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ABSTRACT

It is well known that a real analytic symplectic diffeomorphism of the 2d-dimensional disk (d ≥ 1) admitting
the origin as a non-resonant elliptic fixed point can be formally conjugated to its Birkhoff Normal Form, a formal power
series defining a formal integrable symplectic diffeomorphism at the origin. We prove in this paper that this Birkhoff Normal
Form is in general divergent. This solves, in any dimension, the question of determining which of the two alternatives of
Pérez-Marco’s theorem (Ann. Math. (2) 157:557–574, 2003) is true and answers a question by H. Eliasson. Our result is
a consequence of the fact that when d = 1 the convergence of the formal object that is the BNF has strong dynamical
consequences on the Lebesgue measure of the set of invariant circles in arbitrarily small neighborhoods of the origin. Our
proof, as well as our results, extend to the case of real analytic diffeomorphisms of the annulus admitting a Diophantine
invariant torus.
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1. Introduction

We consider in this paper real analytic diffeomorphisms defined on an open set of the
2d-cartesian space Rd×Rd or respectively of the 2d-cylinder (or annulus) (R/2πZ)d×Rd

(d ≥ 1), which are symplectic with respect to the canonical symplectic forms
∑d

j=1 dxj ∧ dyj ,

(x, y) ∈ Rd × Rd , resp.
∑d

j=1 dθj ∧ drj , (θ, r) ∈ (R/2πZ)d × Rd , and leave invariant
{(0, 0)} ∈ Rd × Rd , resp. the torus T0 := (R/2πZ)d × {0} ⊂ (R/2πZ)d × Rd . We shall
assume that the invariant sets {(0, 0)} ∈Rd ×Rd , resp. (R/2πZ)d ×{0}, are elliptic equilib-

rium sets in the following sense: there exists ω = (ω1, . . .ωd) ∈Rd , the frequency vector, such
that

(1.1)

{
f : (Rd ×Rd, (0, 0)) ý, f =Df (0, 0) ◦ (id +O2(x, y))

spec(Df (0, 0))= {e±2π
√−1ωj , 1≤ j ≤ d}

and respectively

(1.2) f : ((R/2πZ)d ×Rd,T0) ý, f (θ, r)= (θ + 2πω, r)+ (O(r), O(r2)).

If ωi 	= ωj for i 	= j (stronger non-resonance condition will be made later), the deriva-
tive Df (0, 0) of f at the fixed point (0, 0) in (1.1) can be symplectically conjugated to
a symplectic rotation and we can thus assume Df (0, 0) is a symplectic rotation: for any
x= (x1, . . . , xd), y= (y1, . . . , yd), x̃= (̃x1, . . . , x̃d), ỹ= (̃y1, . . . ,̃ yd) one has (i =√−1)

Df (0, 0) · (x, y)= (̃x,̃ y) ⇐⇒
{

x̃j + ĩyj = e2π iωj (xj + iyj)

∀ 1≤ j ≤ d.

We shall refer to situation (1.1) as the Elliptic fixed point or the Cartesian Coordinates

((CC) for short) case and to situation (1.2) as the Action-Angle ((AA) for short) case.
Important examples of such diffeomorphisms are provided by flows (�t

H)t∈R, or by
suitable Poincaré sections on some energy level, of Hamiltonian systems

ẋ= ∂H
∂y

(x, y), ẏ=−∂H
∂x

(x, y), resp. θ̇ = ∂H
∂r

(θ, r), ṙ =−∂H
∂θ

(θ, r)

where H : (Rd ′ ×Rd ′, (0, 0))→ R resp. H : ((R/2πZ)d ′ ×Rd ′,T0)→ R (d ′ = d or d ′ =
d + 1) is real analytic and satisfies

(CC)-case H(x, y)= 2π

d ′∑

j=1

ωj

x2
j + y2

j

2
+O3(x, y),(1.3)

(AA)-case H(θ, r)= 2π

d ′∑

j=1

ωj rj +O(r2).(1.4)
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If we denote by �H the time-1 map of a Hamiltonian H and define the observable
rj : (x, y) �→ (1/2)(x2

j + y2
j ), resp. rj : r �→ rj (1≤ j ≤ d ) we can write (1.1), resp. (1.2), as

(CC)-case f : (Rd ×Rd, (0, 0)) ý, f =�2π〈ω,r〉 +O2(x, y)(1.5)

(AA)-case f : ((R/2πZ)d ×Rd,T0) ý, f =�2π〈ω,r〉 + (O(r), O(r2))(1.6)

where 〈ω, r〉 =∑d

j=1 ωj rj , r = (r1, . . . , rd).
The representations (1.5), resp. (1.6), give a very rough understanding of the be-

havior of the finite time dynamics of the diffeomorphism f in a neighborhood of the elliptic
equilibrium sets {(0, 0)}, resp. T0: it is interpolated1 by the dynamics of �2π〈ω,r〉 which is
quasi-periodic in the sense that all its orbits are quasi-periodic with frequencies ω1, . . . ,ωd .
Improving this approximation is an old and important problem (it was a central theme
of research of the astronomers of the XIXth century; see the references of the very in-
structive introduction by Pérez-Marco in [36]) that has a solution at least in the (CC)-case
(1.5) if the frequency vector ω is non-resonant: any relation k0 + k1ω1 + · · · + kdωd = 0 with
k0, k1, . . . , kd ∈ Z implies that k0 = k1 = · · · = kd = 0. Indeed, after using nice changes of
coordinates (symplectic transformations) one can interpolate, in small neighborhoods of the

origin, the dynamics of f by quasi-periodic ones with much better orders of approxima-
tion and for much longer times. There are two remarkable features of this interpolation:
the first, is that the frequencies of the interpolating quasi-periodic motions now depend
on the initial point and do not necessarily coincide with the frequencies at the origin; the
second, is that if we push the order of approximation, these frequencies stabilize in a way.
This is the content of the famous Birkhoff Normal Form Theorem, formalized by Birkhoff in
the 1920’s [5], [4], [49] and which paved the way to the major achievements of the KAM
theory (named after Kolmogorov, Arnold and Moser) in the 1960’s, on the existence of
(infinite time) quasi-periodic motions for a wide class of diffeomorphisms of the form
(1.1), (1.2); see [29], [1], [32] (and [34] for finite time approximations). We now describe
in more details the Birkhoff Normal Form Theorem.

1.1. Birkhoff Normal Forms. — From now on, we assume that ω is non-resonant.
We begin with the Elliptic fixed point case ((CC)-case). The first statement of the

Birkhoff Normal Form Theorem is the following. For any N ∈ N∗, there exist a poly-
nomial BN ∈ R[r1, . . . , rd], BN(r) = 2π〈ω, r〉 +O(r2), of total degree N and a symplec-
tic diffeomorphism ZN : (Rd × Rd, (0, 0)) ý (preserving the standard symplectic form∑d

k=1 dxk ∧ dyk and tangent to the identity ZN = id +O2(x, y)) such that

(1.7) ZN ◦ f ◦ Z−1
N (x, y)=�BN(x, y)+O2N+1(x, y).

1 For (x, y) ε-close to (0, 0) and n ∈N not too large n =O(ε−α), 0 < α < 1 the iterates f k(x, y), k ≤ n (f k denotes
the composition f ◦ · · · ◦f , k times) stay ε2−α -close to those of the symplectic rotation, �k

2π〈ω,r〉(x, y).
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The diffeomorphism �BN : (Rd ×Rd, 0) ý is a generalized symplectic rotation

(1.8) �BN(x, y)= (̃x,̃ y) ⇐⇒
{

x̃j + ĩyj = ei∂jBN(r)(xj + iyj)

∀ 1≤ j ≤ d

(recall r = ((1/2)(x2
1 + y2

1), . . . , (1/2)(x2
d + y2

d))) and defines an integrable dynamics in a
strong sense: every orbit of �BN is quasi-periodic and, in addition, the origin is Lyapunov

stable. Indeed, for each c= (c1, . . . , cd) ∈ (R∗
+)d , the d-dimensional torus

Tc := {(x, y) ∈R2d, ∀ 1≤ j ≤ d, rj := (1/2)(x2
j + y2

j )= cj}
is globally invariant by �BN and the restricted dynamics of �BN on the torus Tc � Td :=
Rd/(2πZ)d is conjugated to a translation Td � θ �→ θ + 2πω(c) ∈Td with frequency vector

ω(c)= (2π)−1∇BN(c). The dynamics of �BN is thus completely understood on the whole
phase space2 Rd ×Rd .

Here comes the second part of the statement. The polynomials BN and the com-
ponents of ZN − id converge as formal power series when N goes to infinity: BN → B∞ ∈
R[[r1, . . . , rd]], ZN → Z∞ ∈R[[x, y]] and, in the set of formal power series R[[x, y]], one
has the following formal conjugacy relation

(1.9) Z∞ ◦ f ◦ Z−1
∞ (x, y)=�B∞(x, y).

The formal power series B∞ is unique if Z∞ is tangent to the identity and is therefore
invariant by (smooth or formal) conjugations tangent to the identity; it is called the Birkhoff

Normal Form (BNF for short) of f and we shall denote it by BNF(f ):

BNF(f )= B∞(r1, . . . , rd) ∈R[[r1, . . . , rd]].
On the other hand the formal conjugacy Z∞, which is called the normalization transforma-

tion, is not unique (but if properly normalized is unique).
The preceding results hold in the Action-Angle case (1.6) but under a Diophantine

assumption on ω (this is stronger than mere non-resonance):

(1.10) ∀ k ∈ Zd
� {0}, min

l∈Z
|〈k,ω〉 − l| ≥ κ

|k|τ (τ ≥ d).

The positive numbers τ and κ are called respectively the exponent and the constant of the
Diophantine condition.3 One can then prove similarly the existence: (a) for any N ∈N∗,

2 When c has some zero components, Tc is a dc-dimensional torus, 0≤ dc ≤ d , and the restricted dynamics of �BN
on Tc is again conjugate to a translation on a torus.

3 The set of vectors of Rd satisfying a Diophantine condition with fixed exponent τ and fixed constant κ has
positive Lebesgue measure if τ > d and if κ > 0 is small enough; for each τ > d , the union of these sets on all κ > 0 has
full Lebesgue measure in Rd .
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of a polynomial BN ∈ R[r1, . . . , rd], BN(r) = 2π〈ω, r〉 + O(r2) and of a symplectic dif-
feomorphism ZN : ((R/2πZ)d × Rd,T0) ý (preserving the standard symplectic form∑d

k=1 dθk ∧ drk , ZN = id + (O(r), O(r2))) such that

ZN ◦ f ◦ Z−1
N (θ, r)=�BN(θ, r)+ (ON(r),ON+1(r))(1.11)

�BN(θ, r)= (θ +∇BN(r), r)(1.12)

(�BN is called an integrable twist); and: (b) of a formal power series B∞ ∈ R[[r1, . . . , rd]],
the Birkhoff Normal Form, and of a formal symplectic transformation Z∞ = id +
(O(r), O(r2)) in Cω(Td)[[r1, . . . , rd]] (the set of formal power series with coefficients in
the set of real analytic functions Td → T) such that one has in Cω(Td)[[r1, . . . , rd]] the
formal conjugation relation

(1.13) Z∞ ◦ f ◦ Z−1
∞ (θ, r)= (θ +∇B∞(r), r).

Again we denote BNF(f )= B∞(r1, . . . , rd) ∈R[[r1, . . . , rd]].
All the preceding discussion on Birkhoff Normal Forms holds if we only assume f

to be smooth.4 We can summarize this:

Theorem (Birkhoff). — Any smooth symplectic diffeomorphism f : (Rd × Rd, (0, 0)) ý

(d ≥ 1) (resp. f : ((R/2πZ)d × Rd,T0) ý) admitting the origin as a non-resonant elliptic fixed

point (resp. of the form (1.6) with ω Diophantine) is formally (strongly) integrable: it is conjugated in

R[[x, y]] (resp. C∞((R/2πZ)d)[[r]]) to the formal generalized symplectic rotation (resp. the formal

integrable twist) �BNF(f ). The formal series BNF(f ) is an invariant of formal conjugation.

We refer to [4] and [49] (Section 24) for a proof of the preceding theorem in the
case of symplectic diffeomorphisms of the disk admitting a non-resonant elliptic fixed
point and to [13] for the case of Hamiltonian systems admitting a Diophantine KAM
torus. We shall reformulate (in the real analytic case) this theorem in Section 6, cf. Propo-
sitions 6.1–6.2, and shall give a proof of it in Section E of the Appendix where we mainly
concentrate on the AA-case.

These formal (and approximate) Birkhoff Normal Forms can be defined in the
more classical setting of Hamiltonian flows ẋ = ∂H

∂y
(x, y), ẏ = − ∂H

∂x
(x, y) (or θ̇ =

∂H
∂r

(θ, r), ṙ = − ∂H
∂θ

(θ, r)): f and �B (B = BNF(f )) are then replaced by (�t
H)t∈R and

(�t
B)t∈R in (1.9), (1.13) (we shall then write B= BNF(H)5).

In the Hamiltonian case, there is a weaker notion of integrability, usually called
Poisson integrability, which corresponds to the situation where the considered Hamiltonian
has a complete system of functionally independent integrals (observables constant under
the motion) which commute for the Poisson bracket. Poincaré discovered [37] that, in

4 In the Ck category, one can define BN and ZN up to some order N depending on k but one cannot define in
general BNF(f ).

5 A more classic equivalent formulation is H= B ◦ Z.
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general, real analytic Hamiltonian flows do not admit other analytic first integrals than
the Hamiltonian itself and hence that in general no relation like (1.9) can hold with con-
verging Z∞ and B∞. Siegel proved [48] in 1954 (see also [47], [49], [52], [36]) that,
whatever the fixed non-resonant frequency vector at the origin ω is, the normalizing con-
jugation Z∞ cannot in general6 define a convergent series. Indeed, the existence of a
convergent normalizing transformation yields real analytic Poisson integrability7 a fact
(known to Birkhoff [5]) that is not compatible with the richness8 of a generic dynamics
near a non-resonant elliptic equilibrium. Note that the converse statement is true: real
analytic Poisson integrability implies the existence of a real analytic normalizing Birkhoff
transformation (cf. [25], [28], [56]).

As for the Birkhoff Normal Form itself, H. Eliasson formulated the following natu-
ral question [11], [10] (see also the references in [36]):

Question A (Eliasson). — Are there examples of real analytic symplectic diffeomorphisms or

Hamiltonians admitting divergent (i.e. with a null radius of convergence) Birkhoff Normal Form?

The preceding question has an easy positive answer in the smooth case (the map f

is only assumed to be smooth): indeed, one can choose f to be of the form f =�� where
� : (Rd, 0) → R is smooth with a divergent Taylor series at the origin; since equalities
(1.9) (1.13) only depend on the infinite jet J(f ) of f at 0, the special integrable form of
f implies BNF(f ) = J(f ) thus BNF(f ) is diverging. The situation is not so clear if f is
real analytic. In contrast with the aforementioned generic divergence of the normalizing
transformation, there seems9 to be a priori no obvious dynamical obstruction10 to the
divergence of the Birkhoff Normal Form.

The first breakthrough in connection with Eliasson’s question came from R. Pérez-
Marco [36] who proved, in the setting of Hamiltonian systems having a non-resonant
elliptic fixed point, the following dichotomy:

Theorem (Pérez-Marco [36]). — For any fixed non-resonant frequency vector ω ∈ Rd ′ ,

d ′ ≥ 2, one has the following dichotomy: either for all real analytic Hamiltonian H of the form (1.3)

BNF(H) converges (defines a converging analytic series) or there is a “prevalent” set of such H for which

BNF(H) diverges.

We refer to Section 1.4 for a precise definition of “prevalent”. A similar dichotomy
holds in the setting of real analytic symplectic diffeomorphisms in the (CC)-case, and,

6 Here it means Gδ -dense in some set of real analytic functions with fixed radius of convergence. This phenomenon
is even “prevalent” as shown by Pérez-Marco [36].

7 If Z∞ converges the observables rj ◦Z∞, j = 1, . . . , d ′ are a complete set of real analytic and functionally indepen-
dent Poisson commuting integrals.

8 By which we mean the coexistence of quasi-periodic motions and hyperbolic behavior in any neighborhood of
the equilibrium; see for a global view on these topics and references the book [2].

9 We shall in fact see in this paper that there are such dynamical obstructions.
10 Like the accumulation at the origin of hyperbolic periodic points or normally hyperbolic tori.
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both in the Hamiltonian or diffeomorphism framework, it can be extended to the (AA)-
case (but under the stronger assumption that ω is Diophantine); cf. Theorem 1.3 of our
paper.

Pérez-Marco’s argument is not based on an analysis of the dynamics of f but rather
focuses on the coefficients of the BNF and exploits their polynomial dependence on the
coefficients of the initial perturbation by using techniques from potential theory.11

The following two Theorems are an answer (in the symplectomorphism setting) to
Eliasson’s question and decide which of the two assertions of Pérez-Marco’s alternative
holds (see Theorem D of Section 1.4 for a more precise statement).

Main Theorem 1 ((CC)-Case). — For any d ≥ 1 and any non-resonant frequency vector

ω ∈ Rd , there exists a “prevalent” set of real analytic symplectic diffeomorphism f : (Rd × Rd,

(0, 0)) ý of the form (1.5) the Birkhoff Normal Forms of which are divergent.

In the Action-Angle Case (1.6) it takes the following form:

Main Theorem 1’ ((AA)-Case). — For any d ≥ 1 and any Diophantine frequency vector

ω ∈ Rd , there exists a “prevalent” set of real analytic symplectic diffeomorphism f : ((R/2πZ)d ×
Rd,T0) of the form (1.6) the Birkhoff Normal Forms of which are divergent.

Main Theorems 1, 1’ also extend to the Hamiltonian case (1.3)–(1.4) (with d ′ =
d + 1).12 Note that from Pérez-Marco’s Theorem (and its analogue in the symplectomor-
phism case), in order to prove that the divergence of the Birkhoff Normal Form holds in
a prevalent way, it is enough to provide, for each fixed frequency vector ω, one example
for which the BNF is divergent. On the other hand, if one is able to construct one such
example for some d0, then it is easy to construct other such examples for any d > d0 (see
for example the proof of Theorem D). Proving Main Theorem 1 (resp. 1’) thus amounts
to constructing when d = 1, for each irrational (resp. Diophantine) ω ∈R, one example
of a real analytic symplectic diffeomorphism with a diverging BNF.

Gong already provided in [17] (by a direct analysis of the coefficients of the BNF)
examples of real analytic Hamiltonians 〈ω, r〉+F : (R2×R2, 0)→R, F=O3(x, y), with
Liouvillian frequency ω ∈R2 at the origin and a divergent BNF and Yin [54] produced
analogue of Gong’s examples in the diffeomorphism case (area preserving map of (R2, 0)

with a very Liouvillian elliptic fixed point). In these examples the divergence of the BNF is
caused by the presence of very small denominators (due to the Liouvillian character of ω)
appearing in the coefficients of the BNF. After our result was announced, Fayad [15] con-
structed simple examples of real analytic Hamiltonian systems in (R8, 0) (d ′ = d + 1= 4

11 The idea of using potential theory in problems of small denominators was first introduced by Yu. Ilyashenko [23].
See [35] for further references.

12 It is not clear whether one can, for general systems, deduce the case of Hamiltonian flows from the case of
diffeomorphisms and vice versa. On the other hand the proofs of Main Theorems 1, 1’ and in particular the proofs of Main
Theorem 2 and of Theorems A–B, A’–B’ below extend to Hamiltonian flows with 1+ 1 degrees of freedom.



8 RAPHAËL KRIKORIAN

degrees of freedom) with any fixed non-resonant frequency vector at the origin and diver-
gent BNF. The argument again is based on an analysis of the coefficients of the BNF; one
considers Hamiltonians with two degrees of freedom where two extra action variables
are added as formal parameters, one of them appearing later in the denominators of the
BNF. These types of examples can be constructed in the diffeomorphism case for d ≥ 3.
In a different context, that of reversible systems, let us mention a result of divergence of
normal forms in [19] based on a different method (control of coefficients growth) and a
result of divergence of normalizing transformations in [33].

We now formulate Eliasson’s question in a stronger form:

Question B. — Does the convergence of a formal conjugacy invariant like the Birkhoff Normal

Form of a real analytic symplectic diffeomorphism (or Hamiltonian) have consequences on the dynamics
of the diffeomorphism (or Hamiltonian)?

Note that the convergence of the normalizing transformation has an obvious con-
sequence, namely, integrability. As for Question B, there are various results pointing to
some kind of rigidity phenomena if analyticity (and some arithmetic properties on ω) is
assumed. To be more specific, let us mention a striking one: Bruno [7] and Rüssmann
[42] proved that if f is real analytic and if its BNF is trivial, BNF(f )= 2π〈ω, r〉 (in par-
ticular BNF(f ) converges), then f is real analytically conjugated to �2π〈ω,r〉, provided the
frequency vector at the origin ω satisfies a Diophantine condition. We refer to [53], [25],
[11], [9], [51], [18], [13], [12] for generalizations of the Bruno-Rüssmann Theorem and
related results.

The Main Result of our paper is in some sense one answer, amongst possibly oth-
ers, to the previous question at least when d = 1 and if f is assumed to satisfy some twist

condition.
Let us say that a diffeomorphism of the form (R2, 0) ý (1.1) or (R × T,T0) ý

is twist (or satisfies a twist condition) if the second order term of its BNF is not zero:13

(2π)−1BNF(f )(r)= ωr + b2r2 +O(r3), b2 	= 0.

Main Theorem 2. — If the Birkhoff Normal Form of a real analytic symplectic twist diffeomor-

phism (R2, 0) ý (1.1) or (R×T,T0) ý (1.2) converges then the measure of the complement of the

union of all invariant curves accumulating the origin is much smaller than what it is for a general such

diffeomorphism.

In other words, the convergence of a formal object like the BNF has consequences
on the dynamics of the diffeomorphism. Precise statements are given in Theorems A–B,
A’–B’) of Section 1.2 and Theorems E and E’ of Section 1.4. Combined with (the exten-
sion to the diffeomorphism case of) Pérez-Marco’s Theorem [36], this gives that in any
number of degrees of freedom, a general real analytic symplectic diffeomorphism admit-

13 An easily checkable condition.
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ting the origin as an non-resonant elliptic equilibrium has a divergent Birkhoff Normal
Form (see Theorem D).

Having in mind the aforementioned result by Bruno and Rüssmann, a natural
stronger question is whether the following rigidity result is true:

Question C. — Is it true that a real analytic symplectic diffeomorphism or Hamiltonian system

having a Diophantine elliptic equilibrium and a non degenerate and convergent BNF is (real analytically)

integrable (in some neighborhood of the origin)?

The examples by Farré and Fayad in [14] of real analytic Hamiltonians on
Td+1 ×Rd+1 with convergent BNF and with an unstable Diophantine elliptic torus show
that such a generalization is not true for d ≥ 2, at least in the (AA) case14 and if by non de-
generate we mean that BNF(f ) is not trivial. The question is still open for d < 2. Note that
though in Farré-Fayad’s examples the BNF (which is explicit) is not degenerate (the rank
of its quadratic part is not zero unlike in the Bruno-Rüssmann Theorem), its quadratic
part is not of maximal rank. If one drops in Question C the Diophantine assumption and
assumes the BNF to be trivial (like in Bruno-Rüssmann’s Theorem) the question is open
(this question is related to a question of Birkhoff on pseudo-rotations15 and to the problem
of constructing real analytic Anosov-Katok examples; cf. [16] for details and references).

When d = 1 the situation might be more favorable. To any twist area preserving
diffeomorphism f : (R2, 0) ý (1.1) or f : (R× T,T0) ý (1.2) one can associate (we use
the notations and terminology of [46]) its minimal action α : I → R (I is an open interval
containing ω) that assigns to each ϕ ∈ I the average action of any minimal orbit with ro-
tation number ϕ. The function α is strictly convex (in fact differentiable at any irrational)
and one can thus define its Legendre conjugate function α∗ : r �→ supϕ∈I(ϕr − α(ϕ)) 16

(see [30], [31], [46] for further details). The function r �→ α∗(r) (defined on a neighbor-
hood of 0) can be seen as a frequency map in the sense that if γ is an invariant circle for
f with “symplectic height” (area with respect to the origin) c then α∗(c) is the rotation
number of f restricted on γ . It has the following properties: the Taylor series of α∗ at 0
coincides with the Birkhoff Normal Form of f ; moreover, if α∗ (hence α) is differentiable
then f is C0-integrable (see [46]). This C0-integrability often yields rigidity (we refer to
[3], [27] for an illustration of this fact in the context of billiard maps). The techniques de-
veloped in our paper are probably enough to prove that if the function α∗ is real analytic
then f is in fact real analytically integrable. A more delicate issue is to establish real an-
alyticity of α∗ by only knowing that its Taylor series at 0 (the BNF) defines a converging
series. Note that if f is real analytic one can construct dynamically relevant holomor-
phic functions (frequency maps) defined on complex domains having positive Lebesgue
measure intersections (Cantor sets) with the real axis (see [8], [38]) and which coincide

14 It seems that the (CC) case is not yet settled.
15 Area preserving maps with no periodic points except the origin.
16 The functions α and α∗ (also denoted β and α) are called Mather’s functions.
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on these intersections with α∗. The restrictions of these holomorphic functions on these
Cantor sets have some quasi-analyticity properties but it seems that there are not strong
enough to deduce that α∗ behaves like a genuine quasi-analytic function (in particular
that the convergence of the Taylor series at 0 implies analyticity); we refer to [8] for
references and for more details.

We conclude this subsection by the following question.

Question D. — Is a given real analytic symplectic diffeomorphism accumulated17 by real analytic

symplectic diffeomorphisms having convergent BNF’s? (We do not ask the radii of convergence of the BNF’s

to be bounded below).

Positive answers to Questions C, D would imply that any real analytic symplectic
diffeomorphism admitting an elliptic equilibrium set is accumulated in the strong real
analytic topology by diffeomorphisms of the same type that are in addition integrable in
a neighborhood of the equilibrium set.

1.2. Invariant circles. — As suggest (1.7), (1.11) the BNF (more precisely its approx-
imate version BN) is, as we have already mentioned, a precious tool to study the problem
of the existence of quasi-periodic motions in the neighborhood of an elliptic equilibrium.
A bright illustration of this fact is certainly the KAM Theorem ([29], [1], [32]) that yields,
under suitable non-degeneracy conditions on the BNF (non-planarity), the existence of many
KAM tori18 accumulating the origin (see [13], [12] for results under much weaker non-
degeneracy assumptions).

We shall be mainly concerned with the 2-dimensional case (d = 1) and we restrict
to this case in this subsection. Recall our notation T = R/2πZ for the 1-dimensional
torus. An invariant circle (or also invariant curve) for a real analytic (or smooth) diffeomor-
phism f : (R × R, (0, 0)) ý of the form (1.5) is the image γ = g(T) of an injective
C1 map g : T → R2

� {0} with index ±1 at 0 such that f (γ ) = γ . Likewise, in the
(AA) case, an invariant circle or invariant curve) for a real analytic (or smooth) diffeomor-
phism f : (T×R,T0) ý of the form (1.6) is the image γ = g(T) of an injective C1 map
g :T→T×R which is homotopic to the circle T0 =T× {0} and such that f (γ )= γ .19

Note that in this latter case, by a theorem of Birkhoff (cf. [4], [21]), invariant circles close
enough to T0 are in fact graphs if f satisfies a twist condition:

(1.14) b2(f ) 	= 0 if (2π)−1BNF(f )= ωr + b2(f )r2 + · · · .

17 This means that if the given diffeomorphism f has a holomorphic extension to some complex domain W there
exists a slightly smaller subdomain W̃⊂W and a sequence of real-symmetric holomorphic diffeomorphisms fn defined on
W̃ such that limn→∞ supW̃ |f − fn| = 0.

18 A KAM torus is an invariant Lagrangian torus on which the dynamics is conjugated to a linear translation with a
Diophantine frequency vector.

19 These curves are also called essential curves.



ON THE DIVERGENCE OF BIRKHOFF NORMAL FORMS 11

In both cases, we denote by G f the set of f -invariant curves and, for t > 0, by Lf (t) the
set of points in MR :=R2 or T×R which belong to an invariant curve γ ∈ G f such that
γ ⊂MR ∩ {|r|< t}20

Lf (t)=
⋃

γ∈G f

γ⊂MR∩{|r|<t}

γ.

We then define (MR =R×R or T×R)

mf (t)= LebMR((MR ∩ {|r|< t})�Lf (2t)).

Notation 1.1. — We shall use the following notations: if a≥ 0 and b > 0 are two real numbers

we write a � b for: “there exists a constant C > 0 independent of a and b such that a ≤ Cb”. If we

want to insist on the fact that this constant C depends on a quantity β we write a �β b. We shall also

write a� b to say that a/b is small enough and a�β b to express the fact that this smallness condition

depends on β . The notations b � a, b �β a, b � a and b �β a are defined in the same way. When

one has a � b and b � a we write a� b.

The 2-dimensional version of the KAM Theorem is the celebrated Moser’s twist
Theorem [32] (see also [43]):

Theorem (Moser). — Let f be a symplectic smooth diffeomorphism like (1.5) or (1.6) satisfying

the twist condition (1.14). If f admits Birkhoff Normal Forms at the origin to all orders21 then, for any

constant a > 0,

(1.15) mf (t) � ta.

Let us comment on the previous result. In the (CC) case, it is in fact enough to as-
sume that ω in (1.5) is non-resonant since under this condition f admits Birkhoff Normal
Forms to all orders. On the other hand, in the (AA) case the existence of the BNF to all
orders, more precisely the existence of solutions to the related cohomological equations
(see Lemma E.7), requires ω in (1.6) to be Diophantine; in the real analytic case a weaker
arithmetic condition is enough,22 see [44], [45]. If in the (CC) case ω is non-resonant
only up to some low order, (1.15) holds only for some a > 0 (see [38]). If in the (AA) case
we drop the assumption that ω is Diophantine (but we assume ω to be non-resonant)
then, though no BNF is available, mf (t) in (1.15) goes to zero as t goes to zero but not
necessarily as a power of t: indeed, in the corresponding (AA) case of sufficiently smooth
Hamiltonian systems, Bounemoura proves in [6], in any number of degrees of freedom

20 In the (AA) case MR ∩ {|r| < t} = {(θ, r) ∈ T × R, |r| < t} and in the (CC) case MR ∩ {|r| < t} = {(x, y) ∈
R×R, (1/2)(x2 + y2) < t}.

21 This means one can define BN(f ) for any N≥ 2.
22 If we denote pn/qn the convergents of ω, it reads ln qn+1 = o(qn). In comparison, the classical Diophantine condition

amounts to ln qn+1 =O(ln qn).
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and under a Kolmogorov non-degeneracy condition, that the origin is KAM stable23 (see
[13] for a previous similar result in two degrees of freedom and in the real analytic case)
and provides measure estimates for the complement of the set of the invariant tori. Let
us add that the twist condition (1.14) in Moser’s Theorem can be considerably weak-
ened (see for example [13], [12]). When d = 1, symplecticity (area preservation) can be
replaced by the weaker intersection property.

When f is real analytic and ω (both in the (CC) and (AA) cases) is Diophantine one
can get, by pushing to its limit the “standard” KAM method, a better estimate: for any
0 < β � 1 and t �β 1 one has

(1.16) mf (t) � exp(−(1/t)
1

1+τ (ω)
−β)

where we have defined for any irrational ω

(1.17) τ(ω)= lim sup
k→∞

− ln minl∈Z |kω− l|
ln k

= lim sup
n→∞

ln qn+1

ln qn

≥ 1;

in the preceding formula (pn/qn)n≥0 is the sequence of convergents24 of ω. Note that if
τ(ω) <∞, then ω is Diophantine with exponent τ ′ for any τ ′ > τ(ω) (cf. (1.10)). In this
case, the inequality (1.16) is known to be true with the exponent 1/(1+ τ ′) on the right
hand side (see for example [26] and the references therein). If τ(ω)=∞ we say that ω is
Liouvillian.

1.3. Optimal and improved measure estimates. — The main results of our paper are
that: (A) one can improve the exponent in (1.16) if BNF(f ) converges; (B) in the “general
case” the exponent in (1.16) is almost optimal. More precisely

Theorem A. — Let f be a real analytic symplectic diffeomorphism f : (R×R, (0, 0)) ý like

(1.5) or f : (T×R,T0) ý like (1.6) satisfying the twist condition (1.14) and assume that in both

cases ω is Diophantine. Then, if BNF(f ) defines a converging series one has for any 0 < β � 1 and

0 < t �β 1

(1.18) mf (t) � exp
(

−
(

1
t

)(1/τ(ω))−β)

.

On the other hand general real analytic twist symplectic diffeomorphisms like (1.5),
(1.6) behave quite differently:

Theorem B. — Let ω ∈ R be Diophantine. There exist real analytic twist symplectic diffeo-

morphisms f : (R× R, (0, 0)) ý like (1.5) or f : (T× R,T0) ý like (1.6) satisfying the twist

23 I.e. accumulated by a positive measure set of invariant quasi-periodic tori.
24 As usual, if ω= 1/(a1 + 1/(a2 + 1/(· · · ))), ai ∈N∗, we define pn/qn = 1/(a1 + 1/(a2 + 1/(· · · + 1/an)).
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condition (1.14) and a sequence of positive numbers (tk) converging to zero such that for any 0 < β � 1,

0 < tk �β 1

(1.19) mf (tk) � exp
(

−
(

1
tk

)( 1
1+τ (ω)

)+β)

.

As we already mentioned in the previous subsection, when ω is very Liouvillian,
for example when lim infn(q

−1
n ln qn+1) > 0, it is not clear, in the (AA) case, how to define

BNF(f ). On the other hand, in the (CC) case, BNF(f ) is defined whenever ω is non-
resonant and as we will soon see in Theorem A’ below, the result of Theorem A extends to
this situation. One might still wonder whether a weaker Diophantine condition ln qn+1 =
o(qn) (or something slightly stronger) is enough to ensure the validity of Theorem A in
the (AA) case (remember that in this case, BNF(f ) is well defined). It seems possible that
adapting Propositions 5.3, 5.5 to this situation (using e.g. [44], [45]) provides estimates
that are still good enough to make the proof of Theorem A work.

Let us define for ω ∈R � Q

(1.20) tn(ω)= 5 min(|b2(f )|, |b2(f )|−1)

qn+1qn

.

Theorem A’. — Let ω be Liouvillian and f : (R×R, (0, 0)) ý be a real analytic symplectic

diffeomorphism of the form (1.5) satisfying the twist condition (1.14). Then, if BNF(f ) defines a

converging series, one has for every k ∈N large enough such that qk+1 ≥ q10
k

(1.21) mf (tk(ω)) � exp(−q
1/5
k+1).

Note that if ω is Liouvillian, one has for infinitely many k, qk+1 ≥ q10
k .

On the other hand:

Theorem B’. — For any ω ∈ R � Q, there exist real analytic symplectic diffeomorphisms

f : (R × R, (0, 0)) ý of the form (1.5) satisfying the twist condition (1.14) such that for every

β > 0 and infinitely many k ∈N

(1.22) mf (tk(ω)) � exp(−q
β

k+1).

Theorem A is a consequence of the following theorem:

Theorem C (Small holes). — Let ω be Diophantine and let f : (R×R, (0, 0)) ý of the form

(1.5) or f : (T×R,T0) ý of the form (1.6) be a real analytic symplectic diffeomorphisms satisfying

the twist condition (1.14). Then, for t > 0, there exists a finite collection qDt of pairwise disjoint disks
qD of the complex plane centered on the real axis such that, for any 0 < β � 1, 0 < t �β 1 one has:

(1) The number # qDt of disks in the collection qDt satisfies

(1.23) # qDt � (1/t)1−β
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and one has

∀ qD ∈ qDt |qD∩R|� exp(−(1/t)
1

1+τ (ω)
−β)(1.24)

mf (t) � exp(−(1/t)(1/τ(ω))−β)+
∑

qD∈ qDt

|qD∩R|.(1.25)

(2) If BNF(f ) converges, then for any t �β 1 one has for each qD ∈ qDt

(1.26) |qD∩R|� exp(−(1/t)(1/τ(ω))−β).

Estimate (1.24) explains why in general (without the assumption that BNF(f ) con-
verges) one only gets the estimate (1.16). We shall explain in Section 1.5.1 where these
disks qD come from.

There is a corresponding theorem in the Liouvillian (CC) case that implies The-
orem A’. We shall not state it but we mention that it is a consequence of Theorem 12.6
and Corollary 13.6.

Theorems A, A’, C are proved in Section 14 as consequences of Theorems 12.3,
12.6 and Corollaries 13.2, 13.6.

Theorems B and B’ are consequences of Theorems E and E’ which are stated in
the next Section 1.4. These Theorems are proved in Section 16 which uses results from
Section 15.

Because

1/τ > 1/(1+ τ),

Theorems A–B, A’–B’ clearly imply, in the (AA) and (CC) case, when d = 1, the existence

of a diffeomorphism f of the form (1.5)–(1.6) with divergent BNF. We explain in the next
Section 1.4, see Theorem D, that this implies Main Theorems 1–1’ in the elliptic fixed
point case and the action-angle case for any d ≥ 1 and in a prevalent way.

1.4. Prevalence of divergent BNF’s.

1.4.1. The Dichotomy Theorem. — Let us explain more precisely the dichotomy of
R. Pérez-Marco mentioned in Section 1.1

Definition 1.2. — A subset A of a real affine space E is (PM)-prevalent25 if there exists

F0 ∈A such that for any F ∈ E the set {t ∈R, tF0 + (1− t)F /∈A} has 0 Lebesgue measure.26

Pérez-Marco’s dichotomy for Hamiltonians having a non-resonant elliptic fixed
point can be reformulated the following way: let Eω be the affine space of real analytic

25 See [22] for the concept of prevalence.
26 We can replace zero Lebesgue measure by zero (logarithmic) capacity like in Pérez-Marco’s paper.
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Hamiltonians

H(x, y)= 2π

d ′∑

j=1

ωj(x
2
j + y2

j )/2+ F(x, y), F(x, y)=O3(x, y)

which are perturbations of a given non-resonant quadratic part

�ω(r)= 2π〈ω, r〉 = 2π

d ′∑

j=1

ωj(x
2
j + y2

j )/2

and let Aω be the set of those Hamiltonians which have a divergent BNF. Then, Pérez-
Marco’s dichotomy is: either for any H ∈ Eω, BNF(H) converges or Aω is (PM)-prevalent.

We now discuss the extension of Pérez-Marco’s dichotomy to the case of symplectic
diffeomorphisms in the (AA) and (CC)-cases.

Any real analytic symplectic diffeomorphism f : (Rd ×Rd, (0, 0)) ý of the form
(1.5) or f : (Td ×Rd,T0) ý of the form (1.6) can be parametrized in the following con-
venient form:

(1.27) f =�2π〈ω,r〉 ◦ fF,

where, F : (Rd ×Rd, (0, 0))→ R, F = O3(x, y) or F : (Td ×Rd,T0)→ R, F = O2(r) is
some real analytic function and where we denote fF : (x, y) �→ (̃x,̃ y) or (θ, r) �→ (θ̃ ,̃ r) the
exact-symplectic map (see Section 4.5) defined implicitly by

(1.28)

⎧
⎪⎨

⎪⎩

x̃= x+ ∂̃yF(x,̃ y), y= ỹ+ ∂xF(x,̃ y) (CC case)
or
θ̃ = θ + ∂̃rF(θ ,̃ r), r = r̃ + ∂θF(θ ,̃ r) (AA case).

For d ≥ 1, ω ∈Rd non-resonant, we define Sω(Rd×Rd) (resp. Sω(Td×Rd)) the set of real
analytic symplectic diffeomorphisms f : (Rd ×Rd, (0, 0)) ý (resp. f : (Td ×Rd,T0) ý)
of the form f =�2π〈ω,r〉 ◦ fF with F : (Rd ×Rd, (0, 0))→R, F=O3(x, y) (resp. F : (Td ×
Rd,T0)→ R, F = O2(r)) real analytic. We then say that a subset of Sω(Rd ×Rd) (resp.
Sω(Td ×Rd)) is (PM)-prevalent if it is of the form {�2π〈ω,r〉 ◦ fF, F ∈A} for some (PM)-
prevalent subset A of Cω(Rd ×Rd,R)∩O3(x, y) (resp. Cω(Td ×Rd,R)∩O2(r)).

Here is the version of Pérez-Marco’s Dichotomy Theorem [36] for real analytic
symplectic diffeomorphisms of the 2d-disk or the 2d-cylinder.

Theorem 1.3 (Dichotomy Theorem). — Let d ≥ 1 and ω ∈ Rd be a non-resonant frequency

vector. Then, either for any f ∈ Sω(Rd × Rd), the formal series BNF(f ) converges (i.e. the series it

defines has a positive radius of convergence), or there exists a (PM)-prevalent subset of Sω(Rd ×Rd)

such that for any f in this subset BNF(f ) diverges.

The same dichotomy holds in Sω(Td ×Rd) provided ω is Diophantine.
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As we mentioned earlier Pérez-Marco’s Dichotomy Theorem was proved in the
setting of real analytic Hamiltonians having an elliptic fixed point. Its extension to the dif-
feomorphism setting follows essentially Pérez-Marco’s arguments. We refer to Section 6.2
for further details in particular in the Action-Angle case (cf. Lemma 6.3).

1.4.2. Prevalence of the divergence of the BNF: Main Theorems 1, 1’. — As a Corollary
of Theorem 1.3 we now obtain, using Theorems A and B, Theorems A’ and B’, the
following precise formulation of Main Theorems 1, 1’:

Theorem D. — For any d ≥ 1 and any non-resonant ω ∈ Rd , the set of f ∈ Sω(Rd ×Rd)

with a divergent BNF is (PM)-prevalent. If ω is Diophantine the same result holds with Sω(Td ×Rd)

in place of Sω(Rd ×Rd).

Proof. — We give the proof in the case of real analytic symplectic diffeomorphisms
of the 2d-disk.

Let ω = (ω1, . . . ,ωd) ∈ Rd be non-resonant. According to Pérez-Marco’s di-
chotomy (Theorem 1.3) it is enough to provide one example of a real analytic symplectic
diffeomorphism of the 2d-disk with diverging BNF and frequency vector ω at the ori-
gin to get the conclusion. Since ω is non-resonant, there exists 1 ≤ j ≤ d such that ωj is
irrational. According to whether ωj is Diophantine or Liouvillian we use Theorems A
and B or Theorems A’ and B’ to produce a real analytic symplectic diffeomorphism
fj : (R2, 0) ý with frequency ωj at the origin and with a divergent BNF. We now define
f : (Rd ×Rd, (0, 0)) ý by f (x1, . . . , xd, y1, . . . , yd)= (̃x1, . . . x̃d ,̃ y1, . . . ,̃ yd),

{
for k 	= j, (̃xk +

√−1̃yk)= e2π
√−1ωk(xk +

√−1yk)

(̃xj ,̃ yj)= fj(xj, yj).

This diffeomorphism is real analytic, symplectic and

BNF(f )(r1, . . . , rd)= BNF(fj)(rj)+
∑

k∈{1,...,d}�j

2πωkrk

is diverging since BNF(fj) is. �

1.4.3. Prevalence of optimal estimates: Main Theorem 2. — We now present two theo-
rems (Theorems E and E’) stating that the measure estimates (1.19) of Theorem B and
(1.22) of Theorem B’ are prevalent. Together with Theorems A, A’ and the fact that
1/(τ + 1) < 1/τ , this gives a more precise meaning to our Main Theorem 2.

We shall treat the (AA) and (CC) cases separately.
Let X be the set ([−1, 1]2)N∗ = {(ζ1,k, ζ2,k) ∈ [−1, 1]2, k ∈N∗} endowed with the

product measure μ∞ = (Leb[−1,1]2)⊗N∗
.
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(AA) Case. Let f =�2πωr ◦ fO(r2) be a real analytic symplectic twist map of the annulus of
the form (1.6) and satisfying the twist condition (1.14).

For ζ ∈X and h > 0 we define Gζ ∈Cω(T×R) (h > 0 fixed)

Gζ (θ, r)= r a3
∑

k∈N∗
e−|k|h(ζ1,k cos(kθ)+ ζ2,k sin(kθ))

where a3 is some universal integer (appearing in Proposition G.1 of Appendix G).

Theorem E ((AA) case). — For any Diophantine ω and for any 0 < β � 1, there exists an

infinite set Nβ ⊂ N such that if tk = tk(ω) is the sequence defined by (1.20), then for μ∞-almost

ζ ∈X , the estimate (1.19) of Theorem B with f replaced by fζ is satisfied for infinitely many k ∈Nβ .

In particular, using Theorem A, the BNF of fζ := f ◦ fGζ
is divergent for μ∞-almost ζ ∈X .

(CC) Case. We formulate the corresponding result in the (CC) Case in a less general setting
than in the (AA) Case. We assume that

f =��((1/2)(x2+y2)) +O((x2 + y2)a3)

where

(2π)−1�(r)= ωr + b2r2 +O(r3), b2 	= 0.

We shall denote sign(b2)=±1 if ±b2 > 0.
For ζ ∈X , let G∗

ζ be the real analytic function

G∗
ζ (x, y)=

(
x2 + y2

2

)a3 ∞∑

k=1

ζ1,k

2
×

((
x+ iy√

2
e−iπ/4

)qk

+
(

x− iy√
2

eiπ/4

)qk
)

+ ζ2,k

2i
×

((
x+ iy√

2
e−iπ/4

)qk

−
(

x− iy√
2

eiπ/4

)qk
)

and

fζ = f ◦�G∗
ζ
.

Theorem E’ ((CC) Case). — For any non-resonant27 (resp. Diophantine) ω and any 0 < β �
1, there exist a non-empty set s(ω) ∈ {−1, 1} (resp. sβ(ω) ∈ {−1, 1}) and an infinite set N ′ ⊂ N
(resp. N ′

β ⊂N) such that the following holds. If sign(b2) ∈ s(ω) (resp. sign(b2) ∈ sβ(ω)), then, for

μ∞-almost ζ ∈X , the estimate (1.22) of Theorem B’ (resp. (1.19) of Theorem B) with f replaced by

fζ is satisfied for infinitely many k ∈N ′ (resp. k ∈N ′
β ). In particular, using Theorems A, A’, for any

non-resonant ω, the BNF of fζ := f ◦�G∗
ζ

is divergent for μ∞-almost ζ ∈X .

We refer to Section 16 for the proof of Theorems E and E’.

27 In the non-resonant case, the sets s(ω) and N ′ ⊂N do not depend on β .
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1.5. Some words on the proofs. — The starting point of the proofs of Theorems A,
A’, and C is a KAM scheme that we implement on a holomorphic extension of the real
analytic diffeomorphism f . This allows to work with holomorphic functions defined on
complex domains “with holes” (i.e. disks which are removed). If these domains are “nice”
we can use some quantitative form of the analytic continuation principle to propagate
informations in the neighborhood of the origin, like the convergence of the BNF, to the
neighborhoods of each hole. We illustrate this with the proof of Theorem C.

1.5.1. Sketch of the proof of Theorem C. — We describe it in the (AA) case. Let f :
(T×R,T0) ý, T0 = T× {0}, be a real analytic symplectic diffeomorphism of the form
(1.27) with b2(f ) 	= 0 and ω Diophantine. After performing some steps of the Birkhoff
Normal Form procedure mentioned in the introduction, we can assume that

(1.29) f =�� ◦ fF, (2π)−1�(r)= ωr + b2r2 + · · · , F=O(rm)

where m is large enough and where fF is the exact symplectic map (cf. (1.28)) associated
to some real symmetric28 holomorphic function F : Th × D(0, ρ) → C (h, ρ > 0); the
notations Th, D(0, ρ) are for Th := ((R+ i]− h, h[)/(2πZ)), D(0, ρ)= {r ∈C, |r|< ρ}.

Adapted KAM Normal Form. — Theorem C can be seen as an improved version of the
classic KAM Theorem on the positive Lebesgue measure of the set of points lying on
invariant curves (cf. Moser’s Theorem of Section 1.2). There are several ways to prove this
standard KAM Theorem. A direct approach (which goes back to Arnold in his proof of
Kolmogorov’s theorem) is to find a sequence of (real symmetric) holomorphic symplectic
diffeomorphisms gi close to the identity, defined on smaller and smaller complex domains
Thi

×Ui (hi−1 ≥ hi ≥ h/2, Ui ⊂Ui−1 ⊂D(0, ρ)) and such that g−1
i ◦ f ◦ gi gets closer and

closer to some integrable29 models ��i
:

(1.30) [Thi
×Ui] g−1

i ◦ f ◦ gi =��i
◦ fFi

, ‖Fi‖� 1

(in the preceding formula, the set written on the left is a domain where the conjugation
relation holds); see Figure 1. One then proves that gi and �i converge (in some sense)
on T× (U∞ ∩R) (U∞ :=⋂

i Ui ) to some limits g∞, �∞ and that U∞ ∩R (in general a
Cantor set) has positive Lebesgue measure. The searched for set of f -invariant curves is
then

⋃
c∈U∞∩R

g∞({r = c}) and one has for some fixed constant a > 0 and any ρ < ρ

(1.31) mf (ρ) � ‖F‖a.

We refer to Theorem 12.1 for more details. The domains Ui can be chosen to be
holed domains i.e. disks D(0, ρi) (ρi ≈ ρ) from which a finite number of small complex disks

28 This means that it takes real values when θ and r are real.
29 This means that �i depends only on the r variable.
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D(0, ρ)

R-axis

Ui

�

0

FIG. 1. — The holed domains Ui where the KAM-Normal Form UKAM
i is defined (the holes, caused by resonances, are the

grey disks)

centered on the real axis (the “holes” of Ui ) have been removed. Removing these small
disks is due to the necessity of avoiding resonances when one inductively construct gi,�i, Fi

from gi−1,�i−1, Fi−1. More precisely, Ui is essentially obtained from Ui−1 by removing
“resonant disks” i.e. disks where the “frequency map” (2π)−1∂�i−1 is close to a ratio-
nal number of the form l/k, (l, k) ∈ Z×N∗, max(|l|, k) � Ni−1 (Ni is an exponentially
increasing (in i) sequence which is defined at the beginning of the inductive procedure).
The sizes of the holes of Ui created by removing a finite number of disks from Ui−1 decay
very fast with i. We shall call a conjugation relation like (1.30) a(n) (approximate) KAM

Normal Form for f . Its construction is presented in Section 7.
A useful observation (cf. Section 10) is that, depending on ρ < ρ, one can choose

indices i−(ρ) < i+(ρ) such that all the holes D of the domain Ui+(ρ) that intersect D(0, ρ),
are disjoint and are created at some step i − 1 = iD ∈ [i−(ρ), i+(ρ)] (hence D ⊂ UiD );
moreover, i−(ρ) is large enough to ensure that the size of D is small. Writing (1.30) with
i = i+(ρ) we get (note the change of notations)

(1.32) [Th/2 ×UKAM
i+(ρ) ] g−1

i+(ρ) ◦ f ◦ gi+(ρ) =��KAM
i+(ρ)

◦ fFKAM
i+(ρ)

, ‖FKAM
i+(ρ)‖� 1.

This is what we call our adapted KAM Normal Form (adapted to D(0, ρ)); see Section 10.
With the choice we make for i+(ρ) we have

(1.33) ‖FKAM
i+(ρ)‖� exp(−(1/ρ)(1/τ)−),

where the last formula means: “for any β > 0, ‖FKAM
i+(ρ)‖�β exp(−(1/ρ)(1/τ)−β)”.

Hamilton-Jacobi Normal Forms. — Cf. Section 8. A hole D⊂UiD of the domain Ui+(ρ) that
is created at step iD corresponds as we have mentioned to a resonance (2π)−1∂�KAM

iD
≈

l/k, (l, k) ∈ Z×N∗, max(|l|, k) � NiD that appears when one constructs the KAM Nor-
mal Form (1.30) from step iD to step iD + 1. In this resonant situation we are able to
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D̂

qD
R

�
c

FIG. 2. — Hamilton-Jacobi Normal Form �
HJ
D close to a resonance (2π)−1∂�KAM

iD
(c) = l/k. The holomorphic function

�HJ is defined on the annulus D̂ �
qD

associate to D a Hamilton-Jacobi Normal Form, cf. Section 8, Proposition 8.1: there exists an
annulus D̂ � qD (D̂, qD are disks), D̂ ⊂ UiD, D̂ ⊃ qD, D̂ ⊃ D (D̂ is small but much bigger
than D) on which one has

[Th/9 × D̂ � qD] (g
HJ
D )−1 ◦��iD

◦ fFiD
◦ (g

HJ
D )=�

�
HJ
D
◦ fFHJ

D
,(1.34)

‖FHJ
D ‖� ‖FKAM

i+(ρ)‖.(1.35)

See Figure 2. This HJ Normal Form also satisfies the important Extension Property which in
some situation allows to bound above the size of qD (note that in general the sizes of qD and
D are comparable). It states that if the holomorphic function �

HJ
D , which is defined on

the annulus D̂� qD, coincides to some very good order of approximation with a bounded
holomorphic function defined on the disk D̂, then qD can be chosen to be small (see the
quantitative statement of Proposition 8.1).

Proof of the first part (1.25) of Theorem C. — Applying the aforementioned standard KAM
estimate (1.31) on the holed domain Ui+(ρ) to ��i+(ρ)

◦ fFKAM
i+(ρ)

(cf. (1.32)) and on each annulus

D̂ � qD to �
�

HJ
D
◦ fFHJ

D
, (cf. (1.34)) together with the estimate (1.35) we get that outside a

set of measure
∑

D∈Dρ
|qD ∩ R| the invariant curves of f cover a set the complement of

which in D(0, ρ) has a measure � ‖FKAM
i+(ρ)‖a for some a > 0; hence the inequality (1.25)

by (1.33). For more details see the proof of Theorem 12.3.

Birkhoff Normal Forms. — Cf. Section 6. To prove the second part of Theorem C, (1.26) we
need to introduce one further approximate Normal Form, namely the approximate Birkhoff

Normal Form (cf. Section 6) valid on Th/2 ×D(0, ρbτ ) (bτ = τ + 1), D(0, ρbτ )⊂UKAM
i+(ρ)

[Th/2 ×D(0, ρbτ )] (gBNF
ρ )−1 ◦ f ◦ (gBNF

ρ )=��BNF
ρ
◦ fFBNF

ρ
,(1.36)

‖FBNF
ρ ‖� ‖FKAM

i+(ρ)‖.(1.37)

See Figure 3.
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D(0, ρ)

D(0, ρbτ )

R-axis

UKAM
i+(ρ)

�

0

FIG. 3. — The approximate Birkhoff Normal Form �BNF
ρ is defined on D(0, ρbτ ). It coexists with the KAM Normal Form

�KAM
i+(ρ) defined on the holed domain Ui+(ρ)

D̂

D, qD

D(0, ρ)

D(0, ρbτ )

R-axis

UKAM
i+(ρ)

�

0

FIG. 4. — The three Normal Forms. The holomorphic function �BNF
ρ is defined on D(0, ρbτ ); associated to each hole D

the holomorphic function �
HJ
D is defined on the annulus D̂ �

qD. These Normal Form coincide with the KAM Normal
Form �KAM

i+(ρ) defined on the holed domain UKAM
i+(ρ)

Proof of the second part (1.26) of Theorem C. — Having the three Normal Forms (1.32),
(1.36), (1.34) in hand (see Figure 4) the proof of the second part of Theorem C relies on
the following three principles.
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– Comparison Principle cf. Section 9: since FKAM
i+(ρ) , FHJ

D FBNF
ρ are equally very small, all the

previous Normal Forms almost coincide on the intersections of their respective domains
of definition (this is done in Proposition 9.1); more precisely their frequency maps almost
coincide

(1.38) �BNF
ρ �

D(0,ρbτ )∩UKAM
i+(ρ)

�KAM
i+(ρ) �

UKAM
i+(ρ)

∩(D̂�qD)

�
HJ
D

where the symbol a�
V

b (a, b are functions and V is an open set) means here: for all z ∈V,

|a(z) − b(z)| � exp(−(1/ρ)(1/τ)−), ρ and τ being fixed. Moreover, if the formal BNF
converges and equals a holomorphic function � defined on, say, D(0, 1), one has also (cf.
Corollary 6.7)

� �
D(0,1)∩D(0,ρbτ )

�BNF
ρ

and in particular from (1.38) (we have D(0, ρbτ )⊂UKAM
i+(ρ) )

(1.39) � �
D(0,1)∩D(0,ρbτ )

�KAM
i+(ρ) .

– No-Screening Principle, cf. Section 3: Since � and �KAM
i+(ρ) almost coincide on D(0, ρbτ ) and

are holomorphic on the bigger domain D(0, 1)∩UKAM
i+(ρ) , one can be tempted to infer that

they also almost coincide on this latter domain. A difficulty could appear here: an exces-
sive number of holes of D(0, 1) ∩UKAM

i+(ρ) (in comparison to their sizes) could cause some
“screening effect” (like in Electrostatics) that prevents the propagation of the information
given by (1.39) to “most of ” the domain D(0, 1)∩UKAM

i+(ρ) ; see Section 3.2 for more details.
This is the reason why, instead of working on the whole domain D(0, 1) we work on the
smaller one D(0, ρ). In this situation, the choice we make for i+(ρ) (cf. (10.301)) is such
that the number of holes of D(0, 1) ∩UKAM

i+(ρ) is not too big in comparison to their sizes;
this is studied in Section 10, Proposition 10.4. This allows us to apply Proposition 3.1
and to extend the domain of validity of the approximate equality (1.39) to (a good part
of) D(0, 1)∩UKAM

i+(ρ) :

(1.40) � �
D(0,1)∩UKAM

i+(ρ)

�KAM
i+(ρ) .

– Residue or Extension Principle cf. Section 8.8: From (1.38), (1.40) one has

(1.41) � �
UKAM

i+(ρ)
∩(D̂�qD)

�
HJ
D

or, in other words, �
HJ
D , which is defined on the annulus D̂� qD, coincides with a very good

approximation with a holomorphic function defined on the whole disk D̂. The aforementioned
Extension Principle of Proposition 8.1, which essentially amounts to the computation of
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a residue (done in Paragraph 8.8.1), then tells us that the radius of qD is much smaller
than what we expected it to be: finally, |qD∩R|� exp(−(1/ρ)(1/τ)−). This is (1.26).

For more details we refer to Proposition 10.7 and Corollary 13.2.

1.5.2. On the proof of Theorem C in the elliptic fixed point case. — The proof in the non-
resonant elliptic fixed point case, f : (R2, 0) ý, follows the same strategy especially if
the frequency ω is Diophantine. A technical point is that to be able to implement the
No-Screening Principle of Section 3 we need to work with domains UKAM

i+(ρ) ⊃UBNF
ρ where

UBNF
ρ is a disk around 0 (the estimate on the analytic capacity of this disk is then favorable).

This is the reason why we cannot in this situation use Action-Angle variables since this
would force us to work on angular sector domains and not disks.30 Instead, we define
our approximate BNF and KAM Normal Forms directly in Cartesian Coordinates. The
formalism turns out to be the same as in the Action-Angle case (see Section 5), so we treat
these two cases simultaneously. The case where ω is Liouvillian is done in a similar (and
even simpler) way.

1.5.3. On the proofs of Theorems B, B’, E and E’. — The proofs are more classical and
based on the fact that, in the general case, resonances are associated to the existence of
hyperbolic periodic points in the neighborhood of which no (“horizontal”) invariant circle
can exist. To see this in a special situation (we describe it in the (AA)-case) let f =�� ◦ fF,
where R � r �→ (2π)−1�(r) = (p/q)r + br2/2 + · · · ∈ R with p ∈ Z, q ∈ N∗ mutually
prime and, say, b > 0 (for example b= 1); we also assume that T×R � (θ, r) �→ F(θ, r)=
O(r3) ∈R and is (2π/q)-periodic in θ . The origin is thus resonant since (2π)−1∂�(0)= p/q

is rational. One can approximate �� ◦ fF by

f per := (θ, r) �→ 2π(p/q, 0)+�1
H(θ, r)

where �1
H is the time-1 map of the Hamiltonian H(θ, r)= br2/2+ F(θ, r). Observe that

because we have assumed that F(θ, r) is 2π/q-periodic in θ , the same is true for �1
H,

hence the maps �1
H and (θ, r) �→ (θ, r)+ 2π(p/q, 0) commute; thus, understanding the

dynamics of f̃ essentially amounts to understanding that of �1
H. This latter dynamics is

easy to analyze since it is the time-1 map of a Hamiltonian vector field in dimension 2,
namely a pendulum on the cylinder T×R. Indeed, if F is “typical”, a change of coordinates
leads us to the case where ∂θF(0, 0)= 0 and ∂2

θ F(0, 0) < 0 hence H(θ, r)= cst+ br2/2−
(1/2)|∂2

θ F(0, 0)|θ 2 + h.o.t. Under this form it is clear that (0, 0) is a hyperbolic fixed
point for �1

H and since H is 2π/q-periodic, the same is true for the points (2πk/q, 0),
k = 0, . . . , q − 1. Since these points are permuted by (θ, r) �→ (θ, r) + 2π(p/q, 0), this
shows that (0, 0) is a hyperbolic q-periodic point for f̃ (this means a hyperbolic fixed
point for f̃ q). If |∂2

θ F(0, 0)| is not too small compared to the approximation ‖f − f per‖, the

30 To say it shortly, in Poisson-Jensen’s formula on subharmonic functions (see Section 3.1), the “weight” of a small
disk D(0, ρ)⊂D(0, 1) is 1/| ln ρ| while the “weight” of D(0, ρ)∩�⊂�, � being an angular sector at 0 is only ρa , a > 0.



24 RAPHAËL KRIKORIAN

point (0,0) will also be a q-periodic hyperbolic point for f . However, a horizontal invariant
circle cannot cross the stable or invariant manifolds of this periodic point; this establishes
the existence of a zone in which horizontal invariant circles cannot pass. To quantify the
size of this zone one just has to estimate the strength of the hyperbolicity of the periodic
point and the size of the corresponding local stable and unstable manifolds.

The more general case where we do not assume a priori that F(θ, r) is 2π/q-periodic
nor F(θ, r) = O(r3) can essentially be reduced to the preceding example, provided F is
small with respect to 1/q. This requires the use of a resonant normal form described
in Appendix G. For “generic” symplectic diffeomorphisms of the form (1.6) satisfying a
twist condition (1.14) one can establish the existence of hyperbolic zones associated to
any best rational approximation pn/qn of ω; these zones accumulate the origin. We refer
to Sections 15 and 16 for more details.

1.6. Organization of the paper. — Section 2 is essentially dedicated to fixing some
notations and introducing the notion of domains with holes that plays a central role in
the KAM approach (à la Arnold). We discuss Cauchy’s estimates and Whitney’s extension
Theorem in this framework. The not so standard notations used in the text are summa-
rized in Section 2.6.

In Section 3 we give a brief account of what is the screening effect and we provide a
no-screening criterion which will be useful for our purpose. It is based on Poisson-Jensen’s
formula on subharmonic functions applied in a domain with not too many holes (w.r.t.
their sizes).

In Section 4 our main purpose is to check that estimates on compositions of gener-
ating functions hold in the case of domains with holes. We treat in a unified way the CC
and AA cases. We also discuss invariant curves.

In Section 5 we study the (co)homological equations and state a proposition on the
basic KAM step (Proposition 5.5).

Birkhoff Normal Forms (approximate and formal) are presented in Section 6 and
Appendix E. We explain in Section 6.2 how Pérez-Marco’s dichotomy extends to the
diffeomorphism case.

Section 7 is dedicated to the KAM scheme which is central in our paper; we pay
particular attention to the location of the holes of the KAM-domains.

In Section 8 we present the Hamilton-Jacobi Normal Form associated to each
resonance appearing during the KAM scheme. Their construction is based on a Res-
onant Normal Form and an argument of approximation by vector fields the proofs of
which are left in the Appendix, Sections G and H. The most important property of these
Hamilton-Jacobi Normal Forms is the Extension Property that states that if the correspond-
ing frequency map defined on a annulus is very close to a holomorphic function defined
on a bigger disk containing the annulus, the domain of validity of this Normal Form is
essentially this disk.

The Matching or Comparison Principle is presented in Section 9. It quantifies the
fact that (exact) symplectic maps have essentially one frequency map.
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No screening
(Section 3)

Residue/Extension
Principle

(Section 8)

qD small
(Sections 8, 13)

HJ-NF on
D̂ � qD (Section 8)

HJ-NF≈�

on D̂ � qD
(Section 8)

Resonant NF
(Appendix G)

Resonances,
Holes D ∈D
(Section 8)

KAM
procedure
(Section 7)

Matching
Principle

(Section 9)

Positive
measure
estimates

(Section 12)

KAM NF on
Uρ =D(0, ρ)�

⋃
D∈D D

(Sections 7, 10))

Approx. BNF
on D(0, ρbτ )

(Section 6)

Formal BNF
converges

=� on D(0, 1).
(Assumption)

Improved
measure
estimates

(Conclusion)

≈

≈

≈

FIG. 5. — Plan of the proof of the improved measure estimate (1.26) of Theorem C

We construct in Section 10 and 11 our coexisting adapted KAM, BNF and HJ
Normal Forms in the respective cases ω Diophantine or Liouvillian, the latter being easier
to treat.

In Section 12 we first state a generalization of the classical KAM estimate on the
measure of the set of invariant curves that hold on domains with holes (Theorem 12.1)
and we apply it to our adapted KAM and HJ Normal forms to get measure estimates
on the set of invariant curves lying in the union of the domains of definitions of these
Normal Forms. This provides Theorems 12.3 and 12.6 which play an important role in
the proofs of Theorems C, A and A’.
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In Section 13 we use the Extension Principle of Section 8 to show that if the BNF
converges the measure estimates provided by Theorems 12.3 and 12.6 improve consid-
erably.

In Section 14 we conclude the proofs of Theorems C, A and A’.
The mechanism for the creation of zones of the phase space that do not intersect

the set of invariant circles is presented in Section 15 (Proposition 15.1). This allows us to
construct (prevalent) examples that satisfy Theorems B, B’, E and E’ in Section 16.

Finally, an Appendix completes the text by giving more details on the proofs of
some statements or by presenting more or less classical methods that had to be adapted
to our more specific situation.

2. Notations, preliminaries

Let T be the 1-dimensional torus T :=R/(2πZ)= {x+ 2πZ, x ∈R} and for 0≤
h≤∞

Th =T∪ {x+ iy+ (2πZ), x, y ∈R, |y|< h} (i2 =−1)

the complex cylinder of width 2h. If θ1 = (x1+ iy1)+ (2πZ), θ2 = x2+ iy2+ (2πZ) ∈T∞
we set |θ1 − θ2|T∞ :=minl∈Z |(x1 − x2 − 2π l)+ i(y1 − y2)|.

If ρ > 0 we denote by D(z, ρ)⊂C the open disk of center z and radius ρ and by
D(z, ρ) its closure;31 sometimes for short we shall write Dρ for D(0, ρ) (and by Dρ its
closure).

If z= x+ iy ∈C, (i =√−1) x, y ∈R, (resp. θ = x+ iy+ (2πZ) ∈ T∞), we denote
by z= x− iy (resp. θ = x− iy+ (2πZ)) its complex conjugate.

We define the involutions σ1, σ2 :C2 →C2 and σ3 :T∞ ×C→T∞ ×C by

(2.42) σ1(x, y)= (x, y), σ2(z,w)= (iw, iz), σ3(θ, r)= (θ, r).

For w = (w1,w2),w′ = (w′
1,w′

2) ∈C×C (resp. ∈T∞×C) we define the distance
d(w,w′)=max(|w1 −w′

1|, |w2 −w′
2|) (resp. d(w,w′)=max(|w1 −w′

1|T∞, |w2 −w′
2|)).

If W is an open subset of C×C or of T∞ ×C and if F :W→C we set

‖F‖W = sup
W
|F|

(with the convention that ‖F‖W = 0 if W is empty). If a function W � (w1,w2) �→
F(w1,w2) is differentiable enough (for the standard real differentiable structure on W)
we can as usual define its partial derivatives32 ∂ k1

w1
∂

l1
w1

∂ k2
w2

∂
l2
w2

F (k1, k2, l1, l2 ∈ N) and its

31 With this notation D(z, 0)= ∅.
32 Here we use the standard notation: if w = t + is, (t, s) ∈R2, ∂w = (1/2)(∂t − i∂s) and ∂w = ∂w = (1/2)(∂t + i∂s).
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(total) j-th derivative DjF= (∂ k1
w1

∂
l1
w1

∂ k2
w2

∂
l2
w2

F)k1+k2+l1+l2=j (j ∈N). We then define

‖DjF‖W = max
(k1,l1,k2,l2)∈N4

k1+l1+k2+l2=j

‖∂ k1
w1

∂
l1
w1

∂ k2
w2

∂
l2
w2

F‖W, ‖F‖Cn(W) =max
0≤j≤n

‖DjF‖W.

We denote by Cn(W) the set of functions F : W → C such that ‖F‖Cn(W) < ∞ and by
O(W) the set of holomorphic functions F :W→C (all the preceding partial derivatives
of the form ∂w = ∂w then vanish).

We say that an open set W of M := C2 or of M := T∞ × C is σi -symmetric (i =
1, 2, 3) if it is invariant by σi (σi(W) = W); if W is σi-symmetric we say that a function
F : W → C is σi-symmetric if F ◦ σi = F (the complex conjugate of F) and we denote
by Cn

σi
(W), resp. Oσi

(W), the set of Cn resp. holomorphic functions F :W→C that are
σi-symmetric. When no confusion is possible on the nature of the relevant σi involved, we
shall often say σ -symmetric or even real symmetric instead of σi-symmetric. If W is σ -
symmetric we use the notation WR = {w ∈W, σ (w)= w}; if WR 	= ∅ then F ∈Oσ (W)

defines by restriction a map (still denoted by F) F : WR → R. Note that a function F :
(R2, 0)→R which is real analytic is in Oσ1(D(0, ρ)×D(0, ρ)) for some ρ > 0.

Let W be a open set of M := C2 or T∞ × C. We denote by Diffn(W), resp.
DiffO(W), the set of Cn, resp. holomorphic, diffeomorphism f : W̃→ f (W̃)⊂M defined
on an open neighborhood W̃ of W containing the closure of W.

Note that there exists a constant C depending only on M such that for any C1-
diffeomorphisms f1, f2 :M→M satisfying ‖f1 − id‖C1 ≤ 1 one has

(2.43) ‖(f2 ◦ f1)− id‖C1 ≤C(‖f1 − id‖C1 + ‖f2 − id‖C1).

If now W is a σ -symmetric open set of (M, σ ) we denote by Diffn
σ (W) resp.

DiffOσ (W) the set of f ∈ Diffn(W), resp. f ∈ DiffO(W), such that f ◦ σ = σ ◦ f . It then
defines by restriction a Cn, resp. real analytic, diffeomorphism (that we still denote f )
f :WR → f (WR)⊂MR.

When f , g are two σ -symmetric holomorphic diffeomorphisms we write

(2.44) [W] f = g

(W possibly empty) to say that f , g ∈DiffOσ (W) coincide on an open neighborhood of W
containing the closure of W.

2.1. Domains Wh,U. — Let h≥ 0 and U an open connected set of C; we shall define
domains WAA

h,U of M=MAA = T∞ ×C (AA stands for “Action-Angle”) and WCC
h,U, WCC∗

h

of M=MCC =MCC∗ =C2 (CC for “Cartesian Coordinates”) the following way:
– Cartesian Coordinates (CC∗): if ρU := sup{|r|, r ∈U}, the set WCC∗

h,U ⊂C×C is

(2.45) WCC∗
h,U = {(x, y) ∈C2, |x± iy| ≤ √2ehρ

1/2
U ,

x2 + y2

2
∈U};
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h

R/(2πZ)

Th

U

×

FIG. 6. — The domain WAA
h,U =Th ×U

0

−izw ∈U

max(|z|, |w|)≤ ehρ
1/2
U

FIG. 7. — Schematic representation of the domain WCC
h,U (and WCC∗

h,U if one makes the change of coordinates z= 1√
2
(x+ iy),

w = i√
2
(x− iy))

– Cartesian Coordinates (CC): if ρU := sup{|r|, r ∈U}, the set WCC
h,U ⊂C×C is

(2.46) WCC
h,U = {(z,w) ∈D(0, ehρ

1/2
U )×D(0, ehρ

1/2
U ), −izw ∈U};

– Action Angle coordinates (AA): the set WAA
h,U of T∞ ×C is

(2.47) WAA
h,U =Th ×U.

In all these three cases we denote by r the observable (x, y) �→ (1/2)(x2 + y2), (z,w) �→
−izw, (θ, r) �→ r.

In Section 4.1 we shall see how one goes from (CC) (or (CC*)) to (AA) coordinates.

2.2. Cauchy estimates. — If δ > 0 we denote by Uδ(W) = {w ∈ W, B(w, δ) ⊂ W}
(here B(w, δ) is the ball {z ∈M, d(z,w) < δ}). Assume that F ∈O(W). By differentiating
(k1 + k2)- times Cauchy complex integration formula

F(w1,w2)= 1
(2π i)2

∫

|w1−ζ1|=δ

∫

|w2−ζ2|=δ

F(ζ1, ζ2)

(w1 − ζ1)(w2 − ζ2)
dζ1dζ2
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one sees that if Uδ(W) is not empty

(2.48) ‖∂ k1
w1

∂ k2
w2

F‖Uδ(W) ≤Ck1,k2δ
−(k1+k2)‖F‖W.

2.3. Holed domains.

2.3.1. Holed domain of C. — A holed domain of C is an open set of C of the form

(2.49) U=D(c, ρ)�
⋃

i∈I

D(ci, ρi),

for some c ∈ C, ρ > 0, ci ∈ C, ρi > 0 and where I is a finite set which is either empty
or such that for any i ∈ I, D(ci, ρi) ∩ D(c, ρ) 	= ∅. Note that the disks D(ci, ρi) are not
supposed to be included in D(0, ρ). It is not difficult to see that there exists a unique
minimal JU ⊂ I (for the inclusion) such that

⋃
i∈JU

D(ci, ρi)=⋃
i∈I D(ci, ρi) and that the

representation (2.49) with I replaced by JU is then unique:

(2.50) U=D(c, ρ)�
⋃

i∈JU

D(ci, ρi).

We then denote by

(2.51) D(U)= {D(ci, ρi), i ∈ JU}.
We shall call D(c, ρ) the external disk of U. We then set

(2.52)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρU := rad U := ρ, rad(U)=mini∈JU ρi

a(U)= (
∑

i∈JU
ρ2

i )1/2

card(U)= #JU

d(U)= rad(U) if JU = ∅, d(U)=min(rad(U), rad(U)) if JU 	= ∅.

If JU is empty or if all the disks D(ci, ρi), i ∈ JU, are pairwise disjoint and included in
D(c, ρ) we say that the holed domain U has disjoint holes and we call D(ci, ρi) the holes
of U (the bounded connected components of C � U). We denote by D(U) the set of all
these disks.

Note: We shall only consider in this paper holed domains (2.49) where the ci are on the
real axis.

2.3.2. Holed domains of C× C or T∞ × C. — These are by definition sets of the
form Wh,U where h > 0 and U is a holed domain; see (2.46) or (2.47). We then define

d(Wh,U)=min(h, d(U)).
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2.3.3. Deflation of a holed domain. — If δ ∈R we use the notation e−δD(c, ρ) for

e−δD(c, ρ)=D(c, e−δρ).

If U ⊂ C is a holed domain of the form (2.50) and if δ > 0 we denote by e−δU ⊂ U the
(possibly empty) open set

e−δU=D(c, e−δρ)�
⋃

i∈JU

D(ci, eδρi).

Similarly if 0 < δ < h

e−δWh,U =Wh−δ/2,e−δU.

We make the following simple observations (the first two items are proved by area
considerations):

Lemma 2.1. — For 1 > δ > 0 one has:

(1) For any z ∈D(c, ρ), dist(z, U)≤ 2 a(U).

(2) If ρ2 > 2e4δ
∑

i∈JU
ρ2

i then e−δU is not empty.

(3) If e−δU is not empty, then for any z ∈ e−δU one has

D(z, (1/2)δ d(U))⊂U.

2.3.4. Reformulation of Cauchy’s Inequalities. — Using item 3 of Lemma 2.1 we can in
particular reformulate inequalities (2.48) when W is of the form Wh,U and F ∈O(Wh,U):

(2.53) ‖DmF‖e−δWh,U ≤Cmδ−m d(Wh,U)−m‖F‖Wh,U .

One can sometimes obtain better estimates.
– In the (AA)-case, if 0 < δ < h, one has

(2.54) ‖∂ k
θ F‖e−δWh,U � δ−k‖F‖Wh,U

– In the (CC)-case, if U = D(0, ρ) and δ < 1/2 one has e−δWh,D(0,ρ) ⊂ Uδ̃(Wh,D(0,ρ))

with δ̃ = ρ1/2e−hδ/4 and thus

(2.55) ‖∇F‖e−δWh,U � ehδ−1ρ−1/2‖F‖Wh,U .

2.4. Whitney type extensions on domains with holes. — The discussion that follows will
be useful in the construction of the KAM Normal Form of Section 7.

Let U be a real symmetric holed domain

(2.56) U=D(0, ρ)�
⋃

i∈JU

D(ci, ρi), ci ∈R,
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h > 0, Wh,U one of the domains defined in Section 2.1 and F : Wh,U → C be a Ck33

σ -symmetric function i.e. F ◦ σ = F (the complex conjugate of F). We say that a Ck ,
σ -symmetric function34 FWh :Wh,C →C is a Whitney extension35 for (F, Wh,U) if

∀ m ∈Wh,U, FWh(m)= F(m).

Note that since U is open this implies that for all 0 ≤ j ≤ k, DjF and DjFWh coincide on
Wh,U.

We shall construct such Whitney’s extensions in two situations.

Lemma 2.2. — Let F ∈Oσ (Wh,U). For any δ ∈]0, 1[, there exists a Ck , σ -symmetric func-

tion FWh :Wh,C →C such that

∀ m ∈ e−δWh,U, FWh(m)= F(m)(2.57)

sup
0≤j≤k

‖DjFWh‖Wh,C ≤C(1+#JU)k(δ d(U))−2k max
0≤j≤k

‖DjF‖W
h,e−δ/10U

.(2.58)

Proof. — See Section B.1 of the Appendix. �

Notation 2.3. — We denote by Õσ (Wh,U) the set of C3, σ -symmetric maps F :Wh,C →C
such that the restriction of F on Wh,U is holomorphic.

Definition 2.4. — Let A ≥ 1, B ≥ 1, U ⊂ C a σ -symmetric holed domain. We say that a

σ -symmetric C3 function � :U→C satisfies an (A, B)-twist condition on U if

(2.59) ∀ r ∈U∩R, A−1 ≤ 1
2π

∂2�(r)≤ A, and ‖ 1
2π

D3�‖C ≤ B.

If U is a disk D(0, ρ0) one can construct for some 0 < ρ < ρ0 a C3, σ -symmetric
Whitney extension for � on D(0, ρ) that satisfies an (A, B)-twist condition on D(0, ρ).

Lemma 2.5. — Let � ∈Oσ (D(0, ρ0)) (ρ0 ≤ 2)

(2π)−1�(z)= ω0z+ b2z2 +O(z3), ‖�‖D(0,ρ0) ≤ 1, with b2 > 0.

There exists 0 < ρ < ρ0, B≥ 0 and a C3, real symmetric extension �Wh ∈ Õσ (C) of (�,D(0, ρ))

that satisfies an (A, B)-twist condition on C with A= 3 max(b2, b−1
2 ).

Proof. — See Appendix B.2. �

Notation 2.6. — We denote by T C(A, B) the set of C3, real symmetric maps � : C → C
satisfying an (A, B)-twist condition (2.59) with U=C.

33 Differentiability here is related to the real differentiable structure of Wh,C.
34 The exponent Wh stands for “Whitney”.
35 See [55], [50].
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Let U⊂C be a σ -symmetric connected holed domain as in (2.56).

Proposition 2.7. — If � ∈ Õσ (U)∩ T C(A, B) with

(2.60) 8×max(ρ, a(U))×A× B < 1

then the following holds. For any ν ∈]0, (6A2B)−1[ and any β ∈R, either for any z ∈U

(2.61) |ω(z)− β| ≥ ν (ω= (2π)−1∂�)

or there exists a unique cβ ∈] − ρ − 2Aν,ρ + 2Aν[ such that ω(cβ) = β and for any z ∈ U �

D(cβ, 3Aν) one has

|ω(z)− β|> ν.

Proof. — See Appendix B.3. �

2.5. Notation Op. — Let h > 0, U be a holed domain, functions F1, . . . , Fn ∈
O(Wh,U) and l ∈N∗. We define the relation

G=Ol(F1, . . . , Fn)

as follows: there exist a ∈ N∗, C > 0 and Q(X1, . . . , Xn) a homogeneous polynomial
(independent of U) of degree l in the variables (X1, . . . , Xn) such that for any 0 < δ < h/2
satisfying

(2.62) C d(Wh,U)−aδ−a max
1≤i≤n

‖Fi‖Wh,U ≤ 1

one has G ∈O(e−δWh,U) and

(2.63) ‖G‖e−δWh,U ≤ d(Wh,U)−aδ−aQ(‖F1‖Wh,U, . . . ,‖Fn‖Wh,U).

We shall use the notation Ȯl(F1, . . . , Fn) if the polynomial Q is null when X1 = 0
i.e. Q(0, X2, . . . , Xn)= 0; for example if l = n= 2, Q(X1, X2)=X1X2 +X2

1.
When we want to keep track of the exponent a appearing in (2.62), (2.63) we shall

use the symbol O(a)

l .
When δ satisfies (2.62) we write

(2.64) δ = d
a,C(F1, . . . , Fn;Wh,U)

and we use the short hand notation

(2.65) δ = d(F1, . . . , Fn;Wh,U)

to say that (2.64) holds for some positive constants a, C large enough and independent of
F1, . . . , Fn, d(Wh,U).
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Remark 2.1. — Note that if U=D(0, ρ0) is a disk containing 0 and F ∈O(W∗
h,U),

∗ =CC, AA, one has

F(z,w)=Op(z,w)⇐⇒∀ 0≤ ρ ≤ ρ0, ‖F‖Wh,D(0,ρ)
� ρp/2

F(θ, r)=Op(r)⇐⇒∀ 0≤ ρ ≤ ρ0, ‖F‖Wh,D(0,ρ)
� ρp

hence if F1, . . . , Fn ∈O(WCC
h,U) (resp. ∈ O(WAA

h,U)) satisfy Fi(z,w) = Op(z,w) (resp. Fi =
Op(r)), 1≤ i ≤ n, one has

Om(F1, . . . , Fn)=Omp−2a(z,w) (resp. Omp−a(r)).

2.6. Summary of the various notations used in the text.

– a � b, a �β b, a� b, a�β b, a� b etc. See Notation 1.1.
– a � exp(b−) means: for all β > 0, one has a �β exp(b− β).
– A(z;λ1, λ2)= {w ∈C, λ1 < |w− z|< λ2}.
– Th = {x+ iy+ (2πZ), x, y ∈R, |y|< h} (i2 =−1). T=R/(2πZ).
– ρU, d(U), a(U), JU,DU: see Section 2.3.1.
– WAA

h,U =Th ×U, WCC
h,U = {(z,w) ∈D(0, ehρ

1/2
U )×D(0, ehρ

1/2
U ), −izw ∈U}.

– e−δWh,U =Wh−δ/2,e−δU.
– Oσ (W): the set of σ -symmetric holomorphic function on W.
– Õσ (Wh,U): see Notation 2.3. S̃ympσ (Wh,U): see Notation 4.8.
– δ = da,C(F;Wh,U), δ = d(F;Wh,U), Ol(F, G), Oa

l (F, G): Section 2.5.
– T C(A, B), (A, B)-twist condition: see Notation 2.6 and Definition 2.4.
– G(f , W), L(f , W): see Notation 4.1.
– �F = φ1

J∇F. For the canonical map fF see (4.87) and (4.88).
– [�] ·Y= Y ◦�� −Y. See Section 4.7.
– Mn(F), TNF, RNF: see Section 5.1.
– A"B= (A∪ B)� (A∩ B).

3. A no-screening criterion on domains with holes

3.1. Harmonic measures. — Let U be a bounded open set of the complex plane with
boundary ∂U. We can define its Green function, gU :U×U→R as follows: for any z ∈U,
−g(z, ·) is the function equal to 0 on the boundary ∂U of U, which is subharmonic on U,
harmonic on U � {z} and which behaves like log |z − w| when w ∈ U goes to z (this
means that g(z,w)+ log |z−w| stays bounded when w goes to z). The Green function
gU is thus nonnegative. We denote by ωU : U × Bor(∂U) → [0, 1] the harmonic measure

of U (here Bor(∂U) is the set of borelian subsets of ∂U) defined as follows: if z ∈ U and
I ∈ Bor(∂U) (one can assume I is an arc for example if ∂U is a union of circles) then
the function ωU(·, I) is the unique harmonic function defined on U, having a continuous
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extension to U and such that ωU(z, I)= 1 if z ∈ I and 0 if z ∈ ∂U� I. Poisson-Jensen formula

(cf. [39]) asserts that for any subharmonic function u :U→C

u(z)=
∫

∂U
u(w)dωU(z,w)−

∫

U
gU(z,w)�u(w)

where �u is the usual Laplacian of u. In particular, if f is a holomorphic function on U,
the application of this formula to u(z)= ln |f (z)| gives

ln |f (z)| =
∫

∂U
ln |f (w)|dωU(z,w)−

∑

w:f (w)=0

gU(z,w)

and thus since gU is nonnegative

(3.66) ln |f (z)| ≤
∫

∂U
ln |f (w)|dωU(z,w).

Though we shall not use it in this paper we mention the fact that the harmonic
measure ωU(z, ·) can also be defined in a probabilistic way by using Brownian motions:
if Wz(t) is the value at time t of a Brownian motion issued from the point z (at time 0)
and Tz,I is the stopping time adapted to the filtration Fz of hitting I before ∂U � I, then
ωU(z, I)= E(1I(Wz(Tz,I))); hence

(3.67) ln |f (z)| ≤ E(ln |f (Wz(Tz,I))|).
This probabilistic interpretation is often useful in trying to get a hunch of the behavior of
the harmonic measures.

3.2. Screening effect. — Assume now that |f | ≤ 1 on U and that |f | � 1 on some
nonempty open subset B⊂U. Does this imply that f is small on “most” of U? Formula
(3.66) applied to the domain U � B in place of U yields for any z ∈U � B

(3.68) ln |f (z)| ≤ ωU�B(z, ∂B)× ln‖f ‖B

and answering the preceding question amounts to getting good estimates from below on
the nonnegative function ωU�B(z, ∂B).

For example take U=D(0, 1) and B=D(0, σ ) (∂(U�B) is then the union of the
two circles of center 0 and radii σ and 1). It is easy to see that for |z| ≤ 1/2

(3.69) ωU�B(z, ∂B)= ln |z|/ ln σ ≥ ln(1/2)/ ln σ

and the preceding formula (3.68) applied to the domain U � B shows that

(3.70) ln‖f ‖D(0,1/2) �
1

| ln σ | ln‖f ‖D(0,σ ).
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If we assume for instance

‖f ‖B ≤ e−Nα

, e−Nβ ≤ σ ≤ 1/10, 0 < β < α, N� 1

this yields

(3.71) ωU�D(0,σ )(z, ∂D(0, σ )) � N−β

(3.72) ln‖f ‖D(0,1/2) �−Nα−β �−1.

Our aim in the next Section 3.3 will be to generalize to more general domains U,
in particular to holed disks

(3.73) U=D(0, ρ)�

N⋃

j=1

D(cj, ρj)⊃D(0, σ )

(j = 1, . . . , N, D(cj, ρj)⊂D(0, ρ), ρj � σ ), the bound from below (3.69) and its immedi-
ate consequence inequality (3.70).

However, the spectral properties of the Laplacian (with Dirichlet boundary condi-
tions for example) on a domain U obtained from removing disks from a simply connected
domain � ∈R2 �C (say the unit disk), and, in particular, the possibility of having useful
estimates such as (3.71), (3.72), depend(s) on the number and the sizes of the holes of U.
This fact, well known in Electrostatics under the name of screening effect, was mathemat-
ically studied by Rauch and Taylor in [40] (see also [41]) where they highlight two dif-
ferent regimes: on the one hand, if the sizes of the holes of U are (very) small compared
with their number, the spectral properties of the Laplacian on U are very similar to that
of �; on the other hand, if the holes are not so small and become dense (in some sense)
in a region � ⊂ � (which can be of codimension 1 in �) the spectral properties of the
Laplacian are similar to those of ���. In this latter case, the holes may act like a screen
that prevents the propagation of the information “ln f �−1 on D(0, σ )” to the rest of
the holed domain U. In Appendix C we illustrate this phenomenon on an example.

We now give conditions under which this screening phenomenon is not effective.

3.3. The no-screening criterion.

Proposition 3.1. — Let U be a domain U=D(0, ρ) � (
⋃

1≤j≤N D(zj, εj)), D(zj, εj)⊂
D(0, ρ) (ρ ∈]0, 1[) and let B⊂U, B=D(0, σ ). Assume that f ∈O(U) satisfies

‖f ‖U ≤ 1

and

‖f ‖∂B ≤ m.
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Then for any point z ∈ Û :=D(0, ρ)� (
⋃

1≤j≤N D(zj, dj)), 2εj < dj < 1

(3.74) ln |f (z)| ≤
(

ln(|z|/ρ)

ln(σ/ρ)
−

N∑

j=1

ln(dj/2ρ)

ln(εj/ρ)

)

ln m.

Proof. — Replacing z/ρ by z, zj/ρ by zj , σ/ρ by σ , εj/ρ by εj and dj/ρ by dj , we
can reduce to the case ρ = 1. We then denote D=D(0, 1), Dj =D(zj, εj), B=D(0, σ ).

By Poisson-Jensen formula

ln |f (z)| ≤
∫

∂(U�B)

ln |f (w)|dωU�B(z,w)(3.75)

≤ ωU�B(z, ∂B) ln m.

We now compare ωU�B(z, ∂B) with ωD�B(z, ∂B). We observe that the function z �→
ωU�B(z, ∂B) is the unique harmonic function defined on U � B which is 1 on ∂B and 0
on ∂D∪ ∂(D�U); since ∂(U�B)= ∂B∪ ∂D∪ ∂(D�U) we deduce by the Maximum
Principle that it takes its values in [0, 1]. Similarly, the function z �→ ωD�B(z, ∂B) is the
unique harmonic function defined on D � B which is 1 on ∂B and 0 on ∂D, hence it
takes also its values in [0, 1]. So

(3.76) v(·) := ωU�B(·, ∂B)−ωD�B(·, ∂B)

is a harmonic function defined on U � B, −1≤ v ≤ 1, which is 0 on ∂B∪ ∂D.
For 1≤ j ≤N, let vj be the harmonic function defined on D � (B∪Dj) which is 0

on ∂(D � B)= ∂D∪ ∂B and −1 on ∂Dj ; by the Maximum Principle −1≤ vj ≤ 0.

Lemma 3.2. — The function
∑N

j=1 vj is harmonic on U � B and on this set

N∑

j=1

vj ≤ v.

Proof. — We notice that the function
∑N

j=1 vj is defined and harmonic on D� (B∪
⋃N

j=1 Dj) = U � B. We want to compare v and
∑N

j=1 vj on the boundary ∂(U � B) =
∂D ∪ ∂B ∪ ∂(D � U). On ∂D ∪ ∂B the two functions v and

∑N
j=1 vj are equal (they are

both equal to 0). To compare them on ∂(D � U) we notice that ∂(D � U) ⊂⋃N
j=1 ∂Dj

and since vj | ∂Dj
=−1 and for i 	= j, vi ≤ 0 we have at each point z ∈ ∂(D � U) which is

in ∂Dj ,
∑N

i=1 vi(z)≤−1 hence
∑N

i=1 vi | ∂(D�U) ≤−1. But we have seen that −1≤ v ≤ 1
on U � B. We have thus proven that on ∂(U � B) one has

∑N
j=1 vj ≤ v and we conclude

the proof by the Maximum Principle. �
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Because of the Maximum Principle, one has on D � (B∪Dj)

− ln |z− zj| − ln 2
ln εj

≤ vj(z).

Using Lemma 3.2 we hence get for z ∈ Û,

v(z)≥
N∑

j=1

vj(z)≥−
N∑

j=1

ln |z− zj| − ln 2
ln εj

≥−
N∑

j=1

ln(dj/2)

ln εj

.

On the other hand

ωD�B(z, B)= ln |z|
ln σ

,

so that from (3.76) one has for z ∈ Û

ωU�B(z, B)≥ ln |z|
ln σ

−
N∑

j=1

ln(dj/2)

ln εj

.

Finally since ln m≤ 0, (3.75) gives that for any z ∈ Û

ln |f (z)| ≤
(

ln |z|
ln σ

−
N∑

j=1

ln(dj/2)

ln εj

)

ln m. �

In particular, if for example

N∑

j=1

ln(dj/2)

ln εj

≤ (1/2)
ln |z|
ln σ

then ln |f (z)| ≤ (1/2) ln |z|
ln σ

ln m, an inequality which is quite similar to (3.70).

3.4. Good triples.

Definition 3.3. — Let U, U1, U2 be three nonempty open sets of C such that,

U1 ⊂U, U2 ⊂U.

We say that the triple (U, U1, U2) is A-good (A > 0) if for any f ∈O(U) such that supU |f | ≤ 1,

one has

ln‖f ‖U1 ≤ A ln‖f ‖U2 .



38 RAPHAËL KRIKORIAN

U2 U1

U

FIG. 8. — A triple (U, U1, U2)

Remark 3.1. — Notice that if there exists an open set U′ ⊂ U, U1 ⊂ U′, U2 ⊂U′

such that (U′, U1, U2) is A-good, then (U, U1, U2) is also A-good.

Remark 3.2. — In general the fact (U, U1, U2) is A-good does not imply that
(U, U2, U1) is A′-good with A and A′ comparable. For example, if U = D(0, 1), U1 =
D(1/4, σ1) U2 = D(3/4, σ2) with σ1, σ2 < 1/10, (U, U1, U2) is C/| ln σ2|-good while
(U, U2, U1) is C/| ln σ1|-good.

We denote by A(z;λ1, λ2), 0 < λ1 < λ2, the annulus D(z, λ2)� D(z, λ1).
Here is an immediate corollary of Proposition 3.1:

Corollary 3.4. — Assume that the assumptions of Proposition 3.1 hold with σ = ρb/2
(b > 1). Then for all 1 ≤ i ≤ N such that di > 20εi and D(zi, di) ⊂ D(0, e−δρ) (δ > 0), the

triple

(

U,A(zi; (di/10), di),D(0, ρb/2)

)

is A-good with

A= δ

b| ln ρ| −
N∑

j=1

ln(dj/20ρ)

ln(εj/ρ)
.

4. Symplectic diffeomorphisms on holed domains

4.1. Cartesian Coordinates (CC) and Action-Angle variables (AA). — We define on
R2 := {(x, y), x, y ∈ R} (resp. T × R := {(θ, r), θ ∈ T, r ∈ R}) the canonical sym-
plectic structure (area) βCC∗

R := dx ∧ dy (resp. βAA
R := dθ ∧ dr). This space as well as

its symplectic structure can be complexified: the space C2 := {(x, y), x, y ∈ C} (resp.
T∞×C := {(θ, r), θ ∈T∞, r ∈C}) carries the symplectic structure βCC∗

C := dx∧dy (resp.
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βAA
C := dθ ∧ dr) and the involution σ1 (resp. σ3) defined in (2.42) preserves (C2, βCC∗

C )

(resp. (T∞ ×C, βAA
C )) and fixes (R2, βCC∗

R ) (resp. (T×R, βAA
R )).

When working in the elliptic fixed point case, it will be more convenient to use
other Cartesian coordinates. Let’s introduce the (holomorphic) complex change of coor-
dinates ϕ :C2 →C2, ϕ : (x, y) �→ (z,w),

(4.77)

{
z= 1√

2
(x+ iy)

w = i√
2
(x− iy)

⇐⇒
{

x= 1√
2
(z− iw)

y= −i√
2
(z+ iw).

We see that (σ2 is as in (2.42)) with the notations of Section 2.1

dx ∧ dy= ϕ∗(dz∧ dw), ϕ ◦ σ1 ◦ ϕ−1 = σ2, ϕ(WCC∗
h,U )=WCC

h,U.

We shall denote (MCC, βCC, σ2), resp. (MCC∗, βCC∗, σ1), (CC stands for Carte-
sian Coordinates) the space C2 endowed with the symplectic structure βCC := dz ∧ dw,
resp. βCC∗ = dx ∧ dy, and the involution σ2, resp. σ1. Similarly, (MAA, βAA, σ3) (AA for
Action-Angle coordinates) is the space T∞ × C endowed with the symplectic structure
βAA := dθ∧dr and the involution σ3. We shall use for short the generic notation (M, β, σ )

to denote either of the preceding sets endowed with their symplectic structure and invo-
lution. We also use the notation MR or (M)R for M ∩ σ(M). The 2-form β restricted
to MR is still a symplectic form. We shall call the origin O in MR, the set O = {(0, 0)} if
M=C2 =MCC or MCC∗ and O=T× {0} if M=MAA =T∞ ×C.

If W is a nonempty open set of M (resp. MR) we say that f ∈ DiffO(W) (resp.
f ∈ DiffC1

(W)) is symplectic if it preserves the canonical symplectic form β : f ∗β = β .
We denote by SympO(W) (resp. SympC1

(W)) the set of such symplectic holomorphic
(resp. C1) diffeomorphisms. If furthermore f ◦ σ = σ ◦ f we write f ∈ SympO

σ (W).
We shall say that a symplectic diffeomorphism f is exact symplectic if there exists a 1-
form λ, the Liouville form, such that dλ = β and f ∗λ− λ is exact: there exists a function
S such that f ∗λ− λ= dS; S is called the generating function of f (w.r.t. λ). We then denote
f ∈ SympO

ex.,σ (W) (resp. f ∈ SympC1

ex. (W)). In our case the relevant Liouville forms will be

(4.78) (AA) λ= rdθ, (CC) λ= (1/2)(wdz− zdw), (CC*) λ= (1/2)(xdy− ydx).

Let W⊂M be σ -symmetric (σ(W)=W) and such that (W)R :=W∩ σ(W)=W∩MR

is a nonempty open set of MR. Then, if f ∈ SympO
ex.,σ (W), its restriction f |(W)R : MR ⊃

(W)R → f ((W)R) ⊂ MR defines a real analytic (exact) symplectic diffeomorphism. If
S ⊂ W is f -invariant (f (S) = S) the set (S)R := S ∩ MR is also left invariant by f |(W)R .
Notice that if U⊂C is a real symmetric open set such that U∩R 	= ∅ we have

⎧
⎪⎨

⎪⎩

(WAA
h,U)R = (Th ×U)R =T× (U∩R)=WAA

0,U∩R

(WCC
h,U)R = {(z,w) ∈WCC

0,U∩R+, w = iz} = (WCC
0,U∩R+)R

(WCC∗
h,U )R = {(x, y) ∈R2,

x2+y2

2 ∈U∩R+} =WCC∗
0,U∩R+ .
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In any case (Wh,U)R = {r ∈U} ∩MR = {r ∈U∩R} ∩MR.
There are symplectic changes of coordinates ψ± that allow to pass from the (z,w)-

coordinates ((CC)-coordinates) to the (θ, r)-coordinates ((AA)-coordinates). They are de-
fined as follows. The maps r �→ r1/2, teis �→ t1/2eis/2 for t > 0 and −π < s < π (resp. for
t > 0 and 0 < s < 2π ) define holomorphic functions on C � R− (resp. on C � R+). We
can thus define the biholomorphic diffeomorphisms

T∞ × (C � R±) � (θ, r)
ψ±−→ (z,w) ∈ {(z,w) ∈C2, −izw /∈R±}

{
z= eiπ/4r1/2e−iθ

w = eiπ/4r1/2eiθ
⇐⇒

{
r =−izw

eiθ = e−iπ/4 w

(−izw)1/2 = eiπ/4 (−izw)1/2

z

(4.79)

which satisfy

dz∧ dw = dθ ∧ dr and ψ± ◦ σ2 ◦ψ−1
± = σ3.

Notice that if h > 0

(4.80) Th × (D(0, ρ)� R±)
ψ±−→

{

(z,w) ∈C2,

{
−izw ∈D(0, ρ)� R±
e−2h < |z/w|< e2h

}

hence with the notations of Section 2.1

(4.81) WCC
h,U�R± ⊃ψ±(WAA

h,U�R±).

4.2. Symplectic vector fields. — If (M, β) = (MCC, β) or (MAA, β) and F ∈ Oσ (M)

we define the holomorphic symplectic vector field X by iXβ = dF. If J is the matrix(
0 1
−1 0

)

one has

XF = J∇F.

We denote by φ t
J∇F the flow at time t ∈R of the vector field J∇F and �F = φ1

J∇F its
time 1-map. It is a symplectic diffeomorphism.

If G :M→R or C is another smooth observable we define the Poisson bracket of F
and G by the formula {F, G} = β(XF, XG) or equivalently

{F, G} := 〈∇F, J∇G〉.
One then has

d

dt
(G ◦�t

F)|t=0 = LJ∇FG= {F, G}, [LXF, LXG] = LX{F,G} .

If f is a symplectic diffeomorphism one has

(4.82) f ◦�F ◦ f −1 =�f∗F, where f∗F= (f −1)∗F= F ◦ f −1.
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4.3. Integrable models. — We assume that (M, β, σ ) is (C2, dx ∧ dy, σ1), (C2, dz ∧
dw,σ2) or (T∞×C, dθ ∧dr, σ3). In all these examples there exists a natural (Lagrangian)
foliation given by the level lines of the observable r :M→C

(4.83) r(x, y)= x2 + y2

2
, r(z,w)=−izw, r(θ, r)= r,

which has the property that for every m ∈ M, such that r(m) ∈ R, the map R � t �→
φ t

J∇r(m) is 2π -periodic. In particular, for c ∈R, the set {r = c} ⊂M is itself foliated by the
2π -periodic orbits of the flow φ t

J∇r ; they are either points or homeomorphic to S1. We
shall say that a symplectic diffeomorphism of M is integrable if it is symplectically conju-
gated to a diffeomorphism that leaves globally invariant each level line of the preceding
function r. It is not difficult to see that a diffeomorphism satisfying the previous condition
is of the form �H where H=� ◦ r.

Let U be a σ -symmetric holed domain of C and � ∈Oσ (U). Then,

(4.84)

⎧
⎪⎨

⎪⎩

(CC) : ��(z,w)= (e−i∂�(r)z, ei∂�(r)w),

(AA) : ��(θ, r)= (θ + ∂�(r), r),

(CC∗) : ��(x, y)= (#(e−i∂�(r)(x+ iy)),$(e−i∂�(r)(x+ iy)))

and in any case

��(Wh̃,U)⊂Wh,U, h̃= h− ‖$(∂�)‖U.

On the other hand, since � is σ -symmetric, one has whenever U is σ -symmetric,

��((Wh,U)R)= ((Wh,U)R).

Notice that in all cases �� is an integrable diffeomorphism of M.

4.4. KAM circles. — A circle of MR (MR equals MCC∗
R =R2, MCC

R , MAA
R =T×R) is

any set of the form ({r = c})R = ({r = c)}∩MR, c ∈R, of cardinal > 1 (r is the observable
of (4.83)). In the (AA) resp. (CC*) cases this set coincides with the usual circle T× {r = c}
resp. {(x, y) ∈ R2, (1/2)(x2 + y2) = r}; in the (CC) or (CC*) cases ({r = c})R is a circle if
and only if c > 0 (it is empty if c < 0 and reduced to {(0, 0} if c= 0).

Let W be an open subset of MR and f ∈ SympC1

ex. (W) a C1 symplectic diffeo-
morphism W �→ f (W). For example f could be the restriction on W = (Wh,U)R of
f ∈ SympO

ex.,σ (Wh,U), Wh,U ⊂ M. A KAM-circle (or KAM-curve) for f is the image g(({r =
c})R)⊂W of a circle ({r = c})R, c ∈R, by a C1 symplectic diffeomorphism g :MR →MR

fixing the origin (g({r = 0}R)= {r = 0}R) and such that

g−1 ◦ f ◦ g =�2πωr +O(r − c), ω ∈R � Q.
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The set g(({r = c})R)⊂W is then f -invariant, homeomorphic to S1 and non homotopi-
cally trivial in the following sense: in the (AA)-case it is homotopic to {r = 0}R =T× {0}
and in the (CC) or (CC*) case it has degree ±1 w.r.t. to the origin {r = 0}R = {(0, 0)}.
Moreover, the restriction of f on g(({r = c})R)⊂W is conjugated to a rotation on a circle
with frequency ω ∈R.

Notation 4.1. — We denote by G(f , W) the set of f -invariant KAM-circles γ ⊂ (W)R and

by L(f , W)⊂ (W)R their union: L(f , W)=⋃
γ∈G (f ,W) γ .

Remark 4.1. — Let g, f , f1, f2 : MR → MR be C1 symplectic diffeomorphisms
where g({r = 0}R)= {r = 0}R. Then,
(1) If A⊂ B⊂ (M)R, then L(f , A)⊂L(f , B).
(2) If f1, f2 coincide on a set A, L(f1, A)=L(f2, A).
(3) For any set A⊂MR

(4.85) g(L(f , A))=L(g ◦ f ◦ g−1, g(A)).

(4) If g−1 ◦ f1 ◦ g and f2 coincide on a set A one has

(4.86) L(f1, g(A))= g(L(f2, A)).

Definition 4.2. — If A⊂C we define WA = {r ∈ A} ∩MR = {r ∈ A∩R} ∩MR.

Let us now state a criterion that ensures the existence of KAM-circles. Assume that
there exist

∅ 	= L⊂ A= I �
⋃

j∈J

Ij ⊂ Ã⊂R,

where L is compact and A is of the form I �
⋃

j∈J Ij where I⊂R is an interval and the Ij

are pairwise disjoint intervals.

Proposition 4.3. — Let f ∈ SympC1
(WÃ) and suppose that there exist � ∈ C1(R) and a

C1 symplectic diffeomorphism g : MR → MR fixing the origin, ‖g − id‖C1 ≤ C−1 (C depends only

on M), such that

on WL g−1 ◦ f ◦ g =��(r) and g(WL)⊂WÃ.

Then, if
∑

j∈J |Ij|1/2 ≤ 1, one has

LebMR(WA �L(f , WÃ))≤C× (LebR(A � L)+ ‖g − id‖1/2
C0 ).

Proof. — Since WL=L(��(r), WL) one has from (4.86) g(WL)= g(L(��(r), WL)=
L(f , g(WL)) and since g(WL) ⊂ WÃ one has g(WL) ⊂ L(f , WÃ). On the other hand
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if we define E by WA = WL ∪ E, one has g(WA) = g(WL) ∪ g(E) and thus g(WA) ⊂
L(f , WÃ)∪ g(E). We therefore have

LebMR(WA �L(f , WÃ)) � LebMR(g(E))+ LebMR(WA " g(WA)).

Since A = I �

⋃
j∈J Ij and

∑
j∈J |Ij|1/2 ≤ 1, Lemma J.1 from the Appendix yields

LebMR(WA " g(WA))≤ ‖g − id‖1/2
C0 and since LebMR(g(E))= LebMR(E) we get the con-

clusion. �

4.5. Generating functions. — Let h > 0, U ⊂ C be a real symmetric holed domain
and WAA

h,U and WCC
h,U the domains defined in (2.47) and (2.46)

{
WAA

h,U =Th ×U
WCC

h,U = {(z,w) ∈D(0, ehρ
1/2
U )×D(0, ehρ

1/2
U ), r := −izw ∈U}.

We shall associate to each F ∈ Oσ (Wh,U) small enough a real symmetric holomorphic
symplectic diffeomorphism fF of Wh,U which is exact with respect to the respective Liouville
forms as defined in (4.78)). It is defined as follows: in the (AA)-case

(4.87) fF(θ, r)= (ϕ, R) ⇐⇒
{

ϕ = θ + ∂RF(θ, R)

r =R+ ∂θF(θ, R)

and in the (CC)-case

(4.88) fF(z,w)= (̃z, w̃) ⇐⇒
{

z̃= z+ ∂w̃F(z, w̃)

w = w̃+ ∂w̃F(z, w̃).

Lemma 4.4. — There exists a constant C such that if F ∈Oσ (Wh,U) and 0 < δ < h satisfy

(4.89) C(δ d(Wh,U))−2‖F‖Wh,U < 1,

the map fF defined by (4.87), (4.88) is a real symmetric holomorphic exact symplectic diffeomorphism

from e−δWh,U onto its image and

(4.90) e−2δWh,U ⊂ fF(e
−δWh,U)⊂Wh,U.

We shall call fF the generating map of F. Moreover

(4.91) f −1
F = f−F+O(‖D2F‖‖DF‖).

Proof. — See Appendix A.1. �
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Remark 4.2. — The symplectic change of coordinates ψ± introduced in Sec-
tion 4.1 preserves exact symplecticity: if f CC is exact symplectic the same is true for
f AA = ψ−1

± ◦ f CC ◦ψ±. Indeed, if ψ±(θ, r)= (z,w), z= eiπ/4r1/2e−iθ , w = eiπ/4r1/2eiθ , one
computes the Liouville form (1/2)(wdz− zdw)= rdθ .

Conversely, if a diffeomorphism (θ, r) �→ (ϕ, R) is exact symplectic and close
enough to the identity, it admits this type of parametrization.

More precisely:

Lemma 4.5. — Let f ∈ SympO
ex.σ (Wh,U) be an exact symplectic diffeomorphism close enough

to the identity. Then, if δ = d(f − id, Wh,U) (recall the notation (2.64)) there exists F ∈Oσ (e−δWh,U)

such that on e−δWh,U one has

f = fF, F=O(‖Df − id‖)=O1(f − id).

This F is unique up to the addition of a constant.

Conversely, given F ∈O(Wh,U) one has

(4.92) fF =�F ◦ fO2(F) = id + J∇F+O(‖D2F‖‖DF‖).
Proof. — See Appendix A.2. �

The composition of two exact symplectic maps is again exact symplectic and more
precisely

Lemma 4.6. — Let F, G ∈O(Wh,U). If δ = d(F, G;Wh,U) then on e−δWh,U,

fF ◦ fG = fF+G+O(‖DF‖h,U‖DG‖h,U)(4.93)

fF+G = fF+‖DF‖h,UO1(G) ◦ fG = fF ◦ fG+‖DG‖h,UO1(F).(4.94)

In the Action-Angle case, if � depends only on the variable r then �� = f� and

(4.95) �� ◦ fF = f�+F

Proof. — See the Appendix, Section A.3. �

4.6. Parametrization. — We shall parametrize perturbations of integrable symplectic
diffeomorphisms defined on a domain Wh,U by

f =��(r) ◦ fF

where � ∈Oσ (U) and F ∈Oσ (Wh,U). Note that if fF = id +O2(z,w) or f (θ, r) = id +
(O(r), O(r2)) then:

Case (CC) F(z,w)=O3(z,w), Case (AA) F(θ, r)=O(r2).
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4.7. Transformation by conjugation. — We now define

(4.96) [�] ·Y= Y ◦�� −Y.

Note that

(4.97)

⎧
⎪⎨

⎪⎩

(AA)-case if Y= Y(θ, r), ([�] ·Y)(θ, r)= Y(θ + ∂�(r), r)−Y(θ, r);
(CC)-case if Y= Y(z,w),

([�] ·Y)(z,w)= Y(e−i∂�(r)z, ei∂�(r)w)−Y(z,w).

If W=Wh,U is a holed domain and δ > 0 we introduce the notation

W�
h,U =W��

h,U :=Wh,U ∪��(Wh,U).

The main result of this section is the following:

Proposition 4.7. — Let � ∈ Oσ (U), F ∈ Oσ (Wh,U), Y ∈ Oσ (W�
h,U). Then, if δ =

d(F, Wh,U)∩ d(Y, W�
h,U) there exists F̃ ∈Oσ (e−δWh,U) such that

[e−δWh,U] fY ◦ (�� ◦ fF) ◦ f −1
Y =�� ◦ f̃F

(see the notation (2.44)) and

F̃= F+ [�] ·Y+ ‖DF‖WO1(Y)

= F+ [�] ·Y+ Ȯ2(Y, F).

Proof. — See the Appendix, Section A.4. �

Remark 4.3. — A direct computation shows that if �(r)= 2πω0r +O(r2) and

Case (CC) F(z,w)=Ok(z,w) and Y(z,w)=Ok(z,w),

Case (AA) F(θ, r)=O(rk) and Y(θ, r)=O(rk)

then

Case (CC) F̃(z,w)=O2k−2(z,w), Case (AA) F̃(θ, r)=O2k−1(r).

4.8. Symplectic Whitney extensions. — Let U⊂C be a real symmetric holed domain
Wh,U ⊂M, F ∈Oσ (Wh,U) and FWh :M→C be a σ -symmetric C2 Whitney extension of
(F, Wh,U) (cf. Section 2.4). There exists a constant C > 0 (depending only on M) such that
if ‖FWh‖C2(M) < C−1, Equations (4.87), (4.88) define a C1-diffeomorphism fFWh :M→M
such that

(4.98) max(‖fFWh − id‖C1(M),‖f −1
FWh − id‖C1(M))≤C−1‖FWh‖C2(M).
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Note that fFWh and f −1
FWh are C1 σ -symmetric extensions of (fF, e−δWh,U) and (f −1

F , e−δWh,U)

for any δ satisfying (4.89), cf. Lemma 4.4.
In general, the diffeomorphism fFWh is not symplectic on M but since FWh takes real

values on MR, fFWh :MR →MR is an exact symplectic diffeomorphism of MR.

Notation 4.8. — We shall denote by S̃ympσ (Wh,U), resp. S̃ympex.,σ (Wh,U), the set of C1

σ -symmetric diffeomorphisms M → M that are in SympO
σ (Wh,U), resp. SympO

ex,s(Wh,U), (hence

holomorphic on Wh,U) and symplectic, resp. exact symplectic, when restricted to MR →MR.

5. Cohomological equations and conjugations

Our aim in this section is to provide a unified treatment, both in the (AA) and (CC)
cases, of the resolution of the (co)homological equations (Proposition 5.3) involved in the
Fundamental conjugation step (Proposition 5.5) that we shall use to construct all our dif-
ferent Normal Forms (for instance the approximate Birkhoff Normal Form of Section 6,
the KAM Normal Forms of Section 7 and the resonant Normal Form of Appendix G).

5.1. Fourier coefficients and their generalization. — In this section we assume that either:
– Case (CC): (M, β)= (C×C, dz∧ dw) and we denote by r(z,w)=−izw

– or, Case (AA): (M, β)= (T∞ ×C, dθ ∧ dr) and we denote by r : (θ, r) �→ r.
In both cases the flow t �→ φ t

J∇r is 2π -periodic w.r.t. t ∈R (cf. (4.84)).
Let U be a connected open set of C and F ∈O(Wh,U). For any m ∈Wh,U and any

t ∈R, φ t
J∇r(m) ∈Wh,U:

{
(CC) : φ t

J∇r(z,w)= (e−itz, eitw),

(AA) : φ t
J∇r(θ, r)= (θ + t, r).

We can hence define t �→ F(φ t
J∇r(m)) which is a 2π -periodic function R → C and for

n ∈ Z we introduce its n-th Fourier coefficient Mn(F)(m):

Mn(F)(m)= 1
2π

∫ 2π

0
e−intF ◦ φ t

J∇r(m)dt(5.99)

F(φ t
J∇r(m))=

∑

n∈Z

Mn(F)(m)eint.(5.100)

The dependence of Mn(F)(m) is holomorphic in m and we have thus defined Mn(F) ∈
O(Wh,U). We observe that

(5.101) Mn(F) ◦ φ
2π/n

J∇r =Mn(F)

and

∀ t ∈R, M0(F) ◦ φ t
J∇r =M0(F).
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5.1.1. Case (CC). — One has

(5.102) φ t
J∇r(z,w)= (e−itz, eitw)

and if F= F(z,w), (5.99) becomes

Mn(F)(z,w)= 1
2π

∫ 2π

0
e−intF(e−itz, eitw)dt.

If furthermore F(z,w) = ∑
(k,l)∈N2 Fk,lz

kwl is converging on some polydisk D(0,μ) ×
D(0,μ) one has

(5.103) Mn(F)(z,w)=
∑

(k,l)∈N2

l−k=n

Fk,lz
kwl

hence, if for some p ∈ N∗, F(z,w) = Op(z,w), then for any n ∈ N, Mn(F)(z,w) =
Op(z,w).

5.1.2. (AA) Case. — In that case

φ t
J∇r(θ, r)= (θ + t, r)

and if F= F(θ, r) we define

Mn(F)(θ, r)= (2π)−1

∫ 2π

0
e−intF(θ + t, r)dt

= F̂(n, r)einθ

where

F̂(n, r)= (2π)−1

∫ 2π

0
e−inθF(θ, r)dθ

is the n-th Fourier coefficient of F(·, r). Notice that though F is only defined on Th ×U,
Mn(F) is defined in T∞ ×U.

Remark 5.1. — We see from (5.99) that if for some p > 0, F=Op(r) (which means
that for any m ∈Wh,U one has |F(m)| ≤ C|r(m)|p for some C > 0) then MnF=Op(r) for
any n ∈N.

Remark 5.2. — Using the fact that Mn(F) ◦ φ
2π/n

J∇r =Mn(F) one can show that
fF ◦ φ

2π/n

J∇r = φ
2π/n

J∇r ◦ fF both in the (AA) and (CC) Case.36

36 For example in the (CC)-case, since φ
2π/n

J∇r (z,w) = (e−2π i/nz, e2π i/nw), the condition on F implies
F(e−2π i/nz, e2π i/nw̃)= F(z, w̃) and the conclusion follows from (4.88).
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5.1.3. Form of M0(F).

Lemma 5.1. — If F ∈Oσ (Wh,U) there exists M(F) ∈Oσ (U) such that

(5.104) M0(F)=M(F) ◦ r, ‖M(F)‖U ≤ ‖F‖h,U.

Moreover

(5.105) fM(F) =�M(F) ◦ fO2(F).

Proof. — By definition of M0(F) we see that for every t ∈R

M0(F) ◦ φ t
J∇r =M0(F).

Lemma D.1 of the Appendix provides us with M(F) ∈ Oσ (U) such that M0(F) =
M(F) ◦ r. We just have to prove (5.105) in the (CC) case. If (̃z, w̃)= fM(F)(z,w) one has

z̃= (1+ ∂(M(F))(zw̃))z, w̃ = (1+ w̃∂(M(F))(zw̃))−1w

and since w̃(z,w)=w+O(F) we get

(̃z, w̃)= (e−∂(M(F))(zw)z, e∂(M(F))(zw)w)+O2(F). �

5.1.4. Decay of the Mn(F). — We observe that
– in Case (AA), for m= (θ, r) fixed in Wh,U, the function

{
Th−|$θ | →C

t �→ F(φ t
J∇r(m))= F(θ + t, r)

is well defined and holomorphic;
– in Case (CC), for (z,w) ∈Wh,U fixed (recall (5.102) and the definition (2.46) of WCC

h,U),
the function

(5.106)

{
R+ i] − ln(ehρ1/2/|w|), ln(ehρ1/2/|z|)[→C

t �→ F(φ t
J∇r(m))= F(e−itz, eitw)

(with ρ = sup{|r|, r ∈ U}) is also a well defined 2πZ-periodic holomorphic func-
tion. Furthermore, if m = (z,w) ∈ WCC

h−δ,U one has max(|z|, |w|) ≤ eh−δρ1/2 thus
min(ln(ehρ1/2/|w|), ln(ehρ1/2/|z|))≥ δ.

Hence, in any case, for m ∈Wh−δ,U the function t �→ F ◦φ t
J∇r(m) is 2π -periodic, holomor-

phic on Tδ and bounded in module by ‖F‖Wh,U . The Fourier coefficients Mn(F)(m) of
the function t �→ F ◦ φ t

J∇r(m)

(5.107) F ◦ φ t
J∇r =

∑

n∈Z

eintMn(F)
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thus satisfy

(5.108)
(∑

n∈Z

|Mn(F)(m)|2
)1/2

≤ ‖F‖Wh,U

and in fact (cf. for example [44])

(5.109)
(∑

n∈Z

e2|n|δ|Mn(F)(m)|2
)1/2

≤ 21/2‖F‖Wh,U .

5.1.5. Truncations operators. — Let us define for N ∈N∪ {∞},
TNF=

∑

|n|<N

Mn(F), RNF= F−TNF.

Lemma 5.2. — If F ∈O(Wh,U) one has

on Wh,U, F=
∑

n∈Z

Mn(F)(5.110)

‖Mn(F)‖Wh−δ,U � e−|n|δ‖F‖Wh,U,(5.111)

‖RNF‖Wh−δ,U � δ−1e−Nδ‖F‖Wh,U,(5.112)

‖TNF‖Wh−δ,U � ‖F‖Wh,U (if δ−1e−Nδ ≤ 1).(5.113)

Furthermore, if for some p > 0, F=Op(r) then

(5.114) RNF=Op(r);
in the (CC Case), if F ∈O(Wh,U)∩O3(z,w), one has

(5.115) (RNF)(z,w)=ON(z,w).

Proof. — Inequality (5.111) is a straightforward consequence of (5.109). Equality
(5.110) comes from taking t = 0 in (5.100). (5.112) is a consequence of (5.111) and (5.113)
is clear from (5.112). Inequalities (5.114) and (5.115) are consequences respectively of
Remark 5.1 and of identity (5.103). �

5.2. Solution of the truncated cohomological equation. — We assume that 0 < ρ ≤ 1 and
that U is a σ -symmetric open connected set of D.

We recall that we have defined in (4.96) (cf. Proposition 4.7) for any � ∈O(U) and
Y ∈O(W�

h,U)

[�] ·Y= Y ◦��(r) −Y.

The main Proposition is the following:
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Proposition 5.3. — Let τ ≥ 0, � ∈Oσ (U), K > 0, N ∈N∗ ∪ {∞} be such that one has

on U

(5.116) ∀ (k, l) ∈N∗ ×Z, 1≤ k < N %⇒ |k 1
2π

∂�(·)− l| ≥K−1|k|−τ .

Then, for any F ∈Oσ (Wh,U), there exists Y ∈Oσ (W�
h,U) such that, on Wh,U, one has M0(Y)= 0,

Mk(Y)= 0 for |k| ≥N and

(5.117) TNF−M0(F)= [�] ·Y.

This Y satisfies for any 0 < δ < h

(5.118) ‖Y‖W�
h−δ,U

� K min(δ−(1+τ), Nτ+1)‖F‖h,U.

Moreover, if we assume in addition that � is of the form �(r)= 2πω0r, ω0 ∈R, then one can improve

the exponent in (5.118):

(5.119) ‖Y‖W�
h−δ,U

� K min(δ−τ , Nτ )‖F‖h,U.

Proof. — We observe that both in Case (AA) or Case (CC) one has on Wh,U∩ {r ∈R}
(cf. (4.84))

��(r) = φ
∂�(r)
J∇r .

Hence, if G is a function in O(Wh,U) one has on Wh,U ∩ {r ∈R}

Mn(G) ◦��(r) = 1
2π

∫ 2π

0
e−intG ◦ φ

t+∂�(r)
J∇r dt

= ein∂�(r) 1
2π

∫ 2π

0
e−intG ◦ φ t

J∇rdt

= ein∂�(r)Mn(G)

and since Mn(G) ∈O(Wh,U), the left hand side of the preceding equations can be holo-
morphically extended to a function in O(Wh,U). We then have in O(Wh,U)

[�] ·Mn(G)= (ein∂�(r) − 1)Mn(G).

Note that from Lemma M.1 one has for r ∈U, |ein∂�(r)− 1| ≥K−1|n|−τ . If we define Y by

(5.120) Y=
∑

0<|n|<N

1
ein∂�(r) − 1

Mn(F)
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we have from Lemma 5.2

‖Y‖Wh−δ,U � K
∑

1≤|n|<N

|n|τ e−|n|δ‖F‖h,U

� min(Kδ−(1+τ), KNτ+1)‖F‖h,U

and

[�] ·Y= Y ◦�� −Y=TNF−M0(F).

This last formula shows that if we define Ỹ on ��(r)(Wh−δ,U) by Ỹ ◦ ��(r) = TNF −
M0(F)+ Y the functions Ỹ and Y coincide on ��(r)(Wh−δ,U) ∩Wh−δ,U and thus Y can
be holomorphically extended to ��(r)(Wh−δ,U)∪Wh−δ,U =:W�

h−δ,U and

‖Y‖W�
h−δ,U

� min(Kδ−(1+τ), KNτ+1)‖F‖h,U,

which is (5.118).
The fact that M0(Y) = 0 and its uniqueness (under the condition M0(Y) = 0)

comes again from Lemma 5.2. Finally, the σ -symmetry of Y on Wh,U is clear.
To conclude the proof of the Proposition we just have to check that if (2π)−1�(r)≡

ω0 ∈R satisfies (5.116) then (5.119) holds. This is a result due to Rüssmann [45] that we
now recall for completeness. In fact, Rüssmann proves that if

Dn =min
l∈Z

|nω0 − l|, D∗
n = min

1≤j≤n
Dj

one has

(5.121)
N∑

n=1

D−2
n ≤ (π 2/3)(D∗

N)−2.

From Lemma M.1 one has |e2π inω0 − 1| ≥ 4 minl∈Z |nω0 − l| = 4Dn. Thus, if we apply
Cauchy-Schwarz inequality to (5.120) we have for ν = 0 or ν = δ

‖Y‖Wh−δ,U �
( ∑

1≤|n|<N

e−2|n|νD−2
n

)1/2( ∑

1≤|n|<N

e2|n|ν‖Mn(F)‖2
Wh−δ,U

)1/2

�
( ∑

1≤|n|<N

e−2|n|νD−2
n

)1/2

‖F‖Wh,U (cf. (5.108), (5.109)).

– If N <∞, we take ν = 0 and (5.121) gives

‖Y‖Wh−δ,U � (D∗
N)−1‖F‖h,U

� KNτ‖F‖h,U.
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– If N=∞ we take ν = δ. Taking into account (5.121), we perform an Abel summa-
tion (discrete integration by part) on the sums

∑
1≤n<N e−2|n|νD−2

n ,
∑

1≤−n<N e−2|n|νD−2
n :

this yields

‖Y‖Wh−δ,U �
( ∑

1≤|n|<∞
(e−2|n|δ − e−2(|n|+1)δ(D∗

n)
−2

)1/2

‖F‖h,U

�
( ∑

1≤|n|<∞
δe−2|n|δK2|n|2τ

)1/2

‖F‖h,U

� Kδ−τ‖F‖h,U. �

Remark 5.3. — If in Proposition 5.3 U=D(0, ρ) is a disk centered at 0 and
⎧
⎪⎪⎨

⎪⎪⎩

(AA)-case F(θ, r)=
∑

k∈N

∑

l∈Z

F̂k(l)e
ilθ rk

(CC)-case F(z,w)=
∑

(k,l)∈N

Fk,lz
kwl

one has the more explicit expressions

(5.122)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(AA)-case Y(θ, r)=
∑

k∈N

∑

l∈Z∗

F̂k(l)

eil∂�(r) − 1
eilθ rk

(CC)-case Y(z,w)=
∑

(k,l)∈N
l 	=k

Fk,l

ei(l−k)∂�(r) − 1
zkwl .

In particular, if

�(r)= 2πω0r and

{
(CC)-case F(z,w)=Om(z,w)

(AA)-case F(θ, r)=Om(r)

then Y satisfies also (see the remarks at the end of Sections 5.1.1 and 5.1.2)
{

(CC)-case Y(z,w)=Om(z,w)

(AA)-case Y(θ, r)=Om(r).

5.3. Fundamental conjugation step. — We begin by the following consequence of
Proposition 4.7. Let U be a holed domain, h > 0.

Lemma 5.4. — There exists a ≥ 2 and C > 0 such that if � ∈Oσ (U), F ∈Oσ (Wh,U),

Y ∈Oσ (W�
h,U) and δ = d(F, Y;Wh,U), δ > 0 satisfies

(5.123) C d(Wh,U)−aδ−a‖F‖Wh,U ≤ 1
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then one has on e−δWh,U (cf. Lemma 5.1 for the definition of M(F))

(5.124) fY ◦�� ◦ fF ◦ f −1
Y =��+M(F) ◦ fF−M0(F)+[�+M(F)]·Y+Ȯ(a)

2 (Y,F)
.

Proof. — We first observe that since F= F−M0(F)+M0(F), we have by (4.94)
and Lemma 5.1

fF = fM0(F) ◦ fF−M0(F)+O2(F)

=�M(F) ◦ fO2(F) ◦ fF−M0(F)+O2(F)

=�M(F) ◦ fF−M0(F)+O2(F)

and thus

�� ◦ fF =��+M(F) ◦ fF−M0(F)+O2(F).

Now we use Proposition 4.7 and make explicit the notations d and Ȯ: for some a > 0 that
we can choose ≥ 2 and some C > 0, if (5.123) is satisfied, one has

fY ◦��+M(F) ◦ fF−M0(F)+O2(F) ◦ f −1
Y(5.125)

=��+M(F) ◦ fF−M0(F)+[�+M(F)]·Y+Ȯ(a)
2 (Y,F)

. �

Proposition 5.5. — Let a0 = a + 4 (a from Lemma 5.4). There exists C > 0 such that the

following holds. Let U be a holed domain, � ∈Oσ (U), and F ∈Oσ (Wh,U). Assume that there exists

a holed domain V ⊂ U, N ∈ N∗ ∪ {∞} and K > 0 such that on V the following non-resonance

condition (cf. (5.116)) is satisfied:

(5.126) ∀ (k, l) ∈N∗ ×Z, 1≤ k < N %⇒ |k 1
2π

∂�(·)− l| ≥K−1|k|−τ

and assume that CN−1 < δ < min(h, C
−1

) is such that e−δWh,V is not empty and

(5.127) (δ d(Wh,V))−(a0+τ)K‖F‖h,U < C
−1

.

Then there exists Y ∈O(W�
h,V) solution on W�

h,V of the cohomological equation (cf. (5.117), (5.118)):

(5.128) TNF−M0(F)=−[�] ·Y, ‖Y‖e−δ/2W�
h,V

� Kδ−(1+τ)‖F‖Wh,U

and �̃ ∈O(e−δWh,V), F̃ ∈Oσ (Wh,U) such that one has on e−δWh,V

fY ◦��(r) ◦ fF ◦ f −1
Y =��̃(r) ◦ f̃F, �̃=�+M(F)

‖̃F‖C3(e−δWh,V) ≤K(δ d(Wh,V))−(a0+τ)

(

‖F‖2
h,U + e−Nδ/2‖F‖h,U

)

.
(5.129)
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Proof. — We apply Proposition 5.3 to obtain some Y satisfying (5.128) and we
apply Lemma 5.4 with δ equal to δ/2. Since (cf. (4.97)) [� + M(F)] · Y = [�] · Y +
O(|∇Y||∇(M(F))|)= [�] ·Y+O

(2)

2 (Y, F), we get using [�] ·Y+F−M0(F)=RNF (cf.
(5.117)),

e−δ/2Wh,V, fY ◦�� ◦ fF ◦ f −1
Y =:��̃ ◦ f̃F

with

�̃=�+M(F)(5.130)

F̃=RNF+O
(a)
2 (Y, F).(5.131)

The definition of the symbol O(a)
2 , (5.112) and (5.128) show that there exists a universal

positive constant C such that if (5.127) is satisfied one has

(5.132) ‖̃F‖e−δ/2Wh,V � Kδ−(1+τ)(δ−1 d(Wh,V)−1)a‖F‖2
h,U + δ−1e−Nδ/2‖F‖h,U.

Inequalities (5.129), comes from (5.132) and Cauchy’s inequality (2.53) of Section 2.3.4
(applied with e−δWh,V and e−δ/2Wh,V in place of e−δWh,U and Wh,U) because d(e−δ/2Wh,V)≥
(1/2) d(Wh,V) if δ < 1/10 (which is the case if C is large enough). �

6. Birkhoff Normal Forms

6.1. Formal Normal Forms. — We recall in this subsection the classical results on
(formal) Birkhoff Normal Forms. For more details on the related formal aspects we refer
to Appendix E. We also explain how Pérez-Marco’s dichotomy extends to the diffeomor-
phism case (in particular in the (AA)-case).

6.1.1. BNF near a non-resonant elliptic fixed point ((CC) case). — Let f̃ : (R2, 0) →
(R2, 0) be a real analytic symplectic diffeomorphism of the form f̃ (x, y) = D̃f (0, 0) ·
(x, y)+O2(x, y) where

D̃f (0, 0)=�2πω0r =
(

cos(2πω0) − sin(2πω0)

sin(2πω0) cos(2πω0)

)

with ω0 ∈R � Q.
If ϕ : C2 → C2 is the change of coordinates ϕ(x, y) = (z,w) defined in (4.77)

the diffeomorphism f := ϕ ◦ f̃ ◦ ϕ−1 is exact symplectic and of the form f (z,w) =
�2πω0r(z,w)+O2(z,w) where r(z,w)=−izw

�2πω0r(z,w)= (e−2π iω0z, e2π iω0w).
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From Lemma 4.5 we have the representation

f =�2πω0r ◦ fF, F=O3(z,w)

for some F ∈Oσ (D(0,μ)2), μ > 0. We then have the following classical proposition that
establishes the existence of Birkhoff Normal Forms to arbitrarily high order.

Proposition 6.1. — Let ω0 ∈R�Q. Then, for any N≥ 3 there exist σ -symmetric holomor-

phic maps �N : (C, 0)→ C, ZN, FN : (C2, 0) → C such that on a neighborhood of 0 ∈ C2 one

has (r =−izw)

(6.133)

⎧
⎪⎨

⎪⎩

fZN ◦ (�2πω0r ◦ fF) ◦ f −1
ZN
=��N ◦ fFN

FN(z,w)=O2(N+1)(z,w), ZN(z,w)=O3(z,w),

�N(r)= 2πω0r +O2(r).

Remark 6.1. — The sequences (ZN)N and (�N)N converge respectively in C[[z,w]]
and in R[[r]]. If Z∞ ∈ C[[z,w]] and �∞ ∈ R[[r]] are their respective limits one has in
C[[z,w]] the formal identity

(6.134)

{
fZ∞ ◦ (�2πω0r ◦ fF) ◦ f −1

Z∞ =��∞

Z∞(z,w)=O3(z,w), �∞(r)= 2πω0r +O2(r).

Conversely, (6.134) defines �∞ uniquely;37 �∞ is the Birkhoff Normal Form BNF(f ) of f

(and BNF(̃f ) of f̃ ). In particular, BNF(f ) is invariant by (formal) symplectic conjugacies
which are tangent to the identity.

Remark 6.2. — If f = �� ◦ fF with � = �(r) = 2πω0r + O(r2) and F(z,w) =
O2(N+1)(z,w) then

(6.135) BNF(f )(r)=�(r)+ON+1(r).

6.1.2. BNF near a KAM circle (Action-Angle case). — Let f : (T × R,T × {0}) →
(T × R,T × {0}) be a real analytic symplectic diffeomorphism of the form f (θ, r) =
(θ + 2πω0, r)+ (O(r), O(r2)). We notice that �2πω0r : (θ, r) �→ (θ + 2πω0, r). We can
thus write f under the form (h, ρ > 0)

f =�2πω0r ◦ fF, F ∈Oσ (e2h(Th ×D(0, ρ))), F=O2(r).

37 The normalizing map Z∞ is unique up to composition on the left by a formal generalized symplectic rotation �A,
A ∈R[[r]].
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Proposition 6.2. — Let ω0 ∈R be Diophantine. Then, for any N≥ 3 there exist real analytic

maps �N : (R, 0)→R, ZN, FN : (T×R,T× {0})→R such that

(6.136)

{
fZN ◦ (�2πω0r ◦ fF) ◦ f −1

ZN
=��N ◦ fFN

FN(θ, r)=ON+1(r), ZN(θ, r)=O2(r), �N(r)= 2πω0r +O2(r).

Remark 6.3. — Let Cω(T)[[r]] (where Cω(T)=⋃
h>0 Cω

h (T)) be the set of formal
power series

(6.137) F(θ, r)=
∑

n∈N

Fn(θ)rn, Fn ∈Cω(T) for all n ∈N.

The sequence (ZN)N converges in Cω(T)[[r]] and the sequence (�N)N converges in
R[[r]]. If Z∞ ∈ Cω(T)[[r]] and �∞ ∈ R[[r]] are their respective limits one has in
Cω(T)[[r]] the formal identity

(6.138)

{
fZ∞ ◦ (�2πω0r ◦ fF) ◦ f −1

Z∞ =��∞

Z∞(θ, r)=O2(r), �∞(r)= 2πω0r +O2(r).

Conversely, (6.138) defines �∞ uniquely;38 �∞ is the Birkhoff Normal Form BNF(f )

of f . In particular, BNF(f ) is invariant by (formal) symplectic conjugacies which are of
the form id + (O(r), O(r2)).

Remark 6.4. — If f = �� ◦ fF with � = �(r) = 2πω0r + O(r2) and F(θ, r) =
ON+1(r) then

(6.139) BNF(f )(r)=�(r)+ON+1(r).

Remark 6.5. — The reason why we impose a Diophantine condition on ω0 in the
statement of Proposition 6.2 is the following. The existence of the formal Birkhoff Nor-
mal Form (6.136) derives from an inductive procedure where at each step n ∈N∗ one con-
structs a formal conjugation fYn

with Yn ∈Cω(T)[[r]] that conjugates fFn
(Fn ∈Cω(T)[[r]],

Fn =On(r)) to fFn+1 (Fn+1 ∈Cω(T)[[r]], Fn+1(θ, r)=On+1(r)). To perform this conjugation
step one has to solve a cohomological equation Fn(θ, r)= Yn(θ + 2πω0, r)− Yn(θ, r)+
∫ 2π

0 Fn(ϕ, r)dϕ where r is a formal variable but θ lies on T (see Lemma E.7). This equation
is classically solved by passing to Fourier coefficients (see for example [13]) but it involves
small denominators that can be dealt with if ω0 satisfies an arithmetic condition, for example
a Diophantine one (weaker conditions such as Bruno condition or even ln qn+1 = o(qn)

will also be fine39).

38 The normalizing map Z∞ is unique up to composition on the left by a formal integrable twist of the form �A,
A ∈R[[r]].

39 As usual pn/qn are the convergents of ω0.
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6.2. Pérez-Marco’s Dichotomy. — We now discuss the extension of Pérez-Marco’s
Dichotomy, Theorem 1.3, to the diffeomorphism setting.

The first part of Pérez-Marco’s argument in [36], translated in our (CC)-
setting, is based on the fact that the coefficients of the Birkhoff Normal Form B(r) =∑

n∈Nd bn(F)rn = ∑
n∈Nd bn(F)(−izw)n of �2π〈ω,r〉 ◦ fF depend polynomially on the coef-

ficients of F(z,w) = ∑
(k,l)∈Nd×Nd Fk,lz

kwl . More precisely, if we denote by [F]j , j ≥ 3,
the homogeneous part of F of degree j, [F]j = ∑

|k|+|l|=j Fk,lz
kwl , then the coefficients

of the homogeneous part of degree 2j, [B ◦ r]2j = ∑
|k|=j bk(F)(−izw)k of B ◦ r, are

polynomials of degree 2j − 2 in the coefficients of [F]3, . . . [F]j . As a consequence,
if (z,w) �→ F(z,w), (z,w) �→ G(z,w) are two σ -symmetric holomorphic functions
such that F(z,w) = O3(z,w), G(z,w) = O3(z,w), then for any n ≥ 3, the maps
t �→ bn(tF+ (1− t)G) are polynomials of degree≤ 2|n|−2. The second argument in [36]
is then to use results from potential theory (in particular the Bernstein-Walsh Lemma40)
applied to the family of polynomials t �→ bn(tF + (1 − t)G) that have a degree which
behaves linearly in n.

To check that the arguments of [36] adapt to the diffeomorphism case it is hence
enough to check that t �→ bn(tF+ (1− t)G) are polynomials of degree ≤ 2(|n| − 1):

Lemma 6.3. — If F, G are σ -symmetric holomorphic maps F, G=O3(z,w) in the (CC)-

case (resp. F, G=O2(r) in the (AA)-case) then, for every n ∈Nd , |n| ≥ 2, t �→ bn(tF+ (1− t)G)

is a polynomial of degree ≤ 2(|n| − 1) (resp. ≤ |n| − 1).

Proof. — We refer to Appendix E where we discuss formal aspects of the BNF
(mainly in the (AA)-case) and give a proof of the lemma in Section E.3. �

6.3. Approximate BNF.

6.3.1. Elliptic fixed point case ((CC)-Case). — Our aim is to give a more quantitative
version of Proposition 6.1.

Recall that Wh,D(0,ρ) = {(z,w) ∈ D(0, ehρ1/2)2, −izw ∈ D(0, ρ)} and we denote
sometimes by Wh,ρ the set Wh,D(0,ρ).

Let m≥ 4 be an integer. Applying Proposition 6.1 with m=N− 1 we can assume
that the diffeomorphism f is of the form

(6.140)

{
f =��0 ◦ fF0

�0(r)= 2πω0r +O2(r), and F0(z,w)=O2m(z,w).

In particular (cf. Remark 2.1) for some h > 0 and any ρ > 0 small enough we can assume
that

(6.141) ‖F‖ehWh,D(0,ρ)
� ρm.

40 It states that if a polynomial of degree n is bounded above by some constant M on a not pluripolar compact set
K⊂Cm then its size at any point z ∈Cm is not larger than M× exp(ngK(z)) where gK(z) is the Green function of K with
pole at ∞.
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Denote by (pn/qn)n≥1 the sequence of best rational approximations of ω0 which has
the following properties (cf. [20], Chap. 5, formulae (7.3.1)–(7.3.2) and Prop. 7.4): for all
n ∈N∗

(6.142)
1

qn + qn+1
< (−1)n(qnω0 − pn) <

1
qn+1

,

and

(6.143) ∀ 0 < k < qn, ∀ l ∈ Z, |kω0 − l| ≥ |qn−1α− pn−1|> 1
2qn

.

We refer to Notations 2.3, 2.6 and 4.8 before stating the following proposition.

Proposition 6.4. — Let a1 := max(2a + 1, 30) where a is the exponent that appears in

Lemma 5.4 and assume that (6.141) holds for some m ≥ a1. Then for any β > 0 and any n �β 1
there exist gBNF

q−1
n
∈ S̃ympex.,σ (Wh,q−6

n
), and functions FBNF

q−1
n
∈Oσ (Wh,q−6

n
) ∩Oq

1−β
n (z,w), �BNF

q−1
n
∈

Õσ (D(0, q−6
n )) such that

[Wh,q−6
n
] (gBNF

q−1
n

)−1 ◦��0 ◦ fF0 ◦ gBNF
q−1

n
=��BNF

q
−1
n

◦ fFBNF
q
−1
n

(6.144)

�BNF
q−1

n
(r)− BNF(f )(r)=Oq

1−β
n (r), in R[[r]](6.145)

‖�BNF
q−1

n
‖C3 � 1(6.146)

‖gBNF
q−1

n
− id‖C1 ≤ q−(m−27)

n(6.147)

‖FBNF
q−1

n
‖W

h,q
−6
n

≤ exp(−q1−β
n ).(6.148)

If � ∈ T C(A, B) (see Notation 2.6) one can choose �BNF
q−1

n
∈ T C(2A, 2B).

Proof. — See the Appendix, Section F.2. �

6.3.2. (AA) or (CC) case when ω0 is Diophantine. — We formulate here a more quan-
titative version of the classical Birkhoff Normal Form Theorem (Propositions 6.1, 6.2)
which holds both in the (AA) or (CC) cases, provided ω0 is Diophantine:

(6.149) ∀ k ∈ Z � {0}, min
l∈Z

|kω0 − l| ≥ κ

|k|τ (τ ≥ 1).

Let as usual Wh,D(0,ρ) be equal to either WCC
h,D(0,ρ) or WAA

h,D(0,ρ) and � ∈Oσ (D(0, 1)),
�(r)= 2πω0r +O(r2), where ω0 is assumed to be Diophantine with exponent τ .

We define (as before a is the constant introduced in Lemma 5.4)

(6.150) a1,τ :=max(2(τ + a), 12)
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and we assume that for some m≥ a1,τ , the function F ∈Oσ (ehWh,D(0,1/2)) (h > 0) satisfies

(6.151)

{
(CC)−Case : F(z,w)=O2m(z,w)

(AA)−Case : F(θ, r)=O(rm).

We set

(6.152)

{
(CC)−Case : bτ = 2(τ + 1)

(AA)−Case : bτ = τ + 1.

Proposition 6.5. — Assume that ω0 satisfies (6.149) and that for some m ≥ a1,τ (6.151)

holds. Then, for any β > 0 and any 0 < ρ �β 1, there exist �BNF
ρ ∈ Õσ (D(0, ρbτ )), FBNF

ρ ∈
Oσ (Wh,D(0,ρbτ )) ∩ O(1/ρ)1−β

(r) and gBNF
ρ ∈ S̃ympex.,σ (Wh,D(0,ρbτ )) such that on Wh,D(0,ρbτ ) one

has

(gBNF
ρ )−1 ◦�� ◦ fF ◦ gBNF

ρ =��BNF
ρ
◦ fFBNF

ρ
(6.153)

�BNF
ρ (r)− BNF(f )(r)=O(1/ρ)1−β

(r), in R[[r]](6.154)

‖�BNF
ρ ‖C3 � 1

‖gBNF
ρ − id‖C1 ≤ ρm−10

‖FBNF
ρ ‖W

h,D(0,ρbτ )
� exp(−(1/ρ)1−β).(6.155)

If � ∈ T C(A, B) then �BNF
ρ ∈ T C(2A, 2B).

Proof. — See the Appendix, Section F.3. �

Remark 6.6. — Inequality (6.155) can also be written

‖FBNF
ρ1/βτ ‖Wh,D(0,ρ)

� exp(−(1/ρ)(1−β)/bτ ).

We note that Iooss and Lombardi (Theorem 1.4 of [24]) obtained, for a similar problem,
a more precise estimate but with essentially the same exponent 1/bτ = 1/(1+ τ) (their
estimate reads ≤ (cst)ρ2 exp(−(cst)/ρ1/(1+τ))).

Remark 6.7. — In the (CC)-case and when ω0 is in DC(κ, τ ), one can prove the
previous proposition (maybe not with the same value for the exponent bτ ) by using Propo-
sition 6.4 and the fact that qn ≤ qn+1 ≤ κ−1qτ

n .

6.4. Consequence of the convergence of the BNF.

Lemma 6.6. — Assume that BNF(f ) coincides as a formal power series with a holomorphic

function � ∈O(D(0, ρ)) and, for 0 < ρ ≤ ρ, let � ∈O(D(0, ρ)) be such that

(6.156)

{
�(r)− BNF(f )(r)=ON+1(r) in R[[r]]
‖�‖D(0,ρ) ≤ 1.
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Then

‖�−�‖D(0,e−1ρ) � exp(−N).

Proof. — Let �(z) = ∑∞
k=0 ξkz

k , �(z) = ∑∞
k=0 bkz

k, �N = ∑N
k=0 ξkz

k and �N =∑N
k=0 bkz

k . We have from (6.156) and the fact that �= BNF(f ) in R[[r]]
(6.157) �N =�N.

On the other hand, we observe that if g : z �→ ∑
k∈N gkz

k is in O(D(0, ρ)) one has by
Cauchy’s estimates |gk|ρk ≤ ‖g‖D(0,ρ), hence for |z|< e−1ρ

∣
∣
∣
∣

∑

k≥N+1

gkz
k

∣
∣
∣
∣≤

∑

k≥N+1

‖g‖D(0,ρ)(z/ρ)k

≤ 2e−N‖g‖D(0,ρ).

As a consequence,

‖�−�N‖D(0,e−1ρ) � e−N‖�‖D(0,ρ), ‖�−�N‖D(0,e−1ρ) � e−N‖�‖D(0,ρ).

We conclude using (6.157). �

To summarize,

Corollary 6.7. — If BNF(�� ◦ fF) converges and coincide on D(0, ρ) with � ∈
O(D(0, ρ)), then for any β > 0 and ρ �β 1 one has:

– If ω0 is τ -Diophantine ((AA) or (CC)-case)

‖�BNF
ρ −�‖D(0,ρbτ ) � exp(−(1/ρ)1−β).

– In the (CC) case for any ω0 irrational

‖�BNF
q−1

n+1
−�‖D(0,q−6

n+1) � exp(−q
1−β

n+1 ).

7. KAM Normal Forms

We present now, in the unified (AA)-(CC) framework, the KAM scheme that is
central in all this paper. This will be used in Sections 10 and 11 to construct the adapted
Normal Forms and in Section 12 to get estimates on the Lebesgue measure of the set of
KAM circles. For the sake of clarity we break down our main result into three proposi-
tions: Propositions 7.1, 7.2, 7.4.

As usual we denote in the (AA)-case M=T∞×C, MR =T×R, O=T×{0} and
in the (CC)-case M=C×C and MR =M∩ {r ∈R}, O= {(0, 0)}.
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7.1. The KAM statement. — Let 0 < ρ < h/2 < 1/2, A ≥ 1, B ≥ 1 and � ∈
Õσ (ehD(0, ρ)) satisfying the following twist condition (see (2.59)):

(7.158) ∀ r ∈R, A−1 ≤ (1/2π)∂2�(r)≤ A, and ‖(1/2π)D3�‖C ≤ B.

Let ω(r) = (2π)−1∂�(r). The image of D(0, ehρ) by ω is contained in a disk
D(ω(0), 3Aρ). We can assume without loss of generality that ω(0) ∈ [−1/2, 1/2] and
consequently, if ρ is small enough we can assume

(7.159) ω(D(0, ehρ)∩R)⊂ [−3/4, 3/4].
Let C, a0 be the constants of Proposition 5.5. We introduce

(7.160) a2 = 2(a0 + 2)+ 10

and assume that F ∈Oσ (ehWh,D(0,ρ)) satisfies

(7.161) ‖F‖ehWh,D(0,ρ)
≤ ρ a2 .

By Cauchy’s inequality (2.53) one has

(7.162) ε := max
0≤j≤3

‖DjF‖Wh,D(0,ρ)
≤ ρ 2(a0+2)+1.

Associated to this ε > 0 there exists a unique N > 0 such that

− ln ε =N/(ln N)2.

We then define for n≥ 1 the following sequences that depend on ε = ε1, h and ρ > 0:

(7.163)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Nn = (4/3)n−1N
εn = e−hNn/(ln Nn)

2

K−1
n = ε

1
2(a0+2)

n , (a0 ≥ 5)

δn = 2(ln Nn)
−2h

ρn = ρ exp(−∑n−1
j=1 δj), hn = h− (1/2)

∑n−1
j=1 δj > h/2.

If ρ is small enough, for all n≥ 1 one has

ρn ≥ e−1/20ρ, hn ≥ e−1/20h

and (cf. (7.162)),

ρn/2 > 2K−1
n(7.164)

(δn(2K−1
n ))−a0Knεn < C

−1
(7.165)

(C is the constant of Proposition 5.5).
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Proposition 7.1. — Assume that � and F are as above and that ρ �A,B 1. Then, with the

notations (7.163) the following holds: for n ≥ 1 there exist a decreasing (for the inclusion) sequence of

holed domains (Un)n≥1, functions �n ∈ Õσ (Un), Fn ∈Oσ (Whn,Un
) with U1 =D(0, ρ), �1 =�,

F1 = F and, for n≥ 2, 1≤ m < n, diffeomorphisms gm,n ∈ S̃ympex.,σ (Whn,Un
), such that:

�n satisfies a (2A, 2B)− twist condition, (cf. (2.59))(7.166)

gm,n(Whn,Un
)⊂Whm,Um

(7.167)

on Whn,Un
, g−1

m,n ◦��m
◦ fFm

◦ gm,n =��n
◦ fFn

(7.168)

‖gm,n − id‖C1 ≤ ε1/2
m ,(7.169)

max
0≤j≤3

‖DjFn‖Whn,Un
≤ εn.(7.170)

Proof. — We construct inductively for n≥ 2 sequences Un, Fn,�n, gm,n satisfying the
conclusion of the proposition with the additional requirements

Requirement 1: For n≥ 2, Un is of the form

Un =D(0, ρn)�
⋃

i∈In

D(ci, κi), ci ∈R, #In ≤ 2N2
n−1(7.171)

K−1
n−1 ≤ κi ≤K−1

1 e
∑n−1

l=1 δl , (
∑

i∈In

κ2
i )1/2 ≤√2e

∑n−1
l=1 δl

n−1∑

l=1

NlK−1
l .(7.172)

Requirement 2: For n≥ 2, �n ∈ Õσ (Un) satisfies an (An, Bn)-twist condition with (see
(2.52) for the notation a(Un))

1≤ An ≤ 2A−K−1
n , 1≤ Bn ≤ 2B−K−1

n(7.173)

8 max(ρ, a(Un))×An × Bn < 1.(7.174)

‖�n −�‖C3(D(0,ρ)) ≤
n−1∑

l=1

ε
1/2
l ≤ 2ε

1/2
1(7.175)

and ∀ m < n, ‖gm,n − id‖C1 ≤C
n−1∑

l=m

εl � ε1/2
m (C from (2.43)).(7.176)

For some n ≥ 1, assume the existence of Un, Fn,�n and the validity of conditions
(7.171), (7.172), (7.173), (7.174), (7.175) (if n≥ 2) and define ωn = (1/2π)�n. Since (7.174)
is satisfied we can apply Proposition 2.7 (with A= An, B= Bn, 3Anν =K−1

n , β = l/k): for
each (k, l) ∈ Z2, 0 < k < Nn, such that D(l/k, (3AnKn)

−1) ∩ ωn(Un) 	= ∅, there exists
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c
(n)

l/k ∈R such that

(7.177)

{
ωn(c

(n)

l/k)= l/k

∀ r ∈C � D(c
(n)

l/k, K−1
n ), |ωn(r)− (l/k)| ≥ (3AnKn)

−1.

We denote

En = {(k, l) ∈ Z2, 0 < k < Nn, 0≤ |l| ≤Nn,

D(l/k, (3AnKn)
−1)∩ωn(Un) 	= ∅}

and we see that

(7.178) #En ≤ 2N2
n .

Note that from (7.175) and (7.159) we have |l/k| ≤ 1. Hence, if we define

(7.179) Vn =Un �

⋃

(k,l)∈En

D(c
(n)

l/k, K−1
n )

we have for any r ∈Vn (cf. (7.173))

∀ (k, l) ∈N∗ ×Z, 1≤ k < Nn %⇒
∣
∣
∣
∣k

1
2π

∂�n(r)− l

∣
∣
∣
∣≥ (6AKn)

−1;

hence the non-resonance condition (5.126) (with τ = 0, K= 6AKn, N=Nn) is satisfied.
On the other hand (7.171)–(7.172) (n ≥ 2) and (7.164) (n = 1) show using (7.179) that
(recall ρn < ρ < h/2)

(7.180) d(Whn,Vn
)= d(Vn)=min(d(Un), K−1

n )=K−1
n

and (7.165) and (7.170) show that

(7.181) (δn d(Whn,Vn
))−a0Kn‖Fn‖hn,Un

< C
−1

.

We can thus apply Proposition 5.5 (with τ = 0, K= 6AKn, δ = δn, N=Nn) on Vn: if one
defines

(7.182) Un+1 = e−δnVn = e−δnUn �

⋃

(k,l)∈En

D(c
(n)

l/k, eδnK−1
n )

there exist Yn ∈ O(e−δn/2W�n

hn,Vn
), Fn+1 ∈ Oσ (Whn+1,Un+1), �n+1 ∈ Oσ (Un+1) such that

(ρ small enough)

‖Yn‖e−δn/2Whn,Vn
� Knδ

−1
n ‖Fn‖Whn,Un

(7.183)

Whn+1,Un+1, fYn
◦��n

◦ fFn
◦ f −1

Yn
=��̃n+1 ◦ fFn+1(7.184)
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�̃n+1 =�n +M(Fn)(7.185)

max
0≤j≤3

‖DjFn+1‖Whn+1,Un+1
�A Kn(δnK−1

n )− a0(‖Fn‖2
Whn,Un

+ e−δnNn/2‖Fn‖Whn,Un
).(7.186)

Let us show that the Requirements 1 (7.171)–(7.172) are satisfied for n+ 1. From
(7.182) and (7.171) we see that

Un+1 =D(0, ρn+1)�
⋃

i∈In+1

D(ci, κi)

where In+1 ≤ In + 2N2
n (cf. (7.178)) and for all i ∈ In+1, min(eδnK−1

n−1, eδnK−1
n ) ≤ κi ≤

K−1
1 e

∑n
l=1 δl . Similarly, (

∑
i∈In+1

κ2
i )1/2 ≤ eδn((

∑
i∈In

κ2
i )1/2 + (2N2

nK−2
n )1/2). In other words,

(7.171)–(7.172) are satisfied for n+ 1.
Let us now prove that the Requirements 2, (7.173), (7.174) (7.175) are satisfied for

n + 1 and in particular that �̃n+1 has a nice Whitney extension �n+1 := �̃Wh
n+1. We first

apply Lemma 2.2 to get a C3, σ -symmetric extension M(Fn)
Wh :C→C for (M(Fn), Un)

such that

sup
0≤j≤3

‖DjM(Fn)
Wh‖C � (1+#JUn

)3(δn d(Un))
−6 max

0≤j≤3
‖DjM(Fn)‖e−δn/10Un

.

In particular, using Cauchy’s inequalities, (7.171), (7.172), (7.163), (5.104) one gets

sup
0≤j≤3

‖DjM(Fn)
Wh‖C � N6

n−1(δnK−1
n−1)

−6δ−3
n ‖M(Fn)‖Un

(7.187)

� K7
n−1εn ≤ ε1/2

n .

From (7.185) we see that if we define the σ -symmetric function

(7.188) �n+1 :=�n +M(Fn)
Wh

one has

�n+1
∣
∣Un+1

= �̃n+1

and (7.173)n+1, are satisfied (since −K−1
n + ε1/3

n <−K−1
n+1). To see that (7.174)n+1 holds we

use the fact that since the second inequality in (7.172) is true for n+1 (as already checked)
one has a(Un+1) ≤ (

∑
i∈In+1

κ2
i )1/2 ≤ 2

∑n

l=1 NlK−1
l ≤ K−1/2

1 . If ρ is small enough we see
that (7.162), (7.163) and (7.173)n+1 ensure the validity of (7.174)n+1.

Finally let us check (7.176)n+1. From Lemma 2.2 we see that (Yn, e−(3/4)δnW�n

hn,Vn
)

has a C3 σ -symmetric Whitney extension YWh
n such that

(7.189) ‖YWh
n ‖C3 � (1+#JVn

)3(δn d(Un))
−6 max

0≤j≤2
‖DjYn‖e−(2/3)δn Vn

.
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From (7.171), (7.179), (7.172) we see that #JVn
≤ 2N2

n , d(Vn)≥K−1
n hence using Cauchy’s

inequalities, (7.183), (7.163) and the fact that δ−1
n , Nn ≤K0+

n and K7
nεn ≤ ε(1/2)+

n , we get

(7.190) ‖YWh
n ‖C3 ≤ ε1/2

n .

If we define gn,n+1 = f −1
YWh

n
∈ S̃ympex,σ (Whn+1,Un+1) and for m≤ n, gm,n+1 = gm,n ◦ gn,n+1

we have from (4.98) and (2.43)

‖gm,n+1 − id‖C1 ≤C(‖gm,n − id‖C1 + ‖gn,n+1 − id‖C1)≤C
n∑

l=m

εl � εm

which is (7.176)n+1 and implies (7.169)n+1.
Note that f −1

YWh
n
= f −1

Yn
on Whn+1,Un+1 and (7.184) shows that (7.168)n+1 and (7.167)n+1

are satisfied.
We now check that (7.170) holds for n+ 1; from (7.186) it is enough to verify

(7.191) Ka0+2
n (ε 2

n + e−δnNn/2εn) < εn+1

or equivalently since e−δnNn/2 = εn, Kn = εn
− 1

2(a0+2) ,

2ε2−(1/2)
n ≤ εn+1

which is clearly satisfied since 3/2 > 4/3, cf. (7.163). �

7.2. Localization of the holes. — We can localize the holes of the domains Un:

Proposition 7.2 (Localization of the holes). — For each 1≤ m < n, one has

(7.192) ‖∂�n − ∂�m‖C2 � ε1/2
m

and for some sets Ei ⊂ {(k, l) ∈ Z2, 0 < k < Ni, 0≤ |l| ≤Ni} (1≤ i ≤ n− 1) one can write Un

as

(7.193) D(0, ρn)�

n−1⋃

i=1

⋃

(k,l)∈Ei

D(c
(i)

l/k, si,n−1K−1
i ), si,n−1 = e

∑n−1
t=i δt ∈ [1, 2]

where ρn ≥ e−1/5ρ and c
(i)

l/k is on the real axis and is the unique solution of the equation ωi(c
(i)

l/k) :=
(2π)−1∂�i(c

(i)

l/k)= l/k.

Proof. — Inequality (7.192) is consequence of (7.188), (7.187). The expression
(7.193) comes from (7.182). �

We now give a more detailed description of the structure of D(Un), the set of holes
of the domains Un appearing in Proposition 7.2, cf. (7.193).
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Lemma 7.3. — With the notations of Propositions 7.1–7.2:

(1) For any n1 ≤ n2, (kj, lj) ∈ Enj
, j = 1, 2, one has

(7.194)

{
if l1/k1 = l2/k2 then |c(n1)

l1/k1
− c

(n2)

l2/k2
|� ε 1/2

n1

if l1/k1 	= l2/k2 then |c(n1)

l1/k1
− c

(n2)

l2/k2
|� N−2

n2
.

(2) Let n1, n2 ∈N, n1 ≤ n2 and 0 < κ2 < κ1 be such that

κ1 + κ2 �N−2
n2

, ε1/2
n1
� κ1 − κ2.

Then, two disks D(c
(nj )

lj/kj
, κj), (kj, lj) ∈ Enj

, j = 1, 2, are either disjoint or l1/k1 = l2/k2 and

D(c
(n2)

l2/k2
, κ2)⊂D(c

(n1)

l1/k1
, κ1).

Proof. — Item (1) is due to (7.192) and the fact that if l1/k1 	= l2/k2

|(l1/k1)− (l2/k2)| ≥ 1/(k1k2)≥N−2
n2

.

Item (2) is a consequence of Item (1). Indeed, if l1/k1 	= l2/k2 then since κ1+κ2 �N−2
n2

and
|c(n1)

l1/k1
− c

(n2)

l2/k2
|� N−2

n2
(we assume n1 ≤ n2), the disks D(c

(n1)

l1/k1
, κ1) and D(c

(n2)

l2/k2
, κ2) must have

an empty intersection. On the other hand, if l1/k1 = l2/k2, then because of the fact that
|c(n1)

l1/k1
− c

(n2)

l2/k2
|� ε1/2

n1
, the disk D(c

(n1)

l1/k1
, κ1) contains D(c

(n2)

l2/k2
, κ2) because ε1/2

n1
+κ2 < κ1. �

7.3. Whitney conjugation to an integrable model. — By applying Lemma 2.2 one sees
that (Fn, e−δnWhn,Un

) and (fFn
, e−δnWhn,Un

) have C3 real symmetric Whitney extensions
FWh

n ∈ Õσ (e−δnWhn,Un
), fFWh

n
∈ S̃ympex,σ (Whn,Un

) (the canonical map associated to FWh
n ) such

that (see the discussion leading to (7.187) and inequality (4.98))

‖FWh
n ‖C3 � ε1/2

n , ‖fFWh
n
− id‖C1 � ε1/3

n .

We hence have

(7.195) on e−δnWhn,Un
, g−1

m,n ◦��m
◦ fFWh

m
◦ gm,n =��n

◦ fFWh
n

.

We show in the next Proposition that shrinking a little bit the domain of validity of the
preceding formula one can impose that gm,n leaves invariant the origin O= {r = 0}∩MR.

Lemma 7.4. — There exists g̃m,n ∈ S̃ympex,σ (Whn/2,Un�D(0,K−1
m )) that coincides with gm,n on

Whn/2,C�D(0,K−1
m ) and

(7.196) g̃m,n({r = 0})= {r = 0}, ‖̃gm,n − id‖C1 ≤ ε1/4
m .

Proof. — Recall that gm,n = f −1
YWh

m
◦ · · · ◦ f −1

YWh
n−1

with YWh
k ∈ C3 ∩ Oσ (e−(1/2)δnWhk,Vk

)

satisfying (7.190). Let χ : R → [0, 1] be a smooth function with support in [−1, 1]
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and equal to 1 on [−1/2, 1/2] and define the C3 σ -symmetric function Ỹk = (1 −
χ((Kmr/2)2))YWh

k . One has Ỹk = YWh
k on Wh,C�D(0,Km/2) and ‖Ỹk‖C3 � K3

m‖YWh‖C2 ≤ ε1/4
m

hence f −1
Ỹk

coincide with f −1
YWh

k

on Wh,C�D(0,K−1
m ) and ‖f −1

Ỹk
− id‖C1 � ε

1/4
k . Since for m≤ k ≤

n− 1, Ỹk is null on a neighborhood of {r = 0} the diffeomorphism f −1
Ỹk

fixes {r = 0} and

so does g̃m;n. The inequality in (7.196) follows from the fact that
∑n−1

k=m ε
1/4
k � ε1/4

m . �

Note that the sequence of diffeomorphisms n �→ g̃m,n converges in C1 to a σ -
symmetric diffeomorphism g̃m,∞ : C → C fixing the origin and that satisfies ‖̃gm,∞ −
id‖C1 � εm. On the other hand, the sequence of diffeomorphisms (fFWh

n
)n converges in C1

to the identity and from (7.192) the sequence of functions (�n)n, �n ∈ Õσ (Un) converges
in C2 to some σ -symmetric limit �∞ ∈C2

σ (C); hence from (7.195)

on
⋂

n≥m

e−δnWhn/2,Un�D(0,K−1
m ), g̃−1

m,∞ ◦��m
◦ fFWh

m
◦ g̃m,∞ =��∞ .

Recall the notations of Section 4.4 and let

Lm =R∩
⋂

n≥m

e−δn(Un � D(0, K−1
m )),

WLm
=MR ∩

⋂

n≥m

e−δnWhn/2,Un�D(0,K−1
m ).

Proposition 7.5. — For any m≥ 1 one has

on WL, g̃−1
m,∞ ◦��m

◦ fFm
◦ g̃m,∞ =��∞(7.197)

g̃m,∞(WLm
)⊂WR∩Um

,(7.198)

g̃m,n({r = 0})= {r = 0}, ‖̃gm,n − id‖C1 ≤ ε1/4
m(7.199)

LebR((R∩ e−2δmUm)� Lm) � ε
1

2(a0+3)

m .(7.200)

Proof. — Let us prove (7.198). Note that since gm,n and g̃m,n coincide on
Whn/2,C�D(0,K−1

m ) one has from (7.167) g̃m,n(e
−δnWhn,Un�D(0,K−1

m ))⊂Whm,Um
hence since g̃m,n is

σ -symmetric, g̃m,n(WLm
)⊂WR∩Um

and g̃m,∞(Lm)⊂WR∩Um
=WR∩Um

.
The conjugation relation (7.197) comes from the fact that ��Wh

m
◦ fFWh

m
coincides on

WR∩Um
with ��m

◦ fFm
.

For the proof of (7.200) we first observe that from the expression (7.193), for each
n > m the set e−

∑n
l=m δl Um � e−δnUn is a union of at most 2N2

n disks of radii ≤ 2K−1
n

hence the Lebesgue measure of its intersection with MR is ≤ 4N2
nK−1

n . In consequence,

the Lebesgue measure of R ∩ e−
∑∞

l=m δl Um �

⋂
n≥m+1 e−δnUn is �

∑∞
n=m+1 N2

nK−1
n ≤ ε

1
2(a0+3)

m
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hence

LebMR(e−2δmUm �

⋂

n≥m

e−δnUn) � ε
1

2(a0+3)

m

and since L⊃ (
⋂

n≥m e−δnUn)� eδmD(0, K−1
m ) we get that LebMR((R∩ e−2δmUm)� Lm))≤

ε
1

2(a0+3)

m + eδmK−1
m ; (7.200) follows from this inequality. �

Remark 7.1. — If U is a holed domain, Propositions 7.1, 7.2, 7.5 as well as
their proofs, extend without any change to the situation where F ∈ Oσ (ehWh,U) and
� ∈ Õσ (ehU) satisfies the twist condition (7.158)–(2.60) and if the following smallness
assumption on F holds

(7.201) ‖F‖ehWh,U ≤ d(Wh,U)a2 .

8. Hamilton-Jacobi Normal Form and the Extension Property

Our aim in this section is to provide a useful approximate Normal Form (that we
call the Hamilton-Jacobi Normal Form) in a neighborhood of a q-resonant circle {r = c} (by
which we mean that for some (p, q) ∈ Z×N∗, p∧ q= 1 ω(c)= p

q
).

Let 0 < ρ̂ < h/2 < 1/20, c ∈ R, (p, q) ∈ Z × N∗, p ∧ q = 1, � ∈ Õσ (D(c, 6ρ̂)),
F ∈Oσ (Wh,D(c,6ρ̂)) such that

∀ r ∈R, A−1 ≤ (2π)−1∂2�(r)≤ A, and ‖(2π)−1D3�‖C ≤ B.(8.202)

ε := ‖F‖Wh,D(c,6ρ̂)
≤min((6ρ̂) a3, (10A)−8),(8.203)

ω(c) := (2π)−1∂�(c)= p

q
(8.204)

(6ρ̂)1/8 < (Aq)−1 < h/10, 6ρ̂ < |c|/4(8.205)

where a3 is the constant appearing in Proposition G.1 of Appendix G on Resonant Nor-
mal Forms.

The purpose of this section is to prove the following result:

Proposition 8.1 (Hamilton-Jacobi Normal Form). — Let D̂=D(c, ρ̂). There exists a disk qD,

(8.206) qD :=D(qc, qρ)⊂ D̂=D(c, ρ̂), with qρ ≤ ε1/33

and

�
HJ
D̂ ∈ Õσ (D̂� qD)), FHJ

D̂ ∈Oσ (Wh/9,(D̂�qD)), g
HJ
D̂ ∈ S̃ympσ ((Wh/9,(D̂�qD))
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such that

�
HJ
D̂ satisfies a (2A, 2B)− twist condition(8.207)

Wh/9,(D̂�qD), (g
HJ
D̂ )−1 ◦�� ◦ fF ◦ g

HJ
D̂ =�

�
HJ
D̂
◦ fFHJ

D̂
(8.208)

‖g
HJ
D̂ − id‖C1 � qε 1/8(8.209)

‖FHJ
D̂ ‖W

h/9,(D̂�
qD)
� exp(−1/(6qρ̂)1/4)ε.(8.210)

Moreover, one has the following:

Extension property: (�
HJ
D , D̂, qD) satisfies the following Extension Principle: If there exists a

holomorphic function � ∈O(D̂) such that

‖�HJ
D −�‖(4/5)D̂�(1/5)D̂ � ν

then qρ � ν1/200.

Remark 8.1. — From Lemma K.1 and Remark K.1 of the Appendix, we just have
to prove the Proposition in the (AA)-setting. This is the setting in which we shall work in
all this section.

The proof of the first part of Proposition 8.1 is done in Section 8.7 and that of the
second part (Extension Principle), based on Proposition 8.10, is done in Section 8.9.

From now on we define

ρ = 6ρ̂.

8.1. Putting the system into Resonant Normal Form. — From Proposition G.1 of the
Appendix on the existence of approximate q-Resonant Normal Form, we know that there
exist � ∈ Õσ (D(c, e−1/qρ)), gRNF ∈ S̃ympex,σ (e−1/qWh,D(c,ρ)), F

res
, Fcor ∈Oσ (e−1/qWh,D(c,ρ))

such that F
res

is 2π/q-periodic, M0(F
res

)= 0, and

(8.211)

{
e−1/qWh,D(c,ρ), g−1

RNF ◦�� ◦ fF ◦ gRNF =�2π(p/q)r ◦�� ◦ fFres ◦ fFcor

F
res

is 2π/q− periodic, M0(F
res

)= 0,

with

(8.212)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖�− (�− 2π(p/q)r)‖D(c,e−1/qρ) � ‖F‖Wh,D(c,ρ)

‖F
res‖e−1/qWh,D(c,ρ)

� ‖F‖Wh,D(c,ρ)

‖Fcor‖e−1/qWh,D(c,ρ)
� exp(−ρ −1/4)‖F‖Wh,D(c,ρ)

‖gRNF − id‖C1 ≤ (qρ −1)5‖F‖h,D(c,ρ)
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Inequalities (8.212) and the fact that � satisfies an (A, B)-twist condition on D(0, ρ) show
that there exists a unique c ∈R such that

∂�(c)= 0, |c− c|� ε.

8.2. Coverings. — We denote Rh =R+√−1[−h, h] and by jq the q-covering

jq (C/(2πZ))×C→ (C/(2π/q)Z)×C

(θ + 2πZ, r) �→ (θ + (2π/q)Z, r).
(8.213)

Since the function F
res : (θ, r) : (Rh−2/q/(2π)Z) × D(c, e−2/qρ) → C is invariant by

(θ, r) �→ (θ + 2π/q, r) one can push it down to a function

F
res

jq
: (Rh−2/q/(2π/q)Z)×D(c, e−2/qρ)→C, F

res

jq
◦ jq = F

res
.

Let

�q : (C/(2π/q)Z)×C→C/(2π)Z×C

(θ, r) �→ (qθ, q(r − c))
(8.214)

and define F̃res : (Rqh−2/(2π)Z)×D(0, e−2/qqρ)→C by

F̃res = q2F
res

jq
◦�−1

q ;
for all (θ̃ ,̃ r) ∈ Tqh−2 × D(0, qe−2/qρ) and (θ, r) ∈ Th−2/q × D(c, e−2/qρ) such that θ̃ =
qθ,̃ r = q(r − c) one has

(8.215) F̃res(θ̃ ,̃ r)= q2F
res

(θ, c+ r).

Let f̃Fres be the (exact) symplectic mapping (for the symplectic form d θ̃ ∧ d̃r) defined by
(4.87): if (ϕ̃, R̃)=�(ϕ, R), (θ̃ ,̃ r)=�(θ, r)

(ϕ̃, R̃)= f̃Fres(θ̃ ,̃ r) ⇐⇒ (ϕ, R)= fFres
jq
(θ, r).

If we set

�̃(r) := q2

(

�(c+ (r/q))− 2π(p/q)(r/q)

)

(8.216)

= (1/2)∂2�(c)r2 +O(r3)

=� r2 + r3b(r)

we have

(8.217) �q ◦�� ◦ fFres
jq
◦�−1

q =��̃ ◦ f̃Fres .
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Note that since � satisfies an (A, B)-twist condition, one has from the first equation of
(8.212) (to which one applies Cauchy’s inequality), the estimate

(8.218) ∀ r ∈D(0, e−1/10ρ), ∂2�̃(r)� 1, ‖�̃‖C3(D(0,e−1/10qρ)) � 1.

8.3. Approximation by a Hamiltonian flow. — The following proposition says that up
to some very good approximation ��̃ ◦ f̃Fres can be seen as the time-1 map of a Hamilto-
nian vector field in the plane.

Proposition 8.2. — There exists F̃vf , F̃per ∈ Oσ (Te−2/qqh/2 × D(0, e−2/qqρ/2)), such that

on Te−2/qqh/2 ×D(0, e−2/qqρ/2) one has

��̃ ◦ f̃Fres =��̃+F̃per ◦ f̃Fvf(8.219)

F̃per = F̃res +O(ρ 1/4‖̃Fres‖T
e−2/qqh

×D(0,e−2/qqρ))=O(q2‖F‖h,D(0,ρ))(8.220)

‖̃Fvf ‖e−2/qqh/2,D(0,e−2/qqρ/2) � exp(−1/(qρ)1/4)‖F‖h,D(0,ρ).(8.221)

Proof. — This is a consequence of (8.212), (8.215) and Proposition H.1 applied to
��̃ ◦ f̃Fres (since by (8.212), (8.215), condition (H.545) is satisfied). �

Let F(θ, r)=∑2
i=0 fi(θ)ri + r 3̃f (θ, r) and define (cf. (8.216))

�̃(θ, r)= �̃(r)+ F̃per(θ, r)(8.222)

=:� r2 + f0(θ)+ f1(θ)r + f2(θ)r2 + r3(b(r)+ f̃ (θ, r))(8.223)

= (� + f2(θ))

(

r + 1
2

f1(θ)

� + f2(θ)

)2

− 1
4

f1(θ)2

� + f2(θ)

+ f0(θ)+ r3(b(r)+ f̃ (θ, r))

(8.224)

where

(8.225) max
T

e−2/qqh/2×D(0,e−2/qqρ/2)

(|f0|, |f1|, |f2|, |̃f |) � (qρ)−3q2ε.

8.4. From �̃ to �. — We assume in the rest of this section that � > 0 and we set

(8.226) ρq = qρ/3.

The next lemma provides a more convenient expression for the function, viewed
as a Hamiltonian, �̃= �̃+ F̃per which was defined in (8.222).
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Lemma 8.3. — There exists a (not exact) symplectic change of coordinates G∈SympO
σ (Tqh/3×

D(0, ρq)) of the form G(θ, r)= (θ, r − e0(θ)) and � ∈O(Tqh/3 ×D(0, e−1/10ρq)) such that

(8.227) �(θ, r) := �̃ ◦G−1(θ, r)=�(θ)(r2 − e1(θ)+ r3f (θ, r))

with �, e0, e1 ∈Oσ (Tqh/3), f ∈Oσ (Tqh/3 ×D(0, ρq)),

(8.228) ‖�(·)−�‖qh/3 � qρ −2ε, max(‖e0‖qh/3,‖e1‖qh/3),� qρ −1ε, ‖f ‖qh/3,ρq
� 1.

Proof. — See Appendix L.1. �

Remark 8.2. — The previous lemma and (8.224) show that

�(θ)=� + f2(θ)+O(ρ3
q ε)

and

e0(θ)=−1
2

f1(θ)

� + f2(θ)
+O(ρ3

q ε),

e1(θ)=−1
4

f1(θ)2

(� + f2(θ))2
+ f0(θ)

� + f2(θ)
+O(ρ3

q ε).

Remark 8.3. — Since �̃ is defined up to an additive constant (this will not change
the value of e0), we can assume that

∫

T

�̃(θ, e0(θ))

�(θ)1/2

dθ

2π
= 0

which is equivalent to the following condition that we will assume to hold from now on

(8.229)
∫

T
�(θ)1/2e1(θ)

dθ

2π
= 0.

8.5. Hamilton-Jacobi Normal Form for �. — The symplectic diffeomorphism �� is
the time-1 map of a Hamiltonian defined on the cylinder, and as such, it is integrable
in the Hamilton-Jacobi sense: the level lines of the Hamiltonian foliate the cylinder and
naturally provide invariant curves for the Hamiltonian flow. On some open sets41 it is
possible to conjugate �� to a Hamiltonian depending only on the action variable: this is
the Hamilton-Jacobi Normal Form; see Proposition 8.7. The purpose of this Subsection
is to quantify this fact.

41 These are cylindrical domains outside the “eyes” defined by separatrices (think of a pendulum).
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Recall the expression for �

�(θ, r)=�(θ)(r2 − e1(θ)+ r3f (θ, r)).

Let 0≤ s ≤ h/3. We denote

(8.230) ε1 := ‖e1‖C0(T) � qρ −1ε, ε1,s = ε1(s)= ‖e1‖qsh/3,

and for L� 1 we introduce

(8.231) λ0,L := Lε
1/2
1 , λs,L = λ(s, L)= Lε

1/2
1,s ,

with the requirement

(8.232) λs,L < qρ/6= ρq/2 or equivalently 1� L � qρε
−1/2
1,s .

We notice that 0 < λs,L � ρq and that from the Three Circles Theorem

(8.233) ε1(0)≤ ε1(s)≤ ε1(0)1−sε1(1)s

hence

(8.234) λ0,L = Lε
1/2
1 ≤ λs,L ≤ Lε

(1−s)/2
1 .

Notation 8.4. — For 0 < a1 < a2 and z ∈C we denote by A(z; a1, a2) the annulus centered

at z with inner and outer radii of sizes respectively a1 and a2. When z= 0 we simply denote this annulus

by A(a1, a2).

Before giving the Hamilton-Jacobi Normal Form of � we need two lemmas.

Lemma 8.5. — There exists a holomorphic function g defined on

Dom(g) :=
⋃

0≤s≤1

(Tqsh/3 × A(λs,L, ρq))

such that for every (θ, z) ∈Dom(g) one has

(8.235) �(θ, g(θ, z))= z2.

Moreover, there exists g̊ ∈O(Dom(g)) such that on Dom(g) one has

(8.236) g(θ, z)=�(θ)−1/2z(1+ g̊(θ, z)), ‖g̊‖Dom(g) � L−2.

Proof. — See the Appendix, Section L.3. �
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Since T×A(λ0,L, ρq)⊂Dom(g) we can define the function � ∈O(A(λ0,L, ρq)) by
� : A(λ0,L, ρq)→C

(8.237) �(u)= (2π)−1

∫ 2π

0
g(ϕ, u)dϕ.

Using (8.236) we see that � can be written

�(u)= γ u(1+ �̊(u)), γ := (2π)−1

∫ 2π

0
�(θ)−1/2dθ,

‖�̊‖A(λs,L,ρq) � L−2.

Lemma 8.6. — There exists a solution H ∈O(A(2λs,L, ρq/2)) of the equation

(8.238) �(H(z))= z.

Moreover it can be written

(8.239) H(z)= γ −1z(1+ H̊(z)), ‖H̊‖A(2λs,L,(1/2)ρq) ≤ L−2.

Proof. — See the Appendix, Section L.4. �

We now apply the preceding results with

s= 1/2.

Proposition 8.7 (Hamilton-Jacobi). — There exists an exact symplectic change of coordinates

W ∈ S̃ympex,σ (Tqh/7 × A(3ε
1/32
1 , ρq/3)) such that

(8.240) W
−1 ◦�� ◦W=�H2

(8.241) ‖W− id‖C1 � qε
1/4
1 .

Proof. — Let H be the function defined by the previous lemma (with s = 1/2) and
define for z ∈ A(2λ1/2,L, ρq/2) and θ ∈ Jqh/6 := [−4π, 4π ] + i[−qh/6, qh/6]

(8.242) S(θ, z)=
∫

[0,θ]
g(ϕ, H(z))dϕ.

We notice that by Cauchy’s Formula, (8.237) and (8.238)

S(θ + 2π, z)− S(θ, z)=
∫

[θ,θ+2π]
g(ϕ, H(z))dϕ

=
∫ 2π

0
g(ϕ, H(z))dϕ
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= 2π�(H(z))

= 2πz

hence

� : (θ, z) �→ S(θ, z)− θz

defines a holomorphic function on Tqh/6 × A(2λ1/2,L, ρq/2). Moreover, from (8.242),
(8.236) and (8.239) one can write

S(θ, z)=
∫ θ

0
g(ϕ, H(z))dϕ

=
∫ θ

0
�(ϕ)−1/2H(z)(1+ g̊(ϕ, H(z)))dϕ

= γ θH(z)+
∫ θ

0
�(ϕ)−1/2H(z)g̊(ϕ, H(z))dϕ

= θz(1+ H̊(z))+
∫ θ

0
�(ϕ)−1/2H(z)g̊(ϕ, H(z))dϕ

and we see that

‖�‖Tqh/6×A(2λ1/2,L,ρq/2) � L−2(1+ qh/6).

Define UL,δ = Tqh/6−δ × A(2Lε
1/4
1 + δ,ρq/2− δ) and note that by (8.234) one has

λ1/2,L ≤ Lε
1/4
1 so that UL,0 ⊂Tqh/6 × A(2λ1/2,L, ρq/2) and

‖�‖UL,0 � qL−2.

By Cauchy’s estimates

(8.243) ‖�‖C2(UL,δ) � q(δL)−2.

Let us choose, δ = ε
1/16
1 and

(8.244) L= ε
−7/32
1 .

We then have Lε
1/4
1 = ε

(−7/32)+(8/32)

1 = ε
1/32
1 , L−2δ−2 = ε

(7/16)−(2/16)

1 = ε
5/16
1 , L−2δ−3 =

ε
(7/16)−(3/16)

1 = ε
1/4
1 hence

(8.245) ‖�‖C2(Tqh/6×A(2ε
1/32
1 ,ρq/2))

� qε
1/4
1 .

Using Lemma 2.2 and Lemma 4.4, we see that (�,Tqh/6 × A(2ε
1/32
1 , ρq/2)) has

a C2, σ -symmetric Whitney extension �Wh such that

(8.246) W= f −1
�Wh, W

−1 = f�Wh ∈ S̃ymp(Tqh/7 × A(3ε
1/32
1 , ρq/3))
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and (‖W− id‖C1 � ε
−4/32
1 ε

1/4
1 )

(8.247) ‖W− id‖C1 � qε
1/8
1 .

On the other hand taking the derivative of (8.242) we have

(8.248) ∂θS(θ, z)= g(θ, H(z))

and so S is a solution of the Hamilton-Jacobi equation

�(θ,
∂S
∂θ

(θ, z))=�(θ, g(θ, H(z)))(8.249)

=H2(z) (by (8.235)).(8.250)

Hence, the exact symplectic change of variable W= f −1
�

(8.251) W
−1 = f� : (θ,w) �→ (ϕ, z)⇐⇒

{
w = ∂S

∂θ
=w+ ∂θ�(θ, z)

ϕ = ∂S
∂z
= θ + ∂z�(θ, z)

conjugates ��(θ,w) to �H(z)2 since from (4.82)

� ◦W=H2 ⇐⇒ W
−1 ◦�� ◦W=�H2 .

This concludes the proof. �

8.6. Consequences on ��̃ ◦ f̃F. — Let G : (θ, r) �→ (θ, r + e0(θ)) be the diffeomor-
phism introduced in Lemma 8.3 and

(8.252) W̃=G ◦W.

We notice that W̃ ∈ S̃ympσ (Tqh/7×A(3ε
1/32
1 , ρq/3)) and that its image contains G(Tqh/7×

A(3ε
1/32
1 , ρq/3)) (see (8.246)); from (8.247) and (8.228) we have

(8.253) ‖W̃− id‖C1 � qε
1/8
1 .

Corollary 8.8. — One has

(8.254) W̃−1 ◦��̃ ◦ f̃Fres ◦ W̃=�H2 ◦ f̂Fvf

with

(8.255) ‖̂Fvf ‖Tqh/8×A(4ε
1/32
1 ,ρq/4))

� exp(−1/(qρ)1/4)‖F‖h,D(0,ρ).
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Proof. — Recall that from (8.219) and the definition of �̃ (8.222))

��̃ ◦ f̃Fres =��̃+F̃per ◦ f̃Fvf

=��̃ ◦ f̃Fvf .

By Lemma 8.3 and Proposition 8.7

G−1 ◦��̃ ◦G=��, W
−1 ◦�� ◦W=�H2

hence

W̃−1 ◦��̃ ◦ W̃=�H2

and so

W̃−1 ◦��̃ ◦ f̃Fvf ◦ W̃=�H2 ◦ f̂Fvf , f̂Fvf = W̃−1 ◦ f̃Fvf ◦ W̃

which is (8.254).
The estimate on F̂vf comes from (8.221) and (8.253). �

8.7. Proof of Proposition 8.1: existence of Hamilton-Jacobi Normal Form. — Let W̃ be the
diffeomorphism constructed in Corollary 8.8 (cf. (8.252)). The map �q (defined in (8.214))
sends ((R+ i] − h/8, h/8[)/(2π/q)Z)× A(c;4q−1ε

1/32
1 , ρ/4) to Tqh/8 × A(4ε

1/32
1 , qρ/4).

From (8.217), (8.254) one has

W̃−1 ◦�q ◦�� ◦ fFres
jq
◦�−1

q ◦ W̃=�H2 ◦ f̂Fvf

hence

(�−1
q ◦ W̃−1 ◦�q) ◦�� ◦ fFres

jq
◦ (�−1

q ◦ W̃ ◦�q)

= (�−1
q ◦�H2 ◦�q) ◦ (�−1

q ◦ f̂Fvf ◦�q).

Let W, ��̊HJ and fF̊vf be lifts by jq (defined in (8.213)) of �−1
q ◦ W̃ ◦�q, �−1

q ◦�H2 ◦�q

and �−1
q ◦ f̂Fvf ◦ �q. Since �� ◦ fFres is a lift by jq of �� ◦ fFres

jq
one has for some m ∈ Z

(0≤ m≤ q− 1)

W−1 ◦�� ◦ fFres ◦W=�2π(m/q)r ◦��̊HJ ◦ fF̊vf

where

(8.256) �̊HJ(r)= q−2H2(q(r − c)), F̊vf =O(̂Fvf ).

If we define

f̂Fcor =W−1 ◦ fFcor ◦W, F̂cor =O(Fcor)(8.257)

gHJ = gRNF ◦W (gRNF from (8.211))(8.258)
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one has from (8.211) (note that W commutes with �2π(p/q)r )

(gHJ)−1 ◦�� ◦ fF ◦ gHJ =�2π(p/q)r ◦W−1 ◦�� ◦ fFper ◦W ◦ f̂Fcor(8.259)

=�2π(p/q)r ◦�2π(m/q)r ◦��̊HJ ◦ fF̊vf ◦ f̂Fcor

=:��HJ ◦ fFHJ

with (see (8.256), (8.255), (8.212))

�HJ ∈Oσ (A(c;5q−1ε
1/32
1 , ρ/5)),(8.260)

�HJ(r)= 2π((p+ m)/q)r + q−2H2(q(r − c))(8.261)

FHJ = F̊vf + F̂cor +O2(F̊vf , F̂cor) ∈Oσ (Th/9 × A(c;5q−1ε
1/32
1 , ρ/5))(8.262)

‖FHJ‖� exp(−1/(qρ)1/4)ε.(8.263)

With a slight abuse of notation, we can write W=�−1
q ◦ W̃ ◦�q and using (8.258),

(8.252) and the definition of W (cf. Proposition 8.7) we can write

gHJ = gRNF ◦�−1
q ◦ (G ◦W) ◦�q ∈ S̃ympσ (Th/9 × A(c;5q−1ε

1/32
1 , ρ/5)).

The last inequality of (8.212) and (8.253) show that (remember (8.230))

(8.264) ‖gHJ − id‖C1 � qε
1/8
1 + qε1− � qε 1/8 (ε1 � qρ −1ε).

Note that since ‖gHJ − id‖C1 , ‖fF − id‖ (cf. (8.203)) and ‖fFHJ − id‖ (cf. (8.263)) are
� 1/q, the conjugation relation (8.259) shows that the integer m appearing in (8.261)
must be equal to 0. Hence,

(8.265) �HJ(r)= 2π(p/q)r + q−2H2(q(r − c)).

Let us now check that one can choose �HJ in Õσ (D̂� qD) which satisfies a (2A, 2B)-
twist condition. Indeed, from (8.239) and Cauchy’s inequality (recall our choice (8.244)
L= ε

−7/32
1 ) we see that

‖q−2H2(q(r − c))− γ −2(r − c)2‖C3(Th/9×A(c;6q−1ε
1/32
1 ,ρ/6))

� qε
−3/32
1 ε

7/16
1 ≤ qε

11/32
1 .

We now apply Lemma 2.2: since ε
−6/32
1 × ε

11/32
1 � ε

5/32
1 , there exists a C3 σ -sym-

metric Whitney extension with C3-norm less that qε
1/7
1 < ε1/8 for (q−2H2(q(r − c)) −

γ −2(r − c)2,Th/9 × A(c;6q−1ε
1/32
1 , ρ/6)). Using (8.265) and the inequality ε1/8 �

(1/2) min(A, B) (cf. (8.203)) we see that �HJ has a Whitney extension (that we still de-
note �HJ) such that

(8.266) �HJ satisfies a (2A, 2B)− twist condition.
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We can now conclude the proof of Proposition 8.1. We define the disk qD of Propo-
sition 8.1 as (cf. (8.230), (8.228))

(8.267)

{
qD=D(qc, qρ)⊂D(c, ε 1/33)

qc= c, qρ = 6ε
1/32
1 = 6‖e1‖1/32

C0(T)
≤ ε 1/33 (ε1 � qρ −1ε)

and the disk D̂ can be taken to be (recall |c− c|� ε)

(8.268) D̂=D(c, ρ/6)=D(c, ρ̂).

With these notations, the set of conclusions (8.207)–(8.210) are consequences of (8.266),
(8.259), (8.264) and (8.263). �

8.8. Extending the linearizing map inside the hole. — In general the previously defined
maps g,�, H are not holomorphically defined on a whole disk but rather on an annulus with
inner disk of radius 6ε

1/32
1 where ε1 = ‖e1‖C0(T). In this subsection we quantify to which

extent the domains of holomorphy of these maps can be extended if one knows that the
frequency map �HJ coincides on this annulus with a holomorphic function defined on a
disk (containing the annulus).

Notation 8.9. — In the following we denote by C(0, t) the circle of center 0 and radius t > 0.

Proposition 8.10. — If there exists a holomorphic function �̃ defined on D(0, ρq) such that

(8.269) ‖�̃−H2‖C(0,ρq/2) ≤ ν

then

ε1 = ‖e1‖C0(T) � ν(1/6)−.

We prove this proposition in Section 8.8.2.
We now take

s= 0. (cf. (8.231))

By (8.236) for z ∈ A(λ/2, λ/4), |g(θ, z)| compares to λ and thus from (8.235) and
(8.227)

z2 =�(θ)

(

g(θ, z)2 − e1(θ)

)

+O(g3)



80 RAPHAËL KRIKORIAN

so that

g(θ, z)=
(

z2/�(θ)+ e1(·)+O(g3)

)1/2

(8.270)

=
(

(z2/�(θ))+ e1(θ)

)1/2

+O(λ2).(8.271)

Let’s introduce

(8.272) g̃(θ, z)=
(

z2

�(θ)
+ e1(θ)

)1/2

(8.273) �̃(·)= (2π)−1

∫ 2π

0
g̃(θ, ·)dθ, H̃= �̃−1

where the inverse is with respect to composition. The functions �̃ and H̃ are defined on
{z ∈C, Lε

1/2
1 < |z|} for some fixed L� 1, independent of ε1, satisfying

(8.274) L≤ (ρq/2)ε
−1/2
1

(we take here s= 0, cf. (8.231)).

8.8.1. Computation of a residue.

Lemma 8.11. — For any circle C(0, t) centered at 0 with Lε
1/2
1 < t < ρq/2 one has

1
2π i

∫

C(0,t)

zH̃(z)2dz= (γ /4)

∫

T
�(θ)3/2e1(θ)2 dθ

2π

where γ = (2π)−1
∫ 2π

0 �(θ)−1/2dθ .

Proof. — We compute the expansion of g̃(θ, ·) (cf. (8.272)) into Laurent series: on
C � D(0, Lε

1/2
1 ):

g̃(θ, z)= (z/�(θ)1/2)

(

1+�(θ)e1(θ)z−2

)1/2

= (z/�(θ)1/2)

(

1+ 1
2

�(θ)e1(θ)z−2− 1
8

(�(θ)e1(θ))2z−4+O(z−6)

)

= z

�(θ)1/2
+ 1

2
�(θ)1/2e1(θ)z−1 − 1

8
�(θ)3/2e1(θ)2z−3 +O(z−5).
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As a consequence since �̃(z) = (2π)−1
∫ 2π

0 g̃(θ, z)dθ we have with the notation γ =
(2π)−1

∫ 2π

0 �(θ)−1/2dθ the identity

�̃(z)= γ (z+ a−1z−1 + a−3z−3)+O(z−5)

where

(8.275)

a−1 = γ −1(1/2)(2π)−1

∫ 2π

0
�(θ)1/2e1(θ)dθ

a−3 = γ −1(−1/8)(2π)−1

∫ 2π

0
�(θ)3/2e1(θ)2dθ.

By our choice (8.229) we have a−1 = 0 and we can thus write

(8.276) �̃ =�γ ◦ (id + u)

where �γ z= γ z and

u(z)= a−3z−3 +O(z−5).

If v is defined by

(id + u) ◦ (id + v)= id

we have

v(z)=−a−3z−3 +O(z−4)

and therefore

(z+ v(z))2 = (z− a−3z−3 +O(z−4))2(8.277)

= z2 − 2a−3z−2 +O(z−3).

Now since H̃ is the inverse for the composition of �̃ (cf. (8.273)), z = (�̃ ◦ H̃)(z),
we have by (8.276) H̃= (id + u)−1 ◦�−1

γ = (id + v) ◦�−1
γ and we get by (8.277)

H̃(z)2 = γ −2z2 − 2a−3γ
2z−2 +O(z−3)

and thus

zH̃(z)2 = γ −2z3 − 2a−3γ
2z−1 +O(z−2).
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Hence by Cauchy’s formula and (8.275), for any circle C(0, t), Lε
1/2
1 < t < ρq/2:

1
2π i

∫

C(0,t)

zH̃(z)2dz=−2a−3γ
2

= (γ /4)

∫

T
�(θ)3/2e1(θ)2 dθ

2π
. �

8.8.2. Proof of Proposition 8.10.

Lemma 8.12. — Let Lε
1/2
1 ≤ λ < ρq/2, L � 1 (independent of ε1). One has for z ∈

A(λ/4, λ/2)

(8.278) |H(z)2 − H̃(z)2|� λ3.

Proof. — For z ∈ A(λ/4, λ/2), θ ∈T one has by (8.271), (8.272)

|g(θ, z)− g̃(θ, z)|� λ2

so (cf. (8.237), (8.273))

(8.279) |�(z)− �̃(z)|� λ2.

On the other hand, from Lemma L.1

e−3/L2 ≤
∣
∣
∣
∣
g̃(θ, z)− g̃(θ, z′)

z− z′

∣
∣
∣
∣≤ e2/L2

hence

(8.280) e−3/L2 ≤
∣
∣
∣
∣
�̃(z)− �̃(z′)

z− z′

∣
∣
∣
∣≤ e2/L2

.

Since z= �(H(z))= �̃(H̃(z)) and H(z), H̃(z)� z (cf. (8.239)), one has from (8.279)

|�̃(H(z))− �̃(H̃(z))|� λ2

and so from (8.280)

|H̃(z)−H(z)|� λ2.

Since from (8.239) |H̃(z)+H(z)|� λ we thus have

|H̃(z)2 −H(z)2|� λ3. �
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We recall that ε1 = ‖e1‖C0(T). The function �̃−H2 satisfies (cf. (8.269), (8.239))

‖�̃−H2‖C(0,ρq/2) � ν, ‖�̃−H2‖C(0,Lε
1/2
1 )

� 1.

Let M > 5 and

(8.281) λM := (ρq/2)1/M(Lε
1/2
1 )1−1/M ≤ (Lε

1/2
1 )1−1/M

(we can assume ρq ≤ 1). By the Three Circles Theorem,

‖�̃−H2‖C(0,λM) � ν1/M.

Lemma 8.12 tells us that

‖�̃− H̃2‖C(0,λM) � ν1/M + λ3
M

hence for any z in the circle C(0, λM)

|z�̃(z)− zH̃2(z)|� λM(ν1/M + λ3
M)

and
∣
∣
∣
∣

1
2π i

∫

C(0,λM)

(z�̃(z)− zH̃2(z))dz

∣
∣
∣
∣� λ2

M(ν1/M + λ3
M).

Since z �→ z�̃(z) is holomorphic on D(0, 2λM),
∫

C(0,λM)
z�̃(z)dz= 0 and by Lemma 8.11

we get
∫

T
� 3/2(θ)e1(θ)2dθ � λ2

M(ν1/M + λ3
M).

Since �(θ) � 1 this gives
∫

T
e1(θ)2dθ � λ2

M(ν1/M + λ3
M)

hence remembering (8.281)

‖e1‖L2(T) � λMν1/(2M) + λ
5/2
M

� L(1−1/M)ε
(1/2)(1−1/M)

1 ν1/(2M) + L(5/2)(1−1/M)ε
(5/4)(1−1/M)

1 .

If we define

δM = L(5/2)(1−1/M)ε
(5/4)(1−1/M)−1
1 , μM = L(1−1/M)ε

(1/2)(1−1/M)

1 ν1/(2M)

this can be written (recall that ‖e1‖C0(T) = ε1 � qρ −1ε) for some C > 0

‖e1‖L2(T) ≤CδM‖e1‖C0(T) +CμM
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and we are in position to apply Lemma M.2 (our choice M > 5 implies that for some
β > 0, δM ≤ ε

2β

1 � 1):

ε1 = ‖e1‖C0(T) ≤ (μM/δM)+Ch−1 exp(−h/(Cδ2
M))qρ −1ε

� (μM/δM)+ exp(−(1/ε1)
β) (β > 0)

� (μM/δM)+ (1/2)ε1

which gives

ε1 � L−(3/2)(1−1/M)ε
1−((3/4)(1−1/M))

1 ν1/(2M)

or equivalently

ε
(3/4)(1−1/M)

1 � L−(3/2)(1−1/M)ν1/(2M)

and taking M= 5+, one finally gets:

ε1 � L−(2−)ν(1/6)−

≤ ν(1/6)−.

This completes the proof of Proposition 8.10. �

8.9. Proof of Proposition 8.1: the Extension Property. — From (8.265) we see that if there
exists a holomorphic function � defined on D̂ such that

‖�−�
HJ
D ‖(4/5)D̂�(1/5)D̂ � ν

there exists a holomorphic function �̃ defined on D(0, ρq) (recall that ρq = qρ/3 cf.

(8.226)) such that

‖�̃−H2‖C(0,ρq/2) � ν

and thus by Proposition 8.10

ε1 = ‖e1‖C0(T) � ν(1/6)−.

Now (8.267) shows that the conclusion of Proposition 8.1 holds with qD=D(c, ν1/200). �

9. Comparison Principle for Normal Forms

In this section, if 0≤ ρ1 < ρ2, we denote by A(c;ρ1, ρ2) the annulus {z ∈C, ρ1 ≤
|z− c|< ρ2} (it is thus the disk D(c, ρ2) if ρ1 = 0).
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Proposition 9.1 ((AA) Case). — There exist positive constants C, a4, a5 for which the following

holds. Let 0 < ρ1 < ρ2 (resp. ρ1 = 0 < ρ2), ε, ν > 0 and for j = 1, 2, �j ∈ Õσ (A(c;ρ1, ρ2)),

Fj ∈Oσ (Wh,A(c;ρ1,ρ2)), gj ∈ S̃ympσ (Wh,A(c;ρ1,ρ2)) such that: �1,�2 satisfy an (A, B)-twist condi-

tion (2.59) and

(9.282)
‖gj − id‖C1 ≤ ε < C

−1
h

‖Fj‖Wh,A(c;ρ1,ρ2)
≤ ν

and on g1(A(c;ρ1, ρ2))∩ g2(A(c;ρ1, ρ2)) one has

g1 ◦��1 ◦ fF1 ◦ g−1
1 = g2 ◦��2 ◦ fF2 ◦ g−1

2 .

Then, if δ > 0 satisfies

(9.283) Cε ≤ δ/4 < (ρ2 − ρ1) and Cδ− a4ν < 1,

there exists γ ∈R, |γ | ≤Cε such that one has

(9.284)
‖∂�1(· + γ )− ∂�2‖A(c;ρ1+δ,ρ2−δ) ≤Cδ− a5ν.

(resp. ‖∂�1(· + γ )− ∂�2‖D(c,ρ2−δ) ≤Cδ−a5ν.)

Furthermore, if g1 and g2 are exact symplectic on MR, one can choose γ = 0.

Proof. — We only treat the case ρ1 > 0 (the case ρ1 = 0 is done similarly).
From (9.282) we see that there exists C > 0 such that one has on W1 := Th−Cε ×

A(c;ρ1 +Cε,ρ2 −Cε)

(9.285) g ◦��1 =��2 ◦ g ◦ fF

where

g := g−1
2 ◦ g1 ∈ S̃ympσ (W1)

F ∈O(W1), fF := g−1 ◦ fF2 ◦ g ◦ f −1
F1

, ‖F‖W1 � ν.

We write

(9.286) g(θ, r)= (θ + u(θ, r), r + v(θ, r))

and we introduce the notations ωi = ∂�i, i = 1, 2 (we drop the usual factor (2π)−1). We
have

g ◦��1(θ, r)= (θ +ω1(r)+ u(θ +ω1(r), r), r + v(θ +ω1(r), r))
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and

��2 ◦ g = (θ + u(θ, r)+ω2(r + v(θ, r)), r + v(θ, r))

We thus have on W2 :=Th−Cε−Bρ2−δ × A(c;ρ1 +Cε+ δ,ρ2 −Cε− δ)

(9.287)

{
ω2(r + v(θ, r))−ω1(r)= I+ u(θ +ω1(r), r)− u(θ, r)

v(θ +ω1(r), r)− v(θ, r)= II

with max(‖I‖W2,‖II‖W2)= O(δ−bν). We observe that from the twist assumption on �1

there exists a set R⊂ A(c;ρ1 +Cε + δ,ρ2 −Cε − δ) of Lebesgue measure � δ2, which
is a countable union of disks centered on the real axis, such that one has for any r ∈
A(c;ρ1 +Cε+ δ,ρ2 −Cε− δ)� R and any k ∈ Z∗

(9.288) min
l∈Z

|ω1(r)− 2π
l

k
| ≥ δ2

k3

so that the second identity in (9.287) gives for any r ∈ A(c;ρ1+Cε+ δ,ρ2−Cε− δ)�R
the following inequality on Th1−2δ (where h1 = h−Cε− Bρ2)

(9.289) ‖v(·, r)−
∫

T
v(θ, r)dθ‖h1−2δ � δ−3δ−bν.

We now notice that there exists 0≤ t ≤ δ2 such that R∩ ∂A(c;ρ1+Cε+ δ+ t, ρ2−Cε−
δ − t) = ∅. The maximum principle applied, for any ϕ ∈ Th1−2δ , to the holomorphic
function v(ϕ, ·)− ∫

T v(θ, ·)dθ defined on A(c;ρ1 +Cε + δ + t, ρ2 −Cε − δ − t) shows
that (9.289) holds for any r ∈ A2δ := A(c;ρ1 +Cε+ 2δ,ρ2 −Cε− 2δ). We thus have

(9.290) ‖∂θv‖h1−3δ,A3δ
=O(δ−(4+b)ν).

Taking the ∂θ derivative of the first line of (9.287) and using the previous inequality show
that (from now on the value of b may change from line to line)

∂θu(θ +ω1(r), r)− ∂θu(θ, r)=O(δ−bν).

By the same argument used to establish (9.290) we get

(9.291) ‖∂θu‖h1−4δ,A4δ
=O(δ−bν)

(we have used the fact that
∫

T ∂θu(θ, r)dθ = 0). Since g is symplectic on W1, det Dg(θ, r)≡
1 hence

(1+ ∂θu(θ, r))(1+ ∂rv(θ, r))− ∂ru(θ, r)∂θv(θ, r)= 1

and in view of (9.290), (9.291)

‖∂rv‖h1−4δ,A4δ
=O(δ−bν)
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which combined with (9.290) implies,

(9.292) ‖v − γ ‖h1−4δ,A4δ
=O(δ−bν), γ = v(0, 0) ∈R.

The first equation of (9.287) implies that

‖ω2(· + γ )−ω1(·)‖A4δ
=O(δ−bν)

which is the first conclusion of the Proposition (9.284).
If g1 and g2 are exact symplectic, g is also exact symplectic and one can write g = fZ

for some Z=O1(g − id) which means g(θ, r)= (ϕ, R) if and only if r =R+ ∂θZ(θ, R),
ϕ = θ + ∂RZ(θ, R). In particular

r = r + v(θ, r)+ ∂θZ(θ, r + v(θ, r))

and since

d

dθ
Z(θ, r + v(θ, r))= ∂θZ(θ, r + v(θ, r))+ ∂RZ(θ, r + v(θ, r)∂θv(θ, r)

we get from (9.290)

v(θ, r)=− d

dθ
Z(θ, r + v(θ, r))+O(δ−bν)

which after integration in θ yields
∫

T
v(θ, r)dθ =O(δ−bν).

We can now conclude from (9.292) that

γ =O(δ−bν).

In particular, taking γ = 0 does not affect the estimate (9.284). �

Proposition 9.2 ((CC)-Case). — Under the assumptions of the previous Proposition 9.1:

(1) If c= 0, ρ = ρ2, ρ1 = 0 and g1, g2 are exact symplectic then

‖∂�1(·)− ∂�2(·)‖D(0,ρ2−δ) ≤Cδ−a5ν.

(2) If ρ2 < |c|/4 then all the conclusions of the previous Proposition 9.1 are valid.

Proof. — The proof of Item (2) follows from Item (2) of Lemma K.1 of the Ap-
pendix applied to Proposition 9.1.
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So we concentrate on the proof of Item (1), c = 0, ρ = ρ2, ρ1 = 0. We use the
symplectic change of coordinates of Section K (θ, r)=ψ−1

± (z,w),

ψ± :Th ×�±
α (0, ρ)→Wh,�±

α (0,ρ) ∩ {e−2h < |z|/|w|< e2h}
where α < π/10. Setting gj,± =ψ−1

± ◦ gj ◦ψ±, g± = g−1
2,± ◦ g1,±, g±(θ, r)= (θ+u±(θ, r), r+

v±(θ, r)) we are then reduced to the preceding situation where g is replaced by g±, the
annulus A(c2;ρ1, ρ2) is replaced by the angular sector �±

α+4δ(ρ − 4δ) and h by h − 4δ,
so that (9.287) holds on Th−4δ ×�±

α−4δ(ρ − 4δ). Like in the previous case, one can find
0≤ t ≤ δ2 such that the Diophantine condition (9.288) holds for any r ∈�±

α+4δ(0; t, ρ −
4δ − t) :=�±

α+4δ(ρ − 4δ) ∩ A(0; t, ρ − 4δ − t). Still by the Maximum Principle (9.290)
holds on Th−5δ ×�±

α+5δ(0; t, ρ − 5δ − t) with v replaced by v± and one can conclude as
we’ve done before that (9.291) holds with u replaced by u± as well. Finally this gives the
existence of γ± = v±(0, 0) ∈R such that on �±

α+5δ(0; t, ρ − 5δ− t)

(9.293) ‖ω2(· + γ±)−ω1(·)‖A4δ
=O(δ−bν).

Now, if g1 and g2 are exact symplectic the same is true for g1,±, g2,± (cf. Remark 4.2) and
hence g± is also exact symplectic; we can thus prove, like in the proof of Proposition 9.1,
that ±γ = O(δ−bν). We can hence assume that γ± = 0 in equation (9.293). Since α <

π/10 we deduce that on A(0; t, ρ − 5δ − t)=�+
α+5δ(0; t, ρ − 5δ − t) ∪�−

α+5δ(0; t, ρ −
5δ − t) one has

‖ω2(·)−ω1(·)‖A(0;t,ρ−5δ−t) =O(δ−bν).

But ω1,ω2 ∈O(D(0, ρ)), hence by the Maximum Principle

‖ω2(·)−ω1(·)‖D(0,ρ−5δ−t) =O(δ−bν). �

10. Adapted Normal Forms: ω0 Diophantine

Recall that for τ ≥ 1, κ > 0

DC(κ, τ )= {ω0 ∈R, ∀ k ∈ Z∗, min
l∈Z

|ω0 − l

k
| ≥ κ

|k|1+τ
}

DC(τ )=
⋃

κ>0

DC(κ, τ ).

Let h > 0, 0 < ρ < 1, A, B ≥ 1, � ∈ Õσ (e10hD(0, ρ)), F ∈Oσ (e10hWh,D(0,ρ)) such
that

∀ r ∈R, A−1 ≤ (2π)−1∂2�(r)≤ A, and ‖(2π)−1D3�‖C ≤ B(10.294)

ω0 := (2π)−1∂�(0) ∈DC(κ, τ )⊂DC(τ )(10.295)
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∀ 0 < ρ ≤ ρ, ‖F‖e10hWh,D(0,ρ)
≤ ρm,(10.296)

where m=max(a1,τ , a2 + 4, a3, a4, 2bτ + 10)(10.297)

(a1,τ , a2, a3, a4 are the constants appearing in Propositions 6.5, 7.1, 8.1, 9.1 and bτ is
defined by (6.152)).

We as usual denote ω= (1/2π)∂� (ω(0)= ω0).

10.1. Adapted KAM domains. — We use in this section the notations of Section 7,
in particular we denote

(10.298) ε := max
0≤j≤3

‖DjF‖h,Dρ
≤ ρ a2 .

Assumption (10.296) allows us to apply Proposition 7.1 on the existence of a KAM Nor-
mal Form on the domain W2h,D(0,ρ). We can thus define holed domains Un and maps Fn,
�n, gm,n satisfying the conclusions of Proposition 7.1.

10.1.1. Definition of the domains U(ρ)

i . — Let 0 < β �τ 1 and μ ∈]1, 1+ 1/τ [ such
that

(10.299) μ =
defin.

(

1+ 1
τ

)

(1− β) ∈]1, 1+ 1/τ [.

We define for ρ < ρ/4 two indices i−(ρ), i+(ρ) ∈N as follows:

(10.300) i−(ρ) =
defin.

max{i ≥ 1, D(0, 2ρ)∩Ui =D(0, 2ρ)}
and

(10.301)

{
i+(ρ) is the unique index such that

(Ni−(ρ))
μ ≤Ni+(ρ) < (4/3)μ(Ni−(ρ))

μ ≤N2
i−(ρ).

We also define ι(ρ) ∈R∗
+ by

(10.302)

{
ι(ρ) ∈R∗

+ such that

ρ = (Ni−(ρ))
−ι(ρ), Ni−(ρ) = ρ−1/ι(ρ).

The next lemma shows how Ni−(ρ) and Ni+(ρ) compare with ρ.

Lemma 10.1. — One has

(10.303) (1+ 1/τ)+O(| ln ρ|−1)≤ ι(ρ)≤ (1+ τ)+O(| ln ρ|−1).

In particular,

(10.304) Ni+(ρ) � ρ−μ/ι(ρ),
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where for ρ �β 1

(10.305)
1
τ
− 2β ≤ μ

ι(ρ)
≤ 1− (β/2).

Proof. — To prove (10.303) we just have to check that

(10.306) (Ni−(ρ))
−(1+τ) � ρ � (Ni−(ρ))

−(1+1/τ).

See the details in Appendix I.1. �

We shall say that the domains Ui , i−(ρ)≤ i ≤ i+(ρ), are ρ-adapted KAM domains.
For t > 0 and i−(ρ)≤ i ≤ i+(ρ) we define

U(t)

i =Ui∩D(0, t), Dt(Ui)=D(U(t)

i )= {D ∈D(Ui), D∩D(0, t) 	= ∅}
Ui being the domains of Proposition 7.1 and where as usual D(U) denotes the holes of
the holed domain U (see Section 2.3.1). By (7.193)

(10.307)

{
U(t)

i :=Ui ∩D(0, t)=D(0, t)�
⋃i−1

j=1

⋃
(k,l)∈Ej

D(c
(j)

l/k, sj,i−1K−1
j ),

sj,i−1 = e
∑i−1

m=j δm ∈ [1, 2]
where

Ej ⊂ {(k, l) ∈ Z2, 0 < k < Nj, 0≤ |l| ≤Nj}, ωj(c
(j)

l/k)= l/k.

One can in fact in formula (10.307) restrict the union indexed by j to the set j ∈ [i−(ρ), i−
1] ∩N; cf. Lemma I.1 of Appendix I.

One can also describe U(t)

i by means of its holes:

(10.308) U(t)

i :=Ui ∩D(0, t)=D(0, t)�
⋃

D∈Dt(Ui)

D

this decomposition being minimal. In particular, if D, D′ ∈Dt(Ui) the inclusions D⊂D′,
D′ ⊂D do not occur.

Proposition 10.2. — Let i−(ρ)≤ i′ < i ≤ i+(ρ).

(1) The holes D ∈D(3/2)ρ(Ui) are pairwise disjoint.

(2) If D ∈D(3/2)ρ(Ui), D′ ∈D(3/2)ρ(Ui′) one has either D∩D′ = ∅ or D′ ⊂D.

(3) The number of holes of Ui intersecting D(0, ρ) satisfies

(10.309) #{D ∈D(Ui), D∩D(0, ρ) 	= ∅}� ρN2
i .

(4) Let D ∈Dρ(Ui+(ρ)) and define

iD =−1+min{i : i−(ρ) < i ≤ i+(ρ), ∃D′ ∈Dρ(Ui+(ρ)), D′ ⊂D}.
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Then, D is of the form D=D(cD, sDK−1
iD

), sD ∈ [1, 2], cD ∈R, ωiD(cD) ∈ {l/k, (k, l) ∈
EiD} and one has D⊂UiD .

(5) Let bτ be defined by (6.152) (where τ is such that (10.295) is satisfied). One has

(10.310) D(0, ρbτ )⊂Ui+(ρ).

Proof. — We refer to Appendix I.2 for the proofs of Items 1, 2 and 4.

Proof of Item 3 on the number of holes. — From (10.307) we just have to check that for
N ∈N

#{(k, l) ∈ Z2, l/k ∈]ω0 − s,ω0 + s[, 0 < k < N, 0≤ |l| ≤N}� sN2.

If (k, l) belongs to the preceding set one has |l − kω0| < sN and thus (k, l) belongs to
[−N, N]2 ∩ {(x, y) ∈ R2, |x − ω0y| ≤ sN} a set which has Lebesgue measure � sN2. We
thus have for large N, #(Z2 ∩ [−N, N]2 ∩ {(x, y) ∈R2, |x−ω0y| ≤ sN}� sN2.

Proof of Item 5, inclusion (10.310). — Recall that bτ ≥ τ + 1. Since ω0 is in DC(τ ),
for (k, l) ∈ Ej , j ≤ i+(ρ)− 1 one has |l/k − ω0|� N−(1+τ)

j . Since �j satisfies a (2A, 2B)-

twist condition (2A)−1 ≤ ∂ωj ≤ 2A one has |c(j)

l/k|� N−(1+τ)

j and because K−1
j � N−(1+τ)

j

(cf. (7.163)) one has |c(j)

l/k| − 2K−1
j � N−(1+τ)

j ≥ C−1N−(1+τ)

i+(ρ) , for some C > 0. Now (7.193)
shows that Ui+(ρ) contains a disk D(0, C−1N−(τ+1)

i+(ρ) ) and we observe that from (10.305),
(τ + 1)(μ/ι(ρ)) < τ + 1≤ bτ hence

(10.311) D(0, ρbτ )⊂D(0, C−1ρ(τ+1)μ/ι(ρ))⊂Ui+(ρ).

10.1.2. Covering the holes with bigger disks. — Let us define (compare with (7.163))

(10.312) K̂i =Nln Ni

i �Ki � eNi/(ln Ni)
3

and for any D ∈Dρ :=Dρ(Ui+(ρ)) set

D̂=D(cD, K̂−1
iD

), D̂ρ = {D̂, D ∈Dρ}.
Notice that for any a > 0, ρ �a 1 and i−(ρ)≤ iD ≤ i+(ρ) one has

(10.313) ε
1/a

iD
� K̂−1

iD
� |cD|/4.

Indeed, the inequality of the RHS is due to the fact that |cD|> ρbτ (cf. Proposition 10.2,
Item 5) combined with the fact that N−1

i−(ρ) � ρ1/(1+τ) (cf. (10.306)).
The inequality of the LHS is a consequence of (7.163).
Let us mention that these disks D̂ are the ones on which we shall later perform a

Hamilton-Jacobi Normal Form as described in Proposition 8.1.
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Lemma 10.3. — The elements of D̂ρ are pairwise disjoint and for any D ∈Dρ one has

D⊂ (1/10)D̂⊂ 6D̂⊂UiD, D̂ � (1/10)D̂⊂Ui+(ρ).

Proof. — Let D and D′ be two distinct elements of Dρ . By Proposition 10.2, Item 1,
D∩D′ = ∅ hence from Lemma 7.3, Item 1 |cD− cD′ |� N−2

i+(ρ). Since K̂−1
iD
+ K̂−1

iD′ �N−2
i+(ρ)

we get that D(cD, K̂−1
iD

)∩D(cD′, K̂−1
iD′ )= ∅.

Let us now prove 6D̂ ⊂ UiD . If 6D̂ is not a subset of UiD one has for some
D′ ∈ D(UiD), (6D̂) ∩ D′ 	= ∅ hence |cD − cD′ | ≤ 6K̂−1

iD
+ K−1

iD′ � N−2
i+(ρ). We can apply

Lemma 7.3, Item 1 to deduce |cD − cD′ |� ε
1/2
i−(ρ); but this implies that D∩D′ 	= ∅, hence

D = D′ (we can apply Proposition 10.2, Item 1, since D, D′ ∈ D(3/2)ρ ) and by Proposi-
tion 10.2, Item 4 we obtain D′ ⊂UiD: a contradiction.

Let us prove the second inclusion D̂� (1/10)D̂⊂Ui+(ρ). If this is not the case then
for some D′ ∈D(Ui+(ρ)) one has D′ ∩(D̂�(1/10)D̂) 	= ∅ hence |cD− cD′ |� K−1

iD
�N−2

i+(ρ)

which implies as before using Lemma 7.3 that D=D′. But since D⊂ (1/10)D̂ this leads
to a contradiction (otherwise D′ ∩ (D̂ � (1/10)D̂)= ∅). �

Remark 10.1. — Let us mention (this will be useful in the proof of Theorem 12.3)
that

∑

D̂∈D̂ρ

|D̂∩R|1/2 ≤ 1.

10.1.3. No-Screening Property. — Our key proposition is the following.

Proposition 10.4. — For any D ∈ D(Ui+(ρ)) such that D ∩ D(0, ρ) 	= ∅ the triple

(Ui+(ρ), D̂ � (1/10)D̂,D(0, ρbτ /2)) is (10bτ )
−1| ln ρ|−1-good (in the sense of Definition 3.3).

Proof. — From Remark 3.1 it is enough to prove that for some U′ ⊂ Ui+(ρ) con-
taining both D(0, ρbτ ) and D̂ � (1/10)D̂, the triple (U′, D̂ � (1/10)D̂,D(0, ρbτ /2)) is
(10bτ )

−1| ln ρ|−1-good.

Lemma 10.5. — There exists a constant C > 0 such that for any 1 ≤ s ≤ 4/3, there exists

ρ ′ ∈ [sρ, sρ + 10Cρ2] such that

D(0, ρ ′)∩Ui+(ρ) =D(0, ρ ′)�
⋃

D∈D(Ui+(ρ))

D⊂D(0,ρ′)

D.

Proof. — From Lemma 7.3 the holes of D(Ui+(ρ)) are C−1
1 N−2

i+(ρ)-separated (some
C1 > 0), hence for some C2 > 0 they are C−1

2 ρ2μ/ι(ρ)-separated (cf. (10.304)) and because
of (10.305) they are C−1ρ2-separated for some C > 0.
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However, each of these disks has a radius ≤ 2K−1
i−(ρ) � ρ4. Since they are centered

on the real line the conclusion follows. �

From the previous lemma we deduce the existence of a ρ ′ ∈ [(5/4)ρ, (4/3)ρ] such
that all the holes D ∈ D(Ui+(ρ)) of Ui+(ρ) intersecting D(0, ρ ′) are indeed included in
D(0, ρ ′). We then set

U′ =Ui+(ρ) ∩D(0, ρ ′)=D(0, ρ ′)�
⋃

D∈D(Ui+(ρ))

D⊂D(0,ρ′)

D.

From (10.310) we have D(0, ρbτ ) ⊂ U′ and for any D = D(cD, K−1
iD

) ∈ D(Ui+(ρ)) such
that D ∩ D(0, ρ) 	= ∅ one has D̂ ⊂ D(0, (5/6)ρ ′): indeed, since D ∩ D(0, ρ) 	= ∅,
|cD| < ρ + K−1

iD
< ρ + ρ4 hence |cD| + K̂−1

iD
< ρ + 2ρ4 < (5/6)ρ ′. On the other

hand, from Lemma 10.3 D̂ � (1/10)D̂ ⊂ U′ (D̂ ⊂ D(0, ρ ′)). In this situation we can
apply Corollary 3.4 with U = U′, B = D(0, ρbτ /2), di = K̂−1

iD
, εi = 2K−1

iD
: the triple

(U′, D̂ � (1/10)D̂,D(0, ρbτ /2)) is A-good with

(10.314) A= ln(6/5)

bτ | ln ρ| − (I)

where

(I) :=
i+(ρ)−1∑

i=i−(ρ)

#Ci(ρ)
ln(K̂−1

i /(20ρ ′))
ln(2K−1

i /(ρ ′))

with

Ci(ρ)= #{D ∈D(Ui+(ρ)), D∩D(0, ρ) 	= ∅, iD = i}.
From (10.309) of Proposition 10.2, (10.302), (10.303), (10.312), (7.163) one has

(I)≤ ρ

i+(ρ)−1∑

i=i−(ρ)

N2
i

ln(K̂−1
i Nι(ρ)

i−(ρ)/30)

ln(2K−1
i Nι(ρ)

i−(ρ))

≤ ρ

i+(ρ)−1∑

i=i−(ρ)

N2
i

−(ln Ni)
2 + ln(Nι(ρ)

i−(ρ)/30)

−(1/(2(a0 + 2)))hNi/(ln Ni)2 + ln(Nι(ρ)

i−(ρ)/2)

� ρ

i+(ρ)−1∑

i=i−(ρ)

(Ni)
1+β/2 (ρ �β 1)

and since Ni is exponentially growing with i,

(I) � ρ × (Ni+(ρ))
1+β/2.
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�

0

D̂=D(cD, K̂−1
iD

)

D=D(cD, sK−1
iD

)

D(0, ρ)

D(0, ρbτ /2)

R-axis cD

FIG. 9. — Adapted KAM Normal Forms (ω0 Diophantine) in the complex r-plane. The triple
(U(ρ), D̂ � (1/10)D̂,D(0, ρbτ /2)) is Cb| ln ρ|−1-good

From (10.304) and (10.305) we thus get

(10.315) (I) � ρ1−(1+β/2)μ/ι(ρ) ≤ ρβ2/4

and from (10.314), if ρ �β 1

1
10bτ

1
| ln ρ| ≤ A (some C > 0). �

10.2. Coexistence of KAM, BNF and HJ Normal Forms on the adapted KAM domain.

Notation 10.6. — If Wh,U is a σ -symmetric holed domain, we denote by NFσ (Wh,U) (resp.

NFex,σ (Wh,U)) the set of triples (�, F, g) with � ∈ Õσ (U), F ∈Oσ (Wh,U), g ∈ S̃ympσ (Wh,U)

(resp. g ∈ S̃ympex,σ (Wh,U)).

Proposition 10.7 (Adapted Normal Forms). — Let � ∈ Õσ (U) and F ∈Oσ (Wh,U) satisfy

(10.294), (10.295), (10.296). For any β �τ 1 define i−(ρ), μ and i+(ρ) according to (10.300),

(10.299) and (10.301). Then for any ρ �β 1 the following holds:

(KAM): Adapted KAM Normal Form (Proposition 7.1). Let D ∈Dρ(Ui+(ρ)).

[Wh,Ui±(ρ)
] g−1

1,i±(ρ) ◦�� ◦ fF ◦ g1,i±(ρ) =��i±(ρ)
◦ fFi±(ρ)

(10.316)

[Wh,Ui+(ρ)
] g−1

iD,i+(ρ) ◦��iD
◦ fFiD

◦ giD,i+(ρ) =��i+(ρ)
◦ fFi+(ρ)

(10.317)

[Wh,UiD
] g−1

i−(ρ),iD
◦��i−(ρ)

◦ fFi−(ρ)
◦ gi−(ρ),iD =��iD

◦ fFiD
.(10.318)

‖g1,i+(ρ) − id‖C1 � ε1/2 ≤ ρm/2(10.319)
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‖giD,i+(ρ) − id‖C1 ≤ ε
1/2
iD

(10.320)

‖Fi+(ρ)‖W
h,U(ρ)

� exp(−(1/ρ)(1/τ)−2β).(10.321)

Note that (�i, Fi, gi) ∈NFex,σ (Wh,Ui
) and �i ∈ T C(2A, 2B).

(HJ): Hamilton-Jacobi Normal Form. (Proposition 8.1). For any D ∈Dρ(Ui+(ρ)) there exists qD⊂
D̂ and (�

HJ
D̂ , FHJ

D̂ , g
HJ
D̂ ) ∈NFσ (Wh/9,D̂�qD) such that

(g
HJ
D̂ )−1 ◦��iD

◦ fFiD
◦ g

HJ
D̂ =�

�
HJ
D̂
◦ fFHJ

D̂
[Wh/9,D̂�qD](10.322)

‖g
HJ
D̂ − id‖C1 � ε

1/9
iD

(10.323)

�
HJ
D̂ ∈ T C(2A, 2A)(10.324)

‖FHJ
D̂ ‖W

h/9,(D̂�
qD)
� exp(−(1/ρ)).(10.325)

The triple (�
HJ
D , D̂, qD) satisfies the Extension Principle of Proposition 8.1.

(BNF): Birkhoff Normal Form (Proposition 6.5):

There exists (�BNF
ρ , FBNF

ρ , gBNF
ρ ) ∈NFex,σ (Wh,D(0,ρbτ )) such that

(gBNF
ρ )−1 ◦�� ◦ fF ◦ gBNF

ρ =��BNF
ρ
◦ fFBNF

ρ
, (Wh,D(0,ρbτ ))(10.326)

‖gBNF
ρ − id‖C1 � ρm−10.(10.327)

�BNF
ρ ∈ T C(2A, 2B)(10.328)

‖FBNF
ρ ‖W

h,D(0,ρbτ )
� exp(−(1/ρ)1−β)(10.329)

Proof. — KAM: This is just the content of Proposition 7.1. For inequality (10.321)
we note that from (7.170), (7.163), (10.304), (10.305)

‖Fi+(ρ)‖h,Ui+(ρ)
� exp(−Ni+(ρ)/(ln(Ni+(ρ)))

2)

� exp(−ρ−(μ/ι(ρ))−)

� exp(−(1/ρ)(1/τ)−2β).

HJ: Let D ∈Dρ(Ui+(ρ)) where D=D(cD, sDK−1
iD

), ωiD(cD)= p/q, q ≤ NiD, p ∧ q = 1, be
one of the disks obtained in Proposition 10.2, Item 4. By Lemma 10.3 the disk 6D̂ =
D(cD, 6K̂−1

iD
) is included in UiD. We observe that 6K̂−1

iD
< |cD|/4 (cf. (10.313)). Since

min(6K̂−1
iD

, |cD|/4)= 6K̂−1
iD

< (Aq)−8 and ‖FiD‖h,6D̂ � εiD < (6K̂−1
iD

)a3
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(the last inequality comes also from (10.313)) condition (8.205), (8.203) are satisfied and
we can apply Proposition 8.1 on Hamilton-Jacobi Normal Forms to ��iD

◦ fFiD
on the

domain Wh,D̂ ⊂Wh,UiD
with ρ̂ = K̂−1

iD
: there exists a disk qD⊂ D̂

(10.330) qD :=D(c
qD, ρ

qD)⊂ (1/10)D̂ :=D(cD, (1/10)K̂−1
iD

)⊂UiD

and (�
HJ
D̂ , FHJ

D̂ , g
HJ
D̂ ) ∈NFσ (Wh/9,D̂�qD) satisfying (10.322)

‖g
HJ
D̂ − id‖C1 � qε

1/8
iD
≤ ε

1/9
iD

(10.331)

‖FHJ
D̂ ‖W

h/9,(D̂�
qD)
� exp(−(K̂iD/NiD)1/4).(10.332)

To obtain inequality (10.325) we observe that since K̂iD =N
ln NiD
iD

with i+(ρ)≥ iD ≥ i−(ρ)

we get

−(K̂iD/NiD) �−N
−1+ln Ni−(ρ)

i−(ρ) .

Because for ρ small enough −1+ ln Ni−(ρ) ≥ 4(2+ τ) we get

−(K̂iD/NiD)1/4 �−N2+τ
i−(ρ)

which yields, using (10.302) and (10.303) (ρ �τ 1)

−(K̂iD/NiD)1/4 <−(1/ρ)(2+τ)/ι(ρ)

<−(1/ρ).

BNF: We observe that D(0, ρbτ ) ⊂ D(0, ρ) and apply Proposition 6.5 to (�, F) on
ehWh,D(0,ρ) (we use the smallness condition (10.296)). �

10.3. Comparision Principle. — We now use the result of Section 9 to show that these
various Normal Forms match to some very good order of approximation.

Lemma 10.8 (Comparing Adapted Normal Forms). — For any β �τ 1, and ρ �β 1

(10.333) ‖�i+(ρ) −�BNF
ρ ‖(1/2)D(0,ρbτ ) ≤ exp(−(1/ρ)(1/τ)−3β)

and for any D ∈Dρ there exists γD ≤ K̂−2
iD

(10.334) ‖�i+(ρ) −�
HJ
D̂ (· + γD)‖(4/5)D̂�(1/5)D̂ ≤ exp(−(1/ρ)(1/τ)−3β).

Proof. — 1) Proof of (10.333). From (10.326), (10.316) and the fact that

Wh,D(0,ρbτ ) ⊂Wh,D(0,ρbτ ) ∩Wh,Ui+(ρ)
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one has on g1,i+(ρ)(Wh,D(0,ρbτ ))∩ gBNF
ρ (Wh,D(0,ρbτ ))

g1,i+(ρ) ◦��i+(ρ)
◦ fFi+(ρ)

◦ (g1,i+(ρ))
−1 = gBNF

ρ ◦��BNF
ρ
◦ fFBNF

ρ
◦ (gBNF

ρ )−1.

We can then apply Propositions 9.1–9.2 with ρ2 = ρbτ , ρ1 = 0, δ = ρbτ /2, ε =
ρmin(m/2,m−10), ν = exp(−(1/ρ)(1/τ)−2β) because from (10.329), (10.327), (10.319), (10.321)
one sees that condition (9.283) reads

Cρmin(m/2,m−10) ≤ ρbτ /4 < ρbτ and C(ρ bτ /2)−a4 exp−(1/ρ)(1/τ)−2β) < 1

and is satisfied for ρ � 1 (cf. (10.297)). Since g1,i+(ρ) and gBNF
ρ are exact symplec-

tic we then get ‖�i+(ρ) − �BNF
ρ ‖D(0,(1/2)ρbτ ) ≤ Cρ−(bτ+1)a5 exp(−(1/ρ)(1/τ)−2β) which is

≤ exp(−(1/ρ)(1/τ)−3β) if ρ is small enough.

2) Proof of (10.334). Similarly, from (10.317), (10.322) one has on the set

g
HJ
D̂ (Wh/9,D̂�(1/5)D̂)∩ giD,i+(ρ)(Wh/9,D̂�(1/5)D̂)

g
HJ
D̂ ◦�

�
HJ
D̂
◦ fFHJ

D̂
◦ (g

HJ
D̂ )−1 = giD,i+(ρ) ◦��i+(ρ)

◦ fFi+(ρ)
◦ (giD,i+(ρ))

−1

and from (10.320) (10.321), (10.323), (10.325), we see that Propositions 9.1–9.2 apply
with c = ciD, ε = ε

1/9
iD

, δ =K−1
iD

/20, ρ1 = (1/10)K̂−1
iD

, ρ2 =K−1
iD

< |ciD |/4 since condition
(9.283) is implied by

Cε
1/9
iD
≤ K̂−1

iD
/80 < K̂−1

iD
/10 and C(20K̂iD) a4 exp(−(1/ρ)(1/τ)−2β) < 1

which is satisfied (cf. (7.163), (10.312)) if ρ is small enough. We then get for some γD ∈R,
|γD|� Cε

1/9
iD
≤ K̂−2

iD
(cf. (10.313)) that on the annulus (4/5)D̂� (1/5)D̂ one has |�i+(ρ) −

�
HJ
D̂ (· + γD)| ≤ exp(−(1/ρ)(1/τ)−3β). �

11. Adapted Normal Forms: ω0 Liouvillian (CC case)

Let h > 0, 0 < ρ < 1, A, B ≥ 1, � ∈ Õσ (e10hD(0, ρ)), F ∈Oσ (e10hWh,D(0,ρ)) such
that

∀ r ∈R, A−1 ≤ (2π)−1∂2�(r)≤ A, and ‖(2π)−1D3�‖C ≤ B(11.335)

ω0 := (2π)−1∂�(0) ∈R � Q(11.336)

∀ 0 < ρ ≤ ρ, ‖F‖e10hWh,D(0,ρ)
≤ ρm,(11.337)

where

(11.338) m= 4+max(a1, 2000Aa2, a3, a4)

(a1, a2, a3, a4 are the constants appearing in Propositions 6.4, 7.1, 8.1, 9.1).
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Using the notations of Section 6.3.1, let (pn/qn)n be the sequence of convergents
of ω0:

(11.339)
1

2qn+1qn

≤ |ω0 − (pn/qn)| ≤ 1
qn+1qn

.

(11.340) ∀ 0 < k < qn, ∀ l ∈ Z, |ω0 − (l/k)|> 1
2kqn

.

We assume that n is large enough and we set

(11.341) ρn = 10A
qn+1qn

≤ ρ/10.

We introduce

(11.342) ε := max
0≤j≤3

‖DjF‖W2h,D(0,10ρn)
� (10ρn)

m−3 ≤ ρ2000Aa2
n .

11.1. Adapted KAM domains. — Since Condition (7.161) is satisfied we can apply
Proposition 7.1 (with ρProp. 7.1 = 10ρn) and define holed domains Ui , functions �i, Fi , ωi

etc. In particular for 0 < t

(11.343)

{
Ui ∩D(0, t)=D(0, t)�

⋃i−1
j=1

⋃
(k,l)∈Ej

D(c
(j)

l/k, sj,i−1K−1
j ),

sj,i−1 = e
∑i−1

m=j δm ∈ [1, 2]
where

Ej ⊂ {(k, l) ∈ Z2, 0 < k < Nj, 0≤ |l| ≤Nj}, ωj(c
(j)

l/k)= l/k.

Note that from (11.342) and the definition (7.163) of Kj

(11.344) K−1
j ≤ ε

1
2(a0+2) ≤ ρ1000A

n .

Lemma 11.1. — Let j be such that Nj < qn+1/(10A)2 and (k, l) ∈ Ej .

(1) If (k, l) ∈ Z(qn, pn) one has l/k = pn/qn and

(11.345) (40A2)−1ρn ≤ (2A)−1

2qn+1qn

≤ |c(j)

pn/qn
| ≤ (2A)

qn+1qn

≤ ρn/5.

(2) If (k, l) /∈ Z(qn, pn)

(11.346) |c(j)

l/k| ≥ 4ρn.

Proof. — Item 1 comes from (11.339) and the twist condition (7.166).
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To prove Item 2 we observe that if (k, l) /∈ Z(qn, pn)

|ω0 − l

k
| ≥ | l

k
− pn

qn

| − |ω0 − pn

qn

| ≥ 1
kqn

− 1
qnqn+1

≥ 99A2

qnqn+1
≥ 9Aρn

and from the twist condition (7.166) we get |c(j)

l/k| ≥ 4ρn. �

For n ∈N∗ define i−n as the unique index i such that

(11.347) Ni−n −1 ≤ qn < Ni−n

and i+n as the unique index (see the definition of the sequence Ni in (7.163)) such that

(11.348)
(3/4)qn+1

(10A)2
≤Ni+n <

qn+1

(10A)2
.

We define

cn = c
(i−n )

pn/qn
, Dn :=D(c

(i−n )

pn/qn
, si−n ,i+n −1K−1

i−n
), D̂n =D(cn, |cn|/24)

(11.349) U(n) :=Ui+n ∩D(0, ρn).

Note that from (11.345)

(11.350) (40A2)−1ρn ≤ |cn| ≤ ρn/5.

Proposition 11.2. — For n large enough,

(1) D(0, ρn)⊂Ui−n .

(2) One has Dρn
:=D(U(n))= {Dn}.

(3) One has the following inclusion 6D̂n ⊂Ui−n .

(4) One has D(0, q−6
n+1)⊂Ui+n .

(5) The triple (U(n), D̂n � (1/10)D̂n,D(0, q−6
n+1/2)) is 1/(10| ln ρn|)-good (in the sense of Defi-

nition 3.3).

Proof of Item 1. — If j < i−n and (k, l) ∈ Ej one has 0 < k < Ni−n −1 ≤ qn hence from
(11.346) |c(j)

l/k| ≥ 4ρn and from (11.344) |c(j)

l/k| − 2K−1
j ≥ 3ρn. The conclusion then follows

from (11.343) applied with i = i−n .

Proof of Item 2. — From Item 1, equality (11.343) can be written

Ui+n ∩D(0, ρn)=D(0, ρn)�

i+n −1⋃

j=i−n

⋃

(k,l)∈Ej

D(c
(j)

l/k, sj,i−1K−1
j ).
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We observe that (qn, pn) ∈ Ei−n and from (11.345), (11.344) one sees that Dn = D(c
(i−n )

pn/qn
,

si−n ,i+n −1K−1
i−n

) ⊂ D(0, ρn). More generally, if (k, l) ∈ Ej , i−n ≤ j ≤ i+n − 1 and (k, l) /∈
Z(qn, pn), one has Nj ≤ qn+1/(10A)2 and (11.346), (11.344) give that D(0, c

(j)

l/k, 2K−1
j ) ∩

D(0, ρn)= ∅. Since the sets D(0, c
(j)

pn/qn
, sqn,i

n+−1K−1
j ), i−n ≤ j ≤ i+n , form a nested decreasing

(for the inclusion) sequence of disks one gets

Ui+n ∩D(0, ρn)=D(0, ρn)� Dn.

Proof of Item 3. — This comes from the fact that |cn| + 6|cn|/4≤ ρn.

Proof of Item 4. — This comes from Item 1 and the fact that |cn| − |cn|/4 ≥ q−6
n+1 as

is clear from the LHS inequality of (11.345).

Proof of Item 5. — Notice that from (11.345) 5 ≤ ρn/|cn| ≤ 40A2 and that 2K−1
i−n
≤

ρ1000A
n . We use Corollary 3.4; we have to evaluate

I= ln(|cn|/(4ρn))

ln(q−6
n+1/(2ρn))

− ln(|cn|/8ρn)

ln(2K−1
i−n

/ρn)

≥ ln(20)

7| ln ρn| −
ln(320A2)

(1000A− 1)| ln ρn|
≥ 1

10| ln ρn| . �

11.2. Adapted Normal Forms.

Proposition 11.3. — Let � ∈ Õσ (U) and F ∈ Oσ (Wh,U) satisfy (10.294), (10.295),

(10.296). Let 0 < β � 1 and n�β 1 such that

(11.351) qn+1 ≥ q10
n .

(KAM): Adapted KAM Normal Form ((Proposition 7.1)): One has (�i, Fi, gi ∈NFex,σ (Wh,Ui
),

�i ∈ T C(2A, 2B) and

g−1
1,i±n

◦�� ◦ fF ◦ g1,i±n =��
i
±
n
◦ fF

i
±
n

[Wh,U
i
±
n
](11.352)

g−1
i−n ,i+n

◦��
i
−
n
◦ fF

i
−
n
◦ gi−n ,i+n =��

i
+
n
◦ fF

i
+
n

[Wh,U(n)](11.353)

‖g1,i+n − id‖C1,‖gi−n ,i+n − id‖C1 � ε1/2 ≤ ρm/3
n(11.354)

‖Fi+n ‖W
h,U(n)

� exp(−q
1−β

n+1 ).(11.355)

(HJ): Hamilton-Jacobi Normal Form (Proposition 8.1).
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��

0

D̂n =D(cn, cn/4)

Dn =D(cn, ρa/3
n )

D(0, ρn)
ρn � 1/(qn+1qn)

D(0, q−6
n+1)

R-axis
cn � ρn

FIG. 10. — Adapted KAM Normal Forms (CC Case) in the complex r-plane. The triple (Un, Ûn,D(0, q−6
n+1)) is

1/(10| ln ρn|)-good

There exists (�HJ
n , FHJ

n , gHJ
n ) ∈NFσ (Wh/9,D̂n�

qDn
) such that

(gHJ
n )−1 ◦��

i
−
n
◦ fF

i
−
n
◦ gHJ

n =�
�

HJ
n
◦ fFHJ

n
[Wh/9,(D̂n�

qDn)
](11.356)

‖gHJ
n − id‖C1 � ε

1/9
i−n
≤ ρm/9

n(11.357)

�HJ
n ∈ T C(2A, 2A)(11.358)

‖FHJ
n ‖W

h/9,(D̂n�qDn)
� exp(−q

(1/4)−β

n+1 ).(11.359)

The triple (�
HJ
D , D̂, qD) satisfies the Extension Principle of Proposition 8.1.

(BNF): Birkhoff Normal (Proposition 6.4):

There exists (�BNF
q−1

n+1
, FBNF

q−1
n+1

, gBNF
q−1

n+1
) ∈NFex,σ (Wh,D(0,q−6

n+1)) such that

(gBNF
q−1

n+1
)−1 ◦�� ◦ fF ◦ gBNF

q−1
n+1
=��BNF

q
−1
n+1

◦ fFBNF
q
−1
n+1

[Wh,D(0,q−6
n+1)](11.360)

‖gBNF
q−1

n+1
− id‖W

h,D(0,q−6
n+1)

� q
−(m−27)

n+1(11.361)

�BNF
q−1

n+1
∈ T C(2A, 2B)(11.362)

‖FBNF
q−1

n+1
‖W

h,D(0,q
−6
n+1)

≤ exp(−q
1−β

n+1 ).(11.363)
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Proof. — KAM: This is Proposition 7.1. Inequality (11.355) comes from the corre-
sponding (7.170) εi+n ≤ exp(−Ni+n /(ln Ni+n )3) and the fact that Ni+n � qn+1.

HJ: By Proposition 11.2, Item 3, the disk 6D̂n =D(cn, |cn|/4) is included in Ui−n . Since

(6(|cn|/24))1/8 < (Aqn)
−1, and ‖Fi−n ‖h,6D̂n

� εi−n < (|cn|/4)a3

(the first inequality is a consequence of (11.351) and the second of (11.342) and the fact
that |cn| � ρn) (8.205), (8.203) are satisfied and we can apply Proposition 8.1 on Hamilton-
Jacobi Normal Forms to ��

i
−
n
◦ fF

i
−
n

on the domain Wh,D̂n
⊂Wh,U

i
−
n

with ρ̂ = |cn|/24: there

exists a disk qDn ⊂ D̂n

(11.364) qDn :=D(c
qDn

, ρ
qDn

)⊂ (1/10)D̂n ⊂ D̂n =D(cn, |cn|/24)⊂Ui−n

and (�HJ
n , FHJ

n , gHJ
n ) ∈NFσ (Wh/9,D̂n�

qDn
) such that one has (11.356) and

‖g
HJ
D̂n
− id‖W

h/9,(D̂n�qDn)
� qnε

1/8
i−n
≤ ε

1/9
i−n

(11.365)

‖FHJ
D̂n
‖W

h/9,(D̂n�qDn)
� exp(−1/(qn|cn|/24)1/4)(11.366)

and since |cn| � (qnqn+1)
−1 (n�β 1)

‖FHJ
D̂n
‖W

h/40,(D̂n�qDn)
� exp(−q

(1/4)−β

n+1 ).

BNF: Since ‖F‖e1/10Wh,D(0,ρn)
≤ ρa1

n (cf. (11.337)) we can apply Proposition 6.4 on the exis-
tence of approximate BNF in the CC case (with n+ 1 in place of n): for 0 < β � 1 and
n�β 1: there exists (�BNF

q−1
n+1

, FBNF
q−1

n+1
, gBNF

q−1
n+1

) ∈NFex,σ (Wh,D(0,q−6
n+1)) such that

[Wh,D(0,q−6
n+1)] (gBNF

q−1
n+1

)−1 ◦�� ◦ fF ◦ gBNF
q−1

n+1
=��BNF

q−1
n+1

◦ fFBNF
q−1
n+1

with

‖FBNF
q−1

n+1
‖W

h,q
−6
n+1
≤ exp(−q

1−β

n+1 ). �

11.3. Comparision Principle. — These various Normal Forms match to some very
good order of approximation.

Lemma 11.4 (Comparing Adapted Normal Forms). — One has for any β � 1, n�β 1

(11.367) ‖�i+n −�BNF
q−1

n+1
‖(1/2)D(0,q−6

n+1) � exp(−q
1−β

n+1 )

and there exists γn � q−m
n+1 � |cn|m/2 such that

(11.368) ‖�i+n −�
HJ
D̂n

(· + γn)‖(4/5)D̂n�(1/5)D̂n
� exp(−q

(1/4)−β

n+1 )
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Proof. — Let us prove estimate (11.367). From (11.360)–(11.352), we see that on
g1,i+n (Wh,D(0,q−6

n+1
)∩ gBNF

q−1
n+1

(Wh,D(0,q−6
n+1

) one has

gBNF
q−1

n+1
◦��BNF

q−1
n+1

◦ fFBNF
q−1
n+1

◦ (gBNF
q−1

n+1
)−1 = g1,i+n ◦��

i
+
n
◦ fF

i
+
n
◦ (g1,i+n )−1.

We then apply Proposition 9.2 with c= 0, ρ1 = 0, ρ2 = q−6
n+1, δ = q−7

n+1, ν = exp(−q
1−β

n+1 ) (cf.
(11.363), (11.355)), ε = q

−min(m/3,m−27)

n+1 (cf. (11.361), (11.354)) (estimates (9.282) and (9.283)
are satisfied since Cq

−min(m/3,m−27)

n+1 ≤ q−7
n+1/4� q−6

n+1 and q
7 a4
n+1 exp(−q

1/2
n+1)� 1).

Estimate (11.368) is a consequence of Proposition 9.2 applied to (11.353) and
(11.356)

gi−n ,i+n ◦��
i
+
n
◦ fF

i
+
n
◦ (gi−n ,i+n )−1 = gHJ

n ◦�
�

HJ
n
◦ fFHJ

n
◦ (gHJ

n )−1

with A(c;ρ1, ρ2) = D̂n � (1/10)D̂n, c = cn, ρ1 = |cn|/40, ρ2 = |cn|/4, δn = |cn|/10,
ν = exp(−q

1/5
n+1) (cf. (11.359), (11.355)), ε = ρm/9

n (cf. (11.354), (11.357)). Estimates
(9.282) and (9.283) are satisfied since Cρm/9

n ≤ |cn|/40 � |cn|/5 (cf. (11.350)) and
C(|cn|/10)−a4 exp(−q

(1/4)−
n+1 ) < 1 (recall that |cn| � (qnqn+1)

−1). �

12. Estimates on the measure of the set of KAM circles

We refer to Section 4.4 for the notations of this section. We observe

(Wh,U)R :=Wh,U ∩MR =WU∩R := {r ∈U∩R} ∩MR.

In particular in the (AA)-case (Wh,U)R = WU∩R = T × (U ∩ R) and in the (CC*)-case
(Wh,U)R =WU∩R = {(x, y) ∈R2, (1/2)(x2 + y2) ∈U∩R+}.

12.1. Classical KAM estimates. — We first state a variant of the classical KAM the-
orem on abundance of invariant circles which is a consequence of Propositions 7.1, 7.2,
7.5 and Remark 7.1 on KAM Normal Forms.

In the next theorem the constant a0 is the one of Proposition 5.5 and the constant
a2 was defined in Section 7 by (7.160).

Theorem 12.1. — Let U be a holed domain with disjoint holes D ∈D(U) such that

(12.369)
∑

D∈D(U)

|D∩R|1/2 ≤ 1

and � ∈ Õσ (U)∩ T C(A, B) (cf. (7.158)) with A, B satisfying (2.60), F ∈Oσ (Wh,U)

ε := ‖F‖Wh,U ≤ d(U) a2 .
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Then, if f =�� ◦ fF one has

LebMR(We−1/10U∩R �L(f , WU∩R)) � (‖F‖Wh,U)1/(2(a0+3)).

Proof. — See Appendix J.2. �

Notation 12.2. — We define for ρ > 0, DR(0, ρ)=D(0, ρ)∩R=]− ρ,ρ[ and

m̃f (ρ)= LebMR(WDR(0,ρ) �L(f ,DR(0, e1/2ρ))).

12.2. Estimates on the measure of the set of invariant circles: ω0 Diophantine (AA) or (CC)

Case. — We use the notation of Section 10 and assume that (both in the (AA) or (CC)-
cases) (10.294), (10.295) (10.296) hold. We denote

(12.370) Dρ =D(Ui+(ρ)).

Theorem 12.3. — For any β > 0, ρ �β 1

(AA)-case m̃��◦fF(ρ) � exp(−(1/ρ)(1/τ)−β)+
∑

D∈Dρ

|qD∩R|.

(CC) or (CC*)-case m̃��◦fF(ρ) � exp(−(1/ρ)(1/τ)−β)+
∑

D∈Dρ

|qD∩R+|.

Moreover, for any D ∈Dρ one has

(12.371) |qD∩R|� exp(−(1/ρ)
1

1+τ
−β).

Proof. — If S ⊂ C we denote SR = S ∩ R (if c ∈ R, DR(c, t) = D(c, t) ∩ R =]c −
t, c+ t[).

Choose (cf. Lemma 10.5) ρ ′ ∈ [e1/4ρ, e1/3ρ] (ρ � 1) such that

U(ρ′) :=D(0, ρ ′)∩Ui+(ρ) =D(0, ρ ′)�
⋃

D∈D(Ui+(ρ))

D⊂D(0,ρ′)

D

hence

(12.372) e−1/10DR(0, ρ ′)⊂ e−1/10U(ρ′)
R ∪

⋃

D∈Dρ

(1/4)D̂R.

Let us denote for short fi =��i
◦ fFi

, f
HJ

D =�
�

HJ
D
◦ fFHJ

D
and

Li+(ρ) =L(fi+(ρ), W
U(ρ′)

R
), LD̂ =L(f

HJ
D , WD̂R�qDR

).



ON THE DIVERGENCE OF BIRKHOFF NORMAL FORMS 105

We have from (10.318) (10.322) (10.316) of Proposition 10.7

Wh,UiD
, g−1

i−(ρ),iD
◦ fi−(ρ) ◦ gi−(ρ),iD = fiD(12.373)

Wh/9,D̂�D, (g
HJ
D̂ )−1 ◦ fiD ◦ g

HJ
D̂ = f

HJ
D(12.374)

Wh,Ui+(ρ)
, g−1

i−(ρ),i+(ρ) ◦ fi−(ρ) ◦ gi−(ρ),i+(ρ) = fi+(ρ)(12.375)

Wh,Ui−(ρ)
, g−1

1,i−(ρ) ◦ f ◦ g1,i−(ρ) = fi−(ρ).(12.376)

From Lemma 10.3, Remark 10.1 and estimate (10.321) on the one hand, and estimate
(10.325) on the other hand, we see that we can apply Theorem 12.1 to fi+(ρ) and f

HJ
D to

get the following decompositions

(12.377) W
e−1/10U(ρ′)

R
�Li+(ρ) ⊂ Bi+(ρ), We−1/10D̂R

�LD̂ ⊂ BD̂�qD ∪ E
qD

with BD̂�qD ⊂WD̂R�qDR
, E

qD =We−1/10
qDR

and

(12.378) max
(

LebMR(Bi+(ρ)), LebMR(BD̂�qD)

)

� exp(−(1/ρ)(1/τ)−β/2)

(12.379) LebMR(E
qD) � LebMR(We−1/10

qDR
).

We now introduce

(12.380) L̃i+(ρ) := gi−(ρ),i+(ρ)(Li+(ρ)), L̃D̂ := gi−(ρ),iD ◦ g
HJ
D (LD̂)

(12.381) B̃i+(ρ) = gi−(ρ),i+(ρ)(Bi+(ρ)), B̃D̂�qD = gi−(ρ),iD ◦ g
HJ
D (BD̂�qD),

(12.382) Ẽ
qD = gi−(ρ),iD

◦ g
HJ
D (E

qD).

Lemma 12.4. — One has

gi−(ρ),i+(ρ)(We−1/10DR(0,ρ′))� L̃⊂ B̃

with

L̃= L̃i+(ρ) ∪
⋃

D∈Dρ

L̃D̂ B̃= B̃i+(ρ) ∪
⋃

D∈Dρ

(̃BD̂�qD ∪ Ẽ
qD).

Proof. — We observe that from (12.372) one has

(12.383) We−1/10DR(0,ρ′) ⊂W
e−1/10U(ρ′)

R
∪

⋃

D∈Dρ

W(1/4)D̂R
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hence

gi−(ρ),i+(ρ)(We−1/10DR(0,ρ′))

⊂ gi−(ρ),i+(ρ)(We−1/10U(ρ′)
R

)∪
⋃

D∈Dρ

gi−(ρ),i+(ρ)(W(1/4)D̂R
).

Note that by Proposition 10.7 one has max(‖gi−(ρ),i+(ρ) − id‖C1,‖g
HJ
D̂ − id‖C1)≤ ε

1/9
i−(ρ) �

K̂−1
iD

(since NiD ≤N2
i−(ρ)) hence

gi−(ρ),i+(ρ)(W(1/4)D̂R
)⊂W(1/2)D̂R

⊂ gi−(ρ),iD
◦ g

HJ
D̂ (We−1/10D̂R

)

which yields

gi−(ρ),i+(ρ)(We−1/10DR(0,ρ′))

⊂ gi−(ρ),i+(ρ)(We−1/10U(ρ′)
R

)∪
⋃

D∈Dρ

(

gi−(ρ),iD
◦ g

HJ
D̂ (We−1/10D̂R�qDR

)∪ Ẽ
qD

)

.

We then conclude using (12.377) and the notations (12.380). �

Lemma 12.5. — For some G⊂We1/10DR(0,ρ′) one has L̃=L(fi−(ρ), G) and

(12.384) LebMR (̃B) � exp(−(1/ρ)(1/τ)−β)+
∑

D∈Dρ

LebMR(We−1/10
qDR

).

Proof. — We observe that from (4.86)

(12.385) L̃i+(ρ) := gi−(ρ),i+(ρ)(Li+(ρ))=L(fi−(ρ), gi−(ρ),i+(ρ)(WU(ρ′)
R

))

(12.386) L̃D̂ := gi−(ρ),iD ◦ g
HJ
D (LD̂)=L(fi−(ρ), gi−(ρ),iD ◦ g

HJ
D (WD̂R�qDR

))

hence,

L̃=L(fi−(ρ), G)

with

G= gi−(ρ),i+(ρ)(WU(ρ′)
R

)∪
⋃

D∈Dρ

gi−(ρ),iD ◦ g
HJ
D (WD̂R�qDR

)

and clearly G⊂We1/10DR(0,ρ′).
To get the estimate on the measure of B̃ we use (12.378) and (12.381) to get

LebMR (̃Bi+(ρ)) � exp(−(1/ρ)(1/τ)−β/2),
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and (remember (10.309), (10.304), (10.305))

LebMR

( ⋃

D∈Dρ

B̃D̂�qD

)

� N2
i+(ρ) exp(−(1/ρ)(1/τ)−β/2))

� exp(−(1/ρ)(1/τ)−β);
moreover (see (12.379), (12.382))

LebMR

( ⋃

D∈Dρ

Ẽ
qD

)

�
∑

D∈Dρ

LebMR(We−1/10
qDR

).

Summing up these estimates yields the desired inequality on the measure of B̃. �

End of the proof of Theorem 12.3.

Lemmata 12.4 and 12.5 give

gi−(ρ),i+(ρ)(WDR(0,ρ′))�L(fi−(ρ), We1/10DR(0,ρ′))⊂ B̃

hence

(12.387) g1,i−(ρ) ◦ gi−(ρ),i+(ρ)(WDR(0,ρ′))� g1,i−(ρ)(L(fi−(ρ), We1/10DR(0,ρ′)))⊂ g1,i−(ρ)(̃B).

Since the conjugation relation g−1
1,i−(ρ) ◦ f ◦ g1,i−(ρ) = fi−(ρ) holds on WUi−(ρ)∩R (cf. (12.376))

and since We1/10DR(0,ρ′) ⊂WUi−(ρ)∩R (recall that by definition (10.300) D(0, 2ρ)⊂Wh,Ui−(ρ)

and that ‖g1,i−(ρ) − id‖� ρ) one has by (4.86)

L(f , g1,i−(ρ)(We1/10DR(0,ρ′)))= g1,i−(ρ)L(fi−(ρ), We1/10DR(0,ρ′)).

Equation (12.387) then implies that

g1,i−(ρ) ◦ gi−(ρ),i+(ρ)(WDR(0,ρ′))�L(f , g1,i−(ρ)(We1/10DR(0,ρ′)))⊂ g1,i−(ρ)(̃B).

Finally, inclusions WDR(0,ρ) ⊂ g1,i−(ρ) ◦ gi−(ρ),i+(ρ)(WDR(0,ρ′)) and g1,i−(ρ)(We1/10DR(0,ρ′)) ⊂
We1/2D(0,ρ) yield

LebMR(WDR(0,ρ) �L(f , We1/2D(0,ρ))) � LebMR (̃B).

We conclude by using the estimate (12.384) and the fact that

LebMR(We−1/10
qDR

)≤
{
|qD∩R|, (AA)-case
|qD∩R+|, (CC) or (CC*)-case.

Proof of estimate (12.371) on the size of the holes.
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Referring to (12.374) and (8.206) of Proposition 8.1 we see that

|qD|� ‖fFiD
‖1/33

Wh,UiD

where i−(ρ)≤ iD ≤ i+(ρ). From (7.163)

‖fFiD
‖1/33

Wh,UiD
≤ ε

1/33
iD

= e−hNiD /(33(ln NiD )2)

� e
−N1−

iD

� e
−N1−

i−(ρ) (since i−(ρ)≤ iD)

hence from (10.302) for any β > 0

|qD|� exp(−(1/ρ)(1/ι(ρ))(1−β)).

Using (10.303) we then get if ρ �β 1 (qD is a disk centered on the real axis)

|qD∩R|� exp(−(1/ρ)
1

1+τ
−β). �

12.3. Estimates on the measure of the set of invariant circles: ω0 Liouvillian, (CC)-Case. —

We now assume that (11.335), (11.336) (11.337) hold.

Theorem 12.6. — Let ρn = (10A)/(qnqn+1) and assume that qn+1 ≥ q10
n . Then, for all

β � 1 and n�β 1 one has

m̃��◦fF(ρn) � exp(−q
1/4−β

n+1 )+ |(qDn ∩R+)|.
Moreover,

(12.388) |(qDn ∩R+)|� e−q
1−β
n .

Proof. — The principle of the proof is the same as that of Proposition 12.3 with the
following modifications in the notations: we set fi±n = fF

i
±
n

, f
HJ

Dn
= fFHJ

Dn

and we replace in the

proof the indices i±(ρ) by i±n , D̂, D, qD by D̂n, Dn
qDn, iD by i−n , ρ by (4/3)ρn, ρ ′ by 2ρn,

Uρ′ by U(n) and exp(−(1/ρ)(1/τ)−β) by exp(−q
(1/4)−
n+1 ). Instead of using the conjugation

relations of Proposition 10.7 (Adapted Normal Forms in the (CC) or (CC*)-case) we use
those of Proposition 11.3.

Estimate (12.388) is proved like (12.371) by noticing that

‖fFiD
‖1/33

Wh,UiDn

� ε
1/33
iDn

≤ exp(−N−(1−)

in− )

and using (11.347). �
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Remark 12.1. — Note that if the twist condition (11.335) is satisfied, then any
twist condition T C(A′, B) is satisfied with A′ ≥ A. We can thus replace in Theorem 12.6
ρn = (10A)/(qnqn+1) by ρn = (10A′)/(qnqn+1) for any fixed A′ ≥ A (then n has to be chosen
larger).

13. Convergent BNF implies small holes

13.1. Case where ω0 Diophantine in the (AA) of (CC) setting. — We keep here the no-
tations of Sections 10 and 12.2, in particular we assume ω0 is τ -Diophantine and that
(10.294), (10.295), (10.296) hold.

Lemma 13.1. — If BNF(�� ◦ fF) converges and is equal to a holomorphic function � ∈
O(D(0, 1)) then for all β > 0, ρ �β 1 and for any D ∈Dρ

(13.389) ‖�i+(ρ) −�‖D̂�(1/10)D̂ � exp
(

−(1/ρ)(1/τ)−β

)

.

As a corollary, for any D ∈Dρ and γD ≤ K̂−2
iD

(13.390) ‖�HJ
D̂ −�(· − γD̂)‖(4/5)D̂�(1/5)D̂ � exp

(

−(1/ρ)(1/τ)−β

)

.

Proof. — Let us prove inequality (13.389). From (10.333) and Proposition 6.7 one
gets

‖�i+(ρ) −�‖(1/2)D(0,ρbτ ) � exp(−(1/ρ)(1/τ)−β/2)+ exp(−(1/ρ)1−β)

� exp(−(1/ρ)(1/τ)−β/2).

Since the function �i+(ρ) − � is holomorphic on U(ρ) and since the triple (Ui+(ρ), D̂ �

(1/10)D̂,D(0, ρbτ /2)) is (10bτ )
−1| ln ρ|−1-good, cf. Proposition 10.4, we have by Defini-

tion 3.3

‖�i+(ρ) −�‖D̂�(1/10)D̂ � exp
(

− (10bτ | ln ρ|)−1(1/ρ)(1/τ)−β/2

)

� exp(−(1/ρ)(1/τ)−β).

The inequality (13.390) is then a consequence of (13.389) and (10.334). �

Corollary 13.2. — If BNF(f ) = � then for all β > 0, ρ �β 1, and any D ∈ Dρ the

radius ρ
qD of the disk qD satisfies

ρ
qD � exp

(

−(1/ρ)(1/τ)−β

)

.
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Proof. — This results from (13.390) and the Extension Property in Proposition 8.1.
�

Corollary 13.3. — If BNF(�� ◦ fF) converges then for all β > 0, ρ �β 1 (recall Nota-

tion 12.2 for m̃)

m̃��◦fF(ρ) � exp
(

−(1/ρ)(1/τ)−β

)

.

Proof. — This is a consequence of the previous Corollary 13.2 and of Proposi-
tion 12.3 since #Dρ � ρ1−2(μ/ι(ρ)) � ρ−1 (cf. (10.309), (10.304), (10.305)). �

13.2. Case ω0 is irrational in the (CC) setting. — The notations here are those of
Section 11. In particular we assume that (11.335), (11.336), (11.337) hold.

Lemma 13.4. — If BNF(�� ◦ fF) converges and is equal to � ∈O(D(0, 1)) then for all

β � 1, n�β 1 such that qn+1 ≥ q10
n

(13.391) ‖�i+n −�‖D̂n�(1/10)D̂n
� exp(−q

1−β

n+1 ).

As a corollary, for γn � q−m
n+1 � |cn|m/2

(13.392) ‖�HJ
D̂n
−�(· − γn))‖(4/5)D̂n�(1/5)D̂n

� exp(−q
(1/4)−β

n+1 ).

Proof. — Let us prove (13.391). From (11.367) and Proposition 6.7 one gets

‖�i+n −�‖D(0,q−6
n+1/2) � exp(−q

1−β/2
n+1 ).

Since the function �i+n − � is holomorphic on U(n) and since the triple (U(n), D̂n �

(1/10)D̂n,D(0, q−6
n+1/2)) is 1/(10| ln ρn|)-good (see Proposition 11.2, Item (5)), we have

by Definition 3.3 (remember (11.341))

‖�i+n −�‖D̂n�(1/10)D̂n
� exp

(

−(10| ln ρn|)−1(qn+1)
1−β/2

)

� exp(−q
1−β

n+1 ).

The inequality (13.392) is then a consequence of (13.391) and (11.368). �

Corollary 13.5. — If BNF(f )=� then for any β > 0, n�β 1 such that qn+1 ≥ q10
n , the

radius ρ
qDn

of the disk qDn satisfies

ρ
qDn
� exp(−q

(1/4)−β

n+1 ).
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Proof. — This results from (13.392) and the Extension Property of Proposition 8.1.
�

Corollary 13.6. — If BNF(�� ◦ fF) converges, then for any β > 0, A′ ≥ A and n�β,A′ 1
such that qn+1 ≥ q10

n one has

m̃��◦fF(ρn) � exp(−q
(1/4)−β

n+1 ), ρn = 10A′/(qn+1qn).

Proof. — This follows from the previous Corollary 13.5 and Proposition 12.6 and
Remark 12.1. �

14. Proof of Theorems C, A and A’

14.1. Proof of Theorem C.

14.1.1. (AA) Case. — Let f (θ, r) = (θ + ω0, r) + (O(r), O2(r)) be a real ana-
lytic symplectic diffeomorphism of the annulus T × [−1, 1] satisfying the twist condi-
tion (1.14). We can perform some steps of the classical Birkhoff Normal Form proce-
dure, Proposition 6.2: for some h > 0, ρ0 > 0, there exists g̃ = fZ̃ = id + (O(r), O(r2)),
�̃ ∈ Oσ (e10hD(0, ρ0)), Z, F ∈ Oσ (e10h(Th × D(0, ρ0))) ∩ O(r2), such that on e10h(Th ×
D(0, ρ0)) one has

g̃−1 ◦ f ◦ g̃ =��̃ ◦ fF,

∀0≤ ρ ≤ ρ0, ‖F‖e10h(Th×D(0,ρ)) ≤ ρ m

(2π)−1�̃(r)= ω0r + b2(f )r2 +O(r3)

Z̃(θ, r)=
9∑

j=2

Z̃j(θ)rj + r10Z̃≥10(θ, r)

where m is the constant appearing in (10.296). Applying Lemma 2.5 to �̃(r) and
Lemma 2.2 to r10Z̃≥10(θ, r) we can find, for some 0 < ρ � ρ0, C3 Whitney extensions
� ∈ Õσ (e10hD(0, ρ)) and Z ∈ Õσ (e10hWh,D(0,ρ)) of (�̃, e10hD(0, ρ)) and (Z̃, eh/10Wh,D(0,ρ))

such that g := fZ ∈ S̃ympex,σ (eh/10Wh,D(0,ρ)) (see Notations 2.3, 2.6 and 4.8),

� ∈ T C(A, B), A= 3 min(b2(f ), b2(f )−1), B≥ 1(14.393)

g({r = 0})= ({r = 0}), ‖g − id‖C1 ≤ 1/100.(14.394)

Since

g−1 ◦ f ◦ g =�� ◦ fF [eh/10Wh,D(0,ρ)]
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one has from (4.86), for any ρ ≤ ρ,

L(f , g(WD(0,ρ)))= g(L(�� ◦ fF, WD(0,ρ)))

hence, using the fact that g({r = 0}) = ({r = 0}) and ‖g − id‖C1 ≤ 1/100, we get the
inequality

(14.395) mf (ρ) � m̃��◦fF(2ρ).

The first part of Theorem C is then a consequence of Theorem 12.3 applied to �� ◦ fF

(which satisfies (10.294), (10.295) (10.296)): if we define qDt as the set {qD, D ∈D2t} (each
qD is associated to a D ∈ D2t ), formula (1.23) comes from the fact that # qDt = #D2t =
#D(Ui+(2t)) (recall the notation (12.370)) and from (10.309), (10.304), (10.305)); on the
other hand, (1.24) is a consequence of (12.371); finally (1.25) follows from Theorem 12.3
and inequality (14.395) (we take ρ = t).

The second part of Theorem C is a consequence of Corollary 13.2 because if the
BNF of f converges, the same is true for that of �� ◦ fF. �

14.1.2. (CC) Case. — Let f be a real analytic twist symplectic map of the real disk
admitting the origin as an elliptic fixed point with Diophantine frequency ω0, (x, y) �→
�2πω0r(x,y)(x, y)+O2(x, y), r(x, y)= (1/2)(x2+y2) and satisfying the twist condition (1.14).
We first make the symplectic change of variables (4.77) (z,w)= ϕ(x, y),

{
z= 1√

2
(x+ iy)

w = i√
2
(x− iy)

⇐⇒
{

x= 1√
2
(z− iw)

y= −i√
2
(z+ iw)

and we write the thus obtained symplectic map (z,w) �→ f̃ (z,w), f̃ = ϕ ◦ f ◦ ϕ−1 as

f̃ =�2πω0r ◦ fF0, r =−izw.

We observe that (cf. (4.86))

(14.396) L(f , W)=L(̃f , ϕ(W)).

Like in the (AA)-case (Section 14.1.1) we perform some steps of Birkhoff Normal Form,
Proposition 6.1 and make some Whitney extensions (Lemma 2.2) to obtain for some h>0,
ρ > 0, maps � ∈ Õσ (e10hD(0, ρ)), F ∈Oσ (e10hWh,D(0,ρ)), g ∈ S̃ympex,σ (eh/10Wh,D(0,ρ)) sat-
isfying

g−1 ◦ f̃ ◦ g =�� ◦ fF, [e10hWh,D(0,ρ)](14.397)

g({r = 0})= ({r = 0}), ‖g − id‖C1 ≤ 1/100.(14.398)

� ∈ T C(A, B), A= 3 min(b2(f ), b2(f )−1), B≥ 1(14.399)
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∀ ρ ≤ ρ, ‖F‖e10hWh,D(0,ρ)
≤ ρm(14.400)

where m is the constant appearing in (10.296).
Applying (14.396), (14.397), (14.398) yields for ρ ≤ ρ (cf. (14.395))

(14.401) mf (ρ)≤ mf̃ (2ρ) � m̃��◦fF(4ρ).

The conclusion of Theorem C is then obtained in the same way as in the previous Sec-
tion 14.1.1. �

14.2. Proof of Theorem A. — The conclusion of Theorem A is an immediate conse-
quence of (1.23), (1.25), (1.26) of Theorem C: for any β > 0 and t �β 1

mf (t) � exp
(

−(1/t)(1/τ)−β

)

. �

14.3. Proof of Theorem A’. — We proceed like in the previous Section 14.1.2 to
obtain (14.397)–(14.400) and then,

(14.402) mf (ρ)≤ mf̃ (2ρ) � m̃��◦fF(4ρ).

We now apply Corollary 13.6 to ��◦ fF. Setting ρn = 10A/(qnqn+1) with A= 3 min(b2(f ),

b2(f )−1) (cf. (14.399)) we get for any β � 1 and any n �β 1 such that qn+1 ≥ q10
n , the

inequality

m̃��◦fF(ρn) � exp(−q
(1/4)−β

n+1 ).

Hence if tn := 5 min(b2(f ), b2(f )−1)/(qnqn+1)≤ ρn/4 one has (cf. (14.402))

mf (tn)≤ mf̃ (2tn) � m̃��◦fF(4tn) � exp(−q
1/5
n+1). �

15. Creating hyperbolic periodic points

Let � ∈ Õσ (D(0, ρ)) satisfy a twist condition (A, B≥ 1),

(15.403) ∀ r ∈R, A−1 ≤ (1/2π)∂2�(r)≤ A, and ‖(1/2π)D3�‖C ≤ B,

a3 ∈ N, a3 ≥ 10, be the constant appearing in Proposition G.1 of the Appendix and
(pn/qn) the sequence of convergents of ω0 = (2π)−1∂�(0). We introduce for n ≥ 1, the
sequence cn defined by

(15.404) (2π)−1∂�(cn)= pn/qn,
(2A)−1

qnqn+1
≤ |cn| ≤ A

qnqn+1
.
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Proposition 15.1. — Let h > 0, n ∈N large enough and F ∈Oσ (Th ×D(cn, |cn|2)) such

that

e−qnh < |cn|10

‖F‖Th×D(cn,|cn|2) � |cn|a3

and

|̂F(qn, cn)| ≥ e−qnh|cn|a3+1/2.

Then,

m��◦fF(cn)≥C−1
h |cn|2a3+1e−4qnh.

The constant Ch can be chosen to be non increasing w.r.t. h.

This proposition will be a consequence of the more precise statement given by the
following Proposition 15.2.

For p ∈ Z, q ∈N∗, p∧q= 1, p/q small enough, there exists a unique cp/q ∈D(0, ρ)∩
R such that

ω(cp/q) := (2π)−1∂�(cp/q)= p/q.

We define

(15.405) ρp/q =min(|cp/q/4|, q−9)

and assume that

(15.406) εp/q := ‖F‖D(cp/q,ρp/q) ≤ |cp/q|a3 .

The ±q-th Fourier coefficients of F(·, r), F̂(±q, r)= (2π)−1
∫ 2π

0 F(θ, r)e∓iqθdθ satisfy

|̂F(±q, r)|� e−qhεp/q

and since F is σ -symmetric, for every r ∈D(0, ρ)∩R, F̂(q, r)= F̂(−q, r).

Proposition 15.2. — Assume (15.406) is satisfied and

(15.407) e−qh < ρ10
p/q

(15.408) |̂F(±q, cp/q)| = νqe
−qhεp/q.

(15.409) ν−1
q qρp/q ≤ 1/q.

Then, there exists in a neighborhood of T×{cp/q} ⊂T×R an open set of area ≥C−1
h (νqεp/qe

−qh)3/2,

Ch > 0, that has an empty intersection with any possible (horizontal) invariant circle of the symplectic

diffeomorphism �� ◦ fF.
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Remark 15.1. — One can choose the constant Ch to be non increasing with respect
to h.

Let us see how it provides a proof of Proposition 15.1.

Proof of Proposition 15.1. — Since for n large enough

e−qnh < min(|cn/4|, q−9
n )10

|̂F(qn, cn)| ≥ e−qnh|cn|1/2‖F‖Th×D(cn,|cn|2)

lim
n→∞|cn|−1/2qn min(|cn/4|, q−9

n )= 0

we can apply Proposition 15.2 with q = qn, εp/q = ‖F‖Th×D(cn,|cn|2), νq = |cn|1/2, cp/q = cn,
ρp/q =min(|cn/4|, q−9

n ). We then get

m��◦fF(cn) � (|cn|1/2e−qnh‖F‖Th×D(cn,|cn|2)
2.

But, because ((2π)−1
∫ 2π

0 |F(θ, cn)|2dθ)1/2 ≥ |̂F(qn, cn)|, one has ‖F‖Th×D(cn,|cn|2) ≥
|̂F(qn, cn)|, hence

m��◦fF(cn)≥C−1
h |cn|2a3+1e−4qnh. �

The proof of Proposition 15.2 will occupy the next subsections.

15.1. Putting the system into q-resonant Normal Form. — Conditions (15.405) and
(15.406) show that we can apply Proposition G.1: it provides us with the following q-
resonant Normal Form

(15.410)

g−1
RNF ◦�� ◦ fF ◦ gRNF =�2π(p/q)r ◦�� ◦ fFres ◦ fFcor

{
�=�− 2π(p/q)r +M0(Fres)

F
res = Fres −M0(Fres)

Fres ∈ Oσ (Th−1/q × D(cp/q, e−1/qρp/q)), F
res = Fres −M0(Fres); these last two functions are

1/q-periodic (in the θ -variable) and are such that

‖Fres‖Th−1/q×D(cp/q,e
−1/qρp/q) � εp/q

Fres =Tres
N (F+O(qρp/q‖F‖Wh,D(cp/q ,ρp/q)

)).

Also,

(15.411) ‖Fcor‖e−1/qWh,D(c,ρ)
� exp(−ρ −1/4)‖F‖Wh,D(c,ρ)

,

(15.412) ‖gRNF − id‖C1 � (qρ −2)2‖F‖h,D(c,ρ) ≤ ρ a3−5.
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Lemma 15.3. — On T1/q ×D(cp/q, e−1/qρp/q/2) one has

(15.413) Fres(θ, r)= ures
0 (r)+

∑

±
ures

1,±(r)e±iqθ + ures
≥2(θ, r)

where on D(cp/q, e−1/qρp/q/2) one has

(15.414)
ures

0 (r)=M0(Fres)= F̂(0, r)+O(qρp/qεp/q)

ures
1,±(r)= F̂(±q, r)+O(e−qhqρp/qεp/q)=O(e−qhεp/q)

and

‖ures
≥2‖T1/q×D(cp/q,e

−1/qρp/q/2) � e−2qhεp/q.

Proof. — We recall that from (G.526)

Fres =Tq−res

N (F+G)

(see the notation (G.519) for Tq−res

N ) where

‖G‖h−1/q,e−1/qρp/q/2 =O(qρp/q‖F‖h,D(cp/q,ρp/q/2)).

Hence

(15.415) |Ĝ(0, r)|� qρp/qεp/q, |Ĝ(±q, r)|� e−q(h−2/q)qρp/qεp/q � e−qhqρp/qεp/q.

On the other hand since e−2q(h−3/q) � e−2qh

‖Tq−res

N F− F̂(0, r)−
∑

±
F̂(±q, r)e±iqθ‖1/q,ρp/q/2 � e−2qhεp/q

and

‖Tq−res

N G− Ĝ(0, r)−
∑

±
Ĝ(±q, r)e±iqθ‖1/q,e−1/qρp/q/2 � qρp/qεp/qe

−2qh.

Summing these two inequalities and using (15.415) gives (15.413). �

With these notations
{

�=�− 2π(p/q)r + ures
0 (r)

F
res = Fres − ures

0 (r).

We denote by c ∈R the point where

∂�(c)= 0;
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since ‖ures
0 ‖D(cp/q,ρp/q) � εp/q and � satisfies the twist condition (15.403) one has

c= c+O(εp/q) ∈D(c, (3/4)ρp/q),

�(r)= cst+ (�/2)(r − c)2 +O((r − c)3)

for some � � A−1. Since Fres is σ -symmetric we can write
∑

±
ures

1,±(r)e±iqθ = a(r) cos(qθ)+ b(r) sin(qθ)

and from (15.408), (15.414), (15.409) we can assume, shifting the variable θ ∈ Th by a
translation θ �→ θ + αc (αc ∈T) if necessary, that

(15.416) b(c)= 0, a(c)= νqe
−qhεp/q, νq = νq −O(qρp/q)= νq(1+ oq−1(1))

with

max(‖a‖D(c,ρp/q),‖b‖D(c,ρp/q)) � e−qhεp/q.

Thus,
{

�(r)=�(r)− 2π(p/q)r + ures
0 (r)= cst+ (�/2)(r − c)2 +O((r − c)3)

F
res

(θ, r)= a(r) cos(qθ)+ b(r) sin(qθ)+ ures
≥2(θ, r).

15.2. Coverings. — Like in Section 8.2 (cf. (8.215)) we define

�̃res ∈Oσ (D(0, qe−2/qρp/q/2)), F̃res ∈Oσ (Tqh−2 ×D(0, qe−2/qρp/q/2))
{

�̃res(r)= q2�(c+ r/q)

F̃res(θ, r)= q2F
res

([θ/q]mod (2π/q)Z, c+ r/q)

(15.417)

hence
{

�̃res(r)= cst+� r2/2+O(r3)=� r2/2+ ω̃(r)

F̃res(θ, r)= ã(r) cos(qθ)+ b̃(r) sin(qθ)+ ũres
≥2(θ, r)

with

ã(r)= q2a(c+ r/q), b̃(r)= q2b(c+ r/q),

ũres
≥2(θ, r)= q2ures

≥2(θ/q, c+ r/q).

Let us define

H̃res(θ, r) := �̃res(r)+ F̃res(θ, r)(15.418)

= cst+ (1/2)� r2 + ã(r) cos θ + b̃(r) sin θ + ω̃(r)+ ũres
≥2(θ, r).
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We make explicit the linear plus quadratic part HQ(θ, r) of (1/2)� r2 + ã(r) cos θ +
b̃(r) sin θ at (θ, r)= (0, 0) ∈R2 (recall that b̃(0)= 0) which appears in

(1/2)� r2 + ã(r) cos θ + b̃(r) sin θ

= ã(0)+ r∂r̃ a(0)− (θ 2/2)̃a(0)+ (r2/2)(� + ∂2
r ã(0))

+ rθ∂r̃b(0)+ g0(θ, r)

where g0(θ, r)=O3(θ, r)=O(|θ |3 + |r|3); we can then write

(15.419) H̃res(θ, r)= cst+HQ(θ, r)+ ω̃(r)+ g(θ, r)

with

(15.420)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

HQ(θ, r)= 1
2

〈

Q

(
θ

r

)

,

(
θ

r

)〉

+
〈(

0
∂r̃ a(0)

)

,

(
θ

r

)〉

Q=
(
−̃a(0) ∂r̃ b(0)

∂r̃b(0) � + ∂2
r ã(0)

)

and

(15.421) g(θ, r)= g0(θ, r)+ ũres
≥2(θ, r), g0(θ, r)=O3(θ, r).

For further records we mention the following estimates

(15.422) max(‖̃a‖D(0,qρp/q), ‖̃b‖D(0,qρp/q)) � q2e−qhεp/q

(15.423) b̃(0)= 0, ã(0)= q2νqe
−qhεp/q, where νq = νq(1+ o1/q(1))

(15.424) ‖̃ures
≥2‖T1/q×D(0,e−1/qqρp/q/2) � q2e−2qhεp/q

and for (l1, l2) ∈N2, l1 + l2 ≤ 2 and 0 < t < ρp/q/10

(15.425) ‖∂ l1
θ ∂ l2

r g0(θ, r)‖D(0,t)×D(0,t) � q2t3−l1−l2e−qhεp/q

(15.426) ‖∂ l1
θ ∂ l2

r g(θ, r)‖D(0,t)×D(0,t) � [q2t3−l1−l2e−qhεp/q + ql1ρ
−l2
p/q q2e−2qhεp/q].

15.3. Existence of a hyperbolic fixed point for fHQ+ω̃. — We refer to Appendix N for the
definition of the notion of a (κ, δ)-hyperbolic fixed point.

Lemma 15.4. — The affine symplectic map fHQ+ω̃(r) has a (κ, δ)-hyperbolic fixed point

(θ0, r0) ∈D(0, ρ5
p/q)

2 ∩R2 with

δ = κ = q(�νqεp/qe
−qh)1/2(1+ o1/q(1))
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with stable and unstable directions at this point of the form

(
1

m±

)

where

m± =±q(νqe
−qhεp/q/�)1/2(1+ o1/q(1)).

Proof. — See Appendix N.2. �

15.4. Stable and unstable manifolds of fH̃res .

Lemma 15.5. — The symplectic diffeomorphism fH̃res has a (κ, δ)-hyperbolic fixed point

(θ1, r1) ∈D(0, ρ4
p/q)

2 ∩R2 with

(15.427) κ = δ = q(�νqe
−qhεp/q)

1/2(1+ o1/q(1)).

The stable and unstable directions at this point are of the form

(
1

m±

)

where

m± =±q(νqe
−qhεp/q/�)1/2(1+ o1/q(1)).

Proof. — From (15.419),

fH̃res = fHQ+ω̃+g(15.428)

= fHQ+ω̃ ◦ f̃g, g̃ =O1(g)

and from (4.92) of Lemma 4.5, (15.426) (with l1 + l2 ≤ 2) and (N.594) we get

‖Df̃g − id‖D(0,10θ0)×D(0,10r0) � [q2ρ5
p/qe

−qhεp/q + q4ρ−2
p/q e−2qhεp/q]

� (q2ρ5
p/q + q4ρ−2

p/q e−qh)εp/qe
−qh.

Because of Lemma 15.4 and (15.428), the Stable Manifold Theorem N.1 of the
Appendix shows that the conclusion of the Lemma is true provided for some constant
C > 0 (cf. (N.589))

‖f̃g − id‖C1(D(0,10θ0)×D(0,10r0)) ≤C−1ρp/qκδ

a condition that is implied by (recall (15.427) and the fact that from (15.409) one has
νq � qρp/q)

(q2ρ5
p/q + q4ρ−2

p/q e−qh) < q2ρ2
p/q (< C−1q2ρp/qνq).

But (15.405), (15.407) show that this last inequality is satisfied if q� 1. �
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15.5. Stable and unstable manifolds of �� ◦ fF.

Lemma 15.6. — The diffeomorphism �� ◦ fF has a hyperbolic q-periodic point (θ, r) the local

stable and unstable manifolds of which are graphs of C1-functions w−,w+ :]θ −ρ, θ +ρ[→R such

that
⎧
⎪⎨

⎪⎩

(m/2)|θ − θ | ≤ |w+(θ)−w−(θ)| ≤ 2m|θ − θ | (for θ ∈]θ − ρ, θ + ρ[)
m= q(νqe

−qhεp/q/�)1/2(1+ o1/q(1))

ρ =C−1νqe
−qhεp/q.

Proof. — Recall, cf. (15.410), that

(15.429) g−1
RNF ◦�� ◦ fF ◦ gRNF =�2π(p/q)r ◦�� ◦ fFres ◦ fFcor .

From (15.417), the pre-image of (θ1, r1), by (θ, r) �→ ([(θ − αc)/q]mod (2π/q)Z, c + r/q) is
a q-periodic orbit Oq ⊂ T×]cp/q − ρ4

p/q, cp/q + ρ4
p/q[⊂ T×]cp/q − ρp/q/3, cp/q + ρp/q/3[ of

�� ◦ fFres as well as of �2π(p/q)r ◦�� ◦ fFres (F
res

is 2π/q-periodic); Lemma 15.5 tells us that
this periodic orbit is hyperbolic. Let u0 ∈T×]cp/q − ρ4

p/q, cp/q + ρ4
p/q[ be a point of Oq and

denote ϕ = �2π(p/q)r ◦�� ◦ fFres . One has ϕq(u0) = u0 and we want to find a hyperbolic
fixed point for (ϕ ◦ fFcor )q (the q-th iterate of ϕ ◦ fFcor ) close to u0.

We can write

(ϕ ◦ fFcor )q = ϕq ◦ j

where

j = (ϕ−(q−1) ◦ fFcor ◦ ϕq−1) ◦ · · · ◦ (ϕ−1 ◦ fFcor ◦ ϕ) ◦ fFcor .

Since ‖(�2π(p/q)r ◦��)n‖C2(T×]cp/q−ρp/q/3,cp/q+ρp/q/3[) � 1 uniformly in n and

‖F
res‖C2(T×]cp/q−ρp/q/3,cp/q+ρp/q/3[) � εp/qρ

−2
p/q � 1

one has for n≤ ρ2
p/q/εp/q,

(15.430) ‖ϕn‖C2(T×]cp/q−ρp/q/3,cp/q+ρp/q/3[) � 1

and consequently (q� ε−1)

‖j − id‖C1(T×]cp/q−ρp/q/3,cp/q+ρp/q/3[) � q‖Fcor‖C1(T×]cp/q−ρp/q/3,cp/q+ρp/q/3[)

� exp(−ρ
−1/3

p/q )

where we have used (15.411).
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Replacing ϕq and j by T ◦ ϕq ◦ T−1 and T ◦ j ◦ T−1 where T : u �→ u− u0 we can
assume that u0 = 0 ∈ DR(̃c, ρ4

p/q)
2 ⊂ DR(̃c, ρp/q/3)2 ⊂ T×]̃c − |cp/q/3|,̃ c + ρp/q/3[. We

then have ϕq(0)= 0 and the matrix Dϕq(0) is (κ, δ)-hyperbolic with

δκ = q2νqe
−qhεp/q(1+ o1/q(1)).

Write ϕq(u)=Dϕq(0)ξ(u) with ξ(0)= 0, Dξ(0)= id so that

ϕq ◦ j =Dϕq(0) ◦ ξ ◦ j.

Observe that for 0 < ρ < ρp/q/4 and k = 0, 1

‖Dk(ξ ◦ j − id)‖C0(DR(0,ρ))2 � ‖Dk(ξ − id)‖C0(DR(0,ρ))2 + ‖j − id‖C1(DR(0,ρ))2

� ρ2−k + q exp(−ρ
−1/3

p/q ).

Let us choose

ρ =C−1νqe
−qhεp/q

with C large enough. The Stable Manifold Theorem (cf. Appendix, Theorem N.1) shows
that the diffeomorphism ϕq ◦ j has a hyperbolic fixed point the stable and unstable man-
ifolds of which are graphs of C1 functions of the form w̃−, w̃+ :] − ρ/2, ρ/2[→ R,
w̃− < 0 < w̃+, such that for all θ ∈] − ρ/2, ρ/2[ one has

(3/2)m−θ ≤ w̃−(θ)≤ (2/3)m−θ ≤ 0≤ (2/3)m+θ < w̃+(θ)≤ (3/2)m+θ.

To conclude the proof of the Lemma we set w± = w̃± ◦ g−1
RNF and note that

g−1
RNF ◦�� ◦ fF ◦ gRNF = ϕq ◦ j

with ‖g−1
RNF − id‖C1 ≤ 1/10 (see (15.412)). �

15.6. End of the proof of Proposition 15.2. — Let V be the set

V= {(θ, r), θ ∈ [θ, θ + ρ/2],w−(θ)≤ r ≤w+(θ)}
the boundary of which is made by two pieces of stable and unstable manifolds and the
vertical segment L := {θ +ρ/2}× [w−(θ +ρ/2),w+(θ +ρ/2]. By a theorem of Birkhoff
[4] (cf. also [21]), any invariant (horizontal) curve of the twist diffeomorphism �� ◦ fF is
the graph of a Lipschitz function γ : T → [−1, 1]; if this curve intersects the stable or
unstable manifold of (θ, r) it must be included in the union of these stable and unstable
manifolds which is impossible. So if this invariant curve intersects the interior of V it
has to enter in V by first entering the vertical segment L by the right. But this is clearly
impossible also (see Figure 11).
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�

(θ, r)

w−(·)

w+(·)

θ + ρ/2

γ (·)

VV
T

R

L

FIG. 11. — Invariant graphs cannot intersect the interior of V

Now the domain V has an area which is

area(V) � ρ × (m+ − m−)

� (νqe
−qhεp/q)

3/2.

This concludes the proof of Proposition 15.2 if we notice that the dependence on h of
the implicit constant in the symbol � appears only when we apply Proposition G.1 on
Resonant Normal Forms (cf. Remark G.1). �

16. Divergent BNF: proof of Theorems E, B and B’

We now use the result of the previous Section to construct examples of real analytic
symplectic diffeomorphisms of the disk and the annulus with divergent BNF.

16.1. Proof of Theorems E and B: the (AA) Case. — Let f = �2πω0r ◦ fO(r2) be a real
analytic symplectic twist map of the annulus of the form (1.6) and satisfying the twist
condition (1.14). We perform a Birkhoff Normal Form, cf. Proposition 6.2, on f up to
order a3, where a3 is the integer of Proposition G.1 of the Appendix that appears in
Proposition 15.1: there exist ρ > 0, g ∈ Sympex,σ (Th × D(0, ρ)) exact symplectic, � ∈
Oσ (D(0, ρ)), F ∈Oσ (Th ×D(0, ρ)) such that

g−1 ◦ f ◦ g =�� ◦ fF

where (b2 	= 0)

(2π)−1�(r)= ω0r + b2r2 +O(r3), F(θ, r)=O(ra3), g − id =O(r2).

Note that for ρ small enough � satisfies a ((5/2) min(b2, b−1
2 ), B)-twist condition on

D(0, ρ) (B ≥ 1). In particular, if (pn/qn)n≥1 are the convergents of ω0 and cn ∈ R (n large
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enough) is the point where

(16.431) (2π)−1∂�(cn)= pn/qn, |cn| ≤ (5/2) max(b2(f ), b2(f )−1)

qnqn+1

(cf. (15.404) and the twist condition satisfied by �) one has

‖F‖Th×D(cn,|cn|2) � |cn|a3 .

For (ζ1,k)k≥1, (ζ2,k)k≥1 ∈ [−1, 1]N∗
, let Gζ ∈Th ×D(0, 1) defined by

Gζ (θ, r)= ra3
∑

k≥1

ζ1,ke
−qkh cos(qkθ)+ ζ2,ke

−qkh sin(qkθ).

We now define fζ ∈ SympO
σ (T×D(0, 1)), Fζ ∈Oσ (Th ×D(0, ρ)) by

fζ = f ◦ fGζ
,

�� ◦ fFζ
:= g−1 ◦ fζ ◦ g =�� ◦ fF ◦ g−1 ◦ fGζ

◦ g.

Lemma 16.1. — For n, cn as above, there exists a set Jn(F) ⊂ [−1, 1]2 of 2-dimensional

Lebesgue measure � |cn|1/2 such that for any ζ ∈ ([−1, 1]2)N∗
, such that ζn ∈ [−1, 1]2 � Jn(F) one

has

m��◦fFζ
(cn) � |cn|2a3+1e−4qnh.

Proof. — Let αn ∈T and νqn
≥ 0 be such that

F̂(qn, cn)e
iqnθ + F̂(−qn, cn)e

−iqnθ = |cn|a3νqn
e−qnh cos(qnθ + αqn

).

Since �� ◦ fFζ
=�� ◦ fF ◦ g−1 ◦ fGζ

◦ g, F, Gζ =O(ra3) and g − id =O(r2) we see that

(16.432) Fζ = F+Gζ +O(ra3+1).

We now assume cn > 0 for simpler notations (the case cn < 0 is treated in the same way).
We can write

Gζ (θ, r)= ra3
∑

k≥1

ζ̃1,ke
−qkh cos(qkθ + αqk

)+ ζ̃2,ke
−qkh sin(qkθ + αqk

)

with ζ̃1,k − ĩζ2,k = e−iαqk (ζ1,k − iζ2,k) and from (16.432) we see that

F̂ζ (qn, cn)e
iqnθ + F̂ζ (−qn, cn)e

−iqnθ

= |cn|a3e−qnh

(

(νqn
+ζ̃1,n+un(ζ )) cos(qnθ+αqn

)+(̃ζ2,n+vn(ζ )) sin(qnθ+αqn
)

)
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where

sup
ζ∈([−1,1]2)N∗

(|un(ζ )|, |vn(ζ )|) � |cn|.

We can thus write for ζ1, ζ2 ∈] − 1, 1[N∗

2|̂Fζ (qn, cn)| = νn(ζ )|cn|a3e−qnh

with

νn(ζ )2 = (νqn
+ ζ̃1,n + un(ζ ))2 + (̃ζ2,n + vn(ζ ))2

≥ |̃ζ2,n −O(cn)|2.
Since ζ̃1,k − ĩζ2,k = e−iαqk (ζ1,k − iζ2,k), one can hence find a set Jn(F) ⊂ [−1, 1]2 of 2-
dimensional Lebesgue measure

|Jn(F)|� |cn|1/2

such that

(ζ1,n, ζ2,n) ∈ [−1, 1]2 � Jn(F) %⇒ |νn(ζ )|� |cn|1/2.

By Proposition 15.1 we thus have

m��◦fFζ
(cn) � |cn|2a3+1e−4qnh. �

Lemma 16.2. — Let N ⊂ N be infinite. Then, for almost every ζ ∈ ([−1, 1]2)N∗
for the

product measure μ∞ = (Leb[−1,1]2)⊗N∗
, there exists an infinite subset Ñ ⊂N such that for all n ∈ Ñ

m��◦fFζ
(cn) � |cn|2a3+1e−4qnh.

Proof. — Since the random variables ζn, n ∈N are independent, for any m ∈ N,
the event {ζn ∈ Jn(F), ∀ n≥ m} has zero μ∞-probability as well as their union. Hence for
μ∞-almost every ζ ∈ X , one has for infinitely many n ∈N , ζn /∈ Jn(F) and we conclude
by Lemma (16.1). �

16.1.1. Proof of Theorems E and B. — We now observe that if ω0 is Diophantine
with exponent τ

τ = lim sup
ln qn+1

ln qn

,

then for any β > 0 there exists a infinite set Nβ such that for all n ∈Nβ

qn+1 ≥ qτ−β/4
n .
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On the other hand

|cn| �
∣
∣
∣
∣ω0 − pn

qn

∣
∣
∣
∣�

1
qnqn+1

� 1

q
1+τ−β/4
n

hence

qn � (1/|cn|)(1/(1+τ))+β/4

and consequently, from Lemma 16.2, for an infinite number of n ∈Nβ

(16.433) m��◦fFζ
(cn) � |cn|2a3+1e−4qnh � exp

(

−
(

1
|cn|

)( 1
1+τ

)+β/2)

.

We observe that since tn ≥ 2|cn| (cf. (1.20) and (16.431)) one has

(16.434) mfζ (tn) � m��◦fFζ
(cn) � exp

(

−
(

1
|tn|

)( 1
1+τ

)+β)

.

If β is chosen so that
(

1
1+ τ

)

+ β <
1
τ
− β,

the estimate (16.434), when compared to the conclusion of Theorem A, shows that the
Birkhoff Normal Form of fζ is divergent for μ∞-almost every ζ ∈ ([−1, 1]2)N∗

.
This concludes the proof of Theorem E and, as a consequence, of that of Theo-

rem B (in the (AA) case). �

16.2. Proof of Theorems E’, B and B’: (CC) Case. — Let f be a real analytic symplectic
diffeomorphism of the disk admitting the origin 0 as an elliptic equilibrium with irrational
frequency ω0 and satisfying the twist condition (1.14); we assume that it is of the form

f =��((1/2)(x2+y2)) +O((x2 + y2)a3)

with � ∈Oσ (D(0, 1)). Passing to the (z,w)-variables (cf. (4.77)) we can write

ϕ ◦ f ◦ ϕ−1 =�� ◦ fF

where F ∈Oσ (D(0, 1)2)

F(z,w)=O((zw)a3) (and not only Oa3(z,w)).

Let as before (pn/qn)n≥1 be the convergents of ω0 and cn ∈ R the point where
(2π)−1∂�(cn)= pn/qn (cf. (15.404)).
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For (ζn)n∈N∗ ∈ ([−1, 1]2)N∗
, let Gζ ∈Oσ (D(0, 1)2)

Gζ (z,w)= (−izw)a3

∞∑

k=1

ζ1,k

2
× ((i−1/2z)qk + (i−1/2w)qk)

+ ζ2,k

2i
× ((i−1/2z)qk − (i−1/2w)qk).

We now define (recall the definition of G∗
ζ in Section 1.4.3)

�� ◦ fFζ
=�� ◦ fF ◦�Gζ

fζ = ϕ−1 ◦ (�� ◦ fFζ
) ◦ ϕ = f ◦�Gζ ◦ϕ = f ◦�G∗

ζ
. (cf . (4.82))

Lemma 16.3. — Assume that for some n large enough, cn is positive. Then, there exists Jn(F)⊂
[−1, 1]2 of Lebesgue measure � c1/2

n such that if ζn = (ζ1,n, ζ2,n) /∈ Jn(F) one has

mfζ (2cn) � m��◦fFζ
(cn) � c2a3+1

n e−4qnh.

Proof. — We define

hn =−(1/2) ln(cn + c2
n),

and since |ω0 − pn

qn
| � 1

qnqn+1
� cn one has

hn = (−1/2) ln cn +O(cn)

= (−1/2) ln cn −O(1/q2
n)

hence

(16.435) e−qnhn = cqn/2
n eO(1/qn) < c10

n .

Let WCC
n = WCC

hn,D(cn,c2
n )
= {(z,w) ∈ C2, max(|z|, |w|) ≤ ehn(cn + c2

n)
1/2, −izw ∈

D(cn, c2
n)}. One has

(16.436) ‖F‖WCC
n

� |cn|a3, ‖Gζ‖WCC
n

� ca3
n .

Using Lemma K.1 we can pass to (AA)-coordinates: if ψ− is the diffeomorphism defined
in (4.79)

ψ−1
− (WCC

hn,D(cn,c2
n )
)⊃WAA

hn,D(cn,c2
n )
=Thn

×D(cn, c2
n)

and we can introduce FAA, FAA
ζ ∈Oσ (Thn

×D(cn, c2
n)) (cf. (4.82))

ψ−1
− ◦ fF ◦ψ− = fFAA, ψ−1

− ◦ fFζ
◦ψ− = fFAA

ζ
= fFAA ◦�Gζ ◦ψ− .
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Since FAA = F ◦ ψ− +O2(F) and FAA
ζ = FAA +Gζ ◦ ψ− +O2(FAA, Gζ ◦ ψ−) (cf. (4.94),

(4.92)) one has on WAA
n

(16.437) ‖FAA
ζ ‖WAA

n
� ca3

n , FAA
ζ = FAA +Gζ ◦ψ− +O(c(3/2)a3

n ).

If we define νn and αn ∈T by

F̂AA(qn, cn)e
iqnθ + F̂AA(−qn, cn)e

−iqnθ = |cn|a3νqn
e−qnhn cos(qnθ + αqn

)

we see that on Thn−1 ×D(cn, c2
n/2) (cf. (16.437))

FAA
ζ = FAA(θ, r)+ ra3

∞∑

k=1

rqk/2(ζ1,k cos(qkθ)+ ζ2,k sin(qkθ))+O(c(3/2)a3
n ).

Hence

F̂AA
ζ (qn, cn)e

iqnθ + F̂ζ (−qn, cn)e
−iqnθ

= ca3
n

((

(νqn
+O(c(1/2)a3

n ))e−qnhn + cqn/2
n ζ̃1,n

)

cos(qnθ + αqn
)

+
(

cqn/2
n ζ̃2,n +O(c(1/2)a3

n )e−qnhn

)

sin(qnθ + αqn
)

)

with ζ̃1,k − ĩζ2,k = e−iαqk (ζ1,k − iζ2,k). We thus have (cf. (16.435))

2|̂FAA
ζ (qn, cn)| ≥ ca3

n |cqn/2
n ζ̃2,n +O(c(1/2)a3

n )e−qnhn |
≥ ca3

n |e−qnhn eO(1/qn )̃ζ2,n +O(c(1/2)a3
n )e−qnhn |

� ca3
n e−qnhn |̃ζ2,n +O(c(1/2)a3

n )|
and we see that if

|̃ζ2,n| ≥ c1/2
n

one can apply Proposition 15.1 (cf. (16.435)):

m��◦fFAA
ζ

(cn) � C−1
hn

c2a3+1
n e−4qnh � c2a3+1

n e−4qnh.

Now, since cn is positive and mfζ (2cn) � m��◦Fζ
(cn) this provides

mfζ (2cn) � m��◦fF◦�Gζ
(cn) � c2a3+1

n e−4qnh. �

We can deduce the analogue of Lemma 16.2
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Lemma 16.4. — Let N be an infinite set of n ∈N for which cn > 0. Then, for almost every

ζ ∈ ([−1, 1]2)N∗
, there exists an infinite subset Ñ ⊂N such that for all n ∈ Ñ

mfζ (2cn) � m��◦fFζ
(cn) � c2a3+1

n e−4qnh.

16.2.1. Proof of Theorems E’ and B (CC) Case, ω0 Diophantine. — We want to apply
the previous Lemma 16.4 to an infinite set N such that for all n ∈N one has both

(16.438) cn > 0 and qn+1 ≥ qτ−
n .

Such a set may not exist for arbitrary choices of ω0 (Diophantine) and �. On the other
hand, if one chooses the sign of ∂2�(0) depending on ω0 (or more precisely its sequence
of convergents) this is possible.

Let β > 0 and

Nβ = {n ∈N, qn+1 ≥ qτ−β/2
n }, Qβ = {pn/qn, n ∈Nβ}.

Since Nβ is infinite, one of the two sets Q±
β = Qβ ∩ (]ω0,±∞[) is infinite. We define

sβ(ω0) as the non-empty subset of {−1, 1} such that ±1 ∈ sβ(ω0) if and only if Q±
β is

infinite.
We now assume that ω(r) := (2π)−1∂�(r) is of the form

ω(r)= ω0 + 2b2r +O(r2), with sign(b2) ∈ sβ(ω0).

For the sake of simplicity we shall assume that 1 ∈ s(ω0) and b2 > 0 (the case −1 ∈ s(ω0)

and b2 < 0 is treated similarly).
The sets

N ′
β :=N+

β = {n ∈Nβ, pn/qn > ω0}, Cβ = ω−1(Q+
β )

are then infinite; note that Cβ ⊂]0,∞[ and its points cn, n ∈N+
β accumulate zero.

We then apply Lemma 16.4: for almost every ζ and infinitely many n ∈N+
β

mfζ (2cn) � c2a3+1
n e−4qnh

and, arguing like in Subsection 16.1.1, we see that setting tn = 2cn we have for infinitely
many n ∈N ′

β =N+
β

mfζ (tn) � exp
(

−
(

1
|tn|

)( 1
1+τ

)+β)

. �

16.2.2. Proof of Theorems E’ and B’: (CC) Case, ω0 Liouvillian. — Since ω0 is Liouvil-
lian, there exists an infinite set N ⊂N such that

lim
n∈N

ln qn+1

ln qn

=∞.
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We define

Q± = {pn/qn, n ∈N , pn/qn ∈]ω0,±∞[}
and s(ω0) as the non-empty subset of {−1, 1} (one of the two sets Q+, Q− is infinite) such
that ±1 ∈ s(ω0) if and only if Q± is infinite.

We assume that 1 ∈ s(ω0) and b2 > 0 (the case −1 ∈ s(ω0) and b2 < 0 is treated
similarly) and we set N+ = {n ∈N , pn/qn > ω0}. The set C = ω−1(Q+) is infinite, con-
tained in ]0,∞[ and its points cn, n ∈N+ accumulate 0.

We now apply Lemma 16.4: for almost every ζ one has for infinitely many n ∈N+

mfζ (2cn) � c2a3+1
n e−4qnh.

For these n’s one has

cn � |ω0 − pn

qn

| � 1
qnqn+1

,

and, for any β > 0, provided n is large enough,

c2a3+1
n e−4qnh � (

1
qn+1

)2(2a3+1) exp(−q
β/2
n+1) � exp(−q

β

n+1).

If we set tn = 2cn (cf. (16.431))

2cn ≤ tn := 5(b2 + b−1
2 )

qnqn+1

hence

mfζ (tn)≥ mfζ (2cn) � exp(−q
β

n+1)

for infinitely many n in N ′ :=N+. �
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Appendix A: Estimates on composition and inversion

A.1 Proof of Lemma 4.4. — We shall do the proof in the (AA)-case; the proof in the
(CC)-case follows the same lines.

We can assume that e−δWh,U =Wh−δ/2,e−δU is not empty (otherwise, there is nothing
to prove).

By (2.53), there exists a numerical constant C > 0 such that if δ > 0 satisfies

(A.439) C‖F‖Wh,Uδ−2 d(Wh,U)−1 < 1,

then for any fixed θ ∈Th−2δ and any fixed r ∈ e−δU, the map U→U, R �→ r− ∂θF(θ, R)

is contracting and by the Contraction Mapping Principle there thus exists a unique R ∈U
depending holomorphically on (θ, r) ∈Th−δ/2 × e−δU such that

r =R+ ∂θF(θ, R).

On the other hand, assumption (A.439) and Cauchy’s inequality (2.53) show that
if C is large enough

|∂RF(θ, R)|� δ−1 × ‖F‖h,U < (1/2)δ,

hence

ϕ := θ + ∂RF(θ, R) ∈Th−δ.
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We can thus define a holomorphic map

fF :Th−δ/2 × e−δU→Th−δ ×U

by

(A.440) fF(θ, r)= (ϕ, R) ⇐⇒
{

r =R+ ∂θF(θ, R)

ϕ = θ + ∂RF(θ, R).

Notice that the maps (θ, r) �→ ϕ(θ, r)− θ , (θ, r) �→R(θ, r)− r such defined are Lipschitz
with Lipschitz constant � δ−2 d(U)−2‖F‖h,U. Thus, if for some numerical constant large
enough

(A.441) Cδ−2 d(U)−2‖F‖h,U < 1,

the map fF is a holomorphic diffeomorphism from Th−δ/2 × e−δU onto its image.
Conversely, if (A.439) is satisfied, given (ϕ, R) ∈Th−δ× e−2δU, the same arguments

as those developed above show there exists a unique (θ, r) ∈ Th−δ/2 × e−δU such that
f (θ, r)= (ϕ, R). We thus have if (A.441) is satisfied

Th−δ × e−2δU⊂ fF(Th−δ/2 × e−δU).

Finally, we observe that the diffeomorphism fF is exact symplectic which means that
the differential form Rdϕ − rdθ is exact; in particular, it is symplectic. Indeed

Rdϕ − rdθ =−ϕdR+ d(ϕR)− rdθ

=−(θ + ∂RF(θ, R))dR− (R+ ∂θF(θ, R))dθ + d(ϕR)

=−dF+ d(ϕR)− d(θR)

= d(−F+ (ϕ − θ)R)

(observe that the function −F+ (ϕ − θ)R=−F(θ, R)+ ∂RF(θ, R)R is well defined on
Th ×U). We have thus proven that there exists a numerical constant C > 0 such that if

(A.442) Cδ−2 d(U)−2‖F‖h,U < 1

the diffeomorphism fF previously defined is exact symplectic and

(A.443) e−2δWh,U ⊂ fF(e
−δWh,U)⊂Wh,U.

Estimate (4.91) comes from (A.440) and

max
i=1,2

|∂iF(θ, R)− ∂iF(ϕ, r)|| ≤ 2‖D2F‖‖DF‖. �
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A.2 Proof of Lemma 4.5. — We illustrate the proof in the (AA)-Case (it is the same
in the (CC)-case).

Since f is close to the identity, the map f̃ : (θ, R) �→ (ϕ, r) ⇐⇒ f (θ, r)= (ϕ, R)

defines a diffeomorphism such that f̃ − id =O(f − id) and since f is exact symplectic we
know (cf. Section A.1) that ϕdR+ rdθ = dF for some holomorphic function F : (θ, R) �→
F(θ, R). Since F(θ, R)= ∫

γθ,R
(ϕdR+ rdθ) where γθ,R is a path joining (0, R0) ∈ {θ ∈C,

|$θ |< h} ×U to (θ, R), the function F, which is unique up to the addition of a constant,
thus satisfies F=O(f − id).

The estimate (4.92) is a consequence of (4.87) and the fact that

|∂θF(θ, R)− ∂θF(θ, r)| ≤ ‖D∂θF‖|R− r| ≤ ‖D∂θF‖‖∂θF‖
|∂RF(θ, R)− ∂RF(θ, r)| ≤ ‖D∂RF‖|ϕ − θ | ≤ ‖D∂RF‖‖∂RF‖. �

A.3 Proof of Lemma 4.6. — 1) Proof of (4.95). One has

fF(θ, r)= (ϕ, R) ⇐⇒
{

r =R+ ∂θF(θ, R)

ϕ = θ + ∂RF(θ, R)

f�(ϕ, R)= (ψ, Q) ⇐⇒
{

R=Q
ψ = ϕ + ∂Q�(Q)

hence Q=R and

ψ = ϕ + ∂R�(R)

= θ + ∂RF(θ, R)+ ∂R�(R)

= θ + ∂Q(�+ F)(θ, Q)

thus, since r =R+∂θF(θ, R)=Q+∂θF(θ, Q) and � does not depend on the θ -variable,
one has

{
r =Q+ ∂θ(�+ F)(θ, Q)

ψ = θ + ∂Q(�+ F)(θ, Q)

which is equivalent to

f�+F(θ, r)= (ψ, Q)= f� ◦ fF(θ, r).

2) Proof of (4.93). Assume that fF(θ, r)= (ϕ, R) and fG(ϕ, R)= (ψ, Q). Then

(A.444) fF(θ, r)= (ϕ, R),

{
r =R+ ∂θF(θ, R)

ϕ = θ + ∂RF(θ, R)
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(A.445) fG(ϕ, R)= (ψ, Q),

{
R=Q+ ∂ϕG(ϕ, Q)

ψ = ϕ + ∂QG(ϕ, Q)

Qdψ − rdθ =Qdψ −Rdϕ +Rdϕ − rdθ

= d(−F−G+ (ϕ − θ)R+ (ψ − ϕ)Q).

If fG ◦ fF = fH then one has Qdψ − rdθ = d(−H+Q(ψ − θ)) and then

0= d(−H+ F+G+Q(ψ − θ)−R(ϕ − θ)−Q(ψ − ϕ))

= d(−H+ F+G− (Q−R)(ϕ − θ))

and so

H(θ, Q)= cst+ F(θ, R)+G(ϕ, Q)− (Q−R)(ϕ − θ).

Let us write H(θ, Q)= F(θ, Q)+G(θ, Q)+A(θ, Q) where

−A= F(θ, Q)− F(θ, R)+G(θ, Q)−G(ϕ, Q)+ (Q−R)(ϕ − θ)

= F(θ, Q)− F(θ, R)+G(θ, Q)−G(ϕ, Q)− ∂ϕG(ϕ, Q)∂RF(θ, R)

We can now estimate

‖A‖h−δ,Uδ
≤ ‖∂RF‖h,U‖Q−R‖h,U + ‖∂ϕG‖h,U‖ϕ − θ‖h,U

+ ‖∂ϕG(ϕ, Q)‖h,U‖∂RF(θ, R)‖h,U

≤ ‖∂RF‖h,U‖∂ϕG‖h,U + ‖∂ϕG‖h,U‖∂RF‖
+ ‖∂ϕG‖h,U‖∂RF‖h,U

and deduce (4.93).

3) Proof of (4.94). We just write

fF+G ◦ f −1
G = fF+G ◦ f−G+O(|D2G|DG|)

= fF+‖DF‖O1(G) (using (4.93))

and a similar expression for f −1
F ◦ fF+G = f−F+O(|D2F||DF|).

The proof of (4.93) and (4.94) is the same in the (CC)-case. �

A.4 Proof of Proposition 4.7. — We first state two lemmata.

Lemma A.1. — Let W be an open subset of M=C2 or T∞×C, v ∈O(W) and g− id ∈
O(W) such that ‖g − id‖W � 1. Then if ‖v‖W is small enough

(A.446) (id + v) ◦ g ◦ (id + v)−1 = g ◦ (id + [g] · v +O2(v))
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where

(A.447) [g] · v =−v + (Dg−1 · v) ◦ g.

Proof. — One has

(id + v) ◦ g ◦ (id + v)−1 = g ◦ (id − v +O2(v))+ v ◦ g ◦ (id − v +O2(v))

= g −Dg · v + v ◦ g +O2(v)

hence

g−1 ◦ (id + v) ◦ g ◦ (id + v)−1

= g−1 ◦
(

g −Dg · v + v ◦ g +O2(v)

)

= id −Dg−1 ◦ g ·Dg · v +Dg−1 ◦ g · v ◦ g +O2(v)

= id − v + (Dg−1 · v) ◦ g +O2(v). �

Lemma A.2. — If � ∈O(U), Y ∈O(Wh,U ∪��(Wh,U))) then

(A.448) fY ◦�� ◦ f −1
Y =�� ◦ f[�]·Y+O2(Y)

where

[�] ·Y= Y ◦�� −Y.

Proof. — From Lemma A.1, and (4.92) we have

fY ◦�� ◦ f −1
Y =�� ◦ (id + [��] · (J∇Y)+O2(Y))(A.449)

=�� ◦
(

id − J∇Y+ (D�−1
� · (J∇Y)) ◦�� +O2(Y)

)

.

On the other hand

(A.450) J∇(Y ◦��)= J (tD��) · (∇Y ◦��).

Because �� is symplectic, one has J t(D��) = (D��)−1J, and we deduce from both
(A.449), (A.450) that

fY ◦�� ◦ f −1
Y =�� ◦ (id + J∇Y− J∇(Y ◦��)+O2(Y))

=�� ◦ f[�]·Y+O2(Y)

where

[�] ·Y= Y ◦�� −Y. �
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From (4.92), (4.93) (we use the fact that D(O(‖DF‖G))= ‖DF‖O1(G))

(A.451) fY ◦ fF ◦ f −1
Y = fF+‖DF‖O1(Y)

and on the other hand, from Lemma A.2

(A.452) fY ◦�� ◦ f −1
Y =�� ◦ f[�]·Y+O2(Y).

Hence (we use (4.93) in the last line of the following equations)

fY ◦�� ◦ fF ◦ f −1
Y = fY ◦�� ◦ f −1

Y ◦ fY ◦ fF ◦ f −1
Y(A.453)

=�� ◦ f[�]·Y+O2(Y) ◦ fF+‖DF‖O1(Y)(A.454)

=�� ◦ fF+[�]·Y+‖DF‖O1(Y),(A.455)

and the conclusion follows if F̃= F+ [�] ·Y+ ‖DF‖O1(Y). �

Appendix B: Whitney type extensions

B.1 Proof of Lemma 2.2. — Let χδ :R→ [0, 1] be a smooth function with support
in [−1, 1] and equal to 1 on [−e−δ/2, e−δ/2] such that

(B.456) sup
R
|∂ jχδ|� δ−j .

We define for r ∈ C, η(r) = χδ((e
δ/2|r|)2/ρ2) and for i ∈ JU, ηi(r) = (1 − χδ((e

−δ|r −
ci|)2/ρ2

i )). Note that η is equal to 1 on e−δD(0, ρ) and 0 on C � e−δ/2D(0, ρ) and ηi is
equal to 1 on C � eδD(ci, ρi) and 0 on eδ/2D(ci, ρi) hence ζ = η

∏
i∈JU

ηi is equal to 1 on
e−δU and 0 on V := (C � e−δ/2D(0, ρ)) ∪⋃

i∈JU
eδ/2D(ci, ρi). The union of the open sets

Wh,e−δ/10U (resp. e−1/10U) and Wh,V (resp. V) is Wh,C (resp. C) and on their intersection the
functions ζF and 0 coincide. As a consequence, one can extend ζF by 0 on Wh,V as a
smooth function FWh :Wh,C →Wh,C. Note that since ζ is σ -symmetric, the same is true
for FWh and that FWh and F coincide on Wh,e−δU (which contains e−δWh,U).

To get the estimates on the derivatives of FWh we observe from (B.456) and the
definitions of η, ηi that

max
i

(max
0≤j≤k

sup
C
|Djη|, max

0≤j≤k
sup

C
|Djηi|) � δ−k max

i
(ρ−2k, ρ−2k

i )

and since maxi(η, ηi)≤ 1, one has by Leibniz formula

max
0≤j≤k

sup
C
|Djζ |� (#JU + 1)kδ−k max

i
(ρ−2k, ρ−2k

i ).

Hence FWh := ζF satisfies

sup
0≤j≤k

‖DjFWh‖Wh,C ≤C(1+#JU)k(δ d(U))−2k max
0≤j≤k

‖DjF‖W
h,e−δ/10U

. �
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B.2 Proof of Lemma 2.5. — Write (2π)−1�(z) = ∑∞
n=0 bnz

n with |bn| ≤ ρ−n
0 ,

(2π)−1�2(z) = b0 + b1z + b2z2, (2π)−1�≥3(z) = ∑∞
n=3 bnz

n. For 0 ≤ j ≤ 3 and δ > 0,
there exists Cj > 0 such that for any ρ ≤ ρ0/2

(B.457) ‖Dj�≥3‖D(0,ρ) ≤Cjρ
3−j.

Let χ : C → [0, 1] be a real symmetric smooth function with support in D(0, 1) and
equal to 1 on D(0, 1/2). We define the real symmetric function defined on C

�Wh
ρ (z)=�2(z)+ χ(z/ρ)�≥3(z).

For any z ∈D(0, ρ/2) one has �Wh
ρ (z)=�(z) and by (B.457) and Leibniz formula, for

some constant B depending only on b0, b1, b2, ‖Djχ‖C0 , ‖Dj�≥3‖D(0,ρ0), 0 ≤ j ≤ 3, one
has

∀z ∈C,

∣
∣
∣
∣

1
2π

D3�Wh
ρ (z)

∣
∣
∣
∣≤ B.

On the other hand, for some constant C depending only on, ‖∂ jχ‖C0 , ‖∂ j�‖D(0,ρ0), 0≤
j ≤ 2

∀ t ∈R,

∣
∣
∣
∣

1
2π

∂2�Wh
ρ (t)− 2b2

∣
∣
∣
∣≤Cρ

and if ρ = ρ is chosen small enough so that Cρ < b2, one has (we assume b2 > 0) b2 ≤
1

2π
∂2�Wh

ρ (t)≤ 3b2. �

B.3 Proof of Proposition 2.7. — The proof will follow from the following two lemmas.

Lemma B.1. — Let β ∈R, ν > 0; if for some t + is ∈U (t, s ∈R) one has

|ω(t + is)− β|< ν,

then

(B.458)

{
|ω(t)− β| ≤ (7/6)ν

|s| ≤ (4/3)Aν.

Proof. — Since ω is holomorphic on U one has for any z ∈U, ∂ω(z)= 0 (we use in
this proof the usual notations ∂ = (1/2)(∂t + i∂s) and ∂ = (1/2)(∂t − i∂s)). For any point
z ∈D(0, ρ) one has (cf. Lemma 2.1)

dist(z, U)≤ 2 a(U)
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and from the fact that ‖D∂ω‖ ≤ B we thus get using condition (2.60)

‖∂ω‖C0(D(0,ρ)) ≤ a(U)B(B.459)

≤ (8A)−1.

Now, we write

ω(t + is)− β = ω(t)− β + ∂ω(t) · (is)+ ∂ω(t) · (−is)+O(s2)(B.460)

where

|O(s2)| ≤ ‖D2ω‖C0(D(0,ρ)) × s2(B.461)

≤ B× ρ × s

≤ (8A)−1 × s

(cf. (2.60)). Note that since ω is real-symmetric, ∂ω(r) and ∂ω(r) are real when r is real.
Hence if |ω(t+ is)− β|< ν for some t+ is ∈U, one gets by taking the imaginary part in
(B.460), using (B.459), ∂ω(t) ∈ [A−1, A] and (B.461), that

(B.462) |s| ≤ (4/3)Aν.

This, (B.461) and taking the real part of (B.460) show that

|ω(t)− β| ≤ |#(ω(t + is)− β)| + |#(O(s2))| ≤ (7/6)ν.(B.463) �

Because t �→ ω(t) is increasing with a derivative bounded below by A−1 (this is the
twist condition) the set of t ∈] − ρ,ρ[:=D(0, ρ) ∩R such that |ω(t)− β| ≤ (7/6)ν is a
(possibly empty) interval Iβ of length ≤ (7/3)Aν.

Lemma B.2. — Let ν ∈]0, (6A2B)−1[. If Iβ is not empty there exists a unique cβ ∈]− ρ −
2Aν,ρ + 2Aν[ such that

ω(cβ)= β, ω(D(cβ, 3Aν))⊃D(β, ν).

Proof. — The uniqueness of cβ comes from the fact that R � t �→ ω(t) ∈ R is in-
creasing. For the existence of cβ we just notice that if Iβ ⊂] − ρ,ρ[ there is nothing to
prove (notice that ω is increasing) and otherwise for some ε ∈ {−1, 1} |ω(ερ) − β| ≤
(7/6)ν. But then, the fact that A−1 ≤ ∂ω(t) ≤ A shows the existence of a unique
cβ ∈ [−ρ − (7/6)Aν,ρ + (7/6)Aν] such that ω(cβ)= β .

If we set a = ∂ω(cβ) and b = ∂ω(cβ) one has a ≥ A−1, |b| ≤ (7A)−1 (cf. (B.459)
and the fact that ν ∈]0, (6A2B)−1[) and the linear map w �→ Dω(cβ)w = aw + bw is
invertible, the norm of its inverse being ≤ (7/6)A. Next, we observe that because |ω(cβ +
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w) − ω(cβ) − Dω(cβ)w| ≤ B|w|2/2 and ω(cβ + w′) − ω(cβ + w) = ∫ 1
0 Dω(cβ + w +

t(w′ −w))(w′ −w)dt, the map g

g :w �→Dω(cβ)−1u−Dω(cβ)−1

(

ω(cβ +w)−ω(cb)−Dω(cβ)w

)

is (7/6)AB�-Lipschitz on {|w| ≤�} (some � > 0) and sends {|w| ≤�} into itself pro-
vided (7/6)AB� ≤ 1 and |u| ≤ (6/14)A−1�. In particular if one chooses � = 3Aν the
map g is (1/2)-contracting (remember ν ∈]0, (6A2B)−1[) and the Contraction Mapping
Theorem shows that for any |u| ≤ ν ≤ (9/7)ν there exists a unique |w| ≤ 3Aν such that
ω(cβ +w)= β + u. �

We can now prove Proposition 2.7. We first observe that the computations done in
the proof of Lemma B.2 show by the same token that the map w �→ Dω(0)−1(ω(w)−
ω(0) − Dω(0)w) is ((7/6)ABρ)-Lipschitz on D(0, ρ) hence contracting from (2.60).
This implies that ω is injective when restricted to D(0, ρ) ⊃ U. Assume that (2.61) is
satisfied for no z ∈ U. Then Lemma B.1 tells us that there exists t + is ∈ U such that
(B.458) holds and in particular that the interval Iβ of Lemma B.2 is not empty. Applying
this latter lemma and using the injectivity of ω when restricted to U we see that ω(U �

D(cβ, 3Aν))⊂C � D(β, ν) which is the searched for conclusion. �

Appendix C: Illustration of the screening effect

We describe in this section an example where the screening effect mentioned in Sec-
tion 3.2 is effective. Consider U as in (3.73)

(C.464) U=D(0, ρ)�

N⋃

j=1

D(cj, ρj)⊃D(0, σ )

(j = 1, . . . , N, D(cj, ρj)⊂D(0, ρ), ρj � σ ), with

ρ = 1, σ = e−Nβ

< 1/10, ρj = ρ1 := e−Nγ

(j ∈ {1, . . . , N}),
cj = (1/4) + (2j − 1)/(4N) ∈ [1/4, 3/4]. We assume N � 1. The function ϕ(·) :=
ωU�D(0,σ )(·, ∂D(0, σ )) is harmonic on U � D(0, σ ), equal to 1 on ∂D(0, σ ) and equal
to 0 on ∂U = ∂D(0, 1)

⋃N
j=1 D(cj, ρ1). Note that the minimum value of the Dirichlet

integrals
{∫

U�D(0,σ )
|∇ψ(x+ iy)|2dxdy

ψ ∈H1(U � D(0, σ )), ψ| ∂D(0,σ ) = 1, ψ| ∂U = 0
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(H1 denotes the usual Sobolev space) is achieved at ϕ, hence there exists a constant C
independent of N such that

(C.465)
∫

U�D(0,σ )

|∇ϕ(x+ iy)|2dxdy≤C;

(the constant C is for example the Dirichlet integral of any fixed C1 function ψ equal to
1 on ∂D(0, σ ) and to 0 on U � D(0, 1/5)).

We now use a result by Rauch and Taylor [40] that we adapt to the case of the
complex plane: let CH be the holed rectangle U∩ ([1, 4, 3/4] +√−1[−H, H]) with

H=C1δ ln(δ/ρ1), where δ = 3/(8N),

C1 being some large constant. The set CH can be covered by the N 1-holed rectangles
U ∩ ([cj − δ, cj + δ] + √−1[−H, H]), j ∈ {1, . . . , N}, each point of CH belonging to no
more than two of these holed rectangles. An adaptation of Inequality (4.1) of [40] to the
case of domains in R2 (� C) asserts that in this situation there exists a constant C2 > 0
(independent of ϕ, H, N) such that

∫
CH
|∇ϕ(x+ iy)|2dxdy

∫
CH
|ϕ(x+ iy)|2dxdy

≥ C−1
2

H(H+ δ ln(δ/ρ1)

which in view of (C.465) and the choices made for H and δ implies

1
H

∫

CH

|ϕ(x+ iy)|2dxdy≤CC2(C1 + 1)δ ln(δ/ρ1) � N−(1−γ−),

because ρ1 = exp(−Nγ ). In particular, for any μ > 0 there exists a positive constant Cμ

and a set CH,μ of relative measure 1−μ in CH such that for any z ∈ CH,μ

|ωU�D(0,σ )(z, ∂D(0, σ ))| = |ϕ(z)| ≤CμN−(1−γ−μ),

an inequality which is in sharp contrast with (3.71), especially if 1− γ −μ > β . Getting
a useful estimate like (3.72) by this technique is therefore doomed to fail if α < 1−γ −μ.

Appendix D: First integrals of integrable flows

This section is dedicated to the proof of the following Lemma, on first integrals of the
integrable flow φ t

J∇r , that was used in the proof of Lemma 5.1.

Lemma D.1. — Let U be a σ -symmetric open connected set of D and F ∈Oσ (Wh,U) such

that

(D.466) ∀ t ∈R, F ◦ φ t
J∇r = F.
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Then, there exists F̃ ∈Oσ (U) such that on Wh,U one has

F= F̃ ◦ r.

Proof. — The Lemma is clear when we are in the (AA) case since the identity ∀ t ∈
R F(θ + t, r) = F(θ, r) clearly implies that F does not depend on θ . So we consider the
(CC)-case.

We shall prove that for every (z,w) ∈Wh,U there exists an open neighborhood Vz,w

of (z,w) and a holomorphic function fz,w such that F= fz,w ◦ r on Vz,w.
We consider three cases:

1) If (z,w) = (0, 0) ∈ Wh,U. One can write for μ small enough and (z,w) ∈ D(0,μ)2,
F(z,w)=∑

k,l∈N Fk,lz
kwl . The identity (D.466) implies Mn(F)= 0 for n 	= 0 hence from

(5.103) one has F(z,w) =M0(F)(z,w) = ∑
k∈N Fk,k(zw)k and we can choose f0,0(r) =∑

k∈N(ir)k .
2) If zw = 0, with for example w 	= 0. Then, from (5.106), t �→ F(0, eitw) is holomor-
phic with respect to t ∈ R + i] − ln(ehρ1/2/|w|),∞[ and constant on the real axis; it
is hence constant on R + i] − ln(ehρ1/2/|w|),∞[. In particular taking t = is, s ∈ R+,
gives F(0, e−sw)= F(0,w) and by making s →∞ we get F(0,w)= F(0, 0) (notice that
(0, 0) ∈Wh,U in that case). The same argument shows that for (̃z, w̃) ∈Wh,U the function
t �→ F(e−it z̃, eitw̃) is constant on t ∈R+ i] − ln(ehρ1/2/|w̃|), ln(ehρ1/2/|̃z|)[. Now if (̃z, w̃)

is close enough to (0,w), in particular if there exists 0 < s < ln(ehρ1/2/|̃z|) such that
|w̃|/μ < es < μ/|̃z|, one has with t = is, (e−it z̃, eitw̃)= (esz̃, e−sw̃) ∈D(0,μ)2. By (D.466)
and point 1), one gets F(̃z, w̃)= F(e−it z̃, eitw̃)= f0,0(−ĩzw̃).
3) Otherwise, we can assume that zw 	= 0. As before, we can argue that the function
t �→ gz,w(t) := F(e−itz, eitw) is constant on the set

R+ i] − ln(ehρ1/2/|w|), ln(ehρ1/2/|z|)[.

Any point (̃z, w̃) ∈ Wh,U which is close enough to (z,w) is of the form z̃ = e−itz, w̃ =
eitλw, t close to 0 and λ close to 1. We thus have

F(̃z, w̃)= F(e−itz, λeitw)= F(z, λw)= F(z, z̃w̃z−1)= fz(̃zw̃)

where we have defined fz(r)= F(z, irz−1).
We have thus proven that for each (z,w) ∈Wh,U there exist a neighborhood Vz,w

and a holomorphic function fz,w such that F= fz,w ◦ r on Vz,w. Now if fz,w ◦ r = fz′,w′ ◦ r

on a nonempty open set, the function fz,w and fz′,w′ coincide on a nonempty open set
and thus there exists a holomorphic extension of fz,w,z′,w′ of these two functions such
that fz,w,z′,w′ ◦ r = fz,w ◦ r = fz′,w′ ◦ r on Vz,w ∩Vz′,w′ . We can now conclude by using the
connectedness of U. �
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Appendix E: (Formal) Birkhoff Normal Forms

Our aim in this Section is to recall the proof of the existence and uniqueness of the formal
BNF, Propositions 6.1, 6.2. This is of course a standard topic but we tried to develop here
a framework that is convenient for the proof of Lemma 6.3. We mainly concentrate on
the (AA)-case since the formalism in the (CC)-case is very similar to the one developed
by Pérez-Marco in [36].

E.1 Formal preliminaries.

E.1.1 Formal series. — Let A be a commutative ring and A[[X1, . . . , Xd ′ ]] (d ′ ∈N∗)
the ring of formal power series

∑
n∈Nd′ anXn, an ∈ A, Xn = Xn1

1 · · ·Xnd′
d ′ (for short X =

(X1, . . . , Xd ′)). We denote by v(A) = min{|n| = n1 + · · · + nd ′, an 	= 0} the valuation
of an element A =∑

n∈Nd′ anXn and if B = (B1, . . . , Bd ′) ∈ (A[[X]])d ′ we define v(B) =
minl v(Bl).

For any k ∈N we define [A]k =∑
|n|=k akXk the homogenous part of A of degree k

and we set [A]≤k =∑k

l=0[A]l (resp. [A]≥k =∑∞
l=k[A]l ).

As usual the product of A = ∑
n∈Nd′ anXn and B = ∑

n∈Nd′ bnXn is AB =∑
n∈Nd′ (

∑
k+l=n akbl)Xn and the derivative ∂Xl

A =∑
n∈Nd′ nlanXn′ with n′j = nj if j 	= l and

n′l = nl − 1 is nl ≥ 1 (if nl = 0 the derivative of the corresponding monomial is zero). Note
that if Ai ∈ A[[X]], 1≤ i ≤ j one has

(E.467) [A1 . . . Aj]k =
∑

k1+···+kj=k

[A1]k1 · · · [Aj]kj
.

When A=∑
n∈Nd′ anXn ∈ A[[X]] and B ∈ (A[[X]])d ′ , v(B)≥ 1 one can define

A ◦ B=
∑

n∈Nd′
anBn.

If moreover A is endowed with derivations δi : A → A, 1 ≤ i ≤ d ′, (it means δi(a +
b)= δia+ δib, δi(ab)= (δia)b+ a(δib)) we define (cf. Taylor formula) 42 for each a ∈ A and
B ∈ (A[[X]])d ′ , v(B)≥ 1

(E.468) a ◦δ B=
∑

k∈Nd′
(1/k!)(δka)Bk ∈ A[[X]].

Similarly, if A=∑
k∈Nd′ akXk, B, C ∈ (A[[X]])d ′ , v(B)≥ 1, v(C)≥ 1, we can also define

(E.469) A ◦δ (B, C)=
∑

n∈Nd′
(an ◦δ B)Cn.

42 We use a multi-index notation, k = (k1, . . . , kd′ ), Bk = Bk1
1 · · ·Bk

d′
d′ , k! = k1! · · · kd′ !, δk = δ

k1
1 · · · δk

d′
d′ .
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Lemma E.1. — For k ∈N∗, v(A)≥ 1, v(B)≥ 1, v(C)≥ 2, [A ◦δ (B, X+C)− A]k
is a polynomial in the coefficients of [δlA]k1, [B]k2, [C]k3 for k1 + k2 + k3 ≤ k − 1, |l| ≤ k (this

polynomial being with rational coefficients).

Proof. — Since (an ◦δ B)(X+C)n − anXn = (an ◦δ B)((X+C)n −Xn)+Xn((an ◦δ

B)− an)

A ◦δ (B, X+C)−A= (I)+ (II)

(I) :=
∑

|l|≥0
|n|≥1

m≤n, |m|≥1

(
n

m

)
δlan

l! BlCmXn−m, (II)=
∑

|l|≥1
|n|≥1

δlan

l! BlXn

and one can conclude using (E.467). �

Assume now that (A, δ) is endowed with a translation by which we mean an action τ

of an abelian group (we suppose it is (Rd,+)) on A that commutes with the derivations δi .

E.1.2 Formal diffeomorphisms. — A formal diffeomorphism of A[[X]] is a triple (α, A, B)

(we denote it by fα,A,B) with A, B ∈ (A[[X]])d with v(B) ≥ 2 and where v(A) ≥ 1 and
α ∈Rd . We can define the composition of two such objects:

fε,E,D = fγ,C,D ◦ fα,A,B ⇐⇒
ε = α+ γ, E= A+ (τ−αC) ◦δ (A, X+ B),

F= B+ (τ−αD) ◦δ (A, X+ B)

with v(E) ≥ 1 and v(F) ≥ 2. One can check that the usual algebraic rules for composi-
tions are satisfied and that each such diffeomorphism has an inverse for composition.

Remark E.1. — One of the example we have in mind is the following. Take d ′ =
d ∈ N∗, A = Cω(Td) the ring of real analytic functions on Td (taking real values on the
real axis) and the ring of formal power series is A[[r]] = {∑n∈Nd an(θ)rn, an ∈ Cω(Td)},
r = (r1, . . . , rd). The derivations in this case are δia = ∂θi

a if a : (θ1, . . . , θd) → R is in
Cω(Td), the translation is ταa = a(· − α) (α ∈ Rd) and the formal map fα,A,B can be
written under the more suggestive form

f(α,A,B)(θ, r)= (θ + α +A(θ, r), r + B(θ, r))

as a formal diffeomorphism of Td ×Rd .
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E.1.3 Degree. — In case we can assign a degree deg(a) to each element a of
the ring A (it satisfies by definition deg(0) = −∞, for all a, b ∈ A, deg(a + b) =
max(deg(a), deg(b)) and deg(ab) = deg(a) + deg(b)) we can associate to each weight

p :Nd ′ →N the set

(E.470) C(p)=
{∑

n∈Nd′
anXn ∈ A[[X]], ∀ n ∈Nd ′, deg(an)≤ p(n)

}

.

By extension if B = (B1, . . . , Bd ′) ∈ (A[[X]])d ′ we say that B is in C(p) if each Bl ∈ C(p),
1≤ l ≤ d ′. If p, q :Nd →N we define

p ∗ q(n)= max
(k,l)∈Nd′ ,k+l=n

(p(k)+ q(l)).

In particular if

(E.471) p(n) := |n| = n1 + · · · + nd ′, n= (n1, . . . , nd ′) ∈Nd ′

one has p ∗ p= p and (p− 1)∗m = p− m.
We say that the degree deg is compatible with the derivations δi and the translation

τ if for any α ∈Rd , 1≤ i ≤ d ′, deg(ταδia)≤ deg(a).

Remark E.2. — The relevant example for our purpose (proof of Lemma 6.3) will
be the following. Take d ′ = d , A= Cω(Td)[t] the set of polynomials in t with coefficients
in Cω(Td), F(t)(θ) = a0(θ) + · · · + an(θ)tn, aj ∈ Cω(Td), 0 ≤ j ≤ n, n ∈ N and an 	= 0.
The derivations δi , 1 ≤ i ≤ d are defined by δiF(t)(θ) = (∂θi

a0)(θ) + · · · + (∂θi
an)(θ)tn,

the translations ταF(t)(θ) = a0(θ − α) + · · · + an(θ − α)tn and the degree deg Ft = n is
compatible with both of them.

The following facts are easily checked. Assume that A is a ring with derivations δi ,
1≤ i ≤ d ′ and a compatible degree deg and let (pl)l∈N be weights.
(1) If A, B ∈ A[[X]], A ∈ C(p1), B ∈ C(p2) one has AB ∈ C(p1 ∗ p2).
(2) If Al ∈ A[[X]], Al ∈ C(pl), liml→∞ v(Al)=∞ one has

∑
l∈N Al ∈ C(maxl pl).

Let p be a weight such that p ∗ p≤ p. Using (E.468), points (1) and (2) we have
(3) If a ∈ A, B ∈ A[[X]], B ∈ C(p) then one has a ◦δ B− a ∈ C(deg(a)+ p).

Lemma E.2. — If A ∈ A[[X]], B, C ∈ (A[[X]])d ′ , v(B)≥ 1, v(C)≥ 1 with A ∈ C(p−
cA), B ∈ C(p− cB), C ∈ C(p−1), min(cA, cB)≥ 0, then A◦δ (B, C)−A◦C ∈ C(p− cA− cB)

and A ◦δ (B, C) ∈ C(p− cA).

Proof. — Recall that A ◦δ (B, C)=∑
n∈Nd′ (an ◦δ B)Cn. From point (3) an ◦δ B− an ∈

C(deg(an)+ p− cB) and from point (1) (an ◦δ B)Cn − anCn ∈ C((deg(an)+ p− cB) ∗ (p−
1)∗|n|)⊂ C((deg(an)+ p− cB) ∗ (p− |n|)) hence (an ◦δ B)Cn − anCn ∈ C(p− cA − cB). By
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using point (2) we have A ◦δ (B, C)− A ◦C ∈ C(p− cA − cB). A similar argument shows
that A ◦C ∈ C(p− cA) whence the conclusion. �

Before stating the next lemma we introduce the following definition: we say that a
formal diffeomorphism fα,A,B is in D(p− 1) if A ∈ C(p)∩O(r), B ∈ C(p− 1)∩O2(r).

Lemma E.3. — One has

(1) Let H ∈ C(p− c), c= 0, 1, and fα,A,B ∈D(p− 1). Then H ◦ fα,A,B ∈ C(p− c).

(2) The composition of two formal diffeomorphisms in D(p− 1) is in D(p− 1).

(3) The inverse for the composition of a diffeomorphism of D(p− 1) is in D(p− 1).

(4) If f −1
α,A,B = f̃α,Ã,̃B, then for any k ≥ 1, [Ã]k , [̃B]k , are polynomials in the coefficients of

[τm1αδl1A]k1, [τm2αδl2B]k2 , k1, k2 ≤ k, l1, l2 ≤ k, |m1|, |m2| ≤ k.

Proof. — Items 1 and 2 are consequences of Lemma E.2.
For point 3 we just have to prove the result when α = 0. Let us denote by U the

operator H �→ H ◦ f0,A,B. Note that v((U − id)H) ≥ v(H) + 1 hence the series H̃ :=∑∞
k=0(U − id)kH converges in A[[r]] and from 1 and 2 one sees that if H ∈ C(p − c),

c = 0, 1, the same is true for H̃. To conclude we observe that −(f −1
0,A,B − id) = (U −

id)(f −1
0,A,B − id)+ (f0,A,B − id) hence

(E.472) −(f −1
0,A,B − id)=

∞∑

k=0

(U − id)k(f0,A,B − id).

Finally point 4 is a consequence of (E.472) and Lemma E.1. �

E.2 Formal Birkhoff Normal Forms. — From now on we work in the setting of Re-
mark E.2.43

E.2.1 Formal exact symplectic diffeomorphism. — If F ∈ A[[r]], F= 〈α, r〉+O2(r) with
α ∈Rd we define the formal diffeomorphism fF(θ, r)= (θ + A(θ, r), r + B(θ, r)) as sug-
gested by the implicit relation

ϕ = θ + ∂RF(θ, R), r =R+ ∂θF(θ, R), fF(θ, r)= (ϕ, R)

or more formally

A(θ, r)= ∂rF(θ, r + B(θ, r)), 0= B(θ, r)+ ∂θF(θ, r + B(θ, r))

A= ∂rF ◦δ (0, B), 0= B+ ∂θF ◦δ (0, B) (cf. E.469).)

43 Note that to prove the existence and uniqueness of the formal BNF of Section E.2.2 it would be enough to work
with A=Cω(Td).
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In this situation we use the more intuitive notations R(θ, r)= r + B(θ, r), ϕ(θ, r)− θ =
A(θ, r). We shall call such formal diffeomorphisms fF formal exact symplectic diffeomorphisms.
The set of all such diffeomorphisms is a group under composition. Let us define

E(p− 1) := {fF, F= 〈α, r〉 +
∑

|n|≥2

Fn(θ)rn ∈ A[[r]], F ∈ C(p− 1)}.

The following result is then a consequence of Lemma E.3.

Lemma E.4. — The set E(p−1) is a subset of D(p−1) stable by composition and inversion.

Remark E.3. — In the (CC)-case the relevant choice for A is C[[t]] and the
set of formal series is A[[z,w]]. One can extend in this context the notion of σ2-
symmetry. If F = ∑

(n,m)∈Nd×Nd Fn,mzmwm ∈ A[[z,w]] we say it is σ2-symmetric (recall
σ2(z,w) = (iw, iz)) if Fn,m = (i)|n|+|m|Fm,n for all (n, m) ∈ Nd × Nd (Fn,m is the complex
conjugate of Fn,m and i = √−1). Similarly one can define the notion of σ2-symmetric
formal diffeomorphism. If F is σ2-symmetric then fF is σ2-symmetric.

E.2.2 Existence and uniqueness of the formal BNF. — We prove at the end of this sub-
section that given f2π〈ω0,r〉+F we can find B(r)= 2π〈ω0, r〉 +O2(r) ∈R[[r]] and a formal
exact symplectic diffeomorphism fZ = id + O2(r), Z = O2(r) which is normalized in the
sense that

(E.473)
∫

Td

Z(ϕ, Q)dϕ = 0,

such that

(E.474) fZ ◦ f2π〈ω0,r〉+F(θ, r)= fB ◦ fZ(θ, r).

Moreover, Z and B are uniquely determined by F.
We use the notations f2π〈ω0,r〉+F : (θ, r) �→ (ϕ, R), fZ : (ϕ, R) �→ (ψ, Q) so that

ψ = ϕ + ∂QZ(ϕ, Q), R=Q+ ∂ϕZ(ϕ, Q)

ϕ = θ + 2πω0 + ∂RF(θ, R), r =R+ ∂θF(θ, R).

Using the relation R = Q + ∂ϕZ(θ + 2πω0 + ∂RF(θ, R), Q) and the fact that
g : (θ, Q, R) �→ (θ, Q, R−Q− ∂ϕZ(θ + 2πω0 + ∂RF(θ, R), Q)) is a formal diffeomor-
phism44 we can define R(θ, Q)=Q+O2(Q) by (θ, Q, R(θ, Q))= g−1(θ, Q, 0).

44 Defined on A[[Q, R]].
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Lemma E.5.
(1) For any k ≥ 1, the coefficients of [R(θ, Q)]k are polynomials in the coefficients of [τ2πm1ω0δ

l1F]k1,

[τ2πm2ω0δ
l2Z]k2 , k1, k2, l1, l2, |m1|, |m2| ≤ k.

(2) If F, Z ∈ C(p− 1), the formal diffeomorphism (θ, Q) �→ (θ, R(θ, Q)) is in D(p− 1).

Proof. — These are consequences of Lemma E.3. �

Let fZ(θ, r) = (θ ′, r′); from the formal conjugation relation (E.474) we get fB ◦
fZ(θ, r) = (θ ′ + ∇B(r′), r′) = (ψ, Q) hence Q = r′ and θ ′ = θ + ∂QZ(θ, Q). We thus
have

θ + ∂QZ(θ, Q)+∇B(Q)= ϕ + ∂QZ(ϕ, Q)

and using the relations between ϕ, θ yields

−∂RF(θ, R)= ∂QZ
(

θ + 2πω0 + ∂RF(θ, R), Q
)

− ∂QZ(θ, Q)

− (∇B(Q)− 2πω0)

that we can write

(E.475) −∂QF(F, Z)= ∂QZ(θ + 2πω0, Q)− ∂QZ(θ, Q)− (∂QB(Q)− 2πω0)

where F(F, Z)=O2(r) is uniquely defined (note that the RHS of (E.475) is O(r)) by

∂QF(F, Z)= ∂QF(θ, R(θ, Q))(E.476)

+
(

∂QZ
(

θ + 2πω0 + ∂QF(θ, R(θ, Q)), Q
)

− ∂QZ(θ + 2πω0, Q)

)

.

We thus have

(E.477) −F(F, Z)= Z(θ + 2πω0, Q)− Z(θ, Q)− (B(Q)− 2〈πω0, Q〉).
Lemma E.6.

(1) For any k ≥ 1, the coefficients of [F(F, Z) − F]k are polynomials in the coefficients of

[τ2πm1ω0δ
l1F]k1, [τ2πm2ω0δ

l2Z]k2 , k1, k2 ≤ k − 1, l1, l2 ≤ k, |m1|, |m2| ≤ k.

(2) If F, Z ∈ C(p− 1), one has F(F, Z) ∈ C(p− 1).

Proof. — This is a consequence of (E.476), Lemma E.5 and Lemma E.3. �

From (E.477) one thus has

(E.478)

{
k = 2, −[F]2(θ, Q)= [Z]2(θ + 2πω0, Q)− [Z]2(θ, Q)− [B]2(Q),

∀ k ≥ 3 −[F(F, Z)]k(θ, Q)= [Z]k(θ + 2πω0, Q)− [Z]k(θ, Q)− [B]k(Q).
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Before completing the proof of the existence and uniqueness of the Birkhoff Nor-
mal Form (E.474) we state the following result (the first part of which at least is classical;
see for example [13]):

Lemma E.7. — If ω0 is Diophantine, for any G ∈ A[[r]] there exists a unique pair (Z, B)

with Z ∈ A[[r]] normalized in the sense of (E.473) and B= B(r) ∈R[t][[r]] such that

(E.479) G(θ, Q)= Z(θ + 2πω0, Q)− Z(θ, Q)+ B(Q).

Furthermore: (1) B(Q) = ∫
Td G(θ, Q)dθ and if G = [G]k one has Z = [Z]k , B = [B]k and

the coefficients of [Z]k are R-linear functions of the coefficients of [G]k ; (2) if G ∈ C(p − 1) then

Z, B ∈ C(p− 1).

Proof. — If we denote by Ĝ(l, Q) = (2π)−d
∫

Td G(θ, Q)e−i〈l,θ〉dθ the l-th Fourier
coefficient of θ �→ G(θ, Q) (l ∈ Zd ) then (E.479) follows if B(Q) = ∫

Td G(θ, Q)dθ and
if Z(θ, Q) is defined by

Z(θ, Q)=
∑

l∈Zd
�{0}

(e2π i〈l,ω0〉 − 1)−1Ĝ(l, Q)ei〈l,θ〉.

The conclusions of the Lemma are clear from the preceding expression. �

Proof of the existence and uniqueness of the BNF (E.474).

– Uniqueness: Equation (E.478), Lemma E.6 and Lemma E.7 show inductively that
[Z]k, [B]k are uniquely defined by [F]j , 2≤ j ≤ k − 1. Hence, Z and B are unique.

– Existence: Define [Z]2, [B]2 by (E.478) and then inductively for k ≥ 3, [Z]k, [B]k , by

(E.480) −[F(F, [Z]≤k−1)]k(θ, Q)= [Z]k(θ + 2πω0, Q)− [Z]k(θ, Q)− [B]k(Q)

where Z≤k−1 =∑k−1
l=2 [Z]l . Setting F=∑∞

l=2[Z]l , B=∑∞
l=2[B]l one can check that (E.477)

holds modulo Ok(r) for any k and hence in A[[r]]. �

E.3 Proof of Lemma 6.3. — We define F(t)(θ, r) = tF(θ, r) + (1 − t)G(θ, r) which
is in A[[r]] ∩ C(p − 1), A = Cω(Td)[t]. Note that for any k ≥ 2, [F(t)]k ∈ C(p − 1). In
particular, as a consequence of Lemmata E.6, item 2 and E.7, point (2), the sequences
[Z(t)]k, [B(t)]k , inductively constructed in (E.480), are in C(p − 1). Hence B(t)(r) :=∑

n∈Nd bn(t)r
n is in C(p−1) which by definition (cf. (E.470), (E.471)) means that the degree

in t of each bn(t) is ≤ |n| − 1. �

Appendix F: Approximate Birkhoff Normal Forms

We give in this section the proofs of Propositions 6.4 and 6.5.
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F.1 A useful lemma. — Let be given for each α ∈]0, 1/2[, a function Pα : R+ ×
R+ → R+, Pα : (k, t) �→ Pα(k, t) nondecreasing in each variable and assume that
(εα,k)k∈Iα , Iα ⊂ N is a sequence of nonnegative real numbers depending on α ∈]0, 1/2[
and defined inductively as long as a condition of the form

(F.481) Pα(k, εα,k) < 1

is satisfied (we assume that εα,0 satisfies (F.481)). Let us call Jα = �0, k∗α�, k∗α ≥ 1 the maxi-
mal set of integers k ∈N for which εα,k is defined: this means that if k ∈ Jα and εα,k satisfies
(F.481) then k + 1 ∈ Jα (in particular Pα(k∗α, εα,k∗α )≥ 1). Let θ > 0, a > 0 and kθ,a ∈N∗ be
such that

(F.482) ∀k ∈ �0, min(k∗α, kθ,a)− 1�, εα,k+1 ≤Cθ,aα
θ ×

(

1+ α−a

k∑

j=0

εα,j

)

εα,k.

We have the following type of Gronwall Lemma:

Lemma F.1. — Assume that

(F.483) (2Cθ,aα)θ < 1/2, εα,0 ≤ αa/2, Pα(kθ,a + 1, εα,0) < 1.

Then,

(F.484) k∗α ≥ kθ,a

and

(F.485) ∀ k ∈ [0, kθ,a] ∩N, εα,k ≤ (2Cθ,aα)θkεα,0.

Proof. — 1) Let k∗α,θ,a =min(k∗α, kθ,a). We first prove that the set

Kα,θ,a = {k ∈ �0, k∗α,θ,a�, εα,k > (2Cθ,aα)θkεα,0}
is empty. If this were not the case we could define kα,θ,a = inf Kα,θ,a and write

(F.486) ∀ k ∈ �0, kα,θ,a − 1�, εα,k ≤ (2Cθ,aα)θkεα,0

hence

k∑

j=0

εα,j ≤ εα,0

1− (2Cα,θ,aα)θ
≤ 2εα,0

and thus from (F.482) and (F.483), for all 0≤ k ≤ kα,θ,a − 1,

εα,k+1 ≤Cθ,a × αθ(1+ 2α−aεα,0)εa,k ≤ (2Cθ,aα
θ)εα,k.
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This implies that for all 0≤ k ≤ kα,θ,a one has

εα,k ≤ (2Cθ,aα)θkεα,0

and in particular εα,kα,θ,a
≤ (2Cθ,aα)θkα,θ,aεα,0. This contradicts the definition of kα,θ,a as

inf Kα,θ,a.
2) Since Kα,θ,a is empty, one has

(F.487) ∀ k ∈ �0, k∗α,θ,a�, εα,k ≤ (2Cθ,aα)kθεα,0 ≤ εα,0.

But since k∗α,θ,a + 1≤ kθ,a + 1 and (2Cθ,aα)≤ 1

Pα(k∗α,θ,a + 1, εα,k∗α,θ,a
)≤ Pα(kθ,a + 1, εa,0)

< 1

This implies that k∗α,θ,a + 1 ∈ Jα hence k∗α,θ,a < k∗α and from the definition of k∗α,θ,a, we get
k∗α ≥ kθ,a which in its turn implies k∗α,θ,a = kθ,a. We have thus proven that for all k ≤ kθ,a

one has

εα,k ≤ (2Cθ,aα)kθεα,0. �

F.2 Proof of Proposition 6.4 (BNF, (CC)-Case). — For n large enough we define

(F.488) ρ0 = 1
q6

n

, W0 = ehWh,D(0,ρ0)

and for k ≥ 0 we introduce the sequences45

(F.489) δk =C−1 h

(k + 1)(ln(k + 2))2
,

∞∑

l=0

δl ≤ h/10

(F.490) ρk = exp(−
k−1∑

l=0

δl)ρ0, Wk = exp(−
k−1∑

l=0

δl)W0.

Recall that a1 =max(2a+ 1, 30) and that for some m≥ a1 (cf. (6.141))

(F.491) F0(z,w)=O2m(z,w), ε0 := ‖F0‖W0 � ρm
0 .

45 The choice of these sequences, in particular the choice of a summable sequence δk , is not necessary (we only
perform a finite number of conjugation steps) and is indeed not the best one insofar as it leads to a(n) (arbitrary small) loss
β in the exponent. The “optimal” one is (after loosing a fixed fraction of h in the first step) to choose uniformly at each
step δk ∼ h/k∗ so that

∑
0≤k≤k∗ δk ∼ h where k∗ is the finite number of conjugation steps we perform.
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We shall construct inductively for k ≥ 0, sequences Zk ∈Oσ (Wk), Fk ∈Oσ (Wk) ∩
Ok+2m(z,w), �k ∈Oσ (D(0, ρk)), �k(r)= 2πω0r +O2(r), such that

�0 =�, F0 = F

and for k ≥ 1,

(F.492) g−1
k ◦��0 ◦ fF0 ◦ gk =��k

◦ fFk
.

To do this we proceed the following way: assuming (F.492) holds and δk ≤ q−1
n , we ap-

ply Proposition 5.3 with τ = 0, K/2 = N = qn cf. (6.143), and define Yk ∈ Oσ (Wk) ∩
Ok+2m(z,w) (see Remark 5.3) satisfying

(F.493) −[Q0] ·Yk =Tqn
Fk −M0(Fk), ‖Yk‖e−δk/2Wk

� q2
n‖Fk‖Wk

where we denote

(F.494) Q0(r)= 2πω0r.

Using Lemma 5.4 we get (cf. formula (5.124))

fYk
◦��k

◦ fFk
◦ f −1

Yk
=��k+M(Fk) ◦ fFk−M0(Fk)+[�k+M(Fk)]·Yk+Ȯ(a)

2 (Yk,Fk)

=��k+M(Fk) ◦ fRqn Fk+[�k+M(Fk)]·Yk−[Q0]·Yk+Ȯ(a)
2 (Yk,Fk)

.

Hence fYk
◦��k

◦ fFk
◦ f −1

Yk
=��k+1 ◦ fFk+1 with

(F.495) �k+1 −�k =M(Fk)

and, using the fact that [�k +M(Fk)] ·Yk − [Q0] ·Yk =O(|∇Yk| × |∂(�k −Q0) ◦ r|)+
Ȯ

(2)

2 (Yk, Fk),

(F.496) Fk+1 =Rqn
Fk + Ȯ

(a)
2 (Yk, Fk)+O

(

|∇Yk| × |∂(�k −Q0) ◦ r|
)

.

Notice that from (F.495) and the fact that for 0≤ j ≤ k− 1, M0(Fj)=Oj+2m(z,w) (cf. the
remark at the end of Section 5.1.1), hence M(F)(r)=Om(r); one thus has

(F.497) ∀ 0≤ j ≤ k, �k(r)−Q0(r)=O(r2).

Since Fk, Yk ∈Ok+2m(z,w) we have (see Remarks 2.1, 5.3) Ȯ(a)
2 (Yk, Fk)=O2k+4m−2a(z,w);

also, O(|∇Y| × |∂(�k −Q0) ◦ r|) = Ok+2m+1(z,w) and from (5.115) Rqn
Fk = Oqn(z,w)

(if qn ≥ m). As a consequence, since 2k + 4m− 2a ≥ k + 1+ 2m (m≥ 2a+ 1) we see that
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Fk+1 =Ok+1+2m(z,w). Furthermore since �0(r)−Q0(r)=O(r2)

‖∂(�k −Q0) ◦ r‖Wk
≤ ‖∂(�k −�0) ◦ r‖Wk

+ ‖∂(�0 −Q0) ◦ r‖Wk

� ‖∂(�k −�0) ◦ r‖Wk
+ sup |r(Wk)|

� ‖∂(�k −�0) ◦ r‖Wk
+ ρk

and using (2.55)

‖∇Yk‖e−δk Wk
� δ−1

k ρ
−1/2
k ‖Yk‖e−δk/2Wk

� q2
nρ

−1/2
k δ−1

k ‖Fk‖Wk

hence

(F.498) |∇Yk|× |∂(�k −Q0|� q2
nρ

−2
k δ−2

k ‖�k −�0‖D(0,ρk)‖Fk‖Wk
+ q2

nδ
−1
k ρ

1/2
k ‖Fk‖Wk

.

From (F.496), (F.493), (F.498), and (5.112) we get that, provided

ρ−a
k δ−a

k q2
n‖Fk‖Wk

< 1,

one has the inequalities

‖Fk+1‖e−δk Wk
� δ−1

k e−qnδk/2‖Fk‖Wk
+ ρ−a

k δ−a
k q2

n‖Fk‖2
Wk

(F.499)

+ q2
nρ

−2
k δ−2

k ‖�k −�0‖D(0,ρk)‖Fk‖Wk
+ q2

nδ
−1
k ρ

1/2
k ‖Fk‖Wk

and

(F.500) ‖�k+1 −�0‖D(0,e−δk ρk)
�

k∑

j=1

‖Fj‖Wj
.

Let us define

sk = ‖�k −�0‖D(0,ρk), εk = ‖Fk‖Wk
;

then, one has

(F.501)

⎧
⎨

⎩

εk+1 �
(

δ−1
k e−qnδk/2 + (ρkδk)

−aq2
nεk + q2

n(ρkδk)
−2sk + q2

nδ
−1
k ρ

1/2
k

)

εk

sk+1 �
∑k

j=0 εj

as long as

ρ−a
k δ−a

k q2
nεk < 1.
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Let k∗ be the largest integer for which the preceding sequences are defined and satisfy the
stronger condition

(F.502) ∀ k < k∗, Pqn
(k, εk) := ρ

−1/5
0 ρ−a

k δ−a
k q2

nεk < 1.

From (F.489) for any σ > 0 one has δk �σ (k + 1)−(1+σ). For θ ∈]0, 1/6[ define

μ0 = 1
6
− θ, μ= μ0

1
1+ σ

.

Since ρk � ρ0 one has

∀ k < min(k∗, ρ
−μ

0 ),

⎧
⎪⎨

⎪⎩

qnδk � ρ
−1/6+μ0
0 = ρ−θ

0

(ρkδk)
−1 � ρ

−1−μ0
0 = ρ

−7/6+θ

0

q2
nδ
−1
k ρ

1/2
k � ρ

−1/3+1/2−μ0
0 = ρθ

0 ,

thus (note that for k < ρ
−μ

0 , ρ0 �θ 1), δ−1
k e−qnδk/2 ≤ ρ

1/5
0 and consequently, if ρ0 �θ 1,

∀ k < min(k∗, ρ
−μ

0 ), εk+1 � (ρ
1/5
0 + ρ

1/5
0 + ρ

−1/3−7/3+2θ

0

k∑

j=0

εj + ρθ
0 )εk

≤Cθρ
θ
0 (1+ ρ−3

0

k∑

j=0

εj)εk.

Since from (F.491) ε0 ≤ ρ2a+1
0 < ρ

1/5+(7/6)a+1/3
0 we see that condition (F.483) of Lemma F.1

is satisfied (with α = ρ0, kθ,α = ρ
−μ

0 ) hence

(F.503) ∀ k ∈ [0, ρ
−μ

0 ] ∩N, εk ≤ (2Cθρ0)
θkε0.

Now for any 0 < β � 1, one can choose θ and σ so that ρ
−μ

0 = q1−β
n and in particular

taking k = kβ = [q1−β
n ] and using (F.501) one gets for qn �β 1

(F.504) εk ≤ e−q
1−β
n , sk ≤ 2ε0

(we can assume a > 10).
We now define

FBNF
q−1

n
= Fk, �BNF

q−1
n
=�k,

and

gBNF
q−1

n
= f −1

YWh
1
◦ · · · ◦ f −1

YWh

k
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where YWh
j is a C2 Whitney extension of (Yj, e−δj/2Wj) given by Lemma 2.2; one has (cf.

(F.493), (F.491))

(F.505) ‖gBNF
q−1

n
− id‖C1 � q2

n

k∑

k=0

(2Cθρ0)
θkε0ρ

−4
0 h−4k8 �θ,h q−(m−26)

n .

Inequalities (F.504) and (F.505), and the fact that Fk ∈ Ok+2m(r), give the conclusion
of Proposition 6.4. Note that (6.145) is a consequence of FBNF

q−1
n

∈ Oq
1−β
n (z,w) and

Remark 6.2. For the last statement of the Proposition, we can choose �k = � +
∑k−1

j=0 M(Fj)
Wh where FWh

J is an C3 Whitney extension of (Fj, Wj) given by Lemma 2.2.
�

F.3 Proof of Proposition 6.5 (BNF (AA) or (CC) Case, ω0 Diophantine). — The proof,
that we mainly illustrate in the (AA)-Case, as well as the notations, are essentially the
same as the ones of the proof of Proposition 6.4 (see Section F.2, in particular, we use the
definitions (F.489), (F.490) for δk , ρk , Wk ) with the following differences:

– we replace (F.488) by

ρ0 = ρ(τ+1)/γ , W0 =Wh,D(0,ρ0) =Wh,D(0,ρbτ )

where γ = 1 in the (AA)-case and γ = 1/2 in the (CC)-case.
– since ω0 is Diophantine, we can and do solve instead of (F.493) the equation without

truncation (using Proposition 5.3 with N=∞, K= κ−1, cf. (6.149)):

−[Q0] ·Yk = Fk −M0(Fk), ‖Yk‖e−δk/2Wk
� δ−τ

k ‖Fk‖Wk

where Q0(r)= 2πω0r, cf. (F.494).
Notice that both in the (AA) and (CC) cases

(F.506) F0 =Om(r), ‖F0‖W0 ≤ ρm
0 .

In place of (F.496) we get (in the (AA)-case)

(F.507) Fk+1 = Ȯ
(a)
2 (Yk, Fk)+O

(

|∂θYk| × |∂(�k −Q0) ◦ r|
)

.

Since Fk, Yk ∈Ok+m(r)(θ) (see Remarks 2.1, 5.3) we have O(|∂θYk|× |∂(�k−Q0)◦ r|)=
Ok+m+1(r)(θ) and Ȯ

(a)
2 (Yk, Fk)=O2k+2m−a(r)(θ) (a from Lemma 5.4). As a consequence,

since 2m≥ a we see that Fk+1 =Ok+1+m(r)(θ).
From (F.507) and the fact that (cf. (2.54))

‖∂θYk‖e−δk Wk
� δ−1

k ‖Yk‖e−δk/2Wk
, ‖∂(�0 −Q0) ◦ r‖Wk

≤ ρk
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hence

|∂θYk| × |∂(�0 −Q0) ◦ r|� δ
−(1+τ)

k ρ
γ

k ‖F‖Wk

where γ = 1 in the (AA)-case. A similar computation (cf. (F.498)) shows that one can take
γ = 1/2 in the (CC)-case. With the notations sk = ‖�k −�0‖D(0,ρk), εk = ‖Fk‖Wk

, we then
get

(F.508)

⎧
⎨

⎩

εk+1 �
(

(ρkδk)
−(τ+a)εk + (ρkδk)

−(2+τ)sk + δ
−(1+τ)

k ρ
γ

k

)

εk

sk+1 �
∑k

j=0 εj

provided

(F.509) (ρkδk)
−(τ+a)εk < 1.

Let k∗ be the largest integer for which the preceding sequences are defined and satisfies

(F.510) ∀k < k∗, Pρ0(k, εk) := ρ
−γ

0 (ρkδk)
−(τ+a)εk < 1;

the condition involved in (F.510) implies (F.509). From (F.489) for any σ > 0 one has
δk �σ (k + 1)−(1+σ). Fix θ ∈]0, γ [ and define

μ= γ − θ

1+ τ

1
1+ σ

.

Since ρk � ρ0 one has

∀ k < min(k∗, ρ
−μ

0 ),

{
(ρkδk)

−1 � ρ
−1−μ(1+σ)

0

δ
−(1+τ)

k ρ
γ

k � ρ
γ−(1+τ)μ(1+σ)

0 = ρθ
0 .

If we set

a=
(

1+ γ − θ

1+ τ

)

(2+ τ)+ θ ≤ (3/2)(2+ τ)+ 1

we then get using (F.510) and (F.508)

∀ k < min(k∗, ρ
−μ

0 ), εk+1 ≤Cσ

(

ρ
γ

0 + ρ−a+θ
0

k∑

j=0

εj + ρθ
0

)

εk

≤Cσ ρθ
0 ×

(

1+ ρ−a
0

k∑

j=0

εj

)

εk.
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We now apply Lemma F.1 with α = ρ0: since (a > 10)

max
(

a, (1+ γ − θ

1+ τ
)(τ + a)+ 1

)

≤ 2(τ + a)≤ a1,τ ≤ m;

condition (F.506) shows that (F.510) is satisfied with k =min(k∗, [ρ−μ

0 ]) as well as condi-
tions (F.483) for ρ0�θ,σ 1. We thus get if k := [ρ−μ

0 ],
(F.511) ∀ k ∈ [0, k] ∩N, εk ≤ ρθk

0 ε0.

Since θ and σ can be taken arbitrarily close to 1, for any 0 < β � 1 one has for
ρ �β 1

εk ≤ e−ρ−(1−β)

, sk ≤ 2ε0.

We conclude like in the proof of Proposition 6.4 (Section F.2) by defining

FBNF
ρ = Fk, �BNF

ρ =�k, gBNF
ρ = f −1

YWh
1
◦ · · · ◦ f −1

YWh

k

.

Note that since Fk ∈ Ok+a1,τ (r) one has FBNF
ρ ∈ O(1/ρ)1−β

(r) and (6.154) is a consequence
of Remark 6.4. �

Appendix G: Resonant Normal Forms

In this section we shall only consider the (AA)-Case.
Let c ∈D(0, 1), ρ > 0, h > 0 and

(G.512) � ∈ Õσ (ehD(c, ρ)) and F ∈Oσ (ehWh,D(c,ρ))

where � satisfies the twist condition (A, B≥ 1)

∀ r ∈R, A−1 ≤ (2π)−1∂2�(r)≤ A and ‖(2π)−1D3�‖C ≤ B.

Our aim in this section is to give an approximate Normal Form for �� ◦ fF in a neighbor-
hood of a q-resonant circle by which we mean that for some (p, q) ∈ Z×N∗, p∧ q= 1

(2π)−1∂�(c)= p

q
.

This Normal Form is quite similar in spirit (and in its construction) to the approximate
BNF. It is used in the paper in Sections 8 (approximate Hamilton-Jacobi Normal Form)
and 15 (creating hyperbolic periodic points).

As usual we define ω(c) := 1
2π

∂�(c).
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Proposition G.1 (q-resonant Normal Form). — There exists a universal constant a3 ≥ 10 (not

depending on q and that we can assume in N) such that, if one has

(G.513)

{
ρ < (Aq)−8

‖F‖Wh,D(c,ρ)
< ρ a3,

then the following holds: There exist � ∈ Õσ (D(c, e−1/qρ))∩ T C(2A, 2B),

F
res

, Fcor ∈Oσ (e−1/qWh,D(c,ρ)), gRNF ∈ S̃ympex,σ (e−1/qWh,D(c,ρ))

such that

(G.514)

{
g−1

RNF ◦�� ◦ fF ◦ gRNF =�2π(p/q)r ◦�� ◦ fFres ◦ fFcor

F
res

is 2π/q− periodic, M0(F
res

)= 0,

where

(G.515)

⎧
⎪⎨

⎪⎩

‖�− (�− 2π(p/q)r)‖D(c,e−1/qρ) � ‖F‖Wh,D(c,ρ)

‖F
res‖e−1/qWh,D(c,ρ)

� ‖F‖Wh,D(c,ρ)

‖gRNF − id‖C1 � (qρ −2)2‖F‖h,D(c,ρ) ≤ ρ a3−5

and

(G.516) ‖Fcor‖e−1/qWh,D(c,ρ)
� exp(−ρ −1/4)‖F‖Wh,D(c,ρ)

.

We give the proof of this Proposition in the next subsections.

Remark G.1. — The implicit constants in the symbol � of the preceding estimates
depend on h; if h0 > 0, they can be bounded above by a constant Ch0 whenever h≥ h0.

G.1 A preliminary Lemma.

Lemma G.2. — 1) For any (k, l) ∈ Z∗ ×Z one has

(G.517)

⎧
⎨

⎩

either q|k and p|l
or |k × p

q
− l| ≥ 1

q
.

2) Let

N= (qρA)−1.

For any r ∈D(c, ρ) and any (k, l) ∈N∗ ×Z, 1≤ k ≤N, which is not in (q, p)Z one has

(G.518) |kω(r)− l| ≥ 1/(2q).
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Proof. — 1) Indeed |k(p/q)− l| = |kp− lq|/q and if the integer kp− lq is 0 then q|k
and p|l.

2) We just notice that

|kω(r)− l| ≥ |kω(c)− l| − k|ω(r)−ω(c)|
≥ (1/q)−N‖∂ω‖D(c,ρ)ρ

≥ 1/(2q). �

Define (see Section 5.1)

(G.519) Tq−res

N F=
∑

k∈Z|k|<N
q|k

Mk(F), Tq−nr

N F=TNF−Tq−res

N F.

We shall often use in what follows the shortcuts Tres
N and Tnr

N for Tq−res

N , Tq−nr

N .
From (5.101), (5.111) we see that

(G.520) Tres
N F ◦ φ2π/q

r =Tres
N F

and

(G.521) ‖Tres
N F‖e−δh,D(c,ρ) � δ−1‖F‖h,D(c,ρ).

Corollary G.3. — For any F ∈ Oσ (Wh,D(c,ρ)), there exists Y ∈ Oσ (W�
h,D(c,ρ)) such that

M0(Y)= 0 and

(G.522) Tnr
NF= [�] ·Y.

This Y satisfies for any 0 < δ < h

(G.523) ‖Y‖e−δWh,D(c,ρ)
� qδ−1‖F‖Wh,D(c,ρ)

.

Proof. — This is a simple adaptation of the proof of Proposition 5.3 (the non-
resonance condition is replaced by (G.518)). �

G.2 Elimination of non-resonant terms.

Proposition G.4. — There exists a universal constant a3 (not depending on q) such that if

N= (qρA)−1 and

(G.524)

{
ρ1/8 < (qA)−1

‖F‖Wh,D(c,ρ)
< ρ a3,
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then there exist Fres, Fnr ∈Oσ (e−1/qWh,D(0,ρ)), g ∈ S̃ympex,σ (e−1/qWh,D(0,ρ)) such that

(G.525) [e−1/qWh,D(0,ρ)] g−1 ◦�� ◦ fF ◦ g =�� ◦ fFres+Fnr

(G.526) Fres =Tres
N (F+O(qρ‖F‖Wh,D(c,ρ)

))

Fres being 2π/q-periodic and

(G.527) ‖g − id‖C1 � (qρ −2)2‖F‖h,D(c,ρ) ≤ ρ a3−5

(G.528) ‖Fnr‖e−1/qWh,D(c,ρ)
� q exp(−ρ −1/3)‖F‖h,D(c,ρ).

Proof. — Note that we can assume, using Lemma 2.2 that F ∈ Õσ (Wh,D(c,ρ)) and
satisfies

(G.529) ε0 := ‖F‖e−1/(10q)Wh,D(c,ρ)
≤ ρ a3, ‖F‖C3 � ρ a3−7

where a3 will be defined in (G.539).
Let N= (qρA)−1. We define W0 = e−1/(10q)Wh,D(c,ρ0), ρ0 = ρ and for k ≥ 1

(G.530) δk = (5q)−1

(k + 1)4/3
, ρk = exp(−

k−1∑

l=0

δl)ρ, Wk = exp(−
k−1∑

l=0

δl)W0

and we construct sequences Yk, Fk, Fnr
k , Fres

k ∈Oσ (Wk) such that Fk = Fnr
k + Fres

k

(G.531) Fres
0 =Tres

N F, Fnr
0 = F− Fres

0 , Tres
N Fnr

0 = 0

and for k ≥ 0

(G.532) fYk
◦�� ◦ fFnr

k +Fres
k
◦ f −1

Yk
=�� ◦ fFnr

k+1+Fres
k+1

where for any k,

Fres
k ◦ φ

2π/q

J∇r = Fres
k .

By Corollary G.3 there exists Yk ∈Oσ (e−δk/2W�
k ) such that

(G.533) [�] ·Yk =−Tnr
NFnr

k , ‖Yk‖e−δk/2W�
k
� qδ−1

k ‖Fnr
k ‖Wk

.

Let Fk := Fres
k + Fnr

k and compute using Proposition 4.7

fYk
◦�� ◦ fFnr

k +Fres
k
◦ f −1

Yk
=�� ◦ fFnr

k +Fres
k +[�]·Yk+‖DFk‖e−δk/2Wk

O1(Yk)

=�� ◦ fRNFnr
k +Tres

N Fnr
k +Fres

k +qδ−1
k ‖DFk‖e−δk/2Wk

O1(Fnr
k )

=�� ◦ fFnr
k+1+Fres

k+1
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with

(G.534)

{
Fnr

k+1 =RNFnr
k + q(ρkδk)

−2‖Fk‖Wk
O1(Fnr

k )

Fres
k+1 =Tres

N Fnr
k + Fres

k .

In particular since Fk+1 = Fnr
k+1 + Fres

k+1 = Fnr
k+1 +Tres

N Fnr
k + Fres

k

(G.535) Fk+1 = Fk + Fnr
k+1 +Tres

N Fnr
k − Fnr

k .

If we define ε∗k = ‖F∗k‖Wk
, ∗ = nr, res, εk = ‖Fk‖Wk

we get from (G.531) and
Lemma 5.2

(G.536) εnr
0 � δ−1

0 ε0 � qε0

and from (G.534), (G.535) and Lemma 5.2 that for some a > 0

(G.537)

⎧
⎪⎨

⎪⎩

εnr
k+1 � δ−1

k e−δkN/2εnr
k + qεk(ρkδk)

−aεnr
k

εres
k+1 � εres

k + δ−1
k εnr

k

εk+1 = εk +O(εnr
k+1 + δ−1

k εnr
k )

provided for some a > 0 (that we can assume ≥ 4)

(G.538) (ρkδk)
−aεnr

k < 1.

From now on we define a3 = 2a+ 2, see (G.529),

(G.539) ε0 ≤ ρ
a3
0 with a3 = 2a+ 2≥ 10;

notice that this implies (see (G.536))

(G.540) εnr
0 ≤ ρ2a

0 .

Let k∗ be the largest integer for which the sequences εnr
k , εres

k , εk are defined. We notice
that for k < min(k∗, ρ

−1/3
0 ) one has from (G.524)

(ρkδk)
−1 � ρ−1

0 qρ
−4/9
0 � A−1ρ−1

0 ρ
−1/8
0 ρ

−4/9
0 ≤ ρ−2

0 .

Since εk = ε0+O(δ−1
k

∑k

j=0 εnr
k ) we get that for k+1≤ ρ

−1/3
0 , εk = ε0+O(ρ

−4/9
0

∑k

j=0 εnr
k )

hence if k < min(k∗, ρ
−1/3
0 ) (recall q≤ ρ

−1/8
0 )

qεk(ρkδk)
−aεnr

k ≤C
(

ρ
−(2a+1)

0 ε0 + ρ
−(2a+2)

0

k∑

j=0

εnr
k

)

εnr
k .

On the other hand, from (G.524), q−1N= q−2ρ−1
0 A−1 ≥ A−1ρ

−3/4
0 hence, if k+1≤

ρ
−1/3
0 one has δkN= q−1N/(k + 1)4/3 ≥ ρ

−3/4
0 ρ

4/9
0 = ρ

−11/36
0 and thus δ−1

k e−δkN ≤ ρ0 if ρ0
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is small enough. The outcome of this is that for k + 1≤ ρ
−1/3
0 one has (we use condition

(G.539))

εnr
k+1 ≤Cρ0

(

1+ ρ
−(2a+3)

0

k∑

j=0

εnr
k

)

εnr
k .

Since for ρ0 � 1 one has (cf. (G.540))

(G.541) εnr
0 ≤ ρ2a

0 ≤ (ρ0δ0)
a

and we can thus apply Lemma F.1 with α = ρ0, to get

(G.542) k∗ ≥ ρ
−1/3
0 , ∀0≤ k ≤ k∗, εnr

k ≤ (2Cρ0)
kεnr

0 ≤ e−kqε0.

We now set

Fres = Fres
k∗, Fnr = Fnr

k∗, g = f −1
YWh

1
◦ · · · ◦ fYWh

k∗−1

where YWh
j is a C2 Whitney extension of (Yj, e−δj/2Wj) given by Lemma 2.2. The con-

jugation relation (G.525) then holds and the conclusion (G.528) is satisfied since from
(G.542)

e−2/qWh,D(c,ρ) ⊂Wk∗, ‖Fnr‖e−2/qWh,D(c,ρ)
� e−ρ

−1/3
0 qε0.

To check (G.527) we just notice that from (G.533)

‖g − id‖C1 �h q2ρ−4
0 ε0.

Finally, since Fres = Tres
N F + Tres

N (
∑k∗

k=0 Fnr
k ) and Tres

N Fnr
0 = 0 (cf. (G.531)) one has from the

inequality εnr
k ≤ (2Cρ0)

kεnr
0 � ρ0e−(k−1)ε0 (ρ0 � 1, k ≥ 1)

Fres =Tres
N F+Tres

N (

k∗∑

k=1

Fnr
k ), ‖

k∗∑

k=1

Fnr
k ‖Wk∗ ≤

k∗∑

k=1

εnr
k � qρ0ε0

which gives conclusion (G.526):

Fres =Tres
N

(

F+O(qρε0)

)

. �

G.3 Proof of Proposition G.1. — We apply Proposition G.4 and we write using
Lemma 4.6

�� ◦ fFnr+Fres =�2π(p/q)(r−c) ◦��−2π(p/q)(r−c) ◦ fFres ◦ fFnr+‖DFres‖Wh,UȮ1(Fnr)

=�2π(p/q)(r−c) ◦��−2π(p/q)(r−c) ◦ fFres ◦ fFcor
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with

(G.543) ‖Fcor‖e−1/qWh,D(c,ρ)
� qaρ −a‖Fnr‖e−2/qWh,D(c,ρ)

provided for some a > 0

qaρ −a‖Fnr‖e−2/qWh,D(0,ρ)
< 1.

The inequalities (G.524) and (G.528) show that this last condition is satisfied if ρ � 1.
We now observe that

fFres =�M0(F) ◦ fFres−M0(F)

and that

��−2π(p/q)(r−c) ◦�M0(F) =��−2π(p/q)(r−c)+M0(F).

If we set

gRNF = g

�=�− 2π(p/q)(r − c)+M0(F) and F
res = Fres −M0(F)

and recall (G.525) we find the conjugation relation (G.514).
Note that since we have assumed that F ∈ Õσ (e−1/(10q)Wh,D(c,ρ)) satisfies (G.529) we

have � ∈ Õσ (e−1/qWh,D(c,ρ)) ∩ T C(2A, 2B) and the first inequality of (G.515) is satisfied.
The other inequalities of (G.515) are consequences of (G.526) and (G.527) and (G.516) is
a consequence of (G.528), (G.524) and (G.543). �

Remark G.2. — Notice that from the first inequality of (5.111) in Lemma 5.2

(G.544) ‖Fres‖W
e−1/qh,D(c,e−1/qρ)

� ‖F‖Wh,D(c,ρ)
.

Appendix H: Approximations by vector fields

The main result of this Section is the following proposition on the approximation of an
exact symplectic diffeomorphism close to an integrable one by a vector field.

Proposition H.1. — There exists a constant C > 0 for which the following holds. Let

0 < ρ < 1, F ∈Oσ (Th ×D(0, ρ)) and � ∈Oσ (D(0, ρ)), �(r)=O(r2). If ρ > 0 is small

enough, h � ρ1/3 and

(H.545) C× (ρh)−9‖F‖h,ρ < 1
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then, there exist � ∈Oσ (D(0, ρ/2)), A3(F) ∈Oσ (Th/2 ×D(0, ρ/2)) such that

(H.546) �� ◦ fF =�� ◦ fA3(F)

with

�=�+ F ◦�−�/2 +O(ρ1/4‖F‖h,ρ)(H.547)

=�+ F+O(ρ1/4‖F‖h,ρ)(H.548)

and

(H.549) ‖A3(F)‖h/2,ρ/2 < exp(−ρ−1/4)‖F‖h,ρ.

The proof of this proposition is given in Section H.2.

H.1 Auxiliary result.

Proposition H.2. — Let ρ > 0, �(r) = O(r2), � ∈ Oσ (D(0, ρ)), F, G ∈ Oσ (Th ×
D(0, ρ)) such that (C some universal constant)

(H.550) C× (ρδ)−4(‖F‖h,ρ + ‖G‖h,ρ) < 1.

Then for any h/2 > δ � ρ1/3, there exists A(F, G) ∈Oσ (e−δ(Th ×D(0, ρ))) such that

(H.551) ��+F+G =��+F ◦�G◦��/2 ◦ fA(F,G)

with

(H.552) ‖A(F, G)‖h−δ/2,e−δρ �
(

(ρδ)−4(‖F‖h,ρ + ‖G‖h,ρ)+ ρδ−3

)

‖G‖h,ρ .

Proof. — To simplify the notations we denote W = Wh,D(0,ρ) and we assume that
ω(r) := ∇�(r), ω(0)= 0 satisfies

ω(r)= r +O(r2).

If

(δρ)−2 max(‖F‖h,ρ,‖G‖h,ρ) < 1

the images of the domain e−2δW by the flows �t
�,�t

�+F,�t
�+F+G, 0≤ t ≤ 1, are contained

in e−δW.
Let us denote

σ :=max(‖DF‖h,δ,‖DG‖h,δ)
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and for x= (θ, r) ∈ e−2δW and t ∈ [−1, 1]
�(t, x)=�t

�+F+G(x)−�t
�+F(x).

By classical theorems on ODE’s for t ∈ [−1, 1]
�(t, ·)=O(σ ), �t

�+F −�t
� =O(σ ).

On the other hand one has

d

dt
�(t, x)= J∇(�+ F+G) ◦�t

�+F+G(x)− J∇(�+ F) ◦�t
�+F(x)(H.553)

= (I)(t, x)+ (II)(t, x)+ (III)(t, x)

with

(I)(t, x)= J∇� ◦�t
�+F+G(x)− J∇� ◦�t

�+F(x)

(II)(t, x)= J∇F ◦�t
�+F+G(x)− J∇F ◦�t

�+F(x)

(III)(t, x)= J∇G ◦�t
�+F+G(x).

Since �t
�+F+G(x)=�t

�+F(x)+ (�θ(t, x),�r(t, x)) and ��+F−�� =O(σ ) one has (note
that r ◦�t

�+F = r +O(σ ))

(I)(t, x)=
(

ω(r ◦�t
�+F(x)+�r(t, x))−ω(r ◦�t

�+F(x))

0

)

(H.554)

=
(

∂ω(r)�r(t, x)+O(σ |�r(t, x)|)
0

)

and

(H.555) |(II)(t, x)| =O(|D2F||�(t, x)|).
We have using the fact that �t

�+F+G −�� =O(σ ) and ω(r)=O(r)

(III)(t, x)= J∇G(θ + tω(r), r)+O(ε‖D2G‖)(H.556)

=
(

∂rG(θ, r)+ tω(r)∂2
θ rG(θ, r)+O(ρ2‖∂2

θ ∂rG‖)
−∂θG(θ, r)− tω(r)∂2

θ G(θ, r)+O(ρ2‖∂3
θ G‖)

)

+O(σ‖D2G‖).
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Summing (H.554), (H.555), (H.556) and integrating (H.553) gives
(

�θ(t, x)

�r(t, x)

)

=
(

∂ω(r)
∫ t

0 �r(s, x)ds

0

)

(H.557)

+
(

t∂rG(θ, r)+ (t2/2)ω(r)∂2
θ rG(θ, r)

−t∂θG(θ, r)− (t2/2)ω(r)∂2
θ G(θ, r)

)

+O(ε+ |D2F|)
∫ t

0
|�(s, x)|ds+A1

with

A1 =O(σ‖D2G‖)+O(ρ2‖D∂2
θ G‖).

Lemma H.3. — One has

|�(t, x)| ≤ A2 :=O(‖DG‖+ρ‖D∂θG‖)+O(σ‖D2G‖)+O(ρ2‖D∂2
θ G‖).

Proof. — From (H.557) and the fact that ∂ω(r)� 1

|�(t, x)|≤C(1+ε+‖D2F‖h,ρ)

∫ t

0
|�(s, x)|ds+O(‖DG‖+ρ‖D∂θG‖)+A1

and we conclude by Grönwall inequality. �

Looking at the second component of (H.557) gives (ω(r)=O(r))

�r(t, x)=−t∂θG(θ, r)+O(ρ‖∂2
θ G‖)+O((ε+ ‖D2F‖)A2)+A1

hence (integrating again and putting the result in (H.557))
(

�θ(t, x)

�r(t, x)

)

(H.558)

=
(−∂ω(r)(t2/2)∂θG(θ, r)+ t∂rG(θ, r)+ (t2/2)ω(r)∂2

θ rG(θ, r)

−t∂θG(θ, r)− (t2/2)ω(r)∂2
θ G(θ, r)

)

+O(A3)

with

A3 =O(ρ‖∂2
θ G‖)+O((ε+ ‖D2F‖)A2)+A1.

Taking t = 1 gives

��+F+G(x)

=��+F(x)
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+
(−(∂ω(r)/2)∂θG(θ, r)+ ∂rG(θ, r)+ (ω(r)/2)∂2

θ rG(θ, r)

−∂θG(θ, r)− (ω(r)/2)∂2
θ G(θ, r)

)

+O(A3).

On the other hand
(

∂r(G(θ −ω(r)/2, r))

−∂θ(G(θ −ω(r)/2, r))

)

=
(−(∂ω(r)/2)∂θG(θ −ω(r)/2, r)+ ∂rG(θ −ω(r)/2, r)

−∂θG(θ −ω(r)/2, r)

)

hence

J∇(G ◦�−�/2) ◦��

=
(−(∂ω(r)/2)∂θG(θ +ω(r)/2, r)+ ∂rG(θ +ω(r)/2, r)

−∂θG(θ +ω(r)/2, r)

)

and from Taylor Formula and the fact that ω(r)=O(r)

��+F+G(x)−��+F(x)= J∇(G ◦�−�/2) ◦�� +O(ρ‖∂2
θ G‖)+O(A3).

Since ��+F =�� +O(σ ), this means that

��+F+G = (id + J∇(G ◦�−�/2) ◦��+F +O(σ‖D2G‖)+O(A3)

thus

��+F+G =�G◦�−�/2 ◦��+F +O(A3)

or

��+F+G = fO(A3) ◦�G◦�−�/2 ◦��+F

with

A3 � ((ρδ)−2σ + ρ2(ρδ)−1δ−2 + (σ + (ρδ)−2σ)

× ((ρδ)−1 + ρ(ρδ)−1δ−1)+ ρδ−2)‖G‖h,ρ

� ((ρδ)−3σ + ρδ−3)‖G‖h,ρ

�
(

(ρδ)−4(‖F‖h,ρ + ‖G‖h,ρ)+ ρδ−3

)

‖G‖h,ρ

provided

(ρδ)−4(‖F‖h,ρ + ‖G‖h,δ) < 1, ρδ−3 < 1.
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To conclude we observe that if we apply the preceding formula with −� and −F instead
of �, F

�−�−F−G = fO(A3) ◦�−G◦��/2 ◦�−�−F

and inverting

��+F+G =��+F ◦�G◦��/2 + fO(A3). �

Corollary H.4. — Under the same conditions of Proposition H.4 one has

��+F ◦ fG =��+F+G◦�−�/2 ◦ fA2(F,G)

with

(H.559) ‖A2(F, G)‖h−δ/2,e−δρ �
(

(ρδ)−4(‖F‖h,ρ + ‖G‖h,ρ)+ ρδ−3

)

‖G‖h,ρ .

Proof. — If we apply (H.551) with G ◦�−�/2 instead of G we get

��+F+G◦�−�/2 =��+F ◦�G ◦ fA(F,G◦�−�/2)

hence

��+F ◦ fG =��+F+G◦�−�/2 ◦ f −1
A(F,G◦�−�/2) ◦�−1

G ◦ fG

=��+F+G◦�−�/2 ◦ fA2(F,G)

where A2(F, G)= A(F, G ◦�−�/2)+O(|DG||D2G|) satisfies (H.559) (cf. (H.552)). �

H.2 Proof of Proposition H.1. — Let δk = c/(k + 1)3/2, hk = h− δk/2, ρ0 = (3/4)ρ,
ρk = e−δkρ and c chosen such that hk ≥ h/2, ρk ≥ ρ/2 for all k ∈N. Using Corollary H.4
we construct sequences Sk, Gk such that S0 = 0, G0 = F

(H.560) ��+Sk
◦ fGk

=��+Sk+1 ◦ fGk+1

(H.561)

{
Sk+1 = Sk +Gk ◦�−�/2

Gk+1 = A2(Sk, Gk)

with

‖Sk+1‖hk+1,ρk+1 ≤ ‖Sk‖hk ,ρk
+ ‖Gk‖hk ,ρk

and

(H.562) ‖Gk+1‖hk+1,ρk+1 � ρkδ
−3
k ‖Gk‖hk,ρk

+ (ρkδk)
−4(‖Sk‖hk ,ρk

+ ‖Gk‖hk,ρk
)‖Gk‖hk,ρk
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as long as

(ρkδk)
−4(‖Sk‖hk,ρk

+ ‖Gk‖hk ,ρk
) < 1.

With εn = ‖Gn‖hn,ρn
and σn := ‖Sn‖hn,ρn

we have (s0 = 0)

εk+1 ≤C(ρkδ
−3
k + (ρkδk)

−4
k∑

j=0

εj)εk(H.563)

σk+1 ≤ σk +O(εk)(H.564)

as long as (ρkδk)
−4(sk + σk) < 1.

Let k∗ be the largest integer for which these sequences are defined. We observe
that for k < min(k∗, ρ1/4) one has (ρkδk)

−1 ≤ ρ−2 and ρkδ
−3
k ≤ ρ

1−3/4
k = ρ1/4; hence, if

k =min(k∗, ρ−1/4) one has

∀ k < k, εk+1 ≤Cρ1/4(1+ ρ−9
k∑

j=0

εj)εk.

We are in position to apply Lemma F.1 with α = ρ, θ = 1/4, a = 9: since condition
(F.483) is satisfied (cf. (H.545)) one has

k∗ ≥ ρ1/4, ∀ k ≤ k∗, εk ≤ (2Cρ)k/4ε0

and also

sk − ε0 ≤
k∑

j=1

εj � ρ1/4ε0.

To conclude the proof we set

�= Sk, A3(F)= Fk. �

Appendix I: Adapted KAM domains: lemmas

I.1 Proof of Lemma 10.1.

I.1.1 Proof of the RHS inequality of (10.306). — From (7.193) and the definition
(10.300) of i−(ρ), for every (k, l) ∈ Ei−(ρ)−1, 0 < k < Ni−(ρ)−1, 0≤ |l| ≤Ni−(ρ)−1 one has

D(c
(i−(ρ)−1)

l/k , K−1
i−(ρ)−1)∩D(0, 2ρ)= ∅,

hence |c(i−(ρ)−1)

l/k | > ρ. Since ωi−(ρ)−1(c
(i−(ρ)−1)

l/k ) = l/k, we deduce from the fact that �i

satisfies a (2A, 2B)-twist condition (7.166) that |(l/k) − ω0| = |ω(c
(i−(ρ)−1)

l/k ) − ω(0)| ≥



168 RAPHAËL KRIKORIAN

(2A)−1ρ. By Dirichlet Approximation Theorem, for any L ≥ 1 there exist k, l ∈ Z, 0 <

|k| ≤ L such that |ω0 − (l/k)| ≤ 1
|k|L , hence

(I.565) (2A)−1ρ ≤ 1
|k|L .

However, since ω0 ∈DC(τ ) one has 1
|k|1+τ � |ω0 − (l/k)| ≤ 1

|k|L hence

L1/τ � |k|.
This and (I.565) yield

ρ � L−(1+1/τ).

In particular if one chooses L=Ni−(ρ)−1 − 1�Ni−(ρ) one gets

ρ � N−(1+1/τ)

i−(ρ)

which proves the inequality of the RHS of (10.306).

I.1.2 Proof of the LHS inequality of (10.306). — Let us prove the second inequality
of (10.306). By definition of i−(ρ) there exists (l, k) ∈ Z2, 0 < k < Ni−(ρ), |l| ≤Ni−(ρ) such
that (cf. (7.193))

D(c
(i−(ρ))

l/k , 2K−1
i−(ρ))∩D(0, 2ρ) 	= ∅.

In particular (cf. (7.163)) |c(i−(ρ))

l/k | ≤ 3ρ. Since ω0 ∈DC(κ, τ ), |ω(0)− (k/l)| ≥ κ/k1+τ and
from (7.192) |ωi−(ρ)(0)− ωi−(ρ)(c

(i−(ρ))

l/k )| ≥ κ/k1+τ − 2ε1/2; by the twist condition 6Aρ ≥
2A|c(i−(ρ))

l/k | ≥ κN−(1+τ)

i−(ρ) − ρ2 hence

ρ � N−(1+τ)

i−(ρ)

which shows that the LHS of (10.306) holds.
Estimates (10.304), (10.305) are then immediate. �

I.2 Proof of Items 1, 2, 4 of Proposition 10.2. — Recall that from (10.307)

(I.566)

{
U((3/2)ρ)

i =D(0, (3/2)ρ)�
⋃i−1

j=1

⋃
(k,l)∈Ej

D(c
(j)

l/k, sj,i−1K−1
j ),

sj,i−1 = e
∑i−1

m=j δm ∈ [1, 2]
where Ej ⊂ {(k, l) ∈ Z2, 0 < k < Nj, 0 < |l| ≤ Nj}, ωj(c

(j)

l/k) = l/k. In particular, any

D ∈D(Ui) is of the form D=D(c
(j)

l/k, sj,i−1K−1
j ), where j ≤ i − 1, (k, l) ∈ Ej .

Lemma I.1. — If D ∈D(3/2)ρ(Ui) then j ≥ i−(ρ).
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Proof. — Since D(0, 2ρ) = D(0, 2ρ) ∩ Ui−(ρ), from (I.566) for all j ≤ i−(ρ) − 1,
(k, l) ∈ Ej one has |c(j)

l/k| ≥ 2ρ + K−1
j . On the other hand, if D ∈ D(Ui) is of the form

D = D(c
(j)

l/k, sj,i−1K−1
j ), where j ≤ i − 1, (k, l) ∈ Ej and intersects D(0, (3/2)ρ) one has

|c(j)

l/k| ≤ (3/2)ρ + 2K−1
j < 2ρ +K−1

j hence j ≥ i−(ρ). �

From (7.193) and Lemma I.1 we can thus write

(I.567)

{
U((3/2)ρ)

i =D(0, (3/2)ρ)�
⋃i−1

j=i−(ρ)

⋃
(k,l)∈Ej

D(c
(j)

l/k, sj,i−1K−1
j ),

sj,i−1 = e
∑i−1

m=j δm ∈ [1, 2].
We define

Qi =
i−1⋃

j=i−(ρ)

{l/k, (k, l) ∈ Ej}

and for t ∈Qi

j(t, i)=min{j : j ∈N∩ [i−(ρ), i − 1], (k, l) ∈ Ej and l/k = t}
c(t, i)= c

(j(t,i))
t , s(t, i)= sj(t,i),i−1.

Define for i−(ρ)≤ j < i ≤ i+(ρ),

κj,i = sj,i−1K−1
j .

We observe that from the inequality Ni+(ρ) ≤ N2
i−(ρ), for any i−(ρ) ≤ j < i ≤ i+(ρ),

i−(ρ)≤ j ′ < i′ ≤ i+(ρ), (i, j) 	= (i′, j ′), one has46

κj,i + κj′,i′ �N−2
max(j,j′), ε

1/2
min(j,j′) � |κj,i − κj′,i′ |;

if j ′ < j or j ′ = j and i < i′, one has κj,i < κj′,i′ hence from Lemma 7.3, Item (2) for
(k, l) ∈ Ej , (k′, l ′) ∈ Ej′ one has

(I.568)

{
either l/k 	= l ′/k′ and D(c

(j)

l/k, κj,i)∩D(c
(j′)
l′/k′, κj′,i′)= ∅

or l/k = l ′/k′ and D(c
(j)

l/k, κj,i)⊂D(c
(j′)
l′/k′, κj′,i′).

As a consequence, for j ∈ N ∩ [i−(ρ), i − 1], (k, l) ∈ Ej , t = l/k, one has the inclusion
D(c

(j)

l/k, sj,i−1K−1
j )⊂D(c(t, i), sj(t,i),i−1K−1

j(t,i)), and therefore (cf. (I.567), (10.308))

U((3/2)ρ)

i =D(0, (3/2)ρ)�
⋃

t∈Qi

D(c(t, i), sj(t,i),i−1K−1
j(t,i)).

46 This is clear if j 	= j ′; if j = j ′ observe that if i 	= i′, ε
1/2

i−(ρ) � |sj,i−1 − sj,i′−1|K−1
j .
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This implies that any D ∈D(3/2)ρ(Ui) is of the form

(I.569) D=D(c(t, i), sj(t,i),i−1K−1
j(t,i)), t ∈Qi, j(t, i)≤ i − 1.

Proof of item 1 of Proposition 10.2. — This is a consequence of (I.569) and (I.568).
�

Proof of item 2 of Proposition 10.2. — One can write for some t ∈ Qi, t′ ∈ Qi′ , D =
D(c(t, i), sj(t,i),i−1K−1

j(t,i)), D′ =D(c(t′, i′), sj(t′,i′),i′−1K−1
j(t′,i′)) and from Lemma 7.3, Item (2) if

D ∩ D′ 	= ∅ one has t = t′. On the other hand since t = t′ ∈ Qi′ ⊂ Qi one has j(t, i′) =
j(t, i). We now use the fact that sj(t,i′),i′−1 ≤ sj(t,i),i−1. �

Proof of item 4 of Proposition 10.2. — Let us prove that D ∈Dρ(Ui+(ρ)) is a subset of
UiD. If this were not the case, there would exist D′ ∈ D(UiD) such that D′ ∩ D 	= ∅; in
particular D′ ∈D(3/2)ρ(UiD) and from item 2 D′ ⊂ D; but this contradicts the definition
of iD. Hence D⊂UiD.

This latter inclusion and (I.567) applied with i = iD show that one has D ∩
D(c

(j)

l/k, sj,i−1K−1
j ) = ∅ for all i−(ρ) ≤ j ≤ iD − 1, (k, l) ∈ Ej . As a consequence D =

D(c
(j)

l/k, sj,i+(ρ)−1K−1
j ) for some j ≥ iD, (k, l) ∈ Ej .

On the other hand, by definition of iD there exists D′ ∈ Dρ(UiD+1) of the form
D′ = D(c′, s′K−1

j′ ) with j ′ ≤ iD, s′ ∈ [1, 2] (cf. (I.569)) such that D′ ⊂ D. One hence have
sj,i+(ρ)−1K−1

j ≥K−1
iD

thus j ≥ iD. We conclude that j = iD. �

Appendix J: Classical KAM measure estimates

J.1 A lemma. — If A and B are two sets we denote by A"B= (A ∪ B) � (A ∩ B)

their symmetric difference.

Lemma J.1. — Let A = I �
⋃

j∈J Ij , where I ⊂ R is an interval and all the intervals Ij are

disjoint. Then if
∑

j∈J |Ij|1/2 ≤ 1 and if g :MR →MR is a C1-symplectic diffeomorphism such that

‖g − id‖C1 ≤ 1/10, then one has Leb(WA " Wg(A)) � ‖g − id‖1/2
C0 .

Proof. — We can assume that the intervals Ij are contained in I. Recall that
1A " B = |1A − 1B| and notice that since the intervals Ij are pairwise disjoint one has
1WA = 1WI −

∑
j∈J 1WIj

hence

1WA " g(WA) =
∣
∣
∣
∣χ −

∑

j∈J

χj

∣
∣
∣
∣
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where χ = 1WI − 1g(WI), χj = 1WIj
− 1g(WIj )

. This gives

LebMR(WA " g(WA))

= ‖χ −
∑

j∈J

χj‖L1

≤ ‖χ‖L1 +
∑

j∈J

‖χj‖L1

≤ LebMR(WI " g(WI))+
∑

j∈J

LebMR(WIj
" g(WIj

)).

On the other hand, if I is an interval, there exist intervals qI ⊂ I ⊂ Î such that W
qI ⊂

g(WI)⊂WÎ and max(|I " Î|, |I "qI||)≤ 2 max(‖g − id‖C0,‖g−1 − id‖C0)≤C‖g − id‖C0 ,
C > 0 depending only on M (recall that we have assumed ‖g − id‖C1 is small enough).
This is clear in the (AA)-case and in the (CC) or (CC*)-case it follows from the (AA)-case
using the symplectic changes of coordinates ψ± and ϕ (4.79), (4.77). Therefore, since g is
symplectic,

LebMR(WIj
" g(WIj

))≤C min(‖g − id‖C0, LebMR(WIj
)).

In particular LebMR(WIj
" g(WIj

))≤C‖g− id‖1/2
C0 LebMR(WIj

)1/2 and since LebMR(WIj
)≤

|Ij| the conclusion follows. �

J.2 Proof of Theorem 12.1. — We use the notations of Section 7 and Propositions
7.1, 7.2, 7.5 and Remark 7.1.

We apply Proposition 7.5–Remark 7.1 with m = 1 and Proposition 4.3 with A =
e−2δ1U, L= L1,Prop. 7.5, Ã=U1 =U,

LebMR(WR∩e−2δ1 U �L(f , WR∩U))

≤C× (LebR(R∩ (e−2δ1U � L))+ ‖g1,∞ − id‖1/2
C0 )

� ε
1

2(a0+3) + ε 1/8 � ε
1

2(a0+3) . �

Appendix K: From (CC) to (AA) coordinates

Sometimes we need to reduce the (CC)-case to the (AA)-case, for example when defining
the Hamilton-Jacobi Normal Form in Section 8 or in Section 16.

For α ∈]0,π [ define the angular sector �+
α (ρ)= {r ∈D(0, ρ), arg(r) /∈ [−α,α]}

and �−
α (ρ)=−�+

α (ρ). Recall the definition of the maps ψ±, cf. (4.79) of Section 4.1.
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Lemma K.1. — Let c ∈R, FCC ∈Oσ (WCC
h,D(c,2ρ)), ε =Ceh/2‖D2FCC‖WCC

h,D(c,2ρ)
,

(K.570) Cδ−2ρ−2ε < 1

and α ∈]δ,π − δ[.
(1) If c = 0 and FCC = O3(z,w) there exists FAA

± ∈Oσ (Th−δ ×�±
α+4δ(ρ − 4δ)) such that on

Th−4δ ×�±
α+4δ(ρ − 4δ) one has

(K.571) fFAA± =ψ−1
± ◦ fFCC ◦ψ±, FAA

± = FCC ◦ψ± +O2(FCC).

(2) If |c|> 4ρ, there exists FAA
± ∈Oσ (Th−δ ×D(0, ρ)) such that (K.571) holds.

Proof. — We prove item (1), the proof of item (2) is done in a similar (and even
simpler) way. From ε ≤ δ and fF(0) = 0 we get that if z,w satisfy |z|, |w| < eh−δ(ρ −
3δ)1/2, r =−izw ∈�±

α+3δ(ρ−3δ) then z̃, w̃ defined as (̃z, w̃)= fFCC(z,w) satisfy |̃z−z| ≤
e−h/2ε|z|, |w̃ − w| ≤ e−h/2ε|w| and thus |̃z| ≤ eε|z| ≤ ehρ1/2 and |w̃| ≤ eε|w| ≤ ehρ1/2; on
the other hand if r̃ =−ĩzw̃ one has

(K.572) |̃r − r| ≤ 3ε|r|, |arg(̃r)− arg(r)| ≤ 3ε,

∣
∣
∣
∣
z̃/w̃

z/w
− 1

∣
∣
∣
∣≤ (5/2)ε.

Since ε < δ,

fFCC ◦ψ±(Th−3δ ×�±
α+3δ(0, ρ − 3δ))⊂ψ±(Th ×�±

α (0, ρ))

hence f AA :=ψ−1
± ◦ fFCC ◦ψ± :Th−3δ×�±

α+3δ(0, ρ−3δ)→Th×�±
α (0, ρ) is well defined.

On the other hand if ψ−1
± (z,w) = (θ, r), f AA

± (θ, r) = (θ̃ ,̃ r), ψ±(θ̃ ,̃ r) = (̃z, w̃) one has
from (K.572) and Lemma M.1

max(|θ̃ − θ |2πZ, |̃r − r|)≤ 3ε

hence

‖f AA − id‖Th−3δ×�±
α+3δ(0,ρ−3δ) ≤ 3ε

and from Remark 4.2, Lemmata 4.4, 4.5 and condition (K.570) there exists FAA
± ∈

O(Th−4δ ×�±
α+4δ(0, ρ − 4δ)) such that fFAA± = f AA and

(K.573) fFAA± = φ1
J∇FAA±

◦ fO2(FAA± ).

To get the second estimate in (K.571) we notice that

fFCC = φ1
J∇FCC ◦ fO2(FCC)
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hence

fFAA± =ψ−1
± ◦ φ1

J∇FCC ◦ fO2(FCC) ◦ψ±

= φ1
J∇(FCC◦ψ±)

◦ψ−1
± ◦ fO2(FCC) ◦ψ±

= φ1
J∇(FCC◦ψ±)

◦ fO2(FCC)

and from (K.573)

FAA
± = FCC ◦ψ± +O2(FCC). �

Remark K.1. — If f CC =�CC
� ◦ fFCC we have (cf. Section 4.2).

ψ−1
± ◦ f CC ◦ψ± =�AA

� ◦ fFAA± .

Appendix L: Lemmas for Hamilton-Jacobi Normal Forms

L.1 Proof of Lemma 8.3. — Since ∂2
r �̃(r)� 1 (cf. (8.218)), (8.222) and (8.220) show

that there exists e0 :Tqh/3 →C, e0 ∈Oσ (Tqh/3) such that

(L.574) ∀ θ ∈Tqh/3, ∂r�̃(θ, e0(θ))= 0, ‖e0‖Tqh/3 � (qρ)−1q2ε.

We now make a Taylor expansion: using (L.574) we see that

�̃(θ, r)= �̃(θ, e0(θ)+ (r − e0(θ))(L.575)

= �̃(θ, e0(θ))+ (1/2)∂2
r �̃(θ, e0(θ))(r − e0(θ))2

+ (r − e0(θ))3
∞∑

k=3

1
k!∂

k
r �̃(θ, e0(θ))(r − e0(θ))k−3

and if we define

(L.576) �(θ)= (1/2)∂2
r �̃(θ, e0(θ)), e1(θ)=−�̃(θ, e0(θ))/�(θ)

one gets for some p(θ, r)

�̃(θ, r)=�(θ)

(

−e1(θ)+ (r − e0(θ))2 + (r − e0(θ))3p(θ, r)

)

=�(θ, r − e0(θ))

with � ∈O(Tqh/3 ×D(0, e−2/qqρ/2−Cqρ −1ε))⊂O(Tqh/3 ×D(0, ρq))

�(θ, r)=�(θ)

(

r2 − e1(θ)+ r3p(θ, r + e0(θ))

)

;

this gives the desired form for �(θ, r) if one sets f (θ, r)= p(θ, r + e0(θ)).
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The estimates (8.228) on e0, e1,� are then clear from (L.574), (L.576). Let us check
the one on f . From (8.223) and (8.227) we have

�(θ)(r2 − e1(θ)+ r3f (θ, r))

=:� r2 +
2∑

i=0

fi(θ)(r + e0(θ))i + r3(b(r)+ f̃ (θ, r + e0(θ)))

hence from (8.225) and the first two inequalities of (8.228)

r3

(

f (θ, r)−�(θ)−1

(

b(r)− f̃ (θ, r + e0(θ))

))

� (qρ)−3q2ε

and by the maximum principle

sup
(θ,r)∈Tqh/3×D(0,ρq)

∣
∣
∣
∣f (θ, r)−�(θ)−1

(

b(r)− f̃ (θ, r + e0(θ)))

)∣
∣
∣
∣

� ρ−3(qρ)−3q2ε� 1.

We the conclude by (8.218) and (8.225). �

L.2 Square roots.

Lemma L.1. — Let a ∈C∗. There exists a unique function ma(z)= z(1+a/z2)1/2 univalent

on C � D(0, |a|1/2) such that

(L.577) m2
a(z)= z2 + a, ma(z)= z+O(z−1).

It satisfies for z, z′ ∈ EL := {w ∈C, |w|> L|a|1/2} (L > 3)

(L.578) (2/π)e−2/L2 ≤
∣
∣
∣
∣
ma(z)− ma(z

′)
z− z′

∣
∣
∣
∣≤ (π/2)e1/L2

Proof. — The existence and uniqueness of ma(z)= z(1+ (a/z2))1/2 is clear.
Note that the inverse for the composition of ma is m−a and that if L > 2 ma(EL)⊂

E3L/4. On the other hand the derivative of ma(z) is equal to ∂zma(z)= (1+ a/z2)−1/2 and
since for t ∈ [0, 1/2], (1 − t)−1/2 ≤ 1 + t one gets for z ∈ EL (L > 2) |∂zma(z)| ≤ e1/L2

.
Now any two points z, z′ ∈ EL can be joined by a path in EL the length of which is
≤ (π/2)|z − z′|; thus for any z, z′ ∈ EL, |ma(z) − ma(z

′)| ≤ (π/2)e1/L2|z − z′| which is
the right hand side inequality of (L.578). To get the left hand side we use the fact that
|m−a(ma(z))− m−a(ma(z

′))| ≤ (π/2)e1/(3L/4)2|ma(z)− ma(z
′)| if L > 3 (3L/4 > 2). �
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L.3 Proof of Lemma 8.5. — From Lemma L.1 z �→ (z2 + a)1/2 is well defined on
C � {|z|> |a|1/2}.

Let 0≤ s ≤ h/3. We are looking for g(θ, z)=�(θ)−1/2z(1+ g̊(θ, z)) such that

z2 =�(θ)

(

z2�(θ)−1(1+ g̊(θ, z))2 − e1(θ)

+ z3�(θ)−3/2(1+ g̊(θ, z))3f (θ, g(θ, z))

)

which can be written as a Fixed Point problem

g̊(θ, z)=
(

1+�(θ)
e1(θ)

z2
− z�(θ)−1/2(1+ g̊(θ, z))3f (θ, g(θ, z))

)1/2

− 1.(L.579)

Using the estimate on f given by (8.228) one can see that the map " : g̊ �→ R.H.S. of
(L.579) defines a 2ρq-contracting map on the ball B(0, CL−2) of center 0 and radius
CL−2 of the Banach space (O(Tsq × A(λs,L, ρq)),‖ · ‖∞) provided L−1 and ρq are small
enough. By the Contraction Mapping Theorem it has a unique fixed point g̊ in this ball.
In other words

(L.580) �(θ, g(θ, z))= z2.

The fact that g ∈O(Tqs × A(λs,L, ρq)) is uniquely defined shows that the various g found
for different values of s must agree. Hence g is defined on

⋃
0≤s≤1(Tqs × A(λs,L, ρq)). �

L.4 Proof of Lemma 8.6. — We look for H under the form H(z)= γ −1z(1+ H̊(z)).
Equation (8.238) can be written as a Fixed Point problem:

(L.581) H̊(z)=− �̊(γ −1z(1+ H̊(z))))

(1+ �̊(γ −1z(1+ H̊(z))))
.

By Cauchy’s estimates for z ∈ A(λs,L, ρq)

|∂�̊(z)| ≤ 1
dist(z, ∂A(λs,L, ρq))

L−2.

Hence if z ∈ A(2λs,L, (1/2)ρq) the map u �→ �̊(γ −1zu) is 4L−2-Lipschitz on {(3/4) ≤
|u| ≤ 4/3} and the map " defined by the R.H.S. of (L.581) is 4L−2 contracting on the
ball {‖H̊‖A(2λs,L,(1/2)ρq) ≤ 2L−2}. It admits thus a unique fixed point in this ball. �

Appendix M: Some other lemmas

Lemma M.1. — Let z ∈C
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1) One has

|eiz − 1| ≥ 1
2

min(1, min
l∈Z

|z− 2π l|).

2) If z ∈R,

|eiz − 1| ≥ 2
π

min
l∈Z

|z− 2π l|).

Proof. — 1) Let η := eiz − 1. We can assume |η|< 1/2. We can thus define iz0 :=
ln(1+ η)=∑

k∈N∗(−1)k−1ηk/k such that eiz0 = 1+ η = eiz. There thus exists l ∈ Z such
that z0 = z− 2π l. But |z0| = | ln(1+ η)| ≤ 2|η|.

2) Just use the fact that for |w| ≤ π , |2 sin(w/2)| ≥ (2/π)|w|. �

Lemma M.2. — Let f ∈Cω
h (T) be such that for some δ ∈]0, 1[, μ > 0

(M.582) ‖f ‖L2(T) ≤ δ‖f ‖C0(T) +μ.

Then, for some C > 0,

(M.583) ‖f ‖C0(T) ≤ δ−1μ+ C
h

e−h/(12δ2)‖f ‖h.

Proof. — If

(M.584) f (θ)=
∑

k∈Z

f̂ (k)eiikθ

is the Fourier expansion of f , one has for some C > 0 and any N ∈N∗

‖f ‖C0(T) ≤
∑

|k|≤N

|̂f (k)| + C
h

e−hN‖f ‖h(M.585)

≤ (2N+ 1)1/2‖f ‖L2(T) + C
h

e−hN‖f ‖h(M.586)

≤ (3N)1/2(δ‖f ‖C0(T) +μ)+ C
h

e−hN‖f ‖h.(M.587)

If we choose N= δ−2/12 we have (3N)1/2δ ≤ 1/2 and

(M.588) ‖f ‖C0(T) ≤ δ−1μ+ C
h

e−h/(12δ2)‖f ‖h.
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Appendix N: Stable and unstable Manifolds

N.1 The Stable Manifold Theorem. — Let (E,‖ ·‖) be a Banach space, M : E→ E an
invertible linear continuous map. Let κ, δ > 0. We say that M is (κ, δ)-hyperbolic if there
exist κ > 0 and continuous projectors Ps, Pu satisfying idE = Ps + Pu, PsPu = PuPs = 0,
PsMPu = PuMPs = 0 such that

{
max(‖PsMPs‖,‖(PuMPu)

−1‖)≤ e−κ

max(‖Ps‖,‖Pu‖)≤ δ−1.

The spaces E∗ := P∗E, ∗ = s, u, are then M-invariant and are the stable and unstable
spaces of the linear map M. We shall use the notations M∗ = P∗MP∗, ∗ = s, u.

Let B(0, ρ)⊂ E be the ball of center 0 and radius ρ > 0.

Theorem N.1 (Stable/Unstable Manifold Theorem). — Assume that M is (κ, δ)-hyperbolic

as above and let F : B(0, ρ)→ E be C1. Assume that

(N.589) ‖F(0)‖ ≤C−1δκρ, ‖DF‖C1(B(0,ρ)) ≤C−1δκ.

Then, if C is large enough (but universal)

(1) The map x �→Mx+F(x) has a unique hyperbolic fixed point x such that max(‖Psx‖,‖Pux‖)≤
(ρ/4) (in particular, it is located in B(0, ρ/2)).

(2) The local stable (resp. unstable) manifold

Ws
loc(x;M+ F) := {y ∈ B(x, ρ/4), ∀ n≥ 0, (M+ F)n(y) ∈ B(x, ρ/2)}

(resp. Wu
loc(x;M+F) := {y ∈ B(x, ρ/4), ∀ n≤ 0, (M+F)n(y) ∈ B(x, ρ/2)}) of the point

x for M+ F is of the form {xs + γs,F(xs), xs ∈ Es ∩ B(0, ρ/2)} (resp. {xu + γu,F(xu), xu ∈
Eu ∩ B(0, ρ/2)}) where γs,F : Es → Eu (resp. γu,F : Eu → Es) is a map of class C1 and

‖Dγs,F‖ ≤C‖DF‖B(0,ρ)(δκ)−1 (resp. ‖Dγu,F‖ ≤C‖DF‖B(0,ρ)(δκ)−1).

(3) If G satisfies also (N.589) then for ∗ = s, u, ‖Dγ∗,F−Dγ∗,G‖ ≤C‖D(F−G)‖B(0,ρ)(δκ)−1.

(4) If F(0)= 0, DF(0)= 0 then x= 0 and T0W∗
loc(0)= E∗, ∗ = s, u.

Notice that the Theorem gives the same size for the domains of definition of γs,F,
γu,F.

N.2 Proof of Lemma 15.4. — Using the definition of fHQ+ω̃(θ, r) = (ϕ, R) one can
see that fHQ+ω̃(θ, r)= (θ, r) if and only if

(N.590) ∇HQ(θ, r)+∇ω̃(r)= 0

or equivalently

0= ã(0)θ + ∂r̃b(0)r

0= ∂r̃ b(0)θ + (� + ∂2
r ã(0))r + ∂r̃a(0)+ ∂rω̃(r).
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Solving the first equation and inserting it into the second yields

θ =−∂r̃ b(0)

ã(0)
r(N.591)

r =− ∂r̃ a(0)+ ∂rω̃(r)

� + ∂2
r ã(0)− (∂r̃ b(0))2

ã(0)

.(N.592)

We observe that, cf. (15.422),

max(|∂2
r ã(0)|, |(∂̃br(0))2/̃a(0)|) � q2ν −1

q ρ−2
p/q e−qhεp/q < �/10

|∂r̃a(0)|� q2ρ−1
p/q e−qhεp/q, ∂rω̃(r)=O(r2)

and deduce by a simple fixed point theorem (in dimension 1) that (N.592) has a unique
real solution r0 � ∂r̃ a(0); returning to (N.591) and using (cf. (15.423), (15.422))

(N.593) ã(0)= q2νqe
−qhεp/q, |∂r̃ b(0)|� q2ρ−1

p/q e−qhεp/q

we conclude that (N.590) has also a unique solution (θ0, r0) ∈D(0, ρp/q)
2

|θ0|� ν −1
q q2ρ−2

p/qεp/qe
−qh, |r0|� q2ρ−1

p/qεp/qe
−qh

and in particular since ρ−8
p/q =max((cp/q/4)−8, q72) (cf. (15.405)), q2e−qh =O(q−100), εp/q ≤

c
a3
p/q (cf. (15.406)), νq � qρp/q (cf. (15.409)), a3 ≥ 10, one has

(N.594) (θ0, r0) ∈ (D(0, ρ5
p/q)×D(0, ρ5

p/q))∩R2.

We now compute DfHQ+ω̃(θ0, r0). Since ω̃ depends only on the r-variable one has, cf.

(4.95) of Lemma 4.6,

fHQ+ω̃ =�ω̃ ◦ fHQ

hence

DfHQ+ω̃(θ0, r0)=
(

1 ∂2
r ω̃(r0)

0 1

)

DfHQ .

A simple computation shows that the derivative of the symplectic map fHQ is equal to

DfHQ =
(

1+ ∂̃b(0)+ (�+∂2
r ã(0))̃a(0)

1+∂̃b(0)

�+∂2
r ã(0)

1+∂̃b(0)
ã(0)

1+∂̃b(0)

1
1+∂̃b(0)

)



ON THE DIVERGENCE OF BIRKHOFF NORMAL FORMS 179

hence

tr(DfHQ+ω̃)= 2+� ã(0)(1+O(q2ρ−2
p/qεp/qe

−qh))+O((∂r̃b(0))2)

+ ∂2ω̃(r0)̃a(0)

1+ ∂̃b(0)
.

The estimate (N.594) on r0, the fact that ∂2ω̃(r0)=O(r0) and (N.593) show that

tr(DfHQ+ω̃)= 2+� q2νqεp/qe
−qh(1+O(ρ5

p/q)).

Since DfHQ+ω̃(θ0, r0) ∈ SL(2,R) we deduce that it is a (κ, δ)-hyperbolic matrix
with

(N.595) δ = κ = q(�νqεp/qe
−qh)1/2(1+ o1/q(1))

(we used that νq = νq(1+ o1/q(1)), cf. (15.416)).
The statement on the eigendirections is then a simple computation. �
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