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Abstract

In most treatments of the regression problem it is assumed that the distribution of target
data can be described by a deterministic function of the inputs, together with additive
Gaussian noise having constant variance. The use of maximum likelihood to train such
models then corresponds to the minimization of a sum-of-squares error function. In many
applications a more realistic model would allow the noise variance itself to depend on the
input variables. However, the use of maximum likelihood for training such models would
give highly biased results. In this paper we show how a Bayesian treatment can allow for an
input-dependent variance while overcoming the bias of maximum likelihood.

1 Introduction

In regression problems it is important not only to predict the output variables but also to have
some estimate of the error bars associated with those predictions. An important contribution
to the error bars arises from the intrinsic noise on the data. In most conventional treatments of
regression, it is assumed that the noise can be modelled by a Gaussian distribution with a con-
stant variance. However, in many applications it will be more realistic to allow the noise variance
itself to depend on the input variables. A standard maximum likelihood approach would, how-
ever, lead to a systematic underestimate of the noise variance. Here we adopt an approximate
hierarchical Bayesian treatment (MacKay, 1995) to find the most probable interpolant and most
probable input-dependent noise variance. We compare our results with maximum likelihood and
show how this approximate Bayesian treatment leads to a significantly reduced bias.

In order to gain some insight into the limitations of the maximum likelihood approach, and
to see how these limitations can be overcome in a Bayesian treatment, it is useful to consider
first a much simpler problem involving a single random variable (Bishop, 1995). Suppose that
a variable z is known to have a Gaussian distribution, but with unknown mean and variance.
Given a sample D ≡ {zn} drawn from that distribution, where n = 1, . . . , N , our goal is to infer
values for the mean µ and variance σ2. The likelihood function is given by

p(D|µ, σ2) =
1

(2πσ2)N/2
exp

{
−

1

2σ2

N∑

n=1

(zn − µ)2
}
. (1)
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A non-Bayesian approach to finding the mean and variance is to maximize the likelihood jointly
over µ and σ2, corresponding to the intuitive idea of finding the parameter values which are
most likely to have given rise to the observed data set. This yields the standard result

µ̂ =
1

N

N∑

n=1

zn, σ̂2 =
1

N

N∑

n=1

(zn − µ̂)2. (2)

It is well known that the estimate σ̂2 for the variance given in (2) is biased since the expectation
of this estimate is not equal to the true value

E [σ̂2] =
N − 1

N
σ2

0 (3)

where σ2
0 is the true variance of the distribution which generated the data, and E [·] denotes

an average over data sets of size N . For large N this effect is small. However, in the case of
regression problems there are generally much larger number of degrees of freedom in relation to
the number of available data points, in which case the effect of this bias can be very substantial.

By adopting a Bayesian viewpoint this bias can be removed. The marginal likelihood of σ2

should be computed by integrating over the mean µ. Assuming a ‘flat’ prior p(µ) we obtain

p(D|σ2) =

∫
p(D|σ2, µ)p(µ) dµ (4)

∝
1

σN−1
exp

{
−

1

2σ2

N∑

n=1

(zn − µ̂)2
}
. (5)

Maximizing (5) with respect to σ2 then gives

σ̃2 =
1

N − 1

N∑

n=1

(zn − µ̂)2 (6)

which is unbiased.
This result is illustrated in Figure 1 which shows contours of p(D|µ, σ2) together with the

marginal likelihood p(D|σ2) and the conditional likelihood p(D|µ̂, σ2) evaluated at µ = µ̂.
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Figure 1: The left hand plot shows contours of the likelihood function p(D|µ, σ2) given by (1) for 4
data points drawn from a Gaussian distribution having zero mean and unit variance. The right hand plot
shows the marginal likelihood function p(D|σ2) (dashed curve) and the conditional likelihood function
p(D|µ̂, σ2) (solid curve). It can be seen that the skewed contours result in a value of σ̂2 which is smaller
than σ̃2.
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2 Bayesian Regression

Consider a regression problem involving the prediction of a noisy variable t given the value of
a vector x of input variables1. Our goal is to predict both a regression function and an input-
dependent noise variance. We shall therefore consider two networks. The first network takes
the input vector x and generates an output y(x;w) which represents the regression function,
and is governed by a vector of weight parameters w. The second network also takes the input
vector x, and generates an output function β(x;u) representing the inverse variance of the noise
distribution, and is governed by a vector of weight parameters u. The conditional distribution
of target data, given the input vector, is then modelled by a normal distribution p(t|x,w,u) =
N (t|y, β−1). From this we obtain the likelihood function

p(D|w,u) =
1

ZD
exp

{
−

N∑

n=1

βnEn

}
(7)

where βn = β(xn;u),

ZD =
N∏

n=1

(
2π

βn

)1/2

, En =
1

2
(y(xn;w) − tn)2 (8)

and D ≡ {xn, tn} is the data set.
Some simplification of the subsequent analysis is obtained by taking the regression function,

and lnβ, to be given by linear combinations of fixed basis functions, as in MacKay (1995), so
that

y(x;w) = wTφ(x), β(x;u) = exp
(
uTψ(x)

)
(9)

and we assume that one basis function in each network is a constant φ0 = ψ0 = 1 so that w0

and u0 correspond to bias parameters.
The maximum likelihood procedure chooses values ŵ and û by finding a joint maximum

over w and u. As we have already indicated, this will give a biased result since the regression
function inevitably fits part of the noise on the data, leading to an over-estimate of β(x). In
extreme cases, where the regression curve passes exactly through a data point, the corresponding
estimate of β can go to infinity, corresponding to an estimated noise variance of zero.

The solution to this problem has already been indicated in Section 1 and was first suggested
in this context by MacKay (1991, Chapter 6). In order to obtain an unbiased estimate of β(x)
we must find the marginal distribution of β, or equivalently of u, in which we have integrated
out the dependence on w. This leads to a hierarchical Bayesian analysis.

We begin by defining priors over the parameters w and u. Here we consider spherically-
symmetric Gaussian priors of the form

p(w|αw) =

(
αw

2π

)1/2

exp

{
−
αw

2
‖w‖2

}
(10)

p(u|αu) =

(
αu

2π

)1/2

exp

{
−
αu

2
‖u‖2

}
(11)

where αw and αu are hyperparameters. At the first stage of the hierarchy, we assume that u is
fixed to its most probable value uMP, which will be determined shortly. The value of wMP is
then found by maximizing the posterior distribution2

p(w|D,uMP, αw) =
p(D|w,uMP)p(w|αw)

p(D|uMP, αw)
(12)

1For simplicity we consider a single output variable. The extension of this work to multiple outputs is straight-

forward.
2Note that the result will be dependent on the choice of parametrization since the maximum of a distribution

is not invariant under a change of variable.
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where the denominator in (12) is given by

p(D|uMP, αw) =

∫
p(D|w,uMP)p(w|αw) dw. (13)

Taking the negative log of (12), and dropping constant terms, we see that wMP is obtained by
minimizing

S(w) =
N∑

n=1

βnEn +
αw

2
‖w‖2 (14)

where we have used (7) and (10). For the particular choice of model (9) this minimization
represents a linear problem which is easily solved (for a given u) by standard matrix techniques.

At the next level of the hierarchy, we find uMP by maximizing the marginal posterior distri-
bution

p(u|D,αu, αw) =
p(D|u, αw)p(u|αu)

p(D|αw, αu)
. (15)

The term p(D|u, αw) is just the denominator from (12) and is found by integrating over w

as in (13). For the model (9) and prior (10) this integral is Gaussian and can be performed
analytically without approximation. Again taking logarithms and discarding constants, we have
to minimize

M(u) =
N∑

n=1

βnEn +
αu

2
‖u‖2 −

1

2

N∑

n=1

lnβn +
1

2
ln |A| (16)

where |A| denotes the determinant of the Hessian matrix A given by

A =
N∑

n=1

βnφ(xn)φ(xn)T + αwI (17)

and I is the unit matrix. The function M(u) in (16) can be minimized using standard non-linear
optimization algorithms. We use scaled conjugate gradients, in which the necessary derivatives
of ln |A| are easily found in terms of the eigenvalues of A.

In summary, the algorithm requires an outer loop in which the most probable value uMP is
found by non-linear minimization of (16), using the scaled conjugate gradient algorithm. Each
time the optimization code requires a value for M(u) or its gradient, for a new value of u,
the optimum value for wMP must be found by minimizing (14). In effect, w is evolving on a
fast time-scale, and u on a slow time-scale. The corresponding maximum (penalized) likelihood
approach consists of a joint non-linear optimization over u and w of the posterior distribution
p(w,u|D) obtained from (7), (10) and (11). Finally, the hyperparameters are given fixed values
αw = αu = 0.1 as this allows the maximum likelihood and Bayesian approaches to be treated
on an equal footing.

3 Results and Discussion

As an illustration of this algorithm, we consider a toy problem involving one input and one
output, with a noise variance which has an x2 dependence on the input variable. Since the
estimated quantities are noisy, due to the finite data set, we consider an averaging procedure as
follows. We generate 100 independent data sets each consisting of 10 data points. The model is
trained on each of the data sets in turn and then tested on the remaining 99 data sets. Both the
y(x;w) and β(x;u) networks have 4 Gaussian basis functions (plus a bias) with width parame-
ters chosen to equal the spacing of the centres. Results are shown in Figure 2. It is clear that
the maximum likelihood results are biased and that the noise variance is systematically under-
estimated. By contrast, the Bayesian results show an improved estimate of the noise variance.
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Figure 2: The left hand plots show the sinusoidal function (dashed curve) from which the data were
generated, together with the regression function averaged over 100 training sets. The right hand plots
show the true noise variance (dashed curve) together with the estimated noise variance, again averaged
over 100 data sets.

This is borne out by evaluating the log likelihood for the test data under the corresponding
predictive distributions. The Bayesian approach gives a log likelihood per data point, averaged
over the 100 runs, of −1.38. Due to the over-fitting problem, maximum likelihood occasionally
gives extremely large negative values for the log likelihood (when β has been estimated to be
very large). Even omitting these extreme values, the maximum likelihood still gives an average
log likelihood per data point of −17.1 which is substantially smaller than the Bayesian result.

Recently, MacKay (1995) has proposed a different approach to treating this model, in
which the numerical optimization to find the most-probable parameters is replaced with a fully
Bayesian treatment involving Gibbs sampling from the posterior distribution. It will be inter-
esting to compare these two approaches.
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