
Enabling Privacy-Preserving Incentives for Mobile Crowd Sensing Systems

Haiming Jin∗, Lu Su†, Bolin Ding‡, Klara Nahrstedt∗, Nikita Borisov§

∗Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
†Department of Computer Science and Engineering, State University of New York at Buffalo, NY, USA

‡Microsoft Research, Redmond, WA, USA
§Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA

Email: hjin8@illinois.edu, lusu@buffalo.edu, Bolin.Ding@microsoft.com, {klara, nikita}@illinois.edu

Abstract—Recent years have witnessed the proliferation of
mobile crowd sensing (MCS) systems that leverage the public
crowd equipped with various mobile devices (e.g., smart-
phones, smartglasses, smartwatches) for large scale sensing
tasks. Because of the importance of incentivizing worker
participation in such MCS systems, several auction-based
incentive mechanisms have been proposed in past literature.
However, these mechanisms fail to consider the preservation
of workers’ bid privacy. Therefore, different from prior work,
we propose a differentially private incentive mechanism that
preserves the privacy of each worker’s bid against the other
honest-but-curious workers. The motivation of this design
comes from the concern that a worker’s bid usually contains
her private information that should not be disclosed. We design
our incentive mechanism based on the single-minded reverse
combinatorial auction. Specifically, we design a differentially
private, approximately truthful, individual rational, and compu-
tationally efficient mechanism that approximately minimizes the
platform’s total payment with a guaranteed approximation ratio.
The advantageous properties of the proposed mechanism are
justified through not only rigorous theoretical analysis but also
extensive simulations.

Keywords-privacy-preserving; incentive mechanism; mobile
crowd sensing;

I. INTRODUCTION

The recent proliferation of human-carried mobile de-

vices (e.g., smartphones, smartglasses, smartwatches) with

a plethora of on-board sensors (e.g., camera, accelerome-

ter, compass, GPS) has given rise to the emergence of a

large variety of people-centric mobile crowd sensing (MCS)

systems (e.g., GreenGPS [1], Jigsaw [2], AirCloud [3], and

SmartRoad [4]). In a typical MCS system, a central server

which is usually a cloud-based platform aggregates and

analyzes the sensory data collected by a crowd of diverse

participating users, namely (crowd) workers, using their

mobile devices. Such MCS systems serve a wide spectrum

of applications with significant impact on one’s daily live,

including healthcare, smart transportation, urban sensing,

indoor localization, ambient environment monitoring, etc.
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Participating in such MCS tasks is usually a costly activity

for individual workers. The cost depends on various factors

including the difficulty of the task, the time a worker spends

on executing the sensing tasks, and the amount of system

resources (e.g., computing power, battery) that the worker’s

mobile device consumes. Therefore, without satisfactory

rewards that can compensate workers’ costs, they will be

reluctant to participate in MCS tasks.

Because of the paramount importance of incentivizing

worker participation in MCS systems, many reverse auction-

based incentive mechanisms [5–16] have been proposed

by the research community. In these auctions, a worker

submits a bid to the platform containing one or multiple

tasks she is interested in and her bidding price for executing

these tasks. Based on workers’ bids, the platform acting as

the auctioneer determines the winners who are assigned to

execute the tasks they bid and the payments paid to the

selected winners. Furthermore, designing a truthful auction

where every worker bids to the platform her true interested

tasks and the corresponding true task execution cost is a

common objective.

However, all the aforementioned incentive mechanisms

[5–16] fail to consider the preservation of workers’ bid

privacy. Although the platform is usually considered to be

trusted, there exist some honest-but-curious workers who

strictly follow the protocol of the MCS system, but try

to infer information about other workers’ bids. A worker’s

bid usually contains her private and sensitive information.

For example, a worker’s bidding task set could imply her

personal interests, knowledge base, etc. In geotagging MCS

systems that provide accurate localization of physical objects

(e.g., automated external defibrillator [17], pothole [18]),

bidding task sets contain the places a worker has visited

or will visit, the disclosure of which breaches her location

privacy. Similar to bidding task set, a worker’s bidding price

could also be utilized to infer her sensitive information.

For example, bidding price could imply the type of mobile

devices a worker uses for an MCS task, because usually

workers tend to bid more if their mobile devices are more

expensive.

Typically, the change in one worker’s bid has the potential

to shift the overall payment profile (i.e., payments to all



workers) significantly. It is possible that a curious worker

could infer information about other workers’ bids from

the different payments she receives in two rounds of the

auction. To address this issue, we incorporate the notion of

differential privacy [19–22], which ensures that the change

in any worker’s bid will not bring a significant change to

the resulting payment profile. Therefore, different from all

existing incentive mechanisms for MCS systems, we design

a differentially private incentive mechanism that protects

workers’ bid privacy against honest-but-curious workers.

Because of workers’ selfish and strategic behaviours that

aim to maximize their own utilities and the combinatorial

nature of the tasks executed by each worker, we design

an incentive mechanism based on the single-minded reverse

combinatorial auction. In our mechanism, every worker bids

on a set of tasks that she is interested to execute. The

platform serves as the auctioneer and determines the winners

and the payment profile that minimize its total payment

to all the winners. In sum, this paper has the following

contributions.

• Different from all existing incentive mechanisms for

MCS systems, we design a differentially private in-

centive mechanism that preserves the privacy of each

worker’s bid against the other honest-but-curious work-

ers.

• Apart from differential privacy, our mechanism also sat-

isfies the desirable economic properties of approximate

truthfulness and individual rationality.

• Algorithmically, our mechanism is computationally ef-

ficient and minimizes the platform’s total payment with

a guaranteed approximation ratio.

II. RELATED WORK

Game theoretic models [5–16, 23–25] have been widely

utilized in designing incentive mechanisms for MCS systems

because of their ability to capture and tackle workers’

strategic behaviors. Among them, one major category is

auction-based incentive mechanisms [5–16].

Yang et al. [8] propose an auction-based user-centric

incentive mechanism, which does not consider workers’

misreporting of bidding task sets. Zhang et al. [6] design an

incentive mechanism tailored for crowd labeling tasks under

the platform’s budget constraint. Zhang et al. [7] incorporate

both the cooperation and competition among participating

workers. Feng et al. [9] aim to minimize the social cost

in their mechanism. Furthermore, [10, 11] design quality

of information aware incentive mechanisms, [12, 13] design

incentive mechanisms where workers’ task execution costs

are known prior information to the platform, [5] studies

providing long-term participating incentive to crowd workers

and [14–16] design online incentive mechanisms for MCS

systems where workers arrive sequentially.

However, all the aforementioned existing work fail to

consider the preservation of workers’ privacy. In contrast,

we incorporate the notion of differential privacy [19–22] and

design a differentially private incentive mechanism for MCS

systems that protects workers’ bid privacy. There do exist

several related work [26–29] regarding privacy-preserving

incentive mechanisms for MCS systems. Instead of bid

privacy, [29] focuses on protecting workers’ privacy leakage

from the aggregated data. [26–28] do not consider workers’

strategic behaviours, and do not use auction-based incentive

mechanisms. Instead, they adopt credit systems [26, 27] and

untraceable electronic currency [28].

Another line of related work [20–22, 30] designs privacy-

preserving auctions for various different applications. En-

crypting workers’ bids in [30] does not resolve the issue of

curious workers’ inferring information about other workers’

bids from the payments they receive. The differentially

private auction frameworks [20–22] designed for forward

auctions cannot be directly applied in the reverse auction

scenario considered in this paper.

III. PRELIMINARIES

In this section, we present an overview of MCS systems,

the aggregation method, our auction model, and design

objectives.

A. System Overview

The MCS system considered in this paper consists of a

cloud-based platform and a set of N participating workers

denoted as N = {w1, · · · , wN}.
In this paper, we are particularly interested in MCS

systems that host a set of K classification tasks, denoted

as T = {τ1, · · · , τK}, namely ones that require workers

to locally decide the classes of the objects or events she

has observed, and report her local decisions (i.e., labels of

the observed objects or events) to the platform. Here, we

assume that all tasks in T are binary classification tasks,

which constitute a significant portion of the tasks posted

on MCS platforms. Examples of such tasks include tagging

whether or not a segment of road surface has potholes or

bumps [18, 31], labeling whether or not traffic congestion

happens at a specific road segment [32], etc. Each binary

classification task τj ∈ T has a true class label lj , unknown

to the platform, which is either +1 or −1. If worker wi is

selected to execute task τj , she will provide a label li,j to

the platform.

Currently, a major challenge in designing reliable MCS

systems lies in the fact that the sensory data provided by

individual workers are usually unreliable due to various

reasons including carelessness, background noise, lack of

sensor calibration, poor sensor quality, etc. To overcome this

issue, the platform has to aggregate the labels provided by

multiple workers, as this will likely cancel out the errors of

individual workers and infer the true label. We describe the

workflow of the MCS system as follows.



• The platform firstly announces the set of binary classi-

fication tasks, T , to the workers.

• Then, the workers and the platform start the auction-

ing stage, where the platform acts as the auctioneer

purchasing the labels provided by the workers. Every

worker wi submits her bid bi = (Γi, ρi), which is a

tuple consisting of the set of tasks Γi she wants to

execute and her bidding price ρi for providing labels

about these tasks. We use b = (b1, · · · , bN ) to denote

workers’ bid profile.

• Based on workers’ bids, the platform determines the

set of winners (denoted as S ⊆ N ) and the payment

pi paid to each worker wi. We use p = (p1, · · · , pN )
to denote workers’ payment profile.

• After the platform aggregates workers’ labels to infer

the true label of every task, it gives the payment to the

corresponding winners.

Every worker wi has a skill level θi,j ∈ [0, 1] for task τj ,

which is the probability that the label li,j provided by worker

wi about task τj equals to the true label lj , i.e., Pr[li,j =
lj ] = θi,j . We use the matrix θ = [θi,j ] ∈ [0, 1]N×K to

denote the skill level matrix of all workers. We assume

that the platform maintains a historical record of the skill

level matrix θ utilized as one of the inputs for winner and

payment determination. There are many methods that the

platform could use to estimate θ. In the cases where the

platform has access to the true labels of some tasks a priori,

it can assign these tasks to workers in order to estimate θ

as in [33]. When ground truth labels are not available, θ

can still be effectively estimated from workers’ previously

submitted data using algorithms such as those in [34–38].

Alternatively, in many applications θ can be inferred from

some explicit characteristics of the workers (e.g., a worker’s

reputation and experience of executing certain types of

sensing tasks, the type and price of a worker’s sensors) using

the methods proposed in [39]. The issue of exactly which

method is used by the platform to calculate θ is application

dependent and out of the scope of this paper.

B. Aggregation Method

In this paper, we reasonably assume that the platform uses

a weighted aggregation method to calculate the aggregated

label l̂j for each task τj based on the collected labels.

That is, l̂j = sign(
∑

i:wi∈S,τj∈Γi
αi,j li,j), where αi,j is

the weight corresponding to the label li,j . In fact, many

sophisticated state-of-the-art data aggregation mechanisms,

such as those proposed in [34–38], also adopt the weighted

aggregation method to calculate the aggregation results.

Given the aggregation method, the platform selects winners

so that the aggregation error of each task τj’s label is upper

bounded by a predefined threshold δj . That is, the platform

aims to ensure that Pr[l̂j 6= lj ] ≤ δj holds for every task

τj ∈ T . We directly apply in this paper the results derived

in [40], formally summarized in Lemma 1, regarding the

relationship between the selected winners’ skill levels and

the upper bounds of tasks’ aggregation error.

Lemma 1. Suppose the platform utilizes a weighted aggre-

gation algorithm that calculates the aggregated label l̂j of

task τj ∈ T according to l̂j = sign(
∑

i:wi∈S,τj∈Γi
αi,j li,j).

Thus, Pr[l̂j 6= lj ] ≤ δj holds if and only if αi,j = 2θi,j − 1
and ∑

i:wi∈S,τj∈Γi

(2θi,j − 1)2 ≥ 2 ln
( 1

δj

)
, (1)

where δj ∈ (0, 1).

We refer to Equation 1 as the error bound constraint

in the rest of this paper. Essentially, Lemma 1 presents a

necessary and sufficient condition for Pr[L̂j 6= lj ] ≤ δj
to hold (∀τj ∈ T ) for a weighted aggregation algorithm.

That is, the aggregated label l̂j should be calculated as

l̂j = sign
(∑

i:wi∈S,τj∈Γi
(2θi,j − 1)li,j

)
and the sum of

the value (2θi,j − 1)2’s for all winner wi’s that execute

task τj should not be smaller than the threshold 2 ln
(

1
δj

)
.

Intuitively, the larger the value (2θi,j − 1)2 is, the more

informative the label li,j will be to the platform. When

the value (2θi,j − 1)2 approaches 0, or equivalently θi,j
approaches 0.5, the label li,j will be closer to a random

noise.

C. Auction Model

In the rest of the paper, we will refer to any subset

of tasks of T as a bundle. Since in the MCS system

considered in this paper every worker bids on one bundle of

tasks, we use single-minded reverse combinatorial auction

with heterogeneous cost (hSRC auction), formally defined in

Definition 1, to model the problem.

Definition 1 (hSRC Auction). We define the single-minded

reverse combinatorial auction with heterogeneous cost,

namely hSRC auction, as follows. In the hSRC auction, any

worker wi has a set of Ki possible bidding bundles denoted

as Ti = {Γi,1, · · · ,Γi,Ki
}. For providing labels about all

the tasks in each bundle Γi,k ∈ Ti, the worker has a cost

ci,k. Furthermore, every worker wi is only interested in one

of the bundles in Ti, denoted as Γ∗
i with cost c∗i .

Noted that the hSRC auction defined in Definition 1 is

a generalization of traditional single-minded combinatorial

auctions, such as those in [10, 41, 42]. Typically, in tradi-

tional single-minded combinatorial auctions, all the possible

bidding bundles of a worker have the same cost. However, in

our hSRC auction, the cost ci,k’s for every bundle Γi,k ∈ Ti
do not necessarily have to be the same. In MCS systems,

workers usually have different costs for executing different

bundles, which makes our definition of hSRC auction more

suitable to the problem studied in this paper. In Definition

2, we define a worker’s truthful bid.



Definition 2 (Truthful Bid). We define bid b∗i = (Γ∗
i , c

∗
i )

which contains worker wi’s true interested bundle Γ∗
i and

the corresponding cost c∗i as her truthful bid.

In Definition 3 and 4, we present the formal definitions

of a worker’s utility and the platform’s total payment.

Definition 3 (Worker’s Utility). Suppose a worker wi bids

Γi,k ∈ Ti in the hSRC auction. If she is a winner, she will be

paid pi by the platform. Otherwise, she will not be allocated

any task and receives zero payment. Therefore, the utility of

the worker wi is

ui =

{
pi − ci,k, if wi ∈ S

0, otherwise
. (2)

Definition 4 (Platform’s Payment). The platform’s total

payment to all workers given the payment profile p and the

winner set S is

R(p,S) =
∑

i:wi∈S

pi. (3)

D. Design Objective

Since workers are strategic in our hSRC auction, it is

possible that a worker could submit a bid different from

the truthful bid defined in Definition 2 in order to obtain

more utility. To address this problem, one of our goals is to

design a truthful mechanism, where every worker maximizes

her utility by bidding her truthful bid regardless of other

workers’ bids. In practice, ensuring exact truthfulness for

the hSRC auction is too restrictive. Therefore, we turn to

a weaker but more practical notion of γ-truthfulness in

expectation [20, 43], formally defined in Definition 5.

Definition 5 (γ-truthfulness). An hSRC auction is γ-truthful

in expectation, or γ-truthful for short, if and only if for any

bid bi 6= b∗i and any bid profile of other workers b−i, there

is

E
[
ui(b

∗
i ,b−i)

]
≥ E

[
ui(bi,b−i)

]
− γ, (4)

where γ is a small positive constant.

γ-truthfulness ensures that no worker is able to make

more than a slight γ gain in her expected utility by bidding

untruthfully. Therefore, we reasonably assume that each

worker wi would bid her truthful bid b∗i , if our hSRC

auction satisfies γ-truthfulness. Apart from γ-truthfulness,

another desirable property of our hSRC auction is individual

rationality, which implies that no worker has negative utility.

This property is crucial in that it prevents workers from

being disincentivized by receiving negative utilities. We

formally define this property in the following Definition 6.

Definition 6 (Individual Rationality). An hSRC auction is

individual rational if and only if ui ≥ 0 holds for every

worker wi ∈ N .

Simply paying workers according to the output payment

profile of the auction poses threats to the privacy of workers’

bids. Because the change in one worker’s bid has the

potential to shift the payment profile significantly, it is

possible for a curious worker to infer other workers’ bids

from the different payments she receives in two rounds of

auction. Therefore, we aim to design a differentially private

mechanism [19–22], formally defined in Definition 7.

Definition 7 (Differential Privacy). We denote the proposed

hSRC auction as a function M(·) that maps an input

bid profile b to a payment profile p. Then, M(·) is ǫ-

differentially private if and only if for any possible set of

payment profiles A and any two bid profiles b and b′ that

differ in only one bid, we have

Pr
[
M(b) ∈ A

]
≤ exp(ǫ)Pr

[
M(b′) ∈ A

]
, (5)

where ǫ is a small positive constant usually referred to as

privacy budget.

Differential privacy ensures that the change in any

worker’s bid will not bring a significant change to the

resulting payment profile. Hence, it is difficult for the curious

workers to infer information about other workers’ bids

from the outcome (i.e., payment profile) of the mechanism.

In this paper, to achieve differential privacy we introduce

randomization to the outcome of our mechanism, similar to

[20–22].

In short, we aim to design a γ-truthful, individual rational

and ǫ-differentially private incentive mechanism in this

paper.

IV. MATHEMATICAL FORMULATION

In this section, we present our formal mathematical prob-

lem formulation.

In this paper, we adopt the natural and commonly used op-

timal single-price payment, as in [21, 44, 45], as our optimal

payment benchmark, because it is within a constant factor of

the payment of any mechanism with price differentiation, as

proved in [45]. Therefore, we aim to design a single-price

mechanism that pays every winner in S according to the

same price p.

To simplify our analysis, we assume that the possible

values of the cost ci,k for a worker wi to execute a bundle of

tasks Γi,k ∈ Ti forms a finite set C. The smallest and largest

element in C is cmin and cmax respectively. Given the winner

set S , for an individual rational single-price mechanism, the

platform’s total payment is minimized if and only if the

price p equals to the largest cost of the workers in S , that is
p = maxwi∈S ci,k. This is because otherwise the platform

can always let p = maxwi∈S ci,k and obtains a smaller total

payment while maintaining individual rationality. Therefore,

the set P containing all possible prices should satisfy that

P ⊆ C. Furthermore, we define that a price p is feasible if

and only if it is possible to select a set of winners S among

the workers with bidding prices ρi ≤ p such that the error



bound constraint defined in Equation 1 is satisfied for every

task. Then, we define the price set P as the set containing all

values in the set C that are feasible. Thus, obviously we have

cmax ∈ P ⊆ C. Given a price p and all the other parameters,

we use SOPT(·) to denote the mechanism that maps p to the

minimum-cardinality winner set such that every task’s error

bound constraint is satisfied. Thus, the optimal total payment

ROPT can be written as

ROPT = min
p∈P

p|SOPT(p)|. (6)

Therefore, given a price p, the total payment minimization

(TPM) problem can be formulated as the following integer

linear program.

TPM Problem:

min
∑

i:wi∈N ′

pxi (7)

s.t.
∑

i:wi∈N ′,τj∈Γi

qi,jxi ≥ Qj , ∀τj ∈ T (8)

xi ∈ {0, 1}, ∀wi ∈ N ′ (9)

Constants. The TPM problem takes as inputs a given

price p, workers’ bid profile b, the matrix q, the vector

Q, the task set T and the set N ′ = {wi|wi ∈ N , ρi ≤ p}
with cardinalityN ′ containing all the workers whose bidding

prices are not larger than p.

Variables. In the TPM problem, we have a vector of N ′

binary variables x = (x1, · · · , xN ′). For every worker wi ∈
N ′, there is a binary variable xi indicating whether this

worker is in the winner set S . That is, xi = 1 if wi ∈ S and

xi = 0 if wi 6∈ S .
Objective function. Based on the definition of variables

x,
∑

i:wi∈N ′ xi equals to the cardinality of the winner

set S . Therefore, given a price p, the objective function∑
i:wi∈N ′ pxi represents the platform’s total payment to all

the winners.

Constraints. For simplification of presentation, we intro-

duce the following notations. qi,j = (2θi,j − 1)2, Qj =
2 ln

(
1
δj

)
, q = [qi,j ] ∈ [0, 1]N×K and Q = (Q1, · · · , QK).

Thus, Constraint 8 is equivalent to the error bound constraint

represented by Equation 1 in Lemma 1, which ensures that

the aggregation error of every task τj ∈ T is not larger than

a threshold δj .

In Theorem 1, we prove the NP-hardness of the TPM

problem.

Theorem 1. The TPM problem is NP-hard.

Proof: Since p is a constant, the TPM problem has

the same computational complexity as the modified TPM

problem that minimizes
∑

i:wi∈N ′ xi with the same set of

constraints. Thus, we turn to prove the NP-hardness of the

modified TPM problem, instead.

We start our proof by introducing an instance of the

minimum set cover (MSC) problem with a universe of

K elements U = {τ1, · · · , τK} and a set of N sets

H = {Γ1, · · · ,ΓN}. The objective of the MSC problem

is to find the minimum-cardinality subset of H whose union

contains all the elements in U . We construct an instance

of the modified TPM problem based on this instance of

the MSC problem. Firstly, we construct Γ′
i from Γi where

every τj ∈ Γi has hi,j ∈ Z
+ copies in Γ′

i. Furthermore,

we require that the selected sets cover every τj ∈ U for

at least Hj times. Therefore, we get an instance of the

modified TPM problem where q = [hi,j ] ∈ (Z+)N×K ,

Q = (H1, · · · , HK) and the bidding bundle profile Γ =
(Γ′

1, · · · ,Γ
′
N ). In fact, the modified TPM problem represents

a richer family of problems where elements in q and Q can

be positive real values. Therefore, every instance of the NP-

complete MSC problem is polynomial-time reducible to the

modified TPM problem. The modified TPM problem, and

equivalently the TPM problem, is NP-hard.

V. MECHANISM DESIGN

Because of the NP-hardness of the TPM problem shown

in Theorem 1, even given the price p, it is impossible to

calculate in polynomial time the set of winners that minimize

the platform’s total payment unless P = NP. Let alone

we eventually need to select an optimal price from the

price set P . Therefore, we aim to design a polynomial-

time mechanism that gives us an approximately optimal

total payment with a guaranteed approximation ratio to

the optimal total payment ROPT. In addition, we also take

into consideration the bid privacy preserving objective when

designing the mechanism. We present our mechanism in

Algorithm 1, namely differentially private hSRC (DP-hSRC)

auction, that satisfies all our design objectives.

Algorithm 1 takes as inputs the privacy budget ǫ, the cost

upper bound cmax, the worker setN , the task set T , the price

set P , workers’ bid profile b, the q matrix and the Q vector.

It outputs the winner set S and the payment p paid to each

winner. Firstly, it sorts workers according to the ascending

order of their bidding prices such that ρ1 ≤ ρ2 ≤ · · · ≤ ρN
(line 1). Then, it initializes several parameters (line 2-5). It

finds the minimum price pmin in P (line 2) and the index

imin of the largest bidding price that does not exceed pmin

(line 3). The algorithm constructs an index set I containing

all the integers from imin to N (line 4). Set I contains every

worker index i such that a winner set Si is calculated among

the workers with bidding prices that are not larger than ρi.

In the last step of the initialization, the algorithm creates an

extra bidding price ρN+1 by adding a small positive constant

δ to cmax (line 5) to ensure that ρN+1 is greater than ∀p ∈ P .

The purpose of creating ρN+1 is to make sure that every

price p ∈ P is considered by line 14 and 15 in the main

loop (line 6-15) for exactly once.

After the initialization phase, Algorithm 1 calculates the

winner set for every possible price p ∈ P (line 6-15). Intu-

itively, we need to calculate the winner set for every given



Algorithm 1: DP-hSRC Auction

Input: ǫ, cmax, b, q, Q, N , T , P;
Output: S, p;

1 sort workers according to the ascending order of bidding
prices such that ρ1 ≤ ρ2 ≤ · · · ≤ ρN ;
// Initialization

2 pmin ← minp∈P p;
3 imin ← argmaxi:ρi≤pmin ρi;
4 I ← {imin, imin + 1, · · · , N};
// Add a small constant δ > 0 to cmax

5 ρN+1 ← cmax + δ;
// Calculates the winner sets

6 foreach i ∈ I do

7 Si ← ∅, Q
′ ← Q, N ′ ← {wk|ρk ≤ ρi};

8 while
∑

j:τj∈T Q′
j 6= 0 do

9 imax = argmaxi:wi∈N ′

∑

j:τj∈Γi
min{Q′

j , qi,j};

10 Si ← Si ∪ {wimax};
11 N ′ ← N ′ \ {wimax};

// Update the residual Q′ vector

12 foreach j s.t. τj ∈ T do

13 Q′
j ← Q′

j −min{Q′
j , qimax,j};

// Assign the same winner set Si to

every possible price in [ρi, ρi+1)
14 foreach p ∈ P ∩ [ρi, ρi+1) do
15 S(p)← Si;

16 randomly pick a price p according to the distribution

Pr[p = x] =
exp

(

− ǫx|S(x)|
2Ncmax

)

∑

y∈P exp
(

− ǫy|S(y)|
2Ncmax

) , ∀x ∈ P;

// Obtain the corresponding winner set

17 S ← S(p);
18 return {S, p};

price p ∈ P . However, for all possible prices between two

consecutive bidding prices, that is ∀p ∈ P ∩ [ρi, ρi+1), the
winner sets are the same. Therefore, to reduce the computa-

tional complexity and remove its dependency on the number

of possible prices (i.e., |P|), we only need to calculate the

winner set for every price p ∈ {ρimin
, ρimin+1, · · · , ρN}. At

the beginning of every iteration of the main loop (line 6-15),

Algorithm 1 initializes the winner set Si as ∅, the residualQ
′

vector as Q and the candidate winner set N ′ as every worker

wk with bidding price ρk that is not larger than ρi (line 7).

The inner loop (line 8-13) is executed until the error bound

constraints for all tasks are satisfied, or equivalently until

Q′ = 0K×1. In every iteration of the inner loop (line 8-13),

the worker wimax
that provides the most improvement to the

feasibility of Constraint 8 is selected as the new winner (line

9). Hence, wimax
is included in Si (line 10) and excluded

from N ′ (line 11). After wimax
is selected, the algorithm

updates the residual Q′ vector (line 12-13).

To ensure differential privacy, we introduce randomization

to the output price. We extend the exponential mechanism

proposed in [20] and set the probability that the output price

p of Algorithm 1 equals to a price x ∈ P to be proportional

to the value exp
(
− ǫx|S(x)|

2Ncmax

)
. That is,

Pr[p = x] ∝ exp

(
−

ǫx|S(x)|

2Ncmax

)
, ∀x ∈ P. (10)

One important rationale of setting the probability of every

possible price as the form in Equation 10 is that the price

resulting in a smaller total payment will have a larger

probability to be sampled. In fact, the probability increases

exponentially with the decrease of the total payment and the

distribution is substantially biased towards low total payment

prices. Therefore, we can both achieve differential privacy

and a guaranteed approximation to the optimal payment,

as will be proved in Section VI. Algorithm 1 normalizes

exp
(
− ǫx|S(x)|

2Ncmax

)
and randomly picks a price p according to

the following distribution (line 16) defined in Equation 11.

Pr[p = x] =
exp

(
− ǫx|S(x)|

2Ncmax

)

∑
y∈P exp

(
− ǫy|S(y)|

2Ncmax

) , ∀x ∈ P. (11)

After a price p is sampled, the winner set S is set to be

the one corresponding to p, namely S(p) (line 17). Finally,

it returns the winner set S and the price p (line 18).

VI. ANALYSIS

In this section, we provide formal theoretical analysis

about the desirable properties of our DP-hSRC auction. First

of all, we prove that the DP-hSRC auction is ǫ-differentially

private in Theorem 2.

Theorem 2. The DP-hSRC auction is ǫ-differentially pri-

vate.

Proof: We denote b and b′ as two bid profiles that

differ in only one worker’s bid. ∀x ∈ P , we have

Pr
[

M(b) = x
]

Pr
[

M(b′) = x
] =

exp
(

−
ǫx|S(x)|
2Ncmax

)

exp
(

−
ǫx|S′(x)|
2Ncmax

) ·

∑

y∈P exp
(

−
ǫy|S′(y)|
2Ncmax

)

∑

y∈P exp
(

−
ǫy|S(y)|
2Ncmax

)

≤ exp

(

ǫxN

2Ncmax

)

·

∑

y∈P exp
(

−
ǫy(|S(y)|−N)

2Ncmax

)

∑

y∈P exp
(

−
ǫy|S(y)|
2Ncmax

)

≤ exp

(

ǫ

2

)

·

∑

y∈P exp
(

−ǫy|S(y)|+ǫcmaxN

2Ncmax

)

∑

y∈P exp
(

−
ǫy|S(y)|
2Ncmax

)

= exp
(

ǫ

2

)

· exp

(

ǫcmaxN

2Ncmax

)

= exp
(

ǫ

2

)

· exp
(

ǫ

2

)

= exp(ǫ).

That is,

Pr
[
M(b) = x

]
≤ exp(ǫ)Pr

[
M(b′) = x

]
, ∀x ∈ P. (12)

Therefore, we have Pr
[
M(b) ∈ A

]
≤ exp(ǫ)Pr

[
M(b′) ∈

A
]
, ∀A ⊆ P and we arrive at the conclusion that the DP-

hSRC auction is ǫ-differentially private.



We introduce the notation that ∆c = cmax − cmin. Based

on Theorem 2, we prove in Theorem 3 that the DP-hSRC

auction is ǫ∆c-truthful.

Theorem 3. The DP-hSRC auction is ǫ∆c-truthful.

Proof: Similar to the proof of Theorem 2, we use b and

b′ to denote two bid profiles that differ in only one worker’s

bid. An equivalent form of Equation 12 proved in Theorem

2 is Pr
[
M(b) = x

]
≥ exp(−ǫ)Pr

[
M(b′) = x

]
, ∀x ∈ P .

Therefore, the expectation of any worker wi’s utility taken

over the output price distribution of the DP-hSRC auction

mechanism M(·) given in Algorithm 1 satisfies that

Ex∼M(b)

[
ui(x)

]
=

∑

x∈P

ui(x)Pr
[
M(b) = x

]

≥
∑

x∈P

ui(x)exp(−ǫ)Pr
[
M(b′) = x

]

= exp(−ǫ)Ex∼M(b′)

[
ui(x)

]

≥ (1− ǫ)Ex∼M(b′)

[
ui(x)

]

= Ex∼M(b′)

[
ui(x)

]
− ǫEx∼M(b′)

[
ui(x)

]
.

Since the maximum price in P is cmax and the min-

imum possible cost for a worker is cmin, we have that

ui(x) ≤ cmax − cmin, ∀x ∈ P . Therefore, we have

Ex∼M(b′)

[
ui(x)

]
≤ cmax − cmin = ∆c and thus,

Ex∼M(b)

[
ui(x)

]
≥ Ex∼M(b′)

[
ui(x)

]
− ǫ∆c.

Therefore, we conclude that the DP-hSRC auction is ǫ∆c-

truthful.

Theorem 3 basically states that the proposed DP-hSRC

auction upper bounds a worker’s gain in her expected utility

to bid untruthfully by ǫ∆c. Therefore, we reasonably assume

that each worker would bid truthfully in our DP-hSRC

auction. Note that our DP-hSRC auction is ǫ∆c-truthful in

both the bidding bundle and price, namely any worker wi

bids her truthful bid b∗i = (Γ∗
i , c

∗
i ). In Theorem 4, we prove

that our DP-hSRC auction is individual rational.

Theorem 4. The DP-hSRC auction is individual rational.

Proof: In every iteration of the main loop in Algorithm

1 (line 6-15), the candidate winner set N ′ is initialized as

those workers whose bidding prices (i.e., ρk) are not larger

than the given price p = ρi (line 7). Furthermore, we have

proved in Theorem 3 that every worker wk bids truthfully,

i.e., ρk = ck. It means that for any given price p the winners

are selected among the workers (i.e., wk) such that ck ≤ p.

As a consequence, any winner wk’s utility satisfies uk =
p− ck ≥ 0 and any loser’s utility equals to 0. Therefore, we

conclude that the DP-hSRC auction is individual rational.

Next, we provide our analysis about the algorithmic

properties of the proposed DP-hSRC auction regarding the

computational complexity and its approximation ratio to

the optimal total payment in Theorem 5 and 6. Firstly,

we analyze the computational complexity of our DP-hSRC

auction in the following Theorem 5.

Theorem 5. The computational complexity of the proposed

DP-hSRC auction is O(N2K).

Proof: The computational complexity of Algorithm 1 is

dominated by the main loop (line 6-15), which terminates in

worst case after N iterations. Furthermore, in every iteration

of the inner loop (line 8-13), one worker is selected as a

new winner. Thus, the inner loop also terminates in worst

case after N iterations. Besides, within the inner loop, after

a winner is selected the algorithm updates the Q′
j value

for every task τj ∈ T in the worst case. Therefore, the

overall computational complexity of the DP-hSRC auction

is O(N2K).

As proved in Theorem 5, our DP-hSRC auction described

in Algorithm 1 has polynomial-time computational complex-

ity depending on the number of workers N and the number

of tasks K. Furthermore, the computational complexity

provided in Theorem 5 does not depend on the cardinality

of the possible price set P , namely |P|. Before we analyze

the approximation ratio of the total payment generated by

Algorithm 1 to the optimal total payment ROPT in Theorem

6, we introduce Lemma 2 which is borrowed from [10]

(Theorem 5 in [10]). We define the unit measure of every

element in q and Q as ∆q and introduce additionally the

following two notations, i.e., β = maxi:wi∈N
∑

j:τj∈Γi
qi,j

and m = 1
∆q

∑
j:τj∈T Qj .

Lemma 2. Given ∀p ∈ P , we have that the cardinality of the

winner set returned by the proposed DP-hSRC auction S(p)
and that of the minimum-cardinality winner set SOPT(p)
satisfies that

|S(p)| ≤ 2βHm|SOPT(p)|. (13)

The relationship between the cardinality of the two sets

S(p) and SOPT(p) given in Lemma 2 is an important

intermediary result that will be utilized in the proof of the

following Theorem 6, which shows the approximation ratio

of the total payment generated by the DP-hSRC auction to

the optimal total payment.

Theorem 6. Suppose given any price x ∈ P , Algorithm

1 gives us a total payment R(x). Then, the expected total

payment generated by the DP-hSRC auction denoted by

Ex∈P [R(x)] and the optimal payment ROPT satisfies that

Ex∈P

[

R(x)
]

≤ 2βHmROPT +
6Ncmax

ǫ
ln

(

e+
ǫ|P|βHmROPT

cmin

)

.

Proof: We use Rmin and Rmax to denote the minimum

and maximum total payment generated by Algorithm 1 and

we define the following sets Bt = {x|R(x) > Rmin + t},
Bt = {x|R(x) ≤ Rmin + t} and B2t = {x|R(x) > Rmin +



2t} for some constant t > 0. Then, we have

Pr[x ∈ B2t] ≤
Pr[x ∈ B2t]

Pr[x ∈ Bt]
=

∑

x∈B2t

exp

(

−
ǫR(x)

2Ncmax

)

∑
y∈P exp

(

−
ǫR(y)

2Ncmax

)

∑

x∈Bt

exp

(

−
ǫR(x)

2Ncmax

)

∑
y∈P exp

(

−
ǫR(y)

2Ncmax

)

=

∑

x∈B2t
exp

(

−
ǫR(x)

2Ncmax

)

∑

x∈Bt
exp

(

−
ǫR(x)

2Ncmax

)

≤
|B2t|exp

(

−
ǫ(Rmin+2t)
2Ncmax

)

|Bt|exp
(

−
ǫ(Rmin+t)
2Ncmax

)

=
|B2t|

|Bt|
exp

(

−
ǫt

2Ncmax

)

.

Then, we can calculate Ex∈P

[
R(x)

]
as follows.

Ex∈P

[
R(x)

]
=

∑

x∈B2t

R(x)Pr[p = x] +
∑

x∈B2t

R(x)Pr[p = x]

≤ Rmin + 2t+Rmax
|B2t|

|Bt|
exp

(
−

ǫt

2Ncmax

)

≤ Rmin + 2t+Rmax|P|exp

(
−

ǫt

2Ncmax

)
.

Therefore, for any t ≥ ln
(

Rmax|P|
t

)
· 2Ncmax

ǫ
, we have

Ex∈P

[
R(x)

]
≤ Rmin + 3t. (14)

If we let t = ln
(
e + ǫ|P|Rmax

2Ncmax

)
· 2Ncmax

ǫ
≥ 2Ncmax

ǫ
, we

have

ln

(
Rmax|P|

t

)
·
2Ncmax

ǫ
≤ ln

(
e+

Rmax|P|ǫ

2Ncmax

)
·
2Ncmax

ǫ

= t.

Therefore, we can simply let t = ln
(
e + ǫ|P|Rmax

2Ncmax

)
·

2Ncmax

ǫ
and substitute t into Equation 14. We have

Ex∈P

[
R(x)

]
≤ Rmin + ln

(
e+

ǫ|P|Rmax

2Ncmax

)
·
6Ncmax

ǫ
.

Furthermore, since Rmax ≤ cmax

cmin
NRmin, we have

Ex∈P

[
R(x)

]
≤ Rmin + ln

(
e+

ǫ|P|Rmin

2cmin

)
·
6Ncmax

ǫ
.

Suppose the optimal total payment ROPT is achieved when

the price p = p∗, i.e., ROPT = p∗|SOPT(p
∗)|. Then, we have

Rmin ≤ p∗|S(p∗)| ≤ 2βHmp∗|SOPT(p
∗)| = 2βHmROPT.

Finally, we arrive at the conclusion that

Ex∈P

[

R(x)
]

≤ 2βHmROPT +
6Ncmax

ǫ
ln

(

e+
ǫ|P|βHmROPT

cmin

)

and we finish the proof of Theorem 6.

VII. PERFORMANCE EVALUATION

In this section, we present the baseline methods that we

use in the simulation, as well as the simulation settings and

results.

A. Baseline Method

Firstly, we compare the expected total payment of the

DP-hSRC auction with the optimal total payment ROPT.

Instead of solving the TPM problem approximately using

the method in Algorithm 1 (line 6-15), the exact optimal

solution SOPT(p) to the TPM problem given any fixed price

p ∈ P is calculated. Then, the optimal total payment

ROPT = minp∈P p|SOPT(p)| is derived by iterating over

every possible price p ∈ P .

Furthermore, we compare our DP-hSRC auction with a

baseline auction mechanism. For any fixed price p ∈ P , the

baseline auction selects the workers in N ′ = {wi|ρi ≤ p}
as winners according to the descending order of the value∑

j:τj∈Γi
qi,j until the error bound constraints of all tasks

are satisfied. Then, a price p is picked randomly using the

same method in Algorithm 1 (line 16). It is easily verifiable

that the baseline auction is also ǫ-differentially private, ǫ∆c-

truthful and individual rational.

B. Simulation Settings

Setting ǫ cmin cmax |Γ∗

i | θi,j δj N K

I 0.1 10 60 [10, 20] [0.1, 0.9] [0.1, 0.2] [80, 140] 30

II 0.1 10 60 [10, 20] [0.1, 0.9] [0.1, 0.2] 120 [20, 50]
III 0.1 10 60 [50, 150] [0.1, 0.9] [0.1, 0.2] [800, 1400] 200

IV 0.1 10 60 [50, 150] [0.1, 0.9] [0.1, 0.2] 1000 [200, 500]

Table I
SIMULATION SETTINGS

In Table I, we present the simulation settings. In setting

I, we fix the number of tasks as 30 and vary the number of

workers from 80 to 140. The privacy budget ǫ is set to be 0.1
and cmin and cmax is 10 and 60 respectively. Every worker

wi’s cost c
∗
i for her interested bundle Γ∗

i is chosen uniformly

at random from the numbers spaced at the interval of 0.1 in

the range [10, 60]. |Γ∗
i |, θi,j , and δj are generated uniformly

at random from the intervals given in Table I. Furthermore,

the price set P consists of all numbers spaced at the interval

of 0.1 in the range [35, 60]. In setting II, we fix the number

of workers as 120 and vary the number of tasks from 20 to

50. All the other parameters are the same as those in setting

I. In setting III and IV, the parameter ǫ, cmin, cmax, |Γ
∗
i |, θi,j ,

δj , c
∗
i , and P are generated using the same method as in the

previous two settings. The difference is that we increase the

input size of the settings. In setting III, we fix the number

of tasks as 200 and vary the number of workers from 800 to

1400, whereas in setting IV, we fix the number of workers

as 1000 and vary the number of tasks from 200 to 500.

Moreover, all the optimal solutions to the TPM problem are

calculated using the GUROBI optimization solver [46].
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Figure 1. Platform’s total payment
under setting I
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Figure 2. Platform’s total payment
under setting II
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Figure 3. Platform’s total payment
under setting III
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Figure 4. Platform’s total payment
under setting IV

C. Simulation Results

In Figure 1 and 2, for every given worker and task number,

we sample a price from the price distribution derived by

the DP-hSRC auction and the baseline auction, respectively,

for 10000 times. The corresponding mean and standard

deviation of the platform’s total payment calculated using

these price samples are plotted in Figure 1 and 2. From

these two figures, we observe that the platform’s average

total payment of the DP-hSRC auction is far better than that

of the baseline auction and fairly close to the optimal total

payment ROPT. Note that the nonsmoothness of the curves

in Figure 1 and 2, as well as those in the forthcoming Figure

3 and 4, is due to the randomness in generating the problem

instances.

N 80 88 96 104 112 120 128 136

DP-hSRC 0.156 0.158 0.157 0.161 0.161 0.156 0.165 0.159

Optimal 6.479 11.86 30.83 410.7 897.1 2337 2310 6139

K 20 24 28 32 36 40 44 48

DP-hSRC 0.152 0.153 0.153 0.158 0.157 0.157 0.160 0.162

Optimal 13.33 44.04 396.4 395.9 539.7 735.5 1188 2661

Table II
EXECUTION TIME (S) FOR SETTING I AND II

In Table II, we compare the execution time of the DP-

hSRC auction and the algorithm that computes the optimal

total payment ROPT. From this table, we can observe that

the DP-hSRC auction executes in significantly less time

than the optimal algorithm. Furthermore, the execution time

of the optimal algorithm becomes excessively long with

large numbers of tasks and workers so that it is infeasible

in practice. In contrast, regardless of the growth of the

number of users and tasks, the DP-hSRC auction keeps low

execution time. Hence, the DP-hSRC auction is much more

computationally efficient than the optimal algorithm.

In Figure 3 and 4, we consider setting III and IV given

in Table I. Setting III and IV have much more numbers of

workers and tasks than setting I and II. Under setting III

and IV, the scales of the problem have become so large that

make it infeasible for the optimal algorithm to return the

optimal results in reasonable time. In contrast, in Figure 3

and 4, we demonstrate that our DP-hSRC auction is still

able to generate total payment far better than the baseline

auction under setting III and IV.
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Figure 5. Trade-off between the platform’s total payment and privacy
leakage

In Figure 5, we plot the platform’s average total payment

and the privacy leackage of the DP-hSRC auction with the

increasing of the privacy budget ǫ. For any fixed ǫ, we define

the privacy leakage of the DP-hSRC auction as follows in

Definition 8.

Definition 8 (Privacy Leakage). Suppose the two bid profiles

b and b′ that differ in only one worker’s bid result in price

distributions with probability mass functions (PMFs) P and

P ′. The privacy leakage of the two bid profiles is defined

as the Kullback-Leibler (KL) divergence [47] of the two

distributions represented as follows.

Privacy Leakage = DKL(P ||P ′) =
∑

x∈P

P (x) ln

(
P (x)

P ′(x)

)
.

The KL divergence captures the statistical difference of

the two distributions P and P ′. The larger the statistical

difference is, the easier the two bid profiles b and b′ will be

distinguished and thus, the more the privacy leakage is. From

Figure 5, we can observe that as the decreasing of ǫ, the

privacy leakage decreases. Furthermore, such improvement

in privacy protection comes at a cost of the increased total

payment of the platform shown in Figure 5. Therefore,

Figure 5 illustrates the trade-off between the platform’s total

payment and the privacy leakage of the DP-hSRC auction.

VIII. CONCLUSION

In this paper, motivated by the need for the protection

of workers’ privacy in MCS systems, we develop a differ-

entially private incentive mechanism to incentivize worker

participation without disclosing their sensitive bid informa-

tion. The proposed mechanism is based on a novel design of

single-minded reverse combinatorial auction with heteroge-

neous cost, and thus bears several advantageous properties



including approximate truthfulness, individual rationality,

and computational efficiency. We conduct both theoretical

analysis and extensive simulations to show that the proposed

mechanism minimizes the expected total payment with a

guaranteed approximation ratio to the optimal total payment.
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