elliptic fixed pomnt ((CC) case). — Letf: (Ri, 0) —
(R?,0) be a real analytic symplectic diffeomorphism of the form f(x,y) = Df(0, 0) -
(,9) + O%(x,y) where

DF(0,0) = ®or0y, = (COS@”wo) - sin(znwo>)

sin(2mwy)  cos(2mwy)

with oy e R\ Q.

If ¢ : C*> - C? is the change of coordinates ¢(x,y) = (z, w) defined in (4.77)
the diffeomorphism [ := ¢ o}; o ¢! is exact symplectic and of the form f(z, w) =
Do (2, w) + O*(z, w) where 7(z, w) = —izw

cDQna)or(Z, 'LU) = (g_Z”i“)[)Z’ €2ﬂiw()w)_
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From Lemma 4.5 we have the representation

f = CDQJTa)or Oﬁ» F= 03(5» LU)

for some F € O, (D(0, n)?), u > 0. We then have the following classical proposition that
establishes the existence of Birkhoff Normal Forms to arbitrarily high order.

Proposition 6.1, — Let wy € R~ Q. Then, for any N > 3 there exist o -symmetric holomor-
phic maps Qx : (C,0) — C, Zx, Fx : (C*,0) — C such that on a neighborhood of 0 € C* one
has (r=—1zw)

]FZN o (q)anor Oﬁ) Oﬁ}l = (‘DQN oﬁN
(6.133) Fx(z, w) = O* NV (zw),  Zn(z,w) = O%(z, w),
QN(T) = 2mwyr + 02(7’).

Remark 6.1. — The sequences (Zx)n and (S2x)n converge respectively in G[[z, w]]
and in R[[7]]. If Z, € C[[z, w]] and Q24 € R[[r]] are their respective limits one has in
C[[z, w]] the formal identity

]%oo o (cDQmuor Oﬁ") OJFL_O.} = (I)Qoo

(6.134)
Zos(z,w) = O’ (2, w), Qoo (1) = 2mwyr + O (7).

Conversely, (6.134) defines Q2 uniquely;*” Q. is the Birkhoff Normal Form BNF(f) of /
(and BNF(f) of /). In particular, BNF(f) is invariant by (formal) symplectic conjugacies
which are tangent to the identity.

Remark 6.2, — If [ = ®g o fp with Q = Q(r) = 2mwyr + O(*) and F(z, w) =
O?ND (> w) then

(6.135) BNF(N)(r) = Q1) + OV (7).

6.1.2. BNF near a KAM circle (Action-Angle case). — Let f: (T x R, T x {0}) —
(T x R, T x {0}) be a real analytic symplectic diffeomorphism of the form f(6,r) =
(0 + 2wy, 1) + (O(r), O(r*)). We notice that @y, : (0, 7) > (0 + 2wy, r). We can
thus write / under the form (£, p > 0)

J = Poray o, Fe O, (' (T, x D(0, p))), F=0%.

37 The normalizing map Z, is unique up to composition on the left by a formal generalized symplectic rotation @,
A eR][[]].
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Proposition 6.2. — Let wy € R be Diophantine. Then, for any N > 3 there exust real analytic
maps Q2 : (R, 0) = R, Zn, Fx 1 (T x R, T x {0}) — R such that

(6 136) ﬁl\' o (QQT[WOY Oﬁ‘) O\]%:\'l = q)QN OﬁN
Fx(0,1) =0N"(1), Zn0O.,n)=0°(), Qn(0)=2mwy+O%().
Remark 6.3. — Let C*(T)[[r]] (where C*(T) = J,_, C¢(T)) be the set of formal

power series

(6.137) F@,r = ZF”(Q)r”, F, e C®(T) for all n € N.

neN

The sequence (Zn)n converges in C“(T)[[r]] and the sequence (2x)n converges in
R[7]]. If Z € C?(T)[[r]] and Q2 € R[[7]] are their respective limits one has in
C?(T)[[r]] the formal identity

(6.138) S © @rniy OF) 0, = B,
Z5(0,1)=O0(), Qoo (1) = 2 wor + O (7).

Conversely, (6.138) defines 4, uniquely;*® Q. is the Birkhoff Normal Form BNF(f)
of /. In particular, BNF(f) is invariant by (formal) symplectic conjugacies which are of
the form id + (O(r), O(r%)).

Remark 6.4, — If f = ®g o fp with Q = Q(r) = 2w wer + O(*) and F@,r) =
ON*1(7) then

(6.139) BNF(1)(r) = Q1) + ON (»).

Remark 6.5. — The reason why we impose a Diophantine condition on wj in the
statement of Proposition 6.2 is the following. The existence of the formal Birkhoff’ Nor-
mal Form (6.136) derives from an inductive procedure where at each step n € N* one con-
structs a formal conjugation fy, with Y, € C“(T)[[r]] that conjugates f;, (F, € C*(T)[[r]],
F,=0"()tof,,, Fp € C°(DIr]], For (0, 1) = O"*1(r)). To perform this conjugation
step one has to solve a cohomological equation F,(0,7) =Y,(0 + 27wy, ) — Y,(0,7) +
fOQn F, (¢, r)de where 7 is a formal variable but 6 lies on T (see Lemma E.7). This equation
is classically solved by passing to Fourier coefficients (see for example [13]) but it involves
small denominators that can be dealt with if w, satisfies an arithmetic condition, for example
a Diophantine one (weaker conditions such as Bruno condition or even In ¢, = 0(g,)
will also be fine®?).

% The normalizing map Z, is unique up to composition on the left by a formal integrable twist of the form ®,,
A eR[[r]].
%9 As usual p,/g, are the convergents of @.
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6.2. Pérez-Marco’s Dichotomy. — We now discuss the extension of Pérez-Marco’s
Dichotomy, Theorem 1.3, to the diffeomorphism setting.

The first part of Pérez-Marco’s argument in [36], translated in our (CC)-
setting, 13 based on the fact that the coefficients of the Birkhoff Normal Form B(r) =
Y owene i@ =" i 0,(F)(—izw)” of ®Pory y o fi depend polynomially on the coef-
ficients of F(z, w) = Z(k,l)eN”de F.,2*w’. More precisely, if we denote by (F];, j = 3,
the homogeneous part of ¥ of degree j, [F; = >, - Fi,Zw', then the coefficients
of the homogeneous part of degree 2j, [B o 7]y = Z\/d:j bi(F)(—izw)* of B o r, are
polynomials of degree 2; — 2 in the coefficients of [F]s,...[F];. As a consequence,
if (z,w) = F(z,w), (z,w) = G(z,w) are two o-symmetric holomorphic functions
such that F(z, w) = O%*(z, w), G(z,w) = O*(z,w), then for any n > 3, the maps
t+= b,(tF+ (1 — t)G) are polynomials of degree < 2|n| — 2. The second argument in [36]
is then to use results from potential theory (in particular the Bernstein-Walsh Lemma™’)
applied to the family of polynomials ¢+ b,(¢F + (I — ¢)G) that have a degree which
behaves linearly in 7.

To check that the arguments of [36] adapt to the diffeomorphism case it is hence
enough to check that ¢+ b,(tF 4 (1 — ¢)G) are polynomials of degree < 2(|n| — 1):

Lemma 6.3. — If ¥, G are o -symmetric holomorphic maps ¥, G = O%(z, w) i the (CC)-
case (resp. ¥, G = O>(r) in the (AA)-case) then, for every n € N%, |n| > 2, t — b,(tF + (1 — H)G)
i a polynomial of degree < 2(|n| — 1) (resp. < |n| —1).

Progf. — We refer to Appendix E where we discuss formal aspects of the BNF
(mainly in the (AA)-case) and give a proof of the lemma in Section E.3. U

6.3. Approximate BNF.

6.3.1. Elliptic fixed pont case ((C'C)-Case). — Our aim is to give a more quantitative
version of Proposition 6.1.

Recall that W), po.,) = {(z, w) € D(0, ¢p'/?)?, —izw € D(0, p)} and we denote
sometimes by W, , the set W, p(o, -

Let m > 4 be an integer. Applying Proposition 6.1 with m =N — | we can assume
that the diffeomorphism f is of the form

S = CDQO Oﬁo

(6.140) ( (
Qo(r) =2mwor + O*(r), and Fy(z, w) = O™ (z, w).

In particular (¢f Remark 2.1) for some # > 0 and any p > 0 small enough we can assume
that

(6.141) IE w0, S 2"

10 Tt states that if a polynomial of degree 7 is bounded above by some constant M on a not pluripolar compact set
K C C” then its size at any point z € G" is not larger than M x exp(ngk (z)) where gk (z) is the Green function of K with
pole at co.
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Denote by (p,/¢.).>1 the sequence of best rational approximations of w, which has
the following properties (¢f. [20], Chap. 5, formulae (7.3.1)+7.3.2) and Prop. 7.4): for all
ne N*

1 1
(6.142) — < (—1)n(9¢zwo _pn) < ’
Gt Gut Int1
and
1
(6.143) VO <k< g VIEZ, oy =l 2 lgmre = il > 5 -

We refer to Notations 2.3, 2.6 and 4.8 before stating the following proposition.

Proposition 6.4. — Let a) := max(2a + 1, 30) where a s the exponent that appears in
Lemma 5.4 and assume that (6.141) holds for some m > a,. Then for any B > 0 and any n>>p 1

there exust gi_l\,w € S/Y\HTPM_,G(W;I, qﬂfﬁ), and functions ¥ fn_l\{F € O,(W, 7;6) non”’ (z, w), QI;;{F €
O, (D0, ¢°)) such that

(6.144) W0l (@)™ o ®g, 0y 080" = Doy o fine
In n

(6.145) Q?F(r) — BNF()(r) = 0" " (), inR[[]]

(6.146) IIQ?FIIm S

(6.147) g — il < g, "7

(6.148) IF S N, s < exp(—g,”™").

If Q2 € TC(A, B) (see Notation 2.6) one can choose QfﬁF € TC(2A, 2B).
Progf: — See the Appendix, Section F.2. 0

6.3.2. (AA) or (CC) case when wy is Diwophantine. — We formulate here a more quan-

titative version of the classical Birkhoft Normal Form Theorem (Propositions 6.1, 6.2)
which holds both in the (AA) or (CC) cases, provided w, is Diophantine:

K
|kI*

(6.149) ¥ k€ Z\ {0}, min [koy — [| = (x> D).
€

Let as usual Wy, p(o, ) be equal to either W;f:(f;(o, p) OT Wﬁ)(o, pand 2 € O,(D(0, 1)),
Q(r) = 2 wyr + O(r*), where wy is assumed to be Diophantine with exponent t.
We define (as before @ is the constant introduced in Lemma 5.4)

(6.150) a),; :==max(2(t +a), 12)
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and we assume that for some m > @, ., the function F € O, (e}‘W;l,D(O,l /2)) (h > 0) satisfies

<6.151> {(CC) - CCZSE . F(Z, w) = OQm(Z’ w)
(AA) — Case:  F@,r)=0(0").

We set

(6.152) {(CC) T hwer be=2HD
(AA) — Case: b, =1+ 1.

Proposition 6.5. — Assume that wy satisfies (6.149) and that for some m > @, . (6.151)
holds. Then, for any B > 0 and any 0 < p <KLp 1, there exist Q%NF e O, (D0, p')), FENF €

Oo' (Wh,D(O,pbf)) N O(l/p)liﬂ (7’) d?’ld gENF S Sympex”a (Wh’D(O’pb‘[)) SUC‘}Z ﬂldt on Wh,D(O,pbf) one
has

(6.153) (@) o Pgofrog N = Danw o fi
(6.154) QU (r) — BNF(/)(r) = 0P ™" (), in R[[1]]
120 s S 1
lg,™" = idllcr < p" "
(6.155) IE M, o e, S €xp(=(1/0)' 7).

If2 e TC(A, B) then Q™" € TC(2A, 2B).
Progf. — See the Appendix, Section F.3. UJ

Remark 6.6. — Inequality (6.155) can also be written
IE 5 1m0, S exp(—=(1/p) 7).

We note that Iooss and Lombardi (Theorem 1.4 of [24]) obtained, for a similar problem,
a more precise estimate but with essentially the same exponent 1/6, = 1/(1 4 7) (their
estimate reads < (cst) p* exp(—(cst)/p/ D)),

Remark 6.7. — In the (CC)-case and when wy 1s in DC(k, 7), one can prove the
previous proposition (maybe not with the same value for the exponent b,) by using Propo-
sition 6.4 and the fact that ¢, < ¢,+1 <« '¢’.

6.4. Consequence of the convergence of the BNF.

Lemma 6.6. — Assume that BNY(f) concides as a_formal power series with a holomorphic
Sunction B € O(D(0, p)) and, for 0 < p <p, let 2 € O(D(0, p)) be such that

Q(r) — BNF(/)(r) = ONT(7) m R[[]]

(6.156)
12]Ip0,0) < 1.
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Then

||Q - E||D(0,rlp) S, CXP(—N)-

Proof — Let B(2) = Y00 &2, Q) = 0 b, By = Y1 &2 and Qy =
Zf:o biZ*. We have from (6.156) and the fact that & = BNF(f) in R[[r]]

(6.157) Ex = Q.

On the other hand, we observe that if g: 2z ), &' is in O(D(0, p)) one has by
Cauchy’s estimates |g:| 0" < llgllp(o,p), hence for |z] < ¢ 'p

Z gkzk

k>N+1

< Y leloon /o)

k>N+1

-N
< 2¢ " [gllp.p)-
As a consequence,

2 -Njm= —-N
lE— uN||D(o,e-'p) § el D”D(O,ﬁ)’ ||Q—QN||D(o,e—'p) 5 4 ”Q”D(O,ﬁ)-

We conclude using (6.157). UJ

To summarize,

Corollary 6.7. — If BNF(®gq o fr) converges and comcide on D(0, p) with E €
OD(0, p)), then for any B > 0 and p K 1 one has:
— If wy 1s T-Diwphantine ((AA) or (CC)-case)

125 — Ellpo,p) S exp(=(1/0)' 7).
— In the (CC) case for any wy wrrational

BNF _ m— 1-g
1€ — LH‘”D(o,q,—ﬂ) S exp(—q,51)-

’1n_+11 s
7. KAM Normal Forms

We present now, in the unified (AA)-(CC) framework, the KAM scheme that is
central in all this paper. This will be used in Sections 10 and 11 to construct the adapted
Normal Forms and in Section 12 to get estimates on the Lebesgue measure of the set of
KAM circles. For the sake of clarity we break down our main result into three proposi-
tions: Propositions 7.1, 7.2, 7.4.

As usual we denote in the (AA)-case M =T, x G, Mg =T xR, O =T x {0} and
in the (CC)-case M = C x G and Mg =M N {r e R}, O = {(0, 0)}.
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- 7.1. The KAM statement. —let 0 < p < h/2 < 1/2, A>1, B>1 and Q €
O, (¢'D(0, p)) satisfying the following twist condition (see (2.59)):

(7.158) VreR, A™' < (1/27)3°Q(1) <A, and ||(1/27)D’Q|¢ <B.

Let w(r) = (2m)7'3Q(r). The image of D(0, ¢'D) by w is contained in a disk
D(w(0), 3Ap). We can assume without loss of generality that w(0) € [—1/2, 1/2] and
consequently, if p is small enough we can assume

(7.159) o(D(0,d'p) NR) C [—3/4, 3/4].
Let C, @ be the constants of Proposition 5.5. We introduce

and assume that F € O, (e’lW;,,D(O’ﬁ)) satisfies

<7°161> ”F”eh“y/z,D(U,ﬁ) 5 ﬁEQ.
By Cauchy’s inequality (2.53) one has
(7.162) €= max ID/Fllw, ppy < 2202

Associated to this € > 0 there exists a unique N > 0 such that
—Ing=N/(nN)?.
We then define for n > 1 the following sequences that depend on € =¢€,, 2 and p > 0:

N, = (4/3)""'N

E — o MNu/(nN,)?

7163 K =57, @=5)

8,=2(InN,) "%

pu=Dexp(— Y01 8),  hy=h—(1/2 Y0 &> h/2.

If o 1s small enough, for all » > 1 one has

pnze 00, =P
and (¢f (7.162)),
(7.164) pu)2 > 2K
(7.165) 6,(2K 1) ™K 5, <C |

(C is the constant of Proposition 5.5).
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Proposition 7.1. — Assume that 2 and ¥ are as above and that p <ap 1. Then, with the
notations (7.163) the following holds: for n =1 there exist a decreasing (for the inclusion) sequence of
holed domains (U,) =1, functions 2, € O, (U,), F, € Oy (W,, v,) withU; =D(0,p), 2, = €,
Fy=F and, forn> 2, 1 < m < n, diffeomorphisms g, , € S/};n/pm’a(whn,Un), such that:

(7.166) Q, satisfies a (2A, 2B) — twust condition, (¢f. (2.59))
(7.167) W, 0) CW, U,

(7.168) om Wi, v, gos o Pa, ofi, 08, = P, off,
(7.169) lgn, — dllcr <&,/

(7.170) max | D'F, [lw, , <&,

0</<3

Proof. — We construct inductively for n > 2 sequences U,, I, €2,, g,,., satisfying the
conclusion of the proposition with the additional requirements

Requirement 1: For n > 2, U, is of the form

(7.171) U,=D0,p)~ DG k),  aeR,  #, <IN}
i€l
n—1
n—1 ¢ n—1
(7.172) K <6 <KileBe, (k) < V2280 ONK
iel, =1

Requirement 2: For n> 2, Q, € éi, (U,) satisfies an (A,, B,)-twist condition with (see
(2.52) for the notation a(U,))

(7.173) 1 <A, <2A-K ', 1<B,<2B-K;'
(7.174) 8max(p,a(U,)) x A, x B, < 1.
n—1
(7.175) ”Qn - Q”CB(D(O,ﬁ)) S ZEII/Q E 2511/2
=1
n—1
(7.176) and VYm<n, ||g., —idlc <C Zsl <eg/”  (Cfrom (2.43)).
l=m

For some n > 1, assume the existence of U, F,, €2, and the validity of conditions
(7.171),(7.172),(7.173),(7.174), (7.175) (if n > 2) and define w, = (1/27)<2,. Since (7.174)
is satisfied we can apply Proposition 2.7 (with A=A,, B=B,, 3Av =K', B =/k): for
each (k,1) € Z%, 0 < k < N,, such that D(//k, (3A,K,)™") N w,(U,) # @, there exists



(7.177) ;”"(”f%) =gk |
re GND(¢y,, K, lo,(r) — (/B = BAK,) ™.
We denote
E,={k)eZ® 0<k<N, 0<|]| <N,
D(//k, (3A,K,)™) Nw,(U,) # 0}
and we see that
(7.178) #E, < 2N2.
Note that from (7.175) and (7.159) we have |//k| < 1. Hence, if we define

(7.179) V,=U, - U D). K

(k,D€E,

we have for any r € V,, (¢f (7.173))

1
V(k)eN"XZ, 1 <k<N, = ‘kQ—BQﬂ(r) — | > (6AK,)"";
b/ 4

hence the non-resonance condition (5.126) (with T = 0, K = 6AK,, N =N,) is satisfied.
On the other hand (7.171)~(7.172) (n > 2) and (7.164) (n = 1) show using (7.179) that
(recall p, <p < h/2)

(7.180) d(W,,.v,) = d(V,) = min(d(U,), K;") =K'
and (7.165) and (7.170) show that
(7.181) 8, d(W,, v,) ™K, [IF, ll0, <C .

We can thus apply Proposition 5.5 (with t =0, K=6AK,, § =6,, N=N,) on V,: if one
defines

(7.182) U =e"V,=c"U,~ ) D). @K
(k,))€E,

there exist Y, € O(e%/ QWZ’fV”), Fo1 € Oo(Wy, U
(p small enough)

), 2,41 € Oy(U,41) such that

n+1

<7' 183> ||Yi’l || 6_511/2‘\"/%\771 < Kﬂsn_l || Fﬂ ||‘V}ln,Un

~

<7°184> W}ln+1sUrz+l ’ ﬁ71 © ®Q7l Oﬁn oj‘Y;1 = ®§n+l Oﬁn+l
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(7.185) Q1 = Q,+ M(F,)

] - —q 76nNn
(7.186) max [y lhv,, o, Sa Ka @D UE Ry, eI, ).

1> Unt
Let us show that the Requirements 1 (7.171)—(7.172) are satisfied for n 4 1. From
(7.182) and (7.171) we see that

U1 =D(0, pi) N | Diei k)

iEIrt+l

where Ly < I, + 2N? (¢f (7.178)) and for all i € Ly, min(& K ', #K ') < «; <
K 'eXi=1% . Similarly, (X:ieln+1 k)2 < 68"((21‘61” k)12 + (2N?K%)!/?). In other words,
(7.171)~7.172) are satisfied for n+ 1.

Let us now prove that the Requirements 2, (7.173), (7.174) (7.175) are satisfied for
n+ 1 and in particular that €2,4, has a nice Whitney extension 2,4, := Q}Xﬁ. We first

apply Lemma 2.2 to get a C*, o-symmetric extension M(F,)"": C — G for (M(F,), U,)
such that

sup [IDME)Mle S (1+#Ju,)’(6,dU,) ™" mnax IDYM(E,) || ~su100, -

0<j<3
In particular, using Cauchy’s inequalities, (7.171), (7.172), (7.163), (5.104) one gets
(7.187) sup [IDME) e SN, 6K )78, IME) |,
<=
SKLE =8/
From (7.185) we see that if we define the o -symmetric function
(7.188) Q1 :=Q, + MEF Y
one has

Qn+l |U = S’\én+l

n+1
and (7.173),,, are satisfied (since —K! +8/% < —Knj:l). To see that (7.174),, , holds we
use the fact that since the second inequality in (7.172) 1s true for n4 1 (as already checked)
one has a(U,4) < (Zielm kH? <23 NK;' < KII/Q. If 0 is small enough we see
that (7.162), (7.163) and (7.173), , , ensure the validity of (7.174),, ,.
Finally let us check (7.176), . From Lemma 2.2 we see that (Y,, e/ 4)‘S”W,Q” )

s Vn

has a C* o -symmetric Whitney extension Y)'* such that

(7.189) IV lles S (14 #]v,)*(8,d(U,))~° max IDY, [l ey,
=
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From (7.171), (7.179), (7.172) we see that #Jy, < 2N2, d(V,) > K. ! hence using Cauchy’s
inequalities, (7.183), (7.163) and the fact that 87!, N, < K% and K’g, <g"/?* we get

(7.190) YWV es < &2

If we define g, ,+1 = J;;\vl,l € Sympew (Wi,,1,u,.) and for m < n, g, w1 = Gun © Guntl
we have from (4.98) and (2.43)

n
g1 — idllcr < Cllignn — idllcr + g — idllc) <C Y & SE,

I=m

which is (7.176),, , and implies (7.169), . ;.
Note that v, = £ ' on W, v,,, and (7.184) shows that (7.168),,, and (7.167)

nt1 n+1
are satisfied.
We now check that (7.170) holds for n + 1; from (7.186) it is enough to verify
(7.191) KOt (g2 4+ ¢/ ) < &,4
or equivalently since ¢~ N/? =%, K, = 5[2%1”) ,
2z, VP <E,
which is clearly satisfied since 3/2 > 4/3, ¢/ (7.163). UJ

7.2. Localization of the holes. — We can localize the holes of the domains U,:
Proposition 7.2 (Localization of the holes). — For each 1 < m < n, one has
(7.192) (99, - 99l S 7

and_for some sets E; C {(k, ) €eZ’>, 0<k<N, 0<|{|<N;} (1 <i<n—1)onecan wrte U,
as

n—1
(7.193) DO. o)~ U D5 KD, s == ¥ € [1,2]
i=1 (k,l)eE;

where p, > ¢~ '°p and c}?k is on the real axis and is the unique solution of the equation a)i(c;})k) =

(27) 7109 (cl))) = U/k.

Proof. — Inequality (7.192) is consequence of (7.188), (7.187). The expression
(7.193) comes from (7.182). O

We now give a more detailed description of the structure of D(U,), the set of holes
of the domains U, appearing in Proposition 7.2, ¢f (7.193).
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Lemma 7.3, — With the notations of Propositions 7.1-7.2:
(1) For any ny < ny, (k;, ) € E,, ] = 1,2, one has

. (n1) (n2) —=1/2
if bk =b/k then|)')] — 5| SE/

: ) _ (m)
if b/ki # b/k then |y, — | 2N

(2) Let ny,ng € N, ny <ng and 0 < k9 < k1 be such that

(7.194)

ot <N B i — k.

Then, two disks D(cz /k Ki)s (ks b)) € By j = 1,2, are either disjoint or I /ky = b /ky and
D(¢%),. ko) C D(c;";,;, k).

Proof. — Item (1) 1s due to (7.192) and the fact that if [, /&) # L /ky

[(L/k) — (k)| = 1/(kiky) > N,,_QQ.

Item (2) is a consequence of Item (1). Indeed, 1f /; /£; # [y /Ky then since k) + k9 K Nn_f and
e/, — }j;,§2| > N2 (we assume 7, < ny), the disks D(c{"}} , 1) and D(c3) , k) must have
an empty mtersectlon On the other hand, if /, /k; = /Ky, then because of the fact that

|cl(1"},z1 Cg/?/zzl <2,/%, the disk D(c?lﬂ/‘,z1 , k1) contains D(c}ff,:z, K2) because €,/* +ky < k1. [

7.3. Whitney conjugation to an integrable model. — By applying Lemma 2.2 one sees
that (Fn, e 3"Wh u,) and (fr, W;l"U) have C? real symmetric Whitney extensions

F“h € (9 ("W, u.), Jrwn € Sympex » (W, u,) (the canonical map associated to FM) such
that (see the discussion leading to (7.187) and inequality (4.98))

”F\\h“ < 81/2 ”_ﬁ;l\lvh — Zd”Cl ,S 5711/%

n

We hence have
-8 -1
(7.195) one "Wh,,,U,Z, &un © q)Qm ofF)ny/z Ogyn= q)Qn OfF}lWl-

We show in the next Proposition that shrinking a little bit the domain of validity of the
preceding formula one can impose that g, , leaves invariant the origin O = {r = 0} N Mg.

Lemma 7.4. — There exists g, € Symp,, , (W), 0 v,po.x;1)) that coincides with g, on
W 0.cp.k;!) and

(7.196) Zn({r=0hH ={r=0}, g0, — idllcr <E,/".

-1 -1 Y -
Progf. — Recall that g, , = J;)n‘"’ 00 fow with Y}“‘ € C3N O, (e V2WW, )

satisfying (7.190). Let x : R — [0, 1] be a smooth function with support in [—1, 1]
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and equal to 1 on [—1/2,1/2] and define the ok o-symmetric function ?k =(1-—
X ((KM/Q)Q))YZW- One has Y; = YZWZ on Wi cupo.K,/2 and [[Yiles S Ki”YWhHCQ = 5,1,/4
hence /g coincide with £y on W), . p(q ;) and I, —idllcr S Since form < & <
n—1, ?k is null on a neighborhood of {r = 0} the diffeomorphism f\{kl fixes {r = 0} and
s0 does 3,.,. The inequality in (7.196) follows from the fact that 31—! /" < g/, O

~Y

Note that the sequence of diffeomorphisms n +— g, converges in C' to a o-
symmetric diffeomorphism g, : G — C fixing the origin and that satisfies |[g,.cc —
id||ct S €,. On the other hand, the sequence of diffeomorphisms (fw:), converges in C!
to the identity and from (7.192) the sequence of functions (£2,),, €2, € 50 (U,) converges
in C? to some o -symmetric limit Q_, € C2(C); hence from (7.195)

_311 ~—1 . ~ J—
on | |e Wi 20, D0k Enoo © P, OS5t 0800 = Pa_ .
n=>m

Recall the notations of Section 4.4 and let

L,=RN()e™ (U, ~DO.K"),

n>m

— —n
Wy, =MgrN ﬂ ¢ "W, o U, D0.K;)-

n>m

Proposition 7.5, — For any m > 1 one has

(7.197) m Wy, g.i0Pg ofi 0Zuc=Pa,
(7.198) Znoo(Wr,) C Wrap, »

(7.199) Za{r=0D={(=0}, g, —idla=<zs/*
(7.200) Lebr (RN e U, N L,) < £

Proof — Let us prove (7.198). Note that since g,, and g,, coincide on
W, 2.c-p(.k;!y one has from (7.167) :%’;n,n(e_anwhn,uﬂ\n(o,ml)) C W,,.u, hence since g, , is

o-symmetric, g, ,(Wr,,) C Wrnu,, and g, o0(L,) C Wrnu,, = Wrno,,-
The conjugation relation (7.197) comes from the fact that ®gw: o fpwi coincides on
WRnfm with CDQm o me
For the proof of (7.200) we first observe that from the expression (7.193), for each
n > m the set ¢~ Zi=%U, ~ ¢ %U, is a union of at most QNi disks of radii < QKn_l

hence the Lebesgue measure of its intersection with My is < 4N?K~'. In consequence,

1
3y — . o0 — — 2(ap+3)
the Lebesgue measure of RN e 25U, N () 2,y ¢ U, is S Y2 NK ! <5,
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hence

1
_ r ] — — 2(@y+3)
Leb)’IR (6 2(Smtjm N 4 8”Un) 5 Em 0

n>m

and since L. D (")

1
— 2@+D

En " 4+ K15 (7.200) follows from this inequality. O

¢ U, ~ & D(0, K;l) we get that Leby, (RN 20U, )N L,)) <

n=m

Remark 7.1. — If U is a holed domain, Propositions 7.1, 7.2, 7.5 as well as
their proofs, extend without any change to the situation where F € O, (¢"W,.v) and
Q € O,('U) satisfies the twist condition (7.158)~(2.60) and if the following smallness
assumption on F holds

(7.201) IF oy, < AW, 0)™.

8. Hamilton-Jacobi Normal Form and the Extension Property

Our aim in this section is to provide a useful approximate Normal Form (that we
call the Hamilton-Jacobi Normal Form) in a neighborhood of a ¢-resonant circle {r = ¢} (by
which we mean that for some (p, ¢) € Z X N*, pAg=1w(c) = §>

Let 0 <P <h/2<1/20,c€R, (p,9) €ZxN*, prg=1, Qe O,(D(,6p)),
Fe Og (W}z,D(c,6f))) such that

(8.202) VreR, A7l < (©@7)7'9’°Q() <A, and ||(27)"'D’Q|lc <B.
(8.203) & = |IFllw,pesp <min((69) ™, (10A)7),
(8.204) w(e) :=Q2m) Q) = ?
q
(8.205) 60)'% < (Ag)~" < /10, 6p < |c|/4

where @; is the constant appearing in Proposition G.1 of Appendix G on Resonant Nor-
mal Forms.
The purpose of this section is to prove the following result:

Proposition 8.1 (Hamulton-Jacobi Normal Form). — Let D= D(c, p). There exists a disk ]\j)
(8.206) D:=DE5) cD=D(,7), wih j<z'>
and

H _ =X A X HJ H o —
ﬁJ € O,(D\D)), 5 € o Wio.o-5))s & € Symp, (W0 555
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such that

(8.207) QY satisfies a (2A, 2B) — twist condition

(8.208) Woodep, (@) o@gofiog) = o 0 fay
(8.209) lgy) — idllcr < gg '/

(8.210) IS I,y 5 S eXP(—1/(692) )z

Moreover, one has the following:

Extension property: (QSJ, D, 1\3) satisfies the following Extension Principle: If there exists a
holomorphic function & € O(D) such that

H - R R
12y — C4||(4/5)D\(1/5)D Sv

then p < v1/2%,

Remark 8.1. — From Lemma K.1 and Remark K.1 of the Appendix, we just have
to prove the Proposition in the (AA)-setting. This is the setting in which we shall work in
all this section.

The proof of the first part of Proposition 8.1 is done in Section 8.7 and that of the
second part (Extension Principle), based on Proposition 8.10, is done in Section 8.9.
From now on we define

8.1. Putting the system into Resonant Normal Form. — From Proposition G.1 of the
Appendix on the existence of approx1mate ¢-Resonant Normal Forrn we know that there

exist Q (S O (D(U e 1/([,0)) SrRNT € Sympg”(e /th D(, p)) F Fmr (S O (6 /qW/Z D(, p))
such that ' is 27 /¢-periodic, ./\/lo(Fi )=0, and
e IW, D7) gﬁﬁm o g ofF 0 GrNF = Por(y/gr © P 0 fFe O freor

(8'211) e . ’ . . —es
F 1is 27 /¢ — periodic, Mo(F ) =0,

with

12 — (Q =27/ YD Ipiee vz S NEW,pir

”F ”e_l/'/\\";,‘D((ﬁ) S ||F||VV/1,D([,§)

0 ——1/4
”Fmr”e*l/’/\/\y/[ D(.p) ~ exp( ,0 / )”F”V\’Y/ZYD(C_E)
——1

lgrne — idllcr < (g0~ )’ IF e

(8.212)
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Inequalities (8.212) and the fact that €2 satisfies an (A, B)-twist condition on D(0, p) show
that there exists a unique ¢ € R such that

Q) =0, lc—¢ <z
8.2. Coverings. — We denote R, = R + +/—1[—4, k] and by j, the g-covering

Jg (C/(@2nZ)) x G — (C/(27/9)Z) x C

(8.213)
O +27Z, 1) > 0+ Q7/Z, 7).

Since the function T : (8,7) : (Ry_g/,/(27)Z) x D(7, ¢ %/7p) — C is invariant by
(6,7) = (0 + 27 /q, r) one can push it down to a function

F;:S L (Ry_y,/ (27 /9)Z) x D(z, e 275) — C, F;A oj = -
Let
A, (C/Q2r/9Z) x C— C/2m)Z x C
@, 1) = (g0, ¢(r = 7))

and define F* : (R,,_o/(27)Z) x D(0, ¢~ /1gp) — C by

(8.214)

—res

ﬁi‘e.r:qQEj_q OA{I_I;

for all (5,7) € Ty, x D(O, ge?"p) and (0,71) € Ty, x D(C, ¢~2/19) such that 0 =
q9,7=q(r — ) one has

(8.215) Fo6,9) = FF 6,2+ 1).

Let ff be the (exact) symplectic mapping (for the symplectic form 6 A dr) defined by
(4.87): if (7, R) = A(¢, R), @, = A®, )

@R =f0.) = @.R) =f=O..
If we set
(8.216) Q) = ¢ (5(2 + (/) — Qﬂ(ﬁ/q)(r/q)>
= (1/2)9*°Q@)r" + O(°)
=’ +7b(r)
we have

<8.217> Aq o CD§ O]%J{;r o Aq_l = dg Ofi?m.
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Note that since €2 satisfies an (A, B)-twist condition, one has from the first equation of
(8.212) (to which one applies Cauchy’s inequality), the estimate

(8.218) vV reD(0, 1), 8252(7) =1, ||§||cs(p(0,g—1/loqﬁ)) <SI.

8.3. Approximation by a Hamiltoman flow. — The following proposition says that up
to some very good approximation ®g o ff can be seen as the time-1 map of a Hamilto-
nian vector field in the plane.

Proposition 8.2. — There exists o e O, (T 24000 X D(O, e Y140 /2)), such that
on T 21449 X D(0, e 2140 /2) one has

(8.219) D o fw = g g 0 frr
(8.220) P =F" + 0(51/4||Fm||TU_2/,,(/,1xD(O,e*z/‘Iqﬁ)) = O(¢’IIFl.pw.2)
<8-22 1) ”va”e_Q/‘/q/z/Q,D(O,e_Q/(iqﬁ/Q) 5 CXP(— 1/(95)1/4) ”F”h,D(O,E)-

Proof. — This 1s a consequence of (8.212), (8.215) and Proposition H.1 applied to
®g o fiw (since by (8.212), (8.215), condition (H.545) 1s satisfied). U

Let F(0,r) = Zi (0)r + 73}(0, 7) and define (¢f- (8.216))
i—oi

(8.222) 6, r) = Q) + 70, r)
(8.223) = w7 + /() + /(@) + /O + 1 (b(r) +1 (B, 1))
L AO) 1 A0
pr— 9 _—— _————
8.224 (@ A ))<T+2w+f2(9)> Yo +/0)
+/0(0) + P () + 76, 1)
where
(8.225) max ([l Al Al IFD S (9 ¢E.
T ~2/4,3o <D (0:¢7*/145/2)

8.4. From I to T1. — We assume in the rest of this section that = > 0 and we set

(8.226) Py = /3.

The next lemma provides a more convenient expression for the function, viewed

as a Hamiltonian, IT = € 4 F* which was defined in (8.222).
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Lemma 8.3. — There exists a (not exact) symplectic change of coordinates G€ Symp? (T3 X
D(0, p,)) of the form G(O, r) = (0, r — ¢(0)) and T € O(T,,;3 x D(O, e_l/lopq)) such that

(8.227) O, =T10G 0,1 =@ @)* — e(0) + 10, 1))
with w, e, ¢ € OG (th/3):f € OJ (th/3 X D(Ov pq)):

(8.228) ||w(')—w||qh/3 5 515725, maX(l|€O|lq/z/3’ lle) ||q/z/3)a S 1 15, |Lf||qh/3,pq f, 1.

Proof. — See Appendix L.1. OJ

Remark 8.2. — 'The previous lemma and (8.224) show that

@ (0) =@ +/(0) +O(p,%)

and
I /) 5
0)=—-——-—"—4+0(p)e),

a0) =5 0P
1 0)* 0 {

e (0)=—- SO 5+ ~l) +O(p,?).
(o +40))° @ +40)

Remark 8.3. — Since I1 is defined up to an additive constant (this will not change

the value of ¢), we can assume that

/ 18, e,(6)) d6
— =0
r w®)2 27

which is equivalent to the following condition that we will assume to hold from now on
( do
(8.229) f @ (0)"%¢,(0)— = 0.
T 2

8.5. Hamilton-Jacobi Normal Form _for TI. — The symplectic diffeomorphism @1 is
the time-1 map of a Hamiltonian defined on the cylinder, and as such, it is integrable
in the Hamilton-Jacobi sense: the level lines of the Hamiltonian foliate the cylinder and
naturally provide invariant curves for the Hamiltonian flow. On some open sets*! it is
possible to conjugate @ to a Hamiltonian depending only on the action variable: this is
the Hamilton-Jacobi Normal Form; see Proposition 8.7. The purpose of this Subsection
is to quantify this fact.

I These are cylindrical domains outside the “eyes” defined by separatrices (think of a pendulum).
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Recall the expression for TT
10, 1) =@ (O0) (7 —e1(0) + (O, 7).
Let 0 <s <#4/3. We denote
(8.230) er=llellom S@'E =610 = llell s,
and for L.>> 1 we introduce
(8.231) roni=Le”, AL =AGL) =L,
with the requirement

—1/2

1,s

(8.232) A1, < qp/6=p,/2 or equivalently 1 <L S gpe

We notice that 0 < A, 1, < p, and that from the Three Circles Theorem

(8.233) £1(0) < &1(s) <&1(0) e (1)’
hence
8234 dg=Lel =i <Ll

Notation 8.4. — For 0 < a; < ay and z € G we denote by A(z; ay, ay) the annulus centered

at z with inner and outer radut of sizes respectively ay and ay. When z = 0 we simply denote this annulus
by Alar, ay).

Before giving the Hamilton-Jacobi Normal Form of TT we need two lemmas.

Lemma 8.5. — There exists a holomorphic function g defined on

Dom(g) = U (quh/3 X A()“é}L’ 10(1))

0<s<l
such that for every (8, z) € Dom(g) one has
(8.235) 110, g6, 2)) = 2°.
Moreover, there exists § € O(Dom(g)) such that on Dom(g) one has

(8.236) 80, 0= @) "?2(14+56.2).  l&lpame SL

Proof. — See the Appendix, Section L.3. UJ
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Since T x A(Ao 1, p,) C Dom(g) we can define the function I' € O(A(Ao 1, p,)) by
I': Ak, Pq) — G

2w
8237 rw=eo’ [ e
0
Using (8.236) we see that I' can be written
2w
L) = yu(l + '), y = (271)1/ @ (0)~2d6,
0

5 9
1T AG .0 ST

Lemma 8.6. — There exists a solution H € O(A(2A, 1., p,/2)) of the equation

(8.238) I'H(z) =z
Moreover it can be wrilten
(8.239) H) =y 20+ H@),  [Hlaew,.a/p) <L
Proof. — See the Appendix, Section L.4. 0J

We now apply the preceding results with
s=1/2.

Proposition 8.7 (Hamulton-Jacobt). — There exists an exact symplectic change of coordinates
W e Symp,, , (T,y7 x A3e,*, p,/3)) such that
(8.240) W odgoW = by
(8.241) W —id|lc < ge)".

Progf. — Let H be the function defined by the previous lemma (with s = 1/2) and
define for z € A(2A19.1., p,/2) and 0 € J 6 := [—4m, 4] + i[—¢h/6, qh/6]

(8.242) S(0,z2) = / g(p, H(2))dg.
[0,6]
We notice that by Cauchy’s Formula, (8.237) and (8.238)

SO +2m,2) =50, 2) = / g(p, H(2))dy

[0.60+27]

2
= / g(p, H(2)dyp
0
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=27 I"(H(2))
=2mz
hence
¥:(0,2)—~>S0,2) —0z

defines a holomorphic function on T, X A(2A1/91., p,/2). Moreover, from (8.242),
(8.236) and (8.239) one can write

0
S0, 2) = f o(p. H()dg
0
0
_ f o (0)~ 2H(2) (1 + 2o, H(2))dg
0
]
— yOH(2) + / @ ()" *H(2)i(e, H(2)dg
0

0
=01+ 1) + [ wo) P He. My
0
and we see that

1205 %A@ 0102 S L7*(1 + ¢h/6).
Define Uy s = T,6_5 X A(2Le,"* 48, p,/2 — 8) and note that by (8.234) one has
Ayor < L811/4 so that Uy g C T6 X A(2A1)9,1, p,/2) and
[DFEAY)
By Cauchy’s estimates

(8.243) ||E||CQ(UL‘5) S q(5L)_2

Let us choose, § = 8;/16 and

(8.244) L=¢ """

We then have Lgll/4 = 8§_7/32)+(8/32) = 8}/32, L7272 = 857/16)‘(2/16) — 8«?/16, L2583 —
8§7/16)_(3/16) = 811/4 hence

<8 245) 121l 1/32 < 81/4
) C2(T g6 ¥ A28, 0,/2)) ~ qe, -

Using Lemma 2.2 and Lemma 4.4, we see that (X, T X A(QSII/?’Q, 0,/2)) has
a C?, o-symmetric Whitney extension £* such that

—_— _ __1 —_ g
(8.246) W=/ W =fswi € Symp(T,,» x A3e)"™, p,/3))
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and (|W — id||r S &7 "))
(8.247) IW —idllcr < gey”™.
On the other hand taking the derivative of (8.242) we have
(8.248) 95(0, 2) = g(0, H(2))

and so S is a solution of the Hamilton-Jacobi equation

— 0S —
(8.249) I1(0, ﬁ(& 2) =T1(8,¢(0, H(2)))
(8.250) =H%(2) (by (8.235)).
Hence, the exact symplectic change of variable W = f;. '

. — 55— 4 0,506,
(8.251) Wm0 w) > (@, 2) e { VT 0 =W 0202

p=2=0+09.%00,2

conjugates ®ry ) to Py, since from (4.82)
1o W = H? = W_loq)ﬁOW:CDHQ.

This concludes the proof.

O

8.6. Consequences on ®g o f5. — Let G: (0,7) = (0,7 + ¢(0)) be the diffeomor-

phism introduced in Lemma 8.3 and

(8.252) W=GoW.

We notice that W € Sy/?n/pd (T 7 X A(Ssl1 /32 p,/3)) and that its image contains G(T 7 X

A3e,"?, p,/3)) (see (8.246)); from (8.247) and (8.228) we have
(8.253) IW —idllcr < gey””.
Corollary 8.8. — One has
(8.254) Wl o ®g 0 fus o W = D2 0 fior
with

<8'255> ”’va”th/s ><A(4811/32,pq/4-)) 5 eXp(_ 1/(95)1/4) ”F”h,D(O,ﬁ)-



ON THE DIVERGENCE OF BIRKHOFF NORMAL FORMS 77
Proof. — Recall that from (8.219) and the definition of IT (8.222))
D o fi = P © frr
= q)ﬁ Oﬁuf.

By Lemma 8.3 and Proposition 8.7

GlodpoG=dg, W odgoW =y
hence
WlodyoW=de
and so

WlodfofiroW=®pofy, fir=W'ofiyoW

which is (8.254). R
The estimate on F¥ comes from (8.221) and (8.253). U

8.7. Proof of Proposition 8.1: existence of Hamulton-facobt Normal Form. — Let W be the
diffeomorphism constructed in Corollary 8.8 (¢f. (8.252)). The map A, (defined in (8.214))

sends (R + 7] — 4/8, h/80) /(2 /Q)Z) x A@; 4¢7 &)/, 5/4) to T s x A(de)”, g5/4).
From (8.217), (8.254) one has

WoA,0@g0fr oA o W=y ofi
hence
(A;1 oW 'o A,) o g off;_;x o (A;1 oWo A,)
= (A;1 o®PyroAyo (A;' o fw o Ay).

Let W, ®gny and fir be lifts by j, (defined in (8.213)) of Aq_1 oWo A, Aq_l o dr o A,

and Aq_1 o fpu o A,. Since ®g o fr= is a lift by j, of ®g offjffs one has for some m € Z
q

O=m=q—1)

~1
W™ o @g o fis o W= Doz, © Py 0 fior

where

(8.256) QU = ¢ H2 (g —2).  FY =O0F).
If we define

(8.257) S =W o frr o W, T = O(F™)

<8.258> gH‘] = IRNF © W (gRNF from (821 1))
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one has from (8.211) (note that W commutes with ®o,/,,)

(8.259) @) o dgofrogV = Doy 0 W o @gofar 0o Wo fu
= Poxp/pr © Ponuygy © Py © fiur © fror
=: Oquj o frh

with (see (8.256), (8.255), (8.212))

(8.260) Qe O, (A@ 57 'e),/5)),

(8.261) QU =21 ((p+m)/r+ g "H (9(r — 7))

(8.262) FU =Y 477 4+ O, , F) € O, (Tyo x A@ 5¢ e, 5/5))
(8.263) IFY] S exp(—1/(gp)'/")E.

With a slight abuse of notation, we can write W = Aq‘1 oWo A, and using (8.258),
(8.252) and the definition of W (¢f. Proposition 8.7) we can write

gHJ = gRNF © A;l 0(GoW)o A, € S/Y\HTPJ(Th/g x Az 56]71811/32’ 5/5)).
The last inequality of (6.212) and (8.253) show that (remember (8.230))
(8.264) gV —idller S g&)" + T S EY (@1 Sgp D)

Note that since ||¢¥ — id|lc1, Ifi — il (¢f (8.203)) and ||fp — id|| (¢f: (8.263)) are
< 1/4, the conjugation relation (8.259) shows that the integer m appearing in (8.261)
must be equal to 0. Hence,

(8.265) QY =21 (p/9r + ¢ *H (9 — 7).

Let us now check that one can choose Q™ in 50 (ﬁ ~ ]3) which satisfies a (2A, 2B)-
twist condition. Indeed, from (8.239) and Cauchy’s inequality (recall our choice (8.244)
L=¢;"""%) we see that

”quHQ(C](T —0) — V72(7 - Z)Q”03(T;,/9xA(z;6qflg]1/32,ﬁ/6))
—3/32_7/16 11/32
S g€ ! 81/ 5481/ .
We now apply Lemma 2.2: since 81_6/32 X 8111/32 < 8?/32, there exists a C* o-sym-
metric Whitney extension with C*-norm less that q811/7 <& for (¢ °H?*(¢(r — 7)) —
y2r — 9% Tyo x A@ 6g7 e}, 5/6)). Using (8.265) and the inequality /% «
min(A, o (8. we see that as a Whitney extension (that we still de-
(1/2) min(A, B) (¢f (8.203)) hat QY h Whitney ion (th il d
note ) such that

(8.266) QW satisfies a (2A, 2B) — twist condition.
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We can now conclude the proof of Proposition 8.1. We define the disk D of Propo-
sition 8.1 as (¢f (8.230), (8.228))

D=D(, 5) c D, /%)

- 1/32 1/32 —1/33 — =
‘=z, =66,/ =6llallgy, < (61 <gp ')

(8.267)

and the disk D can be taken to be (recall [c — ¢| < &)
(8.268) D =D(c,7/6) =D(c, ).

With these notations, the set of conclusions (8.207)—(8.210) are consequences of (8.266),
(8.259), (8.264) and (8.263). 0

8.8. Extending the linearizing map inside the hole. — In general the previously defined
maps g, I', H are not holomorphically defined on a whole disk but rather on an annulus with
inner disk of radius 6811/ 7 where &, = ller|lcoer- In this subsection we quantify to which
extent the domains of holomorphy of these maps can be extended if one knows that the
frequency map Q™ coincides on this annulus with a holomorphic function defined on a
disk (containing the annulus).

Notation 8.9. — In the following we denote by C(0, t) the circle of center 0 and radius t > 0.

Proposition 8.10. — If there exists a holomorphic function g defined on D (0, p,) such that
(8.269) ||é - HQ”C(O,pq/Q) =v
then
er=llellcom S /O,

We prove this proposition in Section 8.8.2.
We now take

s=0. (¢f (8.231))

By (8.236) for z € A(A/2,A/4), |g(0, 2)| compares to A and thus from (8.235) and
(8.227)

F=w(0) (g(G, 2P —e (9)> + 0(g")
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so that

1/2
8.270) 6.2 = (f/w(@) Fa()+ o@))

1/2
(8.271) = <(z2/w(0)) + ¢ (0)) + 0.
Let’s introduce
zg 1/2
(8.272) g0, 2) = (m + e (9))
2
(8.273) T()=@2m)" / 206,946, H=T"!
0

where the inverse is with respect to composition. The functions T and H are defined on
{z € C, Ls}/2 < |z|} for some fixed L. > 1, independent of &, satisfying

(8.274) L < (p,/2e; "

(we take here s =0, ¢f (8.231)).

8.8.1. Computation of a residue.
Lemma 8.11. — For any curcle C(0, t) centered at 0 with Lé:ll/2 <t < p,/2 one has
1 ~ ( , d6
— H(2)*dz=(y/4) / @ (0)* e (8)” -~
21 C(0,8) T 2

where y = (2m)~! foh w (0)71%d6.

Proof — We compute the expansion of g(6, -) (¢f (8.272)) into Laurent series: on
G~ D(0, Le,?):

1/2
70,2 = (z/CU(Q)l/Q)(l + @ (0)e (9)z_2)

. 1 , 1 ‘ X
= (z/W(G)”Z)(l +§w(0)gl (0)z7%— g (@@ (9))2z_4+0(z_b)>

__ < 1 1/2 o1 3/2 2 -3 -5
—w(e)l/g‘i‘QZU(@) e1(0)z 8w(9) e (0)° 27 +0(7).
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2 ~

As a consequence since ﬁ(z) = (2m7)7! o &(0,2)d0 we have with the notation y =

27)"" [ @ (8)"/2d6 the identity

T =y@+a.17" +as)+0)

where
2
a =y ' (1/2@m)™" @ (0)'%e1(0)d0
(8.275) .
— ] -1 3/2 2
as=y (=1/8)(2m) @ (0)7"e1(0)°do.
0
By our choice (8.229) we have a_; = 0 and we can thus write
(8.276) T=A,o(id+u

where A, z=7yzand
w(z) =a_3z"° + 0.
If v 1s defined by
({d+u)o(d+v)=1id
we have
v(2)=—a sz’ +0(™)
and therefore

(8.277) (z+v() = (z— a3z + 0@
=7 — 2432+ 0.

Now since ﬁNis the inverse for the composition of r (¢f (8.273)), z = (T o H)(2),
we have by (8.276) H= (id + u)~' o A;I =(d+v)o A;l and we get by (8.277)

H()? =y 22 — 252 2+ 0%
and thus

H)? =y 722 — 205727 + 0.
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Hence by Cauchy’s formula and (8.275), for any circle C(0, ¢), Lell/2 <t<p,/2:

1 ~
— H(2)de = —2a_3y*
27[1 C(0,1)

= (J//4)f w(9)3/2€1(9)2ﬁ- O
T 2

8.8.2. Proof of Proposition 8.10.

Lemma 8.12. — Let Le\”> <A < p,/2, L>> 1 (independent of €,). One has for z €
A(L/4,1/2)

(8.278) |H(2)? — H(2)?| < A%
Progf — For z € A(A/4,1/2), 0 € T one has by (8.271), (8.272)
206, 2) =30, I S
s0 (¢f (8.237), (8.273))
(8.279) IT(2) — T(2)] < A%

On the other hand, from Lemma L.1

e_g/LQ < ‘g(ev Z) _5(01 z/) < eQ/LQ
o z—z o
hence
(8.280) o3 < ‘M < 2
2=z

Since z = I'(H(2)) = I'(H(2)) and H(2), H(2) < z (¢f (8.239)), one has from (8.279)
IT(H(2) - T(H)| S’

and so from (8.280)
[H(z) — H)| S A%

Since from (8.239) [H(z) + H(2)| < A we thus have

H(z)> — H(2)?| < A% O
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We recall that &, = ||¢; [|co¢r). The function & — H? satisfies (¢f- (8.269), (8.239))
IE = Hllcwpm Sve I1E =B g0 S 1.
Let M > 5 and
(8.281) App = ('Oq/Q)l/M(Lgll/Q)l—l/M < (L811/2)1—1/M
(we can assume p, < 1). By the Three Circles Theorem,
15 = Bl S 01
Lemma 8.12 tells us that
| g - ﬁQ”C(O,AM) S !/ }‘13\1
hence for any z in the circle C(0, Ay)
2E() — QI S A0 M +23)

and

1 ~ ~
— / (2E(2) — 2H (2)dz| S A3, ("M +25).
271 J oo

Since z > 28(2) is holomorphic on D(0, 2Ay), i, 28(2)dz = 0 and by Lemma 8.11
we get

f @ 2(0)e1(0)2d0 < 13,0 M+ 45)).
T
Since @ (0) 2 1 this gives
/ e1(0)7d0 < a3 (M +23)
T

hence remembering (8.281)

/@M) | 45/2
lerllizery S Anv/ Y + A3

’S L(lfl/.\l)ggl/z)(lfl/M)v1/(2M) + L(5/2)(171/M)8§5/4)(1*l/M)'

If we define

Sy = L(5/2)(171/1\/1)855/4)(1—1/1\1)—1’ — L(lf1/1\/1)851/2)(1—1“/1)vl/(QM)

1251
this can be written (recall that ||e; ||cory = €1 S ¢p ~'%) for some C > 0

llerllizery < Gownller llcoery + Cram
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and we are in position to apply Lemma M.2 (our choice M > 5 implies that for some

B>0,8y<e’ <)
&1 = lleillcoery < (ai/Sm) + Ch™ exp(—h/(C83))gp ~'F

< (ar/8y) + exp(=(1/e)”) (B> 0)
S (o /dw) + (1/2)é
which gives
& 5 L7(3/2)(171/1\1)811*((3/4)(1*1/M))vl/(QM)
or equivalently
8§3/4>(1—1/M) 5 L—(S/Q)(I—I/M)vl/(QM)
and taking M = 5+, one finally gets:
g, SL@y1/0-
< p/o-
0

This completes the proof of Proposition 8.10.
8.9. Proof of Proposition 8.1: the Extension Property. — From (8.265) we see that if there

exists a holomorphic function E defined on D such that

ng ||(4/5)13\(1/5)13 Sv
E defined on D(0, p,) (recall that p, = ¢p/3 ¢

e —
there exists a holomorphic function

(8.226)) such that

=
IE — Hlcw.p0,02) SV

and thus by Proposition 8.10

1/6)—
&1 = lleillcocr) N /0,

Now (8.267) shows that the conclusion of Proposition 8.1 holds with D= D(c, v'/?%), O

9. Comparison Principle for Normal Forms
In this section, if 0 < p; < pg, we denote by A(¢; py, p2) the annulus {z € G, p; <

|z — ¢| < po} (it 1s thus the disk D(¢, po) if p; = 0).
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Proposition 9.1 ((AA) Case). — There exist positive constants C., dy, @ _for which the following
holds. Let 0 < py < py (resp. pr =0 < pg), &,V >0 and forj=1,2, Q; € O, (A(c; p1, p2)),

F; € Oc (Wi o) & € Symp, (Wi acpi.p0) Such that: 21, Qo satisfy an (A, B)-twist condi-
tion (2.59) and

0.282 lg —idlls <& <C '
IE W, Ay =V
and on g (A(c; p1, P2)) N g2(A(c; p1, p2)) one has
g10®Pg ofi 0g =g 0®Pg,0fi, 08
Then, if § > 0O satisfies
(9.283) Ce<8/4<(po—p1) and C8 ™v <1,
there exists y € R, |y | < Ce such that one has
9.284) 10€2: (- +¥) — 02| A¢e: p1 45, p0—8) = 657_551)-7
(resp. 119821 (- +¥) — 982D pp-5) = GE™ 1)

Furthermore, if g, and gy are exact symplectic on Mg, one can choose y = 0.

Proof. — We only treat the case p; > 0 (the case p; = 0 is done similarly).
From (9.282) we see that there exists C > 0 such that one has on W, :=T)_¢, X
A(c; p1 + Ce, ps — Ce)

(9.285) go®@g =g, 0g0f
where

g:=g, ' og €Symp, (W)
Fe O(Wl)9 ﬁ ::g_l Oﬁ‘Q OgOfFTl, ”F”\\"] 5 V.
We write

(9.286) 9(0,7) = (0 + u@,7),r+v(0, 1)

and we introduce the notations w; = 3€2;, i = 1, 2 (we drop the usual factor (277)~"). We
have

go®q 0,1) =0+ w(r) +ul 4+ w(r),r),r+ v +w (1),7))
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and
Gg,08=0+u®O,7) +wy(r+v@,1), r+v(0,71))
We thus have on WQ = T}L—Cs—BpQ—S X A(C, L1 + Ce + 5, Po — Ce — (S)

wy(r+v0,r) —w(r) =1+ u@ +w(r),r) —ud,r)

(9.287)
v(@ +w (r),r)—v@,r)=11

with max(||I[lw,, [1]lw,) = O(8~"v). We observe that from the twist assumption on €2,
there exists a set R C A(¢; p; + Ce + 8, py — Ce — §) of Lebesgue measure < 82, which
is a countable union of disks centered on the real axis, such that one has for any r €
A(c; p1 +Ce+6, po —Ce —6) ~Rand any k € Z*

) [, 8
(9.288) min | (1) — 271’%| > a
so that the second identity in (9.287) gives for any r € A(¢; p; +Ce 48, po — Ce —§) N R
the following inequality on T, _os (Where 2, = h — Ce — Bpy)
(9.289) lv(-,r) — / v(O, 7)dO || —0s S 878w
T

We now notice that there exists 0 < ¢ < §% such that RN 0A(¢; p1 +Ce+8+¢, po — Ce —
8 — ) = ¥. The maximum principle applied, for any ¢ € T) _s;, to the holomorphic
function v(g, -) — fT v(0, -)df defined on A(¢; py + Ce + 68 + ¢, po — Ce — § — t) shows
that (9.289) holds for any » € Ays 1= A(¢; p) + Ce 4 26, py — Ce — 25). We thus have

<9.290> ”891)”/71—3511‘38 = 0(8_(4+b)\)).

Taking the 9y derivative of the first line of (9.287) and using the previous inequality show
that (from now on the value of ¥ may change from line to line)

dpu(O + w1 (1), r) — dqu(d, ) = O "v).
By the same argument used to establish (9.290) we get
(9.291) 1 9p2ll 1 —45.8,, = O ~"V)

(we have used the fact that fT dpu(6, r)df = 0). Since g 1s symplectic on Wy, det Dg(0, r) =
1 hence

(14 9pu(8, ) (1 +8,v(0, 7)) — d,u(8, (0, 1) =1
and in view of (9.290), (9.291)
18,0111, 15,4, = O(8 ")
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which combined with (9.290) implies,
(9.292) lo =¥ ll-154, =O@ V),  y=0v(0,0)€R.
The first equation of (9.287) implies that

lwg (- + ) — @1 () ]I, = O ™)

which is the first conclusion of the Proposition (9.284).
If g and gy are exact symplectic, g is also exact symplectic and one can write g = f7
for some Z = (g — id) which means g(0,r) = (¢, R) if and only if r = R + 3,Z(6, R),
¢ =0 + 0rZ(6, R). In particular
r=r+v0,r)+ 0,20, r+v(,1))
and since

d
%Z(H, r4+v(0,7) =020, r+v(0,7)) + RZ(O,r+ v(0,71)hv(0, 1)

we get from (9.290)

v(@,r) = —%Z(Q, r+v@,7)+ 06 ")

which after integration in 6 yields

/ v(6,r)dd = O ).

T

We can now conclude from (9.292) that
y =06 ").

In particular, taking y = 0 does not affect the estimate (9.284). U

Proposition 9.2 ((CC)-Case). — Under the assumptions of the previous Proposition 9.1:
(1) If c=0, p = py, pr =0 and g\, g are exact symplectic then

1091 () — 0R22() Ip(0,py—s) < CE .

(2) If po < |c|/4 then all the conclusions of the previous Proposition 9.1 are valid.

Progf. — 'The proof of Item (2) follows from Item (2) of Lemma K.1 of the Ap-
pendix applied to Proposition 9.1.
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So we concentrate on the proof of Item (1), ¢ =0, p = po, p1 = 0. We use the
symplectic change of coordinates of Section K (0, 7) = ¥ '(z, w),

Yy Ty X Af((), P) = Wy az,p N {7 < 12|/ |w] < '}

where o < 7r/10. Setting g + = w;l ogioVy,gs :é’z_,j: og1+,8+0,7n)=0O+us(0,7), 7+
v+ (0, 7)) we are then reduced to the preceding situation where g is replaced by gy, the
annulus A(c; p1, p2) 1s replaced by the angular sector Af+45 (p —49) and 4 by h — 45,
so that (9.287) holds on T)_45 x A> (o — 48). Like in the previous case, one can find
0 < ¢ < 8” such that the Diophantine condition (9.288) holds for any r € AZX 145052, 0 —
48 — 1) := AL, ,s(p — 48) NA(0; ¢, p — 48 — 1). Still by the Maximum Principle (9.290)
holds on T,_s55 x A, 55(0; £, p — 58 — £) with v replaced by v and one can conclude as
we’ve done before that (9.291) holds with « replaced by uy as well. Finally this gives the
existence of Y+ = v4(0, 0) € R such that on Af+53(0; t,p—55—1)

(9.293) llws (- 4+ y2) = @1 () lla,, = OE™"v).

Now, if g; and gy are exact symplectic the same is true for g 4, g + (¢f Remark 4.2) and
hence g; is also exact symplectic; we can thus prove, like in the proof of Proposition 9.1,
that £y = O(§7*v). We can hence assume that y+ = 0 in equation (9.293). Since o <
7/10 we deduce that on A(0; ¢, 0 — 58 — 1) = AS 505, p — 58 — ) U A, 5505 £, p —
58 — 1) one has

s (-) — 01 () la@iro-55-0 = O ).
But w;, ws € O(D(0, p)), hence by the Maximum Principle

lwo(-) — @1 () lp0,p—55—1) = O ™"v). ]

10. Adapted Normal Forms: v, Diophantine

Recall thatfort > 1, >0

* : l K
DC(k,7) = {wo €R, Yk € Z", min oy - 21 2 o)

DC(r) =|_JDC(x, 7).

k>0

Leth>0,0<p<1,A,B>1 2¢€0,"D,7)), F e O,("W,pes) such
that

(10.294) VieR, A < 21)7'92Q() <A, and |(27)"'D’Q|lc <B
(10.295) wo := (27)"'3R(0) € DC(k, ) C DC(7)
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<10'296> V 0 < p S ﬁ’ ||F||(,’IO’Z\V/,_D(0_/J) S IOm,
(10.297) where m=max(a ., a + 4, a3, as, 2b, + 10)

(@)1, a9, as, ay are the constants appearing in Propositions 6.5, 7.1, 8.1, 9.1 and b, is
defined by (6.152)).
We as usual denote w = (1/27)92 (w(0) = wy).

10.1. Adapted KAM domains. — We use 1n this section the notations of Section 7,
in particular we denote

(10.298) £ := max |D/F||,p, <7

0</<3

Assumption (10.296) allows us to apply Proposition 7.1 on the existence of a KAM Nor-
mal Form on the domain Wy, p( 5. We can thus define holed domains U, and maps F,,
Q,, gn., satistying the conclusions of Proposition 7.1.

10.1.1. Definition of the domains U . — Let 0 < B <, 1 and p €]1, 1+ 1/7[ such
that

1
(10.299) ude:m(l +;>(1 —Byell, 1+ 1/t[.

We define for p < p/4 two indices i_(p), ¢, (p) € N as follows:
(10.300) i—(p) = max{: > 1, D(0,2p0)NU, =D(0, 2p)}
and

1+ (p) 18 the unique index such that

(Ni_p)" < Niyn) < 4/3)"(Nip)" <N} (.

(10.301) {

We also define t(p) € R by

t(p) € R’ such that

(10.302) {
p=MNip)™,  Nig=p "
The next lemma shows how N;_(,) and N;, (,) compare with p.
Lemma 10.1. — One has
10.303) (14 1/1)+O(mpl™) <i(p) < (1 +7)+O(npl™).

In particular,

<10.304> Ni+(p) = p—u/t(p)’
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where for p <K g 1

1
10.305) - —2p=< % <1-(8/2).

Progf: — To prove (10.303) we just have to check that
(10.306) (Ni )™ S p S (N 7

See the details in Appendix I.1. O

We shall say that the domains U;, i (p) <1 < 1,(p), are p-adapted KAM domains.
For ¢t > 0 and i_(p) < <1, (p) we define

UY =U,ND(0,7), D,(U)=DUY)=(DeDU,), DND(0, t) # B}

U, being the domains of Proposition 7.1 and where as usual D(U) denotes the holes of
the holed domain U (see Section 2.3.1). By (7.193)

UY:=0;nD0, ) =D, ) ~ U Ugpes, D 51K,
(10.307) sty » i
s === e [1,2]

where
EC{khDeZ, 0<k<N, 0| <N}, o)) =1/k

One can in fact in formula (10.307) restrict the union indexed by j to the sety € [i_(p), 1 —
1]NN; ¢f Lemma 1.1 of Appendix I.
One can also describe UZ@ by means of its holes:

(10.308) UY:=U,ND(0,) =D, ~ U D
DeD,(U;)

this decomposition being minimal. In particular, if D, D" € D,(U,) the inclusions D C D/,
D’ € D do not occur.

Proposition 10.2. — Leti_(p) <7 <1 <1,(p).
(1) The holes D € Ds9),(U;) are pairwise disjoint.
(2) IJ[D < D(g/Q)p(Ui), D e D(g/g)p(UZ‘/) one has either DND' =@ or D’ C D.
(3) The number of holes of U; intersecting D (0, p) satisfies

(10.309) #{D € D(U;), DND(0, p) # @} < pN-.
(4) Let D € D,(Uj, () and define

ip=—14min{i: i_(p) <i<i(p), AD' € D,(U;,,), D' C D}.
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Then, D s of the form D = D (¢p, SDKZ-:)I), sp€ll,2], ep €R, w;,(ep) €{l/k, (k1) €
E;,} and one has D C U,;.
(5) Let by be defined by (6.152) (where T is such that (10.295) s satisfied). One has

(10.310) D(0, p’) C U, ().
Progf. — We refer to Appendix 1.2 for the proofs of Items 1, 2 and 4.

Proof of Item 3 on the number of holes. — From (10.307) we just have to check that for
NeN

#{(k, ) € Z*, I/k€lwy — s, 0y +s[, 0 <k <N,0< || <N} <N

It (£, [) belongs to the preceding set one has |/ — kwy| < sN and thus (£, /) belongs to
[—N, NP> N {(x,») € R?, |x — wyy| < sN} a set which has Lebesgue measure < sN*. We
thus have for large N, #(Z? N [—N, N> N {(x,») € R?, |x — wyy| < sN} < sN2

Proof of Item 5, winclusion (10.510). — Recall that b, > 7 + 1. Since wy 1s in DC(7),
for (k, 1) € E;, j < i, (p) — 1 one has |I/k — wo| 2 N7 "7 Since Q satisfies a (2A, 2B)-

twist condition (2A)~! < 8a)j < 2A one has |c[(§),(| pe Nj«_(lﬂ) and because Kj_1 < NJ»_(HT)

(¢f (7.163)) one has |¢f| — 2K;' 2 N7 > G=IN; (7, for some C > 0. Now (7.193)
shows that Uj, (,) contains a disk D(0, C~'N; "Dy and we observe that from (10.305),

i+(p)
(t + 1)(w/t(p)) < T + 1 < by hence '

(10.311) D(0, p’) C D(0, C~'pTHIHP) U, ().

10.1.2. Covering the holes with bigger disks. — Let us define (compare with (7.163))
(10.312) K= NN« K, <« N/0ND?
and for any D € D, :=D,(U,, (,)) set
D=D(,K;), D,=(D, DeD,).
Notice that for any a > 0, p <, 1 and ¢_(p) < <, (p) one has

(10.313) g/ <K <l /4.
Indeed, the inequality of the RHS is due to the fact that |ep| > p’ (¢f Proposition 10.2,
Item 5) combined with the fact that N, < p/F® (¢f (10.306)).

The inequality of the LHS is a consequence of (7.163).

Let us mention that these disks D are the ones on which we shall later perform a

Hamilton-Jacobi Normal Form as described in Proposition 8.1.
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Lemma 10.3. — The elements of D, are pairwise disjoint and for any D € D, one has

Dc(1/10Dc6DcU,, D~ (1/100DcU,,.

Progf. — Let D and D’ be two distinct elements of D,. By Proposmon 10. 2 Item 1,
DND’ =@ hence from Lemma 7.3, Item 1 |ep—ep| 2 N .. Since K +K K N
we get that D(¢p, 12—1) N D(cD/ K ) =

Let us now prove 6D C UZD If 6D Is not a subset of U, one has for some
D' e D(U,), (6D) N D' # @ hence |ecp — cDr| < 6K + K K Nt (0. We can apply
N (p), but thlS 1mphes that D N D’ # @, hence
D =D’ (we can apply Proposition 10.2, Item 1, since D, D" € D3/9),) and by Proposi-
tion 10.2, Item 4 we obtain D' C U, : a Contradlctlon

Let us prove the second 1nclus1on D~ (1/ lO)D C U, (). If this is not the case then
for some D" € D(U,, () one has D'N (D ~ (I/IO)D) # (I hence |ecp — ey | S Km < NZ+(/>)
which implies as before using Lemma 7.3 that D = D’. But since D C (1/ 10)D this leads
to a contradiction (otherwise D' N (ﬁ ~ (1/ IO)ﬁ) =0). (l

i+(p)* i+(p)

Lemma 7.3, Item 1 to deduce |ep — epy| <

Remark 10.1. — Let us mention (this will be useful in the proof of Theorem 12.3)
that

Y DNRM <1
beD,

10.1.3. No-Screening Property. — Our key proposition is the following.

Proposmon 10 4. — For any D € DUy, (,)) such that D N D(0, p) # D the triple
(Ui, (p> D~ (I/IO)D D(0, p’ /2)) is (10b,) 7 |In p|~'-good (in the sense of Definition 3.3).

Progf. — From Remark 3.1 it is enough to prove that for some U C U; o) con-
taining both D(0, p’*) and D~ (I/IO)D the triple (U’, D~ (l/lO)D D(0, p’ /2)) is
(106,)7"|In p|~'-good.

Lemma 10.5. — There exists a constant G > 0 such that for any 1 < s < 4/3, there exists
p' € sp, sp + 10Cp?] such that

D(0.p)NU,, =D0.p)~ | D.
DE’D(UQ_(;,))
DcCD(0,p0")

Progf. — From Lemma 7.3 the holes of D(Uj, (,)) are G| Nl (p-separated (some

C, > 0), hence for some Cy > 0 they are C; ' p**/!")separated (¢f (10.304)) and because
of (10.305) they are C~! p*-separated for some C > 0.
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However, each of these disks has a radius < 2K | o K p*. Since they are centered
on the real line the conclusion follows. 0

From the previous lemma we deduce the existence of a p’ € [(5/4)p, (4/3)p] such
that all the holes D € D(U,,(,)) of U, (, intersecting D(0, p’) are indeed included in
D(0, p'). We then set

U=U,,NDO0.p)=D0.p)~ |J D.

DeD(Uy, ()

DCD(0,p')
From (10.310) we have D(0, p}’f) C U and for any D = D(ep, K e D(U,, () such
that D N D(0, ,0) £ one has D C D(0, (5/6),0) indeed, since D N D(0, p) # @,
lepl < p + K <p+ ,0 hence |6D| + K < p + 20" < (5/6)p". On the other
hand, from Lemma 10.3 D ~ (I/IO)D C U/ (D c D(0,p ) In this 51tuat10n we can
apply Corollary 3.4 with U= U, B=D(0, p*/2), d: = K;l, & = QK : the triple
v, D~ (I/IO)D D(0, p’ /2)) is A-good with

In(6/5)

(10.314) A= b np| ey
where
Wie 3 #2000
R 2K/ (o)
with

Ci(p) =#{D € D(U;,(,)), DND(0, p) #9, ip =1}.
From (10.309) of Proposition 10.2, (10.302), (10.303), (10.312), (7.163) one has

i (p)—1 InTt(P)
O <p +i ,In(RTNI'G,/30)
N In(2K; N2y

i=i_(p) i—(p)

ir(p)—1 _(lnN)Q +1n(Nl(P) /30)

i—(p)

N2
<r ) —(1/(2(@ + 2))IN;/(InN))? + In(N'%) /2)

i=i—(p)

i+(p)—1
Se Y MNP (p<gp )

=i—(p)
and since N, is exponentially growing with z,

M < p x (N, () P2
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D(0, p" /2)

Fie. 9. — Adapted KAM Normal Forms (wy Diophantine) in the complex r-plane. The triple
(U”, D\ (1/10)D, D(0, p"7 /2)) is Cy| In p|~'-good

From (10.304) and (10.305) we thus get

(10,315) 4)) § pl—(1+ﬂ/2)u/t(p) < pﬂ2/4

and from (10.314), if p < 1

| 1
<A (some C > 0). ]
100, |In p|

10.2. Coexistence of KAM, BNF and Hf Normal Forms on the adapted KAM domain.

Notation 10.6. — If W, is a o -symmetric holed domain, we denote by N'F, (Wh v) (resp.
NF,.oc(W, U)) the set of triples (2, F, g) with Q € O U),Fe O,(W,1),g€ Sympa (W,v)

(resp g€ Sympex,o (Wh,U))

Proposition 10.7 (Adapted Normal Forms). — Let Q € (50 (U) and ¥ € O, (W, 1) satisfy
(10.294), (10.295), (10.296). For any B <K, | define i_(p), i and 11 (p) according to (10.300),
(10.299) and (10.301). Then for any p <Kpg 1 the following holds:

(KAM): Adapted KAM Normal Form (Proposition 7.1). Let D € D, (U, (,)).

(10.316) [Wthzi(p)] g[}i(p) 0 Pg 0 fr 08l = q)Qz'i(p) OfFii(n)
<10'317> [thUi+(p)] gi]_),li+(p) © (DQiD OﬁiD O 8ip.iy(p) = q>9i+(p> oﬁi+(p)
(10.318) (Wiv, 1 & i © Par o 0S5 () © & 010 = Pay, O ff, -
(10.319) lg1ir o) — dllct SEV? < p"?



ON THE DIVERGENCE OF BIRKHOFF NORMAL FORMS 95

(10.320) Igin.i. o) — idllcr <€

ll)

(10.321) IF: ) llw, o S exp(=(1/p) /D7),

Note that (2, ¥;,g) € NF,.o (W,u.) and ; € TC(2A, 2B).

(HJ) Hamzlton -Jacobi Normal Form. (Proposition 8.1). For any D € D,(U,, () there exists Dc
D and (Q E‘],gg‘l) e NFo(W,0555) such that

(10.322) (g ) Yo CDQZD OfFLD Ogﬁ =P ol ofrHI (W0 5551

(10.323) gy — idllcr S 77
(10.324) 2 e TC(2A, 2A)
(10.325) [ lw,, 5 5 S exp(=(1/0)).

The triple (ng, D, ]3) satisfies the Extension Principle of Proposition 8.1.

(BNF): Bukhoff Normal Form (Proposition 6.5):
T here exists (QﬁNF, FENF, gﬁNF) ENF,.o (W,p.piv)) such that

(10.326) (@) o Dgofiogt = Do o fin, (W,.p(0.pir))
(10.327) g — idller < p" "

(10.328) QN e TC(2A, 2B)

(10.329) IE I, o ey S exp(=(1/p)' )

Proof. — KAM: This is just the content of Proposition 7.1. For inequality (10.321)
we note that from (7.170), (7.163), (10.304), (10.305)

s oy 11,01, ) S exp(=Ni, )/ In(Nz, (5))))

S eXp(_p*(M/t(p))f)

Sexp(—(1/p) 1772,

HJ: Let D € D,(U;, (,)) where D = D(cp, sDKZD ), wi, (ep) =p/q, g <Ny, pAg=1, be

one of the disks obtained in Proposition 10.2, Item 4. By Lemma 10.3 the disk 6D =
D(ep, 6K;") is included in Uj,. We observe that 6K ' < |ep|/4 (¢f (10.313)). Since

min(6K; !, epl/4) = 6K < (Ap™ and [|Fy llep S &y < (6KLH™
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(the last inequality comes also from (10.313)) condition (8.205), (8.203) are satisfied and
we can apply Proposition 8.1 on Hamilton-Jacobi Normal Forms to ®gq, o fi, on the

domain W, 5 C Wy, with 0= K;: there exists a disk D ¢ D
(10.330) D :=D(c, pi;) C (1/10)D :=D(cp, (1/10)K-") Cc U,,

D

and (), FY, &) € NF, (W, 5.p5) satisfying (10.322)

D’"D
10.331) g —idle S e <E)
10.332)  IFG w5 S exp(= Ky /N;y) ).

To obtain inequality (10.325) we observe that since KiD = NZNI'D with i, (p) = ip > 1_(p)
we get

- _1+lan_7
—(K;y/Nip) S =Ni ) "
Because for p small enough —1 +1InN; (,) > 4(2 + 7) we get
74 1/4 241
_(KiD /Ni[)) S _Ni_(,o)

which yields, using (10.302) and (10.303) (0 <, 1)

— (K /Nt < —(1/p) @0/

<—=/p).
BNF: We observe that D(0, p’*) C D(0, p) and apply Proposition 6.5 to (2, F) on
"W, p(0.p) (We use the smallness condition (10.296)). OJ

10.3. Comparision Principle. — We now use the result of Section 9 to show that these
various Normal Forms match to some very good order of approximation.

Lemma 10.8 (Comparing Adapted Normal Forms). — For any B <. 1, and p <Kp 1
(10.333) 192, — 2 la/2p0,00) < exp(—(1/p) /77
and for any D € D, there exists yp < I/{f
(10.334) 11€2i, o) — Q%U(' + ¥o)llaspci/mp < exp(—=(1/p) /77,

Proof. — 1) Proof of (10.333). From (10.326), (10.316) and the fact that

Win,pt1) C Wi, p00) " Wiu

i+ (p)
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one has on gl,i+(p)(Wh,D(O,pbf)) ngNF(Wh’D(O’pbr))

~1 _ BNF i _ BNF\ — 1
guiv0) © Py, () O St ) © @Livw) =g, o Pamrofimnro(g, ).

We can then apply Propositions 9.1-9.2 with p, = p’, p; =0, § = p’/2, ¢ =
prin@/2m=10) 1y = exp(—(1/p)"/P~?#) because from (10.329), (10.327), (10.319), (10.321)
one sees that condition (9.283) reads

apmin(m/Q,m—IO) < Iobz/4_ < pbr and 6(,0 bf/2)—ﬁ4 exp_(l/p)(l/r)—Qﬂ) <1

and 1s satisfied for p < 1 (¢f (10.297)). Since g ;,(,) and gENF are exact symplec-
tic we then get [|€2;,(,) — Q?NFHD(O,(UQ)M) < Cp~ e+ exp(—(1/p)/D728) which is
< exp(—(1/p) /D73 if p is small enough.

2) Proof of (10.334). Similarly, from (10.317), (10.322) one has on the set
H
gﬁj(wh/s),ﬁ\(l/s)ﬁ) N Zin.iv(0) Wi D 1/5)D)
H HJ\ _ _
& o P 0 fyin 0 (€)™ =giivir © Par, ) O, © @inin ()

and from (10.320) (10.321), (10.323), (10.325), we see that Propositions 9.1-9.2 apply
with ¢ = ¢, e =8,", § =K '/20, p1 = (1/10)K, p» = K. < |e;|/4 since condition

D

(9.283) 1s implied by
Ce/’ <K;'/80 <K_'/10 and C(20K;)™ exp(—(1/p) /") < 1

which is satisfied (¢f (7.163), (10.312)) if p is small enough. We then get for some yp €R,
lvol S Ce” <K.” (¢f (10.313)) that on the annulus (4/5)D ~ (1/5)D one has [, ) —
Q) (- + )| < exp(—(1/p) 110 7%), O

11. Adapted Normal Forms: w¢ Liouvillian (CC case)

Leth>0,0<p<1,A,B>1 2¢€0,"D,7)), F e O,("W,po) such
that
(11.335) VrieR, A™' < (@2m)7'9’°Q() <A, and [[(27)'D’Q|c <B
(11.336) wy = (27)"'9R(0) eR\ Q
(11.337) VO<p<p, IFlioww,p, <p"
where

(11.338) m = 4 + max(a,, 2000A%,, a, Gy)

(ay, a9, as, a, are the constants appearing in Propositions 6.4, 7.1, 8.1, 9.1).
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Using the notations of Section 6.3.1, let (p,/¢,), be the sequence of convergents
of wy:

1
< |a)0 - (pn/%z” < .

In+19n Gn+19n

(11.339)

1
(11.340) VO<k<g, VIEZ |og= (U/R] > 5 —.
Gn

We assume that 7 is large enough and we set

10A
(11.341) P = <p/10.
qﬂ-‘rIQn
We mtroduce
<11'342> g = gna)% ”D].F“th D(0,10p,) 5 (101071) " =< ngOOAEQ.
<=L R

11.1. Adapted KAM domains. — Since Condition (7.161) is satisfied we can apply
Proposition 7.1 (with pp,, 7, = 10p,) and define holed domains U;, functions €2;, F;, o,
ele. In particular for 0 < ¢

U;NDO,) =D, ) ~ U Ugeper, D 51K,

11.343 i~
( | it == € [1,2]

where
E C{(kDeZ, 0<k<N, 0<|| <N}, () = U/k.
Note that from (11.342) and the definition (7.163) of K;

(11.344) K]fl ng < plovoA

Lemma 11.1. — Letj be such that N; < Gur1/(10A)? and (k, [) € E;.
(1) If (k, 1) € Z(q,, p,) one has ]k = p,/q, and
-1 )
eA o @

n+19n = Tl n+19n

(11.345) (40A*) 7 'p, <

< pu/5.

(2) If (k, 1) ¢ Z(qu, pn)
(11.346) e = 4p,.

Progf. — Ttem 1 comes from (11.339) and the twist condition (7.166).
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To prove Item 2 we observe that if (£, [) & Z(q,, p.)

L p ; 1 1 99A2
oo — 1217 =2 oy = 22— - > T s 0n,
k k Gn Gn an TnGn+1 TnGn+1
and from the twist condition (7.166) we get |ch/),€| >4p,. UJ

For n € N* define ;, as the unique index ¢ such that
(11.347) Ni;—l S qn < Nz;

and ¢' as the unique index (see the definition of the sequence N; in (7.163)) such that

3/4)q, '
(11.348) B g, It
(10A)2 — = (10A)?
We define
G=d. Du=DE s KD D, =D lel/24)

(11.349) U :=Uyz ND(O, p,).
Note that from (11.345)

(11.350)  (40AY)'p, < || < p/5.

Proposition 11.2. — For n large enough,
(1) D(O, p,) C Uz,,
(2) One has D, :=DU) ={D,}.
(3) One has the ﬁ)llowing inclusion 6D, C U.-.
(4) One has D0, ¢,)) C Uy
(5) The triple (U™, D N (I/IO)Dn, D(0, ¢,;,/2)) is 1/(10|1n p,|)-good (in the sense of Defi-
nition 3.3).

Proof of Item 1. — 1f j <o and (£, /) € E;; one has 0 < k£ < N;-_; < ¢, hence from
(11.346) |c)| = 4p, and from (11.344) |¢/}| — 2K;' > 3p,. The conclusion then follows
from (11.343) applied with ¢ =2.

Proof of Item 2. — From Item 1, equality (11.343) can be written

1+—l

U+ ND(0, p,) =D(0, p,) ~ U LJ D@ 5 K.

joir (kDEE;
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We observe that (g,, p,) € E;- and from (11.345), (11.344) one sees that D, = D(C;Z;n’

K2 € D(0, p,). More generally, if (k) € E;, iy <j<if —1 and (k1) ¢
Z (¢, ), one has N; < ¢,41/(10A)? and (11.346), (11.344) give that D(0, ¢f);, 2K;™")
D(0, p,) = @. Since the sets D(0, cl(;’:/q”, Ser»ii—lK;1)> i~ <j <i, form anested decreasing
(for the inclusion) sequence of disks one gets

S

Ui,T m D(O’ pn) = D(O, ,On) N Dn
Proof of Item 3. — 'T'his comes from the fact that |¢,| + 6]¢,|/4 < p,.

Proof of Item 4. — 'This comes from Item 1 and the fact that |¢,| — |¢,|/4 > q;fl as
is clear from the LHS inequality of (11.345).

Proof of Item 5. — Notice that from (11.345) 5 < p,/|c,| < 40A? and that QK;I <

,O,ZIOOOA. We use Corollary 3.4; we have to evaluate

[ InQal/Gp)) _ In(al/8p)
In(g,5,/(20,)) (K. '/p,)

. In(20) In(320A?)

~ 7|lnp,] (1000A — 1)|Inp,]|

>_1 O
~ 10[Inp,|

11.2. Adapted Normal Forms.

Proposition 11.3. — Let Q € O, (U) and F € Oy (W,,v) satispy (10.294), (10.295),
(10.296). Let 0 < B K 1 and n>>g 1 such that

(11.351) us1 > 2.

(KAM): Adapted KAM Normal Form ((Proposition 7.1)): One has (2, ¥i, g € N F .o (Wyv0),
@, € TC(2A, 2B) and

(11.352) g no®aofiog s=Pa.ofi.  [Wiu,l
(11.353) glio®a_ofi_ogru =P ofr.  [Wiun]
(11.354) g+ —idlcr, llgr i+ — idllr S&7° < p)”°
(11.355)  [[Fyllw, ) S exp(—q0).

(HJ): Hamulton-Jacobi Normal Form (Proposition 8.1).
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D(O0, p,)

D, =D(c, ¢,/4)

D0, q,) \
RPN

D

. 1} .
R-axis ‘%O \ /
S
Cn X Pa

D, =D(,, o)

Fic. 10. — Adapted KAM Normal Forms (CC Case) in the complex r-plane. The triple (U”,

1/(10|In p,|)-good

There exists (Y, FiV, V) € NFo (W, 05, 5,) such that

<11.356> (‘gfllﬂ)_l °© q)Q»f oﬁ‘.f Ogrlzﬂ = CDQZIJ of};:,_lJ [le/9,(ﬁn\l\3n)]
(11.358) QW e TC(2A, 2A)
(11.359) ”F?Jll“”/z/g,(ﬁn\ﬁn) Sexp(—¢ P,

The triple (SZISU ,D, ]3) satisfies the Extension Principle of Proposition 8.1.

(BNF): Burkhoff Normal (Proposition 6.4):
There exists (QPNF, FENF, BNF) eENF,.o W, D(0.4¢ )) such that

Tnr1 Tnt1 Int1

<11.360> (gt];_lle [0) (I)Q Oﬁ Og 1 = CDQB\F OffB\F [Wh,D(O,q;fl)]

n anrl qﬂ+1
11361 g —idlw,, o Sal
(11.362) QBNF € TC(2A, 2B)

Int1

1—

11363 IFN o Sesp(-g]).

101

U, D0, ¢.) is
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Proof. — KAM: This is Proposition 7.1. Inequality (11.355) comes from the corre-
sponding (7.170) £+ < exp(—N;+/(InN;+)*) and the fact that Nj+ < ¢,4.

H]J: By Proposition 11.2, Item 3, the disk 6ﬁn = D(¢,, |¢,|/4) 1s included in U,-. Since

(6(el /240" < (Ag)™',  and  |F; hep, SE; < (lal/H™

(the first inequality is a consequence of (11.351) and the second of (11.342) and the fact
that |¢,| < p,) (8.205), (8.203) are satisfied and we can apply Proposition 8.1 on Hamilton-
Jacobi Normal Forms to ®q _ of¢ _ on the domain W, 5 C Wh,Ur with p = |¢,|/24: there

exists a disk ]3,, C ﬁn
(11.364) D, :=D(¢, p5,) C (1/10)D, € D, =D(c,, l1/24) € U;-
and (QHJ Fn ,gn Uy e N F, (Wijo,B, ) such that one has (11.356) and

(11.365) g, — idllw g/f<g”

1/9,(Dp~Dp) ™~ q" v in

(11.366)  [[F5[lw exp(—l/(qn|cn|/24>“4>

1/9,(Dp~Dp) ™~

and since || < (gugas) ™ (1335 1)

HJ 1/H—-p
”Fﬁ,,”“h/ﬁfo Oy~Dp) ™~ S exp(— Q1 )-
BNF: Since |[Fl[,10w, 5, < < p™ (¢f (11.337)) we can apply Proposition 6.4 on the exis-
tence of approximate BNF in the CC case (with n+ 1 in place of n): for 0 < f < | and
n>>g l: there exists (QBNF FBNF Bl\F) eNF, Wb P )) such that
1

Tnt1 Tnt1 Tnt
[W ] (gBNf) Lo ®gofrogh’ = Pomr o frmy
RDO.q,7)) QOJF g 1 =% F
’1n+1 ’1n+1
with
FENF
1w, L, < exp(=g,7). -
q + qn+l
11.3. Comparision Principle. — These various Normal Forms match to some very

good order of approximation.

Lemma 11.4 (Comparing Adapted Normal Forms). — One has for any B < 1, n>p 1
(11.367) ||Q ir QB 1F||(1/2)1)(0 ‘1+|) ~ CXp( %Jr )

and there exists v, S ¢ S lea|™? such that

(11.368) |2+ — QA ( + ¥ llw5b, /5D, S exp(— Qfl:-/;})iﬂ)
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Proof. — Let us prove estimate (11.367). From (11.360)—(11.352), we see that on
8uif (Wh,D(O,q;fl) mgf—lf(wh,n(o,q;fl) one has

BNF _1
g 1 o q)QB\F OﬁBl\F o (g §1,z’;f o ¢Qi+ Oﬁ:ﬁ o (glvl-;r)
n n

q
wtl qn+ 1 qn+ 1

We then apply Proposition 9.2 with ¢ =0, p; =0, py = qH], é= qu ,V=-exp(— qH] ) (¢f
(11.363), (11.355)), & = ¢, 7" "">" 27 (¢ (11.361), (11.354)) (estimates (9.282) and (9.283)

are satisfied since Cqg, +nfm('"/ ) < 0T J4 & g8 and gl exp(—g) < 1).

Estimate (11.368) 1s a consequence of Proposition 9.2 applied to (11.353) and
(11.356)

_ H Hjy—1
8iv it OCDQJr Off i z,,) Joq) ol OJ%HJO ,ZJ)

with A(c; p1, p2) = D, N (1/10)D,, ¢ = ¢,, p1 = |al/40, py = lel/4, 8, = [c,]/10,
v = exp(—¢.) (f (11.359), (11.355)), & = p/° (¢f (11.354), (11.357)). Estimates
(9.282) and (9.283) are satisfied since Cp"? < |¢,|/40 < |e,|/5 (¢f (11.350)) and
C(le,l/10) ™ exp(—¢'/ ™) < 1 (recall that |¢,| < (gugur1) ™) O

12. Estimates on the measure of the set of KAM circles

We refer to Section 4.4 for the notations of this section. We observe
(Wh,U)R = Wh,U N MR = WU(‘]R = {7’ eUnN R} N MR.

In particular in the (AA)-case (W,u)r = Wurr =T X (UNR) and in the (CC*)-case
(Wi0)r = Wunr ={(x,0) € R?, (1/2)(x* +)*) e UNR,}.

12.1. Classical KAM estimates. — We first state a variant of the classical KAM the-
orem on abundance of invariant circles which is a consequence of Propositions 7.1, 7.2,
7.5 and Remark 7.1 on KAM Normal Forms.

In the next theorem the constant g, is the one of Proposition 5.5 and the constant
@y was defined in Section 7 by (7.160).

Theorem 12.1. — Let U be a holed domain with disjoint holes D € D(U) such that

(12.369) > IDNR|V <1

DeD(U)
and 2 € O,(U)NTC(A, B) (¢f (7.158)) with A, B satisfying (2.60), F € Oy (W, 0)

&= [|[Fllw,, <dU)™.



104 RAPHAEL KRIKORIAN
Then, if f = ®g o fr one has

Lebyg (We-100mr N L0, Wonr)) S (1Fflw, ) /@,
Proof. — See Appendix J.2. OJ

Notation 12.2. — We define for p > 0, Dr(0, p) =D(0, p) "R =] — p, p[ and
ms(p) = Lebyiy Wy, ~ L(f, Dr(0, ¢%p))).

12.2. Estimates on the measure of the set of invariant circles: wy Diophantine (AA) or (CC)
Case. — We use the notation of Section 10 and assume that (both in the (AA) or (CC)-
cases) (10.294), (10.295) (10.296) hold. We denote

(12.370) D, =D(Ui, ().

Theorem 12.3. — Forany B > 0, p Lz 1

(Ad)-case  Tpger(p) S exp(—(1/p) /7 F)+ Y " IDNRY.
DeD,

(CC) or (CC¥case Trager (p) S exp(—(1/p) /) + Y " IDNR.].
DeD,

Moreover, for any D € D, one has
(12.371) IDNR| Sjexp(—(l/,o)ﬁf*ﬂ).

Proof — IS C € we denote Sg = SN R (if ¢ € R, Dg(c, /) = D(c, /) "R =]¢ —
t,c+t)).
Choose (¢f Lemma 10.5) p’ € [¢//*p, ¢!/ p] (p < 1) such that

U :=D(0,p)NU,=D0.p)~ [ J D
DED(U;Jr(p))
DCD(0,p")

hence

(12.372) ¢'"'Dg(0, p) C UL U | (1/4)Dr.
DeD,

H
Let us denote for short f; = ®q. o fp,, ﬁjj = & o fy and
D D

‘Ci+(,0) = £(f;+(p)’ WU;{”))’ *Cﬁ = ‘C(J[HJ’ Wﬁn\ﬁk)'
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We have from (10.318) (10.322) (10.316) of Proposition 10.7

(12.373) Wit & (oran O (o) ©Gisipriv =i
(12374 Wyenon (@) ofy o =/

(12.375) Wil & (pisio) O (0) ©&i(oiv) =Jir (o)
(12.376) Wit s &iip 0 ©81i 0 =Ji(o-

From Lemma 10.3, Remark 10.1 and estimate (10.321) on the one hand, and estimate
(10.325) on the other hand, we see that we can apply Theorem 12.1 to f;, (,) and ﬁ)HJ to
get the following decompositions

(12.377) W open ™ Lin ©Biyirs - Wenong ~ L£p € B UEs

with B]’j\f) C Wﬁ EB = W571/101V)R and

R~Dr>

(12.378> max(Lebl\,IR(BiJr(p)), LCbMR (Bﬁ\ﬁ)> SJ exp(_(l/p)(l/r)—ﬂ/Q)

(1 2.379) LCbMR (Ef)) 5 LCbMR (We—l/lof)R).

We now introduce

~

5 H
(12.380) i) = Zi(pris(0) (Liv () Lo =g .1 08 (L)

~

(12.381) By =2 0.0 Birw): B =8 (v 08 Bppp),
(12.382) Ef) =& (o).in Oggl(Ef))~
Lemma 12.4. — One has
Gi_oy.iv () W 111D 0,p1) LcB
with

L=Li,pU| )L B=B.,ulJ®B5UEp.
DeD, DeD,

Proof. — We observe that from (12.372) one has

(12.383) We*I/IODR(O,p’) C We’l/mU;f/) U U W(l/4)ﬁR
DeD,
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hence
&i_(p).ir(p) (W=1/10pg 0,0))

Cgz'_<p>,z'+<p>(We—l/muif’)) Y U 8i_toy.ir ()W /mDg)-
DeD,

Note that by Proposition 10.7 one has max(|lgi_(p).i,») — “llc1, ||g§J —d||c1) < E}_/?p) <
K;)l (since N, < N?

o i p)) hence

. N HJ -
&i_(p),ir (0) (W(1/4)DR) C W(I/Q)DR C b °% (We—l/mDR)

which yields
8 (p.is o) Wer DR 0,0
H ~
C&ipriv o) (Wfl/wuif“) J U (gup),in Ogﬁj(wrl/mﬁk\m) U Eﬁ)-
DeD,
We then conclude using (12.377) and the notations (12.380). 0

Lemma 12.5. — For some G C W, 1/10pg 0,7y 0ne has L= L ), G) and

(12.384)  Leby(B) S exp(=(1/0) V) + Y Lebyy (W, /0i5,)-
DeD,

Progf: — We observe that from (4.86)

~

(12.385) L) =& .iv Lis ) = LU (9 & (01,11 0) (W)

(12.386) Lo =g (. 080 (L) = LU 0+ & (5.0 08 Wiy )
hence,

L=L(f ). G)
with

H)
G =g irt) (W) U U & 0.0 080 Wpisg)
DeD,

and clearly G C W 1/10pg 0, p)- _
To get the estimate on the measure of B we use (12.378) and (12.381) to get

Lebyg (Bi, ) S exp(—(1/p)V/07#72),
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and (remember (10.309), (10.304), (10.305))

LebMR< U Eﬁ\ﬁ) S Nz%r(p) eXP(—(1//f))(l/r)_’3/2))

DeD,
Sexp(—(1/p)07F);

moreover (see (12.379), (12.382))

LCb]\TR( U Efj) S Z LewaR(We*I/IOI\jR)'

DeD, DeD,

Summing up these estimates yields the desired inequality on the measure of B. UJ

End of the proof of Theorem 12.5.
Lemmata 12.4 and 12.5 give

% i (0 Wpg0.00) N LU (0)s Wanopg(o,0n) C B
hence
(12.387) 81,i_0) °&i_(p).i+(0) (Wpr(.0)) gl,i,(p)(‘cw—(ﬂ)’ Wiropg 0.0)) C 81,i_(0) (B).

Since the conjugation relation g;l{ (0 °S ©8&1i (0 =Ji(p holds on Wy,_ R (¢f (12.376))
and since W,1/10pg (0,07 C Wu,_,nr (recall that by definition (10.300) D(0, 2p) C W), u
and that ||g; ; (,) — d|| < p) one has by (4.86)

L(f, 81.,i_(p) (W.ir0pg0,0)) = gl,i,(p)ﬁ(ﬁ—(/))’ Wo0pg0,0)-

Equation (12.387) then implies that

i—(p)

81,i_(p) Ogi,(p),i+(p)(WDR(0,p’)) N L(f, 81,i_(p) (Waropg,0))) C 81.,i_(p) (B).

Fmally, inclusions Wpg,5) C 81,i_p) © gi_(p),z‘+(p)(WDn(0,p’)) and gl,z’_(p)(Wel/“’DR(O,p’)) C
Wel/QD(O,p) yleld

Lebyg (Wog0.0) ~ L s Woip,)) S Lebag (ﬁ)-
We conclude by using the estimate (12.384) and the fact that

|]3 NR|, (AA)-case

Lebay, (W _ij0s. ) < ~
Cc MR( 1/ DR) — !|D mRJrI, (CC) or (CC*)-C&SC-

Proof of estimate (12.371) on the size of the holes.
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Referring to (12.374) and (8.206) of Proposition 8.1 we see that

= 1/33
DI < IIfs, e

where i_(p) < ip < i1 (p). From (7.163)

/i ”1/33 <—}/33_e—hNiD/(gz(lnN,-D)%
Fip Wiy, — %> T

NI- o -
< New (since i_(p) <1p)

~

hence from (10.302) for any g > 0
DI S exp(—(1/p) M),
Using (10.303) we then getif p < 1 (]3 is a disk centered on the real axis)

IDNR| < exp(—(1/p) 7 7). O

12.3. Estimates on the measure of the set of invariant circles: wy Liouvillian, (CC)-Case. —
We now assume that (11.335), (11.336) (11.337) hold.

Theorem 12.6. — Let p, = (10A)/(¢ugus1) and assume that g, > q'°. Then, for all
B <K 1 andn>>g 1 one has

Fiogor (0) S exp(—q,1y ) +1(D, NRY).

Moreover,
(12.388) D, ARy < e

Proof. — The principle of the proofis the same as that of Proposition 12.3 with the
following modifications in the notations: we set f= = fp , , fDH = /v and we replace in the
n n Dy

proof the indices iy (p) by £, D, D, D by D,, D, D,, ip by i, p by (4/3)p,, p’ by 20,,
U? by U and exp(—(1/p)/97F) by exp(—q,(li/f)f). Instead of using the conjugation
relations of Proposition 10.7 (Adapted Normal Forms in the (CC) or (CC¥)-case) we use
those of Proposition 11.3.
Estimate (12.388) is proved like (12.371) by noticing that
Vi, Ieye, SELY <exp(=N; )

Wyu.. ~
/[’L’D,,

and using (11.347). 0J
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Remark 12.1. — Note that if the twist condition (11.335) is satisfied, then any
twist condition T C(A’, B) is satisfied with A’ > A. We can thus replace in Theorem 12.6
pn = (10A)/(¢,9s+1) by p = (10A") /(¢4qu41) for any fixed A’ > A (then 7z has to be chosen
larger).

13. Convergent BNF implies small holes

13.1. Case where wy Diophantine in the (AA) of (CC) setting. — We keep here the no-
tations of Sections 10 and 12.2, in particular we assume wy 1s T-Diophantine and that

(10.294), (10.295), (10.296) hold.

Lemma 13.1. — If BNF(®gq o fp) converges and is equal to a holomorphic function & €
OD(0, 1)) then for all B > 0, p KLp 1 and for any D € D,

(13.389) 12:, ) — Ellb</100p S exp<—(1//))(l/r)ﬁ>.

As a corollary, for any D € D, and yp, < 12;2
(13.390) ||QgJ —EC =) laspaamd S CXP(—(I/P)(I/T)_ﬁ).

Progf. — Let us prove inequality (13.389). From (10.333) and Proposition 6.7 one
gets

1260 = Ellaami,m) S exp(=(1/p) 072 4 exp(—(1/p)' )
S exp(—(1/p) VI,

Since the function €2;, (,) — & is holomorphic on U and since the triple (U, (,), D
(1/10)D, D(0, p’ /2)) is (10b,)~"|In p|~'-good, ¢f Proposition 10.4, we have by Defini-
tion 3.3

120 — Ellwa/10p S CXP( - (IObrl1n,0|)_1(1/p)(””_’3/2)

Sexp(—(1/p)77F).

The inequality (13.390) is then a consequence of (13.389) and (10.334). U

Corollary 13.2. — If BNF(f) = E then for all B > 0, p <Kg 1, and any D € D, the
radius py, of the disk D satisfies

SN eXp(—(l/p)“/”‘ﬁ)-
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Proof. — 'This results from (13.390) and the Extension Property in Proposition 8.1.
0J

Corollary 13.3. — If BNF(®q o fr) converges then for all B > 0, p KLg 1 (recall Nota-
tion 12.2 for m)

Moo (0) S exp(—(l/p)“/”‘ﬁ).

Progf. — 'This i1s a consequence of the previous Corollary 13.2 and of Proposi-
tion 12.3 since #D, < p!' 2W/1e) < p=1 (¢£(10.309), (10.304), (10.305)). O

13.2. Case w, s wrrational in the (CC) setting. — The notations here are those of
Section 11. In particular we assume that (11.335), (11.336), (11.337) hold.

Lemma 13.4. — If BNF(®g o fi) converges and is equal to & € O(D(0, 1)) then_for all
B <K 1, n>>4 1 such that ¢,y > q'°

(13.391) 12+ — Ells, /100, S exp(— ‘]n+ D).

As a corollary, for y, < T S < e, |™?
(13.392) ||Q — B¢ — ¥ las5b,~a/5D, S exp(—q,1; .

Proof. — Let us prove (13.391). From (11.367) and Proposition 6.7 one gets

€2 — E‘”D(O,qn_fl/Q) S exp(—g,41")-

Since the function £2;+ — & is holomorphic on U™ and since the triple (U™, D, ~
(I/IO)D,,, D(O0, qn+1/2)) is 1/(10[1In p,|)-good (see Proposition 11.2, Item (5)), we have
by Definition 3.3 (remember (11.341))

12+ = Ells, /100, S exp(—(10| In ,0n|)_1((]n+1)1_ﬁ/2)

S CXp( qn-i— )
The inequality (13.392) is then a consequence of (13.391) and (11.368). UJ
Corollary 13.5. — If BNF(f) = & then for any B > 0, n >>g 1 such that q,41 > q.°, the
radius py; of the disk D, satisfies

5, S exp(—gi 7).
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Proof. — 'This results from (13.392) and the Extension Property of Proposition 8.1.
0J

Corollary 13.6. — If BNF(®g, o fr) converges, then for any B > 0, A' > A and n > 1
such that ¢, > q)° one has

%(DQQ]‘}‘(pn) 5 exp(_92¥f)7ﬂ)7 IOn = IOA//(Qn+IQn)

Progf. — This follows from the previous Corollary 13.5 and Proposition 12.6 and
Remark 12.1. O

14. Proof of Theorems C, A and A’
14.1. Proof of Theorem C.

14.1.1. (44) Case. — Let f(0,7) = (0 + wy, 1) + (O(r), O*(7)) be a real ana-
lytic symplectic diffeomorphism of the annulus T x [—1, 1] satisfying the twist condi-
tion (1.14). We can perform some steps of the classical Birkhoff Normal Form proce-
dure, Proposition 6.2: for some /2 > 0, py > 0, there exists g=f =id + (O(r), 0(?),
Q€ O,(""D(0, py)), Z,F € O, ("(T, x D(0, py))) N O(+*), such that on ¢'"(T, x
D(0, py)) one has

g ofog= g0
VO<p=po, IFllior,xp0.0) <P"
Q2m) 7' Q) = wor + (N1’ + O

9
20.10 =Y 7,0 +1'"Z10(0.7)
j=2

where m is the constant appearing in (10.296). Applying Lemma 2.5 to Q(r) and
Lemma 2.2 to 721000, 1) we can find, for some 0 <0 < py, C3 Whitney extensions
Q€ 0, (""D(0,p)) and Z € O, (""W),p(05)) of (2, ¢'"D(0, p)) and (Z, ¢/'°W,, p(0.5)
such that g :=f, € Symp, _ (¢/'""W),p«7) (sce Notations 2.3, 2.6 and 4.8),

(14.393) QeTCA,B), A=3min(by(f),b()™"), B>1

(14.394)  g(r=0D=(r=0),  lg—idllc: <1/100.

Since

g_l ofog=®qof [eh/lowh,D(O,ﬁ)]
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one has from (4.86), for any p <,

E(f, g(WD(o,p))) Zg(ﬁ(q)sz o fr, WD(O,p)))

hence, using the fact that g({r = 0}) = ({r = 0}) and ||g — «||c: < 1/100, we get the
inequality

(14.395) mp(p) S Mages (20)-

The first part of Theorem C is then a consequence of Theorem 12.3 applied to ®g o fp
(which satisfies (10.294), (10.295) (10.296)): if we define D, as the set {D, D € Dy} (each

D is associated to a D € Dy,), formula (1.23) comes from the fact that #D, = #D,, =
#D(U,, (9y) (recall the notation (12.370)) and from (10.309), (10.304), (10.305)); on the
other hand, (1.24) is a consequence of (12.371); finally (1.25) follows from Theorem 12.3
and inequality (14.395) (we take p = 1).

The second part of Theorem C is a consequence of Corollary 13.2 because if the
BNF of f converges, the same is true for that of ®q o f;. UJ

14.1.2. (CC) Case. — Let f be a real analytic twist symplectic map of the real disk
admitting the origin as an elliptic fixed point with Diophantine frequency wy, (x,y) >
Do wgrrg (X,9) + O?(x,9), r(x,») = (1/2)(¥* +»?) and satisfying the twist condition (1.14).
We first make the symplectic change of variables (4.77) (z, w) = @(x, %),

z= J%(HQ) ] = é(z— w)
w= 75— r= 7t

and we write the thus obtained symplectic map (z, w) > f(z, w), f =@ o f o~ as
T =®oruy 0fin,  r=—izw.

We observe that (¢f; (4.86))

(14.396)  L(/.W)=L({. p(W)).

Like in the (AA)-case (Section 14.1.1) we perform some steps of Birkhoff Normal Form,
Proposition 6.1 and make some Whitney extensions (Lemma 2.2) to obtain for some />0,

p >0, maps 2 € 60 (¢'""D(0,p)), Fe O, (€IOhWh,D(O,ﬁ))> g€ S/Y\HTPM,O (eh/IOW/Z,D(o,ﬁ)) sat-
isfying

(14.397) g lofog=Dqofi,  ["Wipos]

(14.398) g({r=0}) =({r=0}), llg — id||cr < 1/100.

(14.399) QeTCA,B), A=3min(by(f), b ()", B>1
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(14.400) Vo<b, [Flaow,pg, <p"

D(0.p) — P

where m is the constant appearing in (10.296).
Applying (14.396), (14.397), (14.398) yields for p <o (¢f- (14.395))

(14.401) mp(p) < mp(20) S Mogos (40).

The conclusion of Theorem C is then obtained in the same way as in the previous Sec-
tion 14.1.1. O

14.2. Proof of Theorem A. — The conclusion of Theorem A is an immediate conse-
quence of (1.23), (1.25), (1.26) of Theorem C: for any 8 > 0 and ¢t < 1

mr(1) < exp(—(l /zf)<1/f>ﬂ). O

14.3. Proof of Theorem A. — We proceed like in the previous Section 14.1.2 to
obtain (14.397)—(14.400) and then,

(14.402)  my(p) < mH(20) < gos (40).

We now apply Corollary 13.6 to @ o fi-. Setting p, = 10A/(¢,¢,+1) with A = 3min(by (f),
bo(f)™Y) (¢of (14.399)) we get for any B < | and any n>>4 | such that ¢,1; > ¢, the
inequality

T () S exp(=4, ).
Hence if £, := 5min(by(f), by (f) ™)/ (qugus1) < pu/4 one has (cf. (14.402))

my(4,) < mr(24) S g (44,) S exp(—gii)). O

15. Creating hyperbolic periodic points

Let Qe 50 (D(0, p)) satisty a twist condition (A, B> 1),
(15.403) VreR, A7 < (1/2m1)3*°Q () <A, and |(1/27)D?*Q|¢ <B,

as € N, a3 > 10, be the constant appearing in Proposition G.1 of the Appendix and
(pu/q,) the sequence of convergents of wy = (27) 7192 (0). We introduce for n > 1, the
sequence ¢, defined by

2A)~!
CA” 1l <

Innt1 Gnqn+1 .

(15.404) 2m) ' 9Q(c)) = pu/ s
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Proposition 15.1. — Let h > 0, n € N large enough and F € O, (T, x D(c,, |¢,|*)) such

that

< o1

IF x4y S el ™
and

B (g e)] = e, [P172,
Then,

—1 a3+1 —4q,h
mq)Qoﬁ?(cn) Z Ch |Cn|2a3+ 4 n .

The constant C,, can be chosen to be non increasing w.r.t. h.

This proposition will be a consequence of the more precise statement given by the
following Proposition 15.2.

ForpeZ,qe N*, pAg=1, p/qsmall enough, there exists a unique ¢,;, € D(0, p) N
R such that

w(eyy) = 2m) 32 (ey,) = p/q-
We define
(15.405)  p,,=min(lg,,/4l.q7")
and assume that
(15.406) /g = IFlID(yppp0) = ley/gl®.
The +£¢-th Fourier coefficients of F(-, 7), i*:(:lzq, 7)=2m)"! fOQH F(6, r)eT df satisfy

[F(xq, 0| Se ey,

and since I is o-symmetric, for every » € D(0, p) N R, f(q, r) = f(—q, 7).
Proposition 15.2. — Assume (15.406) is satisfied and

(15.407) e < p/}/oq

(15.408) [F(xq, ¢,)| = v,e ",

(15.409) vq_lq,o/,/q <1/q.

Then, there exists in a neighborhood of T X {¢,;,} C T X R an open set of area > C;l (qup/qg*qh)3/2}

G, > 0, that has an empty intersection with any possible (horizontal) invariant circle of the symplectic
diffeomorphism ®g o fi.
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Remark 15.1. — One can choose the constant C, to be non increasing with respect
to A.

Let us see how it provides a proof of Proposition 15.1.

Proof of Proposition 15.1. — Since for n large enough
. : —9y10
e ™ <min(l¢,/4], ¢,”)
i —quh 1/2
F (g )| = " [e I Fll ;Do

lim |¢,|~"/2¢, min(|e,/4], ¢;") =0
n— 00

we can apply Proposition 15.2 with ¢ = ¢,, £,/, = |Fll1,xD( 102> Vg = le,|'/2, .
Ppig = min(|c,/4|, qf). We then get

1/2 —quh 2
m%ofF(Cn) Z (lel gt ”F”T/,XD(C,,,\&,,I?) .

But, because ((QJT)flfOQH IF @, c,)|*d0)'/* > |/15(flm ¢,), one has |[Fllr,xpe,. 02 =
|F (g4, ¢)|, hence

Mapgei (6) = Cp e, | e, O
The proof of Proposition 15.2 will occupy the next subsections.

15.1. Putting the system into g-resonant Normal Form. — Conditions (15.405) and
(15.406) show that we can apply Proposition G.1: it provides us with the following ¢-
resonant Normal Form

gillw 0 @g o f 0 grnr = Por(pygr © P 0 fFe 0 freor
<15.4:10> § =Q — 2n(p/q)7+ M()(Fm)
F’w — Fms _ MO(FT&Y)

F“ € O (Tie1/y X Dcyygs €70,)), F" = F* — My(F*); these last two functions are
1 /g-periodic (in the f-variable) and are such that

(e Ti1/gXD /g6~ 10p/q) S €

F =T (E + O(g0,, Iy, )-
Also,
(15'41 1) ||F50" ”871/‘1‘\"},,[)([,5) S eXp(_ﬁ_l/z}) ||F||‘V/,J)(L,5) )

(15.412) lgrne — il S (gP ") I Flipen <P
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Lemma 15.3. — On'Ty,, X D¢y, ¢ py/,/2) one has

(15.413) F0, 1) = uf' () + > " (D + (0. 7)
+

where on D (¢y,, eil/q,op/q/Q) one has

W (1) = Mo(F®) =F(0, 1) 4+ Ogp,08,/,)
(15.414) ’ o h Pl ]
'L (r) = F(Eq, r) + O "q0,,641) = O(e "¢y),)

and
U251, xD V012 S ¢ ey,
Progf: — We recall that from (G.526)
e =TE " (F+G)
(see the notation (G.519) for Tx ') where

”G”/z—l/(/,efl/’/pp/q/Q = O(qlo[?/q||F||h,D(c/,/q,pp/(]/2))'

Hence
(15.415) GO S o 1GEE IS 290,08, S e gpy108,,-

On the other hand since ¢=2/#=3/0 < ;=24

L _ » .
1T F =F(0, 1) = Y F(kg. ey, S € ey,
+

and

—7e ~ ~ ! —2qh
”Til MSG - G(O’ 7) - ZG(:I:Q’ 7)€:t 7 ||1//],e_]/‘7pp/(]/2 g qp[)/qu/qe 2 .
+

Summing these two inequalities and using (15.415) gives (15.413).
With these notations

Q=Q =21 (p/q)r+ up’ ()
F'=¥F"— uy’ (r).

We denote by ¢ € R the point where

Q%) =0;
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since |4 [1p(e,,. 0,0 S €p7q and 2 satisfies the twist condition (15.403) one has
t=c+O(y,) €D, 3/D)py,).
Q) =cst+ (@/2)(r —¢)> + O((r — 0)%)

for some @ = A™!. Since F'* is o -symmetric we can write

Z uq”fi(r)eﬂqe = a(r) cos(qf) 4 b(r) sin(qO)

+

and from (15.408), (15.414), (15.409) we can assume, shifting the variable 8 € T, by a
translation 6 = 0 4 «, (o, € T) if necessary, that

(15.416) b@) =0, a@ =v,e ", V,=v,—0@py,)="v,(1+0-1(1))
with

max([lallpe,p,s 160D0.p0) S € "€y
Thus,

=res

5(7) =Q(r) =2 (p/r+ uy' (r) = cst+ (w /2) (r — 24+ O((r—12)%
F (0, r) = a(r) cos(¢f) + b(r) sin(g0) + uZy (0, 7).

15.2. Coverings. — Like in Section 8.2 (¢f. (8.215)) we define
Q™ € 0, (D0, g pyy,/2)), F* € O, (Ty0 x DO, g~/ p,,/2))

res

(15.417) Q) = QG +1/q)
F(0.1) = ¢F " (10/qlod 1902 T+ /)

hence

ﬁm(?’) =cst+ w72/2 + 0(73) = w72/2 + C~l)(7)
(8, r) =(r) cos(¢f) + b(r) sin(gd) +7=,(8, 1)

with
W) =qaG+r/g. b0 =gbE+1/g),
U0, 1) = ¢*uly(0/q. T+ 1/9).
Let us define
(15.418)  H™©0,7):=Q"() +F"(©.7)
= cst+ (1/2)@r? +A(1r) cosb + b(r) sin@ + &(r) + 756, 7).
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We make explicit the linear plus quadratic part Hq(6, ) of (1/ Nwr? + a(r) cosd +
b(r) sin@ at (0, ) = (0, 0) € R? (recall that b(O) 0) which appears in

(1/2) w7 +7a(r) cos6 + b(r) sin®
=2(0) + 73,2(0) — (6*/2)a(0) + (*/2)( + 3%a(0))
+109,5(0) + (6, 1)
where g,(6, ) = O3(0, 1) = O(|6° + |7|*); we can then write
(15.419) H™(0,7) = cst+ Hq (0, 1) + &) + (0, 7)

with

w6l () ((.) )
(15.420) L '

(=50 k0
=030 @ +9%0)

and

(15.421) 80,1 =g0,n+40,n,  gO,1=0s50,n).

For further records we mention the following estimates

(15.422) max(”z”D(O,qp/,/q)’ ||Z||D(O,qpp/q)) S qgfqhgp/q

(15.423) Z(O) =0, a(0) = qQqufq}‘sp/q, where v, =v,(1 + 0/,(1))

2t
(15.424) ||um ||T1/,,><D(O V1g0010/2) S q ¢ lsﬁ/q

and for ([}, ) eN*, [+ <2and 0 <t < Pp/q/ 10
(15.425) 135 8290(0, Nllp.oxp0.y S 6" e ey,
(15.426) 19, 822(0, N lIp.nxp.n S [¢° "2 ey, + ¢ pf;? g ey,

15.3. Existence of a hyperbolic fixed pownt for fu,+5. — We refer to Appendix N for the
definition of the notion of a (k, §)-hyperbolic fixed point.

Lemma 15.4. — The affine symplectic map fHQng(,) has a (k,8)-hyperbolic fixed point
(6o, 19) € D(O, ,0;/,1)2 N R? with

8=t =q(@v,gy,e ™" (1 + 01, (1))
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with stable and unstable directions at this pownt of the form <ml ) where
+

me = tq(v,e "y, /@) (1 + 01/,(1)).
Proof. — See Appendix N.2. U

15.4. Stable and unstable manifolds of fiyws.

Lemma 15.5. — The symplectic diffeomorphism fgi has a (k, 8)-hyperbolic fixed point
6, 7) € D(O, ,0;/(1)2 N R? with

(15.427) k=38=qg(@ve "ey) (1 + 01,,(1)).
The stable and unstable directions at this point are of the form <ml > where
+

my = £q(,e"e,,/@) (1 + 01/,(1)).
Progf. — From (15.419),
(15.428) Siie = fiaog+ate
:qu+c~0 Ofé, :g: Dl(g)

and from (4.92) of Lemma 4.5, (15.426) (with /; 4+ [, < 2) and (N.594) we get

—2¢h
€p/q]

. 2.5 —qgh 4 -2

1Dz — D0, 1060) xD(0. 100 Sy Py eyt q Ppq
2 5 4 -2 —qh —gl

STy, F G Py ey "

Because of Lemma 15.4 and (15.428), the Stable Manifold Theorem N.I of the
Appendix shows that the conclusion of the Lemma is true provided for some constant
C >0 (¢f (N.589))

- -1
H}% - Zd”Cl(D(O,1090)><D((),1()m)) <G /Op/qK3

a condition that is implied by (recall (15.427) and the fact that from (15.409) one has
Vg >> 40p/)

@0y, T 0 Pyge™ <0y, (<CT 0y,

But (15.405), (15.407) show that this last inequality is satisfied if ¢ > 1. UJ
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15.5. Stable and unstable manifolds of ®q o fr.

Lemma 15.6. — The diffeomorphism Pg o fi has a hyperbolic g-periodic point (6,7) the local
stable and unstable manifolds of which are graphs of C' -functions w_, w, :10 — p, 0 + p[— R such
that

(m/2)|0 — 0] < |w,(0) —w_(0)| <2m|0 — 0| (for6 €10 — p, 0 + p)
m= Q(vqeiqhgﬁ/q/w)l/g(l + 01/(1(1))
p=C"lye e,

Proof. — Recall, ¢f (15.410), that

(15.429) giliIF 0 @g o fr 0 grne = Pox(p/g)r © P 0 fF 0 fror.

From (15.417), the pre-image of (6, 1), by (6, 7) = ([(0 — a.)/q)mod 27/9z> T + 7/q) 1s
a g-periodic orbit O, C Tx]¢,/, — p;/q, Cpyq + p;f/q[C Tx]eyy — 0p74/35 €479 + 04/ 31 of
®g o fpe as well as of @yr /), 0 P o f5e (Fm is 277 /g-periodic); Lemma 15.5 tells us that
this periodic orbit is hyperbolic. Let uy € T x]¢;/, — ,0;/ oot ,0;/ , be a point of O, and
denote ¢ = Poy (), © Pg o fpe. One has ¢?(uy) = up and we want to find a hyperbolic
fixed point for (¢ o frr)? (the g-th iterate of ¢ o fy«r) close to u.

We can write

(@ ofrar)t =¢l0)
where
J=(@ " Pofiwop™ N o-0(@ ! ofiw o) o fru.
Since |[(Por (/g © cbﬁ)””CQ(TX]L-/’/q_pp/q/&c/]/q_l_pp/q/g[) < 1| uniformly in n and
1 N 2Tty 3000l 3D S ol S 1
one has for n < pﬁ/q/s/,/q,
(15.430) ||§0"||02(Tx]c,,/,[—p,,/,,/z,ﬁ,,/,,+p/,/,1/3[) 5 1

and consequently (g < g7 )

|U - ld”Cl(TXJC/)/q*pﬁ/(i/g"ﬁ/4+pﬁ/q/3[) 5 q”Fm”Cl(TXJf/f/fi*/’/)/4/3*"/’/q+p/1/f1/3[)

Sexp(—p,, ")

where we have used (15.411).
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Replacing ¢ and j by T o ¢’ o T~! and T oj o T™! where T : u+> u — uy we can
assume that ¥y = 0 € Dgr(t, ,O;f/q)2 C Dgr(, ,0/,/7/?))2 C TXI¢ — l¢y,/31.C + ppyy/3[. We
then have ¢?(0) = 0 and the matrix Dg?(0) 1s (k, §)-hyperbolic with

S = q'v,e ", (14 01,(1)).

Write ¢?(x) = Dp?(0)& (u) with £(0) = 0, DE(0) = id so that
¢’0j=Dg!(0) 0§ oj.

Observe that for 0 < p < p,/,/4and k=0, 1

k . . k . . .
ID*(§ oj— ld)”cU(DR(o,p))? 5 ID*(§ — ld)”cO(DR(o,p))? + H] - ld||cl(DR(o,p))2

S PP+ gexp(—p,;, ).

Let us choose
_ Cfl —qh
o= Vgt " Epq

with C large enough. The Stable Manifold Theorem (¢f Appendix, Theorem N.1) shows
that the diffeomorphism ¢? o j has a hyperbolic fixed point the stable and unstable man-
ifolds of which are graphs of C' functions of the form w_,w, :] — p/2, p/2[— R,
w_ <0 < w,, such that for all @ €] — p/2, p/2[ one has

(3/2m_60 < T_(0) < (2/3)m_0 <0 < (2/3)m,8 < H4(0) < (3/2)m. 6.
To conclude the proof of the Lemma we set wx = W 0 ggay and note that

grnr © Paofiogrr =’ 0j

with [|ggiy — idllcr < 1/10 (see (15.412)). O

15.6. End of the proof of Proposition 15.2. — Let V be the set
V=1{®,1, 00,6 +p/2],w_(0) <7 <w,(®)

the boundary of which is made by two pieces of stable and unstable manifolds and the
vertical segment L := {0+p/2} x [w_(0+p/2), wr (O + p/2]. By a theorem of Birkhoff
[4] (¢f also [21]), any invariant (horizontal) curve of the twist diffeomorphism ®g o fp is
the graph of a Lipschitz function y : T — [—1, 1]; if this curve intersects the stable or
unstable manifold of (6, 7) it must be included in the union of these stable and unstable
manifolds which is impossible. So if this invariant curve intersects the interior of V it
has to enter in V by first entering the vertical segment L by the right. But this is clearly
mmpossible also (see Figure 11).



.. |

122 RAPHAEL KRIKORIAN |
|

|

T

N
+

T

Fi6. 11. — Invariant graphs cannot intersect the interior of

Now the domain V has an area which is
area(V) 2 p x (my —m_)
2 (e ey ).

This concludes the proof of Proposition 15.2 if we notice that the dependence on /4 of
the implicit constant in the symbol 2 appears only when we apply Proposition G.1 on
Resonant Normal Forms (¢ Remark G.1). 0J

16. Divergent BNF: proof of Theorems E, B and B’

We now use the result of the previous Section to construct examples of real analytic
symplectic diffeomorphisms of the disk and the annulus with divergent BNF.

16.1. Proof of Theorems E and B: the (A4) Case. — Let [ = ®ozy,, 0 fo2) be a real
analytic symplectic twist map of the annulus of the form (1.6) and satisfying the twist
condition (1.14). We perform a Birkhoft Normal Form, ¢/ Proposition 6.2, on f up to
order a3, where @3 is the integer of Proposition G.1 of the Appendix that appears in
Proposition 15.1: there exist p > 0, g € Symp,, ,(T; x D(0, p)) exact symplectic, 2 €
O, (D0, )), Fe O,(T, x D(0, p)) such that

g 'ofog=Cqof
where (by # 0)
Qm)'Q) = wor + b’ + O@°),  F(@O,1) =00%), g—id=0(@").

Note that for p small enough € satisfies a ((5/2) min(bs, bQ_I), B)-twist condition on
D(0, p) (B > 1). In particular, if (p,/¢,),>1 are the convergents of @, and ¢, € R (n large
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enough) is the point where
(5/2) max(by(f), bo (/)™ ")
ann—H
(¢f (15.404) and the twist condition satisfied by €2) one has

(16.431) (2m)~'082(c.) = pu/ Gus el <

”F”T;lxD(on,lc,,lz) ,S |Cn|a3'

For (&1 1) k=1, (Lo,0)i=1 € [—1, I]N*, let G, € T, x D(0, 1) defined by

Ge(0.1) =1 146" cos(quf) + o e sin(g,0).

k>1
We now define f; € Symp? (T x D(0, 1)), F; € O, (T, x D(0, p)) by
Je = ofar
Do ofy =g ' ofog=Paofiog  ofi og.

Lemma 16.1. — For n, ¢, as above, there exists a set J,(F) C [—1, 11* of 2-dimensional
Lebesgue measure < |c,|"* such that for any ¢ € ([—1, 11HON, such that ¢, € [—1, 117 NJu(F) one
has

Mo, (6) 2 e, e,
Proof. — Let a, € T and v,, > 0 be such that
/P\‘(qn, ¢,) e’ —|—/15(—qn, ¢)e 0 = ¢, | vqne_””}‘ cos(q,0 +ay,).
Since P o fy, = Poofrog ' ofs, 0g, F, G, =0O(@(™) and g — id = O(r*) we see that
(16.432) F, =F+ G, + O@**).

We now assume ¢, > 0 for simpler notations (the case ¢, < 0 is treated in the same way).
We can write

G, (0,1 =" Z Cik M cos(qif + ay) + Co e sin(g6 + a,,)

k>1
with Zl,k — Z.EQ’/f = (L) — ¢ ;) and from (16.432) we see that

,Ff (qn’ Cn)eiq”e + ’F\C (_97“ Cn)eiiq”e

= |o,| e " <(v(]n + 21+ 1,(0)) cos(g,0 +at,,) + (Co,+,(2)) sin(g,0 +Olq,l)>
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where

sup ([, (DD S el

ce((—1,11HN*
We can thus write for ¢, { €] — 1, 1N

2 (gur c)| = 1) e, [P
with
V(8)? = (0, + Liw + 0 (0)? + Co+ 0,(0))?
> (25, — O]

Since El,k — Z'EQ’/C = ¢ " ({,; — ils;), one can hence find a set J,(F) C [—1, 1]* of 2-
dimensional Lebesgue measure

UM < el

such that

(gl,nv ;2,71) € [_la 1]2 \Jn(F) — |Un(C)| Z |cn|l/2-

By Proposition 15.1 we thus have

> 2a3+1 —4q,h
QO ~
me oﬁ:z (Un) |€n| 4 . D

Lemma 16.2. — Let N C N be infinite. Then, for almost every ¢ € ([—1, 11HN Jor the
product measure po = (Lebi_1 112)®N', there exists an infinite subset N C N such that for alln € N

2a3+1 —4q,h
m(l)goﬁvt (cn) Z |Cn| at 2 in .

Proof. — Since the random variables ¢,, n € N are independent, for any m € N,
the event {¢, € J,(F), ¥ n> m} has zero p-probability as well as their union. Hence for
Uoo-almost every ¢ € X, one has for infinitely many n € N, ¢, ¢ J,(F) and we conclude
by Lemma (16.1). UJ

16.1.1. Proof of Theorems E and B. — We now observe that if @, is Diophantine
with exponent t

In Gn+1

b
ndg,

T = limsup

then for any B > 0 there exists a infinite set NV such that for all n € N

—B/4
%H 2 q; Al .
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On the other hand
Dn

Wy — —
dn

_ 1 < 1
~ TT+t-p/4

q n Qn+ 1 qn

[ARS

hence

1 4
VS () O

and consequently, from Lemma 16.2, for an infinite number of n € N, 8

1 c
~ 1 (1)+B/2
(16.433) Magof, (6) 2 lea e 2 exp (‘( ) ) :

|l
We observe that since 4, > 2|c,| (¢ (1.20) and (16.431)) one has
1 (H_;I)'HS
(16.434) my (4,) 2 Mogofs, (¢)) 2 exp(— <m) )

If B 1s chosen so that

1 1
<1+—‘L’)+IB<;_'B’

the estimate (16.434), when compared to the conclusion of Theorem A, shows that the
Birkhoft Normal Form of /; is divergent for p-almost every ¢ € ([—1, 11HN.

This concludes the proof of Theorem E and, as a consequence, of that of Theo-
rem B (in the (AA) case). O

16.2. Proof of Theorems E°, B and B’: (CC) Case. — Let f be a real analytic symplectic
diffeomorphism of the disk admitting the origin 0 as an elliptic equilibrium with irrational
frequency w, and satisfying the twist condition (1.14); we assume that it is of the form

S = Paesy + O +5H™)

with © € O, (D(0, 1)). Passing to the (z, w)-variables (f (+.77)) we can write
gpofop =dgof

where F € O, (D(0, 1)?)
F(z, w) = O((zw)®) (and not only O%(z, w)).

Let as before (p,/¢.).>1 be the convergents of w, and ¢, € R the point where
(2m) 71882 (6,) = pu/ g (of (15.404)).
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For (&)nens € ([=1, 11N, let G, € O, (D(0, 1)%)

Gl w) = (i)™ Y0 2 (120 + Py
k=1

+ 2 (@ = P,

We now define (recall the definition of G} in Section 1.4.3)
q)QOﬁ‘{ :cDQOji:OCDG{
Jfe=¢"o(@qofi)op=foPga =/ 0. (. (4.82)

Lemma 16.3. — Assume that for some n large enough, c, is positive. Then, there exists J,(F) C
[—1, 117 of Lebesgue measure < 0711/2 such that if ¢, = (&1, Co.0) € J.(F) one has

2as+1 _—4qyh
my, (QCn) z md)szOfF{ (cn) Z Cnag+ o anh

Progf: — We define

by =—(1/2)In(c, + ¢;),

1
Inqn+1

and since |wg — lfl = = ¢, one has
n

b= (=1/2)In¢, + O(c,)
= (=1/2)In¢, — O(1/¢})

hence

(16.435) ¢ = (2O < (10,

Let W% =W/ -, = {(z, w) € €, max(|z],|w]) < (e, + )"V, —izw €
D(c,, ¢*)}. One has
(16-436) ”F”\VSJC S |Cﬂ|ﬁ3, ||G§- ||\V'(LIC S ng.

Using Lemma K.1 we can pass to (AA)-coordinates: if /_ is the diffeomorphism defined
in (4.79)
W__l (WCC 52)) D) WAA ) = T/zn X D(Cn» Ci)

fn, D ey, hnyD(fn»f?,

and we can introduce F*, F}* € O, (T), x D(¢,, ¢;)) (¢f (4.82))

Vlofiopo=fim,  YZ'ofi oy = fim =frmr 0 Pooy
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Since F* =TFo ¢_ + O, (F) and F}* = FM 4+ G, o + Oo(F™, G, oY) (¢f (4.94),
(4.92)) one has on W24

(16.437) IEM wa S, FPA=FM + G oy + O(P™).
If we define v, and «, € T by
/F\AA(qm Cn)eiqn@ _’_’FAA(_%, cn)g—iq,ﬁ — |6n|aquﬂe—%lm COS(q,ﬂ + aq,,)

we see that on T), 1 x D(c,, ¢2/2) (¢f (16.437))

o0

FM = FM0, 1) 4+ Y (8 cos(if) + Loisin(gi0)) + O(™).

k=1

Hence

P )6 4 Be(— g c)e

e 6-23 (((U(Iﬂ + 0(621/2)53))6_%}1” _|_ CZn/QZl’n) COS(q,IQ + aqn)

+ (cZ”/QEQ,n + O(C’(ll/Q)%)g%hn) sin(q,0 + Oéqn))

with Z) 4 — o = ¢ (£1 4 — ils.1). We thus have (¢f (16.435))
TAA a3\ gn)2% 1/2)a3y  —quhy
2 (s 6)| = 620280, + O P%) e |
a3 | —aguhn O(1/q) % 1/2)a3N\ —quhy
ZCZ3|€ nln (/q)§2,n+o(€,(l/)ag)€ q |
a - nhn iy 1 2 a
2 MLy, 4 O P™)|
and we see that if

T
one can apply Proposition 15.1 (¢f (16.435)):

—1 2a3+1

—4quh 2a3+1 —4q,h
m<l>QOfF1{\A () 2 G, o e 26 :

Now; since ¢, is positive and my, (2¢,) pe Megor, (¢,) this provides

2a5+1 —Aguh
my, (2¢,) 2 Mgofiode, (6) = (ot . 0

We can deduce the analogue of Lemma 16.2
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Lemma 16.4. — Let N be an infinite set of n € N for which ¢, > 0. Then, for almost every
e (-1, 11N, there exists an infinite subset N' C N such that for all n € N

%a5+1 —dg,
my, (26,) 2 Magop, (1) 2 (g,

16.2.1. Proof of Theorems E’ and B (CC) Case, wy Diophantine. — We want to apply
the previous Lemma 16.4 to an infinite set N such that for all n € A/ one has both

(16.438) ¢, >0 and ¢, >¢q .

Such a set may not exist for arbitrary choices of @, (Diophantine) and €2. On the other
hand, if one chooses the sign of 3*€2(0) depending on @y (or more precisely its sequence
of convergents) this is possible.

Let B > 0 and

N/B:{neNa In+1 Zq;_ﬂ/QL Qﬂ:{pn/%za nENﬁ}

Since N is infinite, one of the two sets Q;t = Qs N (Jwy, £00[) is infinite. We define
sg(wp) as the non-empty subset of {—1, 1} such that £1 € sg(wy) if and only if Q; 18
infinite.

We now assume that @ (7) := (27) 19 (r) is of the form

o (r) = wy + 2bor + O (), with  sign(by) € sg(wy).

For the sake of simplicity we shall assume that 1 € s(wy) and by > 0 (the case —1 € s(wy)

and by < 0 18 treated similarly).
The sets

N,g Z:Ng_:{ﬂe./\/ﬁ, pn/%z>a)0}’ Cﬁ:w_l(Q;)

are then infinite; note that Cg CJ0, oo[ and its points ¢,, n € N, ; accumulate zero.
We then apply Lemma 16.4: for almost every ¢ and infinitely many n € V, ﬁ+

a5+1 —dquh
my (2¢,) Z ¢, e

and, arguing like in Subsection 16.1.1, we see that setting 4, = 2¢, we have for infinitely
many 2 € Ny =N

16.2.2. Proof of Theorems E” and B’: (CC) Case, wy Liouvillian. — Since wy 1s Liouvil-
lian, there exists an infinite set N' C N such that

Ing,
lim —2* — oo

neN Ing,
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We define

QF = {pu/qu» €N, p./q, Elwy, £oo[}

and s(wy) as the non-empty subset of {—1, 1} (one of the two sets @, Q~ is infinite) such
that 1 € s(wy) if and only if Q* is infinite.

We assume that 1 € s(w;) and by > 0 (the case —1 € s(wp) and by < 0 is treated
similarly) and we set N = {n e N, p./q. > wo}. The set C = @~ '(Q7) is infinite, con-
tained in ]0, oo[ and its points ¢,, n € N'" accumulate 0.

We now apply Lemma 16.4: for almost every ¢ one has for infinitely many n € N'*

95+1 —dgyh
my (26,) 2 cfl“” ool

For these n’s one has

Dn 1

o X |wy — —[ = ,
dn Gndn+1

and, for any B > 0, provided 7 1s large enough,

_ 1 _
2a3+1 —4q,h 2(2a3+1)
6T 2 (—)
qn+1

If we set t, = 2¢, (¢f (16.431))

exp(—gh3) 2 exp(—di, ).

5(by + by
25n S tn — (272)
Gndn+1

hence

my, (6,) > my (2¢,) 2 CXP(—‘Ierl)

for infinitely many z in N/ := N/ T, O
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Appendix A: Estimates on composition and inversion

A.1 Proof of Lemma 4.4. — We shall do the proof in the (AA)-case; the proof in the
(CC)-case follows the same lines.

We can assume that e *W),y = W,,_s/9 sy is not empty (otherwise, there is nothing
to prove).

By (2.53), there exists a numerical constant C > 0 such that if § > 0 satisfies

(A.439) ClIFllw, 8> d(Ws0) ™' < 1,

then for any fixed 6 € T,_os and any fixed r € ¢%U, the map U — U, R+ r—09F(6,R)
1s contracting and by the Contraction Mapping Principle there thus exists a unique R € U
depending holomorphically on (6, 7) € T)_s/9 X ¢°U such that

r=R+ 3,F@©, R).

On the other hand, assumption (A.439) and Cauchy’s inequality (2.53) show that
if C 1s large enough

|0RF(O,R)| S 87" x |F|l,u < (1/2)8,
hence

¢0:=0+lF@O,R)eT, .
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We can thus define a holomorphic map
ﬁ . T;l_(g/Q X K_SU —> Th—8 x U
by

r =R+ F(@,R)

(A.440) FON=@R) == o1 Fe.R).

Notice that the maps (6, 7) = @(0,7) — 0, (0, 7) = R(0, r) — r such defined are Lipschitz
with Lipschitz constant < 872 d(U)~?||F||,.u. Thus, if for some numerical constant large
enough

(A.441) Cs2dU) | Fu < 1,

the map fi is a holomorphic diffeomorphism from T)_s;5 x ¢°U onto its image.

Conversely, if (A.439) is satisfied, given (¢, R) € T)_s x ¢ °U, the same arguments
as those developed above show there exists a unique (0,7) € T)_5/0 X ¢%U such that
J@,7r) = (¢, R). We thus have if (A.441) is satisfied

Ty s x ¢ U C fi(T)_s50 x ¢ °U).

Finally, we observe that the diffeomorphism f 1s exact symplectic which means that
the differential form Rdg — 7d0 is exact; in particular, it is symplectic. Indeed

Rdg — 1d0 = —pdR + d(¢R) — 1d6
= —(0 + %F(0, R))dR — (R + 3,F(0, R))dO + d(¢R)
= —dF + d(¢R) — d(6R)
=d(—F + (9 —O)R)

(observe that the function —F + (¢ — )R = —F(6, R) + 9rF (9, R)Iiis well defined on
T), x U). We have thus proven that there exists a numerical constant C > 0 such that if

(A.442) Cs2d(U)|Fu < 1
the diffeomorphism f previously defined is exact symplectic and
(A.443) W, u C (e W,0) CW,u.

Estimate (4.91) comes from (A.440) and

max [;F (0, R) — 8;F (g, | = 2||D*F|| | DF]|. O
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A.2 Proof of Lemma 4.5. — We illustrate the proof in the (AA)-Case (it is the same
in the (CC)-case).

Since / is close to the identity, the map? :(0,R) = (¢, 1) < f(O,7r) =(¢,R)
defines a diffeomorphism such that] —1d = O(f —id) and since f is exact symplectic we
know (¢f Section A.1) that ¢dR + rd6 = dF for some holomorphic function F': (6, R)
F(,R). Since F(#,R) = f R((,0dR+ 1d0) where yy g 1s a path joining (0, Ry) € {6 € C,

e,
|30| < h} x U to (8, R), the function F, which is unique up to the addition of a constant,

thus satisfies F = O(f — id).
The estimate (4.92) 1s a consequence of (4.87) and the fact that

1010, R) — 3, 1'(0, )| < [DpF[[|R — 7| < DI F||[| 9 F|
|0rE(0, R) — 0¥ (0, 7)| < [DorFlll@ — 0] < [|DogF]l[|oxF]. [

A.3 Proof of Lemma 4.6. — 1) Proof of (4.95). One has

r=R+ 3F@©6,R)

Je(0,71) =(p,R) < i¢:9+BRF(9’R)

R=0Q

R) = (¥,
JACRY <w@<:>!¢=(p+%m@

hence Q =R and
¥ =g+ RQR)
=60+ kI, R) + 0rQ2(R)
=0+ 0q(2+1)(0,Q)
thus, since r = R4 9y F(0, R) = Q 4 9,F (6, Q) and €2 does not depend on the f-variable,

one has

r=Q+ 0(2+F)(@,Q)
¥ =6+ 3,(2+F)6, Q)

which is equivalent to
fQJrF(ea 7') = (wv Q) :fQ Oﬁ:(@, 7)'
2) Proof of (4.93). Assume that (0, 7) = (¢, R) and f (¢, R) = (¢, Q). Then

r=R+3F®6,R)

(A.444) Je (@, 1) = (9, R), {(p =0+ &FO,R)
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R=Q+3,G(p,Q)
¥ =9+ 3G(p, Q)
Qdyr — rdf = Qdy — Rdg + Rdg — rdf
=d=F-G+ (¢ -0OR+ W — Q).
If /i; o fi = fi1 then one has Qdyr — rd6 = d(—H 4 Q(¥ — 0)) and then
0=d(-H+F+G+ QY —0)—R(p—0) — QY —¢))
=d(—-H+F+ G- (Q—R)(p —6))

(A.445) Jo(p, R) = (¥, Q),

and so
H@,Q)=cst+F(@,R) + G(p, Q) — (Q—R)(¢p —0).
Let us write H(8, Q) = F(0, Q) + G(0, Q) + A6, Q) where
—A=F(0,Q) —F(O,R)+G(0,Q) - Glp,Q) + (Q-R)(¢ - 0)
=F©6,Q) —F@,R)+G(O,Q) — G(p, Q) — 9,G(p, Q)drF(@O,R)
We can now estimate

[Alli-s,05 < I1RFIlLulIQ—Rlliu + 19,Glliulle —Ollnu
+ 119,G(@, D ,.ulldRF@, R)1u
< 1R Fll,ull 3 Glls,u + 13,GllsullORF]
+ 18, Gll5,ull Ol U

and deduce (4.93).
3) Proof of (4.94). We just write

JiiG oS =fiv6 0 fGroqp2GInG)

= fE+IDF|O; (G) (using (4.93))

and a similar expression for /. S Jr+G =/_r+o(D2F|DF)-
The proof of (4.93) and (4.94) is the same in the (CC)-case. U

A.4 Proof of Proposition 4.7. — We first state two lemmata.

Lemma A.1. — Let W be an open subset of M = C? or Toy x C, v € O(W) and g — id €
OM) such that ||g — wd|lw < 1. Then if ||vl|w is small enough

(A.446) ({d+v)ogo(d+v) " =go@id+[g] v+ Oyv))
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where
(A.447) [g]-v=—v+Dg "' v)og.
Progf. — One has
(id+v)ogo(id+v) ' '=go(id—v+ D)) +vogo(id— v+ Dy (v))
=g—Dg-v+vog+9O(v)
hence

g o (id+v)ogo (id+v)™!

=g o (g— Dg-v+v 0g+Dz(v))
=id—Dg 'og-Dg-v+Dg 'og-vog+ Dy (v)
=i — v+ [Dg ' v)og+ O (v). O
Lemma A2, —IfQe OU),Y € OW,u U Pqo(W,1))) then
(A.448) Fo@gofy ! =Dgofigrvro.m
where
Q] Y=Yod,—Y.
Proof. — From Lemma A.1, and (4.92) we have
(A.449) Ko®gofy ! =dgo (id+ [Pl - (JVY) + Dy(Y))

=dgo (z‘d —JVY + (D' - JVY)) o dg + DQ(Y))

On the other hand
(A.450) JV(Y 0 @g) =] ((DPg) - (VY 0 Og).

Because @g is symplectic, one has J {(D®g) = (D®g) '], and we deduce from both
(A.449), (A.450) that

Kodgofs!=dgo0(id+]JVY —]JV(Y o dg) + Oy(Y))
=g OﬁQ]-Y+DQ(Y)
where

[Q]-Y=Yodg,—Y. 0
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From (4.92), (4.93) (we use the fact that D(O(||DF||G)) = [|DF||O,(G))
(A.451) fofeofy! = ferprom
and on the other hand, from Lemma A.2
Jo®gofs! =dg o flaryio.m-

)
Hence (we use (4.93) in the last line of the following equations)

(A.452

(A.453) Kodgofiofy ' =foDgof  ofofiofy’

(A.454) = g 0 fiay+0,v) OSr+IDFIO| ()

(A.455) = g 0 fr(Q)V+IDFID (V)

and the conclusion follows if F = F + [2]-Y + |IDF[|O:(Y). 0

Appendix B: Whitney type extensions

B.1 Proof of Lemma 2.2. — Let x5 : R — [0, 1] be a smooth function with support
in [—1, 1] and equal to 1 on [—¢7/%, ¢79/%] such that

(B.456) sup | 5] <87
R

We define for » € G, n(r) = xs((¢&?|7)?/p?) and for i € Jy, n:(r) = (1 — xs((e”*|r —
ci|)2/,01-2)). Note that 7 is equal to 1 on ¢°D(0, p) and 0 on C ~\ ¢*?D(0, p) and n; is
equal to 1 on G\ ¢D(q;, p;) and 0 on ¢°D(c;, p;) hence ¢ =n[],.;. 7 is equal to 1 on
¢*Uand 0onV:= (G~ ¢¥D(0, p)) U UZ.EJU
W50y (resp. ¢ /1%U) and W,y (resp. V) is W, ¢ (resp. C) and on their intersection the
functions ¢F and 0 coincide. As a consequence, one can extend ¢F by 0 on W,y as a
smooth function F¥* : W, ¢ = W, ¢. Note that since ¢ is o -symmetric, the same is true
for F"¥* and that F¥ and F coincide on W, sy (which contains ¢ °W, ).

To get the estimates on the derivatives of F"" we observe from (B.456) and the
definitions of 7, 1, that

i€Ju
@*D(c;, p;). The union of the open sets

max(max sup |D/n|, maxsup |D'n;]) < 8 * max(p ™%, ,0;%)
i 0=k ¢ 0=k ¢ i
and since max;(n, ;) < 1, one has by Leibniz formula
maxsup [D'¢] S (#Ju + 1" max(o™, o).
0j=k @ i

Hence FW* := ¢ F satisfies

sup DYy, < O+ #0) G dU) ™ mas IDFlh, - O

. he=0/10y
0<j<k
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B.2 Proof of Lemma 2.5. — Write 2m)7'Q(2) = > 2, b,2" with [b,] < pg”,
2m)'Q(2) = by + bz + b2, (27‘[)‘15223(5) = 223 b,7". For 0 <j <3 and § > 0,
there exists C; > 0 such that for any p < py/2

(B.457) ||D]sz||D(o,p) < C\;'PS_‘].-

Let x : G — [0, 1] be a real symmetric smooth function with support in D(0, 1) and
equal to 1 on D(0, 1/2). We define the real symmetric function defined on G

Q\p\%(z) = Qy(2) + x(2/p)2>3(2).

For any z € D(0, p/2) one has Q\pw(z) = Q(z) and by (B.457) and Leibniz formula, for
some constant B depending only on by, b1, by, [|DVx|co, ||D/'923||D(0,p0), 0 <y <3, one
has

1 .
VzeC, —DSQWl(z) <B.
2 P

On the other hand, for some constant C depending only on, |3/ [|co, |/ R2|Ip(0.py)> 0 <
J=2

1 o
VieR, —32QW" (1) — 2by| < Cp
o P

and if p = p is chosen small enough so that Cp < by, one has (we assume by > 0) by <
Q%BQQ%W‘(L‘) < 3b,. O

B.3 Proofof Proposition 2.7. — The proof will follow from the following two lemmas.
LemmaB.1. — Let B € R, v > 0; tf for some t + 15 € U (t, s € R) one has
lw(t+15) — B <v,
then

(B.458) () — Bl < (7/6)v
Is] < (4/3)Av.

Progf. — Since w 1s holomorphic on U one has for any z € U, dw(2) = 0 (we use in
this proof the usual notations 9 = (1/2)(9, 4+ ¢d;) and 9 = (1/2)(9, — 9;)). For any point
z2€D(0, p) one has (¢f Lemma 2.1)

dist(z, U) = 2a(U)
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and from the fact that | Ddw| < B we thus get using condition (2.60)
(B.459) 19w lcom,py < a(U)B
< @A)

Now, we write

(B.460) w(l+1i)—B=wl) — B+ dw®) - (Gs) + dw() - (—is) + O(?)
where
(B.461) |0(sH)| < ||D260||CO(D(o,p)) X s

<Bxpxs

<(BA) 'xs

(¢f (2.60)). Note that since @ is real-symmetric, dw(r) and dw(r) are real when 7 is real.
Hence if |w (¢ + ) — B| < v for some ¢+ is € U, one gets by taking the imaginary part in
(B.460), using (B.459), dw(#) € [A™!, A] and (B.461), that

(B.462) |s| < (4/3)Av.
This, (B.461) and taking the real part of (B.460) show that

(B.463) (@) = Bl < IR +is) — Bl +ROGH)] < (7/6)v. O

Because ¢ > w(?) is increasing with a derivative bounded below by A™! (this is the
twist condition) the set of t €] — p, p[:=D(0, p) N R such that |w(?) — B| < (7/6)v isa
(possibly empty) interval I of length < (7/3)Av.

Lemma B.2. — Let v €]0, (6A*B)'[. If 15 is not emply there exists a unique cg €] — p —
2Av, p + 2AV[ such that

w(cp) = B, o(D(cg, 3Av)) D D(B, v).

Proof. — The uniqueness of ¢z comes from the fact that R > ¢ — w(¢) € R is in-
creasing. For the existence of ¢g we just notice that if Ig C] — p, p[ there is nothing to
prove (notice that @ is increasing) and otherwise for some ¢ € {—1, 1} |w(ep) — B| <
(7/6)v. But then, the fact that A~' < dw() < A shows the existence of a unique
¢g € [—p — (7/6)Av, p + (7/6)Av] such that w(cg) = B.

If we set a = dw(cg) and b = 5@(6,3) one has a > A, || < (7A)7! (¢f (B.459)
and the fact that v €]0, (6A”B)'[) and the linear map w > Dw(cg)w = aw + bw is
invertible, the norm of'its inverse being < (7/6)A. Next, we observe that because |w (¢g +
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w) — w(cg) — Dw(cg)w| < Blw|?/2 and w(es + w') — w(cg + w) = fo1 Dw(¢s +w +
Hw' — w))(w" — w)dt, the map g

g:w> Do) 'u—Daw(eg)™ (w(cﬁ +w) — w(e) — Da)(c,g)w>

is (7/6)ABA-Lipschitz on {|{w| < A} (some A > 0) and sends {|w| < A} into itself pro-
vided (7/6)ABA <1 and |u| < (6/14)A™'A. In particular if one chooses A = 3Av the
map g is (1/2)-contracting (remember v €]0, (6A?B)~![) and the Contraction Mapping
Theorem shows that for any |u| < v < (9/7)v there exists a unique |w| < 3Av such that
w(eg+w)=p+u O

We can now prove Proposition 2.7. We first observe that the computations done in
the proof of Lemma B.2 show by the same token that the map w + Dw(0) ! (w(w) —
w(0) — Do (0)w) is ((7/6)ABp)-Lipschitz on D(0, p) hence contracting from (2.60).
This implies that @ is injective when restricted to D(0, p) D U. Assume that (2.61) is
satisfied for no z € U. Then Lemma B.1 tells us that there exists ¢ + s € U such that
(B.458) holds and in particular that the interval Iy of Lemma B.2 is not empty. Applying
this latter lemma and using the injectivity of @ when restricted to U we see that w(U \
ﬁ(cﬁ, 3Av)) C C ~. D(B, v) which is the searched for conclusion. ]

Appendix C: Illustration of the screening effect

We describe in this section an example where the screening effect mentioned in Sec-
tion 3.2 is effective. Consider U as in (3.73)

N
(C.464) U=D(0, p) ~ | JD(, p) >D(O,0)

J=1
G=1,...,N,D(g, p) CD(0, p), p; € o), with
p=1, o= <1710, p=p=c (Gell,....,N},

¢=1/4) + (2 — 1)/(4N) € [1/4,3/4]. We assume N > 1. The function ¢(-) :=
w0y po.e) (> 0D(0,0)) is harmonic on U X\ D(0, o), equal to 1 on dD(0, o) and equal
to 0 on U = aD(0, 1) U]l.\:1 D(¢;, p1). Note that the minimum value of the Dirichlet
integrals

Jopas |VWMI%@
W GHI(U\D(O, U))’ l/f\ aD(0,0) — 1’ 1//‘ GUZO
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(H' denotes the usual Sobolev space) is achieved at @, hence there exists a constant C
independent of N such that

ca465) [ VpttiPis <G
U

~\D(0,0)

(the constant C is for example the Dirichlet integral of any fixed C!' function ¥ equal to
1 on 0D(0,0) and to 0 on U \. D(0, 1/5)).

We now use a result by Rauch and Taylor [40] that we adapt to the case of the
complex plane: let Cy be the holed rectangle U N ([1, 4, 3/4] + v—1[—H, H]) with

H=C8In(8/p1), where § = 3/(8N),

C, being some large constant. The set Cyy can be covered by the N 1-holed rectangles
UN(¢g—38,¢+ 3]+ J—1[-H, H]),j € {1,...,N}, each point of Cy belonging to no
more than two of these holed rectangles. An adaptation of Inequality (4.1) of [40] to the
case of domains in R? (=~ C) asserts that in this situation there exists a constant Cy > 0
(independent of ¢, H, N) such that

ch Vo (x + )| >dxdy . C;!
ch lo(x+ o) |*dxdy — H(H+8In(8/p1)

which in view of (C.465) and the choices made for H and § implies

1
= | oGt i) Pdudy < COx (G + 1)8In(8/p) SN0,
Cn

because p; = exp(—N”). In particular, for any @ > 0 there exists a positive constant C,,
and a set Cyy,, of relative measure 1 — p in Cy such that for any z € Cyy,

|0y 53z 0D(0,0))| = |9(2)] < C, N7,
an inequality which is in sharp contrast with (3.71), especially if | —y — u > B. Getting

a useful estimate like (3.72) by this technique is therefore doomed to faill if o < 1 —y — .

Appendix D: First integrals of integrable flows

This section is dedicated to the proof of the following Lemma, on first integrals of the
integrable flow ¢jy,, that was used in the proof of Lemma 5.1.

Lemma D.1. — Let U be a o -symmetric open connected set of D and ¥ € Oy (W, 1) such
that

(D.466) VieR, Fogjy, =F.
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Then, there exists Fe O, (U) such that on W),y one has

F=For.

Progf. — The Lemma is clear when we are in the (AA) case since the identity V ¢ €
R F(O +t,r) =F(, r) clearly implies that I does not depend on 6. So we consider the
(CC)-case.

We shall prove that for every (z, w) € W,y there exists an open neighborhood V. ,,
of (z, w) and a holomorphic function f; ,, such that F=f, , oron'V_,,.

We consider three cases:
1) If (z, w) = (0,0) € W, y. One can write for u small enough and (z, w) € D(0, n)?,
F(z,w)= ZMGN F.,z2*w’. The identity (D.466) implies M, (F) = 0 for n # 0 hence from
(5.103) one has F(z, w) = My(F)(z, w) =), F.:(zw)* and we can choose f(r) =
S e |
2) If zw = 0, with for example w # 0. Then, from (5.106), ¢ — F(0, ¢'w) is holomor-
phic with respect to ¢ € R + 7] — In(¢"p'/?/|w]|), oo[ and constant on the real axis; it
is hence constant on R + i] — In(¢"p'/?/|w|), oo[. In particular taking ¢ = is, s € R,
gives F(0, ¢e~w) = F(0, w) and by making s — 0o we get F(0, w) = F(0, 0) (notice that
(0,0) € W,y in that case). The same argument shows that for (Z, w) € W, the function
t+ F(e7"Z, ¢'w) is constant on £ € R+ ] — In('p'?/|w|), In(¢"p'/?/|Z))[. Now if (Z, w)
is close enough to (0, w), in particular if there exists 0 < s < In(¢*p!'/?/|Z]) such that
||/ < € < u/|Z|, one has with ¢ = is, (¢7"Z, ') = (¢Z, e*w) € D(0, n)*. By (D.466)
and point 1), one gets F(Z, w) = F(e™"Z, ¢'w) = f5 o(—Zw).
3) Otherwise, we can assume that zw # 0. As before, we can argue that the function
t+ g, (1) :=F(e "z, ¢'w) is constant on the set

R+ —In(p"?/|w]),In(¢'p'? /12D

Any point (Z, w) € W,y which is close enough to (z, w) is of the form Z = ¢z, w =
¢'Aw, t close to 0 and A close to 1. We thus have

FE, @) =F(e "z re'w) = F(z, hw) =F(z,Zwz ") = £GD)

where we have defined f.(r) = F(z, rz™").

We have thus proven that for each (z, w) € W,y there exist a neighborhood V_ ,,
and a holomorphic function f; ,, such that F =/, ,, oron V_,,. Now if £ ,, or =f, s or
on a nonempty open set, the function f, ,, and f. ,  coincide on a nonempty open set
and thus there exists a holomorphic extension of f; ,, ., of these two functions such
that f, v wor=fwor=fsyworonV,, NV,, . Wecan now conclude by using the
connectedness of U. 0J
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Appendix E: (Formal) Birkhoff Normal Forms

Our aim in this Section is to recall the proof of the existence and uniqueness of the formal
BN, Propositions 6.1, 6.2. This is of course a standard topic but we tried to develop here
a framework that is convenient for the proof of Lemma 6.3. We mainly concentrate on
the (AA)-case since the formalism in the (CC)-case 1s very similar to the one developed
by Pérez-Marco in [36].

E.1 Formal preliminaries.

E.1.1 Formal series. — Let A be a commutative ring and A[[X, ..., X,]] (' € N¥)
the ring of formal power series Y. v X", a, € A, X" = X]'--- X" (for short X =
Xy, ..., Xp)). We denote by v(A) = min{|zn| = n; + --- 4+ ny, a, # 0} the valuation
of an element A=) s a,X" andif B=(B,,...,B,) € A[IX]D? we define v(B) =
min; v(B)).

For any £ € N we define [A]; = Z|n|=k a4 X" the homogenous part of A of degree £
and we set [A]l<; = Zf:o [A]; (resp. [Alsp = Y2 [Al).

As usual the product of A =) wvaX" and B =) v5X" is AB =
Y oent Qe @b) X" and the derivative 0x, A=) v ma, X" with = mn; if j # [ and
ny=mn; — 1is n; > 1 (if o, = O the derivative of the corresponding monomial is zero). Note
that if A, € A[[X]], | <7 < one has

(E.467) (A AL= )0 A (A

R

When A = ZneNd’ a,X" € A[[X]] and B € (A[[X]])’/, v(B) > 1 one can define

AoB= Za,,B".

neN?

If moreover A is endowed with derwations §;: A — A, 1 <i < d', (it means §;(a +
b) = 8;a+ 8;b, 8;(ab) = (8;a)b + a(8;b)) we define (¢f. Taylor formula) ** for each « € A and
B € (A[[XID?, v(B) > 1

(E.468) a0, B= Y "(1/k)(8"a)B" € A[[X]].

keNd

Similarly, if A= )", 4 X5 B, C e (A[[X]D?, v(B) > 1, v(C) > 1, we can also define

(E.469) Aos(B.C)= Y (a,05 B)C".
neN?

19 AT .. . 1 k k k k
2 We use a multi-index notation, £ = (i, ..., ki), BF =B - ~B;/ K=k kg, 85 =8 -(Sd‘f/.
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Lemma E.1. — For ke N*, v(A) > 1, v(B) > 1, v(C) > 2, [A o5 (B, X 4+ C) — A,
is a polynomial in the coefficients of [8'Al,, [Bl,, [Cly, for by + ko + ks <k — 1, |l| <k (this
polynomial being with rational coefficients).

Proof — Since (a, 05 B)(X 4+ C)" — ¢,X" = (a, 05 B) (X + C)" — X") + X"((a, o
B) —a,)

Aos (B, X+ C) — A= (I)+ (I)

n 81&” lm~sn—m 8161" INrn
@) := Z (m) Z!BCX , (H):ZTBX

|{=>0 [{]>1
[n]=1 [n|>1
m<n, |m|>1

and one can conclude using (E.467). 0J

Assume now that (A, §) is endowed with a translation by which we mean an action ©
of an abelian group (we suppose it is (R?, +)) on A that commutes with the derivations §;.

E.1.2 Formal diffeomorphisms. — A formal diffeomorphism of A[[X]] 1s a triple (¢, A, B)
(we denote it by f, o 5) with A, B € (A[[X]])¢ with v(B) > 2 and where v(A) > 1 and
a € R?. We can define the composition of two such objects:

JerD =J§/,C,D Ofurp
e=a+vy, E=A+ (t_,C) o5 (A, X+ B),
F=B+ (t_4D) o5 (A, X+ B)

with v(E) > I and v(F) > 2. One can check that the usual algebraic rules for composi-
tions are satisfied and that each such diffeomorphism has an inverse for composition.

Remark E.1. — One of the example we have in mind is the following. Take d' =
d € N*, A = C®(T") the ring of real analytic functions on T (taking real values on the
real axis) and the ring of formal power series is A[[7]] = {D_ e @:.(0)7", a, € C*(T%)},
r=(n,...,77). The derivations in this case are §;a = dga if a: (6;,...,6,) = R is in
C2(T?), the translation is T,a = a(- — ) (¢ € R?) and the formal map f; o can be
written under the more suggestive form

Jaan (@, 1) =@ +a+A@,r),r+B(@,1)

as a formal diffeomorphism of T x R,
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E.1.3 Degree. — In case we can assign a degree deg(a) to each element a of
the ring A (it satisfies by definition deg(0) = —oo, for all a,b € A, deg(a + b) =
max(deg(a), deg(b)) and deg(ab) = deg(a) + deg(h)) we can associate to each weight
$:N? — N the set

(E.470) C(p) = { Y a.X" € AlIXI, ¥ ne N, deg(a,) < p(n)}.

neN?

By extension if B= By, ...,B,) € AXID? we say that B is in C(p) if each B, € C(p),
1<l<d.Ifp,q:N*— N we define

prqm) = max  (p(k) +¢(0)).

(k,))eN? f+i=n

In particular if
(E.471) ) i=lnl=m+-+ns,  n=(n,...,ng) €N’

onehaspxp=pand (p— )" =p—m.
We say that the degree deg is compatible with the derivations ; and the translation
T ifforany o € R%, 1 <i < d’, deg(t,8;a) < deg(a).

Remark E.2. — The relevant example for our purpose (proof of Lemma 6.3) will
be the following. Take ¢’ = d, A = C*(T?)[#] the set of polynomials in ¢ with coefficients
in C?(TY), FY©0) = ay(8) + -+ + a,(0)1", a € C*(T%,0<j<n, neN and q, #0.
The derivations 8;, 1 <i < d are defined by §;F?(0) = (9p.a0)(0) + - - - + (3p.a,)(0)?",
the translations 7,F”(0) = ay(6 — a) + -+ + @,(0 — @)¢" and the degree degF' = n is
compatible with both of them.

The following facts are easily checked. Assume that A is a ring with derivations §;,
1 <7< d and a compatible degree deg and let (p;),en be weights.
(1) IfA, B € A[[X]], A€ C(p1), B € C(py) one has AB € C(p; * po).
(2) IfA; € A[[X]], A; € C(py), lim, 5 v(A;) = 00 one has ), A, € C(max;, p)).
Let p be a weight such that p * p < p. Using (E.468), points (1) and (2) we have
(3) If a € A, B € A[[X]], B € C(p) then one has aos B — a € C(deg(a) + p).

LemmaE.2.— IfA € A[[X], B, C € A[IXID?, v(B) > 1, v(C) > 1 with A € C(h—
), BeC(p—cp),CeC(p—1), min(cs, cg) >0, then Aos(B,C) —AoC e C(p—can— cp)
and Aoy (B, C) € C(h— cy).

Progf. — Recall that Aos (B, C) =) _\v(a, 05 B)C". From point (3) a,05 B —a, €
C(deg(a,) + p — cg) and from point (1) (@, o5 B)C" — a,C" € C((deg(a,) + p — cg) * (p —
)"y ¢ C((deg(a,) + p — ¢g) * (p — |n|)) hence (a, o5 B)C" — a,C" € C(p — cx — ¢g). By
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using point (2) we have A o5 (B,C) — Ao C € C(p — ca — ¢). A similar argument shows
that A o C € C(p — cy) whence the conclusion. ]

Before stating the next lemma we introduce the following definition: we say that a
formal diffeomorphism f; 3 isin D(p — 1) if A€ C(p) N O(r), Be C(p— 1) N O (7).

Lemma E.3. — One has
(1) LaHeC(p—c),c=0,1,and foapg €D(Pp—1). ThenHo fuap € C(p— o).
(2) The composition of two_formal diffeomorphisms in D(p— 1) isin D(p — 1).
(3) The inverse for the composition of a diffeomorphism of D(p — 1) isin D(p — 1).
(4) If fx’_{i’B = [zXR, then for any k > 1, [Al,, (Bl are polynomials i the coefficients of
[Tmla(shA]/q’ [nga(SlQB]kQ, ki,ko <k U, b <k, Imi], Img| < k.

Proof. — Items 1 and 2 are consequences of Lemma E.2.

For point 3 we just have to prove the result when o = 0. Let us denote by U the
operator H — H o fj A 5. Note that v((d — id)H) > v(H) 4+ 1 hence the series H:=
Y o(U — id)*H converges in A[[r]] and from 1 and 2 one sees that if H € C(p — o),
¢ =0, 1, the same is true for H. To conclude we observe that _(ﬁ).ﬁAl,B —ud) = U —
id)(fyp — id) + (foap — id) hence '

(E.472) —(foap —id) = Z(U —id) (o — id).
k=0
Finally point 4 is a consequence of (E.472) and Lemma E.1. 0J

E.2 Formal Birkhoff Normal Forms. — From now on we work in the setting of Re-
mark E.2.%

E.2.1 Formal exact symplectic diffeomorphism. — If F € A[[r]], F = (e, r) + O*(r) with
a € R? we define the formal diffeomorphism f;-(6, r) = (6 + A9, r), r + B(0, r)) as sug-
gested by the implicit relation

¢ =0+ 3rF(6,R), r=R+3F@O.R),  fr(0,1)=(¢.R)
or more formally
A, r)=0,F@O,r+B(@,1)), 0=B@,r) + F@,r+B@O,r))

A=98Fo0;(0,B), 0=B+Fo;(0,B)  (cf. E.469).)

3 Note that to prove the existence and uniqueness of the formal BNF of Section E.2.2 it would be enough to work
with A = G(TY).



ON THE DIVERGENCE OF BIRKHOFF NORMAL FORMS 145

In this situation we use the more intuitive notations R(@,7) =r+ B(0,r), ¢(0,r) — 0 =
A(O, r). We shall call such formal diffeomorphisms f formal exact symplectic diffeomorphisms.
The set of all such diffeomorphisms is a group under composition. Let us define

EG—1):={f, F=(a,1)+ Y _F,(0)" €Allr]l, FeCG— D}
n[=2

The following result is then a consequence of Lemma E.3.

Lemma E.4. — The set E(p— 1) is a subset of D(p — 1) stable by composition and inversion.

Remark E.3. — In the (CC)-case the relevant choice for A is C[[¢]] and the
set of formal series is A[[z, w]]. One can extend in this context the notion of oy-
symmetry. If =3 < niFund"w" € Allz, w]] we say it is 0y-symmetric (recall
09(z, w) = (w, 12)) 1if E,m = (¢)"*"E,, , for all (n,m) € N? x N? (1_7,1’,,[ is the complex
conjugate of F,,, and i = /—1). Similarly one can define the notion of o,-symmetric
formal diffeomorphism. If F is oy-symmetric then f; is 09-symmetric.

E.2.2 Existence and uniqueness of the formal BNF. — We prove at the end of this sub-
section that given for 4,1+ we can find B(r) = 27 (wy, r) + O?(r) € R[[r]] and a formal
exact symplectic diffeomorphism f; = id + O?(r), Z = O*(r) which is normalized in the
sense that

(E.473) / Z(p,Q)dp =0,
Td
such that

(E-474> ﬁ oﬁn(wo,7)+F(99 7) :J% Oﬁ(@, 7’).

Moreover, Z and B are uniquely determined by F.
We use the notations foz (w,.n+r : (0, 7) = (¢, R), fz : (¢, R) = (¢, Q) so that

¥ =9+ 0oZ(p, Q), R=0Q+9,Z(p,Q)
¢ =0+21w,+ &FO,R), r=R+3F®,R).

Using the relation R = Q + 9,Z(0 + 27wy + drF(6,R), Q) and the fact that
g:0,Q,R)—~ (6,Q,R—0Q —9,Z(0 + 2mw, + drF(6,R), Q)) is a formal diffeomor-
phism** we can define R(6, Q) = Q + O*(Q) by (8, Q,R(8,Q)) =g, Q, 0).

™ Defined on A[[Q, R]].
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Lemma E.5.
(1) Forany k> 1, the coefficients of [R(0, Q)1 are polynomials in the coefficients of [Ton w8 Fli, »
[Tgn,,lza,()5/22]k2, k19 kQ’ ll’ ZQ’ |m1|’ |m2| = k.
2) If¥,7.€ C(p — 1), the formal diffeomorphism (6, Q) — (8, R(6,Q)) isin D(p— 1).

Progf- — These are consequences of Lemma E.3. 0J

Let f7(8,r) = (6',7'); from the formal conjugation relation (E.474) we get f o
J2(0,7) = (0" + VB(),7) = (¢, Q) hence Q =7 and 6" =60 + 3oZ(0, Q). We thus

have

0 + 3020, Q) + VB(Q) = ¢ + d5Z(p, Q)

and using the relations between ¢, 6 yields

—3:F@,R) = an(e + 27w, + 3 F(O, R), Q) — 00260, Q)

— (VB(Q) — 27 wy)
that we can write
(E.475) — 30 F (F, 7Z) = 8720 + 2wy, Q) — 3626, Q) — (3oB(Q) — 27 wy)
where F(F, Z) = O%() is uniquely defined (note that the RHS of (E.475) is O(r)) by
(E.476) IoF(F,Z) = 3oF(6, R(8, Q))

- (an<9 + 27wy + 0F(0, R(6, Q)), Q) — 86 Z(6 + 2max, Q)).

We thus have
(E.477) —FF,2) =720+ 2nwy, Q) — 726, Q) — (B(Q) — 2(rwy, Q)).

Lemma E.6.
(1) For any k > 1, the coefficients of [F(¥,Z) — ¥l are polynomials in the coefficients of
[TQHmlwo(ShFl/qv [rQTerwU(SZQZ]kQ) ki, ko < /f_— L b <k Im, |mo| < k.
2) IfF,Z2eC(p—1), onehas F(¥F,Z) e C(p—1).

Progf. — This 1s a consequence of (E.476), Lemma E.5 and Lemma E.3. 0J

From (E.477) one thus has

k=2,  —[F2(0,Q) =[Z]:(0 + 2mwy, Q) — [Z],(6, Q) — [B]>(Q),

(E.478)
V>3 —[FE 2)]0,Q)=I[Z]x0 + 2w, Q) — [Z]:(6, Q) — [B](Q).
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Before completing the proof of the existence and uniqueness of the Birkhoff Nor-
mal Form (E.474) we state the following result (the first part of which at least is classical;
see for example [13]):

Lemma 1. — If wg s Diophantine, for any G € Al[r]] there exists a unique pair (7., B)
with 7. € A[[r]] normalized in the sense of (E.473) and B = B(r) € R[¢][[r]] such that

(E.479) G0, Q) =Z(0 + 2wy, Q) — Z(0, Q) + B(Q).

Furthermore: (1) B(Q) = de G, Q)dO and if G = [G]; one has Z = [Z];, B = [B]; and
the coefficients of [Z]; are R-linear functions of the coefficients of [Gli; (2) if G € C(p — 1) then
Z,BeC(@p—1).

Progf. — 1If we denote by @(1, Q) =@2m)™ de G(0, Q)e 940 the [-th Fourier
coefficient of 8 > G(0, Q) (I € Z%) then (E.479) follows if B(Q) = de G(0,Q)db and
7.0, Q) is defined by

Z(@, Q) — Z (62711'(1,600) _ 1)—16(1’ Q)el‘g’g).

1€Z4~{0}

The conclusions of the Lemma are clear from the preceding expression. U
Proof of the existence and uniqueness of the BNF (E.474).

— Uniqueness: Equation (E.478), Lemma E.6 and Lemma E.7 show inductively that
[Z];, [B]; are uniquely defined by [F];, 2 <j < £ — 1. Hence, Z and B are unique.

— Existence: Define [Z],, [B]s by (E.478) and then inductively for £ > 3, [Z],, [B];, by

(E.480) —[FE, [Z]<-D1:(0, Q) = [Z]1(0 + 27wy, Q) — [2]:(6, Q) — [BI(Q)
where Z;_| = Z/z:zl [Z]);. Setting F = >~ [Z];,,B=)",",[B], one can check that (E.477)
holds modulo O*(r) for any £ and hence in A[[r]]. [

E.3 Proof of Lemma 6.3. — We define F(0, r) = (F(0, ) + (1 — )G(8, r) which
is in A[[Z]1NCQH — 1), A= C(TY[#]. Note that for any £ > 2, [F?], € C(p — 1). In
particular, as a consequence of Lemmata E.6, item 2 and E.7, point (2), the sequences
[Z©];, [B?];, inductively constructed in (E.480), are in C(p — 1). Hence BY(r) :=
> nene bu(O)7" is in C(p — 1) which by definition (¢f (E.470), (E.471)) means that the degree
in ¢ of each b,(¢) 1s < |n| — 1. O

Appendix F: Approximate Birkhoff Normal Forms

We give in this section the proofs of Propositions 6.4 and 6.5.
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F.1 A useful lemma. — Let be given for each o €]0, 1/2[, a function P, : Ry X
R, — R, P, : (k1) = Py(k, ) nondecreasing in each variable and assume that
(éa.t)ker, > Ie € N 1s a sequence of nonnegative real numbers depending on o €]0, 1/2[
and defined inductively as long as a condition of the form

(F.481) P, (k, 6as) < 1

is satisfied (we assume that &, satisfies (F481)). Let us call J, = [0, £5], £ > 1 the maxi-
mal set of integers £ € N for which ¢, ; is defined: this means that if £ € J, and &, satisfies
(F481) then £+ 1 € J, (in particular P, (£}, &4,1:) > 1). Let & > 0, a > 0 and Ze,a € N* be
such that

k
(F.482) Vi e [0, min(k, kp.0) — 1], €asr < Copa? x (1 +a Y e, J) Ea -
7=0
We have the following type of Gronwall Lemma:

Lemma F.1. — Assume that

(F.483) (2Cy.,a)" < 1/2, €0 < a’/2, Py (koo + 1, 840) < 1.
Then,

(F.484) K>k,

and

(F.485) Vie[0, kNN, &4 < (2C.0)" 0.

Proof: — 1) Let & 4 , = min(&}, kg..). We first prove that the set

Keo.=1ke [[O» /fz,e,a]]’ Ea k> (QCe,aOJ)GkSa,o}

1s empty. If this were not the case we could define 4, 9 , = InfK, 4 , and write
(F.486) Vke[0 koo 1],  €ar < (2Cq.0)"€a0

hence

k

£
E Eaj = % < 2&40
1 = (2Cq0..)

=0
and thus from (F.482) and (F:483), for all 0 <k <4k, 9, — 1,

0 — 0
801,/:+1 S CQ,a X o (1 + 20{ a8a,0)8a,k S (QCe,a(X )Sa,k-
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This implies that for all 0 < £ < %, , one has
0k
801,/{ f (QCG,aa) 801,0

and in particular &4, , , < (2Cy, ) 0ag, o This contradicts the definition of £, 4 , as

ian(X’g’a.
2) Since Ky 4., 1s empty, one has
(F.487) VEe[0, By ], ar < (2Ch.2) €00 < €ap.

s Ya,0,a

Butsince £}, , + 1 < %0,(1 + 1 and (2Cy ) <1

P (K gt Lo, ) < Polhou+ 1, £40)

<1

This implies that &} , , + 1 € J, hence &, , < &, and from the definition of £}, , ,, we get
k> %9,,1 which in its turn implies & , , = %9,4. We have thus proven that for all £ < %9,,1
one has

80{,/{ S (QCG,aa)kgga,O~ D
F.2 Proof of Proposition 6.4 (BNE, (CC)-Case). — TYor n large enough we define
(F.488) py=— Wo = ¢"Wip(0.0)

and for £ > 0 we introduce the sequences®

/Z o0
F.489 8, =C" , 8, <h/10
(F.489) ¢ (k+ D)(In(k + 2))2 ; 1= 4
k—1 h—1
(F.490) Pr = exp(— Z oo, Wip=exp(— Z §)Wo.
=0 =0

Recall that @, = max(2a + 1, 30) and that for some m > @, (¢f (6.141))

(F.491) Fo(z, w) = 0™ (z, w), g0 = lIFollw, < o'

® The choice of these sequences, in particular the choice of a summable sequence §;, is not necessary (we only
perform a finite number of conjugation steps) and is indeed not the best one insofar as it leads to a(n) (arbitrary small) loss
B in the exponent. The “optimal” one is (after loosing a fixed fraction of % in the first step) to choose uniformly at each
step & ~ h/k* so that )" _, .« 8 ~ h where k* is the finite number of conjugation steps we perform.
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We shall construct inductively for £ > 0, sequences Z; € O, (W), F, € O,(W,) N
OFF2n (2. w), Q€ Oy (D0, pp), Qu(r) = 2w wyr + O%*(r), such that

Q= , Fo=F
and for £ > 1,
(F.492) g o g, ofi, 0 g = Dg, o fi,-
To do this we proceed the following way: assuming (F.492) holds and §, < ¢, ', we ap-
ply Proposition 5.3 with 7 =0, K/2 =N = ¢, ¢ (6.143), and define Y; € O,(W;) N
O*2m(z, w) (see Remark 5.3) satisfying
(F.493) Q- Y =T, o= Mo(FD, [ Vell s, S 221l
where we denote
(F.494) Qo(r) =2 wyr.
Using Lemma 5.4 we get (¢f formula (5.124))

Sy o Po, ofp, °J§(_kl = Do My OJ%,C—MU(FA)+[Qk+1\l(Fk)]-Yk+szﬁ)(Yk,FA)

= Qo 1My OqunFﬁ[szk+1\/1(Fk)].Yk—[%]»Yﬁb?(Yk,Fk)'

Hence fy, o ®g, o fr, oﬂ(_kl = g, off,,, with
(F.495) Qi1 — Qp =M(Fp)

qnd, using the fact that [, + M(F)]- Yy — [Qpl - Y, = O(IVYy| x |0(2; — Qp) o) +
057 (Y, F),

(F.496) Fipr =R, Fi + O (Y, Fp) + O(lVYk| X [0(2 — Qy) o 7|>.

Notice that from (F.495) and the fact that for 0 <j <k — 1, My(F,) = O (z, w) (¢f the
remark at the end of Section 5.1.1), hence M(F)(r) = O™(7); one thus has

(F.497) VO<j<k, Q:(r) — Qy(r) = O(?).
Since Fy, Y, € O2"(z, w) we have (see Remarks 2.1, 5.3) O (Y, Fy) = O%H=21 (2 ),

also, O(|VY| x [3(2; — Qp) o r]) = O™ (z, w) and from (5.115) R, F, = O”(z, w)
(if ¢, > m). As a consequence, since 2k + 4m — 2a > k+ 1 + 2m (m > 2a + 1) we see that
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Fry1 = OM127 (2 w). Furthermore since Q4(r) — Qp(r) = O(?)

10(€2; — Qp) o 7||Wk < [10(82; — ) o 7||wk + 10(S20 — Qp) % 7”Wk
SN0(S2 — ) o rllw, + sup [r(Wp)|
S10(82k — Qo) o 7llw, + ox

and using (2.55)
1YYl 8 o Ikl
< guoe 8 IFelw,
hence
(F.498) VY4l x 182 — Qol < g2 787212 — Qollp.oo Fellw, + 7287 02 [ Fllw,
From (F:496), (F493), (F:498), and (5.112) we get that, provided
pl:a(s;;aq;fHFk”Wk <1,
one has the inequalities
(F.499) il -, S 8 N Ellw, + 07 8 g IFRy,
+ 0,812 — ollow.on [Fillw, + 4287 221 Ellw,

and
k
(F.500) 1261 — Qollp.ep0 S D 1 llw-
j=1

Let us define

5= |12 — Qo”n(o,pk)» &= ||F/<||wk;

then, one has

Ehr1 S <5k]€_q"8k/2 + (08 T qren + g, (0B8) 25k + 418 ,0/:/2)

k
1 S D0 &

(F.501)

as long as

078 "qCer < 1.
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Let £* be the largest integer for which the preceding sequences are defined and satisty the
stronger condition

(F.502) Vi<k, P,(ke):i=p, " pr8 g*es < 1.
From (F.489) for any o > 0 one has §; =, (k+ 1)~ For 0 €]0, 1/6[ define
1 1

Since p; 2 po one has

—-1/6 _
%15/:2,/00 /6410 :/009 ‘
Vh<min(k, 0", Y (o80T S = p
-1 1/2 —1/3+1/2—
q53k1pk/ </O0 /3+1/ Mo:p

~

0
0>
thus (note that for k < p, ", py < 1), 5/:187[1"8/‘/ 2 < ,05/ > and consequently, if py g 1,

k
¥k <min(k, "), e S 007 00" 00Ty e e

J=0

k
< Copg (1 + py° Z%‘)Ek-
j=0
Since from (F491) g, < ,o_gﬂl < ,05/5“7/6)&“/3 we see that condition (F.483) of Lemma F.1
is satisfied (with & = py, koo = p, ") hence

(F.503) Ykel0,p," 1NN, & < (2Cy00)"e,.
Now for any 0 < f < 1, one can choose 6 and o so that p, " = ¢!~# and in particular
taking £ = kg = [¢) "] and using (F501) one gets for ¢, >4 1

(F.504) <™, <2,

(we can assume a > 10).
We now define

BNF BNF
Fq;1 :FE, Qq;1 = Q%,

and

BNF __ ,—1 -
gq,Tl =Jyw ©:--0 Y%wt
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where YJ‘.WZ is a C? Whitney extension of (Y;, ¢~%/*W)) given by Lemma 2.2; one has (¢f°
(F493), (F.491))

k
€505) [ —idller S 02 Y (2Copn) eupy HK Son g O,
k=0

Inequalities (F.504) and (F.505), and the fact that F; € O*2(y), give the conclusion
of Proposition 6.4. Note that (6.145) is a consequence of FZF{F € O"’rﬂ(z, w) and
Remark 6.2. For the last statement of the Proposition, we can choose QF = Q +
Z}l:ol M(FJ)W}‘ where F}W’ is an C* Whitney extension of (F;, W;) given by Lemma 2.2.

O

F.3 Proof of Proposition 6.5 (BNF (AA) or (CC) Case, wy Diophantine). — The proof,
that we mainly illustrate in the (AA)-Case, as well as the notations, are essentially the
same as the ones of the proof of Proposition 6.4 (see Section I.2, in particular, we use the
definitions (F:489), (F490) for §;, pr, W;) with the following differences:

— we replace (F488) by

T+D/y

0o =p Wo=W:p0.00 = Wip(0,pt7)

where y =1 in the (AA)-case and y = 1/2 in the (CC)-case.
— since @y 1s Diophantine, we can and do solve instead of (F:493) the equation without
truncation (using Proposition 5.3 with N = 0o, K=« !, ¢f (6.149)):

—[Qo] Y =F, — Mo(Fk), ”Y/C”e_S/f/Q\Vk 5 5; ||Fk||w

where Qg (r) = 2w wr, cf. (F494).
Notice that both in the (AA) and (CC) cases

(E.506) Fy=0"(r), 1Follw, < 0y

In place of (F:496) we get (in the (AA)-case)
(F.507) Fip =9 (Y F) + o<|ang| X [0(2 — Qp) o r|).

Since F;, Y, € O (r)(0) (see Remarks 2.1, 5.3) we have O(]95 Y| x [8(2: — Qp) o7]) =
O"+1(7)(0) and Dg) (Y, Fp) = O 2=2(3)(0) (a from Lemma 5.4). As a consequence,
since 2m > @ we see that F, = O 147(7)(0).

From (F:507) and the fact that (¢f (2.54))

—1
106 Y illo-aew, S 8 1Y kll 2y, 19(€20 — Qu) o 7llw, =< o4
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hence
—(1+
195 Y 4l X 18(S20 — Qp) 071 <8, o IFllw,

where y =1 in the (AA)-case. A similar computation (¢f. (F:498)) shows that one can take
y = 1/2 in the (CC)-case. With the notations s; = [|$2; — Q0 |lp0, 50> € = |Fllw,, we then

get

&1 S ((kak)_(T+a)8k + (048) s + 51:(1+T)/0/1/>8k

(F.508)
Skl S Z;/'Czo &j

provided

(F.509) (081) g, < 1.

Let £* be the largest integer for which the preceding sequences are defined and satisfies
(F.510) Yk <k, Pok,e) =07 (0:80) e < 1;

the condition involved in (F510) implies (F:509). From (E489) for any o > 0 one has
8 2o (k4 1)~"U%9) Fix 0 €]0, y[ and define

_y—0 1
T l4tl40’

"

Since p; 2 po one has

- Sl < —l-u(140)
V k< min(k, p;™), {(’O’“ DS

8;(14-1),0/); g p(})’—(1+f)ﬂ(l+0) — pg
If we set
y —06
a—= l—f—m 24+1)+6< (3/2)(2+T)+1

we then get using (F2510) and (F:508)

k
V k< min(k*, p,"), €1 <Co <p5 +0, > g+ pg)ek

J=0

k
< Copf) x (1 +p0‘”Zej)ek.

J=0



ON THE DIVERGENCE OF BIRKHOFF NORMAL FORMS 155

We now apply Lemma F.1 with o = py: since (@ > 10)

-0
max(a, (I + v

)t +a)+l) <2(r+a) <a.<m
1+t

condition (E506) shows that (F510) 1s satisfied with k= min(k*, [p,"]) as well as condi-
tions (F483) for py<y, 1. We thus get if £ := [p, "],
(F.511) VEe[0,klNN, & < plfe.

Since € and o can be taken arbitrarily close to 1, for any 0 < B < 1 one has for
p <Ll

)]
e =ce L s

st < 2%y,
We conclude like in the proof of Proposition 6.4 (Section F.2) by defining

BNF __ 1 BNF _ . BNF __ ,—1 —1
Fp =17 Qp = Qy, g = Y\IV/IO"‘O yWhe
7

Note that since F; € O (r) one has N e O »'""(1) and (6.154) is a consequence
of Remark 6.4. O

Appendix G: Resonant Normal Forms

In this section we shall only consider the (AA)-Case.
LetceD(,1),0 >0, />0 and

(G.512) Qe O,(D(c, 7)) and F € O, (¢'W,p(.5)
where €2 satisfies the twist condition (A, B > 1)
VreR, A7 < (27)7'9°Q(r) < Aand ||(27)'D’Q|¢c < B.

Our aim 1n this section is to give an approximate Normal Form for ®g o f in a neighbor-
hood of a g-resonant circle by which we mean that for some (p,¢) € Z x N*, pAg=1

om0 =L,
g

This Normal Form is quite similar in spirit (and in its construction) to the approximate
BNE It is used in the paper in Sections 8 (approximate Hamilton-Jacobi Normal Form)
and 15 (creating hyperbolic periodic points).

As usual we define w(c) := 2%89 (¢).
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Proposition G.1 (q-resonant Normal Form). — There exists a universal constant as > 10 (not
depending on q and that we can assume in N) such that, if one has
p<(Ag~®
(G.513) p=@
”F”V\"}LD(“E) <p 37

then the following holds: There exist Q € 6(, (D(c, e /) N TC(2A, 2B),

F L F" € Op(e""Wpi), grar € Symp,(¢”"W,, p.5)

such that

<G 514) {};&*F °© (I)Q Oﬁ‘ OgRNF == q)Qn(p/q),. Ciq)ﬁ Offm‘ Oﬁ‘mr
me Z,s 27‘[/q —pm'odic, MO(FMJ) _ O,

where

||§ — (Q =27 (p/ DD Ipc.e 1155 S NEIW, ey
(G'515> ||F A ||eil/‘1‘\’v/hn(c,§) S ||F||VV},YD([,5)

lgrnr — @l S (gp )2 F b <P

as—>

and
(G.516) IF 1w,y < €Xp(—=B D I F NI, -

We give the proof of this Proposition in the next subsections.

Remark G.1. — The implicit constants in the symbol < of the preceding estimates
depend on #; if y > 0, they can be bounded above by a constant C;, whenever /> #.

G.1 A preliminary Lemma.
Lemma G.2. — 1) For any (k, [) € Z* X Z one has

either q\k and p|l

G.517 1
( ) orlkxg—llz—.
q q
2) Let
N = (gpA)~".

For any r € D(c, p) and any (k, ) e N* X Z, 1 < k <N, which is not in (¢, p)Z one has
(G.518) |k (r) — 1] = 1/(2¢).
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Proof. — 1) Indeed |k(p/q) — | = |kp — lg]/q and if the integer kp — lg is O then ¢|k
and p|/.
2) We just notice that
lkw (r) — | > |kw(c) — | — klw (1) — w(c)]
= (1/9) = Nldwllpe.p o
> 1/(29). [

Define (see Section 5.1)

(G-519> T%—TKSF — E MA(F), TK'_MF — TNF _ TqN—mcF.
keZ
|k|<N
qlk

We shall often use in what follows the shortcuts T% and T% for T ', Tx -
From (5.101), (5.111) we see that

(G.520) TEF 0 ¢71 = TEF
and
(G.521) ITXFll-s1p0em S 8~ IF e

Corollary G.3. — For any ¥ € Oy (W), n(.5)), there exists Y € O, (W}?D(c!ﬁ)) such that
My(Y) =0 and

(G.522) TF =[] -Y.
This Y satisfies for any 0 < & < h

(G.523) YW r S 487 1E W -

D(c,p) ~~v

Progf. — 'This 1s a simple adaptation of the proof of Proposition 5.3 (the non-
resonance condition is replaced by (G.518)). 0

G.2 Elimination of non-resonant terms.

Proposition G.4. — There exists a universal constant as (not depending on q) such that if
N = (gpA)~" and
P < (gA)

IFW,pes <P -,

(G.524)
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then there exist F'* , F"" € O, (e7/ ‘Wi.p0.5))> & € Symp,, , (Y "W).p(0,5)) Such that

(G.525) [ "W,posn] &' o®Pgofiog= Dgofimypm
(G.526) F® =TS (F + O(gpl Fllw,p.5))

F™ being 27 / g-periodic and
6527)  lg—idller S 47 ¥l <577

(G.528) ||Fm||e—'/q\mf,,‘n((vﬁ) 5 lep(—ﬁfl/S) IFll.De.7)-

Progf. — Note that we can assume, using Lemma 2.2 that F € O, (W), p(.5) and
satisfies

G.529) o= IIFll vawngp, <P IFle SPO
where @3 will be defined in (G.539).
Let N = (gpA)~". We define W, = e‘l/(loq)W;l,D([,pU), po = p and for £ > 1

-1
(G.530) 5= 20

h—1 k=1
- k4 1)4/3° Pr= CXP(— Z sop, W= CXp(— Z 8) Wy
Gt D) 2 2

and we construct sequences Yy, Iy, FY', F* € O, (Wy) such that Fy = F} + I}

©531)  FP=TER, Ry =F-Fp YR =0
and for £ >0
(G.532> ﬁk o CDQ Oﬁ:zr+F2e5 OJ@;I — CDQ OﬁZ11+F2‘11

where for any £,

F;fes o JQgT/Q — F:’A"

orollary G.3 there exists Y} o (e such tha
By Corollary G.3 th ts Yi € O, (¢7%/*W) such that
. —1 .
(G.533) [2]-Y,=-—TYF/, 1Y il 22y S8, E -
Let F; :=F” + F}” and compute using Proposition 4.7
-1
S o Paofrryreofy = Pg 0fF;%’+Ff*+[mYA+||DFkn,WWkD1<Yk>
= Qg OfRNFZ’+T;3fFZ"+F;“+q5;1 IDFL]| -5/, D1

= ®g o fiy, g,
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with
oss  [TmRIT A RO
Fi, =TRF + Fp.

In particular since ¥,y = F | + F | =F | + T{F + F7
(G.535) Fp =F+F,, +T{F —F/.

If we define & = |[F}llw,, * = nr,res, & = ||[Fi]lw, we get from (G.531) and
Lemma 5.2
(G.536) el <85 e0 Sgeo

and from (G.534), (G.535) and Lemma 5.2 that for some a > 0

el S8 N Pel 4 e (o8 e

(G.537) el S e+ o ey
1 =&+ O, + 68, e

provided for some a > 0 (that we can assume > 4)
(G.538) (pr6p) e} < 1.

From now on we define a3 = 2a 4 2, see (G.529),
(G.539) g0<py  with @ =2a+2>10;
notice that this implies (see (G.536))

(G.540) el < pat.

Let £* be the largest integer for which the sequences €)', €}, ¢, are defined. We notice
that for £ < min(£*, p, /%) one has from (G.524)

4/9 2

(P80 S oy tqo0 T S AT g oy oM < oy

Since &; = £9+0(8; ' Y1, &}") we get that for k+1 < py *, & =20 +O(p, " Y1y &1")

hence if £ < min(£*, /00_1/3) (recall ¢ < ,00_1/8>

k
- —@a+1) —~(20+2) Ay
qe1(ordr) a&“ZySC(,Oo “eg+py " § 827)8/?-
J=0

On the other hand, from (G.524), ¢"'N = ¢ 2p; 'A™" > A~ p; * hence, ifk+ 1 <
py "* one has ;N = ¢7'N/(k+ 1)* = p; " p;"" = py /™ and thus §;'e™N < py if py
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is small enough. The outcome of this is that for £+ 1 < p,, "% one has (we use condition

(G.539))

k
ey < Cpo (1 +py @Y SZ") -
=0

Since for py < | one has (¢f (G.540))
(G.541) ey < pg* < (podo)"
and we can thus apply Lemma F.1 with o = p,, to get
(G.542) >0, NO<k<k, &"<(Q2Cp)el<ctgs.
We now set

F* =Fg2, " =T}, g= j;,_\l\},l oo fywi
where YJW’Z is a C? Whitney extension of (Y}, e"%/*W;) given by Lemma 2.2. The con-

jugation relation (G.525) then holds and the conclusion (G.528) is satisfied since from
(G.542)

c —1/3
—2/q nr —p
¢ "Wy p(,5 C Wi, IE" o2rowpery S € g8

To check (G.527) we just notice that from (G.533)
llg = idllcr Sn g oy *eo-

Finally, since }'* = T{F + T'N”(Zi*:o ) and TRF] = 0 (¢f (G.531)) one has from the

inequality &/’ < (2Cp)*el < poe* Ve (oo K 1, k> 1)

Fesx ks k*
FO=TEF+TEOQ FD. 1D Fllw. < Y& S gpoco
k=1 k=1 k=1

which gives conclusion (G.526):
e =Ty <F + O(qﬁ80)>. ]

G.3 Proof of Proposition G.1. — We apply Proposition G.4 and we write using
Lemma 4.6

g o fymire = Pox(pp-0 © Pa-2n/pe—0 OSew O few g preyy, O, )

= DPor(p/ppi—0 © Pa—ar(/9)(—0) O S O frr
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with
(G.543> ||Fmr||fl/t]\\r'h,D(tﬁ> ,S qaﬁ _a”Fm||e*2/‘1\\";,,[)(¢,5)

provided for some a > 0

qaﬁ _a||Fm||fz/‘/W/,,D(0,ﬁ) < 1

The inequalities (G.524) and (G.528) show that this last condition is satisfied if p < 1.
We now observe that

Soee = P o) © i Mo ()

and that

Do on (/-0 © Py = Pa-ar(/p -0+ Mom)-
If we set
IRNF = ¢
Q=Q—-21(p/)(r— ) + My(F) and F =F*— M,(F)

and recall (G.525) we find the conjugation relation (G.514).

Note that since we have assumed that F € O, (e VIDW, p.5) satisfies (G.529) we
have Q € O, (¢ "W, p.5) N TC(2A, 2B) and the first inequality of (G.515) is satisfied.
The other inequalities of (G.515) are consequences of (G.526) and (G.527) and (G.516) is
a consequence of (G.528), (G.524) and (G.543). U

Remark G.2. — Notice that from the first inequality of (5.111) in Lemma 5.2

(G.544) ”Fm||“’}—1/fi/z.1)<z.r‘/fiﬁ) S FIW,pc -

Appendix H: Approximations by vector fields

The main result of this Section is the following proposition on the approximation of an
exact symplectic diffeomorphism close to an integrable one by a vector field.

Proposition H.1. — There exists a constant C. > O for which the following holds. Let
0<p<1,FeO, (T, xD(0, p)) and Q € Ox(D(0, p)), Q(r) = O0?). If p > 0 is small

enough, h > p'* and

H.545)  Cx (ph|Fll;, <1
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then, there exist T1 € O, (D(0, p/2)), As(F) € Oy (T)0 x D(0, p/2)) such that

(H.546) oo fp = Priofa,m

with

(H.547) M=Q+Fod g+ O0("!F|,)
(H.548) =Q+F+O""F|,,)

and

(H.549) A5 (F) 112,52 < exp(—p~"HI[F 4,

The proof of this proposition is given in Section H.2.

H.1 Auxiliary result.

Proposition H.2, — Let p > 0, Q(r) = O(?), Q € O,(D(0, p)), F,G € O, (T, x
D0, p)) such that (C some universal constant)

(H.550) Cx (08) 7 (IFllsp + 1Gllse) < 1.

Then_for any h/2 > 8 2 p'/3, there exists A(F, G) € O, (¢~ ° (T, x D(0, p))) such that

(H.551) Do iric = Patr © Poowg), O far.6)
with
(H.552) IA®E, G)lli—s/oeip S ((p6)_4(”F”h,p + 1Glln,) + ,03_3> 1Gls,p-

Proof. — To simplify the notations we denote W =W, p( ,) and we assume that
w(r) :=VQ(r), w(0) =0 satisfies

o) =71+ O(@).
If
(8p)~* max([[Fll,p, 1Glls,) < 1
the images of the domain ¢~ W by the flows @5, P51, Py ppg, 0 < ¢ < 1, are contained
in e W,
Let us denote

o :=max(||DF|l,s, IDGll4s)
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and forx=(,7r) € e ®Wand te[—1,1]

Al 0) = Bl () — Py ().
By classical theorems on ODE’s for t € [—1, 1]

A(t, ) =0O(o), Qg — Py =0(0).
On the other hand one has

(H.553) %A(t, X)) =]JV(Q+F+G)o®,, . o(0) —JV(Q+F) o ®L, .(v)
= (D¢, x) + D) (7, x) + (D) (7, x)
with
(Dt %) =]V o D, 1, (x) —JVQ o0 DL, (%)
(D) (¢, x) =JVF 0 &% 1., (x) —JVF 0 % .(v)
(D) (£, x) =JVG 0 Dy, 1, (%)

Since @, 1, (%) = P 1 (%) + (Ag (2, x), A,(1, %)) and Pgyp — Pg = O(0) one has (note
that 7o @, . =74 O(0))

H554) (D9 = (w(ro Do)+ A, 0) — (o cbém(x)))
_ (aw(r)A,»(t, x) +O(a|A, (¢, x)l))
N 0

and

(H.555) |(D) (1, x)| = O(D*F||A (¢, x))).

We have using the fact that &g, ., — Po =0O(0) and w(r) = O(r)

(H.556) (1, x) =JVG(O + tw(r), ) + O(e| DG

_ (3G, + (3,60, 1) + O(p*[1859,Gl)
3G, 1) = tw(NHGO, 1) + O 13;GID

+ O(o | D*GJ)).
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Summing (H.554), (H.555), (H.556) and integrating (H.553) gives

(H.557) (29((;‘ ;c))> _ (aa)(r) I A x)ds)

10,G(0, ) + (2/2)w (GO, 1)
T 8,60, 1) — (2/2)0(1)32G©, 1)

I3
+0(e+ |D2F|)/ |A(s, x)|ds + A,
0

with
A1 =O(@|D*G) + O(p*ID;GI).-
Lemma H.3. — One has
|A@L 0] < Ay:=O(IDG|+plID3, G[) + O [ID*G ) +O(p* DI G)).
Proof. — From (H.557) and the fact that dw (r) <1
PAY(2 x)lfC(1+8+“D2F”h,p)/:|A(5» 0)|ds+O(IDG| + oD G|) + A,
and we conclude by Gronwall inequality. U

Looking at the second component of (H.557) gives (@ (r) = O(r))
A (t, %) = =13,G(0, 1) + O(pl13;G) + O((e + ID*FIDA2) + A

hence (integrating again and putting the result in (H.557))

(H.558) (i"g ;“)) )

(30 () (#/2)0,G(0, 1) + t0,G(O, 1) + (£/2)w(1)d;,G(0, 1)
o —105G(0, 1) — (2/Dw (133G, )

+ O(Ay)
with
A3 = O(plI3;GI) + O((e + IID°FINAs) + A,
Taking t =1 gives

DPoiric(x)

= DPqr(x)
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L+ (~@0™/23,GO, 1) +3,GE, 1 + (@(1)/2)9;5,G (6, 7)
—3G(0. 1) = (0(1/2)3G(O, 1)

+ O(As).
On the other hand

< 3,(GO —w(r)/2,7)) )
—3(GO —w()/2,7))

_ [ —w(r)/2)0,GO —w(r)/2,7) + 3,G(0 —w(r)/2,7)
= —3,G(O — w(1)/2,7)

hence
JV(G (@) CD_Q/Q) o q)gz

_ [ —@w()/2)3GO + (1) /2,7) + 8,G(O + w(1)/2,7)
B —3G(O +w()/2,7)

and from Taylor Formula and the fact that @ (r) = O(r)
Do iric() — Porr(x) =JV(G o @_g ) 0 g + O(p||3;G|) + O(As).
Since ®qo,r = Po + O(0), this means that

Dorrre = (id +JV(G o @_g)9) 0 Pgyp + O(@ DG + O(As)

thus
DPoiprc = CDGOQD_Q/Q o Pgr+ O(A3)
or
DPoiric :fO(Ag) o qDGocb,g/Q o dg.y
with
As S ((p8) o + p*(p8) 187 + (0 + (p8) o)
x (08~ 4+ p(p&) 787D + p8 )G,
S ()0 4 p8 )G,
S ((,05)_4(|IFII/z,p + 1Gllep) + ,05_3> G110
provided

(P8 Ul + I1Glls) < 1, pd7 <1,
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To conclude we observe that if we apply the preceding formula with —€2 and —F instead
of Q, F

P_g ra :fO(Ag) o CD—GO%/Q od_g y

and inverting
Poipic = Pgiro q’(;oqm/2 + foag) - O
Corollary H.4. — Under the same conditions of Proposition H.4 one has

@oirofo = DPoiricod g OSrnE.G)

with
(H.559) A2 (F, G)li-s/2.0-00 S ((p(S)_4(||F”h,p +1Gllne) + p5_3> G-
Proof. — If we apply (H.551) with G o ®_g 9 instead of G we get
‘I)Q+F+Go<1>,g/2 = Pq.ro0 P Oﬁ\(F,GoqLQ/Q)
hence

Coirofc =Pairicod_qp Ojfg_(%,c,@_w) o ®;' of;
= 1 r1God_qpn OSA(F.G)
where Ay (F, G) = A(F, G o ®_g/9) + O(|DG||D*G]) satisfies (H.559) (¢f (H.552)). O
H.2 Proof of Proposition H.1. — Let 8, = ¢/(k+ 1)%2, ly = h — 8;/2, po = (3/4)p,

0r = ¢ % p and ¢ chosen such that ; > 4/2, p, > p/2 for all k € N. Using Corollary H.4
we construct sequences Sy, Gy such that Sy =0, Gy =TF

(H.560) Boss, 0fi, = Pars,.; 0 fo,
(H.561) Sit1 =S+ Gro®_g)
Gri1 = Ao(Sy, Gy)
with
ISk i pien < WSk o0 + NGkl
and

(H.562) G ki1 lnroier S P85 NGl + 08 ™ Skl + IGlli o) NGkl



ON THE DIVERGENCE OF BIRKHOFF NORMAL FORMS 167

as long as

(;Ok(sk)_4(|lsk|lhk,pk +F1NGellp.p) < 1.
With ¢, = ||G,|l;,.5, and o, ;= [|S,]]4,,, we have (s = 0)

k
(H.563) e < G + (08D ™Y ee

J=0
(H.564) Ot < O} + O(Sk)

as long as (0;8;) (s +0p) < 1.

Let £* be the largest integer for which these sequences are defined. We observe
that for £ < min(£*, p'/*) one has (p:8;)~' < p~2? and ,ok(Sk_B < pé_gﬂ = p'/*: hence, if
k =min(k*, p~"/*) one has

k
Vi<k e <Cp'(14+p7") &)

Jj=0

We are in position to apply Lemma E1 with o« = p, 8 = 1/4, a = 9: since condition
(F1483) 1s satisfied (¢f (H.545)) one has

F=>p't  YE<K, & < (2Cp)'s

and also
k
1/4
Sp— &0 < E &SP e,
j=1

To conclude the proof we set

M=S, Ay =F. O

Appendix I: Adapted KAM domains: lemmas
L.1 Proof of Lemma 10.1.

L.1.1 Proof of the RHS wnequality of (10.306). — From (7.193) and the definition
(10.300) of i_(p), for every (k, 1) € E; (,)-1, 0 <k <N; (p)—1, 0 < |{] <N, (,)—1 one has

D(¢,; ", K7 {,_) ND(0,2p) =1,

i(p)—1

hence |cl(;(p)_1)| > p. Since a)ii(p)_l(cfﬁ(p)_l)) = [/k, we deduce from the fact that €2,

satisfies a (2A, 2B)-twist condition (7.166) that |(I/k) — wol = |w(c; " ™") — 0(0)] =
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(2A)~!p. By Dirichlet Approximation Theorem, for any L. > 1 there exist £, [ € Z, 0 <
|k] < L such that |wy — ({/k)| < ﬁ, hence

1
(1.565) (2A)"'p < TR

However, since wy, € DC(7) one has lkl,ﬂ Slwg — (U/k)] < II»III hence

LY" < k|
This and (I.565) yield

o< [0+

In particular if one chooses L=N,; (,)—; — 1 <N, (,) one gets

(14+1/7)
P SN,

which proves the inequality of the RHS of (10.306).

1.1.2 Proof of the LHS nequality of (10.306). — Let us prove the second inequality
of (10.306). By definition of i_(p) there exists (/, k) € Z*, 0 < k < N;_(,, |I| <N, (,) such
that (¢f (7.193))

D(cj,, ", 2K} ) N D(0, 2p) # .

i (p

In particular (¢f (7.163)) |¢j;,“”| < 3p. Since wy € DC(k, T), |0 (0) — (/D) = k /' and
from (7.192) @, ,(0) — w, ., (c;j;”")| > & /k'*™ — 28"/%; by the twist condition 6Ap >

2A] ZZ | > kN, ((1;{,) — p? hence

—(1+7)
Nz (2]

which shows that the LHS of (10.306) holds.
Estimates (10.304), (10.305) are then immediate. 0J

1.2 Proof of Items 1, 2, 4 of Proposition 10.2. — Recall that from (10.307)

UC29 — D0, (3/2)p) ~ U;;} U(k’z)eEj,D(cfﬁ)]f, 51K,

1.566 i
1.566) o = S e [1,9)

where E; C {(£,/) € Z’, 0<k< N;, 0 <] =N}, o, (c[/k) = [/k. In particular, any
D € D(U)) is of the form D = D(¢f),, 5;,-1K; ), where j <i— 1, (k, ) € E.

Lemma L. — If D € D 3)9),(U;) thenj > i_(p).
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Proof. — Since D(0, 2p) = D(0, 2p) N U, _(,, from (1.566) for all j < i_(p) — 1,
(k, 1) € E; one has |¢)}] > 2p + K. On the other hand, if D € D(U)) is of the form
D =D(c). 5 1K*l), where j<i— 1, (k1) € E; and intersects D(0, (3/2)p) one has
|Uz/k| <(3/2)p—|—2K <2,0+K hence j >1_(p). O

From (7.193) and Lemma I.1 we can thus write

U((3/2)p) D(O (3/2)/)) N U —i_(p) U(/CJ)EEZ- D(CZ(;)IC’ Sj»i_lKj_l)’

1.567
1567 G = 2= e [1,2],
We define
i—1
Q= U {l/k, (k1) € E;}
J=i—(p)
and for t € Q;

j(t. )y =min{j: jeNN[i(p),i— 1], (k] €E; and [/k=1)

) :
oty i) = /7, (4, 0) = Sigii-1-

Define fori_(p) <) <1 <14(p),

K,

-1
i=5K
We observe that from the inequality N;, () < Ni(m, for any i_(p) <) <1 < 1.(p),

i(p) <j <7 <ir(p), (i) # (0", ), one has™®

—1/2 .
K]1+K]/ 7 < Nmax(j/)’ mln//)<<| _I(:f/,i’la

if j/ <jorj =jand ¢ <7, one has k;; < k7 s hence from Lemma 7.3, Item (2) for
(k,0) € E;, (K,!') € E; one has

either [/k#'/K  and D(cfj/)k, Jl)ﬂD(c/,/k,, k) =0

(I.568)
orl/k=U/K and D(c,/k, K;i) C D(Cz///w Kj.i

As a consequence, for j € NN [i_(p),2 — 1], (k,)) € E;, t = [/k, one has the inclusion
D (¢}, 5.-1K") € D(e(t, 1), 5i0..i-1K5 ), and therefore (¢f (1.567), (10.308))

U2 =D(0, 3/200) ~ D (el i), 510.0.-1K5)-
1eQ);

' This is clear i j #'; if j = observe that if i # 7, 8", < |52 — 5.71|K;
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This implies that any D € D39),(U;) is of the form

(1.569) D =D((t, 1), 500~ Ky 1€Qy jt) <i—L.

Proof of wtem 1 of Proposition 10.2. — 'This 1s a consequence of (1.569) and (I.568).
UJ

Proof of ttem 2 of Proposition 10.2. — One can write for some ¢t € Q;,/ € Qy, D =
D(c(t, 1), &(z,i),i—llﬁﬂi)), D' =D(c(,7), g(t/,i/),i/_lK];t})i/)) and from Lemma 7.3, Item (2) if
D N D' # @ one has t =¢. On the other hand since t =¢ € Q; C Q, one has j(¢,7) =
J(t,7). We now use the fact that sj, i 1—1 < $j.0),i-1- O

Proof of item 4 of Proposition 10.2. — Let us prove that D € D,(U;, () is a subset of
U,,. If this were not the case, there would exist D" € D(U,;) such that D'N D # #; in
particular D" € D3/9),(U;,) and from item 2 D’ C D; but this contradicts the definition
of ip. Hence D C U,,.

This latter inclusion and (I.567) applied with ¢z = i, show that one has D N
D(c[(]/)k,sj,i_lKj_l) =@ for all i (p) <j=<wp—1, (k) € E;. As a consequence D =

iD

D(c)). 5.0 (91 K1) for some j > ip, (k, ) € E.

On the other hand, by definition of #, there exists D" € D,(U, ;) of the form
D' =D(, S/I{]l) with ' <p, 5 € [1, 2] (¢f (1.569)) such that D" C D. One hence have
Sjiv( p)_lKj‘1 > Kl-;l thus j > . We conclude that j = 7. O

Appendix J: Classical KAM measure estimates

J.1 A lemma. — If A and B are two sets we denote by AAB=(AUB) \ (AN DB)
their symmetric difference.

Lemma J. 1. — Let A =1~ U]-EJ I;, where I C R 1is an interval and all the intervals 1; are
disjoint. Then if ) ey 1Ll 2 <1 and if g : Mg — Mg is a C'-symplectic diffeomorphism such that
lg — idllcr < 1/10, then one has Leb(Wx & W) S llg — idll -

Progf — We can assume that the intervals I, are contained in I. Recall that

y
1, o 8 = [1o — 13| and notice that since the intervals I; are pairwise disjoint one has

IVVA = IW'I - Zjej 1\\71/ hence

Ly o gwy = 'X - %

Jel
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where X = IVVI - lg(\\"l)a X] = I“TI/' — lg(w'lj). This giVCS
LebMR (Wa A 2(Wy))
=lx =Y xlu
Je)
<lxllu + Y Il
jeJ

< Lebyg (Wi A g(W1) + ) Leby (Wi, A g(Wy)).
Je)

On the other hand, if I is an interval, there exist intervals Tc1cT such that Wy C
2(Wp) € Wy and max(IT AT], [T A T]}) < 2max(llg — idllco, lg™" — idl|co) < Cllg — idlco,
C > 0 depending only on M (recall that we have assumed |[|g — |1 1s small enough).
This is clear in the (AA)-case and in the (CC) or (CC*)-case it follows from the (AA)-case
using the symplectic changes of coordinates ¥4 and ¢ (4.79), (4.77). Therefore, since g is
symplectic,

Lebyg (Wy, A g(Wr)) < Cmin(lg — ||co, Lebyg (Wr)).-

In particular Leby, (W, A g(W1)) < Cllg—id|l s Lebarg (W) /2 and since Lebyg (Wy) <
|I;| the conclusion follows. ]

J-2 Proof of Theorem 12.1. — We use the notations of Section 7 and Propositions
7.1,7.2,7.5 and Remark 7.1.

We apply Proposition 7.5-Remark 7.1 with m = 1 and Proposition 4.3 with A =
¢ P'U, L=L prop. 7.5 A=T, =T,

Lebyig (Wra-211 ﬁ(f» Wrat))
< C x (LebpRN (U N L) + [lg1.00 — id]| 1

< =T 1/8 < =375
e 2(ap+3 ra o 2(an+3
N8(0+)+8 N8(0+)'

Appendix K: From (CC) to (AA) coordinates

Sometimes we need to reduce the (CC)-case to the (AA)-case, for example when defining
the Hamilton-Jacobi Normal Form in Section 8 or in Section 16.

For o €]0, [ define the angular sector A (p) = {r e D(0, p), arg(r) ¢ [—«, o]}
and A, (p) = —A}(p). Recall the definition of the maps V¥, ¢f (4.79) of Section 4.1.
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Lemma K.1. — Let ¢ € R, FO¢ € O, (Wig (. 0,))s & = Ce”? [ DTFOC | e

hD(,2p )
(K.570) Cspe<1

and o €16, T — 6.
(1) If ¢ = 0 and F°C = O%(z, w) there exists F;\EA € O, (T)_s x Aa+45(p — 46)) such that on
T)15 X AL, 5(p — 48) one has

(K.571) fim =y oficcopy,  FP=FCoy, +0,(FC).

2) If |c| > 4p, there exists F3* € Oy (T)—s x D(0, p)) such that (K.571) holds.
+

Proof. — We prove item (1), the proof of item (2) is done in a similar (and even
simpler) way. From € < § and f#(0) = 0 we get that if z, w satisfy |z|, |lw| < ¢ °(p —
38)1%,r = —izw € AL, 45(0 —38) thenZ, @ defined as (Z, W) = ficc (2, w) satisfy [ —z| <

eMEZ] W —w| <e Wslwl and thus [Z] < €|z] < &p'/? and |w| < ¢flw| < &p'/?; on
the other hand if 7= —zw one has
AL

(K.572) [F— 7| < 3g|r], | arg(r) — arg(r)| < 3¢, < (5/2)e.

Since € < §,

Jrce o Yy (Ty_3s5 X Aa+33(0, p —38)) C Y+(T, x A;t(O, 0))

hence /" := ;' o fpcc o Yy : T)_35 X Aa+35(0 p—38) — T, x Ai(O p) 1s well defined.
On the other hand if ¥'(z, w) = (0,7), [0, ) = 0,7, wi(Q 7) = (Z, w) one has
from (K.572) and Lemma M.1

max(|f — Blyzz, [F— 7]) < 38
hence
AA . J—
“f - ld||T/,_35XA§+35(O,p—38) S 38

and from Remark 4.2, Lemmata 4.4, 4.5 and condition (K.570) there exists F}* €
O(T)4s X AL, 450, p — 48)) such that fpa =™ and

(K.573) fb;m = d)jIVF‘}* Ong(F‘}“)'

To get the second estimate in (K.571) we notice that

1
Jrce = ¢JVF(1(J 0 [0, xcc)
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hence
fF‘é:\"\ = wil o ¢lepcc 0 fo, ey 0 Yy
= Py, © Vi 0 fo,mec) © Y
= ¢JIV(FCCo¢i) 0 fo,rcc)
and from (K.573)

FI* =T o gy + 0,(F). O
Remark K.1. — If f©¢ = ®EC o frce we have (¢f Section 4.2).

Y1 of o =D o fian.

Appendix L: Lemmas for Hamilton-Jacobi Normal Forms

L.1 Proof of Lemma 8.3. — Since 835(7) =1 (¢f (8.218)), (8.222) and (8.220) show
that there exists ¢ : T3 — G, ¢y € O, (T 3) such that

(L.574) VO eT,s 8,110,60)=0,  lalr,,S @) '¢E
We now make a Taylor expansion: using (L..574) we see that
(L.575) 16, ) =T10, 6 () + (r — ¢,(0))

= T1(0, (0)) + (1/2)37T1(0, &(6)) (r — 0(6))

[ele) 1 "
+ (r— e(6))° Z yafn(e, e(0))(r — ey (6))
k=3 "

and if we define
(L.576) w () = (1/2)85ﬁ(9, ¢ (0)), e (0) = —ﬁ(@, ¢ (0)) /@ (0)

one gets for some p(6, )

@, n=w@®) (—61 (6) + (r — e(8)) + (r — ey(6))°p(6, r))

=TI(0, 7 — «(0))
with ﬁ S O(T(]}l/g X D(O, B_Q/qQﬁ/Q - CQE _IE)) C O(T{]}l/g X D(O, ,Oq))

T1(0,r) =@ (0) (F — e (8) +7°p(0, r+ 30(9))>;

this gives the desired form for T1(0, r) if one sets f(B,7r) = p(0, r+ ¢(0)).
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The estimates (8.228) on ¢, ¢;, @ are then clear from (L..574), (L.576). Let us check
the one on /. From (8.223) and (8.227) we have

@ (0)(* — e (0) + 1210, 1)

2
= wr+ Zﬁ(@)(f + ¢0(0)) + 7 (b(r) +j~r(9, r+ey(6)))

=0

hence from (8.225) and the first two inequalities of (8.228)

r’ (f(9, n—@ @) (b(f) —f 0,7+ 60(9))>) S P F

and by the maximum principle

sup ‘/(9,7) - W(Q)_l<b(7) —J~r(9,7+eo(9)))>‘
)

(9’7)5th/3 XD(OJ)(]
SP P EK L

We the conclude by (8.218) and (8.225). OJ

L.2 Square roots.

Lﬁnma L.1.— Leta € C*. There exists a unique function m,(z) = z(1+a/z*)"/* univalent
on G~ D(0, |a|'"?) such that

(L.577) m()=2+a  m()=z+0").
It satisfies for z, 7 € By, := {w € C, lw| > L|a|'/?} (L. > 3)

ma(z) - ma('z/)

(L.578) 2/m)e VY < : < (m/2)e"
— X

Proof. — The existence and uniqueness of m,(z) = z(1 + (a/z%))"/? is clear.

Note that the inverse for the composition of m, is m_, and that if L. > 2 m,(E) C
Esi/4. On the other hand the derivative of m,(z) is equal to 9.m,(z) = (1 +a/ Z2)~Y2 and
since for ¢ € [0,1/2], (1 — )72 <1 + ¢ one gets for z € Er, (L. > 2) |0.m(2)| < /1
Now any two points z, 7 € Ej, can be joined by a path in E;, the length of which is
< (w/2)|z — Z|; thus for any z, 7 € Ey, |m,(z) — m,(Z)| < (7[/2)6”L2|z — Z/| which is
the right hand side inequality of (L.578). To get the left hand side we use the fact that
(1)) = m_o(m ()] < (1) 2 |y (2) = m ()| L >3 (3L/4>2). O
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L.3 Proof of Lemma 8.5. — From Lemma L.l z +— (22 + @)'? is well defined on
C~{lzl > |a]'?}.
Let 0 < 5 < /3. We are looking for g(8, z) = @ (0)"'/?z(1 + (0, z)) such that

&= w(9)<zQW(9)_l(l +50,2)" — er(0)

+ 2w (0)P (1 + 0. 2)° (0, g0, z)))
which can be written as a Fixed Point problem

a(0)
22

1/2
(L.579) 800,2)= (1 + @ (0) — 2w (0)'2(1+ 20, 2)°1 0, g6, z))) - L

Using the estimate on f given by (8.228) one can see that the map W : g — R.H.S. of
(L.579) defines a 2p,-contracting map on the ball B(0, CL™?) of center 0 and radius
CL™? of the Banach space (O(T,, x A(A; 1, ), || - loc) provided L~! and P, are small
enough. By the Contraction Mapping Theorem it has a unique fixed point ¢ in this ball.
In other words

(L.580) (0, g(0,2) =2

The fact that g € O(T,, x A(A, 1, p,)) is uniquely defined shows that the various g found
for different values of s must agree. Hence g is defined on UOSJS] (Ty x A(A, 1, pp). O

L.4 Proof of Lemma 8.6. — We look for H under the form H(z) = y ~'z(1 + H(2)).
Equation (8.238) can be written as a Fixed Point problem:

C(y~'2(1+H®)))
(14+T(y~'z(1 + H(2))))
By Cauchy’s estimates for z € A(A, 1., p,)

1
aA()‘s,Lv /Oq))
Hence if z € A(2A, 1, (1/2)p,) the map u f‘(yflzu) is 4L.%-Lipschitz on {(3/4) <

lu| < 4/3} and the map W defined by the R.H.S. of (I.581) is 4L.7% contracting on the
ball {|[H||ax,1.1/2p) < 2L77}. It admits thus a unique fixed point in this ball. UJ

(L.581) H(z) = —

-2

al(2)] <
10l (2)| < dst(e,

Appendix M: Some other lemmas

Lemma M.1. — Let 7 € C
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1) One has
; I .
¢ — 1| = —min(l, min |z — 27 [|).
9 leZ
2)Ifz€R,

A 2
| — 1| > = min |z — 27{)).
T leZ

Proof — 1) Let  := ¢* — 1. We can assume || < 1/2. We can thus define iz :=
In(14+n) = ZkeN*(—l)k*In/‘//{ such that ¢ = 1 4+ n = ¢%. There thus exists / € Z such
that z) =z — 27 /. But | 2| = [In(1 +n)| < 2|n].

2) Just use the fact that for |w| <, |2sin(w/2)| > (2/7)|w]|. O

Lemma M2, — Let [ € C{(T) be such that for some 6 €]0, 1[, u > 0
(M.582) I/ llezery < éllf llcoery + we-
Then, for some C > 0,

C .
(M.583) Vlleom <87+~ T

Proof. — If

(M.584) f(6) = Z?(k)eﬁk@

kel

1s the Fourier expansion of f, one has for some C > 0 and any N € N*

_~ C
(M.585) I lleocr = D 01+ —e ™I 1
[k|<N
1/2 C —hN
(M.586) = @NA D e + e N
( C
(M.587) = BN Gl Nleremy + ) + eI e

If we choose N = 872/12 we have (3N)"/?§ < 1/2 and

C
(M.588) Vllerer <67t e /115
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Appendix N: Stable and unstable Manifolds

N.1 The Stable Manifold Theorem. — Let (E, || - ||) be a Banach space, M : E — E an
invertible linear continuous map. Let x, § > 0. We say that M is («, §)-hyperbolic if there
exist k > 0 and continuous projectors P, P, satistying iy, = P, + P,, PP, =P,P, =0,
P.MP, = P,MP, = 0 such that

max(||[P,MP,]|, [(P,MP,)~'[}) < ¢
max(|[P [, [P.]}) <87

The spaces E, := P,E, x = s, u, are then M-invariant and are the stable and unstable
spaces of the linear map M. We shall use the notations M, = P.MP,, *x =, w.
Let B(0, p) C E be the ball of center 0 and radius p > 0.

Theorem N.1 (Stable/ Unstable Manifold Theorem). — Assume that M s (k, 8)-hyperbolic
as above and let F : B(0, p) — E be C'. Assume that

(N.589) IFO)[| <C™'$kp,  IDFllcipo.p < C '8k,

Then, if C 1s large enough (but universal)

(1) The map x — Mx+F(x) has a unique hyperbolic fixed point % such that max(||Pyx||, ||P,x||) <
(p/4) (in particular, it is located in B(0, p/2)).

(2) The local stable (resp. unstable) manifold

W, G M+F):={peBi, p/4), V>0, M+F)"(y) € B(x, p/2)}
(resp. Wi (x; M+TF) :={ye B, p/4), Yn<0, M+F)"(») € B(x, p/2)}) of the point

loc
X for M+ F is of the form {x, + vy, r(x,), x, € E;NB(O, p/2)} (resp. {x, + vur(x.), x, €
E, N B(0, p/2)}) where v,y : B, — E, (resp. yur : Bu = E,) is a map of class C' and
Dy, rll < ClIDF||g,p) (86)~" (resp. 1Dy, pll < ClIDF|lp0,p) (86)7").
(3) If G satisfies also (N.589) then for x = s, u, |Dysr — Dyicll < CIID(F —G)|lp@.p)(8x) "

(4) IfF(0) = 0, DF(0) = 0 then ¥ = 0 and ToW?,(0) = E,, % = 5, u.

Notice that the Theorem gives the same size for the domains of definition of y,
YuF-

N.2 Proof of Lemma 15.4. — Using the definition of fz15(6,7) = (¢, R) one can
see that fu1,15(6, 7) = (0, 7) if and only if

(N.590) VHq(8,7) + Va(r) =0
or equivalently
0="7(0)0 + 3,6(0)r
0=8,6(0)0 4 (@ + 8%2(0))r + 8,4(0) + 3,5(r).
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Solving the first equation and inserting it into the second yields

(N.591) 0=— 8Lb(0) r
a(0)
Nsoz e O +050

7y _ @h0)2°
@ + 97a(0) =0
We observe that, ¢/ (15.422),

max(19%2(0)], [(33,(00)° /@O))) < ¢V, p; 2 e, < @ /10
0O S Popte ey 330) =00

and deduce by a simple fixed point theorem (in dimension 1) that (N.592) has a unique
real solution 7 < 9,a(0); returning to (N.591) and using (¢f (15.423), (15.422))

(N.593) W0) =gV ey 1050) S G oy ey,
we conclude that (N.590) has also a unique solution (6, ) € D(0, p, /([)2
qh

——12 -2 —gh 2 —1 -
6] S Vo 4 Ppre€p/qt ~, Il Sq Pye€p/4¢

and in particular since ,0/;3 =max((¢,,/H %, ¢'%) (¢f (15.405)), ¢*e~" = O(¢~'""), ¢/, <
¢y}, (¢f (15.406)), v, 2 gy, (¢f (15.409)), @5 > 10, one has

(N.594) (0. 10) € D(0, p3),) x D(O0, pJ,) NR>.

We now compute Dfiy, 4560, 70). Since @ depends only on the r-variable one has, ¢f.
(4.95) of Lemma 4.6,

fHQthTJ = CD5 OfHQ_
hence

|
Dt = (o 7" ) D

A simple computation shows that the derivative of the symplectic map fj, 1s equal to

) 14+06(0) 1+E)lb(0)

~ 2\ 9~
1+ ab(O) + (w+407a(0))a(0) @+, a(0)
(0
1+06(0) 1405(0)

DfHQ_ = (
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hence

o (Dfitgra) = 2 + @A0)(1 + O(¢*0;2,7,6™™) + O((8,5(0)))
328 (1) a(0)
1+ 35b0)

The estimate (N.594) on 7, the fact that 8@ (7)) = O(ry) and (N.593) show that

r(Dfug+a) =2+ w‘queﬁ/qg_qh(l + O(p;/q)).

Since Dfig+5(60, 70) € SL(2,R) we deduce that it is a (k, 8)-hyperbolic matrix

with
(N.595) =k =q(@vey,e ™" (1 +0y,,(1)
(we used that v, = v,(1 +0,/,(1)), ¢f (15.416)).
The statement on the eigendirections is then a simple computation. U
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