
Nonlinear Revision Control for Images

Hsiang-Ting Chen
National Tsing Hua University

Li-Yi Wei
Microsoft Research

Chun-Fa Chang
National Taiwan Normal University

Abstract

Revision control is a vital component of digital project management
and has been widely deployed for text files. Binary files, on the
other hand, have received relatively less attention. This can be in-
convenient for graphics applications that use a significant amount of
binary data, such as images, videos, meshes, and animations. Exist-
ing strategies such as storing whole files for individual revisions or
simple binary deltas could consume significant storage and obscure
vital semantic information. We present a nonlinear revision con-
trol system for images, designed with the common digital editing
and sketching workflows in mind. We use DAG (directed acyclic
graph) as the core structure, with DAG nodes representing editing
operations and DAG edges the corresponding spatial, temporal and
semantic relationships. We visualize our DAG in RevG (revision
graph), which provides not only as a meaningful display of the re-
vision history but also an intuitive interface for common revision
control operations such as review, replay, diff, addition, branch-
ing, merging, and conflict resolving. Beyond revision control, our
system also facilitates artistic creation processes in common image
editing and digital painting workflows. We have built a prototype
system upon GIMP, an open source image editor, and demonstrate
its effectiveness through formative user study and comparisons with
alternative revision control systems.

CR Categories: I.3.4 [Computer Graphics]: Graphics Utilities—
Graphics editors;

Keywords: revision control, images, nonlinear editing, interaction

Links: DL PDF

1 Introduction

Revision control is an important component of digital content man-
agement [Estublier et al. 2005]. Popular revision control systems
include CVS, Subversion, and Perforce, to name just a few. By
storing file editing histories, revision control systems allow us to
revert mistakes and review changes. Revision control systems also
facilitate open-ended content creation [Shneiderman 2007] through
mechanisms such as branching and merging.

So far, the development and deployment of revision control systems
have been focused more on text than binary files. This is under-
standable, as text files tend to be more frequently used and revised,
and it is easier to develop revision control mechanisms for them.
(Simple line differencing already provides enough information for
text files.) However, in many graphics projects, binary files, such
as images, videos, meshes, and animations, can be frequently used
and revised as well. Here the lack of revision control for binary
files could cause several issues. Most existing general purpose re-

(a) source (b) rev 0 1 (c) rev 0 2

source copy

translate

translate

rev_0_1

hue

balance

rev_0_2

(d) RevG

source copy
paste

translate

deform
anchor

paste translate

deform
anchor

hue

balance

(e) DAG

Figure 1: Nonlinear revision control example. From the input image (a),
we cloned the car twice with translation and perspective deformation (b)
followed by modifying their colors (c). Our revision control system recorded
and analyzed the actions into the DAG data structure as shown in (e). The
DAG is our core representation for revision control but not directly visible to
ordinary users due to potential complexity. Instead, we visualize the DAG
through a graphical revision graph (RevG, shown in (d)) in our external
UI. Users can interact with RevG and perform revision control functions.
Node border colors denote the action types (Table 1) and paths delineate
the action dependencies. In particular, parallel paths indicate operations
that are semantically (e.g. translation and deformation) or spatially (e.g.
coloring two individual cars) independent.

vision systems employ a state-based model that stores the different
revisions as individual files without any diff/delta information, thus
bloating storage space and making it hard to deduce the changes be-
tween revisions. Even when deltas [Hunt et al. 1998] (or other low-
level information like pixel-wise diff) are used, they usually lack
sufficient high-level semantic information for reviewing, branch-
ing, merging, or visualization.

Such high level information can usually be recorded from live user
actions with the relevant image editing software. The visualization
and interaction design of such user action histories has long been
a popular topic [Kurlander 1993; Klemmer et al. 2002; Heer et al.
2008; Su et al. 2009a; Grossman et al. 2010]. Nevertheless, the
lack of a formal representation that depicts the comprehensive rela-
tionship (not only temporal but also spatial and semantic) between

http://doi.acm.org/10.1145/1964921.1965000
http://portal.acm.org/ft_gateway.cfm?id=1965000&type=pdf


image editing actions makes these approaches both inefficient and
insufficient for revision control.

In this paper, we propose a nonlinear revision control system for im-
ages, designed with the common content creation workflows such
as digital editing and sketching in mind. We maintain high-level
and fine-granularity revision history by recording and consolidating
user editing operations. The core idea of our system is a DAG (di-
rected acyclic graph) data structure representing the nonlinear spa-
tial, temporal, and semantic dependencies between these recorded
image editing operations stored as DAG nodes. Such detailed in-
formation provides the necessary high level semantics for proper
revision control compared to previous works where only low-level
bitmap information is used. Built upon the DAG data structure, we
provide the primary revision control commands including review,
diff, addition, branch, merge, and conflict resolving. We present all
these functionalities through a friendly user interface centered upon
RevG (revision graph), a multi-resolution graphical revision history
representation of the underlying DAG. In addition to core revision
control, our system also facilitates open-ended content creation pro-
cesses with non-linear editing and exploration [Kurlander 1993; Su
et al. 2009a; Terry et al. 2004].

Based on our core DAG representation, we devise several algorithm
innovations for both internal system implementation and external
user interface design. We begin with on-the-fly action recording
and DAG construction during user editing. With the recorded re-
vision history, we are able to construct the DAG and filter it into
a visually intuitive multi-resolution RevG representation. We de-
vise mechanisms for automatic resolving and merging multiple re-
visions with potential conflicts, as well as a user interface that al-
lows manual change and intervention of the automatically merged
results. We also provide an image diff tool that can be particularly
handy for visualization as prior schemes are primarily based on low
level pixel information.

We have built a prototype system via GIMP, an open source im-
age editor, through multiple iterations of user feedbacks during our
design stages. We also demonstrate the effectiveness of our sys-
tem through further user studies and comparisons with alternative
revision control systems.

In summary, our paper has the following contributions:

• The idea of a nonlinear revision control system for images.

• The core DAG structure representing the revision history,
upon which we build RevG, the multi-resolution revision
graph, and various algorithm components for revision control.

• A prototype system built with GIMP for practical nonlinear
revision control and an intuitive UI centered on RevG for
common revision operations including addition, branching,
merging, conflict resolving, diff, and non-linear replay.

• Additional applications of our system such as facilitating
open-ended content creation and exploration.

2 Previous Work

Digital content management Digital content management
refers to the general process of authoring, editing, collecting, pub-
lishing, and distributing digital content, for both text and binary
data [Jacobsen et al. 2005]. Among the various components of dig-
ital content management, revision control remains one of the most
important; see [Estublier et al. 2005] for a detailed survey.

Existing revision control mechanisms focus mainly on text rather
than binary files as it is easier to deduce the changes via either
low level (e.g. line diff [Hunt et al. 1998]) or high level (e.g. pro-
gramming language syntax [Jackson and Ladd 1994]) information.
However, for binary files, the prevailing methods store either the

complete files for individual revisions or their crude binary differ-
ences [Hunt et al. 1998]. Both of these methods can consume sig-
nificant storage, and more importantly lack relevant high level se-
mantic information. These issues could hamper the adoption of re-
vision control systems in managing graphics assets. Judging by the
success of graphics content management systems (e.g. Alienbrain),
such demands obviously exist, but to our knowledge no suitable
revision control mechanism exists for binary graphics assets. The
goal of our system is to fill this gap, allowing easy revision control
for images, the most commonly used graphics data type.

Graphical history There exists a rich literature on graphical his-
tory visualization and interaction. A comprehensive survey can be
found in [Heer et al. 2008]. Here we focus mainly on works that
employ different kinds of temporal history models, as they are most
relevant to revision control.

Prior graphical history methods can be classified into two major
categories: linear [Kurlander 1993; Myers et al. 1997; Kurihara
et al. 2005; Nakamura and Igarashi 2008] and nonlinear [Edwards
and Mynatt 1997; Edwards et al. 2000; Klemmer et al. 2002; Su
et al. 2009a] models. The linear history model, while sufficient
for many visualization and interactive tasks, usually do not provide
enough information for image revision control where predominant
operations are nonlinear, including branching, editing, and replay.
Such parallel information is representable via a nonlinear history
model. But to our knowledge, none of the existing methods provide
sufficient information for the comprehensive relationships between
editing operations (not only temporal but also spatial and semantic
dependency).

For example, in [Edwards and Mynatt 1997] the timeline is repre-
sented as a tree with nodes as states and edges as actions. Such
a state-based model is not suitable for revision control due to po-
tentially large storage size [Heer et al. 2008] and the loss of de-
pendency information between operations. Edwards et al. [2000]
deployed a multi-level history model in which many local linear
histories are embedded within a global linear history. This allows
only a single global timeline and thus cannot handle parallel revi-
sions. Klemmer et al. [2002] also employed a state-based method
and thus shared similar problems. An interesting feature of [Klem-
mer et al. 2002] is the representation of a non-linear history tree in
a linear comic-strip fashion by shrinking the branches into a sin-
gle node. However, this may be confusing as reported in the user
study. Su et al. [2009a] proposed an inspiring methodology for rep-
resenting revision history as an in-place graphic instead of abstract
timelines. However, we could not identify a coherent data structure
for practical revision control in their work.

Highly relevant to our work, Chronicle [Grossman et al. 2010]
records user workflow histories and allows their local playbacks
through videos. With a smart design of various filters and probes,
users can review their works effectively. However, this system is
not about revision control and cannot handle non-linear histories.

Graph structure for computational tasks Many computational
tasks utilize a certain graph structure for modeling, e.g. visualiza-
tion flows [Levoy 1994; Bavoil et al. 2005]. Our method is simi-
lar to these examples of prior art in that we also use DAG, a kind
of graph structure, for workflow management. However, our sys-
tem aims at automatic construction of DAG from user interactions
whereas in these visualization systems the users are expected to di-
rectly construct the flow pipeline. In a sense, our goal for automatic
construction is similar to the work on shading models [Cook 1984;
Abram and Whitted 1990] even though we focus on a different do-
main of revision control for image editing. Graph structures have
also been applied to solid modeling [Convard and Bourdot 2004],
where the history graph allows the modification of editing param-



Figure 2: Revision control user interface. Users can perform revision
control functions via the right-click menu within the revision control window
(right), which also visualizes the revision history through RevG. When a
RevG node is selected, its corresponding spatial context will be highlighted
via a bounding box in the main GIMP window (left).

eters, such as the length of certain object components. However,
the proposed technique is more for replaying graphical history than
full-fledged revision control.

Highly related to our work, Generic Graphical Library (GEGL),
the future core of GIMP, also used a DAG representation. Al-
though GEGL shares a similar graph representation like ours, it is
mainly designed as the internal infrastructure for non-destructive
image editing on GIMP. Nodes in the DAG can be image editing
operations or low-level data structure like image buffers, thus the
generated DAG is typically not comprehensible to the users. Com-
pared to our DAG representation, GEGL also does not consider the
semantic relationship between operations.

3 Core Ideas

Here, we describe our two core data structures, DAG and RevG.
Based on these we then describe our external user interface in Sec-
tion 4 and internal system implementation in Section 5.

DAG This is our core data structure representing action-based re-
vision history. A DAG is composed of nodes and directed edges.
DAG nodes represent image editing operations with relevant in-
formation including types, parameters and applied regions. DAG
edges represent the relationships between the operations. A (di-
rected) sequential path between two nodes implies a spatial and/or
semantic dependency and the path direction implies their temporal
order. In contrast, multiple parallel paths between two nodes imply
independent operation sequences, e.g. those that apply on disjoint
regions or incur orthogonal semantics. The DAG faithfully records
the user editing operations and gradually grows as more revisions
are committed. Each revision in our system is a sub-graph of the
DAG containing the root node which represents the act of initial-
ization, i.e. opening an empty canvas or loading an existing image.
The state of the revision is always equivalent to the result generated
by traversing its corresponding sub-graph. Note that when dealing
with image data, many modern state-based revision control systems
(e.g. GIT, SVN and CVS) store separate images as revisions. While
in our system, the DAG encodes only actions, not whole images.

RevG Due to the potentially high complexity and large size of
DAG, we do not directly expose it to ordinary users. Instead, we
visualize it via a state-based revision graph, which we call RevG.
Each RevG is essentially a multi-resolution graph visualization of
the underlying DAG which is the highest resolution of the revision
history. Specifically, each RevG node is the aggregation of one
or more DAG nodes and RevG edges are the corresponding DAG

rigid transformation translation, rotation
deformation scale, shear, perspective
color and filter hue, saturation, color balance, birhgtness,

contrast, gamma, color fill, blur, sharpen
edit copy, paste, anchor, add layer, layer mask
brush brush, pencil, eraser

Table 1: Supported operations and their classes. Classes in the first three
rows are semantic independent. Each font color above indicates border
color of a RevG node with the corresponding operation class.

edges after graph simplification. However, unlike the DAG, which
is an abstract representation, we visualize each RevG node with a
thumbnail according to the underlying DAG actions.

Our RevG presents both revision branching and operation depen-
dency in a unified representation. In particular, even for a linear
revision history, the RevG can still exhibit non-linear parallel struc-
tures due to spatial or semantic independencies between operations,
such as the editing example in Figure 1. Through RevG, users can
easily navigate at different resolutions as well as perform all revi-
sion control functions such as addition, diff, branching, merging,
and conflict resolving (Figure 2).

4 User Interface

Our UI is a single window displaying the RevG within which revi-
sion control commands are issued (Figure 2). Below we describe
the main usage scenarios of our system.

4.1 Revision Navigation

To accommodate potentially complex revision history, RevG pro-
vides a multi-resolution view. Users can continuously navigate be-
tween different levels of detail, from the coarse revision resolution
(Figure 3a) to fine action resolution (Figure 3b), as well as use our
constrained navigation mechanism to focus on specific subsets of
actions (please refer to the supplementary video). Similar to prior
thumbnail-based revision graph designs [Kurlander 1993; Klemmer
et al. 2002], we directly embed the thumbnail image within each
RevG node. We also designate each node with a descriptive text la-
bel and border color signaling its type (Table 1). To further facilitate
interaction, we also provide a bi-directional selection mechanism
between the main GIMP window and the RevG . By clicking on a
RevG node, the bounding rectangle of the corresponding modified
regions will be highlighted (Figure 2). Conversely, by selecting an
image region, the corresponding RevG nodes will be highlighted.

4.2 Revision Diff

To extract differences between text files, a common approach is the
classic line-based diff [Hunt et al. 1998]. However, there is no such
well-defined difference tool for images. Among all general image
comparison visualization approaches, popular ones include side-
by-side comparison (e.g. Adobe Bridge, Perforce), layer-based dif-
ference (e.g. PixelNovel), per-pixel difference, image overlay (e.g.
Wet Paint [Bonanni et al. 2009]), and flickering difference regions
(e.g. the compare utility of ImageMagick). These approaches are
designed to handle only low level bitmap differences with little in-
formation about the editing semantics. In contrast, our system has
all the relevant high level information recorded in the DAG for in-
formative diff.

We have designed two revision diff visual mechanisms. The first
one is the RevG itself (Figure 3), which users can directly interact
with to obtain visual clues about the involved editing operations.
The second is a standalone diff UI that can be triggered by select-
ing two RevG nodes (Figure 4). The diff UI provides a side-by-side
parallel comparison between revisions as well as sequential replay



source rev_0_1 rev_0_2

(a) coarser resolution
source rev_0_1 brush brush brush brush brush rev_0_2

(b) finer resolution

Figure 3: Multi resolution RevG. Our system automatically displays the RevG in proper resolution depending on the viewing conditions and user preferences.

Figure 4: Diff UI. The preview window (left) shows the editing process
between two revisions (middle & right) . Users can manually drag the slider
for a particular state or click on the play button for automatic playback. The
refresh button would flicker between the two revisions for quick comparison.
Users can also turn on the bounding box of difference regions (e.g. the cat
reflection). Please refer to the supplementary video for detailed actions.

of the in-between actions. The replay speed depends on the under-
lying RevG resolution. Specifically, when the diff UI is invoked
from RevG, we extract 15 steps (or all if the total number is under
15) according to their visual importance to avoid potentially lengthy
animation. We also provide a refresh button to flicker between two
revisions for in-place comparison as well as a checkbox to highlight
the bounding box of difference regions. Note that our system can
provide meaningful information to users by ignoring global edits
(e.g. gamma correction in Figure 4) and emphasize only local mod-
ifications, a task which is difficult to achieve with only low-level
bitmap information.

4.3 Add Revision

Adding revisions (a.k.a “checking-in”) is one of the most frequently
used revision control commands. In our system, to save the cur-
rent work progress as a new revision, users can simply issue the
command within the revision control window (Figure 2). Although
users can check-in revisions whenever they like, it is generally un-
necessary for them to do so in an action-wise fine-grained fashion,
since our system can record all the actions and flexibly visualize
them with RevG (Section 4.1). As a general guideline, we encour-
age users to check-in when one of the following two conditions is
met: 1) some milestone of the work is achieved, or 2) when users
would like to try out different variations. In the latter case, the com-
mitted revision can be used as a branch point for future reference or
revision rollback, as detailed below.

4.4 Revision Branch and Merge

Branch In the process of software development, many program-
mers, especially those who work alone or with few other people,
might not use the branch command that often. Nevertheless, in the
context of open-ended creative content production (e.g. image edit-
ing and digital sketching), branching becomes essential even in the
usage scenario of a single user. As described in [Terry and My-
natt 2002a; Hartmann et al. 2008], it is common for artists to per-
form trial-and-error experiments to reach the best outcomes. The
rich history keeping of such trial-and-error process and the ability
to keep multiple versions (branches) of the design could signifi-

(a) merge UI

(b) trunk only (c) branch after trunk (d) branch only

Figure 5: UI for revision merging. (a) shows the merge UI. Images at
left and right are revisions to be merged while the center is the preview of
the merge result. (b) is the automatic merge result. Non-conflict edits (gift
and snowman) are automatically merged while for conflict ones (ornamen-
tal strips and balls) the trunk version is chosen by default. Our system also
allows users to change the default behavior, including branch-after-trunk
(c) by clicking the blue circled button once, branch-only (d) by clicking the
blue circled button twice, and trunk-after-branch.

cantly support designers to achieve their creative goals [Shneider-
man 2007]. Similar to the “add revision” command, branches can
be easily created within the revision control window (Figure 2).

Merge Merge can be performed between two revisions, either (1)
both checked-in (trunk and branch) or (2) one trunk and one lo-
cal (not yet checked in) copy. Our system first performs an au-
tomatic merge between non-conflicting edits (via our graph merge
algorithm described in Section 5.4). We also provide a merge UI for
manual resolving conflicts as well as for allowing users to change
the default merge results. Since our UI and system implementations
are very similar for scenarios (1) and (2), for clarity of presentation
we will focus on scenario (1) in subsequent descriptions.

The automatic merge can already provide satisfactory results un-
der usual circumstances and requires no further manual intervention
from the user. As shown in Figure 5b, the non-conflict contents are
automatically merged while, for conflicted ones, the content from
the trunk is chosen by default. When automatic merged results are
not satisfactory, or there are conflicted scenarios that cannot be au-
tomatically resolved, users can invoke our merge UI (Figure 5a).
The merge UI contains two revision images and the preview re-
sult. The user can interactively drag, zoom, and select the region
of interest (the red rectangle in the figure). User interactions are
synchronized among all three images for easy comparison.

Once a region is selected, there are four possible merge combina-
tions: trunk only, branch only, trunk after branch, or branch
after trunk. All these can be achieved via simple button clicks.



(a) trunk only (coloring) (b) branch only (cloning)

(c) trunk after branch (d) branch after trunk

(e) source

Figure 6: Another merge example.
(e) is the source image, and (a) to (d)
show different combinations of trunk
and branch results.

Take Figure 5 for example. If we would like to put the ornamental
balls (branch) over the strips (trunk), we could simply select the tree
(red rectangle) then single click on the right button (marked with a
blue circle) and the result is shown in Figure 5c. Or, if we want
to completely replace the strip with the ornamental balls (branch
only), it can be done by clicking on the button twice (Figure 5d).
Figure 6 is another interesting example that clearly demonstrates
the effects created via the four combination modes.

5 System Implementation

For practical usage and evaluation, we have fully integrated our re-
vision control system with GIMP. Referencing the architecture of
open source visualization systems, including Prefuse [Heer et al.
2005] and the Kitware visualization toolkit, we have built a flexi-
ble revision control framework by orthogonalizing the main mod-
ules: GIMP core, UI/renderer frontend, and revision control back-
end (Figure 7). This design provides flexibility for easy integration
with different systems.

More specifically, we have modified the GIMP core and added two
main components: logger for recording user actions and replayer
for replaying actions. The revision control core communicates with
GIMP via its official gimplibrary interface. Recorded logs and other
revision control information are stored in the repository. The logs
are analyzed and transformed into DAG, which are further simpli-
fied through various filters into RevG. Finally, RevG is rendered
in the frontend renderer based on GTK+.

5.1 Logger and Replayer

The logger silently records user editing actions in the background
in the form of text logs and these can be replayed in the GIMP via
the replayer. Consecutive identical logs are consolidated similar to
[Grabler et al. 2009]. At its latest version 2.8, GIMP has not yet
provided any API for command logging. Consequently, to obtain
a fine-grained command log, we have to manually hard-wire com-
mands to the logger. On the other hand, operation replay can be
easily achieved through the procedure database (PDB) architecture
in GIMP, where most image editing functions are registered and can

Revision Control Backend

FiltersDAG 
Construction

Repository DAG RevG

Editing Software
 (GIMP)

Logger Replayer

UI Frontend

Renderer (GTK)

Figure 7: Major components of our system. With clean separation be-
tween GIMP, core revision control backend, and frontend renderer, our sys-
tem can be easily integrated with other image editing software or operating
systems.

be invoked via libgimp. Nevertheless, with the rapid evolution of
GIMP, not all new functions have been added into the PDB prop-
erly. For example, functions related to brushes are out-dated and
require manual registration. Hopefully, operation recording and re-
playing would be easier after GIMP developers implement the long
desired feature of macro recording.

Log An action log consists of its action name, action parameters,
layer ID and a selection mask. For brush and sketching actions,
their mouse/stylus motions and pressures are also stored. In our
prototype, logs are stored in an ascii format.

5.2 Repository and DAG

When a new revision is committed, the corresponding action logs
are transferred from GIMP into the repository and constructed into
DAG. For orthogonal implementation, we store the logs in a linear
data structure with DAG nodes containing pointers to the corre-
sponding logs.

Operation dependency Our DAG records two kinds of depen-
dencies: spatial and semantic. Spatial dependency considers the
spatial relationships between operations; they are spatially indepen-
dent if their regions of operations do not overlap. As for semantic
dependency, we categorize operations into five different classes as
shown in Table 1 in which the first three rows are semantically in-
dependent (see also [Su et al. 2009a]). Semantically independent
operations applied on the same object or region are put into parallel
paths (Figure 1).

DAG construction We build the DAG by sequentially inserting
each action into the graph with one DAG node corresponding to
one action. When inserting a node, the insertion algorithm would
search for dependent nodes already in the DAG. If some dependent
nodes are connected (i.e. there are paths between them), the latest
one among them is picked. The procedure can be done efficiently
by a post-order DFS and is detailed in Algorithm 1.

5.3 Filters

Our system creates RevG from DAG interactive by applying a list of
“filters”, including a viewport filter for culling RevG nodes/edges
outside the current viewport, a layout filter for determining the
position, path, shape and color of RevG nodes (via the classical
hierarchical layout algorithm [Gansner et al. 1993]), and a visual
importance filter as detailed in the following paragraph. Note that
we provide a generic filter interface so that users with sufficient
programming skills can create customized filters.



Algorithm 1 Node Insertion

// c : node to be inserted into DAG
// P : parents of c, initialized as empty
// L : nodes in DAG in the order of post-odering DFS
while L 6= Ø do

v = pop front(L)
if v and c are dependent then

P = P ∪ v
remove parents of v from L

end if
end while
insert directed edges from nodes in P to c.

Visual importance filter The purpose of the visual importance
filter is to dynamically simplify a DAG into a RevG for proper dis-
play. The visual importance filter has two stages. First, it assigns
a visual importance value to each DAG node. Second, it filters the
DAG into RevG according to the threshold assigned to the current
RevG window resolution.

The visual importance value v of a DAG node n, which contains
one action act(n), is determined by two major factors: image con-
tent difference I(n,m) and action context A(n,m). It can be ex-
pressed as follows:

v(n) =
1

w

∑
m∈N(n)

I(n,m)A(n,m) (1)

where m is a neighboring node of n in DAG within distance w, for
which we set to be 2 in our current implementation.

Here, I(n,m) is simply the low-level per-pixel difference between
the images after applying act(n) and act(m). On the other hand,
A(n,m) takes advantage of the high-level information recorded in
the DAG. It assigns higher visual importance to actions with differ-
ent types or parameters among its neighbors while penalizing those
with similar or identical actions, such as repetitive strokes com-
monly seen in digital sketching. More specifically, if act(n) and
act(m) are of different types or parameters, then A(n,m) = 10d,
where d is the distance between n and m in the DAG; otherwise,
A(n,m) = 1. A(n,m) is actually a very flexible term and can be
fine-tuned to fit user requirements. For example, we give the op-
eration “add layer” a higher value (100 in our implementation), as
our user study indicated that it is very useful to see the operations
history on a layer basis (please see Section 7 for more detail).

For I(n,m), it is possible to deploy more sophisticated metrics
that consider visual attention and perceptual image analysis such
as [Itti et al. 1998; Yee et al. 2001]. However, they are generally
computationally expensive and restricted to certain scenarios. The
advantage of our system is that, in addition to the low-level bitmap
information, we also have the high-level information about the edit-
ing operations. By combining the low-level I(n,m) with the high-
level A(n,m), our system already provides satisfactory results.

After assigning visual importance values to all nodes, we traverse
the DAG in the DFS order and accumulate the visual importance
values. Once the accumulated value is higher than the threshold
value of current resolution, the corresponding nodes in the DAG
are clustered into a single RevG node. After the node clustering,
we add back the graph edges. The procedure is similar to classi-
cal multi-resolution mesh simplification [Hoppe 1996] and graph
visualization [Fairchild et al. 1999; Heer and Card 2004].

5.4 Revision Control Commands

Revision diff In our system, the problem of extracting differences
between two revisions can be posed as a graph difference problem
of the underlying DAGs. For graph difference, computing one-to-
one correspondence between the nodes from scratch is equivalent

to isomorphism, a NP-complete problem [Cook 1971]. Fortunately,
in our case, we can extract common nodes between two DAGs by
matching their labels (as recorded from the original action logs).
The rest would be the difference nodes, from which we could im-
plement various diff visualization mechanisms as described in Sec-
tion 4.2. Note that when two revisions lie on different branches,
it is possible to have DAG nodes with different labels that actually
represent identical editing operations. Here we simply treat opera-
tions with different labels as real differences and have found such
approximation satisfactory for diff visualization.

Algorithm 2 Automatic Merge

// Gi, Gj , DAG of trunk and branch revision, Gm, DAG after merge
// L : nodes in Gj in the order of BFS
// CL : conflict list
Gm ← Gi

while L 6= Ø do
v = pop front(L)
if v conflicts with nodes in Gm then

remove children of v from L
push v and its children into CL

else
insert v into Gm with Algorithm 1

end if
end while

Revision merge Similar to revision diff, revision merge also
works on the DAG level. The automatic merge algorithm searches
for conflicts between two graphs, merges the non-conflict nodes
together and outputs a conflict list, which users could manually re-
solve via our merge UI. As described in Section 4.4, by default we
use the trunk only option for conflict resolution. The pseudo-code
of the merge algorithm is provided in Algorithm 2. Our merge UI
also provides users with the flexibility to merge arbitrary regions
(Figure 5). This is achieved by applying Algorithm 2 to DAG nodes
whose actions correspond to the selected image regions.

6 Examples

In this section, we demonstrate several usage examples of our sys-
tem, for both image editing and digital sketching applications. In
addition to basic revision control, we also demonstrate potential us-
age of our system as a creativity support tool.

Image editing Figure 8 and 9 are two practical image editing
examples where many popular image compositing and photo re-
touching techniques were used. From the embedded thumbnail
images and underlying text labels in the RevG nodes, users can
clearly identify the involved operations and their dependencies.
With RevG, users can easily review their own work or learn from
others. We show the RevGs of these two figures at different levels
of detail to demonstrate the multi-resolution feature of our repre-
sentation.

Digital sketching Figure 10 and Figure 11 are two digital sketch-
ing examples produced by our collaborating professional artist.
Each example consists of about one thousand actions, which ex-
ceeds the maximum size of state-based undo history stack of GIMP.
Our system faithfully recorded all actions and can reproduce the
whole digital sketching sessions. As shown in the figures, RevG
provides a compact and informative visualization of the sketching
history by laying out independent operations in parallel paths and
clustering together actions with similar parameters.

Creativity support tool In addition to revision control, our sys-
tem can also facilitate design space exploration, an essential task



(a) before (b) after

source

level

add_layer

copy paste

translate

deform
anchor

opacity

add_maks brush brush

rev_0_1

(c) RevG at the finest resolution

Figure 8: An image compositing example. A fake reflection of the cat is
created to enhance the richness of the photograph. Gamma adjustment is
first applied followed by the copy and paste procedures. An additional layer
mask is also used to correct the occlusion between reflection and window.

for creativity support tools [Shneiderman 2007]. With our system,
it is possible to nonlinearly adjust the parameters of previous opera-
tions as shown in Figure 12. Given a user selected image region, our
system would search for the related editing operations and prompt
the dialog for parameter tuning (Figure 12a). It also provides an
intuitive nonlinear selective undo function where users can select
any region on the image and undo the associated operations, sim-
ilar to [Su et al. 2009a; Kurlander 1993]. In Figure 12d, we undo
the operations applied on one eye without affecting other regions,
which is difficult to achieve with a linear history stack provided by
most image editing systems. Finally, our system also provides se-
lective replay as proposed in [Grossman et al. 2010] where users
can nonlinearly replay operations corresponding to specific regions
of interest.

Our merge UI provides an additional tool for creating different vari-
ations. An example is shown in Figure 13. It is common for artists
to first finish up the main components (character in this example)
and then to try out all kinds of decorations by using different layers.
However, this can require a careful separation of items into layers
while ensuring that the number of layers is manageable. With our
system, users could simply draw the alternatives on one layer, save
the revision, and create the variations with our merge UI.

7 Evaluation

Since our system is the first for comprehensive image revision con-
trol, it is difficult to perform a summative usability test to compare
it with other systems [Lau 2010] or to devise general performance
metrics on these creative production tasks. Instead, we provide two
evaluations for our system: (1) a formative user study conducted
during and after our development cycles to shed light on the ra-
tionales behind our UI design and the efficacy of our system, and
(2) an objective performance comparison on storage size with other
revision control systems.

(a) before (b) after

source

hue
hue

balance

clone

hue

rev_0_1

(c) RevG

Figure 9: An image retouching example. Several popular image re-
touching techniques are applied in this example, including clone brush and
hue/balance adjustment for eye sharpening, eye whitening, eye bag removal,
and teeth whitening.

7.1 Formative Usability Study

In our early development cycle, we collaborated with one profes-
sional illustrator and two CS graduate students with significant ex-
perience of photo shoots and retouching to help our UI design pro-
cess. At a later stage, we recruited two more professional indus-
try designers, whose daily work involved the use of image editing
software such as Adobe Photoshop and Painter, and two more CS
graduate students.

Prior practice Among the participants, only the CS students have
experience with revision control systems. Nevertheless, all partici-
pants have their own practice for data management and version con-
trol for either solo or team projects. One common ad-hoc approach
deployed by all participants is to categorize projects into different
folders and save the data with informative filenames, usually con-
taining the creation date and simple comments. One participant also
mentioned that his company required him to compress and archive
files on a weekly basis for potential future reference. The major
downside of this approach is that as the project expands the users
could easily lose track of the revisions with numerous files scattered
in different folders.

Some manual version control approaches are based on functions
provided by specific tools. For example, artists commonly use the
layer function in image editing software (e.g. GIMP and Adobe
Photoshop) for saving different design variations. By toggling the
visibility of layers, they can explore different design combinations
and alternatives. However, as the number of layers increases (our
collaborating artist showed us a case with 40+ layers), keeping vari-
ations as layers could make the already difficult layer management
even harder. Furthermore, there is also no easy way to browse
through these variations stored as layers.



(a) sketch (b) final image

source

brush

brush brush

brush
brush brush brush

rev_0_1

(c) RevG

Figure 10: A digital sketching example. The artist performed 649 brush
strokes and employed three layers for the color palette, face, hair, and body.
Note that our visual importance filter clusters operations with similar pa-
rameters (e.g. brush color) together.

Early design To address these issues discussed above, a natural
solution is to use DAG as the core of our system as any revision
history can be represented as a DAG. During the early phase of our
project, one major design decision is about how to present the re-
vision information encoded in the underlying DAG to the users. In
our early prototype, we attempted to expose the DAG directly with
relevant tools such as semi-auto node aggregation and annotation as
well as the ability for direct DAG manipulation. The CS students
and the authors have found such tools complicated but powerful and
interesting. On the other hand, the collaborating artist was not in-
terested in such fine-grained operations; rather than dealing with an
abstract DAG, the artist preferred to directly interact with images.

Current design Based on the feedback, we have made two key
design decisions: 1) hide DAG from ordinary users and visual-
ize it through RevG, and 2) direct all revision control mechanisms
through RevG and the revision window. These keep our revision
control system easy to use and comprehend, and combinable with
the main image editing window (GIMP in our particular implemen-
tation). Specifically, users can still perform the ordinary image edit-
ing operations and our nonlinear exploration (Figure 12) with the
main GIMP window, and interact with our RevG only for revision
control commands. The two are naturally connected via the bidi-
rectional mechanisms where selections made on image regions will
automatically lead to the corresponding RevG nodes and vice versa
(see Figure 2 and 12).

User study In the post design user study, we brought in two more
industrial designers and two more CS graduate students as test sub-
jects. After a brief tutorial and demonstration of our system, we
assigned them two kinds of tasks: (1) execution, where subjects
perform their familiar image editing projects (digital sketching or
photo retouching) while issuing revision controls through our sys-
tem and (2) cognition, where subjects are given some pre-recorded
examples with RevG and asked to deduce the involved editing op-

(a) sketch (b) final image

source

brush

brush

brush

brush

brush

rev_0_1

(c) RevG

Figure 11: Another digital sketching example. The artist employed 1391
operations and four layers for the palette, face, hair, and clothing.

erations.

Overall, subjects expressed no difficulty in performing basic revi-
sion control functions such as checking-in, branching, merging, and
revision history navigation. Some subjects even commented that
they were happy enough even with a subset of our system to save
and roll back revisions. For both tasks, we have observed that sub-
jects tend to stay longer on the coarser RevG resolutions while they
are more tentative on venturing into finer resolutions. For task 1, it
is understandable since subjects should have innate knowledge of
the editing process and thus do not need to consult the finer RevG
resolutions. As for task 2, the collected comments suggest that
subjects did find the finer-resolution helpful especially when some
subtle or unfamiliar effects are involved. However, finer-resolution
RevG also means more thumbnail images to analyze and memorize,
so subjects tried to stay on coarser resolutions as long as they can
comprehend the operations. Some participants also invoked the re-
vision diff tool and manually adjusted the slider back and forth for
task 2. Their comments for such a decision were that they preferfed
seeing the progress of modification in a single preview window in
the speed they want for better temporal context and easier identifi-
cation of modified contents.

For digital sketching, the subjects commented that they care more
about the temporal order of strokes than the semantic dependency
in RevG. However, they also commented that it is very helpful for
our RevG to display brushes applied on different layers in differ-
ent paths (e.g. Figure 10), which is similar to a layer-based history
list, a long desired function for artists. This indicated a practical
benefit of our non-linear revision structure. Notably, our collabo-
rating artist is especially interested in the stroke-by-stroke replay.



(a) rough selection (b) nonlinear exploration(c) nonlinear exploration

(d) rough selection (e) selective undo

Figure 12: Nonlinear exploration. Given a rough selection region (a),
our system would search for the relevant operations and adjust their pa-
rameters as intended (b). (c) shows a possible variation created via this
function. Similarly, selective undo can be easily achieved for side-by-side
comparison or non-linear editing (d) (e).

He commented that it is generally difficult to deduce the original
painting operations merely from the final flattened image; with our
system, one can truly appreciate others’ technique and more impor-
tantly one’s own drawing logic.

Most participants thought that revision merge is very interesting
and has a lot of potential but might take some time and practice
to completely immerse into their daily work flows. Nevertheless,
they like the possibility of creating multiple variations with our UI
without worrying about the underlying layers (in contrast to their
prior practice) while having fun creating variations as in Figure 13.

In summary, our user study indicates that our system is indeed easy
(and sometimes fun) to use, and helpful for revision control image
editing projects, even though it might take some time and practice
to sink in. For execution tasks (e.g. revision control during image
editing) the participants mostly stick to a single RevG resolution,
while for cognition tasks (e.g. reviewing or exploring) they find
the multi-resolution RevG informative. They also comment that
our nonlinear revision history is very helpful in depicting editing
information, especially for potentially complex layer structures. In
addition to core revision control, participants also find our system
conducive for their creative processes.

7.2 Performance

The storage consumption of our system is particularly small com-
pared to other image editing and revision control systems, such as
GIMP (.xcf file), GIT, and SVN, as shown in Table 2. For all fig-
ures, we divide the whole editing process into four revisions, and
commit them to the revision repository. The storage overhead of
our system mainly comes from the cached thumbnail images. The
overhead of internal data structures for GIT and SVN are not pre-
cisely calculated here, but our advantage on storage size is clear.
Regarding computation speed, our system runs at interactive speed,
and users of our system have not found any slowdown compared to

(a) branch point (b) branch1 (c) branch2

(d) variation1 (e) variation2 (f) variation3

Figure 13: Revision merge as a creativity support tool. From the input
(a), the artist created two different branches in (b) and (c). Based on these
three images, the artist then created several design variations using our
merge UI. Note that only one layer is used for all operations.

the original GIMP or other revision control systems.
input # op GIMP SVN GIT our

Figure 1 502 11 2.7K 2.1K 2.0K 640
Figure 3 1.6 672 267 224 180 73
Figure 8 945 11 3.5K 3.7K 3.6K 1.3K
Figure 9 276 10 972 1.2K 1.2K 420

Figure 10 377 649 2.3K 2.4K 2.5K 652
Figure 11 425 1391 2.5K 2.7K 2.7K 775

Table 2: Storage size compaison. All sizes are expressed in K-bytes.

8 Limitations and Future Work

The main limitation of our current implementation is that it is in-
tegrated into a single tool (GIMP) instead of a general mechanism
that can work with arbitrary image editing softwares. Popular im-
age editing tools, e.g. Photoshop and Painter, have with their own
built-in history mechanisms. We would like to have a universal re-
vision control interface to facilitate the automatic integration of our
revision control system in a heterogeneous multi-tool environment.

Our current prototype system is implemented primarily for a sin-
gle user as it is the predominant usage scenario for current artistic
workflows. However, proposed algorithms and system framework
directly support multiple users, and the UI can be easily extended
for that too. In particular, all one needs to do is to adopt a client-
server model, implementing our revision control backend on the
server side with the UI frontend and image editor on the client side.

In our current design phase, we have only conducted the usability
study with a few subjects (one professional artist, two industrial
designers and four CS graduate students). The ideal test bed is to
integrate our system into a commercial studio’s pipeline. However,
it is rather difficult to find a studio using GIMP as their main tool.
Nevertheless, we do hope the release of our source code in the pub-
lic domain can help us gather more user feedback.

In this paper we focused mainly on images, but we believe similar
principles are applicable to other binary graphics assets, such as
videos, meshes, or animation data. Extending revision control to
these data types could be another potential future work direction.



Acknowledgements We would like to thank Eugene Lei for dig-
ital sketching examples and valuable comments, Sin-Jhen Chiu at
DigiMax and Chuan-Chang Wang at Next Media Animation for
their insights on the commercial animation production pipeline,
Eric Stollnitz for video dubbing, Duncan Stevenson and the SIG-
GRAPH English Review Service for proofreading, as well as Ke-
Sen Huang and the anonymous reviewers for their valuable sugges-
tions. This work is supported in part by National Science Council
(Taiwan) under grant NSC 98-2220-E-003-001.

References

ABRAM, G. D., AND WHITTED, T. 1990. Building block shaders.
In SIGGRAPH ’90, 283–288.

BAVOIL, L., CALLAHAN, S. P., SCHEIDEGGER, C. E., VO, H. T.,
CROSSNO, P. J., SILVA, C. T., AND FREIRE, J. 2005. Vistrails:
Enabling interactive multiple-view visualizations. In Visualiza-
tion 2005, 135–142.

BONANNI, L., XIAO, X., HOCKENBERRY, M., SUBRAMANI, P.,
ISHII, H., SERACINI, M., AND SCHULZE, J. 2009. Wetpaint:
scraping through multi-layered images. In CHI ’09, 571–574.

CONVARD, T., AND BOURDOT, P. 2004. History based reactive
objects for immersive cad. In SM ’04: Symposium on Solid mod-
eling and applications, 291–296.

COOK, S. A. 1971. The complexity of theorem-proving proce-
dures. In STOC ’71: Symposium on Theory of computing, 151–
158.

COOK, R. L. 1984. Shade trees. In SIGGRAPH ’84, 223–231.

EDWARDS, W. K., AND MYNATT, E. D. 1997. Timewarp: tech-
niques for autonomous collaboration. In CHI ’97, 218–225.

EDWARDS, W. K., IGARASHI, T., LAMARCA, A., AND MYNATT,
E. D. 2000. A temporal model for multi-level undo and redo. In
UIST ’00, 31–40.

ESTUBLIER, J., LEBLANG, D., HOEK, A. V. D., CONRADI, R.,
CLEMM, G., TICHY, W., AND WIBORG-WEBER, D. 2005. Im-
pact of software engineering research on the practice of software
configuration management. ACM Trans. Softw. Eng. Methodol.
14, 4, 383–430.

FAIRCHILD, K. M., POLTROCK, S. E., AND FURNAS, G. W.
1999. Readings in information visualization. ch. SemNet: three-
dimensional graphic representations of large knowledge bases,
190–206.

GANSNER, E. R., KOUTSOFIOS, E., NORTH, S. C., AND VO, K.-
P. 1993. A technique for drawing directed graphs. IEEE Trans.
Softw. Eng. 19, 3, 214–230.

GRABLER, F., AGRAWALA, M., LI, W., DONTCHEVA, M., AND
IGARASHI, T. 2009. Generating photo manipulation tutorials by
demonstration. In SIGGRAPH ’09, 66:1–9.

GROSSMAN, T., MATEJKA, J., AND FITZMAURICE, G. 2010.
Chronicle: capture, exploration, and playback of document
workflow histories. In UIST ’10, 143–152.

HARTMANN, B., YU, L., ALLISON, A., YANG, Y., AND KLEM-
MER, S. R. 2008. Design as exploration: creating interface
alternatives through parallel authoring and runtime tuning. In
UIST ’08, 91–100.

HEER, J., AND CARD, S. K. 2004. Doitrees revisited: scalable,
space-constrained visualization of hierarchical data. In AVI ’04:
Proceedings of the working conference on Advanced visual in-
terfaces, 421–424.

HEER, J., CARD, S. K., AND LANDAY, J. A. 2005. prefuse:

a toolkit for interactive information visualization. In CHI ’05,
421–430.

HEER, J., MACKINLAY, J., STOLTE, C., AND AGRAWALA, M.
2008. Graphical histories for visualization: Supporting analysis,
communication, and evaluation. IEEE Transactions on Visual-
ization and Computer Graphics 14, 6, 1189–1196.

HOPPE, H. 1996. Progressive meshes. In SIGGRAPH ’96, 99–108.

HUNT, J. J., VO, K.-P., AND TICHY, W. F. 1998. Delta algo-
rithms: an empirical analysis. ACM Trans. Softw. Eng. Methodol.
7, 2, 192–214.

ITTI, L., KOCH, C., AND NIEBUR, E. 1998. A model of saliency-
based visual attention for rapid scene analysis. IEEE Trans. Pat-
tern Anal. Mach. Intell. 20 (November), 1254–1259.

JACKSON, D., AND LADD, D. A. 1994. Semantic diff: A tool
for summarizing the effects of modifications. In ICSM ’94: Pro-
ceedings of the International Conference on Software Mainte-
nance, 243–252.

JACOBSEN, J., SCHLENKER, T., AND EDWARDS, L. 2005. Im-
plementing a Digital Asset Management System: For Animation,
Computer Games, and Web Development. Focal Press.

KLEMMER, S. R., THOMSEN, M., PHELPS-GOODMAN, E., LEE,
R., AND LANDAY, J. A. 2002. Where do web sites come from?:
capturing and interacting with design history. In CHI ’02, 1–8.

KURIHARA, K., VRONAY, D., AND IGARASHI, T. 2005. Flexible
timeline user interface using constraints. In CHI ’05, 1581–1584.

KURLANDER, D. 1993. Chimera: example-based graphical edit-
ing. In Watch what I do: programming by demonstration, 271–
290.

LAU, T. 2010. Rethinking the systems review process. Commun.
ACM 53 (November), 10–11.

LEVOY, M. 1994. Spreadsheets for images. In SIGGRAPH ’94,
139–146.

MYERS, B. A., MCDANIEL, R. G., MILLER, R. C., FER-
RENCY, A. S., FAULRING, A., KYLE, B. D., MICKISH, A.,
KLIMOVITSKI, A., AND DOANE, P. 1997. The amulet environ-
ment: New models for effective user interface software develop-
ment. IEEE Transactions on Software Engineering 23, 347–365.

NAKAMURA, T., AND IGARASHI, T. 2008. An application-
independent system for visualizing user operation history. In
UIST ’08, 23–32.

SHNEIDERMAN, B. 2007. Creativity support tools: accelerating
discovery and innovation. Commun. ACM 50 (December), 20–
32.

SU, S. L., PARIS, S., ALIAGA, F., SCULL, C., JOHNSON, S.,
AND DURAND, F. 2009. Interactive visual histories for vector
graphics. Tech. Rep. MIT-CSAIL-TR-2009-031, Massachusetts
Institute of Technology, Computer Science and Artificial Intelli-
gence Laboratory, June.

TERRY, M., AND MYNATT, E. D. 2002. Recognizing creative
needs in user interface design. In C&C ’02: Proceedings of the
4th conference on Creativity & cognition, 38–44.

TERRY, M., MYNATT, E. D., NAKAKOJI, K., AND YAMAMOTO,
Y. 2004. Variation in element and action: supporting simultane-
ous development of alternative solutions. In CHI ’04, 711–718.

YEE, H., PATTANAIK, S., AND GREENBERG, D. P. 2001. Spa-
tiotemporal sensitivity and visual attention for efficient rendering
of dynamic environments. ACM Trans. Graph. 20, 1, 39–65.


