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- Finite element analysis is an art to predict the future -

To my students 

... Progress in design of new structures seems to be unlimited. 

Last sentence of article: "The Use of the Electronic 
Computer in Structural Analysis," by K. J. Bathe 
(undergraduate student), published in Impact, Journal of 
the University of Cape Town Engineering Society, pp. 57 -
61, 1967. 
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Preface - Second Edition 

It is almost two decades ago that the first edition of this book was first printed, and so far the 
text has been printed seventeen times. Although the edition is still much in demand, I decided 
that some updating of the text would be appropriate. 

Frequently, a second edition of a book is significantly more voluminous than the first 
edition. However, I decided that this book should not grow in size. Hence, to add any new text 
required the removal of some previously published text, and only new important material was 
to be added. 

This aim goes well with the basic objective of the book to focus on those finite 
element procedures that I consider very useful and that I believe will be in use for a long time. 

Although many papers on research and development of finite element methods have been 
published during the last two decades, the fundamental formulations and procedures, focused 
upon in this book, hardly changed. Hence, the updates to reach this new edition are not 
extensive. Only some important recent work is now briefly mentioned and referred to, and 
some recently developed novel procedures have been inserted in the new text. 

I would like to thank all my colleagues and students with whom I have collaborated in 
my endeavors on finite element procedures, and Victor Lee of ADINA R & D who has typeset 
the new added text. For me, the work on finite element procedures has been very exciting and 
gratifying, and continues to be so, as can be read about in my book "To Enrich Life". 

K.J. Bathe 

xiii 



Preface - First Edition 

Finite element procedures are now an important and frequently indispensable part of 
engineering analysis and design. Finite element computer programs are now widely used in 
practically all branches of engineering for the analysis of structures, solids, and fluids. 

My objective in writing this book was to provide a text for upper-level undergraduate 
and graduate courses on finite element analysis and to provide a book for self-study by 
engineers and scientists. 

With this objective in mind, I have developed this book from my earlier publication 
Finite Element Procedures in Engineering Analysis (Prentice-Hall, 1982). I have kept the 
same mode of presentation but have consolidated, updated, and strengthened the earlier 
writing to the current state of finite element developments. Also, I have added new sections, 
both to cover some important additional topics for completeness of the presentation and to 
facilitate (through exercises) the teaching of the material discussed in the book. 

This text does not present a survey of finite element methods. For such an endeavor. 
a number of volumes would be needed. Instead, this book concentrates only on certain finite 
element procedures, namely, on techniques that I consider very useful in engineering 
practice and that will probably be employed for many years to come. Also, these methods 
are introduced in such a way that they can be taught effectively-and in an exciting 
manner-to students. 

An important aspect of a finite element procedure is its reliability, so that the method 
can be used in a confident manner in computer-aided design. This book emphasizes this 
point throughout the presentations and concentrates on finite element procedures that are 
general and reliable for engineering analysis. 

Hence, this book is clearly biased in that it presents only certain finite element 
procedures and in that it presents these procedures in a certain manner. In this regard, the 
book reflects my philosophy toward the teaching and the use of finite element methods. 

xiv 



Preface xv 

While the basic topics of this book focus on mathematical methods, an exciting and 
thorough understanding of finite element procedures for engineering applications is 
achieved only if sufficient attention is given to both the physical and mathematical charac­
teristics of the procedures. The combined physical and mathematical understanding greatly 
enriches our confident use and further development of finite element methods and is there­
fore emphasized in this text. 

These thoughts also indicate that a collaboration between engineers and mathemati­
cians to deepen our understanding of finite element methods and to further advance in the 
fields of research can be of great benefit. Indeed, I am thankful to the mathematician Franco 
Brezzi for our research collaboration in this spirit, and for his valuable suggestions regard­
ing this book. 

I consider it one of the greatest achievements for an educator to write a valuable book. 
In these times, all fields of engineering are rapidly changing, and new books for students are 
needed in practically all areas of engineering. I am therefore grateful that the Mechanical 
Engineering Department of M.l. T. has provided me with an excellent environment in which 
to pursue my interests in teaching, research, and scholarly writing. While it required an 
immense effort on my part to write this book, I wanted to accomplish this task as a 
commitment to my past and future students, to any educators and researchers who might 
have an interest in the work, and, of course, to improve upon my teaching at M.I. T. 

I have been truly fortunate to work with many outstanding students at M.I.T., for 
which I am very thankful. It has been a great privilege to be their teacher and work with 
them. Of much value has also been that I have been intimately involved, at my company 
ADINA R & D, Inc., in the development of finite element methods for industry. This 
involvement has been very beneficial in my teaching and research, and in my writing of this 
book. 

A text of significant depth and breadth on a subject that came to life only a few decades 
ago and that has experienced tremendous advances, can be written only by an author who 
has had the benefit of interacting with many people in the field. I would like to thank all my 
students and friends who contributed-and will continue to contribute-to my knowledge 
and understanding of finite element methods. My interaction with them has given me great 
joy and satisfaction. 

I also would like to thank my secretary, Kristan Raymond, for her special efforts in 
typing the manuscript of this text. 

Finally, truly unbounded thanks are due to my wife, Zorka, and children, Ingrid and 
Mark, who, with their love and their understanding of my efforts, supported me in writing 
this book. 

K. J. Bathe 





IIICHAPTERONE .. 111111 .................... _ 

An Introduction 
to the Use of Finite 
Element Procedures 

1.1 INTRODUCTION 

Finite element procedures are at present very widely used in engineering analysis, and we 
can expect this use to increase significantly in the years to come. The procedures are 
employed extensively in the analysis of solids and structures and of heat transfer and fluids, 
and indeed, finite element methods are useful in virtually every field of engineering analysis. 

The development of finite element methods for the solution of practical engineering 
problems began with the advent of the digital computer. That is, the essence of a finite 
element solution of an engineering problem is that a set of governing algebraic equations is 
established and solved, and it was only through the use of the digital computer that this 
process could be rendered effective and given general applicability. These two properties­
effectiveness and general applicability in engineering analysis-are inherent in the theory 
used and have been developed to a high degree for practical computations, so that finite 
element methods have found wide appeal in engineering practice. 

As is often the case with original developments, it is rather difficult to quote an exact 
"date of invention," but the roots of the finite element method can be traced back to three 
separate research groups: applied mathematicians-see R. Courant [A]; physicists-see 
J. L. Synge [A]; and engineers-see J. H. Argyris and S. Kelsey [A]. Although in principle 
published already, the finite element method obtained its real impetus from the develop­
ments of engineers. The original contributions appeared in the papers by J. H. Argyris and 
S. Kelsey (A]; M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp [A]; and R. W. 
Clough [A]. The name "finite element" was coined in the paper by R. W. Clough [A]. 
Important early contributions were those of J. H. Argyris [A] and 0. C. Zienkiewicz and 
Y. K. Cheung [A]. Since the early 1960s, a large amount of research has been devoted to 
the technique, and a very large number of publications on the finite element method is 

1 



2 An Introduction to the Use of Finite Element Procedures Chap. 1 

available (see, for example, the compilation of references by A. K. Noor [A] and the Finite 
Element Handbook edited by~· Kardestuncer and D. H. Norrie [A)). 

The finite element method in engineering was initially developed on a physical basis 
for the analysis of problems in structural mechanics. However, it was soon recognized that 
the technique could be applied equally well to the solution of many other classes of 
problems. The objective of this book is to present finite element procedures comprehen­
sively and in a broad context for solids and structures, field problems (specifically heat 
transfer), and fluid flows. 

To introduce the topics of this book we consider three important items in the following 
sections of this chapter. First, we discuss the important point that in any analysis we always 
select a mathematical model of a physical problem, and then we solve that model. The finite 
element method is employed to solve very complex mathematical models, but it is important 
to realize that the finite element solution can never give more information than that 
contained in the mathematical model. 

Then we discuss the importance of finite element analysis in the complete process of 
computer-aided design (CAD). This is where finite element analysis procedures have their 
greatest utility and where an engineer is most likely to encounter the use of finite element 
methods. 

In the last section of this chapter we mention some recent important research accom­
plishments that have been reached since the first publication of this book in 1996. These 
achievements have been published in numerous papers, of which we can only mention 
some, but it is important to note that these research efforts build, to a large degree, upon the 
fundamental finite element procedures focused upon in this book. 

1.2 PHYSICAL PROBLEMS, MATHEMATICAL MODELS, 
AND THE FINITE ELEMENT SOLUTION 

The finite element method is used to solve physical problems in engineering analysis and 
design. Figure 1.1 summarizes the process of finite element analysis. The physical problem 
typically involves an actual structure or structural component subjected to certain loads. 
The idealization of the physical problem to a mathematical model requires certain assump­
tions that together lead to differential equations governing the mathematical model (see 
Chapter 3). The finite element analysis solves this mathematical model. Since the finite 
element solution technique is a numerical procedure, it is necessary to assess the solution 
accuracy. If the accuracy criteria are not met, the numerical (i.e., finite element) solution 
has to be repeated with refined solution parameters (such as finer meshes) until a sufficient 
accuracy is reached. 

It is clear that the finite element solution will solve only the selected mathematical 
model and that all assumptions in this model will be reflected in the predicted response. We 
cannot expect any more information in the prediction of physical phenomena than the 
information contained in the mathematical model. Hence the choice of an appropriate 
mathematical model is crucial and completely determines the insight into the actual physical 
problem that we can obtain by the analysis. 
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Figure 1.1 The process of finite element analysis 
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Let us emphasize that, by our analysis, we can of course only obtain insight into the 
physical problem considered: we cannot predict the response of the physical problem 
exactly because it is impossible to reproduce even in the most refined mathematical model 
all the information that is present in nature and therefore contained in the physical problem. 

Once a mathematical model has been solved accurately and the results have been 
interpreted, we may well decide to consider next a refined mathematical model in order to 
increase our insight into the response of the physical problem. Furthermore, a change in the 
physical problem may be necessary, and this in turn will also lead to additional mathemat­
ical models and finite element solutions (see Fig. 1.1 ). 

The key step in engineering analysis is therefore choosing appropriate mathematical 
models. These models will clearly be selected depending on what phenomena are to be 
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predicted, and it is most important to select mathematical models that are reliable and 
effective in predicting the quantities sought. 

To define the reliability and effectiveness of a chosen model we think of a very­
comprehensive mathematical model of the physical problem and measure the response of 
our chosen model against the response of the comprehensive model. In general, the very­
comprehensive mathematical model is a fully three-dimensional description that also in­
cludes nonlinear effects. 

Effectiveness of a mathematical model 
The most effective mathematical model for the analysis is surely that one which yields 
the required response to a sufficient accuracy and at least cost. 
Reliability of a mathematical model 
The chosen mathematical model is reliable if the required response is known to be 
predicted within a selected level of accuracy measured on the response of the very­
comprehensive mathematical model. 

Hence to assess the results obtained by the solution of a chosen mathematical model, 
it may be necessary to also solve higher-order mathematical models, and we may well think 
of (but of course not necessarily solve) a sequence of mathematical models that include 
increasingly more complex effects. For example, a beam structure (using engineering termi­
nology) may first be analyzed using Bernoulli beam theory, then Timoshenko beam theory, 
then two-dimensional plane stress theory, and finally using a fully three-dimensional 
continuum model, and in each case nonlinear effects may be included. Such a sequence of 
models is referred to as a hierarchy of models (see K. I. Bathe, N. S. Lee, and M. L. Bucalem 
[A]). Clearly, with these hierarchical models the analysis will include ever more complex 
response effects but will also lead to increasingly more costly solutions. As is well known, 
a fully three-dimensional analysis is about an order of magnitude more expensive (in 
computer resources and engineering time used) than a two-dimensional solution. 

Let us consider a simple example to illustrate these ideas. 
Figure l .2(a) shows a bracket used to support a vertical load. For the analysis, we need 

to choose a mathematical model. This choice must clearly depend on what phenomena are 
to be predicted and on the geometry, material properties, loading, and support conditions 
of the bracket. 

We have indicated in Fig. l.2(a) that the bracket is fastened to a very thick steel 
column. The description "very thick" is of course relative to the thickness t and the height 
h of the bracket. We translate this statement into the assumption that the bracket is fastened 
to a (practically) rigid column. Hence we can focus our attention on the bracket by applying 
a Hrigid column boundary condition" to it. (Of course, at a later time, an analysis of the 
column may be required, and then the loads carried by the two bolts, as a consequence of 
the load W, will need to be applied to the column.) 

We also assume that the load W is applied very slowly. The condition of time "very 
slowly" is relative to the largest natural period of the bracket; that is, the time span over 
which the load Wis increased from zero to its full value is much longer than the fundamen­
tal period of the bracket. We translate this statement into requiring a static analysis (and not 
a dynamic analysis). 
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With these preliminary considerations we can now establish an appropriate mathe­
matical model for the analysis of the bracket-depending on what phenomena are to be 
predicted. Let us assume, in the first instance, that only the total bending moment at section 
AA in the bracket and the deflection at the load application are sought. To predict these 
quantities, we consider a beam mathematical model including shear deformations [see 
Fig. l.2(b)] and obtain 

M= WL 

= 27,500 N cm 

Bl _ ! W(L + rN)3 W(L + rN) 
atloadW - 3 £/ + iAG 

= 0.053 cm 

Two bolts -------
Uniform 
thickness t 

w 

(a) Physical problem of steel bracket 

1A 
I 
:-,---- rN = 0.5 cm 

W= 1000 N 
L = 27.5cm 
rN= 0.6cm 
E = 2 x 107 N/cm2 

v = 0.3 
h == 6.0cm 
t == 0.4cm 

Pin 

I 
I 
I 

W= 1000 N 

h=6cm , ....... _...,..x ---- -------

I I A L + rN= 28 cm 

{b) Beam model 

Figure 1.2 Bracket to be analyzed and two mathematical models 

(1.1) 

(1.2) 
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Areas with imposed zero displacements u, v 

Hole w 
Load applied 
at point B 

x, u 

Equilibrium equations (see Example 4.2) 

OTxx + aTxy = OJ 
~ax ay in domain of bracket 
uTyx + cJTyy = O 
ax ay 

T,111 = 0, 'Tm = 0 on surfaces except at point B 
and at imposed zero displacements 

Stress-strain relation (see Table 4.3): 

[ ~:] = A [~ ~ ~ ][:::] 
Txy - V O O (1 - v)/2 ,'xy 

E = Young's modulus, v = Poisson's ratio 

Strain-displacement relations (see Section 4.2): 

au 
E.u = ox; 

av 
Eyy = iJy; 

au av 
'Yxy = ay + ax 

(c) Plane stress model 

Figure 1.2 (continued) 

Chap. 1 

where Land rN are given in Fig. l.2(a), Eis the Young's modulus of the steel used, G is the 

shear modulus, I is the moment of inertia of the bracket arm (I = n.h 3t), A is the cross­
sectional area (A = ht), and the factor i is a shear correction factor (see Section 5.4.1). 

O'f course, the relations in ( 1.1) and ( 1.2) assume linear elastic infinitesimal displace­
ment conditions, and hence the load must not be so large as to cause yielding of the material 
and/or large displacements. 

Let us now ask whether the mathematical model used in Fig. 1.2(b) was reliable and 
effective. To answer this question, strictly, we should consider a very-comprehensive math­
ematical model, which in this case would be a fully three-dimensional representation of the 
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full bracket. This model should include the two bolts fastening the bracket to the (assumed 
rigid) column as well as the pin through which the load Wis applied. The three-dimensional 
solution of this model using the appropriate geometry and material data would give the 
numbers against which we would compare the answers given in ( 1.1) and ( 1.2 ). Note that 
this three-dimensional mathematical model contains contact conditions (the contact is 
between the bolts, the bracket, and the column, and between the pin carrying the load and 
the bracket) and stress concentrations in the fillets and at the holes. Also, if the stresses 
are high, nonlinear material conditions should be included in the model. Of course, an 
analytical solution of this mathematical model is not available, and all we can obtain is a 
numerical solution. We describe in this book how such solutions can be calculated using 
finite element procedures, but we may note here already that the solution would be rela­
tively expensive in terms of computer resources and engineering time used. 

Since the three-dimensional comprehensive mathematical model is very likely too 
comprehensive a model (for the analysis questions we have posed), we instead may consider 
a linear elastic two-dimensional plane stress model as shown in Fig. 1.2(c). This mathemat­
ical model represents the geometry of the bracket more accurately than the beam model and 
assumes a two-dimensional stress situation in the bracket (see Section 4.2). The bending 
moment at section AA and deflection under the load calculated with this model can be 
expected to be quite close to those calculated with the very-comprehensive three­
dimensional model, and certainly this two-dimensional model represents a higher-order 
model against which we can measure the adequacy of the results given in ( 1.1) and ( 1.2). 
Of course, an analytical solution of the model is not available, and a numerical solution must 
be sought. 

Figures 1.3(a) to (e) show the geometry and the finite element discretization used in 
the solution of the plane stress mathematical model and some stress and displacement 
results obtained with this discretization. Let us note the various assumptions of this math­
ematical model when compared to the more comprehensive three-dimensional model dis­
cussed earlier. Since a plane stress condition is assumed, the only nonzero stresses are Txx, 

Tyy, and Txy, Hence we assume that the stresses Tm Tyz, and Tz.x are zero. Also, the actual bolt 
fastening and contact conditions between the steel column and the bracket are not included 

0 

0 

(a) Geometry of bracket as obtained from a CAD program 

Figure 1.3 Plane stress analysis of bracket in Fig. 1.2. AutoCAD was used to create the 
geometry, and ADINA was used for the finite element analysis. 



(b) Mesh of nine-node elements used in finite element dis­
cretization 

(c) Deflected shape. Deflections are drawn with a magnifi­
cation factor of 100 together with the original configura­
tion 

(d) Maximum principal stress near notch. Un­
smoothed stress results are shown. The small 
breaks in the bands indicate that a reasonably 
accurate solution of the mathematical model 
has been obtained (see Section 4.3.6) 

(el Maximum principal stress near notch. 
Smoothed stress results. (The averages of 
nodal point stresses are taken and interpo­
lated over the elements.) 

Figure 1.3 (continued) 

8 
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in the model, and the pin carrying the load into the bracket is not modeled. However, since 
our objective is only to predict the bending moment at section AA and the deflection at point 
B, these assumptions are deemed reasonable and of relatively little influence. 

Let us assume that the results obtained in the finite element solution of the mathemat­
ical model are sufficiently accurate that we can refer to the solution given in Fig. 1.3. as the 
solution of the plane stress mathematical model. 

Figure l .3(c) shows the calculated deformed configuration. The deflection at the point 
of load application B as predicted in the plane stress solution is 

8la11oad w = 0.064 cm 

Also, the total bending moment predicted at section AA is 

M lx=o = 27 ,500 N cm 

(l.3) 

(1.4) 

Whereas the same magnitude of bending moment at section AA is predicted by the 
beam model and the plane stress model, 1 the deflection of the beam model is considerably 
less than that predicted by the plane stress model [because of the assumption that the beam 
in Fig. 1.2(b) is supported rigidly at its left end, which neglects any deformation between 
the beam end and the bolts]. 

Considering these results, we can say that the beam mathematical model in Fig. l .2(b) 
is reliable if the required bending moment is to be predicted within 1 percent and the 
deflection is to be predicted only within 20 precent accuracy. The beam model is of course 
also effective because the calculations are performed with very little effort. 

On the other hand, if we next ask for the maximum stress in the bracket, then the 
simple mathematical beam model in Fig. l .2(b) will not yield a sufficiently accurate answer. 
Specifically, the beam model totally neglects the stress increase due to the fillets.2 Hence a 
plane stress solution including the fillets is necessary. 

The important points to note here are the following. 

1. The selection of the mathematical model must depend on the response to be predicted 
(i.e., on the questions asked of nature). 

2. The most effective mathematical model is that one which delivers the answers to the 
questions in a reliable manner (i.e., within an acceptable error) with the least amount 
of effort. 

3. A finite element solution can solve accurately only the chosen mathematical model 
(e.g., the beam model or the plane stress model in Fig. 1.2) and cannot predict any 
more information than that contained in the model. 

4. The notion of reliability of the mathematical model hinges upon an accuracy assess­
ment of the results obtained with the chosen mathematical model (in response to the 
questions asked) against the results obtained with the very-comprehensive mathemat­
ical model. However, in practice the very-comprehensive mathematical model is 

I The bending moment at section AA in the plane stress model is calculated here from the finite element 
nodal point forces, and for this statically determinate analysis problem the internal resisting moment must be equal 
to the externally applied moment (see Example 4.9). 

2 Of course, the effect of the fillets could be estimated by the use of stress concentration factors that have 
been established from plane stress solutions. 
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usually not solved, and instead engineering experience is used, or a more refined 
mathematical model is solved, to judge whether the mathematical model used was 
adequate (i.e., reliable) for the response to be predicted. 

Finally, there is one further important general point. The chosen mathematical model 
may contain extremely high stresses because of sharp corners, concentrated loads, or other 
effects. These high stresses may be due solely to the simplifications used in the model when 
compared with the very-comprehensive mathematical model (or with nature). For example. 
the concentrated load in the plane stress model in Fig. 1.2(c) is an idealization of a pressure 
load over a small area. (This pressure would in nature be transmitted by the pin carrying 
the load into the bracket.) The exact solution of the mathematical model in Fig. 1.2(c) gives 
an infinite stress at the point of load application, and we must therefore expect a very large 
stress at point B as the finite element mesh is refined. Of course, this very large stress is an 
artifice of the chosen model, and the concentrated load should be replaced by a pressure 
load over a small area when a very fine discretization is used (see further discussion). 
Furthermore, if the model then still predicts a very high stress, a nonlinear mathematical 
model would be appropriate. 

Note that the concentrated load in the beam model in Fig. l .2(b) does not introduce 
any solution difficulties. Also, the right-angled sharp corners at the support of the beam 
model, of course, do not introduce any solution difficulties, whereas such corners in a plane 
stress model would introduce infinite stresses. Hence, for the plane stress model, the corners 
have to be rounded to more accurately represent the geometry of the actual physical bracket. 

We thus realize that the solution of a mathematical model may result in artificial 
difficulties that are easily removed by an appropriate change in the mathematical model to 
more closely represent the actual physical situation. Furthermore, the choice of a more 
encompassing mathematical model may result, in such cases, in a decrease in the required 
solution effort. 

While these observations are of a general nature, let us consider once again. 
specifically, the use of concentrated loads. This idealization of load application is exten­
sively used in engineering practice. We now realize that in many mathematical models (and 
therefore also in the finite element solutions of these models), such loads create stresses of 
infinite value. Hence, we may ask under what conditions in engineering practice solution 
difficulties may arise. We find that in practice solution difficulties usually arise only when 
the finite element discretization is very fine, and for this reason the matter of infinite stresses 
under concentrated loads is frequently ignored. As an example, Fig. 1.4 gives finite element 
results obtained in the analysis of a cantilever, modeled as a plane stress problem. The 
cantilever is subjected to a concentrated tip load. In practice, the 6 X 1 mesh is usually 
considered sufficiently fine, and clearly, a much finer discretization would have to be used 
to accurately show the effects of the stress singularities at the point of load application and 
at the support. As already pointed out, if such a solution is pursued, it is necessary to change 
the mathematical model to more accurately represent the actual physical situation of the 
structure. This change in the mathematical model may be important in self-adaptive finite 
element analyses because in such analyses new meshes are generated automatically and 
artificial stress singularities cause-artificially-extremely fine discretizations. 

We refer to these considerations in Section 4.3.4 when we state the general elasticity 
problem considered for finite element solution. 
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results are: b = 0.16, 'tmax = 116 
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Figure 1.4 Analysis of a cantilever as a plane stress problem 
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In summary, we should keep firmly in mind that the crucial step in any finite element 
analysis is always choosing an appropriate mathematical model since a finite element 
solution solves only this model. Furthermore, the mathematical model must depend on the 
analysis questions asked and should be reliable and effective (as defined earlier). In the 
process of analysis, the engineer has to judge whether the chosen mathematical model has 
been solved to a sufficient accuracy and whether the chosen mathematical model was 
appropriate (i.e., reliable) for the questions asked. Choosing the mathematical model, 
solving the model by appropriate finite element procedures, and judging the results are the 
fundamental ingredients of an engineering analysis using finite element methods. 

1.3 FINITE ELEMENT ANALYSIS AS AN INTEGRAL PART 
OF COMPUTER-AIDED ENGINEERING 

Although a most exciting field of activity, engineering analysis is clearly only a support 
activity in the larger field of engineering design. The analysis process helps to identify good 
new designs and can be used to improve a design with respect to performance and cost. 

In the early use of finite element methods, only specific structures were analyzed, 
mainly in the aerospace and civil engineering industries. However, once the full potential 
of finite element methods was realized and the use of computers increased in engineering 
design environments, emphasis in research and development was placed upon making the 
use of finite element methods an integral part of the design process in mechanical, civil, and 
aeronautical engineering. 
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CAO CAM 

~ 
Geometry generation 

Robotics 

~@.~!mm,,ed woruhop 
Interactive use 
of software 

Assemblage process 

Management of process 

Figure l.S The field of CAE viewed schematically 

Figure 1.5 gives a schematic of the steps in computer-aided engineering, see K. J. Bathe 
[C, D, H). Finite element analysis is only a part of the complete process, but it is an important 
part. 

We note that the first step in Figure 1.5 is the creation of a geometric representation 
of the design part. Many different computer programs can be employed (e.g., a typical and 
popular program is AutoCAD). In this step, the material properties, the applied loading and 
boundary conditions on the geometry also need to be defined. Given this information, a 
finite element analysis may proceed. Since the geometry and other data of the actual 
physical part may be quite complex, it is usually necessary to simplify the geometry and 
loading in order to reach a tractable mathematical model. Of course, the mathematical 
model should be reliable and effective for the analysis questions posed, as discussed in the 
preceding section. The finite element analysis solves the chosen mathematical model, which 
may be changed and evolve depending on the purpose of the analysis (see Fig. 1.1 ). 

Considering this process-which generally is and should be performed by engineer­
ing designers and not only specialists in analysis-we recognize that the finite element 
methods must be very reliable and robust. By reliability of the finite element methods we 
now3 mean that in the solution of a well-posed mathematical model, the finite element 
procedures should always for a reasonable finite element mesh give a reasonable solution, 

3 Note that this meaning of "reliability of finite element methods" is different from that of "reliability of a 
mathematical model" defined in the previous section. 
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and if the mesh is reasonably fine, an accurate solution should always be obtained. By 
robustness of the finite element methods we mean that the performance of the finite element 
procedures should not be unduly sensitive to the material data, the boundary conditions, 
and the loading conditions used. Therefore, finite element procedures that are not robust 
will also not be reliable. 

For example, assume that in the plane stress solution of the mathematical model in 
Fig. l .2(c), any reasonable finite element discretization using a certain element type is 
employed. Then the solution obtained from any such analysis should not be hugely in error, 
that is, an order of magnitude larger (or smaller) than the exact solution. Using an unreliable 
finite element for the discretization would typically lead to good solutions for some mesh 
topologies, whereas with other mesh topologies it would lead to bad solutions. Elements 
based on reduced integration with spurious zero energy modes can show this unreliable 
behavior (see Section 5.5.6). 

Similarly, assume that a certain finite element discretization of a mathematical model 
gives accurate results for one set of material parameters and that a small change in the 
parameters corresponds to a small change in the exact solution of the mathematical model. 
Then the same finite element discretization should also give accurate results for the math­
ematical model with the small change in material parameters and not yield results that are 
very much in error. 

These considerations regarding effective finite element discretizations are very im­
portant and are discussed in the presentation of finite element discretizations and their 
stability and convergence properties (see Chapters 4 to 7). For use in engineering design, 
it is of utmost importance that the finite element methods be reliable, robust, and of course 
efficient. Reliability and robustness are important because a designer has relatively little 
time for the process of analysis and must be able to obtain an accurate solution of the chosen 
mathematical model quickly and without "trial and error." The use of unreliable. finite 
element methods is simply unacceptable in engineering practice. 

A general aim in a finite element analysis is also the calculation of error estimates, that is, 
estimates of how closely the finite element solution approximates the exact solution of the 
solution of the mathematical model (see Section 4.3.6). These estimates indicate whether a spe­
cific finite element discretization has indeed yielded an accurate response prediction, and a de­

signer can then rationally decide whether the given results should be used. In the case that un­
acceptable results have been obtained, perhaps by using unreliable finite element methods, the 
difficulty is of course how to obtain accurate results. 

Finally, we venture to comment on the future of finite element methods in CAE and the 
engineering sciences. Surely, many designers do not have time to study finite element methods 
in depth. Their sole objective is to use these techniques to enhance the design product. Hence 
the integrated use of fmite element methods in CAE ideally involves less scrutiny of finite 
element meshes during the analysis, so that the engineer can focus on the actual questions relat­
ed to the design. This has now been achieved to some extent, but a fully automatic solution 
involving all steps of analysis is so far only possible some simple design questions. The aspects 
of human judgments and solution costs play major roles in complex analyses involving dyna­
mic or nonlinear response solutions, including the selection of an appropriate mathematical 
model, see M.L. Bucalem and K.J. Bathe [B], and may require considerable analysis expertise. 
Also, the simulations sought become increasingly more complex, involving not only solids and 
structures, but multiphysics phenomena with solids, fluids, piezoelectrics, electromagnetics and 
their interactions, see for example K. J. Bathe [I, K, L], P. Gaudenzi and K. J. Bathe [A], K. J. 
Bathe, H. Zhang, and Y. Yan [A] and C. Deilmann and K. J. Bathe [A]. 
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Considering the use of finite element methods in the engineering sciences, while there is 
considerable use already, there is much further potential for development and applications. In 
essence, the aim in all analyses, in engineering and in the sciences, is to predict-to predict 
how a chosen design or a structure will perform, or to predict why and how in sciences a 
specific phenomenon occurs. Clearly, the human spirit is extremely interested in predicting, 
and when using the finite element process much can be done in that respect. 

With these remarks we do not wish to suggest overconfidence but to express a realistic 
outlook with respect to the valuable and exciting future use of finite element procedures. For 
some remarks on overconfidence in regard to finite element methods, see the article "A 
Commentary on Computational Mechanics" by J. T. Oden and K. J. Bathe [A]. 

1.4 SOME RECENT RESEARCH ACCOMPLISHMENTS 

Since the publication of the 1996 edition of this book, significant research has focused on new 
finite element developments, primarily, to address the solution of physical problems that before 
could not be solved, to alleviate the human effort required to perform a finite element analysis, 
and to establish computationally faster solution schemes. These aims to perform simulations 
more broadly and more effectively are naturally very important to be addressed in research and 
developments. 

Numerous papers have been published on these topics, and it is hardly possible to 
describe in a single book all these recent developments with an exhaustive list of references 
while also presenting in some detail important fundamental formulations and finite element 
techniques which are the focus of this book. In accordance with this focus, it is however 
appropriate to refer to some major recent research, published in many papers, briefly here. 
While mostly academically excellent research accomplishments, the step from a publication of 
a method in a paper to its wide use is very large and, frequently, it is still questionable in how 
far the proposed methods will actually advance the state of simulations in practice. 

A very natural further development of finite element procedures is based on "enriching 
the interpolation functions0 used. Usually, simple polynomial functions are employed but other 
functions for specific problem solutions can be more effective. In fact, the best interpolation 
functions are clearly always those that contain the solution sought (see Section 4.3). Some of 
the first developments in this regard are the special crack tip elements, see S.E. Benzley [A], 
special pipe elements to include ovalization modes, see K.J. Bathe and C. A. Almeida [A], and 
special elements with discontinuities, see E.N. Dvorkin, A.M. Cuitifio, and G. Gioia, [A]. The 
procedure to enrich finite element interpolation functions can be valuable, in particular, for the 
analyses of structures with cracks and crack propagations, see N. Moes, J. Dolbow, and T. 
Belytschko [A], and the solution of wave propagations, see S. Ham and K.J. Bathe [A]. More 
recently, the approach has been named "extended finite element method" or in short XFEM, 
see N. Sukumar, N. Moes, B. Moran, and T. Belytschko [A], "generalized finite element 
method", see T. Strouboulis, K. Copps, and I. Babuska [A], and the "partition of unity finite 
element method", see J.M. Melenk and I. Babuska [A]. In essence, the usual, widely employed 
finite element discretizations and interpolation functions are in these approaches enriched with 
special functions, known to be effective for the solution of specific problems. A valuable other 
development for general polygonal elements preserving polynomial accuracy and continuity 
requirements has been proposed by L. Beirao da Veiga, F. Brezzi, A. Cangiani, G. Manzini, 
L.D. Marini, and A. Russo [A]. An important consideration in all developments is, of course, 
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to ensure that the overall solution is computationally always effective, in particular when 
considering solutions in three-dimensional complex domains, see R. Tian, G. Yagawa, and H. 
Terasaka [A] and S. Ham and K.J. Bathe [A]. 

Instead of embedding new special functions in the finite element interpolations, also 
"interpolation covers" can be used to increase the accuracy of the solution while always 
working with non-singular, well-conditioned stiffness matrices, see C.A. Duarte, I. Babuska, 
and J.T. Oden [A], J.H. Kim and K.J. Bathe [A,BJ and H.M. Jeon, P. S. Lee, and K.J. Bathe 
[A]. This approach is appealing because the standard finite elements are used and covers are 
applied only when needed in certain areas of the finite element mesh, without remeshing. The 
basic idea relates to the original development of the "numerical manifold method", see G .H. 
Shi [A] and G.W. Ma, X.M. An, H.H. Zhang, and L.X. Li [A]. 

To increase the accuracy of solution, mostly just the mesh density is increased in the 
areas of large solution errors. However, remeshing using traditional finite element 
interpolations that are continuous over the element boundaries can be computationally 
demanding and here the discontinuous Galerkin finite element procedures have been proposed, 
see F. Bassi and S. Rebay [A], D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini [A] and 
L. Noels and R. Radovitzky [A]. The elements are formulated with discontinuous 
interpolations, and, in theory, a mesh density can be easily increased. Various interesting forms 
of discontinuous finite element formulations exist. 

In practice, a major effort in finite element analysis frequently pertains to the generation 
of a good finite element mesh. The geometry is constructed in the finite element preprocessor 
or taken as input to the preprocessor from a CAD package, like NX or SolidWorks. Simple 
geometries can directly be meshed but frequently the CAD geometry is first worked on to 
simplify the geometry, for example to remove small features such as small holes, or to convert 
a thin three-dimensional geometry into a two-dimensional surface of a shell structure. The 
result is a geometry tractable for analysis, that is, given in terms of lines ( defining surfaces and 
volumes) associated with control points for the lines. This geometry is then meshed with finite 
elements defined by nodal points and degrees of freedom on and within the geometry. Instead 
of defining the elements in this way, some recent research has focused on defining the finite 
elements and the interpolations of solution variables directly by the CAD interpolation 
functions used to define the CAD geometry, with degrees of freedom located at the control 
points of the CAD functions. These control points are mostly not located on the CAD lines and 
are usually located outside the physical domain that is considered in the analysis. Much 
research has been focused on this interesting approach, see for example P. Kagan, A. Fischer, 
and P.Z. Bar-Yoseph [A] and T.J.R Hughes, J.A. Cottrell, and Y. Bazilevs [A). 

For the finite element mesh generation, today, very powerful programs are in use, but it is 
a specific challenge to only generate "good elements", which means elements that are close to 
their· natural geometries, for example in three~dimensional analysis, tetrahedral elements of 
equal sides and not thin and long elements. In fluid mechanics solutions, it is particularly 
important that the lines connecting the centers of the elements are perpendicular to the element 
faces (for the upwinding procedures used, see Chapter 7.4.3). The difficulty of obtaining a 
good mesh of elements stems, in essence, from the fact that the complete geometry needs to be 
covered with finite elements that do not overlap. Good element meshes can be generated quite 
easily in two-dimensional analyses but not so for complex three-dimensional solutions. 

To by-pass the need for a mesh, so-called "meshless methods" (or meshfree methods) 
have been developed. Here nodal points are used with unknown solution variables, like in the 
finite element method, but the domains pertaining to these nodes are different. Some specific 
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developments are the .. element-free Galerkin methods", see T. Belytschko, Y.Y. Lu, and L. Gu 
[A], the "reproducing kernel particle methods", see W.K. Liu, S. Jun, and Y.F. Zhang [A], the 
"meshless cloud method", see T.J. Liszka, C.A.M. Duarte, and W.W. Tworzydlo [A] and J.T. 
Oden, C.A.M. Duarte, and O.C. Zienkiewicz [A], the "finite point method", see E. Ofiate, S. 
Idelsohn, O.C. Zienkiewicz, and R.L.Taylor [A], the "meshless Petrov-Galerkin method", see 
S.N. Atluri and T. Zhu [A], the "method of finite spheres", see S. De and K.J. Bathe [A, B] and 
J.W. Hong and K.J. Bathe [A], and "particle methods", see T. Rabczuk, T. Belytschko, and 
S.P. Xiao [A] and G.R. Liu [A]. While the basic ideas ofmeshless methods are very appealing, 
the difficulties are in the expense of the numerical integrations and, sometimes, in the use of 
numerical factors (undesirable in practice) to have a stable scheme. Of course, in principle, the 
interpolation enhancements mentioned above can also be embedded into meshless methods, see 
S. Ham, B. Lai, and K.J. Bathe [A]. 

Considering the method of finite spheres, it can be thought of as a finite element method 
in which the elements (here now the discs, spheres) overlap. Using 11overlapping finite 
elements" (including quadrilaterals and bricks, and only near the boundaries of a CAD domain) 
coupled with traditional finite elements, an analysis scheme with much promise has been 
proposed for CAD driven analyses in K.J. Bathe [M] and K.J. Bathe and L. Zhang [A]. 

Significant further research effort has also been directed to the more effective analysis of 
shells. These structures are very difficult to analyze because of their extremely rich linear and 
nonlinear behavior, see D. Chapelle and K.J. Bathe [B,E]. Progress has been achieved in 
establishing more encompassing formulations, see M. Bischoff and E. Ramm [A], D. Chapelle, 
A. Ferent, and K.J. Bathe [A], T. Sussman and K.J. Bathe [D], formulating new elements, see 
P.S. Lee and K.J. Bathe [A], proposing different discretization techniques, see F. Cirak, M. 
Ortiz, and P. Schroder [A] and identifying stringent test problems with appropriate norms to 
measure the solution accuracy, see K.J. Bathe and P.S. Lee [A]. As pointed out in Section 
5.4.2, the stringent testing of any shell discretization technique is very important, see D. 
Chapelle and K.J. Bathe [E]. 

Of much interest in engineering practice is the solution of increasingly larger finite 
element systems. This is achieved through combinations of sparse and iterative solvers in 
parallel processing, on shared and distributed memory machines. Finite element solutions with 
millions of degrees of freedom are now routinely obtained, see for example K.J. Bathe [J, K], 
and this trend towards the solution of larger finite element models must be expected to 
continue. 

Today, an increased emphasis of finite element analysis is on the solution of fluid­
structure interactions, see S. Rugonyi and K.J. Bathe [A], and general multiphysics problems 
involving structures, fluids and electromagnetics, see K.J. Bathe, H. Zhang, and Y. Yan [A]. 
Simulations are performed from the nano- to the kilometer scales, like the modeling of proteins 
and DNA structures, see e.g. M. Bathe [A], to the modeling of the earth crust for understanding 
earthquakes. The possible applications are vast in the various fields of engineering and the 
sciences, and simulations will be possible and pursued to an ever increasing extent, due to the 
increase in capabilities of software and hardware. Indeed, we may conjecture that ''we are still 
only at the beginning of all the many and varied simulations that will be performed in the 
future because to understand and predict is a basic and most valuable desire of mankind." 

In many of these developments and applications, the finite element procedures given in 
this book are fundamental ingredients that have been built upon. The procedures given in the 
book are those that we can expect to be used for a long time, because they are reliable and 
effective, they are used already extensively in practice, and represent foundations for many 
further developments. 
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Vectors, Matrices, 
and Tensors 

2.1 INTRODUCTION 

The use of vectors, matrices, and tensors is of fundamental importance in engineering 
analysis because it is only with the use of these quantities that the complete solution process 
can be expressed in a compact and elegant manner. The objective of this chapter is to 
present the fundamentals of matrices and tensors, with emphasis on those aspects that are 
important in finite element analysis. 

From a simplistic point of view, matrices can simply be taken as ordered arrays of 
numbers that are subjected to specific rules of addition, multiplication, and so on. It is of 
course important to be thoroughly familiar with these rules, and we review them in this 
chapter. 

However, by far more interesting aspects of matrices and matrix algebra are recog­
nized when we study how the elements of matrices are derived in the analysis of a physical 
problem and why the rules of matrix algebra are actually applicable. In this context, the use 
of tensors and their matrix representations are important and provide a most interesting 
subject of study. 

Of course, only a rather limited discussion of matrices and tensors is given here, but 
we hope that the focused practical treatment will provide a strong basis for understanding 
the finite element formulations given later. 

17 
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2.2 INTRODUCTION TO MATRICES 

The effectiveness of using matrices in practical calculations is readily realized by consider­
ing the solution of a set of linear simultaneous equations such as 

5x1 - 4x2 + X3 = 0 

-4x1 + 6x2 - 4x3 + X4 = 1 
(2.1) 

xi 4x2 + 6x3 4x4 0 

X2 - 4X3 + 5X4 = 0 

where the unknowns are x1, x2, X3, and X4. Using matrix notation, this set of equations is 
written as 

(2.2) 

where it is noted that, rather logically, the coefficients of the unknowns (5, -4, 1, etc.) are 
grouped together in one array; the left-hand-side unknowns (xi, x2, X3, and X4) and the 
right-hand-side known quantities are each grouped together in additional arrays. Although 
written differently, the relation (2.2) still reads the same way as (2.1). However, using 
matrix symbols to represent the arrays in (2.2), we can now write the set of simultaneous 
equations as 

Ax= b (2.3) 

where A is the matrix of the coefficients in the set of linear equations, x is the matrix of 
unknowns, and b is the matrix of known quantities; i.e., 

[ 

5 -4 1 ~ 
= -4 6 -4 1 . 

A 1 -4 6 -4' 

0 1 -4 5 

x m b=m 
(2.4) 

The following formal definition of a matrix now seems apparent. 

Definition: A matrix is an array of ordered numbers. A general matrix consists of mn numbers 
arranged in m rows and n columns, giving the following array: 

[

a11 a12 

a21 a22 
A= . . 

Omt Omz 

(2.5) 

We say that this matrix. has order m X n (m by n). When we have only one row (m = 1) or 
one column (n 1), we also call A a vector. Matrices are represented in this book by 
boldface letters, usually uppercase letters when they are not vectors. On the other hand, 
vectors can be uppercase or lowercase boldface. 
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We therefore see that the following are matrices; 

[~ 4 -5.3]· 
2.1 6 ' 

[6.1 2.2 3] (2.6) 

where the first and the last matrices are also column and row vectors, respectively. 
A typical element in the ith row and jth column of A is identified as a;i; e.g., in the 

first matrix in (2.4), a11 = 5 and a12 = -4. Considering the elements a,i in (2.5), we note 
that the subscript i runs from 1 to m and the subscript j runs from 1 to n. A comma between 
subscripts will be used when there is any risk of confusion, e.g., a1+r,j+s, or to denote 
differentiation (see Chapter 6). 

In general, the utility of matrices in practice arises from the fact that we can identify 
and manipulate an array of many numbers by use of a single symbol. We shall use matrices 
in this way extensively in this book. 

Symmetric, Diagonal, and Banded Matrices; A Storage Scheme 

Whenever the elements of a matrix obey a certain law, we can consider the matrix to be of 
special form. A real matrix is a matrix whose elements are all real. A complex matrix has 
elements that may be complex. We shall deal only with real matrices. In addition, the matrix 
will often be symmetric. 

Definition: The transpose of the m X n matrix A, written as Ar, is obtained by interchanging 
the rows and columns in A. If A Ar, it follows that the number of rows and columns in A are 
equal and that a1i = aJi· Because m = n, we say that A is a square matrix of order n, and because 
aiJ = aJ1, we say that A is a symmetric matrix. Note that symmetry implies that A is square, but 
not vice versa: i.e., a square matrix need not be symmetric. 

For example, the coefficient matrix A in (2.2) is a symmetric matrix of order 4. We 
can verify that A! = A by simply checking that ai1 = au for i, j = 1, . . . , 4. 

Another special matrix is the identity (or unit) matrix In, which is a square matrix of 
order n with only zero elements except for its diagonal entries, which are unity. For 
example, the identity matrix of order 3 is 

[
l O OJ 

{3 = 0 1 0 
0 0 1 

(2.7) 

In practical calculations the order of an identity matrix is often implied and the subscript 
is not written. In analogy with the identity matrix, we also use identity (or unit) vectors of 
order n, defined as e1, where the subscript i indicates that the vector is the ith column of an 
identity matrix. 

We shall work abundantly with symmetric banded matrices. Bandedness means that 
all elements beyond the bandwidth of the matrix are zero. Because A is symmetric, we can 
state this condition as 

au= 0 for j > i + mA (2.8) 
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where 2mA + 1 is the bandwidth of A. As an example, the following matrix is a symmetric 
banded matrix of order 5. The half-bandwidth mA is 2: 

3 2 0 0 
2 3 4 1 0 

A= 1 4 5 6 (2.9) 

0 I 6 7 4 

0 0 4 3 

If the half-bandwidth of a matrix is zero, we have nonzero elements only on the 
diagonal of the matrix and denote it as a diagonal matrix. For example, the identity matrix 
is a diagonal matrix. 

In computer calculations with matrices, we need to use a scheme of storing the 
elements of the matrices in high-speed storage. An obvious way of storing the elements of 
a matrix A of order m X n is simply to dimension in the FORTRAN program an array 
A(M, N), where M = m and N = n, and store each matrix element a;i in the storage 
location A(I, J). However, in many calculations we store in this way unnecessarily many 
zero elements of A, which are never needed in the calculations. Also, if A is symmetric, we 
should probably take advantage of it and store only the upper half of the matrix, including 
the diagonal elements. In general, only a restricted number of high-speed storage locations 
are available, and it is necessary to use an effective storage scheme in order to be able to take 
into high-speed core the maximum matrix size possible. If the matrix is too large to be 
contained in high-speed storage, the solution process will involve reading and writing on 
secondary storage, which can add significantly to the solution cost. Fortunately, in finite 
element analysis, the system matrices are symmetric and banded. Therefore, with an effec­
tive storage scheme, rather large-order matrices can be kept in high-speed core. 

Let us denote by A(I) the Ith element in the one-dimensional storage array A. A 
diagonal matrix of order n would simply be stored as shown in Fig. 2.1 (a): 

I= i = l, ... , n (2.10) 

Consider a banded matrix as shown in Fig. 2. l(b). We will see later that zero elements 
within the "skyline" of the matrix may be changed to nonzero elements in the solution 
process; for example, a3s may be a zero element but becomes nonzero during the solution 
process (see Section 8.2.3 ). Therefore we allocate storage locations to zero elements within 
the skyline but do not need to store zero elements that are outside the skyline. The storage 
scheme that will be used in the finite element solution process is indicated in Fig. 2.1 and 
is explained further in Chapter 12. 

Matrix Equality, Addition, and Multiplication by a Scalar 

We have defined matrices to be ordered arrays of numbers and identified them by single 
symbols. In order to be able to deal with them as we deal with ordinary numbers, it is 
necessary to define rules corresponding to those which govern equality, addition, subtrac­
tion, multiplication, and division of ordinary numbers. We shall simply state the matrix 
rules and not provide motivation for them. The rationale for these rules will appear later, 
as it will turn out that these are precisely the rules that are needed to use matrices in the 
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a,, Elements not 
shown are zeros 

A(1) = a,1, A(2) = 822, A(3) = 833 

A(4) = 844, ... , A(N) = 8nn 

(a} Diagonal matrix 

Skyline 

(b) Banded matrix, mA = 3 

A(1) = 811, A(2) = 822, 

A (3) = 833, A (4) = a23, 

A (5) = a13, A (6) = 844, 

A (7) = a34, A (8) = Bss, 

A(9) = 845, A(10) = 835, 

A(11) = a25, A(12) = 866, 

etc. 

Figure 2.1 Storage of matrix A in a one-dimensional array 
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solution of practical problems. For matrix equality, matrix addition, and matrix multiplica­
tion by a scalar, we provide the following definitions. 

Definition: The matrices A and Bare equal if and only if 
1. A and B have the same number of rows and columns. 

2. All corresponding elements are equal; i.e. a,1 = bi1 for all i and j. 

Definition: Two matrices A and B can be added if and only if they have the same number of 
rows and columns. The addition of the matrices is performed by adding all corresponding 
elements: i.e., if aii and bii denote general elements of A and B, respectively, then Cij = a11 + bu 
denotes a general element of C, where C = A + B. It follows that C has the same number of 
rows and columns as A and B. 

EXAMPLE 2. 1: Calculate C = A + B, where 

A= [o\ 1 ~l B = [~ ~] 3 4 

Here we have C=A+B=[
5 2 ~] 2.5 7 
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It should be noted that the order in which the matrices are added is not important. The 
subtraction of matrices is defined in an analogous way. 

EXAMPLE 2.2: Calculate C A - B, where A and B are given in Example 2.1. Here we 
have 

[ 
-1 0 -1] 

C = A - B = -1.5 -1 -1 

From the definition of the subtraction of matrices, it follows that the subtraction of a 
matrix from itself results in a matrix with zero elements only. Such a matrix is defined to 
be a null matrix 0. We turn now to the multiplication of a matrix by a scalar. 

Definition: A matrix is multiplied by a scalar by multiplying each matrix element by the 
scalar,· i.e., C = kA means that Cij = kaii· 

The following example demonstrates this definition. 

EXAMPLE 2.3: Calculate C = kA, where 

A = [ :.5 ! ~ l k = 2 

We have C = kA = [~ ! ~] 
It should be noted that so far all definitions are completely analogous to those used in 

the calculation with ordinary numbers. Furthermore, to add (or subtract) two general 
matrices of order n X m requires nm addition (subtraction) operations, and to multiply a 
general matrix of order n x m by a scalar requires nm multiplications. Therefore, when the 
matrices are of special form, such as symmetric and banded, we should take advantage of 
the situation by evaluating only the elements below the skyline of the matrix C because all 
other elements are zero. 

Multiplication of Matrices 

We consider two matrices A and B and want to find the matrix product C == AB. 

Definition: Two matrices A and B can be multiplied to obtain C = AB if and only if the 
number of columns in A is equal to the number of rows in B. Assume that A is of order p X m 
and B is of order m X q. Then for each element in C we have 

ti! 

Cij ::::: l a1rbr1 
r=<I 

(2.11) 

where C is of order p X q; i.e., the indices i and j in (2.11) vary from 1 top and 1 to q, 
respectively. 

Therefore, to calculate the (i, j)th element in C, we multiply the elements in the ith 
row of A by the elements in the jth column of B and add all individual products. By taking 
the product of each row in A and each column in B, it follows that C must be of order p X q. 
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EXAMPLE 2.4: Calculate the matrix product C = AB, where 

We have 

Hence we obtain 

A= [ ! ! ~]; 
10 3 4 

Cu = (5)(1) + (3)(2) + (1)(3) 14 

C21 = (4)(1) + (6)(2) + (2)(3) = 22 

C31 = (10)(1) + (3)(2) + (4)(3) = 28 etc. 

[
14 39] 

C = 22 48 
28 70 
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As can readily be verified, the number of multiplications required in this matrix 
multiplication is p X q X m. When we deal with matrices in practice, however, we can 
often reduce the number of operations by taking advantage of zero elements within the 
matrices. 

EXAMPLE 2.5: Calculate the matrix product c = Ab, where 

A= [

2 

-~ . -! J
1

l b J:
3

~1 
symmeu,c J l:J 

Here we can take advantage of the fact that the bandwidth of A is 3; i.e., mA = 1. Thus, 
taking into account only the elements within the band of A, we have 

Hence 

c, = (2)(4) + (-1)(1) = 7 

C2 = (-1)(4) + (2)(1) + (-1)(2) = -4 

C3 (-1)(1) + (2)(2) + (-1)(3) = 0 

C4 = (-1)(2) + (1)(3) = I 

c [-j] 
As is well known, the multiplication of ordinary numbers is commutative; i.e., 

ab = ba. We need to investigate if the same holds for matrix multiplication. If we consider 
the matrices 

A= [~l B = (3 4] (2.12) 

we have AB= [3 4]· 
6 8 ' BA= [11] (2.13) 
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Therefore, the products AB and BA are not the same, and it follows that matrix multiplica­
tion is not commutative. Indeed, depending on the orders of A and B, the orders of the two 
product matrices AB and BA can be different, and the product AB may be defined, whereas 
the product BA may not be calculable. 

To distinguish the order of multiplication of matrices, we say that in the product AB, 
the matrix A premultiplies B, or the matrix B postmultiplies A. Although AB =I= BA in 
general, it may happen that AB = BA for special A and B, in which case we say that A and 
B commute. 

Although the commutative law does not hold in matrix multiplication, the distributive 
law and associative law are both valid. The distributive law states that 

E =(A+ B)C =AC+ BC (2.14) 

In other words, we may first add A and B and then multiply by C, or we may first multiply 
A and B by C and then do the addition. Note that considering the number of operations, the 
evaluation of E by adding A and B first is much more economical, which is important to 
remember in the design of an analysis program. 

The distributive law is proved using ( 2.11 ) ; that is, using 

eij =: f (air + bi,)Crj (2.15) 
r=I 

m m 

we obtain eij = L a;rCrj + L birCrj (2.16) 
r=I r=I 

The associative law states that 

G = (AB)C = A(BC) = ABC (2.17) 

in other. words, that the order of multiplication is immaterial. The proof is carried out by 
using the definition of matrix multiplication in (2.11) and calculating in either way a general 
element of G. 

Since the associative law holds, in practice, a string of matrix multiplications can be 
carried out in an arbitrary sequence, and by a clever choice of the sequence, many opera­
tions can frequently be saved. The only point that must be remembered when manipulating 
the matrices is that brackets can be removed or inserted and that powers can be combined, 
but that the order of multiplication must be preserved. 

Consider the following examples to demonstrate the use of the associative and distribu­
tive laws in order to simplify a string of matrix multiplications. 

EXAMPLE 2.6: Calculate A4, where 

A= [~ !] 
One way of evaluating A 4 is to simply calculate 

A2 = [~ !][~ ;] = [! 1~] 

Hence A3 =A2A= [5 5][2 l] = [15 20] 
5 10 1 3 20 35 
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and A4 = A3A = [15 20][2 1] [50 75] 
20 35 1 3 = 75 125 

Alternatively, we may use 

A4 = A2A2 = [55 5][5 5] _ [50 75] 
10 5 10 - 75 125 

and save one matrix multiplication. 

EXAMPLE 2.7: Evaluate the product vr Av, where 

[
3 2 1] 

A= 2 4 2; 
l 2 6 

v= [ _fl 
The formal procedure would be to calculate x = Av; i.e., 

and then calculate v r x to obtain 

However, it is more effective to calculate the required product in the following way. First, 
we write 

A=U+D+ur 

where U is a lower triangular matrix and D is a diagonal matrix, 

Hence we have 

lo O OJ 
U= 2 0 0; 

I 2 0 

vTAv = vT(U + D + ur)v 

vrAv = vruv + vrov + vrurv 

However, vruv is a single number and hence vrurv = vruv. and it follows that 

(a) 

The higher efficiency in the matrix multiplication is obtained by taking advantage of the fact that 
U is a lower triangular and Dis a diagonal matrix. Let x = Uv; then we have 

X1 = 0 

X2 (2)(1) = 2 

X3 = (1)(1) + {2)(2) = 5 
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Hence 

Next, we obtain 

Also 

x=m 
vruv = vrx = (2)(2) + (-1)(5) = -1 

v7Dv = (1)(1)(3) + (2)(2)(4) + (-1)(-1)(6) 

= 25 

Hence using (a) we have v7 Av = 23, as before. 

Apart from the commutative law, which in general does not hold in matrix multipli­
cations, the cancellation of matrices in matrix equations also cannot be performed, in 
general, as the cancellation of ordinary numbers. In particular, if AB = CB, it does not 
necessarily follow that A = C. This is easily demonstrated considering a specific case: 

but 

[~ ~][~] = [~ ~][~] 

[! ~] * [~ ~] 

(2.18) 

(2.19) 

However, it must be noted that A = C if the equation AB = CB holds for all possible B. 
Namely, in that case, we simply select B to be the identity matrix I, and hence A = C. 

It should also be noted that included in this observation is the fact that if AB = 0, it 
does not follow that either A or B is a null matrix. A specific case demonstrates this 
observation: 

A=[~ ~l B = [~ ~l AB=[~ ~] (2.20) 

Some special rules concerning the use of transposed matrices in matrix multiplica­
tions need to be pointed out. It is noted that the transpose of the product of two matrices 
A and B is equal to the product of the transposed matrices in reverse order; i.e., 

(2.21) 

The proof that ( 2.21) does hold is obtained using the definition for the evaluation of a matrix 
product given in (2.11 ). 

Considering the matrix products in (2.21 ), it should be noted that although A and B 
may be symmetric, AB is, in general, not symmetric. However, if A is symmetric, the matrix 
Br AB is always symmetric. The proof follows using (2.21): 

But, because A: = A, we have 

and hence Br AB is symmetric. 

(BT AB)T = (AB)T(BT)T 

= BTATB 

(2.22) 

(2.23) 

(2.24) 
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The Inverse Matrix 

We have seen that matrix addition and subtraction are carried out using essentially the same 
laws as those used in the manipulation of ordinary numbers. However, matrix multiplication 
is quite different, and we have to get used to special rules. With regard to matrix division, 
it strictly does not exist. Instead, an inverse matrix is defined. We shall define and use the 
inverse of square matrices only. 

Definition: The inverse of a matrix A is denoted by A- 1• Assume that the inverse exists; then 
the elements of A- 1 are such that A- 1 A = I and AA- 1 = I. A matrix that possesses an inverse 
is said to be nonsingular. A matrix without an inverse is a singular matrix. 

As mentioned previously, the inverse of a matrix does not need to exist. A trivial 
example is the null matrix. Assume that the inverse of A exists. Then we still want to show 
that either of the conditions A- 1 A = I or AA - 1 = I implies the other. Assume that we have 
evaluated the elements of the matrices A, 1 and A; 1 such that A11A = I and AA; 1 = I. 
Then we have 

(2.25) 

and hence A, 1 = A; 1
• 

EXAMPLE 2.8: Evaluate the inverse of the matrix A, where 

A= [ 2 -11 
-1 3 

For the inverse of A we need AA- 1 = I. By trial and error (or otherwise) we find that 

[
3 -~ii] A-1 = ! 

We check that AA- 1 I and A- 1 A I: 

AA- 1 = [ 
2 

-1 -!][! fl = [~ ~] 

!] = [~ ~] 

To calculate the inverse of a product AB, we proceed as follows. Let G = (AB)- 1, 

where A and B are both square matrices. Then 

GAB= I 

and postmultiplying by B- 1 and A - t, we obtain 

GA u- 1 

G = u- 1A- 1 

Therefore, 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

We note that the same law of matrix reversal was shown to apply when the transpose of a 
matrix product is calculated. 
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EXAMPLE 2.9: For the matrices A and B given, check that (AB)- 1 = B- 1 A- 1• 

A=[~ -~l B=[~ ~] 
The inverse of A was used in Example 2.8. The inverse of Bis easy to obtain: 

To check that (AB)- 1 = u-1A- 1, we need to evaluate C = AB: 

[ 2 -1][3 o] [ 6 -4] 
C = -1 3 0 4 = -3 12 

Assume that c- 1 = u-1A- 1• Then we would have 

c-i = [! ~][l 1] = [f 1] 
0 4 5 5 20 10 

{a) 

To check that the matrix given in (a) is indeed the inverse of C, we evaluate c- 1 C and find that 

c-•c = [l 1][_ 6 -
4

] = 1 
20 10 3 12 

But since c- 1 is unique and only the correct c- 1 satisfies the relation c- 1 C = I, we indeed have 
found in (a) the inverse of C, and the relation (AB)- 1 = B-1 A- 1 is satisfied. 

In Examples 2.8 and 2.9, the inverse of A and B could be found by trial and error. 
However, to obtain the inverse of a general matrix, we need to have a general algorithm. 
One way of calculating the inverse of a matrix A of order n is to solve the n systems of 
equations 

AX= I (2.30) 

where I is the identity matrix of order n and we have X = A- 1
• For the solution of each 

system of equations in (2.30), we can use the algorithms presented in Section 8.2. 
These considerations show that a system of equations could be solved by calculating 

the inverse of the coefficient matrix; i.e., if we have 

Ay = c 

where A is of order n x n and y and c are of order n X 1, then 

y = A- 1c 

(2.31) 

(2.32) 

However, the inversion of A is very costly, and it is much more effective to only solve the 
equations in (2.31) without inverting A (see Chapter 8). Indeed, although we may write 
symbolically that y = A- 1c, to evaluate y we actually only solve the equations. 

Partitioning of Matrices 

To facilitate matrix manipulations and to take advantage of the special form of matrices, it 
may be useful to partition a matrix into submatrices. A submatrix is a matrix that is obtained 
from the original matrix by including only the elements of certain rows and columns. The 
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idea is demonstrated using a specific case in which the dashed lines are the lines of 
partitioning: 

(2.33) 

It should be noted that each of the partitioning lines must run completely across the original 
matrix. Using the partitioning, matrix A is written as 

where A11 = [a11J; 
a21 

The right-hand side of (2.34) could again be partitioned, such as 

A= [Ai, ! A12 A13] 
A21 : A22 A23 

and we may write A as 

A = [A11], I A21 • 

(2.34) 

etc. (2.35) 

(2.36) 

(2.37) 

The partitioning of matrices can be of advantage in saving computer storage; namely, 
if submatrices repeat, it is necessary to store the submatrix only once. The same applies in 
arithmetic. Using submatrices, we may identify a typical operation that is repeated many 
times. We then carry out this operation only once and use the result whenever it is needed. 

The rules to be used in calculations with partitioned matrices follow from the 
definition of matrix addition, subtraction, and multiplication. Using partitioned matrices we 
can add, subtract, or multiply as if the submatrices were ordinary matrix elements, provided 
the original matrices have been partitioned in such a way that it is permissible to perform 
the individual submatrix additions, subtractions, or multiplications. 

These rules are easily justified and remembered if we keep in mind that the partition~ 
ing of the original matrices is only a device to facilitate matrix manipulations and does not 
change any results. 

EXAMPLE 2.10: Evaluate the matrix product C = AB in Example 2.4 by using the following 
partitioning: 

A= [-~-}L~J; 
10 3 : 4 B = [i--i] 

Here we have B = [::] 

Therefore, (a) 
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A11B1 = [! !][~ !] = [~~ !:] 
A12B2 = GJl3 2] = [! !] 
A21B1 = [10 31[~ !] = [16 62] 

A22B2 [4)[3 2] = [12 8] 

Then substituting into (a) we have 

[
14 39] 

AB= 22 48 
28 70 

EXAMPLE 2.11: Taking advantage of partitioning, evaluate c = Ab, where 

A= [; __ u __ ; ___ ~i· 
1 2 : 8 6 ' 
2 1 : 6 12 

The only products that we need to evaluate are 

and 

We can now construct c: 

or, substituting, 

w, = [; !][!] = [;] 

W2 = [~ ~][~] = [!] 

c 

c = [ill 
The Trace and Determinant of a Matrix 

Chap.2 

The trace and determinant of a matrix are defined only if the matrix is square. Both 
quantities are single numbers, which are evaluated from the elements of the matrix and are 
therefore functions of the matrix elements. 

Definition: The trace of the matrix A is denoted as tr(A) and is equal to ~i'=1 au. where n is 
the order of A. 



Sec. 2.2 Introduction to Matrices 31 

EXAMPLE 2. 12: Calculate the trace of the matrix A given in Example 2.11. 
Here we have 

tr(A) = 4 + 6 + 8 + 12 = 30 

The determinant of a matrix A can be defined in terms of the determinants of subma­
trices of A and by noting that the determinant of a matrix of order 1 is simply the element 
of the matrix; i.e., if A = [a1i], then det A = a11, 

Definition: The determinant of an n X n matrix A is denoted as det A and is defined by the 
recurrence relation 

det A = f (-1) 1+ iau det Au 
j-1 

(2.38) 

where A1i is the (n - 1) X (n - 1) matrix obtained by eliminating the 1st row andjth column 
from the matrix A. 

EXAMPLE 2. 13: Evaluate the determinant of A, where 

Using the relation in (2.38), we obtain 

det A = (- l)2a11 det A11 + (-1)3a12 det A12 

But 

Hence 

This relation is the general formula for the determinant of a 2 X 2 matrix. 

It can be shown that to evaluate the determinant of a matrix we may use the recurrence 
relation given in (2.38) along any row or column, as indicated in Example 2.14. 

EXAMPLE 2. 14: Evaluate the determinant of the matrix A, where 

[
2 1 OJ 

A= 1 3 1 
0 1 2 

Using the recurrence relation in (2.38), we obtain 

<let A = (-1)2(2) det [~ ~] 

+ (-1)3(1) det [~ ~] 

+ (-1)4(0) det [~ ~] 
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We now employ the formula for the determinant of a 2 x 2 matrix given in Example 2.13 and 
have 

det A = (2){(3)(2) - (1)(1)} - {(1)(2) (O)(l)} + 0 

Hence det A= 8 

Let us check that the same result is obtained by using (2.38) along the second row instead 
of the first row. In this case we have, changing the I to 2 in (2.38), 

det A = (-1)3(1) det D ~] 
+ (-1)4(3) det [~ ~] 

+ (-1)5(1) det [~ !] 
Again using the formula given in Example 2.13, we have 

det A = -{(1)(2) - (0)(1)} + (3){(2)(2) - (O)(O)} - {(2)(1) - (l)(O)} 

or, as before, 

detA = 8 

Finally, using (2.38) along the third column, we have 

det A= (-1)4(0) det [~ ~] 

and, as before, obtain det A = 8. 

+ (-1)5(1) det [~ ~] 

+ (-1)6(2) det [~ !] 

Many theorems are associated with the use of determinants. Typically, the solution of 
a set of simultaneous equations can be obtained by a series of determinant evaluations (see, 
for example, B. Noble [A]). However, from a modern viewpoint, most of the results that are 
obtained using determinants can be obtained much more effectively. For example, the 
solution of simultaneous equations using determinants is very inefficient. As we shall see 
later, a primary value of using determinants lies in the convenient shorthand notation we 
can use in the discussion of certain questions, such as the existence of an inverse of a matrix. 
We shall use determinants in particular in the solution of eigenvalue problems. 

In evaluating the determinant of a matrix, it may be effective to first factorize the 
matrix into a product of matrices and then use the following result: 

det (BC · · · F} = (det B)(det C) · · · (det F) (2.39) 
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Relation (2.39) states that the determinant of the product of a number of matrices is equal 
to the product of the determinants of each matrix. The proof of this result is rather lengthy 
and clumsy [it is obtained using the determinant definition in (2.38)], and therefore we shall 
not include it here. We shall use the result in (2.39) often in eigenvalue calculations when 
the determinant of a matrix, say matrix A, is required. The specific decomposition used is 
A = LDL7

, where L is a lower unit triangular matrix and D is a diagonal matrix (see 
Section 8.2.2). In that case, 

det A = det L det D det L1 

and because det L = l, we have 
n 

det A= Il du 
i=I 

(2.40) 

(2.41) 

EXAMPLE 2. 15: Using the LDL7 decomposition, evaluate the determinant of A, where A is 
given in Example 2.14. 

The procedure to obtain the LDL7 decomposition of A is presented in Section 8.2. Here 
we simply give L and D. and it can be verified that LDL7 = A: 

L = [~ ~ ~]; D = [~O 1 ~] 
o I 1 o I 

Using (2.41 ), we obtain 

det A = (2)(i)(}) = 8 

This is also the value obtained in Example 2.14. 

The determinant and the trace of a matrix are functions of the matrix elements. 
However, it is important to observe that the off-diagonal elements do not affect the trace 
of a matrix, whereas the determinant is a function of all the elements in the matrix. 
Although we can conclude that a large determinant or a large trace means that some matrix 
elements are large, we cannot conclude that a small determinant or a small trace means that 
all matrix elements are small. 

EXAMPLE 2.16: Calculate the trace and determinant of A, where 

A = [ l 10,000] 
10-4 2 

Here we have 

tr (A) = 3 

and det A = (1)(2) (10-4)(10,000) 

i.e., det A = 1 

Hence both the trace and the determinant of A are small in relation to the off-diagonal ele­
ment a12. 
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2.3 VECTOR SPACES 

In the previous section we defined a vector of order n to be an array of n numbers written 
in matrix form. We now want to associate a geometric interpretation with the elements of 
a vector. Consider as an example a column vector of order 3 such as 

x = [:J = m (2.42) 

We know from elementary geometry that x represents a geometric vector in a chosen 
coordinate system in three·dimensional space. Figure 2.2 shows assumed coordinate axes 
and the vector corresponding to (2.42) in this system. We should note that the geometric 
representation of x depends completely on the coordinate system chosen; in other words, if 
(2.42) would give the components of a vector in a different coordinate system, then the 
geometric representation of x would be different from the one in Fig. 2.2. Therefore, the 
coordinates (or components of a vector) alone do not define the actual geometric quantity, 
but they need to be given together with the specific coordinate system in which they are 
measured. 

x 

I ;" 
I ; ________________ J, 

,/ 
/ 

Figure 2.2 Geometric representation of 
vector x 

The concepts of three-dimensional geometry generalize to a vector of any finite order 
n. If n > 3, we can no longer obtain a plot of the vector; however, we shall see that 
mathematically all concepts that pertain to vectors are independent of n. As before, when 
we considered the specific case n = 3, the vector of order n represents a quantity in a 
specific coordinate system of an n-dimensional space. 

Assume that we are dealing with a number of vectors all of order n, which are defined 
in a fixed coordinate system. Some fundamental concepts that we shall find extremely 
powerful in the later chapters are summarized in the following definitions and facts. 
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Definition: A collection of vectors X1, X2, ••• , Xs is said to be linearly dependent if there exist 
numbers a1, a2, ... , as, which are not all zero, such that 

(2.43) 

If the vectors are not linearly dependent, they are called linearly independent vectors. 

We consider the following examples to clarify the meaning of this definition. 

EXAMPLE 2. 17: Let n 3 and determine if the vectors e;, i = 1. 2, 3, are linearly dependent 
or independent. 

According to the definition of linear dependency, we need to check if there are constants 
a1, a2, and a3, not all zero, that satisfy the equation 

(a) 

But the equations in (a) read 

[:} [~] 
which is satisfied only if a; = 0, i = l, 2. 3; therefore, the vectors e; are linearly independent. 

EXAMPLE 2. 18: With n = 4, investigate whether the following vectors are linearly dependent 
or independent. 

X1 [i ]; X2 [-f]; X3 = [=~:~] 
0.5 0 -0.25 

We need to consider the system of equations 

or, considering each row, 

= 0 

a1 - 0.5 a3 0 

a2 - 0.5 a3 0 

0.5a, - 0.25a3 = 0 

where we note that the equations are satisfied for a1 = 1, a2 = 1, and a 3 = 2. Therefore, the 
vectors are linearly dependent. 
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In the preceding examples, the solution for a1, a2, and a3 could be obtained by 
inspection. We shall later develop a systematic procedure of checking whether a number of 
vectors are linearly dependent or independent. 

Another way of looking at the problem, which may be more appealing, is to say that 
the vectors are linearly dependent if any one of them can be expressed in terms of the others. 
That is, if not all of the a; in (2.43) are zero, say ai =I= 0, then we can write 

I 

(2.44) 

Geometrically, when n s 3, we could plot the vectors and if they are linearly dependent, 
we would be able to plot one vector in terms of multiples of the other vectors. For example, 
plotting the vectors used in Example 2.17, we immediately observe that none of them can 
be expressed in terms of multiples of the remaining ones; hence the vectors are linearly 
independent. 

Assume that we are given q vectors of order n, n ~ q, which are linearly dependent, 
but that we only consider any (q - 1) of them. These (q - 1) vectors may still be linearly 
dependent. However, by continuing to decrease the number of vectors under consideration, 
we would arrive at p vectors, which are linearly independent, where, in general, p s q. The 
other (q - p) vectors can be expressed in terms of the p vectors. We are thus led to the 
following definition. 

Definition: Assume that we have p linearly independent vectors of order n, where n 2: p. 
These p vectors form a basis for a p~dimensional vector space. 

We talk about a vector space of dimension p because any vector in the space can be 
expressed as a linear combination of the p base vectors. We should note that the base vectors 
for the specific space considered are not unique; linear combinations of them can give 
another basis for the same space. Specifically, if p = n, then a basis for the space considered 
is e;, i = 1, ... , n, from which it also follows that p cannot be larger than n. 

Definition: q vectors, of which p vectors are linearly independent, are said to span a 
p-dimensional vector space. 

We therefore realize that all the importance lies in the base vectors since they are the 
smallest number of vectors that span the space considered. All q vectors can be expressed 
in terms of the base vectors, however large q may be (and indeed q could be larger than n). 

EXAMPLE 2. f 9: Establish a basis for the space spanned by the three vectors in Example 2.18. 
In this case q = 3 and n 4. We find by inspection that the two vectors X1 and X2 are 

linearly independent. Hence x1 and x2 can be taken as base vectors of the two-dimensional space 
spanned by x1, x2 , and x3• Also, using the result of Example 2.18, we have X3 = - ! x2 - i X1. 

Assume that we are given a p-dimensional vector space which we denote as Ep, for 
which x1 t x2 , ••• , Xp are chosen base vectors, p > 1. Then we might like to consider only 
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all those vectors that can be expressed in terms of X1 and x2 • But the vectors X1 and x2 also 
form the basis of a vector space that we call E2. If p = 2, we note that EP and E2 coincide. 
We call E2 a subspace of Ep, the concise meaning of which is defined next. 

Definition: A subspace of a vector space is a vector space such that any vector in the subspace 
is also in the original space. If X1, Xz, ••• , Xp are the base vectors of the original space, any 
subset of these vectors forms the basis of a subspace; the dimension of the subspace is equal to 
the number of base vectors selected. 

EXAMPLE 2.20: The three vectors x,, X2, and x3 are linearly independent and therefore form 
the basis of a three-dimensional vector space E3: 

(a) 

Identify some possible two-dimensional subspaces of £3. 
Using the base vectors in (a), a two-dimensional subspace is formed by any two of the three 

vectors; e.g., x, and X2 represent a basis for a two-dimensional subspace; x, and x3 are the basis 
for another two-dimensional subspace; and so on. Indeed, any two linearly independent vectors 
in E3 form the basis of a two-dimensional subspace, and it follows that there are an infinite 
number of two-dimensional subspaces in E3• 

Having considered the concepts of a vector space, we may now recognize that the 
columns of any rectangular matrix A also span a vector space. We call this space the column 
space of A. Similarly, the rows of a matrix span a vector space, which we call the row space 
of A. Conversely, we may assemble any q vectors of order n into a matrix A of order n X q. 
The number of linearly independent vectors used is equal to the dimension of the column 
space of A. For example, the three vectors in Example 2.20 form the matrix 

A-[i ~ -;J (2.45) 

Assume that we are given a matrix A and that we need to calculate the dimension of 
the column space of A. In other words, we want to evaluate how many columns in A are 
linearly independent. The number of linearly independent columns in A is neither increased 
nor decreased by taking any linear combinations of them. Therefore, in order to identify the 
column space of A, we may try to transform the matrix, by linearly combining its columns, 
to obtain unit vectors e;. Because unit vectors e; with distinct i are linearly independent, the 
dimension of the column space of A is equal to the number of unit vectors that can be 
obtained. While frequently we are not able to actually obtain unit vectors e; (see Exam­
ple 2.21 ), the process followed in the transformation of A will always lead to a form that 
displays the dimension of the column space. 
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EXAMPLE 2.21: Calculate the dimension of the column space of the matrix A formed by the 
vectors Xi, X2, and X3 considered in Example 2.20. 

The matrix considered is 

A= [t ! -11 
Writing the second and third columns as the first and second columns. respectively, we obtain 

1
1 0 
0 -1 

A,= 0 0 

O l t] 
Subtracting the first column from the third column, adding twice the second column to the third 
column, and finally multiplying the second column by ( - I), we obtain 

0 
1 
0 !] 

But we have now reduced the matrix to a form where we can identify that the three columns are 
linearly independent; i.e., the columns are linearly independent because the first three elements 
in the vectors are the columns of the identity matrix of order 3. However, since we obtained A2 

from A by interchanging and linearly combining the original columns of A and thus in the 
solution process have not increased the space spanned by the columns of the matrix, we find that 
the dimension of the column space of A is 3. 

In the above presentation we linearly combined the vectors x 1, • • • , Xq, which were 
the columns of A, in order to identify whether they were linearly independent. Alternatively, 
to find the dimension of the space spanned by a set of vectors x 1, X2, ••• , Xq, we could use 
the definition of vector linear independence in (2.43) and consider the set of simultaneous 
homogeneous equations 

(2.46) 

which is, in matrix form, 

Aa O (2.47) 

where a is a vector with elements ai, ... aq, and the columns of A are the vectors Xi, 

x2 , ••• , Xq, The solution for the unknowns a1, .•. , aq is not changed by linearly 
combining or multiplying any of the rows in the matrix A. Therefore, we may try to reduce 
A by multiplying and combining its rows into a matrix in which the columns consist only 
of unit vectors. This reduced matrix is called the row-echelon form of A. The number of unit 
column vectors in the row-echelon form of A is equal to the dimension of the column space 
of A and, from the preceding discussion, is also equal to the dimension of the row space of 
A. It follows that the dimension of the column space of A is equal to the dimension of the 



Sec. 2.3 Vector Spaces 39 

row space of A. In other words, the number of linearly independent columns in A is equal 
to the number of linearly independent rows in A. This result is summarized in the definition 
of the rank of A and the definition of the null space (or kernel) of A. 

Definition: The rank of a matrix A is equal to the dimension of the column space and equal 
to the dimension of the row space of A. 

Definition: The space of vectors a. such that Aa. = 0 is the null space (or kernel) of A. 

EXAMPLE 2.22: Consider the following three vectors: 

3 2 

2 1 3 
-2 

X1 = 
3 

X2 = 4 ' 
l!I'.:) = 

5 
4 2 6 

3 -1 4 

Use these vectors as the columns of a matrix A and reduce the matrix to row-echelon form. 
We have 

1 3 2 

2 I 3 

A= 
-2 

3 4 5 

4 2 6 
3 -1 4 

Subtracting multiples of the first row from the rows below it in order to obtain the unit 
vector e, in the first column, we obtain 

3 2 
0 -5 -1 

A1= 
0 -5 -1 

0 -5 -1 

0 -10 -2 
0 -10 -2 

Dividing the second row by ( -5) and then subtracting multiples of it from the other rows in order 
to reduce the second column to the unit vector e2, we obtain 

1 0 7 
5 

0 1 I 
5 

A2 = 0 0 0 

0 0 0 
0 0 0 

0 0 0 
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Hence we can give the following equivalent statements: 

1. The solution to Au = 0 is 

a1 = -~ a3 

a2 = -} a3 

Chap.2 

2. The three vectors x,, x2, and X3 are linearly dependent. They form a two-dimensional 
vector space. The vectors x 1 and X2 are linearly independent. and they form a basis of the 
two-dimensional space in which x,, x2, and X3 lie. 

3. The rank of A is 2. 

4. The dimension of the column space of A is 2. 
5. The dimension of the row space of A is 2. 

6. The null space (kernel) of A has dimension 1 and a basis is the vector 

Note that the rank of A7 is also 2, but that the kernel of A7 has dimension 4. 

2.4 DEFINITION OF TENSORS 

In engineering analysis, the concept of tensors and their matrix representations can be 
important. We shall limit our discussion to tensors in three-dimensional space and pri­
marily be concerned with the representation of tensors in rectangular Cartesian coordinate 
frames. 

Let the Cartesian coordinate frame be defined by the unit base vectors Ci (see Fig. 2.3). 
A vector u in this frame is given by 

3 

U = ~ U;e; 
i""I 

(2.48) 

Figure 2.3 Cartesian coordinate systems 
for definition of tensors 
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where the u; are the components of the vector. In tensor algebra it is convenient for the 
purpose of a compact notation to omit the summation sign in (2.48); i.e., instead of (2.48) 
we simply write 

U = U;e; (2.49) 

where the summation on the repeated index i is implied (here i = 1, 2, 3). Since i could 
be replaced by any other subscript without changing the result (e.g., k or j), it is also called 
a dummy irzdex. This convention is referred to as the .,ummation convention of indicial 
notation (or the Einstein convention) and is used with efficiency to express in a compact 
manner relations involving tensor quantities (see Chapter 6 where we use this notation 
extensively). 

Considering vectors in three-dimensional space, vector algebra is employed effec­
tively. 

The scalar (or dot) product of the vectors u and v, denoted by u ·vis given by 

u · v = lul lvl cos 6 (2.50) 

where I u I is equal to the length of the vector u, I u I = ~. The dot product can be 
evaluated using the components of the vectors, 

U • V = U;V; (2.51) 

The vector (or cross) product of the vectors u and v produces a new vector w = u X v 

[
e1 e2 e3] 

W = det U1 U2 U3 

V1 V2 V3 

(2.52) 

Figure 2.4 illustrates the vector operations performed in (2.50) and (2.52). We should 
note that the direction of the vector w is obtained by the right~hand rule; i.e., the right-hand 
thumb points in the direction of w when the fingers curl from u to v. 

cos8 = uiv; 
lul lvl 

lwl • lul lvl sin 9 

Figure 2.4 Vectors used in products 
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These vector algebra procedures are frequently employed in finite element analysis to 
evaluate angles between two given directions and to establish the direction perpendicular 
to a given plane. 

EXAMPLE 2.23: Assume that the vectors u and v in Fig. 2.4 are 

u=[H v=m 
Calculate the angle between these vectors and establish a vector perpendicular to the plane that 
is defined by these vectors. 

Here we have 

Hence 

and 8 = 60°. 

lu\ = 3V2 
!vi= 2V2 

cosO=! 

A vector perpendicular to the plane defined by u and vis given by 

hence 
w HJ 

Using I w I = y;;;;, we obtain 

lwl = 6V3 
which is also equal to the value obtained using the formula given in Fig. 2.4. 

Although not specifically stated, the typical vector considered in (2.48) is a tensor. Let 
us now formally define what we mean by a tensor. 

For this purpose, we consider in addition to the unprimed Cartesian coordinate frame 
a primed Cartesian coordinate frame with base vectors eJ which spans the same space as 
the unprimed frame (see Fig. 2.3). 

An entity is called a scalar, a vector (i.e., a tensor of first order or rank 1), or a tensor 
(i.e., a tensor of higher order or rank) depending on how the components of the entity are 
defined in the unprimed frame ( coordinate system) and how these components transform to 
the primed frame. 

Definition: An entity is called a scalar if it has only a single component </> in the coordinates 
Xi measured along e; and this component does not change when expressed in the coordinates xf 
measured along e;: 

(2.53) 

A scalar is also a tensor of order 0. As an example, temperature at a point is a scalar. 
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Definition: An entity is called a vector or tensor of first order if it has three components {; in 
the unprimed frame and three components ff in the primed frame, and if these components are 
related by the characteristic law (using the summation convention) 

where 

The relation (2.54) can also be written in matrix form as 

where~,, P, and~ contain the elements of (2.54). 

(2.54) 

(2.55) 

(2.56) 

The transformation in (2.54) corresponds to a change of basis in the representation of 
the vector. To arrive at (2.54) we recognize that the same vector is considered in the two 
different bases; hence we have 

fl eJ = 6ek (2.57) 

Using the fact that the base vectors in each coordinate frame are orthogonal to each other 
and are of unit length, we can take the dot products [see (2.50)] on both sides of (2.57) with 
ef and obtain (2.54). Of course, analogously we could also take the dot product on both 
sides with em to obtain the inverse transformation 

or in matrix form, 

~ = cos(em, eJW 
t = P7f 

(2.58) 

(2.59) 

Hence we note that p- 1 = P7
, and this leads us to the following definition. 

Definition: A matrix Q is an orthogonal matrix if QTQ = QQ7 = I. Therefore, for an or­
thogonal matrix, we have 0- 1 = Q7• 

Hence the matrix P defined in (2.55) and (2.56) is an orthogonal matrix. and because the 
elements of P produce a rotation. we also refer to P as a rotation matrix. 

We demonstrate the preceding discussion in the following example. 

EXAMPLE 2.24: The components of a force expressed in the unprimed coordinate system 
shown in Fig. E2.24 are 

R=l1] 

Figure E2.24 Representation of a force 
in different coordinate systems 
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Evaluate the components of the force in the primed coordinate system in Fig. E2.24. 
Here we have, using (2.56), 

P = [~ cos ~ sin ~] 
0 -sin () cos 8 

and then R' = PR (a) 

where R' gives the components of the force in the primed coordinate system. As a check, if we 
use 8 = -30° we obtain, using (a), 

R'=m 
which is correct because the e3-vector is now aligned with the force vector. 

To define a second-order tensor we build on the definition given in (2.54) for a tensor 
of rank 1. 

Definition: An entity is called a second-order tensor if it has nine components tii, i J, 2, 3. 
and j = 1, 2, 3, in the unprimed frame and nine components tu in the primed frame and if these 
components are related by the characteristic law 

(2.60) 

As in the case of the definition of a first-order tensor, the relation in (2.60) represents 
a change of basis in the representation of the entity (see Example 2.25) and we can formally 
derive (2.60) in essentially the same way as we derived {2.54). That is, if we write the same 
tensor of rank 2 in the two different bases, we obtain 

(2.61) 

where clearly in the tensor representation the first base vector goes with the first subscript 
(the row in the matrix representation) and the second base vector goes with the second 
subscript (the column in the matrix representation). The open product1 or tensor product 
eke, is called a dyad and a linear combination of dyads as used in (2.61) is called a dyadic, 
(see, for example, L. E. Malvern [A]). 

Taking the dot product from the right in (2.61), first withe; and then withe;, we 
obtain 

or 

t:nne:natl} = tklet(e, • eJ) 

t!in8m,8nj = t,:t(ek • e:)(e, • ej) (2.62) 

1The open product or tensor product of two vectors denoted as ab is defined by the requirement that 

(ab) • v a(b • v) 

for all vectors v. Some writers use the notation a® b instead of ab. 
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Here OiJ is the Kronecker delta (Bu == I for i = j, and ou = 0 for i :::/= j). This transforma­
tion may also be written in matrix form as 

t' = PtP7 (2.63) 

where the (i, k)th element in Pis given by p;k, Of course, the inverse transformation also 
holds: 

(2.64) 

This relation can be derived using (2.61) and [similar to the operation in (2.62)] taking the 
dot product from the right with ei and then e;, or simp1y using (2.63) and the fact that Pis 
an orthogonal matrix. 

In the preceding definitions we assumed that all indices vary from 1 to 3; special cases 
are when the indices vary from l ton. with n < 3. In engineering analysis we frequently 
deal only with two-dimensional conditions, in which case n = 2. 

EXAMPLE 2.25: Stress is a tensor of rank 2. Assume that the stress at a point measured in 
an unprimed coordinate frame in a plane stress analysis is (not including the third row and 
column of zeros) 

= [ I -1] 
.,. -1 I 

Establish the components of the tensor in the primed coordinate system shown in Fig. E2.25. 

i· r 1 -,J L-1 1 

x, 
Figure E2.25 Representation of a stress tensor in different coordinate systems 

Here we use the rotation matrix Pas in Example 2.24, and the transformation in (2.63) is 

p = [ cos (J sin ()] 
- sin (J cos (} 

Assume that we are interested in the specific case when (} 45°. In this case we have 

I] [ 1 -1] [ l -1] = [O OJ 
l -I I l I O 2 
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and we recognize that in this coordinate system the off-diagonal elements of the tensor (shear 
components) are zero. The primed axes are called the principal coordinate axes, and the diagonal 
elements -r[ 1 = 0 and T22 = 2 are the principal values of the tensor. We will see in Section 2.5 
that the principal tensor values are the eigenvalues of the tensor and that the primed axes define 
the corresponding eigenvectors. 

The previous discussion can be directly expanded to also define tensors of higher order 
than 2. In engineering analysis we are, in particular, interested in the constitutive tensors 
that relate the components of a stress tensor to the components of a strain tensor (see, for 
example, Sections 4.2.3 and 6.6) 

(2.65) 

The stress and strain tensors are both of rank 2, and the constitutive tensor with components 
C,jkl is of rank 4 because its components transform in the following way: 

(2.66) 

In the above discussion we used the orthogonal base vectors e; and e J of two 
Cartesian systems. However, we can also express the tensor in components of a basis of 
nonorthogonal base vectors. It is particularly important in shell analysis to be able to use 
such base vectors (see Sections 5.4.2 and 6.5.2). 

In continuum mechanics it is common practice to use what is called a covariant basis 
with the covariant base vectors gi, i = l, 2, 3, and what is called a contravariant basis with 
the contravariant base vectors, gi,j = 1, 2, 3; see Fig. 2.5 for an example. The covariant and 
contravariant base vectors are in general not of unit length and satisfy the relationships 

gi·gi=8{ (2.67) 

where ~ is the (mixed) Kronecker delta(~ = 1 for i = j, and 51 == 0 for i * j). 

91 

91•91=1; 92•91 =0 

91 • 92 = 0; 92 • 92 = 1 

x, 

Figure 2.5 Example of covariant and 
contravariant base vectors, n = 2 (plotted 
in Cartesian reference frame) 
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Hence the contravariant base vectors are orthogonal to the covariant base vectors. 
Furthermore, we have 

g; = H11gi (2.68) 

with g;J g;. g, (2.69) 

and gi = giig; (2.70) 

with giJ g'. gl (2.71) 

where giJ and giJ are, respectively, the covariant and contravariant components of the metric 
tensor. 

To prove that (2.68) holds, we tentatively let 

(2.72) 

with the a;k unknown elements. Taking the dot product on both sides with g1, we obtain 

g, • g; = a,kg< • K.; 

(2.73) 

Of course, (2.70) can be proven in a similar way (see Exercise 2.11). 
Frequently, in practice, the covariant basis is conveniently selected and then the 

contravariant basis is given by the above relationships. 
Assume that we need to use a basis with nonorthogonal base vectors. The elegance of 

then using both the covariant and contravariant base vectors is seen if we simply consider 
the work done by a force R going through a displacement u, given by R • u. If we express 
both Rand u in the covariant basis given by the base vectors g;, we have 

R • u = (R 1g1 + R2g2 + R3g3) • (u 1g1 + u2g2 + u3g3) 
(2.74) 

On the other hand, if we express only R in the covariant basis, but u in the contravariant 
basis, given by the base vectors gi, we have 

R • u = (R 1g, + R2
g2 + R3g3) • (u,g1 + u2g2 + u3g3) = Riuia{ 

(2.75) 

which is a much simpler expression. Fig. 2.6 gives a geometrical representation of this 
evaluation in a two-dimensional case. 

We shall use covariant and contravariant bases in the formulation of plate and shell 
elements. Since we are concerned with the product of stress and strain (e.g., in the principle 
of virtual work), we express the stress tensor in contravariant components [as for the force 
R in (2.75)], 

(2.76) 

and the strain tensor in covariant components [as for the displacement in (2.75)], 

(2.77) 
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R = R1g, + R292 
U = U1 g 1 + U2 g2 

119111 = 1 

119211 = 1 

119111 = cos a 

llg211= _1_ 
cos a 

Figure 2.6 Geometrical representation of R and u using covariant and contravariant bases 

Using these dyadics we obtain for the product of stress and strain 

W = (fm"~~) • (i11g'gi) 

= t""'eiia~&n 

= f 11iiJ 

Chap.2 

(2.78) 

This expression for Wis as simple as the result in (2.75). Note that here we used the 
convention-designed such that its use leads to correct results2-that in the evaluation of 
the dot product the first base vector of the first tensor multiplies the first base vector of the 
second tensor, and so on. 

Instead of writing the product in summation form of products of components, we shall 
also simply use the notation 

(2.79) 

and simply imply the result in (2.78), in whichever coordinate system it may be obtained. 
The notation in (2. 79) is, in essence, a simple extension of the notation of a dot product 
between two vectors. Of course, when considering u • v, a unique result is implied, but this 
result can be obtained in different ways, as given in (2.74) and (2.75). Similarly, when 

2 Namely, consider (ab)• (cd). Let A = ab, B = cd; then A· B = AqB11 = a;b1c,di = (a;c;)(bA) = 
(a • c)(b • d). 
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writing (2.79), the unique result of Wis implied, and this result may also be obtained in 
different ways, but the use of fij and i;1 can be effective (see Example 2.26). 

Hence we note that the covariant and contravariant bases are used in the same way as 
Cartesian bases but provide much more generality in the representation and use of tensors. 
Consider the following examples. 

EXAMPLE 2.26: Assume that the stress and strain tensor components at a point in a contin­
uum corresponding to a Cartesian basis are T11 and Eij and that the strain energy, per unit volume, 
is given by U ! T1JEiJ, Assume also that a basis of covariant base vectors gi, i = l, 2, 3, is given. 
Show explicitly that the value of U is then also given by ! if''"' imn. 

Here we use 

r"ng,,,~ = T;Je;eJ 

and Enmg"'g" E11e1e1 

But from (a) and (b) we obtain 

and 

Now since 

we also have 

Tk1 = fmneg,,, • ek)(~ • e,) 
Eki = Emn(g"' • el:) (g" · e,) 

sum on m and n 
sum on m and n 

sum onj 

(a) 

(b) 

EXAMPLE 2.27: The Cartesian components T;1 of the stress tensor Tue;e1 are T11 100, 
T12 = 60, T22 = 200, and the components E;1 of the strain tensor E;1e;e1 are E11 0.001, 
E12 = 0.002, E22 = 0.003. 

Assume that the stress and strain tensors are to be expressed in terms of covariant strain 
components and contravariant stress components with 

g, = [~l ~ = [±] 
Calculate these components and, using these components, evaluate the product ! 1'1JE11 • 

Here we have. using (2.67). 

g2 = [ Ji] 
To evaluate fU we use 

so that 

Therefore, the contravariant stress components are 

7' 11 = 180; f 12 = f 21 = -140V2; ;;22 = 400 

Similarly, Eug1gi = Emnemen 

E;j = Emn(em • g;)(en • gj) 
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and the covariant strain components are 

- 1 
E11 = 10()(); - 4 

E22 = --
1000 

Then we have 
!fljiu = ~ (180 + 1600 - 840) = 0.47 

This value is of course also equal to !·nA;· 

EXAMPLE 2.28: The Green·Lagrange strain tensor can be defined as 

E = euOgiO~ 
with the components 

where 

Chap.2 

(a) 

(b) 

and x denotes the vector of Cartesian coordinates of the material point considered, u denotes the 
vector of displacements into the Cartesian directions, and the r, are convected coordinates (in 
finite element analysis the r; are the isoparametric coordinates; see Sections 5.3 and 5.4.2). 

1. Establish the linear and nonlinear components (in displacements) of the strain tensor. 
2. Assume that the convected coordinates are identical to the Cartesian coordinates. Show 

that the components in the Cartesian system can be written as 

1 ( au, OUj auk au") 
Eij=- -+-+--

2 OXj OX; ax, axj 
(c) 

To establish the linear and nonlinear components, we substitute from (b) into (a). Hence 

l[(ax au) (ax au) ax ax] 
elj = 2 iJri + iJri • iJT) + ori - iJri • iJri 

The terms linear in displacements are therefore 

Eu lunear = !(iJu . ax + ax • clu) 
2 dr; or,; a,, dlj 

and the terms nonlinear in displacements are 

Eij !nonlinear = H :; • !~) 

(d) 

(e) 

If the convected coordinates are identical to the Cartesian coordinates, we have ri = x;, i = 
1, 2, 3, and oxiaxj = ~u· Therefore, (d) becomes 

l(iJU; dUJ) 
Eijllinear = 2 OXj + ax, (f) 

and (e) becomes 

l(i'Juk au") 
E1jlnonlinear = 2 OXi dXJ (g) 

Adding the linear and nonlinear terms (f) and (g), we obtain (c). 
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The preceding discussion was only a very brief introduction to the definition and use 
of tensors. Our objective was merely to introduce the basic concepts of tensors so that we 
can work with them later (see Chapter 6). The most important point about tensors is that 
the components of a tensor are always represented in a chosen coordinate system and that 
these components differ when different coordinate systems are employed. It follows from 
the definition of tensors that if all compcnents of a tensor vanish in one coordinate system, 
they vanish likewise in any other (admissible) coordinate system. Since the sum and differ­
ence of tensors of a given type are tensors of the same type, it also follows that if a tensor 
equation can be established in one coordinate system, then it must also hold in any other 
(admissible) coordinate system. This property detaches the fundamental physical relation~ 
ships between tensors under consideration from the specific reference frame chosen and is 
the most important characteristic of tensors: in the analysis of an engineering problem we 
are concerned with the physics of the problem, and the fundamental physical relationships 
between the variables involved must be independent of the specific coordinate system 
chosen; otherwise, a simple change of the reference system would destroy these relation­
ships, and they would have been merely fortuitous. As an example, consider a body sub­
jected to a set of forces. If we can show using one coordinate system that the body is in 
equilibrium, then we have proven the physical fact that the body is in equilibrium, and this 
force equilibrium will hold in any other (admissible) coordinate system. 

The preceding discussion also hinted at another important consideration in engineer­
ing analysis, namely, that for an effective analysis suitable coordinate systems should be 
chosen because the effort required to express and work with a physical relationship in one 
coordinate system can be a great deal less than when using another coordinate system. We 
will see in the discussion of the finite element method (see, for example, Section 4.2) that 
indeed one important ingredient for the effectiveness of a finite element analysis is the 
flexibility to choose different coordinate systems for different finite elements (domains) that 
together idealize the complete structure or continuum. 

2.5 THE SYMMETRIC EIGENPROBLEM Av= AV 

In the previous section we discussed how a change of basis can be performed. In finite 
element analysis we are frequently interested in a change of basis as applied to symmetric 
matrices that have been obtained from a variational formulation, and we shall assume in the 
discussion to follow that A is symmetric. For example, the matrix A may represent the 
stiffness matrix, mass matrix, or heat capacity matrix of an element assemblage. 

There are various important applications (see Examples 2.34 to 2.36 and Chapter 9) 
in which for overall solution effectiveness a change of basis is performed using in the 
transformation matrix the eigenvectors of the eigenproblem 

Av= Av (2.80) 

The problem in (2.80) is a standard eigenproblem. If the solution of (2.80) is consid­
ered in order to obtain eigenvalues and eigenvectors, the problem Av Av is referred to as 
an eigenproblem, whereas if only eigenvalues are to be calculated, Av = Av is called an 
eigenvalue problem. The objective in this section is to discuss the various properties that 
pertain to the solutions of (2.80). 
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Let n be the order of the matrix A. The first important point is that there exist n 
nontrivial solutions to (2.80). Here the word "nontrivial" means that v must not be a null 
vector for which (2.80) is always satisfied. The ith nontrivial solution is given by the 
eigenvalue A1 and the corresponding eigenvector v,, for which we have 

(2.81) 

Therefore, each solution consists of an eigenpair, and we write then solutions as (A1, v1), 
(A2, V2), , , , , (An, Vn), where 

(2.82) 

We also call all n eigenvalues and eigenvectors the eigensystem of A. 
The proof that there must be n eigenvalues and corresponding eigenvectors can 

conveniently be obtained by writing (2.80) in the form 

(A - AI)v = 0 (2.83) 

But these equations have a solution only if 

det (A - AI) = 0 (2.84) 

Unfortunately, the necessity for (2.84) to hold can be explained only after the solution of 
simultaneous equations has been presented. For this reason we postpone until Sec­
tion 10.2.2 a discussion of why (2.84) is indeed required. 

Using (2.84), the eigenvalues of A are thus the roots of the polynomial 

p(A) = det (A - AI) (2.85) 

This polynomial is called the characteristic polynomial of A. However, since the order of 
the polynomial is equal to the order of A, we haven eigenvalues, and using (2.83) we obtain 
n corresponding eigenvectors. It may be noted that the vectors obtained from the solution 
of (2.83) are defined only within a scalar multiple. 

EXAMPLE 2.29: Consider the matrix 

Show that the matrix has two eigenvalues. Calculate the eigenvalues and eigenvectors. 
The characteristic polynomial of A is 

[-1-A 2] 
p(A) = det 2 2 - A 

Using the procedure given in Section 2.2 to calculate the determinant of a matrix (see Exam­
ple 2.13 ), we obtain 

p(A) = (-1 - A)(2 - A) - (2)(2) 

= A2 
- A - 6 

= (A + 2)(A - 3) 

The order of the polynomial is 2, and hence there are two eigenvalues. In fact, we have 

A.1 = -2; A.2 = 3 
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The corresponding eigenvectors are obtained by applying (2.83) at the eigenvalues. Thus we have 
for At, 

[-l 2 (-2) 2 -~-2)][:J = [~] 

with the solution (within a scalar multiple) 

v,=[-~] 
For ..\2, we have 

[-12- 3 2:3][::]=[~] 
with the solution (within a scalar multiple) 

A change of basis on the matrix A is performed by using 

v = Pv 

(a) 

(b) 

(2.86) 

where P is an orthogonal matrix and v represents the solution vector in the new basis. 
Substituting into (2.80). we obtain 

where 

Av= Av 

A= PTAP 

(2.87) 

(2.88) 

and since A is a symmetric matrix, A is a symmetric matrix also. This transformation is 
called a similarity transformation, and because P is an orthogonal matrix, the transforma­
tion is called an orthogonal similarity trans! ormation. 

If P were not an orthogonal matrix, the result of the transformation would be 

Av= ABv 

where B = prp 

(2.89) 

(2.90) 

The eigenproblem in (2.89) is called a generalized eigenproblem. However, since a 
generalized eigenproblem is more difficult to solve than a standard problem, the transfor­
mation to a generalized problem should be avoided. This is achieved by using an orthogonal 
matrix P, which yields B = I. 

In considering a change of basis, it should be noted that the problem Av = A Bv in 
(2.89) has the same eigenvalues as the problem Av = Av, whereas the eigenvectors are 
related as given in (2.86). To show that the eigenvalues are identical, we consider the 
characteristic polynomials. 

For the problem in (2.89), we have 

which can be written as 

and therefore, 

p(.,\) = det (Pr AP - .,\P1l>) (2.91) 

p(A) = det P7 det (A - AI) det P 

p(>..) = det pr det P p(.,\) 

(2.92) 

(2.93) 
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where p(,\) is given in (2.85). Hence the characteristic polynomials of the problems 
Av = ,\v and Av = ,\Bv are the same within a multiplier. This means that the eigenvalues 
of the two problems are identical. 

So far we have shown that there are n eigenvalues and corresponding eigenvectors, but 
we have not yet discussed the properties of the eigenvalues and vectors. 

A first observation is that the eigenvalues are real. Consider the ith eigenpair (,\;, V;), 
for which we have 

Avi = A;V; (2.94) 

Assume that v, and A; are complex, which includes the case of real eigenvalues, and let the 
elements of i; and X1 be the complex conjugates of the elements of v, and ,\,. Then premul­
tiplying (2.94) by if, we obtain 

On the other hand, we also obtain from (2.94), 

vTA = vrx, 
and postmultiplying by v,, we have 

vf Av;= A;vfv; 

But the left-hand sides of (2.95) and (2.97) are the same, and thus we have 

(A, - A;}vf v1 = 0 

(2.95) 

(2.96) 

(2.97) 

(2.98) 

Since v, is nontrivial, it follows that A; = Xi, and hence the eigenvalue must be real. 
However, it then also follows from (2.83) that the eigenvectors can be made real because 
the coefficient matrix A - Al is real. 

Another important point is that the eigenvectors that correspond to distinct eigen­
values are unique (within scalar multipliers) and orthogonal, whereas the eigenvectors 
corresponding to multiple eigenvalues are not unique, but we can always choose an orthog­
onal set. 

Assume first that the eigenvalues are distinct. In this case we have for two eigenpairs, 

Av;= A;V; 

and 

Premultiplying (2.99) by vf and (2.100) by vf, we obtain 

vJAv; = A,vJvi 

vf Avi = Aivfvi 

Taldng the transpose in (2.102), we have 

and thus from (2.103) and (2.101) we obtain 

(A1 - Ai)v[v1 = 0 

(2.99) 

(2.100) 

(2.101) 

(2.102) 

(2.103) 

(2.104) 

Since we assumed that A1 '* Aj, it follows that vJv, = 0, i.e., that vi and V1 are orthogonal. 
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Furthermore, we can scale the elements of the vector v, to obtain 

vTv; = &; (2.105) 

where l3ii = the Kronecker delta; i.e., 6,1 = 1 when i = j, and 8;1 = 0 when i =I= j. If 
(2.105) is satisfied, we say that the eigenvectors are orthonormal. 

It should be noted that the solution of (2.83) yields a vector in which only the relative 
magnitudes of the elements are defined. If all elements are scaled by the same amount, the 
new vector would still satisfy (2.83). In effect, the solution of (2.83) yields the direction of 
the eigenvector, and we use the orthonormality condition in (2.105) to fix the magnitudes 
of the elements in the vector. Therefore, when we refer to eigenvectors from now on it is 
implied that the vectors are orthonormal. 

EXAMPLE 2.30: Check that the vectors calculated in Example 2.29 are orthogonal and then 
orthonormalize them. 

The orthogonality is checked by forming vf v2, which gives 

vf V2 = (2){!) + (-1)(1) = 0 

Hence the vectors are orthogonal. To orthonormalize the vectors, we need to make the lengths 
of the vectors equal to 1. Then we have 

1 [ 2] 1 [-2] V5 _ 1 or v1 = V5 1 ; 1 [l] 1 [-1] v2 = VS 2 or v2 = V5 _2 

We now turn to the case in which multiple eigenvalues are also present. The proof of 
eigenvector orthonormality given in (2.99) to (2.105) is not possible because for a multiple 
eigenvalue, Ads equalto A1 in (2.104). Assume that A; = A,+1 = · · · = A,+m-1; i.e., Ads an 
m-times multiple root. Then we can show that it is still always possible to choose m 
orthonormal eigenvectors that correspond to A,, A;+ 1, ••• , A,+m-1. This follows because for 
a symmetric matrix of order n, we can always establish a complete set of n orthonormal 
eigenvectors. Corresponding to each distinct eigenvalue we have an eigenspace with dimen­
sion equal to the multiplicity of the eigenvalue. All eigenspaces are unique and are orthog­
onal to the eigenspaces that correspond to other distinct eigenvalues. The eigenvectors 
associated with an eigenvalue provide a basis for the eigenspace, and since the basis is not 
unique if m > l, the eigenvectors corresponding to a multiple eigenvalue are not unique. 
The formal proofs of these statements are an application of the principles discussed earlier 
and are given in the following examples. 

EXAMPLE 2.31: Show that for a symmetric matrix A of order n, there are always n orthonor­
mal eigenvectors. 

Assume that we have calculated an eigenvalue Ai and corresponding eigenvector v,. Let us 
construct an orthonormal matrix Q whose first column is V;, 

Q = [vi Q]; 

This matrix can always be constructed because the vectors in Q provide an orthonormal basis for 
the n-dimensional space in which A is defined. However. we can now calculate 

(a) 
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where 

and Ai is a full matrix of order (n 1 ). If n = 2, we note that Qr AQ is diagonal. In that case, 
if we premultiply (a) by Q and let a = A 1 we obtain 

AQ = Q[~ ~] 

and hence the vector in Q is the other eigenvector and a is the other eigenvalue regardless of 
whether A1 is a multiple eigenvalue or not. 

The complete proof is now obtained by induction. Assume that the statement is true for 
a matrix of order (n 1); then we will show that it is also true for a matrix of order n. But since 
we demonstrated that the statement is true for n = 2, it follows that it is true for any n. 

The assumption that there are (n - l) orthonormal eigenvectors for a matrix of order 
(n - I) gives 

(b) 

where Qi is a matrix of the eigenvectors of A I and A is a digonal matrix listing the eigenvalues 
of A•· However, if we now define 

s = [! ~J 
we have (c) 

Let p QS; prp == I 

Then premultiplying (c) by P. we obtain 

AP= P[~ ~] 
Therefore, under the assumption in (b ), the statement is also true for a matrix of order n, which 
completes the proof. 

EXAMPLE 2.32: Show that the eigenvectors corresponding to a multiple eigenvalue of multi­
plicity m define an m-dimensional space in which each vector is also an eigenvector. This space 
is called the eigenspace corresponding to the eigenvalue considered. 

Let A; be the eigenvalue of multiplicity m; i.e., we have 

A1 = A1+1 = · · · = A1+m-1 

We showed in Example 2.31 that there are m orthonormal eigenvectors V;, vi+1, •.• , V1+m-1 

corresponding to A;. These vectors provide the basis of an m-dimensional space. Consider any 
vector w in this space, such as 

W = <XiV/ + <X;+1V1+1 + · · · + <X1+m-1V1+m-l 

where the a1, a;+, , . . . , are constants. The vector w is also an eigenvector because we have 

which gives 

Therefore, any vector win the space spanned by them eigenvectors v,, V1+1, ••• , V;+m-1 is also 
an eigenvector. It should be noted that the vector w will be orthogonal to the eigenvectors that 
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correspond to eigenvalues not equal to A;. Hence there is one eigenspace that corresponds to each, 
distinct or multiple, eigenvalue. The dimension of the eigenspace is equal to the multiplicity of 
the eigenvalue. 

Now that the main properties of the eigenvalues and eigenvectors of A have been 
presented, we can write the n solutions to Av = ,.\ v in various forms. First, we have 

AV= VA (2.106) 

where V is a matrix storing the eigenvectors, V = [ v 1, • • • , v n], and A is a diagonal matrix 
with the corresponding eigenvalues on its diagonal, A = diag (A;). Using the orthonormal­
ity property of the eigenvectors (i.e., V7V = I), we obtain from (2.106), 

vrAv = A 

Furthermore, we obtain the spectral decomposition of A, 

A= VAV7 

where it may be convenient to write the spectral decomposition of A as 
II 

A L A1V;V{ 
i=l 

(2.107) 

(2.108) 

(2.109) 

It should be noted that each of these equations represents the solution to the eigen­
problem Av = Av. Consider the following example. 

EXAMPLE 2.33: Establish the relations given in (2.106) to (2.109) for the matrix A used in 
Example 2.29. 

The eigenvalues and eigenvectors of A have been calculated in Examples 2.29 and 2.30. 
Using the information given in these examples, we have for (2.106), 

for (2.107), 
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The relations in (2.107) and (2.108) can be employed effectively in various important 
applications. The objective in the following examples is to present some solution procedures 
in which they are used. 

EXAMPLE 2.34: Calculate the kth power of a given matrix A; i.e., evaluate N. Demonstrate 
the result using A in Example 2.29. 

One way of evaluating Ak is to simply calculate A2 = AA, A4 = A2A2, etc. However, if k 
is large, it may be more effective to employ the spectral decomposition of A. Assume that we 
have calculated the eigenvalues and eigenvectors of A; i.e., we have 

A= VAV7 

To calculate A2
, we use A2 = VAV7VAV7 

but because V7V == I, we have 

Proceeding in the same manner, we thus obtain 

N = VA~7 

As an example, let A be the matrix considered in Example 2.29. Then we have 

Ak = _1 [-2 l][(-2)k O ]-1 [-2 1] 
VS 1 2 0 (J)k VS 1 2 

or 
I [(-2)k+2 + (J)k : (-2)k+1 + (2)(3)k] 

A" == 5 (-2)k+I +-(2)(3f : - - (-2f + (4)(3)" 

It is interesting to note that if the largest absolute value of all the eigenvalues of A is smaller than 
1, we have Ak ~ 0 ask......+ oo. Thus, defining the spectral radius of A, 

p(A) max I Aj I 
all i 

we have lim N = 0, provided that p(A) < 1. 
k-oo 

EXAMPLE 2.35: Consider the system of differential equations 

x +Ax= f(t) (a) 

and obtain the solution using the spectral decomposition of A. Demonstrate the result using the 
matrix A in Example 2.29 and 

where 0x are the initial conditions. 
Substituting A = VA vr and premultiplying by V7

, we obtain 

V7x + A(V7x) = V7f(t) 

Thus if we define y = V7 x. we need to solve the equations 

y + Ay = V7f(t) 
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But this is a set of n decoupled differential equations. Consider the rth equation, which is typical: 

Yr + A,yr = vff(t) 

The solution is Yr(t) = 0yr e->.,t + e->.,r L e>-rr vff(T) dT 

where 0yr is the value of y, at time t = 0. The complete solution to the system of equations in (a) is 

X = i VrYr 
r=l 

As an example, we consider the system of differential equations 

In this case we have to solve the two decoupled differential equations 

Yi + (-2}y, = 2e-, 

Y2 + 3y2 = e-, 

with initial conditions 

I [2 - 1 ] [ 1 ] 1 [ 1 ] Oy = vroX = VS 1 2 } = VS 3 

We obtain 
l 

Y• = -e2, vs 

Thus, using (b ), we have 

(b} 

To conclude the presentation, we may note that by introducing auxiliary variables, higher­
order differential equations can be reduced to a system of first-order differential equations. 
However, the coefficient matrix A is in that case nonsymmetric. 

EXAMPLE 2.36: Using the spectral decomposition of an n X n symmertric matrix A, evalu­
ate the inverse of the matrix. Demonstrate the result using the matrix A in Example 2.29. 

Assume that we have evaluated the eigenvalues A1 and corresponding eigenvectors V;, 

i = l, ... , n, of the matrix A; i.e., we have solved the eigenproblem 

Av= Av (a) 
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Premultiplying both sides of (a) by A - t A - 1
, we obtain the eigenproblem 

A- 1v = A- 1v 

Chap.2 

But this relation shows that the eigenvalues of A- 1 are 1/A, and the eigenvectors are V;, i = 
1, ... , n. Thus using (2.109) for A- 1

, we have 

A- 1 = vA- 1vr 

or 

These equations show that we cannot find the inverse of A if the matrix has a zero eigenvalue. 
As an example, we evaluate the inverse of the matrix A considered in Example 2.29. In this 

case we have 

A-t = ![ 2 1][-! 0][2 -1] = ![-2 2] 
s 12 ot 1 2 6 21 

The key point of the tranformation ( 2.107) is that in ( 2.107) we perform a change of basis 
[see (2.86) and (2.88)]. Since the vectors in V correspond to a new basis, they span the 
n-dimensional space in which A and A are defined, and any vector w can be expressed as 
a linear combination of the eigenvectors vi; i.e., we have 

II 

w = ~ aiv1 
; .. 1 

(2.110) 

An important observation is that A shows directly whether the matrices A and A are 
singular. Using the definition given in Section 2.2, we find that A and hence A are singular 
if and only if an eigenvalue is equal to zero, because in that case A - i cannot be calculated. 
In this context it is useful to define some additional terminology. If all eigenvalues are 
positive, we say that the matrix is positive definite. If all eigenvalues are greater than or 
equal to zero, the matrix is positive semidefinite,· with negative, zero, or positive eigenval­
ues, the matrix is indefinite. 

2.6 THE RAYLEIGH QUOTIENT AND THE MINIMAX 
CHARACTERIZATION OF EIGENVALUES 

In the previous section we defined the eigenproblem Av = Av and discussed the basic 
properties that pertain to the solutions of the problem. The objective in this section is to 
complement the information given with some very powerful principles. 

A number of important principles are derived using the Rayleigh quotient p (v), which 
is defined as 

(2.111) 

The first observation is that 
A, :5 p(v) :5 A.11 (2.112) 

and it follows that using the definitions given in Section 2.5, we have for any vector v, if A 
is positive definite p(v) > 0, if A is positive semidefinite p(v) ~ O. and for A indefinite p(v) 
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can be negative, zero, or positive. For the proof of (2.112) we use 

(2.113) 

where vi are the eigenvectors of A. Substituting for v into (2.111) and using that Av; = A;V;, 

vf vi = f>;j, we obtain 

(2.114) 

Hence, if A1 ::/= 0, 

( ) _ A ar + (A2/A1)od + · · · + (A,,/A1)a~ 
pV - I 2 2 

a1 +···+a,, 
(2.115) 

and if An::/= 0, (2.116) 

But since A1 s A2 s · · · s An, the relations in (2.114) to (2.116) show that (2.112) holds. 
Furthermore, it is seen that if v = V1, we have p(v) = A;. 

Considering the practical use of the Rayleigh quotient, the following property is of 
particular value. Assume that vis an approximation to the eigenvector v1; i.e., say with e 
small, we have 

V = V; + EX (2.117) 

Then the Rayleigh quotient of v will give an approximation to .,\1 of order e2
; i.e., 

p(v) = A; + o(e2
) (2.118) 

The notation o(e2
) means "of order e2

" and indicates that if 8 = o(E2
), then I 8 I s be2

, 

where b is a constant. 
To prove this property of the Rayleigh quotient, we substitute for v from (2.113) into 

the Rayleigh quotient expression to obtain 

or 

( ) 
(v r + ex1)A(v, + EX) 

p V1 + EX = ------­
(vT + ex1)(v; + ex) 

However, since xis an error in V;, we can write 
n 

x = ~ <X.j'Vj 
J=I 
}>Fl 

(2.119) 

(2.120) 

(2.121) 

But then using vf vi = 8;i and Avi = Aivi, we have vf Ax = 0 and xrv; = 0, and hence 

A;+ E
2 :± aJA.1 

j=l 
j>Fi 

p(V; + EX) = -------

} + e2 :± a} 
j=I 
j<l'i 

(2.122) 
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However, using the binomial theorem to expand the denominator in (2.122), we have 

p(v1 + ex) = (,\; + e2 ~ aJAi)[1 - e2(f aJ) + E4(f aJ)
2 

+ .. ·] (2.123) 
;=I J=I Jo:.1 
j'ri i'i'i j+.i 

or p(v, + ex) = A, + •' (; aJA; - A,; aJ) + higher-order tern,s (2.124) 

The relation in (2.118) thus follows. We demonstrate the preceding results in a brief 
example. 

EXAMPLE 2.37: Evaluate the Rayleigh quotients p(v) for the matrix A used in Example 2.29. 
Using Vi and V2 in Example 2.29, consider the following cases: 

3. V = Vt + 0.02V2, 

In case 1, we have 

v = [ _~] + [~] = [~] 

and thus 
[3 l][-~ ~][~] 1 

p(v) = = -
[3 l]G] 2 

Recalling that A1 = -2 and A2 = 3, we have, as expected, 

A1 ::5 p(v) ::5 A2 
In case 2, we have 

and hence 

and so, as expected, p(v) = A,. 
Finally, in case 3, we use 

v = [ 2] + [0.01] = [ 2.01] 
-1 0.02 -0.98 

[2.01 -0.98][-~ ~][-~:~!] 
p(v) = [ 2.01] 

(2.01 -0.98] -0.98 

and hence 

= - 1.99950005 

Here we note that p(v) > A1 and that p(v) approximates A, more closely than v approx­
imates v,. 
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Having introduced the Rayleigh quotient, we can now proceed to a very important 
principle, the minimax characterization of eigenvalues. We know from Rayleigh's principle 
that 

p(v) ~ "-• (2.125) 

where vis any vector. In other words, if we consider the problem of varying v, we will 
always have p(v) ~ Ai, and the minimum will be reached when v = Vi, in which case 
p(v1) = A1. Suppose that we now impose a restriction on v, namely that v be orthogonal to 
a specific vector w, and that we consider the problem of minimizing p(v) subject to this 
restriction. After calculating the minimum of p(v) with the condition vrw = 0, we could 
start varying wand for each new w evaluate a new minimum of p(v). We would then find 
that the maximum value of all the minimum values evaluated is A2. This result can be 
generalized to the following principle, called the minimax characterization of eigenvalues, 

{ vrAv} 
Ar= max min yTy r = l, ... , n (2.126) 

withvsatisfyingvrw; = Ofori = l, ... ,r - 1,r ~ 2.ln(2.126)wechoosevectorsw;, 
i = 1, ... , r - l, and then evaluate the minimum of p(v) with v subject to the condition 
vrw; = 0, i = l, ... , r - 1. After calculating this minimum we vary the vectors W; and 
always evaluate a new minimum. The maximum value that the minima reach is A,.. 

The proof of (2.126) is as follows. Let 
n 

V = ~ a;V1 (2.127) 
i=l 

and evaluate the right-hand side of (2.126), which we call R, 

R { , ar..\1 + ''' + a;Ar + a;+1Ar+I + • • • + a~An} 
= max ffilll at + . • • + a~ + a~+ I + • • • + a~ 

(2.128) 

The coefficients at must satisfy the conditions 

wJf a;v1 = 0 j= l, ... ,r-1 (2.129) 
i=l 

Rewriting (2.128), we obtain 

{ [ 

ar(A, - A1) + · · · + a~-1(A, - A,-1) ]} 

R = . \ _ + a;+1(A, - A,+1) + · · · + a~(A, - An) 
max mm l\.r 2 2 2 2 

a1 + · · · + a, + a,+1 + · · · + an 
(2.130) 

But we can now see that for the condition a,.+1 = a,.+2 = · · · = an = 0, we have 

(2.131) 

and the condition in (2.129) can still be satisfied by a judicious choice for ar, On the other 
hand, suppose that we now choose Wj = Vj for j = 1, ... , r - 1. This would require that 
aj = 0 for j = 1, . . . , r - l, and consequently we would have R = Ar, which completes 
the proof. 

A most important property that can be established using the minimax characterization 
of eigenvalues is the eigenvalue separation property. Suppose that in addition to the 
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problem Av = Av, we consider the problems 

(2.132) 

where A<m> is obtained by omitting the last m rows and columns of A. Hence A<m> is a 
square-symmetric matrix of order (n - m). Using also the notation A(O) = A, ,\<0> = A, 
v(

0
> = v, the eigenvalue separation property states that the eigenvalues of the problem 

A<m+i>v<m+t> = A<.m+Ov<m+O separate the eigenvalues of the problem in (2.132); i.e., we have 

\(m} < \{m+l) < \{m) ..,,,.. \(m+l) < ... < \(m) < \(m+1)
1 

< \(m) 
1\1 - 1\1 - /\2 -= /\2 - - An-m-1 - l\n-m- - l\n-m 

for m = 0, ... , n - 2 
(2.133) 

For the proof of (2.133) we consider the problems Av = Av and A< 1>v(l) = A 0 >v<1>. If 
we can show that the eigenvalue separation property holds for these two problems, it will 
hold also for m = l, 2, ... , n 2. Specifically, we therefore want to prove that 

r = I, ... , n - I 

Using the minimax characterization, we have 

Similarly, we have 

Ar+ 1 = max min vrv { vTAv} } 

v7w; = 0; i = I, ... , r; all w1 arbitrary 

M1> = max {min vr Av} 
v7v 

v7 w1 = 0; i = 1, ... , r 
W; arbitrary for i = 1, ... , r 

Wr = en 

(2.134) 

(2.135) 

(2.136) 

where w r is constrained to be equal to en to ensure that the last element in v is zero because 
en is the last column of then X n identity matrix I. However, since the constraint for A,.+1 
can be more severe and includes that for ,W >, we have 

(2.137) 

To determine Ar we use 

i=l, ... ,r (2.138) 

all wi arbitrary 

Comparing the characterizations of Ml) and A,, i.e., (2.136) with (2.138), we observe 
that to calculate M' l we have the same constraints as in the calculation of A,. plus one more 
(namely, vr en = 0), and hence 

(2.139) 

But (2.137) and (2.139) together establish the required result given in (2.134). 
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The eigenvalue separation property now yields the following result. If we write the 
eigenvalue problems in (2.132) including the problem Av = Av in the form 

p(m>(;..<m>) = det (A<ml - A<mlI); m = 0, ... , n - 1 (2.140) 

where p(0> = p, we see that the roots of the polynomial p(A <m+ n) separate the roots of the 
polynomial p(>..<m)). However, a sequence of polynomials pi(x), i = 1, ... , q, form a Sturm 
sequence if the roots of the polynomial Pi+1(x) separate the roots of the polynomial pix). 
Hence the eigenvalue separation property states that the characteristic polynomials of the 
problems A(m>v<ml = J..Cm>v<ml, n = 0, I, ... , n - l, form a Sturm sequence. It should be 
noted that in the presentation we considered all symmetric matrices; i.e., the minimax 
characterization of eigenvalues and the Sturm sequence property are applicable to positive 
definite and indefinite matrices. We shall use the Sturm sequence property extensively in 
later chapters (see Sections 8.2.5, 10.2.2, 11.4.3, and 11.6.4). Consider the following 
example. 

EXAMPLE 2.38: Consider the eigenvalue problem Av= AV, where 

[ 
5 -4 -7] 

A= -4 2 -4 
-7 -4 5 

Evaluate the eigenvalues of A and of the matrices A<m), m = 1, 2. Show that the separation 
property given in (2.133) holds and sketch the characteristic polynomials p(A), p< 0 (,\<1)), and 
p(2}( A <2l). 

We have 

Hence 

p(A) = det (A - Al) = (5 - A)[(2 - A)(5 - A) - 16] 

+ 4[ -4(5 - A) - 28] - 7[16 + 7(2 - A)] 

p(A) = (-6 - A)(6 - A)(12 - A) 

and the eigenvalues are 

Also, 

or 

Hence 

Finally, 

Hence 

A1 = -6; 

pm(A<I)) = det (A(I) - Ao)I) 

= (5 - J..0))(2 - A(O) - 16 

pCll(J..(I)) = _A.(1)2 
- 7A(I) 6 

>.\ll = ~ - f'V73 = -0.7720 

A~o = ! + !\/73 = 7.772 

p<2)(A.P>) = det (Am - A(2)1) 

= 5 - A(2) 

A\2 > = 5 

The separation property holds because 

A1 :::;; A\0 :::;; A2 :::;; A~0 ::5 A3 
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pU) 

Figure E2.38 Characteristic polynomials 

and 

The characteristic polynomials are sketched in Fig. E2.38. 

2.7 VECTOR AND MATRIX NORMS 

We have discussed vectors, matrices, eigenvalues, and eigenvectors of symmetric matrices 
and have investigated the deeper significance of the elements in these entities. However, one 
important aspect has not been discussed so far. If we deal with single numbers, we can 
identify a number as being large or small. Vectors and matrices are functions of many 
elements, but we also need to measure their "size." Specifically, if single numbers are used 
in iterative processes, the convergence of a series of numbers, say Xi, x2, • •• , Xk, to a number 
x is simply measured by 

lim I Xk - x I = 0 
k-+C10 

(2.141) 

or, in words, convergence is obtained if the residual Yk = I Xk - x I approaches zero ask- oo. 
Furthermore, if we can find constants p ~ 1 and c > 0 such that 

(2.142) 

we say that convergence is of order p. If p = 1, convergence is linear and the rate of 
convergence is c, in which case c must be smaller than 1. 

In iterative solution processes using vectors and matrices we also need a measure of 
convergence. Realizing that the size of a vector or matrix should depend on the magnitude 
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of all elements in the arrays, we arrive at the definition of vector and matrix norms. A norm 
is a single number that depends on the magnitude of all elements in the vector or matrix. 

Definition: A norm of a vector v of order n written as II v !I is a single number. The norm is 
a function of the elements of v, and the following conditions are satisfied: 

1. II v II 2: 0 and II v JI == 0 if and only if v = 0. 
2. II cv ii = I c 111 v II for any scalar c. 
3. II v + w II s II v II + JI wll for vectors v and w. 

(2.143) 

(2.144) 

(2.145) 

The relation (2.145) is the triangle inequality. The following three vector norms are 
commonly used and are called the infinity, one, and two vector norms: 

II v n.., = m~x I vd 
I 

llvlli = f 1v;I 
i=I 

(2.146) 

(2.147) 

(2.148) 

II v 112 is also known as the Euclidean vector norm. Geometrically, this norm is equal to the 
length of the vector v. All three norms are special cases of the vector norm ~L I I v;J P, 

where for (2.146), (2.147), and (2.148), p = oo, 1, and 2, respectively. It should be noted 
that each of the norms in (2.146) to (2.148) satisfies the conditions in (2.143) to (2.145). 

We can now measure convergence of a sequence of vectors Xi, x2, X3, ••• , Xt to a 
vector x. That is, for the sequence to converge to x it is sufficient and necessary that 

lim II Xk - x II = 0 
k-,.oo 

(2.149) 

for any one of the vector norms. The order of convergence p, and in case p = 1, the rate 
of convergence c, are calculated in an analogous manner as in (2.142) but using norms; i.e., 
we have 

(2.150) 

Looking at the relationship between the vector norms, we note that they are equivalent 
in the sense that for any two norms 11 • lls, and II • lls2 there exist two positive constants a1 
and a2 such that 

and 

llv lls1 $ a1!I V lls2 

II V lls2 $ a2 II V lls, 
where s1 and s2 denote the oo-, 1-, or 2-norms. Hence it follows that 

c, II vlls1 S II v]ls2 :s; c2II vlls1 

(2.151) 

(2.152) 

(2.153) 

where c1 and c2 are two positive constants that may depend on n, and of course also 

I 1 -II vlls2 :s; jj vlls1 :s; -II vlls2 
C2 Ci 
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EXAMPLE 2.39: Give the constants Ct and c2 in (2.153) if, first, the norms s1 and s2 are the 
oo- and I-norms, and then, second, the oo- and 2-norms. Then show that in each case (2.153) is 
satisfied using the vector 

In the first case we have 

(a) 

with c1 = 1, c2 = n, and in the second case we have 

11 v 11"° :5 II v 112 :5 Vn II v 11 .. (b) 

with c1 = 1 and c2 = Vn. These relations show that the 1- and 2-norms are equivalent to the 
oo- norm. We can easily show that lower and upper bounds on II viii in (a) and II vll2 in (b) cannot 
be closer because the equal signs are reached for the vectors vr = [1 1 ... l] and vr = ei (and 
any scalar multiples thereof). 

If we apply (a) and (b) to the given vector v, we have 

II vlloo = 3 

11 v II 1 = 1 + 3 + 2 6 

II v 112 = \/ 1 + 9 + 4 = Y14 

and the relations in (a) and (b) read 

3 s 6 :5 (3)(3); 3 < Vl4 :5 (V3)(3) 

In analogy with the definition of a vector norm, we also define a matrix norm. 

Definition: A norm of a matrix A of order n X n, written as II A II, is a single number. The 
norm is a function of the elements of A, and the following relations hold: 

1. II A II 2: 0 and II A II = 0 if and only if A = 0. 
2. II cA ll = I c 111 A II/or any scalar c. 
3. IJ A+ Bii :5 jj All + II B]l/or matrices A and B. 
4. IJ AB II :S II A 1111 B II/or matrices A and B. 

(2.154) 
{2.155) 
{2.156) 
{2.157) 

The relation in (2.156) is the triangle inequality equivalent to (2.145). The additional 
condition in (2.157), which was not postulated in the definition of a vector norm, must be 
satisfied in order to be able to use matrix norms when matrix products occur. 

The following are frequently used matrix norms: 

II Al~= m~x i la;il 
I j""[ 

IIAl!i = max f laul 
f i=I 

II A 112 = -v'A:; A11 = maximum eigenvalue of Ar A 

(2.158) 

(2.159) 

(2.160) 

where for a symmetric matrix A we have II A lloo = II A 111 and I] A 112 = max I A; I (see Exer-
; 

cise 2.21). The norm JI A 112 is called the spectral norm of A. Each of these norms satisfies 
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the relations in (2.154) to (2.157). The proof that the relation in (2.157) is satisfied for the 
infinity norm is given in Example 2.41. 

EXAMPLE 2.40: Calculate the oo-, 1-, and 2-norrns of the matrix A, where A was given in 
Example 2.38. 

The matrix A considered is 

A [-! -~ =~] 
-7 -4 5 

Using the definitions given in (2.158) to (2.160), we have 

II A lloo = 5 + 4 + 7 = 16 

II A lh = 5 + 4 + 7 = 16 

The 2-norm is equal to I A3 I, and hence (see Example 2.38) II A Iii = 12. 

EXAMPLE 2.41: Show that for two matrices A and B, we have 

II AB Ila, :s; II A II"' II B II"' 
Using the definition of the infinity matrix norm in (2.158), we have 

II AB II .. = m~x ± I ± a;1:b1:i I 
I J=I k=I 

but then II ABI!"' s m~x ± ± lai1:I I b1:;I 
I j=I .t=I 

This proves the desired result. 

As in the case of a sequence of vectors, we can now measure the convergence of a 
sequence of matrices A1, A2, A3, ... , A1: to a matrix A. For convergence it is necessary and 
sufficient that 

lim II Ak - A II = 0 k_..,, (2.161) 

for any one of the given matrix norms. 
In the definition of a matrix norm we needed relation (2.157) to be able to use norms 

when we encounter matrix products. Similarly, we also want to use norms when products 
of matrices with vectors occur. In such a case, in order to obtain useful information by 
applying norms, we need to employ only specific vector norms with specific matrix norms. 
Which matrix and vector norms should only be used together is determined by the condition 
that the following relation hold for any matrix A and vector v: 

II Avll s II All!I vii (2.162) 
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where 11 Av II and II v II are evaluated using the vector norm and II A II is evaluated using the 
matrix norm. We may note the close relationship to the condition (2.157), which was 
required to hold for a matrix norm. If (2.162) holds for a specific vector and matrix norm, 
the two norms are said to be compatible and the matrix norm is said to be subordinate to 
the vector norm. The 1-, 2-, and oo-norms of a matrix, as defined previously, are subordi­
nate, respectively, to the 1-, 2-, and oo-norms of a vector given in (2.146) to (2.148). In the 
following example we give the proof that the oo-norms are compatible and subordinate. The 
compatibility of the vector and matrix 1- and 2-norms is proved similarly. 

EXAMPLE 2.42: Show that for a matrix A and vector v, we have 

II Av If.., :5 II A II= II v Ila, 

Using the definitions of the infinity norms, we have 

II Avila,= mrx I~ aijVj I 
::s m~x i l au 11 Vj I 

I j•I 

::s {max i I aiJ I} {m~x I vi I} 
I j=l J 

This proves (a). 

(a) 

To show that equality can be reached, we need only to consider the case where v is a full 
unit vector and a1j 2: 0. In this case, II v U.., = 1 and II Av II= II A II<», 

In later chapters we shall encounter various applications of norms. One valuable 
application arises in the calculation of eigenvalues of a matrix: if we consider the problem 
Av = Av, we obtain, taking norms on both sides, 

IIAvll IIAvll 
and hence using (2.144) and (2.162), we have 

JI A 11 IJ v II 2: I A I JI v II 

or I,\ I s II A II 

(2.163) 

(2.164) 

(2.165) 

Therefore, every eigenvalue of A is in absolute magnitude smaller than or equal to any norm 
of A. Defining the spectral radius p(A) as3 

p(A) = m~x I A1 I (2.166) 
1 

we have 

p(A) ::s llAII (2.167) 

In practice, the oo-norm of A is calculated most conveniently and thus used effectively to 
obtain an upper bound on the largest absolute value reached by the eigenvalues. 

3 Note that for a symmetric matrix A we have p(A) = 11 A 112, but this does not hold in general for a 

nonsymmetric matrix; consider, for example, A = [ ~ ~]. a * O. 
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EXAMPLE 2.43: Calculate the spectral radius of the matrix A considered in Example 2.38. 
Then show that p(A) :5 II A !loo, 

The spectral radius is equal to max I A; I The eigenvalues of A have been calculated in 
Example 2.38. 

Hence 

At= -6; A2 = 6; 

p(A) = 12 

..\3 = 12 

In Example 2.40 we calculated 11 A II .. = 16. Thus the relation p(A) :5 II A 11.., is satisfied. 

Another important application of norms is encountered when considering the stability 
of finite element formulations (see Section 4.5). Assume that we have a sequence of finite 
element discretizations using a specific element and that a typical discretization gives the 
equation 

Ax b (2.168) 

Then, roughly speaking, for stability we want a small change in b to result in only a small 
change in x. To measure the magnitude of these changes, assume that we choose a norm 
11 • IIL for measuring the size of solutions and a norm 11 • IIR for measuring the size of the 
right-hand side terms. 

Definition: Let A be a nonsingular matrix of size n x n. We define the stability constant of A 
with respect to the norms 11 • lk and 11 • IIR as the smallest possible constant SLR such that 

(2.169) 

for all vectors x and perturbations Ax which satisfy Ax = b and A ax = Ab. 

This relation bounds the relative change in the solution x (in the norm II • Iii> as a 
consequence of a change in the forcing vector b (in the norm 11 • IIR), and we say that a 
sequence of discretizations is stable with respect to the norms II • IIL and II • IIR if the constant 
SLR is uniformly bounded irrespective of how large n is (see Section 4.5.2). 

In accordance with (2.162), let4 

IIA IILR = sup l!Ay I~ (2.170) 
y IIYIIL 

and 

Using y = x in (2.170), we obtain 

IIAII > llbllR 
LR - llxllL 

and using z = ab in (2.171), we obtain 

IIA-t II > !IAxlli 
RL - !IAbllR 

(2.171) 

(2.172) 

(2.173) 

4 In the following presentation "sup" means "supremum" and "inf" means "infimum" (see Table 4.5). 
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Therefore, llaxlli < IIAII IIA-'11 llabJIR 
llx Iii - LR Ri lib IIR (2.174) 

and hence SLR II A lliR II A- l IIRi (2.175) 

In the evaluation of SLlt it is crucial to use appropriate norms, and given a norm 11 • lk a 
natural choice for the R norm is the dual norm of 11 • IIL defined as 

yrz 
llz lloL = syp IIY Iii (2.176) 

With this choice we obtain for a symmetric matrix A (see Exercise 2.22) 

xrAy 
II A llut = S~f II X Iii II Y IJi 

and 

= '°YA 

The stability constant SLR is then given by 

(2.177) 

(2.178) 

(2.179) 

As we mentioned earlier, for stability of a discretization we need to show that SLR in 
(2.179) remains bounded as the finite element mesh is refined. This is a rather general 
result. Our discussion in Section 4.5 is concerned with a particular form of A, namely, the 
form arising in our mixed displacement/pressure (u/p) formulations. In this case the stabil­
ity condition leads to specific expressions that pertain specifically to the u/p formulations, 
and we give these expressions in Section 4.5 .2. 

2.8 EXERCISES 

2.1. Evaluate the following required result in the most efficient way, that is, with the least number of 
multiplications. Count the number of multiplications used. 

Let 

and calculate BT Ak CB. 

A=[!:~] 
I 2 3 

BT= [I 3 2] 

k=4 

c = [ ~ ! =~] 
-2 -I 6 
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2.2. (a) Evaluate A- 1 when 

A=[ 3 -lJ 
-1 2 

and when [
2 0 1] 

A= 0 4 0 
1 0 2 

(b) Evaluate the determinants of these two matrices. 

2.3. Consider the following three vectors. 

I 4 

3 1 

x, = 4 X2 = -1 
-1 0 

2 

-7 
1 

X3 = 6 
-1 

Use these vectors as the columns of a matrix A and determine the rank and kernel of A. 
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2.4. Consider the following matrix A. Determine the constant k such that the rank of A is 2 and then 
determine the kernel of A. 

[ 
I -1 OJ 

A= -1 I + k -1 
0 -I l 

2.5. Consider the following two vectors defined in the three-dimensional Cartesian frame with basis 
vectors e;. 

u= Gl v= rn 
(a) Evaluate the angle between these vectors. 
(b) Assume that a new basis is to be used, namely, the primed basis in Example 2.24. Evaluate 

the components of the two vectors in this basis. 
(c) Evaluate the angle between the vectors in this new basis. 

2.6. A reflection matrix is defined as P = I - a vvr, a = + where v is a vector (of order n) normal 
to the plane of reflection. v v 
(a) Show that Pis an orthogonal matrix. 
(b) Consider the vector Pu where u is also a vector of order n. Show that the action of Pon u 

is that the component of u normal to the plane of reflection has its direction reversed and 
the component of u in the plane of reflection is not changed. 

2.7. The components of the stress tensor in the xi, x2 coordinate system of Fig. E2.25 are at a point 

= [ 10 -6] 
T -6 20 

(a) Establish a new basis in which the off-diagonal components are zero, and give the new 
diagonal components. 
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(b) The effective stress is defined as o' = ~ where the s. are the components of the 

deviatoric stress tensor, S,1 = TIJ - Tm8iJ and Tm is the mean stress T,,, = } . Prove that u is 
a scalar. Then also show explicitly for the given value of 1' that u is the same number in 
the old and new bases. 

2.8. The column q is defined as 

where (x1, x2) are the coordinates of a point. Prove that q is not a vector. 
2.9. The components of the Green-Lagrange strain tensor in the Cartesian coordinate system are 

defined as (see Section 6.2.2 for details) 

E !(X7X - I) 

where the components of the deformation gradient X are 

OUi 
X· = 8r +-

'J ~ OXj 

and "" x1 are the displacements and coordinates, respectively. Prove that the Green-Lagrange 
strain tensor is a second-order tensor. 

2.10. The material tensor in (2.66) can be written as [see (6.185)] 

Cyrs = J...8;16,s + µ(01rOjs + f>;sOjr) 

where A and µ are the Lame constants, 

>.. = Ev 
(1 + v)(l 2v) ' 

E 
µ = 2(1 + v) 

(a) 

This stress-strain relation can also be written in the matrix form used in Table 4.3, but in the table 
the use of engineering strain components is implied. (The tensor normal strain components are 
equal to the engineering normal strain components, but the tensor shear strain components are 
one-half the engineering components). 
(a) Prove that CiJrs is a fourth~order tensor. 
(b) Consider the plane stress case and derive from the expression in (a) the expression in 

Table 4.3. 
(c) Consider the plane stress case and write (2.66) in the matrix form C' = TCTr, where C is 

given in Table 4.3 and you derive T. (See also Exercise 4.39.) 
2.11. Prove that (2.70) holds. 
2.12. The covariant base vectors expressed in a Cartesian coordinate system are 

The force and displacement vectors in this basis are 

u = -2g1 + 3g2 
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(a) Calculate R • u using the covariant basis only. 
(b) Calculate R • u using the covariant basis for Rand the contravariant basis for u. 

2.13. Assume that the covariant basis is given by g, and g2 in Exercise 2.12. Let the stress and strain 
tensor components in the Cartesian basis be 

[100 10] 
T = 10 200 ; 

E = [0.0} 0.05] 
0.05 0.02 

Evaluate the components rn and E111n and show explicitly that the product T • E is the same using 
on the one side the Cartesian stress and strain components and on the other side the contravari­
ant stress and covariant strain components. 

2.14. Let a and b be second-order tensors and let A and B be transformation matrices. Prove that 

a· (AbB7) = (A7aB) • b. 

(Hint: This proof is easily achieved by writing the quantities in component forms.) 
2.15. Consider the eigenproblem Av = ,\ v with 

A= [ 2 -lJ 
-1 1 

(a) Solve for the eigenvalues and orthonormalized eigenvectors and write A in the form (2.109). 
(b) Calculate A6, A- 1 and A-2• 

2.16. Consider the eigenproblem 

1 3 I v = Av [
2 1 OJ 
0 1 2 

The smallest eigenvalue and corresponding eigenvector are 

1 

v'3 

A1 = I; Vt= 
I 

v'3 
l 

v'3 
Also, A2 = 2t ,\3 = 4. Calculate the Rayleigh quotient p{v) with 

v = v, + o.{i] 
and show that p{v) is closer to A1 than vis to v1• 

2.17. Consider the eigenproblem 
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Evaluate the eigenvalues of the matrices A and A(m>, m = 1, 2, where A(m> is obtained by omitting 
the last m rows and columns in A. Sketch the corresponding characteristic polynomials (see 
Example 2.38). 

2.18. Prove that the 1- and 2-norms of a vector v are equivalent. Then show explicitly this equivalency 
for the vector 

•=(_;] 
2.19. Prove the relation {2.157) for the I-norm. 

2.20. Prove that II Av II, :s;; II A Iii n v 11 •. 
2.21. Prove that for a symmetric matrix A we have II A !12 = p(A). (Hint: Use (2.108).) 

2.22. Prove that {2.177) and (2.178) hold when we use the dual norm of the L-norm for the R-norm. 
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Some Basic Concepts 
of Engineering Analysis 
and an Introduction 
to the Finite Element Method 

3.1 INTRODUCTION 

The analysis of an engineering system requires the idealization of the system into a form that 
can be solved, the formulation of the mathematical model, the solution of this model, and 
the interpretation of the results (see Section 1.2). The main objective of this chapter is to 
discuss some classical techniques used for the formulation and solution of mathematical 
models of engineering systems (see also S. H. Crandall [A]). This discussion will provide 
a valuable basis for the presentation of finite element procedures in the next chapters. Two 
categories of mathematical models are considered: lumped-parameter models and 
continuum-mechanics-based models. We also refer to these as Hdiscrete-system" and 
"continuous-system" mathematical models. 

In a lumped-parameter mathematical model, the actual system response is directly 
described by the solution of a finite number of state variables. In this chapter we discuss 
some general procedures that are employed to obtain the governing equations of lumped­
parameter models. We consider steady-state, propagation, and eigenvalue problems and 
also briefly discuss the nature of the solutions of these problems. 

For a continuum-mechanics-based mathematical model, the formulation of the gov­
erning equations is achieved as for a lumped-parameter model, but instead of a set of 
algebraic equations for the unknown state variables, differential equations govern the 
response. The exact solution of the differential equations satisfying all boundary conditions 
is possible only for relatively simple mathematical models, and numerical procedures must 
in general be employed. These procedures, in essence, reduce the continuous-system math­
ematical model to a discrete idealization that can be solved in the same manner as a 
lumped-parameter model. In this chapter we summarize some important classical proce­
dures that are employed to reduce continuous-system mathematical models to lumped­
parameter numerical models and briefly show how these classical procedures provide the 
basis for modern finite element methods. 

77 
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In practice, the analyst must decide whether an engineering system should be repre­
sented by a lumped-parameter or a continuous-system mathematical model and must 
choose all specifics of the model. Furthermore, if a certain mathematical model is chosen, 
the analyst must decide how to solve numerically for the response. This is where much of 
the value of finite element procedures can be found; that is, finite element techniques used 
in conjunction with the digital computer have enabled the numerical solution of continuous­
system mathematical models in a systematic manner and in effect have made possible the 
practical extension and application of the classical procedures presented in this chapter to 
very complex engineering systems. 

3.2 SOLUTION OF DISCRETE-SYSTEM MATHEMATICAL MODELS 

In this section we deal with discrete or lumped-parameter mathematical models. The 
essence of a lumped-parameter mathematical model is that the state of the system can be 
described directly with adequate precision by the magnitudes of a finite (and usually small) 
number of state variables. The solution requires the following steps: 

1. System idealization: the actual system is idealized as an assemblage of elements 
2. Element equilibrium: the equilibrium requirements of each element are established in 

terms of state variables 
3. Element assemblage: the element interconnection requirements are invoked to estab­

lish a set of simultaneous equations for the unknown state variables 
4. Calculation of response: the simultaneous equations are solved for the state variables, 

and using the element equilibrium requirements, the response of each element is 
calculated. 

These steps of solution are followed in the analyses of the different types of problems 
that we consider: steady-state problems, propagation problems, and eigenvalue problems. 
The objective in this section is to provide an introduction showing how problems in these 
particular areas are analyzed and to briefly discuss the nature of the solutions. It should be 
realized that not all types of analysis problems in engineering are considered; however, a 
large majority of problems do fall naturally into these problem areas. In the examples in this 
section we consider structural, electrical, fluid flow, and heat transfer problems, and we 
emphasize that in each of these analyses the same basic steps of solution are followed. 

3.2.1 Steady-State Problems 

The main characteristic of a steady-state problem is that the response of the system does not 
change with time. Thus, the state variables describing the response of the system under 
consideration can be obtained from the solution of a set of equations that do not involve time 
as a variable. In the following examples we illustrate the procedure of analysis in the 
solution of some problems. Five sample problems are presented: 

1. Elastic spring system 
2. Heat transfer system 
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3. Hydraulic network 
4. De network 
5. Nonlinear elastic spring system. 

The analysis of each problem illustrates the application of the general steps of analysis 
summarized in Section 3.2. The first four problems involve the analysis of linear systems, 
whereas the nonlinear elastic spring system responds nonlinearly to the applied loads. All 
the problems are well defined, and a unique solution exists for each system response. 

EXAMPLE 3. 1: Figure E3. l shows a system of three rigid carts on a horizontal plane that are 
interconnected by a system of linear elastic springs. Calculate the displacements of the carts and 
the forces in the springs for the loading shown. 

U1, R1 
~ 

k [1 -11 [ U1] "" rF,13
1
] 3 

-1 1 U2 [_F?1 

(a) Physical layout 

u, p--L:j11 
k1 U, == Fi11 

{b) Element equilibrium relations 

Figure E3.1 System of rigid carts interconnected by linear springs 
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We perform the analysis by following steps 1 to 4 in Section 3.2. As state variables that 
characterize the response of the system, we choose the displacements U,, U2, and U3 • These 
displacements are measured from the initial positions of the carts, in which the springs are 
unstretched. The individual spring elements and their equilibrium requirements are shown in 
Fig. E3.l(b). 

To generate the governing equations for the state variables we invoke the element intercon­
nection requirements, which correspond to the static equilibrium of the three carts: 

Fi0 + Ff> + F~3
> + F\4

> = R1 

F~2
> + F~3

> + F~> = R2 (a) 

F~4
) + F~S) = R3 

We can now substitute for the element end forces F1i>; i = l, 2, 3; j = 1, ... , 5; using the 
element equilibrium requirements given in Fig. E3.l(b). Here we recognize that corresponding 
to the displacement components U1, U2, and U3 we can write for element 1, 

G 
0 

m~:J = [TJ 0 
0 

or K<0u = F<0 

for element 2, 

[ k, -k, 

~JrnJ [F\'] -k2 k2 F~2> 

0 0 0 

or K(2)U = F<2>, and so on. Hence the element interconnection requirements in (a) reduce to 

KU= R 

where ur = [U1 U2 U3] 

[

(k1 + k2 + k3 + k4) -(k2 + k3) 

K = - (k2 + k3) (k2 + k3 + ks) 
-k4 -ks 

and 

Here it is noted that the coefficient matrix K can be obtained using 
s 

K=~K<0 

(b) 

(c) 

where the Keo are the element stiffness matrices. The summation process for obtaining in (c) the 
total structure stiffness matrix by direct summation of the element stiffness matrices is referred 
to as the direct stiffness method. 

The analysis of the system is completed by solving (b) for the state variables U1, U2, and 
U3 and then calculating the element forces from the element equilibrium relationships in 
Fig. E3.l. 

EXAMPLE 3.2: A wall is constructed of two homogeneous slabs in contact as shown in 
Fig. E3.2. In steady-state conditions the temperatures in the wall are characterized by the 
external surface temperatures 81 and (fJ and the interface temperature (h. Establish the equi-
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Conductance 
2k 

Surface 
coefficient 
2k 

Conductance 
3k 

Figure E3.2 Slab subjected to temperature boundary conditions 

81 

librium equations of the problem in terms of these temperatures when the ambient temperatures 
Oo and (}4 are known. 

The conductance per unit area for the individual slabs and the surface coefficients are 
given in Fig. E3.2. The heat conduction law is q/A = k Jl(J, where q is the total heat flow, A is 
the area, AO is the temperature drop in the direction of heat flow, and k is the conductance or 
surface coefficient. The state variables in this analysis are 01, 02, and 63. Using the heat conduc­
tion law, the element equilibrium equations are 

for the left surface, per unit area: 

for the left slab: 

for the right slab: 

for the right surface: 

q1 = 3k(6o - 61) 

q2 2k(01 - (h) 

q3 = 3k((h - (h) 

q4 = 2k((J3 - (}4) 

To obtain the governing equations for the state variables, we invoke the heat flow equilibrium 
requirement q1 = q2 = q3 = q4. Thus, 

3k(Oo - 81) = 2k(01 - th.) 

2k(81 th) = 3k((h - 03) 

3k((h - 83) = 2k(03 - 84) 

Writing these equations in matrix form we obtain 

[-~: -~: -~kJ,[::J = [3~0o] 
0 - 3k 5k 83 2kfJ4 

(a) 

These equilibrium equations can be also derived in a systematic manner using a direct 
stiffness procedure. Using this technique, we proceed as in Example 3.1 with the typical element 
equilibrium relations 

-[ 1 
k -I 
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where qi, qi are the heat flows into the element and 81, 8i are the element-end temperatures. For 
the system in Fig. E3.2 we have two conduction elements (each slab being one element), hence 
we obtain 

[ 

2k -2k O ][8'] [3k(8o 8,)] 
-2k 5k - 3k (Ji = 0 

0 - 3k 3k (h 2k(84 8:3) 
(b) 

Since 81 and fh are unknown, the equilibrium relations in (b) are rearranged for solution to obtain 
the relations in (a). 

It is interesting to note the analogy between the displacement and force analysis of the 
spring system in Example 3.1 and the temperature and heat transfer analysis in Example 3.2. 
The coefficient matrices are very similar in both analyses, and they can both be obtained 
in a very systematic manner. To emphasize the analogy we give in Fig. 3.1 a spring model 
that is governed by the coefficient matrix of the heat transfer problem. 

Figure 3.1 Assemblage of springs governed by same coefficient matrix as the heat transfer 
problem in Fig. E3.2 

We next consider the analyses of a simple flow problem and a simple electrical system, 
both of which are again analyzed in much the same manner as the spring and heat transfer 
problems. 

EXAMPLE 3.3: Establish the equations that govern the steady-state pressure and flow distribu­
tions in the hydraulic network shown in Fig. E3.3. Assume the fluid to be incompressible and the 
pressure drop in a branch to be proportional to the flow q through that branch, Ap = Rq, where 
R is the branch resistance coefficient. 

In this analysis the elements are the individual branches of the pipe network. As unknown 
state variables that characterize the flow and pressure distributions in the system we select the 

E 

R= 10b 

a A B Q 
___.,.... ---- ____ ____....... 

c R=3b D 

Figure E3.3 Pipe network 
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pressures at A, C, and D, which we denote as PA, Pc, and PD, and we assume that the pressure 
at B is zero. Thus, we have for the elements 

q - PA. 
I - lOb' 

I _ PA Pc. 
q2 AC - Sb , 

Pc - PD 
q3 = 2b 

q I _ Po. 
2 DB - Sb, 

Pc - PD 
q4 = 3b 

The element interconnectivity requirements require continuity of flow, hence 

Q = q, + q2 

Substituting from (a) into (b) and writing the resulting equations in matrix form, we obtain 

[ =; ~: -~m:J = l)On 
or l-~ j! -;m~:J = l

30

n 

(a) 

(b) 

(c) 

The analysis of the pipe network is completed by solving from (c) for the pressures PA, pc, and 
PD, and then the element equilibrium relations in (a) can be employed to obtain the flow 
distribution. 

The equilibrium relations in (c) can also be derived-as in the preceding spring and heat 
transfer examples-using a direct stiffness procedure. Using this technique, we proceed as in 
Example 3.1 with the typical element equilibrium relations 

![-~ !][:J = [:] 

where qi, qj are the fluid flows into the element and p;, pj are the element-end pressures. 

EXAMPLE 3.4: Consider the de network shown in Fig. E3.4. The network with the resistances 
shown is subjected to the constant-voltage inputs E and 2E at A and B, respectively. We are to 
determine the steady-state current distribution in the network. 

In this analysis we use as unknown state variables the currents /1, /2, and h. The system 
elements are the resistors, and the element equilibrium requirements are obtained by applying 
Ohm's law to the resistors. For a resistor R, carrying current/, we have Ohm's law 

AE RI 
where AE is the voltage drop across the resistor. 

The element interconnection law to be satisfied is Kirchhoff's voltage law for each closed 
loop in the network, 

2E = 2Rl1 + 2R(/1 h) 

E = 4R(I2 - h) 

0 = 6Rh + 4R(I3 - /2) + 2R(h - I,) 
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6R 

/3 t 
4 

@ ® 

1, )2R 

2R 4R 
) 12 

® @ 

2E E 

Figure E3.4 De network 

Writing these equations in matrix form. we obtain 

[ 
: ~R =~;] [~:] = [2!] 

-2R -4R 12R iJ O 
(a) 

The analysis is completed by solving these equations for /1, Ii, and IJ. Note that the equilibrium 
equations in (a) could also have been established using a direct stiffness procedure, as in 
Examples 3.1 to 3.3. 

We should note once again that the steps of analysis in the preceding structural, heat 
transfer, fluid flow, and electrical problems are very similar, the basic analogy being 
possibly best expressed in the use of the direct stiffness procedure for each problem. This 
indicates that the same basic numerical procedures will be applicable in the analysis of 
almost any physical problem (see Chapters 4 and 7). 

Each of these examples deals with a linear system; i.e., the coefficient matrix is 
constant and thus, if the right-hand-side forcing functions are multiplied by a constant a, 
the system response is also a times as large. We consider in this chapter primarily linear 
systems, but the same steps for solution summarized previously are also applicable in 
nonlinear analysis, as demonstrated in the following example (see also Chapters 6 and 7). 

EXAMPLE 3.5: Consider the spring-cart system in Fig. E3.l and assume that spring (D now 
has the nonlinear behavior shown in Fig. E3.5. Discuss how the equilibrium equations given in 
Example 3.1 have to be modified for this analysis. 

As long as U1 :S i:.iy, the equilibrium equations in Example 3.1 are applicable with k1 = k. 
However, if the loads are such that U1 > Lly, i.e., F\I) > Fy, we need to use a different value for 
k1, and this value depends on the force pp> acting in the element. Denoting the stiffness value by 
ks, as shown in Fig. E3.5, the response of the system is described for any load by the equilibrium 
equations 

(a) 

where the coefficient matrix is established exactly as in Example 3.1 but using ks instead of k,, 

[

(ks + k2 + k3 + k4) -(k2 + k3) 
Ks = -(k2 + k3) (kz + k3 + ks) 

-k4 -ks 

(b) 
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kt10 
F 
R'>1---~~~~~-6:i.r-

-----,,,,"'..,, Fy ....._ __ . ,,, 
,,, 

L}ks 
,,/ 1 

,/ 

Figure E3.5 Spring (D of the cart-spring system of Fig. E3 .1 with nonlinear elastic charac­
teristics 
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Although the response of the system can be calculated using this approach, in which K, is 
referred to as the secant matrix, we will see in Chapter 6 that in general practical analysis we 
actually use an incremental procedure with a tangent stiffness matrix. 

These analyses demonstrate the general analysis procedure: the selection of unknown 
state variables that characterize the response of the system under consideration, the 
identification of elements that together comprise the complete system, the establishment of 
the element equilibrium requirements, and finally the assemblage of the elements by invok­
ing interelement continuity requirements. 

A few observations should be made. First, we need to recognize that there is some 
choice in the selection of the state variables. For example, in the analysis of the carts in 
Example 3.1, we could have chosen.the unknown forces in the springs as state variables. A 
second observation is that the equations from which the state variables are calculated can 
be linear or nonlinear equations and the coefficient matrix can be of a general nature. 
However, it is most desirable to deal with a symmetric positive definite coefficient matrix 
because in such cases the solution of the equations is numerically very effective {see 
Section 8.2). 

In general, the physical characteristics of a problem determine whether the numerical 
solution can actually be cast in a form that leads to a symmetric positive definite coefficient 
matrix. However, even if possible, a positive definite coefficient matrix is obtained only if 
appropriate solution variables are selected, and in a nonlinear analysis an appropriate 
linearization must be performed in the iterative solution. For this reason, in practice, it is 
valuable to employ general formulations for whole classes of problems (e.g., structural 
analysis, heat transfer, and so on-see Sections 4.2, 7.2, and 7.3) that for any analysis lead 
to a symmetric and positive definite coefficient matrix. 

In the preceding discussion we employed the direct approach of assembling the 
system-governing equilibrium equations. An important point is that the governing equi­
librium equations for state variables can in many analyses also be obtained using an 
extremum, or variational formulation. An extremum problem consists of locating the set (or 



86 Some Basic Concepts of Engineering Analysis Chap.3 

sets) of values (state variables) U;, i = J, ... n, for which a given functional Il(U1, ... , 
U11 ) is a maximum, is a minimum, or has a saddle point. The condition for obtaining the 
equations for the state variables is 

and since 

we must have 

5Il = 0 

an an 
IHI = - 6U, + · · · + - l>Un 

iJU, oUn 

an= 0 
iJU; 

for i = l, ... , n 

(3.1) 

(3.2) 

(3.3) 

We note that 8U; stands for "variations in the state variables U; that are arbitrary except that 
they must be zero at and corresponding to the state variable boundary conditions."1 The 
second derivatives of II with respect to the state variables then decide whether the solution 
corresponds to a maximum, a minimum, or a saddle point. In the solution of lumped­
parameter models we can consider that IT is defined such that the relations in ( 3.3) generate 
the governing equilibrium equations. 2 For example, in linear structural analysis, when 
displacements are used as state variables, IT is the total potential (or total potential energy) 

Il=oU-W (3.4) 

where 6U, is the strain energy of the system and W is the total potential of the loads. The 
solution for the state variables corresponds in this case to the minimum of II. 

EXAMPLE 3.6: Consider a simple spring of stiffness k and applied load P, and discuss the use 
of (3.1) and (3.4). 

Let u be the displacement of the spring under the load P. We then have 

W = Pu 

and Il = !ku 2 
- Pu 

Note that for a given P, we could graph Il as a function of u. Using (3.1) we have, with 
u as the only variable, 

Sil = (ku - P) 8u; 

which gives the equilibrium equation 

ku = P 

an 
-=ku-P au 

Using (a) to evaluate W, we have at equilibrium W = ku 2
; i.e., W = 2oU and Il = -!ku 2 

-!Pu. Also, a2n/au 2 = k and hence at equilibrium Il is at its minimum. 

(a) 

EXAMPLE 3. 7: Consider the analysis of the system of rigid carts in Example 3 .1. Determine 
II and invoke the condition in (3.1) for obtaining the governing equilibrium equations. 

Using the notation defined in Example 3 .1, we have 

CU = t urKU (a) 

I More precisely, the variations in the state variables must be zero at and corresponding to the essential 
boundary conditions, as further discussed in Section 3.3.2. 

2 In this way we consider a specific variational formulation, as further discussed in Chapters 4 and 7. 
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and W = U7R 

where it should be noted that the total strain energy in (a) could also be written as 

oU ! ur(~ Kui)u 
4 U7K0 )U + 4 U7K(2)U + ... + t urK15>u 

= Olli + oU2 + · · · + °tls 
where oU; is the strain energy stored in the ith element. 

Using (a) and (b), we now obtain 

I1 = t U7KU urR 
Applying (3.1) gives 

KU R 

87 

(b) 

(c) 

Solving for U and then substituting into (c), we find that 11 corresponding to the displacements 
at system equilibrium is 

Since the same equilibrium equations are generated using the direct solution approach 
and the variational approach, we may ask what the advantages of employing a variational 
scheme are. Assume that for the problem under consideration I1 is defined. The equilibrium 
equations can then be generated by simply adding the contributions from all elements to I1 
and invoking the stationarity condition in (3.1). In essence, this condition generates auto­
matically the element interconnectivity requirements. Thus, the variational technique can 
be very effective because the system-governing equilibrium equations can be generated 
"quite mechanically." The advantages of a variational approach are even more pronounced 
when we consider the numerical solution of a continuous system (see Section 3.3.2). How­
ever, a main disadvantage of a variational approach is that, in general, less physical insight 
into a problem formulation is obtained than when using the direct approach. Therefore, it 
may be critical that we interpret physically the system equilibrium equations, once they have 
been established using a variational approach, in order to identify possible errors in the 
solution and in order to gain a better understanding of the physical meaning of the equations. 

3.2.2 Propagation Problems 

The main characteristic of a propagation or dynamic problem is that the response of the 
system under consideration changes with time. For the analysis of a system, in principle, the 
same procedures as in the analysis of a steady-state problem are employed, but now the state 
variables and element equilibrium relations depend on time. The objective of the analysis 
is to calculate the state variables for all time t. 

Before discussing actual propagation problems, let us consider the case where the time 
effect on the element equilibrium relations is negligible but the load vector is a function of 
time. In this case the system response is obtained using the equations governing the steady­
state response but substituting the time-dependent load or forcing vector for the load vector 
employed in the steady-state analysis. Since such an analysis is in essence still a steady-state 
analysis, but with steady-state conditions considered at any time t, the analysis may be 
referred to as a pseudo steady-state analysis. 
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In an actual propagation problem, the element equilibrium relations are time­
dependent, and this accounts for major differences in the response characteristics when 
compared to steady-state problems. In the following we present two examples that demon­
strate the formulation of the governing equilibrium equations in propagation problems. 
Methods for calculating the solution of these equations are given in Chapter 9. 

EXAMPLE 3.8: Consider the system of rigid carts that was analyzed in Example 3.1. Assume 
that the loads are time~dependent and establish the equations that govern the dynamic response 
of the system. 

For the analysis we assume that the springs are massless and that the carts have masses m 1 • 

m2 , and m3 (which amounts to lumping the distributed mass of each spring to its two end points). 
Then. using the information given in Example 3.1 and invoking d' Alembert's principle, the 
element interconnectivity requirements yield the equations 

where 

F\0 + Ff) + F\3
l + F\4

> = R,(t) - m, U1 
A.21 +Fr)+ p'fl = Rh) - m2U2 

F~4
> + F~s> = RJ(t) m3 U3 

1, 2, 3 

Thus we obtain as the system-governing equilibrium equations 

MU+ KU= R(t) 

where K, U, and R have been defined in Example 3.1 and Mis the system mass matrix 

M = [~

1 

~2 ~] 

0 0 m3 

(a) 

The equilibrium equations in (a) represent a system of ordinary differential equations of second 
order in time. For the solution of these equations it is also necessary that the initial conditions 
on U and Ube given; i.e., we need to have 0U and 0iJ, where 

0U = Ul,=o; 0U = Ul,-o 

Earlier we mentioned the case of a pseudo steady-state analysis. Considering the 
response of the carts, such analysis implies that the loads change very slowly and hence 
mass effects can be neglected. Therefore, to obtain the pseudo steady-state response, the 
equilibrium equations (a) in Example 3.8 should be solved with M = 0. 

EXAMPLE 3.9: Figure E3.9 shows an idealized case of the transient heat flow in an electron 
tube. A filament is heated to a temperature 81 by an electric current; heat is convected from the 
filament to the surrounding gas and is radiated to the wall, which also receives heat by convection 
from the gas. The wall itself convects heat to the surrounding atmosphere, which is at tempera­
ture 80 • It is required to formulate the system-governing beat flow equilibrium equations. 

In this analysis we choose as unknown state variables the temperature of the gas, 81, and 
the temperature of the wall, Bi. The system equilibrium equations are generated by invoking the 
heat flow equilibrium for the gas and the wall. Using the heat transfer coefficients given in 
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Wall 

Atmosphere 

Filament 
9, 

Filament 

Gas 
81 

Radiation 

(k,J 

Heat capacity _ C 
of gas - 1 

Heat capacity C 
of wall = 2 

Convection Atmosphere 

(k3) Oa 

Figure E3.9 Heat transfer idealization of an electron tube 

Fig. E3.9, we obtain for the gas 

and for the wall 

c d81 
ldt 

These two equations can be written in matrix form as 

where C = [Ci O ]· 
O C2 ' 

Q 
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(a) 

We note that because of the radiation boundary condition, the heat flow equilibrium equations 
are nonlinear in 6. Here the radiation boundary condition term has been incorporated in the heat 
flow load vector Q. The solution of the equations can be carried out as described in Section 9.6. 

Although, in the previous examples, we considered very specific cases, these examples 
illustrated in a quite general way how propagation problems of discrete systems are formu-



90 Some Basic Concepts of Engineering Analysis Chap.3 

lated for analysis. In essence, the same procedures are employed as in the analysis of 
steady-state problems, but "time-dependent loads" are generated that are a result of the 
"resistance to change" of the elements and thus of the complete system. This resistance to 
change or inertia of the system must be considered in a dynamic analysis. 

Based on the preceding arguments and observations, it appears that we can conclude 
that the analysis of a propagation problem is a very simple extension of the analysis of the 
corresponding steady-state problem. However, we assumed in the earlier discussion that the 
discrete system is given and thus the degrees of freedom or state variables can be directly 
identified. In practice, the selection of an appropriate discrete system that contains all the 
important characteristics of the actual physical system is usually not straightforward, and 
in general a different discrete model must be chosen for a dynamic response prediction than 
is chosen for the steady-state analysis. However, the discussion illustrates that once the 
discrete model has been chosen for a propagation problem, formulation of the governing 
equilibrium equations can proceed in much the same way as in the analysis of a steady-state 
response, except that inertia loads are generated that act on the system in addition to the 
externally applied loads (see Section 4.2.1). This observation leads us to anticipate that 
the procedures for solving the dynamic equilibrium equations of a system are largely based 
on the techniques employed for the solution of steady-state equilibrium equations (see Sec­
tion 9.2). 

3.2.3 Eigenvalue Problems 

In our earlier discussion of steady-state and propagation problems we implied the existence 
of a unique solution for the response of the system. A main characteristic of an eigenvalue 
problem is that there is no unique solution to the response of the system, and the objective 
of the analysis is to calculate the various possible solutions. Eigenvalue problems arise in 
both steady-state and dynamic analyses. 

Various different eigenvalue problems can be formulated in engineering analysis. In 
this book we are primarily concerned with the generalized eigenvalue problem of the form 

Av= ABv (3.5) 

where A and Bare symmetric matrices, A is a scalar, and vis a vector. If A; and v; satisfy 
(3.5), they are called an eigenvalue and an eigenvector, respectively. 

In steady-state analysis an eigenvalue problem of the form (3.5) is formulated when 
it is necessary to investigate the physical stability of the system under consideration. The 
question that is asked and leads to the eigenvalue problem is as follows: Assuming that the 
steady-state solution of the system is known, is there another solution into which the system 
could bifurcate if it were slightly perturbed from its equilibrium position? The answer to 
this question depends on the system under consideration and the loads acting on the system. 
We consider a very simple example to demonstrate the basic idea. 

EXAMPLE 3. 10: Consider the simple cantilever shown in Fig. E3.10. The structure consists of 
a rotational spring and a rigid lever arm. Predict the response of the structure for the load 
applications shown in the figure. 

We consider first only the steady~state response as discussed in Section 3 .2.1. Since the bar 
is rigid, the cantilever is a single degree of freedom system and we employ Av as the state variable. 
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Figure E3.10 Analysis of a simple cantilever model 

91 



92 Some Basic Concepts of Engineering Analysis Chap.3 

In loading condition I, the bar is subjected to a longitudinal tensile force P, and the moment 
in the spring is zero. Since the bar is rigid, we have 

Av= 0 (a) 

Next consider loading condition II. Assuming small displacements we have in this case 

PL2 
Av= k (b) 

Finally, for loading condition III we have, as in condition I, 

.Ao= 0 (c) 

We now proceed to determine whether the system is stable under these load applications. 
To investigate the stability we perturb the structure from the equilibrium positions defined in (a), 
(b), and (c) and ask whether an additional equilibrium position is possible. 

Assume that .Ao is positive but small in loading conditions I and II. If we write the 
equilibrium equations taking this displacement into account, we observe that in loading condition 
I the small nonzero A0 cannot be sustained, and that in loading condition II the effect of including 
Av in the analysis is negligible. 

Consider next that .Ao > 0 in loading condition III. In this case, for an equilibrium 
configuration to be possible with Av nonzero, the following equilibrium equation must be 
satisfied: 

But this equation is satisfied for any Ao, provided P = k/L. Hence the critical load Pent at which 
an equilibrium position in addition to the horizontal one becomes possible is 

In summary, we have 

P < Pent 

P = Pent 

k 
Pent= L 

only the horizontal position of the bar is possible; 
equilibrium is stable 

horizontal and deflected positions of the bar are 
possible; the horizontal equilibrium position is 
unstable for P 2:: Pcn1· 

To gain an improved understanding of these results we may assume that in addition to the 
load P shown in Fig. E3.10(b), a small transverse load Wis applied as shown in Fig. E3.10(d). 
If we then perform an analysis of the cantilever model subjected to P and W. the response curves 
shown schematically in Fig. E3.10(e) are obtained. Thus, we observe that the effect of the load 
W decreases and is constant as P increases in loading conditions I and II, but that in loading 
condition III the transverse displacement .:lv increases very rapidly as P approaches the critical 
load, P cn1. 

The analyses given in Example 3.10 illustrate the main objective of an eigenvalue 
formulation and solution in instability analysis, namely, to predict whether small distur­
bances that are imposed on the given equilibrium configuration tend to increase very 
substantially. The load level at which this situation arises corresponds to the critical loading 
of the system. In the second solution carried out in Example 3.10 the small disturbance was 
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due to the small load W, which, for example, may simulate the possibility that the horizontal 
load on the cantilever is not acting perfectly horizontally. In the eigenvalue analysis, we 
simply assume a deformed configuration and investigate whether there is a load level that 
indeed admits such a configuration as a possible equilibrium solution. We shall discuss in 
Section 6.8.2 that the eigenvalue analysis really consists of a linearization of the nonlinear 
response of the system, and that it depends largely on the system being considered whether 
a reliable critical load is calculated. The eigenvalue solution is particularly applicable in the 
analysis of "beam-column-type situations" of beam, plate, and shell structures. 

EXAMPLE 3.11: Experience shows that in structural analysis the critical load on column-type 
structures can be assessed appropriately using an eigenvalue problem formulation. Consider the 
system defined in Fig. E3.1 l. Construct the eigenvalue problem from which the critical loading 
on the system can be calculated. 

Rigid bar 

k, 

Rigid bar 

Smooth hinges at 
A, 8, and C 

Figure EJ.11 Instability analysis of a column 
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As in the derivation of steady-state equilibrium equations (see Section 3.2. I), we can 
employ the direct procedure or a variational approach to establish the problem-governing equa­
tions, and we describe both techniques in this problem solution. 

In the direct approach we establish the governing equilibrium equations directly by consid­
ering the equilibrium of the structure in its deformed configuration. Referring to Fig. E3.l 1, the 
moment equilibrium of bar AB requires that 

PL sin(a + {3) = kV, L cos(a + /3) + kra 

Similarly, for bars CBA we need 

(a) 

PL[sin(a + /3) + sin /3] = kV, L[cos(a + /3) + cos /3] + kU2 L cos {3 (b) 

We select U, and U2 as state variables that completely describe the structural response. We also 
assume small displacements, for which 

L sin(a + /3) = U1 V2; L sin f3 = U2 

. Ui - 2U2 
a=---

L 
L cos(a + /3) = L; L cos {3 = L; 

Substituting into (a) and (b) and writing the resulting equations in matrix form, we obtain 

[k\:} -:tJ[~J p~ -:Jt:J 
We can symmetrize the coefficient matrices by multiplying the first row by - 2 and adding the 
result to row 2, which gives the eigenvalue problem 

2kr]t] [ ]t] - Vi 1 -1 Vi 

kL + L ~' U, = p - I 2 U, 
(c) 

It may be noted that the second equation in (c) can also be obtained by considering the moment 
equilibrium of bar CB. 

Considering next the variational approach, we need to determine the total potential Il of 
the system in the deformed configuration. Here we have 

II = f kVy + f kV~ + !kra2 PL[l - cos(a + {3) + 1 - cos {3] (d) 

As in the direct approach, we now assume small displacement conditions. Since we want 
to derive, using (3.1); an eigenvalue problem of form (3.5) in which the coefficient matrices are 
independent of the state variables, we approximate the trigonometric expressions to second order 
in the state variables. Thus, we use 

and a + {3 

cos(a + {3) = 1 - (a : {3)
2 

. 132 
cos {3 = 1 - -

2 

{3 = V2 
L 

(e) 

(f) 
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Substituting from (e) and (f) into (d) we obtain 

1 I I (U1 - 2U2)2 
P P n = -kUi + -kU~ + -k - -(U1 - U2)2 

- -u~ 
2 2 2 r L 2L 2L 

Applying the stationarity principle, 

the equations in (c) are obtained. 

an 
-=O· au, ' 
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Considering now dynamic analysis, an eigenvalue problem may need to be formulated 
in the solution of the dynamic equilibrium equations. In essence, the objective is then to find 
a mathematical transformation on the state variables that is employed effectively in the 
solution of the dynamic response (see Section 9.3). In the analysis of physical problems, it 
is then most valuable to identify the eigenvalues and vectors with physical quantities (see 
Section 9.3). 

To illustrate how eigenvalue problems are formulated in dynamic analysis, we present 
the following examples. 

EXAMPLE 3.12: Consider the dynamic analysis of the system of rigid carts discussed in 
Example 3.8. Assume free vibration conditions and that 

U = ct, sin(wt - 1/1) (a) 

where ct, is a vector with components independent of time, <» is a circular frequency, and ljJ is a 
phase angle. Show that with this assumption an eigenvalue problem of the form given in (3.5) 
is obtained when searching for a solution of ct, and w. 

The equilibrium equations of the system when considering free-vibration conditions are 

MU+KU=O (b) 

where the matrices Mand Kand vector U have been defined in Examples 3.1 and 3.8. IfU given 
in ( a) is to be a solution of the equations in (b ); these equations must be satisfied when substituting 
forU, . 

-w2M«t, sin(rut - lf,) + Ket, sin(wt - 1/1) = 0 

Thus, for (a) to be a solution of (b) we obtain the condition 

Ket,= w2M«t, (c) 

which is an eigenvalue problem of form (3.5). We discuss in Section 9.3 the physical character­
istics of a solution. w'f and cf,;, to the problem in (c). 

EXAMPLE 3.13: Consider the electric circuit in Fig. E3.13. Determine the eigenvalue problem 
from which the resonant frequencies and modes can be calculated when L 1 = L2 = L and 
C1 = C2 = C. 

Our first objective is to derive the dynamic equilibrium equations of the system. The 
element equilibrium equation for an inductor is 

di 
L-= V 

dt 
(a) 
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t ,, 

C2 

Figure E3.13 Electric circuit 

where L is the inductance, I is the current through the inductor, and Vis the voltage drop across 
the inductor. For a capacitor of capacitance C the equilibrium equation is 

I CdV 
dt 

(b) 

As state variables we select the currents /1 and /2 shown in Fig. E3.13. The governing 
equilibrium equations are obtained by invoking the element interconnectivity requirements 
contained in Kirchhoff's voltage law: 

Vi 1 + VL2 + Vc2 = 0 
(c) 

Differentiating (a) and (c) with respect to time and substituting into (c) with L1 = L2 = Land 
C1 = C2 = C, we obtain 

(d) 

We note that these equations are quite analogous to the free-vibration equilibrium equations of 
a structural system. Indeed, recognizing the analogy 

I ~ displacement; 1 'ff C ~ su ness; L-+ mass 

the eigenproblem for the resonant frequencies is established as in Example 3.12 (and an equiv­
alent structural system could be constructed). 

3.2.4 On the Nature of Solutions 

In the preceding sections we discussed the formulation of steady-state, propagation, and 
eigenvalue problems, and we gave a number of simple examples. In all cases a system of 
equations for the unknown state variables was formulated but not solved. For the solution 
of the equations we refer to the techniques presented in Chapters· 8 to 11. The objective in 
this section is to discuss briefly the nature of the solutions that are calculated when steady­
state, propagation, or eigenvalue problems are considered. 

For steady-state and propagation problems, it is convenient to distinguish between 
linear and nonlinear problems. In simple terms, a linear problem is characterized by the fact 
that the response of the system varies in proportion to the magnitude of the applied loads. 
All other problems are nonlinear, as discussed in more detail in Section 6.1. To demonstrate 
in an introductory way some basic response characteristics that are predicted in linear 
steady-state, propagation, and eigenvalue analyses we consider the following example. 
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EXAMPLE 3. 14: Consider the simple structural system consisting of an assemblage of rigid 
weightless bars, springs, and concentrated masses shown in Fig. E3.14. The elements are con­
nected at A, B, and C using frictionless pins. It is required to analyze the discrete system for the 
loading indicated, when the initial displacements and velocities are zero. 

The response of the system is described by the two state variables U1 and U2 shown in 
Fig. E3.14(c). To decide what kind of analysis is appropriate we need to have sufficient informa­
tion on the characteristics of the structure and the applied forces F and P. Let us assume that the 
structural characteristics and the applied forces are such that the displacements of the element 
assemblage are relatively small, 

F 

U1 1 U2 1 -<- and -<-
L 10 L 10 

m m/2 
k12. = kL2 

Rigid bar Rigid bar 

--~~~L~~~~-M..,.._~~~L~---~~--

(a) Discrete system 

t 

Smooth hinges at 
A, B, and C 

p 

(b) Loading conditions 

(c) External forces in deformed configuration 

Figure E3.14 A two degree of freedom system 

p 

k 

t 



98 

We can then assume that 

Some Basic Concepts of Engineering Analysis 

cos a = cos f3 = cos({3 - a) = 1 

sin a = a; sin {3 = {3 

u, 
a=-· 

L' 

Chap.3 

(a) 

The governing equilibrium equations are derived as in Example 3.11 but we include inertia forces 
(see Example 3.8); thus we obtain 

(b) 

The response of the system must depend on the relative values of k, m, and P/L. In order 
to obtain a measure of whether a static or dynamic analysis must be performed we calculate the 
natural frequencies of the system. These frequencies are obtained by solving the eigenvalue 
problem 

(c) 

The solution of (c) gives (see Section 2.5) 

(.()1 = ( 9k + ZP _ 
2m ml 

33k' 8Pk 2P' )''' --+-+--
4m 2 m2L m2U 

u)i= (9k 2P -+-+ 
2m ml 

33k
2 

+ 8Pk + 2P
2 
)"' 

4m 2 m2L m2U 

We note that for constant k and m the natural frequencies (radians per unit time) are a function 
of P/L and increase with P/L as shown in Fig. E3.14(d). The ith natural period, Ji, of the system 
is given by Ti = 211'/wi, hence 

-· ' uJ1 

The response of the system depends to a large degree on the duration of load application when 
measured on the natural periods of the system. Since P is constant, the duration of load applica­
tion is measured by Td. To illustrate the response characteristics of the system. we assume a 
specific case k = m P/L = l and three different values of h · 
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Figure E3.14 (continued) 

Case (i) Td = 4 T,: The response of the system is shown for this case of load application in 
Fig. E3. I 4(e), Case i. We note that the dynamic response solution is somewhat close to the static 
response of the system and would be very close if Ti ~ 'h 



100 Some Basic Concepts of Engineering Analysis Chap. 3 

Case (ii) Td;; {T, + Ti)/2: The response of the system is truly dynamic as shown in 
Fig. E3.14(e), Case ii. It would be completely inappropriate to neglect the inertia effects. 

Case (iii) Td = 1 I 4 T2: In this case the duration of the loading is relatively short compared 
to the natural periods of the system. The response of the system is truly dynamic, and inertia 
effects must be included in the analysis as shown in Fig. E3.14(e), Case iii. The response of the 
system is somewhat close to the response generated assuming impulse conditions and would be 
very close if T2 ;i> Td. 
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(e) Analysis of the system: Case iii (here the actual 
displacements are obtained by multiplying the given 
values by 27ct/'11'; the impulse response was calculated 
using 0u1 = 0u2 = 0, 0 01 = 0U2 = 4Td/TT and setting the 
external loads to zero). 

Figure E3.14 (continued) 
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To identify some conditions for which the structure becomes unstable, we note from (b) 
that the stiffness of the structure increases with increasing values of P/L (which is why the 
frequencies increase as P/L increases). Therefore, for the structure to become unstable, we need 
a negative value of P; i.e., P must be compressive. Let us now assume that P is decreased very 
slowly (P increases in compression) and that Fis very small. In this case a static analysis is 
appropriate, and we can neglect the force F to obtain from (b) the governing equilibrium 
equations 

[ _~: -~:J[~J = f [-~ -!J[~J 
The solution of this eigenvalue problem gives two values for P/L. Because of the sign convention 
for P. the larger eigenvalue gives the critical load 

Pent= -2kL 

It may be noted that this is the load at which the smallest frequency of the system is zero 
[see Fig. E3.14(d)]. 

Although we considered a structural system in this example, most of the solution 
characteristics presented are also directly observed in the analysis of other types of prob­
lems. As shown in an introductory manner in the example, it is important that an analyst 
be able to decide what kind of analysis is required: whether a steady-state analysis is 
sufficient or whether a dynamic analysis should be performed, and whether the system may 
become unstable. We discuss some important factors that influence this decision in Chap­
ters 6 and 9. 

In addition to deciding what kind of analysis should be performed, the analyst must 
select an appropriate lumped-parameter mathematical model of the actual physical system. 
The characteristics of this model depend on the analysis to be carried out. but in complex 
engineering analyses, a simple lumped-parameter model is in many cases not sufficient, and 
it is necessary to idealize the system by a continuum-mechanics-based mathematical model. 
We introduce the use of such models in the next section. 

3.2.5 Exercises 

3.1. Consider the simple cart system in static (steady-state) conditions shown. Establish the governing 
equilibrium ~uations. 

Cart 1 

~R1•10 
3k 

k 

Cart 2 

~R3•0 

4k 

Cart 3 
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3.2. Consideohe wall of three homogeneous slabs in contact as shown. Establish the steady~state heat 
transfer equilibrium equations of the analysis problem. 

Conductance 4k 

Conductance 2k 

Prescribed 
temperature 81 

Conductance 3k 

Surface coefficient 3k 

Environmental 
temperature 8s 

3.3. The hydraulic network shown is to be analyzed. Establish the equilibrium equations of the system 
when A.p == Rq and R is the branch resistance coefficient. 

R·Bb 

3.4. The de network shown is to be analyzed. Using Ohm's law. establish the current-voltage drop 
equilibrium equations of the system. 

2R 3R 

E 
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3.5. Consider the spring-cart system in Exercise 3.1. Determine the variational indicator Il of the total 
potential of this system. 

3.6. Consider the slab in Example 3.2. Find a variational indicator Il that has the property that 
an = 0 generates the governing equilibrium equations. 

3. 7. Establish the dynamic equilibrium equations of the system of carts in Exercise 3 .1 when the carts 
have masses m1, m2, and m3. 

3.8. Consider the simple spring-cart system shown initially at rest. Establish the equations governing 
the dynamic response of the system. 

R; 

Time 

~R1=50 Spring stiffness k 

2k 

Mass m 1 

3.9. The rigid bar and cable structure shown is to be analyzed for its dynamic response. Formulate 
the equilibrium equations of motion. 

Massless cable 
Tension T 
Length L 

Rigid, massless bars 
Spring stiffness k 
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3.10. Consider the structural model shown. Determine the eigenvalue problem from which the critical 
load can be calculated. Use the direct method and the variational method to obtain the governing 
equations. 

Frictionless hinges 

Rigid bar 

3.11. Establish the eigenproblem governing the stability of the system shown. 

Rigid bars, frictionless hinges 

L 

L 

~ Spring stiffness k 
-.""'7",,...,,.,,, 
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3.12. The column structure in Exercise 3.11 is initially at rest under the constant force P (where P is 
below the critical load) when suddenly the force Wis applied. Establish the governing equations 
of equilibrium. Assume the springs to be massless and that the bars have mass m per unit length. 

3.13. Consider the analysis in Example 3.9. Assume 6 = <f>e->.r and Q = 0 and establish an eigenprob­
lem corresponding to,\, <f>. 

3.14. Consider the wall of three homogeneous slabs in Exercise 3.2. Formulate the heat transfer 
equations for a transient analysis in which the initia] temperature distribution is given and 
suddenly 61 is changed to er. Then assume 8 = cf>e-A' and Q == 0, and establish an eigenprob­
lem corresponding to A. <f>. Assume that, for a unit cross-sectional area. each slab has a total heat 
capacity of c, and that for each slab the heat capacity can be lumped to the faces of the slab. 

3.3 SOLUTION OF CONTINUOUS-SYSTEM MATHEMATICAL MODELS 

The basic steps in the solution of a continuous-system mathematical model are quite similar 
to those employed in the solution of a lumped-parameter model (see Section 3.2). However, 
instead of dealing with discrete elements, we focus attention on typical differential elements 
with the objective of obtaining differential equations that express the element equilibrium 
requirements, constitutive relations, and element interconnectivity requirements. These 
differential equations must ho1d throughout the domain of the system, and before the 
solution can be calculated they. must be supplemented by boundary conditions and, in 
dynamic analysis, also by initial conditions. 

As in the solution of discrete models, two different approaches can be followed to 
generate the system-governing differential equations: the direct method and the variational 
method. We discuss both approaches in this section (see also R. Courant and D. Hilbert [A]) 
and illustrate the variational procedure in some detail because, as introduced in Sec­
tion 3.3.4, this approach can be regarded as the basis of the finite element method. 

3.3.1 Differential Formulation 

In the differential formulation we establish the equilibrium and constitutive requirements 
of typical differential elements in terms of state variables. These considerations lead to a 
system of differential equations in the state variables, and it is possible that all compatibility 
requirements (i.e., the interconnectivity requirements of the differential elements) are 
already contained in these differential equations (e.g., by the mere fact that the solution is 
to be continuous). However, in general, the equations must be supplemented by additional 
differential equations that impose appropriate constraints on the state variables in order 
that all compatibility requirements be satisfied. Finally, to complete the formulation of the 
problem, all boundary conditions, and in a dynamic analysis the initial conditions, are 
stated. 

For purposes of mathematical analysis it is expedient to classify problem-governing 
differential equations. Consider the second-order general partial differential equation in the 
domain x. y, 

a2u fJ2u a2u { au au) 
A(x, y) ax2 + 2B(x, y) f:Jxay + C(x, y) ay2 = 'Pf y, u, ax, ay (3.6) 
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where u is the unknown state variable. Depending on the coefficients in (3.6) the differential 
equation is elliptic, parabolic or hyperbolic: 

{

< 0 
B2 - AC = 0 

>0 

elliptic 

parabolic 

hyperbolic 

This classification is established when solving (3.6) using the method of characteristics 
because it is then observed that the character of the solutions is distinctly different for the 
three categories of equations. These differences are also apparent when the differential 
equations are identified with the different physical problems that they govern. In their 
simplest form the three types of equations can be identified with the Laplace equation, the 
heat conduction equation, and the wave equation, respectively. We demonstrate how these 
equations arise in the solution of physical problems by the following examples. 

EXAMPLE 3. 15: The idealized dam shown in Fig. E3. l 5 stands on permeable soil. Formulate 
the differential equation governing the steady-state seepage of water through the soil and give the 
corresponding boundary conditions. 

For a typical element of widths dx and dy (and unit thickness), the total flow into the 
element must be equal to the total flow out of the element. Hence we have 

or 

(q/y - q/y+dy) dx + (q/x - q/x+dx) dy = 0 

oqy oqx 
--dydx - -dxdy = 0 

iJy ax 
(a) 

x x x x x x x x x x 
Impermeable rock 

(a) Idealization of dam on soil and rock 

-qlx+ dx 

(b) Differential element of soil 
Figure E3.15 Two-dimensional seepage 
problem 
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Using Darcy's law, the flow is given in terms of the total potential ef>, 

a4> a4> 
qx = -k ax; qy = -k ay (b) 

where we assume a uniform permeability k. Substituting from (b) into (a), we obtain the Laplace 
equation 

k -+- =O ( 
;;2 4> fi "') 
ax2 ay2 (c) 

It may be noted that this same equation is also obtained in heat transfer analysis and in the 
solution of electrostatic potential and other field problems (see Chapter 7). 

The boundary conditions are no-flow boundary conditions in the soil at x = -oo and 
x = +oo, 

a"'I = o· ax x=-«1 ' 
(d) 

at the rock-soil interface, 

iJ"'I - 0 
dY y=O 

(e) 

and at the dam-soil interface, 

h h 
for--sxs +-

2 2 
iJ<f> a/x, L) = O (f) 

In addition, the total potential is prescribed at the water-soil interface, 

</>(x, L)lx<-(h/2) = h1; cf,(x, L)lx>(h/2) = h2 (g) 

The differential equation in (c) and the boundary conditions in (d) to (g) define the seepage flow 
steady-state response. 

EXAMPLE 3.16: The very long slab shown in Fig. E3.16 is at a constant initial temperature 
8; when the surface at x = 0 is suddenly subjected to a constant uniform heat flow input. The 
surface at x = L of the slab is kept at the temperature 0;, and the surfaces parallel to the x, z plane 
are insulated. Assuming one-dimensional heat flow conditions, show that the problem-governing 
differential equation is the heat conduction equation 

iJO 
pe­at 

where the parameters are defined in Fig. E3 .16, and the temperature (J is the state variable. State 
also the boundary and initial conditions. 

We consider a typical differential element of the slab [see Fig. E3.16(b)]. The element 
equilibrium requirement is that the net heat flow input to the element must equal the rate of heat 
stored in the element. Thus 

qAI, - ( qAI, + A !1 l/x) = pA c ~~ l/x 
The constitutive relation is given by Fourier's law of heat conduction 

ao 
q = -k­

iJx 

(a) 

(b) 
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00 

t Unit depth 

Constant 
conductivity k 
Mass density p 
Heat capacity 
per unit mass c 

(a) Idealization of very long slab 

(b) Differential element of 
slab, A =1.0 

Figure E3.16 One~dimensional heat conduction problem 

Substituting from (b) into (a) we obtain 

iJ2(J i:J(J 

k ox 2 = pc ot (c) 

In this case the element interconnectivity requirements are contained in the assumption that the 
temperature 8 be a continuous function of x and no additional compatibility conditions are 
applicable. 

The boundary conditions are 

ao (0 t) :::: _ qo(t) 
ax ' k 

8(L, t) = 81 
t>O (d) 

and the initial condition is O(x, O) = 81 (e) 

The formulation of the problem is now complete, and the solution of (c) subject to the 
boundary and initial conditions in (d) and {e) yields the temperature response of the slab. 

EXAMPLE 3.17: The rod shown in Fig. E3.17 is initially at rest when a load R(t) is suddenly 
applied at its free end. Show that the problem~governing differential equation is the wave 
equation 

c= ~ 
where the variables are defined in Fig. E3.17 and the displacement of the rod, u, is the state 
variable. Also state the boundary and initial conditions. 

The element force equilibrium requirements of a typical differential element are, using 
d' Alembert's principle, 

aul aA Ix + A - dx - uA l.r ax .t 

iPu I pA-
2 

dx a, x 
(a) 
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(a) Geometry of rod 

(b) Differential element 

R(t) 

Ro.------

Young's modulus E 
Mass density p 
Cross-sectional area A 

Figure E3.17 Rod subjected to step load 

The constitutive relation is 

Combining (a) and (b) we obtain 

au 
u = E­ax 

109 

t 

(b) 

(c) 

The element interconnectivity requirements are satisfied because we assume that the displace­
ment u is continuous, and no additional compatibility conditions are applicable. 

The boundary conditions are 

and the initial conditions are 

u(O, t) = 0 

au 
EA-(L, t) = Ro ax 

u(x, O) = 0 

ou 
-(x O) = 0 at • 

t>O (d) 

(e) 

With the conditions in (d) and (e) the formulation of the problem is complete, and (c) can be 
solved for the displacement response of the rod. 

Although we considered in these examples specific problems that are governed by 
elliptic, parabolic, and hyperbolic differential equations, the problem formulations illus­
trate in a quite general way some basic characteristics. In elliptic problems (see Exam-
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pie 3.15) the values of the unknown state variables (or their normal derivatives) are given 
on the boundary. These problems are for this reason also called boundary value problems, 
where we should note that the solution at a general interior point depends on the data at 
every point of the boundary. A change in only one boundary value affects the complete 
solution; for instance, in Example 3.15 the complete soluti<im for q, depends on the actual 
value of h1. Elliptic differential equations generally govern the steady-state response of 
systems. 

Comparing the governing differential equations given in Examples 3.15 to 3.17 it is 
noted that in contrast to the elliptic equation, the parabolic and hyperbolic equations 
(Examples 3.16 and 3.17, respectively) include time as an independent variable and thus 
define propagation problems. These problems are also called initial value problems because 
the solution depends on the initial conditions. We may note that analogous to the derivation 
of the dynamic equilibrium equations of lumped-parameter models, the governing differen­
tial equations of propagation problems are obtained from the steady-state equations by 
including the "resistance to change" (inertia) of the differential elements. Conversely, the 
parabolic and hyperbolic differential equations in Examples 3 .16 and 3 .17 would become 
elliptic equations if the time-dependent terms were neglected. In this way the initial value 
problems would be converted to boundary value problems with steady-state solutions. 

We stated earlier that the solution of a boundary value problem depends on the data 
at all points of the boundary. Here lies a significant difference in the analysis of a propaga­
tion problem, namely, considering propagation problems the solution at an interior point 
may depend only on the boundary conditions of part of the boundary and the initial 
conditions over part of the interior domain. 

3.3.2 Variational Formulations 

The variational approach of establishing the governing equilibrium equations of a system 
was already introduced as an alternative to the direct approach when we discussed the 
analysis of discrete systems (see Section 3.2.1 ). As described, the essence of the approach 
is to calculate the total potential II of the system and to invoke the stationarity of n i.e., 
SII = 0, with respect to the state variables. We pointed out that the variational technique 
can be effective in the analysis of discrete systems; however, we shall now observe that the 
variational approach provides a particularly powerful mechanism for the analysis of contin­
uous systems. The main reason for this effectiveness lies in the way by which some boundary 
conditions (namely, the natural boundary conditions defined below) can be generated and 
taken into account when using the variational approach. 

To demonstrate the variational formulation in the following examples, we assume that 
the total potential II is given and defer the description of how an appropriate II can be 
determined until after the presentation of the examples. 

The total potential TI is also called the functional of the problem. Assume that in the 
functional the highest derivative of a state variable (with respect to a space coordinate) is 
of order m; i.e., the operator contains at most mth-order derivatives. We call such a problem 
a cm- 1 variational problem. Considering the boundary conditions of the problem, we 
identify two classes of boundary conditions, called essential and natural boundary condi­
tions. 

The essential boundary conditions are also called geometric boundary conditions 
because in structural mechanics the essential boundary conditions correspond to prescribed 
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displacements and rotations. The order of the derivatives in the essential boundary condi­
tions is, in a cm- i problem, at most m - 1. 

The second class of boundary conditions, namely, the natural boundary conditions, 
are also called force boundary conditions because in structural mechanics the natural 
boundary conditions correspond to prescribed boundary forces and moments. The highest 
derivatives in these boundary conditions are of order m to 2m - 1. 

We will see later that this classification of variational problems and associated 
boundary conditions is most useful in the design of numerical solutions. 

In the variational formulations we will use the variational symbol 8, already briefly 
employed in (3.1 ). Let us recall some important operational properties of this symbol; for 
more details, see, for example, R. Courant and D. Hilbert [A]. Assume that a function F for 
a given value of x depends on v (the state variable), dv/dx, ... , dPv/dxP, where p = 
1, 2, .... Then the first variation of F is defined as 

8F = -8v + 8 - + · · · + 8 -aF iJF (dv) oF (dPv) 
av iJ(dv/dx) dx iJ(dPv/dxP) dxP 

(3.7a) 

This expression is explained as follows. We associate with v(x) a function e r,(x) where 
e is a constant (independent of x) and r,(x) is an arbitrary but sufficiently smooth function 
that is zero at and corresponding to the essential boundary conditions. We call r,(x) a 
variation in v, that is r,(x) = Sv(x) [and of course e r,(x) is then also a variation in v] and 
also have for the required derivatives 

dn'I} = dn8v = a(dnv) 
dxn dx" dx" 

that is, the variation of a derivative of vis equal to the derivative of the variation in v. The 
expression (3.7a) then follows from evaluating 

[ 
d(v + E'f}) dP(v + E'f})] ( dv dPv) 

BF = lirn F v + E1J, dx , ... • dxP - F v, dx, ... ' dxP 
1-+0 E 

(3.7b) 

Considering (3.7a) we note that the expression for BF looks like the expression for the 
total differential dF; that is, the variational operator 5 acts like the differential operator with 
respect to the variables v, dv/dx, ... , dPv/dxP. These equations can be extended to 
multiple functions and state variables, and we find that the laws of variations of sums, 
products, and so on, are completely analogous to the corresponding laws of differentiation. 
For example, let F and Q be two functions possibly dependent on different state variables; 
then 

B(F + Q) = SF + BQ; B(FQ) = (6F)Q + F(BQ)~ 

In our applications the functions usually appear within an integral sign; and so, for example, 
we also use 

6 I F(x) dx = J BF(x) dx 

We shall employ these rules extensively in the variational derivations and will use one 
important condition (which corresponds to the properties of r, stated earlier), namely, that 
the variations of the state variables and of their (m - I)st derivatives must be zero at and 
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corresponding to the essential boundary conditions, but otherwise the variations can be 
arbitrary. 

Consider the following examples. 

EXAMPLE 3.18: The functional governing the temperature distribution in the slab considered 
in Example 3.16 is 

J.
i 1 (ao)2 J.L fl = -k - dX - (JqB dx - Ooqo 

0 2 ax O 
(a) 

and the essential boundary condition is 

(b) 

where 80 = 6(0, t) lh = O(L, t) 

q 8 is the heat generated per unit volume, and otherwise the same notation as in Example 3.16 
is used. Invoke the stationarity condition on II to derive the governing heat conduction equation 
and the natural boundary condition. 

This is a C0 variational problem; i.e., the highest derivative in the functional in (a) is of 
order 1, or m = l. An essential boundary condition, here given in (b), can therefore correspond 
only to a prescribed temperature, and a natural boundary condition must correspond to a 
prescribed temperature gradient or boundary heat flow input. 

To invoke the stationarity condition 611 = 0, we can directly use the fact that variations 
and differentiations are performed with the same rules. That is, using (3.7a) we obtain 

ll ( ae)( ae) J:L 
O k iJX 6 dX dX - O lJ{J q8 dx - f>(Joqo = 0 (c) 

where also f>(o8/ax) = 060/ax. The same result is also obtained when using (3.7b), which gives 
here 

[{J:L !k(i)f) + E d'Y'/)
2 

dx - lL (lJ + f:"f/)q 8 dx - (fJo + E71 lx""O)qo} 
on = lim O 2 ax ax O 

,-o E 

_ {f }( Tx)' dx -_I: eq• dx - 9oqo} J 

lL ao a11 J:t 
k - - dx - 11q8 dx - TJo qo 

O ox ax O 

=O 

where TJo = 11 lx .. o and we would now substitute 80 for 11· 
Now using integration by parts,2 we obtain from (c) the following equation: 

-lL (k a2

~ + q8 ) 88 dx + k i)(:} I o(h - [k ae I + qo] 880 = 0 (d) 
o dX OX r=L dX x=>O 

'-----.------' ---~~---~~~~ 
Q) @ Q) 

2 The divergence theorem is used (see Examples 4.2 and 7.1). 
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To extract from (d) the governing differential equation and natural boundary condition. we use 
the argument that the variations on (J are completely arbitrary, except that- there can be no 
variations on the prescribed essential boundary conditions. Hence, because 8i is prescribed, we 
have o(Ji O and term @ in (d) vanishes. 

Considering next terms (D and@, assume that 68o = 0 but that o(J is otherwise nonzero 
(except at x = 0, where we have a sudden jump to a zero value). If (d) is to hold for any nonzero 
68. we need to have3 

iNJ 
k- + q8 = 0 ox2 

(e) 

Conversely, assume that 80 is zero everywhere except at x = 0; i.e., we have 88o * 0; then 
(d) is valid only if 

<JOI k- + qo = 0 
dX x•O 

(f) 

The expression in (f) represents the natural boundary condition. 
The governing differential equation of the propagation problem is obtained from {e), 

specifying here that 

Hence (e) reduces to 

88 
qB = -pc-

Ot 

;Po ao 
k ax2 = pc at 

(g) 

We may note that until the heat capacity effect was introduced in the formulation in (g), the 
equations were derived as if a steady-state problem (and with q8 time-dependent a pseudo 
steady-state problem) was being considered. Hence, as noted previously, the formulation of the 
propagation problem can be obtained from the equation governing the steady-state response by 
simply taking into account the time·dependent "inertia term." 

' 

EXAMPLE 3. 19: The functional and essential boundary condition governing the wave propa­
gation in the rod considered in Example 3.17 are 

TI= -EA _!!:_ dx - u/8 dx - uLR JL l (O )2 iL 
o 2 dX o 

(a) 

and Uo = 0 (b) 

where the same notation as in Example 3.17 is used, uo = u(O, t), UL = u(L, t), and/ 8 is the body 
force per unit length of the rod. Show that by invoking the stationarity condition on TI the 
governing differential equation of the propagation problem and the natural boundary condition 
can be derived. 

We proceed as in Example 3.18. The stationarity condition c5TI = 0 gives 

J: (EA!:)( 8 ::) dx - J: 8uf8 dx - 8uJI = 0 
Writing iJf>u/ ax for f> (au/ ax), recalling that EA is constant, and using integration by parts yields 

- fL (EA 
02

: + / 8) Bu dx + [EA ou I - R] ouL - EA au I 6Uo = 0 Jo OX dX xcl OX x=O 

3 We in effect imply here that the limits of integration are not O to L but O + to L - . 
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To obtain the governing differential equation and natural boundary condition we use, in essence, 
the same argument as in Example 3.18; i.e., since 8u0 is zero but 8u is arbitrary at all other points, 
we must have 

iJ2u 
(c) EA-+/8=0 ox2 

and EA au I = R 
ax X"'L 

(d) 

In this problem we have/8 = -Ap a2u/iJt2 and hence (c) reduces to the problem-governing 
differential equation 

c= i 
The natural boundary condition was stated in (d). 

Finally, it may be noted that the problem in (a) and (b) is a c0 variational problem; i.e., 
m = 1 in this case. 

EXAMPLE 3.20: The functional governing static buckling of the column in Fig. E3 .20 is 

II = ! J.L E1(d
2

:)

2 

dx - ~ J.L (dw)
2 

dx + !kw1. {a) 
2 o dx 2 o dx 2 

where WL = w lx .. L and the essential boundary conditions are 

wlx"'o = 0, dw I - 0 (b) 
dX X""O 

Invoke the stationarity condition oII = 0 to derive the problem-governing differential equation 
and the natural boundary conditions. 

Flexural stiffness 
El 

Spring 
stiffness 
k 

Figure E3 • .20 Column subjected to a compressive load 

This problem is a C I variational problem, i.e., m = 2, because the highest derivative in the 
functional is of order 2. 

The stationarity condition c5Il = 0 yields 

f Elw" 8w" dx - Pf w' 8w' dx + kwi 8wi = 0 
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where we use the notation w' = dw/dx. and so on. But 8w 11 = d(ow')/dx, and EI is constant; 
hence, using integration by parts, we obtain 

f Elw" 8w" dx = Elw" 6w'lf5 - Elf w"' ow' dx 

If we continue to integrate by parts ft w"' 6w1 dx and also integrate by parts It w' ow' dx, 
we obtain 

r (E/wiv + Pw") ow dx + (Elw" Sw')I,.. - (Elw" 6w')lo 
Jo ~ 

Q) @ @ 
- [(Elw 111 + Pw') 8w]k + [(Elw"' + Pw') ow]lo + kwL 8wi = 0 (c) 

@ 

Since the variations on w and w' must be zero at the essential boundary conditions, we have 
8w0 = 0 and 6wb = 0. It follows that terms @ and (d) are zero. The variations on w and w' 
are arbitrary at all other points, hence to satisfy (c) we conclude, using the earlier arguments (see 
Example 3.18), that the following equations must be satisfied: 

term 1: 

term 2: 

terms 4 and 6: 

EJwi" + Pw" = 0 

Elw"lx=L O 

(Elw 111 + Pw' - kw)lx=L = 0 

(d) 

(e) 

(f) 

The problem-governing differential equation is given in (d), and the natural boundary conditions 
are the relations in (e) and (f). We should note that these boundary conditions correspond to the 
physical conditions of moment and shear equilibrium at x = L. 

We have illustrated in the preceding examples how the problem-governing differential 
equation and the natural boundary conditions can be derived by invoking the stationarity 
of the functional of the problem. At this point a number of observations should be made. 

First, considering a cm- i variational problem, the order of the highest derivative 
present in the problem-governing differential equation is 2m. The reason for obtaining a 
derivative of order 2m in the problem-governing differential equation is that integration by 
parts is employed m times. 

A second observation is that the effect of the natural boundary conditions was always 
included as a potential in the expression for Il. Hence the natural boundary conditions are 
implicitly contained in Il, whereas the essential boundary conditions have been stated 
separately. 

Our objective in Examples 3.18 to 3.20 was to derive the governing differential 
equations and natural boundary conditions by invoking the stationarity of a functional, and 
for this purpose the appropriate functional was given in each case. However, an important 
question then arises: How can we establish an appropriate functional corresponding to a 
given problem? The two previous observations and the mathematical manipulations in 
Examples 3.18 to 3.20 suggest that to derive a functional for a given problem we could start 
with the governing differential equation, establish an integral equation, and then proceed 
backward in the mathematical manipulations. In this derivation it is necessary to use 
integration by parts, i.e., the divergence theorem. and the final check would be that the 
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stationarity condition on the Il derived does indeed yield the governing differential equa­
tions. This procedure is employed to derive appropriate functionals in many cases (see 
Section 3.3.4 and Chapters 4 and 7, and for further treatment see, for example, R. Courant 
and D. Hilbert [A], S. G. Mikhlin [A], K. Washizu [B],and M.L Bucalem and K.J. Bathe [BJ). 
In this context, it should also be noted that in considering a specific problem, there does not 
generally exist a unique appropriate functional, but a number of functionals are applicable. 
For instance, in the solution of structural mechanics problems, we can employ the principle 
of minimum potential energy, other displacement-based variational formulations, the Hu­
Washizu or Hellinger-Reissner principles, and so on (see Section 4.4.2). 

Another important observation is that once a functional has been established for a 
certain class of problems, the functional can be employed to generate the governing equa­
tions for all problems in that class and therefore provides a general analysis tool. For 
example, the principle of minimum potential energy is general and is applicable to all 
problems in linear elasticity theory. 

Based simply on a utilitarian point of view, the following observations can be made in 
regard to variational formulations. 

1. The variational method may provide a relatively easy way to construct the system­
governing equations. This ease of use of a variational principle depends largely on the 
fact that in the variational formulation scalar quantities (energies, potentials, and so 
on) are considered rather than vector quantities (forces, displacements, and so on). 

2. A variational approach may lead more directly to the system-governing equations and 
boundary conditions. For example, if a complex system is being considered, it is of 
advantage that some variables that need to be included in a direct formulation are not 
considered in a variational formulation (such as internal forces that do no net work). 

3. The variational approach provides some additional insight into a problem and gives 
an independent check on the formulation of the problem. 

4. For approximate solutions, a larger class of trial functions can be employed in many 
cases if the analyst operates on the variational formulation rather than on the differ­
ential formulation of the problem; for example, the trial functions need not satisfy the 
natural boundary conditions because these boundary conditions are implicitly con­
tained in the functional (see Section 3.3.4 ). 

This last consideration has most important consequences, and much of the success of 
the finite element method hinges on the fact that by employing a variational formulation, a 
larger class of functions can be used. We examine this point in more detail in the next section 
and in Section 3.3.4. 

3.3.3 Weighted Residual Methods; Ritz Method 

In previous sections we have discussed differential and variational formulations of the 
governing equilibrium equations of continuous systems. In dealing with relatively simple 
systems, these equations can be solved in closed form using techniques of integration, 
separation of variables, and so on. For more complex systems, approximate procedures of 
solution must be employed. The objective in this section is to survey some classical tech­
niques in which a family of trial functions is used to obtain an approximate solution. We 
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shall see later that these techniques are very closely related to the finite element method of 
analysis and that indeed the finite element method can be regarded as an extension of these 
classical procedures. 

Consider the analysis of a steady-state problem using its differential formulation 

(3.8) 

in which L2m is a linear differential operator, cf, is the state variable to be calculated, and r 
is the forcing function. The solution to the problem must also satisfy the boundary condi­
tions 

i = 1, 2, ... (3.9) 

We shall be concerned, in particular, with symmetric and positive definite operators that 
satisfy the symmetry condition 

L (L2m[u])v dD = L (L2m[v])u dD (3.10) 

and the condition of positive definiteness 

L (L2m[u])u dD > 0 (3.11) 

where D is the domain of the operator and u and v are any functions that satisfy homoge­
neous essential and natural boundary conditions. To clarify the meaning of relations (3.8) 
to (3.11), we consider the following example. 

EXAMPLE 3.21: The steady-state response of the bar shown in Fig. E3.17 is calculated by 
solving the differential equation 

subject to the boundary conditions 

ifu 
-EA-= 0 

i:)x2 

uk=o = 0; EA- =R au I 
ax x=l 

(a) 

(b) 

Identify the operators and functions of (3.8) and (3.9) and check whether the operator L2m is 
symmetric and positive definite. 

Comparing (3.8) with (a), we see that in this problem 

fJ2 
Li = -EA-· 

Ill ax2' 

Similarly, comparing (3.9) with (b), we obtain 

B, = 1~ 

8 
EA-· 

ax' 

<P = u; r=O 

To identify whether the operator L2m is symmetric and positive definite, we consider the 
case R = 0. This means physically that we are concerned only with the structure itself and not 
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with the loading applied to it. For (3.10) we have 

iL iP. u au IL ii au iJo -EA-vdx=-EA-v + EA--dx 
o ax2 iJx O O ax iJx 

(c) 
a IL a IL J.l ,f = -EA~v + EAu_£ - EA~udx 
iJx O ax o o iJx 2 

Since the boundary conditions are u = v = 0 atx = 0 and iJu/ox = iJv/ax = 0 atx = L, we 
have 

iPu iL iJ2v EA-vdx= -EA-udx 
ax2 

O ax 2 

and the operator is symmetric. We can also directly conclude that the operator is positive definite 
because from (c) we obtain 

iL ii2u J.L (a")2 - EA-2 udx = EA - dx 
o ax o iJx 

In the following we discuss the use of classical weighted residual methods and the Ritz 
method in the solution of linear steady-state problems as in (3.8) and (3.9), but the same 
concepts can also be employed in the analysis of propagation problems and eigenproblems 
and in the analysis of nonlinear response (see Examples 3.23 and 3.24). 

The basic step in the weighted residual and Ritz analyses is to assume a solution of the 
form 

?i =fa{; (3.12) 
i=l 

where the fi are linearly independent trial functions and the ai are multipliers to be deter­
mined in the solution. 

Consider first the weighted residual methods. These techniques operate directly on 
(3.8) and (3.9). Using these methods, we choose the functionsfi in (3.12) so as to satisfy 
all boundary conditions in (3.9), and we then calculate the residual 

(3.13) 

For the exact solution this residual is of course zero. A good approximation to the exact 
solution would imply that R is small at all points of the solution domain. The various 
weighted residual methods differ in the criteria that they employ to calculate the a; such that 
R is small. However, in all techniques we determine the a; so as to make a weighted average 
of R vanish. 

Galerkin method. In this technique the parameters a; are determined from the n 
equations 

i = 1, 2, ... , n (3.14) 

where D is the solution domain. 
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Least squares method. In this technique the integral of the square of the residual 
is minimized with respect to the parameters a;, 

~ I. R2 dD = O; i = 1, 2, ... , n (3.15) 
UO; D 

Substituting from (3.13), we thus obtain the following n simultaneous equations for the 
parameters a;, 

L RL2m[fi] dD = O; i = l, 2, ... , n (3.16) 

Collocation method. In this method the residual R is set equal to zero at n distinct 
points in the solution domain to obtain n simultaneous equations for the parameters a;. The 
location of then points can be somewhat arbitrary, and a uniform pattern may be appropri­
ate, but usually the analyst should use some judgment to employ appropriate locations. 

Subdomain method. The complete domain of solution is subdivided into n sub­
domains, and the integral of the residual in (3.13) over each subdomain is set equal to zero 
to generate n equations for the parameters a;. 

An important step in using a weighted residual method is the solution of the simulta­
neous equations for the parameters a;. We note that since L2m is a linear operator, in all the 
procedures mentioned, a linear set of equations in the parameters a, is generated. In the 
Galerkin method, the coefficient matrix is symmetric (and also positive definite) if L2m is a 
symmetric (and also positive definite) operator. In the least squares method we always 
generate a symmetric coefficient matrix irrespective of the properties of the operator L2m. 
However, in the collocation and subdomain methods, nonsymmetric coefficient matrices 
may be generated. In practical analysis, therefore, the Galerkin and least squares methods 
are usually preferable. 

Using weighted residual methods, we operate directly on (3.8) and (3.9) to minimize 
the error between the trial solution in (3.12) and the actual solution to the problem. 
Considering next the Ritz analysis method (due to W. Ritz [A]), the fundamental difference 
from the weighted residual methods is that in the Ritz method we operate on the functional 
corresponding to the problem in (3.8) and (3.9). Let Il be the functional of the cm-t 
variational problem that is equivalent to the differential formulation given in (3.8) and 
(3.9); in the Ritz method we substitute the trial functions cf> given in (3.12) into Il and 
generate n simultaneous equations for the parameters a; using the stationarity condition of 
Il, 6Il = 0 [see (3.1)], which now gives 

an= o· aa, . i = 1, 2, ... , n (3.17) 

An important consideration is the selection of the trial (or Ritz) functions Ji in (3.12). 
In the Ritz analysis these functions need only satisfy the essential boundary conditions and 
not the natural boundary conditions. The reason for this relaxed requirement on the trial 
functions is that the natural boundary conditions are implicitly contained in the functional 
II. Assume that the L2m operator corresponding to the variational problem is symmetric and 
positive definite. In this case the actual extremum of Il is its minimum, and by invoking 
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(3.17) we minimize (in some sense) the violation of the internal equilibrium requirements 
and the violation of the natural boundary conditions (see Section 4.3). Therefore, for 
convergence in a Ritz analysis, the trial functions need only satisfy the essential boundary 
conditions, which is a fact that may not be anticipated because we know that the exact 
solution also satisfies the natural boundary conditions. Actually, assuming a given number 
of trial functions, it can be expected that in most cases the solution will be more accurate 
if these functions also satisfy the natural boundary conditions. However, it can be very 
difficult to find such trial functions, and it is generally more effective to use instead a larger 
number of functions that satisfy only the essential boundary conditions. We demonstrate 
the use of the Ritz method in the following examples. 

EXAMPLE 3.22: Consider a simple bar fixed at one end (x = 0) and subjected to a concen­
trated force at the other end (x = 180) as shown in Fig. E3.22. Using the notation given in the 
figure, the total potential of the structure is 

Il = -EA ~ dx lOOuJ.r=1so J:
iso I (d )2 

o 2 dx 
(a) 

and the essential boundary condition is u lx=o = 0. 

1. Calculate the exact displacement and stress distributions in the bar. 
2. Calculate the displacement and stress distributions using the Ritz method with the follow­

ing displacement assumptions: 
(b) 

and 0 :=s x s 100 
(c) 

u = (1 -x ~;00 )u8 + (x ~;00)uc; 100 :S x :S 180 

where us and uc are the displacements at points B and C. 

Cross-sectional area = (1 + :O) 2 
cm2 

A/1cm2 
/_ 

R= 100 N 
/,--..... x, u -- - ---.- -- - -- - __........ 
'l~A--------~~~~---8---- C 

Ly 
.... I ~---100 cm • I • 80 cm-------t 

Figure E3.22 Bar subjected to a concentrated end force 

In order to calculate the exact displacements in the structure, we use the stationarity 
condition of II and generate the governing differential equation and the natural boundary 
condition. We have 

8Il = r (EA~:) a(:) dx - 100 8uj,.,so (d) 
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Setting 611 0 and using integration by parts, we obtain (see Example 3.19) 

!!_(EA du) = 0 
dx dx 

(e) 

EA du I = 100 
dx X"'J80 

(f) 

The solution of (e) subject to the natural boundary condition in (f) and the essential 
boundary condition u lx=o = 0 gives 

Os x s 100 

10000 4000 4000 u=--+--- . 
E E ( x - 100)' 

E 1 + 40 

100 s x s 180 

The exact stresses in the bar are 

u = 100; Os x s 100 

100 
100 s x s 180 

u = ( +x-100)2
; 

l 40 

Next, to perform the Ritz analyses, we note that the displacement assumptions in (b) and 
(c) satisfy the essential boundary condition but not the natural boundary condition. Substituting 
from (b) into (a), we obtain 

E ('
00 

E (180 
( x - 100)

2 

TI= 2 Jo (a1 + 2a2x)2 dx + 2 J,oo l + 40 (a1 + 2a2x)2 dx - lOOulx=1so 

Invoking 611 = 0, we obtain the following equations for a1 and a2: 

[
0.4467 115.6 ] [ai] [ 18 ] 

E 115.6 34075.7 a2 = 3240 
{g) 

129 0.341 
and a - -· a - ---1 - E' 2-- E 

This Ritz analysis therefore yields the approximate solution 

129 0.341 2 u=Ex-Ex (h) 

u = 129 - 0.682x; Os x s 180 (i) 

Using next the Ritz functions in (c), we have 

E f' 00
( 1 )

2 
E ('

80 
( x - 100)2( 1 1 )2 

TI= 2 Jo lOOUB dx + 2 J100 1 + 40 - sous+ so"c dx - lOOuc 

Invoking again 8 II = 0, we obtain 

2!o[~i~ -:!][::] = [1~] (j) 
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Hence we now have 

and 
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11,846.2 10,000 
ue=-E-; Uc= E 

u = 100; 0 :s x :s l 00 

u = 18:g·2 = 23.08; 100 :s x :s 1so 

Chap.3 

We shall see in Chapter 4 (see Example 4.5) that this Ritz analysis can be regarded to be 
a finite element analysis. 

EXAMPLE 3.23: Consider the slab in Example 3.16. Assume that 

O(t) = Bi{t) + (h(t)x + th(t)x2 (a) 

where 61(t), (h(t), and th(t) are the undetermined parameters. Use the Ritz analysis procedure to 
generate the governing heat transfer equilibrium equations. 

The functional governing the temperature distribution in the slab is (see Example 3.18) 

rL 1 (fj(J)2 
( 

fl = JO 2, k OX dX - JO (JqB dx - 8 k=o qo (b) 

with the essential boundary condition 

8 lx=L = (Ji 

Substituting the temperature assumption of (a) into (b), we obtain 

f.
L 1 f.L 

fl = O 2k((82)2 + 4fh01X + 4(93)2X2)dx - O (91 + (hx + {J3X 2)q8 dX - 81qo 

Invoking the stationarity condition of II, i.e., 8Il = 0, we use 

an an an= 0 -=O· -=O· ao, • afh , oth 

and obtain f q8 dx + q, 

{; 0 :,J[:J = L LL xqB dx (c) 
L2 !L3 ()3 

J: x 2q8 dx 

In this analysis q0 varies with time, so that the temperature varies with time, and heat 
capacity effects can be important. Using 

ao 
qB = -pc­

dt 
(d) 

because no other heat is generated, substituting for O in (d) from (a), and then substituting into 
(c), we obtain as the equilibrium equations, 

[
o o o ][81] [ L !L2 f L3][81] [qo] k O L L2 (h + pc tL2 ~L3 !L4 ~ = 0 
O L 2 1L3 83 fL3 !L4 !L5 83 0 

(e) 
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The final equilibrium equations are now obtained by imposing on the equations in (e) the 
condition that 8 l.x""l = (t i.e., 

(Ji(t) + fh(t)L + fJ·3(t)L2 81 

which can be achieved by expressing 81 in (e) in terms of f.h.. {h, and 8;. 

EXAMPLE 3.24: Consider the static buckling response of the column in Example 3.20. As­
sume that 

(a) 

and use the Ritz method to formulate equations from which we can obtain an approximate 
buckling load. 

The functional governing the problem was given in Example 3.20, 

n = ! fl E1(d
2

:)

2 

dx - !:. fl (dw)
2 

dx + !k(wl.x .. l)2 
2 Jo dx 2 Jo dx 2 

(b) 

We note that the trial function on w in (a) already satisfies the essential boundary conditions 
(displacement and slope equal to zero at the fixed end). Substituting for w into (b), we obtain 

1 fl p fl 1 
Il 2 Jo EI(2a, + 6a2x)2 dx - 2Jo (2a,x + 3a2x2)2 dx + 2k(a1L2 + a2L3)2 

Invoking the stationarity condition 811 = 0, i.e., 

we obtain 

The solution of this eigenproblem gives two values of P for which w in (a) is nonzero. The 
smaller value of P represents an approximation to the lowest buckling load of the structure. 

The weighted residual methods presented in (3.14) to (3.16) are difficult to use in 
practice because the trial functions must be 2m-times-differentiable and satisfy all-essen­
tial and natural-boundary conditions [see (3.13)]. On the other hand, with the Ritz 
method, which operates on the functional corresponding to the problem being considered, 
the trial functions need to be only m-times-differentiable and do not need to satisfy the 
natural boundary conditions. These considerations are most important for practical analy­
sis, and therefore the Galerkin method is used in practice in a different form, namely, 
in a form that allows the use of the same functions as used in the Ritz method. In the 
displacement-based analysis of solids and structures, this form of the Galerkin method is 
referred to as the principle of virtual displacements. If the appropriate variational indicator 
IT is used, the equations obtained with the Ritz method are then identical to those obtained 
with the Galerkin method. 

We elaborate upon these issues in the next section with the objective of providing 
further understanding for the introduction of finite element procedures. 
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3.3.4 An Overview: The Differential and Galerkin 
Formulations, the Principle of Virtual Displacements, 
and an Introduction to the Finite Element Solution 

Chap.3 

In the previous sections we reviewed some classical differential and variational formula­
tions, some classical weighted residual methods, and the Ritz method. We now want to 
reinforce our understanding of these analysis approaches-by summarizing some impor­
tant concepts-and briefly introduce a mathematical framework for finite element proce­
dures that we will further use and extend in Chapter 4. Let us pursue this objective by 
focusing on the analysis of a simple example problem. 

Consider the one-dimensional bar in Fig. 3.2. The bar is subjected to a distributed load 
f8(x) and a concentrated load Rat its right end. As discussed in Section 3.3.1, the differen­
tial formulation of the bar gives the governing equations 

d2u 
EA-+ f 8 = 0 

dx 2 in the bar 

Differential 
formulation ulx-o = 0 

EA du I = R 
dx x=L 

Since f8 = ax, we obtain the solution 

-(ax3/6) + (R + laL2)x 
u(x) = EA 2 

Constant cross-sectional area A 
Young's modulus E 

R 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

Figure 3.2 Uniform bar subjected to 
body load/8 (force/unit length) and tip 
loadR 

We recall that (3.18) is a statement of equilibrium at any point x within the bar, (3.19) is 
the essential (or geometric) boundary condition (see Section 3.2.2), and (3.20) is the natural 
(or force) boundary condition. The exact analytical solution (3.21) of course satisfies all 
three equations (3.18) to (3.20). 

We also note that the solution u(x) is a continuous and twice-differentiable function, 
as required in (3.18). Indeed, we can say that the solutions to (3.18) satisfying (3.19) and 
(3.20) for any continuous loading/8 lie in the space of continuous and twice-differentiable 
functions that satisfy (3.19) and (3.20). 
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An alternative approach for the solution of the analysis problem is given by the 
variational formulation (see Section 3.3.2), 

Variational 
formulation 

r} (d )2 (L 
II= Jo 2 EA d: dx - Jo u/8 dx - Rulx•L 

with 

6I1 = 0 

U lx•O = 0 

~ul.~=o = 0 

{3.22) 

(3.23) 

(3.24) 

{3.25) 

where 8 means "variation in" and 8u is an arbitrary variation on u subject to the condition 
8u lx=o = 0. We may think of <'>u(x) as any continuous function that satisfies the boundary 
condition (3.25).4 

Let us recall that (3.22) to (3.25) are totally equivalent to (3.18) to (3.20) (see 
Section 3.3.2). That is, invoking (3.23) and then using integration by parts and the 
boundary condition (3.25) gives (3.18) and (3.20). Therefore, the solution of (3.22) to 
(3.25) is also (3.21). 

The variational formulation can be derived as follows. 
Since (3.18) holds for all points within the bar, we also have 

( 
d

2
u ) EA-+ f 8 8u = 0 

dx 2 (3.26) 

where 8u(x) is an arbitrary variation on u (or an arbitrary continuous function) with 
8u lx=o = 0. Hence, also 

f ( EA !:~ + f 8
) Su dx = 0 (3.27) 

Integrating by parts, we obtain 

iL d8u du f.l du 
-d EA -d dx = f 8 ou dx + EA - 6u I~ 

o x x o dx 
(3.28) 

Substituting from (3.20) and (3.25), we therefore have 

Principle of ( f d:: EA !: dx = J: f 8 
lJu dx + R 8u lx=L 

virtual displacements 

with U lx"'O = O; OU lx=O = 0 

(3.29) 

(3.30) 

Of course, (3.29) gives 

a{f [E;e:r - f8u] dx - Ruk•L} = 0 (3.31) 

which with (3.30) is the variational statement of (3.22) to (3.25). 
The relation (3.29) along with the condition (3.30) is the celebrated principle of 

virtual displacements (or principle of virtual work) in which 8u(x) is the virtual displace-
4 ln the literature, differential and variational formulations are, respectively, also referred to as strong and 

weak forms. Variational formulations are also referred to as generalized formulations. 
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ment. We discuss this principle extensively in Section 4.2 and note that the derivation in 
(3.26) to (3.30) is a special case of Example 4.2. 

It is important to recognize that the above three formulations of the analysis problem 
are totally equivalent, that is, the solution (3.21) is the (unique) solution5 u(x) of the 
differential formulation, the variational formulation, and the principle of virtual displace­
ments. However, we note that the variational formulation and the principle of virtual work 
involve only first-order derivatives of the functions u and 8u. Hence the space of functions 
in which we look for a solution is clearly larger than the space of functions used for the 
solution of (3.18) [we define the space precisely in (3.35)], and there must be a question as 
to what it means and how important it is that we use a larger space of functions when solving 
the problem in Fig. 3.2 with the principle of virtual displacements. 

Of course, the space of functions used with the principle of virtual displacements 
contains the space of functions used with the differential formulation, hence all analysis 
problems that can be solved with the differential formulation (3.18) to (3.20) can also be 
solved exactly with the principle of virtual displacements. However, in the analysis of the 
bar (and the analysis of general bar and beam structures) additional conditions for which 
the principle of virtual work can be used directly for solution are those where concentrated 
loads are applied within the bar or discontinuities in the material property or cross-sectional 
area are present. In these cases the first derivative of u(x) is discontinuous and hence the 
differential formulation has to be extended to account for such cases ( in essence treating 
separately each section of the bar in which no concentrated loads are applied and in which 
no discontinuities in the material property and cross-sectional area are present, and con­
necting the section to the adjoining sections by the boundary conditions; see, for example, 
S. H. Crandall, N. C. Dahl, and T. J. Lardner [A]). Hence, in these cases the variational 
formulation and the principle of virtual displacements are somewhat more direct and more 
powerful for solution. 

For general two- and three-dimensional stress situations, we will only consider math­
ematical models of finite strain energy (meaning for example that concentrated loads should 
only be applied as enumerated in Section 1.2, see Fig. 1.4, and further discussed in Section 
4.3.4), and then the differential and principle of virtual work formulations are also totally 
equivalent and give the same solutions (see Chapter 4). 

These considerations point to a powerful general procedure for formulating the nu­
merical solution of the problem in Fig. 3.2. Consider (3.27) in which we now replace Bu 
with the test function v, 

f ( EA ~:~ + f') v dx = 0 (3.32) 

with u = 0 and v = 0 at x = 0. Integrating by parts and using (3.20), we obtain 

L
Ld d LL 
/EA/ dx = f 8v dx + Rvlx=L 

O x x O 
(3.33) 

This relation is an application of the Galerkin method or of the principle of virtual displace­
ments and states that "for u(x) to be the solution of the problem, the left-hand side of (3.33) 
( the internal virtual work) must be equal to the right-hand side ( the external virtual work) 

5The uniqueness of u(x) follows in this case clearly from the simple integration process for obtaining (3.21), 
but a general proof that the solution of a linear elasticity problem is always unique is given in ( 4.80) to ( 4.82). 
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for arbitrary test or virtual displacement functions v(x) that are continuous and that satisfy 
the condition v = 0 at x = 0." 

In Chapter 4 we write the formulation (3.33) in the following form: 

Find u E V such that6 a(u, v) = (/, v) Vv EV (3.34) 

where the space V is defined as 

V = {v Iv E L2(L), !: E L2(L), vk=o = o} (3.35) 

and L 2(L) is the space of square integrable functions over the length of the bar, 0 s x s L, 

L2(L) = { w 1 w is defined over O :s x :s Land f (w)2 dx = II w 11~2 < 00} (3.36) 

Using (3.34) and (3.33), we have 

f.
1., du dv 

a(u,v) = -EA- dx 
o dx dx 

(3.37) 

and (f. v) f f8v dx + Rv lx-1., (3.38) 

where a(u, v) is the bilinear form and (f, v) is the linear form of the problem. 
The definition of the space of functions Vin (3.35) says that any element v in Vis zero 

at x = 0 and 

f [!:T dx < 00 

Hence, any element v in V corresponds to a finite strain energy. We note that the elements 
in V comprise all functions that are candidates for solution of the differential formulation 
(3.18) to (3.20) with any continuous f 8 and also correspond to possible solutions with 
discontinuous strains [because of concentrated loads, in this one-dimensional analysis case, 
or discontinuities in the material behavior or cross-sectional area]. This observation under­
lines the generality of the problem formulation given in (3.34) and (3.35). 

For the Galerkin (or finite element) solution we define the space Vh of trial (or finite 
element) functions vh, 

Vh = {vh lvh E L2(L),: E L2(L), Vh lsu = 0} (3.39) 

where Su denotes the surface area on which the zero displacement is prescribed. The 
subscript h denotes that a particular finite element discretization is being considered (and 
h actually refers to the size of the elements; see Section 4.3 ). The finite element formulation 
of the problem is then 

(3.40) 

Of course, (3.40) is the principle of virtual displacements applied with the functions 
contained in Vh and also corresponds to the minimization of the total potential energy within 
this space of trial functions. Therefore, (3.40) corresponds to the use of the Ritz method 

6 The symbols 'V and E mean, respectively, "for all" and "an element of." 
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described in Section 3.3.3. We discuss the finite element formulation extensively in 
Chapter 4. 

However, let us note here that the same solution approach can also be used directly 
for any analysis problem for which we have the governing differential equation(s). The 
procedure would be: weigh the governing differential equation(s) in the domain with 
suitable test function(s); integrate the resulting equation(s) with a transformation using 
integration by parts (or more generally the divergence theorem; see Example 4.2); and 
substitute the natural boundary conditions-as we did to find (3.33). 

We obtain in this way the principle of virtual displacements for the general analysis 
of solids and structures (see Example 4.2), the "principle of virtual temperatures" for the 
general heat flow and temperature analysis of solids (see Example 7 .1 ), and the "principle 
of virtual velocities" for general fluid flow analysis (see Section 7.4.2). 

To demonstrate the use of the above notation, consider the following examples. 

EXAMPLE 3.25: Consider the analysis problem in Example 3.22. Write the problem formu­
lation in the form (3.40) and identify the finite element basis functions used when employing 
the displacement assumptions (b) and ( c) in the example. 

Here the bilinear form a (. , . ) is 

and we have the linear form 

With the displacement assumption (b) we use 

uh = a,x + a2x2 

Hence Vh is a two-dimensional space, and the two basis functions are 

and 

With the displacement assumption (c) we use 

OsxslOO 

( 
x - 100) (x - 100) 

Uh = 1 - SQ UB + SO Uc; 100 s x s 180 

and the two basis functions for Vh are 

and 

! 
x 

100 

1
_x-100 

80 

(2) - x - 100 
Vh - 80 

for Os x s 100 

for 100 s x s 180 

for 100 s x s 180 

Clearly, all these functions satisfy the conditions in (3.39). If we use (3.40), the equations in (g) 
and (j) in Example 3.22 are generated. 
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EXAMPLE 3.26: Consider the analysis problem in Example 3.23. Write the problem formula­
tion in the form (3.40) and identify the element basis functions used when employing the 
temperature assumption given in the example. 

Here the problem formulation is 

(a) 

where Ll d!/lh d8h 
a(fJh, !/lh) = - k- dx 

o dx dx 

(/, ,J,,,) = f ,J,,,q B dx + qo 1/Jh k.o 

Here 8h and q/h correspond to temperature distributions in the slab. With the assumption in 
Example 3 .23 we have for Vh the three basis functions 

8~1) = l; of>= x; 

Using (a) the governing equations given in (c) in Example 3.23 are obtained. Note that in this 
formulation we have not yet imposed the essential boundary condition (which is achieved later, 
as in Example 3.23). 

3.3.5 Finite Difference Differential and Energy Methods 

A classical approach to finding a numerical solution to the governing equations of a math­
ematical continuum model is to use finite differences (see, for example, L. Collatz [A]), and 
it is valuable to be familiar with this approach because such knowledge will reinforce our 
understanding of the finite element procedures. In a finite difference solution, the deriva­
tives are replaced by finite difference approximations and the differential and variational 
formulations of mathematical models can be solved. 

As an example, consider the analysis of the uniform bar in Fig. 3.2 with the governing 
differential equation (see Example 3.17 and Section 3.3.4 ), 

and the boundary conditions 

jB 
u11 +- = 0 

EA 

u=O 

du 
EA-= R 

dx 

atx = 0 

atx = L 

(3.41) 

(3.42) 

(3.43) 

Using an equal spacing h between finite difference stations, we can write (see Fig. 3.3) 

h 
(3.44) 

and u"t u'l;+1/2 - u'l;-112 (3.45) 
h 

so that (3.46) 
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Young's modulus E 
Cross-sectional area A 

(a) Bar to be analyzed, 
fB(x) = ax 

(b) Finite difference stations i- 1, i, i + 1 
(locations i- i, i + ! are not stations) 

+--~-, -j~--~ 
I. .L ~I 

h h 
(c) Fictitious finite difference station n + 1 outside bar 

Figure 3.3 Finite difference analysis of a bar 

Chap.3 

The relation in (3.46) is called the central difference approximation. If we substitute (3.46) 
into (3.41 ), we obtain 

EA< ) B h -u;+1 + 2u; - U;- 1 = f; h (3.47) 

where ff is the loadf8 (x) at station i andff h can be thought of as the total load applied at 
that finite difference station. 

Assume now that we use a total of n + 1 finite difference stations on the bar, with 
station i = 0 at the fixed end and station i = n at the other end. Then the boundary 
conditions are 

Uo = 0 (3.48) 

and EA U11+1 - U,1-I R 
2h 

(3.49) 
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where we have introduced the fictitious station n + 1 outside the bar [see Fig. 3.3(c)], 
merely to impose the boundary condition (3.43). 

For the finite difference solution we apply (3.47) at all stations i = 1, ... , n and use 
the boundary conditions (3.48) and (3.49) to obtain 

2 -1 U1 R1 
-1 2 -1 U2 R2 

-1 2 -1 U3 R3 

EA (3.50} 
h 

-I 2 -1 Un-1 Rn-I 

-1 1 Un Rn 

where R; = ffh, i = 1, ... , n l, and Rn = J: h/2 + R. 
We note that the equations in (3.50) are identical to the equations that would be 

obtained using a series of n spring elements, each of stiffness EA/h . The loads at the nodes 
corresponding to f8(x) would be obtained by using the distributed load value at node i and 
multiplying that value by the contributing length (h for the interior nodes and h/2 for the 
end node.) 

The same coefficient matrix is also obtained if we use the Ritz method with the 
variational formulation of the mathematical model and specific Ritz functions. The varia­
tional indicator is (see Example 3.19) 

} J:L TI = - EA(u')2 dx 
2 0 

f u/8 dx - Ru lx=l (3.51) 

and the specific Ritz functions are depicted in Fig. 3.4. While the same coefficient matrix 
is obtained, the load vector is different unless the loading is constant along the length of the 
bar. 

Typical Ritz "hat" function 

i 

h ·I· h 

1 
(1- £.) Uj 

u(~= h 

(1 +f) U; for-h s ~so 

Figure 3.4 Typical Ritz function or Galerkin basis function used in analysis of bar problem 
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The same equations as in the Ritz solution are of course also obtained using the 
Galerkin method given in Section 3.3.4 (i.e., the principle of virtual work) with the basis 
functions in Fig. 3.4. 

The preceding discussion indicates that the finite difference method can also be used 
to generate stiffness matrices, and that in some cases the resulting equations obtained in a 
Ritz analysis and in a finite difference solution are identical or almost identical. 

Table 3.1 summarizes some widely used finite difference approximations, also called 
finite difference stencils or molecules. Let us demonstrate the use of these stencils in two 
examples. 

TABLE 3.1 Finite difference approximations for various differentiatipns 

Differentiation 

dwl 
d.x j 

d2w I 
d.x2 I 

dlw I 
d.x3 . 

I 

d
4

w I 
d.x4 . 

' 

Finite difference 
approximation 

2h 

W;+1 - 2W; + W1-1 

h2 

W1+2 - 2W1+1 + 2W1-1 - W;-2 

2h 3 

Wt+2 - 4W1+ I + 6W; - 4W1-1 + W;-z 

h4 

-4w1,j + W;+l.j + w,.j+I + W;-J,j + W1,j-l 

h2 

[20w;,j - 8(W;+J,j + W;-J,j 

+ W1,j+l + W1,j-1) + 2(W;+t.j+I 

+ W;-1,j+I + W1-1.j-l + W1+1,j-1) 

+ W;+2,i + W;-2,i + W;,j+2 

W1,j-2]/h
4 

Molecules 

Uniform spacing h; error in each case is o(h 2). Point i or (i,j) is being considered; and i ± · · · denotes points 
in the Nlirection; j ± · · · denotes points in the y-direction. 
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EXAMPLE 3.27: Consider the simply supported beam in Fig. E3 .27. Use conventional finite 
differencing to establish the system equilibrium equations. 

The finite difference grid used for the beam analysis is shown in the figure. In the 
conventional finite difference analysis the differential equation of equilibrium and the geometric 
and natural boundary conditions are considered; i.e., we approximate by finite differences at 
each interior station, 

d4w 
El-=q 

dx4 

and use the conditions that w = 0 and w" = 0 at x = 0 and x = L. 

Flexural 
R, R2 R3 l 2;_:~-4 j I + + t :-----;t l l z 

ioc-1 ;.o ;.5 i·6 w, ~ W3 W4 

I . 14 
L/5 

: I L 

Figure E3.27 Finite difference stations for simply supported beam 

Using central differencing, (a) is approximated at station i by 

El 
(L/S)3 {w;-2 - 4w;-1 + 6w, - 4w;+ 1 + W;+2} = R1 

(a) 

(b) 

where R1 = q1L/5 and is the concentrated load applied at station i. The condition that w" is zero 
at station i is approximated using 

(c) 

Applying (b) at each finite difference station, i = l, 2, 3, 4, and using condition (c) at the 
support points, we obtain the system of equations 

where the coefficient matrix of the displacement vector can be regarded as a stiffness matrix. 

EXAMPLE 3.28: Consider the plate shown in Fig. E3.28. 

1. Calculate the center point transverse deflection when the plate is uniformly loaded under 
static conditions with the distributed load p per unit area. Use only one finite difference 
station in the interior of the plate. 

2. If the load p is applied dynamically, i.e., p = p (t), establish an equation of motion 
governing the behavior of the plate. 
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~-------
Transverse load 
p per unit area I w

1 
W2, 

__..,._ - - - - ...... -+---• 
Flexural rigidity D l I 

I Mass per unit area m 

lb _____ } 
L 

Figure E3.28 Simply supported plate 

For Table 3.1: 
W1= W1,1 
W2,E W2,1 

Wa• WJ,1 

The governing differential equation of the plate is (see, for example, S. Timoshenko and 
S. Woinowsky-Krieger [A]) 

V4 w =!!... 
D 

where w is the transverse displacement. The boundary conditions are that on each edge of the 
plate the transverse displacement and the moment across the edge are zero. 

We use the finite difference stencil for V4w given in Table 3.1, with the center point of the 
molecule placed at the center of the plate. The displacements corresponding to the coefficients 
-8 and + 2 are zero, and the displacements corresponding to the coefficients + 1 are expressed 
in terms of the center displacement. For example, the zero moment condition gives (refer to 
Fig. E3.28) 

and because w2 = O. 

Therefore, the governing finite difference equation is 

p (L)4 t6w1 = D 2 

and we obtain [ 
16D] 

(L/2)2 W1 = R; 

Note that with this relation we in essence represent the plate by a single spring of stiffness 
k = 64D/L2, and the total load acting on the spring is given by R. The deflection w1 thus 
calculated is only about 4 percent different from the analytically calculated .. exact" value. 

For the dynamic analysis, we use d' Alembert's principle and subtract from the externally 
applied load R the inertia load Mw1, where M represents a mass in some sense equivalent to the 
distributed mass of the plate 

Hence the dynamic equilibrium equation is 

L2 64D 
m-wi + --w1 = R 

4 L2 
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In these two examples and in the analysis of the bar in Fig. 3.2, the differential 
equations of equilibrium have been approximated by finite differences. When the differen­
tial equations of equilibrium are used to solve a mathematical model, it is necessary to 
approximate by finite differences and impose on the coefficient matrix both the essential 
and the natural boundary conditions. In the analysis of the beam and the plate considered 
in Examples 3.27 and 3.28, these boundary conditions could easily be imposed (the zero 
displacements on the boundaries are the essential boundary conditions and the zero mo­
ment conditions across the boundaries are the natural boundary conditions). However, for 
complex geometries the imposition of the natural boundary conditions can be difficult to 
achieve since the topology of the finite difference mesh restricts the form of differencing that 
can be carried out, and it may be difficult to obtain a symmetric coefficient matrix in a 
rigorous manner (see A. Ghali and K. J. Bathe [A]). 

The difficulties associated with the use of the differential formulations have given 
impetus to the development of finite difference analysis procedures based on the principle 
of minimum total potential energy, referred to as the finite difference energy method (see, 
for example, D. Bushnell, B. 0. Almroth, and F. Brogan [A]). In this scheme the displace­
ment derivatives in the total potential energy, TI, of the system are approximated by finite 
differences, and the minimum condition of TI is used to calculate the unknown displace­
ments at the finite difference stations. Since the variational formulation of the problem 
under consideration is employed, only the essential (geometric) boundary conditions must 
be satisfied in the differencing. Furthermore, a symmetric coefficient matrix is always 
obtained. 

As might well be expected, the finite difference energy method is very closely related 
to the Ritz method, and in some cases the same algebraic equations are generated. 

An advantage of the finite difference energy method lies in the effectiveness with 
which the coefficient matrix of the algebraic equations can be generated. This effectiveness 
is due to the simple scheme of energy integration employed. However, the Galerkin method 
implemented in the form of the finite element procedures discussed in the forthcoming 
chapters is a much more general and powerful technique, and this of course is the reason 
for the success of the finite element method. 

It is instructive to examine the use of the finite difference energy method in some 
examples. 

EXAMPLE 3.29: Consider the cantilever beam in Fig. E3.29. Evaluate the tip deflection using 
the conventional finite difference method and the finite difference energy method. 

R 
Flexural 
rigidity El 

,----------------:::::::::::-.+We 

Figure E3.29 Finite difference stations on cantilever beam 
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The finite difference mesh used is shown in the figure. Using the conventional finite 
difference procedure and central differencing as in Example 3.27, we obtain the equilibrium 
equations 

64EI [-~ -: -! ~:] [::] = i~] 
L3 1 -4 5 -2 W4 R 

0 1 -2 I Ws O 

(a) 

It may be noted that in addition to the equations employed in Example 3.27 the conditions 
w' = 0 at the fixed end and w"' = 0 at the free end are also used. For w' and w"' equal to zero 
at station i, we employ, respectively, 

W;+1 - W;-1 :::: Q 

W;+2 - 2Wi+ l + 2Wi- I - W;-2 = Q 

Using the finite difference energy method, the total potential energy Il is given as 

El fl I n :::::: 2 Jo [w"(x)]
2 

dx - Rw .t ""!L 

To evaluate the integral we need to approximate w"(x). Using central differencing, we obtain for 
station i, 

w/' 
1 

(L/4)2 (W;+1 (b) 

An approximate solution can now be obtained by evaluating TI at the finite difference stations 
using {b) and replacing the integral by a summation process; i.e., we use the approximation 

(c) 

where -2 1] [::-IJ 
W;+1 

Therefore, we can write, in analogy with the finite element analysis procedures (see Section 4.2), 

ni = turBrciBiu 
where B; is a generalized strain-displacement transformation matrix, Ci is the stress-strain 
matrix, and U is a vector listing all nodal point displacements. Using the direct stiffness method 
to calculate the total potential energy as given in (c) and employing the condition that the total 
potential energy is stationary (i.e., an = 0), we obtain the equilibrium equations 

7 -4 W2 0 

64EI 
-4 6 -4 l W3 0 

v l -4 5.5 ...:.3 0.5 W4 R (d) 

-3 3 -1 W5 0 
0.5 0.5 W6 0 

where the condition of zero slope at the fixed end has already been used. 
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The close similarity between the equilibrium equations in (a) and (d) should be noted. 
Indeed, if we eliminate w6 from the equations in (d), we obtain the equations in (a). Hence, using 
the finite difference energy method and the conventional finite difference method, we obtain in 
this case the same equilibrium equations. 

As an example, let R = I, El = I 03, and L = 10. Then we obtain, using the equations 
in (a) or (d), 

~

.0234371 
U = 0.078125 

0.14843 
0.21875 

The exact answer for the tip deflection is ws = 0.2109375. Hence the finite difference analysis 
gives a good approximate solution. 

EXAMPLE 3.30: The rod shown in Fig. E3.30 is subjected to a heat flux input of q5 at its right 
end and a constant temperature Oo at its left end and is in steady-state conditions. The variational 
indicator is 

A(x)=Ao(1+f)
2 !• 8 L 

S!.B ~f;::E:J~ 
Insulated around V B 
circumference I 

-t-1 
• • • • • 

92 93 84 

qs • prescribed heat flow 
input per unit area at x ... L 

k = conductivity (constant) 

Figure E3.30 Rod in heat transfer condition; finite difference stations used 

(a) 

Use the finite difference method to obtain an approximate solution for the temperature distribu­
tion. 

Let us use five equally spaced finite difference stations as shown in Fig. E3.30. The finite 
difference approximation of the integral in (a) is then 

II 

where 1 [ 1] k(iFAo 
Ill/2= 2(01 Oo] -l (L/4)2 (1 
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and the values 113;2, Ils;2, and Il1;2 are similarly evaluated. Calculating n invoking 8Il = O. and 
imposing the boundary condition that 6o is known, we thus obtain 

kAo -121 290 -169 

t 
202 -121 _Jr;t 

22!Jl~ 16L -169 394 
-225 

Now assume that 6o = 0. Then the solution is 

[~]- [~:;~iLqs 
83 1.70 k 

84 1.98 

which compares as follows with the analytical solution 

[OJ [!~ (h i Lqs = 3 -

th ¥ k 
84 analytical 2 

81 
16L kAo 8o 

0 
0 

4Aoqs 

3.3.6 Exercises 

3.15. Establish the differential equation of equilibrium of the problem shown and the (geometric and 
force) boundary conditions. Determine whether the operator L2m of the problem is symmetric and 
positive definite and prove your answer. 

Young•s modulus E 

A(x) = Ao(2 - x/L) 

Rod with varying 
cross-sectional area 

3.16. Consider the cantilever beam shown, which is subjected to a moment M at its tip. Determine the 
variational indicator n and state the essential boundary conditions. Invoke the stationarity of n 
by using (3.7b) and by using the fact that variations and differentiations are performed using the 
same rules. Then extract the differential equation of equilibrium and the natural boundary 
conditions. Determine whether the operator L2m is symmetric and positive definite and prove your 
answer. 
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Flexural stiffness El 

I 0 1)M 
I · L · I 

3.17. Consider the heat transfer problem in Example 3.30. Invoke the stationarity of the given varia­
tional indicator by using (3.7b) and by using the fact that variations and differentiations are 
performed using the same rules. Establish the governing differential equation of equilibrium and 
all boundary conditions. Determine whether the operator L2m is symmetric and positive definite 
and prove your answer. 

3.18. Consider the prestressed cable shown in the figure. The variational indicator is 

Il = ! J.L r(dw)2 

dx + J.L !k(w)2 dx Pwi 
2 o dx o 2 

where w is the transverse displacement and wi is the transverse displacement at x = L. Establish 
the differential equation of equilibrium and state all boundary conditions. Determine whether the 
operator Lim is symmetric and positive definite and prove your answer. 

Constant tension T 

3.19. Consider the prestressed cable in Exercise 3.18. 

Frictionless 
roller 

Cable on distributed vertical 
springs of stiffness k/unit length of cable 

(a) Establish a suitable trial function that can be employed in the analysis of the cable using the 
classical Galerkin and least squares methods. Try w(x) = a0 + a,x + a2x 2 and modify the 
function as necessary. 

(b) Establish the governing equations of the system for the selected trial function using the 
classical Galerkin and least squares methods. 

3.20. Consider the prestressed cable in Exercise 3.18. Establish the governing equations using the Ritz 
method with the trial function w(x) = ao + a1x + a2x2 (i.e., a suitable modification thereof). 
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3.21. Use the Ritz method to calculate the linearized buckling load of the column shown. Assume that 
w = cx2, where c is the unknown Ritz parameter. 

3.22. Consider the structure shown. 
(a) Use the Ritz method to establish the governing equations for the bending response. Use the 

following functions: (i) w a1x2 and (ii) w b,[1 cos(1rx/2L)]. 
(b) With Elo = 100, k = 2. L = 1 estimate the criticalload of the column using a Ritz analysis. 

k = spring stiffness per unit length of beam 

El(x) = Efo(1 - x/2L) 

3.23. Consider the slab shown for a heat transfer analysis. The variational indicator for this analysis is 

I.
L} (d8)2 I.L II = - k - dx - Oq 8 dx 

o 2 dx o 

State the essential and natural boundary conditions. Then perform a Ritz analysis of the problem 
using two unknown parameters. 
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Prescribed temperature Infinitely long slab 
e-20° in y- and z-directions 

k1 "'conductivity of inner part of slab = 20 
k2 = conductivity of outer part of slab == 40 

Inside 

qB = heat generated per unit volume in total slab• 100 

r-L/2 +L/2-.., 
L= 10 

Outside 

3.24. The prestressed cable shown is to be analyzed. The governing differential equation of equilibrium 
is I 

with the boundary conditions 

wlx=O::::: wl.~=L = Q 

and the initial conditions 

w(x, O) = 0; aw( 0) o a, x, 

(a) Use the conventional finite difference method to approximate the governing differential 
equation of equilibrium and thus establish equations governing the response of the cable. 

(b) Use the finite difference energy method to establish equations governing the response of the 
cable. 

(c) Use the principle of virtual work to establish equations governing the response of the cable. 
When using the finite difference methods, employ two internal finite difference stations. To 
employ the principle of virtual work, use the two basis functions shown. 

Uniformly distributed 
loading pt.t) 

~ I I I I l:-4 
iw(x) ~ 

--------L------.... •-1 Constanttension T 
Mass/unit tength m 

x 
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~ ~ ; ~ 
r-L/3+L/3+L/3~ 

Finite difference stations Basis functions for use of 
principle of virtual work 

3.25. The disk shown is to be analyzed for the temperature distribution. Determine the variational 
indicator of the problem and obtain an approximate solution using the Ritz method with the basis 
functions shown in Fig. 3.4. Use two unknown temperatures. Compare your results with the exact 
analytical solution. 

e, 

cf= 100 Btu/thr,in2) (prescribed heat flux) 
01 ... 70°F (prescribed temperature) 
ro= 1.0 in 
r1 = 3.0 in 
k = 120 Btu/(hr. in• °F) 
h = 0.1 in (thickness of disk) 

The top and bottom faces 
of the disk are insulated 

3.26. Consider the beam analysis problem shown. 
(a) Use four finite difference stations on the beam with the differential formulation to establish 

equations governing the response of the beam. 
(b) Use four finite difference stations on the beam with the variational formulation to establish 

equations governing the response of the beam. 
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p = load/unit length 

Flexural stiffness El Spring stiffness k 

3.27. Use the finite difference energy method with only two unknown temperature values to solve the 
problem in Exercise 3 .23. 

3.28. Use the finite difference energy method with only two unknown temperature values to solve the 
problem in Exercise 3.25. 

3.29. The computer program STAP (see Chapter 12) has been written for the analysis of truss struc­
tures. However, by using analogies involving variables and equations, the program can also be 
employed in the analysis of pressure and flow distributions in pipe networks, current distributions 
in de networks, and in heat transfer analyses. Use the program STAP to solve the analysis 
problems in Examples 3.1 to 3.4. 

3.30. Use a computer program to solve the problems in Examples 3.1 to 3.4. 

3.4 IMPOSITION OF CONSTRAINTS 

The analysis of an engineering problem frequently requires that a specific constraint be 
imposed on certain solution variables. These constraints may need to be imposed on some 
continuous solution parameters or on some discrete variables and may consist of certain 
continuity requirements, the imposition of specified values for the solution variables, or 
conditions to be satisfied between certain solution variables. Two widely used procedures 
are available, namely, the Lagrange multiplier method and the penalty method (see, for 
example, D. P. Bertsekas (A]). Applications of these techniques are given in Sections 4.2.2, 
4.4.2, 4.4.3, 4.5, 5.4, 6.7.2, and 7.4. Both the Lagrange multiplier and the penalty methods 
operate on the variational or weighted residual formulations of the problem to be solved. 

3.4.1 An Introduction to Lagrange Multiplier and Penalty 
Methods 

As a brief introduction to Lagrange multiplier and penalty methods, consider the variational 
formulation of a discrete structural model for a steady-state analysis, 

Il ! lYKU - U7R (3.52) 

with the conditions for all i (3.53) 
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and assume that we want to impose the displacement at the degree of freedom U; with 

(3.54) 

In the Lagrange multiplier method we amend the right-hand side of (3.52) to obtain 

TI* = i urKU - urR + A(U1 Vt) (3.55) 

where A is an additional variable, and invoke 5Ilf = 0, which gives 

6U1'KU - aura + MU, + 8>..(Ui - Ur) 0 (3.56) 

Since BU and SA are arbitrary, we obtain 

{3.57) 

where e; is a vector with all entries equal to zero except its ith entry, which is equal to one. 
Hence the equilibrium equations without a constraint are amended with an additional 
equation that embodies the constraint condition. 

In the penalty method we also amend the right-hand side of (3.52) but without 
introducing an additional variable. Now we use 

TI** = 1 urKU ura + ~ (U1 - U't)2 (3.58) 

in which a is a constant of relatively large magnitude, a ;?:> max (ku). The condition 
811** == 0 now yields 

and 

aurKU - 6UrR + a(U; - Uf) 8U1 = 0 

(K + ae1eT)U = R + aUj'e; 

(3.59) 

(3.60) 

Hence, using this technique, a large value is added to the ith diagonal element of K and a 
corresponding force is added so that the required displacement U; is approximately equal 
to ur. This is a general technique that has been used extensively to impose specified 
displacements or other variables. The method is effective because no additional equation is 
required, and the bandwidth of the coefficient matrix is preserved (see Section 4.2.2). 
We demonstrate the Lagrange multiplier method and penalty procedure in the following 
example. 

EXAMPLE 3.31: Use the Lagrange multiplier method and penalty procedure to analyze the 
simple spring system shown in Fig. E3.3 l with the imposed displacement U2 1 /k. 

The governing equilibrium equations without the imposed displacement U2 are 

[ 2k -k] [Ui] = [Ri] 
-k k U2 R2 

(a) 

I k k 1 
YNv L 'NI'. L 

U2=7c 

U,, R1 U2, R2 

Figure E3.31 A simple spring system 
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The exact solution is obtained by using the relation U2 = l/k and solving from the first 
equation of (a) for U1, 

Hence we also have 

which is the force required at the U2 degree of freedom to impose U2 = 1/k. 
Using the Lagrange multiplier method, the governing equations are 

and we obtain 

[~ -: :J[~}[i] 
1 + R1 u---· 

I - 2k • 
1 + R1 >..=-l+--

2 

(b) 

(c) 

Hence the solution in (b) is obtained, and .,\ is equal to minus the force that must be applied at 
the degree of freedom U2 in order to impose the displacement Uz = 1/k. We may note that with 
this value of A. the first two equations in (c) reduce to the equations in (a). 

Using the penalty method, we obtain 

[ 
2k -k J [U•J [R1

] 

- k (k + a) U2 = ~ 

The solution now depends on a, and we obtain 

for a= lOk: U _ llR, + 10. 
1 

- 2Ik ' 

for a = lOOk: 
U _ lOIR1 + 100. 

I - 2Q}k ' 

and for a = 1 OOOk: U _ 1001R1 + 1000. 
I - 200}k • 

U _ R, + 20 
1 

- 2lk 

U _ R, + 200 
2 

- 201k 

R, + 2000 
U2 = 2001k 

In practice, the accuracy obtained using a = l OOOk is usually sufficient. 

This example gives only a very elementary demonstration of the use of the Lagrange 
multiplier method and the penalty procedure. Let us now briefly state some more general 
equations. Assume that we want to impose onto the solution the m linearly independent 
discrete constraints BU = V where B is a matrix of order m X ·· n. Then in the Lagrange 
multiplier method we use 

Il*(U, A.) = 1 urKU - urR + A.r(BU - V) (3.61) 
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where A. is a vector of m Lagrange multipliers. Invoking 6Il* = 0 we now obtain 

(3.62) 

In the penalty method we use 

Il**(U) = !uTKU - UTR + ~(BU - V)T(BU - V) 
2 2 

(3.63) 

and invoking 6 Il** == 0 we obtain 

(K + o:BTff)U = R + o:BTV (3.64) 

Of course, (3.57) and (3.60) are special cases of (3.62) and (3.64). 
The above relations are written for discrete systems. When a continuous system is 

considered, the usual variational indicator II (see, for example, Examples 3.18 to 3.20) is 
amended in the Lagrange multiplier method with integral(s) of the continuous constraint(s) 
times the Lagrange multiplier(s) and in the penalty method with integral(s) of the penalty 
factor(s) times the square of the constraint(s). If the continuous variables are then expressed 
through trial functions or finite difference expressions, relations of the form (3.62) and 
(3.64) are obtained (see Section 4.4). 

Although the above introduction to the Lagrange multiplier method and penalty 
procedure is brief, some basic observations can be made that are quite generally applicable. 
First, we observe that in the Lagrange multiplier method the diagonal elements in the 
coefficient matrix corresponding to the Lagrange multipliers are zero. Hence for the solu~ 
tion it is effective to arrange the equations as given in (3.62). Considering the equilibrium 
equations with the Lagrange multipliers, we also find that these multipliers have the same 
units as the forcing functions; for ex.ample, in (3.57) the Lagrange multiplier is a force. 

Using the penalty method, an important consideration is the choice of an appropriate 
penalty number. In the analysis leading to (3.64) the penalty number a is explicitly specified 
(such as in Example 3.31), and this is frequently the case (see Section 4.2.2). However, in 
other analyses, the penalty number is defined by the problem itself using a specific formu­
lation (see Section 5.4.1 ). The difficulty with the use of a very high penalty number lies in 
that the coefficient matrix can become ill-conditioned when the off-diagonal elements are 
multiplied by a large number. If the off-diagonal elements are affected by the penalty 
number, it is necessary to use enough digits in the computer arithmetical operations to 
ensure an accurate solution of the problem (see Section 8.2.6). 

Finally, we should note that the penalty and Lagrange multiplier methods are quite 
closely related (see Exercise 3.35) and that the basic ideas of imposing the constraints can 
also be combined, see M. Fortin and R. Glowinski [A], J.C. Simo, P. Wriggers, and R. L. Tay­
lor [A], and Exercise 3.36. 

3.4.2 E.xercises 

3.31. Consider the system of equations 

[ 2 -IJ[Ui] = [ 10) 
-1 2 U2 -1 
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Use the Lagrange multiplier method and the penalty method to impose the condition U2 = 0. 
Solve the equations and interpret the solution. 

3.32. Consider the system of carts in Example 3.1 with ki = k, R 1 = I, R2 = 0, R:. = 1. Develop the 
governing equilibrium equations, imposing the condition U2 = U3. 
(a) Use the Lagrange multiplier method. 
(b) Use the penalty method with an appropriate penalty factor. 

In each case solve for the displacements and the constraining force. 

3.33. Consider the heat transfer problem in Example 3.2 with k = l and 8o = 10, 84 = 20. Impose 
the condition that (h = 40:- and physically interpret the solution. Use the Lagrange multiplier 
method and then the penalty method with a reasonable penalty parameter. 

3.34. Consider the fluid flow in the hydraulic network in Example 3.3. Develop the governing equations 
for use of the Lagrange multiplier method to impose the condition Pc = 2pv. Solve the equations 
and interpret the solution. 

Repeat the solution using the penalty method with an appropriate penalty factor. 

3.35. Consider the problem KU = R with them linearly independent constraints BU = V (see (3.61) 
and ( 3.62)). Show that the stationarity of the following variational indicator gives the equations 
of the penalty method (3.64), 

fi**(U, k) = i urKu - urR + k7 (BU - V) - A;: 

where A is a vector of them Lagrange multipliers and a is the penalty parameter, a > 0. 
Evaluate the Lagrange multipliers in general to be A = a(BU - V), and show that for the 
specific case considered in (3.60) A = a(U1 - un, 

3.36. In the augmented Lagrangian method the following functional is used for the problem stated in 
Exercise 3.35: 

- 1 a 
II*(U, k) = 2U7KU - urR + 2(BU - V)T(BU - V) + A..7(BU - V); a~ 0 

(a) Invoke the stationarity of IT* and obtain the governing equations. 
(b) Use the augmented Lagrangian method to solve the problem posed in Example 3.31 for 

a = 0, k, and l OOOk. Show that, actually, for any value of a the constraint is accurately 
satisfied. (The augmented Lagrangian method is used in iterative solution procedures, in 
which case using an efficient value for a can be important.) 
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A very important application area for finite element analysis is the linear analysis of solids 
and structures. This is where the first practical finite element procedures were applied and 
where the finite element method has obtained its primary impetus of development. 

Today many types of linear analyses of structures can be performed in a routine 
manner. Finite element discretization schemes are well established and are used in standard 
computer programs. However, there are two areas in which effective finite elements have 
been developed only recently, namely, the analysis of general plate and shell structures and 
the solution of (almost) incompressible media. 

The standard formulation for the finite element solution of solids is the displacement 
method, which is widely used and effective except in these two areas of analysis. For the 
analysis of plate and shell structures and the solution of incompressible solids, mixed 
formulations are preferable. 

In this chapter we introduce the displacement-based method of analysis in detail. The 
principle of virtual work is the basic relationship used for the finite element formulation. We 
first establish the governing finite element equations and then discuss the convergence 
properties of the method. Since the displacement-based solution is not effective for certain 
applications, we then introduce the use of mixed formulations in which not only the displace­
ments are employed as unknown variables. The use of a mixed method, however, requires 
a careful selection of appropriate interpolations, and we address this issue in the last part of 
the chapter. 

Various displacement-based and mixed formulations have been presented in the liter­
ature, and as pointed out before, our aim is not to survey all these formulations. Instead, we 
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will concentrate in this chapter on some important useful principles of formulating finite 
elements. Some efficient applications of the principles discussed in this chapter are then 
presented in Chapter 5. 

4.2 FORMULATION OF THE DISPLACEMENT-BASED FINITE 
ELEMENT METHOD 

The displacement·based finite element method can be regarded as an extension of the 
displacement method of analysis of beam and truss structures, and it is therefore valuable 
to review this analysis process. The basic steps in the analysis of a beam and truss structure 
using the displacement method are the following. 

1. Idealize the total structure as an assemblage of beam and truss elements that are 
interconnected at structural joints. 

2. Identify the unknown joint displacements that completely define the displacement 
response of the structural idealization. 

3. Formulate force balance equations corresponding to the unknown joint displacements 
and solve these equations. 

4. With the beam and truss element end displacements known, calculate the internal 
element stress distributions. 

5. Interpret, based on the assumptions used, the displacements and stresses predicted by 
the solution of the structural idealization. 

In practical analysis and design the most important steps of the complete analysis are 
the proper idealization of the actual problem, as performed in step 1, and the correct 
interpretation of the results, as in step 5. Depending on the complexity of the actual system 
to be analyzed, considerable knowledge of the characteristics of the system and its mechan­
ical behavior may be required in order to establish an appropriate idealization, as briefly 
discussed in Chapter 1. 

These analysis steps have already been demonstrated to some degree in Chapter 3, but 
it is instructive to consider another more complex example. 

EXAMPLE 4.1: The piping system shown in Fig. E4.l(a) must be able to carry a large trans­
verse load P applied accidentally to the flange connecting the small- and large-diameter pipes. 
"Analyze this problem." 

The study of this problem may require a number of analyses in which the local kinematic 
behavior of the pipe intersection is properly modeled, the nonlinear material and geometric 
behaviors are taken into account, the characteristics of the applied load are modeled accurately, 
and so on. In such a study, it is usually most expedient to start with a simple analysis in which 
gross assumptions are made and then work toward a more refined model as the need arises (see 
Section 6.8.1 ). 
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(a) Piping system 

Element2 
p 

(b) Elements and nodal points 

(c) Global degrees of freedom of unrestraint structure 

Figure E4.1 Piping system and idealization 

t 
0.5L 

t 

Element 3 

Assume that in a first analysis we primarily want to calculate the transverse displacement 
at the flange when the transverse load is applied slowly. In this case it is reasonable to model the 
structure as an assemblage of beam, truss, and spring elements and perform a static analysis. 

The model chosen is shown in Fig. E4.l(b). The structural idealization consists of two 
beams, one truss, and a spring element. For the analysis of this idealization we first evaluate the 
element stiffness matrices that correspond to the global structural degrees of freedom shown in 
Fig. E4.l(c). For the beam, spring, and truss elements, respectively, we have in this case 
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where the subscript on Ke indicates the element number, and the global degrees of freedom that 
correspond to the element stiffnesses are written next to the matrices. It should be noted that in 
this example the element matrices are independent of direction cosines since the centerlines of 
the elements are aligned with the global axes. If the local axis of an element is not in the direction 
of a global axis, the local element stiffness matrix must be transformed to obtain the required 
global element stiffness matrix (see Example 4.10). 

The stiffness matrix of the complete element assemblage is effectively obtained from the 
stiffness matrices of the individual elements using the direct stiffness method (see Examples 3.1 
and 4.11 ). In this procedure the structure stiffness matrix K is calculated by direct addition of 
the element stiffness matrices; i.e., 

K = LKt 
i 

where the summation includes all elements. To perform the summation, each element matrix KT 
is written as a matrix K<i) of the same order as the stiffness matrix K, where all entries in K<1> 

are zero except those which correspond to an element degree of freedom. For example, for 
element 4 we have 

1 2 3 4 5 6 7 ~ Degree of freedom 
0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 

K<4> = 
5 0 0 0 0 

2AE 2EA 
0 

L L 
6 0 0 0 0 0 0 0 

7 0 0 0 0 
2AE 

0 
2EA 

L L 
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Therefore, the stiffness matrix of the structure is 

12E/ 6EI 12£/ 6EI 
v L2 -v -u 0 0 0 

4EI 6EI 2El 
0 

L L 
0 0 

24El 6EI 12£/ 12£/ 
u -v v 0 

K= 
WEI 12£/ 8EI 

0 
L v L 

symmetric 
12£/ 2AE 12£/ 2AE --+- v L3 L L 

16£/ k --+ L s 
0 

2AE 

L 
and the equilibrium equations for the system are 

KU=R 

where U is a vector of the system global displacements and R is a vector of forces acting in the 
direction of these displacements: 

Before solving for the displacements of the structure, we need to impose the boundary 
conditions that U1 = 0 and U1 = 0. This means that we may consider only five equations in five 
unknown displacements; i.e., 

i:u= i (a) 

where K is obtained by eliminating from K the first and seventh rows and columns, and 

fir = [U2 U3 U4 Us U6]; Rr = [O - P O O O] 

The solution of (a) gives the structure displacements and therefore the element nodal point 
displacements. The element nodal forces are obtained by multiplying the element stiffness 
matrices Kf by the element displacements. If the forces at any section of an element are required, 
we can evaluate them from the element end forces by use of simple statics. 

Considering the analysis results it should be recognized, however, that although the struc­
tural idealization in Fig. E4. l (b) was analyzed accurately, the displacements and stresses are only 
a prediction of the response of the actual physical structure. Surely this prediction will be 
accurate only if the model used was appropriate, and in practice a specific model is in general 
adequate for predicting certain quantities but inadequate for predicting others. For instance, in 
this analysis the required transverse displacement under the applied load is quite likely predicted 
accurately using the idealization in Fig. E4. l(b) (provided the load is applied slowly enough, the 
stresses are small enough not to cause yielding, and so on), but the stresses directly under the load 
are probably predicted very inaccurately. Indeed, a different and more refined finite element 
model would need to be used in order to accurately calculate the stresses (see Section 1.2). 

This example demonstrates some important aspects of the displacement method of 
analysis and the finite element method. As summarized previously, the basic process is that 
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the complete structure is idealized as an assemblage of individual structural elements. The 
element stiffness matrices corresponding to the global degrees of freedom of the structural 
idealization are calculated, and the total stiffness matrix is formed by the addition of the 
element stiffness matrices. The solution of the equilibrium equations of the assemblage of 
elements yields the element displacements, which are then used to calculate the element 
stresses. Finally, the element displacements and stresses must be interpreted as an estimate 
of the actual structural behavior, taking into account that a truss and beam idealization was 
solved. 

Considering the analysis of truss and beam assemblages such as in Example 4.1, 
originally these solutions were not called finite element analyses because there is one major 
difference in these solutions when compared to a more general finite element analysis of a 
two- or three-dimensional problem, namely, in the analysis performed in Example 4.1 the 
exact element stiffness matrices ("exact" within beam theory) could be calculated. The 
stiffness properties of a beam element are physically the element end forces that correspond 
to unit element end displacements. These forces can be evaluated by solving the differential 
equations of equilibrium of the element when it is subjected to the appropriate boundary 
conditions. Since by virtue of the solution of the differential equations of equilibrium, all 
three requirements of an exact solution-namely, the stress equilibrium, the compatibility, 
and the constitutive requirements-throughout each element are fulfilled, the exact ele­
ment internal displacements and stiffness matrices are calculated. In an alternative ap­
proach, these element end forces could also be evaluated by performing a variational 
solution based on the Ritz method or Galerkin method, as discussed in Section 3.3.4. Such 
solutions would give the exact element stiffness coefficients if the exact element internal 
displacements (as calculated in the solution of the differential equations of equilibrium) are 
used as trial functions (see Examples 3.22 and 4.8). However, approximate stiffness 
coefficients are obtained if other trial functions (which may be more suitable in practice) are 
employed. 

When considering more general two- and three-dimensional finite element analyses, 
we use the variational approach with trial functions that approximate the actual displace­
ments because we do not know the exact displacement functions as in the case of truss and 
beam elements. The result is that the differential equations of equilibrium are not satisfied 
in general, but this error is reduced as the finite element idealization of the structure or the 
continuum is refined. 

The general formulation of the displacement-based finite element method is based on 
the use of the principle of virtual displacements which, as discussed in Section 3.3.4, is 
equivalent to the use of the Galerkin method, and also equivalent to the use of the Ritz 
method to minimize the total potential of the system. 

4.2.1 General Derivation of Finite Element Equilibrium 
Equations 

In this section we first state the general elasticity problem to be solved. We then discuss the 
principle of virtual displacements, which is used as the basis of our finite element solution, 
and we derive the finite element equations. Next we elaborate on some important consider­
ations regarding the satisfaction of stress equilibrium, and finally we discuss some details 
of the process of assemblage of element matrices. 
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Figure 4.1 General three-dimensional body with an 8-node three-dimensional element 

Problem Statement 

Consider the equilibrium of a general three-dimensional body such as that shown in 
Fig. 4.1. The body is located in the fixed (stationary) coordinate system X, Y, Z. Considering 
the body surface area, the body is supported on the area Su with prescribed displacements 
usu and is subjected to surface tractions rs, (forces per unit surface area) on the surface area 
S/ 

I We may assume here, for simplicity, that all displacement components on Su are prescribed, in which case 
Su U S1 == Sand Sun S1 == 0. However, in practice, it may well be that at a surface point the displacement(s) 
corresponding to some direction(s) is (are) imposed, while corresponding to the remaining direction(s) the force 
component(s) is (are) prescribed. For example, a roller boundary condition on a three-dimensional body would 
correspond to an imposed zero displacement only in the direction normal to the body surface, while tractions are 
applied (which are frequently zero) in the remaining directions tangential to the body surface. In such cases, the 
surface point would belong to S,. and S1. However, later, in our finite element formulation, we shall first remove all 
displacement constraints (support conditions) and assume that the reactions are known, and thus consider S1 = S 
and Su = 0, and then, only after the derivation of the governing finite element equations, impose the displacement 
constraints. Hence, the assumption that all displacement components on S,. are prescribed may be used here for ease 
of exposition and does not in any way restrict our formulation. 
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In addition, the body is subjected to externally applied body forces f 8 (forces per unit 
volume) and concentrated loads Rb (where i denotes the point of load application). We 
introduce the forces R~ as separate quantities, although each such force could also be 
considered surface tractions f 5J over a very small area (which would usually model the 
actual physical situation more accurately). In general, the externally applied forces have 
three components corresponding to the X, Y, Z coordinate axes: 

[Rb] 
R~ = R~r 

Rcz 

(4.1) 

where we note that the components of f 8 and rs, vary as a function of X, Y, Z (and for f 5t 

the specific X, Y, Z coordinates of S1 are considered). 
The displacements of the body from the unloaded configuration are measured in the 

coordinate system X, Y, Zand are denoted by U, where 

U(X, Y, Z) = [t] 
and U = U5

u on the surface area Su, The strains corresponding to U are 

where 

Er = [ Exx E'yy Ezz 'Yxr Yrz 'Yzx] 

au 
Exx = fJX; 

oV 
err= ar; 

av aw 
Yrz = az + aY; 

Ezz 
aw 
az 

aw au 
'V - + ,zx- ax az 

The stresses corresponding to E are 

Tr = [rxx Tyy Tzz Txr Tyz Tzx] 

where 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

In ( 4.6), C is the stress-strain material matrix and the vector 'T1 denotes given initial stresses 
[with components ordered as in (4.5)]. 

The analysis problem is now the following. 

Given 

the geometry of the body, the applied loads f 5!, f 8 , Rb i = 1, 2, ... , the support 
conditions on Su, the material stress-strain law, and the initial stresses in the body. 

Calculate 

the displacements U of the body and the corresponding strains E and stresses T. 
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In the problem solution considered here, we assume linear analysis conditions, which 
require that 

The displacements be infinitesimally small so that ( 4.4) is valid and the equilibrium 
of the body can be established (and is solved for) with respect to its unloaded 
configuration. 
The stress-strain material matrix can vary as a function of X, Y, Z but is constant 
otherwise (e.g., C does not depend on the stress state). 

We consider nonlinear analysis conditions in which one or more of these assumptions 
are not satisfied in Chapters 6 and 7. 

To calculate the response of the body, we could establish the governing differential 
equations of equilibrium, which then would have to be solved subject to the boundary 
conditions (see Section 3.3). However, closed-form analytical solutions are possible only 
when relatively simple geometries are considered. 

The Principle of Virtual Displacements 

The basis of the displacement-based finite element solution is the principle of virtual 
displacements (which we also call the principle of virtual work). This principle states that 
the equilibrium of the body in Fig. 4.1 requires that for any compatible small2 virtual 
displacements (which are zero at and corresponding to the prescribed displacements)3 

imposed on the body in its state of equilibrium, the total internal virtual work is equal to 
the total external virtual work: 

Internal virtual 
work 

External virtual work 2lt 

LETT dV = L {jT f 8 dV + vs/ rs, dS + ~ ijiT Rb 

1 ltresses in equilibrium with applied loads 
Virtual strains corresponding to virtual displacements U 

(4.7) 

where the U are the virtual displacements and the l are the corresponding virtual strains 
(the overbar denoting virtual quantities). 

The adjective "virtuar' denotes that the virtual displacements (and corresponding 
virtual strains) are not "rear' displacements which the body actually undergoes as a conse­
quence of the loading on the body. Instead, the virtual displacements are totally independent 

2 We stipulate here that the virtual displacements be "small" because the virtual strains corresponding to 
these displacements are calculated using the small strain measure (see Example 4.2). Actually, provided this small 
strain measure is used, the virtual displacements can be of any magnitude and indeed we later on choose convenient 
magnitudes for solution. 

3 We use the wording "at and corresponding to the prescribed displacements" to mean "at the points and 
surfaces and corresponding to the components of displacements that are prescribed at those points and surfaces." 
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from the actual displacements and are used by the analyst in a thought experiment to 
establish the integral equilibrium equation in ( 4. 7). 

Let us emphasize that in ( 4. 7), 

The stresses Tare assumed to be known quantities and are the unique stresses4 that 
exactly balance the applied loads. 
The virtual strains e are calculated by the differentiations given in (4.4) from the 
assumed virtual displacements U. 
The virtual displacements U must represent a continuous virtual displacement field ( to 
be able to evaluate e), with U equal to zero~ and corresponding to the prescribed 
displacements on Su; also, the components in us1 are simply the virtual displacements 
U evaluated on the surface S1. 
All integrations are performed over the original volume and surface area of the body, 
unaffected by the imposed virtual displacements. 

To exemplify the use of the principle of virtual displacements, assume that we believe 
(but are not sure) to have been given the exact solution displacement field of the body. This 
given displacement field is continuous and satisfies the displacement boundary conditions 
on Su, Then we can calculate E and T (corresponding to this displacement field). The vector 
T lists the correct stresses if and only if the equation ( 4. 7) holds for any arbitrary virtual 
displacements U that are continuous and zero at and corresponding to the prescribed 
displacements on Su, In other words, if we can pick one virtuai displacement field U for 
which the relation in ( 4. 7) is not satisfied, then this is proof that T is not the correct stress 
vector (and hence the given displacement field is not the exact solution displacement field). 

We derive and demonstrate the principle of virtual displacements in the following 
examples. 

EXAMPLE 4.2: Derive the principle of virtual displacements for the general three· 
dimensional body in Fig. 4.1. 

To simplify the presentation we use indicial notation with the summation convention (see 
Section 2.4), with xi denoting the ith coordinate axis (x, = X, x2 = Y. X3 = Z), U; denoting the 
ith displacement cs,mponent (u1 = U, u2 = V, u3 = W), and a comma denoting differentiation. 

The given displacement boundary conditions are ufu on Su, and let us assume that we have 
no concentrated surface loads, that is, all surface loads are contained in the components fft. 

The solution to the problem must satisfy the following differential equations (see, for 
example, S. Timoshenko and J. N. Goodier [A]): 

1'ij,j + Jr = 0 throughout the body (a) 

with the natural (force) boundary conditions 

(b) 

and the essential (displacement) boundary conditions 

u, = u{u on Su (c) 

where S = Su U St, Su n S1 = 0, and the ni are the components of the unit normal vector to the 
surface S of the body. 

4 For a proof that these stresses are unique, see Section 4.3.4. 



158 Formulation of the Finite Element Method Chap.4 

Consider now any arbitrarily chosen continuous displacements ii; satisfying 

on Su (d) 

Then (Tij,j + ff)ii, = 0 

and therefore, f }Tij,j + /f)iii dV = 0 (e) 

We call the ii, virtual displacements. Note that since the ii; are arbitrary, (e) can be satisfied if (and 
only if) the quantity in the parentheses vanishes. Hence (e) is equivalent to (a). 

Using the mathematical identity (T1/fi1),j = 1';j,JU1 + Tuii;,1, we obtain from (e), 

Iv [(Tyii1),j - Ttjiii,j + ffii;] dV = 0 

Next, using the identity J v (TiJii;),1 dV = f s (T1jii1)n1 dS, which follows from the divergence 
theorem5 (see, for example, G. B. Thomas and R. L. Finney [A]), we have 

f ( -T;1ii;.1 + ffii,) dV + L (r11ii,)ni dS = 0 

In light of (b) and (d), we obtain 

I. ( -Tijui.j + ffii1) dV + f ff' ;:;:f1 dS = o 
v J~ 

Also, because of the symmetry of the stress tensor (Tu = 1j1), we have 

T1/ii1,j = T,i(! (ii;,j + Uj,i)] = 'Tij Eij 

and hence we obtain from (g) the required result, ( 4.7), 

I. TuEiJ dV = I. ff ii; dV + f fft iift dS v v Js, 

(f) 

(g) 

(h) 

Note that in (h) we use the tensor notation for the strains; hence, the engineering shear strains 
used in (4.7) are obtained by adding the appropriate tensor shear strain components, e.g., 
i'xr = e12 + E2t, Also note that by using (b) [and (d)] in (f), we explicitly introduced the natural 
boundary conditions into the principle of virtual displacements (h). 

EXAMPLE 4.3: Consider the bar shown in Figure E4.3. 

(a) Specialize the equation of the principle of virtual displacements ( 4.7) to this problem. 

(b) Solve for the exact response of the mechanical model. 

(c) Show that for the exact displacement response the principle of virtual displacements is 
satisfied with the displacement patterns (i) ii = ax and (ii) ii ax2, where a is a constant. 

(d) Assume that the stress solution is 

F 
Txx = y--A 

2 o 

s The divergence theorem states: Let F be a vector field in volume V; then 

J f'.. · dV = i F · n dS 1,1 

v s 

where n is the unit outward normal on the surface S of V. 
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i.e., that Txx is the force F divided by the average cross-sectional area, and investigate 
whether the principle of virtual displacements is satisfied for the displacement patterns 
given in (c). 

The principle of virtual displacements ( 4.7) specialized to this bar problem gives 

f.L au EA du dx = u I F 
o dx dx x=l 

(a) 

The governing differential equations are obtained using integration by parts (see Exam­
ple 3.19): 

uEA du IL - J.\, .!!.. (EA du) dx = ii I F 
dx O o dx dx x=l 

(b) 

Since u l..=o = 0 and ii is arbitrary otherwise, we obtain from (b) (see Example 3.18 for the 
arguments used). 

~(EA du) 
dx dx 

0 differential equation of equilibrium (c) 

EA du I 
dx x=L 

F force or natural boundary condition (d) 

Of course, in addition we have the displacement boundary condition u lx""o = 0. Integrating (c) 
and using the boundary conditions, we obtain as the exact solution of the mathematical model, 

FL ( 2 ) 
u = EAo In 2 - x/L (e) 

Next, using (e) and ii = ux and ii = ax2 in equation (a), we obtain 

fa A,(2 ~ x/L) A,(2 -n dx = aLF (f) 

and 

(g) 

Equations (f) and (g) show that for the exact displacement /stress response the principle of virtual 
displacements is satisfied with the assumed virtual displacements. 
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Now let us employ the principle of virtual displacements with Txx j (F/Ao) and use first 
1i = ax and then 1i = ax 2

• We obtain with 1i = ax, 

f.L 2 F ( 
a--Ao 2 

o 3 Ao 
f)dx=aLF 

which shows that the principle of virtual displacements is satisfied with this virtual displacement 
field. For 1i = ax 2, we obtain 

f. l 2ax ~ £. Ao(2 - ::.) dx :if= aL2F 
o 3 Ao L 

and this equation shows that Txx = ~ (F/Ao) is not the correct stress solution. 

The principle of virtual displacements can be directly related to the principle that the 
total potential Il of the system must be stationary (see Sections 3.3.2 and 3.3.4). We study 
this relationship in the following example. 

EXAMPLE 4.4: Show how for a linear elastic continuum the principle of virtual displacements 
relates to the principle of stationarity of the total potential. 

Assuming a linear elastic continuum with zero initial stresses, the total potential of the 
body in Fig. 4.1 is 

TI = ! r ETCE dV - f UTfB dV - i usJrs, dS - ~ u;TR~ 
2Jv Jv ~ ; 

where the notation was defined earlier, and we have 

T = CE 

with C the stress-strain matrix of the material. 

(a) 

Invoking the stationarity of U i.e., evaluating oTI = 0 with respect to the displacements 
(which now appear in the strains) and using the fact that C is symmetric, we obtain 

( 6e7CE dV = f 6U7f 8 dV + i 5U5}fSf dS + L oU7R~ (b) Jv Jv s1 i 

However, to evaluate TI in (a) the displacements must satisfy the displacement boundary condi­
tions. Hence in (b) we consider any variations on the displacements but with zero values at and 
corresponding to the displacement boundary conditions, and the corresponding variations in 
strains. It follows that invoking the stationarity of TI is equivalent to using the principle of virtual 
displacements, and indeed we may write 

6E = E; 

so that (b) reduces to ( 4. 7). 

6U =U; 

It is important to realize that when the principle of virtual displacements ( 4. 7) is 
satisfied for all admissible virtual displacements with the stresses ,. "properly obtained" 
from a continuous displacement field U that satisfies the displacement boundary conditions 
on Su, all three fundamental requirements of mechanics are fulfilled: 

1. Equilibrium holds because the principle of virtual displacements is an expression of 
equilibrium as shown in Example 4.2. 



Sec. 4.2 Formulation of the Oisplacement~Based Finite Element Method 161 

2. Compatibility holds because the displacement field U is continuous and satisfies the 
displacement boundary conditions. 

3. The stressMstrain law holds because the stresses T have been calculated using the 
constitutive relationships from the strains E (which have been evaluated from the 
displacements U). 

So far we have assumed that the body being considered is properly supported, i.e., that 
there are sufficient support conditions for a unique displacement solution. However, the 
principle of virtual displacements also holds when all displacement supports are removed 
and the correct reactions ( then assumed known) are applied instead. In this case the surface 
area S1 on which known tractions are applied is equal to the complete surface area S of the 
body (and Su is zero}6. We use this basic observation in developing the governing finite 
element equations. That is, it is conceptually expedient to first not consider any displace­
ment boundary conditions, develop the governing finite element equations accordingly, and 
then prior to solving these equations impose all displacement boundary conditions. 

Finite Element Equations 

Let us now derive the governing finite element equations. We first consider the response of 
the general three-dimensional body shown in Fig. 4.1 and later specialize this general 
formulation to specific problems (see Section 4.2.3). 

In the finite element analysis we approximate the body in Fig. 4.1 as an assemblage 
of discrete finite elements interconnected at nodal points on the element boundaries. The 
displacements measured in a local coordinate system x, y, z (to be chosen conveniently) 
within each element are assumed to be a function of the displacements at the N finite 
element nodal points. Therefore, for element m we have 

I u<m>(x. y. z) = ff<m>(x. y. z) o (4.8) 

where ff<mJ is the displacement interpolation matrix, the superscript m denotes element m, 
and U is a vector of the three global displacement components Uh V;, and Wi at all nodal 
points, including those at the supports of the element assemblage; i.e., U is a vector of 
dimension 3N, 

lJT = [U1 Vi W1 U2 V2 W2 ... UNVNWN] (4.9) 

We may note here that more generally, we write 

fir= [U1 U2 U3 . . . Un] (4.10) 

where it is understood that U1 may correspond to a displacement in any direction X, Y. or 
Z, or even in a direction not aligned with these coordinate axes (but aligned with the axes 
of another local coordinate system), and may also signify a rotation when we consider 
beams, plates, or shells (see Section 4.2.3). Since U includes the displacements (and rota-

6 For this reason, and for ease of notation, we shall now mostly (i.e., until Section 4.4.2) no longer use the 
superscripts S1 and Su but simply the superscript S on the surface tractions and displacements. 
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tions) at the supports of the element assemblage, we need to impose, at a later time, the 
known values of U prior to solving for the unknown nodal point displacements. 

Figure 4.1 shows a typical finite element of the assemblage. This element has eight 
nodal points, one at each of its corners, and can be thought of as a "brick" element. We 
should imagine that the complete body is represented as an assemblage of such brick 
elements put together so as to not leave any gaps between the element domains. We show 
this element here merely as an example; in practice, elements of different geometries and 
nodal points on faces and in the element interiors may be used. 

The choice of element and the construction of the corresponding entries in ff(m) (which 
depend on the element geometry, the number of element nodes/degrees of freedom, and 
convergence requirements) constitute the basic steps of a finite element solution and are 
discussed in detail later. 

Although all nodal point displacements are listed in U, it should be realized that for 
a given element only the displacements at the nodes of the element affect the displacement 
and strain distributions within the element. 

With the assumption on the displacements in ( 4.8) we can now evaluate the corre­
sponding element strains, 

e<m>(x, y, z) = B(m)(x, y, z)U (4.11) 

where n<m> is the strain-displacement matrix; the rows of n<m> are obtained by appropriately 
differentiating and combining rows of the matrix ff(m>. 

The purpose of defining the element displacements and strains in terms of the com­
plete array of finite element assemblage nodal point displacements may not be obvious now. 
However, we will see that by proceeding in this way, the use of ( 4.8) and ( 4.11) in the 
principle of virtual displacements will automatically lead to an effective assemblage process 
of all element matrices into the governing structure matrices. This assemblage process is 
referred to as the direct stiffness method. 

The stresses in a finite element are related to the element strains and the element initial 
stresses using 

(4.12) 

where c<m> is the elasticity matrix of element m and T 1<m> are the given element initial 
stresses. The material law specified in c<m> for each element can be that for an isotropic or 
an anisotropic material and can vary from element to element. 

Using the assumption on the displacements within each finite element, as expressed in 
( 4.8), we can now derive equilibrium equations that correspond to the nodal point displace­
ments of the assemblage of finite elements. First, we rewrite ( 4.7) as a sum of integrations 
over the volume and areas of all finite elements: 

L I. E(m}T ,-(m) dv<m) = L I. u<m>TfB(m) dv<"'> 
m v<m) m v(m) 

(4.13) 



Sec. 4.2 Formulation of the Displacement-Based Finite Element Method 163 

where m = l, 2, ... , k, where k = number of elements, and s\m>, . •. , s~m} denotes the 
element surfaces that are part of the body surface S. For elements totally surrounded by 
other elements no such surfaces exist, whereas for elements on the surface of the body one 
or more such element surfaces are included in the surface force integral. Note that we 
assume in ( 4.13) that nodal points have been placed at the points where concentrated loads 
are applied, although a concentrated load can of course also be included in the surface force 
integrals. 

It is important to note that since the integrations in (4.13) are performed over the 
element volumes and surfaces, for efficiency we may use a different and any convenient 
coordinate system for each element in the calculations. After all, for a given virtual displace­
ment field, the internal virtual work is a number, as is the external virtual work, and this 
number can be evaluated by integrations in any coordinate system. Of course, it is assumed 
that for each integral in (4.13) only a single coordinate system for all variables is employed; 
e.g., u<m) is defined in the same coordinate system as fB<m>. The use of different coordinate 
systems is in essence the reason why each of the integrals can be evaluated very effectively 
in general element assemblages. 

The relations in (4.8) and (4.11) have been given for the unknown (real) element 
displacements and strains. In our use of the principle of virtual displacements we employ 
the same assumptions for the virtual displacements and strains 

.,.. 
u<111>(x. y, z) = H<m>(x, y, z)U (4.14) 

E(m)(x, y, z) = B{m)(x, y, z)U (4.15) 

In this way the element stiffness (and mass) matrices will be symmetric matrices. 
If we now substitute into ( 4.13 ), we obtain 

ur[~ f B(m)Tc<m)B(m) dV(m>]u = ur[{~ ( ff(m)TfB(m) d\,Xm)} 
m J V(ml m J v<••) 

+ {; L:-,, ... ,SI" H''"'T f "'"' dS"''} (4. 16) 

- {; Lm)B(m)T 1'/(111) d\,Xm)} + Re] 
where the surface displacement interpolation matrices Hs(m) are obtained from the displace­
ment interpolation matrices H<m> in ( 4.8) by substituting the appropriate element surface 
coordinates (see Examples 4.7 and 5.12) and Re is a vector of concentrated loads applied 
to the nodes of the element assemblage. 

We should note that the ith component in Re is the concentrated nodal force that 
corresponds to .!_he i th displacement component in O. In ( 4.16) the nodal point displacement 
vectors U and U of the element assemblage are independent of element m and are therefore 
taken out of the summation signs. 

To obtain from (4.16) the equations for the unknown nodal point displacements, we 
apply the principle of virtual displacements n times by imposing unit virtual displacements 
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in turn for all components of U. In the first application U = e1 ,7 in the second application 
A A 
U = e2, and so on, until in the nth application U = en, so that the result is 

I KU =R I (4.17) 

where we do not show the identity matrices I due to the virtual displacements on each side 
of the equation and 

I R=Rs+Rs-R,+Rc I (4.18) 

and, as we shall do from now on, we denote the unknown nodal point displacements as U; 
i.e., U = i.J. 
The matrix K is the stiffness matrix of the element assemblage, 

K = ~ ( B(m)TC(m)B(m) dy'(m) 
m I Jy(m) I (4.19) 

= K<m> 

The load vector R includes the effect of the element body forces, 

Rs=~ f e<m)TfB(m) dv<m> 
m 

1
)\/(m) J (4.20) 

= Rh"'> 

the effect of the element surface forces, 

Rs = ~ f ffS(m}TfS(m) dS(m) 
ml J S1Cm) • •• ., ,s~m) 1 (4.21) 

= R~m) 

the effect of the element initial stresses, 

R, = ~ ( B(m)T ,rf(m) dy'(m) 
m I Jy(m) I (4.22) 

= R>m> 

and the nodal concentrated loads Re. 

7 For the definition of the vector e;; see the text following (2.7). 
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We note that the summation of the element volume integrals in ( 4.19) expresses the 
direct addition of the element stiffness matrices K<m) to obtain the stiffness matrix of the 
total element assemblage. In the same way. the assemblage body force vector Rs is calcu­
lated by directly adding the element body force vectors Ri;i>; and Rs and R1 are similarly 
obtained. The process of assembling the element matrices by this direct addition is called 
the direct stiffness method. 

This elegant writing of the assemblage process hinges upon two main factors: first, the 
dimensions of all matrices to be added are the same and, second, the element degrees of 
freedom are equal to the global degrees of freedom. In practice of course only the nonzero 
rows and columns of an element matrix K<ml are calculated (corresponding to the actual 
element nodal degrees of freedom), and then the assemblage is carried out using for each 
element a connectivity array LM (see Example 4.11 and Chapter 12). Also, in practice, the 
element stiffness matrix may first be calculated corresponding to element local degrees of 
freedom not aligned with the global assemblage degrees of freedom, in which case a 
transformation is necessary prior to the assemblage [ see ( 4.41)]. 

Equation ( 4.17) is a statement of the static equilibrium of the element assemblage. In 
these equilibrium considerations, the applied forces may vary with time, in which case the 
displacements also vary with time and ( 4.17) is a statement of equilibrium for any specific 
point in time. (In practice, the time-dependent application of loads can thus be used to 
model multiple-load cases; see Example 4.5.) However, if in actuality the loads are applied 
rapidly. measured on the natural frequencies of the system, inertia forces need to be 
considered; i.e., a truly dynamic problem needs to be solved. Using d' Alembert's principle, 
we can simply include the element inertia forces as part of the body forces. Assuming that 
the element accelerations are approximated in the same way as the element displacements 
in (4.8), the contribution from the total body forces to the load vector R is (with the X, Y, 
Z coordinate system stationary) 

Ra= L J, H(m)T(fB(m) - p(m)ff(m)ijJ dV{m) 
m y<m} 

(4.23) 

where fB<ml no longer includes inertia forces, U lists the nodal point accelerations (i.e., is the 
second time derivative of U), and p<ml is the mass density of element m. The equilibrium 
equations are, in this case, 

MU+KU=R (4.24) 

where R and U are time-dependent. The matrix M is the mass matrix of the structure, 

M = L I. p<m)ff(m}7H(m) dv<m) 
m I Vi• I (4.25) 

= M<m> 

In actually measured dynamic responses of structures it is observed that energy is 
dissipated during vibration, which in vibration analysis is usually taken account of by 
introducing velocity-dependent damping forces. Introducing the damping forces as addi­
tional contributions to the body forces, we obtain corresponding to ( 4.23), 

Rs= LI. ffCm)T[fB(m) - p(mlff(m)ij - K(m>u<m>iJ] dv<m) (4.26) 
m yim) 
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In this case the vectors fB(ml no longer include inertia and velocity-dependent damping 
forces, U is a vector of the nodal point velocities (i.e., the first time derivative of U), and 
Kcm> is the damping property parameter of element m. The equilibrium equations are, in this 
case, 

\Mu+cu+Ku=RI 
where C is the damping matrix of the structure; i.e., formally, 

C = ~ I. K(m)ff(m)Tff(m) d\Xm) 
m \f(m) 

= c<m) 

(4.27) 

(4.28) 

In practice it is difficult, if not impossible, to determine for general finite element 
assemblages the element damping parameters, in particular because the damping properties 
are frequency dependent. For this reason, the matrix C is in general not assembled from 
element damping matrices but is constructed using the mass matrix and stiffness matrix of 
the complete element assemblage together with experimental results on the amount of 
damping. Some formulations used to construct physically significant damping matrices are 
described in Section 9.3.3. 

A complete analysis, therefore, consists of calculating the matrix K (and the matrices 
Mand C in a dynamic analysis) and the load vector R, solving for the response U from 
( 4.17) [or U, U, U from ( 4.24) or ( 4.27)], and then evaluating the stresses using ( 4.12). We 
should emphasize that the stresses are simply obtained using (4.12)-hence only from the 
initial stresses and element displacements-and that these values are not corrected for 
externally applied element pressures or body forces, as is common practice in the analysis 
of frame structures with beam elements (see Example 4.5 and, for example, S. H. Crandall, 
N. C. Dahl, and T. J. Lardner [A]). In the analysis of beam structures, each element 
represents a one-dimensional stress situation, and the stress correction due to distributed 
loading is performed by simple equilibrium considerations. In static analysis, relatively long 
beam elements can therefore be employed, resulting in the use of only a few elements (and 
degrees of freedom) to represent a frame structure. However, a similar scheme would 
require, in general two- and three-dimensional finite element analysis, the solution of 
boundary value problems for the (large) element domains used, and the use of fine meshes 
for an accurate prediction of the displacements and strains is more effective. With such fine 
discretizations, the benefits of even correcting approximately the stress predictions for the 
effects of distributed element loadings are in general small, although for specific situations 
of course the use of a rational scheme can result in notable improvements. 

To illustrate the above derivation of the finite element equilibrium equations, we 
consider the following examples. 

EXAMPLE 4.5: Establish the finite element equilibrium equations of the bar structure shown 
in Fig. E4.5. The mathematical model to be used is discussed in Examples 3.17 and 3.22. Use 
the two-node bar element idealization given and consider the following two cases: 

1. Assume that the loads are applied very slowly when measured on the time constants 
(natural periods) of the structure. 

2. Assume that the loads are applied rapidly. The structure is initially at rest. 
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In the formulation of the finite element equilibrium equations we employ the general 
equations (4.8) to (4.24) but use that the only nonzero stress is the longitudinal stress in the bar. 
Furthermore, considering the complete bar as an assemblage of 2 two-node bar elements corre­
sponds to assuming a linear displacement variation between the nodal points of each element. 

The first step is to construct the matrices ff<m> and ocm> for m = 1, 2. We recall that 
although the displacement at the left end of the structure is zero, we first include the displacement 
at that surface in the construction of the finite element equilibrium equations. 

Corresponding to the displacement vector or= [U1 U2 U3], we have 

ff<O = [ ( 1 - 1~0) 
x o] -

100 

BO)= [--1- 1 o] 100 100 

ff(l) = [ 0 ( 1 - ;o) ;o] 
B(Z) = [ 0 1 1 ] 

80 80 

The material property matrices are 

C(l) = E; C(2) = E 

where E is Young's modulus for the material. For the volume integrations we need the 
cross-sectional areas of the elements. We have 

When the loads are applied very slowly, a static analysis is required in which the stiffness 
matrix Kand load vector R must be calculated. The body forces and loads are given in Fig. E4.5. 
We therefore have 

100 0 

r l 
[- 1~0 

1 0] dx + E r ( I + :O)' 1 [o l 
810] dx K = (l)E 

O 100 100 80 80 

0 
80 

K=~[-: I OJ 13f 0 -:] or 1 0 + 240 0 
100 O 0 0 0 -1 

E [ 2.4 -2.4 -,~] = 240 -~·4 15.4 (a) 

13 13 
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and also, 

x 
1 - 100 0 

Rs= { (I) f' I~ (I) dx + r ( I + :o)' I - :o UoHf,(t) 
x 

O 80 

1[150] 
= 3 1:: flt) (b) 

~= U}(,) (c) 

To obtain the solution at a specific time t*, the vectors Rs and Re must be evaluated correspond­
ing to t*, and the equation 

KU I,=,• = Rel,=,• + Rel,=,• (d) 

yields the displacements at t*. We should note that in this static analysis the displacements at time 
t* depend only on the magnitude of the loads at that time and are independent of the loading 
history. 

Considering now the dynamic analysis, we also need to calculate the mass matrix. Using 
the displacement interpolations and (4.25), we have 

I-~] foo 100 0] dx M (l)p O l~O [(i - I~) x 

100 

0 

+ Pf
0 

( 
1 + :oY 1 - .!__ 

80 [ o ( 1 - ; 0) ; 0] dx 

x -
80 

[200 100 OJ Hence M = !!. 100 584 336 
6 0 336 1024 

Damping was not specified; thus, the equilibrium equations now to be solved are 

MU(t) + KU(t) = Ra(t) + Rc(t) (e) 

where the stiffness matrix K and load vectors Rs and Re have already been given in (a) to (c). 
Using the initial conditions 

U!,=o = O; U]t,.,O = 0 (f) 

these dynamic equilibrium equations must be integrated from time O to time t* in order to obtain 
the solution at time t* (see Chapter 9). 
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To actually solve for the response of the structure in Fig. E4.5(a), we need to impose 
U1 = 0 for all time t. Hence, the equations (d) and (e) must be amended by this condition (see 
Section 4.2.2). The solution of (d) and (e) then yields U2(t), UJ(t), and the stresses are obtained 
using 

m = 1, 2 (g) 

These stresses will be discontinuous between the elements because constant element strains are 
assumed. Of course, in this example, since the exact solution to the mathematical model can be 
computed, stresses more accurate than those given by (g) could be evaluated within each 
element. 

In static analysis, this increase in accuracy could simply be achieved, as in beam theory, 
by adding a stress correction for the distributed element loading to the values given in (g). 
However, such a stress correction is not straightforward in general dynamic analysis (and in any 
two- and three-dimensional practical analysis), and if a large number of elements is used to 
represent the structure, the stresses using (g) are sufficiently accurate (see Section 4.3.6). 

EXAMPLE 4.6: Consider the analysis of the cantilever plate shown in Fig. E4.6. To illustrate 
the analysis technique, use the coarse finite element idealization given in the figure (in a practical 
analysis more finite elements must be employed (see Section 4.3). Establish the matrices H'2>, 
B<2>. and cm. 

The cantilever plate is acting in plane stress conditions. For an isotropic linear elastic 
material the stress-strain matrix is defined using Young's modulus E and Poisson's ratio v (see 
Table 4.3), 

[

~ v ~ ] 

0 0 !___2 
2 

The displacement transformation matrix ff<2l of element 2 relates the element internal 
displacements to the nodal point displacements, 

[
u(x, y)]<2> = ffC2)U (a) 
v(x, y} 

where U is a vector listing all nodal point displacements of the structure, 

U1" = [U, U2 U3 U4 . . . U,, U,s] (b) 

(As mentioned previously, in this phase of analysis we are considering the structural model 
without displacement boundary conditions.) In considering element 2, we recognize that only the 
displacements at nodes 6, 3, 2, and 5 affect the displacements in the element. For computational 
purposes it is convenient to use a convention to number the element nodal points and correspond­
ing element degrees of freedom as shown in Fig E4.6(c). In the same figure the global structure 
degrees of freedom of the vector U in (b) are also given. 

To derive the matrix ff<2l in (a) we recognize that there are four nodal point displacements 
each for expressing u(x, y) and v(x, y). Hence, we can assume that the local element displace­
ments u and v are given in the following form of polynomials in the local coordinate variables 
x and y: 

u(x, y) = a1 + a2x + a3y + a4xy 

v(x, y) = /3, + f32x + {33y + {34xy 
(c) 
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The unknown coefficients a, , . . . , {34, which are also called the generalized coordinates. will 
be expressed in terms of the unknown element nodal point displacements u,, ... , U4 and 
vi, ...• V4. Defining 

07 = [Ut U2 U3 U4 I Vt V2 V3 V4] 

we can write (c) in matrix form: 

[
u(x, y)] = cl)u 

v(x, y) 

{d) 

(e) 
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where <ll = [: :l ~ = [1 x y xy] 

and ur [a, a2 a3 a4 ! 131 132 l33 134] 
Equation (e) must hold for all nodal points of the element; therfore, using (d}, we have 

ii = Acx 
in which A=[:' ~J 

A,=[! 
l 

-:] -1 
-1 1 

1 -1 -1 

and 

Solving from (f) for ex and substituting into (e), we obtain 

H = wA- 1 

(f) 

(g) 

where the fact that no superscript is used on H indicates that the displacement interpolation 
matrix is defined corresponding to the element nodal point displacements in (d), 

H 
![(1 + x)(l + y) (1 - x)(l + y) (1 - x)(l - y) (1 + x)(l - y) 

4 0 0 0 0 

0 0 0 0 ] 
(1 + x)(l + y) (1 - x)(I + y) (I - x)(l - y) (I + x)(l - y) 

(h) 

The displacement functions in H could also have been established by inspection. Let HiJ 
be the (i, j)th element of H; then H11 corresponds to a function that varies linearly in x and y [ as 
required in (c) ], is unity at x = 1, y :::.: 1, and is zero at the other three element nodes. We discuss 
the construction of the displacement functions in H based on these thoughts in Section 5.2. 

With H given in (h} we have 

U3 V3 U2 V2 U4 V4 

U1 Ui U3 u4 Us u6 I U1 Us U9 U10 I 
I 

H<21 = [~ 0 Hl3 H11 H12 Hl6 : 0 0 H14 H,s 
' 0 H23 H21 H22 H26: 0 0 H24 H2s 

U1 v 1 <E-Element degrees of freedom (i) 

U11 U12 U13 U14 U1s~Assemblage degrees 

H11 His 0 0 I ... zeros ... OJ of freedom I 
I 

H21 H2s 0 0 I ... zeros ... 0 I 

The strain-displacement matrix can now directly be obtained from (g). In plane stress 
conditions the element strains are 

where Exx 
au 
ax' 

av 
E,,,.=-; .. ay 

au av 
'Y. =-+-

xy ay ax 
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Using (g) and recognizing that the elements in A- 1 are independent of x and y, we obtain 

B = EA- 1 

E=r~O ~ ~ ~ ~ ~ ~ ~] 
01x010y 

where 

Hence, the strain-displacement matrix corresponding to the local element degrees of 
freedom is 

B = i[(l ; y) 

(1 + x) 

-(1 + y) -(1 - y) 

0 0 
(1 - x) -(1 x) 

0 
(1 + x) 

(1 + y) 

(1 - y) 

0 
-(1 + x) 

0 
(1 - x) 

-(1 + y) 

(j) -(1 ~ x) -(11 x)] 
-(1 - y) (1 - y) 

The matrix B could also have been calculated directly by operating on the rows of the matrix H 
in (h). 
Let Bu be the (i, j)th element of B; then we now have 

[
o o 

Bm = 0 0 

0 0 

813 B11 
823 821 

833 831 

B12 816 

822 826 

Bn 836 

0 0 
0 0 
0 0 

... rer=···n 

814 Bis 

824 B2s 

834 83s 

B11 Bis 

B21 B2s 
831 835 

0 0 
0 0 
0 0 

where the element degrees of freedom and assemblage degrees of freedom are ordered as in (d) 
and (b). 

EXAMPLE 4.7: A linearly varying surface pressure distribution as shown in Fig. E4.7 is 
applied to element (m) of an element assemblage. Evaluate the vector Rril for this element. 

The first step in the calculation of R~n> is the evaluation of the matrix es<m>. This matrix 
can be established using the same approach as in Example 4.6. For the surface displacements we 
assume 

V
5 = /31 + /3ix + /33X

2 (a) 

where (as in Example 4.6) the unknown coefficients 0:1, .•. , {33 are evaluated using the nodal 
point displacements. We thus obtain 

and 

[
us(x)] = Hsu 
v5(x) 

ur = [u1 u2 u3 : v1 
I 

x) (1 - x 2
) 0 0 0 ] 

0 !x(l + x) -!x(l - x) (1 - x2
) 
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Thickness = 0.5 cm 

(a) Element layout 

y~ 

x 

(bl Local-global degrees of freedom 

Figure E4.7 Pressure loading on element (m) 

The vector of surface loads is (with Pi and P2 positive) 

cs= [ f(l + x)py + !O - x)p!] 
-!O + x)pr !O x)p~ 

To obtain R~m) we first evaluate 

f
+I 

Rs = 0.5 _
1 

H57 rs dx 

Chap.4 
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to obtain 
1 

Rs= -
3 

pV 
p~ 
2(p1 + p~) 

-pY 
-p~ 
-2(pY + p~) 

Thus, corresponding to the global degrees of freedom given in Fig. E4.7, we have 

Uio U11 U12 013 U14 U,s 
R~n)T = j(O • • • Q p~ -p~ 0 0 2(p1 + p~) -2(pY + p~) 

I 
I 
I 

176 

0 ... 
U22 U23 +- Assemblage degrees of freedom 

o: p1 -pY l 0 ... O] 

The Assumption About Stress Equilibrium 

We noted earlier that the analyses of truss and beam assemblages were originally not 
considered to be finite element analysis because the "exact" element stiffness matrices can 
be employed in the analyses. These stiffness matrices are obtained in the application of the 
principle of virtual displacements if the assumed displacement interpolations are in fact the 
exact displacements that the element undergoes when subjected to the unit nodal point 
displacements. Here the word "exact" refers to the fact that by imposing these displacements 
on the element, all pertinent differential equations of equilibrium and compatibility and the 
constitutive requirements (and also the boundary conditions} are fully satisfied in static 
analysis. 

In considering the analysis of the truss assemblage in Example 4.5, we obtained the 
exact stiffness matrix of element 1. However, for element 2 an approximate stiffness matrix 
was calculated as shown in the next example. 

EXAMPLE 4.8: Calculate for element 2 in Example 4.5 the exact element internal displace­
ments that correspond to a unit element end displacement u2 and evaluate the corresponding 
stiffness matrix. Also, show that using the element displacement assumption in Example 4.5, 
internal element equilibrium is not satisfied. 

Consider element 2 with a unit displacement imposed at its right end as shown in Fig. E4.8. 
The element displacements are calculated by solving the differential equation (see Exam­
ple 3.22), 

E- A- = 0 d( du) 
dx dx 

(a) 

subject to the boundary conditions u lx=o O and u ~ .. so = 1.0. Substituting for the area A and 
integrating the relation in (a), we obtain 

(b) 
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I 
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I ____ J 

U2 a 1,0cm 
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--~~-aocm~ Figure E4.8 Element 2 of bar analyzed 
in Example 4.5 

These are the exact element internal displacements. The element end forces required to subject 
the bar to these displacements are 

k12 = -EA-du I 
dx x=O 

k22 = EA-dul 
dx :<=L 

Substituting from (b) into (c) we have 

3E 
k22 = 80; 

3E 
k12 = --

80 

(c) 

Hence we have, using the symmetry of the element matrix and equilibrium to establish k21 and 
ku. 

K = ]_E[ 1 -11 
80 -1 I 

(d) 

The same result is of course obtained using the principle of virtual displacements with the 
displacement (b). 

We note that the stiffness coefficient in ( d) is smaller than the corresponding value 
obtained in Example 4.5 (3E/80 instead of 13E/240). The finite element solution in Example 4.5 
overestimates the stiffness of the structure because the assumed displacements artificially con­
strain the motion of the material particles (see Section 4.3.4). To check that the internal equi· 
librium is indeed not satisfied, we substitute the finite element solution (given by the displacement 
assumption in Example 4.5) into (a) and obtain 

E :J ( 1 + :o y 8~} * 0 

The solution of truss and beam structures, using the exact displacements correspond­
ing to unit nodal point displacements and rotations to evaluate the stiffness matrices, gives 
analysis results that for the selected mathematical model satisfy all three requirements of 
mechanics exactly: differential equilibrium for every point of the structure (including nodal 
point equilibrium), compatibility, and the stress-strain relationships. Hence, the exact 
(unique) solution for the selected mathematical model is obtained. 

We may note that such an exact solution is usually pursued in static analysis, in which 
the exact stiffness relationships are obtained as described in Example 4.8, but an exact 
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solution is much more difficult to reach in dynamic analysis because in this case the 
distributed mass and damping effects must be included (see, for example, R. W. Clough and 
J. Penzien [A]). 

However, although in a general (static or dynamic) finite element analysis, differential 
equilibrium is not exactly satisfied at all points of the continuum considered, two important 
properties are always satisfied by the finite element solution using a coarse or a fine mesh. 
These properties are (see Fig. 4.2) 

1. Nodal point equilibrium 
2. Element equilibrium. 

q-1 

m-1 
m 

no LJC::J\ 
: ~~~---~ .... , 

Sum of forces f<m> equilibrate ---__......, f /f : 'l, Forces F<m> are 

externally applied loads D=;(-O,,: m ~) in equilibrium 

u ~ _, 
',,,t f ,,// 

................. ____ ,.,..,,,.," ..... 

Figure 4.1 Nodal point and element equilibrium in a finite element analysis 
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Namely, consider that a finite element analysis has been performed and that we calculate 
for each finite element m the element nodal point force vectors 

F(m) ::: f. B(m)TT(m) dVm) 
y(m) 

where '1'<m> = c<m> e<m>. Then we observe that according to property 1, 

(4.29) 

At any node, the sum of the element nodal point forces is in equilibrium with the 
externally applied nodal loads (which include all effects due to body forces, surface 
tractions, initial stresses, concentrated loads, inertia and damping forces, and reac­
tions). 

And according to property 2, 

Each element mis in equilibrium under its forces F<ml. 

Property 1 follows simply because ( 4.27) expresses the nodal point equilibrium 
and we have 

IF<m) = KU (4.30) 

The element equilibrium stated in property 2 is satisfied provided the finite element 
displacement interpolations in ff<m> satisfy the basic convergence requirements, which in­
clude the condition that the element must be able to represent the rigid body motions (see 
Section 4.3). Namely, let us consider element m subjected to the nodal point forces F<m) and 
impose virtual nodal point displacements corresponding to the rigid body motions. Then for 
each virtual element rigid body motion with nodal point displacements il, we have 

U 7F(m) = f. (B(m)ft)7T(m) dl,l(m) = f. E(m)TT(m) dv<m> = 0 
von) v(m) 

because here E<m> = 0. Using all applicable rigid body motions we therefore find that the 
forces }'(m> are in equilibrium. 

He~ce, a finite element analysis can be interpreted as a process in which 

1. The structure or continuum is idealized as an assemblage of discrete elements con­
nected at nodes pertaining to the elements. 

2. The externally applied forces (body forces, surface tractions, initial stresses, concen­
trated loads, inertia and damping forces, and reactions) are lumped to these nodes 
using the virtual work principle to obtain equivalent externally applied nodal point 
forces. 

3. The equivalent externally applied nodal point forces (calculated in 2) are equilibrated 
by the element nodal point forces that are equivalent (in the virtual work sense) to the 
element internal stresses; i.e., we have 

~F<111>=R 
m 

4. Compatibility and the stress-strain material relationship are satisfied exactly, but 
instead of equilibrium on the differential level, only global equilibrium for the com-
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plete structure, at the nodes, and of each element m under its nodal point forces F<m) 
is satisfied. 

Consider the following example. 

EXAMPLE 4.9: The finite element solution to the problem in Fig. E4.6, with P = 100, E = 
2.7 x 106

, v = 0.30, t = 0.1, is given in Fig. E4.9. Clearly, the stresses are not continuous 
between elements, and equilibrium on the differential level is not satisfied. However, 

1. Show that ~m F<111l = R and calculate the reactions. 

2. Show that the element forces FC4
) for element 4 are in equilibrium. 

The fact that :'2:m F<"'> = R follows from the solution of ( 4.17), and R consists of the sum 
of all nodal point forces. Hence~ this relation can also be used to evaluate the reactions. 

Referring to the nodal point numbering in Fig. E4.6(b), we find 
for node 1: 

for node 2: 

for node 3: 

for node 4: 

for node 5: 

for node 6: 

reactions Rx = 100.15 

Ry = 41.36 

reactions Rx = 2.58 - 2.88 = -0.30 

Ry = 16.79 + 5.96 = 22.74 (because of rounding) 

reactions Rx= -99.85 

Ry= 35.90 

horizontal force equilibrium: -42.01 + 42.01 = 0 

vertical force equilibrium: -22.90 + 22.90 = 0 

horizontal force equilibrium: -60.72 - 12.04 + 44.73 + 28.03 = 0 

vertical force equilibrium: -35.24 - 35.04 + 19.10 + 51.18 = 0 

horizontal force equilibrium: 57.99 - 57.99 = 0 

vertical force equilibrium: -6.81 + 6.81 = 0 

And for nodes 7, 8, and 9, force equilibrium is obviously also satisfied, where at node 9 the 
element nodal force balances the applied load P 100. 

Finally, let us check the overall force equilibrium of the model: 
horizontal equilibrium: 

100.15 - 0.30 - 99.85 = 0 

vertical equilibrium: 

41.36 + 22.74 + 35.90 - 100 = 0 
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1129 -----""I 1123 

-95.92 t====:::1 

Element 

(j) 

-972.1 ------

(a) Exploded view of elements showing stresses i-~•. 
Note the stress discontinuities between elements 
and the nonzero stresses along the free edges 

107.1 

Element 

-291.6 L------

(b) Exploded view of elements showing stresses -r~• 
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Figure E4.9 Solution results for problem considered in Example 4.6 (rounded to digits shown) 
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(c) Exploded view of elements showing stresses 1'~ 

t 

35.90 t-6.81 t 6.81 t-1000.0 
-99.85 57 .99 -57 .99 
--+-------..... -..... --+--------..... 

@ 

-2.88 44.73 28.03 29.97 __.,._..._ ______ _..... --+---------+-

t 5.96 t-35.04 t 51.18 t 42.01 

t 

16.79 t-36.24 t 19.10 t-42.01 

2.68 -60.72 -12.04 -29.97 --+-------.--+- --+---------,--+-

® 

100.15 -42.01 42.01 0 --+---------+- --+- i..--------'--+-t 41.36 t-22.90 t 22.90 t O 

x 

(d) Exploded view of elements showing element nodal point forces equivalent Un the 
virtual work sense) to the element stresses. The nodal point forces are at each 
node in equilibrium with the applied forces (including the reactions) 

Figure E4.9 (continued) 
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moment equilibrium (about node 2): 

100 x 4 + 100.15 x 2 + 99.85 x 2 = 0 

It is important to realize that this force equilibrium will hold for any finite element mesh, however 
coarse the mesh may be, provided properly formulated elements are used (see Section 4.3). 

Now consider element 4: 
horizontal equilibrium: 

0 - 57.99 + 28.03 + 29.97 0 (because of rounding) 

vertical equilibrium: 

-100 + 6.81 + 51.18 + 42.01 0 

moment equilibrium (about its local node 3): 

-100 x 2 + 57.99 x 2 + 42.01 x 2 = 0 

Hence the element nodal forces are in equilibrium. 

Element Local and Structure Global Degrees of Freedom 

The derivations of the element matrices in Example 4.6 and 4. 7 show that it is expedient to 
first establish the matrices corresponding to the local element degrees of freedom. The 
construction of the finite element matrices, which correspond to the global assemblage 
degrees of freedom [used in (4.19) to (4.25)] can then be directly achieved by identifying 
the global degrees of freedom that correspond to the local element degrees of freedom. 
Howewer, considering the matrices ff<m>, B<m>, Kem>, and so on, corresponding to the global 
assemblage degrees of freedom, only those rows and columns that correspond to element 
degrees of freedom have nonzero entries, and the main objective in defining these specific 
matrices was to be able to express the assemblage process of the element matrices in a 
theoretically elegant manner. In the practical implementation of the finite element method, 
this elegance is also present, but all element matrices are calculated corresponding only to 
the element degrees of freedom and are then directly assembled using the correspondence 
between the local element and global assemblage degrees of freedom. Thus, with only the 
element local nodal point degrees of freedom listed in u, we now write (as in Example 4.6) 

u = Hu (4.31) 

where the entries in the vector u are the element displacements measured in any convenient 
local coordinate system. We then also have 

e = Bu (4.32) 

Considering the relations in {4.31) and (4.32), the fact that no superscript is used on 
the interpolation matrices indicates that the matrices are defined with respect to the local 
element degrees of freedom. Using the relations for the element stiffness matrix, mass 
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matrix, and load vector calculations as before, we obtain 

K = L BTCBdV (4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

where all variables are defined as in ( 4.19) to ( 4.25 ), but corresponding to the local element 
degrees of freedom. In the derivations and discussions to follow, we shall refer extensively 
to the relations in ( 4.33) to ( 4.37). Once the matrices given in ( 4.33) to ( 4.37) have been 
calculated, they can be assembled directly using the procedures described in Example 4.11 
and Chapter 12. 

In this assemblage process it is assumed that the directions of the element nodal point 
displacements u in ( 4.31) are the same as the directions of the global nodal point displace­
ments U. However, in some analyses it is convenient to start the derivation with element 
nodal point degrees of freedom ii that are not aligned with the global assemblage degrees 
of freedom. In this case we have 

u == iiu (4.38) 

and 

fi = Tu (4.39) 

where the matrix T transforms the degrees of freedom u to the degrees of freedom ii and 
( 4.39) corresponds to a first-order tensor transformation (see Section 2.4); the entries in 
column j of the matrix T are the direction cosines of a unit vector corresponding to the jth 
degree of freedom in u when measured in the directions of the ii degrees of freedom. 
Substituting ( 4.39) into ( 4.38). we obtain 

H = HT (4.40) 
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Thus, identifying all finite element matrices corresponding to the degrees of freedom ii with 
a curl placed over them, we obtain from (4.40) and (4.33) to (4.37), 

K = yr:i:T; 

Rs= TTRB; 

M = TTMT 

Rs= TrRs; 
(4.41) 

We note that such transformations are also used when boundary displacements must 
be imposed that do not correspond to the global assemblage degrees of freedom (see 
Section 4.2.2). Table 4.1 summarizes some of the notation that we have employed. 

We demonstrate the presented concepts in the following examples. 

TABLE 4.1 Summary of some notation used 

(a) u<m> = ucm> U or u<m> = u<m> U 
where utm> = displacements within element m as a function of the element coordinates 

U = nodal point displacements of the total element assemblage [from equation ( 4.17) 
onward we simply use U]. 

(b) u = Hu 
where u = u<m> and it is implied that a specific element is considered 

0. = nodal point displacemeqts of the element under consideration; the entries of u are 
those displacements in U that belong to the element. 

<c> u = iiu 
where ii = nodal point displacementt of an element in a coordinate system other than the 

global system (in which U is defined). 

EXAMPLE 4. 10: Establish the matrix H for the truss element shown in Fig. E4.10. The 
directions of local and global degrees of freedom are shown in the figure. 

Here we have 

[u(x)] = !r~ _ x) 0 (~ + x) 0 H;J 
v(x) L O ( ~ - x) O ( ~ + x) :: 

n [ cosa 
sin a 0 

fil~ a][::] and 
;: = -T cos a 0 

0 cos a 
0 -sin a COS a V2 

Thus, we have 

t(!::. _ x) o (!::. + x) o J [ c~s a 1 2 2 -sm a 
H=-

L o (%-x) O (~+x) ~ 

sin a 
cos a 

0 
0 

0 
0 

cos a 
-sin a 

(a) 

L] 
cos a 

It should be noted that for the construction of the strain-displacement matrix B ( in linear 
analysis), only the first row of H is required because only the normal strain Exx = iJu/ iJx is 
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y 

X Figure E4.10 Truss element 

considered in the dc~_rivation of the stiffness matrix. In practise, it is effective to use only the first 
row of the matrix Hin (a) and then transform the matrix K as given in (4.41). 

EXAMPLE 4. 11: Assume that the element stiffness matrices corresponding to the element 
displacements shown in Fig. E4.1 l have been calculated and denote the elements as shown @, 
@, @, and @. Assemble these element matrices directly into the global structure stiffness 
matrix with the displacement boundary conditions shown in Fig. E4.l l(a). Also, give the con· 
nectivity arrays LM for the elements. 

In this analysis all element stiffness matrices have already been established corresponding 
to the degrees of freedom aligned with the global directions. Therefore, no transformation as 
given in ( 4.41) is required, and we can directly assemble the complete stiffness matrix. 

Since the displacements at the supports are zero, we need only assemble the structure 
stiffness matrix corresponding to the unknown displacement components in U. The connectivity 
array (LM array) for each element lists the global structure degrees of freedom in the order of 
the element local degrees of freedom, with a zero signifying that the corresponding column and 
row of the element stiffness matrix are not assembled ( the column and row correspond to a zero 
structure degree of freedom) (see also Chapter 12). 

U2 U3 Ui u4 u5- Global displacements 

U1 Vi U2 V2 U3 V3 U4 V4-Local displacements 
a1, a12 a16 a11 a1s U1 U2 
a21 a22 a26 a21 a23 Vt U3 

U2 

KA= 
V2 

U3 

a61 a62 a66 a61 a6s V3 U1 
a11 an a16 an Q7g U4 LJ4 

as1 Gg2 as6 Og7 Qgg 1)4 Us 
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(a) Structural assemblage and degrees of freedom 
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~t 0 V2 @ V1 

~u, 
0 U4 "2 U1 u, u2 

62 91 

(b) Individual elements 

Figure E4.11 A simple element assemblage 

u6 U1 u4 Us u6 U1 U2 U3 
U1 Vi U2 V2 U1 V1 U2 V2 

[b" 
b,2 b13 bu] U1 u6 

[ C11 
C12 C13 

C14] 
U1 u6 

KB= b21 b22 b23 b24 v, U1 
Kc= 

C21 C22 C23 C24 Vi U1 
b31 b32 b33 b34 U2 U4 C31 C32 C33 C34 U2 U2 
b41 b42 b43 b44 V2 Us C41 C42 C43 C44 Vz U3 

u6 U1 Us 
u, V1 81 U2 V2 (h 

u, 
Vi 

Ko= 8, 
d44 d45 d46 U2 u6 
ds4 dss ds6 V2 U1 
d64 d6s d66 82 Us 
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and the equation K = Im K<m> gives 

U, U2 UJ u4 Us u6 U1 Us 
a66 a61 a62 a61 a6s zeros u. 
a,6 a11 + C33 a12 + C34 a11 a1s C31 C32 U2 

a26 a21 + C43 a22 + C44 a21 a2s C41 C42 UJ 
Q76 a11 an an + b33 Q7g + b34 b31 b32 lj4 

K= as6 as1 aa2 Qg7 + b43 ass + b44 b41 b42 U-:, 

C13 C14 b13 b14 b11 + c,, b12 + C12 d46 u6 
+ '41 + d4s 

C23 C24 b23 b24 b21 + C21 b22 + C22 ds6 U1 
+ ds4 + dss 

symmetric about diagonal d64 d6s d66 Us 

The LM arrays for the elements are 

for element A: LM = (2 3 0 0 0 1 4 5] 

for element B: LM [6 7 4 5] 

for element C: LM = [6 7 2 3] 

for element D: LM = [O 0 0 6 7 8] 

We note that if the element stiffness matrices and LM arrays are known, the total structure 
stiffness matrix can be obtained directly in an automated manner (see also Chapter 12). 

4.2.2 Imposition of Displacement Boundary Conditions 

We discussed in Section 3.3.2 that in the analysis of a continuum we have displacement (also 
called essential) boundary conditions and force (also called natural) boundary conditions. 
Using the displacement-based finite element method, the force boundary conditions are 
taken into account in evaluating the externally applied nodal point force vector. The vector 
Re assembles the concentrated loads including the reactions, and the vector Rs contains the 
effect of the distributed surface loads and distributed reactions. 

Assume that the equilibrium equations of a finite element system without the imposi­
tion of the displacement boundary conditions as derived in Section 4.2.1 are, neglecting 
damping, 

[ Maa Mab J [~a J + [Kaa Kab J [Ua] _ [Ra J 
Mba Mbb Ub Kba Ki,b Ub - Rb 

(4.42) 

where the Ua are the unknown displacements and the Ub are the known, or prescribed, 
displacements. Solving for Va, we obtain 

Maalfa + KaaUa = R,, - K.,bUb - Mablfb (4.43) 

Hence, in this solution for Va, only the stiffness and mass matrices of the complete assem­
blage corresponding to the unknown degrees of freedom Va need to be assembled (see 
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Example 4.11 ), but the load vector Ra must be modified to include the effect of imposed 
nonzero displacements. Once the displacements Ua have been evaluated from ( 4.43), the 
reactions can be calculated by first writing [(using ( 4.18)) 

(4.44) 

where Rt, Ri, Rt, and R~ are the known externally applied nodal point loads not including 
the reactions and Rr denotes the unknown reactions. The superscript b indicates that of RB, 
Rs, Rr, and Re in ( 4.17) only the components corresponding to the Ub degrees of freedom 
are used in the force vectors. Note that the vector Rr may be thought of as an unknown 
correction to the concentrated loads. Using ( 4.44) and the second set of equations in ( 4.42), 
we thus obtain 

Rr = Mbal.ia + Mbbijb + KbaUa + KbbUb - Rt - R~ + Rf - R~ (4.45) 

Here, the last four terms are a correction due to known internal and surface element loading 
and any concentrated loading, all directly applied to the supports. 

We demonstrate these relations in the following example. 

EXAMPLE 4. 12: Consider the structure shown in Fig. E4.12. Solve for the displacement 
response and calculate the reactions. 

p 

El 

I· L 

p (force/length) 

El= 107 

l = 100 
p = 0.01 
P = 1.0 

(a} Cantilever beam 

L 

x ........... ~2 __ __,_,l. ........ 'u~----4 __ -.i"-41,£'~. 
TI l:lement 1 l Element 2 l ' 

(b) Discretization 

Figure E4.12 Analysis of cantilever beam 
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We consider the cantilever beam as an assemblage of two beam elements. The governing 
equations of equilibrium ( 4.42) are (using the matrices in Example 4.1) 

12 6 12 6 U, -P -
L2 

-
L L 

6 
4 

6 
2 U2 0 -

L L 
12 6 36 6 24 12 u3 _pL 

- L2 - - L2 El L L2 L L 2 

L 6 
2 

6 
12 

12 
4 u4 _pl2 - -

L L L 12 
24 12 24 12 

Us 
pl 

- L2 -
L2 

-- + R lu 
L L 2 r 5 

12 
4 

12 
8 u6 

pL2 
L L l2 + Rrlu6 

Here Ub = [U5 U6] and Ub = 0. Using (4.43), we obtain, for the case of El = 107, L = 100, 
p = O.oI, P = 1.0, 

ur = [-16s 1.33 -47.9 o.s3J x 10-3 

and then using ( 4.45), we have 

In using ( 4.42) we assume that the displacement components employed in Sec­
tion 4.2. l actually contain all prescribed displacements [denoted as Uh in ( 4.42)]. If this is 
not the case, we need to identify all prescribed displacements that do not correspond to 
defined assemblage degrees of freedom and transform the finite element equilibrium equa­
tions to correspond to the prescribed displacements. Thus, we write 

U TO (4.46) 

where U is the vector of nodal point degrees of freedom in the required directions. The 
transformation matrix T is an identity matrix that has been altered by the direction cosines 
of the components in U measured in the original displacement directions [see (2.58)]. Using 
( 4.46) in ( 4.42), we obtain 

MO+KU R 

where M = T7MT; K = T7 KT; 

(4.47) 

(4.48) 

We should note that the matrix multiplications in ( 4.48) involve changes only in those 
columns and rows of M, K, and R that are actually affected and that this transformation 
is equivalent to the calculations performed in ( 4.41) on a single element matrix. In practice, 
the transformation is carried out effectively on the element level just prior to adding the 
element matrices to the matrices of the total assemblage. Figure 4.3 gives the transforma­
tion matrices T for a typical nodal point in two- and three-dimensional analysis when 
displacements are constrained in skew directions. The unknown displacements can now be 
calculated from (4.47) using the procedure in (4.42) and (4.43). 
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Figure 4.3 Transformation to skew boundary conditions 
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In an alternative approach, the required displacements can also be imposed by adding 
to the finite element equilibrium equations ( 4.47) the constraint equations that express the 
prescribed displacement conditions. Assume that the displacement is to be specified at 
degree of freedom i, say fij = b; then the constraint equation 

~=~ ~~ 

is added to the equilibrium equations (4.47), where k ~ ku. Therefore, the solution of the 
modified equilibrium equations must now give U; == b, and we note that because ( 4.47) was 
used, only the diagonal element in the stiffness matrix was affected, resulting in a numeri­
cally stable solution (see Section 8.2.6). Physically, this procedure can be interpreted as 
adding at the degree of freedom i a spring of large stiffness k and specifying a load which, 
because of the relatively flexible element assemblage, produces at this degree of freedom the 
required displacement b (see Fig. 4.4 ). Mathematically, the procedure corresponds to an 
application of the penalty method discussed in Section 3.4. 

In addition to specified nodal point displacement conditions, some nodal point dis­
placements may also be subjected to constraint conditions. Considering ( 4.24), a typical 
constraint equation would be 

r; 

U1 = L a9.U9 . 1-• J J 
(4.50) 
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Figure 4.4 Skew boundary condition 
imposed using spring element 

where the Vi is a dependent nodal point displacement and the U9i are r; independent nodal 
point displacements. Using all constraint equations of the form ( 4.50) and recognizing that 
these constraints must hold in the application of the principle of virtual work for the actual 
nodal point displacements as well as "for the virtual displacements, the imposition of the 
constraints corresponds to a transformation of the form (4.46) and (4.47), in which Tis now 
a rectangular matrix and U contains all independent degrees of freedom. This transforma­
tion corresponds to adding a.qi times the ith columns and rows to the qi th columns and rows, 
for j = 1, . . . , ri and all i considered. In the actual implementation the transformation is 
performed effectively on the element level during the assemblage process. 

Finally, it should be noted that combinations of the above displacement boundary 
conditions are possible, where, for example, in ( 4.50) an independent displacement compo­
nent may correspond to a skew boundary condition with a specified displacement. We 
demonstrate the imposition of displacement constraints in the following examples. 

EXAMPLE 4.13: Consider the truss assemblage shown in Fig. E4.13. Establish the stiffness 
matrix of the structure that contains the constraint conditions given. 

The independent degrees of freedom in this analysis are U1, U2, and U4. The element 
stiffness matrices are given in Fig. E4.13, and we recognize that corresponding to ( 4.50), we 

Displacement conditions: u3 .,. 2u1 

u,-8 

K. EA; [ 1 ,=-
L; -1 -; J 

Figure E4.13 Truss assemblage 
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have i = 3, a1 = 2, and q1 = l. Establishing the complete stiffness matrix directly during the 
assemblage process, we have 

EA1 EA, 
0 

4EA2 2EA2 
0 Li L1 L2 L2 

K= 
EA1 EA1 

0 + 2EA2 EA2 
0 L1 L1 L2 L2 

0 0 0 0 0 0 

4EA3 
0 

2EA3 
L3 L3 

+G 
0 

fl + 0 0 0 0 
2EA3 

0 
EA3 0 

L3 L3 

where k EA3 ~-
L3 

EXAMPLE 4.14: The frame structure shown in Fig. E4.14(a) is to be analyzed. Use symmetry 
and constraint conditions to establish a suitable model for analysis. 

t 
p 

P-+-

/ 
·~ ., A 

(a) Frame structure 

Fixed sha ft 
p / 

l 
p 

2 3 

(b) One~quarter of structure 

Figure E4.14 Analysis of a cyclicly symmetric structure 

The complete structure and applied loading display cyclic symmetry, so that only one­
quarter of the structure need be considered, as shown in Fig. E4.14(b), with the following 
constraint conditions: 
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This is a simple example demonstrating how the analysis effort can be reduced considerably 
through the use of symmetry conditions. In practice, the saving through the use of cyclic 
symmetry conditions can in some cases be considerable, and indeed only by use of such condi­
tions may the analysis be possible. 

In this analysis, the structure and loading show cyclic symmetry. An analysis capability can 
also be developed in which only a part of the structure is modeled for the case of a geometrically 
cyclic symmetric structure with arbitrary loading (see, for example, W. Zhong and C. Qiu [A]). 

4.2.3 Generalized Coordinate Models for Specific Problems 

In Section 4.2. l the finite element discretization procedure and derivation of the equi­
librium equations was presented in general; i.e., a general three-dimensional body was 
considered. As shown in the examples, the general equations derived must be specialized 
in specific analyses to the specific stress and strain conditions considered. The objective in 
this section is to discuss and summarize how the finite element matrices that correspond to 
specific problems can be obtained from the general finite element equations ( 4.8) to ( 4.25). 

Although in theory any body may be understood to be three-dimensional, for practical 
analysis it is in many cases imperative to reduce the dimensionality of the problem. The first 
step in a finite element analysis is therefore to decide what kind of problem8 is at hand. This 
decision is based on the assumptions used in the theory of elasticity mathematical models 
for specific problems. The classes of problems that are encountered may be summarized as 
( 1) truss, ( 2) beam, ( 3) plane stress, ( 4) plane strain, ( 5) axisymmetric, ( 6) plate bending, 
(7) thin shell, (8) thick shell, and (9) general three-dimensional. For each of these problem 
cases, the general formulation is applicable; however, only the appropriate displacement, 
stress, and strain variables must be used. These variables are summarized in Tables 4.2 and 
4.3 together with the stress-strain matrices to be employed when considering an isotropic 
material. Figure 4.5 shows various stress and strain conditions considered in the formula­
tion of finite element matrices. 

TABLE 4.2 Corresponding kinematic and static variables in various problems 

Displacement 
Problem components Strain vector er Stress vector ,,r 

Bar u [Ex.,] [Txx] 

Beam w [Kxx] [Mxx] 

Plane stress U,V [ Exx Exy 'Yxy] [ Txx Tyy Txy] 

Plane strain u,v [ Exx Eyy 'Yxy] [ 1"xx Tyy 1'xy] 

Axisymmetric u, v [ Exx Eyy 'Yxy e,,] [ Txx Tyy Txy Tu] 

Threewdimensional u,v, w [ E'xx Eyy E'zz 'Yxy 'Yyz 'Yzx] [ Txx Tyy T,z Txy Tyz Tu] 
Plate bending w [Kxx Kyy Kxy] [MxxMyyMxy] 

au av au av a2w o2w &2w 
Notation: Eu=-. E'yy = -, 'Yxy = - + - .... 'Kxx = -2· Kyy = -2· Kxy = 2--. ax ay ay ax ax ay ax i)y 

In Examples 4.5 to 4.10 we already developed some specific finite element matrices. 
Referring to Example 4.6, in which we considered a plane stress condition, we used for the 
u and v displacements simple linear polynomial assumptions, where we identified the 

8 We use here the parlance commonly used in engineering analysis but recognize that "choice of problem" 
really corresponds to "choice of mathematical model" (see Section 1.2). 
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TABLE 4.3 Generalized stress-strain matrices for isotropic materials and the problems in Table 4.2 

Problem 

Bar 
Beam 

Plane stress 

Plane strain 

Axisymmetric 

Three-dimensional 

Plate bending 

Material matrix C 

E 
El 

E 

[: : I 1 vl 
v 

1 - v 

E(l - v 

(1 + v}(l - 2v) l - v 

0 

0 

0 0 
1 - 2v 

2(1 - v) 

l - JI 

v 

E(l - v) I - v 

(1 + v)(l - 2v) 0 0 

v v 

1 - v v 

v v 

l - JI 1-v 

v v 

v 1 - v 

v v 

E(l - v) 1 - v v 

(I + v)(l - 2v) 

Elements not 
shown are zeros 

v 
0 

JI 

v 
0 

1 - v 

1 - 2v 
0 

2(1 - v) 

0 

I - 2v 

2(1 - v) 

2v 

2(1 - v) 

I 2v 

2(1 - v) 

Notation: E = Young's modulus, v = Poisson's ratio, h = thickness of plate, I = moment of inertia 
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unknown coefficients in the polynomials as generalized coordinates. The number of un­
known coefficients in the polynomials was equal to the number of element nodal point 
displacements. Expressing the generalized coordinates in terms of the element nodal point 
displacements, we found that, in general, each polynomial coefficient is not an actual 
physical displacement but is equal to a linear combination of the element nodal point 
displacements. 

Finite element matrices that are formulated by assuming that the displacements vary 
in the form of a function whose unknown coefficients are treated as generalized coordinates 
are referred to as generalized coordinate finite element models. A rather natural class of 
functions to use for approximating element displacements are polynomials because they are 
commonly employed to approximate unknown functions, and the higher the degree of the 
polynomial, the better the approximation that we can expect. In addition, polynomials are 
easy to differentiate; i.e., if the polynomials approximate the displacements of the structure, 
we can evaluate the strains with relative ease. 

Using polynomial displacement assumptions, a very large number of finite elements 
for practically all problems in structural mechanics have been developed. 

The objective in this section is to describe the formulation of a variety of generalized 
coordinate finite element models that use polynomials to approximate the displacement 
fields. Other functions could in principle be used in the same way, and their use can be 
effective in specific applications (see Example 4.20). In the presentation, emphasis is given 
to the general formulation rather than to numerically effective finite elements. Therefore, 
this section serves primarily to enhance our general understanding of the finite element 
method. More effective finite elements for general application are the isoparametric and 
related elements described in Chapter 5. 

In the following derivations the displacements of the finite elements are always de­
scribed in the local coordinate systems shown in Fig. 4.5. Also, since we consider one 
specific element, we shall leave out the superscript (m) used in Section 4.2.1 [see ( 4.31) ]. 

For one-dimensional bar elements ( truss elements) we have 

(4.51) 

where x varies over the length of the element, u is the local element displacement, and a1, 
a2, ... , are the generalized coordinates. The displacement expansion in ( 4.51) can also be 
used for the transverse and longitudinal displacements of a beam. 

For two-dimensional elements (i.e., plane stress, plane strain, and axisymmetric 
elements), we have for the u and v displacements as a function of the element x and y 
coordinates, 

u(x, y) = a, + a2x + a3y + a4xy + asx2 + · · · 
v(x, y) = /31 + f32x + {33y + {34xy + f3sx 2 + · · · 

where a1, a2, ... , and /31, /32, ... , are the generalized coordinates. 

(4.52) 

In the case of a plate bending element, the transverse deflection w is assumed as a 
function of the element coordinates x and y; i.e., 

(4.53) 

where )'1, )'2, . . . , are the generalized coordinates. 
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r xx is uniform ~ , ~~ ~~~~ streu components 

~~ ~rou~~on~: 

(a) Uniaxial stress condition: frame under concentrated loads 

Hole 

1:xx, Tyy, Txyare uniform 
across the thickness 
All other stress components 
are zero 

lb) Plane stress conditions: membrane and beam under in-plane actions 

y, v t 
~ z,w 

u(x, y), v(x, y) are nonzero 
W= 0, Ezz= Yyz= Yzx"" 0 

(c) Plane strain condition: long dam subjected to water pressure 

Figure 4.5 Various stress and strain conditions with illustrative examples 

1xx 

Finally, for elements in which the u, v, and w displacements are measured as a 
function of the element x, y, and z coordinates, we have, in general, 

u(x, y, z) = a, + a2x + a3 y + a4z + asxy + · · · 

v(x, y, z) = /31 + f32x + /33 y + /34z + f3sxy + · · · 

w(x, y, z) = Yi + Y2X + 'Y3 y + 'Y4Z + 'YsXY + · · · 

(4.54) 

where ai, a2, ... , /31, /32, ... , and ')'1, ')'2, .•. are now the generalized coordinates. 
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Structure and loading 
are axisymmetric 

Ef,B 
Ftp I ~ 
: I l 
I I 
I I 
I I 
I I 
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I 
I 

j~~-- 1'yz•1'zx•O 
All other stress components 
are nonzero 

(d) Axisymmetric condition: cylinder under internal pressure 

z 

Midsurface 

Plate 

Shell 

1'u• O 
All other stress components 
are nonzero 

(e) Plate and shell structures 

Figure 4.5 (continued) 

Midsurface 
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As in the discussion of the plane stress element in Example 4.6, the relations ( 4.51) 
to ( 4.54) can be written in matrix form, 

u = 4'c:x (4.55) 

where the vector n corresponds to the displacements used in ( 4.51) to ( 4.54 ), the elements 
of cl> are the corresponding polynomial terms, and a is a vector of the generalized coordi­
nates arranged in the appropriate order. 

To evaluate the generalized coordinates in terms of the element nodal point displace­
ments, we need to have as many nodal point displacements as assumed generalized coordi­
nates. Then, evaluating ( 4.55) specifically for the nodal point displacements ii of the 
element, we obtain 

0 = Ac:x 

Assuming that the inverse of A exists, we have 

a = A-1u 

(4.56) 

(4.57) 

The element strains to be considered depend on the specific problem to be solved. 
Denoting by E a generalized strain vector. whose components are given for specific prob­
lems in Table 4.2, we have 

E = Ec:x (4.58) 

where the matrix E is established using the displacement assumptions in ( 4.55). A vector 
of generalized stresses T is obtained using the relation 

'T = CE (4.59) 

where C is a generalized elasticity matrix. The quantities T and C are defined for some 
problems in Tables 4.2 and 4.3. We may note that except in bending problems, the general­
ized T, E, and C matrices are those that are used in the theory of elasticity. The word 
"generalized" is employed merely to include curvatures and moments as strains and 
stresses, respectively. The advantage of using curvatures and moments in bending analysis 
is that in the stiffness evaluation an integration over the thickness of the corresponding 
element is not required because this stress and strain variation has already been taken into 
account (see Example 4.15). 

Referring to Table 4.3, it should be noted that all stress-strain matrices can be derived 
from the general three-dimensional stress-strain relationship. The plane strain and axisym­
metric stress-strain matrices are obtained simply by deleting in the three-dimensional 
stress-strain matrix the rows and columns that correspond to the zero strain components. 
The stress-strain matrix for plane stress analysis is then obtained from the axisymmetric 
stress-strain matrix by using the condition that Tzz is zero (see the program QUADS in 
Section 5.6). To calculate the generalized stress-strain matrix for plate bending analysis, the 
stress-strain matrix corresponding to plane stress conditions is used, as shown in the 
following example. 

EXAMPLE 4. 15: Derive the stress-strain matrix C used for plate bending analysis (see 
Table 4.3). 

The strains at a distance z measured upward from the midsurface of the plate are 

[ 
a2w a2w 2a2w ] --z -z -z--ax ay 
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In plate bending analysis it is assumed that each layer of the plate acts in plane stress condition 
and positive curvatures correspond to positive moments (see Section 5.4.2). Hence, integrating 
the normal stresses in the plate to obtain moments per unit length. the generalized stress-strain 
matrix is 

[
Iv v OO] 

f 
+h/2 E 

C = z2
-- dz 

-11/2 1 - v2 1 - v 
0 0 -2-

or Eh3 [~ 

11 

~ ] 
C = 12(1 - v2) l - v 

0 0 -2-

Considering ( 4.55) to ( 4.59), we recognize that, in general terms, all relationships for 
evaluation of the finite element matrices corresponding to the local finite element nodal 
point displacements have been defined, and using the notation of Section 4.2. l, we have 

H ""' <t>A- 1 (4.60) 

(4.61) 

Let us now consider briefly various types of finite elements encountered, which are 
subject to certain static or kinematic assumptions. 

Truss and beam elements. Truss and beam elements are very widely used in 
structural engineering to model, for example, building frames and bridges [see Fig. 4.S(a) 
for an assemblage of truss elements]. 

As discussed in Section 4.2.1, the stiffness matrices of these elements can in many 
cases be calculated by solving the differential equations of equilibrium (see Example 4.8), 
and much literature has been published on such derivations. The results of these derivations 
have been employed in the displacement method of analysis and the corresponding approx­
imate solution techniques, such as the method of moment distribution. However, it can be 
effective to evaluate the stiffness matrices using the finite element formulation, i.e., the 
virtual work principle, particularly when considering complex beam geometries and geo­
metric nonlinear analysis (see Section 5.4.1). 

Plane stress and plane strain elements. Plane stress elements are employed to 
model membranes, the in-plane action of beams and plates as shown in Fig. 4.5(b), and so 
on. In each of these cases a two-dimensional stress situation exists in an xy plane with the 
stresses T:z, T:vz, and T.:x equal to zero. Plane strain elements are used to represent a slice (of 
unit thickness) of a structure in which the strain components Ea, 'Y:vz, and 'Yzx are zero. This 
situation arises in the analysis of a long dam as illustrated in Fig. 4.5(c). 

Axisymmetric elements. Axisymmetric elements are used to model structural 
components that are rotationally symmetric about an axis. Examples of application are 
pressure vessels and solid rings. If these structures are also subjected to axisymmetric loads, 
a two-dimensional analysis of a unit radian of the structure yields the complete stress and 
strain distributions as illustrated in Fig. 4.5(d). 
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On the other hand, if the axisymmetric structure is loaded nonaxisymmetrically, the 
choice lies between a fully three-dimensional analysis, in which substructuring (see Sec­
tion 8.2.4) or cyclic symmetry (see Example 4.14) is used, and a Fourier decomposition of 
the loads for a superposition of harmonic solutions (see Example 4.20). 

Plate bending and shell elements. The basic proposition in plate bending and 
shell analyses is that the structure is thin in one dimension, and therefore the following 
assumptions can be made [see Fig. 4.5(e) ]: 

1. The stress through the thickness (i.e., perpendicular to the midsurface) of the 
plate/shell is zero. 

2. Material particles that are originally on a straight line perpendicular to the midsurface 
of the plate/shell remain on a straight line during deformations. In the Kirchhoff 
theory, shear deformations are neglected and the straight line remains perpendicular 
to the midsurface during deformations. In the Reissner/Mindlin theory, shear deforma­
tions are included, and therefore the line originally normal to the midsurface in 
general does not remain perpendicular to the midsurface during the deformations (see 
Section 5.4.2). 

The first finite elements developed to model thin plates in bending and shells were 
based on the Kirchhoff plate theory (see R. H. Gallagher (A]). The difficulties in these 
approaches are that the elements must satisfy the convergence requirements and be rela­
tively effective in their applications. Much research effort was spent on the development of 
such elements; however, it was recognized that more effective elements can frequently be 
formulated using the Reissner/Mindlin plate theory (see Section 5.4.2). 

To obtain a shell element a simple approach is to superimpose a plate bending stiffness 
and a plane stress membrane stiffness. In this way flat shell elements are obtained that can 
be used to model flat components of shells (e.g., folded plates) and that can also be 
employed to model general curved shells as an assemblage of flat elements. We demonstrate 
the development of a plate bending element based on the Kirchhoff plate theory and the 
construction of an associated flat shell element in Examples 4.18 and 4.19. 

EXAMPLE 4.16: Discuss the derivation of the displacement and strain-displacement interpo­
lation matrices of the beam shown in Fig. E4. l 6. 

The exact stiffness matrix (within beam theory) of this beam could be evaluated by solving 
the beam differential equations of equilibrium, which are for the bending behavior 

d2 ( d2w) 
de EI dg2 = O; 

and for the axial behavior 

d ( du) 
dg EA df = O; 

El 
bh 3 

E-
12 

A= bh 

(a) 

(b) 

where Eis Young's modulus. The procedure is to impose a unit end displacement, with all other 
end displacements equal to zero, and solve the appropriate differential equation of equilibrium 
of the beam subject to these boundary conditions. Once the element internal displacements for 
these boundary conditions have been calculated, appropriate derivatives give the element end 
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Section A-A 

A 

w1L-----r-~~;;i t 'Lt -e, ....... u-,_,, ..... i;___ --9~ ::1 
--L--A-,1 x 

Figure E4.16 Beam element with varying section 

forces that together constitute the column of the stiffness matrix corresponding to the imposed 
end displacement. It should be noted that this stiffness matrix is only "exact" for static analysis 
because in dynamic analysis the stiffness coefficients are frequency-dependent. 

Alternatively, the formulation given in { 4.8) to ( 4.17) can be used. The same stiffness 
matrix as would be evaluated by the above procedure is obtained if the exact element internal 
displacements [that satisfy (a) and (b)] are employed to construct the strain-displacement matrix. 
However, in practice it is frequently expedient to use the displacement interpolations that corre­
spond to a uniform cross-section beam, and this yields an approximate stiffness matrix. The 
approximation is generally adequate when h2 is not very much larger than h1 (hence when a 
sufficiently large number of beam elements is employed to model the complete structure). The 
errors encountered in the analysis are those discussed in Section 4.3. because this formulation 
corresponds to displacement-based finite element analysis. 

Using the variables defined in Fig. E4. l 6 and the "exact" displacements (Hermitian func­
tions) corresponding to a prismatic beam, we have 

u f)u 1 + 671 (f - f )w1 
L L L L2 

~ s2) 4- + 3- 8, 
L L2 

Hence, 

- I -'Y) 1 - - + 3- I - I 
§2) : ( 4g '2) : ~ : 
L2 : ., L L 2 : L l 



202 Formulation of the Finite Element Method Chap.4 

For (c) we ordered the nodal point displacements as follows 

UT= [U1W181 U2W20:z] 

Considering only normal strains and stresses in the beam, i.e., neglecting shearing defor­
mations, we have as the only strain and stress components 

and hence 

du 
Eee = df; 

B = [-!l 611 (! _ 2f) \ -~(-4 + 6f) j .!_ \ _ 611(! _ 2t) \ fl(3. _ 6t)] (d) L: L L L2 : ., L L2 : L : L L L 2 : ., L L2 

The relations in (c) and (d) can be used directly to evaluate the element matrices defined in ( 4.33) 
to ( 4.37); e.g., 

J:
l Jh/2 

K = Eb B7B d11 d{ 
0 -h/2 

where 

This formulation can be directly extended to develop the element matrices corresponding 
to the three-dimensional action of the beam element and to include shear deformations (see 
K. I. Bathe and S. Bolourchi [A]). 

EXAMPLE 4. 17: Discuss the derivation of the stiffness, mass, and load matrices of the axisym­
metric three-node finite element in Fig. E4.17. 

This element was one of the first finite elements developed. For most practical applications, 
much more effective finite elements are presently available (see Chapter 5), but the element is 
conveniently used for instructional purposes because the equations to be dealt with are relatively 
simple. 

The displacement assumption used is 

u(x, y) = a1 + a2x + a3y 

v(x, y) = /31 + J32x + f33y 
Therefore, a linear displacement variation is assumed, just as for the derivation of the four-node 
plane stress element considered in Example 4.6 where the fourth node required that the term xy 
be included in the displacement assumption. Referring to the derivations carried out in Example 
4.6, we can directly establish the following relationships: 

U1 

U2 

[ u(x, y)] = H U3 

v(x, y) v, 
V2 

V3 

where H = [1 x y 0 O O]A-1 
0 0 0 x y 

A-1 = [:
11 :,1} [' X1 Yi] A1 = } X2 Y2 

l X3 YJ 
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y, v 

Z,W x,u 

(a) Nodal points 

y 

2 

x 
(b} Surface loading 

Figure E4.17 Axisymmetric three-node element 

Hence 

where 

We may note that det A I is zero only if the three element nodal points lie on a straight line. The 
strains are given in Table 4.2 and are 

OU 
E =-· 

xx ox' 
ov 

E =-· 
yy oy, 

Using the assumed displacement polynomials, we obtain 

U1 

["] 
U2 

0 1 

Eyy U3 
0 0 

=B 
V1 ' 

B= 0 0 'Yzy 

Eu V2 - 1 
V3 

x 

ow u 
E =- =-

zz oz x 

0 0 0 0 
0 0 0 1 

0 0 A- 1 = EA- 1 

l'. 0 0 0 
x 
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Using the relations (4.33) to (4.37), we thus have 

0 0 0 
1 v 

0 
v - --x 1 - v 

l 0 0 1 v 
0 

11 --
K = A-r{f E(l v) 0 0 ~ l - v 

A (1 + v)(l - 2v) x 
0 0 

1 - 2v 
0 0 0 0 0 2(1 v) 

0 0 I 0 v 11 -- 0 0 0 0 1 - JI - 11 

0 1 0 0 0 0 
0 0 0 0 0 1 
0 0 0 Ox dx dy}A- 1 (a) 
1 ~ - 1 0 0 0 x x 

where 1 radian of the axisymmetric element is considered in the volume integration. Similarly, 
we have 

0 
x O 

Rs= A-TL y 
0 ~8] 

0 I ff x dx dy 

O x 
0 y 

0 0 0 
] 
-
x 

0 0 

rJ R1 =A-TL 0 0 
y TI - t xdxdy 
X Txy 

0 0 0 O Tiz 
0 0 I 0 
0 0 0 

0 
x O 

M = pA-'{H ~ [~ ~ ~ ~ ~ ~]x dx,+-, 
O x 
O y 

where the mass density pis assumed to be constant. 

(b) 

For calculation of the surface load vector Rs, it is expedient in practice to introduce 
auxiliary coordinate systems located along the loaded sides of the element. Assume that the side 
2-3 of the element is loaded as shown in Fig. E4.17. The load vector Rs is then evaluated using 
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as the variable s, 

0 0 

l - !.. 
L 

0 

s 
0 -

Rs= L L 

~n[x2( 1 - f) + X3f] ds 0 0 

0 l - !.. 
L 

0 
s 
L 

Considering these finite element matrix evaluations the following observations can be 
made. First, to evaluate the integrals, it is possible to obtain closed-form solutions; alternatively, 
numerical integration (discussed in Section 5.5) can be used. Second, we find that the stiffness, 
mass, and load matrices corresponding to plane stress and plane strain finite elements can be 
obtained simply by ( 1) not including the fourth row in the strain-displacement matrix E used in 
(a) and (b), (2) employing the appropriate stress-strain matrix C in (a), and (3) using as the 
differential volume element h dx dy instead of x dx dy, where h is the thickness of the element 
(conveniently taken equal to I in plane strain analysis). Therefore, axisymmetric, plane stress, 
and plane strain analyses can effectively be implemented in a single computer program. Also, the 
matrix E shows that constant-strain conditions Em Eyy, and 'Yxy are assumed in either analysis. 

The concept of performing axisymmetric, plane strain, and plane stress analysis in an 
effective manner in one computer program is, in fact, presented in Section 5.6, where we discuss 
the efficient implementation of isoparametric finite element analysis. 

EXAMPLE 4.18: Derive the matrices ct>(x, y), E(x, y), and A for the rectangular plate bending 
element in Fig. E4.l8. 

This element is one of the first plate bending elements derived, and more effective plate 
bending elements are already in use (see Section 5.4.2). 

As shown in Fig. E4. l 8, the plate bending element considered has three degress of freedom 
per node. Therefore, it is necessary to have 12 unknown generalized coordinates, a 1, ••• , a 12, 
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Figure E4.18 Rectangular plate bending element. 
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in the displacement assumption for w. The polynomial used is 

Hence, 

w == a, + a2x + a3y + a.x 2 + asxy + a6y2 + a1x 3 + a8x 2y 
+ a9xy2 + a,oY 3 + a11x 3y + a12xy3 

Chap.4 

-t,(x, y) = [1 x y x 2 xy y2 x 3 x 2y xy2 y 3 x 3y xy 3] (a) 

We can now calculate &w/iJx and &w/r)y: 

&w = a2 + 2a4x + asy + 3a1x2 + 2asxy + a9y 2 + 3a, ,x2y + a12Y3 (b) iJx 

and 

.aw 2 2 3 2 
- = a3 + asx + 2a6y + asx + 2a9xy + 3a10Y + aux + 3a,2xy ay (c) 

Using the conditions 

W; = (W)x1,Y1; 8, = (aw) } 
x O y Xi, YI i = 1, • • • ' 4 

8, = (-aw) 
Y OX x;,y; 

we can construct the matrix A, obtaining 

w, a1 

a2 

W4 
8' x 

A 

'4 ox 
o' y 

'4 
(J y a,2 

where 

x, Yi xr X1Y1 yr xr xry, x,yr yr xfy, X1Yf 

1 X4 Y4 xl X4y4 yl xl xiy4 X4ya yl Xiy4 X4yl 
0 0 1 0 X1 2y1 0 xr 2X1Y1 3yr XT 3x1yt 

A == (d) 
0 0 1 0 X4 2y4 0 xl 2x4y4 3yl xl 3x4yl 
0 -1 0 -2x, -y, 0 -3xr -2x1y1 -yf 0 -3xb1 -y{ 

0 0 -2x4 -y4 0 -3xl -2x4y4 -yl 0 -3xly4 -yl 

which can be shown to be always nonsingular. 
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To evaluate the matrix E, we recall that in plate bending analysis curvatures and moments 
are used as generalized strains and stresses (see Tables 4.2 and 4.3). Calculating the required 
derivatives of (b) and (c), we obtain 

iiw ox2 = 2a4 + 6a,x + 2a8y + 6a11xy 

o2w 
oy2 = 2a6 + 2a()X + 6a10y + 6a12XY (e) 

Hence we have 

0 0 6xy O J 
2x 6y O 6xy 
4y O 6x2 6y 2 

(f) 

With the matrices <I>, A, and E given in (a), (d), and (f) and the material matrix C in 
Table 4.3, the element stiffness matrix, mass matrix, and load vectors can now be calculated. 

An important consideration in the evaluation of an element stiffness matrix is whether the 
element is complete and compatible. The element considered in this example is complete as 
shown in (e) (i.e., the element can represent constant curvature states), but the element is not 
compatible. The compatibility requirements are violated in a number of plate bending elements, 
meaning that convergence in the analysis is in general not monotonic (see Section 4.3). 

EXAMPLE 4. 19: Discuss the evaluation of the stiffness matrix of a flat rectangular shell 
element. 

A simple rectangular flat shell element can be obtained by superimposing the plate bending 
behavior considered in Example 4.18 and the plane stress behavior of the element used in 
Ex.ample 4.6. The resulting element is shown in Fig. E4.19. The element can be employed to 
model assemblages of flat plates (e.g., folded plate structures) and also curved shells. For actual 
analyses more effective shell elements are available, and we discuss here only the element in 
Fig. E4. l 9 jn order. to demonstrate some basic analysis approaches. 

Let Ka and KM be the stiffness matrices, in the local coordinate system, corresponding to 
the ben<!!ng and membrane behavior of the element, respectively. Then the shell element stiffness 
matrix Ks is 

- [Ka OJ Ks = 12x12 

20x20 O KM 
8X8 

(a) 

The matrices KM and KB were discussed in Examples 4.6 and 4.18, respectively. 
This shell element can now be directly employed in the analysis of a variety of shell 

structures. Consider the structures in Fig. E4. l 9, which might be idealized as shown. Since we 
deal in these analyses with six degrees of freedom per node, the element stiffness matrices 
corresponding to the global degrees of freedom are calculated using the transformation given 
in (4.41) 

Ks = T7K*T 
24X24 S 

{b) 

"" [Ks oJ K~ = 20X20 
24X 4 

0 0 
4X4 

where 
(c) 
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+ 

Shell element Plate element Plane stress element 

(a) Basic shell element with local five degrees of freedom at a node 

z 

(b) Analysis of folded plate structure 

(c) Analysis of slightly curved shell 

Figure E4.19 Use of a flat shell element 

and T it the transformation matrix between the local and global element degrees of fr~dom. To 
define Kt corresponding to six degrees of freedom per node, we have amended Ks on the 
right-hand side of (c) to include the stiffness coefficients corresponding to the local rotations fJz 

(rotations about the z-axis) at the nodes. These stiffness coefficients have been set equal to zero 
in (c). The reason for doing so is that these degrees of freedom have not been included in the 
formulation of the element; thus the element rotation ()z at a node is not measured and does not 
contribute to the strain energy stored in the element.:. 

The solution of a model can be obtained using Kt in (c) as long as the elements surround­
ing a node are not coplanar. This does not hold for the folded plate model. and considering the 
analysis of the slightly curved shell in Fig. E4.19(c), the elements may be almost coplanar 
(depending on the curvature of the shell and the idealization used). In these cases, the global 



Sec. 4.2 Formulation of the Displacement-Based Finite Element Method 209 

stiffness matrix is singular or ill-conditioned because of the zero diagonal elements in Kl and 
difficulties arise in solving the global equilibrium equations (see Section 8.2.6). To avoid this 
problem it l,s possible to add a small stiffness coefficient corresponding to the Oz rotation; i.e., 
instead of Kf in (c) we use 

Kt= [2!~ o J 
O kl 

4X4 

(d) 

where k is about one-thousandth of the smallest diagonal element of Ks. The stiffness coefficient 
k must be large enough to allow accurate solution of the finite element system equilibrium 
equations and small enough not to affect the system response significantly. Therefore, a large 
enough number of digits must be used in the floating~point arithmetic (see Section 8.2.6). 

A more effective way to circumvent the problem is to use curved shell elements with five 
degrees of freedom per node where these are defined corresponding to a plane tangent to the 
midsurface of the shell. In this case the rotation normal to the shell surface is not a degree of 
freedom (see Section 5.4.2). 

In the above element formulations we used polynomial functions to express the 
displacements. We should briefly note, however, that for certain applications the use of other 
functions such as trigonometric expressions can be effective. Trigonometric functions, for 
example, are used in the analysis of axisymmetric structures subjected to nonaxisymmetric 
loading (see E. L. Wilson [A]), and in the finite strip method (see Y. K. Cheung [A]). The 
advantage of the trigonometric functions lies in their orthogonality properties. Namely, if 
sine and cosine products are integrated over an appropriate interval, the integral can be 
zero. This then means that there is no coupling in the equilibrium equations between the 
generalized coordinates that correspond to the sine and cosine functions, and the equi­
librium equations can be solved more effectively. In this context it may be noted that the best 
functions that we could use in the finite element analysis would be given by the eigenvectors 
of the problem because they would give a diagonal stiffness matrix. However, these func­
tions are not known, and for general applications, the use of polynomial, trigonometric, or 
other assumptions for the finite element displacements is most natural. 

The use of special interpolation functions can of course also lead to efficient solution 
schemes in the analysis of certain fluid flows (see, for example, A. T. Patera [A]). 

We demonstrate the use of trigonometric functions in the following example. 

EXAMPLE 4.20: Figure E4.20 shows an axisymmetric structure subjected to a nonaxisymmet­
ric loading in the radial direction. Discuss the analysis of this structure using the three-node 
axisymmetric element in Example 4 .17 when the loading is represented as a superposition of 
Fourier components. 

The stress distribution in the structure is three-dimensional and could be calculated using 
a three-dimensional finite element idealization. However, it is possible to take advantage of the 
axisymmetric geometry of the structure and, depending on the exact loading applied, reduce the 
computational effort very significantly. 

The key point in this analysis is that we expand the externally applied loads Rr(fJ,y) in the 
Fourier series: 

p,. p, 

R, = :r R~ cos p8 + :r Ri, sin p(J (a) 
p=I p=I 
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3-node 
triangular 
element 

u • radial displacement 
v • axial displacement 

Chap.4 

W• circumferential displacement 

(a) Structure of interest 

First symmetric load term First antisymmetric load term 

(b) Representation of nonaxisymmetric loading 

Figure E4.20 Axisym.metric structure subjected to nonaxisym.metric loading 

where Pc and p$ are the total number of symmetric and antisymmetric load contributions about 
O = 0, respectively. Figure E4.20(b) illustrates the first terms in the expansion of (a). 

The complete analysis can now be performed by superimposing the responses due to the 
symmetric and antisymmetric load contributions defined in (a). For example, considering the 
symmetric response, we use for an element 

Pc 

u(x, y, 8) = ~ cos p8 HuP 
p=I 

Pc 

v(x, y, 8) = L cos p8 HvP (b) 
P"'I 

Pc 

w(x. y, 8) = L sin p(J HwP 
P"'I 
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where for the triangular elements, referring to Example 4.17, 

H = [l x y] A, 1 

211 

(c) 

and the fiP, vP, and w' are the element unknown generalized nodal point displacements corre­
sponding to mode p. 

We should note that we superimpose in (b) the response measured in individual harmonic 
displacement distributions. Using (b ), we can now establish the strain-displacement matrix of the 
element. Since we are dealing with a three-dimensional stress distribution, we use the expression 
for three-dimensional strain distributions in cylindrical coordinates: 

au -a, 
av 
fJy 
u I aw 
-+--
r r iJ(J 

E = au av 
-+-

(d) 

ay or 
ow 1 av -+--
fJy r iJ8 
aw l au w -+-- - -ar r 08 r 

where Er= [Err Eyy ElJfJ '}'ry '}'y9 ')'9r] (e) 

Substituting from (b) into (d) we obtain a strain-displacement matrix Bp for each value of 
p, and the total strains can be thought of as the superposition of the strain distributions contained 
in each harmonic. 

The unknown nodal point displacements can now be evaluated using the usual procedures. 
The equilibrium equations corresponding to the generalized nodal point displacements Uf, Vf, 
Wf, i = 1, ... , N (N is equal to the total number of nodes) and p = l, ... , Pc are evaluated 
as given in ( 4.17) to ( 4.22), where we now have 

ur = [UIT u2r . , , UPc1] (f) 

and 

UPr = [u~ v~ w~ ! u~ . . . Wt] (g) 

In the calculations of K and Rs we note that because of the orthogonality properties 

f.,. sin nfJ sin mO dfJ = O n * m 
(h) 

s:· cos n8 cos m8 dfl ~ 0 

the stiffness matrices corresponding to the different harmonics are decoupled from each other. 
Hence, we have the following equilibrium equations for the structure: 

KPUP = R~ p = 1, ... , Pc (i) 

where KP and R'.; are the stiffness matrix and load vector corresponding to the pth harmonic. 
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Solution of the equations in (i) gives the generalized nodal point displacements of each element, 
and (b) then yields all element internal displacements. 

In the above displacement solution we considered only the symmetric load contributions. 
But an analogous analysis can be performed for the antisymmetric load harmonics of (a) by 
simply replacing in (b) to (i) all sine and cosine terms by cosine and sine terms, respectively. The 
complete structural response is then obtained by superimposing the displacements corresponding 
to all harmonics. 

Although we have considered only surface loading in the discussion, the analysis can be 
extended using the same approach to include body force loading and initial stresses. 

Finally, we note that the computational effort required in the analysis is directly propor­
tional to the number of load harmonics used. Hence, the solution procedure is very efficient if 
the loading can be represented using only a few harmonics (e.g .• wind loading) but may be 
inefficient when many harmonics must be used to represent the loading (e.g., a concentrated 
force). 

4.2.4 Lumping of Structure Properties and Loads 

A physical interpretation of the finite element procedure of analysis as presented in the 
previous sections is that the structure properties-stiffness and mass-and the loads, 
internal and external, are lumped to the discrete nodes of the element assemblage using the 
virtual work principle. Because the same interpolation functions are employed in the 

t! 
along 

3.0 ~----------
2.0 

1.0 

edge2-1 ~ 

.._---~------...._~ ....... 
x 

------2.0------ v, 
Node '' 1_ 

T
~ _ _._......u, 

U2 

l ·.'-V .. ~3 ~---------.. ·~.,V..,,.4- U4 

3 U3 
Plane stress element, 4 
thickness • 0.5 

along t! 1 
edge3-4 ~~--

1
·:
0
:::::::::::::::::::'.r...-~•-

x 

Rb• [0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0) 

3.0 1.0 

t! 
along 
edges 4-1 
and 3-2 

Figure 4.6 Body force distribution and corresponding lumped body force vector Rs of a 
rectangular element 
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calculation of the load vectors and the mass matrix as in the evaluation of the stiffness 
matrix, we say that "consistent" load vectors and a consistent mass matrix are evaluated. 
In this case, provided certain conditions are fulfilled (see Section 4.3.3), the finite element 
solution is a Ritz analysis. 

It may now be recognized that instead of performing the integrations leading to the 
consistent load vector, we may evaluate an approximate load vector by simply adding to the 
actually applied concentrated nodal forces Re additional forces that are in some sense 
equivalent to the distributed loads on the elements. A somewhat obvious way of constructing 
approximate load vectors is to calculate the total body and surface forces corresponding to 
an element and to assign equal parts to the appropriate element nodal degrees of freedom. 
Consider as an example the rectangular plane stress element in Fig. 4.6 with the variation 
of the body force shown. The total body force is equal to 2.0, and hence we obtain the 
lumped body force vector given in the figure. 

In considering the derivation of an element mass matrix, we recall that the inertia 
forces have been considered part of the body forces. Hence we may also establish an 
approximate mass matrix by lumping equal parts of the total element mass to the nodal 
points. Realizing that each nodal mass essentially corresponds to the mass of an element 
contributing volume around the node, we note that using this procedure of lumping mass, 
we assume in essence that the accelerations of the contributing volume to a node are 
constant and equal to the nodal values. 

An important advantage of using a lumped mass matrix is that the matrix is diagonal, 
and, as will be seen later, the numerical operations for the solution of the dynamic equations 
of equilibrium are in some cases reduced very significantly. 

EXAMPLE 4.21: Evaluate the lumped body force vector and the lumped mass matrix of the 
element assemblage in Fig. E4.5. 

The lumped mass matrix is 

100 [t O 
OJ r '[° 0 ~}x M = p I. (I) 0 ! ~ dx + p 

O 
( I + :0) ~ I 

2 
0 0 0 0 ll~ 0 

s~J or M =e O 670 
3 0 0 

Similarly, the lumped body force vector is 

Rs= (C (I) U}l) dx + n I+ :O)' rnc~) dx)!,(t) 

= i[ !JJ]t,(r) 

It may be noted that, as required, the sums of the elements in M and RB in both this 
example and in Example 4.5 are the same. 
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When using the load lumping procedure it should be recognized that the nodal point 
loads are, in general, calculated only approximately, and if a coarse finite element mesh is 
employed, the resulting solution may be very inaccurate. Indeed, in some cases when 
higher-order finite elements are used, surprising results are obtained. Figure 4.7 demon­
strates such a case (see also Example 5 .12 ). 

Thickness = 1 cm 

(a) Problem 

(b) Finite element model 
with consistent loading 

{c) Finite element model 
with lumped loading 

p= 300 N/cm2 

E= 3 x 107 N/cm2 

v=0.3 

Integration r,oc point 

A 300.00 
B 300.00 
c 300.00 

t"yy l'xy 

0.0 0.0 
o.o 0.0 
0.0 0.0 

(All stresses have units of N/cm2) 

Integration 
rxx ryy rxy 

point 

A 301.41 -7.85 -24.72 
B 295.74 -9.55 0.0 
c 301.41 -7.85 24.72 

(All stresses have units of N/cm2) 
(3 x 3 Gauss points are used, see Table 5.7) 

Figure 4.7 Some sample analysis results with and without consistent loading 

Considering dynamic analysis, the inertia effects can be thought of as body forces. 
Therefore, if a lumped mass matrix is employed, little might be gained by using a consistent 
load vector, whereas consistent nodal point loads should be used if a consistent mass matrix 
is employed in the analysis. 

4.2.5 Exercises 

4.1. Use the procedure in Example 4.2 to formally derive the principle of virtual work for the 
one~dimensional bar shown. 
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A(x) 

......... R 

-----L---•1 
E .. Young's modulus 

The differential equations of equilibrium are 

E ~ (A au) + f~ = O 
ax ax 

EA aul = R 
ax x•L 

4.2. Consider the structure shown. 
(a) Write down the principle of virtual displacements by specializing the general equation ( 4.7) 

to this case. 
(b) Use the principle of virtual work to check whether the exact solution is 

(
72 24x) F 

T(x) 73 + 73L Ao 

Use the following three virtual displacements: (i) u(x) = aox, (ii) u(x) = aox2, 

(iii) u(x) = aox3. 
(c) Solve the governing differential equations of equilibrium, 

E~(A au)= o 
ax ax 

EA aul = F 
OX x=L 

(d) Use the three different virtual displacement patterns given in part (b), substitute into the 
principle of virtual work using the exact solution for the stress [from part (c)], and explicitly 
show that the principle holds. 

F = total force exerted on right end 
E = Young's modulus 
A(x) = Ao(1- x/4L) 
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4.3. Consider the bar shown. 
(a) Solve for the exact displacement response of the structure. 
(b) Show explicitly that the principle of virtual work is satisfied with the displacement patterns 

(i) ii = ax and (ii) ii = ax2• 

(c) Identify a stress 'Txx for which the principle of virtual work is satisfied with pattern (ii) but 
not with pattern (i). 

t 0 = constant force per unit length 
Young's modulus E 

4.4. For the two-dimensional body shown, use the principle of virtual work to show that the body 
forces are in equilibrium with the applied concentrated nodal loads. 

y 

x 

f! = 10(1 + 2x) N/m3 

J: = 20(1 + y) N/m3 

R, 60N 

R2 = 45 N 

R3 = 15 N 

Unit thickness 

2m 

'+: fB 
x 1m 
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4.S. Idealize the bar structure shown as an assemblage of 2 two-node bar elements. 
(a) Calculate the equilibrium equations KU = R. 
(b) Calculate the mass matrix of the element assemblage. 

A= Ao(1 -17/120); 11 s 60 

10.0 

80 

f 8(x) = 0.1 f1 force/unit volume 
E ... Young's moduf us 
p • mass density 

t1 Time 

-+- 20Aof1 
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4.6. Consider the disk with a centerline hole of radius 20 shown spinning at a rotational velocity of 
w radians/second. 

60 

3.0 

80 

E = Young's modulus 
p • mass density 
v • Poisson's ratio 

1.0 

Idealize the structure as an assemblage of 2 two-node elements and calculate the steady-state 
(pseudostatic) equilibrium equations. (Note that the strains are now au/ax and u/x, where u/x 
is the hoop strain.) 

4.7. Consider Example 4.5 and the state at time t = 2.0 with U1(t) = 0 at all times. 
(a) Use the finite element formulation given in the example to calculate the static nodal point 

displacements and the element stresses. 
{b) Calculate the reaction at the support. 
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(c) Let the calculated finite element solution be uFE. Calculate and plot the error r measured in 
satisfying the differential equation of equilibrium, i.e., 

[ a ( auFE)] 
r = E ax A;;;- + ff A 

(d) Calculate the strain energy of the structure as evaluated in the finite element solution and 
compare this strain energy with the exact strain energy of the mathematical model. 

4.8. The two-node truss element shown, originally at a uniform temperature, 20°C, is subjected to a 
temperature variation 

8 = (lOx + 20)°C 

Calculate the resulting stress and nodal point displacement. Also obtain the analytical solution, 
assuming a continuum, and briefly discuss your results. 

~· • I 
x 

2 

"A: 
E=200,000 
A= 1 
a- 1 x 10-6 (per °C) 

I • 4 
~ I 

4.9. Consider the finite element analysis illustrated. 

6psi 

Young's modulus E 
Poisson•s ratio v • 0.30 2 psi 

tU13 
~to--------------+-.... ----------+-'-'----'-.&...I._.._ ....... ~....,... I u, """7i; u,, 

_J_~~u_, __________ _._LJJ.....,. __________ ..,_u~1..,._ ____ ~ __ _.,._u..,...,, 

• \ • U2 4 in ·I· _u& 4in~ U10 

Plane stress condition (thickness t). 
All elements are 4-node elements 

(a) Begin by establishing the typical matrix B of an element for the vector u r = 
[U1 V1 U2 V2 U3 V3 U4 V4], 

(b) Calculate the elements of the K matrix, Ku2u2' Ku6u1 , Ku1 u6 • and Ku~,u 12 of the structural 
assemblage. 

(c) Calculate the nodal load R9 due to the linearly varying surface pressure distribution. 
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'~ 
V2 

I~ 
V1 

U2 ~u, 

1 2 

3in 

l V3 V4 
I ~ I~ 

U3 U4 -
3 4 

r 

4in 

4.10. Consider the simply supported beam shown. 
(a) Assume that usual beam theory is employed and use the principle of virtual work to evaluate 

the reactions R1 and R2. 

p 

1

...,.____. a___,......._+ b-i 

(b) Now assume that the beam is modeled by a four-node finite element. Show that to be able 
to evaluate R, and R2 as in part (a) it is necessary that the finite element displacement 
functions can represent the rigid body mode displacements. 

p 

I · 8 + b---i 

I !} 
t t 
R, R2 

4.11. The four-node plane stress element shown carries the initial stresses 

Tix= 0 MPa 

r;y = 10 MPa 

T]y = 20 MPa 
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(a) Calculate the corresponding nodal point forces R1. 
(b) Evaluate the nodal point forces Rs equivalent to the surface tractions that correspond to the 

element stresses. Check your results using elementary statics and show that Rs is equal to R1 
evaluated in part (a). Explain why this result makes sense. 

(e) Derive a general result: Assume that any stresses are given, and R, and Rs are calculated. 
What conditions must the given stresses satisfy in order that R, Rs, where the surface 
tractions in Rs are obtained from equation (b) in Example 4.2? 

\-111 --60mm-~• I 

T 
30mm 

y~-------~ 

x 

Young's modulus E 
Poisson's ratio v 
Thickness = 0.5 mm 

4.12. The four-node plane strain element shown is Sl1;bjected to the constant stresses 

7'.u = 20 psi 

Tvy = IO psi 

1'.ry = IO psi 

Calculate the nodal point displacements of the element. 

1-·--ain---·I 
2 1 -------- T 

2in 

y~----41 
x 

Young's modulus E = 30 x 106 psi 
Poisson's ratio v :::: 0.30 
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4.13. Consider element 2 in Fig. E4.9. 
(a) Show explicitly that 

(b) Show that the element nodal point forces F(2
) are in equilibrium. 

221 

4.14. Assume that the element stiffness matrices~ and Ks corresponding to the element displace­
ments shown have been calculated. Assemble these element matrices directly into the global 
structure stiffness matrix with the displacement boundary conditions shown. 

u, V2 v, 
·~ u2 82 U2 91 

U1 u, 
B 

A A 

V3 
Individual elements 

Structural assemblage Ua 
and degrees of freedom 

a11 a12 013 a14 a1s a16 u, b11 bri b13 b14 bis b16 u, 

a21 a22 a23 a24 a2s a26 v, b21 b22 b23 b24 bz.s b26 v, 

KA= 
a31 a32 Q33 Q34 Q3s a36 U2 

Ks= 
b31 b32 b33 b34 b3s b36 9, 

Q41 042 Q43 Q44 a4s a46 V2 b41 b42 b43 b44 b45 b46 U2 

as, as2 as3 a54 ass as6 U3 b~H bs2 bs3 bs4 bss b56 V2 

061 ll62 063 064 a6s a66 V3 b61 b62 b63 b64 b6s b66 (h. 

4.15. Assume that the element stiffness matrices KA and Ks corresponding to the element displace­
ments shown have been calculated. Assemble these element matrices directly into the global 
structure stiffness matrix with the displacement boundary conditions shown. 

U2 a,, ... a,a U1 

U1 KA· 
. v, 

Uz . . . 
A Bs1 ••• ass V4 

Us 
U4 

b11 ... b16 u, 
Us . . v, 

Ks= o, . . . 
be1 ... boo th 
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V1 

81 
v, 

U1 

A B 

V4 92 
V2 

U4 

4.16. Consider Example 4.11. Assume that at the support A, the roller allows a displacement only along 
a slope of 30 degrees to the horizontal direction. Determine the modifications necessary in the 
solution in Example 4.11 to obtain the structure matrix K for this situation. 
(a) Consider imposing the zero displacement condition exactly. 
(b) Consider imposing the zero displacement condition using the penalty method. 

4.17. Consider the beam element shown. Evaluate the stiffness coefficients k11 and k12, 

(a) Obtain the exact coefficients from the solution of the differential equation of equilibrium 
(using the mathematical model of Bernoulli beam theory). 

(b) Obtain the coefficients using the principle of virtual work with the Hermitian beam functions 
(see Example 4.16). 

h(x) = ho (1 + x/L) 

~u~,-----------------4~-------------------iu4 

Young's modulus E 
Unit thickness 
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4.18. Consider the two-element assemblage shown. 
(a) Evaluate the stiffness coefficients K, 1, K14 for the finite element idealization. 
(b) Calculate the load vector of the element assemblage. 

I~ 4.0 • I 
U2 

I Element 1 

4.0 

y 

1.0 Element 2 

Us u, 

4 2 

x 

p1~ 
v=0.3 

Plane stress, thickness = 0.1 
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4.19. Consider the two-element assemblage in Exercise 4.18 but now assume axisymmetric condi­
tions. The y-axis is the axis of revolution. 
(a) Evaluate the stiffness coefficients K, 1, K14 for the finite element idealization. 
(b) Evaluate the corresponding load vector. 

4.20. Consider Example 4.20 and let the loading on the structure be Rr = J,(t) cos 8. 
(a) Establish the stiffness matrix, mass matrix, and load vector of the three-node element 

y, v 

f1(t) 

---..--- ----__ T__._i_L.._. .... 

1 

_____ x_<o_r r)_,....,~u 
z,w 

E= 200,000 
V= 0.3 
p = mass density 

2 3 

~ 
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shown. Establish explicitly all matrices you need but do not perform any multiplications 
and integrations. 

(b) Explain (by physical reasoning) that your assumptions on u, v, w make sense. 
4.21. An inviscid fluid element (for acoustic motions) can be obtained by considering only volumetric 

strain energy (since inviscid fluids provide no resistance to shear). Formulate the finite element 
fluid stiffness matrix for the four-node plane element shown and write out all matrices required. 
Do not actually perform any integrations or matrix multiplications. Hint: Remember that 
p = -~ AV/Vand TT= [rxx Tyy 1'xy Tzz] = [ - p - p O - p] and AVIV = Exx + Ey:,• 

T 2 

_l_ --3~----~~~~~~-4--

YL 
x 

Thickness t 
Bulk modulus /J 

4.22. Consider the element assemblages in Exercises 4.18 and 4.19. For each case, evaluate a 
lumped mass matrix (using a uniform mass density p) and a lumped load vector. 

4.23. Use a finite element program to solve the model shown of the problem in Example 4.6. 
(a) Print out the element stresses and element nodal point forces and draw the .. exploded 

element views" for the stresses and nodal point forces as in Example 4.9. 
(b) Show that the element nodal point forces of element S are in equilibrium and that the 

element nodal point forces of elements 5 and 6 equilibrate the applied load. 
(c) Print out the reactions and show that the element nodal point forces equilibrate these 

reactions. 
(d) Calculate the strain energy of the finite element model. 

P= 100 

Eight constant-strain triangles 
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4.24. Use a finite element program to solve the model shown of the problem in Example 4.6. Print out 
the element stresses and reactions and calculate the strain energy of the model. Draw the 
"exploded element views" for the stresses and nodal point forces. Compare your results with 
those for Exercise 4.23 and discuss why we should not be surprised to have obtained different 
results (although the same kind and same number of elements are used in both idealizations). 

P= 100 

Eight constant-strain triangles 

4.3 CONVERGENCE OF ANAL VSIS RESULTS 

Since the finite element method is a numerical procedure for solving complex engineering 
problems, important considerations pertain to the accuracy of the analysis results and the 
convergence of the numerical solution. The objective in this section is to address these 
issues. We start by defining in Section 4.3.1 what we mean by convergence. Then we 
consider in a rather physical manner the criteria for monotonic convergence and relate these 
criteria to the conditions in a Ritz analysis (introduced in Section 3.3.3). Next, some 
important properties of the finite element solution are summarized (and proven) and the 
rate of convergence is discussed. Finally, we consider the calculation of stresses and the 
evaluation of error measures that indicate the magnitude of the error in stresses at the 
completion of an analysis. 

We consider in this section displacement-based finite elements leading to monotoni­
cally convergent solutions. Formulations that lead to a nonmonotonic convergence are 
considered in Sections 4.4 and 4.5. 

4.3.1 The Model Problem and a Definition of Convergence 

Based on the preceding discussions, we can now say that, in general, a finite element 
analysis requires the idealization of an actual physical problem into a mathematical model 
and then the finite element solution of that model (see Section 1.2). Figure 4.8 summarizes 
these concepts. The distinction given in the figure is frequently not recognized in practical 
analysis because the differential equations of motion of the mathematical model are not 
dealt with, and indeed the equations may be unknown in the analysis of a complex problem, 
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Actual Physical Problem 

Geometric domain 
Material 
Loading 
Boundary conditions 

i 
Mathematical Model (which corresponds to a mechanical idealization) 

Kinematics, e.g., truss 
plane stress 
three-di mensiona I 
Kirchhoff plate 
etc. 

Material, e.g., isotropic linear 
elastic 
Mooney-Rivlin rubber 
etc. 

Loading, e.g., concentrated 
centrifugal 
etc. 

Boundary prescribed 
Conditions, e.g., displacements i etc. 

Finite Element Solution 

Choice of elements and solution procedures 

Yields: 
Governing differential 
equation(s) of motion 
e.g., 

(EA 0u) = -p(x) 
ilX iJX 

and principle of 
virtual work equation 
(see Example 4.2) 

} 

Yields: 
Approximate solution of the 
mathematical model (that is, 
approximate response of mechanical 
idealization) 

Figure 4.8 Finite element solution process 

such as the response prediction of a three-dimensional shell. Instead, in a practical analysis, 
a finite element idealization of the physical problem is established directly. However, to 
study the convergence of the finite element solution as the number of elements increases, 
it is valuable to recognize that a mathematical model is actually implied in the finite element 
representation of the physical problem. That is, a proper finite element solution should 
converge (as the number of elements is increased) to the analytical (exact) solution of the 
differential equations that govern the response of the mathematical model. Furthermore, 
the convergence behavior displays all the characteristics of the finite element scheme be­
cause the differential equations of motion of the mathematical model express in a very 
precise and compact manner all basic conditions that the solution variables (stress, dis­
placement, strain, and so on) must satisfy. If the differential equations of motion are not 
known, as in a complex shell analysis, and/or analytical solutions cannot be obtained, the 
convergence of the finite element solutions can be measured only on the fact that all basic 
kinematic, static, and constitutive conditions contained in the mathematical model must 
ultimately (at convergence) be satisfied. Therefore, in all discussions of the convergence of 
finite element solutions we imply that the convergence to the exact solution of a mathemat­
ical model is meant. 

Here it is important to recognize that in linear elastic analysis there is a unique exact 
solution to the mathematical model. Hence if we have a solution that satisfies the governing 
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mathematical equations exactly, then this is the exact solution to the problem (see Sec­
tion 4.3.4). 

In considering the approximate finite element solution to the exact response of the 
mathematical model, we need to recognize that different sources of errors affect the finite 
element solution results. Table 4.4 summarizes various general sources of errors. Round-off 
errors are a result of the finite precision arithmetic of the computer used; solution errors in 
the constitutive modeling are due to the linearization and integration of the constitutive 
relations; solution errors in the calculation of the dynamic response arise in the numerical 
integration of the equations of motion or because only a few modes are used in a mode 
superposition analysis; and solution errors arise when an iterative solution is obtained 
because convergence is measured on increments in the solution variables that are small but 
not zero. In this section, we will discuss only the finite element discretization errors, which 
are due to interpolation of the solution variables. Thus, in essence, we consider in this 
section a model problem in which the other solution errors referred to above do not arise: 
a linear elastic static problem with the geometry represented exactly with the exact calcula­
tion of the element matrices and solution of equations, i.e., also negligible round-off 
errors. For ease of presentation, we assume that the prescribed displacements are zero. 
Nonzero displacement boundary conditions would be imposed as discussed in Sec­
tion 4.2.2, and such boundary conditions do not change the properties of the finite element 
solution. 

For this model problem, let us restate for purposes of our discussion the basic equation 
of the principle of virtual work governing the exact solution of the mathematical model 

( ETT dV= ( rrsJrs1 dS + f ii7 f 8 dV 
Jv J~ v 

(4.62) 

TABLE 4.4 Finite element solution errors 

Error Error occurrence in See section 

Discretization Use of finite element 4.2.1 
interpolations for geome- 4.2.3, 5.3 
try and solution variables 

Numerical Evaluation of finite 5.5 
integration element matrices using 6.8.4 
in space numerical integration 

Evaluation of Use of nonlinear material 6.6.3 
constitutive models 6.6.4 
relations 

Solution of Direct time integration, 9.2-9.4 
dynamic equi- mode superposition 
librium 
equations 

Solution of Gauss-Seidel, conjugate 8.3, 8.4 
finite element gradient, Newton-Raphson, 9.5 
equations by quasi-Newton methods, 10.4 
iteration eigensolutions 

Round-off Setting up equations and 8.2.6 
their solution 
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We recall that for 1' to be the exact solution of the mathematical model, (4.62) must 
hold for arbitrary virtual displacements ii (and corresponding virtual strains i), with iizero 
at and corresponding to the prescribed displacements. A short notation for ( 4.62) 1s 

Find the displacements u (and corresponding stresses T) such that 

a(u, v) = (f, v) for all admissible v 
(4.63) 

Here a(·,) is a bilinear form and (f ,·) is a linear formLthese forms depend on the mathe­
matical model considered-u is the exact displacement solution, v is any admissible virtual 
displacement ["admissible" because the functions v must be continuous and zero at and 
corresponding to actually prescribed displacements (see (4.7)], and f represents the forcing 
functions (loads f 8t and f8

). Note that the notation in ( 4.63) implies an integration process. 
The bilinear forms a(·,) that we consider in this section are symmetric in the sense that 
a(u, v) = a(v, u). 

From (4.63) we have that the strain energy corresponding to the exact solution u is 
1/2 a(u, u). We assume that the material properties and boundary conditions of our model 
problem are such that this strain energy is finite. This is not a serious restriction in practice 
but requires the proper choice of a mathematical model. In particular, the material proper­
,ties must be physically realistic and the load distributions (externally applied or due to 
displacement constraints) must be sufficiently smooth. We have discussed the need of 
modeling the applied loads properly already in Section 1.2 and will comment further on it 
in Section 4.3.4. 

Assume that the finite element solution is uh: this solution lies of course in the finite 
element space given by the displacement interpolation functions (h denoting here the size 
of the generic element and hence denoting a specific mesh). Then we define "convergence" 
to mean that 

ash-0 (4.64) 

or, equivalently [see ( 4.90)], that 

a(uh, uh) - a(u. u) as h-+ 0 

Physically, this statement means that the strain energy calculated by the finite element 
solution converges to the exact strain energy of the mathematical model as the finite element 
mesh is refined. Let us consider a simple example to show what we mean by the bilinear 
form a(·,). 

9 The bilinearity of a(·,) refers to the fact that for any constants ')'1 and 'Y2, 

a(11u, + ')'2U2, v) = 11a(u1, v) + y2a(u2, v) 

a(u, ')'1V1 + ')'2V2) = 1,a(u, v1) + ')'2a(u, v2) 

and the linearity of (f,·) refers to the fact that for any constants 'Yi and y2 , 

(f, 'Y1V1 + 'YzV2) = 'Y1(f, V1) + 'Yz(f, V2). 
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EXAMPLE 4.22: Assume that a simply supported prestressed membrane, with (constant) 
prestress tension T, subjected to transverse loading p is to be analyzed (see Fig. E4.22). Establish 
for this problem the form ( 4.63) of the principle of virtual work. 

Hinged on all edges 

m 
x 

Figure E4.22 Prestressed membrane 

The principle of virtual work gives for this problem 

1ll {S]dx~ L pwdxdy 

where w(x, y) is the transverse displacement. The left-hand side of this equation gives the bilinear 
form a(v, u), with v = W, u = w, and the integration on the right-hand side gives(!, v). 

Depending on the specific (properly formulated) displacement-based finite elements 
used in the analysis of the model problem defined above, we may converge monotonically 
or nonmonotonically to the exact solution as the number of finite elements is increased. In 
the following discussion we consider the criteria for the monotonic convergence of solutions. 
Finite element analysis conditions that lead to nonmonotonic convergence are discussed in 
Section 4.4. 

4.3.2 Criteria for Monotonic Convergence 

For monotonic convergence, the elements must be complete and the elements and mesh must 
be compatible. If these conditions are fulfilled, the accuracy of the solution results will 
increase continuously as we continue to refine the finite element mesh. This mesh re­
finement should be performed by subdividing a previously used element into two or more 
elements; thus, the old mesh will be "embedded,, in the new mesh. This means mathemat­
ically that the new space of finite element interpolation functions will contain the previously 
used space, and as the mesh is refined, the dimension of the finite element solution space 
will be continuously increased to contain ultimately the exact solution. 

The requirement of completeness of an element means that the displacement functions 
of the element must be able to represent the rigid body displacements and the constant 
strain states. 
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The rigid body displacements are those displacement modes that the element must be 
able to undergo as a rigid body without stresses being developed in it. As an example, a 
two-dimensional plane stress element must be able to translate uniformly in either direction 
of its plane and to rotate without straining. The reason that the element must be able to 
undergo these displacements without developing stresses is illustrated in the analysis of the 
cantilever shown in Fig. 4.9: the element at the tip of the beam-for any element size­
must translate and rotate stress-free because by simple statics the cantilever is not subjected 
to stresses beyond the point of load application. 

The number of rigid body modes that an element must be able to undergo can usually 
be identified without difficulty by inspection, but it is instructive to note that the number of 
element rigid body modes is equal to the number of element degrees of freedom minus the 
number of element straining modes (or natural modes). As an example, a two-noded truss 
has one straining mode (constant strain state), and thus one, three, and five rigid body modes 
in one-, two-, and three-dimensional conditions, respectively. For more complex finite 

[]

-j 
I 
I 

' I I 
I _, 

,-------~ 

bd 
(a) Rigid body modes of a plane stress element 

p 

1-AiJl:b,.-- Distributed 
loadp 

~_..._I _..,_J ........_I ____ J ............... g 

) 

Rigid body translation 
and rotation; 
element must be 
stress-free for any 
element size 

(b} Analysis to illustrate the rigid body mode 
conditon 

Figure 4.9 Use of plane stress element in analysis of cantilever 
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elements the individual straining modes and rigid body modes are displayed effectively by 
representing the stiffness matrix in the basis of eigenvectors. Thus, solving the eigenproblem 

(4.65) 

we have (see Section 2.5) 

K«I> = «l>A (4.66) 

where «I> is a matrix storing the eigenvectors <f>1, ... , <f>11 and A is a diagonal matrix storing 
the corresponding eigenvalues, A = diag(.:\i). Using the eigenvector orthonormality prop­
erty we thus have 

(4.67) 

We may look at A as being the stiffness matrix of the element corresponding to the 
eigenvector displacement modes. The stiffness coefficients A1, ... , A,1 display directly how 
stiff the element is in the corresponding displacement mode. Thus, the transformation in 
( 4.67) shows clearly whether the rigid body modes and what additional straining modes are 
present. 10 As an example, the eight eigenvectors and corresponding eigenvalues of a four­
node element are shown in Fig. 4.10. 

The necessity for the constant strain states can be physically understood if we imagine 
that more and more elements are used in the assemblage to represent the structure. Then 
in the limit as each element approaches a very small size, the strain in each element 
approaches a constant value, and any complex variation of strain within the structure can 
be approximated. As an example, the plane stress element used in Fig. 4. 9 must be able to 
represent two constant normal stress conditions and one constant shearing stress condition. 
Figure 4.10 shows that the element can represent these constant stress conditions and, in 
addition, contains two flexural straining modes. 

The rigid body modes and constant strain states that an element can represent can also 
be directly identified by studying the element strain-displacement matrix (see Exam­
ple 4.23). 

The requirement of compatibility means that the displacements within the elements 
and across the element boundaries must be continuous. Physically, compatibility ensures 
that no gaps occur between elements when the assemblage is loaded. When only transla­
tional degrees of freedom are defined at the element nodes, only continuity in the displace­
ments u, v, or w, whichever are applicable, must be preserved. However, when rotational 
degrees of freedom are also defined that are obtained by differentiation of the transverse 
displacement (such as in the formulation of the plate bending element in Example 4.18), it 
is also necessary to satisfy element continuity in the corresponding first displacement 
derivatives. This is a consequence of the kinematic assumption on the displacements over 
the depth of the plate bending element; that is, the continuity in the displacement w and the 
derivatives aw/ax and/or aw/ay along the respective element edges ensures continuity of 
displacements over the thickness of adjoining elements. 

Compatibility is automatically ensured between truss and beam elements because 
they join only at the nodal points, and compatibility is relatively easy to maintain in 

ioNote also that since the finite element analysis overestimates the stiffness, as discussed in Section 4.3.4, 
the "smaller" the eigenvalues, the more effective the element. 
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Figure 4.10 Eigenvalues and eigenvectors of four-node plane stress element 

Chap.4 

two-dimensional plane strain, plane stress, and axisymmetric analysis and in three­
dimensional analysis, when only u, v, and w degrees of freedom are used as nodal point 
variables. However, the requirements of compatibility are difficult to satisfy in plate bend­
ing analysis, and particularly in thin shell analysis if the rotations are derived from the 
transverse displacements. For this reason, much emphasis has been directed toward the 
development of plate and shell elements, in which the displacements and rotations are 
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variables (see Section 5.4). With such elements the compatibility requirements are just as 
easy to fulfill as in the case of dealing only with translational degrees of freedom. 

Whether a specific element is complete and compatible depends on the formulation 
used, and each formulation need be analyzed individually. Consider the following simple 
example. 

EXAMPLE 4.23: Investigate if the plane stress element used in Example 4.6 is compatible and 
complete. 

We have for the displacements of the element, 

u(x. y) = a, + a2x + a3y + «4XY 

v(x, y) = f31 + ~x + {33y + /34xy 

Observing that the displacements within an element are continuous, in order to show that 
the element is compatible, we need only investigate if interelement continuity is also preserved 
when an element assemblage is loaded. Consider two elements interconnected at two node points 
(Fig. E4.23) on which we impose two arbitrary displacements. It follows from the displacement 
assumptions that the points (i.e., the material particles) on the adjoining element edges displace 
linearly, and therefore continuity between the elements is preserved. Hence the element is 
compatible. 

Cl2 • "3 V2 • V3 

--------------~--- ~----------
Node3 --~-~-~----------~--~---,._ "' ... ,..._~--------------..... 

2,3 

i;•v, 
y, v L ------------,-~- -----------------4 ------- I ---... 1 

/ u,. u, 

x, u 

Figure E4.23 Compatibility of plane stress element 

Particles on element edges 
remain together 

Considering completeness, the displacement functions show that a rigid body translation 
in the x direction is achieved if only a1 is nonzero. Similarly, a rigid body displacement in the 
y direction is imposed by having only {31 nonzero, and for a rigid body rotation a3 and ~ must 
be nonzero only with {3i = -a3. The same conclusion can also be arrived at using the matrix 
E that relates the strains to the generalized coordinates (see Example 4.6). This matrix also 
shows that the constant strain states are possible. Therefore the element is complete. 
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4.3.3 The Monotonically Convergent Finite Element 
Solution: A Ritz Solution 

Chap.4 

We observed earlier that the application of the principle of virtual work is identical to using 
the stationarity condition of the total potential of the system (see Example 4.4 ). Considering 
also the discussion of the Ritz method in Section 3.3.3, we can conclude that monotonically 
convergent displacement-based finite element solutions are really only applications of this 
method. In the finite element analysis the Ritz functions are contained in the element 
displacement interpolation matrices ff<ml, m = 1, 2, ... , and the Ritz parameters are the 
unknown nodal point displacements stored in U. As we discuss further below, the mathe­
matical conditions on the displacement interpolation functions in the matrices ff<m>, in order 
that the finite element solution be a Ritz analysis, are exactly those that we identified earlier 
using physical reasoning. The correspondence between the analysis methods is illustrated 
in Examples 3.22 and 4.5. 

Considering the Ritz method of analysis with the finite element interpolations, we 
have 

Il = t urKU - urR (4.68) 

where TI is the total potential of the system. Invoking the stationarity of TI with respect to 
the Ritz parameters U; stored in U and recognizing that the matrix K is symmetric, we 
obtain 

KU=R (4.69) 

The solution of ( 4.69) yields the Ritz parameters, and then the displacement solution in the 
domain considered is 

m = I, 2, ... (4.70) 

The relations in ( 4.68) to ( 4. 70) represent a Ritz analysis provided the functions used 
satisfy certain conditions. We defined in Section 3.3.2 a cm-i variational problem as one 
in which the variational indicator of the problem contains derivatives of order m and lower. 
We then noted that for convergence the Ritz functions must satisfy the essential (or geomet­
ric) boundary conditions of the problem involving derivatives up to order (m - 1 ), but that 
the functions do not need to satisfy the natural (or force) boundary conditions involving 
derivatives of order m to (2m - 1) because these conditions are implicitly contained in the 
variational indicator TI. Therefore, in order for a finite element solution to be a Ritz analysis, 
the essential boundary conditions must be completely satisfied by the finite element nodal 
point displacements and the displacement interpolations between the nodal points. How­
ever, in selecting the finite element displacement functions, no special attention need be 
given to the natural boundary conditions because these conditions are imposed with the 
load vector and are satisfied approximately in the Ritz solution. The accuracy with which 
the natural or force boundary conditions are satisfied depends on the specific Ritz functions 
employed, but this accuracy can always be increased by using a larger number of functions, 
i.e., a larger number of finite elements to model the problem. 

In the classical Ritz analysis the Ritz functions extend over the complete domain 
considered, whereas in the finite element analysis the individual Ritz functions extend only 
over subdomains (finite elements) of the complete region. Hence, there must be a question 
as to what conditions must be fulfilled by the finite element interpolations with regard to 
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continuity requirements between adjacent subdomains. To answer this question we consider 
the integrations that must be performed to evaluate the coefficient matrix K. We recognize 
that in considering a cm- t problem we need continuity in at least the (m - 1 )st derivatives 
of the Ritz trial functions in order that we can perform the integrations across the element 
boundaries. However, this continuity requirement corresponds entirely to the element 
compatibility conditions that we discussed in Section 4.3.2. For example, in the analysis of 
fully three-dimensional problems only the displacements between elements must be contin­
uous, whereas in the analysis of plate problems formulated using the Kirchhoff plate theory 
we also need continuity in the first derivatives of the displacement functions. 

In summary, therefore, for a cm-t problem [cm-i = continuity on trial functions and 
their derivatives up to order (m - 1) ], in the classical Ritz analysis the trial functions are 
selected to satisfy exactly all boundary conditions that involve derivatives up to order 
(m - 1). The same holds in finite element analysis, but in addition, continuity in the trial 
functions and their derivatives up to order (m 1) must be satisfied between elements in 
order for the finite element solution to correspond to a Ritz analysis. 

Although the classical Ritz analysis procedure and the displacement-based finite 
element method are theoretically identical, in practice, the finite element method has 
important advantages over a conventional Ritz analysis. One disadvantage of the conven­
tional Ritz analysis is that the Ritz functions are defined over the whole region considered. 
For example, in the analysis of the cantilever in Example 3.24, the Ritz functions spanned 
from x = 0 to x = L. Therefore, in the conventional Ritz analysis, the matrix K is a full 
matrix, and as pointed out in Section 8.2.3, the numerical operations required for solution 
of the resulting algebraic equations are considerable if many functions are used. 

A particular difficulty in a conventional Ritz analysis is the selection of appropriate 
Ritz functions since the solution is a linear combination of these functions. In order to solve 
accurately for large displacement or stress gradients, many functions may be needed. 
However, these functions also unnecessarily extend over the regions in which the displace­
ments and stresses vary rather slowly and where not many functions are needed. 

Another difficulty arises in the conventional Ritz analysis when the total region of 
interest is made up of subregions with different kinds of strain distributions. As an example, 
consider a plate that is supported by edge beams and columns. In such a case, the Ritz 
functions used for one region (e.g., the plate) are not appropriate for the other regions (i.e., 
the edge beams and columns), and special displacement continuity conditions or boundary 
relations must be introduced. 

The few reasons given already show that the conventional Ritz analysis is, in general, 
not particularly computer-oriented, except'in some cases for the development of special­
purpose programs. On the other hand, the finite element method has to a large extent 
removed the practical difficulties while retaining the advantageous properties of the con­
ventional Ritz method. With regard to the difficulties mentioned above, the selection of Ritz 
functions is handled by using an adequate element library in the computer program. The use 
of relatively many functions in regions of high stress and displacement gradients is possible 
simply by using many elements, and the combination of domains with different kinds of 
strain distributions is possible by using different kinds of elements to idealize the domains. 
It is this generality of the finite element method, and the good mathematical foundation, 
that have made the finite element method the very widely used analysis tool in today's 
engineering environments. 
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4.3.4 Properties of the Finite Element Solution 

Let us consider the general linear elasticity problem and its finite element solution and 
identify certain properties that are useful for an understanding of the finite element method. 
We shall use the notation summarized in Table 4.5. 

The elasticity problem can be written as follows (see, for example, G. Strang and G. J. 
Fix [A]. P. G. Ciarlet [A], or F. Brezzi and M. Fortin [A]). 

Find u E V such that 

a(u, v) = (f, v) \.;f v EV 

where the space V is defined as 

{ 
av· 

V = v ! v E L2(Vol); -' E L 2(Voi), i, j 
OXj 

1, 2, 3; vils,, = 0, i = l, 2, 3} 

(4.71) 

(4.72) 

Here L 2(Vol) is the space of square integrable functions in the volume, "Vol", of the body 
being considered, 

L2(Vol) = {w! w is defined in Vol and L}! (w;)2
) dVol = llwllI21Vot) < +co} {4.73) 

TABLE 4.5 Notation used in discussion of the properties and convergence of finite element 
solutions 

Symbol 

a(.,.) 

f 
u 
v 

'V 

E 

v. vh 
Vol 
L2 
eh 
3 
c 

11~1£ 
inf 
sup 

Meaning 

Bilinear form corresponding to model problem being considered (see Example 4.22) 
Load vector 
Exact displacement solution to mathematical model; an element of the space V 

Displacements; an element of the space V 

Finite element solution, an element of the space Vh 

Finite element displacements; an element of the space Vh 

For all 
An element of 
Spaces of functions [see (4.72) and (4.84)] 
Volume of body considered 
Space of a square integrable functions [see (4.73)] 
Error between exact and finite element solution, eh == u - Un 

There exists 
Contained in 
Contained in but not equal to 
Energy nonn [see (4.74)] 
We take the infimum. 
We take the supremum. 
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Hence, ( 4.72) defines a space of functions corresponding to a general three-dimensional 
analysis. The functions in the space vanish on the boundary Su, and the squares of the 
functions and of their first derivatives are integrable. Corresponding to V, we use the energy 
norm 

II vii! = a(v, ·+') (4.74) 

which actually corresponds to twice the strain energy stored in the body when the body is 
subjected to the displacement field v. 

We assume in our discussion that the structure considered in ( 4.71) is properly 
supported, corrresponding to the zero displacement conditions on S11 , so that II v II} is greater 
than zero for any v different from zero. 

In addition, we shall also use the Sobolev norms of order m = 0 and m = 1 defined as 

m = 0: 

(4.75) 

m = 1: 

(II v 11,l' = 01 v I~)' + LL t C:J] dVol (4.76) 

For our elasticity problem the norm of order 1 is used, 11 and we have the following two 
important properties for our bilinear form a. 

Continuity: 

3M> 0 such that 'if V1, V2 E V, (4.77) 

Ellipticity: 

3 a > 0 such that 'if v E V, a(v, v) :2: a 11 vllr (4.78) 

where the constants a and M depend on the actual elasticity problem being considered, 
including the material constants used, but are independent of v. 

11 In our discussion, we shall also use the Poincare-Friedrichs inequality, namely, that for the analysis 
problems we consider, for any v we have 

f (±(vi) dVol :s cf (.± (:vi_)2

) dVol 
Vol 1=1 Vol ,.,~! uX; 

where c is a constant (see, for example, P. G. Ciarlet [A)J. 
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The continuity property is satisfied because reasonable norms are used in ( 4. 77), and 
the ellipticity property is satisfied because a properly supported (i.e., stable) structure is 
being considered (see P. G. Ciarlet [A] for a mathematical proof). Based on these properties 
we have 

(4.79) 

where c1 and c2 are constants independent of v, and we therefore have that the energy norm 
is equivalent to the 1-norm (see Section 2.7). In mathematical analysis the Sobolev norms 
are commonly used to measure rates of convergence (see Section 4.3.5), but in practice the 
energy norm is frequently more easily evaluated [see ( 4.97)]. Because of ( 4.79), we can say 
that convergence can also be defined, instead of using ( 4.64 ), as 

ash -'Jo O 

and the energy norm in problem solutions will converge with the same order as the 1-norm. 
We examine the continuity and ellipticity of a bilinear form a in the following example. 

EXAMPLE 4.24: Consider the problem in Example 4.22. Show that the bilinear form a 
satisfies the continuity and ellipticity conditions. 

Continuity follows because12 

J, (aw, dw2 aw1 aw2) 
a(w,, w2) = T -- + -- dxdy 

A dX OX iJy iJy 

s L T[ (°;')2 + e;I rrl ( 0;2 y + ( :2 Yr2 dx dy 

s {LT[ (:Ir+ e;·r] dxdy r2 
X {LT[ (<1; 2)2 + (°;2)2] dx dy r2 

S cllwilli llw2lli 

Ellipticity requires that 

a(w. w) =Lr[ (::Y + (::YJ dx dy 

~ a L [ w2 + e:r + (:rJ dxdy a 11w11r 

However, the Poincare-Friedrichs inequality, 

L w
2 

dxdy s c L [ e:r + e:rJ dxdy 

where c is a constant, ensures that (a) is satisfied. 

(a) 

12 Here we use the Schwarz inequality, which says that for vectors a and b, I a • b I :s II a lh II b lb, where II · 112 
is defined in (2.148). 
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The above statements on the elasticity problem encompass one important point 
already mentioned earlier: the exact solution to the problem must correspond to a finite 
strain energy, see (4.64) and (4.79). Therefore, for example,-strictly-we do not endeavor 
to solve general two- or three-dimensional elasticity problems with the mathematical 
idealization of point loads ( the solution for a point load on a half space corresponds to 
infinite strain energy, see for instance S. Timoshenko and J. N. Goodier [A]). Instead, we 
represent the loads in the elasticity problem closer to how they actually act in nature, namely 
as smoothly distributed loads, which however can have high magnitudes and act over very 
small areas. Then the solution of the variational formulation in ( 4. 71) is the same as the 
solution of the differential formulation. Of course, in our finite element analysis so long as 
the finite elements are much larger than the area of load application, we can replace the 
distributed load over the area with an equivalent point load, merely for efficiency of 
solution; see Section 1.2 and the example in Fig. 1.4. 

An important observation is that the exact solution to our elasticity problem is unique. 
Namely, assume that 01 and 02 are two different solutions; then we would have 

a(u,, v) = (f, v) \:/ v E V (4.80) 

and a(u2, v) = (f, v) \:/vEV (4.81) 

Subtracting, we obtain 

a(u, - u1, v) = 0 \t' v EV (4.82) 

and taking v = o, - 02, we have a(o1 - 02, 01 02) = 0. Using (4.79) with v = U1 - 02, 

we obtain II 01 - 02 Iii = 0, which means 01 = 02, and hence we have proven that our 
assumption of two different solutions is untenable. 

Now let Vh be the space of finite element displacement functions (which correspond 
to the displacement interpolations contained in all element displacement interpolation 
matrices a<m>) and let vh be any element in that space (i.e., any displacement pattern that 
can be obtained by the displacement interpolations). Let oh be the finite element solution; 
hence uh is also an element in Vh and the specific element that we seek. Then the finite 
element solution of the problem in ( 4. 71) can be written as 

Find uh E Vh such that 

a(uh, vh) = (f, vh) 
(4.83) 

The space Vh is defined as 

and for the elements of this space we use the energy norm ( 4.74) and the Sobolev norm 
(4.76). Of course, Vh c V. 

The relation in ( 4.83) is the principle of virtual work for the finite element discretiza­
tion corresponding to Vh, With this solution space, the continuity and ellipticity conditions 
(4.77) and (4.78) are satisfied, using vh E Vh, and a positive definite stiffness matrix is 
obtained for any Vh. 
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We should note that Vh corresponds to a given mesh, where h denotes the generic 
element size, and that in the discussion of convergence we of course consider a sequence of 
spaces V11 (a sequence of meshes with decreasing h). We illustrate in Figure 4.11 the 
elements of Vh for the discretization dealt with in Example 4.6. 

9 

1 h 
Nodal Element 
point number 
number 

Figure 4.11 Aerial view of basis functions for space Vh used in analysis of cantilever plate 
of Example 4.6. The displacement functions are plotted upwards for ease of display. but each 
function shown is applicable to the u and v displacements. An element of Vh is any linear 
combination of the 12 displacement functions. Note that the functions correspond to the 
element displacement interpolation matrices ff(ml, discussed in Example 4.6, and that the 
displacements at nodes 1, 2 and 3 are zero. 
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Considering the finite element solution uh and the exact solution u to the problem, we 
have the following important properties. 

Property 1. Let the error between the exact solution u and the finite element 
solution uh be eh, 

Then the first property is 

The proof is obtained by realizing that the principle of virtual work gives 

a(u, vh) = (f, vh) Tl vh E Vh 

and 

(4.85) 

(4.86) 

(4.87) 

(4.88) 

so that by subtraction we obtain ( 4.86). We may say that the error is "orthogonal in a(. , .),, 
to all vh in Vh, Clearly, as the space Vh increases, with the larger space always containing the 
smaller space, the solution accuracy will increase continuously. The next two properties are 
based on Property 1. 

Property 2. The second property is 

I a(u,., u,.) s a(u: u) (4.89) 

We prove this property by considering 

a(u, u) = a(uh + eh, uh + e,.) 

= a(u,., uh) + 2a(u,., eh) + a(e,., eh) (4.90) 

= a(uh, uh) + a(eh, eh) 

where we have used ( 4.86) with vh = uh. The relation ( 4.89) follows because a(e11, eh) > 0 
for any eh * 0 (since for the properly supported structure IJv JIE > 0 for any nonzero v). 

Hence, the strain energy corresponding to the finite element solution is always smaller 
than or equal to the strain energy corresponding to the exact solution. 

Property 3. The third property is 

(4.91) 

For the proof we use that for any wh in Vh, we have 

a(eh + wh, eh + wh) = a(eh, eh) + a(wh, wh) (4.92) 
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Hence, (4.93) 

Choosing wh = uh - vh gives (4.91). 
This third property says that the finite element solution uh is chosen from all the 

possible displacement patterns vh in Vh such that the strain energy corresponding to u - uh 
is the minimum. Hence, in that sense, the "energy distance" between u and the elements in 
Vh is minimized by the solution uh in Vh. 

Using ( 4.91) and the ellipticity and continuity of the bilinear form, we further obtain 

a llu - Uh llt S a(u - Uh, U - Uh) 

= inf a(u - vh, u - vh) (4.94) 
v11EV1, 

s M inf llu - vhlli llu - vhll1 
v11evh 

where "inf" denotes the infimum (see Table 4.5). If we let d(u, Vh) = inf llu - vhll,, we 
recognize that we have the property ""ev" 

I l!u ~ uhlli s c d(u, Vh) J (4.95) 

where c is a constant, c = ~ independent of h but dependent on the material proper­
ties.13 This result is referred to as Cea's lemma (see, for ex.ample, P. G. Ciarlet [A]). 

The above three properties give valuable insight into how the finite element solution 
is chosen from the displacement patterns possible within a given finite element mesh and 
what we can expect as the mesh is refined. 

We note, in particular, that ( 4.95), which is based on Property 3, states that a 
sufficient condition for convergence with our sequence of finite element spaces is that for 
any u E V we have limh ...... o inf llu - vh Iii = 0. Also, ( 4.95) can be used to measure the rate 
of convergence as the mesh is refined by introducing an upper bound on how d( u, Vh) 
changes with the mesh refinement (see Section 4.3.5). 

Further, Properties 2 and 3 say that at the finite element solution the error in strain 
energy is minimized within the possible displacement patterns of a given mesh and that the 
strain energy corresponding to the finite element solution will approach the exact strain 
energy (from below) as increasingly finer meshes are used (with the displacement patterns 
of the finer mesh containing the displacement patterns of the previous coarser mesh). 

We can also relate these statements to earlier observations that in a finite element 
solution the stationarity of the total potential is established (see Section 4.3.2). That is, for 
a given mesh and any nodal displacements Uany, we have 

(4.96) 

13 There is a subtle point in considering the property ( 4.95) and the condition ( 4.156) discussed later; namely. 
while (4.95) is always valid for any values of bulk and shear moduli, the constant c becomes very large as the bulk 
modulus increases, and the property ( 4.95) is no longer useful. For this reason, when the bulk modulus K is very 
large, we need the new property ( 4.156) in which the constant is independent of K, and this leads to the inf~sup 
condition. 
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The finite element solution U is obtained by invoking the stationarity of I1 to obtain 

KU= R 

243 

At the finite element displacement solution U we have the total potential Il and strain 
energy 6l1, 

(4.97) 

Therefore, to evaluate the strain energy corresponding to the finite element solution, we 
only need to perform a vector multiplication. 

To show with this notation that within the given possible finite element displacements 
(i.e., within the space Vh) I1 is minimized at the finite element solution U, let us calculate 
I1 at U + e, where e is any arbitrary vector, 

TI lu+~ = f (U + EfK(U + E) - (U + £)7R 

= TI lu + e7(KU - R) + 1e7KE 

= TI lu + f E7Ke 

(4.98) 

where we used that KU = Rand the fact that K is a symmetric matrix. However, since K 
is positive definite, I1 lu is the minimum of Il for the given finite element mesh. As the mesh 
is refined, TI will decrease and according to ( 4.97) GU, will correspondingly increase. 

Considering ( 4.89), ( 4.91 ), and ( 4.97), we observe that in the finite element solution 
the displacements are (on the "whole'') underestimated and hence the stiffness of the 
mathematical model is (on the "whole") overestimated. This overestimation of the stiffness 
is (physically) a result of the "internal displacement constraints" that are implicitly imposed 
on the solution as a result of the displacement assumptions. As the finite element discretiza­
tion is refined, these "internal displacement constraints" are reduced, and convergence to 
the exact solution (and stiffness) of the mathematical model is obtained. 

To exemplify the preceding discussion, Figure 4.12 shows the results obtained in the 
analysis of an ad hoc test problem for two-dimensional finite element discretizations. The 
problem is constructed so as to have no singularities. As we discuss in the next section, in 
this case the full (maximum) order of convergence is obtained with a given finite element 
in a sequence of uniform finite element meshes (in each mesh all elements are of equal 
square size). 

Figure 4.12 shows the convergence in strain energy when a sequence of uniform 
meshes of nine-node elements is employed for the solutions. The meshes are constructed by 
starting with a 2 X 2 mesh of square elements of unit side length (for which h = 1 ), then 
subdividing each element into four equal square elements (for which h = 4 ,) to obtain the 
second mesh, and continuing this process. We clearly see that the error in the strain energy 
decreases with decreasing element size h, as we would expect according to (4.91). We 
compare the order of convergence seen in the finite element computations with a theoreti­
cally established value in the next section. 
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x, 
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u 

E= 200,000 
V• 0.30 

(-1, -1 ) (+ 1, -1) 

N elements per side, N = 2, 4, 8, ... 

(a) Square domain considered 

u = c1 (1 - x2) (1 - y2) eky cos kx 
v= c, (1 - x2) (1 - y2) eky sin kx 
c1 = constant; k = 5 

(b) Exact in·plane displacements 

Obtain the finite element solution for the body loads ff and ,:. where 

f! =- (orxx + ilrxy\ 
ax ay) 

f.8 _ (01' yy ar yx) 
y-- - +­ay ax 

Chap. 4 

and r xx• r yy, r xy are the stresses corresponding to the exact in~plane displacements given in (b). 

(c) Test problem 

Figure 4.12 Ad~hoc test problem for plane stress (or plane strain, axisymmetric) elements. 
We use, for h small, E - Eh = c h« and hence log (E - Eh) = log c + a log h (see also 
(4.101)). The numerical solutions give a = 3.91. 

4.3.5 Rate of Convergence 

In the previous sections we considered the conditions required for monotonic convergence 
of the finite element analysis results and discussed how in general convergence is reached, 
but we did not mention the rate at which convergence occurs. 

As must be expected, the rate of convergence· depends on the order of the polynomials 
used in the displacement assumptions. In this context the notion of complete polynomials is 
useful. 

Figure 4.13 shows the polynomial terms that should be included to have complete 
polynomials in x and y for two-dimensional analysis. It is seen that all possible terms of the 
form xayf3 are present, where a + f3 = k and k is the degree to which the polynomial is 
complete. For example, we may note that the element investigated in Example 4.6 uses a 
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4 

3 

2 

-2 

f = a(u, u) 

Eh= a (uh, uh) 

h = 2/N, N== 2, 4, 8, ... 

_, 
log,oh 

(d) Solution for plane stress problem 

Figure 4.12 (continued) 
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polynomial displacement that is complete to degree 1 only. Figure 4.13 also shows impor­
tant notation for polynomial spaces. The spaces Pt< correspond to the complete polynomials 
up to degree k. They can also be thought of as the basis functions of triangular elements: 
the functions in P, correspond to the functions of the linear displacement (constant strain) 
triangle (see Example 4.17); the functions in P2 correspond to the functions of the parabolic 
displacement (linear strain) triangle (see Section 5.3.2); and so on. 

In addition, Fig. 4.13 shows the polynomial spaces Q1<, k = 1, 2, 3, which correspond 
to the 4-node, 9-node, and 16-node elements, referred to as Lagrangian elements because 
the displacement functions of these elements are Lagrangian functions (see also Sec­
tion 5.5.1). 

In considering three-dimensional analysis of course a figure analogous to Fig. 4.13 
could be drawn in which the variable z would be included. 

Let us think about a sequence of uniform meshes idealizing the complete volume of 
the body being considered. A mesh of a sequence of uniform meshes consists of elements 
of equal size-square elements when the polynomial spaces Q1c are used. Hence, the 
parameter h can be taken to be a typical length of an element side. The sequence is obtained 
by taking a starting mesh of elements and subdividing each element with a natural pattern 
to obtain the next mesh, and then repeating this process. We did this in solving the ad hoc 
test problem in Fig. 4.12. However, considering an additional analysis problem, for exam­
ple, the problem in Example 4.6, we would in Fig. 4.11 subdivide each four-node element 
into four equal new four-node elements to obtain the first refined mesh; then we would 



246 Formulation of the Finite Element Method Chap.4 

Degree of complete 
polynomial 

Figure 4.13 Polynomial terms in two-dimensional analysis, Pascal triangle 

Corresponding 
space 

subdivide each element of the first refined mesh into four equal new four-node elements to 
obtain the second refined mesh; and so on. The continuation of this subdivision process 
would give the complete sequence of meshes. 

To obtain an expression for the rate of convergence, we would ideally use a formula 
giving d(u, Vh) in (4.95) as a function of h. However, such a formula is difficult to obtain, 
and it is more convenient to use interpolation theory and work with an upper bound on 
d(u, Vh), 

Let us assume that we employ elements with complete polynomials of degree k and 
that the exact solution u to our elasticity problem is "smooth" in the sense that the solution 
satisfies the relation14 

II ul~•• = {L [#. (u,)' + #. ~ (!:)' 
k+I 3 ( i)" )2] }1/2 

+ ~ ~ ~ r "; 1 dVol < oo 
n•2 i .. t r+s+t•n ax. OX2 dX3 

(4.99) 

where of course k ;;::: 1. 
Therefore, we assume that all derivatives of the exact solution up to order (k + 1) in 

( 4.99) can be calculated. 
A basic result of interpolation theory is that there exists an interpolation function 

u, E Vh such that 

(4.100) 

where h is the mesh size parameter indicating the "size" of the elements and c is a constant 
independent of h. Typically, h is taken to be the length of the side of a generic element 
or the diameter of a circle encompassing that element. Note that u, is not the finite ele­
ment solution in Vh but merely an element in Vh that geometrically corresponds to a function 

14 We then have u is an element of the Hilbert space Hk+ 1• 
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close to u. Frequently, as here, we let u" at the finite element nodes, take the value of the 
exact solution u. 

Using (4.100) and Property 3 discussed in Section 4.3.4 [see (4.91)], we can now 
show that the rate of convergence of the finite element solution Uh to the exact theory of 
elasticity solution u is given by the error estimate 

(4.101) 

where c is a constant independent of h but dependent on the material properties. Namely, 
using (4.95) and (4.100), we have 

11 u - uhll1 :S c d(u, Vh) 

:s cJ1 u - u,111 
:S CC hkll ullk+I 

(4.lOla) 

which gives ( 4.101) with a new constant c. For ( 4.101 ), we say that the rate of convergence 
is given by the complete right~hand-side expression, and we say that the order of converw 
gence is k or, equivalently, that we have o(hk) convergence. 

Another way to look at the derivation of ( 4.101 )-which is of course closely related 
to the previous derivation-is to use (4.79) and (4.91). Then we have 

1 
:s - [a(u - u,, u - u,)]112 

c, 

:s ~ llu - u,lli 
Ct 

:S C hk llullk+I 

(4.lOlb) 

Hence, we see directly that to obtain the rate of convergence, we really only expressed the 
distance d( u, Vh) in terms of an upper bound given by ( 4.100). 

In practice, we freqttently simply write (4.101) as 

(4.102) 

and we now recognize that the constant c used here is independent of h but depends on the 
solution and the material properties [because c in (4.lOla) and c2, c1 in (4.lOlb) depend 
on the material properties]. This dependence on the material properties is detrimental when 
(almost) incompressible material conditions are considered because the constant then be­
comes very large and the order of convergence k results in good accuracy only at very small 
(impractical) values of h. For this reason we need in that case the property (4.95) with the 
constant independent of the material properties, and this requirement leads to the condition 
( 4.156) (see Section 4.5). 
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The constant c also depends on the kind of element used. While we have assumed that 
the element is based on a complete polynomial of order k, different kinds of elements within 
that class in general display a different constant c for the same analysis problem (e.g., 
triangular and quadrilateral elements). Hence, the actual magnitude of the error may be 
considerably different for a given h, while the order with which the error decreases as the 
mesh is refined is the same. Clearly, the magnitude of the constant c can be crucial in 
practical analysis because it largely determines how small h actually has to be in order to 
reach an acceptable error. 

These derivations of course represent theoretical results, and we may question in how 
far these results are applicable in practice. Experience shows that the theoretical results 
indeed closely represent the actual convergence behavior of the finite element discretiza­
tions being considered. Indeed, to measure the order of convergence, we may simply 
consider the equal sign in ( 4.102) to obtain 

log (II u - uhlli) = log c + k log h (4.103) 

Then, if we plot from our computed results the graph of log (II u - uh Iii) versus log h, 
we find that the resulting curve indeed has the approximate slope k when h is sufficiently 
small. 

Evaluating the Sobolev norm may require considerable effort, and in practice, we may 
use the equivalence of the energy norm with the 1-norm. Namely, because of ( 4.79), we see 
that ( 4.101) also holds for the energy norm on the left side, and this norm can frequently 
be evaluated more easily [see ( 4.97)). Figure 4.12 shows an application. Note that the error 
in strain energy can be evaluated simply by subtracting the current strain energy from the 
strain energy of the limit solution (or, if known, the exact solution) [see (4.90)). In the 
solution in Fig. 4.12 we obtained an order of convergence (of the numerical results) of 
3.91, which compares very well with the theoretical value of 4 (here k == 2 and the strain 
energy is the energy norm squared). Further results of convergence for this ad hoc problem 
are given in Fig. 5.39 (where distorted elements with numerically integrated stiffness 
matrices are considered). 

The relation in ( 4.101) gives, in essence, an error estimate for the displacement 
gradient, hence for the strains and stresses, because the primary contribution in the 1-norm 
will be due to the error in the derivatives of the displacements. We will primarily use ( 4.101) 
and ( 4.102) but also note that the error in the displacements is given by 

II u - uhllo s c hk+ 1 II u!lk+1 (4.104) 

Hence, the order of convergence for the displacements is one order higher than for the 
strains. 

These results are intuitively reasonable. Namely, let us think in terms of a Taylor series 
analysis. Then, since a finite element of "dimension h" with a complete displacement 
expansion of order k can represent displacement variations up to that order exactly, the local 
error in representing arbitrary displacements with a uniform mesh should be o(hk+ 1

). Also, 
for a cm-i problem the stresses are calculated by differentiating the displacements m times, 
and therefore the error in the stresses is o(hk+i-m). For the theory of elasticity problem 
considered above, m = 1, and hence the relations in ( 4.101) and ( 4.104) are what we might 
expect. 
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EXAMPLE 4.25: Consider the problem shown in Figure E4.25. Estimate the error of the finite 
element solution if linear two-node finite elements are used. 

with 

Constant cross-sectional area A 
Young's modulus E 

{a) Bar subjected to load per unit length f 8(x). ax 

u == (- : x3 + ay x) /EA 

x X=L 

(b) Solutions (for finite element 
solution three elements are used) 

Figure E4.25 Analysis of bar 

The finite element problem in this case is to calculate uh E V,1 such that 

(EA ufi, vi,) = (/8. vh) 'ti v,, E V,, 

vh = { V11 I V11 E L 2(Vol). a;; E L 2(Vol). V1i lx=O = 0} 

To estimate the error we use (4.91) and can directly say for this simple problem 

I: (u' - u:)' dx ,s; f (u' - ul)' dx (a) 

where u is the exact solution, u11 is the finite element solution, and u1 is the interpolant, meaning 
that u, is considered to be equal to u at the nodal points. Hence, our aim is now to obtain an upper 
bound on J/; (u' - u;)2 dx. 

Consider an arbitrary element with end points x1 and X;+ 1 in the mesh. Then we can say 
that for the exact solution u(x) and x; s; x s; X1+ 1, 

U1 (x) = u' Ix,. + (x - Xc)u" 
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where x = x. denotes a chosen point in the element and x is also a point in the element. Let us 
choose an x. where u'lxc = u}, which can always be done because 

u,(x1) u(xi), u,(x;+1) = u(x1+1) 

Then we have for the element 

I u'(x) - u}I s h( max I u" 1) 
OsxsL 

(b) 

where we have introduced the largest absolute value of the second derivative of the exact solution 
to obtain an upper bound. 

With (b) we have 

I.L (u' - u;)2 dx s Lh 2 ( max I u" 1)2 

o OsxsL 

and hence (f (u' - u:)2 dx )"' :,;; ch (c) 

where the constant c depends on A, E, L, and f8 but is independent of h. 
We should recognize that this analysis is quite general but assumes that the exact solution 

is smooth so that its second derivative can be calculated (in this example given by - f8 /EA). Of 
course the result in (c) is just the error estimate ( 4.102). 

An interesting additional result is that the nodal point displacements of the finite element 
solution are for two reasons the exact displacements. First, the exact solution at the nodes due 
to the distributed loading is the same as that due to the equivalent concentrated loading (the 
"equivalent0 loading calculated by the principle of virtual work). Second, the finite element space 
Vh contains the exact solution corresponding to the equivalent concentrated loading. Of course, 
this nice result is a special property of the solution of one-dimensional problems and does not 
exist in general two- or three-dimensional analysis. 

In the above convergence study it is assumed that uniform discretizations are used 
( that, for example, in two-dimensional analysis the elements are square and of equal size) 
and that the exact solution is smooth. Also, implicitly, the degree of the element polynomial 
displacement expansions is not varied. In practice, these conditions are generally not 
encountered, and we need to ask what the consequences might be. 

If the solution is not smooth-for example, because of sudden changes in the geome­
try, in loads, or in material properties or thicknesses-and the uniform mesh subdivision is 
used, the order of convergence decreases; hence, the exponent of h in ( 4.102) is not k but 
a smaller value dependent on the degree of "loss of smoothness." 

In practice of course graded meshes are used in such analyses, with small elements in 
the areas of high stress variation and larger elements away from these regions. The order of 
convergence of the solutions is then still given by (4.101) but rewritten as 

11 u - uhllr s c ~ h!k 11 ulll+1.m (4.IOlc) 
m 

where m denotes an individual element and hm is a measure of the size of the element. Hence 
the total error is now estimated by summing the local contributions in ( 4.101) from each 
element. A good grading of elements means that the error density in each element is about 
the same. 
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In practice when mesh grading is employed, geometrically distorted elements are 
invariably used. Hence, for example, general quadrilateral elements are very frequently 
encountered in two-dimensional analyses. We discuss elements of general geometric shapes 
in Chapter 5 and point out in Section 5.3.3 that the same orders of convergence are 
applicable to these elements so long as the magnitude of the geometric distortions is 
reasonable. 

In the above sequence of meshes the same kind of elements are used and the element 
sizes are uniformly decreased. This approach is referred to as the h-method of analysis. 
Alternatively, an initial mesh of relatively large and low-order elements may be chosen, and 
then the polynomial displacement expansions in the elements may be successively in­
creased. For example, a mesh of elements with a bilinear displacement assumption may be 
used (here k = 1), and then the degree of the polynomial expansion is increased to order 
2, 3, . . . p, where p may be 10 or even higher. This approach is referred to as the p-method 
of analysis. To achieve this increase in element polynomial order efficiently, special interpo­
lation functions have been proposed that allow the calculation of the element stiffness 
matrix corresponding to a higher interpolation by using the previously calculated stiffness 
matrix and simply amending this matrix, and that have valuable orthogonality properties 
(see B. Szabo and I. Babuska [A]). However, unfortunately, these functions lack the internal 
element displacement variations which are important when elements are geometrically 
distorted (see K. Kato, N. S. Lee, and K. J. Bathe [A] and Section 5.3.3). We demonstrate 
the use of these functions in the following example. 

EXAMPLE 4.26: Consider the one-dimensional bar element shown in Fig. E4.26. Let (Kp) be 
the stiffness matrix corresponding to the order of displacement interpolation p, where p = 
1. 2, 3. . . . • and let the interpolation functions corresponding to p = 1 be 

where 

t 
X=-1 

f 8 = f(x) ___....... 

Young's modulus E 
Cross-sectional area A 

Figure E4.26 Bar element subjected to varying body force 

For the higher-order interpolations use 

Mx) === <f>;-1 (x) i = 3, 4, ... 

c/>1 

(a) 

2 
X=+1 

(b) 

(c) 
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and the P1 are the Legendre polynomials (see, for example, E. Kreyszig [A]), 

Po= 1 

P1 = x 

P2 = H3x2 
- 1) 

P3 = !(5x3 
- 3x) 

P4 = H35x4 
- 30x2 + 3) 

(n + l)Pn+I = (2n + l)xPn - nPn-t 

Chap.4 

Calculate the stiffness matrix (K)p and corresponding load vector of the element for p 2::: 1. 
Let us first note that these interpolation functions fulfill the requirements of monotonic 

convergence: the displacement continuity between elements is enforced, and the functions are 
complete (they can represent the rigid body mode and the constant strain state). This follows 
because the functions in (a) fulfill these requirements and the functions in (b) merely add 
higher-order displacement variations within the element with hi O at x = ± l, i ;;::: 3. 

The stiffness matrix and load vector of the element are obtained using ( 4.19) and ( 4.20). 
Hence, typical elements of the stiffness matrix and load vector are 

The evaluation of (d) gives 

(K)p = A: 

f+I dh1 dh· 
KiJ = AE - --2 dx 

_ 1 dx dx 

Rf = f + 

1

f(x)h; dx 
-I 

l -1 
~1 1 

2 . 

zero 

entries 

. 2. 
. 2 (p + I) X (p + 1) 

(d) 

(e) 

where we note that, in essence, the usual 2 X 2 stiffness matrix corresponding to the interpola­
tion functions (a) has been amended by diagonal entries corresponding to the internal element 
displacement modes (b). In this specific case, each such entry is uncoupled from all other entries 
because of the orthogonality properties of the Legendre functions. Hence, as the order of the 
element is increased, additional diagonal entries are simply computed and all other stiffness 
coefficients are unchanged. 

This structure of the matrix (K)P makes the solution of the governing equations of an 
element assemblage simple, and the conditioning of the coefficient matrix is always good irre­
spective of how high an order of element matrices is used. Note also that if the finite element 
solution is known for elements with a given order of interpolation, then the solution for an 
increased order of interpolation within the elements is obtained simply by calculating and adding 
the additional displacements due to the additional internal element modes. 

Since the sets of displacement functions corresponding to the matrix (K)p+ 1 contain the 
sets of functions corresponding to the matrix (K)p, we refer to the displacement functions and 
the stiffness matrices as hierarchical functions and matrices. This hierarchical property is gener­
ally available when the interpolation order is increased (see Exercise 4.29 and Section 5.2). 
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The concept given in Example 4.26 is also used to establish the displacement func­
tions for higher-order two- and three-dimensional elements. For example, in the two-di­
mensional case, the basic functions are h;, i = I, 2, 3, 4, used in Example 4.6, and the 
additional functions are due to side modes and internal modes (see Exercises 4.30 and 4.31 ). 

We noted that in the analysis of a bar structure idealized by elements of the kind 
discussed in Example 4.26, the coupling between elements is due only to the nodal point 
displacements with the functions h1 and h2, and this leads to the very efficient solution. 
However, in the two- and three-dimensional cases this computational efficiency is not 
present because the element side modes couple the displacements of adjacent elements and 
the governing equations of the finite element assemblage have, in fact, a large bandwith (see 
Section 8.2.3). 

A very high rate of convergence in the solution of general stress conditions can be 
obtained if we increase the number of elements and at the same time increase the order of 
displacement variations in the elements. This approach of mesh/element refinement is 
referred to as the h/ p method and can yield an exponential rate of convergence of the form 
(see B. Szabo and I. Babuska [A]) 

(4.105) 

where c, {3, and y are positive constants and N is the number of nodes in the mesh. If for 
comparison with (4.105) we write (4.101) in the same form, we obtain for the h method 
the algebraic rate of convergence 

c 
II u - Uh Iii :'.':= (N)kfd 

where d = 1, 2, 3, respectively, in one-, two-, and three-dimensional problems. The effec­
tiveness of the h/ p method lies in that it combines the two attractive properties of the h and 
p methods: using the p method, an exponential rate of convergence is obtained when the 
exact solution is smooth, and using the h method, the optimal rate of convergence is 
maintained by proper mesh grading independent of the smoothness of the exact solution. 

While the rate of convergence can be very high in the h/p solution approach, of 
course, whether the solution procedure is effective depends on the total computational 
effort expended to reach a specified error (which also depends on the constant c). 

A key feature of a finite element solution using the h, p, or h/p methods must therefore 
be the "proper" mesh grading. The above expressions indicate a priori how convergence to 
the exact solution will be obtained as the density of elements and the order of interpolations 
are increased, but the meshes used in the successive solutions must be properly graded. By 
this we mean that the local error density in each element should be about constant. We 
discuss the evaluation of errors in the next section. 

We also assumed in the above discussion on convergence-considering the linear 
static model problem-that the finite element matrices are calculated exactly and that the 
governing equilibrium equations are solved without error. In practice, numerical integration 
is employed in the evaluation of the element matrices (see Section 5.5), and finite precision 
arithmetic is used to solve the governing equilibrium equations (see Section 8.2.6); hence 
some error will clearly be introduced in the solution steps. However, the numerical integra­
tion errors will not reduce the order of convergence, provided a reliable integration scheme 
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of high enough order is used (see Section 5.5.5), and the errors in the solution of equations 
are normally small unless a very ill-conditioned set of equations is solved (see Sec­
tion 8.2.6). 

4.3.6 Calculation of Stresses and the Assessment of Error 

We discussed above that for monotonic convergence to the exact results ("exact" within the 
mechanical, i.e., mathematical, assumptions made) the elements must be complete and 
compatible. Using compatible (or conforming) elements means that in the finite element 
representation of a cm-, variational problem, the displacements and their (m - 1 )st deriva· 
tives are continuous across the element boundaries. Hence, for example, in a plane stress 
analysis the u and v displacements are continuous, and in the analysis of a plate bending 
problem using the transverse displacement w as the only unknown variable, this displace­
ment wand its derivatives, aw/ox and aw/i)y, are continuous. However, this continuity does 
not mean that the element stresses are continuous across element boundaries. 

The element stresses are calculated using derivatives of the displacements [see (4.11) 
and (4.12)], and the stresses obtained at an element edge (or face) when calculated in 
adjacent elements may differ substantially if a coarse finite element mesh is used. The stress 
differences at the element boundaries decrease as the finite element mesh is refined, and the 
rate at which this decrease occurs is of course determined by the order of the elements in the 
discretization. 

For the same mathematical reason that the element stresses are, in general, not 
continuous across element boundaries, the element stresses at the surface of the structure 
that is modeled are, in general, not in equilibrium with the externally applied tractions. 
However, as for the stress jumps between elements, the difference between the externally 
applied tractions and the element stresses decreases as the number of elements used to 
model the structure increases. 

The stress jumps across element boundaries and stress imbalances at the boundary of 
the body are of course a consequence of the fact that stress equilibrium is not accurately 
satisfied at the differential level unless a very fine finite element discretization is used: we 
recall the derivation of the principle of virtual work in Example 4.2. The development in this 
example shows that the differential equations of equilibrium are fulfilled only if the virtual 
work equation is satisfied for any arbitrary virtual displacements that are zero on the surface 
of the displacement boundary conditions. In the finite element analysis, the number of "real" 
and virtual displacement patterns is equal to the number of nodal degrees of freedom, and 
hence only an approximate solution in terms of satisfying the stress equilibrium at the 
differential level is obtained (while the compatibility and constitutive conditions are 
satisfied exactly). The error in the solution can therefore be measured by substituting the 
finite element solution for the stresses 1,t into the basic equations of equilibrium to find that 
for each geometric domain represented by a finite element, 

-rt.1 +ff* 0 

rin1 - t; :fo O 

(4.106) 

(4.107) 

where n; represents the direction cosines of the normal to the element domain boundary and 
the t; are the components of the exact traction vector along that boundary (see Fig. 4.14). 
Of course, this traction vector of the exact solution is not known, and that the left-hand side 
of ( 4.107) is not zero simply shows that we must expect stress jumps between elements. 
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y 

y 

x 

(a) Exact solution to mathematical model 

~th .h 
t• L:!J 

x 

(b) Finite element solution 

Domain of 
finite element 

Figure 4.14 Finite element representing 
subdomain of continuum 

It can be proven that for low-order elements the imbalance in (4.107) is larger than 
the imbalance in ( 4.106), and that for high-order elements the imbalance in ( 4.106) 
becomes predominant. In practice, ( 4.107) can be used to obtain an indication of the 
accuracy of the stress solution and is easily applied by using the isobands of stresses as 
proposed by T. Sussman and K. J. Bathe [A]. These isobands are constructed using the 
calculated stresses without stress smoothing as follows: 

Choose a stress measure; typically, pressure or the effective (von Mises) stress is 
chosen, but of course any stress component may be selected. 
Divide the entire range over which the stress measure varies into stress intervals, 
assign each interval a color (or use black and white shading or simply alternate black 
and white intervals). 
A point in the mesh is given the color of the interval corresponding to the value of the 
stress measure at that point. 

If all stresses are continuous across the element boundaries, then this procedure will 
yield unbroken isobands of stresses. However, in practice, stress discontinuities arise across 
the element boundaries, resulting in "breaks" in the bands. The magnitude of the intervals 
of the stress bands together with the severity of the breaks in the bands indicate directly the 
magnitude of stress discontinuities (see Fig. 4.15). Hence, the isobands represent an 
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P= 30 MPa 
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Figure 4.15 Schematic of estimating 
stress discontinuities using pressure 
bands, width of bands = 5 MPa; black 
and white intervals are used; (a) negligi­
ble discontinuities, ilp ..:s; 5 MPa; 
(b) visible discontinuities but bands still 
distinguishable, Ap = 2 MPa; (c) visible 
discontinuities, bands not distinguishable, 
Ap > 5 MPa. 

"eyeball norm;, for the accuracy of the stress prediction ~ achieved with a given finite 
element mesh. 

In linear analysis, the finite element stress values can be calculated using the relation 
Th == CBu at any point in the element; however, this evaluation is relatively expensive and 
hardly possible in general nonlinear analysis (including material nonlinear effects). An 
adequate approach is to use the integration point values to bilinearly interpolate over the 
corresponding domain of the element. Figure 4.16 illustrates an example in two­
dimensional analysis. 

An alternative procedure for obtaining an indication of the error in the calculated 
stresses Ti is to first find some improved values (ri)impr. and then evaluate and display 

(4.108) 

The display can again be achieved effectively using the isoband procedure discussed above. 
Improved values might be found by simply averaging the stress values obtained at the 

nodes using the procedure indicated in Fig. 4.16 or by using a least squares fit over the 
integration point values of the elements (see E. Hinton and J. S. Campbell [A]). The least 
squares procedure might be applied over patches of adjacent elements or even globally over 
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Gauss point 

Domain over which stresses are interpolated bilinearly using 
the four Gauss point values (3 x 3 Gauss integration is used) 

b=[f a 

(see Section 6.5.3) 

Figure 4.16 Interpolation of stresses from Gauss point stresses 
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a whole mesh. However, if the domain over which the least squares fit is applied involves 
many stress points, the solution will be expensive and, in addition, a large error in one part 
of the domain may affect rather strongly the least squares prediction in the other parts. 
Here, an important consideration is that when using the direct stress evaluation in (4.12), the 
stresses can be more accurate at the numerical integration points than at the nodal points, see J. 
Barlow [A] and J.-F. Hiller and K.J. Bathe [A]. Hence, for a least squares fit, it can be of value 
to use functions of order higher than that of the stress variations obtained from the assumed dis­
placement functions because in this way improved values can be expected, see for example 0. 
C. Zienkiewicz and J. Z. Zhu [A]. 

We demonstrate a least squares stress smoothing approach in the following example. 

EXAMPLE 4.27: Consider the mesh of nine-node elements shown in Fig. E4.27. Propose 
reasonable schemes for improving the stress results by nodal point averaging and least squares 
fitting. 

Let T be a typical stress component. One simple and frequently effective way of improving 
the stress results is to bilinearly extrapolate the calculated stress components from the integration 
points of each element to node i. In this way, for the situation and node i in Fig. E4.27, four 
values for each stress component are obtained. The mean value, say ( rh)fnean, of these four values 
is then taken as the value at nodal point i. After performing similar calculations for each nodal 
point, the improved value of the stress component over a typical element is 

9 

(Th)impr. = L h;(Th)hiean (a) 
i=I . 

where the h; are the displacement interpolation functions because the averaged nodal values are 
deemed to be more accurate than the values obtained simply from the derivatives of the displace­
ments (which would imply that an interpolation of one order lower is more appropriate). 

The key step in this scheme is the calculation of (,rh):nean· Such an improved value can also 
be extracted by using a procedure based on least squares. 

Consider the eight nodes closest to node i, plus node i, and the values of the stress 
component of interest at the 16 integration points closest to node i (shown in Fig. E4.27). Let 
(Th){n,egr. be the known values of the stress component at the integration points,j = 1, ... , 16, 
and let (Th)~ooes be the unknown values at the nine nodes (of the domain corresponding to the 
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Figure E4.27 Mesh of nine-node elements. Integration points near node i are also shown. 

integration points). We can use the least squares procedure (see Section 3.3.3) to calculate the 
values (Th)!oc1e, by minimizing the errors between the given integration point values and the values 
calculated at the same points by interpolation from the nodal point values (Th)!oc1es, 

o(Th~~. [! ( (Th){niegr. - (Th){nieg,.)2] = 0 (b) 

k = 1, ... , 9 

where (fhY.ntegr. = ± hk I (Th)~odes (c) 
k= I at integr. 

pointj 
Note that in (c) we evaluate the interpolation functions at the 16 integration stations shown in Fig. 
E4.27. The relations in (b) and (c) give nine equations for the values (Th)~oc1e,, k = I, ... , 9. We 
solve for these values but accept only the value at node i as the improved stress value, which is 
now our value for (Th):_. in (a). The same basic procedure is used for all nodes to arrive at nodal 
"mean" values, so that (a) can be used for all elements. 

Of course, we presented in Fig. E4.27 a situation of four equal square nine-node elements. 
In practical analyses, the elements are generally distorted and fewer or more elements may cou­

ple into the node i. Also, element non-comer nodes and special mesh topologies at boundaries 
need to be considered. 

However, in practice, frequently the use of low-order elements is preferred. A procedure 
to specifically enhance the stresses oflow-order three-node elements in two-dimensional solu­

tions and four-node elements in three-dimensional solutions has been presented in D. J. Payen 

and K. J. Bathe [A]. Here projection equations using the difference of higher-order assumed 

stresses and the element calculated stresses lead to stress solutions that converge quadratically, 
instead of just linearly. 

Another procedure of improving the stress predictions when using low-order elements is 

to use interpolation covers. This approach was developed for the solid elements in J.H. Kim and 



Sec. 4.3 Convergence of Analysis Results 259 

K. J. Bathe [A,B] and for a 3-node shell element in H.M. Jeon, P.S. Lee, and K.J. Bathe [A]. 
Using (4.108) with the improved stress values gives only an error indicator and, ideally, 

an actual error measure would be available. Much research effort has been devoted to establish 
effective error measures of finite element solutions, for an overview see M. Ainsworth and J. T. 
Oden [A] and T. Gr!tsch and K. J. Bathe [A]. The basic difficulty is to measure the finite ele­

ment solution on the exact solution of the mathematical model, which is unknown and can be 

very complex, considering nonlinear or dynamic analyses. The error measure shall always be 
close to the exact error over the complete analysis domain, and always be conservative and in­

expensive to compute. Such error measure is quite likely out of reach, and instead an error indi­
cator based on ( 4.108) may need to be sufficient. 

4.3. 7 Exercises 

4.25. Calculate the eight smallest eigenvalues of the four-node shell element stiffness matrix available 
in a finite element program and interpret each eigenvalue and corresponding eigenvector. (Hint: 
The eigenvalues of the element stiffness matrix can be obtained by carrying out a frequency 
solution with a mass matrix corresponding to unit masses for each degree of freedom.) 

4.26. Show that the strain energy corresponding to the displacement error eh, where eh = u - uh, is 
equal to the difference in the strain energies, corresponding to the exact displacement solution u 
and the finite element solution uh, 

4.27. Consider the analysis problem in Example 4.6. Use a finite element program to perform the 
convergence study shown in Fig. 4.12 with the nine-node and four-node (Lagrangian) elements. 
That is, measure the rate of convergence in the energy norm and compare this rate with the 
theoretical results given in Section 4.3.5. Use N = 2, 4, 8, 16, 32; consider N == 32 to be the 
limit solution, and use uniform and graded meshes. 

4.28. Perform an analysis of the cantilever problem shown using a finite element program. Use a 
two-dimensional plane stress element idealization to solve for the static response. 

(a) Use meshes of four-node elements. 
(b) Use meshes of nine-node elements. 

In each case construct a sequence of meshes and identify the rate of convergence of strain energy. 

1=. =6==!1 
E·200,000 
V•0.3 
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Also, compare your finite element solutions with the solutions using Bernoulli-Euler and 
Timoshenko beam theories (see S. H. Crandall, N. C. Dahl, and T. J. Lardner [A] and Sec­
tion 5.4.1 ). 

4.29. Consider the three-node bar element shown. Construct and plot the displacement functions of the 
element for the following two cases: 

for case 1: 

for case 2: 

hi = 1 at node i, i 1, 2, 3 

= 0 at node j * i 
h; 1 at node i, i = 1, 2 

= 0 at node j * i, j = 1, 2 
h3 = 1 at node 3 
h3 = 0 at node 1, 2 

We note that the functions for case 1 and case 2 contain the same displacement variations, 
and hence correspond to the same displacement space. Also, the sets of functions are hierarchical 
because the three-node element contains the functions of the two-node element. 

3 2 

-1 +1 

4.30. Consider the eight-node element shown. Identify the terms of the Pascal triangle present in the 
element interpolations. 

I 2 
y 

I . 
I 

2 5 I 1 

2 6 8 
t -x 

--3 7 4 

h, = }(1 + x)(l + y), h2 = HI - x){l + y) 

h3 Hl - x)(l - y), h4 HI + x)(l - y) 

hs = Ht + y)</>,.(x}, h6 HI - x)</>,.(y) 

h1 = Ht - y)<J>i(x), hs = !(I + x)<J>i(y) 

where "'2 is defined in Example 4.26. 
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4.31. A p-element of order p = 4 is obtained by using the following displacement functions. 

h;, i = l, 2, 3, 4, as for the basic four-node element (with corner nodes only; see Example 4.6). 
hi, i = 5, ... , 16 to represent side modes. 

side 1: hjl) = to + y)<f,;{x); 

side 2: h)2> f (1 - x)<f,AJ); 

side 3: hfl> = 4(1 - y)<f>ix); 

side 4: M4> = ! o + x)<f>iY); 

i = 5,9, 13;j = 2, 3,4 

i = 6, 10, 14; j 2, 3, 4 

i = 7, 11, 15;) = 2. 3,4 

i = 8, 12, 16; j = 2, 3, 4 

where <f>i., q,3 , and <p4 have been defined in Example 4.26. h11 to represent an internal mode 

h,1 = (1 - x2)(1 - y2) 

Identify the terms of the Pascal triangle present in the element interpolations. 

y 

I 2 I 
2 

I 
Side 1 I 1 

Side2 Side4 
2 x 

3 Side3 4 

4.32. Consider the analysis problem in Example 4.6. Use a finite element program to solve the 
problem with the meshes of nine-node elements in Exercise 4.27 and plot isobands of the von 
Mises stress and the pressure (without using stress smoothing). Hence, the isobands will display 
stress discontinuities between elements. Show how the bands converge to continuous stress 
bands over the cantilever plate. 

4.4 INCOMPATIBLE AND MIXED FINITE ELEMENT MODELS 

In the previous sections we considered the displacement-based finite element method, and 
the conditions imposed so far on the assumed displacement (or field) functions were com­
pleteness and compatibility. If these conditions are satisfied, the calculated solution con­
verges in the strain energy monotonically (i.e., one-sided) to the exact solution. The com­
pleteness condition can, in general, be satisfied with relative ease. The compatibility 
condition can also be satisfied without major difficulties in C0 problems, for example, in 
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plane stress and plane strain problems or in the analysis of three-dimensional solids such 
as dams. Yet, in the analysis of shell problems, and in complex analyses in which completely 
different finite elements must be used to idealize different regions of the structure, compat­
ibility may be quite impossible to maintain. However, although the compatibility require­
ments are violated, experience shows that good results are frequently obtained. 

Also, in the search for finite· elements it was realized that for shell analysis and the 
analysis of incompressible media, the pure displacement-based method is not efficient. The 
difficulties in developing compatible displacement-based finite elements for these problems 
that are computationally effective, and the realization that by using variational approaches 
many more finite element discretizations can be developed, led to large research efforts. In 
these activities various classes of new types of elements have been proposed, and the 
amount of information available on these elements is voluminous. We shall not present the 
various formulations in detail but only briefly outline some of the major ideas that have been 
used and then concentrate upon a formulation for a large class of problems-the analysis 
of almost incompressible media. The analysis of plate and shell structures using many of the 
concepts outlined below is then further addressed in Chapter 5. 

4.4.1 Incompatible Displacement-Based Models 

In practice, a frequently made observation is that satisfactory finite element analysis results 
have been obtained although some continuity requirements between displacement-based 
elements in the mesh employed were violated. In some instances the nodal point layout was 
such that interelement continuity was not preserved, and in other cases elements were used 
that contained interelement incompatibilities {see Example 4.28). The final result was the 
same in either case, namely, that the displacements or their derivatives between elements 
were not continuous to the degree necessary to satisfy all compatibility conditions discussed 
in Section 4.3.2. 

Since in finite element analysis using incompatible (nonconforming) elements the 
requirements presented in Section 4.3.2 are not satisfied, the calculated total potential 
energy is not necessarily an upper bound to the exact total potential energy of the system, 
and consequently, monotonic convergence is not ensured. However, having relaxed the 
objective of monotonic convergence in the analysis, we still need to establish conditions that 
will ensure at least a nonmonotonic convergence. 

Referring to Section 4.3, the element completeness condition must always be satisfied, 
and· it may be noted that this condition is not affected by the size of the finite element. We 
recall that an element is complete if it can represent the physical rigid body modes (but the 
element matrix has no spurious zero eigenvalues) and the constant strain states. 

However, the compatibility condition can be relaxed somewhat at the expense of not 
obtaining a monotonically convergent solution, provided that when relaxing this require­
ment, the essential ingredients of the completeness condition are not lost. We recall that as 
the finite element mesh is refined (i.e., the size of the elements gets smaller), each element 
should approach a constant strain condition. Therefore, the second condition on conver­
gence of an assemblage of incompatible finite elements, where the elements may again be 
of any size, is that the elements together can represent constant strain conditions. We should 
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note that this is not a condition on a single individual element but on an assemblage of 
elements. That is, although an individual element is able to represent all constant strain 
states, when the element is used in an assemblage, the incompatibilities between elements 
may prohibit constant strain states from being represented. We may call this condition the 
completeness condition on an element assemblage. 

As a test to investigate whether an assemblage of nonconforming elements is com­
plete, the patch test has been proposed (see B. M. Irons and A. Razzaque [A]). In this test 
a specific element is considered and a patch of elements is subjected to the minimum 
displacement boundary conditions to eliminate all rigid body modes and to the boundary 
nodal point forces that by an analysis should result in constant stress conditions. If for any 
patch of elements the element stresses actually represent the constant stress conditions and 
all nodal point displacements are correctly predicted, we say that the element passes the 
patch test. Since a patch may also consist of only a single element, this test ensures that the 
element itself is complete and that the completeness condition is also satisfied by any 
element assemblage. 

The number of constant stress states in a patch test depends of course on the actual 
number of constant stress states that pertain to the mathematical model; for example, in plane 
stress analysis three constant stress states must be considered in the patch test, whereas in 
a fully three-dimensional analysis six constant stress states should be possible. 

Fig. 4.17 shows a typical patch of elements used in numerical investigations for 
various problems. Here of course only one mesh with distorted elements is considered, 
whereas in fact any patch of distorted elements should be analyzed. This, however, requires 
an analytical solution. If in practice the element is complete and the specific analyses shown 
here produce the correct results, then it is quite likely that the element passes the patch test. 

When considering displacement-based elements with incompatibilities, if the patch 
test is passed, convergence is ensured (although convergence may not be monotonic and 
convergence may be slow). 

The patch test is used to assess incompatible finite element meshes, and we may note 
that when properly formulated displacement-based elements are used in compatible 
meshes, the patch test is automatically passed. 

Figure 4.18(a) shows a patch of eight-node elements (which are discussed in detail in 
Section 5.2). The tractions corresponding to the plane stress patch test are also shown. The 
elements form a compatible mesh, and hence the patch test is passed. 

However, if we next assign to nodes 1 to 8 individual degrees of freedom for the 
adjacent elements [e.g., at node 2 we assign two u and v degrees of freedom each for 
elements 1 and 2] such that the displacements are not tied together at these nodes (and 
therefore displacement incompatibilities exist along the edges), the patch test is not passed. 
Figure 4.18(b) gives some results of the solution. 

The example in Fig. 4.18(b) uses, in essence, an element that was proposed by E. L. 
Wilson, R. L. Taylor, W. P. Doherty, and J. Ghaboussi [A]. Since the degrees of freedom 
of the midside nodes of an element are not connected to the adjacent elements, they can be 
statically condensed out at the element level (see Section 8.2.4) and a four-node element is 
obtained. However, as indicated in Fig. 4.18(b ), this element does not pass the patch test. 
In the following example, we consider the element in more detail, first as a square element 
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(a) Patch of elements, two-dimensional elements, 
plate bending elements, or side view of three­
dlmenslonal elements. Each quadrilateral domain 
represents an element; for triangular and 
tetrahedral elements, each quadrilateral domain is 
further subdivided 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.t: 

--r 
l~ --r z x 

1--r 
~-----,------+________. ,R 
I 

ct 

Plane stress and plane strain: "txx, -ryy, fxy Axisymmetric; here perform the test with R-+ 00 

constant; in three-dimensional analysis the 
additional three stress conditions Tu, Tzx, Tyz 

constant are tested 

_L, ®'~ 

T (This test also produces bending) 

Plate bending (see Section 5.4.2) 

(b) Stress conditions to be tested 

Figure 4.17 Patch tests 



Constant normal traction ty 

Constant shear --+--- traction txy 

Constant normal 
traction tx 

(a) Patch test of compatible mesh of 8·node elements (discussed in Section 5.3.1 ). The patch test is 
passed; that is, all calculated element stresses are equal to the applied tractions 

v2<1> = v-displacement 
at node 2' associated with 

element 1, etc. 

E= 2.1 x 106 

V• 0.3 
Thickness • 1.0 

'txx= -0.52 
'fyym-0,40 
1'xy= 0.85 

10.0 

'rxx= 2.74 
1'yy= 0.19 
'fxy• 0.08 

'rxx• 0.44 
'ryy=-0.11 
'rxy= -0.10 

1'xx= 0.08 
1'yy•-0.58 
'rxy• 0.02 

Analytical solution: 
1'xx"" 3.44 1:xx• 2.0 
't'yy= 0.04 1'yy=1'xy= o.o 
'fxy= -0.18 

(b) Patch test of incompatible mesh of 8-node elements. All element midside nodes are now element 
individual nodes with degrees of freedom not coupled to the adjacent element. Hence, two nodes 
are located where in Fig. 4.18(a) only one node was located. Patch test results are shown at center 
of elements for external traction applied in the x-direction. (Note that only the corner nodes of the 
complete patch are subjected to externally applied loads) 

Figure 4.18 Patch test results using the patch and element geometries of Fig. 4.17 
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and then as a general quadrilateral element. We also present a remedy to correct the element 
so that it will always pass the patch test (see E. L. Wilson and A. Ibrahimbegovic [A]). 

EXAMPLE 4.28: Consider the four-node square element with incompatible modes in 
Fig. E4.28(a) and determine whether the patch test is passed. Then consider the general quadri­
lateral element in Fig. E4.28(b) and repeat the investigation. 

We notice that the square element is really a special case of the general quadrilateral 
element. In fact, the quadrilateral element is formulated using the square element as a basis and 
using the natural coordinates (r, s) in the interpolations as discussed in Section 5.2. 

2 

2 

2 

3 

~ I 
Node 1 

X, U h1 = i(1 + x)(1 + y) 

4 

~=!(1-x)(1 + y) 
4 

h3 = 1(1 - x)(1 - y) 
4 

h4 = !.(1 + x)(1 - y) 
4 

Displacement interpolation functions 

4 

u • L h;u1 + a1f>1 + a2"'2 
i • 1 

4 
v = L h;v; + a:v,, + a4f>2 

;.1 
4>1 = (1 - .x2); f>2 = (1 - y2) 

(a) Square element 

sJ 
I 

I 
I 
I 
I 
I 
I --------t------- __ ....,.. 

I f 
I 
I 
I 
I 
I 

(bl General quadrilateral element (here h;and t/);are used 
with r, s coordinates; see Section 5.2) 

Figure E4.28 Four-node plane stress element with incompatible modes, constant thickness 
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For this element formulation we can analytically investigate whether, or under which 
conditions, the patch test is passed. First, we recall that the patch test is passed for the four-node 
compatible element (i.e., when the </>1, <f>i displacement interpolations are not used). 

Next, let us consider that the element is placed in a condition of constant stresses r. Then 
the requirement for passing the patch test is that, in these constant stress conditions, the element 
should behave in the same way as the four-node compatible element. 

The formal mathematical condition can be derived by considering the stiffness matrix of 
the element with incompatible modes. 

with 

and 

Then 

Let 

u* = [!] 
Ur= [u1 • • . U4 : Vt V4] 

a,T = (a1 · ·, ~] 

E = [B ! Btcf !-] 
where Bis the usual strain-displacement matrix of the four-node element and B,c is the contri­
bution due to the incompatible modes. 

Hence, with our usual notation, we have 

t B7 CB dV !, t B7 CB1c dV 

-----------~------------- [!] = [!] 
J, Bfc CB dV l J, Bfc CB1c dV 

v : v 

(a) 

In practice, the incompatible displacement parameters a. would now be statically condensed out 
to obtain the element stiffness matrix corresponding to only the ii degrees of freedom. 

If the nodal point displacements are the physically correct values uc for the constant 
stresses T", we have 

f Blc CB dViV = fv Blcr dV (b) 

To now force the element to behave under constant stress conditions in the same way as the 
four-node compatible element, we require that (since the entries rare independent of each other) 

t Bfc dV = 0 (c) 

Namely, when (c) is satisfied, we find from (a): 

If the nodal point forces of the element are those of the compatible four-node element, the 
solution is u uc and a = 0. Also. of course, if we set u = uc and a. = 0, we obtain 
from (a) the nodal point forces of the compatible four-node element and no forces corre­
sponding to the incompatible modes. 

Hence, under constant stress conditions the element behaves as if the incompatible modes were 
not present. 
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We can now easily check that the condition in (c) is satisfied for the square element: 

~ ~ -~y] dV = 0 
-2y -2x O 

However, we can also check that the condition is not satisfied for the general quadrilateral 
element (here the Jacobian transformation of Section 5.2 is used to evaluate B1c). In order to 
satisfy (c) we therefore modify the Brc matrix by a correction Bit and use 

Br~w = B1c + Bft 

The condition (c) on Bf~ gives 

Bfc = - .!_ f. B,c dV 
v v 

The element stiffness matrix is then obtained by using B~w in (a) instead of B,c. In practice, the 
element stiffness matrix is evaluated by numerical integration (see Chapter 5), and Bfi: is 
calculated by numerical integration prior to the evaluation of (a). 

With the above patch test we test only for the constant stress conditions. Any patch 
of elements with incompatibilities must be able to represent these conditions if convergence 
is to be ensured. 

In essence, this patch test is a boundary value problem in which the external forces are 
prescribed ( the forces f 8 are zero and the tractions rs are constant) and the deformations 
and internal stresses are calculated ( the rigid body modes are merely suppressed to render 
the solution possible). If the deformations and constant stresses are correctly predicted, the 
patch test is passed, and (because at least constant stresses can be correctly predicted) 
convergence in stresses will be at least o(h). 

This interpretation of the patch test suggests that we may in an analogous manner also 
test for the order of convergence of a discretization. Namely, using the same concept, we 
may instead apply the external forces that correspond to higher-order variations of internal 
stresses and test whether these stresses are correctly predicted. For example, in order to test 
whether a discretization will give a quadratic order of stress convergence, that is. whether 
the stresses converge o(h 2), a linear stress variation needs to be correctly represented. We 
infer from the basic differential equations of equilibrium that the corresponding patch test 
is to apply a constant value of internal forces and the corresponding boundary tractions. 
While numerical results are again of interest and are valuable as in the test for constant 
stress conditions, only analytical results can ensure that for all geometric element distor­
tions in the patch the correct stresses and deformations are obtained (see Section 5.3.3 for 
further discussion and results). 

Of course, in practice, when testing element formulations, this formal procedure of 
evaluating the order of convergence frequently is not followed, and instead a sequence of 
simple test problems is used to identify the predictive capability of an element. 

4.4.2 Mixed Formulations 

To formulate the displacement-based finite elements we have used the principle of virtual 
displacements, which is equivalent to invoking the stationarity of the total potential energy 
Il (see Example 4.4). The essential theory used can be summarized briefly as follows. 
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1. We use15 

Il(u) = ! L Er CE dV - L urrs dV 

= stationary 

with the conditions 
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(4.109) 

(4.110) 

(4.111) 

where 8E represents the differential operator on u to obtain the strain components, the 
vector Up contains the prescribed displacements, and the vector u5

u lists the corre­
sponding displacement components of u. 

If the strain components are ordered as in ( 4.3 ), we have 

a 
0 0 ax 

0 
a 

0 -
ay r (x, y, z) J 0 0 

a 

u = v (x, y, z) ; a = oz 
E a a 

w (x, y, z) ay ax 0 

0 
a a 
oz ay 

a 
0 

a 
az ax 

2. The equilibrium equations are obtained by invoking the stationarity of II (with respect 
to the displacements which appear in the strains), 

f 8erce dV = f 8ur f 8 dV + J: Busl rs, dS (4.112) 
Jv Jv ~ 

The variations on u must be zero at and corresponding to the prescribed displacements 
on the surface area Su, We recall that to obtain from ( 4.112) the differential equations 
of equilibrium and the stress (natural) boundary conditions we substitute CE = T and 
reverse the process of transformation employed in Example 4.2 (see Sections 3.3.2 
and 3.3.4). Therefore, the stress-strain relationship, the strain-displacement condi­
tions (in ( 4.110) ], and the displacement boundary conditions [in ( 4.111)] are directly 
fulfilled, and the condition of differential equilibrium (in the interior and on the 
boundary) is a consequence of the stationarity condition of II. 

3. In the displacement-based finite element solution the stress-strain relationship, the 
strain-displacement conditions [in (4.110)], and the displacement boundary condi­
tions (in ( 4.111)] are satisfied exactly, but the differential equations of equilibrium in 
the interior and the stress (natural) boundary conditions are satisfied only in the limit 
as the number of elements increases. 

15 In this section, as in equation (4.7), we use the notation rs1instead of the usual rs to explicitly denote that 
these are tractions applied to S1. Similarly, we have in this section also the tractions f s., and the surface displacements 
us1 and u5u. For definitions of these quantities, see Section 4.2.1. 
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The important point to note concerning the use of ( 4.109) to ( 4.112) for a finite 
element solution is that the only solution variables are the displacements which must satisfy 
the displacement boundary conditions in ( 4.111) and appropriate interelement conditions. 
Once we have calculated the displacements, other variables of interest such as strains and 
stresses can be directly obtained. 

In practice, the displacement-based finite element formulation is used most fre­
quently; however, other techniques have also been employed successfully and in some cases 
are much more effective (see Section 4.4.3 ). 

Some very general finite element formulations are obtained by using variational 
principles that can be regarded as extensions of the principle of stationarity of total poten­
tial. These extended variational principles use not only the displacements but also the strains 
and/or stresses as primary variables. In the finite element solutions, the unknown variables 
are therefore then also displacements and strains and/or stresses. These finite element 
formulations are referred to as mixed finite element formulations. 

Various extended variational principles can be used as the basis of a finite element 
formulation, and the use of many different finite element interpolations can be pursued. 
While a large number of mixed finite element formulations has consequently been proposed 
(see, for example, H. Kardestuncer and D. H. Norrie (eds.) [A] and F. Brezzi and M. Fortin 
[A]), our objective here is only to present briefly some of the basic ideas, which we shall then 
use to formulate some efficient solution schemes (see Sections 4.4.3 and 5.4). 

To arrive at a very general and powerful variational principle we rewrite ( 4.109) in 
the form 

Il* = n - ( Ar(e - a.,u) dV - r AI(uSu - Up) dS 
Jv J~ (4.113) 

= stationary 

where AE and Au are Lagrange multipliers and Su is the surface on which displacements are 
prescribed. The Lagrange multipliers are used here to enforce the conditions ( 4.110) and 
(4.111} (see Section 3.4). The variables in (4.113} are u, E, AE, and Au, By invoking 
8Il* = 0 the Lagrange multipliers AE and Au are identified, respectively, as the stresses T 
and tractions over Su, rsu, so that the variational indicator in (4.113) can be written as 

IlHw = Il - f ,.r(E - aEu) dV - f fV(uSu - Up) dS (4.114) 
Jv Js., 

This functional is referred to as the Hu-Washizu functional (see H. C. Hu [A] and 
K. Washizu [A, B]). The independent variables in this functional are the displacements u, 
strains e, stresses T, and surface tractions f 5u. The functional can be used to derive a number 
of other functionals, such as the Hellinger-Reissner functionals (see E. Hellinger [A] and 
E. Reissner [A], Examples 4.30 and 4.31, and Exercise 4.36) and the minimum complemen­
tary energy functional, and can be regarded as the foundation of many finite element 
methods (see H. Kardestuncer and D. H. Norrie (eds.) [A], T. H. H. Pian and P. Tong [A], 
and W. Wunderlich [A]). 

Invoking the stationarity of IlHw with respect to u, E, 't', and f5
u, we obtain 

( 6e7CE dV - ( ouTfB dV - r 8u51TfS1 dS - f 6-rT(E - a,u) dV 
Jv Jv Js,. Jv 
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(4.115) 

where S1 is the surface on which known tractions are prescribed. 
The above discussion shows that the Hu-Washizu variational formulation may be 

regarded as a generalization of the principle of virtual displacements, in which the displace­
ment boundary conditions and strain compatibility conditions have been relaxed but then 
imposed by Lagrange multipliers, and variations are performed on all unknown displace­
ments, strains, stresses, and unknown surface tractions. That this principle is indeed a valid 
and most general description of the static and kinematic conditions of the body under 
consideration follows because (4.115) yields, since (4.115) must hold for the individual 
variations used, the following. 

For the volume of the body: 

The stress-strain condition, 

The compatibility condition, 

The equilibrium conditions, 

For the surface of the body: 

T = Ce 

E = U.,U 

a~x dT~ O~z JB O -+-+-+ == ax ay az x 

dTyx + OTyy + OTyz + JB = O 
ax ay az Y 

C11'zx + O'Tzy + d1',, + JB = O 
ax ay i}z z 

The applied tractions are equilibrated by the stresses, 

The reactions are equilibrated by the stresses, 

on Su 

(4.116) 

(4.117) 

(4.118) 

(4.119) 

(4.120) 

where n represents the unit normal vector to the surface and if contains in matrix form 
the components of the vector -r. 
The displacements on Su are equal to the prescribed displacements, 

on Su (4.121) 

The variational formulation in ( 4.115) represents a very general continuum mechan­
ics formulation of the problems in elasticity. 
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Considering now the possibilities for finite element solution procedures, the Hu­
Washizu variational principle and principles derived therefrom can be directly employed to 
derive various finite element discretizations. In these finite element solution procedures the 
applicable continuity requirements of the finite element variables between elements and on 
the boundaries need to be satisfied either directly or to be imposed by Lagrange multipliers. 
It now becomes apparent that with this added flexibility in formulating finite element 
methods a large number of different finite element discretizations can be devised, depending 
on which variational principle is used as the basis of the formulation, which finite element 
interpolations are employed, and how the continuity requirements are enforced. The vari­
ous different discretization procedures have been classified as hybrid and mixed finite 
element formulations (see H. Kardestuncer and D. H. Norrie (eds.) [A] and T. H. H. Pian 
and P. Tong [A]). 

We demonstrate the use of the Hu-Washizu principle in the following examples. 

EXAMPLE 4.29: Consider the three-node truss element shown in Fig. E4.29. Assume a 
parabolic variation for the displacement and a linear variation in strain and stress. Also, let the 
stress and strain variables correspond to internal element degrees of freedom so that only the 
displacements at nodes l and 2 connect to the adjacent elements. Use the Hu-Washizu variational 
principle to calculate the element stiffness matrix. 

2 

Young•s modulus E 
Area A 

3 

l-+- x,u 

~ 1. 
We can start directly with (4.115) to obtain 

L 8eT(Ce - -r) dV - L 5-r7(e - aEu) dV 

CD 

Figure E4.29 Three-node truss element 

(a) 

+ L (aE5u)T T dV L Bu 7f 8 dV + boundary terms O 

where 
a a=-· 

E ax' T = Txx; C = E; f8 = ff 

and the boundary terms correspond to expressions for S1 and Su and are not needed to evaluate 
the element stiffness matrix. 

We now use the following interpolations: 

u = Hu; H 
x)x 

1 - x2
] 



Sec. 4.4 Incompatible and Mixed Finite Element Models 273 

T = ET; E=[l;x l;x] 
E = EE 

TT = [T1 T2]; 

Substituting the interpolations into {a), we obtain corresponding to term 1: 

corresponding to term 2: 

<H~7
[ - ({ E7E dV )e + (f ETB dV )u] 

corresponding to term 3: 6u7(f B7E dV )T 

where B [H + x) ( - ! + x) -2x] 

Hence, we obtain 

[1:. 
0 

K-rJ KEE 
~(T ! = ... (b) 

KI,. 

where KEE = r E7CE dV 

Ku,-= r B1EdV 

and K,i,. = -r E7EdV 

If we now substitute the expressions for B and E and eliminate the E; and T; degrees of freedom 
(because they are assumed to pertain only to this element, thus allowing jumps in stresses and 
strains between adjacent elements), we obtain from (b) 

EA [ 7 l -8][u1] (j 1 7 -8 U2 = • • · 
-8 -8 16 U3 

This stiffness matrix is identical to the matrix of a three~node displacement-based truss ele­
ment-as should be expected using a linear strain and parabolic displacement assumption. 

However, we should note that if the element stress and strain variables are not eliminated 
on the element level and instead are used to impose continuity in stress and strain between 
elements, then clearly with the element stiffness matrix in (b) the stiffness matrix of the complete 
element assemblage is not positive definite. 

This derivation could of course be extended to obtain the stiffness matrices of truss 
elements with various displacement, stress, and strain assumptions. However. a useful element 
is obtained only if the interpolations are "judiciously" chosen and actually fulfill specific require­
ments (see Section 4.5). 
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EXAMPLE 4.30: Consider the two-node beam element shown in Fig. E4.30. Assume linear 
variations in the transverse displacement w and section rotation (J and a constant element 
transverse shear strain 'Y· Establish the finite element equations. 

E = Young's modulus 

0,15 E: ~' 

G = shear modulus 

{D X, U 

~ I c 
L/2 ~ I • L/2 ~I 

Figure E4.30 Two-node beam element 

We assume that the stresses are given by the strains, and so we can substitute T = Ce into 
(4.114) and obtain 

n~R = fv (-1ETCE + Erca,u - uTfB) dV + boundary terms (a) 

This variational indicator is also a Hellinger-Reissner functional, but comparing (a) with the 
functional in Exercise 4.36, we note that here strains and displacements are the independent 
variables (instead of the stresses and displacements in Exercise 4.36). 

In our beam formulation the variables are u, w, and 'Y~s (the superscript AS denotes the 
assumed constant value). Hence, the bending strain E:u is calculated from the displacement, and 
we can specialize (a) further: 

urrs) dV + boundary terms 

where au 
€ =-· 

xx ox' 

Now invoking oti~R :::::: 0, we obtain corresponding to Bu, (not including boundary terms) 

Iv (Se.uEExx + O'}'r:G,{'l) dV = t ouTfB dV (b) 

and corresponding to l>yf:5, 

(c) 

Let 

Then we can write 

u = Hu; 
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Substituting into (b) and (c), we obtain 

[~ ~:][!] = [~] (d) 

where Kuu = I Bi EBb dV; K,.E = { B;GB:8 dV 

KEE = - {<B15 )7GBf5 dV; Rs = I ffTfB dV 

We can now use static condensation on i to obtain the final element stiffness matrix: 

K = Kuu - KuEK;E1 KrE 
In our case, we have 

H=[mO 
-I{% - x) 0 -f(:+x)l 

x) 0 H~ + x) 
Bb = [ 0 I 0 -£] 
B = [-! -±(%- x) 1 -H%+x)] -s L L 

B~5 = [1] 

Gh Gh -Gh Gh 
L 2 L 2 

Gh ®+Eh' -Gh ~-Eh' 
so that K= 2 12L 2 12L 

(e) 
-Gh -Gh Gh -Gh 

L 2 L 2 
Gh ®_Eh' -Gh ~+Eh' 
2 12L 12L 

It is interesting to note that a pure displacement formulation would give a very similar stiffness 
matrix. The only difference is that the circled terms would be GhL/3 on the diagonal and GhL/6 
in the off-diagonal locations. However, the element predictive capability of the pure 
displacement-based formulation is drastically different, displaying a behavior that is much too 
stiff when the element is thin (we discuss this phenomenon in Sections 4.5.7 and 5.4.1). 

Note that if we assume a displacement vector corresponding to section rotations only, 

u = [O a O -a] 

then using (e) the element displays bending stiffness only, whereas the pure displacement-based 
element shows an erroneous shear contribution. 

Let us finally note that the stiffness matrix in (e) corresponds to the matrix obtained in the 
mixed interpolation approach discussed in detail in Section 5.4.1. Namely, if we use the last 
equation in (d), which corresponds to the equation (c), we obtain 

8, + (Ji 

2 
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which shows that the assumed shear strain value is equal to the shear strain value at the midpoint 
of the beam calculated from the nodal point displacements. 

As pointed out above, the Hu-Washizu principle provides the basis for the derivation 
of various variational principles, and many different mixed finite element discretizations 
can be designed. However, whether a specific finite element discretization is effective for 
practical analysis depends on a number of factors, particularly on whether the method is 
general for a certain class of applications. whether the method is stable with a sufficiently 
high rate of convergence, how efficient the method is computationally, and how the method 
compares to alternative schemes. While mixed finite element discretizations can offer some 
advantages in certain analyses, compared to the standard displacement-based discretiza­
tion, there are two large areas in which the use of mixed elements is much more efficient 
than the use of pure displacement-based elements. These two areas are the analysis of 
almost incompressible media and the analysis of plate and shell structures (see the following 
sections and Section 5.4). 

4.4.3 Mixed Interpolation-Displacement/Pressure 
Formulations for Incompressible Analysis 

The displacement-based finite element procedure described in Section 4.2 is very widely 
used because of its simplicity and general effectiveness. However, there are two problem 
areas in which the pure displacement-based finite elements are not sufficiently effective, 
namely, the analysis of incompressible (or almost incompressible) media and the analysis of 
plates and shells. In each of these cases, a mixed interpolation approach-which can be 
thought of as a special use of the Hu-Washizu variational principle (see Example 4.30)-is 
far more efficient. 

We discuss the mixed interpolation for beam, plate, and shell analyses in Section 5 .4, 
and we address here the analysis of incompressible media. 

Although we are dealing with the solution of incompressible solid media, the same 
basic observations are also directly applicable to the analysis of incompressible fluids (see 
Section 7.4). For example, the elements summarized in Tables 4.6 and 4.7 (later in this 
section) are also used effectively in fluid flow solutions. 

The Basic Differential Equations for Incompressible Analysis 

In the analysis of solids, it is frequently necessary to consider that the material is almost 
incompressible. For example, some rubberlike materials, and materials in inelastic condi­
tions, may exhibit an almost incompressible response. Indeed, the compressibility effects 
may be so small that they could be neglected, in which case the material would be idealized 
as totally incompressible. 

A basic observation in the analysis of almost incompressible media is that the pressure 
is difficult to predict accurately. Depending on how close the material is to being incom­
pressible, the displacement-based finite element method may still provide accurate solu­
tions, but the number of elements required to obtain a given solution accuracy is usually far 
greater than the number of elements required in a comparable analysis involving a com­
pressible material. 
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To identify the basic difficulty in more detail, let us again consider the three­
dimensional body in Fig. 4.1. The material of the body is isotropic and is described by 
Young's modulus E and Poisson's ratio v. 

Using indicial notation, the governing differential equations for this body are (see 
Example 4.2) 

T1J,i + ff Q throughout the volume V of the body 

on S1 

U; = ufu 

(4.122) 

(4.123) 

(4.124) 

If the body is made of an almost incompressible material, we anticipate that the volumetric 
strains will be small in comparison to the deviatoric strains, and therefore we use the 
constitutive relations in the form (see Exercise 4.39) 

where K is the bulk modulus, 

E 
K.=---

3{1 - 211) 

Ev is the volumetric strain, 

Ev Ekk 

= ~ ( Exx + Eyy + Ezz in Cartesian coordinates) 

8,i is the Kronecker delta, 

{ 
= l; 

a,, = o; 
i = j 
i * j 

e/j are the deviatoric strain components, 

and G is the shear modulus, 

G = E 
2(1 + 11) 

We also have for the pressure in the body, 

p = -KEv 

where Tkk ( Txx + Tyy + Tu, • • • ) p = - 3 = -
3 

m Cartesian coordinates 

(4.125) 

(4.126) 

(4.127) 

(4.128) 

(4.129) 

(4.130) 

(4.131) 

(4.132) 
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Now let us gradually increase K (by increasing the Poisson ratio 11 to approach 0.5). 
Then, as K increases, the volumetric strain ev decreases and becomes very small. 

In fact, in total incompressibility 11 is exactly equal to 0.5, the bulk modulus is infinite, 
the volumetric strain is zero, and the pressure is of course finite (and of the order of the 
applied boundary tractions). The stress components are then expressed as [see (4.125) and 
(4.131)] 

(4.133) 

and the solution of the governing differential equations (4.122) to (4.124) now involves 
using the displacements and the pressure as unknown variables. 

In addition, special attention need also be given to the boundary conditions in ( 4.123) 
and ( 4.124) when material incompressibility is being considered and the displacements are 
prescribed on the complete surface of the body, i.e., when we have the special case Su = S, 
s, = 0. If the material is totally incompressible, a first condition is that the prescribed 
displacements uf must be compatible with the zero volumetric strain throughout the body. 
This physical observation is expressed as 

Eu= 0 throughout V (4.134) 

hence, f Eu dV = L u5 
• n dS = 0 (4.135) 

where we used the divergence theorem and n is the unit normal vector on the surface of the 
body. Hence, the displacements prescribed normal to the body surface must be such that the 
volume of the body is preserved. This condition will of course be automatically satisfied if 
the prescribed surface displacements are zero ( the particles on the surface of the body are 
not displaced). 

Assuming that the volumetric strain/boundary displacement compatibility is satisfied;, 
for the case Su = S, the second condition is that the pressure must be prescribed at some 
point in the body. Otherwise, the pressure is not unique because an arbitrary constant 
pressure does not cause any deformations. Only when both these conditions are fulfilled is 
the problem well posed for solution. 

Of course, the condition of prescribed displacements on the complete surface of the 
body is a somewhat special case in the analysis of solids, but we encounter an analogous 
situation frequently in fluid mechanics. Here the velocities may be prescribed on the 
complete boundary of the fluid domain (see Chapter 7). 

Although we considered here a totally incompressible medium, it is clear that these 
considerations are also important when the material is only almost incompressible-a 
violation of the conditions discussed will lead to an ill-posed problem statement. 

Of course, these observations also pertain to the use of the principle of virtual work. 
Let us consider the simple example shown in Fig. 4.19. Since only volumetric strain energy 
is present, the principle of virtual work gives for this case, 

(4.136) 
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Figure 4.19 Block of material in plane 
strain condition, subjected to uniform 
surface pressure p*; G = 0 

If the bulk modulus K is finite, we obtain directly from ( 4.136), 

p*L 
tis= -­

K 

and p p* 

(4.137) 

(4.138) 

However, if K is infinite, we need to use instead of ( 4.136) the following form of the principle 
of virtual work, with the pressure p unknown, 

Iv ev(-p) dV -l r5sp* dS 
Sf 

(4.139) 

and we again obtain p = p*. Of course, the solution of ( 4.139) does not use the constitutive 
relation but only the equilibrium condition. 

The Finite Element Solution of Almost Incompressible Conditions 

The preceding discussion indicates that when pursuing a pure displacement-based finite 
element analysis of an almost incompressible medium, significant difficulties must be 
expected. The very small volumetric strain, approaching zero in the limit of total incom­
pressibility, is determined from derivatives of displacements, which are not as accurately 
predicted as the displacements themselves. Any error in the predicted volumetric strain will 
appear as a large error in the stresses, and this error will in turn also affect the displacement 
prediction since the external loads are balanced (using the principle of virtual work) by the 
stresses. In practice, therefore, a very fine finite element discretization may be required to 
obtain good solution accuracy. 
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centerline of 
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(a) Geometry, material data, applied loading, and the coarse sixteen 
element mesh 

Chap. 4 

Figure 4.20 Analysis of cantilever bracket in plane strain conditions. Nine-node displace­
ment-based elements are used. The 16 x 64 == 1024-element mesh is obtained by dividing 
each element of the 16-element mesh into 64 elements. Maximum principal stress results are 
shown using the band representation of Fig. 4.15. Also, (u1)max is the predicted maximum 
value of the maximum principal stress, and ~ is defined in (a). 
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(b) Displacement-based element solution results for the case Poisson's ratio 
11 = 0.30. Sixteen element and 16 x 64 element mesh results 

Figure 4.20 (continued) 
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Figure 4.20 shows some results obtained in the analysis of a cantilever bracket sub­
jected to pressure loading. We consider plane strain conditions and the cases of Poisson's 
ratio JI = 0.30 and JI = 0.499. In all solutions, nine-node displacement-based elements 
have been used (with 3 x 3 'Gauss integration; see Section 5.5.5). A coarse mesh and a very 
fine mesh are used, and Fig. 4.20(a) shows the coarse idealization using only 16 elements. 
The solution results for the maximum principal stress u, are shown using the isoband 
representation discussed in Section 4.3.6. Here we have selected the bandwidth so as to be 
abie to see the rather poor performance of the displacement-based element when the Poisson 
ratio is close to 0.5. Figure 4.20(b) shows that when JI = 0.30, the element stresses are 
reasonably smooth across boundaries for the coarse mesh and very smooth. for the fine 
mesh. Indeed, the coarse idealization gives a quite reasonable stress prediction. However, 
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(a-1)max = 1.955 
8 = 1.044 

(a-1)max = 1.343 
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(c) Displacement-based element solution results for the case Poisson's ratio 
v = 0.499. Sixteen element and 16 x 64 element mesh results 

Figure 4.20 (continued) 

Chap.4 

when JI ·= 0.499, the same meshes of nine-node displacement-based elements result into 
poor stress predictions [see Fig. 4.20(c)]. Large stress fluctuations are seen in the individual 
elements of the coarse mesh and the fine mesh. 16 Hence, in summary, we see here that the 
displacement-based element used in the analysis is effective when JI = 0.3, but as v ap­
proaches 0.5, the stress prediction becomes very inaccurate. 

This discussion indicates what is very desirable, namely, a finite element formulation 
which gives essentially the same accuracy in results for a given mesh irrespective of what 
Poisson's ratio is used, even when vis close to 0.5 .. Such behavior is observed if for the finite 

16 We discuss briefly in Section 5.5.6 the use of "reduced integration." If in this analysis the reduced 
integration of2 x 2 Gauss integration is attempted,·the solution cannot he obtained because the resulting stiffness 
matrix· is singular. 
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element formulation the predictive capability of displacements and stresses is independent 
of the bulk modulus used. 

We refer to finite element formulations with this desirable behavior as nonlocking, 
whereas otherwise the finite elements are locking. 

The term ''locking" is based upon experiences in the analysis of beams, plates, and 
shells (see Section 5.4.1 }, where an inappropriate formulation-one that locks-results in 
displacements very much smaller than those intuitively expected for a given mesh (and 
calculated with an appropriate formulation; see, for example, Fig. 5.20). In the analysis of 
almost incompressible behavior, using a formulation that locks, the displacements are not 
necessarily that much in error but the stresses (the pressure) are very inaccurate. We note 
that the pure displacement formulation generally locks in almost incompressible analysis. 
These statements are discussed more precisely in Section 4.5. 

Effective finite element formulations for the analysis of almost incompressible behav­
ior that do notJock are obtained by interpolating displacements and pressure. Figure 4.21 
shows the results obtained in the analysis of the cantilever bracket in Fig. 4.20 with a 
displacement/pressure formulation referred to as u/p formulation using the 9/3 element 
(see below for the explanation of the formulation and the element). We see that the 
isobands of the maximum principal stress have in all cases the desirable degree of smooth­
ness and that the stress prediction does not deteriorate when Poisson's ratio v ap­
proaches 0.5. 

To introduce the displacement/pressure formulations, we recall that in a pure dis­
placement formulation, the evaluation of the pressure from the volumetric strain is difficult 
when ,c is large (in comparison to G) and that when a totally incompressible condition is 
considered, the pressure must be used as a solution variable[@e (4.133)]. It therefore 
appears reasonable to work with the unknown displacements and pressure as solution 
variables when almost incompressible conditions are analyzed. Such analysis procedures, 
if properly formulated, should then also be directly applicable to the limit of incompressible 
conditions. 

The basic approach of displacement/pressure finite element formulations is therefore 
to interpolate the displacements and the pressure. This requires that we express the principle 
of virtual work in terms of the independent variables u and p, which gives 

I L i''S dV - L ivp dV ~ (IA I (4.140) 

where, as usual, the overbar indicates virtual quantities, (1A corresponds to the usual external 
virtual work [mis equal to the right-hand side of ( 4. 7) ], and Sande' are the deviatoric stress 
and strain vectors, 

S = T + pf, (4.141) 

E' = E _ 1Ev6 (4.142) 
3 

where 8 is a vector of the Kronecker delta symbol [see (4.128)]. 
Note that using the definition of pin (4.131), a uniform compressive stress gives a 

positive pressure and that in the simple example in Fig. 4.19, only the volumetric part of the 
internal virtual work contributed. 

In (4.140) we have separated and then summed the deviatoric strain energy and the 
bulk strain energy. Since the displacements and pressure are considered independent vari-
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(a) Bands of maximum principal stress. Case of Poisson's ratio v = 0.30. 
Sixteen and 16 x 64 element mesli results 

Chap.4 

Figure 4.21 Analysis of cantilever bracket in plane strain conditions. Bracket is shown m 
Fig. 4.20(a). Same meshes as in Fig. 4.20 are used but with the nine-node mixed interpolated 
element (the 9/3 element). Compare the results shown with those given in Fig. 4.20. 

ables, we need another equation to connect these two solution variables. This equation is 
provided by (4.131) written in integral form (see Example 4.31),, 

(4.143) 

These basic equations can also be derived more formally from variational principles (see 
L. R. Herimann [A] and S. W. Key [A]). We derive the b~sic equations in the following 
example from the Hu-Washizu functional. 
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. Figure 4.21 (continued) 

EXAMPLE 4.31: Derive the u/p formulation from the Hu-Washizu variational principie. 
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The derivation is quite analogous to the presentation in Example 4.30 where we considered 
a mixed interpolation for a beam element. 

We start by letting T = CE in (4.114) to obtain the Hellinger-Reissner functional, 

where we assume that the displacement boundary conditions are satisfied exactly' (hence; also the 
displacement variations will be zero on the surface of prescnbed displacements). 
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Next we establish the deviatoric and volumetric contnbutions and postulate that the 
deviatoric contribution will be evaluated from the displacements. Hence, we can specialize (a) 
into 

fiL(u,p)= ( .!.E'TC'E'dV- ( .!.P
2

dV-( pEvdV- ( uTf8 dV- ( u5.rf5tdS(b) 
)v2 )v2 IC Jv Jv Js

1 

where the prime denotes deviatoric quantities, Ev is the volumetric stram evaluated from the 
displacements, p is the pressure, and IC is the bulk modulus. Note that whereas in (a) the 
independent variables are u and E, in (b) the independent variables are u and p. 

Invoking the stationarity of ii 1R with respect to the displacements and the pressure, we 
obtain 

and 

where ~ corresponds to the virtual work of the externally applied loading [ see ( 4. 7) ]. 
It is interesting to note that we may also think of (b) as the total potential in terms of the 

displacements and the pressure plus a Lagrange multiplier term that enforces the constramt 
between the volumetric strams and the pressure, 

IIL = - f .!. E'TC'E' dV + J, !.P
2 

dV - f uTfB dV 
)v2 v2 IC Jv (c) 

-L, u51Tf-!f dS - L A(Ev + ~) dV, 

In (c) the last integral represents the Lagrange multiplier constramt, and we find A = p. 

To arrive at the governing finite element equations, we can now use (4.140) and 
(4.143) as in Section 4.2.1, but in addition to interpolating the displacements we also 
interpolate the pressure p. The discussion in Section 4.2.1 showed that we need to consider 
the formulation of only a single element; the matrices of an assemblage of elements are then 
formed in a standard manner. 

Using, as in Section 4.2.l, 

u = Hii (4.144) 

we can calculate 

E' = Bou; Ev= Bvu (4.145) 

The additional interpolation assumption is 

p = Hpp (4.146) 

where the vector p lists the pressure variables [(see the discussion following (4.148)]. 
Substituting from (4.144) to (4.146) into (4.140) and (4.143), we obtain 

[t tJ[:J = [!] (4.147) 

where L = L B£C'Bo dV' 
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Kup = Kiu = -r B~Hp dV 

K = - f ur!u dV 
PP Jv PK P 

and C' is the stress-strain matrix for the deviatoric stress and strain components. 
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(4.148) 

The relations in (4.144) to (4.148) give the basic equations for formulating elements 
with displacements and pressure as variables. The key question for the formulation is now, 
What pressure and displacement interpolations should be used to arrive at effective ele­
ments? For example, if the pressure interpolation is of too high a degree compared to the 
displacement interpolation, the element may again behave as a displacement-based element 
and not be effective. 

Considering for the moment only the pressure interpolation, the following two main 
possibilities exist and we label them differently. 

The u/p formulation. In this formulation, the pressure variables pertain only to 
the specific element being considered. In the analysis of almost incompressible media (as so 
far discussed), the element pressure variables can be statically condensed out prior to the 
element assemblage. Continuity of pressure is not enforced between elements but will be a 
result of the finite element solution if the mesh used is fine enough. 

The u/p-c formulation. The letter "c" denotes continuity in pressure. 
In this formulation, the element pressure is defined by nodal pressure variables that 

pertain to adjacent elements in the assemblage. The pressure variables therefore cannot be 
statically condensed out prior to the element assemblage. Continuity of pressure between 
elements is directly enforced and will therefore always be a result of the solution irrespec­
tive of whether the mesh used is fine or coarse. 

Consider the following two elements, one corresponding to each of the formulations. 

EXAMPLE 4.32: For the four·node plane strain element shown, assume that the displacements 
are interpolated using the four nodes and assume a constant pressure. Evaluate the matrix 
expressions used for the u/p formulation. 

2 

2 

y, v ~ 

2 

-
X,U 

Young's modulus E 
Poisson's ratio v 

Figure E4.32 A 4 I I element 
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This element is referred to as the u/p 4/1 element. In plane strain analysis we have 

1 
Eu - 3(E.u + Eyy) 

1 
E

1 = Eyy - 3(Exx + Eyy) = 

'Yxy 

1 - J {Exx + Eyy) 

and S = C'E', where 

rG 
0 0 

C' = ~ 2G 0 
0 G 
0 0 

2 au l av -----
3 ox 3 ay 
2 av 1 au 
3 ay 3 ax 

au av 
-+­ay ax 

_!(&u + av) 
3 ox ay 

Ev= Exx + E'yy 

i] E 
G = 2(1 + v) 

The displacement interpolation is as in Example 4.6, 

u = Hu 

with [
u(x, y)] 

n(x, y) = v(x, y) ; 

H [~ h2 h3 '4 0 0 0 
iJ 0 0 0 h1 h2 h3 

h. = Ht + x)(l + y); h2 = ! (1 - x)(l + y) 

h3 = Ht - x)(t - y); h4 = t (1 + x)(l - y) 

Using (a) and (b), the strain-displacement interpolation matrices are 

jh1.x Jh2,x 

Bo= 
-!ht.x -f h2.x 

h1,y h2,y 

-fh1,x -}h2,x 

and Bv = [h1,x h2,x ... 

For a constant pressure assumption we have 

Hp= [l]; 

-lh1.y -!h2,y 

jht,y jh2,y 

hi.x h2,x 

-fht,y -!h2.y 

h1,y h2,y ... ) 

P = [po] 

(a) 

(b) 

Since the degree of freedom p = [p0) pertains only to this element and not to the adjacent 
elements, we can use static condensation to obtain from (4.147) the element stiffness matrix 
corresponding to the nodal point displacement degrees of freedom only; 

K = Kuu - Kup K;;,1 Kpu 

The element is further discussed in Example 4.38. 
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EXAMPLE 4.33: Consider the nine-node plane strain element shown in Fig. E4.33. Assume 
that the displacements are interpolated using the nine nodes and that the pressure is interpolated 
using only the four corner nodes. Refer to the information given in Example 4.32 and discuss the 
additional considerations for the evaluation of the matrix expressions of this element. 

y, v 

5 1 1i-~~----~~--rm• 

• Displacement node 

2 
(i) Displacement and pressure node 

6 9 8 X, U Young's modulus E 
Poisson's ratio v 

31-~ --:--· 14 
Figure E4.33 A 9 / 4·c element 

This element was proposed by P. Hood and C. Taylor [A]. In the formulation the nodal 
pressures pertain to adjacent elements, and according to the above element nomination we refer 
to it as a u/p-c element (it is the 9/4-c element). 

The deviatoric and volumetric strains are as given in (a) in Example 4.32. The displace­
ment interpolation corresponds to the nine nodes of the element, 

[
u(x, y)] = [M 
v(x, y) 0 

hl 
0 

0 

ht 
(a) 

where the interpolation functions hf are constructed as explained in Section 4.2.3 (or see 
Section 5.3 and Fig. 5.4). 

The deviatoric and volumetric strain-displacement matrices are obtained as in Example 4.32. 
The pressure interpolation is given by 

p = [hi h, h, h.] ~ l 
where the h, are those given in (b) in Example 4.32. 

A main computational difference between this element and the four-node element dis­
cussed in Example 4.32 is that the pressure degrees of freedom cannot be statically condensed 
out on the element level because the variables pi • ...• p4 pertain to the element we are consid­
ering here and to the adjacent elements, thus describing a continuous pressure field for the 
discretization. 
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Let us now return to the discussion of what pressure and displacement interpolations 
should be used in order to have an effective element. 

For instance, in Example 4.32, we used four nodes to interpolate the displacements 
and assumed a constant pressure, and we may ask whether a constant pressure is the 
appropriate choice for the four-node element. Actually, for this element, it is a somewhat 
natural choice because the volumetric strain calculated from the displacements contains 
linear variations in x and y and our pressure assumption should be of lower order. 

When higher-order displacement interpolations are used, the choice of the appropri­
ate pressure interpolation is not obvious and indeed much more difficult: the pressure 
should not. be interpolated at too low a degree because then the pressure prediction could 
be of higher order and hence be more accurate, but the pressure should also not be 
interpolated at too high a degree because then the element would behave like the displace­
ment-based elements and lock. Hence, we want to use the highest degree of pressure 
interpolation that does not introduce locking into the element. 

For example, considering the u/p formulation and biquadratic displacement interpola­
tion (i.e., nine nodes for the description of the displacements), we may naturally try the 
following cases in plane strain analysis: 

1. Constant pressure, p = Po (9/1 element) 
2. Linear pressure, p = po + pix + p2y (9/3 element) 
3. Bilinear pressure, p == po + pix + P2Y + p3xy (9/4 element) 

and so on, up to a quadratic pressure interpolation (which corresponds to the 9 /9 element). 
These elements have been analyzed theoretically and by use of numerical experi­

ments. Studies of the elements show that the 9 / 1 element does not lock, but the rate of 
convergence of pressure (and hence stresses) as the mesh is refined is only of o(h) because 
a constant pressure is assumed in each nine-node element. The poor quality of the pressure 
prediction can ~f course also have a negative effect on the prediction of the displacements. 

Studies also show that the 9 /3 element is most attractive because it does not lock and 
the stress convergence is of o(h 2). Hence, the predictive capability is optimal since if a 
biquadratic displacement expansion is used, no higher-order convergence in stresses can be 
expected. Also, the 9 /3 element is effective for any Poisson's ratio up to 0.5 (but the static 
condensation of the pressure degrees of freedom is possible only for values of v < 0.5). 

Hence, we may be tempted to always use the 9 /3 element (instead of the displacement­
based nine-node element). However, we find in practice that the 9/3 element is computa­
tionally slightly more expensive than the nine-node displacement-based element, and when 
vis less than 0.48, the additional terms in the pressure expansion of the displacement-based 
element allow a slightly better prediction of stresses. 

The next ulp element of interest is the 9 / 4 element, and studies show that this element 
locks when v is close to 0.50; hence it cannot be recommended for almost incompressible 
analysis, in general. 

In an analogous manner, other u/p elements can be constructed, and Table 4.6 
summarizes some choices. Regarding these elements, we may note that the four-node two­
dimensional and eight-node three-dimensional elements are extensively used in practice. 
However, the nine-node two-dimensional and 27-node three-dimensional elements are 
frequently more powerful. 
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As indicated in Table 4.6, the Qi - P1 and Pt - Pi elements are the first members 
of two families of elements that may be used. That is, the quadrilateral elements Qn - Pn-1, 
and the triangular elements p; - Pn-1, n > 2, are also effective elements. 

In Table 4.6 we refer to the inf-sup condition, which we will discuss in Section 4.5. 
From a computational point of view, the u/p elements are attractive because the 

element pressure degrees of freedom can be statically condensed out before the elements are 
assembled (assuming v < 0.5 but possibly very close to 0.5). Hence, the degrees of freedom 
for the assemblage of elements are only the same nodal point displacements that are also 
the degrees of freedom in the pure displacement-based solution. 

However, the u/p~c formulation has the advantage that a continuous pressure field is 
always calculated. Table 4. 7 lists some effective elements. 

The Finite Element Solution of Totally Incompressible Conditions 

If we want to consider the material to be totally incompressible, we can still use ( 4.140) and 
(4.143), but we then let 1<.-+ oo. For this reason, we refer to this case as the limit problem. 
Then (4.143) becomes 

L EvpdV == 0 (4.149) 

and ( 4.14 7) becomes, correspondingly, 

(4.150) 

Hence, in the coefficient matrix, the diagonal elements corresponding to the pressure 
degrees of freedom are now zero. It follows that a static condensation of the element 
pressure degrees of freedom in the u/ p formulation is no longer possible and that the 
solution of the equations of the complete assemblage of elements needs special consider­
ations (beyond those required in the pure displacement-based solution) to avoid encounter­
ing a zero pivot element (see Section 8.2.5). 

Suitable elements for solution are listed in Tables 4.6 and 4.7. These elements are 
effective (however see notes in the Tables) because they have good predictive capability 
irrespective of how close the behavior of the medium is to a situation of total incompressibil­
ity (but the procedure for solving the governing finite element equations must take into 
account that the elements in KPP become increasingly smaller as total incompressibility is 
approached). 

As already noted earlier, we refer to the inf-sup condition in Tables 4.6 and 4.7. This 
condition is the basic mathematical criterion that determines whether a mixed finite element 
discretization is stable and convergent (and hence will yield a reliable solution). The 
condition was introduced as the fundamental test for mixed finite element formulations by 
I. Babuska [A] and F. Brezzi [A] and since then has been used extensively in the analysis 
of mixed finite element formulations. In addition to the inf-sup condition, there is also the 
ellipticity condition which has not received as much attention because frequently-as in the 
analysis of almost incompressible media-the ellipticity condition can be easily satisfied. 
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We may ask whether in practice it is really important to satisfy the inf-sup condition, 
that is, whether perhaps this condition is too strong and elements that do not satisfy it can 
still be used reliably. Our experience is that if the inf-sup condition is satisfied, the element 
will be, for the interpolations used, as effective as we can reasonably expect and in that 
sense optimal. For example, the 9/3 element for plane strain analysis in Table 4.6 is based 
on a parabolic interpolation of displacements and a linear interpolation of pressure. The 
element does not lock, and the order of convergence of displacements is always o(h 3

), and 
of stresses, o(h2), which is surely the best behavior we can obtain with the interpolations 
used. 

On the other hand, if the inf-sup condition is not satisfied, the element will not always 
display for all analysis problems (pertaining to the mathematical model considered) the 
convergence characteristics that we would expect and indeed require in practice. The 
element is therefore not robust and reliable. 

Since the inf-sup condition is of great fundamental importance, we present in the 
following section a derivation that although not mathematically complete does yield valu­
able insight. In this discussion we will also encounter and briefly exemplify the ellipticity 
condition. For a mathematically complete derivation of the ellipticity and inf-sup 
conditions and many more details, we refer the reader to the book by F. Brezzi and M. 
Fortin [A]. 

In the derivation in the next section we examine the problem of incompressible 
elasticity, but our considerations are also directly applicable to the problem of incompress­
ible fluid flow, and as shown in Section 4.5.7, to the formulations of structural elements. 

4.4.4 Exercises 

4.33. Use the four-node and eight-node shell elements available in a finite element program and 
perform the patch tests in Fig. 4.17. 

4.34. Consider the three-dimensional eight-node element shown. Design the patch test and identify 
analytically whether it is passed for the element. 

y 
2 

I 
I 
I 
I 
• 

4 

I ">---- _,.. __ -+--I-
I ,, X 

..;-(s ______________ s 
z/,,> 

7 ,, ,, 
,," 

-1--i---- 2 ---· I 

8 
u = 2, hiui +a,¢,+ a2¢2 + ay/)3 

1-1 
8 

v = 2, h;v; + a4¢1 + a5¢2 + af#J 
i·l 

8 
w = 2, h;w; + a1¢1 + a84>2 + a9'1>3 

i· 1 

h; = i {1 + x;x)(1 + y;y)(1 + Z;Z) 

,,,, = 1 - x2; fJ2 = 1 - y2; ~ = 1 - z2 

Displacement interpolation functions 



Sec. 4.4 Incompatible and Mixed Finite Element Models 297 

4.35. Consider the Hu-Washizu functional IlHw in ( 4.114) and derive in detail the equations ( 4.116) 
to (4.121). 

4.36. The following functional is referred to as the Hellinger-Reissner functional 17 

nHR(u,r) = Iv -11'7C- 11' dV + Iv 'f'7 aEu dV 

- f u7f 8 dV - f uS1TfS1 dS - ( fSu7(US" - Up) dS 
Jv Js, Js,. 

where the prescribed (not to be varied) quantities are f 8 in V. Up on Su, and f 5J on S1. 
Derive this functional from the Hu-Washizu functional by imposing e = c- 1

'T. Then 
invoke the stationarity of IlHR and establish all remaining differential conditions for the volume 
and surface of the body. 

4.37. Consider the functional 

Il1 = fl - r f5u7(u5u - Up) dS 
Js,. 

where Il is given in (4.109) and Up are the displacements to be prescribed on the surface Su, 
Hence, the vector f 5

u represents the Lagrange multipliers (surface tractions) used to enforce the 
surface displacement conditions. Invoke the stationarity of Il 1 and show that the Lagrange 
multiplier term will enforce the displacement boundary conditions on Su. 

4.38. Consider the three-node truss element in Fig. E4.29. Use the Hu-Washizu variational principle 
and establish the stiffness matrices for the following assumptions: 
(a) Parabolic displacement, linear strain, and constant stress 
(b) Parabolic displacement, constant strain, and constant stress 
Discuss your results in terms of whether the choices of interpolations are sensible (see Exam­
ple 4.29). 

4.39. Show that the following stress~strain expressions of an isotropic material are equivalent. 

term. 

,. = Ce 

where K is the bulk modulus, G is the shear modulus, 

E 

(a) 

(b) 

(c) 

Eis Young's modulus, vis Poisson's ratio, Ev is the volumetric strain, and Eu are the deviatoric 
strain components, 

Also, 

11 This functional is sometimes given in a different form by applying the divergence theorem to the second 
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where .,\ and µ, are the Lame constants. 

Ev 
.,\ 

E 
µ, = 2(1 + v) (1 + v)(l - 2v) ' 

In (a) and (b) tensorial quantities are used, whereas in (c) the vector of strains contains the 
engineering shear strains (which are equal to twice the tensor components; e.g., 'Yxy E12 + Ei1), 

Also, the stress-strain matrix C in (c) is given in Table 4.3. 

4.40. Identify the order of pressure interpolation that should be used in the u/p formulation in order 
to obtain the same stiffness matrix as in the pure displacement formulation. Consider the 
following elements of 2 X 2 geometry. 
(a) Four-node element in plane strain 
(b) Four-node element in axisymmetric conditions 
(c) Nine-node element in plane strain. 

4.41. Consider the 4/1 element in Example 4.32 and assume that the displacement boundary condition 
to be imposed is u1 = ii. Show formally that imposing this boundary condition prior to or after 
the static condensation of the pressure degree of freedom, yields the same element contribution 
to the stiffness matrix of the assemblage. 

4.42. Consider the axisymmetric 4/1 u/p element shown. Construct the matrices Bo, Bv. C', and Hp 
for this element. 

t 

I 2 

T I 

I 3 
I 

1 I _3 4 I 

R=4 i...--2--+-1 
4.43. Consider the 4/3-c element in plane strain conditions shown. Formulate all displacement and 

strain interpolation matrices for this element (see Table 4.7). 

y, v 

x, u 
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4.44. Consider the 9/3 plane strain u/p element shown. Calculate the matrix Kpp. 

, .. 2 ~1 
y 

T 
2 ~ • . ~ 

x 
...L 

Young's modulus E 
Poisson's ratio v = 0.49 

4.45. Consider the plate with the circular hole shown. Use a finite element program to solve for the 
stress distribution along section AA for the two cases of Poisson's ratios v = 0.3 and v = 0.499. 
Assess the accuracy of your results by means of an error measure. (Hint: For the analysis with 
v = 0.499, the 9 /3 element is effective.) 

A r-- 100 mm _..,.., ..... , .... -100 mm ----! 

100mm 

p p 

100 mm 

I 
!A 

Plane strain condition 
Young's modulus E = 200,000 MPa 
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4.46. The static response of the thick cylinder shown is to be calculated with a finite element program. 

I 
<f. 

f 

I f f = force per unit length , ............ --......... 

I 
20mm 

10mm 
I 

E = 200,000 MPa 
V= 0.499 

30mm 

Use idealizations based on the following elements to analyze the cylinder. 
(a) Four-node displacement-based element 
(b) Nine-node displacement-based element 
(c) 4/1 u/p element. 
(d) 9/3 u/p element. 
In each case use a sequence of meshes and identify the convergence rate of the strain energy. 

4.5 THE INF-SUP CONDITION FOR ANALYSIS OF INCOMPRESSIBLE 
MEDIA AND STRUCTURAL PROBLEMS 

As we pointed out in the previous section, it is important that the finite element discretiza­
tion for the analysis of almost, and of course totally, incompressible media satisfy the 
inf-sup condition. The objective in this section is to present this condition. We first consider 
the pure displacement formulation for the analysis of solids and then the displacement/pres-
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sure formulations. Finally, we also briefly discuss the inf-sup condition as applicable to 
structural elements. 

In our discussion we apply the displacement and displacement/pressure formulations 
to a solid medium. However, the basic observations and conclusions are also directly 
applicable to the solution of incompressible fluid flows if velocities are used instead of 
displacements (see Section 7 .4). 

4.5.1 The Inf-Sup Condition Derived from Convergence 
Considerations 

We want to solve a general linear elasticity problem (see Section 4.2.1) in which a body is 
subjected to body forces f 8

, surface tractions f 5J on the surface S1, and displacement 
boundary conditions u5u on the surface Su, Without loss of generality of the conclusions that 
we want to reach in this section, we can assume that the prescribed displacements u5

u and 
prescribed tractions f 5J are zero. Of course, we assume that the body is properly supported, 
so that no rigid body motions are possible. We can then write our analysis problem as a 
problem of minimization, 

min {-
2
1 

a(v, v) + ~
2 

f (div v)2 dVol - ( f 8 
• v dVol} 

vev Jvo1 Jvo1 (4.151) 

where using indicial notation and tensor quantities (see Sections 4.3.4 and 4.4.3), 

a(u, v) = 2G f ± e[;(u) e[;(v) dVol 
Vol i,J 

e[;(u) = Eif(u) - ! div uaif (4.152) 

1 (OU; dUj) eu(u) = - - + - ; 
2 dXj oxi 

divv = Vu 

where K = E/[3(1 - 2v)] (bulk modulus), G = E/[2(1 + v)] (shear modulus), E = 
Young's modulus, v = Poisson's ratio. 

V ={vi: E L'(Vol), i,j = l, 2, 3; o,I,, = 0, i = l, 2, 3} 

In these expressions we use the notation defined earlier (see Section 4.3) and we denote by 
"Vol" the domain over which we integrate so as to avoid any confusion with the vector space 
V. Also, we use for the vector v and scalar q the norms 

II viii=~ lla:112 ; 
l,j t2(Vol) 

(4.153) 

where the vector norm II · llv is somewhat easier to work with but is equivalent to the Sobolev 
norm II· Iii defined in ( 4.76) (by the Poincare-Friedrichs inequality). 
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In the following discussion we will not explicitly give the subscripts on the norms but 
always imply that a vector w has norm II w llv and a scalar 'Y has norm 11 'Y llo. 

Let u be the minimizer of (4.151) (i.e., the exact solution to the problem) and let V11 
be a space of a sequence of finite element spaces that we choose to solve the problem. These 
spaces are defined in (4.84). Of course, each discrete problem, 

~ Ha(v,, v,.) + 11 (div v,)2 dVol -1 f8 
• vh dVol} (4.154) 

Vol Vol 

has a unique finite element solution uh, We considered the properties of this solution in 
Section 4.3.4, and in particular we presented the properties (4.95) and (4.101). However, 
we also stated that the constants c in these relations are dependent on the material proper­
ties. The important point now is that when the bulk modulus K is very large, the relations 
( 4.95) and ( 4.101) are no longer useful because the constants are too large. Therefore, we 
want our finite element space Vh to satisfy another property, still of the form (4.95) but in 
which the constant c, in addition to being independent of h, is also independent of K. 

To state this new desired property, let us first define the "distance" between the exact 
solution u and the finite element space Vh (see Fig. 4.22), 

d(u. V1i) = inf Jiu - v1i[I = llu - ii1ill (4.155) 
'11,EV1, 

where ti,. is an element in v,. but is in general not the finite element solution. 

The Basic Requirements 

In engineering practice, the bulk modulus K may vary from values of the order of G to very 
large values, and indeed to infinity when complete incompressibility is considered. Our 
objective is to use finite elements that are uniformly effective irrespective of what value K 

Figure 4.22 Schematic representation of solutions and distances; for optimal convergence 
II u - u,.11 s c d(u, V,.) with cindependent of hand K. 
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takes. Mathematically, therefore, our purpose is to find conditions on Vh such that 

!lu - uhll s c d(u, Vh) 
with a constant c independent of h and K. 

(4.156) 

These conditions shall guide us in our choice of effective finite elements and discretizations. 
The inequality (4.156) means that the distance between the continuous solution u and 

the finite element solution uh will be smaller than a (reasonably sized) constant c times 
d(u, Vh) and that this relationship will be satisfied with the same constant c irrespective of 
the bulk modulus used. Note that this independence of c from the bulk modulus is the key 
property we did not have in Section 4.3.4 when we derived a relation such as (4.156) 
[see (4.95)]. 

Assume that the condition ( 4.156) holds (with a reasonably sized constant c). Then 
if d(u, Vh) is o(hk), we know that llu - uh 11 is also o(hk), and since c is reasonably sized and 
independent of K, we will in fact observe the same solution accuracy and improvement in 
accuracy as h is decreased irrespective of the bulk modulus in the problem. In this case the 
finite element spaces have good approximation properties for any value of K, and the finite 
element discretization is reliable (see Section 1.3). 

The relationship in ( 4.156) expresses our fundamental requirement for the finite 
element discretization, and finite element formulations that satisfy ( 4.156) do not lock (see 
Section 4.4.3). In the following discussion, we write (4.156) only in forms with which we 
can work more easily in choosing effective finite elements. One of these forms uses an 
inf-sup value and is the celebrated inf-sup condition. 

To proceed further, we define the spaces K and D, 

K(q) = {v Iv E V, div v q} 

D = {q I q = div v for some v E V} 

and the corresponding spaces for our discretizations, 

Kh(qh) = {vh I vh E Vh. div vh = qh} 

Dh = {qh I qh = div vh for some vh E Vh} 

(4.157) 

(4.158) 

(4.159) 

(4.160) 

Hence the space Kh(qh), for a given qh, corresponds to all the elements vh in Vh that satisfy 
div vh = qh, Also, the space Dh corresponds to all the elements qh with qh = div vh that are 
reached by the elements v h in Vh; that is, for any qh an element of Dh there is at least one 
element vh in Vh such that qh == div vh, Similar thoughts are applicable to the spaces K 
and D. 

We recall that when K is large, the quantity II div uh 11 will be small; the larger K, the 
smaller II div uh II, and it is difficult to obtain an accurate pressure prediction Ph = 
- K div uh. In the limit K ~ oo we have div uh = 0, but the pressure Ph is still finite (and 
of course of order of the applied tractions) and therefore K(div uh)2 = 0. 
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Before developing the inf-sup condition, let us state the ellipticity condition for the 
problem of total incompressibility: there is a constant a greater than zero and independent 
of h such that 

(4.161) 

This condition in essence states that the deviatoric strain energy is to be bounded from 
below, a condition that is clearly satisfied. We further refer to and explain the ellipticity 
condition for the incompressible elasticity problem in Section 4.5.2. 

Let us emphasize that in this finite element formulation the only variables are the 
displacements. 

Obtaining the Inf-Sup Condition 

The inf-sup condition-which when satisfied ensures that ( 4.156) holds-can now be 
developed as follows. Since the condition of total incompressibility clearly represents the 
most severe constraint, we consider this case. Then q = 0, u belongs to K(q) for q = 0 [that 
is, K(O)], and the continuous problem (4.151) becomes 

min {-
2

1 
a(v, v) - f f 8 

• v dVot} 
vEK(O) Vol 

(4.162) 

with the solution u, while the discrete problem is 

min {-2
1 

a(vh, vh) - f f 8 • vh dVot} 
llhEKtt(O) Vol 

(4.163) 

with the solution uh. 
Now consider condition (4.156). We notice that in this condition we compare dis­

tances. In the following discussion we characterize a distance as "small" if it remains of the 
same order of magnitude as d(u, Vh) as h decreases. Similarly, we will say that a vector is 
small if its length satisfies this definition and that a vector is "close" to another vector if the 
vector difference in the two vectors is small. 

Since uh E Kh(O), and therefore always llu - uh II ::=:; c d[u, Kh(O)) (see Exercise 4.47), 
we can also write condition (4.156) in the form 

(4.164) 

which means that we want the distance from u to Kh(O) to be small. This relation expresses 
the requirement that if the distance between u and Vh ( the complete finite element displace­
ment space) decreases at a certain rate ash~ 0, then the distance between u and the space 
in which the actual solution lies (because uh E Kh(O)] decreases at the same rate. 

Figure 4.23 shows schematically the spaces and vectors that we use. Let uhO be a 
vector of our choice in Kh(O) and let wh be the corresponding vector such that 

(4.165) 
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Figure 4.23 Spaces and vectors considered in deriving the inf-sup condition 

We can then prove that the condition in ( 4.164) is fulfilled provided that 

for all qh E Dh, there is a W1i E KJi(q1i) such that 

I[ W1ill s; c' II q1ill 

where c' is independent of h and the bulk modulus K. 

First, we always have (see Exercise 4.48) 

11 div(u - ti1i) JI s; all u - tih II 
and hence, 

where a is a constant and we used div u = 0. 
Second, we consider 

II u - u1i0II = II u - ii11 + whll 
s; 11 u - t4II + 11 whll 
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(4.166) 

(4.167) 

(4.168) 

Now assume that (4.166) holds with q1i = div ii1i. Because div Uho = 0, we have 
div iih = div w1i, where we note that iih is fixed by ( 4.155) and therefore qh is fixed, but by 
choosing different values of UhQ different values of wh are also obtained. Then it follows that 

llu - u1i0II s d(u, V1i) + c' Jlq1i II 
= d(u, Vh) + c' II div iih II 
s; d(u, V1i) + c' a d(u, V1i) 

(4.169) 

We emphasize that we have used the condition ( 4.166) in this derivation and have assumed 
that U1io is an element in K1i(O) such that Wh satisfies ( 4.166). Also, note that ( 4.168) 
established only that II div iih II is small, but then ( 4.169) established that II u - u1i0 II is small. 
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Third, since uhO E KA(O), we obtain from (4.169), 

d[u, K,i(O)] s II u uholl s (1 + ac') d(u, V,.) (4.170) 

which is ( 4.164) with c = 1 + ac', and we note that c is independent of h and the bulk 
modulus. 

The crucial step in the derivation of ( 4.164) is that using ( 4.166) with qh = div uh, we 
can choose a vector wh that is small [which follows by using (4.166) and (4.168)]. We note 
that (4.166) is the only condition we need in order to prove (4.164) and is therefore the 
fundamental requirement to be satisfied in order to have a finite element discretization that 
will give an optimal rate of convergence. 

The optimal rate of convergence requires in ( 4.164) that the constant c' in ( 4.166) be 
independent of h. Assume, for example, that instead of ( 4.166) we have llwhll s (1/~h)II qh II 
with ~h decreasing with h. Then ( 4.170) will read 

d[u, K,.(O)] s ( 1 + ;J d(u, v,.) (4.171) 

and hence the distance between u and Kh(O) will not decrease at the same rate as d(u, Vh), 
However, convergence, although not optimal, will still occur if d( u, Vh) decreases faster 
than ~h· This shows that the condition in ( 4.166) is a strong guarantee for good convergence 
properties of our discretization. 

Let us now rewrite (4.166) in the form of the inf-sup condition. From (4.166) we 
obtain, with qh and wh variables, wh E K,.(qh), the condition 

l!w11ll llq11II s c' llqhll2 = c' J. qh div w,. dVol (4.172) 
Vol 

or the condition is that for all qh E Dh, there is a wh E Kh(qh) such that 

.!_ II h II < fv01 q1i div W11 dVol 
c' q - llw1ill 

Hence, we want 

and the inf-sup condition follows, 

. f Jv01 qh div vh dVol a O 
q!gD,. v~!~,. II V11!1 II Q1ill ~ fJ > 

with f3 a constant independent of K and h 

We note that ~ = 1 /c'. 

(4.173) 

(4.174) 

(4.175) 

Therefore, (4.166) implies (4.175), and it can also be proven that (4.175) implies 
( 4.166) (see Example 4.42). (We will not present this proof until later because we must first 
discuss certain additional basic facts.) Hence, we may also refer to (4.166) as one form of 
the inf-sup condition. 
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The inf-sup condition says that for a finite element discretization to be effective, we 
must have that, for a sequence of finite element spaces, if we take any qh E Dh, there must 
be a vh E Vh such that the quotient in ( 4.175) is 2! {3 > 0. If the inf-sup condition is satis­
fied by the sequence of finite element spaces, then our finite element discretization scheme 
will exhibit the good approximation property that we seek, namely, ( 4.156) will be fulfilled. 

Note that if {3 is dependent on h, say ( 4.175) is satisfied with {3h instead of {3, then the 
expression in (4.171) will be applicable (for an example, see the three-node isoparametric 
beam element in Section 4.5.7). 

Whether the inf-sup condition is satisfied depends, in general, on the specific finite 
element we use, the mesh topology, and the boundary conditions. If a discretization using 
a specific finite element always satisfies (4.175), for any mesh topology and boundary 
conditions, we simply say that the element satisfies the inf-sup condition. If, on the other 
hand, we know of one mesh topology and/or one set of (physically realistic) boundary 
conditions for which the discretization does not satisfy ( 4.175), then we simply say that the 
element does not satisfy the inf-sup condition. 

Another Form of the Inf-Sup Condition 

To analyze whether an element satisfies the inf-sup condition ( 4.175), another form of this 
condition is very useful, namely 

For all u there is au, E Vh (a vector that interpolates u) such that 

f div(u - u1)qh dVol = 0 for all q11 E D11 
JVol (4.176) 

with the constant c independent of u, U1, and h. 

The equivalence of ( 4.176) and ( 4.175) [and hence ( 4.166)] can be formally proven 
(see F. Brezzi and M. Fortin [A] and F. Brezzi and K. J. Bathe [A, B]), but to simply relate 
the statements in ( 4.176) to our earlier discussion, we note that two fundamental require­
ments emerged in the derivation of the inf-sup condition; namely, that there is a vector wh 
such that (see Figure 4.23) 

div w11 = div fi.11 (4.177) 

and [see ( 4.166) and ( 4.168)] 

(4.178) 

where c* is a constant. 
We note that (4.176) corresponds to (4.177) and (4.178) if we consider the vector 

iih - u ( the vector of difference between the best approximation in Vh and the exact 
solution) the solution vector and the vector W11 the interpolation vector. 

Hence, the conditions are that the interpolation vector wh shall satisfy the above 
divergence and "small-size" conditions for and measured on the vector (uh - u) in order 
to have an effective discretization scheme. 
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The three expressions of the inf-sup condition, (4.166), (4.175), and (4.176), are 
useful in different ways but of course all express the same requirement. In mathematical 
analyses the forms (4.166) and (4.175) are usually employed, whereas (4.176) is frequently 
most easily used to prove whether a specific element satisfies the condition (see Exam­
ple 4.36). 

Considering the inf-sup condition, we recognize that the richer the space Kh(O), the 
greater the capacity to satisfy (4.175) [that is, (4.164)]. However, unfortunately, using the 
standard displacement-based elements, the constraint is generally too strong for the ele­
ments and meshes (i.e., spaces Vh) of interest and the discretizations lock (see Fig. 4.20). 
We therefore tum to mixed formulations that do not lock and that exhibit the desired rates 
of convergence. Excellent candidates are the displacement/pressure formulations already 
introduced in Section 4.4.3. However, whereas the pure displacement formulation is (al­
ways) stable but generally locks, for any mixed formulation, a main additional concern is 
that it be stable. We shall see in the following discussion that the two conditions of stability 
and no locking are fulfilled if by appropriate choice of the displacement and pressure interpola­
tions the ellipticity and inf-sup conditions are satisfied, and the desired (optimal) convergence 
rate is also obtained if the interpolations are chosen appropriately. 

Weakening the Constraint 

Let us consider the u/p formulation. The variational discrete problem in the u/p formula­
tion [corresponding to ( 4.140) and ( 4.143)] is 

where the projection operator Ph is defined by 

( [Ph(div vh) - div vh]qh dVol = 0 
Jvo1 

(4.179) 

(4.180) 

and Qh is a "pressure space" to be chosen. We see that Qh always contains Ph(Dh) but that 
Qh is sometimes larger than Ph(Dh), which is a case that we shall discuss later. 

To recognize that (4.179) and (4.180) are indeed equivalent to the u/p formulation, 
we rewrite (4.179) and (4.180) as 

20 ( Ef,(u,.)eb(v11) dVol - r Ph div V11 dVol = ( f 8 • V11 dVol 
Jv<>t Jvo1 L>l (4.181) 

(4.182) 

These equations are ( 4.140) and ( 4.143) in Section 4.4.3, and we recall that they are valid 
for any value of K > 0. The key point in the u/p formulation is that (4.180) [i.e., (4.182)] 
is applied individually for each element and, provided K is finite, the pressure variables can 
be statically condensed out on the element level (before assembly of the element stiffness 
matrix into the global structure stiffness matrix). 

Consider the following example. 

EXAMPLE 4.34: Derive P11(div v11) for the 4/1 element shown in Fig. E4.34. Hence, evaluate 
the term (K/2) fvoi [A(div vh)]2 dVol in (4.179). 
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x 

Figure E4.34 A 4/1 plane strain element 

We have 

where 

div Vh = [h1,x 

07 = [U1 

h1.y , , , h4,y] ll 

V1 , • , V4] 

We now use (4.180), with qh an arbitrary nonzero constant (say qh = a), because here Qh is the 
space of constant pressures. Since Ph(div vh) is also constant, we have from (4.180), 

which gives 

4A(div vh)a = a J. div vh dVol 
vol 

A{div vh) = Ht -1 -1 1 : 1 

= Du 
-1 -l]ii 

Hence, ~ L
01 

[Ph(div vh)]2 dVol = ~ ii7Gh ii 

Gh = 4D7D where 

Note that although we have used the pressure space Qh, the stiffness matrix obtained from 
( 4.179) will correspond to nodal point displacements only. 

Also, we may note that the term Ph( div v h) is simply div v h at x = y = 0. 

EXAMPLE 4.35: Consider the nine-node element shown in Fig. E4.35 and assume that vh is 
given by the nodal point displacements u, = 1, us = 0.5, us = 0.5, U9 = 0.25 with all other 
nodal point displacements equal to zero. Let Qh be the space corresponding to {l, x, y}. Evaluate 
A(div vh), 

To evaluate Pb{div vh) we use the general relationship 

f (PMiv vh) - div vh)qh dVol = 0 V qh E Qh (a) 
Jvot 

In this example, 
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Figure E4.35 A 9 /3 element subjected 
to nodal point displacements 

where uh and Vh are given by the element nodal point displacements. Hence, 

Uh = i (1 + X) (1 + y) 

and 

Let 

Vh::::: 0 

div vh Hl + y) 

A(div vh) = a, + a2x + a3y 

then (a) gives L. [ (a, + a,x + a,y) - lo + y) Jq, dx dy = o 

for qh = l, x, and y. Hence, (b) gives the set of equations 

( dx dy r X dx dy ( y dx dy a1 
Jvo1 Jvo1 Jvo1 

I. x2 dx dy I. xy dx dy a2 
Vol Vol I. -

4
\ l + y) x dx dy 

Vol 

Symmetric L, y' dx dy a, L., ~(I + y) y dx dy 

(b) 

[ 4 ~ ~J[:~J = [~] (c) 
Sym. i a3 i 

or 

The solution of (c) gives a, = ! , a2 0, a3 = t, and hence, 

Ph{div vh) = i (1 + y) 

This result is correct because div vh can be represented exactly in Qh and in such a case 
the projection gives of course the value of div v1i. 

The inf-sup condition corresponding to ( 4.179) is now like the inf-sup condition we 
discussed earlier but using the term A(div vh) instead of div vh. Hence our condition is now 
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(4.183) 

In other words, the inf-sup condition now corresponds to any element in Vh and Ph(Dh). 
Hence, when applying (4.166), (4.175), or (4.176) to the mixed interpolated u/p elements, 
we now need to consider the finite element spaces Vh and Ph(Dh), where Ph(Dh) is used 
instead of Dh, 

EXAMPLE 4.36: Prove that the inf-sup condition is satisfied by the 9/3 two-dimensional u/p 
element presented in Section 4.4.3. 

For this proof we use the form of the inf-sup condition given in ( 4.176) (see F. Brezzi and 
K. J. Bathe [A]). Given u smooth we must find an interpolation, u, E Vh, such that for each 
element m, 

f (div u - div u,)qh dV01<ml = 0 
Jvo1<m) 

(a) 

for all qh polynomials of degree Sl in Vo1<m). To define u, we prescribe the values of each 
displacement at the nine element nodes (corner nodes, midside nodes, and the center node). We 
start with the corner nodes and require for these nodes i 1, 2, 3, 4, 

eight conditions (b) 

Then we adjust the values at the midside nodes j = 5, 6, 7, 8 in such a way that 

rS· (u u,) • n dS = f (u - u,) • T dS = 0 eight conditions (c) J~, J~ 
for every edge S1 •.•.• S4 of the element with n the unit normal vector and T the unit tangential 
vector to the edge. 

Next we note that (a) in particular implies, for every constant q,,, 

f div(u - u1)q,. dVot<ml = qh ~ f (u - u,) • n dS (d) 
Jvo1(ml S1, ... ,S4 JsJ 

We are left to use the two degrees of freedom at the element center node. We choose these in such 
a way that 

f div(u - u1)x dVoJCm) = f div(u - u1)y dV01<m) = 0 
Jvo1(m) Jvot(ml 

(e) 

We note now that (d) and (e) imply (a) and that u,, constructed element by element through (b) 
and (c), will be continuous from element to element. Finally, note that clearly if u is a (vector) 
polynomial of degree s2 on the element, we obtain u1 == u and this ensures optimal bounds for 
II u - u, II and implies the condition 11 u1 II s c II u II in ( 4.176) for all u. 

While in the u/ p formulation the projection ( 4.180) is carried out for each element 
individually, in the u/p-c formulation a continuous pressure interpolation is assumed and 
then (4.181) and (4.182) are applied. The relation (4.182) with the continuous pressure 
interpolation gives a set of equations coupling the displacements and pressures for adjacent 
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elements. In this case the inf-sup condition is still given by ( 4.183 ), but now the pressure 
space corresponds to the nodal point continuous pressure interpolations. 

In dealing with the inf-sup condition, we recognize that the ability to satisfy the 
condition depends on how the space Ph(Dh) relates to the space of displacements Vh. Here 
again, Ph is the projection operator onto the space Qh [see (4.180) and (4.182)], and, in 
general, the smaller the space Qh, the easier it is to satisfy the condition. Of course, if for 
a given space Vh the inf-sup condition is satisfied with Qh smaller than necessary, we have 
a stable element but the predictive capability is not as high as possible (namely, as high as 
it would be using the larger space Qh but still satisfying the inf-sup condition). 

For example, consider the nine-node isoparametric element (see Section 4.4.3). Using 
the u/p formulation with Ph = I (the identity operator), the displacement-based formula­
tion is obtained and the element locks. Reducing the constraint to obtain the 9 /3 element, 
the inf-sup condition is satisfied (see Example 4.36) and optimal convergence rates are 
obtained for the displacements and the pressure; that is, the convergence rate for the 
displacements is o(h 3) and for the stress is o(h 2), which is all that we can expect with a 
parabolic interpolation of displacements and a linear interpolation of pressure. Reducing the 
constraint further to obtain the 9 / 1 element, the inf-sup condition is also satisfied, and while 
the element behavior for the interpolations used is still optimal, the predictive capability of 
this nine-node element is not the best possible (because a constant element pressure is 
assumed, whereas a linear pressure variation could be used). 

This observation (about the quality of the solution) is explained by the error bounds 
(see, for example, F. Brezzi and K. J. Bathe [B]). Let u, E Vh be an interpolant of u 
satisfying 

f [div(u U1)]qh dVol :::: 0 
Jvol 

and 

If ( 4.184) holds for all possible solutions u, then 

ll u - u,. II s c1(II u - u1ll + II (I - Ph)pll) 

and 

} (4.184) 

(4.185) 

(4.186) 

where p = - K div u and c1, c2 are constants independent of h and K. We note of course that 
(4.184) is the inf-sup condition with the weakenedconstraintqh E P,.(Dh) [sec (4.176)] and 
that the right~hand sides of (4.185) and (4.186) are smaller the closer Ph is to I. 

4.5.2 The Inf-Sup Condition Derived from 
the Matrix Equations 

Further insight into the inf-sup condition is obtained by studying the governing algebraic 
finite element equations. Let us consider the case of total incompressibility (it being the 
most severe case), 

[
(Kuu)h (K,.p)1r] [U"] = [Rh] 
(Kpu),. 0 Ph O 

(4.187) 

where Uh lists all the unknown nodal point displacements and Ph lists the unknown pressure 
variables. Since the material is assumed to be totally incompressible, we have a square null 
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matrix equal in size to the number of pressure variables in the lower right of the coefficient 
matrix. 

The mathematical analysis of the formulation resulting in ( 4.187) consists of a study 
of the solvability and the stability of the equations, where the stability of the equations 
implies their solvability. 

The solvability of ( 4.187) simply refers to the fact that ( 4.187) can actually be solved 
for unique vectors Uh and Ph when Rh is given. 

The conditions for solvability (see Exercise 4.54) are 

Condition i: 

(4.188) 

Condition ii: 

(Kup)hQh = 0 implies that Qh must be zero (4.189) 

The space of displacement vectors Vh that satisfy (Kpu)h Vh = 0 represents the kernel of 
(Kpu)h. 

The stability of the formulation is studied by considering a sequence of problems of 
the form ( 4.187) with increasingly finer meshes. Let S be the smallest constant such that 

II Auh llv + II Aph llo < S II Af 8 IIDv 
II uhllv + II Philo - II f 8 llov (4.190) 

for all uh, Ph, f 8
, Auh, Aph, Af8

, where II • llv and II • llo are the norms defined in ( 4.153), II • llov 
means the dual norm of 11 • llv (see Section 2.7), and Af8

, Auh, and Aph denote a prescribed 
perturbation on the load function f 8 and the resulting perturbations on the displacement 
vector uh and pressure Ph. Of course, we have 

(4.191) 

where ARh corresponds to the load variation Af8 and the norms of the finite element variables 
in (4.190) are given by the nodal point values listed in the solution vectors. Hence (4.190) 
expresses that for a given relative perturbation in the load vector, the corresponding relative 
perturbation in the solution is bounded by S times the relative perturbation in the loads. 

For any given fixed mesh, satisfying the conditions of solvability (4.188) and (4.189) 
implies that ( 4.190) is satisfied for some S, the value of which depends on the mesh. 

The formulation is stable if for any sequence of meshes the stability constant S is 
uniformly bounded. Hence, our question of stability reduces to asking for the conditions on 
the matrices (Kuuh and (Kup)h that ensure that S remains uniformly bounded when using any 
sequence of meshes. 

We considered briefly in Section 2.7 the stability conditions as related to a formulation 
that leads to a general coefficient matrix A [see (2.169) to (2.179)]. If we specialize these 
considerations to the specific coefficient matrix used in the displacement/pressure formula­
tions, we will find a rather natural result (see F. Brezzi and K. J. Bathe [B]), namely, that 
the stability conditions are an extension of the solvability conditions ( 4.188) and ( 4.189) in 
that stability in the use of these relations with increasingly finer meshes must be preserved. 
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The stability condition corresponding to the solvability condition ( 4.188) is that there 
is an a > 0 independent of the mesh size such that 

VI(K.uh V11 ~ a II v1111i for all vh E kernel [(Kpu)h] (4.192) 

This condition is the ellipticity condition already mentioned briefly in Section 4.5.1. 
The relation states that, for any fineness of mesh, the Rayleigh quotient obtained with any 
vector Vh satisfying (K,,,,)1i Vh = 0, will be bounded from below by the constant a (which is 
independent of element mesh size). This ellipticity condition is quite easily fulfilled (by the 
choice of a high enough pressure interpolation) in our displacement/pressure formulations. We 
elaborate upon this fact in the following example. 

EXAMPLE 4.37: Consider the ellipticity condition in ( 4.192). Discuss that it can be satisfied 
for any (practical) displacement/pressure formulation. 

To understand that the ellipticity condition can be fulfilled, we need to recall that ( 4.187) 
is the result of the finite element discretization in ( 4.179). Hence, 

(a) 

corresponds to twice the strain energy stored in the finite element discretization when v11 corre-
sponds to an element in Vh that satisfies Ph(div vh) 0. Hence, by selecting the pressure 
space Q1i large enough the expression in (a) will always be greater than zero (and bounded from 
below). For example, for the 8/1 axisymmetric and 20/1 3~D elements in Table 4.6, the pressure 
space is not large enough. 

If (4.192) is not satisfied, we could, also. stabilize the solution. This is achieved by 
considering the almost incompressible case and using the variational formulation 

where K* is a bulk modulus of the order of the shear modulus and does not lead to locking. Of 
course, we could now assume (K - K*) - oo. 

This procedure amounts to evaluating a portion of the bulk energy as in the displacement 
method and using a projection for the remaining portion. Note that when K is equal to K*, the 
part to be projected is zero. Hence the essence of the scheme is that a well-behaved part of 
the term that is difficult to deal with has been moved to be evaluated without the projection. This 
kind of stabilization to satisfy the ellipticity condition can be important in the design of formu­
lations (see F. Brezzi and M. Fortin [A]). The procedure has been proposed to stabilize a 
displacement/pressure formulation for the analysis of inviscid fluids (see C. Nitikitpaiboon and 
K. J. Bathe [A]) and for the development of plate and shell elements (see D. N. Arnold and 
F. Brezzi [A]). However, the difficulty with this approach can be in selecting the portions of 
energies to be evaluated with and without projection, in particular when the various kinematic 
actions are fully coupled as, for instance, in the analysis of shell structures (see Section 5.4.2). 

The stability condition corresponding to the solvability condition ( 4.189) is that there 
is a f3 > 0 independent of the mesh size h such that 

. Qr(K,,u),, vh > 
18!s~p Jlq1il] llvhll - f3 > O 

(4.193) 

for every problem in the sequence. 
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Note that here we take the sup using the elements in Vh and the inf using the elements 
in Qh. Of course, this relation is our inf-sup condition ( 4.183) in algebraic form, but we now 
have qh E Qh, where Qh is not necessarily equal to Ph(Dh), 

We note that a simple test consisting of counting displacement and pressure variables 
and comparing the number of such variables is not adequate to identify whether a mi~ed 
formulation is stable. The above discussion shows that such a test is certainly not sufficient 
to ensure the stability of a formulation and in general does not even ensure that condition 
( 4.189) for solvability is satisfied (see also Exercises 4.60 and 4.64 ). 

4.5.3 The Constant (Physical) Pressure Mode 

Let us assume in this section that our finite element discretization contains no spurious 
pressure modes (which we discuss in the next section) and that the inf-sup condition for 
qh E Ph(Dh) is satisfied. 

We mentioned earlier (see Section 4.4.3) that when our elasticity problem corre­
sponds to total incompressibility (i.e., we consider q = div u = 0) and all displacements 
normal to the surface of the body are prescribed ( i.e., S11 is equal to S), special considerations 
are necessary. Actually, we can consider the following two cases. 

Case i: All displacements normal to the body surface are prescribed to be zero. In this case, 
the pressure is undetermined unless it is prescribed at one point in the body. Namely, assume 
that Po is a constant pressure. Then 

f Po div vh dVol = po ( vh • n dS = 0 'v vh E Vh (4.194) 
JVo1 Js 

where n is the unit normal vector to the body surface. Hence, if the pressure is not prescribed 
at one point, we can add an arbitrary constant pressure po to any proposed solution. A 
consequence is that the equations (4.187) cannot be solved unless the pressure is prescribed 
at one point, which amounts to eliminating one pressure degree of freedom [ one column in 
(Kuph and the corresponding row in (Kpu)h]. If this pressure degree of freedom is not elimi­
nated, Qh is larger than Ph(Dh), the solvability condition (4.189) is not satisfied, and the 
inf-sup value including this pressure mode is zero. For a discussion of the case Qh larger that 
PlDh) but pertaining to spurious pressure modes, see Section 4.5.4. 

Of course, instead of eliminating one pressure degree of freedom, it may be more 
expedient in practice to release some displacement degrees of freedom normal to the body 
surface. 

Case ii: All displacements normal to the body surface are prescribed with some nonzero 
values. The difficulty in this case is that the incompressibility condition must be fulfilled 

f div v h dVol = f vh • n dS = 0 
Jvo1 Js (4.195) 

A constant pressure mode will also be present, which can be eliminated as discussed for 
Case i. If the body geometry is complex, it can be difficult to satisfy exactly the surface 
integral condition in ( 4.195). Since any error in fulfilling this condition can result in a large 
error in pressure prediction, it may be best in practice to leave the displacement(s) normal to 
the surface free at some node(s). 
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Let us next consider that the body is only almost incompressible, that K is large but 
finite, and that the u/p formulation is used. In Case i, the arbitrary constant pressure po will 
then automatically be set to zero (in the same way as spurious modes are set to zero; see 
Section 4.5.4). This is a most convenient result because we do not need to be concerned 
with the elimination of a pressure degree of freedom. Of course, in practice we could also 
leave some nodal point displacement degree(s) of freedom normal to the body surface free, 
which would eliminate the constant pressure mode. 

With the constant pressure mode present in the model, Qh is (by one basis vector) 
larger than Ph(Dh) and the inf-sup value corresponding to this mode is zero. Nevertheless, 
we can solve the algebraic equations and obtain a reliable solution (unless K is so large that 
the ill-conditioning of the coefficient matrix results in significant round-off errors, see 
Section 8.2.6). 

In Case ii, it is probably best to proceed as recommended above, namely, to leave some 
nodal displacement(s) normal to the surface free, in order to give the material the freedom 
to satisfy the constraint of near incompressibility. Then the constant pressure mode is not 
present in the finite element model. 

An important point in these considerations is that if all displacements normal to the 
surface of the body are prescribed, the pressure space will be larger than Ph(Dh), but only 
by the constant pressure mode. This mode is of course a physical phenomenon and not a 
spurious mode. If the inf-sup condition for qh E Ph(Dh) is satisfied, then the solution is 
rendered stable and accurate by simply eliminating the constant pressure mode (or using the 
u/p formulation with a not too large value of K to automatically set the value of the constant 
pressure to zero). We consider in the next section the case of Qh larger than Ph(Dh) as a result 
of spurious pressure modes. 

4.5.4 Spurious Pressure Modes-The Case of Total 
Incompressibility 

We consider in this section the condition of total incompressibility and, merely for simplic­
ity of discussion, that the physical constant pressure mode mentioned earlier is not present 
in the model. If it were actually present, the considerations given above would apply in 
addition to those we shall now present. 

With this provision, we recall that in our discussion of the inf-sup condition we 
assumed that the space Qh is equal to the space Ph(Dh) [see (4.183)], whereas in (4.193) we 
have no such restriction. In an actual finite element solution we may well have Ph(Dh) ~ Qh, 
and it is important to recognize the consequences. 

If the space Qh is larger than the space Ph(Dh), the solution will exhibit spurious 
pressure modes. These modes are a result of the numerical solution procedure only, namely, 
the specific finite elements and mesh patterns used, and have no physical explanation. 

We define a spurious pressure mode as a (nonzero) pressure distribution Ps that 
satisfies the relation 

f Ps div vh dVol = 0 
Vol 

(4.196) 
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In the matrix formulation ( 4.187) a spurious pressure mode corresponds to the case 

(4.197) 

where Ps is the (nonzero) vector of pressure variables corresponding to Ps· Hence, the 
solvability condition ( 4.189) is not satisfied when spurious pressure modes are present, and 
of course the inf-sup value when testing over the complete space Qh in (4.193) is zero. 

Let us show that if Qh is equal to Ph(Dh), there can be no spurious pressure mode. 
Assume that Ph is proposed to be a spurious pressure mode. If Qh = Ph(Dh), there is always 
a vector vh such thatfih = -Ph (div vh), However, using vh in (4.196), we obtain 

(4.198) 

meaning that ( 4.196) is not satisfied. On the other hand, if Qh is greater than A(Dh), notably 
PiDh) ~ Qh, then we can find a pressure distribution in the space orthogonal to Ph(Dh), and 
hence for that pressure distribution ( 4.196) is satisfied (see Example 4.38). 

Hence, we now recognize that in essence we have two phenomena that may occur 
when testing a specific finite element discretization using displacements and pressure as 
variables: 

1. The locking phenomenon, which is detected by the smallest value of the inf-sup 
expression not being bounded from below by a value (3 > 0 [see discussion following 
(4.156)] 

2. The spurious modes phenomenon, which corresponds to a zero value of the inf-sup 
expression when we test with qh E Qh. 

Of course, when a discretization with spurious modes is considered, we might still be 
interested in the smallest nonzero value of the inf-sup expression, and we can focus on this 
value by only testing with qh E Ph(Dh), in other words, by ignoring all spurious pressure 
modes. 

The numerical inf-sup test described in Section 4.5.6 actually gives the smallest 
nonzero value of the inf-sup expression and also evaluates the number of spurious pressure 
modes. 

Let us note here, as a side remark, that the spurious pressure modes have no relation­
ship to the spurious zero energy modes mentioned in Section 5.5.6 (and which are a result 
of using reduced or selective numerical integration in the evaluation of element stiffness 
matrices). In the displacement/pressure formulations considered here, each element stiff­
ness matrix is accurately calculated and exhibits only the correct physical rigid body modes. 
The spurious pressure modes in the complete mesh are a result of the specific displacement 
and pressure spaces used for the complete discretization. 

One way to gain more insight into the relation (4.193) is to imagine the matrix (K11p)h 
[or (Kpu)h = (Kup)f] in diagonalized form (choosing the appropriate basis for displacements 
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and pressure variables), in which case we would have 

(Kuplh= 

Kernel (Kuplh 

. 
• • I 

- - - .JI;I O - -

Elements 
not shown 
are zeros 

. . . 
0 

Chap.4 

(4.199) 

t We call the elements {Xi in anticipation of our discussion in Section 4.5.6. 

In this representation the zero columns define the kernel of (Kup)1i and each zero column 
corresponds to a spurious pressure mode. Also, since for any displacement vector Oh we 
need 

(4.200) 

and (Kpu)h = (Kup)r, the size of the kernel of (Kpu)1i determines whether the solution is 
overconstrained. Whereas, on one hand, we want the kernel of (Kup)h to be zero (no spurious 
pressure modes), on the other hand, we want the kernel of (Kpuh to be large so as to admit 
many linearly independent vectors Oh that satisfy ( 4.200). Our actual displacement solution 
to the problem ( 4.187) will lie in the subspace spanned by these vectors, and if that subspace 
is too small, as a result of the pressure space Q1i being too large, the solution will be 
overconstrained. The theory on the inf-sup condition [see the discussion in Section 4.5.1 
and (4.193)] showed that this overconstraint is detected by~ decreasing to zero as the 
mesh is refined. Vice versa, if ~ ~ f3 > 0, for any mesh, as the size of the elements is 
decreased, with /3 independent of the mesh, the solution space is not overconstrained and 
the discretization yields a reliable solution (with the optimal rate of convergence in the 
displacements and pressure, provided the pressure space is largest without violating the 
inf-sup condition; see Section 4.5.1). 

4.5.5 Spurious Pressure Modes-The Case of Near 
Incompressibility 

In the above discussion we assumed conditions of total incompressibility, and the use of 
either the u/p or the u/p-c formulation. Consider now that we have a finite (but large) Kand 
that the u/p formulation with static condensation on the pressure degrees of freedom (as is 
typical) is used. In this case, the governing finite element equations are, for a typical element 
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(or the complete mesh), 

[
(Kuu)h (Kup)h] [Uh] = [Rh] 
(K'.pi,)h (Kpp)h Ph O 

(4.201) 

or [(Kuu)h - (KUP)h{Kpp);;- 1(Kpu)h]Uh = Rh (4.202) 

So far we have assumed that no nonzero displacements are prescribed. It is an 
important observation that in this case any spurious pressure mode has no effect on the 
predicted displacements and pressure. The reason can be shown by considering (Kup)h in 
( 4.199) with some zero columns. Since (Kpp)h is, in the same basis, diagonal with the bulk 
modulus -K-

1 as diagonal elements and the corresponding right-hand-side is a zero vector, 
the solution for the spurious pressure mode values is zero (see also Example 4.39). 

A different observation is that the coefficient matrix in ( 4.201) contains a large bulk 
modulus which, when K- 1 is close to zero, results in ill-conditioning-but this ill­
conditioning is observed whether or not spurious pressure modes are present. 

The spurious pressure modes can, however, have a drastic effect when nonzero dis­
placements are prescribed. In this case, we recognize that the right-hand side corresponding 
to the pressure degrees of freedom may not be zero (see Section 4.2.2 on how nonzero 
displacements are imposed), and a large spurious pressure may be generated. 

Clearly, a reliable element should not lock and ideally should not lead to any spurious 
pressure mode in any chosen mesh. 

The elements listed in Tables 4.6 and 4.7 are of such a nature-except for the 4/1 
two-dimensional u/p element (and the analogous 8/1 three-dimensional element). Using 
the 4/1 element, specific meshes with certain boundary conditions exhibit a spurious 
pressure mode, and the 4/1 element does not satisfy the inf-sup condition (4.183) unless 
used in special geometric arrangements of macroelements (see P. Le Tallec and V. Ruas [A] 
for an example). However, because of its simplicity, the 4/1 element is quite widely used in 
practice. We examine this element in more detail in the following example. 

EXAMPLE 4.38: Consider the finite element discretization of 4/1 elements shown in 
Fig. E4.38 and show that the spurious checkerboard mode of pressure indicated in the figure 
exists. 

We note that for this model all tangential displacements on the boundary are set to zero. 
In order to show that the pressure distribution indicated in Fig. E4.38 corresponds to a spurious 
pressure mode, we need to prove that (4.196) holds. Consider a single element as shown in 
Fig. E4.38(a). We have 

f pe; div v~ dVol = p';[l -1 -1 l l -1 -1] u 
Vol 

where pe1 is the constant pressure in the element e1• 

If a patch of four adjacent elements is then considered, we note that for the displacement ui shown 
in Fig. E4.38(b) we have 

f p div vh dVol = [pei(l) + p'2(1) + pe3(-1) + pe4(-1)] U; = 0 (a) 
Vol 

provided the pressure distribution corresponds to p 11
1 - pez p11

3 = - p 11
4, Similarly, for any 

displacement v1 we have 

f p div vh dVol = [pei(-1) + pe2{1) + pe3(1) + pe4(-1)] V; = 0 (b) 
Vol 
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+6.p and -6.p, where tip is an arbitrary value. 

Figure E4.38 4 / 1 elements 

For the normal displacement vi on an edge of the patch, we similarly obtain 

f Vol p div Vh dVol = [pt>t(l) + pez(l)]vi = O 

On the other hand, for a tangential displacement Uj, the integral 

f p div vh dVol ::/:: 0 
Vol 

(c) 

However, in the model in Fig. E4.38(c) all tangential displacements are constrained to zero. 
Hence, by superposition, using expressions (a) to (c), the relation ( 4.196) is satisfied for any nodal 
point displacements when the pressure distribution is the indicated checkerboard pressure. 

Note that the same checkerboard pressure distribution is also a spurious pressure mode 
when more nodal point displacements than those given in Fig. E4.38(c) are constrained to zero. 
Also note that the (assumed) pressure distribution in Fig. E4.38(d) cannot be obtained by any 
nodal point displacements, hence this pressure distribution does not correspond to an element in 
A(Dh), 

In the above example, we showed that a spurious pressure mode is present when the 
4/1 element is used in discretizations of equal~size square elements with certain boundary 

320 
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conditions. The spurious pressure mode no longer exists when nonhomogeneous meshes are 
employed or at least one tangential displacement on the surface is released to be free. 

Consider now that a force is applied to any one of the free degrees of freedom in 
Fig. E4.38(c). The solution is then obtained by solving ( 4.201) and, as pointed out before, 
the spurious pressure mode will not enter the solution (it will not be observed). 

The spurious pressure mode, however, has a very significant effect on the calculated 
stresses when, for example, one tangential boundary displacement is prescribed to be 
nonzero while all other tangential boundary displacements are kept at zero. 18 In this case 
the prescribed nodal point displacement results in a nonzero forcing vector for the pressure 
degrees of freedom, and the spurious pressure mode is excited. Hence, in practice, it is 
expedient to not constrain all tangential nodal point displacements on the body considered. 

Let us conclude this section by considering the following example because it illus­
trates, in a simple manner, some of the important general observations we have made. 

EXAMPLE 4.39: 19 Assume that the governing equations ( 4. I 87) are 
' 0 0 /31 0 a1 ' U1 r1 ' ' 0 a2 0 ' 0 /32 U2 r2 ' ' 

0 0 a3 : 0 0 U3 r3 (a) 
------------- :---------
/31 0 0 ' 0 0 Pi g1 

' 
' 0 /32 0 0 ' g2 ' 

Of course, such simple equations are not obtained in practical finite element analysis, but the 
essential ingredients are those of the general equations ( 4.187). We note that the coefficient 
matrix corresponds to a fully incompressible material condition and that the entries g1 and g2 
correspond to prescribed boundary displacements. 

These equations can also be written as 

a;u; + f3;p; = r;; f3;u; = g;; i = 1, 2; a3U3 = r3 

Assume that a; > 0 for all i (as we would have in practice). Then, u3 = r3/a3 , and we need 
only consider the typical equations 

au + f3p = r; f3u = g (b) 
(where we have dropped the subscript i). 

When the material is considered almost incompressible, u3 is unchanged but (b) becomes 

au. + f3p. = r; {3u. - ep. = g (c) 

where e = I I K (e is very small when the bulk modulus K is very large) and u., p. is the solution 
sought. Equations (c) give 

er + f3g 
u. = ea + 132; 

f3r - ag 
P• = ea+ 132 

We can now make the following observations. 
First, we consider the case of a spurious pressure mode, i.e., f3 = 0. 

Case i: f3 = g = 0 
This case corresponds to a spurious pressure mode and zero prescribed displacements. 

The solution of (b) gives u = r/a, with p undetermined. 
The solution of (c) gives u. = r/a, p. = 0. 

(d) 

18 We may note that these analysis conditions and results are similar to the conditions and results obtained 
when all displacements normal to the surface of a body are constrained to zero, except for one, at which a normal 
displacement is prescribed [see ( 4.195)). 

19 This example was presented by F. Brezzi and K. J. Bathe [B]. 
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Hence, we notice that the use of a finite bulk modulus allows us to solve the equations and 
suppresses the spurious pressure. 

Case ii: {3 = 0, g * 0 
This case corresponds to a spurious pressure mode and nonzero prescribed displacements 

(corresponding to this mode). 
Now {b) has no solution for u and p. 
The solution of (c) is u~ r/a, p,, - g/E. 

Hence, the spurious pressure becomes large as K increases. 

Next we consider the case of {3 very small. 
Hence, we have no spurious pressure mode. Of course, the inf Msup condition is not passed 

if {3- 0. 

Case iii: {3 is small 
Let us also assume that g = 0. 
Now (b) gives the solution u = 0, p = r/(3. 
The solution of (c) is u11 -0 andp11 - r/{3for E-+0 ({3fixed, and hence we have {32 ~ Ea), 

which is consistent with the solution of (b). Hence, the displacement approaches zero and the 
pressure becomes large when {3 is small and the bulk modulus increases. Of course, we test for 
this behavior with the inf-sup condition. For an actual finite element solution, this observation 
may be interpreted as taking a fixed mesh (/3 is fixed) and increasing K. The result is that the 
pressure in the mode for which {3 is small increases while the displacements in this mode 
decrease. 

However, (c) also gives u€ - r/a and pE-+ 0 for {3 - 0 (E fixed, and hence we have 
{3 2 ~ ea), which is the behavior noted earlier in Case i. For an actual finite element solution this 
observation may be interpreted as taking a fixed K and increasing the fineness of the mesh. As 
{3 is decreased as a result of mesh refinement, the pressure corresponding to this mode becomes 
small. Hence, the behavior of this pressure mode is when ~ is sufficiently small (which may mean 
a very fine mesh when K is large) like the behavior of a spurious mode. 

4.5.6 The Inf-Sup Test 

The results of analytical studies of the inf-sup characteristics of various displacement/pres­
sure elements are summarized in Tables 4.6 and 4.7 (see also F. Brezzi and M. Fortin [A]). 
However, an analytical proof of whether the inf-sup condition is satisfied by a specific 
element can be difficult, and for this reason a numerical test is valuable. Such a test can be 
applied to newly proposed elements and also to discretizations with elements of distorted 
geometries (recall that analytical studies assume homogeneous meshes of square elements). 
Of course, a numerical test cannot be completely affirmative (as an analytical proof is), but 
if a properly designed numerical test is passed, the formulation is very likely to be effective. 
The same idea is used when performing the patch test only in numerical form ( to study 
incompatible displacement formulations and the effect of element geometric distortions) 
because an analytical evaluation is not achieved (see Section 4.4.1 ). 

In the following discussion we present the numerical inf-sup test proposed by 
D. Chapelle and K. J. Bathe (A]. 

First consider the u/ p formulation. In this case the inf-sup condition ( 4.183) can be 
written in the form 

. f fv01 Ph(div wh) div vh dVol a O ( ) 
10 SUD :?: ,-, > 4 203 

whevh vhe\'11 II Ph(div wh) 1111 Vh 11 . 
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or . f b'(Wh, Vh) > /3 > Q 
w~~vh v~~t [b'(wh, wh)]112 II vhlJ -

(4.204) 

where b'(wh, vh) = f Ph (div wh) PJi{div vh) dVol = f P11(cliv w11) div vh dVol 
Jvot Jvol 

(4.205) 

The relation (4.204) is in matrix form 

. W1Gi.V11 
~! s~p [WrG1i W11] 112 [VfS,. Vi.]112 2: /3 > O 

(4.206) 

where Wh and Vh are vectors of the nodal displacement values corresponding to wh and vh, 
and Gh, Sh are matrices corresponding to the operator b' and the norm 11 • llv, respectively. 
The matrices Gh and Sh are, respectively, positive semidefinite and positive definite (for the 
problem we consider, see Section 4.5.1). 

EXAMPLE 4.40: In Ex.ample 4.34 we calculated the matrix G11 of a 4/1 element. Now also 
establish the matrix S,. of this element. 

To evaluate S11 we recall that the norm of w is given by [see (4.153)] 

II w ni = ~ II awi 112 
l,J dXj L2(Vol) 

Hence, for our case 

llw,11~ = f.' f.' [(::r + (:r + e:r + (:)}xdy (a) 

where u, v are the components w;, i = 1, 2. 
Let us order the nodal point displacements in u as in Example 4.34, 

U7 = [u1 u2 U3 U4 : V1 V2 V3 V4] 

By definition, 11 wh II} = u7S1iu. Also, we have 

and we write in (a) 

e:r ( ::) \ ::) 
(~:r = (:r(:) 

Substituting from (c) and (b) into (a) we obtain 

f
+I f+l 2 

Sh(l, I) = -I -I [(h,.x? + (h1.y)2} dx dy = 3 

and so on. 

(b) 

(c) 
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Similarly, the terms corresponding to the v1 degrees of freedom are calculated, and we obtain 

~ 
4 -1 -2 -1~ 

.., _ 1 -1 4 -1 -2 
sh - -6 -2 -1 4 -1 

-1 -2 -1 4 

Let us now consider the ulp-c formulation. In this case the same expression as in 
(4.206) applies, but we need to use Gh = (Kpu)fT;; 1(Kpu)h, where Th is the matrix of the L2-
norm of Ph (see Exercise 4.59); i.e., for any vector of pressure nodal values Ph, we have 
IIPhll = P{ThP,,. 

The form ( 4.206) of the inf-sup condition is effective because we can numerically 
evaluate the inf-sup value of the left-hand side and do so for a sequence of meshes. If the 
left-hand-side inf-sup value approaches (asymptotically) a value greater than zero (and 
there are no spurious pressure modes, further discussed below), the inf-sup condition is 
satisfied. In practice, only a sequence of about three meshes needs to be considered (see 
examples given below). 

The key is the evaluation of the inf-sup value of the expression in ( 4.206). We can 
show that this value is given by the square root of the smallest nonzero eigenvalue of the 
problem 

(4.207) 

Hence, if there are (k - l) zero eigenvalues (because G,, is a positive semidefinite matrix) 
and we order the eigenvalues in ascending order, we find that the inf-sup value of the 
expression in (4.206) is~- We prove this result in the following example. 

EXAMPLE 4.41: Consider the functionf(U, V) defined as 

urGv 
f(U, V) = (UTGU)lf2(VTSV)l/2 (a) 

where G is an n X n symmetric positive semidefinite matrix, S is an n x n positive definite 
matrix, and U, V are vectors of order n. Show that 

iifs~f(U, V) = ~ 
where Ak is the smallest nonzero eigenvalue of the problem 

G<f> = AS<f> 

Let the eigenvalues of (c) be 

A1 ;;:; ..\2 = · • • = Ak-1 = 0 < Ak :$ A.HI • • • :$ An 

and the corresponding eigenvectors be <f>, , cf>2, . . . , <f>n. 
To evaluate /(U, V), we represent U and V as 

u = :i aj«f>;; 
n 

V = ~ v1<f>; 
i=I i=l 

(b) 

(c) 
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Therefore, for any U, 
n 

~ Aiu;v; 

s~ f(U, V) = s~p ( n i=I )1/2( n )1/2 
I ~ \ -2 ~ -2 

-"" Ai U; ,,4/ V1 
i=I 1=1 

i A1u1v1 (d) 
1 1=1 

= (~ -2) 1/2 s~p -(~-n --2-)1-/2 
,,4/ A1 U; ,,4/ VI i=I l""I 

To evaluate the supremum value in (d), let us define a,= >..,a,; then we note that 
n n 

L A, ii1 i51 = L a;f51 :S (e) 
l•I l=I 

(by the Schwarz. inequality), and equality is reached when v, = a,. Substituting from (e) into (d) 
and using A1 = · · · = A.1:-1 = 0, we thus obtain 

s~f(U. V) = 

If we now let \/Atu, = p,. we can write 

inf suof(U, V) = inf 
U ~ ~~~I 

± .\1/ff 
i-k 

n 

L Pr 
i=k 

(f) 

The last expression in (f) has the form of a Rayleigh quotient (see Section 2.6), and we know that 
the smallest value is ~. achieved for P1c * 0 and p, = 0, for i * k, which gives the required 
result. 

In practice, to calculate the inf-sup value~ an eigenvalue solution routine should 
be used that can skip over all zero eigenvalues and then calculate Ak. A Sturm sequence test 
(see Section 11.4.3) will then also give the value of k, and then we can conclude directly 
whether the model contains spurious pressure modes. Namely, let np be the number of 
pressure degrees of freedom and nu be the number of displacement degrees of freedom. Then 
the number of pressure modes, kpm, is 

kpm = k - (n11 - np + I) 

If kpm > 0, the finite element discretization contains the constant pressure mode or 
spurious pressure modes [the inf-sup value in (4.193) is zero, although Ak (the first nonzero 
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eigenvalue) may asymptotically approach a value greater than zero]. This formula follows 
because for there to be no pressure mode, the kernel (K,.,p)1i must be zero [see (4.199)). 

To demonstrate this inf-sup test, we show in Fig. 4.24 results obtained for the four­
node and nine-node elements. We see that a sequence of three meshes used to calculate ~ 
for each discretization was, in these cases, sufficient to identify whether the element locks. 
We note that, clearly, the four-node and the nine-node displacement-based elements do not 
satisfy the inf-sup condition and that the distortions of elements have a negligible effect on 
the results. In each of these tests kpm was zero, hence, as expected, the idealizations do not 
contain any pressure modes. Of course, a spurious pressure mode would be found for the 
4/1 element if the boundary conditions of Example 4.38 were used. That is, in the general 
testing of elements for spurious modes the condition of zero displacements on the complete 
boundary should be considered [the smaller the dimension of Vh, for a given Qh, the greater 
the possibility that (4.196) is satisfied]. 

The solutions in Fig. 4.24 are numerical results pertaining to only one problem and 
one mesh topology. However, if the inf-sup condition is not satisfied in these results, then 
we can conclude that it is not satisfied in general. 
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(a) Problem considered in inf-sup test. N = number of elements along each side; 
we show N = 4, plane strain case 
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I I 
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(b) Elements used 

Figure 4.24 The inf-sup test applied in a simple problem 



log(1/N) 

-1.0 -0.8 -0.6 --0.4 -0.2 

LJ, 

¢4-node displacement-based element 
0 4/1 element, uniform mesh 
x 4/1 element, distorted mesh 

(c) 4-node elements 

log(1/N) 
-1.0 -0.8 -0.6 -0.4 -0.2 

l!!I.-_.---IJ!l~N~=~4--~N=2 

(>9-node displacement-based element 
09/3 element, uniform mesh 
x 9/3 element, distorted mesh 

(d) 9-node elements 

o.o 

-0.2 

-0.4 

-0.6 ! 
iii 
> 

-0.8 
a. 
::, 

.:e .= 
Q 

-1.0 ..2 

-1.2 

-1.4 

0.0 

0.0 

-0.2 

-0.4 

a, 
::, 

-0.6 iii 
> 
a. 
::, 
(I) 

..,!.. 
-0.8 .s 

Q 
.2 

-1.0 

-1.2 

-1.4 

-1.6 

Figure 4.24 (continued) 
327 



328 Formulation of the Finite Element Method Chap. 4 

Figure 4.25 shows results pertaining to the three-node triangular constant pressure 
element, formulated as a u/p element (see Exercise 4.50). The results show that the inf-sup 
condition is not satisfied by this element. Further, it is interesting to note that the meshes 
with pattern B do not contain spurious pressure modes, whereas the other meshes in general 
do contain spurious pressure modes. 
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Figure 4.25 Inf-sup test of triangular elements, using problem of Fig.4.24(a). The patterns 
A and C result in spurious modes. 

Additional results are given in Table 4.8 (see D. Chapelle and K. J. Bathe [A]). This 
table gives a summary of the results of the numerical evaluations of the inf-sup condition 
and analytical results, given, for example, by F. Brezzi and M. Fortin [A]. The numerical 
evaluation is useful because the same procedure applies to all u/p and u/p-c elements, in 
uniform or distorted meshes, and, in general, elements and fonnulations can be evaluated for 
which no analytical results are (yet) available, see K. J. Bathe [E] and, for example, D. Pantuso 
and K. J. Bathe [A] (but also C. Lovadina [A]), K. J. Bathe, C. Nitikitpaiboon, and X. Wang [A] 
and X. Wang and K. J. Bathe [A], A. Iosilevich, K. J. Bathe, and F. Brezzi [A] and S. De and 
K. J. Bathe [C]. However, we considered linear analysis, and while an element may satisfy the 
ellipticity and inf-sup conditions in linear analysis, the element may not be stable in large de­
fonnation formulations, see for example P. Wriggers and S. Reese [A] and D. Pantuso and K. J. 
Bathe [B], and even when then only small displacements and strains are measured, see T. Suss­
man and K. J. Bathe [E]. 
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TABLE 4.8 Inf-sup numerical predictions 

Inf-sup condition 

Elementt 

El • 
• 

H w 
t:-1 
1-:-4 

9/5-c 

9/4-c 

9/(4-c + 1) 

Analytical 
proof 

Fail 

Fail 

Faif 

Pass 

Fail 

Pass 

Pass 

Fail 

Fail 

1 

Pass 

? 

Numerical 
prediction 

Fail 

Fail 

Fail 

Pass 

Fail 

Pass 

Pass 

Fail 

Fail 

Fail 

Pass 

Pass 

Remarks 

See Fig. 4.26 

See Fig. 4.24 

See Example 4.36, 
Fig. 4.24 

For the element see P. M. 
Gresho,R.L.Lee,S.T.Chan, 
and J. M. Leone, Jr. [Al 
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t O, Continuous pressure degree of freedom; X, discontinuous pressure degree of freedom. 

t 3/1 and 4/1 element discretizations can contain spurious pressure modes. 
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EXAMPLE 4.42: Assume that the inf-sup condition (4.175) holds. Prove that (4.166) follows. 
Let the eigenvectors and corresponding eigenvalues of ( 4.207) with Gh corresponding to 

Dh [and not P11(D11) because in (4.175) we consider Dh] be cf>; and A;, i = l, ... , n. The vectors 
4'>i form an orthonormal basis of Vh, Then we can write any vector wh in V" as 

Wh = i W~cf,1 (a) 
jcl 

and we have by use of the eigenvalue and vector properties (see Section 2.5) 
II 

II div whll2 = ~ ,Vwt)2 

i=I 

Let us now pick any qh and any W11 satisfying div wh = qh. We can decompose wh in the 
form of (a), 

(b) 

The first summation sign in (b) defines a vector that belongs to Kh(O) and may be a large 
component. However, we are concerned only with the component that is not an element of Kh(O), 
which we call wh, 

wh = f wt<t,, 
i=k 

With this wh, we have 

and (4.166) follows with c' = 1//3. 

4.5. 7 An Application to Structural Elements: 
The lsoparametric Beam Elements 

In the above discussion we considered the general elasticity problem ( 4.151) and the 
corresponding variational discrete problem (4.154) subject to the constraint of (near or 
total) incompressibility. However, the ellipticity and inf-sup conditions are also the basic 
conditions to be considered in the development of beam, plate, and shell elements that are 
subject to shear and membrane strain constraints (see Section 5.4). We briefly introduced 
a mixed two-node beam element in Example 4.30 and we consider this and higher-order 
elements of the same kind in Section 5.4.1. Let us briefly discuss the ellipticity and inf-sup 
conditions for mixed interpolated and pure displacement-based beam elements. 
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General Considerations 

The variational discrete problem of the displacement-based formulation is 

{
El J:L GAk J:L J:L } min -
2 

(J3ii)2 dx + -
2 

(yh)2 dx - pwh dx (4.208) 
v11 ev11 0 0 o 

where El and GAk are the flexural and shear rigidities of the beam (see Section 5.4.1 ), L is 
the length of the beam, p is the transverse load per unit length, 13,. is the section rotation, 
111 is the transverse shear strain, 

ihv11 
')111 = a:; - /311 (4.209) 

w,. is the transverse displacement, and an element of v,. is 

The constraint to be dealt with is now the shear constraint, 

aw,, 
'Yh = - -13,.-.0 ax 

(4.210) 

(4.211) 

In practice, 111 is usually very small and can of course also be zero. Hence we have, using 
our earlier notation, the spaces 

K,.(q,.) = {v,. I v,. E v,., y,.(v,.) = q,.} (4.212) 

(4.213) 

and the norms 

(4.214) 

The ellipticity condition is satisfied in this problem formulation because 

El J: (/3i.)2 dx ::: a II V11112 'ti v,. E K11(0) (4.215) 

with a > 0 and independent of h. To prove this relation we need only to note that 

J: (°;'; y dx = f (fj,.)2 dx Sf L2e::r dx (4.216) 

and therefore, II v 11112 s 2L 2 J (a1311)
2 

dVol 
Vol OX 

(4.217) 

giving a = EI/2L2
• 

The inf-sup condition for this formulation is 

. f fvol y,.[(aw,./ax) - /311] dVol O 
1!~011 ,.:t ll'Y111l II v,.11 ::: c > (4.218) 

in which the constant c is independent of h. 
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Chap.4 

Figure 4.26 Analysis of cantilever beam using two~node beam elements. Four equal length 
elements are used. (Shear correction factor k of (5.57) is taken equal to 1.0.) 

The two-node element. Let us first consider the two-node displacement-based 
element for which wh and {Jh are assumed linear over each element (see Fig. 4.26(a) for an 
example solution]. A comparison of the computed results with the Bernoulli beam theory 
solution given in Fig. 4.26 shows that the element performs quite badly. In this case 
Kh(O) = {O}, and so the inf-sup condition in (4.218) is not satisfied. Refering to ( 4.164)t we 
can also see that a good convergence behavior is not possible; namely, d(u, Vh) -4 0 as we 
increase the space Vh, whereas d(u, KiO)] = II u II (a constant value). 

Next, consider the two-node mixed interpolated element for which Wh and f3h are linear 
and ,'h is constant over each element. Figure 4.26(b) shows the results obtained in the 
cantilever analysis and indicates the good predictive capability of this element. The elliptic­
ity condition is again satisfied (see Exercise 4.61), and in addition we now need to investi-
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28.1 30.0 Bernoulli beam theory 
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solution = 30 
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x 

_ Bernoulli beam theory 
solution = 100 
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J .. 

x 

(b) Analysis with mixed interpolated element; wh and Ph vary linearly over 
each element, and Yh is constant in each element 

Figure 4.26 (continued) 

gate whether the following inf-sup condition is satisfied: 

. f fvol ')'h[(awh/ax) - ~h] dVol O 
m roo ~c> 

'YhEPh(Dh} vhe\lh ll'Yh 1111 vh II 
(4.219) 

Now Kh(O) :;:. {O}, and we test for the inf-sup condition by considering a typical 'Yh (where 
'Yh is thought of as a variable). Then with a typical 'Yh given, we choose 

with ~h = 0 and fJwh/ ax == 'Yh· 
Now consider 

fvo1 'Yh[(&h/ax) - /3h] dVol _ 
llvhll -

(4.220) 

(4.221) 
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Hence, we have 

fvo1 'Yh[(awh/ax) - Ph] dVol fvol 'Y1i[(owh/ax) - '311] dVol 
v~~~,. ti v,. 11 ~ II vh II 

(4.222) 
== 

with y,. still a variable. Therefore, for the two-node mixed interpolated beam element we 
have 

(4.223) 

and the inf-sup condition is satisfied. 
We can also apply the inf-sup eigenvalue test to the two-node beam elements. The 

equations used are those presented for the elasticity problem, but we use the spaces of the 
beam elements (see Exercise 4.63 ). Figure 4.27 shows the results obtained. We note that in 
( 4.207) the smallest nonzero eigenvalue of the pure displacement-based discretization 
approaches zero as the mesh is refined, whereas the mixed interpolated beam element 
meshes give an eigenvalue that equals 1.0 for all meshes (which corresponds to the equal 
sign in ( 4.223)]. 
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Higher-order mixed interpolated beam elements can be analyzed in the same way as 
the two-node elements (see Exercise 4.62). Figure 4.27 also shows the results obtained for 
the three-node pure displacement-based element with the numerical inf-sup test. 

4.5.8 Exercises 

4.47. Prove that II u - uh II s c d[u, Kh(O)] is always true, where llh is the finite element solution and 
Kh{O) is defined in (4.159). Use that 

3 a > 0 such that V V11 E K1i(O), a(v11, V11) ~ a II v,. 112 

3 M > 0 such that V V111, V112 E V11, I a(v,,:h V111) I :S M II Vu 1111 v112 l1 

and the approach in (4.94). Note that the constant c is independent of the bulk modulus. 
4.48. Prove that II div (v, - V2) llo s ell v, - vzllv. Here Vi, V2 E v,. and c is a constant. 
4.49. Evaluate P11(div v11) for the eight-node element shown assuming a constant pressure field over the 

element. 

. y 

2 5 

2 6 

7 
2 

8 

x 

4.50. Evaluate the stiffness matrix of a general 3/1 triangular u/p element for two-dimensional 
analysis. Hence, the element has three nodes and a constant discontinuous pressure is assumed. 
Use the data in Fig. E4.17 and consider plane stress, plane strain, and axisymmetric conditions. 
(a) Establish all required matrices using the general procedure for the u/p elements (see Exam-

ple 4.32) but do not perform any matrix multiplications. Consider the case ,c finite. 
(b) Compare the results obtained in Example 4.17 with the results obtained in part (a). 
(c) Give the u/p element matrix when total incompressibility is assumed (hence static conden­

sation on the pressure degree of freedom cannot be performed). 
(Note: This element is not a reliable element for practical analysis of (almost) incompressible 
conditions but is merely used here in an exercise.) 

4.51. Consider the 4/1 element in Example 4.32. Show that using the term P,.(div v,.) (evaluated in 
Example 4.34) in (4.179), we obtain the same element stiffness matrix as that found in Exam­
ple 4.32. 

4.52. Consider the 9/3 element in Example 4.36; i.e .• assume that Q,. = [1. x, y]. Assume that 
corresponding to v,. the nodal point displacements are 

U1 = 1; 

V1 = 1; 

U2 = -1; U3 = l; 

t,3 = -1; 

u, = -1; 

v, = -1; 

Ua = 1 

t>a = 1 

with all other nodal point displacements zero. Calculate the projection P,.(div v,.). 
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4.53. Show that the 8/ 1 u/p element satisfies the inf-sup condition (and hence discretizations using this 
element will not display a spurious pressure mode). For the proof refer to Example 4.36. 

4.54. Consider the solution of ( 4.187) and show that the conditions i and ii in ( 4.188) and ( 4.189) are 
necessary and sufficient for a unique solution. 

4.55. Consider the ellipticity condition in (4.192). Prove that this condition is satisfied for the 4/1 
element in two-dimensional plane stress and plane strain analyses. 

4.56. The constant pressure mode, Po E Q11, in a two-dimensional square plane strain domain of an 
incompressible material modeled using four 9 /3 elements with all boundary displacements set to 
zero is not a spurious mode (because it physically should exist). Show that this mode is not an 
element of P,,(D,,). 

4.57. Consider the 4/ 1 element. Can you construct a two-element model with appropriate boundary 
conditions that contains a spurious pressure mode? Explain your answer. 

4.58. Consider the nine 4/1 elements shown. Assume that all boundary displacements are zero. 
(a) Pick a pressure distribution Ph for which there exists a vector vh such that 

I. Ph div vh dVol > 0 
Vol 

(b) Pick a pressure distribution Ph for which any displacement distribution vh in Vh will give 

I. Ph div Vh dVol = 0 
Vol 

4.59. Consider the u/p~ c formulation. 
(a) Show that the inf-sup condition can be written as in ( 4.206) but that Gh = (Kup)h T;; 1(Kpu)h, 
(b) Also, show that, alternatively, the eigenproblem 

GhQh = XThQh (a) 

can be considered, where Gh = (KpuhS;;'(Kup)h, and that the smallest nonzero eigenvalues 
of (a) and ( 4.207) are the same. 

Here Th is the matrix of the L2-norm of ph; that is, for any vector of nodal pressures 
Ph, we have IIPhll = NThPh; hence Th= -K(Kpp)h. 

4.60. Consider the analysis of the cantilever plate in plane strain conditions shown. Assume that the 
3/1 u/p element is to be used in a sequence of uniform mesh refinements. Let nu be the number 
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of nodal point displacements and np the number of pressure variables. Show that as the mesh is 
refined, the ratio n,inp approaches l. (This clearly indicates solution difficulties.) 

L 

Young•s modulus E 
Poisson's ratio v • 0.499 
Plane strain conditions 

Calculate the same ratio when the 9 /3 and 9 /8-c elements are used (the 9 /8-c element is 
defined in Table 4.8) and discuss your result. 

4.61. Show that the mixed interpolated two-, three-. and four-node beam elements satisfy the elliptic­
ity condition. The two-node element was considered in Section 4.5.7, and the three- and four­
node elements are discussed in Seeton 5.4.1 (see also Exercise 4.62). 

4.62. Show analytically that the inf-sup condition is not satisfied for the three- and four-node 
displacement-based beam elements and that the condition is satisfied for the mixed interpolated 
beam elements with ')'11 varying, respectively, linearly and parabolically (see Section S.4.1). 

4.63. Establish the eigenvalue problem of the numerical inf-sup test for the beam elements consid­
ered in Section 4.5.7. Use the form (4.207) and define all matrices in detail. 

4.64. Consider the problem in Fig. 4.24 and the elements mentioned in Table 4.8. Calculate, for each 
of these elements. the constraint ratio defined as the number of displacement degrees of freedom 
divided by the number of pressure degrees of freedom as the mesh is refined, that is, as h ~ 0. 
Hence note that this constraint ratio alone does not show whether or not the inf-sup condition 
is satisfied. 
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A very important phase of a finite element solution is the calculation of the finite element 
matrices. In Chapter 4 we discussed the formulation and calculation of generalized coordi­
nate finite element models. The aim in the presentation of the generalized coordinate finite 
elements was primarily to enhance our understanding of the finite element method. We have 
already pointed out that in most practical analyses the use of isoparametric finite elements 
is more effective. For the original developments of these elements, see I. C. Taig [A] and 
B. M. Irons [A, BJ. 

Our objective in this chapter is to present the formulation of isoparametric finite 
elements and describe effective implementations. In the derivation of generalized coordi­
nate finite element models, we used local element coordinate systems x, y, z and assumed 
the element displacements u(x, y, z), v(x, y, z), and w(x, y, z) (and in the case of mixed 
methods also the element stress and strain variables) in the form of polynomials in x, y, and 
z with undetermined constant coefficients a;, /3;, and')';, i = 1, 2, ... , identified as gener­
alized coordinates. It was not possible to associate a priori a physical meaning with the 
generalized coordinates; however, on evaluation we found that the generalized coordinates 
determining the displacements are linear combinations of the element nodal point displace­
ments. The principal idea of the isoparametric finite element formulation is to achieve the 
relationship between the element displacements at any point and the element nodal point 
displacements directly through the use of interpolation functions (also called shape func­
tions). This means that the transformation matrix A- 1 [see ( 4.57)] is not evaluated; instead, 
the element matrices corresponding to the required degrees of freedom are obtained di­
rectly. 
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5.2 ISOPARAMETRIC DERIVATION OF BAR 
ELEMENT STIFFNESS MATRIX 

Consider the example of a bar element to illustrate the procedure of an isoparametric 
stiffness formulation. In order to simplify the explanation, assume that the bar lies in the 
global X-coordinate axis, as shown in Fig. 5.1. The first step is to relate the actual global 
coordinates X to a natural coordinate system with variable r, -1 s r s 1 (Fig. 5 .1). This 
transformation is given by 

(5.1) 

or (5.2) 
i=l 

where h1 = ! (I r) and h2 = ! (l + r) are the interpolation or shape functions. Note that 
(5.2) establishes a unique relationship between the coordinates X and r on the bar. 

Y, 

X2 

X1 _ I 
I U, I ,, 

";., 
' 1, 

-I z I 
I 

• 
r=-1 

I 
I 
I 

r= +1 

X,U Figure 5.1 Element in global and 
natural coordinate system 

The bar global displacements are expressed in the same way as the global coordinates: 

(5.3) 

where in this case a linear displacement variation is specified. The interpolation of the 
element coordinates and element displacements using the same interpolation functions, 
which are defined in a natural coordinate system, is the basis of the isoparametric finite 
element formulation. 

For the calculation of the element stiffness matrix we need to find the element strains 
E = dU/dX. Here we use 

dU dr e=--
dr dX 

(5.4) 

where, from (5.3), 
dU U2 - U1 
dr 2 

(5.5) 

and using (5.2), we obtain 

dX X2 - X1 L 
-= 
dr 2 2 

(5.6) 

where L is the length of the bar. Hence, as expected, we have 

(5.7) 
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The strain-displacement transformation matrix corresponding to ( 4.32) is therefore 

B=i[-1 l) (5.8) 

In general, the strain-displacement transformation matrix is a function of the natural 
coordinates, and we therefore evaluate the stiffness matrix volume integral in (4.33) by 
integrating over the natural coordinates. Following this general procedure, although in this 
example it is not necessary, we have 

AE I1 

[ 1] K = - 2 [ -1 1 ]J dr 
L _, 1 

(5.9) 

where the bar area A and modulus of elasticity E have been assumed constant and J is the 
Jacobian relating an element length in the global coordinate system to an element length in 
the natural coordinate system; i.e., 

From (5.6) we have 

dX = J dr 

J=!::. 
2 

Then, evaluating (5.9), we obtain the well-known matrix 

K = AE[ 1 -1] 
L -1 1 

(5.10} 

(5.11) 

(5.12) 

As stated in the introduction, the isoparametric formulation avoids the construction of 
the transformation matrix A - i. In order to compare this formulation with the generalized 
coordinate formulation, we need to solve from (5.1) for rand then substitute for rinto (5.3). 
We obtain 

and then 

where 

or 

X - [(X1 + X2)/2] 
r = L/2 

U = ao + a,X 

(5.13) 

(5.14) 

{5.15) 

(S.16) 

where o.7 = [ao a1]; UT= [V, U2] (5.17) 

and the matrix relating a to U in (5.16) is A- 1
• It should be noted that in this example the 

generalized coordinates ao and a1 relate the global element displacement to the global 
element coordinate [see (5.14)]. 
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5.3 FORMULATION OF CONTINUUM ELEMENTS 

For a continuum finite element, it is in most cases effective to calculate directly the element 
matrices corresponding to the global degrees of freedom. However, we shall first present the 
formulation of the matrices that correspond to the element local degrees of freedom because 
additional considerations may be necessary when the element matrices that correspond to 
the global degrees of freedom are calculated directly (see Section 5.3.4). In the following 
we consider the derivation of the element matrices of straight truss elements; two­
dimensional plane stress, plane strain, and axisymmetric elements; and three-dimensional 
elements that all have a variable number of nodes. Typical elements are shown in Fig. 5.2. 

We direct our discussion to the calculation of displacement-based finite element ma­
trices. However, the same procedures are also used in the calculation of the element 
matrices of mixed formulations, and in particular of the displacement/pressure-based for­
mulations for incompressible analysis, as briefly discussed in Section 5.3.5. 

(a) Truss and cable elements 

(b) Two-dimensional elements 

(c) Three-dimensional elements 

Figure 5.2 Some typical continuum elements 
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5.3.1 Quadrilateral Elements 

The basic procedure in the isoparametric finite element formulation is to express the 
element coordinates and element displacements in the form of interpolations using the 
natural coordinate system of the element. This coordinate system is one-, two-, or three­
dimensional, depending on the dimensionality of the element. The formulation of the 
element matrices is the same whether we deal with a one, two-, or three-dimensional 
element. For this reason we use in the following general presentation the equations of a 
three-dimensional element. However, the one- and two-dimensional elements are included 
by simply using only the relevant coordinate axes and the appropriate interpolation func­
tions. 

Considering a general three-dimensional element, the coordinate interpolations are 

q 

x = ~h,x;; 
i•l 

q 

y = ~ h;y;; 
i•I 

z (5.18) 

where x, y, and z are the coordinates at any point of the element (here local coordinates) and 
x1, y;, Z;, i == l, ... , q, are the coordinates of the q element nodes. The interpolation 
functions hi are defined in the natural coordinate system of the element, which has variables 
r, s, and t that each vary from -1 to+ 1. For one- or two-dimensional elements, only the 
relevant equations in (5.18) would be employed, and the interpolation functions would 
depend only on the natural coordinate variables rand r, s, respectively. 

The unknown quantities in (5.18) are so far the interpolation functions h;. The 
fundamental property of the interpolation function h1 is that its value in the natural coordi­
nate system is unity at node i and zero at all other nodes. Using these conditions, the 
functions h, corresponding to a specific nodal point layout could be solved for in a systematic 
manner. However, it is convenient to construct them by inspection, which is demonstrated 
in the following simple example. 

EXAMPLE 5.1: Construct the interpolation functions corresponding to the three-node truss 
element in Fig. E5.1. 

T
~ 

................. .... -.. +1 ............ ... 

1_~-----_y 
r• -1 ,,.. O r= +1 

~0.3L ·e~2 0.1L 
•~Node 3 Node1~ x 

, __ , ,-o , ... +1 
x-o X•0.3L X•L 

L:h ~/;;21E 
r•-1 r=O r=+1 , __ 1 ,.o r•+1 

h2=1-r2 
1 1 2 

h3=-(1 +r)--(1-r) 
2 2 

Figure ES.1 One-dimensional interpolation functions of a truss element 
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A first observation is that for the three-node truss element we want interpolation polyno­
mials that involve r1 as the highest power of r; in other words, the interpolation functions shall 
be parabolas. The function h2 can thus be constructed without much effort. Namely, the parabola 
that satisfies the conditions to be equal to zero at r = ± 1 and equal to 1 at r = 0 is given by 
(1 - r 2

}. The other two interpolation functions h, and h3 are constructed by superimposing a 
linear function and a parabola. Consider the interpolation function h3. Using i(l + r), the 
conditions that the function shall be zero at r = -1 and 1 at r = + 1 are satisfied. To ensure 
that h3 is also zero at r = 0, we need to use h3 = HI + r) - HI - r 2). The interpolation 
function h 1 is obtained in a similar manner. 

The procedure used in Example 5 .1 of constructing the final required interpolation 
functions suggests an attractive formulation of an element with a variable number of nodes. 
This formulation is achieved by constructing first the interpolations corresponding to a basic 
two-node element. The addition of another node then results in an additional interpolation 
function and a correction to be applied to the already existing interpolation functions. 
Figure 5.3 gives the interpolation functions of the one-dimensional element considered in 
Example 5 .1, with an additional fourth node possible. As shown, the element can have from 
two to four nodes. We should note that nodes 3 and 4 are now interior nodes because nodes 
1 and 2 are used to define the two-node element. 

0.5L 

Node4Node2 

,. -1 ,. O ,. +1 ... 3-node case 
,. -1 r•-J ,. +l ,. +1. .. 4·node case 

(a) 2 to 4 variable-number-nodes truss element 

I Include only if I Include only if 
I node 3 is present I nodes 3 and 4 are present 

h1 • ! (1 - r) ........................................ -t .... -1 (1 - ,2) ............. _ ...... - ...... J + 1 (-9r3 + r2 + 9r-1) 
2 f 2 I 18 

h2 .1(1 + r)-.................... - ................ 1,. ... -! (1- r2) .................. - ........... i+ 1 (9r3 + r2-9r-1) 
2 I 2 I 1e 

h3 a ( 1 - ,2) .... - .......... ,_, ... ,,_ .............. t·--·-·"·--..... - ..... - ... ---.... ++ tl (27 ,3 + 7 r2 - 27 r- 7) 

h4 • 1\(-27r3-9r2 + 27r+ 9) I ! 
(b) Interpolation functions 

Figure 5.3 Interpolation functions of two to four variable-number-nodes one-dimensional 
element 

This procedure of constructing the element interpolation functions for one­
dimensional analysis can be directly generalized for use in two and three dimensions. 
Figure 5.4 shows the interpolation functions of a four to nine variable-number-nodes 
two-dimensional element, and Fig. 5.5 gives the interpolation functions for three­
dimensional 8- to 20-node clements. The two- and three-dimensional interpolations have 
been established in a manner analogous to the one-dimensional interpolations, where the 
basic functions used are, in fact, those already employed in Fig. 5.3. We consider in Figs. 
5.4 and 5.5 at most parabolic interpolation, but variable-number-nodes elements with 
interpolations of higher order could be derived in an analogous way. 
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h, = 

h2 = 

h3 .. 

h4a 

hs .. 

hs• 

h, = 

ha .. 

h9= 

y 

\ 
\ g S= 0 

6 ~ ------ -- ...... 
----'\ - 8 r 

\ 
\ 
\ 

1-------:~~~--.._s=-1 
3 \ 7 \ I 4--

\ r=O r=+1 
r=-1 

x 

(a) 4 to 9 variable-number-nodes two-dimensional element 

Include only if node i is defined 

i= 7 

} ( 1 + r) ( 1 + s) ························· ......................... -fha 

t<1-r)(1+s) -fhs ............................................... .. 

} (1 - r)(1 - s) -fhs -fh, ....................... . 

} (1 + r) (1 - s) .................................................. -fh, -fhs 

f (1 - r2) (1 + s) 

f (1 - s2) (1 - r) 

f (1 - r2) (1 - s) 

f (1 - s2)(1 + r) 

(1 - r2) (1 - s2) 

(bl Interpolation functions 

i=9 

-ths 
-lhs 
-lhs 
-{-hs 

-fhs 
-fhs 
-fhs 
-fhs 

Figure 5.4 Interpolation functions of four to nine variable-number-nodes two-dimensional 
element 

z 

x 

s 

5 
y 

(a) 8 to 20 variable-number-nodes three-dimensional 
element 

Figure 5.5 Interpolation functions of eight to twenty variable-number-nodes three­
dimensional element 
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h1 • 9,- (99 + 912 + 917)/2 

h2 = 92- (g9 + 910 + 91e)/2 

h3 "" 93 - (910 + g, 1 + 919)/2 

h4 .. 94 - (911 + 912 + fho)/2 

IJs = g5- (913 + 916 + 911)/2 

hs = 9s- (913 + 914 + 9,s)/2 

,,., - 91- (914 + 915 + 919)/2 

hs .,. 98 - (915 + 916 + 1120)/2 

h; • 9/ for j • 9, ... , 20 

g; • 0 if node i is not included; otherwise, 

g;= G(r, r;) G(s, s;) G(t, t;) 

G(/3, {J;) = f (1 + {J;f)) for {J;• ±1 

G(/3, {J;> = (1 - P2> for P1• o 
;p ... r, S, t 

(b) Interpolation functions 

Figure S.S (continued) 
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The attractiveness of the elements in Figs. 5.3 to 5.5 lies in that the elements can have 
any number of nodes between the minimum and the maximum. Also, triangular elements 
can be formed (see Section 5.3.2). However, in general, to obtain maximum accuracy, the 
variable-number-nodes elements should be as nearly rectangular (in three-dimensional 
analysis, rectangular in each local plane) as possible and the noncorner nodes should, in 
general, be located at their natural coordinate positions; e.g., for the nine-node two­
dimensional element the intermediate side nodes should, in general, be located at the 
midpoints between the corner nodes and the ninth node should be at the center of the 
element (for some exceptions see Section 5.3.2, and for more details on these observations, 
see Section 5.3.3). 

Considering the geometry of the two- and three-dimensional elements in Figs. 5.4 
and 5.5 we note that by means of the coordinate interpolations in (5.18), the elements can 
have, without any difficulty, curved boundaries. This is an important advantage over the 
generalized coordinate finite element formulation. Another important advantage is the ease 
with which the element displacement functions can be constructed. 

In the isoparametric formulation the element displacements are interpolated in the 
same way as the geometry; i.e., we use 

q 

u = ~ hiu;; 
i=l 

q 

v = ~ h1v;; 
i=I 

q 

W = ~h;W; (5.19) 
i=I 

where u, v, and w are the local element displacements at any point of the element and ui, 
v;, and w;, i = 1, ... , q, are the corresponding element displacements at its nodes. There­
fore, it is assumed that to each nodal point coordinate necessary to describe the geometry 
of the element, there corresponds one nodal point displacement. 1 

To be able to evaluate the stiffness matrix of an element, we need to calculate the 
strain-displacement transformation matrix. The element strains are obtained in terms of 

I In addition to the isoparametric elements, there are subparametric elements, for which the geometry is 
interpolated to a lower degree than the displacements (see end of this section) and superparametric elements for 
which the reverse is applicable (see Section 5.4). 



346 Formulation and Calculation of lsoparametric Finite Element Matrices Chap. 5 

derivatives of element displacements with respect to the local coordinates. Because the 
element displacements are defined in the natural coordinate system using (5.19), we need 
to relate the x, y, z derivatives to the r, s, t derivatives, where we realize that (5.18) is of the 
form 

X = f1(r, S, t); y = Ji(r, S, t); z = JJ(r, s, t) (5.20) 

where fi denotes "function of." The inverse relationship is 

r = fix, y, z); s = fs(x, y, z); t = !6(x, y, z) (5.21) 

We require the derivatives a/ ox, a I ay, and a/ oz, and it seems natural to use the chain rule 
in the following form: 

a a a, a as a ar 
-=--+--+--ax ar iJx as ax iJt ax (5.22) 

with similar relationships for a/ay and a/az. However, to evaluate a/ax in (5.22), we need 
to calculate or/ ox, as/ ax, and at/ ax, which means that the explicit inverse relationships in 
(5.21) would need to be evaluated. These inverse relationships are, in general, difficult to 
establish explicitly, and it is necessary to evaluate the required derivatives in the following 
way. Using the chain rule, we have 

a ax iJy az a 
<Jr or iJr iJr ax 
a ax iJy az a 
as as as as ay 

(5.23) 

a ax iJy oz a -ot a, ot iJt oz 

or, in matrix notation, 
a a 
-=J-or 8x 

(5.24) 

where J is the Jacobian operator relating the natural coordinate derivatives to the local 
coordinate derivatives. We should note that the Jacobian operator can easily be found using 
(5.18). We require IJ/IJx and use 

(5.25) 

which requires that the inverse of J exists. This inverse exists provided that there is a 
one-to-one (i.e., unique) correspondence between the natural and the local coordinates of 
the element, as expressed in (5.20) and (5.21). In most formulations the one-to-one corre­
spondence between the coordinate systems (i.e., to each r, s, and t there corresponds only 
one x, y, and z) is obviously given, such as for the elements in Figs. 5.3 to 5.5. However, in 
cases where the element is much distorted or folds back upon itself, as in Fig. 5.6, the unique 
relation between the coordinate systems does not exist (see also Section 5.3.2 for singular­
ities in the Jacobian transformation, Example 5.17). 

Using (5.19) and (5.25), we evaluate au/ax, au/ay, au/az, av/ax, . .. , aw/oz and 
can therefore construct the strain-displacement transformation matrix B, with 

(5.26) 
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Line of r • -f falls 
outside the element 

For J nonsingular, 
all interior angles 
must be smaller 
than 180 degrees 

(a) Distorted element (b) Element folding upon itself 

Figure S.6 Elements with possible singular Jacobian 
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where u is a vector listing the element nodal point displacements of (5.19), and we note that 
J affects the elements in B. The element stiffness matrix. corresponding to the local element 
degrees of freedom is then 

K = Iv BTCB dV (5.27) 

We should note that the elements of Bare functions of the natural coordinates r, s, and t. 
Therefore, the volume integration extends over the natural coordinate volume, and the 
volume differential dV need also be written in terms of the natural coordinates. In general, 
we have 

dV = det J dr ds dt (5.28) 

where det J is the determinant of the Jacobian operator in (5.24) (see Exercise 5.6). 
An explicit evaluation of the volume integral in (5.27) is, in general, not effective, 

particularly when higher-order interpolations are used or the element is distorted. There­
fore, numerical integration is employed. Indeed, numerical integration must be regarded as 
an integral part of isoparametric element matrix evaluations. The details of the numerical 
integration procedures are described in Section 5.5, but the process can briefly be summa­
rized as follows. First, we write (5.27) in the form 

K = L F dr ds dt (5.29) 

where F = BrCB det J and the integration is performed in the natural coordinate system 
of the element. As stated above, the elements of F depend on r, s, and t, but the detailed 
functional relationship is usually not calculated. Using numerical integration, the stiffness 
matrix is now evaluated as 

K = L ay1cFy1c 
i,J,k 

(5.30) 

where F;1k is the matrix F evaluated at the point (r;, SJ, tk), and O:tJk is a given constant that 
depends on the values of r;, sh and tk, The sampling points (r;, si, tk) of the function and the 
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corresponding weighting factors a;jl, are chosen to obtain maximum accuracy in the integra­
tion. Naturally, the integration accuracy can increase as the number of sampling points is 
increased. 

The purpose of this brief outline of the numerical integration procedure was to 
complete the description of the general isoparametric formulation. The relative simplicity 
of the formulation may already be noted. It is the simplicity of the element formulation and 
the efficiency with which the element matrices can actually be evaluated in a computer that 
has drawn much attention to the development of the isoparametric and related elements. 

The formulation of the element mass matrix and load vectors is now straightforward. 
Namely, writing the element displacements in the form 

u(r. s. t) = Hu (5.31) 

where e is a matrix of the interpolation functions, we have, as in (4.34) to (4.37), 

M= LpHTHdV (5.32) 

RB= L ffTf8 dV (5.33) 

Rs= L H5Tfs dS (5.34) 

R, = L BT'TI dV (5.35) 

These matrices are evaluated using numerical integration, as indicated for the stiffness 
matrix Kin (5.30). In the evaluation we need to use the appropriate function F. To calculate 
the body force vector Rs we use F = errs det J, for the surface force vector we use 
F = H9

T f 9 det Js, for the initial stress load vector we use F = Br T' det J, and for the mass 
matrix we have F = p ere det J. 

This formulation was for one-, two-, or three-dimensional elements. We shall now 
consider some specific cases and demonstrate the details of the calculation of element 
matrices. 

EXAMPLE 5.2: Derive the displacement interpolation matrix H, strain-displacement interpo­
lation matrix B, and Jacobian operator J for the three-node truss element shown in Fig. E5.2. 

r=-1 r=O r = +1 

x, u 

Figure ES.2 Truss element with node 3 at center of element 

The interpolation functions of the element were given in Fig. E5.1. Thus, we have 

H = [ - ~(1 - r) ~(l + r) (1 - r 2
)] (a) 
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The strain-displacement matrix B is obtained by differentiation of H with respect to r and 
premultiplying the result by the inverse of the Jacobian operator, 

B = r1[(-! + r) (! + r) -2r] (b) 

To evaluate J formally we use 

hence, 

x = -~(1 - r)xi + ~(1 + r)(x1 + L) + (I - r2)(x1 + ~) 

L L 
X = X1 + + -r 

2 2 
(c) 

where we may note that because node 3 is at the center of the truss, x is interpolated linearly 
between nodes 1 and 2. The same result would be obtained using only nodes 1 and 2 for the 
geometry interpolation. Using now the relation in (c), we have 

J [~] 

and 
L 

detJ = -
2 

(d) 

With the relations in (a) to (d), we can now evaluate all finite element matrices and vectors given 
in (5.27) to (5.35). 

EXAMPLE 6.3: Establish the Jacobian operator J of the two-dimensional elements shown in 
Fig. E5.3. 

y 
y ~ 

2 1 1cm e--+--e1 
4cm 

---------x l x 

3 

Element 1 Element3 

2 

Element2 

Figure ES.3 Some two-dimensional elements 
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The Jacobian operator is the same for the global X, Y and the local x, y coordinate systems. 
For convenience we therefore use the local coordinate systems. Substituting into (5.18) and 
(5.23) using the interpolation functions given in Fig. 5.4, we obtain for element 1: 

x = 3r; y = 2s 

J = [~ ~] 
Similarly, for element 2, we have 

x = HO + r)(l + s)[3 + 1/(2\/3)] + (1 r)(l + s)[-(3 - 1/(2V3))] 

+ (1 - r)(l - s)[-(3 + l/(2V3))] + (1 + r)(l - s)[3 - 1/(2V3)]} 

y = HO + r)(l + s)G) + (l - r)(l + s)(i) + (1 - r)(l - s)( - !) 
+ (1 + r)(l - s)(-m 

and hence, J = [l ~] 
2\/3 2 

Also, for element 3, 

therefore, 

x = i[(l + r)(l + s)(l) + (1 - r)(l + s)(-1) + (1 - r)(l - s)(-1) 

+(I+ r)(l - s)(+l)] 

y = H(l + r)(l + s)(i) + (1 - r)(l + s)(!) + (1 - r)(l - s)(-!) 

+ (1 + r)(l s)(-m 

J = ![4 (1 + s)] 
4 0 (3 + r) 

We may recognize that the Jacobian operator of a 2 x 2 square element is the identity matrix, 
and that the entries in the operator J of a general element express the amount of distortion from 
that 2 x 2 square element. Since the distortion is constant at any point (r, s) of elements 1 and 
2, the operator J is constant for these elements. 

EXAMPLE 5.4: Establish the interpolation functions of the two-dimensional element shown in 
Fig. E5.4. 

2 
3 cm 2 

3 cm 2 
3 cm 

. -
2 6 5 1 

SL 
0 

T 
2cm 7 

1 
r 

3 4 

(a) Figure ES.4 A seven~node element 
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, 
2 

(b) Construction of h1 

Figure ES.4 (continued) 
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The individual functions are obtained by combining the basic linear, parabolic, and cubic 
interpolations corresponding to the rands directions. Thus, using the functions in Figure 5.3, we 
obtain 

hs = [f6(-27r3 - 9r2 + 21r + 9)][!(1 + s)] 

h6 [{1 - r 2
) + 't6(27r3 + 7r2 

- 27r - 7)][Hl + s)] 

h2 = [i(l - r) - !(1 - r2
) + h(-9r3 + r 2 + 9r - l)]l](I + s)] 

h3 = HI - r)(l - s) 

h, = Hl - s2)(1 + r) 

h4 = i(l + r)(l - s) - !h, 
h, HI + r)(l + s) - }hs - i~ - ~h1 

where h1 is constructed as indicated in an oblique/aerial view in Fig. E5.4. 

EXAMPLE 5.5: Derive the expressions needed for the evaluation of the stiffness matrix of the 
isoparametric four-node finite element in Fig. ES.5. Assume plane stress or plane strain condi­
tions. 

Using the interpolation function h1, h2, h3, and h4 defined in Fig. 5.4, the coordinate 
interpolation given in (5.18) is, for this element, 

x = !O + r)(l + s)x1 + HI r)(l + s)x2 + i(l - r)(l - s)x3 + Hl + r}(l - s)x4 

y = Ht + r)(l + s)y, + Ht r)(I + s)y2 + Ht - r)(l - s)y3 + Hl + r)(l - s)y4 

The displacement interpolation given in (5.19) is 

u = i(l + r)(l + s)u1 + Ht - r)(l + s)u2 + HI - r)(l - s)u3 + i(l + r)(l - s)u4 

v = !(I + r)(l + s)v, + }(l r}(l + s)v2 + i(l - r)(l - s)v3 + i(l + r)(l - s)v4 
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s1 
T Node 1 

I 
y, v l 

I 
I - ____ ..1. ___ _ 

I 
I 
I 
I 

Figure ES.S Four~node two-dimensional 
X4 x, u element 

The element strains are given by 

where 

where 

OU 
E =-· 

xx ax' 
au av 

'Yxy = - + -
ay ax 

To evaluate the displacement derivatives, we need to evaluate (5.23): 

[;] [t ~l[~] 
Os as aiJ Oy 

or 
a a -=J­ar 8x 

ox 1 1 1 1 - = -(1 + s)x1 - -(1 + s)x2 - -(1 - s)x3 + -(1 - s)x4 
ar 4 4 4 4 

ax 1 1 l 1 
- = -(1 + r)x1 + -(1 - r)x2 - -(1 - r)x3 - -(1 + r)X4 
as 4 4 4 4 

i,. = {<1 + s)y1 - lo + s)y2 - io - s)y3 + lo -s)y4 

ay = !o + r)y1 + !o - r)y2 - .!.o - r)y3 - .!.o + r)y4 
as 4 4 4 4 

Therefore, for any valuer ands, -1 s r s + 1 and -1 s s s +I.we can form the Jacobian 
operator J by using the expressions shown for ax/or, ax/as, and ay/ar, fJy/fJs. Assume that we 
evaluate J at r = r; ands = Sj and denote the operator by Ju and its determinant by det Ju, Then 
we have 

[a] [a] - -
ax = J::-1 i:Jr 

jj(j at r=ri I) : at r""r1 

Y s=~ uS s=~ 
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To evaluate the element strains we use 

au I I I I 
- = -(1 + s)u1 - -(1 + s)u2 - -(1 - s)u3 + -(1 - s)u4 ar 4 4 4 4 

au 1 1 I I as = 4(1 + r)ui + 4(1 - r)u2 - 4(1 - r)u3 - 4(1 + r)u.. 

av l 1 1 I - = -(1 + s)v, - -(l + s)v2 - -(1 - s)v3 + -(1 - s)v4 ar 4 4 4 4 

av 1 1 1 l os = 40 + r)v, + 4(1 - r)v2 - 4(1 - r)v3 - 4(1 + r)V4 

Therefore, 

[::] = !J"'(1 + •, 0 -(1 + Sj) 0 -(1 - Sj) 0 1 - SJ o]A O u au 4 ii 1 + r; 0 I - ri 0 -(1 - ri) 0 -(1 + ri) 
ay at r=-r; 

s=sj (a) 

and 

[~~] = !Jc1[0 1 + SJ 0 -(1 + Sj) 0 -(1 - SJ) 0 1 - SJ ]" 
(1t) 4 IJ O 1 + r; 0 1 - r; 0 -(1 - r;) 0 -(1 + r,) u a atr=r1 (b) y S""'Sj 

where fiT = [u1 V1 U2 V2 U3 V3 U4 V4] 

Evaluating the relations in (a) and (b), we can establish the strain-displacement transfor­
mation matrix at the point (rit s1); i.e., we obtain 

E;; = BiJU 

where the subscripts i and j indicate that the strain-displacement transformation is evaluated at 
the point (r,, s1). For example, if x = r, y = s (i.e., the stiffness matrix of a square element is 
required that has side lengths equal to 2), the Jacobian operator is the identity matrix, and hence 
hence 

1 - r, 

The matrix FiJ in (5.30) is now simply 

Fij = nicBudetJy 

where the material property matrix C is given in Table 4.3. In the case of plane stress or plane 
strain conditions, we integrate in the r. s plane and assume that the function F is constant through 
the thickness of the element. The stiffness matrix of the element is therefore 

K = ~ tya.ijFij 
i,J 
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where t;1 is the thickness of the element at the sampling point (r,, s1) (tiJ = 1.0 in plane strain 
analysis). With the matrices F;i as given and the weighting factors a;1 available, the required 
stiffness matrix can readily be evaluated. 

For the actual implementation it should be noted that in the evaluation of Ju and of the 
matrices defining the displacement derivatives in (a) and (b), only the eight possible derivatives 
of the interpolation functions h1, ... , h4 are required. Therefore, it is expedient to calculate 
these derivatives corresponding to the point (r;, s1) once at the start of the evaluation of B;1 and 
use them whenever they are required. 

It should also be realized that considering the specific point (r1, s1), the relations in (a) and 
(b) may be written, respectively, as 

!>t>:} 
au=± ah; U; 
ay ; ... ay 

(c) 

a., = ± Oh, "} 
and OX i~I ax 

av =}:ah,.,, 
ay 1==1 ay 

(d) 

Hence, we have 

ah. 
0 

ah2 
0 

ah3 
0 

a~ 
0 ax ax ox ox 

B= 0 
ah. 

0 
ah2 

0 
ah3 

0 
a~ 

ay ay ay ay (e) 

ah1 ah. fJh2 ah2 8h3 iJh3 oh4 8h4 
ay ox ay ax ay ax ay ax 

where it is implied that in (c) and (d), the derivatives are evaluated at point (r;, s), and therefore 
in (e), we have, in fact, the matrix Bu, 

EXAMPLE 5.6: Derive the expressions needed for the evaluation of the mass matrix of the 
element considered in Example 5.5. 

where 

The mass matrix of the element is given by 

M =}: aiitijFiJ 
i,j 

and Hv is the displacement interpolation matrix. The displacement interpolation functions for u 
and v of the four~node element have been given in Example 5.5, and we have 

ff. = ![(1 + r;)(l + s1) 0 (1 - r,)(1 + s;) 0 
iJ 4 0 (1 + ri)(l + si) 0 (1 - r,)(1 + s1) 

(1 - ri)(l - s1) 0 (1 + r,)(1 - s1) 0 ] 
0 (1 - r,)(1 - s1) 0 (1 + r,}(1 - si) 
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The determinant of the Jacobian matrix, det Jii, was given in Example 5.5, and Pii is the mass 
density at the sampling point (r;, si). Therefore, all required variables for the evaluation of the 
mass matrix have been defined. 

EXAMPLE 6.7: Derive the expressions needed for the evaluation of the body force vector Ra 
and the initial stress vector R1 of the element considered in Example 5.5. 

These vectors are obtained using the matrices Hii, Bij, and Ju defined in Examples 5.5 and 
5.6; i.e., we have 

Rs = L aijtuHbf8 det Ju 
i,J 

R1 = L aiJti;BL",-i det Ju 
i,J 

where ri and -rt are the body force vector and initial stress vector evaluated at the integration 
sampling points. 

EXAMPLE 6.8: Derive the expressions needed in the calculation of the surface force vector Rs 
when the element edge 1-2 of the four-node isoparametric element considered in Example 5.5 
is loaded as shown in Fig. E5.8. 

y, v 

s, 
I 
I ---,------1 

' ' 

X,U 

Node 1 

......... 
r 

4 

Figure ES.8 Traction distribution along 
edge 1-2 of a four-node element 

The first step is to establish the displacement interpolations. Since s = + 1 at the edge 1-2. 
we have, using the interpolation functions given in Example 5.5, 

u5 = HI + r)u1 + HI - r)u2 

v5 = !(1 + r)v, + 40 - r)v2 

Hence, to evaluate Rs in (5.34) we can use 

us= [HI + r) 0 
o !O + r) 

and 

HI - r) 

0 
0 0 

i(l - r) 0 
0 
0 

0 
0 ~] 
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where/~ and/: are the x and y components of the applied surface force. These components may 
have been given as a function of r. 

For the evaluation of the integral in (5.34)1 we also need the differential surface area dS 
expressed in the r, s natllfal coordinate system. If tr is the thickness, dS = t,. di, where dl is a 
differential length, 

d/ = det JS dr; detJS = - + -[(ax)2 (ay)2]112 
or ar 

But the derivatives ax/ ar and ay/ ar have been given in Example 5.5. Using s = + l, we have, 
in this case, 

dX Xi - X2 
;;;.=-2-; 

oy Y• - Y2 -=---or 2 

Although the vector Rs could in this case be evaluated in a closed~form solution (provided that 
the functions used in rs are simple), in order to keep generality in the program that calculates Rs, 
it is expedient to use numerical integration. This way, variable~number~nodes elements can be 
implemented in an elegant manner in one program. Thus, using the notation defined in this 
section, we have 

F; == Hf ff det Jf 
It is noted that in this case only one-dimensional numerical integration is required because s is 
not a variable. 

EXAMPLE 6.9: Explain how the expressions given in Examples 5.S to 5.7 need be modified 
when the element considered is an axisymmetric element. 

In this case two modifications are necessary. First, we consider 1 radian of the structure. 
Hence, the thickness to be employed in all integrations is that corresponding to 1 radian, which 
means that at an integration point the thickness is equal to the radius at that point: 

tu = ~ h, I,.,, x, (a) 

Second, it is recognized that also circumferential strains and stresses are developed (see 
Table 4.2). Hence, the strain-displacement matrix must be augmented by one row for the hoop 
strain u/R; i.e., we have 

B = [ ~.. O ~1 O ~ O ; • ~ '] (b) 

where the first three rows have already been defined in Example 5.5 and tis equal to the radius. 
To obtain the strain-displacement matrix at integration point (i, j) we use (a) to evaluate t and 
substitute into (b ). 

EXAMPLE 6. 10: Calculate the nodal point forces of the four-node axisymmetric finite element 
shown in Fig. E5.10 when the element is subjected to centrifugal loading. 

Here we want to evaluate 
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...._---R, •I 
Ro--....J 2 .,..,..,..,,.,,._.,.~ ... 

Density p 

x 
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Figure ES.to Four-node axisymmetric 
element rotating at angular velocity w 
(rad/sec) 

R = !(1 - r)Ro + !(l + r)R1 

J=c·t :J 
and the h; are defined in Fig. 5.4. Also, considering l radian, 

Hence, 

dV = detJ drds R = (R, ~ Ro) drds (R,: Ro+ Ri; Ro,) 

(1 + r)(l + s) 
0 

(1 r)(l + s) 

0 
(1 - r)(l - s) 

0 
(1 + r)(l - s) 

0 

0 
(1 + r)(l + s) 

0 
(l - r)(l + s) 

0 
(1 - r)(l - s) 

0 
(1 + r)(l - s) 

[(R1 + Ro) + (R1 - Ro)rJ2
[~] dr ds 

If we let A= R, + Ro and B = R1 - Ro, we have 

i (6A2 + 4AB + 2B2) 

0 
H6A2 

- 4AB + 2B2) 

0 pw2B 
Rs=--

64 j(6A2 4AB + 2B2) 

0 
i(6A2 + 4AB + 2B2) 

0 
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EXAMPLE 5.11: The four-node plane stress element shown in Fig. E5.1 l is subjected to the 
given temperature distribution. If the temperature corresponding to the stress-free state is Oo. 
evaluate the nodal point forces to which the element must be subjected so that there are no nodal 
point displacements. 

Element thickness = 1 cm 
Young's modulus E 
Poisson's ratio v 
Thermal coefficient 

R4 R2 of expansion a 
s 

t t ' 
+20°C 

T 
+40°C R3 __.,_ ___..,.... R1 

2 

3cm ~ -

1 
r 

3 4 
+20°C Rs__.,_ __.,_ R1 

+10°C 4cm ~ I t t 
Re Rs 

Figure ES.11 Nodal point forces due to initial temperature distribution 

In this case we have for the total stresses, due to total strains E and thennal 
strains e1h, 

(a) 

where e~~ = a(fJ - fJo), et~ = a(O - Bo), -y1~ = 0. If the nodal point displacements are zero, we 
have E = 0, and the stresses due to the thermal strains can be thought of as initial stresses. Thus, 
the nodal point forces are 

and the h; are the interpolation functions defined in Fig. 5.4. Also, 

J = [~ 1~5l 
J-1 = [t ~l det J = 3 

1 + s 
0 

1 + s 
0 

1 - s 
0 

1 - s 
0 --- --- --

8 8 8 8 
1 + r 1 - r 1 - r 

0 
1 + r 

B= 0 
6 

0 
6 

0 
6 

1 + r l + s 1 - r I + s r s l + r 1 - s --- --- --- ---
6 8 6 8 6 8 6 8 
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Hence, 

1 + s l + r 
8 

0 

0 
1 + r 1 + s 

6 8 
1 + s 

0 
I - r ---8 6 

1 - r 1 + s ---0 ['+VJ -rl f+I 6 8 l+v~ R1- - 1 - s -1 -I 0 
1 - r 0 1 v2 ---

0 
1 - r 

1 - s 
0 

8 

0 
1 + r ---

6 

6 
1 - s ---

8 
l + r 

1 - s 
8 

[2.5(s + 3)(r + 3) - Oo]3 dr ds 

37.5 - l.50o 
50 - 260 

-37.5 + 1.560 

Ea 40 - 280 R,= ----
(1 - v) -30 + l.50o 

-40 + 260 
+30 - 1.580 
-50 + 20o 

The calculation of the initial stress force vector as performed here is a typical step in a 
thermal stress analysis. In a complete thermal stress analysis the temperatures are calculated as 
described in Section 7.2, the element load vectors due to the thermal effects are evaluated as 
illustrated in this example, and the solution of the equilibrium equations ( 4.17) of the complete 
element assemblage then yields the nodal point displacements. The element total strains E. are 
evaluated from the nodal point displacements and then, using (a), the final element stresses are 
calculated. 

EXAMPLE 6.12: Consider the elements in Fig. ES.12. Evaluate the consistent nodal point 
forces corresponding to the surface loading ( assuming that the nodal point forces are positive 
when acting in the direction of the pressure). 

Here we want to evaluate 
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P2 P1 

2 1 
p 

I s Thickness a 1 cm 

8 p 
2cm 6 

l 
r 

7 

3

~2cm~

4 

(a) Two-dimensional element subjected to 
linearly varying pressure along one side 

(b) Flat surface of three-dimensional element 
subjected to constant pressure p 

Figure ES.12 Two- and three-dimensional elements subjected to pressure loading 

Consider first the two-dimensional element. Since s = + 1 at the edge 1-2. we have, using the 
interpolation functions for the eight-node element (see Fig. 5.4). 

hs = to - Y
2)(1 + S)ls=+I =} - r 2 

h1 = }(l + r)(l + s)(r + s l)ls=+1 = !r(l + r) 

h2 = Ht - r)(l + s)(s - r l)ls-+1 = -}r(l - r) 

which are equal to the interpolation functions of the three-node bar in Fig. E5.2. Hence 

U1 

V1 

[~:] = [! r(1
0
+ r) O 

.., !r(l + r) 
-!r(l 

0 

r) 0 (1 - r 2) 

-!r(l - r) 0 (1 ~ ,2)] :: 

Also, 

Hence, 

rs = [tf] = [ O ] . 
ff HI + r)p1 + Ht - r)pi ' 

det JS= } 

r(l + r) 

0 

f +1 t -r(l - r) 
Rs= -

-I 2 Q 
2(1 - r 2) 

0 

0 
r(l + r) 

-r(IO - r) ~ [(1 + r)p1 1 (I - r)pJ dr 

0 
2(1 - r 2) 

Us 

Vs 
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1 
Rs= -

3 

0 

P1 
0 

P2 
0 

2(p1 + pz) 

(a) 

For the three~dimensional element we proceed similarly. Since the surface is flat and the 
loading is normal to it, only the nodal point forces normal to the surface are nonzero (see also 
(a)]. Also, by symmetry, we know that the forces at nodes 1, 2, 3, 4 and 5, 6, 7, 8 are equal, 
respectively. Using the interpolation functions of Fig. 5.4, we have for the force at node 1, 

f
+I f+I } } 

R1=p _, _14(1+r)(l+s)(r+s-l)drds=- 3p 

and for the force at node 5, 

f+I J+I} 4 
Rs= p -(l - r 2)(l + s) drds = -p 

-I -1 2 3 

The total pressure loading on the surface is 4p, which, as a check, is equal to the sum of all the 
nodal point forces. However, it should be noted that the consistent nodal point forces at the 
comers of the element act in the direction opposite that of the pressure! 

EXAMPLE 5.13: Calculate the deflection uA of the structural model shown in Fig. E5.13. 

A 

E = 30 x 106 N/cm2 

v==0.3 

Figure ES.13 A simple structural model 

--ti-u-,,11-- 0.1 cm 

0.5cm2 

each 

---t...J.J-,111-- 0.1 cm 

Section AA 
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Because of the synunetry and boundary conditions, we need to evaluate only the stiffness 
coefficient corresponding to uA, Here we have for the four-node element, 

B = Js[·.. 3(1 o- s) .. ·] 

-4(1 + r) 

f +i f +1 ( l )2 E [ 3(1 - s) ] 
kn = _

1 
_

1 48 1 
_ v2 [3(1 - s) i O ! -4(1 + r)] 3v(l - s) 

-2(1 - v)(l + r) 

(12)(0.1) dr ds 

or kn = 1,336,996.34 N/cm 

Also, the stiffness of the truss is AE/L, or 

Hence 

and 

k = (1 )(30 t 106
) = 3,750,000 N/cm 

k.01a1 = 6.424 x 106 N/cm 

uA = 9.34 x 10-4 cm 

EXAMPLE 5.14: Consider the five-node element in Fig. E5.14. Evaluate the consistent nodal 
point forces corresponding to the stresses given. 

----4cm ---.. -1, 

____________ r Thickness• 1 cm 

v 3 4 

Txx=O 

i-yy= 10 N/cm2 

x Txy• t'yx= 20 N/cm2 

Figure ES.14 Five~node element with stresses given 

Using the interpolation functions in Fig. 5.4, we can evaluate the strain-displacement 
matrix of the element: 

B - - 0 2(1 + r) 
1 [ (1 + s) 0 

- 8 2(1 + r) (1 + s) 

0 

-s(l + s) 
0 

2(1 - r)(l + 2s) 

-2(1 - r)(l - 2s) 
s(l - s) 

(l - s) 
0 

-2(1 + r) 

0 
2(1 - r)(l + 2s) 

-s(l + s) 

s(l - s) 

0 
-2(1 - r)(l - 2s) 

0 -2(1 - s
2
) 0 ] 

-2(1 + r) 0 -8(1 - r)s 

(1 - s) -8(1 - r)s -2(1 - s2
) 
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where we used J [~ ~] 

The required nodal point forces can now be evaluated using (5.35); hence, 

J+I J+I [ Q] R1 = Br 10 (2) dr ds 
-1 -1 20 

which gives 

RT=[40 40 40' -40 -\Q -40 0 0 -!fl] 
It should be noted that the forces in this vector are also equal to the nodal point consistent 

forces that correspond to the (constant) surface tractions, which are in equilibrium with the 
internal stresses given in Fig. E.5.14. 

Earlier we mentioned briefly the possible use of subparametric elements: here the 
geometry is interpolated to a lower degree than the displacements. In the above examples, 
the nodes corresponding to the higher-order interpolation functions (nodes 5 and higher for 
the two-dimensional elements) were always placed at their "natural'' positions so that the 
Jacobian matrix would be the same if, for the geometry interpolation, only the "basic" 
lower-order functions were used. Hence, in this case the subparametric two-dimensional 
element, using only the four comer nodes for the interpolation of the geometry, gives the 
same element matrices as the isoparametric element. For instance, in Example 5.14, the 
Jacobian matrix J would be the same using only the basic four-node interpolation functions, 
and hence the vector R, for the subparametric element (using the four corner nodes for the 
geometry interpolation and the five nodes for the displacement interpolation) would be the 
same as for the isoparametric five-node element. 

However, while the use of subparametric elements decreases somewhat the computa­
tional effort, such use also limits the generality of the finite element discretization and in 
addition complicates the solution procedures considerably in geometrically nonlinear anal­
ysis (where the new geometry of an element is obtained by adding the displacements to the 
previous geometry; see Chapter 6). 

5.3.2 Triangular Elements 

In the previous section we discussed quadrilateral isoparametric elements that can be used 
to model very general geometries. However, in some cases the use of triangular or wedge 
elements may be attractive. Triangular elements can be formulated using different ap­
proaches, which we briefly discuss in this section. 

Triangular Elements Formulated by Collapsing Quadrilateral Elements 

Since the elements discussed in Section 5.3.1 can be distorted, as shown for example in 
Fig. 5.2, a natural way of generating triangular elements appears to be to simply distort the 
basic quadrilateral element into the required triangular form (see Fig. 5.7). This is achieved 
in practice by assigning the same global node to two corner nodes of the element. We 
demonstrate this procedure in the following example. 
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7 

2 
Node 1 

Nodes 2 and 3 

3 

4 

(a) Degeneration of 4-node to 3-node two­
dimensional element 

2 Node 1 

6 

8 Nodes 6 
and 8 

/ 

Nodes 1 
I and 4 ,. 

/1 , \ 

,/ \ , \ 

Nodes 6 ands 

Nodes 2 .-,,-... -... •.-/ .. Nodes 1 
and 4 

Nodes 1, 2, 3, and 4 
and 3 ,, , ,• 

/ \ 
/ \ 

/' \ I 

Nodes 5 and 8 

I , 

(b) Degenerate forms of 8-node three­
dimensional element 

Nodes5 and 8 

Figure S.7 Degenerate forms of four- and eight-node elements of Figs. 5.4 and 5.5 

Chap.5 

EXAMPLE 5.15: Show that by collapsing the side 1-2 of the four-node quadrilateral element 
in Fig. E5.15 a constant strain triangle is obtained. 

Using the interpolation functions of Fig. 5.4, we have 

x = f (l + r)(l + s)x1 + !O - r)(l + s)x2 + !(1 - r)(l - s)x3 + i(l + r)(l - s)x4 

y = Ht + r)(l + s)y1 + ! (1 - r)(l + s)y2 + Ht - r)(l - s)y3 + Ht + r)(l - s)y4 

Thus, using the conditions xi = X2 and y, = Y2, we obtain 

x = !(1 + s)x2 + !O - r)(l - s)x3 + i{l + r)(l - s)x4 

y = !O + s)y2 + }(l - r)(l - s)y3 + HI + r)(l - s)y4 
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y y 

s s 

T 2 T 
~ 2cm 2cm 

r j_ 
r 

j_ 3 4 3 

~2cm~ 
x 

~2cm~ 

Figure ES.ls Collapsing a plane stress four-node element to a triangular element 

and hence with the nodal coordinates given in Fig. E5.15, 

x = ! (1 + r)(l - s) 

y = 1 + s 

It follows that 

x 

ax 1 i)y - = -(1 - s) - = 0 ar 2 or 
ax = - ! (1 + r) ay = 1' 
as 2 as 

J-1 = [: : ; :] 
1 - s 

J _ ! [ (1 - s) o] 
- 2 -(1 + r) 2 ; 

Using the isoparametric assumption, we also have 

u = f (l + s)u2 + Ht - r)(l - s)u3 + !(1 + r)(l - s)u4 

v = Ht + s)v2 + HI - r)(l - s)v3 + !(1 + r)(l - s)v4 

au l I av 1 I - = --(1 - s)U3 + -(1 - S)"4; - = --(1 - S)V3 + -(1 - s)v4 a, 4 4 ar 4 4 

au l l 1 

365 

- = - U2 - -(1 - r)U3 - -(1 + r)U4' & 2 4 4 ' 
av I I 1 - = - V2 - -(1 - r)V3 - -(1 + r)V4 as 2 4 4 

Hence, 

[
au) [_2 0j [o O 
:: = ~ ~ ~ I ! 0 
ay 1 - s 2 

1 
-(1 - s) 
4 

U2 

j V2 

U3 

0 03 

U4 

V4 
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and 

Similarly, 

U2 

p[~ 0 -! 0 l 

fl 
V2 

2 
So we obtain 1 0 -! 0 

U3 
2 

0 -! I 0 
ti3 

-i 
U4 

1)4 

For any values of u2, v2, U3, V3, and u4, V4 the strain vector is constant and independent of r, s. 
Thus, the triangular element is a constant strain triangle. 

In the preceding example we considered only one specific case. However, using the 
same approach it is apparant that collapsing any one side of a four-node plane stress or 
plane strain element will always result in a constant strain triangle. 

In considering the process of collapsing an element side, it is interesting to note that 
in the formulation used in Example 5 .15 the matrix J is singular at s = + l, but that this 
singularity disappears when the strain-displacement matrix is calculated. A practical conse­
quence is that if in a computer program the general formulation of the four-node element 
is employed to generate a constant strain triangle (as in Example 5.15), the stresses should 
not be calculated at the two local nodes that have been assigned the same global node. 
(Since the stresses are constant throughout the element, they are conveniently evaluated at 
the center of the element, i.e., at r == 0, s = 0.) 

The same procedure can also be employed in three-dimensional analysis in order to 
obtain, from the basic eight-node element, wedge or tetrahedral elements. The procedure 
is illustrated in Fig. 5.7 and in the following example. 

EXAMPLE 5.18: Show that the three-dimensional tetrahedral element generated in Fig. E5.16 
from the eight-node three-dimensional brick element is a constant strain element. 

Here we proceed as in Example 5.15. Thus, using the interpolation functions of the brick 
element (see Fig. 5.5) and substituting the nodal point coordinates of the tetrahedron, we obtain 

x = Ht + r)(l s)(l - t) 

y = ! (I + s)(l - t) 

z = 1 + t 
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z 

3 2 

/,: 

-fm4 I . 
2 cm 7 .,__ ------ ----·---1 // 6 

y 

x ~2cm-j
5 

x 

Figure ES.16 Collapsing an eight-node brick element into a tetrahedral element 

Hence, J = - HI + r)(l - t) !(1 t) 
[ 

}(I - s)(l - t) 0 

- HI + r)(l - s) - HI + s) 

4 
(1 - s)(l - t) 

2(1 + r) 
(1 - s)(l - t) 

2(1 + r) 
(1 - s)(l - t) 

0 0 

2 
0 

1 - t 

1 + s 

1 - t 

367 

y 

(a} 

Using the same interpolation functions for u, and the conditions that u1 = u2 = u3 = U4 and 
us = u6, we obtain 

with 

ht = HI + t); ht = HI + s)(I - t); 

M = i(l - r)(l - s)(l - t); hl = HI + r)(l - s)(l - t) 

Similarly, we also have 

v = htv4 + hfvs + Mv1 + hfvs 

w = htw4 + hf ws + htw1 + hf ws 

Evaluating now the derivatives of the displacements u, v, and w with respect t.o r, s, and t, and 
using J- 1 of (a), we obtain 



368 Formulation and Calculation of lsoparametric Finite Element Matrices 
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Us 

Vs 

Ws 

u, 
v, 
w, 

Us 

Vs 

Ws 

Hence, the strains are constant for any nodal point displacements, which means that the element 
can represent only constant strain conditions. 

The process of collapsing an element side, or in three-dimensional analysis a number 
of element sides, may directly yield a desired element, but when higher-order two- or 
three-dimensional elements are employed, some special considerations may be necessary 
regarding the interpolation functions used. Specifically, when the lower-order elements 
displayed in Fig. 5.7 are employed, spatially isotropic triangular and wedge elements are 
automatically generated, but this is not necessarily the case when using higher-order ele­
ments. 

As an example, we consider the six-node triangular two-dimensional element obtained 
by collapsing one side of an eight-node element as shown in Fig. 5.8. If the triangular 
element has sides of equal length, we may want the element to be spatially isotropic; i.e., 

s 

r 

2 6 

----< t,.~-------+-, ___ a_.,.__,-_ r ~ 
I 
I 
I 
1 
I 

3 l7 
T 
I 

Square element 

4 

s 

1, 2, 5 

Equilateral triangle 

Figure S.8 Collapsing an eight· node element into a triangle 
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we may wish the internal element displacements u and v to vary in the same manner for each 
corner nodal displacement and each midside nodal displacement, respectively. However, 
the interpolation functions that are generated for the triangle when the side 1-2-5 of the 
square is simply collapsed do not fulfill the requirement that we should be able to change 
the numbering of the vertices without a change in the displacement assumptions. In order 
to fulfill this requirement, corrections need be applied to the interpolation functions of the 
nodes 3, 4, and 7 to obtain the final interpolations hr of the triangular element (see 
Exercise 5.25), 

hr = 40 + s) - t(l - s 2
) 

hf = HI - r)(l - s) - to - s 2)(t - r) - !(1 - r 2)(1 - s) + Ah 

ht = Ht + r)(l - s) - !(t - r 2)(1 - s) - !{1 - s 2)(1 + r) + Ah 

hf = f (1 - s2)(1 - r) 

hf = HI - r 2)(1 - s) - 26.h 

hf = Hl - s 2)(1 + r) 

where we added the appropriate interpolations given in Fig. 5.4 and 

Ah = (1 - ,2)(1 - s2) 
8 

(5.36) 

(5.37) 

Thus, to generate higher-order triangular elements by collapsing sides of square elements, 
it may be necessary to apply a correction to the interpolation functions used. 

Triangular Elements in Fracture Mechanics 

In the preceding considerations, we assumed that a spatially isotropic element was desirable 
because the element was to be employed in a finite element assemblage used to predict a 
somewhat homogeneous stress field. However, in some cases, very specific stress variations 
are to be predicted, and in such analyses a spatially nonisotropic element may be more 
effective. One area of analysis in which specific spatially nonisotropic elements are em­
ployed is the field of fracture mechanics. Here it is known that specific stress singularities 
exist at crack tips, and for the calculation of stress intensity factors or limit loads, the use 
of finite elements that contain the required stress singularities can be effective. Various 
elements of this sort have been designed, but very simple and attractive elements can be 
obtained by distorting the higher-order isoparametric elements (see R. D. Henshell and 
K. G. Shaw [A] and R. S. Barsoum [A, B]). Figure 5.9 shows two-dimensional isoparamet­
ric elements that have been employed with much success in linear and nonlinear fracture 
mechanics because they contain the 1/VR and 1/R strain singularities, respectively. We 
should note that these elements have the interpolation functions given in (5.36) but with 
t:..h = 0. The same node-shifting and side-collapsing procedures can also be employed with 
higher-order three-dimensional elements in order to generate the required singularities. We 
demonstrate the procedure of node shifting to generate a strain singularity in the following 
example. 
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s 

8 
6 -1------e-.......... r 

7 3 ____ ...,....,_ ____ 4 

Natural space 

Shift nodes 5 
and 7 to quarter­
points; collapse 
side 2-6-3 to 
one node 

Actual physical space 

(a) Quarter-point triangular element with 1/VR strain singularity at node 2-6-3 

s 

5 2----..._---..,._ ____ __ 
Shift nodes 5 
and 7 to quarter­
points; collapse 

6 
8 side 2-6-3 but 

_..,_ ______ .......... r retain three nodes 

7 3 ____ ...,...,._ ____ 4 

Natural space 

corresponding to 
2, 6, and 3 

2, 6,3 
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(b) Quarter-point triangular element with 1/\l'R and 1/R strain singularities at nodes 2, 6, and 3 

Figure 5.9 Two-dimensional distorted (quarter point) isoparametric elements useful in 
fracture mechanics. Strain singularities are within the element for any angle e. [Note that in 
(a) the one node (2-6-3) has two degrees of freedom, and that in (b) nodes 2, 3, and 6 each 
have two degrees of freedom.] 

EXAMPLE 5.17: Consider the three-node truss element in Fig. E5.17. Show that when node 
3 is specified to be at the quarter-point, the strain has a singularity of 1/Vx at node 1. 

rx 
3 2 3 2 

41 I • 41 • • 
r=-1 L.....r r= +1 I •L/4• I• ~ I 

3L/4 

Natural space Actual physical space 

Figure ES.17 Quarter-point one~dimensional element 
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We have already considered a three-node truss in Example 5.2. Proceeding as before, we 
now have 

r L 
x = 2(1 +r)L + (1 - r 2) 4 

L 
or x = 4(1 + r)2 (a) 

Hence, J=[%+~L] 

and the strain-displacement matrix is [using (b) in Example 5.2] 

B=[ 1 ][(-!+r) (!+r) -2r] L/2 + rL/2 2 2 
(b) 

To show the 1/Vx singularity we need to express r in terms of x. Using (a), we have 

r = 2~ - 1 

Substituting this value for r into (b), we obtain 

B - [G 2~~) (~ 2~~) (~~ -~)] 
Hence at x = 0 the quarter-point element in Fig. E5.17 has a strain singularity of order 1/Vx. 

Triangular Elements by Area Coordinates 

Although the procedure of distorting a rectangular isoparametric element to generate a 
triangular element can be effective in some cases as discussed above, triangular elements 
(and in particular spatially isotropic elements) can be constructed directly by using area 
coordinates. For the triangle in Fig. 5.10, the position of a typical interior point P with 
coordinates x and y is defined by the area coordinates 

y 

A, 
L, =-· 

A' 

3 

Cartesian coordinates 

A2 
L2 =-· 

A' 

x 

(5.38) 

s 

(0, 1) S=1 

3 

(0,0) 

r • 1 
r 

lsoparametric coordinates 

Figure 5.10 Description of three-node triangle 
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where the areas Ah i = l, 2, 3, are defined in the figure and A is the total area of the triangle. 
Thus, we also have 

(5.39) 

Since element strains are obtained by taking derivatives with respect to the Cartesian 
coordinates, we need a relation that gives the area coordinates in terms of the coordinates 
x and y. Here we have 

x = L,xi + L1x2 + L3X3 

y = L,y1 + L2y2 + L3y3 

(S.40) 

(5.41) 

because these relations hold at points 1, 2, and 3 and x and y vary linearly in between. Using 
(5.39) to (5.41), we have 

which gives 

where 

1 
L· = - (a· + b·x + c·y)· 1 2A , , , , 

a, = x2y3 - X3y2; 

bi = Y2 - y3; 

a2 = X3Y1 - x1 y3; 

b2 = y3 - Y1; 

i = l, 2, 3 

Q3 ::= X1Y2 - X2Y1 

b3 = y, - Y1 

(5.42) 

(5.43) 

As must have been expected, these L; are equal to the interpolation functions of a constant 
strain triangle. Thus, in summary we have for the three-node triangular element in 
Fig. 5.10, 

3 3 

u = L hju;; x =Lh;X; 
i=I i=I (5.44) 

3 3 

v = L h;vi; y =Lh;yi 
i=l i=I 

where h; = L;, i = l, 2, 3, and the h; are functions of the coordinates x and y. 
Using the relations in (5.44), the various finite element matrices of (5.27) to (5.35) can 

be directly evaluated. However, just as in the formulation of the quadrilateral elements 
(see Section 5.3.1), in practice, it is frequently expedient to use a natural coordinate space 
in order to describe the element coordinates and displacements. Using the natural coordi­
nate system shown in Fig. 5 .10, we have 

h, = 1 - r - s; (5.45) 

and the evaluation of the element matrices now involves a Jacobian transformation. Further­
more, all integrations are carried out over the natural coordinates; i.e., the r integrations go 
from Oto 1 and the s integrations go from Oto ( 1 - r). 
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EXAMPLE 5.18: Using the isoparametric natural coordinate system in Fig. 5.10, establish the 
displacement and strain-displacement interpolation matrices of a three-node triangular element 
with 

Y1 = 0; Y2 = 0; 

X3 = 1 

y3 = 3 

In this case we have, using (5.44), 

x = 4r + s 

y = 3s 

Hence. using (5.23), J = [~ ~] 

and a 1 [ 3 o] a 
ax= 12 -1 4 ar 

It follows that 
[(1 - r - s) 0 :· r 0 

H= (1 - r - s) 
I 

0 I 0 r I 

[-3 0 3 0 0 
and B /2 0 -3 0 -1 0 

-3 -3 -1 3 4 

: s ~] I 

: 0 

~] 
By analogy to the formulation of higher-order quadrilateral elements, we can also 

directly formulate higher-order triangular elements. Using the natural coordinate system in 
Fig. 5.10, which reduces to 

L1 = 1 - r s; L2 = r; (5.46) 

where the Li are the area coordinates of the "unit triangle," the interpolation functions of 
a 3 to 6 variable-number-nodes element are given in Fig. 5.11. These functions are con­
structed in the usual way, namely, hi must be unity at node i and zero at all other nodes (see 
Example 5.1).2 The interpolation functions of still higher-order triangular elements are 
obtained in a similar manner. Then the "cubic bubble function" L 1L2L3 is also employed. 

Using this approach we can now also directly construct the interpolation functions of 
three-dimensional tetrahedral elements. First, we note that in analogy to (5.46) we now 
employ volume coordinates 

L1 = 1 - r - s - t; 
(5.47) 

where we may check that Li + L2 + L3 + L4 = 1. The L; in (5.47) are the interpolation 
functions of the four-node element in Fig. 5.12 in its natural space. The interpolation 

2 It is interesting to note that the functions of the six-node triangle in Fig. 5.11 are exactly those given in 
(5.36). provided the variables rands in Fig. 5.11 are replaced by! (1 + r)(l s) and! (1 + s}. respectively, in 
order to account for the different natural coordinate systems. Hence, the correction ah in (5.36) can be evaluated 
from the functions in Fig. 5 .11. 
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Figure S.11 Interpolation functions of three to six variable-number-nodes two-dimensional 
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Figure S.12 Natural coordinate system 
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Figure 5.13 Interpolation functions of four to ten variable-number-nodes three­
dimensional tetrahedral element 
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functions of a 4 to 10 three-dimensional variable-number-nodes element are given in 
Fig. 5.13. 

To evaluate the element matrices, it is necessary to include the Jacobian transforma­
tion as given in (5.24) and to perform the r integrations from Oto I, the s integrations from 
Oto (l - r), and the t integrations from Oto (1 - r - s). As for the quadrilateral elements, 
these integrations are carried out effectively in general analysis using numerical integration, 
but the integration rules employed are different from those used for quadrilateral elements 
(see Section 5.5.4). 



376 Formulation and Calculation of lsoparametric Finite Element Matrices Chap.5 

EXAMPLE 5. 19: The triangular element shown in Fig. ES.19 is subjected to the body force 
vector f 8 per unit volume. Calculate the consistent nodal point load vector. 

3--( 

T \ '\ fB= [;!Y] = G~] N/cml 
5cm 

4cm ~ 

t ~ "'\ Element thickness t = 2.0 cm 
6 5 

5cm 

y I 4 \,, L 1 
f.3 cm+-f.3 cm-\ 2 

x 

Figure ES.19 Six~node triangular element 

Let us use the displacement vector 

Hence, the load vector corresponding to the applied body force loading is 

We have 

and note that the Jacobian matrix is diagonal and constant and that det J is equal to twice the 
area of the triangle. The integrations involve the following term for node i: 

I.
I I.1-r 

ji = r=O s=O hit det J ds dr 

which gives Ji = h = fj = 0, whereas/4 = is = /£, = (t/6) det J. Hence, we obtain 

RI; = (0 . . . 0 160 320 160 320 160 320] (a) 

with the consistent nodal forces at the comer nodes equal to zero. Note that the total applied load 
is of course statically equivalent to the nodal forces listed in (a). 

5.3.3 Convergence Considerations 

We discussed in Section 4.3 the requirements for monotonic convergence of a finite element 
discretization. Since isoparametric elements are used very widely, let us address some key 
issues of convergence specifically for these elements. 
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Basic Requirements for Convergence 

The two requirements for monotonic convergence are that the elements (or the mesh) must 
be compatible and complete. 

To investigate the compatibility of an element assemblage, we need to consider each 
edge, or rather face, between adjacent elements. For compatibility it is necessary that the 
coordinates and the displacements of the elements at the common face be the same. We note 
that for the elements considered here, the coordinates and displacements on an element face 
are determined only by nodes and nodal degrees of freedom on that face. Therefore, 
compatibility is satisfied if the elements have the same nodes on the common face and the 
coordinates and displacements on the common face are in each element defined by the same 
interpolation functions. 

Examples of adjacent elements that do and do not preserve compatibility are shown 
in Fig. 5.14. 

3-node edge: Coordinates and displacements 
vary parabolically along both 
element edges 

coordinates vary linearly but 
displacements vary parabolically 

2-node edge: 
coordinates and 
displacements -------~l-__ j vary linearly 

(a) Compatible element assemblage (b} Incompatible element assemblage 

Figure S.14 Compatible and incompatible two-dimensional element assemblage 

In practice, mesh grading is frequently necessary (see Section 4.3), and the isopara­
metric elements show particular flexibility in achieving compatible graded meshes (see 
Fig. 5.15). 

Completeness requires that the rigid body displacements and constant strain states be 
possible. One way to investigate whether these criteria are satisfied for an isoparametric 
element is to follow the considerations given in Section 4.3.2. However, we now want to 
obtain more insight into the specific conditions that pertain to the isoparametric formulation 
of a continuum element. For this purpose we consider in the following discussion a three­
dimensional continuum element because the one- and two-dimensional elements can be 
regarded as special cases of these three-dimensional considerations. For the rigid body and 
constant strain states to be possible, the following displacements defined in the local element 
coordinate system must be contained in the isoparametric formulation 

u = a1 + bix + ciy + d1z} 
v = a2 + b2x + c2y + d2z 

W = 03 + b3X + C3 Y + d3z 

(5.48) 
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c C Uc 

Constraint uA = (uc + ua )/2 
equations: VA= (vc+ vs)/2 

(a) 4-node to 8-node element 
transition region 

(b) 4-node to 4-node element transition; 
from one to two layers 

(c) 9-node to 9-node element transition region; 
from one to two layers 

Figure S.15 Some transitions with compatible element layouts 

where the ab bi, Cj, and dj, j = 1, 2, 3, are constants. The nodal point displacements 
corresponding to this displacement field are 

u; = a1 + b1x, ~, c1 y; + d1z11 
v, = a2 + b2x; + c2Y1 + d2Zi 

Wi = Q3 + b3X; + C3y; + d3Zi 

where i = 1, ... , q and q = number of nodes. 

(5.49) 

The test for completeness is now as follows: show that the displacements in ( 5.48) are 
inf act obtained within the element when the element nodal point displacements are given 
by (5.49). In other words, we should find that with the nodal point displacements in (5.49), 
the displacements within the element are actually those given in (5.48). 

In the isoparametric formulation we have the displacement interpolation 
q q q 

u = ~ hiu;; v = L h,v,; W = Lh;W1 
i=I i=l i=I 

which, using (5.49), reduces to 
q q q q 

u = a1 L h; + b1 L h1x1 + c1 L h;yi + d, L h;Z; 
i=I i""I i=I i=l 

q q q q 

v = a2 L h; + b2 L h1x1 + c2 L h; y, + d2 L h1z1 
i•I i=I i=I i=I 

q q q q 

W = Q3 L h, + b3 L hiXi + C3 L h; Yi + d3 ~ h;Z; 
i=I i=I i=I i=I 

(5.50) 
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Since in the isoparametric formulation the coordinates are interpolated in the same way as 
the displacements, we can use (5.18) to obtain from (5.50), 

q 

u = a1 I h; + b1x + c1 y + d1z 
i=l 

q 

v = a2 I h, + b2x + c2 y + d2z 
i-1 

q 

W = Q3 ~ h; + b3X + C3 y + d3z 
l=l 

(5.51) 

The displacements defined in (5.51), however, are the same as those given in (5.48), 
provided that for any point in the element, 

(5.52) 

The relation in (5.52) is the condition on the interpolation functions for the completeness 
requirements to be satisfied. We may note that (5.52) is certainly satisfied at the nodes of 
an element because the interpolation function h; has been constructed to be unity at node i 
with all other interpolation functions hi,j * i, being zero at that node; but in order that an 
isoparametric element be properly constructed, the condition must be satisfied for all points 
in the element. 

In the preceding discussion, we considered a three-dimensional continuum element, 
but the conclusions are also directly applicable to the other isoparametric continuum element 
formulations. For the one- or two-dimensional continuum elements we simply include only 
the appropriate displacement and coordinate interpolations in the relations (5.48) to (5.52). 
We demonstrate the convergence considerations in the following example. 

EXAMPLE 5.20: Investigate whether the requirements for monotonic convergence are 
satisfied for the variable-number-nodes elements in Figs. 5.4 and 5.5. 

Compatibility is maintained between element edges in two-dimensional analysis and 
element faces in three-dimensional analysis, provided that the same number of nodes is used on 
connecting element edges and faces. A typical compatible element layout is shown in Fig. 5.14(a). 

The second requirement for monotonic convergence is the completeness condition. Con­
sidering first the basic four-node two-dimensional element, we recognize that the arguments 
leading to the condition in (5.52) are directly applicable, provided that only the x and y 
coordinates and u and v displacements are considered. 

Evaluating 'I.:. 1 h; for the element, we find 

!O + r)(l + s) + Ht - r)(l + s) + Ht - r)O - s) + lO + r)O - s) = 1 

Hence, the basic four-node element is complete. We now study the interpolation functions given 
in Fig. 5.4 for the variable-number-nodes element and find that the total contribution that is 
added to the basic four-node interpolation functions is always zero for whichever additional node 
is included. Hence, any one of the possible elements defined by the variable number of nodes in 
Fig. 5.4 is complete. The proof for the three-dimensional elements in Fig. 5.5 is carried out in 
an analogous manner. 

It follows therefore that the variable-number-nodes continuum elements satisfy the re­
quirements for monotonic convergence. 
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Order of Convergence, the Effect of Element Distortions 

The basic requirements for monotonic convergence, namely, compatibility and complete­
ness, are satisfied by the isoparametric elements, as discussed above, when these elements 
are of general (but admissible) geometric shape. Therefore, the elements always have the 
capability to represent the rigid body modes and constant strain states, and convergence is 
guaranteed. 

We discussed in Section 4.3.5 the rates of convergence of sequences of finite element 
discretizations with the assumptions that the elements are based on polynomial expansions 
and that uniform meshes of elements with characteristic dimension h are used. For the 
discussion we used the Pascal triangle to display which polynomial terms are present in 
various elements. The complete polynomial of highest order in the Pascal triangle deter­
mines the order of convergence. Let this degree (now for r, s, t) be k. Then if the exact 
solution u is sufficiently smooth and uniform meshes are used, the rate of convergence of 
the finite element solution uh is given by [see (4.102)] 

11 u uh 111 s c hk (5.53) 

where k is the order of convergence. The constant c is independent of h but depends on the 
exact solution of the mathematical model and the material properties. 

In general practical finite element analysis, the exact solution of the mathematical 
model is not smooth (e.g., because of rapid load variations, changes in material properties), 
and with uniform meshes the order of convergence is much reduced. Therefore, mesh 
grading must be employed with fine discretizations in regions of nonsmooth stress distribu­
tions and coarse discretizations in the other regions. The meshes will therefore be nonuni­
form and based on geometrically distorted elements using, for example, in two-dimensional 
analysis general quadrilateral and triangular elements; see Fig. 5.16 for an example of a 
nine-node quadrilateral element. 

The aim in such mesh constructions is then to use meshes in which the density of 
solution error is (nearly) constant over the domain considered and to use regular meshes.3 

When regular meshes are used, the rate of convergence is still given by a form such as (5.53) 
[see (4.lOlc)], namely, 

II u - Uhlir s c~ h: II ulll+1.m 
m 

where hm denotes the largest dimension of element m (see Fig. 5.16). We note that, in 
essence, in this relation the interpolation errors over all elements are added to obtain the 
total interpolation error, which then gives us the usual bound on the actual error of the 
solution. 

The (nearly) constant density of solution error can of course be achieved, in general, 
only by proper mesh grading and adaptive mesh refinement because the mesh to be used 
depends on the exact (and unknown) solution. In practice, a refinement of a mesh is 
constructed on the basis of local error estimates computed from the solution just obtained 
(with a coarser mesh). 

3 In referring to a "regular mesh," we always mean "a mesh from a sequence of meshes that is regular." 
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(a) Undistorted configuration 
used in uniform meshes 

(c) Parallelogram distortion 

(e) Curved-edge distortion 

(b) Aspect-ratio distortion 

(d) Angular distortion 

s ·~ 

,....___ 
r 

(f) Mid node distortion 

Figure 5.16 Classification of element distortions for the 9-node two-dimensional element; 
all midside and interior nodes are placed at their "natural" positions for cases (a) to (e). The 
value of A should be smaller than h;. for (5.53) to be applicable. An actual distortion in 
practice would be a combination of those shown. 
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To introduce a measure of mesh regularity, the element geometric parameter Um, is 
used, 

hm 
<J'm = -

Pm 

where hm is the largest dimension and Pm is the diameter of the largest circle (or sphere) that 
can be inscribed in element m (see Fig. 5.16). A sequence of meshes is regular if Um s u0 

for all elements m and meshes used, where u0 is a fixed positive value. In addition, when 
using meshes of quadrilateral elements in two-dimensional analysis and hexahedral ele-



382 Formulation and Calculation of lsoparametric Finite Element Matrices Chap.5 

ments in three~dimensional analysis, we also require that for each element the ratio of the 
largest to the smallest side lengths (h,/h:s in Fig. 5.16) is smaller than a reasonable positive 
number. These conditions prevent excessive aspect ratios and geometric distortions of the 
elements. Referring to Fig. 5.16, the elements in (b), (c), and in particularly (d) are used 
extensively in regular meshes. 4 

The above described mesh grading can in general be achieved with straight~sided 
elements, and the noncorner nodes can usually be placed at their natural positions (i.e., at 
the physicalx, y, z locations in proportion to the r, s, t distances from the corner nodes); and 
the most typically used element in Fig. 5.16 is the quadrilateral in Fig. 5.16(d). However, 
when curved boundaries need to be modeled, the element sides will also be curved [see 
Fig. 5.16(e)], and we must ask what effect all these geometric distortions will have on the 
order of convergence. 

Whereas the cases in Figs. 5.16(a) to (e) are used extensively in mesh designs, we note 
that the element distortion shown in Fig. 5.16(f) is avoided, unless specific stress effects 
need to be modeled, such as in fracture mechanics [ where even larger distortions than those 
shown in Fig. 5.16(f) are used; see Fig. 5.9]. However, the distortion in Fig. 5.16(f) may 
also arise in geometrically nonlinear analysis. 

P. G. Ciarlet and P. -A. Raviart [A] and P. G. Ciarlet [A] have shown in their mathe­
matical analyses that the order of convergence of a sequence of regular meshes with straight 
element sides is still given as in (5.53) (even though, for example, in two-dimensional 
analysis, general straight-sided quadrilaterals are used instead of square elements) and that 
the order of convergence is also still given as in (5.53) with curved element sides and when 
the noncorner nodes are not placed at their natural positions provided these distortions are 
small, measured on the size of the element. For the element in Fig. 5 .16 the distortions must 
be o(h 2

). The element distortions due to curved sides and due to interior nodes not placed 
at their natural positions must therefore be small, and in the refinement process the distor­
tions must decrease much faster than the element size. The order of convergence in (5.53) 
is reached directly when the exact solution u is smooth, whereas when the exact solution is 
nonsmooth, mesh grading is necessary ( to fulfill the requirement that the density of solution 
error be (almost) constant over the solution domain). We present some solutions to illustrate 
a few of these results in Section 5.5.5 (see Fig. 5.39).5 

Of course, the actual accuracy attained with a given mesh is also determined by the 
constant c in (5.53). This constant depends on the specific elements used (all with the 
complete polynomial of degree k) and also on the geometric distortions of the elements. We 
should note that if the constant is large, the order of convergence may be of little interest 
because the h k term may decrease the error sufficiently only at very small values of h. 

These remarks pertain to the order of convergence reached when element sizes are 
small. However, interesting observations also pertain to a study of the predictive capability 
of elements when the element sizes are large. Namely, element geometric distortions can 
affect the general predictive capabilities to a significant degree. 

4 In addition, we can also define a sequence of meshes that is quasi-uniform. In such sequence we also have, 
in addition to the regularity condition that the ratio of the maximum hm encountered in the mesh over the minimum 
hm encountered in that same mesh remains for all meshes below a reasonable positive number. Hence, whereas 
regularity allows that the ratio of element sizes becomes any value, quasi-uniformity restricts the relative sizes that 
are permitted. Therefore, the error measure in (4.lOlc) is also valid when a quasi·uniform sequence of meshes is 
used. 

5 These solutions are given in Section 5.5.5 because the element matrices of the distorted elements are 
evaluated using numerical integration and the effect of the numerical integration error must also be considered. 
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Figure 5.17 Example demonstrating effect of element distortions on predictive capability of 
elements 
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As an example to demonstrate a possible loss of predictive capability when an isopara­
metric element is geometrically distorted, consider the results given in Fig. 5 .17. The single 
undistorted eight-node element gives the exact (beam theory) solution for the beam bending 
problem. However, when two elements of distorted shape are used, significant solution 
errors are obtained. On the other hand, when the same problem is analyzed with nine-node 
elements, the mesh of two distorted elements gives the correct result. 

This example shows that in coarse meshes the stress predictive capability of certain 
elements can be significantly affected by element geometric distortions. Since. in practice, 
frequently rather coarse meshes are used and complete convergence studies are not per­
formed, surely it is preferable to use those elements that are least sensitive to element 
geometric distortions. 
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On studying the cause of loss of predictive capability, we find that this effect is due to 
the elements no longer being able to represent the same order of polynomials in the physical 
coordinates x, y, z after the geometric distortion as they did without the distortion. For 
example, the general quadrilateral nine-node element, shown in Fig. 5.16(d), is able to 
represent the x2, xy, y 2 displacement variations exactly, whereas the corresponding eight­
node quadrilateral element is not able to do so. Hence, the general quadrilateral eight-node 
element does not contain the quadratic terms in the Pascal triangle of the physical coordi­
nates. 

This observation explains the results in Fig. 5.17, and an investigation into this 
phenomenon for widely used elements and common distortions is of general interest. In 
such a study, we can measure the loss of predictive capability by identifying which terms in 
the physical coordinates of the Pascal triangle can no longer be represented exactly, (see 
N. S. Lee and K. J. Bathe [A]). 

Let us consider the two-dimensional element in Fig. 5 .16 as an example. For elements 
with undistorted configurations or with aspect ratio distortions only, the physical coordi­
nates x, y are linearly related to the isoparametric coordinates r, s; i.e., we have x = cir, 
y = c2s, where c1 and c2 are constants. Hence, the Pascal triangle terms in physical coordi­
nates are simply the r, s terms obtained from the interpolation functions h; replaced by x 
and y, respectively. 

The effects of the parallelogram, general angular, and curved edge distortions shown 
in Figs. 5.16(c) to (e) can be studied by establishing the physical coordinate variations for 
these specific cases with the coordinate interpolations (5.18) and then asking what polyno­
mial terms in x and y are contained in the r, s polynomial terms of the displacement 
variations given in (5.19) (see Example 5.21). 

Table 5.1 summarizes the results obtained in such a study for two-dimensional quadri­
lateral elements (see N. S. Lee and K. J. Bathe [A]). The first colµmn in Table 5.1 gives the 
terms in the Pascal triangle when the element is undistorted or is subjected to an aspect ratio 
or parallelogram distortion only. The terms below the dashed line are present only when the 
element is undistorted, or subjected only to an aspect ratio distortion, and also unrotated. 
Table 5.1 in particular shows that a general angular distortion significantly affects the 
predictive capability of 8- and 12-node elements; i.e., with such distortions the elements can 
represent only linear displacement variations in x and y exactly, whereas the 9- and 16-node 
elements can in distorted form still represent the parabolic and cubic displacement fields 
exactly. 

On the other hand, curved edge distortions reduce the order of displacement polyno­
mials that can be represented exactly for all the elements considered in Table 5.1, and 
indeed with such distortions only the biquartic 25-node element can still represent the 
parabolic displacement field exactly. 

While the information given in Table 5.1 shows clearly that the Lagrangian elements 
are preferable to the 8- and 12-node elements in terms of predictive capability, of course, 
we also need to recall that the Lagrangian elements are computationally slightly more 
expensive, and for fine meshes the order of convergence is identical [although the constant 
c in (5.53) is different]. 

We demonstrate the procedure of analysis to obtain the information given in Table 5.1 
in the following example. 
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TABLE 6.1 Polynomial displacement fields in physical coordinates that can be solved exactly by 
various elements in their undistorted and distorted configurations t 

Type of 
element 

8-node 
element 

12-node 
element 

9-node 
Lagrangian 
element 

16--node 
Lagrangian 
element 

25-node 
Lagrangian 
element 

Fields for undistorted 
configuration, aspect ratio 

and/or parallelogram 
distortions 

Additional fields if also 
unrotated 

x y 
xz xy yz 

x2y xy2 

1 
x y 

xz xy yz 
x3 x2y xyz y3 
---------x3y xy3 

x y 
x2 xy y2 

x2y xyz 
x2y2 

1 
x y 

x2 xy y2 
xl x2y xyl yl 
--- ----
xly x2y2 xy3 

xly2 x2y3 
x3y3 

1 
x y 

x2 xy y2 
x; xly xyz y3 

x4 x3y xzy2 xy3 y4 

x4y x3y2 x2y3 xy4 
x4y2 xly3 x2y4 

x4y3 x3y4 
x4y4 

t Two-dimensional quadrilateral elements are considered. 

Angular 
distortion 

x y 

x y 

x y 
x2 xy y2 

x y 
x2 xy y2 

xl xzy xyz yl 

x y 
xz xy y2 

xl x2y xyz yl 
x4 xly x2y2 xy3 y4 

Quadratic 
curved-edge 

distortion 

x y 

x y 

x y 

x y 

x y 
xz xy yz 

EXAMPLE 5.21: Consider the general angularly distorted eight-node element in Fig. E5.21. 
Evaluate the Pascal triangle terms in x, y for this element. 

The physical coordinate variations are obtained by using the interpolation functions in 
Fig. 5.4, which give for this element with its midside nodes placed halfway between the corner 

nodes, x = '}'1 + "(2r + "(3S + '}'4rs (a) 

y = 81 + 6,.r + 5:!s + 84 rs (b) 



386 Formulation and Calculation of lsoparametric Finite Element Matrices Chap.5 

x 
Figure ES.21 Eight-node isoparametric 
element, with angular distortion 

with ')'1, ••• , ')'4 and B,, ... , 84 constants. We use (a) and (b) to identify which x and y terms 
are contained in the displacement interpolations 

where the h; are again those in Fig. 5.4. 

8 

V = ~ hiVi 
i=I 

(c) 

(d) 

Consider the u-displacement interpolation. The constant and x and y terms in (a) and (b) 
are clearly contained in (c) because (c) interpolates u in terms of the functions (1, r, s, r\ rs, s2, 

r2s, rs 2
) multiplied by constants. We discussed this fact earlier when considering the require­

ments for convergence. 
However, if we next consider the term x2, we notice that the term r2s2 [obtained by 

squaring the right-hand side of (a)] is not present in (c). Similarly, the terms xy, y2, x2y, and xy 2 

are not present in the displacement interpolation (c). 
The analysis for the v-displacement interpolation is of course identical. Hence, when an 

eight-node isoparametric element is subjected to a general angular distortion, the predictive 
capability is diminished in that quadratic displacement variations in x and y can no longer be 
represented exactly (see Table 5.1 ). 

This analysis also shows that the quadratic displacement variations in x and y are retained 
when the nine-node displacement-based element is subjected to the same angular distortions. 
These conclusions explain the results shown in Fig. 5.16. 

5.3.4 Element Matrices in Global Coordinate System 

So far we have considered the calculation of isoparametric element matrices that corre­
spond to local element degrees of freedom. In the evaluation we used local element coordi­
nates x, y, and z, whichever were applicable, and local element degrees of freedom u;, vi, and 
w;. However, we may note that for the two-dimensional element considered in Examples 5.5 
to 5.7 the element matrices could have been evaluated using the global coordinate variables 
X and Y, and the global nodal point displacements U; and ~. Indeed, in the calculations 
presented, the x and y local coordinates and u and v local displacement components simply 
needed to be replaced by the X and Y global coordinates and U and V global displacement 
components, respectively. In such cases the matrices then would correspond directly to the 
global displacement components. 

In general, the calculation of the element matrices should be carried out in the global 
coordinate system, using global displacement components if the number of natural coordi­
nate variables is equal to the number of global variables. Typical examples are two­
dimensional elements defined in a global plane and the three-dimensional element in 
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Fig. 5.5. In these cases the Jacobian operator in (5.24) is a square matrix, which can be 
inverted as required in (5.25), and the element matrices correspond directly to the global 
displacement components. 

In cases where the order of the global coordinate system is higher than the order of the 
natural coordinate system, it is usually most expedient to calculate first the element matrices 
in the local coordinate system and corresponding to local displacement components. After­
ward, the matrices must be transformed in the usual manner to the global displacement 
system. Examples are the truss element or the plane stress element when they are oriented 
arbitrarily in three-dimensional space. However, alternatively, we may include the transfor­
mation to the global displacement components directly in the formulation. This is accom­
plished by introducing a transformation that expresses in the displacement interpolation the 
local nodal point displacements in terms of the global components. 

EXAMPLE 5.22: Evaluate the element stiffness matrix of the truss element in Fig. E5.22 using 
directly global nodal point displacements. 

Y, v 

Node2 

Figure ES.22 Truss element in global coordinate system 

The stiffness matrix of the element is given in (5.27); i.e., 

K = f BrCBdV 

where B is the strain-displacement matrix and C is the stress-strain matrix. For the truss element 
considered we have 

_ . [4(1 - r)U1 + f (l + r)U2] 
u - [cos a sm a] 1 ( )V 1 (l )V 

2 1-r ,+ 2 +r 2 

Then, using E = au/ ax, expressed in the natural coordinate system as e = (2/L) au/ ar (see 
Section 5.2). we can write the strain-displacement transformation corresponding to the displace­
ment vector ur = [U1 Vi U2 Vi] as 

1 
B = -[ cos a sin a cos a 

L [

-1 

-1 
sin a] 

zeros 
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Also, as given in Section 5.2, we have 

AL 
dV = -dr 

2 
and C=E 

Substituting the relations for B, C, and dV and evaluating the integral, we obtain 

[ 

cos2 a cos a sin a 
K = AE sin a cos a sin2 a 

L -cos2 a -cos a sin a 
-sin a cos a -sin2 a 

5.3.5 Displacement/Pressure Based Elements 
for Incompressible Media 

-cos2 a 
-sin a cos a 

cos2 a 
sin a cos a 

-cos a sin al 
-sin2 a 

cos a sin a 

sin2 a 

Chap.5 

We discussed in Section 4.4.3 the fact that pure displacement-based elements are not 
effective for the analysis of incompressible (or almost incompressible) media and introduced 
two displacement/pressure formulations. In the u/p formulation, the pressure is interpo­
lated individually for each element and can (in the almost incompressible case) be statically 
condensed out prior to the element matrix assemblage, whereas in the u/ p- c formulation 
the element pressures are defined by nodal variables which, as for the displacements, pertain 
to adjacent elements. Various effective elements of these formulations were given (see 
Tables 4.6 and 4.7) and discussed (see Section 4.5). 

As for the pure displacement-based elements, we assumed in Chapter 4 that the 
displacement and pressure interpolation matrices are constructed using the generalized 
coordinate approach. However, it is now apparent that these matrices can be obtained 
directly using the isoparametric formulation. 

In the u/p formulation, we use the same coordinate and displacement interpolations 
for an element as in the pure displacement formulation [see (5.18) and (5.19)], and we 
interpolate the pressure using 

P = Po + P1 r + P2S + p3 t + · · · (5.54) 

where p0 , p1, p2, p3, ••• are the pressure parameters to be calculated and r, s, and tare the 
isoparametric coordinates. Of course, as an alternative, we could also interpolate the 
pressure using 

P = Po + PtX + P2Y + p3 Z + · · · 

where x, y, and z are the usual Cartesian coordinates. 
In the u/p-c formulation we also use the displacement and coordinate interpolations 

as in the pure displacement formulation, and 
qp 

p = ~ h;p; (5.55) 
i=l 

where the ii,, i = l, ... , q, are the nodal point pressure interpolation functions and the /J, 
are the unknown nodal pressures. We note that the hi are different from the h, which are 
used for the displacement and coordinate interpolations. For example, for the 9 / 4-c two­
dimensional element, the displacement and coordinate interpolations are the functions 
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corresponding to the nine element nodes in Table 5.4, whereas the h; are the functions 
corresponding to the four element corner nodes. 

In practice, the isoparametric formulation of the u/p and u/p-c elements is effective 
because the generality of nonrectangular and curved elements is then also available (see 
Fig. 4.21 and T. Sussman and K. J. Bathe [A, B]). 

5.3.6 Exercises 

5.1. Use the procedure in Example 5.1 to prove that the functions in Fig. 5.3 for the four-node truss 
element are correct. 

5.2. Use the procedure in Example 5.1 to prove that the functions in Fig. 5.4 for the two-dimensional 
element are correct. 

5.3. Use the functions in Fig. 5.4 to construct the interpolation functions of the six-node element 
shown. Plot the interpolation functions in an oblique/aerial view (as in Example 5.4). 

s • 
2 5 

6 r 

3 4 

5.4. Prove that the construction of the interpolation functions in Fig. 5.5 gives the correct functions 
for the three-dimensional element. 

S.S. Determine the interpolation function h; for the element shown for use in a compatible finite 
element mesh. 

2 2 2 
a a a I" .. , ~ .. , • "I 

2 6 5 1 
- -

,7 

3 4 

2 
3 
2 
3 
2 
3 

5.6. In the computation of isoparametric element matrices, the integration is performed over the 
natural coordinates r, s, t, which requires the transformation (5.28). Derive this transformation 
using the elementary volume dV = (r dr) X (s ds) • (t dt) shown. 
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' ', 
' ' ' dV = (r dr) x (s ds) • (t dt) s, t constant 

Here the vectors r, s, tare given by 

iJx iJx iJx -
iJr iJs iJt 

r= ay . s= iJy . 
t= 

ay 
f:Jr ' as. at 
oz oz 
or as iJt 

5.7. Evaluate the Jacobian matrices for the following four-node elements. 

6 

y 0} i-! Element 1 Element2 Element3 

Chap.5 

Show explicitly that the Jacobian matrices of elements 2 and 3 contain a rotation matrix 
representing a 30-degree rotation. 

S.8. Calculate the Jacobian matrix of the element shown for all r, s. Identify the values of r, s for 
which the Jacobian matrix is singular. 

y 

s 2 ____ _... ___ 

r 
3 (II;.. ___ _.. 4 

(3, 2) (9, 2) 3.-----.4 

x 
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5.9. Evaluate the Jacobian matrices J for the following four-node elements. 

y 

C]
(8,6) 

(3, 5) 

(3, 2) (8,2) 

Element 1 

x 

y 
(1 + 5.,fi Ii + 2{3) 

2 2 

Element2 

(3 + 5../a Ii) 
2 2 

x 
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Show how the Jacobian matrix J of element 2 can be obtained by applying a rotation 
matrix to the Jacobian matrix J of element 1. Give this rotation matrix. 

S.10. Consider the isoparametric elements given by 
(a) Case 1: 

8 

x = L h,x,; Xi = 12, X2 = 4, X3 4, X4 = 12, Xs = 9, X6 5, X1 = 8, Xs = 11 
/=I 

8 

y ~ h,y,; Yt = 12, Y2 = 8, Yl = 2, Y4 = 2, Ys 8, Y6 5, Y1 1, Ys 7 
i=I 

(b) Case 2: 
6 

x = ~ hfx,; X1 = 8, X2 = 2, X3 = 1, X4 = 9, Xs = 5, X6 = 5 
i=l 

6 

Y = ~ hf y;; Yi = 10, Y2 = 8, y3 = 3, Y4 = l, Ys = 9, Y6 = 2 
l=l 

Draw the elements accurately on graph paper and show the physical locations of the lines r = ! , 
r = - ! , s = } , and s = - } for each case. (You may also write a small program to perform this 
task.) 

5.11. Consider the isoparametric finite elements shown. Sketch the following for each element. 
(a) The lines, s as the variable and constant r = - j, - } , 0, i, i. 
(b) The lines, r as the variable and constant s = - i , - i , 0, i , i . 
(c) The determinant of the Jacobian over element 1 (in an oblique aerial view). 

y 

t 
v, 
, u, 

(3, 4) ;.----?"/;:-:· 
3L( 
(2, 2) (4, 2) 

Element 1 

y 

x 

~(6,6) 

3~ 4 
(2, 2) (6, 2) 

Element2 

x 
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S.12. Prove that for any parallelogram-shaped isoparametric element the Jacobian determinant is 
constant. Also, prove that the Jacobian determinant always varies with r and/or s whenever the 
element is not square, rectangular, or parallelogram-shaped. 

S.13. Consider the isoparametric element shown. Calculate the coordinates x, y of any point in the 
element as a function of r, s and establish the Jacobian matrix. 

4 

y 

is 
2 -----...----... 

16 
I 

0.5 I 
J__i! __ 

,,,,.,,,,. I - .... , 8 

: > 

2 
II I" 

2 
x 

S.14. Calculate the nodal point forces corresponding to the surface loading on the axisymmetric 
element shown (consider 1 radian). 

't. 

I 3 

y t-·-2-"'-:-1---2 __ .,, 2p 

x 

5.15. Consider the five-node plane strain isoparametric element shown. 
(a) Evaluate appropriate interpolation functions h;, i 1 to S. 
(b) Evaluate the column in the strain-displacement matrix corresponding to the displacement u1 

at the point x = 2.5, y = 2.5. 

y 

4.0 

3.0 
2.5 
2.0 

1.0 2.5 4.0 x 
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5.16. Consider the isoparametric axisymmetric two-dimensional finite element shown. 
(a) Construct the Jacobian matrix J. 

393 

(b) Give an analytical expression of the column in the strain-displacement matrix B(r, s) that 
corresponds to the displacement u 1, 

Axis of 
revolution 

I 
(-3, 3) 

7 

y 

5.17. The eight-node isoparametric element shown has all its nodal point displacements constrained to 
zero except for u,. The element is subjected to a concentrated load Pinto u,. 
(a) Calculate and sketch the displacements corresponding to P. 
(b) Sketch all element stresses corresponding to the deformed configuration. Use an 

oblique/aerial view for your sketches. 

s 

.-~~~.----~-.--- ........... 
U1 p 

r 

4 

Plane stress condition 
(unit thickness) 
Poisson's ratio v =- 0.25 
Young's modulus E 

5.18. The eight-node element assemblage shown is used in a finite element analysis. Calculate the 
diagonal elements of the stiffness matrix and consistent mass matrix corresponding to the degree 
of freedom U,oo. 

All elements of equal size 
Young's modulus E 
Poisson's ratio v = 0.3 
Plane stress analysis, thickness = 0.5 
Mass density p 
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5.19. The problem in Example 5.13 is modeled by two five-node plane stress elements and one 
three-node bar element: 

Same data as in Example 6. 13 

(a) Establish in detail all matrices used in the formulation of the governing equilibrium equa­
tions but do not perform any integrations. 

(b) Assume that you have evaluated the unknown nodal point displacements. Present graphi­
cally in an oblique/aerial view all displacements and stresses in the elements. 

5.20. The 20-node brick element shown is loaded by a concentrated load at the location indicated. 
Calculate the consistent nodal point loads. 

z t y 10 

r, 10 

7 

19 14 / .,• 
,,," 

,/ 

,,."" ,,. 
,; 

,; 

,,," 15 

11 

,../ 10 

20 

12 

17 

9 

All dimensions in 
centimeters 

5.21. The element in Exercise 5.20 is to be used in dynamic analysis. Construct a reasonable lumped 
mass matrix of the element; use p = 7.8 X 10-3 kg/cm3• 

5.22. The 12-node three-dimensional element shown is loaded with the pressure loading indicated. 
Calculate the nodal point consistent load vector for nodes 1, 2, 7, and 8. 
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Po 

; 

9 

,' ,' 

,/' 
/111 

6cm 

10 

Pressure loading varies linearly 
with y and is constant in x 
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5.23. Evaluate the Jacobian matrix J of the following element as a function of r, s and plot det J "over" 
the element (in our oblique/aerial view). 

3/2 1/2 
1· .. 1°1 
2 5 1 

2 6 

y 
x 

-
3 7 4 3 7 4 

I• 
1 

~1- •I 

S.24. Plot, for node 9, the displacement interpolation functions and their x-derivatives for the nine-node 
element and the assemblage of two six-node triangles (formed using the interpolation functions 
in Fig. 5.11). 

y ID ItSJ t L t. .1 I, , I 
~ 4 4 

x 

S.25. Prove that the interpolation functions in (5.36), with Ah defined in (5.37), define the same 
displacement assumptions as the functions in Fig. 5.11 (note that the origins of the coordinates 
used in the two formulations are different). 
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5.26. Collapse a 20-node brick element into a spatially isotropic 10-node tetrahedron (use the collaps­
ing of sides in Fig. ES.16). Determine the correction that must be applied to the interpolation 
function h16 of the brick element in order to obtain the displacement assumption hr, of the 
tetrahedron (given in Fig. 5.13). 

5.27. Consider the six-node isoparametric plane strain finite element shown. 

y 
s 

3 

2 

31 
I 

61 
I 

41 
I 

l I 1 
I I I 
I I I 
I I I 

1.5 2 x 

(a) Construct the interpolation functions, h;(r, s), i = 1, ... , 6, of the element. 
(b) Prove in detail that this finite element does (or does not) satisfy all convergence requirements 

when used in a compatible finite element assemblage. 
5.28. Consider a general isoparametric four-node element used in an assemblage of elements as shown. 

Either plane strain or plane stress condition 

(a) Prove that the nodal point forces defined as 

F(m) = I. n<m)T .,.<m) dv<m> 
y(m) 

are in equilibrium for element m, where T(m) = CB(m)U has been calculated. 
(b) Show that the sum of the nodal point forces at each node is in equilibrium with the applied 

external loads R; (including the reactions). (Hint: Refer to Section 4.2.1, Fig. 4.2.) 
5.29. Consider Table 5.1 and the case of angular distortion. Prove that the terms listed for the 12- and 

16-node elements are indeed correct. 
5.30. Consider Table 5.1 and the case of curved edge distortion. Prove that the terms listed in the 

column for the 8-, 9-, 12-, and 16-node elements are correct. 
5.31. Consider the 4/1 isoparametric u/p element shown. Construct all matrices for the evaluation of 

the stiffness matrix of the element but do not perform any integrations. 
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Plane strain 
condition 

Bulk modulus K 
Shear modulus G 

5.4 FORMULATION OF STRUCTURAL ELEMENTS 

397 

The concepts of geometry and displacement interpolations that have been employed in the 
formulation of two- and three-dimensional continuum elements can also be employed in the 
evaluation of beam, plate, and shell structural element matrices. However, whereas in the 
formulation of the continuum elements the displacements u, v, w (whichever are applicable) 
are interpolated in terms of nodal point displacements of the same kind, in the formulation 
of structural elements, the displacements u, v, and w are interpolated in terms of midsurface 
displacements and rotations. We will show that this procedure corresponds in essence to a 
continuum isoparametric element formulation with displacement constraints. In addition, 
there is of course the major assumption that the stress normal to the midsurface is zero. The 
structural elements are for these reasons appropriately called degenerate isoparametric 
elements, but frequently we still refer to them simply as isoparametric elements. 

Considering the formulation of structural elements, we have already discussed briefly 
in Section 4.2.3 how beam, plate, and shell elements can be formulated using the Bernoulli 
beam and Kirchhoff plate theory, in which shear deformations are neglected. Using the 
Kirchhoff theory it is difficult to satisfy interelement continuity on displacements and edge 
rotations because the plate (or shell) rotations are calculated from the transverse displace­
ments. Furthermore, using an assemblage of flat elements to represent a shell structure, a 
relatively large number of elements may be required in order to represent the shell geometry 
to sufficient accuracy. 

Our objective in this section is to discuss an alternative approach to formulating beam, 
plate, and shell elements. The basis of this method is a theory that includes the effects of 
shear deformations. In this theory the displacements and rotations of the midsurface nor­
mals are independent variables, and the interelement continuity conditions on these quan­
tities can be satisfied directly, as in the analysis of continua. In addition, if the concepts of 
isoparametric interpolation are employed, the geometry of curved shell surfaces is interpo­
lated and can be represented to a high degree of accuracy. In the following sections we 
discuss first the formulation of beam and axisymmetric shell elements, where we can 
demonstrate in detail the basic principles used, and we then present the formulation of 
general plate and shell elements. 
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Neutral 
axis 

Beam section 

Deformation of cross section 

(a) Beam deformations excluding shear effect 

Neutral 

Beam section 

Deformation of cross section 

(b) Beam deformations including shear effect 

x 

Boundary conditions between beam 
elements 

wl •WI . dwl -~1 ' dx dx 
x-0 x+O x-0 x+O 

Element2 

..... 
x 

Boundary conditions between beam 
elements 

Figure 5.18 Beam deformation assumptions 
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5.4.1 Beam and Axisymmetric Shell Elements 

Let us discuss first some basic assumptions pertaining to the formulation of beam elements. 
The basic assumption in beam bending analysis excluding shear deformations is that a 
normal to the midsurface (neutral axis) of the beam remains straight during deformation and 
that its angular rotation is equal to the slope of the beam midsurface. This kinematic 
assumption, illustrated in Fig. 5.18(a), corresponds to the Bernoulli beam theory and leads 
to the well-known beam-bending governing differential equation in which the transverse 
displacement w is the only variable (see Example 3.20). Therefore, using beam elements 
formulated with this theory, displacement countinuity between elements requires that wand 
dw/dx be continuous. 

Considering now beam bending analysis with the effect of shear deformations, we 
retain the assumption that a plane section orginally normal to the neutral axis remains 
plane, but because of shear deformations this section does not remain normal to the neutral 
axis. As illustrated in Fig. 5.18(b), the total rotation of the plane originally normal to the 
neutral axis of the beam is given by the rotation of the tangent to the neutral axis and the 
shear deformation, 

dw 
/3=--'Y 

dx 
{5.56) 

where y is a constant shearing strain across the section. This kinematic assumption corre­
sponds to Timoshenko beam theory (see S. H. Crandall, N. C. Dahl, and T. J. Lardner [A]). 
Since the actual shearing stress and strain vary over the section, the shearing strain 'Y in 
(5.56) is an equivalent constant strain on a corresponding shear area As, 

v 
'T = -· A/ 

k = As 
A 

(5.57) 

where V is the shear force at the section being considered. Different assumptions may be 
used to evaluate a reasonable factor k (see S. Timoshenko and J. N. Goodier [A] and 
K. Washizu [B]). One simple procedure is to evaluate the shear correction factor using the 
condition that when acting on As, the constant shear stress in (5.57} must yield the same 
shear strain energy as the actual shearing stress (evaluated from beam theory) acting on the 
actual cross-sectional area A of the beam. Consider the following example. 

EXAMPLE 5.23: Evaluate the shear correction factor k for a beam of rectangular cross section, 
width b, and depth h. 

The shear strain energy 61! of the beam per unit length is 

61!-J, 1 2 
- A 2G 'Ta dA (a) 

where Ta is the actual shear stress, G is the shear modulus, and A is the cross-sectional area, 
A= bh. 

In our finite element model, by assumption, the shear strain is constant over the cross­
sectional area of the beam [ see ( 5 .56)]. Since in reality the shear strain varies over the beam cross 
section, we want to find an equivalent beam cross-sectional area As for our finite element model. 
This equivalency will be based on equating shear strain energies. 
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Hence using au, given in (a), with the actual shear stress distribution, we can calculate A, 
from 

L 2~ Ta
2 

dA = L 2~ (:J dAs 

where V is the total shearing force at the section, 

V = L Ta dA 

If we use k = As/A, we obtain from (b), 

y2 
k=----

AfA T/ dA 

(b) 

(c) 

We now use (b) and (c) for the rectangular cross~section beam. Elementary beam theory gives 
(see S. H. Crandall, N. C. Dahl, and T. J. Lardner [A]) 

= ~ ~ [(h/2)2 - y2] 
Ta 2 A (h/2)2 

which gives k = i . 

The finite element formulation of a beam element with the assumption in (5.56) is 
obtained using the basic virtual work expressions in (4.19) to (4.22). In the following we 
consider t1rst, tor illustrative purposes, the specific formulation of the beam element ma­
trices corresponding to the simple element in Fig. 5 .19, and we discuss afterward the 
formulation of more general three-dimensional beam elements, and the formulation of 
axisymmetric shell elements. 

Two-Dimensional Straight Beam Elements 

Figure 5.19 shows the two-dimensional rectangular cross-section beam considered. Using 
the general expression of the principle of virtual work with the assumptions discussed above 
we have (see Exercise 5.32) 

El I: (:)('!) dx + GAk I: e: -/3 )(!~ - /3) dx = I: pw dx + I: m/3 dx (5.58) 

where p and m are the transverse and moment loadings per unit length. Using now the 
interpolations 

q 

w = Lh;w,; (5.59) 
i=l 

where q is equal to the number of nodes used and the h; are the one-dimensional interpola­
tion functions listed in Fig. 5.3, we can directly employ the concepts of the isoparametric 
formulations discussed in Section 5.3 to establish all relevant element matrices. Let 

w = Hwu; 

aw 
8 

,. 
-= u· ax w ' 

/3 = H13u 
a{3 ,. 
- = B13u ax 

(5.60) 
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~m 

- -Hill1 <:-=te-t- --
I~ L ~ I 

{a) Beam with applied loading 
E = Young's modulus; G = shear modulus; 

5 bh3 
k = - · A= hb· / = -6 , ' 12 

r 

c 

(b} 2-, 3·, and 4-node models; 9; = /3;, i = 1, ... , q 
(Interpolation functions are given in Fig. 5.3) 

where "T - [ U - Wt ••• Wq 

Hw =[hi ... hq 

H,a = [O · · · 0 

and -f1h1 Bw= J -ar 
. . . 

B.a = r 1[0 ... 

where J = ax/or; then we have for a single element, 

Figure S.19 Formulation of 
two·dimensional beam element 

61 •.• 6q] 

0 ... O] 

h1 '· 'hq] 

dhq 
0 o] ... 

or 

0 
oh1 ohq] 
or or 

K = EI f 
I 

B'3B13 det J dr + GAk f 
1 

(Bw - H13)T(Bw - H,a) det J dr 

fl i-1 R = H!p det J dr + Him det J dr 
-1 I 
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(5.61) 

(5.62) 

(5.63) 
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Also, in dynamic analysis the mass matrix can be calculated using the d' Alembert principle 
[see (4.23)]; hence, 

J1 [H ]T [pbh O ][H ] 
M = _ 1 H: O p:~3 

H: det J dr (5.64) 

In these evaluations we are using the natural coordinate system of the beam because this is 
effective in the formulation of more general beam, plate, and shell elements. However, 
when considering a straight beam of constant cross section, the integrals can also be 
evaluated efficiently without using the natural coordinate system, as demonstrated in the 
following example. 

EXAMPLE 5.24: Evaluate the detailed expressions for calculation of the stiffness matrix and 
the load vector of the three-node beam element shown in Fig. ES.24. 

1 • 
2L/3 

• 1 • L~l 
yt 

t~:f { z$1 •x l2 ~} 
~ 

r--L/2 -1 • L/2---, 

~1 rt)~ dj· 
1 3 2 

Figure E5.24 Three-node beam element 

The interpolation functions to be used are listed in Fig. 5.3. These functions are given in 
terms of r and yield 3 

X = ~hiXi 
i"'I 

Using X1 = 0, x2 = L, X3 = L/2, we obtain 

L 
x = 2(1 + r) 

Hence, the interpolation functions in terms of x are 

h, = 2x
2 

_ 3x + 1 
L2 L 

2x2 x 
h2=- -

L2 L 

4x 4x2 

h3 = -
L2 L 
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Using the notation ( )' == iJ/iJx it follows that 

3 
h

, _ 4x ,--
L2 -

L 

hi= 4x - !. 
L2 L 

hj = i - Sx 
L L 2 

Hence, with the degrees of freedom ordered as in (5.61), we have 

0 
0 

Eh3 li O 
K [O O O h'1 h21 h31

] dx = 12 0 hi 
hi 
hj 

ht 
hi 
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+ SGh (L h; [hf hi hj -hi -h2 -h3] dx 
6 Jo -h1 

-h2 
-h3 

and R7 
- P[ - ! i f O O O] 

The element in Fig. 5.19 is a pure displacement-based element (assuming exact inte­
gration of all integrals) and can be employed provided three or four nodes are used (and the 
interior nodes are located at the midpoint and third-points, respectively). However, if the 
two-node element is employed or the interior nodes of the three- and four-node elements 
are not located at the midpoint and third-points, respectively, the use of the element cannot 
be recommended because the shearing deformations are not represented to sufficient accu­
racy. This deficiency is particularly pronounced when the element is thin. 

In order to obtain some insight into the behavior of these elements when the beam 
becomes thin, we recall that the principle of virtual work is equivalent to the stationarity 
of the total potential (see Example 4.4). For the beam formulation the total potential is 
given by 

II = - - dx + - ~ -- f3 dx - pw dx -- m/3 dx EI ll (d/3)2 GAk lL (d )2 lL lL 
2 o dx 2 o dx o o 

(5.65) 

where the first two integrals represent, respectively, the bending and shearing strain energies 
and the last two integrals represent the potential of the loads. 

Let us consider the total potential TI 

- lL (df3)2 
GAk lL (dw )2 II= - dx+- --{3 dx 

o dx EI O dx 
(5.66) 
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which is obtained by neglecting the load contributions in (5.65) and dividing by !EI. The 
relation in (5.66) shows the relative importance of the bending and shearing contributions 
to the stiffness matrix of an element, where we note that the factor GAk/El in the shearing 
term can be very large when a thin element is considered. This factor can be interpreted as 
a penalty number (see Section 3.4.1); i.e., we can write 

fl f(:)' dx + a f(!:- ~)' dx; 
GAk 

a=-
EI 

(5.67) 

where a-+ oo ash-+ 0. However, this means that as the beam becomes thin, the constraint 
of zero shear deformations (i.e., dw/dx = f3 with y = 0) will be approached. 

This argument holds for the actual continuous model which is governed by the station­
arity condition of fl. 

Considering now the finite element representation, it is important that the finite 
element displacement assumptions on f3 and w admit that for large values of a the shearing 

0.32 

§ 0.24 
c 
0 

·y 0.16 

i t 0.08 

0 

n equally spaced elements 

L· 10m 
Square cross section; height • 0.1 m 
2~node beam elements (full integration) 
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Finite element solution 

I 
I 
I 
I 
I 
I 
I 
I 
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I 
I 
I 
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Number of elements 

0.3 

§ 
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Finite element solution 
y 
I 
"t, 0.1 
0. 
i= 

10 20 30 
Number of elements 

Figure 5.20 Solution of cantilever 
beam problem; tip deflection as a number 
of elements used, showing locking 
of elements 
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deformations can be small throughout the domain of the element. If by virtue of the 
assumptions used on w and {3 the shearing deformations cannot be small-and indeed 
zero-everywhere, then an erroneous shear strain energy (which can be large compared 
with the bending energy) is included in the analysis. This error results into much smaller 
displacements than the exact values when the beam structure analyzed is thin. Hence, in 
such cases, the finite element models are much too stiff. 

This phenomenon is observed when the two-node beam element in Fig. 5.19 is used, 
which therefore should not be employed in the analysis of thin beam structures, and the 
conclusion is also applicable to the pure displacement-based low-order plate and shell 
elements discussed in Section 5.4.2. The very stiff behavior exhibited by the thin elements 
has been referred to as element shear locking. Figure 5.20 shows an example of locking 
using the two-node displacement-based element. We study the phenomenon of shear locking 
in the following example (see also Section 4.5.7). 

EXAMPLE 5.25: Consider a two-node isoparametric beam element modeling a cantilever 
beam that is subjected to only a moment end load (see Fig. E5.25). Determine what values of th, 
w2 would be obtained assuming that the shear strain is zero. 

D} 
~ r-

b = ,.o 

o, ~------+----d) 92 , __ , ~ 
r= +1 

Figure ES.25 Two-node element representing a cantilever beam 

The interpolations for wand {3, for the given data, are 

Hence, the shearing strain is 

f3 = ~th 
2 

1 + r 
w = -

2
-w2 

')' = W2 _ ~th 
L 2 

For an applied moment only, the shearing strain is to be zero. Imposing this condition gives 

0 = ? -- 1 ; r th (a) 

However, for this expression to be zero all along the beam (i.e., for any value -1 s r s + 1), 
we clearly must have w2 = th = 0. Hence, a zero shear strain in the beam can be reached only 
when there are no deformations! 
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Similarly, if we enforce (a) to hold at the two Gauss points r = ± 1/\13, (i.e., if we use 
two-point Gauss integration), we obtain the two equations, 

[
l -l + ~/\131 [W2] = [OJ 
}_ _ l - 1/\13 (Ji O 
L 2 

Since the coefficient matrix is nonsingular, the only solution is w2 = (Ji = 0. This is of course 
the result obtained before, because setting the linearly varying shear strain equal to zero at two 
points means imposing a zero shear strain all along the element. 

However, we can now also use (a) to investigate what happens when we enforce the shear 
strain to be zero only at the midpoint of the beam (i. e., at r = 0). In this case, (a) gives the 
relation 

(b) 

Hence, if we were to assume a constant shear strain of value 

W2 (Ji 
y=---

L 2 

a more attractive element might be obtained. We actually used this assumption in Example 4.30. 

Various procedures may be proposed to modify this pure displacement-based beam 
element formulation-and the formulation of pure displacement-based isoparametric plate 
bending elements-in order to arrive at efficient nonlock:ing elements. 

The key point of any such formulation is that the resulting element should be reliable 
and efficient; this means in particular that the element stiffness matrix must not contain any 
spurious zero energy mode and that the element should have a high predictive capability 
under general geometric and loading conditions. These requirements are considerably more 
easy to satisfy with beam elements than with general plate and shell elements. 

An effective beam element is obtained by using a mixed interpolation of displace­
ments and transverse shear strains. This mixed interpolation is an application of the more 
general procedure employed in the formulation of plate bending and shell elements (see 
Section 5.4.2). 

The discussion in Example 5.25 suggests that to satisfy the possibility of a zero 
transverse shear strain in the element, we may assume for an element with q nodes the 
interpolations (see also Example 4.30) 

; .. , (5.68) 
w = ± hiw;I 

q 

/3 = L h;(I; 
i=I 

q-1 

'Y = ~ ht1l8! (5.69) 
j,;,) 

Here the h; are the displacement and section rotation interpolation functions for q nodes and 
the M are the interpolation functions for the transverse shear strains. These functions are 
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associated with the (q - 1) discrete values 118:, where 118: is the shear strain at the Gauss 
point i directly obtained from the displacement/section rotation interpolations (i.e., by 
displacement interpolation); hence, 

Im (dw )I i' = --/3 
a; dx a1 

(5.70) 

Figure 5.21 shows the shear strain interpolations used for the two-, three-, and four-node 
beam elements. These mixed interpolated beam elements are very reliable in that they do 
not lock, show excellent convergence behavior, and of course do not contain any spurious 
zero energy mode. For the solution of the problem in Fig. 5.20 only a single element needs 
to be employed to obtain the exact tip displacement and rotation. We can easily prove this 
result for the two-node element by continuing the analysis presented in Example 5.25, and 
the three- and four-node elements contain the interpolations of the two-node element and 
must therefore also give the exact solution. Hence, there is a drastic improvement in element 
behavior resulting from the use of mixed interpolation. 

r 

l I 

1 
r 

2-node element, constant r; G1 corresponds tor• 0 

r 

r 

3-node element, linearly varying r: G1 and Ga correspond to r • ± {i 

-~ +~ 

4-node element, parabolically varying y; 

G1, G2, and Gs correspond to r = ±H and r • 0 

Figure 5.21 Shear strain interpolations for mixed interpolated beam elements 
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In addition, there is an attractive computational feature: the stiffness matrices of these 
elements can be evaluated efficiently by simply integrating the displacement-based model 
with one-point Gauss integration for the two-node element, two-point Gauss integration for 
the three-node element, and three-point Gauss integration for the four-node element. 
Namely, using one-point integration in the evaluation of the two-node element stiffness 
matrix, the transverse shear strain is assumed to be constant, and the contribution from the 
bending deformation is still evaluated exactly. A similar argument holds for the three- and 
four-node elements. This computational approach to evaluating the stiffness matrices of the 
elements may be called "reduced integration" of the displacement-based element but in fact 
is actually full integration of the mixed interpolated element. A mathematical analysis of the 
elements is presented in Section 4.5.7. 

General Curved Beam Elements 

In the preceding discussion we assumed that the elements considered were straight; hence 
the formulation was based on equation (5.58). To arrive at a general three-dimensional 
curved beam element formulation, we proceed in a similar way but now need to interpolate 
the curved geometry and corresponding beam displacements. With these interpolations a 
pure displacement-based element is derived that, as for the straight elements, is very stiff 
and not useful. In the case of straight beam elements only spurious shear strains are 
generated (always for the two-node element, and for the three- and four-node elements 
when the interior nodes are not at their natural positions; see Exercise 5.34), but for curved 
elem.ents also spurious membrane strains are obtained. Hence, a curved element also 
displays membrane locking (see, for example, H. Stolarski and T. Belytschko [A]). 

Efficient general beam elements are obtained by the mixed interpolation already 
introduced. However, now, in the case of general three-dimensional action, the transverse 
shear strains and the bending and membrane strains are interpolated using the functions in 
Fig. 5 .21. These strain interpolations are tied to the nodal point displacements and rota­
tions by evaluating the displacement-based strains and equating them to the assumed strains 
at the Gauss integration points. 

It follows that the mixed interpolated element stiffness matrices can be numerically 
obtained by evaluating the displacement-based element matrices with Gauss point integra­
tion at the points given in Fig. 5.21. 

Consider the three-dimensional beam of rectangular cross section in Fig. 5.22, and let 
us assume first that an accurate representation of the torsional rigidity is not required. 

The basic kinematic assumption in the formulation of the element is the same as that 
employed in the formulation of the two-dimensional element in Fig. 5 .19: namely that plane 
sections originally normal to the centerline axis remain plane and undistorted under defor­
mation but not necessarily normal to this axis. This kinematic assumption does not allow 
for warping effects in torsion (which we can introduce by additional displacement functions; 
see Exercise 5 .37). 

Using the natural coordinates r, s, t, the Cartesian coordinates of a point in the element 
with q nodal points are then, before and after deformations, 

q q q 

e( ) "he t" tk s" Ck x , • s, t = ~ k Xk + 2 ~ akhk V,x + 2 ~ bkhk V:rx 
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z,w 

y, v 

Vectors 0v!, 0v; are normal to 
the neutral axis of the beam 
(and normal to each other) 

Figure 5.22 Three-dimensional beam element 

q q q 

e( ) ""e t"" e1c 3
"" ht" y r, s, t = """" h1c Yt + -2 """" a"-h"- V,y + -2 """" b1c "- V~y 

k=I k""I k=I 

q q q 

'( ) ""e '"" tk s"" he1c Z r, S, t = t h1c Ztc + 2 '{:.. a1ch1c V,z + 2 t b1c k Vst 

where the hk(r) are the interpolation functions summarized in Fig. 5.3 and 
I x, t y, e z = Cartesian cordinates of any point in the element 

t x,0 eYkt e Zk = Cartesian coordinates of nodal point k 

a1c, bk = cross-sectional dimensions of the beam at nodal point k 

'Vt., 'V}y, ty}z = components of unit vector 'V} in direction tat nodal point k 

409 

(5.71) 

tv!x, tv!r tv!z = components of unit vector ev! in direction s at nodal point k; we call 'V} 
and ev ! the normal vectors or director vectors at nodal point k, 

and the left superscript e denotes the configuration of the element; i.e., e = 0 denotes the 
original configuration, whereas e = 1 corresponds to the configuration in the deformed 
position. 
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We assume here that the vectors 0V!, 0v~ are normal to the neutral axis of the beam and 
are normal to each other. However, this condition can be relaxed, as is done in the shell 
element formulation (see Section 5.4.2). 

The displacement components at any point of the element are 

u(r, s, t) = 1x - 0x 

v(r, s. t) = 1y - 0y (5.72) 

w(r, s, t) = 1z - 0z 

and substituting from (5.71), we obtain 

~ t q s q 

u(r, s, t) = """ h1cu1c + -
2 
L a1ch1c v:x + -

2 
L b1ch1c V!x 

k=I k=I k=I 

(5.73) 

where (5.74) 

Finally, we express the vectors V1 and V! in terms of rotations about the Cartesian 
axes x, y, z: 

v~ = 81c x 0v~ 
V! = 01c x 0V~ 

(5.75) 

where 81c is a vector listing the nodal point rotations at nodal point k (see Fig. 5.22): 

(5.76) 

Using (5.71) to (5.76}, we have all the basic equations necessary to establish the 
displacement and strain interpolation matrices employed in evaluating the beam element 
matrices. 

The terms in the displacement interpolation matrix H are obtained by substituting 
(5.75) into (5.73). To evaluate the strain-displacement matrix, we recognize that for the 
beam the only strain components of interest are the longitudinal strain E,,,,,, and transverse 
shear strains ')'11e and 111,, where 7/, f, and ( are convected (body-attached) coordinates axes 
(see Fig. 5.22). Thus, we seek a relation of the form 

[ E"'"'] q 'Y11t = ~ B1cfi1c 
k=I 

'Y11, 

where " T - [ (Jk ()k ()k] Uk - Uk Vk W1c x y z 

and the matrices B1c, k = l, ... , q, together constitute the matrix B, 

B = [B1 . . . Bq] 

(5.77) 

(5.78) 

(5.79) 
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Following the usual procedure of isoparametric finite element formulation, we have, 
using (5.73), 

au ah1c 
[1 (g)t (g)t (g)i;} 

U1c 

i:Jr ar 
au =i 

O! 

as hk [O (g)t; (gH; <eHa 
~ 

(5.80) 
k=I 

au 
hk [O (g}1; (g)t (g)t] e: -

dt 

and the derivatives of v and ware obtained by simply substituting v and w for u. In (5.80) 
we have i = l for u, i = 2 for v, and i = 3 for w, and we employ the notation 

(g)k = ~l 0 ~~z _o~!z _:~tJ (5.81) 

-
0 V!y 0 V!x O 

(g)' = ~l o~, 

-
0 V}z 0 V},J 
0 _o~fx (5.82) 

_ov~ 0 V}x 

(g)t = s(g)t + t(g)t (5.83) 

To obtain the displacement derivatives corresponding to the coordinate axes x, y, and 
z, we employ the Jacobian transformation 

a a - = J-1 - (5.84) ax 8r 

where the Jacobian matrix J contains the derivatives of the coordinates x, y, and z with 
respect to the natural coordinates r, s, and t. Substituting from (5.80) into (5.84), we obtain 

au r• ahk (Gl)11 (G2)f, (G3),, 
Uk 

ax 11-
iJr 

O! au 
q 

r' ah1c 
ay =L 21- (G l)fi (G2)h (G3H2 {5.85) 

k=I ar o~ au r1 ah1c - JI - (Gl)13 (G2H3 (G3)'3 
iJz ar ~ 

and again, the derivatives of v and w are obtained by simply substituting v and w for u. In 
(5.85) we employ the notation 

(Gm)i, = [J;11(g)~;] aa~ + [J;2'(g)~; + J;3'(g)!,;]hk (5.86) 

Using the displacement derivatives in (5.85), we can now calculate the elements of the 
strain-displacement matrix at the element Gauss point by establishing the strain compo­
nents corresponding to the x, y, z axes and transforming these components to the local 
strains e'l)'I), 'Y'l)f, and 111,. 

The corresponding stress-strain law to be employed in the formulation is (using k as 
the shear correction factor, possibly different for different directions) 
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TABLE 5.2 Performance of isoparametric beam elements in the analysis of the problem in 
Fig. 5.23 
(a) 81inite e1ememl6ana1yuca1 at tip of beam, one threeHnode element solution 

Midnode at a = 22.5° Midnode at a = 20° 

h/R Displacement~based Mixed interpolated Displacement-based Mixed interpolated 

0.50 0.92 LOO 0.91 1.00 
0.10 0.31 l.00 0.31 1.00 
O.ot 0.004 LOO 0.005 1.00 
0.001 0.00004 1.00 0.00005 1.00 

(b) Olinite elementlOanalyucal at tip of beam, one four-node element solution 

Internal nodes at a 1 = 15°, a2 = 30° 

h/R Displacement~based Mixed interpolated 

0.50 1.00 1.00 
0.10 0.999 1.00 
0.01 0.998 1.00 
0.001 0.998 1.00 

[''"]-[£ 0 
'T-q~ - 0 Gk 
T,,, 0 0 

Internal nodes at a, = 10°, a2 = 25° 

Displacement-based 

0.97 
0.70 
0.37 
0.37 

ol'"] 0 'Y'l'lt 
Gk y11, 

Mixed interpolated 

0.997 
0.997 
0.997 
0.997 

(5.87) 

The stiffness matrix of the element is then obtained by numerical integration, using 
for the r-integration the Gauss points shown in Fig. 5.21 and for the s- and t-integrations 
either the Newton-Cotes or Gauss formulas (see Section 5.5). 

Table 5 .2 illustrates the performance of the mixed interpolated elements in the anal­
ysis of the curved cantilever in Fig. 5.23 and shows the efficiency of the elements. 

As pointed out already, this element does not include warping effects, which can be 
significant for the rectangular cross-sectional beam elements and of course for beam ele-

Figure S.23 Curved cantilever problem 
to test isoparametric beam elements 
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ments of general cross sections. Warping displacements can be introduced by adding 
appropriate displacement interpolations to those given in (5.73). If additional degrees of 
freedom are also introduced, corresponding to the warping deformations, continuity of 
warping between elements can be imposed. However, it may be sufficient to allow for "free" 
warping in each element without enforcing continuity of warping between elements. This is 
achieved by adding warping deformations to the displacement interpolations and then 
statically condensing out the intensity of these deformations (see K. J. Bathe and 
A. B. Chaudhary [A] and Exercise 5.37). 

In another application of the general curved beam formulation, the cross section is 
circular and hollow, that is, a pipe cross section is considered. In this case, ovalization and 
warping deformations can be important when the element is curved, and once again the 
displacement interpolations given in (5.73) must be amended. In this case it is important 
to impose continuity in the ovalization and warping deformations, and for this reason 
additional nodal degrees of freedom must be introduced (see K. J. Bathe and C. A. Almeida 
[A]). 

Considering the basic formulation in (5.71) to (5.87), we recognize that the element 
can be arbitrarily curved and that the cross-sectional dimensions can change along its axis. 
The beam width and height and the location of the element axis are interpolated along the 
element. In the given formulation, the axis of the element coincides with the element 
geometric midline, but this is not necessary, and more general elements can be formulated 
directly (see Exercise 5.38). 

In addition to representing a general formulation for linear analysis, this approach is 
particularly useful for the nonlinear large displacement analysis of beam structures. As 
discussed in Section 6.5.1, in such analyses initially straight beam elements become curved 
and distorted, and these deformations can be modeled accurately. 

Of course, if linear analysis is pursued and the element is straight and has a constant 
cross-sectional area, the formulation reduces to the formulation given in (5.56) to (5.70). 
We illustrate this point in the following example. 

EXAMPLE 5.26: Show that the application of the general formulation in (5.71) to (5.87) to 
the beam element in Fig. E5.24 reduces to the use of (5.58). 

For the application of the general relations in (5.71) to (5.87), we refer to Figs. ES.24 and 
5.22 and thus have 

•v,=[n 
Hence, the relations in (5.71) reduce to 

s 
Oy = -h 

2 

t Oz= -
2 

ak = 1; bk = h; k = 1, 2, 3 
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We next evaluate (5.75) to obtain (see Section 2.4) 

VHet[~ ~ ;] 
or V~ = ~e... ~e1 (a) 

and v: = de{; ; ;J 
or V! = -e:ex + O!ez (b) 

The relations in (a) and (b) correspond to the three-dimensional action of the beam. We 
allow rotations only about the z-axis, in which case 

V~ = 0; V! = -~e ... 

Furthermore, we assume that the nodal points can displace only in they direction. Hence, (5.73) 
yields the displacement assumptions 

sh 3 

u(r, s) = - 2 ~ hk0:. (c) 

(d) 

where we note that u is only a function of r, sand vis only a function of r. These relations are 
identical to the displacement assumptions used before. but with the more conventional beam 
displacement notation we identified the transverse displacement and section rotation at a nodal 
point with Wk and 8k instead of Vk and 8~. 

Now using (5.80), we obtain 

These relations could also be directly obtained by differentiating the displacements in (c) 
and (d). Since 

[
!:_ OJ J=: ( ;] 
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we obtain (e) 

and (f) 

To analyze the response of the beam in Fig E5.24 we now use the principle of virtual work (see 
(4.7)) with the appropriate strain measures: 

where 

f +I f +I [£ Q ][E ] 
-1 -I [Exx Yxy] 0 Gk ;: det J ds dr = -Pvlr=l/3 

iJu 
Exx = iJX; 

_ au 
Exx = iJx 

_ au av 
'Yxy = iJy + OX 

(g) 

Considering the relations in (e), (f), (g), and (5.58), we recognize that (g) corresponds to 
(5.58) if we use ~ == 01., and w = v. 

Transition Elements 

In the preceding discussions, we considered continuum elements and beam elements sepa­
rately. However, the very close relationship between these elements should be recognized; 
the only differences are the kinematic assumption that plane sections initially normal to the 
neutral axis remain plane and the stress assumption that stresses normal to the neutral axis 
are zero. In the beam formulation presented, the kinematic assumption was incorporated 
directly in the basic geometry and displacement interpolations and the stress assumption 
was used in the stress-strain law. Since these two assumptions are the only two basic 
differences between the beam and continuum elements, it is apparent that the structural 
element matrices can also be derived from the continuum element matrices by degenera­
tion. Furthermore, elements can be devised that act as transition elements between contin­
uum and structural elements. Consider the following example. 

EXAMPLE 5.27: Assume that the strain-displacement matrix of a four-node plane stress 
element has been derived. Show how the strain-displacement matrix of a two-node beam element 
can be constructed. 

Figure ES.27 shows the plane stress element with its degrees of freedom and the beam 
element for which we want to establish the strain-displacement matrix. Consider node 2 of the 
beam element and nodes 2 and 3 of the plane stress element. The entries in the strain­
displacement matrix of the plane stress element are 
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YL v; s Vi H 

~2 ut 

V3 ·~ .~V4 T 
t x 

!:'3 r ut _j_ 

I· L -I 
(a) Plane stress element 

s v, 

e, T 
t u,_j_ r 

I!""'--~ -L----· I 
(b) Beam element 

Figure ES.27 Derivation of beam element from plane str~ element 

uf of ur vf 
1 ! l 1 ! ! 

--(1 + s) 0 --(1 - s) 0 2L 2L 

B* = 
l l ... 0 -(1 - r) 0 --(1-r) (a) 
2t 2t 

!o r) 
1 1 

r) 
1 --{I+ s) --(1 -(1 - s) 

2t 2L 2t 2L 

Using now the beam deformation assumptions, we have the following kinematic con­
straints: 

t uf = U2 + -8i 
2 

(b) 

These constraints are now substituted to obtain from the elements of B* in (a) the elements of 
the strain-displacement matrix of the beam. Using the rows of B*, we have with (b), 

- 2~ (1 + s)uf - 2~ (1 - s)uf = - ;L (1 + s)( Uz -18i) 
- ...!._ (1 - s)(u2 + !.. 8i) (c) 

2L 2 
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1 1 1 
-(1 - r)vf - (1 - r)v* = -(1 
2t 2t 3 2t 

r)th r)vz (d) 

1 
r)u! -

2
L (1 + s)vf 

1 1 
-(1 - r)u* - -(1 - s)vf 
2t 3 2L 

1 ( t) 1 1 ( ') 1 = -(1 - r) uz - -6-i - -(1 + s)v2 - -(1 - r) u2 + 6i - -(1 - s)v2 
2t 2 2L 2t 2 2L 

{e) 

The relations on the right-hand side of (c) to (e) comprise the entries of the beam strain­
displacement matrix 

Uz Vz 6i 
i 

0 
t 

L 2Ls 

B= ... 0 0 0 
1 

0 
L 

--(1-r) 
2 

However, the first- and third-row entries are those that are also obtained using the beam 
formulation of (5.71) to (5.86). We should note that the zeros in the second row of B only express 
the fact that the strain Eyy is not included in the formulation. This strain is actually equal to - VExx 

because the stress Tyy is zero. As pointed out earlier, we would use the entries in B at r = 0. 

The formulation of a structural element using the approach discussed in Example 5.27 
is computationally inefficient and is certainly not recommended for general analysis. How­
ever, it is instructive to study this approach and recognize that the structural element 
matrices can in principle be obtained from continuum element matrices by imposing the 
appropriate static and kinematic assumptions. Moreover, this formulation directly suggests 
the construction of transition elements that can be used in an effective manner to couple 
structural and continuum elements without the use of constraint equations [see 
Fig. E5.28(a)]. To demonstrate the formulation of transition elements, we consider in the 
following example a simple transition beam element. 

EXAMPLE 5.28: Construct the displacement and strain~displacement interpolation matrices 
of the transition element shown in Fig. ES .28. 

We define the nodal point displacement vector of the element as 

(a) 

Since at r = + 1 we have plane stress element degrees of freedom, the interpolation functions 
corresponding to nodes 1 and 2 are (see Fig. 5.4) 

hi = to + r)(l + s)~ h2 = !(l + r)(l s) 

Node 3 is a beam node, and the interpolation function is (see Fig. 5.3) 

h3 = !(I - r) 
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Plane stress 
element 

(a) Beam transition element connecting beam and plane stress elements 

V1 YL V3 s 

u1T 
V2 t 

x U3 r J_ 2 

U2 

(b) Transition element 

Figure ES.28 Two-dimensional displacement-based beam transition element 

The displacements of the element are thus 

Hence, corresponding to the displacement vector in (a) we have 

H [: :. : :, : :, -th'] 

Chap.5 

The coordinate interpolation is the same as that of the four-node plane stress element: 

1 
x(r, s) == 2 (1 + r)L 

Hence, 

s 
y(r, s) = 21 

J = [! ;} J-1 [ ! ~ 
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Using (5.25), we thus obtain 

1 1 
0 

t 
2L (1 + s) 0 -(1 - s) 0 

L 2Ls 2L 
1 1 

B= 0 2t(l + r) 0 --(1 + r) 0 0 0 
2t 

1 1 1 1 
s) 

1 l 2t(l + r) 2L (1 + s) 2t(l + r) 2L (l 0 
L 

--(1 - r) 
2 

We may finally note that the last three columns of the B-matrix could also have been derived as 
described in Example 5.27. 

The isoparametric beam elements presented in this section are an alternative to the 
classical Hermitian beam elements (see Example 4.16), and we may ask how these types of 
beam elements compare in efficiency. There is no doubt that in linear analysis of straight, 
thin beams, the Hermitian elements are usually more effective, since for a cubic displace­
ment description the isoparametric beam element requires twice as many degrees of free­
dom. However, the isoparametric beam element includes the effects of shear deformations 
and has the advantages that all displacements are interpolated to the same degree (which for 
the cubic element results in a cubic axial displacement variation) and that curved geometries 
can be represented accurately. The element is therefore used efficiently in the analysis of 
stiffened shells (because the element represents in a natural way the stiffeners for the shell 
elements discussed in the next section) and as a basis of formulating more complex ele­
ments, such as pipe and transition elements. Also, the generality of the formulation with all 
displacements interpolated to the same degree of variation renders the element efficient in 
geometric nonlinear analyses (see Section 6.5.1). 

Further applications of the general beam formulation given here lie in the use for 
plane strain situations (see Exercise 5.40) and the development of axisymmetric shell 
elements. 

Axisymmetric Shell Elements 

The isoparametric beam element formulation presented above can be directly adapted to the 
analysis of axisymmetric shells. Figure 5.24 shows a typical three-node element. 

In the formulation, the kinematics of the beam element is used as if it were employed 
in two-dimensional action (i.e., for motion in the x, y plane), but the effects of the hoop 
strain and stress are also included. Hence, the strain-displacement matrix of the element is 
the matrix of the beam amended by a row corresponding to the hoop strain u / x. This 
evaluation is quite analogous to the construction of the B-matrix of the two-dimensional 
axisymmetric element when compared with the two-dimensional plane stress element. In 
that case, also only a row corresponding to the hoop strain was added to the B-matrix of 
the plane stress element in order to obtain the B-matrix for the axisymmetric element. In 
addition of course the correct stress-strain law needs to be used (allowing for the Poisson 
effect coupling between the hoop and the r-direction and for the stress to be zero in the 
s-direction), and the integration is performed corresponding to axisymmetric conditions 
over 1 radian of the structure (see Example 5.9 and Exercise 5.41). Of course, using the 
procedures in Example 5.28, transition elements for axisymmetric shell conditions can also 
be designed (see Exercise 5.42). 
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Figure 5.24 Axisymmetric shell element 

5.4.2 Plate and General Shell Elements 

The procedures we have employed in the previous section to formulate beam elements can 
also be directly used to establish effective plate and shell elements. In the following presen­
tation we first discuss the formulation of plate elements, and then we proceed to summarize 
the formulation of general shell elements. 

Plate Elements 

The plate element formulation is a special case of the general shell element formulation 
presented later and is based on the theory of plates with transverse shear deformations 
included. This theory, due to E. Reissner [B] and R. D. Mindlin [A], uses the assumption that 
particles of the plate originally on a straight line that is normal to the undeformed middle 
surface remain on a straight line during deformation, but this line is not necessarily normal 
to the deformed middle surface. With this assumption, the displacement components of a 
point of coordinates x, y, and z are, in the small displacement bending theory, 

u = -z{3x(x, y); v = -z{3y(x, y); w = w(x, y) (S.88) 

where w is the transverse displacement and f3x and {3y are the rotations of the normal to the 
undeformed middle surface in the x, z and y, z planes, respectively (see Fig. 5.25). It is 
instructive to note that in the Kirchhoff plate theory excluding shear deformations, f3x = w. x 
and {3y = w, 1 (and indeed we have selected the convention for f3x and {3y so as to have these 
Kirchhoff relations). 

Considering the plate in Fig. 5.25 the bending strains e.l'.x, Eyy, ')'xy vary linearly through 
the plate thickness and are given by the curvatures of the plate using (5.88), 

Ex.l'. 
iJf3x 
ax 

Eyy = -z 
iJ{3y 

(5.89) ay 
d~x iJ{3y 

')'xy -+-ay ax 
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/x,u 
Figure 5.25 Deformation assumptions in analysis of plate including shear deformations 

whereas the transverse shear strains are assumed to be constant through the thickness of the 
plate 

(5.90) 

We may note that each transverse shear strain component is of the form (5.56) used in the 
description of the beam deformations. The state of stress in the plate corresponds to plane 
stress conditions (i.e., Tz:z = 0). For an isotropic material, we can thus write 

'1"xx 1 v 0 
of3x 
ax 

E ~ Tyy =-z-- v 0 1 - .,,2 oy (5.91) 

0 0 
1 - v iJ/3x +~ 1"xy 

2 ay ox 

[j [~ ] Tx: E ax - f3x 

Ty, = 2(1 + v) : _ /J, 
(5.92) 

To establish the element equilibrium equations we now proceed as in the formulation 
of the two-dimensional beam element of rectangular cross section [see (5.58) to (5.64)]. 
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Considering the plate, the expression for the principle of virtual work is, with p equal to the 
transverse loading per unit of the midsurface area A, 

( I h/l [E.u Eyy Yx,l[~:J dz dA + k ( fh
12 

[%i: 'yyz]['Txz] dz dA = f wp dA (5.93) JA -h/2 JA -h/2 'Tyz JA 
Txy 

where the overbar denotes virtual quantities and k is again a constant to account for the 
actual nonuniformity of the shearing stresses (the value usually used isl; see Example 5.23). 
Substituting from (5.89) to (5.92) into (5.93), we thus obtain 

(5.94) 

where the internal bending moments and shear forces are CbK and Cs'Y, respectively, and 

afjx 

and 

K= 

ax 
afj, 
ay 

of3x + a/3, 
ay ax 

Eh 3 
[~ ; 

Cb=----
12(1 - v2) 0 0 

Ehk [1 O] 
Cs = 2(1 + v) 0 1 

(5.95) 
(5.96) 

(5.97) 

Let us note that the variational indicator corresponding to (5.93) is given by (see 
Example 4.4) 

n = _21 ( I h/2 [ Ex:t Eyy 
JA -h/2 t

l v O j l O Exx 

v ~ [Eyy ]dz dA 

0 0 2 'Yxr 

(5.98) 

+ 1 L c [-y., -y,J 2(1 ! v) [ ::] dz dA - L wp dA 

with the strains given by (5.89) and (5.90). The principle of virtual work corresponds to 
invoking Bil = 0 with respect to the transverse displacement wand section rotations f3x 
and {3y. 

We emphasize that in this theory w, f3x, and {3y are independent variables. Hence, in 
the finite element discretization using the displacement method, we need to enforce inter­
element continuity only on w, f3x, and {3y and not on any derivatives thereof, which can 
readily be achieved in the same way as in the isoparametric finite element analysis of solids. 

Let us consider the pure displacement discretization first. As in the analysis of beams, 
the pure displacement discretization will not yield efficient lower-order elements but does 
provide the basis for the mixed interpolation that we shall discuss afterward. 
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In the pure displacement discretization we use 
q q 

w L h;W;~ f3x = -L MJt 
i=I 

q 

13, = L hd,t 
(5.99) 

i"'I 

where the h; are the interpolation functions and q is the number of nodes of the element. 
With these interpolations we can now proceed in the usual way, and all concepts pertaining 
to the isoparametric finite elements discussed earlier are directly applicable. For example, 
some interpolation functions applicable to the formulation of plate elements are listed in 
Fig. 5.4, and triangular elements can be established as discussed in Section 5.3.2. Since the 
interpolation functions are given in terms of the isoparametric coordinates r, s, we can also 
directly calculate the matrices of plate elements that are curved in their plane ( to model, for 
example, a circular plate). 

We demonstrate the formulation of a simple four-node element in the following 
example. 

EXAMPLE 5.29: Derive the expressions used in the evaluation of the stiffness matrix of the 
four-node plate element shown in Fig. E5.29. 

z 

y 

x 
Figure ES.29 A four-node plate element 

The calculations are very similar to those performed in the formulation of the two­
dimensional plane stress element in Example 5.5. 

For the element in Fig. E5.29 we have (see Example 5.3) 

J [t ~] 
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and then, using the interpolation functions defined in Fig. 5.4, 

OJ f<1 + s) 

I ti + r) 

(1 + s) -(1 - s) 
(1 - s~ [w1 

-(1 + ,)J :j (I - r) -(1 - r) 

with similar expressions for the derivatives of f3x and {3y, Thus, if we use the following notation, 

K(r, s) = B,cu 

y(r, s) = B.,u 
w(r, s) = Hwii 

where U7 = [ W1 9; 9; ; W2 

B, = [~ 

0 -!(l + s) 
Ht + r) o 
Ht + s) -Hl + r) 

we have 

O Ht + r)(l + s) 

[

!(l + s) 
B.,,= 

Ht+ r) -Hl + r)(l + s) 0 

Hw = HO + r)(l + s) 0 0 

The element stiffness matrix is then 

3 f+l f+I 
K = 2 -1 -I (B~CbBIC + nic,B.,.) dr ds (a) 

and the consistent load vector is 

3 f+l f+I 
R, = -

2 
H~p dr ds 

-I -1 
(b) 

where the integrals in (a) and (b) could be evaluated in closed form but are usually evaluated 
using numerical integration {see Section 5.5). 

This pure displacement-based plate element formulation is of value only when higher­
order elements are employed. Indeed, the least order of interpolation that should be used is 
a cubic interpolation, which results in a 16-node quadrilateral element and a IO-node 
triangular element. However, even these high-order elements still do not display a good 
predictive capability, particularly when the elements are geometrically distorted and used 
for stress predictions (see, for example, M. L. Bucalem and K. J. Bathe [A]). 

As in the formulation of isoparametric beam elements, the basic difficulty is that 
spurious shear stresses are predicted with the displacement-based elements. These spurious 
shear stresses result in a strong artificial stiffening of the elements as the thickness/length 
ratio decreases. This effect of shear locking is more pronounced for a low-order element and 
when the elements are geometrically distorted because, simply, the error in the shear 
stresses is then larger. 

To arrive at efficient and reliable plate bending elements, the pure displacement-based 
formulation must be extended, and a successful approach is to use a mixed interpolation of 
transverse displacement, section rotations, and transverse shear strains. 
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We should note here that in the above discussion, we assumed that the integrals for the 
computation of the element matrices (stiffness and mass matrices and load vectors) are 
evaluated accurately; hence, throughout our discussion we assumed and shall continue to 
assume that the error in the numerical integration ( that usually is performed in practice; see 
Section 5.5) is small and certainly does not change the character of the element matrices. 
A number of authors have advocated the use of simple reduced integration to alleviate the 
shear locking problem. We discuss such techniques briefly in Section 5.5.6. 

In the following we present a family of plate bending elements that have a good 
mathematical basis and are reliable and efficient. These elements are referred to as the 
MITCn elements, where n refers to the number of element nodes and n = 4, 9, 16 for the 
quadrilateral and n = 7, 12 for the triangular elements (here MITC stands for mixed 
interpolation of tensorial components), (see K. J. Bathe, M. L. Bucalem, and F. Brezzi [A]). 
Let us consider the MITC4 element in detail and give the basic interpolations for the other 
elements in tabular form. 

An important feature of the MITC element formulation is the use of tensorial compo~ 
nents of shear strains so as to render the resulting element relatively distortion-insensitive. 
Figure 5.26 shows a generic four-node element with the coordinate systems used. 

z 

y 
s 

B D 

2 

Special 2 x 2 element 
in the x, y plane 

2 

3 x 

View of general element 

r 

A general element in the x, y plane 

Figure 5.26 Conventions used in formulation of four-node plate bending element 

To circumvent the shear locking problem, we formulate the element stiffness matrix 
by including the bending and shear effects through different interpolations. For the section 
curvatures in (5.95) we use the same interpolation as in the displacement-based method, as 
evaluated using (5.99), but we proceed differently in evaluating the transverse shear strains. 
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Consider first the MITC4 element when it is of geometry 2 x 2 (for which the x, y 
coordinates could be taken to be equal to the r, s isoparametric coordinates). For this 
element we use the interpolation (see K. J. Bathe and E. N. Dvorkin [A]) 

r'rt = HI + s)y1z + HI - s)y~ 

i's, = f (1 + r)~ + HI - r)~z 
(5.100) 

where ~u 'Y~, ~, and rs', are the (physical) shear strains at points A, B, C, and D evaluated 
by the displacement and section rotations in (5.99). Hence, 

= !(l )(W1 - W2 + 8} + 9;) !(l _ >(W4 - W3 B; + 9;) 
'Yri 2 + s 2 2 + 2 s 2 + 2 

(5.101) 
1 (l )(W1 - W4 8} + {fx) 1 (l )(W2 - W3 8i + 8;) 

'Ysz = 2 + r 2 - --2- + 2 - r 2 - --2-

With these interpolations given, all strain-displacement interpolation matrices can be di­
rectly constructed and the stiffness matrix is formulated in the standard manner. Of course, 
the same procedure can also be directly employed for any rectangular element. 

Considering next the case of a general quadrilateral four-node element, we use the 
same basic idea of interpolating the transverse shear strains, but-using the interpolation in 
(5.100)-we interpolate the covariant tensor components measured in the r, s, z coordinate 
system. In this way we are directly taking account of the element distortion (from the 2 x 2 
geometry). Proceeding in this way with the tensor shear strain components, we obtain (see 
Example 5.30) the following expressions for the 'Yx, and ')'yz shear strains: 

'Yxz = 'Yrz sin {3 - i'sz sin a 

i'yz = -'Yrz COS {3 + i'sz COS a 
(5.102) 

where a and f3 are the angles between the r and x axes and s and x axes, respectively, and 

v'(Cx + rBx)2 + (Cy + rBy)2 

i'rz = 8 det J 

{(1 + s>[Wi; W2 + X1 ~ X2(0; + O;) _Yi~ Y2(0l + O;)] 

+ (1 _ s)[W4 
2 

W3 +¥(~+{Py)_ Y4 ~ YJ({J! + Oi)]} 

V (Ax + sBx)2 + (A, + sB,)2 

r'n= 8detJ 

{(I+ ,i[w,; w, + x, ~ x,(B) + B;) _ y, ~ Y•(e! + 0:)] 

In equations ( 5 .103) we have 

[

ax ay] 
ar ar 

det J = det ax 8y 

as as 

(5.103) 

(5.104) 
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and Ax= Xi - X2 - X3 + X4 

Bx = X1 - X2 + X3 - X4 

Cx = Xi + X2 - X3 - X4 

Ay = Y1 Y2 - Y3 + Y4 

By = Yi Y2 + Y3 - Y4 

Cy = Yi + Y2 Yl Y4 

(5.105) 

We further consider the above relationships in the following example. 

EXAMPLE 5.30: Derive the transverse shear strain interpolations of the general MITC4 plate 
bending element. 

In the natural coordinate system of the plate bending element, the covariant base vectors 
are defined as 

(a) 

where x is the vector of coordinates, and ex, ey, ez are the base vectors of the Cartesian system. 
Let us recall that in the natural coordinate system, the strain tensor can be expressed using 

covariant tensor components and contravariant base vectors (see Section 2.4) 

i,j - r, s, z 

where the tilde ( --) indicates that the tensor components are measured in the natural coordinate 
system. 

To obtain the shear tensor components we now use the equivalent of (5.100), 

Er, = lO + s)E1, + &{1 - s)E~ 

Esz = lO + r)E~ + Hl - r)e! 

(b) 

(c) 

where ~z, E~, e~, and e! are the shear tensor components at points A, B, C, and D evaluated 
from the displacement interpolations. To obtain these components we use the linear terms of the 
general relation for the strain components in terms of the base vectors (see Example 2.28), 

b Eij = H'g;. i&i - Og;. OgJ] 

where the left superscript of the base vectors is equal to l for the deformed configuration and 
equal to O for the initial configuration. Substituting from (5.99) and (a), we obtain 

E1i = irn(w1 - Wz) + ~(xi - X2)(8! + 8;) - ~(Y1 - Y2)(6_! + 9;)] 

and E~ = 1 [ ~ (W4 - W3) + ~ (X4 - X3)(6~ + 8;) 1 (y4 y3)({Px + 8!)] 
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Therefore, using (b), we obtain 

_ 1 [h h h ] 
Erz; = 8(1 + s) 2(w1 - w2) + 4(x1 - x2)(0; + O;) - 4(y1 - y2)(8! + 8;) 

1 [h h + -(1 - s) -(w4 - W3) + -(x4 
8 2 4 

Next we use 

(d) 

where the E"' are the components of the strain tensor measured in the Cartesian coordinate 
system. From (d) we obtain 

'Yxz Ur,(g' • ex)(gz • eJ + 2E,z{g' • ex)(gz • e:) 

'YJ:i: = 2irzCg' • ey)(gt • ei:) + 2i,i:{g' • ey)(gz • e,) 

However (using the standard procedure described in Section 2.4 ), 

gr = ~ (sin f3ex - cos /3ey) 

g' = -v'gis (-sin aex + cos aey) 

gz = ~ei: 

where a and f3 are the angles between the r and x axes and s and x axes, respectively, and 

rr _ (Cx + rBx)2 + (C, + rB,)2 

8 - 16(det J)2 

SS _ (Ax + sBx)2 + (Ay + sBy)2 

g - 16(det J)2 

where Ax, Bx, Cx, Ay, By, and C, are defined in (5.105) and 

4 
g:i:z = h2 

Substituting into (e), the relations in (5.102) are obtained. 

(e) 

The MITC4 plate bending element is in rectangular or parallelogram geometric 
configurations identical or closely related to other four-node plate bending elements (see 
T. J. R. Hughes and T. E. Tezduyar [A] and R. H. MacNeal [A]). However, an important 
attribute of the MITC plate element is that it is a special case of a general shell element for 
linear and nonlinear analysis, see E. N. Dvorkin and K. J. Bathe [A] and K. J. Bathe and P. 
S. Lee [A]; and see for further developments and applications D.N. Kim and K. J. Bathe [A], 
T. Sussman and K. J. Bathe [D] and Z. Kazanci and K. J. Bathe (A]. 
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Some observations pertaining to the MITC4 element are the following. 

The element behaves like the two-node mixed interpolated isoparametric beam ele­
ment (discussed in the previous section) when used in the analysis of two-dimensional 
beam action. 
The element can be derived from the Hu-Washizu variational principle (see Exam­
ple 4.30). 
The element passes the patch test (for an analytical proof see K. J. Bathe and E. N. 
Dvorkin [B]). 
A mathematical convergence analysis for the transverse displacement and section 
rotations has been provided by K. J. Bathe and F. Brezzi [A] (assuming uniform 
meshes, i.e., that the element assemblage consists of square elements of sides h). 
This analysis gives the results 

(5.106) 

where 13 and w are the exact solutions, 13h and wh are the finite element solutions 
corresponding to a mesh of elements with sides h, and c1, c2 are constants independent 
of h. A convergence analysis of the transverse shear strains gave the result that the 
L 2-norm of the error is not bounded independent of the plate thickness (see F. Brezzi, 
M. Fortin, and R. Stenberg [A]). 
The essence of the results of these analytical convergence studies is also seen in 
practice for uniform and distorted meshes. The element predicts the transverse dis­
placements and bending strains quite well, but the transverse shear strain predictions 
may not be satisfactory, particularly when very thin plates are analyzed. 

A most important observation in the mathematical analysis of the MITC4 element 
was that this element, in its mathematical basis, is an analog of the 4/1 element of the u/p 
element family presented in Section 4.4.3: in the u/p formulation the displacements and 
pressure are interpolated to satisfy the constraint of (almost) incompressibility, ev = 0, 
whereas in the MITC4 element formulation the transverse displacement, section rotations 
and transverse shear strains are interpolated to satisfy the thin plate condition, 'Y = 0. This 
analogy between the incompressibility constraint in solid mechanics and the zero transverse 
shear strain constraint in the Reissner-Mindlin plate theory resulted in the development of 
a mathematical basis aimed at the construction of new plate bending elements (see K. J. 
Bathe and F. Brezzi [B]). Since these elements are all based on the mixed interpolation of 
the transverse displacement, section rotations and transverse shear strains and for general 
geometries use the tensorial components (as for the MITC4 element), we refer to these 
elements as MITC elements with n nodes (i.e., MITCn elements). 

The basic difficulty is choosing the orders of interpolations of transverse displacement, 
section rotations, and transverse shear strains which together result in nonlocking behavior 
and optimal convergence of the element. The mathematical considerations for choosing the 
appropriate interpolations were summarized by K. J. Bathe and F. Brezzi [B], K. J. Bathe, 
M. L. Bucalem, and F. Brezzi [A], and F. Brezzi, K. J. Bathe, and M. Fortin [A], who 
presented the elements in Fig. 5.27 as well as additional ones, and also gave numerical 
results. 
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Figure 5.27 and Table 5.3 summarize the interpolations of 9- and 16-node quadrilat­
eral elements and 7- and 12-node triangular elements and give the rates of convergence. In 
Fig. 5.27 the interpolations are given for the elements in geometrically nondistorted form, 
and we use tensorial components, as for the MITC4 element, to generalize the interpola­
tions to geometrically distorted elements. Let us illustrate the use of the interpolations given 
in Fig. 5.27 in an example. 

MITC4 element: 

• Nodes for /J» /Jy, and w interpolation 

MITC9 element: 

II 

4 nodes for interpolation of section 
rotations and transverse displacement 
(2 x 2 Gauss integration) 

A 
I 

I 
l 
j 
I 
I 
I 
I 
I 
I 

B - ---------!---------- - D 
I 
I 
I 
I 
I 
I 
I 
I 
t 
I 

c 

r xz = a, + b1 y; tying at points A and C 

rvz • a2 + IJ.ix; tying at points Band D 

9 nodes for interpolation of section rotations 
and 8 nodes for interpolation of transverse 
displacement (3 x 3 Gauss integration) 

B A 
I 
I 
I 
I 
I 
I 
I 
I 
I ---------~---------• I 
I 
I 
I 
I 
I 
I 
I 

E F 

H 

G 

r xz = a1 + b1x + c1 y + d1xy + e1 y2 ; tying at points A, B, E, F 

• Nodes for /Jx, /Jy, and w interpolation r.-z = a2 + IJ.ix + ~Y + cfixy + 9:2x2 ; tying at points C, D, G, H 

@ Node for /Jx, /Jy interpolation plus integral tying JA (Vw- P-y) dA = 0 

Figure S.27 Plate bending elements; square and equilateral triangles of side lengths 2 units 
are considered. 
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MITC16 element: 

@ @ I 

0 

' @ @ 

16 nodes for interpolation of section rotations 
and 13 nodes for interpolation of transverse 
displacement (4 x 4 Gauss integration) 

E 

F 

C 8 A 
I 

I 
I 
I 
I 
I 
I 
I 
I 
l 
I ----------~----------

G 

• I 
I 
I 
I 
I 
I 
I 
I 
I 

L 

J 

• Nodes for /Jx, /Jy, and w interpolation 

@ Nodes for /Jx, /Jy interpolation 

rxz• 81 + b1x + C,Y+ d1~ + e,xy+ 

,,y2 + g,x2y+ h,xr + i,y3; 

tying at points A, 8, C, G, H, I; 

ryz • 82 + b:lx + C2Y+ di.~+ 82XY+ 

f2y2 + a2~Y + ~xy2 + i2x3; 
tying at points 0, E, F, J, K, L; 

o Node for w interpolation 

MITC7 element: 

plus integral tying f A (Vw-P-T> dA • 

f A (Vw-P-y)xdA•fA (Vw-p-y)ydA•O 

7 nodes for interpolation of section 
rotations and 6 nodes for interpolation 
of transverse displacement (7-point 
Gauss integration) 

c 0 

Yxz"" a,+ b,x + c,y+ y(dx+ ey); 

Yyz• a2 + bix + 02y-x(dx+ ey); 

tying of rt at A, B, C, o, E, F 

• Nodes for /Jx, /Jy, and w interpolation 

@ Node for /Jx, /Jy interpolation 

plus integral tying JA (Vw-p-y) dA· O 

Figure 5.27 (continued) 
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MITC12 element: 12 nodes for interpolation of section rotations 
and 10 nodes for interpolation of transverse 
displacement (13-point Gauss integration) 

D E 

rxz:r: 81 + b1X + C,Y+ d1x2 + e1XY+ 

f,y2 + y(gx2 + hxy+ ;y2); 

F 

Yvz • 82 + "2x + ClY+ d2x2 + 82XY+ 

f2y2 - x(gx2 + hxy + iy2); 
• Nodes for /Jx, /Jy, and w interpolation 

@ Nodes for /J10 Pr interpolation tying of y- tat points A, 8, C, D, E, F, G, H, I 

o Node for w interpolation plus integral tying f A {Vw- P-y) dA = fA (Vw- p-y)x dA = 
f A (Vw-p-y)ydA·O 

Figure 5.27 (continued) 

TABLE 5.3 Interpolation spaces and theoretically predicted error estimates for plate bending 
elements 

Element 

MITC4 

MITC9 

MITC16 

MITC7 

MITC12 

Spaces used for section rotations and 
transverse displacementt 

Ph E Q, x Qi 
Wh E Q, 

(lh E Q2 X Q2 
wh E Q2 n P3 
Ph E Q3 X Q3 
wh E Q3 n P4 

Ph E (P2 (B {L1£iL3}) X (P2 (B {L1L2L3}) 
w,. E P2 

(lh E (P3 EB {L,lzL3} P1) x (PJ (B {L1lzL3} P1) 
W11 E P3 

t For notation used. see Section 4.3. 

Error estimates 

11 P - '311 Iii s ch 
IIVw - Vw11lb sch 
IIP - P11lla s ch 2 

llVw - Vw,.I~ s ch 2 

!IP - 1311!11 s ch 3 

IIVw - Vwhl~ s ch 3 

HP - p,.11i s ch 2 

IIVw - Vw,.no S ch 2 

11 P - p,. Iii s ch 3 

lfVw - Vw,.I~ s ch 3 

EXAMPLE 5.31: Show how to establish the strain interpolation matrices for the stiffness 
matrix of the MITC9 element shown in Fig. E5.31. 

The geometry of the element is the same as for the four-node element considered in 
Fig. ES.29; hence the Jacobian matrix is the same. 

Since the transverse displacements are determined by the eight-node interpolations, which 
are given in Fig. 5.4, we have 



z 
2cm---+i 

y 

Figure ES.31 A nine-node plate 
bending element 

[Ej = H~ ~J[(l + 2r)(l + s) - (1 - s2) I .. ·] [~] (a) 

- o + 2s)o + r> (t - , 1> I · 
~ ~ 

The section rotations are determined by the nine-node interpolation functions, which are also 
given in Fig. 5.4, and we have 

Ht ~J[(l + 2r)(l + s) - (1 + 2r)(l - s
1

) 

(1 + 2s}(l + r) - (1 + 2s)(l - ,2) 

r:11 = rn ~J[o + 2,)0 + s> - o + 2,)(1 - s
2

> I 

lad (I + 2s)(l + r) - (I + 2s)(I - r') I 

: ···H:l 
[
BH 

"-] :J 
Let us use the following ordering of nodal point displacements and rotations 

1F = [w, B! 8; I .. . I ws O! oi I 81 ~] 
The transverse displacement interpolation matrix Bw is then given by 

Hw = [hi O O I h2 0 0 I . , . I he O O I O OJ 

where the h1 to ha are given in Fig. 5.4 and correspond to an eight-node element. 

(b) 

(c) 

The curvature interpolation matrix B,. is obtained directly from the relations (b) and (c), 

B. = r~ i((l + 2s)(l + r) ~ (I + 2s)(I - r')] 
~ HO + 2,)(1 + s) - (1 + 2r)(I - 82)] 

-H(l + 2r)(l + s) - (1 + 2r)(l - s 2
)] I J 

o I ... 
-H(l + 2s)(l + r} - (1 + 2s)(l - r 2

)] I 
433 
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The transverse shear strain interpolation matrix is obtained from the shear interpolation 
given in Fig. 5.27 (and the tying procedure) written as 

[~ r s rs s2 I 0 0 0 0 
~ 2] a (e) 

0 0 0 0 I r s rs 

where ar = [a1 b1 C1 di e1 I a2 b2 C2 d2 e2] 

The values in the vector a are expressed in terms of the nodal point displacements and rotations 
using the tying relations. For example. since point A is at x = J [ I + 1 /V3], y = 2, we have 

-y,.I• = a, + b,m( I + ~) + c,(2) + d,(3)( I + ~) + e1(4) 

(aw )I = - - f3x 
OX at,=l/VJ.s=I 

(f) 

Of course, aw/ax is given by (a) and the section rotation f3x is given by (5.99) with the h; 
corresponding to nine nodes. 

Using all 10 tying relations in Fig. 5.27 as in (f), we can solve for the entries in (e) in terms 
of the nodal point displacements and rotations. 

The numerical performance of the MITCn elements has been published by K. J. 
Bathe, M. L. Bucalem, and F. Brezzi [A]. However. let us briefly note that 

The element matrices are all evaluated using full numerical Gauss integration (see 
Fig. 5.27). 

The elements do not contain any spurious zero energy modes. 

The elements pass the pure bending patch test (see Fig. 4.18). 

To illustrate the performance of the elements and introduce a valuable test problem 
consider Figs. 5.28 to 5.32. In Fig. 5.28 the test problem is stated. We note that the 
transverse displacement and the section rotations are prescribed along the complete 
boundary of the square plate and that in this problem there are no boundary layers (as 
encountered in practical analyses; see B. Haggblad and K. I. Bathe [A]). Therefore, the 
numerically calculated orders of convergence should be close to the analytically predicted 
values. Figure 5.29 shows results obtained using uniform meshes, and these results compare 
well with the analytically predicted behavior (these predictions assume uniform meshes). 
Figures 5.30 and 5.31 show results obtained using a sequence of quasi-uniform6 meshes, 
and we observe that the orders of convergence are not drastically affected by the element 
distortions. Finally, the convergence of the transverse shear strains, as predicted numeri­
cally, is shown in Fig. 5.32. In these specific finite element solutions the shear strains are 
predicted with surprisingly high orders of convergence ( which in general of course cannot 
be expected). 

6 For the definition of a sequence of quasi·uniform meshes, see Section 5.3.3. 
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y ·~ 

(-1 , 1) 
" 

(1, 1) 
" " " " 

l~I 

x 

(-1, -1) (1, - 1) 

(a) Square plate considered in ad hoc plate bending problem; transverse loading p = 0, nonzero 
boundary conditions. A typical 4-node element is shown. The dashed line indicates the 
subdivision used for the triangular element meshes; h • 2 /N, where N- number of elements 
per side. 

(b) Exact transverse displacement and rotations: w = sinkx e"Y + sink e-k; Ox= k si nkx tlY ; 
9y • - k coskx ekr 
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(c) Test problem: Prescribe the functional values of w, Ox, and 9_y on the complete boundary and p .. 0, 
calculate interior values; k is a chosen constant; we use k. 5 

Figure 5.28 Ad-hoc test problem for plate bending elements 

AMITC7 ~MITC4 •MITC7 <>MITC4 

oMITC12 xMITC9 oMITC12 xMITC9 

+MITC16 +MITC16 

3.0 

3.0 

2.0 

UJ 2.0 UJ 
O> C) 
0 

...J .9 1.0 

1.0 

0.0 

0.0 -0.5 
-1.0 0.0 -1.0 0.0 -1.0 0.0 -1.0 0.0 

Log h Log h Log h Log h 
(a) (b) 

Figure S.29 (a) Convergence of section rotations in analysis of ad-hoc problem using 
uniform meshes. The error measure is E ::::: II (.l - (Jh Iii- (b) Convergence of gradient of 
vertical displacement in analysis of ad-hoc problem using uniform meshes. The error measure 
is E::::: II Vw - Vwhl~. 
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3.0 

'-MITC7 

oMITC12 

9MITC4 

xMITC9 

+MITC16 

3.0 

2.0 

Figure 5.30 Two typical distorted 
meshes used in analysis of ad-hoc 
problem.-----. indicates the subdivision 
used for the triangular element meshes. 

•MITC7 

OMITC12 

9MITC4 

xMITC9 

+MITC16 

t.u 2.0 
C) 

t.u 
c,, 
0 .9 _. 1.0 

1.0 

0.0 t-------t 

-1.0 0.0 -1.0 0.0 
-0.5 

-1.0 0.0 -1.0 0.0 
Logh Log h Log h Logh 

(a) (b) 

Figure 5.31 (a) Convergence of section rotations in analysis of ad-hoc problem using 
distorted meshes. The error measure is E = 1113 - Ph Iii- (b) Convergence of gradient of 
vertical displacement in analysis of ad-hoc problem using distorted meshes. The error measure 
is E = II Vw - Vw,. jb . 

.t.MITC7 9MITC4 AMITC7 <>MITC4 

oMITC12 XMITC9 OMITC12 1 MITC9 

3.0 +MITC16 3.0 +MITC16 

2.0 2.0 

t.u 1.0 t.u 1.0 

.9 c,, 
;J 

0.0 0.0 

-1.0 -1.0 

-2.0 -1.0 0.0 -1.0 0.0 
-2.0 -1.0 0.0 -1.0 o.o 

Logh Logh Log h Log h 
(a) (b) 

Figure S.32 Convergence of transverse shear strains in analysis of ad-hoc problem. The 
error measure is E = \I y - 'Y11lb. (a) Uniform meshes. (b) Distorted meshes. 
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General Shell Elements 

Let us consider next the formulation of general shell elements that can be used to analyze 
very complex shell geometries and stress distributions. For this objective we need to 
generalize the preceding plate element formulation approach, much in the same way as we 
generalized the isoparametric beam element formulation from straight two-dimensional to 
curved three-dimensional beams. As in the case of the formulation of beam elements (see 
Section 5.4.1), we consider the displacement interpolation which leads to a pure 
displacement-based element (see S. Ahmad, B. M. Irons, and 0. C. Zienkiewicz [A]), and 
we then modify the formulation so as to avoid shear and membrane locking. 

The displacement interpolation is obtained by considering the geometry interpolation. 
Consider a general shell element with a variable number of nodes, q. Figure 5.33 shows a 
nine-node element for which q = 9. Using the natural coordinates r, s, and t, the Cartesian 
coordinates of a point in the element with q nodal points are, before and after deformations, 

• .., y, v 

(f) oV r, I at Gauss • f ~k hk I at Gauss oV J 
Integration integration 
point point 

Figure S.33 Nine-node shell element; also, definition of orthogonal r, s, taxes for consti~ 
tutive relations 



438 Formulation and Calculation of lsoparametric Finite Element Matrices Chap.5 

s 
Top surface 

---- &-Coordinate line {r, tare constant) _.. .., 

r, s, t = vectors tangent 
to ,, s, t coordinate lines 

s x t t x e1 t 
er= !Is x ti!/ 85 = llt x e,112; 81 = lltlb 

Figure S.33 (continued) 

q t q 

tx(r, s, t) = L h1i 'xk + -
2 
L a1ch1c 'V!x 

k=I k=I 

q q 

'y(r, s, t) = L h" tYk + -
2

1 L a"h" ev~Y 
k=I k"'I 

(5.107) 

q q 

'z(r, s, t) = L h1c 'zk + -
2
1 L a1chk 'V!z 

k~t k=I 

where the hh, s) are the interpolation functions summarized in Fig. 5.4 and 
1x, 'y. ez = Cartesian coordinates of any point in the element 

'xk, eYk, eZk = Cartesian coordinates of nodal point k 

a" = thickness of shell in t direction at nodal point k 

'V~x, 'V~,. 'V!: = components of unit vector 'V! "normal" to the shell midsurface 
in direction tat nodal point k; we call ev~ the normal vector7 or, more 
appropriately, the director vector, at nodal point k 

and the left superscript e denotes, as in the general beam formulation, the configuration of 
the element; i.e., .f = 0 and 1 denote the original and final configurations of the shell 
element. Hence, using (5.107), the displacement components are 

q t ~ 
u(r, s, t) = ; hkuk + 2 ~ a1ht V!x 

q t q 

o(r, s, t) = ~ h1cVt + 
2 
L a1c~ V!y 

k=I k~I 
(5.108) 

7 We call tv: the normal vector although it may not be exactly normal to the midsurface of the shell in the 
original configuration (see Example 5.32), and in the final configuration (e.g., because of shear deformations). 
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where V! stores the increments in the direction cosines of 0V!, 

(5.109) 

The components of V~ can be expressed in terms of rotations at the nodal point k; 
however, there is no unique way of proceeding. An efficient way is to define two unit vectors 
0v1 and 0v1 that are orthogonal to 0V!: 

(5.llOa) 

where ey is a unit vector in the direction of the y-axis. (For the special case 0V! parallel to 
ey, we may simply use 0V1 equal toe,.) We can now obtain °vt 

(5.llOb) 

Let llk and /31c be the rotations of the director vector 0V! about the vectors 0V1 and 0v~. 
We then have, because a1c and /31c are small angles, 

(5.111) 

This relationship can readily be proven when °V1 = ex, 0V2 = e, and 0Vn = eu but since 
these vectors are tensors, the relationship must also hold in general (see Section 2.4 ). 
Substituting from (5.111) into (5.108), we thus obtain 

q q 

u(r, S, t) = ~ hk Uk + -
2
1 ~ Ok hJc(-0VL a,,. + 0Vfx ~k) 

k•I k•I 

q q 

v(r, s, t) = ~ hk'Vk + -
2
1 ~ akhJc(- 0Vi1 ak + 0Vf1 ~k) 

k=I k-1 
(5.112) 

q q 

w(r, S, t) = L hk Wk + -2' L ak M - 0 V!t a:1c + 0 Vfz ~k) 
k=I k•l 

With the element displacements and coordinates defined in (5.112) and (5.107) we 
can now proceed as usual to evaluate the element matrices of a pure displacement-based 
element. The entries in the displacement interpolation matrix H of the shell element are 
given in (5.112), and the entries in the strain-displacement interpolation matrix can be 
calculated using the procedures already described in the formulation of the beam element 
(see Section 5.4.1). 

To evaluate the strain-displacement matrix, we obtain from (5.112), 

au oht[l k " J tgix tg2x Uk or or 
au 

q 

ahk[t 
as =L tgix tdx] a1c 

k .. l as 
(5.113) 

au hk [O gfx gt] /3k -a, 

and the derivatives of v and w are given by simply substituting for u and x the variables v, 
y and w, z, respectively. In (5.113) we use the notation 

(5.114) 
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To obtain the displacement derivatives corresponding to the Cartesian coordinates 
x, y, z, we use the standard transformation 

(5.115) 

where the Jacobian matrix J contains the derivatives of the coordinates x, y, z with respect 
to the natural coordinates r, s, t. Substituting from (5.113) into (5.115), we obtain 

au iJh1c 
gixG! dxG! ax ax Uk 

au q 
iJh1c 

&y 
=}: 

&y 
gixG~ g!xG! C4. (5.116) 

k=t 

iJu iJhk 
gixG! g~xG! - /3k az iJz 

and the derivatives of v and ware obtained in an analogous manner. In {5.116) we have 

ahk _ 
1

_
1 

ahk 
1

_
1 

ahk 
- - 11 -+ 12 -ax iJr as (5.117} 

Gk ( -I i:Jhk -I iJhk) -I 
x = t J II a, + J 12 as + J l3 h1r. 

where Jij 1 is element (i, j) of J-1, and so on. 
With the displacement derivatives defined in (5.116) we now directly assemble the 

strain-displacement matrix B of a shell element. Assuming that the rows in this matrix 
correspond to all six global Cartesian strain components, E'xx, E'yy, ••• , 'Ym the entries in 
B are constructed in the usual way (see Section 5.3), but then the stress-strain law must 
contain the shell assumption that the stress normal to the shell surface is zero. We impose 
therefore that the stress in that direction is zero. Thus, if 'T and E store the Cartesian stress 
and strain components, we use 

T = CshE 

where 
TT= [Txx Tyy T.i:z Txy 

ET= [Exx Eyy Eu 'Yxy 

1 v 0 0 
0 0 
0 0 

csh = Qrh(i : v2 
1 - v 

2 

Symmetric 

Tyz Tzx] 

'YYt 'Yzx] 

0 
0 
0 

0 

1 - v 
k--

2 

0 
0 
0 

0 

0 

1 - v 
k--

2 

{S.118) 

)Qsh (5.119) 

and Qsh represents a matrix that transforms the stress-strain law from an r, s, t Cartesian 
shell-aligned coordinate system to the global Cartesian coordinate system. The elements of 
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the matrix Osh are obtained from the direction cosines of the r, s, t coordinate axes measured 
in the x, y, z coordinate directions, 

n m1 ny l1m1 m1n1 n1l1 

H m~ n~ '2m2 m2n2 n2l2 

Qsh = H m} n} l3m3 m3n3 n3l3 
(S.120) 

21112 2m1m2 2n1n2 l1m2 + l2m1 m1n2 + m2n1 n1l2 + n2l1 

2'213 2m2m3 2n2n3 l2m3 + [3m2 m2n3 + m3n2 n2l3 + n3l2 

2l3l1 2m3m1 2n3n1 [3m1 + l1m3 m3n1 + m1n3 n3l1 + n1l3 

where 

11 = cos (ex, e;:); m1 = cos (e,, e;:); n1 = cos (ez, e;:) 

12 = cos (ex, es); m2 cos (e,., es); n2 = cos ( en es) (5.121) 

h = cos (ex, e,); m3 = cos (e,., e,); n3 = cos (ez, er) 

and the relation in (5.119) corresponds to a fourth-order tensor transformation as described 
in Section 2.4. 

It follows that in the analysis of a general shell the matrix Osh may have to be evaluated 
anew at each integration point that is employed in the numerical integration of the stiffness 
matrix (see Section 5.5). However, when special shells are considered and, in particular, 
when a plate is analyzed, the transformation matrix and the stress-strain matrix Csh need 
only be evaluated at specific points and can then be employed repetitively. For example, in 
the analysis of an assemblage of flat plates, the stress-strain matrix Csh needs to be calcu­
lated only once for each flat structural part. 

In the above formulation the strain-displacement matrix is formulated corresponding 
to the Cartesian strain components, which can be directly established using the derivatives 
in (5.116). Alternatively, we could calculate the strain components corresponding to coor­
dinate axes aligned with the shell element midsurface and establish a strain-displacement 
matrix for these strain components, as we did in the formulation of the general beam 
element in Section 5.4.1. The relative computational efficiency of these two approaches 
depends on whether it is more effective to transform the strain components (which always 
differ at the integration points) or to transform the stress-strain law. 

It is instructive to compare this shell element formulation with a formulation in which 
flat elements with a superimposed plate bending and membrane stress behavior are em­
ployed (see Section 4.2.3). To identify the differences, assume that the general shell element 
is used as a flat element in the modeling of a shell; then the stiffness matrix of this element 
could also be obtained by superimposing the plate bending stiffness matrix derived in (5.94) 
to (5.99) (see Example 5.29) and the plane stress stiffness matrix discussed in Section 5.3.1. 
Thus, in this case, the general shell element reduces to a plate bending element plus a plane 
stress element, but a computational difference lies in the fact that these element matrices 
are calculated by integrating numerically only in the r-s element midplanes, whereas in the 
shell element stiffness calculation numerical integration is also performed in the t-direction 
(unless the general formulation is modified for this special case). 

We illustrate some of the above relations in the following example. 
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EXAMPLE 5.32: Consider the four-node shell element shown in Fig. E5.32. 

(a) Develop the entries in the displacement interpolation matrix. 
(b) Calculate the thickness at the midpoint of the element and give the direction in which 

this thickness is measured. 

10 

y 

t~ 

x 

Figure ES.32 Four-node shell element 

The shell element considered has varying thickness but in some respects can be compared 
with the plate element in Example 5.29. 

The displacement interpolation matrix His given by the relations in (5.112). The functions 
hk are those of a four-node two-dimensional element (see Fig. 5.4 and Example 5.29). The 
director vectors 0v~ are given by the geometry of the element: 

0v! = [-1~\1'2]; 
1/V2 

0v~ = [-1~\1'2]; 
1/V2 

Hence, •v1 = •vr =•vi= •v1 = GJ 
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Also, 

Formulation of Structural Elements 

ov! = ov~ = [1/Vi]; 
1/Y2 

a1 ::;;: a2 = 0.8V2; 

0V! = 
0V1 = m 

Q3 = 1.2; 

The above expressions give all entries in (5.112). 
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To evaluate the thickness at the element midpoint and the direction in which the thickness 
is measured, we use the relation 

(!!.)ovn\ = ± ~hk\ 0v~ 
2 midpoint k= I 2 r•s"'O 

where a is the thickness and the director vector 0Vn gives the direction sought. This expression 
gives 

!!. ovn = 0.8V2 [- l~V2] + 1.2 [~] + 0.8 [~] = [-~.2] 
2 4 

l /Y2 8 
I 

8 
1 0.45 

[ 

0.0 J 0v" -0.406 ; 
0.914 

a= 0.985 which gives 

This shell element formulation clearly has an important attribute, namely, that any 
geometric shape of a shell can be directly represented. The generality is further increased 
if the formulation is extended to transition elements (similar to the extension for the isopara­
rnetric beam element discussed in Section 5.4.1). Figure 5.34 shows how shell transition 

(a} Shell intersection 

(b) Solid-to-shell intersection 

Figure 5.34 Use of shell transition elements 
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elements can be used to model shell intersections and shell-to-solid transitions using com­
patible element idealizations without the use of special constraint equations. The features 
of generality and accuracy in the modeling of a shell structure can be especially important 
in the material and geometric nonlinear analysis of shell structures, since particularly in 
such analyses shell geometries must be accounted for accurately. We discuss the extension 
of the formulation to general nonlinear analysis in Section 6.5.2. 

The underlying mathematical model of this pure displacement-based formulation corresponds 
to a general shell theory, referred to as the 'basic shell model', in D. Chapelle and K.J. Bathe [C, 
E], but the elements, as in the case of the beam elements, are not effective because they lock in 
shear and, when curved, in membrane actions. Since effective shell elements are enormously 
more difficult to obtain than plate elements, much research has been conducted. Among the pro­
posed formulations, the MITC shell elements are quite effective, see the original formulations by 
E. N. Dvorkin and K.J. Bathe [A], K.J. Bathe and E.N. Dvorkin [B] and M. L. Bucalem and K.J. 
Bathe [A] on quadrilateral elements, and further work to develop triangular elements, P. S. Lee 
and K. J. Bathe [A], D. N. Kim and K. J. Bathe [B] and Y. Lee, P. S. Lee, and K. J. Bathe [A]. 

The first step in mixed interpolation is to write the complete strain tensor at an integration 
point as 

(5.122) 

in-layer strains transverse shear strains 

where the Em Ess, . • • , are the covariant strain components corresponding to the base 
vectors 

ax 
It= -at 

(5.123) 

· and the gr, g", g1 are the corresponding contravariant base vectors (see Section 2.4 ). We note 
that if we use indicial notation with i = 1, 2, 3 corresponding tor, s, and t, respectively, 
and r1 = r, r2 = s, r3 = t, we can define 

ax 
Ogi = -; 

ari 
I a(x + u) 
g; = 

ari 

and then the covariant Green-Lagrange strain tensor components are 

Aeii = ! (lgi • lg; - oli • Og;) 

(5.124) 

(5.125) 

The strain components in (5.118) are the linear Cartesian components of the strain tensor 
given by (5.125) (see Example 2.28). 

In the mixed interpolation, the objective is to interpolate the in-layer and transverse 
shear strain components independently and tie these interpolations to the usual displace­
ment interpolations. The result is that the stiffness matrix is then obtained corresponding 
to only the same nodal point variables (displacements and section rotations) as are used for 
the disp~acement-based elements. Of course, the k~y is to choose in-layer and transverse 
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shear strain component interpolations, for the displacement interpolations used, such that the 
resulting element has an optimal predictive capability. 

An attractive four-node element is the MITC4 shell element proposed by E. N. Dvorkin 
and K. J. Bathe [A] for which the in-layer strains are computed from the displacement 
interpolations (since the element is not curved and membrane locking is not present in the 
displacement-based element) and the covariant transverse shear strain components are 
interpolated and tied to the displacement interpolations as discussed for the plate element [see 
(5.101)]. The element performs quite well in out-of-plane bending (the plate bending) actions, 
and also in the in-plane (the membrane) actions if the incompatible modes as discussed in 
Example 4.28 are added to the basic four-node element displacement interpolations. 

A significantly better predictive capability is obtained with higher-order elements, and 
Fig. 5.35 shows the interpolations and tying points for the 9-node and 16-node elements 
proposed by M. L. Bucalem and K. J. Bathe [A] and K. J. Bathe, P. S. Lee and J.-F. Hiller [A]. 
These elements are referred to as the MITC9 and MITC 16 shell elements. Elements similarly 
formulated to the MITC9 shell element have been presented by H. C. Huang and E. Hinton 
[A], K. C. Park and G. M. Stanley [A] and J. Jang and P. M. Pinsky [A] . 

1 1 
. "3 '-fJ. ~r..--.: 
: 5 A : 

E 
Components_" -----------· 

~ r 

The ht are the 6-node element 
interpolation functions 

Component trs 

(a) MITC9 shell element 

'Jf .Jt. 
s,·-j . . .............................. . 

. •·· ...... 10.861 .. . 
C t 

Err t 0.339 ... 
omponen s _ -+---------.... l l Component trs 

En r 0.339 ... 
• •·· •••••• 0.861 ... 

. •·· ·····-·-······ 

The ht are the 12-node element 
interpolation functions 

(b) MITC16 shell element 

..L 1 
. {3 • {3 . 

~~ 
: s ~ : 
. 
• 

• 

. ··-- --·-·ii 
,. • • 1 

{3 
·----- ..... 

The hZ are the 4-node element 
interpolation functions 

I Jf I Jt • 
~-: 
: sh : 

• 

• 

. .. -~-]~ 
, JH 

•·· ··-···· 

The ht are the 9-node element 
interpolation functions 

Figure 5.35 MITC shell elements; interpolations of strain components and tying points 
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Following our earlier discussion of the mixed interpolation of plate elements, in the 
formulation of these shell elements we use 

(5.126) 

where nu denotes the number of tying points used by the strain component considered, h; is 

the interpolation function corresponding to the tying point k, and B;1 L u is the strain 

component evaluated at the tying point k by the displacement assumption (by displacement 
interpolation). Note that with (5.126) only point tying and no integral tying (as in the higher­
order MITC plate elements) is performed. 

Unfortunately, a mathematical analysis of the MITC9 and MITC16 shell elements, as 
achieved for the plate elements summarized in Fig. 5.27, is not yet available but some valuable 
insight based on some mathematical analyses and test problems has been gained, see D. 
Chapelle and K. J. Bathe [B, C, D, E], P. S. Lee and K. J. Bathe [B, C], K. J. Bathe, F. Brezzi, 
and L. D. Marini [A], K. J. Bathe and P. S. Lee [A] and K. J. Bathe, D. Chapelle, and P. S. Lee 
[A]. 

As discussed in detail in these references, the analyses of well-chosen and stringent test 
problems is very important. In these benchmark tests, appropriate shell geometries, boundary 
conditions and loadings need to be used. The accuracy of the solutions obtained should be 
measured in appropriate norms (for example, a displacement at a point is not sufficient), and 
for decreasing shell thickness values. 

·1 ·1 -1 

I I f I ·2 t ·2 i ·2 

J J J 
o.s 

-3 .3 .3 
y O 

--0.5 

·I 
-4 -4 -4 

x •1.8 •1.5 ·1.2 -0.9 ·0.1-0.3 -1.1 -1.s .u ,o.t ·0.8 ·0.3 ·1.8 ·1.5 ·1.2 ·0.9 ·0.8 .Q.3 
log(2h) log(2h) log(2h) 

(a) (b) (c) 

Figure 5.36 Convergence curves of the MITC4 element for decreasing shell thickness (t/L = 

IOW
2

, 10w3, 104
) in the solution of three shell test problems; L = 1.0, E = 1.0 x 1011

, v= l/3. The 
shell surface is given by X2 + Z2 = l + Y2

; the pressure loading is p(0) = cos 20. Only the 
shaded region in the figure is modeled; (a) free-free shell; (b) fixed-fixed shell; (c) fixed-free 
shell. 
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Figure 5.36 gives the geometry and loading of a shell structure, and Table 5.4 gives 
the test cases considered. In these problems the membrane and bending behaviors of shell 
elements are tested when a shell of negative Gaussian curvature is analyzed; indeed, such 
structural problems should be solved as stringent tests of a shell element for its reliability and 
accuracy. In the solutions, the s-norm is used, which measures the accuracy of the predicted 
stresses, see K. J. Bathe and P. S. Lee [A]. Figure 5.36 shows that in these analyses, with the 
uniform meshes used, the MITC4 shell element performs very well, but such excellent 
behavior cannot always be expected. 

Finally, we should note an important point, namely that the MITC formulated shell 
elements can directly be extended to geometrically nonlinear analyses by simply using the 
appropriate stress and strain measures, discussed in Chapter 6. 

Table 5.4 Shell test cases with the geometry and loading of Figure 5.36 

Boundary conditions 

Free - free shell 

Fixed fixed shell 

Free - fixed shell 

Category and boundary layer 

Bending-dominated; boundary layer = 0.5..Jt and does not 
require special meshing 

Membrane-dominated; boundary layer = 6../ t and requires fine 

Mixed membrane-bending state; boundary layer at fixed end 

* An equal number of element layers as in the rest of the domain is appropriate 

Boundary Conditions 

The plate elements presented in this section are based on Reissner-Mindlin plate theory, in 
which the transverse displacement and section rotations are independent variables. This 
assumption is fundamentally different from the kinematic assumption used in Kirchhoff plate 
theory, in which the transverse displacement is the only independent variable (M. L. Bucalem 
and K. J Bathe [B]). Hence, whereas in Kirchhoff plate theory all boundary conditions are 
written only in terms of the transverse displacement (and of course its derivatives), in the 
Reissner-Mindlin theory all boundary conditions are written in terms of the transverse 
displacement and the section rotations (and their derivatives). Since the section rotations are 
used as additional kinematic variables, the actual physical condition of a support can also be 
modeled more accurately. 

As an example, consider the support conditions at the edge of the thin structure shown 
in Fig. 5.37. If this structure were modeled as a three-dimensional continuum, the element 
idealization might be as shown in Fig. 5.38(a), and then the boundary conditions would be 
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z,wt 

r x, u 

!?. « 1 
L 

h (small) Rigid 

Figure 5.37 Knife-edge support for thin structure 

y, v 

~ 
For all nodes on this line, 
Uk• Vk• Wk• 0, k= .•• , i, i+ 1, i+ 2, .•. 

(a) Three-dimensional 
model using 27-node 

elements 

Z,W 

----~ y By 

• 

(b) Plate model using 
plate elements 

By 

For all nodes 
on this 

/ line, Wk• 0, 
k= ... , i, i + 1, i + 2, ... 

Figure S.38 Three-dimensional and plate models for problem in Fig. 5.37 

those given in the figure. Of course, such a model would be inefficient and impractical 
because the finite element discretization would have to be very fine for an accurate solution 
(recall that the three-dimensional elements would display the shear locking phenomenon). 

Employing Reissner-Mindlin plate theory, the thin structure is represented using the 
assumptions given in (5.88) and Fig. 5.25. The boundary conditions are that the transverse 
displacement is restrained to zero but the section rotations are free; see Fig. 5.38(b). Surely, 
these conditions represent the physical situation as closely as possible consistent with the 
assumptions of the theory. 

We note, on the other hand, that using Kirchhoff plate theory, the transverse displace­
ment and edge rotation given by aw/ax would both be zero, and therefore the finite element 
model would also have to impose 0y = 0. Hence, in summary, the edge conditions in 
Fig. 5.37 would be modeled as follows in a finite element solution. 
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Using three-dimensional elements: 

on the edge: u v = w = 0 (5.127) 

Using Reissner-Mindlin plate theory-based elements (e.g., the MITC elements in Fig. 5.27): 

on the edge: w = O; Ox and Oy are left free (5.128) 

Using Kirchhoff plate theory-based elements (e.g., the elements in Example 4.18): 

on the edge: w = Oy = O; 8x is left free (5.129) 

where in Kirchhoff plate theory, 
ow 

(J = --
y ox (5.130) 

Of course, we could also visualize a physical support condition that, in addition to the 
rigid knife-edge support in Fig. 5.37, prevents the section rotation f3x· In this case we also 
would set 8y to zero when using the Reissner-Mindlin plate theory-based elements, and we 
would set all u-displacements on the face of the plate equal to zero when using the 
three-dimensional elements. 

The boundary condition in (5.128) is referred to as the "soft" boundary condition for 
a simple support, whereas when 8y is also set to zero, the boundary condition is of the "hard" 
type. Similar possibilities also exist when the plate edge is "clamped", i.e., when the edge 
is also restrained against the rotation Ox. In this case we clearly have w = 0 and 8x = 0 on 
the plate edge. However, again a choice exists regarding 8y: in the soft boundary condition 
8y is left free, and in the hard boundary condition 8y = 0. In practice, we usually use the 
soft boundary conditions, but of course, depending on the actual physical situation, the hard 
boundary condition is also employed. 

The important point is that when the Reissner-Mindlin plate theory-based elements 
are used, the boundary conditions on the transverse displacement and rotations are not 
necessarily the same as when Kirchhoff plate theory is being used and must be chosen to 
model appropriately the actual physical situation. 

The same observations hold of course for the use of the shell elements presented 
earlier, for which the section rotations are also independent variables (and are not given by 
the derivatives of the transverse displacement). 

Since the Reissner-Mindlin theory contains more variables for describing the plate 
behavior than the Kirchhoff theory, various interesting questions arise regarding a compari­
son of these theories and the convergence of results based on the Reissner-Mindlin theory 
to those based on the Kirchhoff theory. These questions have been addressed, for example, 
by K. 0. Friedrichs and R. F. Dressler [A], E. Reissner [C], B. Haggblad and K. J. Bathe 
[A], and D. N. Arnold and R. S. Falk [A]. A main result is that when the Reissner-Mindlin 
theory is used, boundary layers along plate edges develop for specific boundary conditions 
when the thickness/length ratio of the plate becomes very small. These boundary layers 
represent the actual physical situation more realistically than the Kirchhoff plate theory 
does. Hence, the plate and shell elements presented in this section are not only attractive 
for computational reasons but can also be used to represent the actual situations in nature 
more accurately. Some numerical results and comparisons using the Kirchhoff and 
Reissner-Mindlin plate theories are given by B. Haggblad and K. J. Bathe [A] and 
K. J. Bathe, N. S. Lee, and M. L. Bucalem [A]. 
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5.4.3 Exercises 

5.32. Consider the beam of constant cross-sectional area in Fig. 5.19. Derive from (4.7), using the 
assumptions in Fig. 5.18, the virtual work expression in (5.58). 

S.33. Consider the cubic displacement-based isoparametric beam element shown. Construct all ma­
trices needed for the evaluation of the stiffness and mass matrices (but do not perform any 
integrations to evaluate these matrices). 

L 
~ I 

,t. 
5.34. Consider the 3-node isoparametric displacement-based beam element used to model the 

cantilever beam problem in Fig. 5.20. Show analytically that excellent results are obtained when 
node 3 is placed exactly at the midlength of the beam, but that the results deteriorate when this 
node is shifted from that position. 

L 

S.35. Consider the two-node beam element shown. Specialize the expressions (5.71) to (5.86) to this 
case. 

Constant thickness b 

Action in x-y plane 
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S.36. Consider the three"node beam element shown. Specialize the expressions (5.71) to (5.86) to this 
case. 

Constant thickness b 

Action in x-y plane 

5.37. Consider the cantilever beam shown. Idealize this structure by one two-node mixed interpolated 
beam element and analyze the response. First, neglect warping effects. Next, introduce warping 
displacements using the warping displacement function Ww = xy(x 2 

- y 2) and assuming a linear 
variation in warping along the element axis. 

~--------: ~ ! .• 
~: .. :::::::::::::::::::::::.. T 

L 

Young's modulus E 
Shear modulus G 

5.38. Consider the two-node mixed interpolated beam element shown. Derive all expressions needed 
to calculate the stiffness matrix, mass matrix, and nodal force vector for the degrees of freedom 
indicated. However, do not perform any integrations. 

Load on beam is A'unit length in 
z..direction on centerline of beam 
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5.39. Consider the plane stress element shown and evaluate the strain-displacement matrix of this 
element (called Bp1). 

Also consider the two-node displacement-based isoparametric beam element shown and 
evaluate the strain-displacement matrix (called 81,). 

Derive from 8p1, using the appropriate kinem_!.tic constraints, the strain-displacement 
matrix of the degenerated plane stress element (called Bp1) for the degrees of freedom used in the 
beam element. Show explicitly that 

L B{C1,81, dV = L i~CBpt dV 

with C1, and C to be determined by you. 

I. 
3 

s • 

2 - 1 

4 

L 

Plane stress element 
(unit thickness) 
Young's modulus E 
Poisson's ratio v 

'~ v, 

J ~ 

~ u, 

r 
1). ~ 81. u, 

1- .1 
L 

Beam element of depth t 
and unit thickness 

5.40. Consider the problem of an infinitely long, thin plate, rigidly clamped on two sides as shown. 
Calculate the stiffness matrix of a two-node plane strain beam element to be used to analyze the 
plate. [Use the mixed interpolation of (5.68) and (5.69).] 

Young's modulus E • 
Poisson's ratio v ' 

5.41. Consider the axisymmetric shell element shown. Construct the strain-displacement matrix as­
suming mixed interpolation with a constant transverse shear strain. Also. establish the corre­
sponding stress-strain matrix to be used in the evaluation of the stiffness matrix. 
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I 

t 
I 
I 

Young's modulus E 
Poisson's ratio v 

1-----i t'-------2(1----....i 
I 

I 

453 

5.42. Assume that in Example 5 .28 axisymmetric conditions are being considered. Construct the 
strain-displacement matrix of the transition element. Assume that the axis of revolution, i.e. the 
y axis, is at distance R from node 3. 

5.43. Use a computer program to analyze the curved beam shown for the deformations and internal 
stresses. 
(a) Use displacement-based discretizations of, first, four-node plane stress elements, and then, 

eight-node plane stress elements. 
(b) Use discretizations of, first, two-node beam elements, and then, three-node beam elements. 

Compare the calculated solutions with the analytical solution and increase the fineness of 
your meshes until an accurate solution is obtained. 

x 

E = 200,000 
v= 0.3 
Unit thickness 

___....... 
p 

5.44. Perform the analysis in Exercise 5.43 but assume axisymmetric conditions; i.e., assume that the 
figure in Exercise 5.43 shows the cross section of an axisymmetric shell with the centerline at 
x = 0, and that P is a line load per unit length. 

5.45. Consider the four-node plate bending element in Example 5.29. Assume that w, = 0.1 and 
6} = 0.01 and that all other nodal point displacements and rotations are zero. Plot the curvatures 
1< and transverse shear strains 'Y as a function of r, s over the midsurface of the element. 
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5.46. Consider the four-node plate bending element in Example 5.29. Assume that the element is 
loaded on its top surface with the constant traction shown. Calculate the consistent nodal point 
forces and moments. 

t = [J12J 
1/2 

tis acting 
in y-z plane 

force per unit area 

5.47. Establish the transverse shear strain interpolation matrix By of the parallelogram-shaped MITC4 
element shown. 

5.48. Consider the formulation of the MITC4 element and Example 4.30. Show that the MITC4 
element formulation can be derived from the Hu-Washizu variational principle. 

5.49. Consider the four-node shell element shown and develop the geometry and displacement interpo­
lations (5.107) and (5.112). 

z 

5.50. Show explicitly that using the general shell element formulation in (5.107) to (5.118) for a flat 
element is equivalent to the superposition of the Reissner-Mindlin plate element formulation in 
(5.88) to (5.99) and the plane stress membrane element formulation in Section 5.3.l. 
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5.51. Use a computer program to solve the problem shown in Fig. 5.36 with curved shell elements. 
First, use a single element, and then, use two geometrically distorted elements for the structure 
to study the element distortion sensitivity. 

S.52. Consider the following IGrchhoff plate theory boundary conditions at the edge of a plate: 

w = O; aw= aw= o (a) ax cJy 

Establish a corresponding reasonable choice of boundary conditions for the Reissner-Mindlin 
plate theory. Also, discuss and illustrate graphically that the boundary conditions in (a) do not 
uniquely determine the boundary conditions for the Reissner-Mindlin plate theory. 

5.5 NUMERICAL INTEGRATION 

An important aspect of isoparametric and related finite element analysis is the required 
numerical integration. The required matrix integrals in the finite element calculations have 
been written as 

J F(r) dr; J F(r, s) dr ds; J F(r, s, t) dr ds dt (5.131) 

in the one-, two-, and three-dimensional cases, respectively. It was stated that these inte­
grals are in practice evaluated numerically using 

J F(r) dr = ; a;F(r;) + Rn 

J F(r, s) dr ds = ~ auF(r;, s) + Rn 
1,J 

(5.132) 

J F(r, s, t) dr ds dt = ! a!ikF(r;, Sj, IA:) + Rn 

where the summations extend over all i,j, and k specified, the a;, a;h and a1jk are weighting 
factors, and F(r,), F(r;, sj), and F(r1, sh tk) are the matrices F(r), F(r, s), and F(r, s, t) 
evaluated at the points specified in the arguments. The matrices Rn are error matrices, 
which in practice are usually not evaluated. Therefore, we use 

J F(r) dr = ; a; F(r1) 

f F(r, s) dr ds ~ au F(r;, si) 
i,j 

J F(r, s, t) dr ds dt = ~ a;i1cF(ri, sh t1c) 
i,j,k 

(5.133) 

The purpose in this section is to present the theory and practical implications of 
numerical integrations. An important point is the integration accuracy that is needed, i.e., 
the number of integration points required in the element formation. 

As presented above, in finite element analysis we integrate matrices, which means that 
each element of the matrix considered is integrated individually. Hence, for the derivation 
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of the numerical integration formulas we can consider a typical element of a matrix, which 
we denote as F. 

Consider the one-dimensional case first, i.e., the integration off! F(r) dr. In an 
isoparametric element calculation we would actually have a = - 1 and b = + 1. 

The numerical integration of J: F(r) dr is essentially based on passing a polynomial 
tµ(r) through given values of F(r) and then using J! tf.,(r) dr as an approximation to 
f; F(r) dr. The number of evaluations of F(r) and the positions of the sampling points in 
the interval from a to b determine how well tJ,(r) approximates F(r) and hence the error of 
the numerical integration (see, for example, C. E. Froberg [A]). 

5.5.1 Interpolation Using a Polynomial 

Assume that F(r) has been evaluated at the (n + 1) distinct points ro, r1, ... , r11 to obtain 
Fo, Fi, ... , Fn, respectively, and that a polynomial tJ,(r) is to be passed through these data. 
Then there is a unique polynomial tJ,(r) given as 

Using the condition tJ,(r) == F(r) at the (n + 1) interpolating points, we have 

F = Va 

where 

and V is the Vandermonde matrix, 

v = [\ 

ro r3 · · · rS] 
r1 rt · · · r7 . . . . . . 
;II ;~ " • ;~ 

(5.134) 

(5.135) 

(5.136) 

(5.137) 

Since det V =I: 0, provided that the r; are distinct points, we have a unique solution for a. 
However, a more convenient way to obtain tJ,(r) is to use Lagrangian interpolation. 

First, we recall that the (n + 1) functions l, r, r2, ... , rn form an (n + 1)-dimensional 
vector space, say Vn, in which tJ,(r) is an element (see Section 2.3). Since the coordinates 
ao, a1, a2, ... , an of tJ,(r) are relatively difficult to evaluate using (5.135), we seek a 
different basis for the space Vn in which the coordinates of tJ,(r) are more easily evaluated. 
This basis is provided by the fundamental polynomials of Lagrangian interpolation, 
given as 

{5.138) 

where 

(5.139) 
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where 5;i is the Kronecker delta; i.e., i>;j = 1 for i = j, and 5,1 = 0 for i ¢ j. Using the 
property in (5.139), the coordinates of the base vectors are simply the values of F(r), and 
the polynomial f/,(r) is 

1/J(r) = Folo(r) + F1 li(r) + · · · + F,.ln(r) (5.140) 

EXAMPLE 6.33: Establish the interpolating polynomial t/l(r) for the function F(r) = 2r - r 
when the data at the points r = 0, 1, and 3 are used. In this case ro = 0, ri = l, r2 = 3, and 
Fo = 1, F1 = l, F2 = 5. 

In the first approach we use the relation in (5.135) to calculate the unknown coefficients 
a0, a,. and a2 of the polynomial t/J(r) = ao + a, r + a2r2. In this case we have 

The solution gives ao = l, a1 = - t a2 = L and therefore t/J(r) = 1 - Jr + i r 2. 
If Lagrangian interpolation is employed, we use the relation in (5.140) which in this case 

gives 

t/J(r) = (1) (r ~-gi~;) 3) + (1) (7g( ~2~) + (5) (r)g)~) 1) 

or, as before. t/J(r) = 1 - jr + }r2 

5.5.2 The Newton-Cotes Formulas 
(One-Dimensional Integration) 

Having established an interpolating polynomial ,f,(r), we can now obtain an approximation 
to the integral J: F(r) dr. In Newton-Cotes integration, it is assumed that the sampling 
points of F are spaced at equal distances, and we define 

ro = a; 
b-a 

h=-­
n 

(5.141) 

Using Lagrangian interpolation to obtain ,f,(r) as an approximation to F(r), we have 

f.b F(r) dr = ~ [f.b l;(r) dr]Fi + Rn (5.142) 
a 1=0 a 

or, evaluated, f
b It 

a F(r) dr = (b - a) ~ C? F; + R,. (5.143) 

where Rn is the remainder and the q are the Newton-Cotes constants for numerical 
integration with n intervals. 

The Newton-Cotes constants and corresponding remainder terms are summarized in 
Table 5.5 for n = 1 to 6. The cases n = 1 and n = 2 are the well-known trapezoidal rule 
and Simpson formula. We note that the formulas for n = 3 and n = 5 have the same order 
of accuracy as the formulas for n = 2 and n = 4, respectively. For this reason, the even 
formulas with n = 2 and n = 4 are used in practice. 
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TABLE 5.5 Newton~Cotes numbers and error estimates 

Upper bound on 
error R,. as 

Number of a function of 
intervals n ca CT C! C3 ca cg cg the derivative of F 

1 l 
10-1(b - a)3F 11(r) 2 2 

2 
1 4 1 

10-3(b - a)5 F 1v(,) 6 6 6 
3 

1 3 3 1 10-3(b - a)5 F 1v(,) 8 8 8 8 
4 

7 32 12 32 7 
10-6(b - a)7 Fv1(r) 

90 90 90 90 90 

s 19 75 so so 75 19 10-6(b a)1 pv•(r) 
288 288 288 288 288 288 

6 
41 216 27 272 27 216 41 10-9(b - a)9 pvm(,) 
840 840 840 840 840 840 840 

EXAMPLE 6.34: Evaluate the Newton-Cotes constants when the interpolating polynomial is 
of order 2; i.e., 4f,(r) is a parabola. 

In this case we have 

f.b F(r) dr = f.b [Fo (r - r1)(r - r2) + Fi (r - ro)(r - r2) + F2 (r - ro)(r - r1) ] dr 
a a (ro - r1Hro - r2) (r1 - ro)(r1 - r2) (r2 - ro)(r2 - r1) 

Using ro = a, r1 = a + h, r2 = a + 2h, where h = (b - a)/2, the evaluation of the integral 
gives 

f
b b - a 

F(r) dr = -
6
-(F0 + 4F1 + F2) 

a 

Hence the Newton-Cotes constants are as given in Table 5.5 for the case n = 2. 

EXAMPLE 6.35: Use Simpson's rule to integrate Jg (2r - r) dr. 
In this case n = 2 and h = J. Therefore, ro = 0, r, = i, r2 = 3, and Fo = l, Fi= 

1.328427, F2 = 5, and we obtain 

f (2' - r) dr = 1[(1)(1) + (4)(1.328427) + (1)(5)] 

or f (2' - r) dr = 5.656854 

The exact result is 

Hence the error is 

J: (2' - r) dr = 5.598868 

R = 0.057986 

However, using the upper bound value on the error, we have 

R < <3
1
~)s (ln 2)4(2') = 0.448743 
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To obtain greater accuracy in the integration using the Newton-Cotes formulas we 
need to employ a smaller interval h, i.e., include more evaluations of the function to be 
integrated. Then we have the choice between two different strategies: we may use a higher­
order Newton-Cotes formula or, alternatively, employ the lower-order formula in a re­
peated manner, in which case the integration procedure is referred to as a composite 
formula. Consider the following example. 

EXAMPLE 5.36: Increase the accuracy of the integration in Example 5.35 by using half the 
interval spacing. 

In this case we have h = i, and the required function values are Fo = l, Fi = 0.931792, 
F2 = 1.328427, F3 = 2.506828, and F4 = 5. The choice now lies between using the higher­
order Newton-Cotes formula with n = 4 or applying the Simpson's rule twice, i.e., to the first 
two intervals and then to the second two intervals. Using the Newton-Cotes formula with n 4, 
we obtain 

f (2' r) dr"' !(7Fo + 32F1 + 12F2 + 32F3 + 7F,) 

Hence, f (2r - r) dr = 5.599232 

On the other hand, using Simpson's rule twice, we have 

f (2' r) dr = f' (2' - r) dr + {, (2' - r) dr 

The integration is performed using 

f3/2 l - 0 
Jo (2r - r) dr = ~(Fo + 4F1 + F2) 

where Fo, F,, and F2 are the function values at r = 0, r = J, and r = J, respectively; i.e., 

Fo = l; F1 = 0.931792; F2 = 1.328427 

Hence we use 
r312 

Jo (2r - r) dr = 1.513899 

Next we need to evaluate 

J:
3 3 - 1 

(2' - r) dr = -
6 

2 (Fo + 4F1 + F2) 
3/2 

where Fo, F,, and F2 are the function values at r = t r = ! , and r = 3, respectively, 

Fo = 1.328427; Fi = 2.506828; 

Hence we have (
3 

(2r r) dr = 4.088935 
J)/2 

Adding the results in (a) and (b), we obtain 

f (2' - r) dr = 5.602834 

(a) 

(b) 
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The use of a composite formula has a number of advantages over the application of 
high-order Newton-Cotes formulas. A composite formula, such as the repetitive use of 
Simpson's rule, is easy to employ. Convergence is ensured as the interval of sampling 
decreases, and, in practice, a sampling interval could be used that varies from one applica­
tion of the basic formula to the next. This is particularly advantageous when there are 
discontinuities in the function to be integrated. For these reasons, in practice, composite 
formulas are commonly used. 

EXAMPLE 5.37: Use a composite formula that employs Simpson's rule to evaluate the integral 
J~1

13 F(r) dr of the function F(r) in Fig. E5.37. 
This function is best integrated by considering three intervals of integration, as follows: 

f 13 f 2 (9 t3 [ 1 ] 
_

1 
F dr = _

1 
(r 3 + 3) dr + J

2 
[10 + (r 1)113

] dr + J
9 128 

(13 r)5 + 4 dr 

F(r) 

I 

l 16 
I 
I 
I 
I 

' ' I 
I 

I 10 
I 
I 
I 
I 
I 
I 
I 

I 5 
I 
I 
I 
I 

10 + (r-1)113 

-1 0 2 3 4 5 6 7 8 9 10 11 12 13 14 r 

Figure ES.37 Function F(r) 

We evaluate each of the three integrals using Simpson's rule and have 

f, (r' + 3) dr = 
2 

- tl)[(t)(2) + (4)(3.125) + (1)(11)] 

or f 
1 

(r 3 + 3) dr = 12.75 

[ [10 + (r - 1 )'13] dr = 9 ~ 2 
[ (1)(11) + (4)(11.650964) + (I )(12)] 

or [ [10 + (r 1)'''] dr = 81.204498 

r [1~ (13 - r)' + 4] dr = l3; 
9

((1)(12) + (4)(4.25) + (1)(4)] 

or f." [
1
~

8 
(13 - r)' + 4] dr = 22 
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Hence, J
IJ 

_

1 

F dr = 12.75 + 81.204498 + 22 

or f
13 

_

1 

F dr = 115.954498 

5.5.3 The Gauss Formulas (One-Dimensional Integration) 

The basic integration schemes that we have considered so far use equally spaced sampling 
points, although the basic methods could be employed to construct procedures that allow 
the interval of sampling to be varied; i.e., the composite formulas have been introduced. The 
methods discussed so far are effective when measurements of an unknown function to be 
integrated have been taken at certain intervals. However, in the integration of finite element 
matrices, a subroutine is called to evaluate the unknown function F at given points, and 
these points may be anywhere on the element. No additional difficulties arise if the sampling 
points are not equally spaced. Therefore, it seems natural to try to improve the accuracy that 
can be obtained for a given number of function evaluations by also optimizing the positions 
of the sampling points. A very important numerical integration procedure in which both 
the positions of the sampling points and the weights have been optimized is Gauss quadra­
ture. The basic assumption in Gauss numerical integration is that 

f F(r) dr = a, F(r,) + a, F(r,} + · · · + a. F(r,} + R, (5.144) 

where both the weights a,, . . . , an and the sampling points r1, • • • , rn are variables. It 
should be recalled that in the derivation of the Newton-Cotes formulas, only the weights 
were unknown, and they were determined from the integration of a polynomial q,(r) that 
passed through equally spaced sampling points of the function F(r). We now also calculate 
the positions of the sampling points and therefore have 2n unknowns to determine a 
higher-order integration scheme. 

In analogy with the derivation of the Newton-Cotes formulas, we use an interpolating 
polynomial f/,(r) of the form given in (5.140), 

cJ,(r) = ± Fjlj(r) (5.145) 
j=l 

where n samplings points are now considered, ri, ... , rn, which are still unknown. For the 
determination of the values r1, ... , rn, we define a function P(r), 

P(r) = (r - r1)(r - r2) · · · (r - rn) (5.146) 

which is a polynomial of order n. We note that P(r} = 0 at the sampling points r1, ••• , rn, 
Therefore, we can write 

F(r) = cJ,(r) + P(r)({3o + /31 r + J3,ir 2 + · · · ) 
Integrating F(r), we obtain r F(r) dr ! Fj[f li(r) dr] + #, p{f ,;P(r) dr] 

(5.147) 

(5.148) 
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where it should be noted that in the first integral on the right in (5.148), functions of order 
(n - 1) and lower are integrated, and in the second integral the functions that are integrated 
are of order n and higher. The unknown values r,;,j = I, 2, ... , n, can now be determined 
using the conditions 

f P(r)rk dr = 0 k = 0, 1, 2, ... , n - 1 (5.149) 

Then, since the polynomial f/,(r) passes through n sampling points of F(r), and P(r) vanishes 
at these points, the conditions in (5.149) mean that the required integral J! F(r) dr is 
approximated by integrating a polynomial of order (2n - 1) instead of F(r). 

In summary, using the Newton-Cotes formulas, we use (n + 1) equally spaced sam­
pling points and integrate exactly a polynomial of order at most n. On the other hand, in 
Gauss quadrature we require n unequally spaced sampling points and integrate exactly a 
polynomial of order at most (2n - 1). Polynomials of orders less than n and (2n - 1), 
respectively, for the two cases are also integrated exactly. 

To determine the sampling points and the integration weights, we realize that they 
depend on the interval a to b. However, to make the calculations general, we consider a 
natural interval from -1 to + 1 and deduce the sampling points and weights for any interval. 
Namely, if r, is a sampling point and a, is the weight for the interval -1 to + 1, the 
corresponding sampling point and weight in the integration from a to b are 

respectively. 

a+b b-a --+--r· 2 2 I 
and 

b-a 
a; 

Hence, consider an interval from 1 to + 1. The sampling points are determined from 
(5.149) with a = -1 and b = + 1. To calculate the integration weights we substitute for 
F(r) in (5.144) the interpolating polynomial f/,(r) from (5.145) and perform the integration. 
It should be noted that because the sampling points have been determined, the polynomial 
f/,(r) is known, and hence 

J
+l 

ai = [ir) dr; 
-1 

j = 1, 2, ... , n 

TABLE 5.6 Sampling points and weights in Gauss-Legendre 
numerical integration (interval - 1 to + 1) 

n r; a, 

0. (15 zeros) 2. (15 zeros) 

2 ±0.57735 02691 89626 1.00000 00000 00000 

3 ±0.77459 66692 41483 0.55555 55555 55556 
0.00000 00000 00000 0.88888 88888 88889 

4 ±0.86113 63115 94053 0.34785 48451 37454 
±0.33998 10435 84856 0.65214 51548 62546 

5 ±0.90617 98459 38664 0.23692 68850 56189 
±0.53846 93101 05683 0.47862 86704 99366 

0.00000 00000 00000 0.56888 88888 88889 
6 ±0.93246 95142 03152 0.17132 44923 79170 

±0.66120 93864 66265 0.36076 15730 48139 
±0.23861 91860 83197 0.46791 39345 72691 

(5.150) 
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The sampling points and weights for the interval -1 to + I have been published by A. N. 
Lowan, N. Davids, and A. Levenson [A] and are reproduced in Table 5.6 for n = 1 to 6. 

The coefficients in Table 5.6 can be calculated directly using (5.149) and (5.150) (see 
Example 5.38). However, for larger n the solution becomes cumbersome, and it is expedient 
to use Legendre polynomials to solve for the coefficients, which are thus referred to as 
Gauss· Legendre coefficients. 

EXAMPLE 5.38: Derive the sampling points and weights for two-point Gauss quadrature. 
In this case P(r) = (r - r,)(r - r2) and (5.149) gives the two equations 

Solving, we obtain 

and 

Hence 

f :
1

1 
(r r1)(r - r2) dr = 0 

f
+I 

_

1 

(r - r,)(r - r2)r dr = 0 

r, + r2 = 0 

I 1 
r, = - V3; r2 = +-

V3 
The corresponding weights are obtained using (5.150), which in this case gives 

f
+I r-

a1 = dr 
-1 r, - r2 

f
+l 

r - r 1 
a2 = --dr 

-1 r2 r1 

Since r2 = - ri, we obtain a1 = a2 = 1.0. 

EXAMPLE 5.39: Use two-point Gauss quadrature to evaluate the integral JJ (2r - r) dr 
considered in Examples 5.35 and 5.36. 

Using two-point Gauss quadrature, we obtain from (5.144), 

f (2' - r) dr = a, F(r,) + a, F(r,) (a) 

where a1, a2 and r1 , r2 are weights and sampling points, respectively. Since the interval is from 
Oto 3, we need to determine the values ai, a2 , ri, and r2 from the values given in Table 5.6, 

a, = J(l); a2 = HO 

r1 = 1 ( 1 - ~} r2 ~(1 +-1) 
2 V3 

where l/V3 = 0.5773502692. Thus, 

F(r,) = 0.91785978; F(r2) = 2.78916389 

and (a) gives f (2' - r) dr "' 5.56053551 



464 Formulation and Calculation of lsoparametric Finite Element Matrices Chap.5 

The Gauss-Legendre integration procedure is commonly used in isoparametric finite 
element analysis. However, it should be noted that other integration schemes, in which both 
the weights and sampling positions are varied to obtain maximum accuracy, have also been 
derived (see C. E. Froberg [A] and A. H. Stroud and D. Secrest [A]). 

5.5.4 Integrations In Two and Three Dimensions 

So far we have considered the integration of a one-dimensional function F(r). However, 
two- and three-dimensional integrals need to be evaluated in two- and three-dimensional 
finite element analyses. In the evaluation of rectangular elements, we can apply the above 
one-dimensional integration formulas successively in each direction. 8 As in the analytical 
evaluation of multidimensional integrals, in this procedure, successively, the innermost 
integral is evaluated by keeping the variables corresponding to the other integrals constant. 
Therefore, we have for a two-dimensional integral, 

f
+I f+l f+I 

_
1 

_
1 

F(r, s) dr ds = ; a:; _
1 

F(ri, s) ds (5.151) 

or f :,· f :: F(r, s) dr ds = t a,a; F(r., s;) (5.152) 

and corresponding to (5.133), a;i = a;ai, where a; and ai are the integration weights for 
one-dimensional integration. Similarly, for a three-dimensional integral, 

(5.153) f+l f+I f+I 
F(r, s, t) dr ds dt = ~ aiajo:1cF(r;, Sj, tk) 

-1 -· -1 ,.,.k 
and a1ik = a1a1ak, We should note that it is not necessary in the numerical integration to use 
the same quadrature rule in the two or three dimensions; i.e., we can employ different 
numerical integration schemes in the r, s, and t directions. 

EXAMPLE 5.40: Given that the (i,j)th element of a stiffness matrix K is Ct Ct r2s2 dr ds. 
Evaluate the integral J~.1 Cl r2s2 dr ds using (1) Simpson's rule in both rands, (2) Gauss 
quadrature in both rands, and (3) Gauss quadrature in rand Simpson's rule ins. 

1. Using Simpson's rule, we have 

f+I f+l f+I 
_

1 

_

1 

r2s 2 dr ds = _
1 

~[(1)(1) + {4)(0) + (l)(l}]s2 ds 

= r Js' ds = H<1)G) + (4)(0) + (l)m J = ~ 
2. Using two-point Gauss quadrature, we have 

f+l f+I f+I [ ( l )2 ( } )2] 
_

1 
_, r2s2 dr ds = _

1 
(1) V3 + (1) V3 s2 ds 

f +I 2 2 [ ( } )2 ( } )2] 4 = -s 2 ds = - (1) - + (1) - = -
-1 3 3 V3 Y3 9 

8 This results in much generality of the integration, but for special cases somewhat less costly procedures can 
be designed (see B. M. Irons [C]). 
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3. Finally, using Gauss quadrature in rand Simpson's rule ins, we have 

f.' [<!)(~)' + (!)(~)} ds 

= f
1

1 

~s
2 ds = ~ [ <o(}) + (4)(0) + {l)(~)] = i 

We should note that these numerical integrations are exact because both integration 
schemes, i.e., Simpson's rule and two-point Gauss quadrature, integrate a parabola exactly. 

The above procedure is directly applicable to the evaluation of matrices of quadrilat­
eral elements in which all integration limits are -1 to + 1. Hence, in the evaluation of a 
two-dimensional finite element, the integrations can be carried out for each entry of the 
stiffness and mass matrices and load vectors as illustrated in Example 5.40. Based on the 
information given in Table 5.6, some common Gauss quadrature rules for two-dimensional 
analysis are summarized in Table 5. 7. 

Considering next the evaluation of triangular and tetrahedral element matrices, how­
ever, the procedure given in Example 5.40 is not applicable directly because now the 
integration limits involve the variables themselves. A great deal of research has been spent 
on the development of suitable integration formulas for triangular domains, and here, too, 
formulas of the Newton-Cotes type (see P. Silvester [A]) and of the Gauss quadrature type 
are available (see P. C. Hammer, 0. J. Marlowe, and A.H. Stroud [A] and G. R. Cowper 
[A]). As in the integration over quadrilateral domains, the Gauss quadrature rules are in 
general more efficient because they yield a higher integration accuracy for the same number 
of evaluations. Table 5.8 lists the integration stations and integration weights of the Gauss 
integration formulas published by G. R. Cowper [A]. 

5.5.5 Appropriate Order of Numerical Integration 

In the practical use of the numerical integration procedures presented in the previous 
section, basically two questions arise, namely, what kind of integration scheme to use, and 
what order to select. We pointed out that in using the Newton-Cotes formulas, (n + 1) 
function evaluations are required to integrate without error a polynomial of order n. On the 
other hand, if Gauss quadrature is used, a polynomial of order (2n - 1) is integrated exactly 
with only n function evaluations. In each case of course any polynomial of lower order than 
n and (2n - 1 ), respectively, is also integrated exactly. 

In finite element analysis a large number of function evaluations directly increases the 
cost of analysis, and the use of Gauss quadrature is attractive. However, the Newton-Cotes 
formulas may be efficient in nonlinear analysis for the reasons discussed in Section 6.8.4. 

Having selected a numerical integration scheme, the order of numerical integration to 
be used in the evaluation of the various finite element integrals needs to be determined. The 
choice of the order of numerical integration is important in practice because, first, the cost 
of analysis increases when a higher-order integration is employed, and second, using a 
different integration order, the results can be affected by a very large amount. These 
considerations are particularly important in three-dimensional analysis. 

The matrices to be evaluated by numerical integration are the stiffness matrix K, the 
mass matrix M, the body force vector R8 , the initial stress vector R,, and the surface load 
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TABLE 5.7 Gauss numerical integrations over quadrilateral domains 

Integration 
order 

2x2 

3x3 

4x4 

Degree of 
precision 

3 

5 

7 

Location of integration 
points 

s 

r•-0.577 ... 

I 

r= --0.774 ... r=O 
r= 0.774 .•. 

s 

S• 0.861 ... 

r 

<t>The location of any integration point in the x, y coordinate system is given by: Xp = I1h;(rp, sp)X; and 
YP = I;h;(rp, sp)Y1· The integration weights are given in Table 5.6 using (5.152). 

vector Rs. In general, the appropriate integration order depends on the matrix that is 
evaluated and the specific finite element being considered. To demonstrate the important 
aspects, consider the Gauss numerical integration order required to evaluate the matrices of 
the continuum and structural elements discussed in Sections 5.3 and 5.4. 

A first observation in the selection of the order of numerical integration is that, in 
theory, if a high enough order is used, all matrices will be evaluated very accurately. On the 
other hand, using too low an order of integration, the matrices may be evaluated very 
inaccurately and, in fact, the problem solution may not be possible. For example, consider 
an element stiffness matrix. If the order of numerical integration is too low, the matrix can 
have a larger number of zero eigenvalues than the number of physical rigid body modes. 
Hence, for a successful solution of the equilibrium equations alone, it would be necessary 
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that the deformation modes corresponding to all zero eigenvalues of the element be properly 
restrained in the assemblage of finite elements because otherwise the structure stiffness 
matrix would be singular. A simple example is the evaluation of the stiffness matrix of a 
three-node truss element. If one-point Gauss numerical integration is used, the row and 
column corresponding to the degree of freedom at the midnode of the element are null 
vectors, which may result in a structure stiffness matrix that is singular. Therefore, the 
integration order should in general be higher than a certain limit. 

The integration order required to evaluate a specific element matrix accurately can be 
determined by studying the order of the function to be integrated. In the case of the stiffness 
matrix, we need to evaluate 

K = L B7CB detJ dV (5.154) 

where C is a constant material property matrix, Bis the strain-displacement matrix in the 
natural coordinate system r, s, t, det J is the determinant of the Jacobian transforming local 
(or global) to natural coordinates (see Section 5.3), and the integration is performed over 
the element volume in the natural coordinate system. The matrix function F to be integrated 
is, therefore, 

F = B7CB det J (5.155) 

The matrices J and B have been defined in Sections 5.3 and 5.4. 
A case for which the order of the variables in F can be evaluated with relative ease 

arises when the four-node two-dimensional element studied in Example 5.5 is used as a 
rectangular or parallelogram element. It is instructive to consider this case in detail because 
the procedure of evaluating the required integration order is displayed clearly. 

EXAMPLE 5.41: Evaluate the required Gauss numerical integration order for the calculation 
of the stiffness matrix of a four-node displacement-based rectangular element. 

The integration order to be used depends on the order of the variables r and s in F defined 
in (5.155). For a rectangular element with sides 2a and 2b, we can write 

x = ar; y = bs 

and consequently the Jacobian matrix J is 

J = [~ ~] 
Since the elements of J are constant, referring to the information given in Example 5.5, the 
elements of the strain-displacement matrix B are therefore functions of r or s only. But the 
determinant of J is also constant; hence, 

F = f(r 2, rs, s2) 

where f denotes "function of." 
Using two-point Gauss numerical integration in the r and s directions, all functions in r and 

s involving at most cubic terms are integrated without error; e.g., for integration order n, the order 
of rands integrated exactly is (2n - 1). Hence, two-point Gauss integration is adequate. 

Note that the Jacobian matrix J is also constant for a four-node parallelogram element; 
hence, the same derivation and result are applicable. 
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In an analogous manner, the required integration order to evaluate exactly (or very 
accurately) the stiffness matrices, mass matrices, and element load vectors of other elements 
can be assessed. In this context it should be noted that the Jacobian matrix is not constant 
for nonrectangular and nonparallelogram element shapes, which may mean that a very high 
integration order might be required to evaluate the element matrices to high accuracy. 

In the above example, a displacement-based element was considered, but we should 
emphasize that, of course, the same numerical integration schemes are also used in the 
evaluation of the element matrices of mixed formulations. Hence, in mixed formulations the 
required integration order must also be identified using the procedure just discussed (see 
Exercise 5.57). 

In studying which integration order to use for geometrically distorted elements, we 
recognize that it is frequently not necessary to calculate the matrices to very high precision 
using a very high order of numerical integration. Namely, the change in the matrix entries 
(and their effects) due to using an order of l instead of (l - 1) may be negligible. Hence, we 
need to ask what order of integration is generally sufficient, and we present the following 
guideline. 

We recommend that full numerical integration 9 always be used for a displacement­
based or mixed finite element formulation, where we define "full" numerical integration as 
the order that gives the exact matrices (i.e., the analytically integrated values) when the 
elements are geometrically undistorted. Table 5.9 lists this order for elements used in 
two-dimensional analyses. 

Using this integration order for a geometrically distorted element will not yield the 
exactly integrated element matrices. The analysis is, however, reliable because the numeri­
cal integration errors are acceptably small assuming of course reasonable geometric distor­
tions. Indeed, as shown by P. G. Ciarlet [A], if the geometric distortions are not excessive 
and are such that in exact integration the full order of convergence is still obtained (with the 
provisions discussed in Section 5.3.3), then that same order of convergence is also obtained 
using the full numerical integration recommended here. Hence, in that case, the order of 
numerical integration recommended in Table 5.9 does not result in a reduction of the order 
of convergence. On the other hand, if the element geometric distortions are very large, and 
in nonlinear analysis of course, a higher integration order may be appropriate (see Sec­
tion 6.8.4 ). 

Figure 5.39 shows some results obtained in the solution of the ad hoc test problem 
described in Fig. 4.12. These results were obtained using sequences of distorted, quasi­
uniform meshes. Figure 5.39(a) describes the geometric distortions used, and Fig. 5.39(b) 
and (c) show the convergence results obtained with the eight-node and nine-node elements 
using the Gauss integration order in Table 5.9. These results show that the order of conver­
gence ( the slopes of the graphed curves when h is small) is approximately 4 in all cases (as 
is theoretically predicted). However, the actual value of the error for a given value of his 
larger when the elements are distorted. That is, the constant c in (4.102) increases as the 
elements are distorted. 

The reason for recommending the numerical integration orders in Table 5.9 is that the 
reliability of the finite element procedures is of utmost concern (see Section 1.3), and if an 

9 In Section 5.5.6 we briefly discuss "reduced"numerical integration, which is the counterpart of full numer­
ical integration. 



470 Formulation and Calculation of lsoparametric Finite Element Matrices 

TABLE 5.9 Recommended full Gauss numerical integration orders for the evaluation of 
isoparametric displacement-based element matrices (use of Table 5.7) 

Two-dimensional elements 
(plane stress, plane strain 
and axisymmetric conditions) 

I I 
4-node distorted ~ 
8-node I : I 
8-node distorted} ·---... :1--__ \_.l. 

9-node I : I 
9-node distorted 

16-node 

16-node distorted 

Integration order 

2x2 

2x2 

3x3 

3x3 

3x3 

3x3 

4x4 

4x4 

Chap.5 

(Note: In axisymmetric analysis, the hoop strain effect is in all cases not integrated exactly, but with sufficient 
accuracy.) 
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integration order lower than the "full" order is used (for a displacement-based or a mixed 
formulation), the analysis is in general unreliable. 

An interesting case is the rectangular two-dimensional plane stress eight-node 
displacement-based isoparametric element evaluated with 2 X 2 Gauss integration. This 
integration order yields an element stiffness matrix with one spurious zero energy mode (see 
Exercise 5.56); that is, the element matrix not only has three zero eigenvalues (correspond­
ing to the physical rigid body motions) but also has one additional zero eigenvalue that is 
purely a result of using too low an order of integration. Figure 5.40 shows a very simple 
analysis case using a single eight-node element with 2 X 2 Gauss integration in which the 
model is unstable; that is, if the solution is obtained, the calculated nodal point displace­
ments are very large and have no resemblance to the correct solution.10 In this simple 
analysis it is readily seen that the eight~node element using 2 X 2 Gauss integration is 
inadequate, and it can be argued that in more complex analysis the (single) spurious zero 
energy mode is usually adequately restrained in an assemblage of elements. However, in a 
large, complex model, in general, elements with spurious zero energy modes in an uncon­
trolled manner improve the overall solution results, introduce large errors, or result in an 
unstable solution. 

r 
Figure 5.40 Eight-node plane stress 
element supported at B by a spring. 
Analysis unstable with 2 X 2 Gauss 
integration. 

As an example, let us consider the dynamic analysis of the cantilever bracket shown 
in Fig. 5.41 and use the nine-node displacement-based element with 2 X 2 Gauss integra­
tion, in which case each element stiffness matrix has three spurious zero energy modes. We 
have considered this bracket already in Fig. 4.20, but with two pin supports instead of the 
fixed condition used now. (As noted there, the 16-element model of the pin-supported 
bracket using 2 x 2 Gauss integration for the element stiffness matrices was unstable). The 
frequency solution of the 16-element mesh of nine-node displacement-based elements 
representing the clamped cantilever bracket gives the results listed in Table 5.10. This table 
shows that the use of 2 X 2 Gauss integration (referred to as reduced integration; see 
Section 5.5.6) does not result in a spurious zero energy mode of the complete model 
(because the bracket is clamped at its left end) but in one spurious nonzero energy mode 
that is part of the predicted smallest six frequencies. Such modes of no physical reality­
which we refer to also as "phantom" modes-can introduce uncontrolled errors into a 

10 In ex.act arithmetic the stiffness matrix is singular, but because of round-off errors in the computations a 
solution is usually obtained. 
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50mm 

E= 55 N/mm2 

V• 0.3 N 2 
p = 1.3 x 10-9 •se~ 

mm 

(a) Geometry and material data 

• 
• 

(bl Sixteen element mesh of 9-node elements 

Figure S.41 Frequency solution of clamped cantilever bracket 

dynamic step-by-step solution11 that may not be easily detectable, and even if these errors 
are detected, the analysis would require additional solution attempts all of which may result 
in extensive and undesirable numerical experimentation. 

For these reasons any element with a spurious zero energy mode should not be used 
in engineering practice, in linear or in nonlinear analysis, and we therefore do not discuss 
such elements in this book. However, we should mention that to prevent the deleterious 
effects of spurious modes, significant research efforts have been conducted to control their 

11 The mode shapes of phantom frequencies may indicate that the response is not physical, but in a dynamic 
step-by-step solution, the frequencies and mode shapes are normally not calculated. 
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TABLE 5.10 Smallest six frequencies (in Hz) of the 16-element mesh in 
Fig. 5.41(b) using a consistent mass matrixt 

16-element model 16 x 64 
element model,* 

Mode 3 x 3 2X2 3 x 3 
number Gauss integration Gauss integration Gauss integration 

1 112.4 110.5 110.6 
2 634.S 617.8 606.4 
3 906.9 905.5 905.2 
4 1548 958.4§ 1441 
5 2654 1528 2345 
6 2691 2602 2664 

t The element consistent mass matrices are always integrated using 3 X 3 Gauss 
integration. 
*'We include the results using a fine mesh (with 64 elements replacing each nine-node 
element of the 16~element mesh) for comparison purposes. 
I Spurious i.e., phantom mode. 
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behavior see, for example, W. K. Liu, Y.K. Hu, and T. Belytschko [A] and W. J. T. Daniel and 
T. Belytschko [A]. 

ln the above discussion we tocused attention on the evaluation ot the element stitfness 
matrices. Considering the element force vectors, it is usually good practice to employ the 
same integration scheme and the same order of integration as for the stiffness matrices. For 
the evaluation of an element mass matrix, it should be recognized that for a lumped mass 
matrix only the volume of the element needs to be evaluated correctly and for the consistent 
mass matrix the order given in Table 5.9 is usually appropriate. However, special cases exist 
in which for the sufficiently accurate evaluation of a consistent mass matrix a higher-order 
integration may be necessary than in the calculation of the stiffness matrix. 

EXAMPLE 5.42: Evaluate the stiffness and mass matrices and the body force vector of ele­
ment 2 in Example 4.5 using Gauss numerical integration. 

The expressions to be integrated have been derived in Example 4.5, 

(

80 

( x )
2 

[- :01[ 1 1 ] 
K E Jo I + 40 ;QJ - 80 80 dx 

(a) 

M = P f(1 +;o)' l ~/0j[(1 - ;0) ;0] dx 
(b) 

RB=_!_ fso (1 + ~)2[' ~ :o] dx 
10 Jo 40 

80 

(c) 
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The expressions in (a) and (c) are integrated exactly with two-point integration, whereas the 
evaluation of the integral in (b) requires three-point integration. A higher·order integration is 
required in the evaluation of the mass matrix because this matrix is obtained from the displace­
ment interpolation functions, whereas the stiffness matrix is calculated using derivatives of the 
displacement functions. 

Using one-, two-, and three-point Gauss integration to evaluate (a), (b), and (c) we obtain 
One-point integration: 

K = 12E[ 1 
240 -1 

-ll 
1 ' 

p [ 480 480] 
M = 6 480 480 ; 

1 [96] Rs=6 96 

Two-point integration: 

K = 13E[ l 
240 -1 

-ll 
1 ' 

M = !!. [ 373.3 
6 346.7 

346.7] 
1013.3 ' 

1 [ 72] RB= 6 136 

Three-point integration: 

K= 13E[ 1 
240 -1 ~l M = !!. [384 

6 336 
336] 

1024' 
l [ 72] Rs= 6 136 

It is interesting to note that with too low an order of integration the total mass of the 
element and the total load to which the element is subjected are not taken fully into account. 

Table 5.9 summarizes the results of an analysis for the appropriate integration orders in the 
evaluation of the stiffness matrices of two-dimensional elements. Of course, the informa­
tion given in the table is also valuable in deducing appropriate orders of integration for the 
calculation of the matrices of other elements. 

EXAMPLE 5.43: Discuss the required integration order for the evaluation of the MITC9 plate 
and isoparametric three-dimensional elements shown in Fig. ES.43. 

Consider the plate element first. The integration in the r, s plane corresponds in essence 
to the evaluation of the nine-node element in Table S. 9. In general, this integration order of 3 X 3 
will also be effective when the element is used in distorted form. 

The required integration order for the evaluation of the stiffness matrix of the three­
dimensional solid element can also be deduced from the information given in Table 5.9. The 
displacements vary linearly in the r direction; hence, two-point integration is sufficient. In the 

ft-i'l' ____ 
(a) MITC9 plate bending element 

x 
(b) Three-dimensional solid element 

Figure ES.43 Elements considered in Example 5.43 
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t, s planes, i.e., at r equal to constants, the element displacements correspond to those of the 
eight-node element in Table 5.9. Hence, 2 X 3 X 3 Gauss integration is required to evaluate the 
element stiffness matrix exactly. 

5.5.6 Reduced and Selective Integration 

Table 5.9 gives the recommended Gauss numerical integration orders for two-dimensional 
isoparametric displacement-based elements, and the recommended orders for other ele­
ments can be deduced (see Example 5.43). With these integration orders (referred to as 
"full" integration), the element matrices of geometrically undistorted elements are evalu­
ated exactly, whereas for geometrically distorted elements a sufficiently accurate approxi­
mation is obtained (unless the geometric distortions are very large, in which case a higher 
integration order is recommended). 

However, in view of our discussion in Section 4.3.4, we recall that the displacement 
formulation of finite element analysis yields a strain energy smaller than the exact strain 
energy of the mathematical/mechanical model being considered, and physically, a displace­
ment formulation results in overestimating the system stiffness. Therefore, we may expect 
that by not evaluating the displacement-based element stiffness matrices accurately in the 
numerical integration, better overall solution results can be obtained. This should be the 
case if the error in the numerical integration compensates appropriately for the overestima­
tion of structural stiffness due to the finite element discretization. In other words, a reduc­
tion in the order of the numerical integration from the order that is required to evaluate the 
element stiffness matrices exactly (for geometrically undistorted elements) may be expected 
to lead to improved results. When such a reduction in the order of numerical integration is 
used, we refer to the procedure as reduced integration. For example, the use of 2 X 2 Gauss 
integration (although not recommended for use in practice; see Section 5.5.5) for the 
nine-node isoparametric element stiffness matrix corresponds to a reduced integration. In 
addition to merely using a reduced integration order, selective integration may also be 
considered, in which case different strain terms are integrated with different orders of 
integration. In these cases of reduced and selective numerical integration the specific 
integration scheme should be regarded as an integral part of the element formulation. 

The key question as to whether a reduced and/or selectively integrated element can be 
recommended for practical use is: Has the element formulation (using the specific integra­
tion procedure) been sufficiently tested and analyzed for its stability and convergence? If 
tractable, a mathematical stability and convergence analysis is of course most desirable. 

A natural first step in such an analysis is to view the reduced and/or selectively 
integrated element as a mixed element (see D. Chapelle and K. J. Bathe [E]). (An example is 
the two-node mixed interpolated beam element in Section 5.4.1 further mentioned below.) 
Once the exact equivalence between the reduced and/or selectively integrated element and a 
mixed formulation has been identified, the second step is to analyze the mixed formulation for 
stability and convergence and in this way obtain a deep understanding of the element based on 
the reduced/selective integration. 

Since there are many possibilities for assumptions in mixed formulations, it is natural 
to assume that there exists a mixed formulation that is equivalent to the reduced /selectively 
integrated element and seek that formulation for analysis purposes. However, the mere fact 
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that in general reduced/selectively integrated elements can be regarded as mixed formula­
tions does not justify the use of reduced integration because of course not every mixed 
formulation represents a reliable and efficient finite element scheme. Rather, this equiva­
lence (with the details to be identified in each specific case) only points toward an approach 
for the analysis of reduced/selectively integrated elements. 

It also follows that once a complete equivalence has been identified, we can consider 
the reduced/selective integration as merely an effective way to accurately calculate the 
finite element matrices of the mixed formulation, and we adopt here this view and interpre­
tation of reduced and selective integration. 

A relatively simple example is the isoparametric two-node beam element based on 
one-point (r-direction) Gauss integration. In Example 4.30 and Section 5.4.1 we showed 
that this element is completely equivalent to the beam element obtained using the Hu­
Washizu variational principle with linearly varying transverse displacement w, section 
rotation {3, and a constant shear strain y within each element. The stability and convergence 
of the element were considered in Section 4.5.7 where we showed that the ellipticity and 
inf-sup conditions are satisfied. 

Let us consider the following additional example to emphasize these observations. 

EXAMPLE 5.44: A simple triangular plate bending element can be derived using the isopara­
metric displacement formulation in Section 5.4.2 but integrating the stiffness matrix terms with 
one-point integration. This integration evaluates the stiffness matrix terms corresponding to 
bending exactly, whereas the terms corresponding to the transverse shear are integrated approx­
imately. Hence, the element stiffness matrix is based on reduced integration (or we may also say 
selective integration because only the shear terms are not integrated exactly). 

Derive a variational formulation and the stiffness matrix for this element. 
The element and its variational formulation have been presented by J.-L. Batoz, 

K. J. Bathe, and L. W. Ho [A]. We note that the element is a natural development when we are 
aware of the success of the one-point integrated isoparametric beam element (see Example 4.30 
and Sections 4.5.7 and 5.4.1). This beam element has a strong variational basis, the mathemat­
ical analysis ensures good convergence properties, and computationally the element is simple 
and effective. 

For the development of the variational basis of this plate element, we note that the 
one-point integration implicitly assumes a constant transverse shear strain (as in the isoparamet­
ric one-point integrated two-node beam element). Referring to Example 4.30. we can therefore 
directly establish the variational indicator for the plate element as 

- * i (} 1 T ) i nHR = A 2K7CbK + ··{Cs-VAS - 2,'YAS C.s'VAS dA - A wp dA + boundary terms (a) 

where K, Cb, 'V, Cs have been defined in (5.95) to (5.97) and yAs contains the assumed transverse 
shear strains 

[
')'AS] "fAS = xi = COilStant 
'VAS 
I YZ 

The relation in (a) is a modified Hellinger-Reissner functional. Substituting the interpolations for 
w, f3x, and {3y i~to Kandy, integrating over the element midsurface area A. and invoking the 
stationarity of n:a with respect to the nodal point variables u, 
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and 'YAs. we obtain 

where 

[~ ~;][~s] = [!] 
Kb= L BiCbBbdA 

D = L Cs dA = A Cs 

G = Cs L BsdA 

and Bb and Bs are strain-displacement matrices, 

K = Bbu 

'Y = Bsli 

Chap.5 

Using static condensation, we obtain the stiffness matrix of the element with respect to the 
nodal point variables only, 

K = Kb + GT»-·G 

As we discussed in Section 5.4.2, the pure displacement-based isoparametric plate 
element (Le., using full numerical integration for the bending and transverse shear terms in 
the displacement-based stiffness matrix) is much too stiff (displays the shear locking phe­
nomenon). The presentation in Example 5.44 shows that the one-point integrated element 
has a variational basis quite analogous to the basis of the one-point integrated isoparametric 
beam element. However, whereas the beam element is reliable and effective, the plate 
element stiffness matrix in Example 5.44 has a spurious zero eigenvalue and hence the 
element is unreliable and should not be used in practice (as was pointed out by J.-L. Batoz, 
K. J. Bathe, and L. W. Ho [A]). 

The important point of this example is that a variational basis of an element might well 
exist, but whether the element is useful and effective can of course be determined only by 
a deeper analysis of the formulation. 

The equivalence between a certain isoparametric reduced or selectively integrated 
displacement-based element and a mixed forµmlation may also hold only for specific geo­
metric element shapes and may also no longer be valid when nonisotropic material laws (or 
geometric nonlinearities) are introduced. An analysis of the effects of each of these condi­
tions should then be performed. 

5.5. 7 Exercises 

5.53. Evaluate the Newton-Cotes constants when the interpolating polynomial is of order 3, i.e., q.,(r) 
is a cubic. 

S.54. Derive the sampling points and weights for three-point Gauss integration. 
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S.55. Show that 3 X 3 Gauss numerical integration is sufficient to calculate the stiffness and mass 
matrices of a nine-node geometrically undistorted displacement-based element for axisymmetric 
analysis. 

5.56. Show that 2 X 2 Gauss integration of the stiffness matrix of the eight-node plane stress 
displacement-based square element results in the spurious zero energy mode shown. (Hint: You 
need to show that Bu = 0 for the given displacements.) 

u 

2u 

Symmetric 
deformations 

5.57. Consider the 9/3 u/p element and show that 3 x 3 Gauss integration of a geometrically undis­
torted element gives the exact stiffness matrix. Also, show that 2 X 2 Gauss integration is not 
adequate. 

5.58. Identify the required integration order for full integration of the stiffness matrix of the six-node 
displacement-based triangular element when using the Gauss integration in Table 5.8. 

Plane stress 
element 

5.59. Consider the nine-node plane stress element shown. All nodal point displacements are fixed 
except that u1 is free. Calculate the displacement u1 due to the load P. 
(a) Use analytical integration to evaluate the stiffness coefficient. 
(b) Use 1 X 1, 2 x 2, and 3 x 3 Gauss numerical integration to evaluate the stiffness 

coefficient. Compare your results. 

I~ 10 
~ I 

u,,P 

Thickness 
t• 1.0 

5.60. Consider the evaluation of lumped mass matrices for the elements shown in Table 5.9. Determine 
suitable Gauss integration orders for the evaluation of these matrices. 
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5.61. Consider the plate bending element formulation in Example 5.29. Assume that the element 
stiffness matrix is evaluated with one-point Gauss integration. Show that this element has 
spurious zero energy modes.12 

S.62. Consider the plate bending element formulation in Example 5.29 and assume that the bending 
strain energy is evaluated with 2 x 2 Gauss integration and the shear strain energy is evaluated 
with one-point Gauss integration. Show that this element has spurious zero energy modes. 12 

5.6 COMPUTER PROGRAM IMPLEMENTATION OF ISOPARAMETRIC 
FINITE ELEMENTS 

In Section 5.3 we discussed the isoparametric finite element formulation and gave the 
specific expressions needed in the calculation of four-node plane stress (or plane strain) 
elements (see Example 5.5). An important advantage of isoparametric element evaluations 
is the similarity between the calculations of different elements. For example, the calculation 
of three-dimensional elements is a relatively simple extension from the calculation of 
two-dimensional elements. Also, in one subroutine, elements with a variety of nodal point 
configurations can be calculated if an algorithm for selecting the appropriate interpolation 
functions is used (see Section 5.3). 

The purpose of this section is to provide an actual computer program for the calcula­
tion of the stiffness matrix of four-node isoparametric elements. In essence, SUBROUTINE 
QUADS is the computer program implementation of the procedures presented in Exam­
ple 5.5. In addition to plane stress and plane strain, axisymmetric conditions can be consid­
ered. It is believed that by showing the actual program implementation of the element, the 
relative ease of implementing isoparametric elements is best demonstrated. The input and 
output variables and the flow of the program are described by means of comment lines. 

c 
c . 
c . 
c . 
c . 
c . 
c . 
c . 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c . 
c . 
c . 
c . 

SUBROUTINE QUADS (NEL,ITYPE,NINT,THIC,YM,PR,XX,S,IOUT) 

PROGRAM 
TO CALCULATE ISOPARAMETRIC QUADRILATERAL ELEMENT STIFFNESS 
MATRIX FOR AXISYMMETRIC, PLANE STRESS, AND PLANE STRAIN 
CONDITIONS 

INPUT VARIABLES 
NEL 
I TYPE 

NINT 
THIC 
YM 
PR 
XX{2,4) 
S(8,8) 
IOUT 

• NUMBER OF ELtMENT 
• ELEMENT TYPE 

EQ.0 • AXISYMMETRIC 
EQ.l • PLANE STRAIN 
EQ.2 • PLANE STRESS 

• GAUSS NUMERICAL INTEGRATION ORDER 
• THICKNESS OF ELEMENT 
• YOUNG'S MODULUS 
• POISSON'S RATIO 
• ELEMENT NODE COORDINATES 
• STORAGE FOR STIFFNESS MATRIX 
• UNIT NUMBER USED FOR OUTPUT 

12 Note that these elements should therefore not be used in practice (see Section 5.5.5). 

QUAOOOOl 
QUA00002 

• QUA00003 
• OUA00004 
• OUAOOOOS 
• QUA00006 
• QUA00007 
• QUA00008 
• QUA00009 
• QUAOOOlO 
• QUAOOOll 
• QUA00012 
• QUA00013 
• QUA00014 
• QUA00015 
• QUA00016 
• QUA00017 
• QUA00018 
• QUA00019 
, OUA00020 
• QUA0002l 
, QUA00022 
• QUA00023 
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c . 
c . 
c . 
c . 
c . 
c . 
c . 
c . 
c . 
c . 
c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 

- - OUTPUT - -
S(8,8) • CALCULATED STIFFNESS MATRIX 

QUA00024 
. 0UA00025 
, QUA00026 

• • , , • • . , • • , • • • • • • . • . . • • . • QUA00027 
IMPLICIT DOUBLE PRECISION (A-H,0-Z) QUA00028 . ... . . . . . . . . . . . . . . . . . . . . . . 
THIS PROGRAl'l IS USED IN SINGLE PRECISION ARITHMETIC ON CRAY 
EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM MACHINES, 
ENGINEERING WORKSTATIONS AND PCS. DEACTIVATE ABOVE LINE FOR 
SINGLE PRECISION ARITHMETIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
DIMENSION D(4,4),B(4,8),XX(2,4),S(8,8),XG(4,4),WGT(4,4),DB(4) 

MATRIX XG STORES GAUSS - LEGENDRE SAMPLING POINTS 

QUA00029 
. QUA00030 
• QUA00031 
• QUA00032 

DATA XG/ 0.DO, 
l .S773502691896DO, 
2 .774596669241500, 
3 -.339981043584900, 

• QUA00033 
0UA00034 
OUA00035 
QUA00036 
QUA00037 
QUA00038 

0.DO, 0.DO, 0.DO, -.577350269189600, QUA00039 
O.DO, 0.00, -.774596669241500, O.DO, QUA00040 
0.DO, -.861136311594100, QUA00041 

.339981043584900, .861136311594100 I QUA00042 

MATRIX WGT STORES GAUSS - LEGENDRE WEIGHTING FACTORS 
QUA00043 
QUA00044 
0UA00045 

DATA WGT / 2.DO, 0.DO, 0.DO, 0.DO, l.DO, l.DO, QUA00046 
l 0.DO, O.DO, .SS555SSSS5556DO, .888888888888900, QUA00047 
2 • 555555555555600, O .DO, • 347854845137500, .652l451548625DO ,QUA00048 
3 • 652145154862500, • 347854845137500 / QUA00049 

O B T A I N S T R E S S - S T R A I N L A W 

F•YM/(1.+PR) 
G•F*PR/(1.-2,*PR) 
H•F + G 

PLANE STRAIN ANALYSIS 

D(l,l)•H 
D(l,2)•G 
0(1,3)•0. 
D(2,l)•G 
D(2,2)•H 
0(2,3)-0. 
0(3,l)•O. 
0(3,2)•0. 
D(3,3)•F/2. 
IF (ITYPE.EQ,l) 
THIC•l. 
GO TO 20 
ENDIF 

THEN 

AXISYMMETRIC ANALYSIS 

D(l,4)•G 
D(2,4)•G 
0(3,4)•0. 
D(4,l)•G 
D(4,2)•G 
D(4,3)•0. 
D(4,4)•H 
IF (ITYPE.EQ.O) GO TO 20 

FOR PLANE STRESS ANALYSIS CONDENSE STRESS-STRAIN MATRIX 

DO 10 I•l,3 
A•D(I,4)/0(4,4) 
DO 10 J•I,3 
D(I,J)•D(I,J) - 0(4,J)*A 

10 D(J,I)•D(I,J) 

QUAOOOSO 
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QUA00053 
QUA00054 
QUA00055 
QUA00056 
QUA00057 
0UA00058 
QUA00059 
QUA00060 
QUA00061 
QUA00062 
QUA00063 
QOA00064 
QUA00065 
QUA00066 
0UA00067 
OUA00068 
QUA00069 
QUA00070 
QUA00071 
QUA00072 
QUA00073 
QUA00074 
QUA00075 
QUA00076 
QUA00077 
QUA00078 
QUA00079 
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C C A L C U L A T E E L E M E N T S T I F F N E S S 
c 

c 

20 DO 30 I•l,8 
DO 30 J•l,8 

30 S(I,J)•O. 
IST•3 
IF (ITYPE.EQ.O) IST•4 
DO 80 LX•l,NINT 
RI•XG(LX,NINT) 
DO 80 LY•l,NINT 
Sl•XG(LY,NINT) 

C EVALUATE DERIVATIVE OPERATOR 8 AND THE JACOBIAN DETERMINANT DET 
c 

c 
CALL STDM (XX,B,DET,RI,SI,XBAR,NEL,ITYPE,IOUT) 

C ADD CONTRIBUTION TO ELEMENT STIFFNESS 
c 

c 

c 

c 

c 
c 
c . 
c . 
c . 
c . 
c . 
c 

c 

c 

IF (ITYPE.GT.0) XBAR•THIC 
WT•WGT(LX,NINT)*WGT(LY,NINT)*XBAR*DET 
DO 10 J•l,8 
DO 40 K•l,IST 
DB(K)•0.0 
DO 40 L•l,IST 

40 DB(K)•DB(K) + O(K,L)*B(L,J) 
DO 60 I•J,8 
STIFF•O.O 
DO SO L•l,IST 

50 STIFF•STIFF + B(L,I)*DB(L) 
60 S(I,J)•S(I,J) + STIFF*WT 
70 CONTINUE 
80 CONTINUE 

DO 90 J•l,8 
DO 90 I•J,8 

90 S(J,I)•S(I,J) 

RETURN 

END 
SUBROUTINE STDM (XX,B,DET,R,S,XBAR,NEL,ITYPE,IOUT) 

••••••••••••••••••••••••••• Ill •• Ill 

PROGRAM 
TO EVALUATE THE STRAIN-DISPLACEMENT TRANSFORMATION MATRIX B 
AT POINT {R,S) FOR A QUADRILATERAL ELEMENT 

. . . . . . . . . . . . . . . . . . . . . . . . .... 
IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
DIMENSION XX(2,4),B(4,8),H(4),.P(2,4),XJ(2,2),XJI(2,2) 

RP•l.O+R 
SP• 1.0 + S 
RM • 1.0 - R 
SM• l.O - S 

C INTERPOLATION FUNCTIONS 
c 

c 

H(l) • 0.25* RP* SP 
H(2) • 0.25* RM* SP 
H(3} • 0.25* RM* SM 
H(4) • 0.25* RP* SM 

C NATURAL COORDINATE DERIVATIVES OF THE INTERPOLATION FUNCTIONS 
c 
C l. WITH RESPECT TOR 
c 

P(l,1) • 0.25* SP 
P(l,2) P(l,l) 
P(l,3) 0.25* SM 
P(l,4) • - P(l,3) 

Chap.5 
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QUA00130 
QUA00131 
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, QUA00137 
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c 
C 2. WITH RESPECT TO S 
c 

c 

P(2,1) • 0.25* RP 
P(2,2) • 0.25* RM 
P(2,3) • - P(2,2) 
P(2,4) • - P(2,l) 

C EVALUATE THE JACOBIAN MATRIX AT POINT (R,S) 
c 

c 

10 DO 30 I•l,2 
DO 30 J•l,2 
OUM • 0.0 
DO 20 K•l,4 

20 DUM•OUM + P{I,K)*XX(J,K) 
30 XJ(I,J)•OUM 

C COMPUTE THE DETERMINANT OF THE JACOBIAN MATRIX AT POINT (R,S) 
c 

c 

DET • XJ(l,1)* XJ(2,2) - XJ(2,l)* XJ(l,2) 
IF (DET.GT.0.00000001) GO TO 40 
WRITE (IOUT,2000) NEL 
GO TO 800 

C COMPUTE INVERSE OF THE JACOBIAN MATRIX 
c 

c 

40 DUM•l./DET 
XJI(l,1) • XJ(2,2)* DUM 
XJI(l,2) •-XJ(l,2)* DOM 
XJI(2,1) •-XJ(2,l)* DOM 
XJI(2,2) • XJ(l,l)* OUM 

C EVALUATE GLOBAL DERIVATIVE OPERATOR B 
c 

c 

It2•0 
DO 60 K•l,4 
K2•K2 + 2 
B(l,K2-l) • 0. 
B(l,K2 ) • 0. 
B(2,K2-1) • O. 
B(2,K2 ) • 0. 
DO 50 I•l,2 
B{l,K2-1) • B(l,K2-l) + XJI(l,I) * P(I,K) 

50 B(2,K2 ) • B(2,K2 ) + XJI(2,I) * P(I,K) 
B(3,K2 ) • B(l,K2-l) 

60 B(3,K2-l) • B{2,K2 ) 

C IN CASE OF PLANE STRAIN OR PLANE STRESS ANALYSIS DO NOT INCLUDE 
C THE NORMAL STRAIN COMPONENT 
c 

IF (ITYPE.GT.0) GO TO 900 
c 
C COMPUTE THE RADIUS AT POINT (R,S) 
c 

XBAR•O.O 
DO 70 K•l,4 

70 XBAR•XBAR + H(K)*XX(l,K) 
c 
C EVALUATE THE HOOP STRAIN-DISPLACEMENT RELATION 
c 

IF (XBAR,GT.0.00000001) GO TO 90 
c 
C FOR THE CASE OF ZERO RADIUS EQUATE RADIAL TO HOOP STRAIN 
c 

DO 80 K•l,8 
80 B(4,K)•B(l,K) 

GO TO 900 
c 
C NON-ZERO RADIUS 
c 
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c 

c 

c 

90 DUM•l./XBAR 
K2•0 
DO 100 K•l,4 
K2•K2 + 2 
B(4,K2 ) • O. 

100 B(4,K2-l) • H(K)*DUM 
GO TO 900 

800 STOP 
900 RETURN 

2000 FORMAT(//,' ***ERROR***', 
l 'ZERO OR NEGATIVE JACOBIAN DETERMINANT FOR ELEMENT 

END 
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• CHAPTER SIX·-----------· 
Finite Element 
Nonlinear Analysis in Solid 
and Structural Mechanics 

6.1 INTRODUCTION TO NONLINEAR ANALYSIS 

In the finite element formulation given in Section 4.2, we assumed that the displacements 
of the finite element assemblage are infinitesimally small and that the material is linearly 
elastic. In addition, we also assumed that the nature of the boundary conditions remains 
unchanged during the application of the loads on the finite element assemblage. With these 
assumptions, the finite element equilibrium equations derived were for static analysis 

KU =R (6.1) 

These equations correspond to a linear analysis of a structural problem because the dis­
placement response U is a linear function of the applied load vector R; i.e., if the loads are 
aR instead ofR, where a is a constant, the corresponding displacements are aU. When this 
is not the case, we perform a nonlinear analysis. 

The linearity of a response prediction rests on the assumptions just stated, and it is 
instructive to identify in detail where these assumptions have entered the equilibrium 
equations in ( 6.1 ). The fact that the displacements must be small has entered into the 
evaluation of the matrix K and load vector R because all integrations have been performed 
over the original volume of the finite elements, and the strain-displacement matrix B of each 
element was assumed to be constant and independent of the element displacements. The 
assumption of a linear elastic material is implied in the use of a constant stress-strain matrix 
C, and, finally, the assumption that the boundary conditions remain unchanged is reflected 
in the use of constant constraint relations [see ( 4.43) to ( 4.46}] for the complete response. 
If during loading a displacement boundary condition should change, e.g., a degree of 
freedom which was free becomes restrained at a certain load level, the response is linear 
only prior to the change in boundary condition. This situation arises, for example, in the 
analysis of a contact problem (see Example 6.2 and Section 6.7). 

485 
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The above discussion of the basic assumptions used in a linear analysis defines what 
we mean by a nonlinear analysis and also suggests how to categorize different nonlinear 
analyses. Table 6.1 gives a classification that is used conveniently because it considers 
separately material nonlinear effects and kinematic nonlinear effects. The formulations 
listed in the table are those that we shall discuss in this chapter. 

TABLE 6.1 Classification of nonlinear analyses 

Type of Typical formulation Stress and strain 
analysis Description used measures 

Materially- Infinitesimal displace- Materially-nonlinear Engineering stress 
nonlinear-only ments and strains; the -only (MNO) and strain 

stress-strain relation is 
nonlinear 

Large displace- Displacements and Total Lagrangian (TL) Second Piola-Kirchhoff 
ments, large rotations of fibers are stress, Green-Lagrange 
rotations, but large, but fiber strain 
small strains extensions and angle Updated Lagrangian Cauchy stress, Almansi 

changes between fibers (UL) strain 
are small; the 
stress-strain relation may 
be linear or nonlinear 

Large displace- Fiber extensions and angle Total Lagrangian (TL) Second Piola-Kirchhoff 
ments. large changes between fibers stress, Green-Lagrange 
rotations, and are large, fiber strain 
large strains displacements and Updated Lagrangian Cauchy stress, logarithmic 

rotations may also be (UL) strain 
large; the stress-strain 
relation may be linear or 
nonlinear 

Figure 6.1 gives an illustration of the types of problems that are encountered, as listed 
in Table 6.1. We should note that in a materially-nonlinear-only analysis, the nonlinear 
effect lies only in the nonlinear stress-strain relation. The displacements and strains are 
infinitesimally small; therefore the usual engineering stress and strain measures can be 
employed in the response description. Considering the large displacement but small strain 
conditions, we note that in essence the material is subjected to infinitesimally small strains 
measured in a body-attached coordinate frame x', y' while this frame undergoes large rigid 
body displacements and rotations. The stress-strain relation of the material can be linear or 
nonlinear. 

As shown in Fig. 6.1 and Table 6.1, the most general analysis case is the one in which 
the material is subjected to large displacements and large strains. In this case the stress­
strain relation is also usually nonlinear. 

In addition to the analysis categories listed in Table 6.1, Fig. 6.1 illustrates another 
type of nonlinear analysis, namely, the analysis of problems in which the boundary condi­
tions change during the motion of the body under consideration. This situation arises in 
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Figure 6.1 Classification of analyses 
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D 
(d) Large displacements, large rotations, and large strains. 

Linear or nonlinear material behavior 

(e) Change in boundary condition at displacement /J. 

Figure 6.1 (continued) 

particular in the analysis of contact problems, of which a simple example is given in 
Fig. 6.1 (e). In general, this change in boundary condition may be encountered in any one 
of the analyses summarized in Table 6.1. 

In actual analysis, it is necessary to decide whether a problem falls into one or the 
other category of analysis, and this dictates which formulation will be used to describe the 
actual physical situation. Conversely, we may say that by the use of a specific formulation, 
a model of the actual physical situation is assumed, and the choice of formulation is part of 
the complete modeling process. Surely, the use of the most general large strain formulation 
"will always be correct"; however, the use of a more restrictive formulation may be compu­
tationally more effective and may also provide more insight into the response prediction. 

Before we discuss the general formulations of nonlinear analyses, it would be instruc­
tive to consider first two simple examples that demonstrate some of the features listed in 
Table 6.1. 

EXAMPLE 6. 1: A bar rigidly supported at both ends is subjected to an axial load as shown in 
Fig. E6.l(a). The stress-strain relation and the load-versus-time curve relation are given in 
Figs. E6.l(b) and (c), respectively. Assuming that the displacements and strains are small and 
that the load is applied slowly, calculate the displacement at the point of load application. 
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Area A· 1 cm2 

Section a 

La• 10 cm 

(I 

489 

E· 107 N/cm2 

Er• 105 N/cm2 

ey • yield strain 
c:, v = yield stress 

E 

(a) Simple bar structure (b) Stress-strain relation 

4 

3 

2 

0 

x 104 (N) 

2 4 

Time (sec) 

6 

(c) Load variation 

(in tension and compression) 

Figure E6.1 Analysis of simple bar structure 

Since the load is applied slowly and the displacements and strains are small, we calculate 
the response of the bar using a static analysis with material nonlinearities only. Then we have for 
sections a and b, the strain relations 

the equilibrium relations, 

and the constitutive relations, under loading conditions, 

'u - u 
1E = Ey + y 

Er 

and in unloading, 

in the elastic region 

in the plastic region 

Au 
E 

In these relations the superscript t denotes "at time t." 

(i) Both sections a and b are elastic 

(a) 

(b) 

(c) 

During the initial phase of load application both sections a and b are elastic. Then we have, 
using (a) to (c), 

'R = EA'u(.!. + ..!...) 
La Lb 
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and substituting the values given in Fig. E6. l, we obtain 

'R 
'u = 3 X 106 

with 
2'R 

'uh= ---
3 A 

(ii) Section a is elastic while section b is plastic 
Section b will become plastic at time t* when, using (d), 

Afterward we therefore have 

1'"R = !u,,A 

'u 
'u. = E-a La 

'ub = -Er(:b - e,,) - u,, 

Using (e), we therefore have for t 2: t*, 

and thus 

EA'u E A'u 
'R = -- + _r_ - Ere A+ u A 

La L1, ' " 

'u 
'R/A + Ere,, - u, 
(E/La) + (Er/Lb) 

'R 
1.02 x 106 - 1.9412 x 10-2 

Chap.6 

(d) 

(e) 

We may note that section a would become plastic when 'ua = u,, or 'R = 4.02 X 104 N. Since 
the load does not reach this value [see Fig. E6.l(c)], section a remains elastic throughout the 
response history. 

(iii) In unloading both sections act elastically 

IJ.R 
IJ.u = EA[(l/La) + (1/L1,}] 

The calculated response is depicted in Fig. E6.l(d). 

we have 

tR 

4 x 104 (N) 

3 

2 

0.0, 0.02 
tu(cm) 

(d) Calculated response Figure E6.1 (continued) 
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EXAMPLE 6.2: A pretensioned cable is subjected to a transverse load midway between the 
supports as shown in Fig. E6.2(a). A spring is placed below the load at a distance Wgap· Assume 
that the displacements are small so that the force in the cable remains constant, and that the load 
is applied slowly. Calculate the displacement under the load as a function of the load intensity. 

'R(N) L{_'R(Ni IL_ 
Time 1 2 

H= 100 N tw(cm) 

(c) Calculated response 

Tension hltw ¥m 

'.% 
(b) Load 

Spring constant 
k·2 N/cm 

(a) Pretensioned cable subjected to transverse load 

Figure E6.2 Analysis of pretensioned cable with a spring support 

As in Example 6.1, we neglect inertia forces and assume small displacements. As long as 
the displacement 1w under the load is smaller than Wgap, vertical equilibrium requires for small 'w, 

'w 
'R = 2H- (a) 

L 

Once the displacement is larger than w8ap, the following equilibrium equation holds: 

'w 
'R = 2HL + k('w - Wgap) (b) 

Figure E6.2(c) shows graphically the force displacement relations given in (a) and (b). 
We should note that in this analysis we neglected the elasticity of the cable; therefore the 

response is calculated using only the equilibrium equations in (a) and (b), and the only nonlinear~ 
ity is due to the contact condition established when 'w 2:: Wgap· 

Although these examples represent two very simple problems, the given solutions 
display some important general features. The basic problem in a general nonlinear analysis 
is to find the state of equilibrium of a body corresponding to the applied loads. Assuming 
that the externally applied loads are described as a function of time, as in Examples 6.1 and 
6.2, the equilibrium conditions of a system of finite elements representing the body under 
consideration can be expressed as 

1R - 1F = 0 (6.2) 

where the vector 'R lists the externally applied nodal point forces in the configuration at 
time t and the vector 'F lists the nodal point forces that correspond to the element stresses 
in this configuration. Hence, using the notation in Chapter 4, relations (4.18) and (4.20) to 
( 4.22), we have 

(6.3) 
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and, identifying the current stresses as initial stresses, R, = 'F, 

'F ~ f tB(m)TIT(m) tdv<m) 
m tv(m) 

(6.4) 

where in a general large deformation analysis the stresses as well as the volume of the body 
at time t are unknown. 

The relation in (6.2) must express the equilibrium of the system in the current de­
formed geometry taking due account of all nonlinearities. Also, in a dynamic analysis, the 
vector rR would include the inertia and damping forces, as discussed in Section 4.2.1. 

Considering the solution of the nonlinear response, we recognize that the equilibrium 
relation in (6.2) must be satisfied throughout the complete history of load application; i.e., 
the time variable t may take on any value from zero to the maximum time of interest (see 
Examples 6.1 and 6.2). In a static analysis without time effects other than the definition of 
the load level (e.g., without creep effects; see Section 6.6.3), time is only a convenient 
variable which denotes different intensities of load applications and correspondingly differ­
ent configurations. However, in a dynamic analysis and in static analysis with material time 
effects, the time variable is an actual variable to be properly included in the modeling of the 
actual physical situation. Based on these considerations, we realize that the use of the time 
variable to describe the load application and history of solution represents a very general 
approach and corresponds to our earlier assertion that a "dynamic analysis is basically a 
static analysis including inertia effects." 

As for the analysis results to be calculated, in many solutions only the stresses and 
displacements reached at specific load levels or at specific times are required. In some 
nonlinear static analyses the equilibrium configurations corresponding to these load levels 
can be calculated without also solving for other equilibrium configurations. However, when 
the analysis includes path-dependent nonlinear geometric or material conditions, or time­
dependent phenomena, the equilibrium relations in (6.2) need to be solved for the complete 
time range of interest. This response calculation is effectively carried out using a step-by­
step incremental solution, which reduces to a one-step analysis if in a static time­
independent solution the total load is applied all together and only the configuration corre­
sponding to that load is calculated. However, we shall see that for computational reasons, 
in practice, even the analysis of such a case frequently requires an incremental solution, 
performed automatically (see also Section 8.4 ), with a number of load steps to finally reach 
the total applied load. 

The basic approach in an incremental step~by-step solution is to assume that the 
solution for the discrete time t is known and that the solution for the discrete time t + At 
is required, where At is a suitably chosen time increment. Hence, considering (6.2) at time 
t + At we have 

(6.5) 

where the left superscript denotes "at time t + At." Assume that r+A,R is independent of the 
deformations. Since the solution is known at time t, we can write 

(6.6) 

where Fis the increment in nodal point forces corresponding to the increment in element 
displacements and stresses from time t to time t + At. This vector can be approximated 
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using a tangent stiffness matrix 'K which corresponds to the geometric and material condi­
tions at time t, 

F='KU 

where U is a vector of incremental nodal point displacements and 

'K = o'F 
o'U 

(6.7) 

(6.8) 

Hence, the tangent stiffness matrix corresponds to the derivative of the internal element 
nodal point forces 'F with respect to the nodal point displacements 'U. 

Substituting (6.7) and (6.6) into (6.5), we obtain 

'KU= t+AtR 'F (6.9) 

and solving for U, we can calculate an approximation to the displacements at time t + at, 
,+A,u = 'U + u (6.10) 

The exact displacements at time t + flt are those that correspond to the applied loads r+ArR. 

We calculate in (6.10) only an approximation to these displacements because (6.7) was 
used. 

Much of our discussion in this chapter will focus on the proper and effective evaluation 
of 1F and 'K. 

Having evaluated an approximation to the displacements corresponding to time t + 
at, we could now solve for an approximation to the stresses and corresponding nodal point 
forces at time t + at, and then proceed to the next time increment calculations. However, 
because of the assumption in ( 6. 7), such a solution may be subject to very significant errors 
and, depending on the time or load step sizes used, may indeed be unstable. In practice, it 
is therefore necessary to iterate until the solution of ( 6.5) is obtained to sufficient accuracy. 

The widely used iteration methods in finite element analysis are based on the classical 
Newton-Raphson technique (see, for example, E. Kreyszig [A] and see N. Bicanic and 
K. H. Johnson [A]), which we formally derive in Section 8.4. This method is an extension 
of the simple incremental technique given in (6.9) and (6.10). That is, having calculated an 
increment in the nodal point displacements, which defines a new total displacement vector, 
we can repeat the incremental solution presented above using the currently known total 
displacements instead of the displacements at time t. 

The equations used in the Newton·Raphson iteration are, for i = 1, 2, 3, ... , 

(6.11) 

with the initial conditions 

(6.12) 

Note that in the first iteration, the relations in ( 6.11) reduce to the equations ( 6.9) and 
( 6.10). Then, in subsequent iterations, the latest estimates for the nodal point displacements 
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are used to evaluate the corresponding element stresses and nodal point forces ,+AtF<1
- 0 and 

tangent stiffness matrix ,+A,Kc,-1). 
The out-of-balance load vector t+A,R - r+AtFV-n corresponds to a load vector that is 

not yet balanced by element stresses, and hence an increment in the nodal point displace­
ments is required. This updating of the nodal point displacements in the iteration is contin­
ued until the out-of-balance loads and incremental displacements are small. 

Let us summarize some important considerations regarding the Newton-Raphson 
iterative solution. 

An important point is that the correct calculation of ,H,F(i-1) from r+ArlJ<H> is crucial. 
Any errors in this calculation will, in general, result in an incorrect response prediction. 

The correct evaluation of the tangent stiffness matrix r+A,K<i-t) is also important. The 
use of the proper tangent stiffness matrix may be necessary for convergence and, in general, 
will result in fewer iterations until convergence is reached. 

However, because of the expense involved in evaluating and factoring a new tangent 
stiffness matrix, in practice, it can be more efficient, depending on the nonlinearities present 
in the analysis, to evaluate a new tangent stiffness matrix only at certain times. Specifically, 
in the modified Newton-Raphson method a new tangent stiffness matrix is established only 
at the beginning of each load step, and in quasi-Newton methods secant stiffness matrices 
are used instead of the tangent stiffness matrix (see Section 8.4 ). We note that, which 
scheme to use is only a matter of computational efficiency provided convergence is reached. 

The use of the iterative solution requires appropriate convergence criteria. If inappro­
priate criteria are used, the iteration may be terminated before the necessary solution 
accuracy is reached or be continued after the required accuracy has been reached. 

We discuss these numerical considerations in Section 8.4 but note here that whichever 
iterative technique is used, the basic requirements are ( 1) the evaluation of the (tangent) 
stiffness matrix corresponding to a given state and (2) the evaluation of the nodal force 
vector corresponding to the stresses in that state (the "state,, being given by 1U or 1+~

1u<H>, 
i = 1, 2, 3, ... ). Hence, our primary focus in this chapter is on explaining how, for a 
generic state, and we use the state at time t, the tangent stiffness matrices 'Kand force 
vectors 'F for various elements and material stress-strain relations can be evaluated. 

Let us now demonstrate these concepts in two examples. 

EXAMPLE 6.3: Idealize the simple arch structure shown in Fig. E6.3(a) as an assemblage of 
two bar elements. Assume that the force in one bar element is given by 'Fbar = k'8, where k is 
a constant and '5 is the elongation of the bar at time t. (The assumption that k is constant is likely 
to be valid only for small deformations in the bar, but we use this assumption in order to simplify 
the analysis.) Establish the equilibrium relation (6.5) for this problem. 

(a) Bar assemblage subjected to apex load (b) Simple model using one bar (truss) element, 
nodes 1 and 2 

Figure E6.3 A simple arch structure 
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tR/2kL 

6 x 10-3 

4 A 

2 

0 

-2 

-4 

(c) Geometric variables in typical configuration (d} Load-displacement relation 

Figure E6.3 (continued) 

This is a large displacement problem, and the response is calculated by focusing attention 
on. the equilibrium of the bar assemblage in the configuration corresponding to a typical time t. 
Using symmetry as shown in Figs. E6.3(b) and (c), we have 

hence, 

(L - '6) cos'~ = L cos 15° 

(L - 18) sin 1
~ = L sin 15° - 16.. 

1 8 L - V L2 - 2L 'A sin 15° + 1 A 2 

L sin 15° - 'A 
sin I f3 

L - '8 

Equilibrium at time t requires that 

hence, the relation in (6.5) is 

.:.!!_={-I+ [ •a . I ('a)'r}(sin 15° - 'A) 
2kL l - 2 L sm 15° + L L 

(a) 

Figure E6.3(d) shows the force-displacement relationship established in (a). It should be noted 
that between points A and 8, for a given load level, we have two possible displacement configura­
tions. If the structure is loaded with 1R monotonically increasing, the displacement path with 
snap-through from A to Bin Fig. E6.3(d) is likely to be followed in an actual physical situation. 

EXAMPLE 6.4: Calculate the response of the bar assemblage considered in Example 6.1 using 
the modified Newton-Raphson iteration. Use two equal load steps to reach the maximum load 
application. 

In the modified Newton-Raphson iteration, we use (6.11) and (6.12) but evaluate new 
tangent stiffness matrices only at the beginning of each step. Hence, the iterative equations are 
in this analysis 

(a) 
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with 

'K _ 'CA 
b--

Lb 
where if section is elastic 

if section is plastic 

For an elastic section, 

for a plastic section, 

,+r:.,F(i-1) = A[Er('+A,E(i-tl _ Ey) + O'y] 

and the strains in the sections are 

t+Aru(i-t) 
t+4tE(i-J) = ---

a La 

r+Ar (i-1) 
t+&,E(i-1) - U 

b - Lb 

Chap.6 

(b) 

(c) 

(d) 

(e) 

In the first load step, we have t == 0 and At = 1. Thus, the application of the relations in (a) to 
(e) gives 

t = 1: 

t = 2: 

(i = l} LU(l) = 1u(O) + AU(I) = 6.6667 X 10-3 Cm 

I U(I) 

-- = 6.6667 X 10-4 < e,.-+ section a is elastic 
La 

I U(l) • • • 1 eLO = - = 1.3333 x 10-3 < Ey-,)> section b 1s elastic 
Lb 

1 F~I) 6.6667 X 103 N 

I Fil) = 1.3333 x 104 N 

(° Ka + O Kb) Au<2> = 1 R - IF~·) - 1 Fi1 l 

'K = EA. 
a La' 

=O 

:. Convergence is achieved in one iteration 
1u = 6.6667 X 10-3 cm 
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(I Ka + I Kb) AuO> = 2R - 2F~Ol - 2F~O) 

A co _ (4 x 104
) - (6.6667 x 103

) - (1.3333 x 104
) 

u - 107{fo + !) 
= 6.6667 X 10-3 cm 

(i = I) 2um = 2u<0) + Aum = 1.3333 X 10-2 cm 
2 e~o = 1.3333 x 10-3 < e1 ..... section a is elastic 

2e~> = 2.6667 X 10-3 > e1 ..... section bis plastic 

2n> = 1.3333 X 104 N 

2F~0 = [Er(2Ebol - e1) + u1]A = 2.0067 X 104 N 

( 1 Ka + 1 Kb) Au<2> = 2R - 2F~o 2F~1
> 

(i = 2) 

Au<2> = 2.2 x 10-3 cm 
2u<2> = 2u<0 + Au<2> = 1.5533 X 10-2 cm 

2E~) = 1.5533 X 10-3 < Ey 

2e~2) 3.1066 X 10-3 > Ey 

:. 
2Ff> = 1.5533 X 104 N 

2Ff> = 2.0111 x 104 N 

(' Ka + I Kb) Au<3J = 2R - 2 F~2> - 2Fb2
) 

Au<3> = 1.4521 X 10-3 cm 
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The procedure is repeated, and the results of successive iterations are tabulated in the accompa­
nying table. 

6.u<il (cm} 2u<iJ (cm) 

3 1.4521 x 10-3 1.6985 x 10-2 

4 9.5832 x 10-4 1.7944 x 10-2 

5 6.3249 x 10-4 1.8576 x 10-2 

6 4.1744 x 10-4 1.8994 x 10-2 

7 2.7551 x 10-4 1.9269 X 10-2 

After seven iterations, we have 

2u = 2u(7l = 1.9269 X 10-2 cm 

6.2 FORMULATION OF THE CONTINUUM MECHANICS 
INCREMENTAL EQUATIONS OF MOTION 

The objective in the introductory discussion of nonlinear analysis in Section 6.1 was to 
describe various nonlinearities and the form of the basic finite element equations that are 
used to analyze the nonlinear response of a structural system. To show the procedure of 
analysis, we simply stated the finite element equations, discussed their solution, and gave a 
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physical argument why the nonlinear response is appropriately predicted using these equa­
tions. We demonstrated the applicability of the approach in the solution of two very simple 
problems merely to give some insight into the steps of analysis used. In each of these 
analyses the applicable finite element matrices and vectors were developed using physical 
arguments. 

The physical approach of analysis used in Examples 6.3 and 6.4 is very instructive and 
yields insight into the analysis; however, when considering a more complex solution, a 
consistent continuum-mechanics-based approach should be employed to develop the gov­
erning finite element equations. The objective in this section is to present the governing 
continuum mechanics equations for a displacement-based finite element solution. As in 
Section 4.2.1, we use the principle of virtual work but now include the possibility that the 
body considered undergoes large displacements and rotations and large strains and that the 
stress-strain relationship is nonlinear. The governing continuum mechanics equations to be 
presented can therefore be regarded as an extension of the basic equation given in ( 4. 7). In 
the linear analysis of a general body, the equation in ( 4.7) was used as the basis for the 
development of the governing linear finite element equations [given in (4.17) to (4.27)]. 
Considering the nonlinear analysis of a general body, after having developed suitable 
continuum mechanics equations, we will proceed in a completely analogous manner to 
establish the nonlinear finite element equations that govern the nonlinear response of the 
body (see Section 6.3). 

6.2.1 The Basic Problem 

In Section 6. l we underlined the fact that in a nonlinear analysis the equilibrium of the body 
considered must be established in the current configuration. We also pointed out that in 
general it is necessary to employ an incremental formulation and that a time variable is used 
to conveniently describe the loading and the motion of the body. 

In the development to follow, we consider the motion of a general body in a stationary 
Cartesian coordinate system, as shown in Fig. 6.2, and assume that the body can experience 
large displacements, large strains, and a nonlinear constitutive response. The aim is to 
evaluate the equilibrium positions of the complete body at the discrete time points 
0, At, 2 At, 3 At, ... , where A..t is an increment in time. To develop the solution strategy, 
assume that the solutions for the static and kinematic variables for all time steps from time 
O to time t, inclusive, have been obtained. Then the solution process for the next required 
equilibrium position corresponding to time t + At is typical and is applied repetitively until 
the complete solution path has been solved for. Hence, in the analysis we follow all particles 
of the body in their motion, from the original to the final configuration of the body, which 
means that we adopt a Lagrangian (or material) formulation of the problem. This approach 
stands in contrast to an Eulerian formulation which is usually used in the analysis of fluid 
mechanics problems, in which attention is focused on the motion of the material through 
a stationary control volume. Considering the analysis of solids and structures, a Lagrangian 
formulation usually represents a more natural and effective analysis approach than an 
Eulerian formulation. For example, using an Eulerian formulation of a structural problem 
with large displacements, new control volumes have to be created (because the boundaries 
of the solid change continuously), and the nonlinearities in the convective acceleration 
terms are difficult to deal with (see Section 7.4 ). 
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Configuration corresponding to 
variation in displacement ou 
on r+At~ 

...... ---L.. ~ OU -1::1 ,,_... "'x 61J3 ,,,; ', 
/ P(f+Atx1, t+Atx2, t+Atx3) 
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/ Configuration at time t+L\t 
/ Surface area t+At5 

Volume t+Atv 

I 
I 

I 
I 

l 

/' 
I' 

,,, 
,,'· ,,., 

----- Configuration at time t 
Surface area ts 
Volume ty 

Pt0x,, 0x2, 0x3} 

.............. Configuration at time O 
Surface area 0s 
Volumeov 

Figure 6.2 Motion of body in Cartesian coordinate frame 

In our Lagrangian incremental analysis approach we express the equilibrium of the 
body at time t + At using the principle of virtual displacements. Using tensor notation (see 
Section 2.4 ), this principle requires that 

where 

f r+Ar'T.·· 6 e .. dr+Ary = t+&t~ 
I} t+At I) 

r+Aly 

(6.13) 

r+A,Tii = Cartesian components of the Cauchy stress tensor (forces per unit areas in 
the deformed geometry) 

~ 1 ( Mu; + o8Uj ) . d' · I ut+A,eu = - ~ .::}t+A, = stram tensor correspon mg to v1rtua 2 v Xj v X; 

displacements 
8u; = components of virtual displacement vector imposed on configuration at 

time t + At, a function of ,+A,xhj = 1, 2, 3 

r+A,xj = Cartesian coordinates of material point at time t + At 
i+Aiy = volume at time t + At 
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and 

(6.14) 

where 

t+Alff = components of externally applied forces per unit volume at time t + lit 
r+A'ff = components of externally applied surface tractions per unit surface area at time t + lit 
t+A1S1 = surface at time t + At on which external tractions are applied 

6uf = 6u; evaluated on the surface t+ 41S1 (the 6u; components are zero at and corresponding to the 
prescribed displacements on the surface ,+A'Su) 

In (6.13), the left-hand side is the internal virtual work and the right-hand side is the 
external virtual work. The relation is derived as in linear infinitesimal displacement analysis 
(see Example 4.2), but the current configuration at time t + At (with the stresses and forces 
at that time) is used. Hence, the derivation of (6.13) is based on the following equilibrium 
equations. 

Within t+Ary for i = 1, 2, 3, 

sum over j = 1, 2, 3 (6.15a) 

and On the surface t+AtSt, for i = l, 2, 3, 

i+AtTiJ i+t:..1nj = t+t:..'!f sum over j = 1, 2, 3 (6.15b) 

where the t+Atni are the components of the unit normal to the surface t+A'S1 at time t + At. 
As shown in Example 4.2, the equation (6.15a) is multiplied by arbitrary continuous 

virtual displacements 8u; that are zero at and corresponding to the prescribed displace­
ments. The integration of the expression obtained from ( 6.1 Sa) over the volume at time 
t+At and the use of the divergence theorem and (6.15b) then directly yield the relation in 
(6.13). 

We note that the strain tensor components 8,+A,e,i corresponding to the imposed 
virtual displacements are like the components of the infinitesimal strain tensor, but the 
derivatives are with respect to the current coordinates at time t + At. The use of the strain 
tensor 5,+ti..,e1i in ( 6.13) is the direct result of the transformation by the divergence theorem 
used in the derivation of (6.13), and this strain tensor is obtained irrespective of the 
magnitude of the virtual displacements. 

However, we now recognize that the virtual displacements Bu, may be thought of as 
a variation in the real displacements r+Aru; (subject to the constraint that these variations 
must be zero at and corresponding to the prescribed displacements). These displacement 
variations result in variations in the current strains of the body, and we shall later, in 
particular, use the variation in the Green-Lagrange strain components corresponding to Bui 
(see Example 6.10). 

It is most important to recognize that the virtual work principle stated in ( 6.13) is 
simply an application of the equation in (4.7) (used in linear analysis) to the body consid­
ered in the configuration at time t + At. Therefore, all previous discussions and results 
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pertaining to the use of the virtual work principle in linear analysis are now directly 
applicable, with the current configuration at time t + At being considered. 1 

A fundamental difficulty in the general application of (6.13) is that the configuration 
of the body at time t + A.t is unknown. This is an important difference compared with 
linear analysis in which it is assumed that the displacements are infinitesimally small so that 
in (6.13) to (6.15) the original configuration is used. The continuous change in the config­
uration of the body entails some important consequences for the development of an incre­
mental analysis procedure. For example, an important consideration must be that the 
Cauchy stresses at time t + At cannot be obtained by simply adding to the Cauchy stresses 
at time ta stress increment that is due only to the straining of the material. Namely, the 
calculation of the Cauchy stresses at time t + At must also take into account the rigid body 
rotation of the material because the components of the Cauchy stress tensor also change 
when the material is subjected to only a rigid body rotation. 

The fact that the configuration of the body changes continuously in a large deforma­
tion analysis is dealt with in an elegant manner by using appropriate stress and strain 
measures and constitutive relations, as discussed in detail in the next sections. 

Considering the discussions to follow, we recognize that a difficult point in the presen­
tation of continuum mechanics relations for general large deformation analysis is the use of 
an effective notation because there are many different quantities that need to be dealt with. 
The symbols used should display all necessary information but should do so in a compact 
manner in order that the equations can be read with relative ease. For effective use of a 
notation, an understanding of the convention employed is most helpful, and for this purpose 
we summarize here briefly some basic facts and conventions used in our notation. 

In our analysis we consider the motion of the body in a fixed (stationary) Cartesian 
coordinate system as displayed in Fig. 6.2. All kinematic and static variables are measured 
in this coordinate system, and throughout our description we use tensor notation. 

The coordinates of a generic point Pin the body at time Oare 0x1, 
0x2 , 0x3 ; at time t 

they are 1x., 1x2, 1x3; and at time t + At they are ,+.o.1x1, r+A1x2, t+.0.1x3, where the left 
superscripts refer to the configuration of the body and the subscripts to the coordinate axes. 

The notation for the displacements of the body is similar to the notation for the 
coordinates: at time t the displacements are 'uj, i = 1, 2, 3, and at time t + At the displace­
ments are ,+.o.,u;, i = l, 2, 3. Therefore, we have 

i == l, 2, 3 (6.16) 

The increments in the displacements from time t to time t + At are denoted as 

i = l, 2, 3 (6.17) 

During motion of the body, its volume, surface area, mass density, stresses, and strains 
are changing continuously. We denote the specific mass, area, and volume of the body at 
times 0, t, and t + At as 0 p, 1p, ,+A1p; 0A, 'A, t+AtA; and 0 v, 'V, ,+.o.rv, respectively. 

Since the configuration of the body at time t + At is not known, we will refer applied 
forces, stresses, and strains to a known equilibrium configuration. In analogy to the notation 

1We may imagine that in considering the moving body, a picture is taken at time t + At and then the 
principle of virtual displacements is applied to the state of the body in that picture. 
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used for coordinates and displacements, a left superscript indicates in which configuration 
the quantity (body force, surface traction, stress, etc.) occurs; in addition, a left subscript 
indicates the configuration with respect to which the quantity is measured. For example, the 
surface and body force components at time t + iit, but measured in configuration 0, are 
r+tJ.JJf, r+tJ.Jff, i = 1, 2, 3. Here we have the exception that if the quantity under consider­
ation occurs in the same configuration in which it is also measured, the left subscript may 
not be used; e.g., for the Cauchy stresses we have 

In the formulation of the governing equilibrium equations we also need to consider 
derivatives of displacements and coordinates. In our notation a comma denotes differenti­
ation with respect to the coordinate following, and the left subscript denoting time indicates 
the configuration in which this coordinate is measured; thus we have, for example, 

and 

t+il.t - ar+il.t U; 
oU;,j-~ 

"Xj 

o _ a0xm 
t+i!.1Xm,n - .:,t+il.t 

u Xn 
(6.18) 

Using these conventions, we shall define new symbols when they are first encountered. 

6.2.2 The Deformation Gradient, Strain, and Stress Tensors 

We mentioned in the previous section that in a large deformation analysis special attention 
must be given to the fact that the configuration of the body is changing continuously. This 
change in configuration can be dealt with in an elegant manner by defining auxiliary stress 
and strain measures. The objective in defining them is to express the internal virtual work 
in ( 6.13) in terms of an integral over a volume that is known and to be able to incrementally 
decompose the stresses and strains in an effective manner. There are various different stress 
and strain tensors that, in principle, could be used (see L. E. Malvern [A], Y. C. Fung [A], 
A. E. Green and W. Zema [A], and R. Hill [A]). However, if the objective is to obtain an 
effective overall finite element solution procedure, only a few stress and strain measures 
need to be considered, see also E. N. Dvorkin and M. B. Goldschmit [A]. In the following we 
first consider the motion of a general body and define kinematic measures of this motion. We 
then introduce appropriate strain and the corresponding stress tensors. These are used later in the 
the chapter to develop the incremental general finite element equations. 

Consider the body in Fig. 6.2 at a generic time t. A fundamental measure of the 
deformation of the body is given by the deformation gradient, defined as2 

2 The deformation gradient is denoted as F in other books, but we use the notation J X throughout this text 
because this symbol more naturally indicates that the differentiations of the coordinates 'x, with respect to the 
coordinates O xi are performed. 
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iYx1 
a0x, 

JX = a1x2 
a0x1 

01X3 

a0x, 

or &X 

where o V is the gradient operator 

oV = 

a 
a0

x1 

a 
-;o- ; 
v X2 

a 
a0

x3 

cl'X1 iJ1x1 
a0

x2 i,Ox3 

01
X2 a'x2 

a0
x2 a0x; 

d1X3 d1X3 

a0
x2 a0

x3 

(oV'xr)r 
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(6.19) 

(6.20) 

(6.21) 

The deformation gradient describes the stretches and rotations that the material fibers have 
undergone from time Oto time t. Namely, let d 0x be a differential material fiber at time O; 
then, by the chain rule of differentiation, this material fiber at time tis given by 

d'x = JX d0x 

Using chain differentiation, it also follows that 

where ~Xis the inverse deformation gradient. From (6.22) and (6.23) we obtain 

d 0x ex)(JX) d0x 

and hence [because (6.24) must hold for any differential length d 0x], we have 

~X = (&Xt 1 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

Therefore, the inverse deformation gradient ~X is actually the inverse of the deformation 
gradient &X. 

An application of (6.18) is given by the evaluation of the mass density 1p of the body 
at time t. namely, 

I - Op 
P - det (&X) (6.26) 

We prove and illustrate this relationship in the following examples. 
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EXAMPLE 6.5: Consider the general motion of the body in Fig. 6.2 and establish that the mass 
density of the body changes as a function of the determinant of the deformation gradient, 

I - Op 
P - det (&X) 

Any infinitesimal volume of material at time O can be represented using (see Fig. E6.5) 

X1 

Figure E6.5 Infinitesimal volumes at times O and t 

d'X, = m ds,; d'i, = m~,; 
and d0V = ds1 ds2 ds3 

Using (6.22), we have after deformation, 

d'i; = &X d0i; i = l, 2, 3 

where we note that of course the same deformation gradient applies to all material fibers of that 
infinitesimal volume, and we obtain 

d'V = (d1i1 x d'i2) · d'x3 

= (det JX) ds1 ds2 ds3 

= det JX d0V 
But if we assume that no mass is lost during the deformation, we have 

'p d'V = 0p d 0v 
and hence, 'p = det &X 
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EXAMPLE 6.6: Consider the element in Fig. E6.6. Evaluate the deformation gradient and the 
mass density corresponding to the configuration at time t. 

The displacement interpolation functions for this element were given in Fig. 5.4. Since the 
0x1, 

0x2 axes correspond to the r, saxes, respectively, we have 

and 

Now we use 

and hence, 

hi = Hl + 0x1)(1 + 0x2); 

h3 = i (l - 0x1)(1 - 0x2); 

h2 = Hl - 0xi)(l + 0x2) 

~ = i (1 + 0x1)(1 - 0x2) 

ah1 = ! (I + ox2)· 
a0

x1 4 ' 
fJh2 1 
- = --(1 + 0x2) a0x, 4 

1 
- -(1 - 0x )· 4 I• 

Thickness • 1 cm 
Density at t • O is 0p 0x2 

v1 •0.5cm 

r 
2cm 

l_3tt---t-----e 

Figure E6.6 Four-node element subjected to large deformations 

4 

'x; = ~ h1t. 'xf 
ft.=l 

ch; _ x, ( ahk )' 1c --4,1 - x, 
dOXj k= I dOXj 

The nodal point coordinates at time tare 
1xl = 2; 

1xr=-1; 

1Xi = l.5; 

'x~ == -1; 

'xr -t; 
1xt 1; 
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Hence. 

and <11X1 1 
- = -(1 +OX)· a0x2 4 l ' 

iJ1x2 1 0 - = -(9 + Xi) 
fJ0

x2 8 

so that the deformation gradient is 

&X = ! [(5 + 0x2) (1 + 0x,) ] 
4 Ht + 0x2) H9 + 0x,) 

and using (6.26), the mass density in the deformed configuration is 

I - 32 Op 
p - (5 + 0x2)(9 + 0x,) - (1 + 0x,)(1 + 0x2) 

Chap.6 

The deformation gradient is also used to measure the stretch of a material fiber and 
the change in angle between adjacent material fibers due to the deformation. In this calcu­
lation we use the right Cauchy-Green deformation tensor, 

I JC= JXT JX I (6.27) 

We note that JC is, in general, not equal to the left Cauchy-Green deformation tensor, 

&B = &X &XT (6.28) 

EXAMPLE 6.7: The stretch 1A of a line element of a general body in motion is defined as 
'A = d's/d0s, where d0s and d's are the original and current lengths of the line element as shown 
in Fig. E6. 7. Prove that 

Figure E6.7 Stretch and rotation of line elements 
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(a) 

where 0n is a vector of the direction cosines of the line element at time 0. Also, prove that 
considering two line elements emanating from the same material point, the angle '(}between the 
line elements at time tis given by 

onr &Cod 
cos/(} := A (b) 

1)..1).. 

where the hat denotes the second line element (see Fig. E6.7). 
As an example, apply the formulas in (a) and (b) to evaluate the stretches of the specific 

line elements d0 s and d's shown in Fig. E6.6 and evaluate also the angular distortion between 
them. 

To prove (a), we recognize that 

so that using ( 6.27), 

Hence, 

and since 

we have 

(d' s)2 = d'x7 d'x; 

(d1 s)2 d0x7 JC d0x 

do T do 
'A 2 =_..!_JC__! 

d0s d0s 

d0x 
On=-

d0s 

',\ = (onr JC on)l/2 

To prove (b) we use (2.50) 

d1XT d1X. = (d1 S)(d'S) COS '{j 

d0x7 'X7 'X d0x 'f) _ 0 0 

cos - (d' s)(d1 s) Hence, (c) 

Since JX = JX (it is the deformation gradient at the location of the differential line elements), 
we obtain from (c), 

It should be noted that the relations in (a) and (b) show that when JC = I, the stretches 
of the line elements are equal to l and the angle between line elements has not changed during 
the motion. Hence, when the Cauchy-Green deformation tensor is equal to the identity matrix, 
the motion could have been at most a rigid body motion. 

If we apply (a) and (b) to the line elements depicted in Fig. E6.6, we obtain at 0x, = 0, 
0
x2 = 0 (see Example 6.6) 

Hence, using (a), 

and using (b), 

'C = _!_ [25.25 7.25] 
0 

16 7.25 21.25 

I,\ = 1.256; 

cos'(} = 0.313; 

1A = 1.152 

18 = 71.75° 

Therefore, the angular distortion between the line elements d0s and d0s due to the motion from 
time Oto time tis 18.25 degrees. 
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A most important property of the deformation gradient is that it can always be decomposed 
into a unique product of two matrices, a symmetric stretch matrix JU and an orthogonal 
matrix JR corresponding to a rotation such that 

I &X = &R &U (6.29} 

We can interpret (6.29), conceptually, to mean that the total deformation is obtained 
by first applying the stretch and then the rotation. That is, we could write ( 6.29) also as 
JX = ;R oU, where T corresponds to an intermediate (conceptual) time. Then we realize 
that the decomposition is really an application of the chain rule JX = ;X oX, where 
;X = ;R and <J"X = oU. However, the state corresponding to T is only conceptual, and we 
therefore usually use the notation in ( 6.29). 

The relation in ( 6.29) is referred to as the polar decomposition of the deformation 
gradient, and we prove and demonstrate this property in the following examples. 

To simplify the notation in the following discussion of continuum mechanics relations, 
we shall frequently not show the superscripts and subscripts t and O but always imply them, 
and when there is doubt, we shall also actually show them. For example, ( 6.29) is written 
as X = RU. 

EXAMPLE 6.8: Show that the deformation gradient X can always be decomposed as follows: 

X = RU (a) 

where R is an orthogonal (rotation) matrix and U is a stretch (symmetric) matrix. 
To prove the relationship in (a), we consider the Cauchy~Green deformation tensor C and 

represent this tensor in its principal coordinate axes. For this purpose we solve the eigenproblem 

Cp = AP 

The complete solution of (b) can be written as (see Section 2.5) 

CP = PC' 

(b) 

where the columns of P are the eigenvectors of C, and C' is a diagonal matrix storing the 
corresponding eigenvalues. We also have 

P7CP = C' (c} 

and C' is the representation of the Cauchy~Green deformation tensor in its principal coordinate 
axes. The representation of the deformation gradient in this coordinate system, denoted as X'. is 
similarly obtained 

X' = P7XP (d) 

where we note that (c) and (d) are really tensor transformations from the original to a new 
coordinate system (see Section 2.4). 

Using these relations and C = X7 X, we have 

C' = X17X1 

and we note that the matrix 

R' = X1(C't 112 
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is an orthogonal matrix; i.e., R'rR, = I. Hence, we can write 

X' = R'U' 

where U' = (C')112 

509 

(e) 

and to evaluate U' we use the positive values of the square roots of the diagonal elements of C'. 
The positive values must be used because the diagonal values in U' represent the stretches in the 
new coordinate system. 

The relation in (e) is the decomposition of the deformation gradient X' into the product of 
the orthogonal matrix R' and the stretch matrix U'. This decomposition has been accomplished 
in the principal axes of C but is also valid in any other (admissible) coordinate system because 
the deformation gradient is a tensor (see Section 2.4). Indeed, we can now obtain R and U 
directly corresponding to the decomposition in (a); i.e., 

R = PR'PT 

U = PU'Pr 

where we used the inverse of the transformation employed in (d). 

EXAMPLE 6.9: Consider the four-node element and its deformation shown in Fig. E6.9. 
(a) Evaluate the deformation gradient and its polar decomposition at time t. (b) Assume that the 
motion from time t to time t + At consists only of a counterclockwise rigid body rotation of 
45 degrees. Evaluate the new deformation gradient. 

x, t Time O 

h 
Figure E6.9 Four-node element subjected to stretching and rotation 

To evaluate the deformation gradient at time t, we can here conveniently use JX = :RoU, 
where the hypothetical (or conceptual) configuration T corresponds to the stretching of the fibers 
only. Hence, 

[
V3 -Ii - -

, _ 2 2 . 

,R- ~ ~' &U = [! ;] 
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and 
6X = [1 31'] 

Of course, the same result is also obtained by writing 'xi in terms of 0xb i = I, 2;j 1, 2, and 
using the definition of &X given in (6.19). 

Let us next subject the element to the counterclockwise rotation of 45 degrees. The 
deformation gradient is then 

,H.&X = [cos 45° -sin 45°]1~ -ii 
sin 45° cos 45° 2 3V3 - --

3 4 

[

2V3 - 2 3 + 3~ 
1 3 4 

= V2 2\/33 + 2 -3 \ 3\/3 

The proof in Example 6.8 also indicates how any deformation gradient can be decom­
posed into the product in (6.29). Assume that Xis given and we want to find Rand U; then 
we may calculate C = xrx = U2 and, using (2.109), we have (for n = 2 or 3), U = 
I.7 ... 1 VA; pipf with Cpi = AiPi· With U given, we obtain R from R = xu-1

• 

The preceding relations can now be used to evaluate additional kinematic relations 
that describe the motion of the body. That is, it can be proven (see Exercise 6.7) that we also 
have 

X =VR (6.30)3 

where V is also a symmetric matrix 

v = RURT (6.31) 

We refer to U as the right stretch matrix and to V as the left stretch matrix. 
Example 6.8 shows that we have the spectral decomposition of U, 

u = RLAR[ (6.32) 

Physically, A corresponds to the principal stretches and RL stores the directions of these 
stretches, with the rigid body rotation removed since this rotation appears in R. (In Exam­
ple 6.8, the matrix P is equal to Ri.) We also have 

where 

v = REARk 

Rt:= RRL 

(6.33) 

(6.34) 

We note that Re stores the base vectors of the principal stretches in the stationary 
coordinate system x;. 

3 Note that since we can write ( 6.30) as &X == ~V JR, conceptually, the fibers can be thought of as being first 
rotated and then stretched [in contrast to the conceptual interpretation of ( 6.29)]. 
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To proceed further with our description of the motion of the material particles in the 
body, we consider next the time rates of change of the quantities defined above. For this 
development we define 

R = ORR (6.35) 

RL = RLOL {6.36) 

Re= Refle (6.37) 

where .nR, fiL, and .nE are skew-symmetric spin tensors, and clearly, using ( 6.34 ), 

OR= Re(Oe - OL)RI (6.38) 

The velocity gradient L is defined as the gradient of the velocity field with respect to 
the current position 'xi of the material particles, 

L = [0'u;] (6.39) 
d1

Xj 

or L = x:x- 1 (6.40) 

The symmetric part of L is the velocity strain tensor D (also called the rate-of-deformation 
tensor or stretching tensor), and the skew-symmetric part is the spin tensor W (also called 
the vorticity tensor). Hence, 

L D+W 

Using the polar decomposition of X we obtain from (6.40), 

D = 4 R(uu- 1 + u-1 U)RT 

W =OR+ !R(uu-1 u- 1u)RT 
Substituting for U from (6.32), we can write 

D = REDeRf 

W = ReWeRf 

where De= AA-•+ !(A-10LA - AOLA- 1) 

We= fie - 4(A-~OLA + AOLA- 1
) 

Hence, we obtain for the elements of A, 
no sum on a 

(6.41) 

(6.42) 

(6.43) 

(6.44) 

(6.45} 

(6.46) 

(6.47) 

(6.48) 

where the Aa are the stretches, and for the elements of OL and OE, assuming that Aa + ,,\13 , 

2Aw\a 
[OL]C¥/3 Ai A; [DE]ll/3 (6.49) 

(6.50) 

We note that DE and We are the velocity strain and spin tensors referred to the principal axes 
of the deformation at time t. Hence, by representing the velocity strain and spin tensors in 
the basis given py Re, we obtain relationships that we can use directly to evaluate the 
components of A, OL, and OE. 
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We now want to define strain tensors that are valuable in finite element analysis. The 
Green-Lagrange strain tensor 6E is defined as 

6E = JRL[H1A2 
- l)]JRI 

The Hencky (or logarithmic) strain tensor is defined as 

JEH = JRiOn 'A)JR[ 

(6.51) 

(6.52) 

We note that since dR does not enter the definitions in (6.51) and (6.52), both strain tensors 
are independent of the rigid body motions of the particles. 

The Green-Lagrange strain tensor is frequently written in terms of the right stretch 
tensor &U; that is, using (6.51), we obtain 

6£ = H(&Rt 'A &RD(JRL 'A &RD - I] 

= H&U &U - I) 
(6.53) 

Also, we can write the Green-Lagrange strain tensor in terms of the Cauchy-Green defor­
mation tensor~ 

de = WU &R7 JR JU - I) 

= H&X7 &X - I) (6.54) 

= !{&C - I) 

Furthermore, evaluating the components in terms of displacements [i.e., using (6.16) and 
(6.19) in (6.54)], we have, 

(6.55) 

We should note that in the definition of the Green-Lagrange strain tensor, all derivatives are 
with respect to the initial coordinates of the material particles. For this reason, we say that 
the strain tensor is defined with respect to the initial coordinates of the body. Also note that, 
although only up to quadratic terms of displacement derivatives appear in ( 6.55), this is the 
complete strain tensor; i.e., we have not neglect~d any higher-order terms. 

The Green-Lagrange and Hencky strain tensors are clearly of the general form 

Eg = Rig(A)RI (6.56) 

where g(A) = diag [g(A;) ]. Hence, the rate of change of the strain tensors can be written 
as 

where we have 

Ei = A.g'(A) + OLg(A) - g(A)Oi 

Expanding this equation, we can identify the components of it as 

[EL]ap = ')'a13[D£]a'3 

(6.57) 

(6.58) 

(6.59) 
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where for the Green-Lagrange strain tensor, 

'Yap= Aa>..fJ (6.60) 

and for the Hencky strain tensor, 

{ 

l if Aa = i\13 

%13 = 2AaA.p ln ~ otherwise (6.61) 
A~ - A.i Aa 

Using (6.57) and (6.59), we can now establish an important relationship between the time 
rate of change of the Green-Lagrange strain tensor Je and the velocity strain tensor 'D. 
Using ( 6.57), ( 6.59), ( 6.60), and ( 6.44 ), we obtain 

(6.62) 

and hence, using (6.32) and (6.34), we obtain the operations 

( as a "pull-back") 
(6.63) 

'D = ~xr JE ~X ( as a "push-forward") 

or in component form (with super- and subscripts) 

(6.64) 

Of course, we can obtain the same result, but with less insight, by simply differentiat­
ing the Green-Lagrange strain tensor with respect to time, 

(6.65) 

Using (6.40) and (6.41) to substitute into (6.65), we directly obtain (6.63). We demonstrate 
this derivation for virtual displacement increments, or variations in the current displace­
ments, in the following example. 

EXAMPLE 6. 10: Consider a body in its deformed configuration at time t (see Fig. E6.10). The 
current coordinates of the material particles of the body are 'xi, i 1, 2, 3, and the current 
displacements are 1u1 = 'x; - 0x1• 

Assume that a virtual displacement field is applied, which we denote as au1 (see 
Fig. E6.10). This virtual displacement field can be thought of as a variation on the current 
displacements; hence, we may write ou; = 5'u;. However, the variation on the current displace­
ments must correspond to a variation on the current Green-Lagrange strain components, obE1j, 
and also to a small strain tensor Orem" referred to the current configuration. Evaluate the compo­
nents 6&E1j and show that 

(a) 
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-- ........... ....... _______ , 

TimeO 

..... , 
ou\ 

\ 

' I 
dashed line 
shows 6u imposed 
onto configuration 
at time t 

Figure E6.10 Body at time t subjected to virtual displacement field given by 6u. Note that 
t5u is a function of 1x1, i = 1,2,3, and we can think of 8u; as a variation on 1u1• 

where 

We use the definition of the Green·Lagrange strain in (6.54) to obtain 

&e = H(aJXT)(JX) + (JXT)(6JX)] 

Let us define 8,u to be 

then 

OOU1 oou, 
a'x, o'x2 

8,u = dOU2 a8u2 

01X1 f;'x2 

BJX = 6,u JX 

and hence (b) can be written as 

which is (a) in matrix form. 

ode = 4 [&Xr(a,u)T JX + JXr(8,u)dX] 

= JXrH[(6,u)T + 8,u]}JX 

(b) 

Note that a simple closed-form relationship cannot be established between the time 
rate of change of the Hencky strain tensor and the velocity strain tensor [because of the 
complex expression in (6.61)]. We shall use the Hencky strain measure only later for large 
strain inelastic analysis, and the appropriate relationships will then be evaluated based on 
work conjugacy (see Section 6.6.4). 
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However, we shall use the Green-Lagrange strain tensor frequently and now want to 
define the appropriate stress tensor to use with this strain tensor. The stress measure to use 
is the second Piola-Kirchhoff stress tensor JS, which is work-conjugate with the Green­
Lagrange strain tensor. 4 

Consider the stress power per unit reference volume 1 J 1T • 'D,5 where 'T is the Cauchy 
stress tensor and 'J = det JX. Then the second Piola-Kirchhoff stress tensor f>S is given by 

'J 1
T • 'D = &S • 6E 

To find the explicit expression for JS, we substitute from ( 6.63) to obtain 

Since this relationship must hold for any 1D, we have6 

or in component forms 

&S 

0 
'S - J!. 0 0 t O ij - 1 1Xi,m 1Xj,n 'Tmn 

p 

t - 'p I t t 
Tmn - 0 oXm,i oXn,j oSu 

p 

(as a "pull-back") 

(as a "push-forward") 

(6.66) 

(6.67) 

(6.68) 

(6.69) 

There has been much discussion about the physical nature of the second Piola­
Kirchhoff stress tensor. However, although it is possible to relate the transformation on the 
Cauchy stress tensor in (6.68) to some geometry arguments as discussed in the next 
example, it should be recognized that the second Piola-Kirchhoff stresses have little physical 
meaning and, in practice, Cauchy stresses must be calculated. 

4 We use extensively in this book the second Piola-Kirchhoff stress tensor &S defined by (6.66) and (6.68). 
The first Piola-Kirchhoff stress tensor is given by dS &Xr (or the transpose thereof). In addition, we also have the 
Kirchhoff stress tensor given by 'J 'T (see, for example, L. E. Malvern [A]). 

' Note that here and in the following we use the notation that with a and b second-order tensors we have 
a· b = aubu [sum over all i, j; see (2.79)]. 

6 Here we use 0S • (&xr 1D &X) = (&X &S 0xr) • 1D, as can be easily proven by writing the matrices in 
component forms (see Exercise 2.14). 
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EXAMPLE 6. 11: Figure E6.11 shows a generic body in the configurations at times O and t. Let 
d'T be the actual force on a surface area d 1 S in the configuration at time t, and let us define a 
(fictitious) force 

d0T = ~X d'T; (a) 

which acts on the surface area d0S, where d0S has become d'S and ~Xis the inverse of the 
deformation gradient, ~X = &x-•. Show that the second Piola-Kirchhoff stresses measured in 
the original configuration are the stress components corresponding to d 0T. 

Let the unit normals to the surface areas d 0 S and d' S be 0n and 'n, respectively. Force 
equilibrium (of the wedge ABC in Fig. E6.1 l) in the configuration at time t requires that 

(b) 

and similarly in the configuration at time O 

d0T = &ST 0n d0S (c) 

The relations in (b) and (c) are referred to as Cauchy's formula. However, it can be shown that 
the following kinematic relationship exists: 

0 

'n d 1S = _e ~XT On d0S 
'p 

This relation is referred to as Nanson's formula. Now using (a) to (d), we obtain 

0 
&ST 0n d0S = ~x 1'TT Ip ~XT 0n d0S 

p 

or (osT - :: ~X 1'TT ~xT)On d0S = 0 

Figure E6.11 Second Piola-Kirchhoff and Cauchy stresses in two-dimensional action 

(d) 
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However, this relationship must hold for any surface area and also any "interior surface area" that 
could be created by a cut in the body. Hence, the normal 0n is arbitrary and can be chosen to 
be in succession equal to the unit coordinate vectors. It follows that 

where we used the property that the matrices 'T and JS are symmetric. 
Finally, we may interpret the force defined in (a). We note that the force d0T, which is 

balanced by the second Piola-Kirchhoff stresses on the wedge ABC, is related to the actual force 
d'T in the same way as an original fiber in d0S is deformed 

d0x = ~x d'x 

We may therefore say that in using (a) to obtain d0T. the force d'T is "stretched and rotated" in 
the same way that d'x is stretched and rotated to obtain d0x. 

We note that the components of the Green-Lagrange strain tensor and second Piola­
Kirchhoff stress tensor do not change when the material is subjected to only a rigid body 
translation because such motion does not change the deformation gradient. 

The definition of the second Piola-Kirchhoff stress tensor also implies that the compo­
nents do not change when the body being considered is undergoing a rigid body rotation. 
Since the invariance of the Green-Lagrange strain tensor components and second Piola­
Kirchhoff stress tensor components in rigid body rotations is of great importance, we 
consider these properties in the following four examples. 

Of course, the invariance of the Green-Lagrange strain tensor components with 
respect to rigid body rotations already follows from (6.53), since, as we pointed out earlier, 
the rigid body rotation of the fibers expressed in the matrix bR does not enter the definition 
of (6.53). To gain further insight, let us consider the following example. 

EXAMPLE 8. 12: Show that the components of the Green-Lagrange strain tensor are invariant 
under a rigid body rotation of the material. 

Let the Green-Lagrange strain tensor components at time t be given by 

6£ = H&XT &X - I) (a) 

where &X is the deformation gradient at time t corresponding to the stationary coordinate system 
Xi, i = l, 2, 3. 

Assume that the material is subjected to a rigid body rotation from time t to time t + At. 
Then corresponding to the stationary coordinate system xi, we have 

r+AJX = R JX (b) 

where R corresponds to the rotation, and then 

r+AJE = t('+AJxT t+AJX - I) (c) 

Substituting (b) into (c) and comparing the result with (a), we obtain 
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EXAMPLE 6.13: A four-node element is stretched until time t and then undergoes without 
distortion a large rigid body rotation from time t to time t + !::.t as depicted in Fig. E6.13. Show 
explicitly that for the element the components of the Green-Lagrange strain tensor at time t and 
time t + At are exactly equal. 

2cm 

2cm 1cm 

At time t 

Figure E6.13 Element subjected to 
large rigid body rotation after initial 
stretch 

The Green-Lagrange strain components at time t can be evaluated by inspection using 
(6.51), 

and 

=i 

Hence, 

Alternatively, we can use ( 6.54 ), where we first evaluate the deformation gradient as in Exam­
ple 6.6: 

Hence, 

and as before, 

dX = [~ ~] 

&C = [i ~] 
'E = [ i OJ 0 0 0 

After the rigid body rotation the nodal point coordinates are 

Node 

l 
2 
3 
4 

3cos8-1-2sin9 
1 2sin0 

-1 
3 cos 8 - l 

3sin9-1 +2cos8 
2 cos() - 1 
-1 
3 sin 8 - 1 

(a) 
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Thus, using again the procedure in Example 6.6 to evaluate the deformation gradient, we obtain 

(I + 0x2){3 cos (} - 1 - 2 sin 8) (1 + 0x1)(3 cos (J - 1 - 2 sin 8) 

-(l + 0x2)(-l - 2 sin 8) +(1 - 0x1)(-l - 2 sin 8) 
-(1 - 0x2)(-l) -(1 - 0x1)(-1) 

r+Ao'X = ! + (1 - 0x2){3 cos (} - I) -(l + 0x1)(3 cos () - 1) ( ) 
4 (1 + 0x2)(3 sin 8 1 + 2 COS fJ) - - -(t- +- o;1)(3 sin- (J -_: -i + i ;~; (;I) b 

or 

-(I + 0x2)(2 cos () - I) +{1 - 0x1)(2 cos (J - 1) 
(1 - 0x2)(-1) -(1 - 0x1)(-1) 

+ (1 - 0x2)(3 sin () - I) -(1 + 0x,)(3 sin 8 - 1) 

,+~x = [! cos o 
J sin() 

-sin 8] 
cos 8 

In reference to (6.29) we note that this deformation gradient can be written as 

where r+A:R = [c~s (} -sin (}]; 
sm () cos (J JU [t ~] 

(c) 

(d) 

This decomposition certainly corresponds to the actual physical situation, in which we measured 
a stretch in the 0x1 direction and then a rotation. Therefore, we could have established t+A&X using 
(d) instead of performing all the calculations leading to (b) and thus (c)! 

Using ( d) and ( 6.27), we obtain 

t+ArC = [~ 0] 0 
0 1 

and thus using (6.54), we have 

(e) 

Hence &E in (a) is equal to ,+A&E in (e), which shows that the Green-Lagrange strain components 
did not change as a result of the rigid body rotation. 

EXAMPLE 6. 14: Show that the components of the second Piola-Kirchhoff stress tensor are 
invariant under a rigid body rotation of the material. 

Here we consider a stationary coordinate system x;. i = l, 2, 3 and assume that the second 
Piola-Kirchhoff stress components are given in JS. Let the Cauchy stress, deformation gradient, 
and mass density at time t be 'T, JX, and 'p. Hence, 

0 

'S = .J!. ox 'T oxr 
0 'pt t 

{a) 

where ~X is the inverse deformation gradient. 
If a rigid body rotation is applied to the material from time t to time t + At, the deforma­

tion gradient changes to 

where R is an orthogonal (rotation) matrix, and hence 

t+A~x = ~Rr (b) 
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Equations (a) and (b) show that 

0 

t+cgs = 'p ~xRr t+A'TR ~r 
p 

(c) 

During the rigid body rotation of the material, the stress components remain constant in the 
rotating coordinate system. Hence the Cauchy stresses at time t + !!J.t are in the fixed coordinate 
system, 

(d) 

Substituting from (d) into (c), we obtain 
0 

t+A&S = ..!!_ ~xr 'T ~xr 
'p 

which completes the proof. Note that the reason for the second Piola-Kirchhoff stress compo­
nents not to change is that the same matrix R is used in equations (b) and (d). 

EXAMPLE 6. 15: Figure E6.15 shows a four-node element in the configuration at time 0. The 
element is subjected to a stress (initial stress) of 0 T1,. Assume that the element is rotated in time 
O to time /:,.t as a rigid body through a large angle 6 and that the stress in a body-attached 
coordinate system does not change. Hence, the magnitude of A,;:,1 shown in Fig. E6.15 is equal 
to O T11 • Show that the components of the second Piola-Kirchhoff stress tensor did not change as 
a result of the rigid body rotation. 

Configuration at 
time•At 

Figure E6.15 Four-node element with 
initial stress subjected to large rotation 

Configuration at 
time= o 

The second Piola-Kirchhoff stress tensor at time O is equal to the Cauchy stress tensor 
because the element deformations are zero, 

3S = [~T11 ~] (a) 

The components of the Cauchy stress tensor at time /:,.t expressed in the coordinate axes O x1, 0x2 
are 

Ar = [cos () -sin 6] [41
?1, O] [ cos O sin ()] 

T sin 8 cos 8 0 0 -sin 8 cos 8 
(b) 
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This transformation corresponds to a second-order tensor transformation of the components "'' Tq 
from the body-attached coordinate frame A'x1, A1.x2 to the stationary coordinate frame 0xi, 0x2 

(see Section 2.4 ). 
The relation between the Cauchy stresses and the second Piola-K.irchhoff stresses at time 

At is, according to ( 6.68), 

(c) 

where in this case A1p/0p = 1. The deformation gradient can be evaluated as in Example 6.6, 
where we note that the nodal point coordinates at time t are 

4 'xl = 2 cos 8 - 1 2 sin (J; A1x! 2 sin (} - 1 + 2 cos 8 

A, xf = - I 2 sin O; At X~ = 2 COS (J - } 

AtXT = -1; AtX~ = -1 

At x1 = 2 COS (J - 1; A1x1 = 2 sin 8 - 1 

Hence, using the derivatives of the interpolation functions given in Example 6.6, we have 

(1 + 0x2)(2 cos O - 1 - 2 sin 8) (1 + 0x1)(2 cos O - 1 - 2 sin 8) 
-(1 + 0x2)(-1 - 2 sin 8) +(l -· 0x,)(-1 - 2 sin 8) 

-(1- 0x2)(-l) -(l - 0x1)(-l) 
+(I - 0x2)(2 cos () - 1) 1 -(1 + 0x1)(2 cos (} - 1) 

(1 + 0x2)(2 sin (J - 1 + 2 cos 8) : (I + 0x1)(2 sin (} - 1 + 2 cos 8) 
A1x - } 
0 - -

4 
-(1 + 0x2)(2 cos O - 1) I +(1 - 0x1)(2 cos O 1) 

-(1- 0x2)(-1) -(1- 0x1)(-1) 

+ (I - 0x2)(2 sin 8 - 1) -(1 + 0x1)(2 sin 8 - 1) 

or [ 
cos fJ - sin (J] 
sin 8 cos 8 

(d) 

Substituting now from (b) and (d) into (c), we obtain 

ArS = [A, T11 0] 
0 0 0 

(e) 

But, since .lr,=11 is equal to 0 'T11 , the relations in (a) and (e) show that the components of the second 
Piola-Kirchhoff stress tensor did not change during the rigid body rotation. The reason there is 
no change in the second Piola-Kirchhoff stress tensor is that the deformation gradient corre­
sponds in this case to the rotation matrix that is used in the transformation in (b). 

It is important to note that in these examples we consider the coordinate system to 
remain stationary and the body of material to be moving in this coordinate system. This 
situation is of course quite different from expressing given stress and strain tensors in new 
coordinate systems. 

The above relationships between the stresses and strains show that, using (6.69) for 
the stress transformation and (6.64) for the strain transformation (but, as in Example 6.10, 
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using variations in strains rather than time derivatives), we obtain 

L 'n, 8,e., d'V L (~ JS• ,lx., .ix,)(~Xm; ~x •. 1 llbe,..) d'V 

= I. t &Sij 8mi 811j .SbEmn d'V = r c!,Sij SdEij d0 V (6.70) 
~ p J~ 

where we have also used that 'p d'V = 0p d0 V. 
Of course, (6.70) follows from the definition of the second Piola-Kirchhoff stress 

tensor in (6.66), and indeed (6.70) is but (6.66) in integrated form over the volume of the 
body (and written for strain variations). 

We have used in (6.70) a specific Cartesian coordinate system and should note that 
(6.70) is of course in component form a general tensor equation. Other suitable coordinate 
systems could also be chosen [see (6.178)]. 

Equation ( 6. 70) is the basic expression of the total and updated Lagrangian formula­
tions used in the incremental analysis of solids and structures, which we consider next. An 
important aspect of ( 6. 70) is that in the final expression the integration is performed over 
the initial volume of the body. Instead of the initial configuration, any other previously 
calculated configuration could be used, with the second Piola-Kirchhoff stresses and Green­
Lagrange strains then defined with respect to that configuration. More specifically, if the 
configuration at time Tis to be used, T < t, and we denote the coordinates at that time by 
'''x;, then we would employ 

(6.71) 

where the second Piola-Kirchhoff stresses ;Si1 and Green-Lagrange strains ;E,1 are defined 
as previously discussed, but instead of 0xi, the coordinates 7

X; corresponding to the 
configuration at time Tare used. We shall employ the relations in (6.70) and (6.71) often 
in the next sections. 

Note that so far we have defined the stress and strain tensors that we shall employ; the 
use of appropriate constitutive relations is discussed in Section 6.6. 

6.2.3 Continuum Mechanics Incremental Total and Updated 
Lagrangian Formulations, Materially-Nonlinear~Only Analysis 

We discussed in Sections 6.1 and 6.2.1 the basic difficulties and the solution approach when 
a general nonlinear problem is analyzed, and we concluded that, for an effective incremen­
tal analysis, appropriate stress and strain measures need to be employed. This led in 
Section 6.2.2 to the presentation of some stress and strain tensors that are employed 
effectively in practice, and then to the principle of virtual displacements expressed in terms 
of second Piola-Kirchhoff stresses and Green-Lagrange strains. We now use this fundamen­
tal result in the development of two general continuum mechanics incremental formulations 
of nonlinear problems. We consider in this section only the continuum mechanics equations 
without reference to a particular finite element solution scheme. The use of the results and 
the generalization for incremental formulations with respect to general finite element 
solution variables are then discussed in Section 6.3.1 (and the sections thereafter). 
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The basic equation that we want to solve is relation (6.13), which expresses the 
equilibrium and compatibility requirements of the general body considered in the 
configuration corresponding to time t + At. (The constitutive equations also enter (6.13), 
namely, in the calculation of the stresses.] Since in general the body can undergo large 
displacements and large strains and the constitutive relations are nonlinear, the relation in 
(6.13) cannot be solved directly; however, an approximate solution can be obtained by 
referring all variables to a previously calculated known equilibrium configuration and 
linearizing the resulting equation. This solution can then be improved by iteration. 

To develop a governing linearized equation, we recall that the solutions for times 0, 
At, 2At, ... , t have already been calculated and that we can employ (6.70) or (6.71) and 
refer the stresses and strains to one of these known equilibrium configurations. Hence, in 
principle, any one of the equilibrium configurations already calculated could be used. In 
practice, however, the choice lies essentially between two formulations which have been 
termed total Lagrangian (TL) and updated Lagrangian (UL) formulations (see K. J. Bathe, 
E. Ramm, and E. L. Wilson [A]). The TL formulation has also been referred to as the 
Lagrangian formulation. In this solution scheme all static and kinematic variables are 
referred to the initial configuration at time 0. The UL formulation is based on the same 
procedures that are used in the TL formulation, but in the solution all static and kinematic 
variables are referred to the last calculated configuration. Both the TL and UL formulations 
include all kinematic nonlinear effects due to large displacements, large rotations, and 
large strains, but whether the large strain behavior is modeled appropriately depends on the 
constitutive relations specified (see Section 6.6). The only advantage of using one formula­
tion rather than the other lies in its greater numerical efficiency. 

Using (6.70), in the TL formulation we consider the basic equation 

(6.72) 

whereas in the UL formulation we consider 

(6.73) 

in which ,+A,~ is the external virtual work given in (6.14). This expression also depends 
in general on the surface area and the volume of the body under consideration. However, 
for simplicity of discussion we assume for the moment that the loading is deformation­
independent, a very important form of such loading being concentrated forces whose 
directions and intensities are independent of the structural response. Later we shall discuss 
how to include deformation-dependent loading in the analysis [see (6.83) and (6.84)]. 

Tables 6.2 and 6.3 summarize the relations used to arrive at the linearized equations 
of motion about the state at time t in the TL and UL formulations. The linearized equi­
librium equations are, in the TL formulation, 

J. oCijrs oers l>oeiJ d0 V + J. &Su l>or,iJ d0 V = 1+41'lJt - J. JS;i l>oeu d0 V (6.74) 
Ov Ov Oy 

and in the UL formulation 

I. ,Cijrs ,ers 61eij d'V + I. 1
Tij 5,TJij d'V = t+iit'l}t - I. 1

T1j 6,elj d'V (6.75) 
v ~ ~ 
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TABLE 6.2 Continuum mechanics incremental decomposition: Total Lagrangian formulation 

1. Equation of motion 

where 

r+Ar - .!:.!!._ 0 1+61 0 • oSij - r+At r+ti.rXi,m Tm11 1+111Xj,n, 
p 

2. Incremental decompositions 

(a) Stresses 

(b) Strains 

r+~Eu = dE.; + 0E1j; oEu = oeu + oT/u 

oeli = Hou,,i + oUj.i + du1c,i 0U1<,; + 0U1<,; du1<.1); 

Initial displacement effect 

3. Equation of motion with incremental decompositions 
Noting that e+~e.; = &,E;; the equation of motion is 

f oSij/ioEij d 0 V + r dSulio'T/ij d 0 V = l+AteJt - ( &Sijlioeu d 0 V }ov )ov )ov 
4. Linearization of equation of motion 

Using the approximations oSQ oCun oe,s, 8oeu lioe,j, we obtain as approximate equation of motion: 

[ 0C11n oe,s6oeu d0 V + f dS111io"fl;1 d0V = r+i1,m - ( &Su8oeiJ d 0 V 
)ov Jov Jov 

TABLE 6.3 Continuum mechanics incremental decomposition: Updated Lagrangian formulation 

1. Equation of motion 

f t+e.:sij&+e.:eu d'V = t+AteJt 

v 
where 

t+At - 2-_ t t+Ar t • ,Su - r+Ar t+c.,Xi,m T,.,,. t+c.1Xj,n, 
p 

2. Incremental decompositions 
(a) Stresses 

t+c.~sij = I Tu + ,Su 

(b) Strains 

t+c.:eu = ,eu; 

,eu = H,u;,i + ,u1,1); 

3. Equation of motion with incremental decompositions 
The equation of motion is 

note that :su = '-ru 

,Eij = ,e;j + t T/ij 

11'/ij = iiUt,i ,Ut,j 

J ,Sij6,£;j d'V + J 1Tij611Jij d'V = t+At~ 
'v iv 

4. Linearization of equation of motion 
Using the approximations ,Sq = ,Cij,s ,e,s, 6t£ii = 6,e;j, we obtain as approximate equation of motion: 

f ,Cijrs ,e,so,e;; d'V + f 1
T;;/;,1];j d 1V = t+i1teJt - f 1Tij61eij d'V 

v ~ ~ 
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where oCijrs and ,C;jrs are the incremental stress-strain tensors at time t referred to the 
configurations at times O and t, respectively. The derivation of oCjrs and ,Cijrs for various 
materials is discussed in Section 6.6. We also note that in (6.74) and (6.75) l,Sii and 1

T;j are 
the known second Piola-Kirchhoff and Cauchy stresses at time t; and oeiJ, 01J1i and ,eu, ,1J1j 

are the linear and nonlinear incremental strains which are referred to the configurations at 
times O and t, respectively. 

Let us consider in more detail the steps performed in Table 6.2. The steps in Table 6.3 
are performed analogously. 

In step 2, we incrementally decompose the stresses and strains, which is allowed 
because all stresses and strains, including the increments, are referred to the original (same) 
configuration. Also note that we obtain the incremental Green-Lagrange strain compo­
nents in Table 6.2 by simply using oEij = rH6E1j - Jeu and expressing ,+.16E1j and JE1j in terms 
of the displacements, where r+~1u; = 1u; + u;. 

In step 3, we use 61+~eij 8(Jeu + 0E1j) = &eu; that is, here &e1j = 0 because the 
variation is taken about the configuration at time t + ts.t. We also bring all known quantities 
to the right-hand side in the principle of virtual work equation. Note that for a given 
displacement variation the expression Jov &Su &eu d0 V is known. So far we have not made 
any assumption but have merely rewritten the original principle of virtual work equation. 

In general, the left-hand side of the principle of virtual work equation given in step 3 
is highly nonlinear in the incremental displacements u;. In step 4, we now linearize the 
expression, and this linearization is achieved in the following manner. 

First, we note that the term fov JS1j Oo1Jii d 0V is already linear in the incremental 
displacements; hence, we keep this term without change. The nonlinear effects are due to 
the term Jov oSij &Eij d0 V, which we linearize using a Taylor series expansion, 

J. s;: o J. ( obSu I . ) ~( ) do oSii voEij d V = -;-;---- oErs + higher order terms u ae;i + o'TJo V 
Oy Oy UQE'rs I 

f (!~sij I (oers + o11rs) + higher order terms) S(oeij + 011u) d0V 
)ov uoErs 1 '--v-' '--v-' ....__ 

i 
oCu,s Neglect 

- ( oCij,, oe,., &eu d 0 V 
Jov 

Neglect Neglect 

This term is now linear in the incremental displacements because &eiJ is independent of 
the U1, 

Comparing the UL and TL formulations in Tables 6.2 and 6.3, we observe that they 
are quite analogous and that, in fact, the only theoretical difference between the two 
formulations lies in the choice of different reference configurations for the kinematic and 
static variables. Indeed, if in the numerical solution the appropriate constitutive tensors are 
employed, identical results are obtained (see Section 6.6). 

The choice of using either the UL or the TL formulation in a finite element solution 
depends, in practice, on their relative numerical effectiveness, which in turn depends on the 
finite element and the constitutive law used. However, one general observation can be made 
considering Tables 6.2 and 6.3, namely, that the incremental linear strains oeii in the TL 
formulation contain an initial displacement effect that leads to a more complex strain­
displacement matrix than in the UL formulation. 
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The relations in (6.74) and (6.75) can be employed to calculate an increment in the 
displacements, which then is used to evaluate approximations to the displacements, strains, 
and stresses corresponding to time t + At. The displacement approximations correspond­
ing to t + At are obtained simply by adding the calculated increments to the displacements 
at time t, and the strain approximations are evaluated from the displacements using the 
available kinematic relations [e.g., relation (6.54) in the TL formulation]. However, the 
evaluation of the stresses corresponding to time t + At depends on the specific constitutive 
relations used and is discussed in detail in Section 6.6. 

Assuming that the approximate displacements, strains, and thus stresses have been 
obtained, we can now check into how much difference there is between the internal virtual 
work when evaluated with the calculated static and kinematic variables for time t + At and 
the external virtual work. Denoting the approximate values with a superscript ( 1) in antic­
ipation that an iteration will in general be necessary, the error due to linearization is, in the 
TL formulation, 

Error = t+.\JQJi - ( t+Aot s~!) fJ+Aol i~> dov Jov 'J tJ 
(6.76) 

and in the UL formulation, 

Error = t+A1QJi - I. t+A,T~) 8,+a.,e~> d1+A1y 

t+AtvO) 
(6.77) 

We should note that the right-hand sides of (6.76) and (6.77) are equivalent to the 
right-hand sides of (6.74) and (6.75), respectively, but in each case the current configura­
tions with the corresponding stress and strain variables are employed. The correspondence 
in the UL formulation can be seen directly, but when considering the TL formulation, it 
must be recognized that &e11 is equivalent to 8'+A&e;jl when the same current displacements 
are used (see Exercise 6.29). 

These considerations show that the right-hand sides in (6.74) and (6.75) represent an 
"out-of-balance virtual work,, prior to the calculation of the increments in the displace­
ments, whereas the right-hand sides of (6.76) and (6.77) represent the "out-of-balance 
virtual work" after the solution, as the result of the linearizations performed. In order to 
further reduce the "out-of-balance virtual work" we need to perform an iteration in which 
the above solution step is repeated until the difference between the external virtual work and 
the internal virtual work is negligible within a certain convergence measure. Using the TL 
formulation, the equation solved repetitively, fork = 1, 2, 3, ... , is 

f. C(k-l) A e(k) ~e·· dOV + f. t+Ars(k-1) 86, .7/k) dOV = t+AtWl, _ f. l+AJS(~-1) (5i+AJE(~-1) dOV 
O ijrs '-'O rs ()I} IJ O ij O •tiJ IJ tJ 

Oy Oy Oy 

(6.78) 

and using the UL formulation, the equation considered is 

f. C(k-1) A e(lc) ~ e·· a1+A1v + I. t+AtT(k-1) SA 'YI(~) dt+AtV 
t+At ijrs '-'1+Ar rs Ut+.\J 11 ij t+ll.t ·,IJ 

t+.1.ty(k-1) r+Aty(k-1) 

_ ,+Arm. _ J. 1+A17 <k-t) t- e(k-ll dr+A1v 
- rn ij u,+At ij 

r+Aty(k-1) 

(6.79) 
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where the case k = 1 corresponds to the relations in (6.74) and (6.75) and the displace­
ments are updated as follows: 

(6.80) 

The relations in (6.78) to (6.80) correspond to the Newton-Raphson iteration already 
introduced in Section 6.1. Therefore, the expressions in the integrals are all evaluated 
corresponding to the currently available displacements and corresponding stresses. Note 
that in ( 6. 79) the Cauchy stresses, the tangent constitutive relation, and the incremental 
strains are all referred to the configuration and volume at time t + A.t, end of iteration 
(k - 1); that is, the quantities are referred to t+6tv<k-l), where for k = 1, t+6tv<0> = 'V. 

In an overview of this section, we note once more a very important point. Our 
objective is to solve the equilibrium relation in (6.13), which can be regarded as an exten­
sion of the virtual work principle used in linear analysis. We saw that for a general incre­
mental analysis, certain stress and strain measures can be employed effectively, and this led 
to a transformation of (6.13) into the updated and total Lagrangian forms. The lineariza­
tion of these equations then resulted in the relations (6.78) and (6.79). It is most important 
to recognize that the solution of either (6.78) or (6.79) corresponds entirely to the solution 
of the relation in (6.13). Namely, provided that the appropriate constitutive relations are 
employed, identical numerical results are obtained using either (6.78) or (6.79) for solution, 
and, as mentioned earlier, whether to use the TL or the UL formulation depends in practice 
only on the relative numerical effectiveness of the two solution approaches. 

So far we have assumed that the loading is deformation-independent and can be 
specified prior to the incremental analysis. Thus, we assumed that the expression in (6.14) 
can be evaluated using 

t+At<!Jt = f. t+AJff 8Ui dOV + f. t+At,Jf 8uf dOS 
ov Os/ 

(6.81) 

which is possible only for certain types of loading, such as concentrated loading that does 
not change direction as a function of the deformations. Using the displacement-based 
isoparametric elements, another important loading condition that can be modeled with 
( 6.81) is the inertia force loading to be included in dynamic analysis. In this case we have 

(6.82) 

and hence, the mass matrix can be evaluated using the initial configuration of the body. The 
practical consequence is that in a dynamic analysis the mass matrices of isoparametric 
elements can be calculated prior to the step-by-step solution. 

Assume now that the external virtual work is deformation-dependent and cannot be 
evaluated using ( 6.81). If in this case the load (or time) step is small enough, the external 
virtual work can frequently be approximated to sufficient accuracy using the intensity of 
loading corresponding to time t + ll.t, but integrating over the volume and area last calcu~ 
lated in the iteration 

(6.83) 
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and J. ,+A,ff 5uf d1+A,s ,; J. ,+A'ff 5uf d1+c.,5 (6.84) 
r+c.tsf r+Atst-o 

In order to obtain an iterative scheme that usually converges in fewer iterations, the effect 
of the unknown incremental displacements in the load terms needs to be included in the 
stiffness matrix. Depending on the loading considered, a nonsymmetric stiffness matrix is 
then obtained (see, for example, K. Schweizerhof and E. Ramm [A]), which may require 
substantially more computations per iteration. 

The total and updated Lagrangian formulations are incremental continuum mechan­
ics equations that include all nonlinear effects due to large displacements, large strains, and 
material nonlinearities; however, in practice, it is often sufficient to account for nonlinear 
material effects only. In this case, the nonlinear strain components and any updating of 
surface areas and volumes are neglected in the formulations. Therefore, (6.78) and (6.79) 
reduce to the same equation of motion, namely, 

(6.85) 

where r+Ar uit O is the actual physical stress at time t + At and end of iteration (k - l ). In 
this analysis we assume that the volume of the body does not change and therefore ,+~s11 
r+ArT;1 = r+ArO'ij, and there can be no deformation-dependent loading. Since no kinematic 
nonlinearities are considered in (6.85), it also follows that if the material is linear elastic, 
the relation in ( 6.85) is identical to the principle of virtual work discussed in Section 4.2.1 
and would lead to a linear finite element solution. 

In the above formulations we assumed that the proposed iteration does converge, so 
that the.incremental analysis can actually be carried out. We discuss this question in detail 
in Section 8.4. Furthermore, we assumed in the formulation that a static analysis is per­
formed or a dynamic analysis is sought with an implicit time integration scheme (see 
Section 9.5.2). If a dynamic analysis is to be performed using an explicit time integration 
method, the governing continuum mechanics equations are, using the TL formulation, 

using the UL formulation, 

f. 1
Tij S,eij d'V = 19Jl 

v 

and using the materially-nonlinear-only analysis, 

I I uu 5eii dV = '9il 

(6.86) 

(6.87) 

(6.88) 

where the stress and strain tensors are as defined previously and equilibrium is considered 
at time t. In these analyses the external virtual work must include the inertia forces corre­
sponding to time t, and the incremental solution corresponds to a marching-forward al­
gorithm without equilibrium iterations. For this reason, deformation-dependent loading can 
be directly included by simply updating the load intensity and using the new geometry in 
the evaluation of ''lit The details of the actual step-by-step solution are discussed in Sec­
tion 9.5.1. 
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6.2.4 Exercises 

6.1. A four-node plane strain finite element undergoes the deformation shown. The element is origi­
nally square, the density 0p of the element is 0.05, and d0x and d 0i are infinitesimal fibers. 
For the deformed configuration at time t: 
(a) Calculate the displacements of the material points within the element as functions of 0x1 and 

0
x2. 

(b) Calculate the deformation gradient &X, the right Cauchy-Green deformation tensor JC, and 
the mass density 'pas a function of 0x, and 0x2. 

0~2 tx2 

2 
1 

2 
dOx ox, 

3 4 

6.2. For the element in Exercise 6.1, calculate the stretches 'A and ',\ of the line segments d0x and 
d0i and the angular distortion between these line segments. 

6.3. Consider the four-node plane strain element shown. Calculate the deformation gradient for times 
Ar and 2At. [Hint: Establish (by inspection) the matrices &It and 60 such that &X = JR JU, 
where JR is an orthogonal (rotation) matrix and JU is a symmetric (stretch) matrix.] 

45° 

Rigid body 
translation 
and stretching 
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6.4. The four-node plane stress element of incompressible material shown is first stretched in the x1 
and x2 directions and then rigidly rotated by 30 degrees. 
(a) Calculate the deformation gradient 2~X of the material points in the element. 
(b) Calculate the stretches of the line elements d 0 s1 and d 0s2. 

X2 I· 
3 

t I 

2{ 2 1 

2 

3 4 

TimeO Time !J.t Time2At 
x, 

6.5. Consider the four-node element and its deformations to time At in Exercise 6.4. Assume that the 
deformation gradient at time A.t is now expressed in the coordinate axes xi, x2 shown. Calculate 
this deformation gradient A0X and show that 40X is not equal to 24JX calculated in Exercise 6.4. 
(In Exercise 6.4 the element was stretched and rotated, whereas here the element is only 
stretched.) 

3.0 

x, 
2.5[ 

6.6. Consider the motions of two infinitesimal fibers in a two-dimensional continuum. At time 0, the 
fibers are 

dox = _l_ [1] dos. V2 1 • 

and at time t, the fibers are 

d'x = [~] d0s; 

Both fibers emanate from the same material point. 
(a) Calculate the deformation gradient JX at that material point. 
(b) Calculate the inverse deformation gradient ~X at that material point (i) by inverting JX and 

(ii) without inverting JX. 
(c) Calculate the mass density ratio 'p/0p at the material point. 

6.7. Prove that a deformation gradient X can always be decomposed into the form X = VR where 
V is a symmetric matrix and R is an orthogonal matrix. Establish V and R for the deformation 
in Exercise 6.4. 
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6.8. A four-node plane strain element is subjected to the following deformations: 

from time Oto time At: t,.&U = [ 2 0.5] 
0.5 0.5 

from time At to time 2At: 2i~R = [cos 30° -sin 30°] 
sin 30° cos 30° 

(a) Sketch the element and its motions and establish the deformation gradient 2A&X. 
(b) Calculate the spectral decomposition of ti.JU as per (6.32). 

531 

(c) Calculate the elements of the decomposition of X = VR and interpret this decomposition 
conceptually. 

6.9. Consider the four-node axisymmetric element shown. Evaluate the deformation gradient and the 
right and left stretch tensors U, V. 

6.10. Consider the motion of the four-node finite element shown. Calculate for time t, 
(a) The deformation gradient and the polar decompositions X = RU and X = VR 
(b) The spectral decompositions of U and Vin (6.32) and (6.33) 
(c) The velocity strain and spin tensors in (6.42) and (6.43). 

tu= 0.4 

tiJ = 0.1; constant velocity 

Timeo 

1.0 

6.11. Prove the relations in (6.48) to (6.50). 

6.12. Prove the relations in (6.56) to (6.61). 

6.13. Consider the motion of the four-node element in Exercise 6.10. Calculate (A]aa, (OL.)013 , and 
[Oe]of3 using the relations (6.48) to (6.50). Verify that (6.46) and (6.47) hold. 
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6.14. Calculate the components of the Green-Lagrange strain tensors of the elements and their defor­
mations in Exercises 6.1, 6.3, and 6.4. In each case establish the relations in (6.51) and (6.53) 
to (6.55). 

6.15. Calculate the components of the Hencky strain tensor ( 6.52) for the elements and their deforma­
tions in Exercises 6.1, 6.3, and 6.4. 

6.16. Consider the element an(\ its motion in Exercise 6.10. For the Green-Lagrange strain and J-Iencky 
strain tensors, calculate E8 in (6.57) by direct differentiation of (6.56). Also, establish E, using 
the detailed relations (6.59) to (6.61). 

6.17. Consider the motion of a material fiber d0x in a body. 
(a) Prove that for the material fiber the following relation holds using the Green-Lagrange strain 

tensor 

6E;1 d 0x; d0x1 = H(d1s)2 - (d0s)2] 

where (d's)2 = d 1x, d'x,, (d0s)2 = d0x, d0x, and (6.22) is applicable. 
(b) At point A in a deformed body the Green-Lagrange strain tensor is known to be 

I _ [0.6 0,2] 
oE - 0.2 -0.3 

Find the stretch ',\ of the line element d 0 s = II d0x lb shown. Can you calculate the rotation 
of the line element? Explain your answer. 

Time O Time t 

X2101~·~ 
x, 

6.18. The nodal point velocities of a four-node element are as shown. Using the element interpolation 
functions, evaluate the components of the velocity strain tensor and spin tensor of the element. 
Physically explain why your answer is correct. 

2 X2 ·~ 

I 
rul = 0.2; tul = 0.1 
tu~ ... -0.1; tfi~ ... -0.2 

x, ti,f. -0.2; ruJ=-0.1 

3 ·~ tuf = 0.1; tu!= 0.2 

1 .. --1 
At time t 

2 

6.19. Consider the four-node plane strain element and its motion in Exercise 6.10. Evaluate the 
components 'Dmn using the relation (6.64). 
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6.20. Consider the four-node plane strain element shown. Evaluate the components of the tensor 8,emn 
corresponding to the virtual displacement 8ul = A at node 1 as a function of 0x1 and 0

x2. (All 
other 8uJ = 0.) 

Evaluate all matrix expressions required but do not necessarily perform the matrix multi -
plications. 

/ 
/ 

v 

(5, 4) 1 A ,. ..... ., ,. / 
/ 

,I 
/ 

; ; /""' Variation 

6.21. Consider the four-node element shown, subjected to an initial stress with components 

Initial stress _ 08 _ 0 _ [200 100] 
- 0 = 'I' -

(stress at time 0) 100 300 

The element is undeformed in its initial configuration. Assume that the element is subjected to 
a counterclockwise rigid body rotation of 30 degrees from time O to time At. 
(a) Calculate the Cauchy stresses 41T corresponding to the stationary coordinate system xi, x2. 
(b) Calculate the second Piola-Kirchhoff stresses ~S corresponding to xi, x2. 
(c) Calculate the deformation gradient 4&X. 

t.:: 
t: 

200 

Initial configuration 
time O 

Time At 

Next, assume that the element remains in its initial configuration but the coordinate system is 
rotated clockwise by 30 degrees. 
(d) Calculate the Cauchy stresses 0

.;:- corresponding to xi, x2• 

(e) Calculate the second Piola-Kirchhoff stresses 8S corresponding to X1t x2. 
(f) Calculate the deformation gradient 8X corresponding to x1, x2 • 
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6.22. The four-node plane strain finite element shown carries at time t the second Piola-Kirchhoff 
stresses 

[

100 50 OJ 
JS= 50 200 0 

0 0 100 
The deformation gradient at time t is 

&X= u 1 OJ 2 0 
0 1 

2 1 

i 
TimeO 

ov 
3 4 

1 .. ~ I X1 

(a) Sketch the deformed configuration at time t. 
(b) A rigid body rotation of 30 degrees counterclockwise is applied from time t to time t + At 

to the element. Sketch the configuration at time t + At. 
(c) Calculate corresponding to the stationary Cartesian coordinate system (i) the Cauchy 

stresses at time t, (ii) the Cauchy stresses at time t + At, and (ill) the second Piola-Kirchhoff 
stresses at time t + At. 

6.23. The second Piola-Kirchhoff stresses JS are for the plane strain four-node element as shown. 
(a) Calculate the Cauchy stresses at time t. 
(b) Obtain the second Piola-Kirchhoff stresses at time t + At, 1+i1JS, and the Cauchy stresses at 

time t + At, t+At'T. 

All stress components are measured in the stationary coordinate system xi, x2. 

Unit thickness 
at all times 

2 

3 .. , 

' Configur 

' 

Rotated by 45° from time t 
to time t+ At 

ation at time t 

~511 = 40 

i522 =-60 

~533 = -15 

~512 = ~Si3 = ~5:31 = 0 

2 x 2 squ are attimeO 
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6.24. We have used a computer program to perform the following finite element analysis. 

R _....... 

~ x, 

Large displacements, large strains, 
plane strain analysis 

535 

We would like to verify that the program is working properly. As part of this verification, we 
consider the displacements of element 1: 

2 s 

X2 I r 

4 
31 .. 2 -1 

Xt 
nmet 

(a) Calculate the 2 X 2 deformation gradient JX at the centroid of the element. (Hint: Remem~ 
ber that JX = ~x-1

.) 

(b) The program also prints out the Cauchy stresses at the centroid of the element: 

[

1

T11] [20.50] 1
722 = 20.50 

1
712 12.50 

The material law used in the analysis is given by 

[!~::] = [1~ 1; ~J[!::J 
6812 0 0 9 6E12 

Show that the Cauchy stresses printed by the program are not correct and compute the correct 
Cauchy stresses based on the given element displacements. 

Can you identify the program error? 
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6.25. Consider the sheet of material shown. 
Here 

Also, the stresses are 
1
7"11 = -10 psi 

1
T22 = 20 psi 

'T12 = Q 

Identify six simple independent virtual displacement patterns and show that the principle of 
virtual work is satisfied for these patterns. 

2 in 

I~ 2 in 

tfX2 = 20 psi (tension) 

3in 

1 in-+-1 

Thickness= 1 in 

tf,c1 = 10 psi (compression) 

Configuration at time t 
~ 

Configuration at time O 

6.26. Consider the one-dimensional large strain analysis of the bar shown. 

f8 ... body force per unit original volume 
O A = cross-sectional area at time O 
Truss material is incompressible 

(a) For a cross section of the bar, derive an expression for the second Piola-Kirchhoff stress as 
a function of the Cauchy stress, the area ratio 'A/0A, and the deformation gradient. 

(b) Starting from the principle of virtual work, derive the governing differential equation of 
equilibrium in terms of quantities referred to the original configuration. Also, derive the 
boundary conditions. 

(c) Now rewrite the governing differential equation in terms of quantities referred to the current 
configuration and compare this equation with the differential equation associated with small 
strain analysis. 
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6.27. Consider a thin disk spinning around its symmetry axis with constant angular velocity w as 
shown. The disk is subjected to large displacements. Specialize the general equations of the 
principle of virtual work in Tables 6.2 and 6.3 to this case. In the analysis, only the displacements 
of the disk particles in the x I direction are considered. 

H,h«b 

Section AA 

x, 
h 

6.28. Consider the four-node plane strain element shown. The nodal point displacements at time t and 
time t + lit are shown. Calculate the incremental Green-Lagrange strain tensor components oE 

from time t to time t + At. 

4 

2 

4 

2 4 

At time t+M 

At time t 

.----- At time O 
(original configuration) 

x, 

6.29. In the derivations in Section 6.2.3 we used 

and hence, here o Jeii = 0. But we also used 

f JSii &eii d0 V = f JSii &Jeij d0V 
Jov Jov 

and hence, here 6 oeii = 8 Jeu and clearly 8 JE;j * 0. Discuss briefly why all these equations are 
correct. 
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6.30. Establish the second Piola-Kirchhoff stresses JSy and the variations in the Green-Lagrange 
strains 86eii for the disk in Exercise 6.27 and show explicitly that for this case, f,v 1Tii o,e;; d'V 
= f ov &Sii &f Eii d 0 V is indeed true. 

8.3 DISPLACEMENT-BASED ISOPARAMETRIC CONTINUUM 
FINITE ELEMENTS 

In the previous section we developed the linearized principle of virtual displacements 
(linearized about the state at time t) in continuum form. The only variables in the equations 
are the displacements of the material particles. 

If finite elements with only nodal point displacements as degrees of freedom are 
considered, then the governing finite element matrices corresponding to a full linearization 
of the principle of virtual displacements about the state at time t can be obtained directly 
by use of the equations given in the previous section. The key point to note is that in this 
case the element degrees of freedom, i.e., the element displacements, are exactly the 
variables with respect to which the general principle of virtual displacements has been 
linearized. Let us consider the following derivation to emphasize this point. This derivation 
will also show that if other than displacement degrees of freedom are used, such as rotations 
in structural elements or stresses in mixed formulations, the linearization with respect to 
such finite element degrees of freedom is more efficiently achieved by a direct Taylor series 
expansion with respect to such variables. 

6.3.1 Linearization of the Principle of Virtual Work 
with Respect to Finite Element Variables 

The principle of virtual displacements in the total Lagrangian formulation is given by 

f l+AJS;j a,+AJE;; dov = t+At~ 

Jov 
(6.89) 

Let us linearize this expression with respect to a general finite element nodal degree 
of freedom 1ak, where 1ak may be a displacement or rotation. We assume that ,+A,</Jl is 
independent of the deformations. We then have, using a Taylor series expansion, 

,+A, 8 t-,+At .:.. 'S s:, + a ('s ts, ) d o ij o oEij - o ij voEij a'ak o ii ooEij ak (6.90) 

where dak is a differential increment in 'ak, We note that 

(6.91) 

where Sa, is a variation in 'a,, and hence the variation is taken with respect to the nodal 
parameter 'a, about the configuration at time t. 
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The second term in (6.90) may be chain-differentiated to obtain 

a ('S s::, ) d iJJS;1 ~, d 'S iJ (s::1 ) d -;;-- o Ii voEu ak = -;;-- voEu ak + o u-;,- uoEij ak 
vak vak vak 

(6.92) 

where in the last step we used 

(6.93) 

Using the definition of the Green-Lagrange strain, we further have 

iJbEiJ _ 1 (iJbUt,J + obUJ,I + 1 • iJbUm,J + 'u . iJbUm,i) 
!lt 2 !)I :it oUm,, !II O m,J :it 
v ak v ak v ak v ak v ak 

(6.94) 

and a2 
bE1j _ l (' a2 bum,} + 1 iJ2 bum,i + iJbum,i &bum,} + cJbum,i iJbum.j) 

-- oX. oX .--- ---- ----
iJ'ak i:i'a, 2 m,I iJ'a1r. iJ'a, m,J a'ak iJ'a, o'ak iJ'a, iJ'a1 iJ1a1c 

(6.95) 

The substitution of ( 6.90) and ( 6.92) into the principle of virtual displacements ( 6.89) 
gives 

{I. C· iJ/,Ers o/,E;j dov + i IS.· ;p bEij dov} d a = t+Ateft 
O IJTS !ll at O 1J !)I !)I Qk Q/ l 

ov v ak a1 ov v a" v a, 

where r+t..rm, denotes the external virtual work corresponding to 5a,. 
If we now compare the expression in (6.96) [and using (6.94) and (6.95)] with the 

linearized principle of virtual displacement expression in Table 6.2, we recognize that for 
isoparametric displacement-based continuum elements with nodal displacement degrees of 
freedom only, both expressions can directly, and easily, be employed to obtain the same 
finite element equations. However, for elements with rotational degrees of freedom, the 
expression in (6.96) may be more direct for the derivation of the fully linearized finite 
element equations. Namely, the second derivatives of the displacement gradients with 
respect to the nodal point variables appearing in (6.95) are then not zero, and their effect 
also needs to be included. Consequently, if the continuum linearizations in Tables 6.2 and 
6.3 are used, it must be recognized that the terms t,S1i 80e1i and r'Tii 8,e;i, on the right-hand 
side of the equations, still contribute terms to the stiffness matrix when 0e;i and ,e;i are not 
a linear function of the nodal point variables (see Section 6.5). 

If, in addition, other than displacement and rotational element degrees of freedom are 
used, then certainly the above approach of linearization is very effective (see Section 6.4 
for the derivation of the displacement/pressure formulations). 

Here we have considered only a total Lagrangian formulation but should recognize 
that the same procedure of linearization is also applicable to updated Lagrangian formula­
tions, and to all these formulations with all different material descriptions. The same 
procedure can also be employed to linearize the external virtual work term in (6.89) in case 
the loading is deformation dependent. 
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6.3.2 General Matrix Equations of Displacement-Based 
Continuum Elements 

Chap.6 

Let us now consider in more detail the matrices of isoparametric continuum finite elements 
with displacement degrees of freedom only. 

The basic steps in the derivation of the governing finite element equations are the same 
as those used in linear analysis: the selection of the interpolation functions and the interpo­
lation of the element coordinates and displacements with these functions in the governing 
continuum mechanics equations. By invoking the linearized principle of virtual displace~ 
ments for each of the nodal point displacements in turn, the governing finite element 
equations are obtained. As in linear analysis, we need to consider only a single element of 
a specific type in this derivation because the governing equilibrium equations of an assem­
blage of elements can be constructed using the direct stiffness procedure. 

In considering the element coordinate and displacement interpolations, we should 
recognize that it is important to employ the same interpolations for the coordinates and 
displacements at any and all times during the motion of the element. Since the new element 
coordinates are obtained by adding the element displacements to the original coordinates, 
it follows that the use of the same interpolations for the displacements and coordinates 
represents a consistent solution approach, and means that the discussions on convergence 
requirements in Sections 4.3 and 5.3.3 are directly applicable to the incremental analysis. 
In particular, it is then ensured that an assemblage of elements that are displacement-com­
patible across element boundaries in the original configuration will preserve this compati­
bility in all subsequent configurations. 

In Sections 6.2.3 and 6.3.1 we derived the basic incremental equations used in our 
finite element formulations. While in practice an iteration is necessary, we also recognized 
that the equations in Tables 6.2 and 6.3 and Section 6.3.1 are the basic relations that are 
used in such iterations. Hence, in the following presentation we only need to focus on the 
basic incremental equations derived in Tables 6.2 and 6.3 (with the discussion in Section 
6.3.1) and summarized in (6.74) and (6.75). 

Substituting now the element coordinate and displacement interpolations into these 
equations as we did in linear analysis, we obtain-for a single element or for an assemblage 
of elements-
in materially-nonlinear-only analysis: 
static analysis: 

dynamic analysis, implicit time integration: 

M 1+.1,ij + 1KU = ,+atR - 'F 

dynamic analysis, explicit time integration: 

using the TL formulation: 
static analysis: 

M'U = 'R - 'F 

(6.97) 

(6.98) 

(6.99) 

(6.100) 
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dynamic analysis, implicit time integration: 

M r+tuij + (bKL + bKNL)U = t+AtR - bF 

dynamic analysis, explicit time integration: 

and using the UL formulation: 
static analysis: 

M 1U = 'R bF 

dynamic analysis, implicit time integration: 

M t+Arij + (IKL + IKNi)U = t+AtR - :F 

dynamic analysis, explicit time integration: 

M'U = 'R- ~F 

where M = time-independent mass matrix 

541 

(6.101) 

(6.102) 

(6.103) 

(6.104) 

(6.105) 

'K linear strain incremental stiffness matrix, not including the initial displacement effect 
bKL, :Ki. = linear strain incremental stiffness matrices 

bKNt, IKNt = nonlinear strain (geometric or initial stress) incremental stiffness matrices 
r+AtR = vector of externally applied nodal point loads at time t + .tit; this vector is also used at 

time t in explicit time integration 
'F, bF. IF = vectors of nodal point forces equivalent to the element stresses at time t 

.. P,' = vector of increments in the nodal point displacements 
'U, t+Aru = vectors of nodal point accelerations at times t and t + .tit 

In the above finite element discretization we have assumed that damping effects are 
negligible or can be modeled in the nonlinear constitutive relationships (for example, by use 
of a strain-rate-dependent material law). We also assumed that the externally applied loads 
are deformation-independent, and thus the load vector corresponding to all load (or time) 
steps can be calculated prior to the incremental analysis. If the loads include deformation­
dependent components, it is necessary to update and iterate on the load vector as briefly 
discussed in Section 6.2.3. 

The above finite element matrices are evaluated as in linear analysis. Table 6.4 
summarizes-for a single element-the basic integrals being considered and the corre­
sponding matrix evaluations. The following notation is used for the calculation of the 
element matrices: 

us, H = surface- and volume-displacement interpolation matrices 
r+Abf5, r+Abf 8 vectors of surface and body forces defined per unit area and per unit volume of the 

element at time O 
BL, bBt, :Bi. = linear strain-displacement transformation matrices~ BL is equal to bBL when the 

initial displacement effect is neglected 
bBNt, ~BNL = nonlinear strain-displacement transformation matrices 

C = stress-strain material property matrix (incremental or total) 
oC, rC = incremental stress-strain material property matrices 

'-r, 'T = matrix and vector of Cauchy stresses 
bS, 18 = matrix and vector of second Piola-Kirchhoff stresses 

'I = vector of stresses in materially-nonlinear-only analysis 
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TABLE 6.4 Finite element matrices 

Analysis type 

Inall 
analyses 

Materially-nonlinear~ 
only 

Total 
Lagrangian 
fonnulation 

Updated 
Lagrangian 
fonnulation 

Integral 

f op ,+i1ta; Bu; dov 
Jov 

t+A'!l}t = f. t+At:Jf tJuf d0S 
Os/ 

+ ( t+A!JfftJu; d ov 
Jov 

L cijrs e,s &ij dV 

t 'u;1 &iJdV 

f oCiJ,s oe,s Boe,1 d
0V 

Jov 
f dSiJ Bor,iJ d0 V Jov 
f bSli Br,e;1 d

0 V Jov 

f ,CiJ,s ,e,s B,eiJ d'V J,v 
( 'Tli 6,T/iJ d 1V 
J,v 

J 11'1j 8,eiJ d1V 
'V 

Matrix evaluation 

M l+Atft = (J. Op ere dov) t+Atj 

Ov 

!+AIR = f. esT t+Ais dos 
os, 

+ ( HT t+4&fB dov 
Jov 

'Ku = (t B[CBL dV )u 

'F = L B[ 1idV 

&KLU = (( 68[ oC 6BL d0V )u 
&KNLll = (Lv bB~L 6S &BNL d0 v)u 
&F = f 6BfbS d 0 V Jov 

:KtU (t :Br ,C lBt d'V )u 
:KNLa = (( in~L 1'T :nNL d'v)u 

:F = f 1B['T d 1V J,v 

These matrices depend on the specific element considered. The displacement interpo­
lation matrices are simply assembled as in linear analysis from the displacement interpola­
tion functions. In the following sections we discuss the calculation of the strain­
displacement and stress matrices and vectors pertaining to the continuum elements that we 
considered earlier for linear analysis in Chapter 5. The discussion is abbreviated because the 
basic numerical procedures employed in the calculation of the nonlinear finite matrices are 
those that we have already covered. For example, we consider again variable-number-nodes 
elements whose interpolation functions were previously given. As before, the displacement 
interpolations and strain-displacement matrices are expressed in terms of the isoparametric 
coordinates. Thus, the integrations indicated in Table 6.4 are performed as explained in 
Section 5.5. 

In the following discussion we consider only the UL and TL formulations because the 
matrices of the materially-nonlinear-only analysis can be directly obtained from these 
formulations, and we are only concerned with the required kinematic expressions. The 
evaluation of the stresses and stress-strain matrices of the elements depends on the material 
model used. These considerations are discussed in Section 6.6. 
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6.3.3 Truss and Cable Elements 

As discussed previously in Section 4.2.3, a truss element is a structural member capable of 
transmitting stresses only in the direction normal to the cross section. It is assumed that this 
normal stress is constant over the cross-sectional area. 

In the following we consider a truss element that has an arbitrary orientation in space. 
The element is described by two to four nodes, as shown in Fig. 6.3. and is subjected to large 
displacements and large strains. The global coordinates of the nodal points of the element 
are at time 0, 0x1, 0xt 0x~ and at time t, 'xL 'xt 'xt where k = 1, ... , N, with N equal 
to the number of nodes (2 s N s 4). These nodal point coordinates are assumed to 
determine the spatial configuration of the truss at time O and time t using 

N N N 
0xi(r) = L hk 0xt; 0x2(r) = L hk 0x1; 0x3(r) L hk 0x~ (6.106) 

k=I k=I k=l 

N N N 

and 1x1(r) = L h,1: 'xt; 1x2(r) = L hk 'x~; 1X3(r) = L hk 'x~ (6.107) 
k=I k=I k""I 

where the interpolation functions hk(r) have been defined in Fig. 5.3. Using (6.106) and 
( 6.107), it follows that 

and 

- y2 Ov n 

1 Os 

N 

'ui(r) = L h1c 'u1 (6.108) 
k"'I 

N 

ulr) = L hku1. 
k=l 

i = 1, 2, 3 (6.109) 

2 

Figure 6.3 Two- to four-node truss 
element 

Since for the truss element the only stress is the normal stress on its cross~sectional area, 
we consider only the corresponding longitudinal strain. Denoting the local element longitu­
dinal strain by a curl, we have in the TL formulation, 

(6.110) 
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where 0s(r) is the arc length at time O of the material point 0x1(r), 0x2(r), 0xl(r) given by 
N 

0s(r) = ~ h1c 0st (6.111) 
lc"'l 

The increment in the strain component be11 is denoted as oi11, where oe, 1 = oe'11 + 
01)11 and 

_ d0xi dui d 1u; du1 
oeu = d0s d0s + d 0s d 0s (6.112) 

_ 1 duj du; 
o1J11 = 2 dos dos (6.113) 

For the strain-displacement matrices we define 

Oi;T = (Oxl OX! OXj 0xr o~ 0xf] (6.114) 
1UT = ['ul 'u! 'u! 'ur 1uf 'uf] 

fiT = [ul u! u! ... ur uf uf] (6.115) 

[ h,13 hNIJl I,= u 0 

n H I (6.116) 

0 

and hence, using (6.112) and (6.113), 

bBL = (0 r 1
)
2 

(
0 iTH:rH., + 'fiTH:,H.,) (6.117) 

and bBNL = 0r 1H.r (6.118) 

where Or 1 = dr/d0 s. We note that since bBNL is independent of the orientation of the 
element, the matrix JKNL is so as well. 

The only nonzero stress component is bS11, which we assume to be given as a function 
of the Green-Lagrange strain be11 at time t (see Section 6.6). The tangent stress-strain 
relationship is therefore 

(6.119) 

Using ( 6.114) to ( 6.119), the truss element matrices can be directly calculated as 
given in Table 6.4. Referring to Tables 6.2 to 6.4, the above relations can also be directly 
employed to develop the UL formulation, and of course the materially-nonlinear-only 
formulation. Consider the following examples. 

EXAMPLE 6.16: For the two-node truss element shown in Fig. E6.16 develop the tangent 
stiffness matrix and force vector corresponding to the configuration at time t. Consider large 
displacement and large strain conditions. 

We note that the element is straight and is at time O aligned with the 0x, axis. Hence, we 
need not use the curl on the stress and strain components, and the equations of the formulation 
are somewhat simpler than (6.l 10) to (6.119). In the following we use two formulation ap­
proaches to emphasize some important points. 
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Configuration at time O 

(a) Two-node element 

(
tp A).....,.___ Corresponds to elements in 

\ \ tL matrix &KNL 

\/rP 
A 

(A is very small) 

(b) Moment equilibrium of element 

Figure E6.16 Formulation of two-node truss element 

545 

First Approach: Evaluation of Element Matrices Using Table 6.4: Using the TL 
formulation we need to express the strains oe11 and 07111 given in Table 6.2 [and (6.112) and 
(6.113)] in terms of the element displacement functions. Since the truss element undergoes 
displacements only in the 0x,, 0x2 plane, we have 

OU1 111
Ut OU1 01

U2 dU2 
oe11 =-+--+--

a0x1 a0x, o0x, a0x, a0x1 

07111 = ! [(~)
2 

+ ( au2 
)

2

] 
2 a0x, a0x, 

But by geometry, or using 1u; = Ii=i hk 1uf with 'ul 0, 1u! = 0, 1ut = (0L + AL) cos (J 

- 0L, 1u! = (0L + AL) sin 0, 01 = 0L/2 and the interpolation functions given in Fig. 5.3, we 
obtain 

a1u2 (
0L + AL) sin 8 

a0x, = 0L 
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We therefore have 

(

0 L + AL . ) + 0L sm () [O l O 

0L + AL 
= (o L)2 [ -cos (J [

u!] 
-sin () cos () sin O] :t 

u~ 

and hence, 

, -
0L + AL . 

oBi - (OL)2 [ -cos (J -sm 8 cos 8 sin 8] 

Of course, the same result for &Bi is obtained using ( 6.117). The nonlinear strain displacement 
matrix is [from (6.118)] 

l [-1 0 
bBNL = OL O -1 

l 
0 ~] 

In the total Lagrangian formulation we assume that bS,1 is given in terms of bE11, and we 
have 

If we use bS11 = Ebe11, we have of course 0C1111 = E. The tangent stiffness matrix and force 
vector are therefore (see Table 6.4) 

[ 

cos2 (J cos 8 sin 8 

'K - C (oL + AL)2 o.... sin2 (} 
o - o 1111 (o L)3 11. 

Symmetric 

-cos2 () 

-sin () cos 8 
cos2 8 

rp O [ I 
+ 0L + l!iL -~ 

[cos~] bF = rp -sin() 
cos() 
sin O 

-cos fJ sin 6] 
-sin2 8 

sin (} cos (} 
sin2 () 

0 -1 

-;] I 0 

0 1 
-1 0 

(a) 
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where IP is the current force carried in the truss element. Here we have used, with the Cauchy 
stress equal to I P/1 A, 

op( ol )2 tp 
b Su = , p o l + Ill :A ; 

0 p 0L 0A = 'p(0L + llL) 'A; 

b En = Ill + ! (/lL)2 
0l 2 °l 

0£ tp 
bS11 = 0£ + Ill DA (b) 

The first term in (a) represents the linear strain stiffness matrix, and the second term is the 
nonlinear strain stiffness matrix, which, as noted earlier, is independent of the angle 6. 

Second Approach: Taking the Derivative of the Force Vector &F: The tangent stiffness 
matrix of any element can be obtained by direct differentiation of the force vector bF (see Section 
6.3.1); that is, 

'K _ obF 
0 

- a'u (c) 

where 'u is the vector of nodal point displacements corresponding to time t. Here we have for the 
general truss element formulation in (6.106) to (6.119), bF = fov bBI bS11 d0 V, so that 

(d) 

Using (6.117) and (6.118), we have 

0;:r = (0 r 1
)

2 H:r H., bBhL bBNL 

so that the second term in (d) gives the bKNi matrix. Also, using ( 6.110) and ( 6.117), we directly 
see that 

and hence, the first term in (d) gives the bKL matrix. 
However, to gain more insight, let us consider the derivation of l,K in (c) specifically for 

the two-node truss element in Fig. E6.16 using the following details. 
For the two-node element, bF is given by simple equilibrium 

[

-cos()] 
bF = rp -sin(} 

cos (J 

sin 6 

where I P is the current force (positive when a tensile force) carried by the element, and we have 
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Let us consider the third and fourth columns of the stiffness matrix (from which the first 
and second columns can be derived). We have 

'ur (0L + t:.L) cos 8 - 0L 
1u~ = (0L + t:.L) sin 8 

[
(!L)l [ cos 8 sin 8 ] [/ur] 
~ = -(0L + t:.L) sin 8 (0L + t:.L) cos 6 _a 
08 d 1U~ 

and hence, 

[
/urj = [cos 8 - o Lsi: :L] [a(!L)l 

a . Ll cos o a 
-- smu -a 'u~ 0L + t:.L ao 

from which 

Therefore. the third column of &K is given by 7 

abF obF a(t:.L) ob F ae --=----+--a 'ut a(t:.L) o 'ur ae a 'ut 

a 'P [~:~: :1 8 [:~o: 8] ( -sin 8 ) 
= a(t:.L) c~s 8 cos + 'P -sin fJ 0L + t:.L 

sm 8 cos 8 

(e) 

[
-1] 'P O 

+ 'L + l::..L ~ 
( , p ) [-cos

2 

8 ] 
= a 0i + t:.L (oL + t:.L) -sin 8cos 8 

o(ilL) cos2 (} 

sin 8 cos 8 
Similarly, for the fourth column of bK, 

obF iJbF a(t:.L) cJbF 08 --=----+---
a 1ui o(t:.L) 8 'u~ 08 a 'u~ 

( 

1

P ) [-cos 8 sin 8] 
= a o L + t:.L (o L + t:.L) -sin2 8 

a(t:.L) sin 8 cos 8 

sin2 8 
[ 

OJ tp -1 

+ 'L + AL ~ (f) 

However, using (b), 

a( 'L : AL) ('L + AL) = il bS11 °L + AL 0A 
iJ(ilL) iJ(AL) 0 L 

= a bS11 a b1:11 °L + t:.L 0A = a bSll (0L + t1L)2 
0A 

a be11 a(.t:.L) a be:11 °L3 

(
0L + .t:.L)2 

= 0C1111 0£3 °A 

1 Note that if the material stress-strain relationship is such that 'P is constant with changes in t:..L, only the 
second term in the second line of this equation is nonzero. 
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Hence, the results in (e) and (f) are those already given in (a). 
We note that the entries in the nonlinear strain stiffness matrix can also be directly 

obtained from equilibrium considerations as shown in Fig. E6.16(b). 
Also, the updated Lagrangian formulation could be obtained from the result in (a) by using 

the relation (see Example 6.23) 

op( oL )4 
0C1111 = Ip OL + AL ,C11t1 

so that in (a) 
(
0L + AL)2 1A 

0C1111 (OL)3 °A = ,C1111 OL + AL (g) 

If we also note that for infinitesimally small displacements the linear strain stiffness matrix 
reduces to the well-known truss element matrix (see Example 4.1), we recognize that with the 
result of (g) substituted in (a), the updated Lagrangian stiffness matrix is in fact what we would 
expect it to be from physical considerations. 

EXAMPLE 6.17: Establish the equilibrium equations used in the nonlinear analysis of the 
simple arch structure considered in Example 6.3 when the modified Newton-Raphson iteration 
is used for solution. 

In the modified Newton-Raphson iteration, we use (6.11) and (6.12) but evaluate new 
tangent stiffness matrices only at the beginning of each step. 

As in Example 6.3, we idealize the structure using one truss element [see Fig. E6.3(b)]. 
Since the displacements at node 1 are zero, we need to consider only the displacements at node 2. 
Using the derivations given in Example 6.16, with (} = 'fJ we have 

bKL = EA [ (cos '(3)
2 

sin 'fJ cos 
I fJ] 

L sin I fJ cos I fJ (sin 1 {3)2 

1

P [1 o] 
bKNL = L O 1 

bF = 'P[c~s 'fJ] 
sm 1fJ 

where we assumed in the stiffness expressions that L and EA/L are constant throughout the 
response. 

The matrices correspond to the global displacements 'ur and 'ui at node 2. However, 1u1 
is zero, hence the governing equilibrium equation is 

[
EA tp] 1+11,R 
7:(sin 'fJ)2 + L Au~<1> = - -2- - ,+111p<H> sin ('+e..113(1-0) 

where ,+A'R/2 is positive as shown in Fig. E6.3(b) and i+Aip(i-o is the force in the bar (tensile 
force being positive) corresponding to the displacements at time t + At and end of iteration 
(i - 1). 

6.3.4 Two-Dimensional Axisymmetric, Plane Strain, 
and Plane Stress Elements 

For the derivation of the required matrices and vectors, we consider a typical two­
dimensional element in its configuration at time O and at time t, as illustrated for a 
nine-node element in Fig. 6.4. The global coordinates of the nodal points of the element are 
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s 

4 

Configuration 
at time O 

4 

Configuration 
at time t 

Figure 6.4 Two-dimensional element shown in the global 1x,.'x2 plane 

at time 0, 0xL 0xt and at time t, 1xt 'xt where k = 1, 2, ... , N, and N denotes the total 
number of element nodes. 

Using the interpolation concepts discussed in Section 5.3, we have at time 0, 

and at time t 

N 

OXt = 2 h11; 0x1; 
k=l 

N 

'x, = 2 h11; 'x~; 
k-=1 

N 
0
x2 = 2 h11; 0x1 

k=l 

N 
1x2 = 2 h1c 1x~ 

le=! 

where the hk are the interpolation functions presented in Fig. 5.4. 

{6.120) 

(6.121) 

Since we use the isoparametric finite element discretization, the element displace­
ments are interpolated in the same way as the geometry; i.e., 

N 

'u, = L hk 'u1; 
k=I 

N 

U1 = 2 h1i; ut; 
k=I 

N 
1u2 = 2 hk 'u~ 

k=I 

N 

U2 = 2 hk u! 
k=I 

The evaluation of strains requires the following derivatives: 

i = 1, 2 
j = I, 2 

{6.122) 

(6.123) 

(6.124) 

(6.125) 

(6.126) 

These derivatives are calculated in the same way as in linear analysis, i.e., using a Jacobian 
transformation. As an example, consider briefly the evaluation of the derivatives in (6.126). 
The other derivatives are obtained in an analogous manner. 
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The chain rule relating 'xi, 'x2, tor, s derivatives is written as 

r~t.J+J 
lasJ la•x, 

in which tJ 

Inverting the Jacobian operator J, we obtain 

o'x1 [;;] iJr or 
a'xi a - -ar as 

where the Jacobian determinant is 

det 'J = o'X1 o'X2 _ d
1
X1 8'X2 

or iis as or 

and the derivatives of the coordinates with respect to r and s are obtained as usual using 
(6.121); e.g., 

iJ1
X\ _ ~ Ohk I k 

--~-Xi 
iJr k•t iJr 

With all required derivatives defined, it is now possible to establish the strain­
displacement transformation matrices for the elements. Table 6.5 gives the required ma­
trices for the UL and TL formulations. In the numerical integration these matrices are 
evaluated at the Gauss integration points (see Section 5.5). 

As we pointed out earlier, the choice between the TL and UL formulations essentially 
depends on their relative numerical effectiveness. Table 6.5 shows that all matrices of the 
two formulations have corresponding patterns of zero elements, except that bBL is a full 
matrix whereas ~Bt is sparse. The strain-displacement transformation matrix bBt is full 
because of the initial displacement effect in the linear strain terms (see Tables 6.2 and 6.3). 
Therefore, the calculation of the matrix product m r rC ~BL in the UL formulation requires 
less time than the calculation of the matrix product 6Bt oC 6BL in the TL formulation. 

The second numerical difference between the two formulations is that in the TL 
formulation all derivatives of interpolation functions are with respect to the initial coordi­
nates, whereas in the UL formulation all derivatives are with respect to the coordinates at 
time t. Therefore, in the TL formulation the derivatives could be calculated only once in the 
first load step and stored on back-up storage for use in all subsequent load steps. However, 
in practice, such storage can be expensive and in a computer implementation the derivatives 
of the interpolation functions are in general best recalculated in each time step. 
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TABLE 6.5 Matrices used in the two-dimensional element formulation 

A. Total Lagrangian formulation 
1. Incremental strains 

0E11 = 0U1.1 + bu,.1 0U1.1 + 6u2.1 ou2.1 + !((ou1.1f + (ou2.1)
2
) 

0E22 = ou2.2 + 6u1.2 ou1.2 + 6u2.2 0U2.2 + H(ou1.2)2 + (ou2,2)2) 

Chap.6 

0E12 = Hou1.2 + oU:z.1) + i(6u1.1 0U1.2 + bu2.1 ou2.2 + bu1.2 0U1.1 + bu2.2 0U2.1) + Hou,., 0U1,2 + 0U2.1 0U2,2) 

u1 'u1u1 1 ( u, )2 

oE:u = 0 + (O )2 + -
2 0 for ax.isymmetric analysis 

X1 X1 Xi 

OU; o'u1 
where 0U1,i = - 0-; &u1.j O a xj a xj 

2. Linear strain-displacement transformation matrix 
Using oe bB,Ji 
where oeT = (oe11 oe22 2oe12 oe33); fiT (uj u! UT Ui • • · ur ufl 
and bBL = 6Bw + bBu 

[h~., 0 oh2.1 0 oh3,I 0 

oh1.2 0 oh2,2 0 oh3.2 

bBw oh1.2 oh1.1 oh2.2 oh2.1 ohu oh3,1 
h, 

0 
h2 

0 
h3 

0 ? iF' iF' 
X1 x, x, 

N 

OX1 = ~ h.1: OX'; N = number of nodes 

and 

where /11 = f oh.1:. 1 'ut; 
k=I 

N 

L h1c 1u1 
/33 =:: =--

.l:"'I 

122 oh1.2 112 oh2.2 /22 oh2.2 

U21 oh1.2 + li2 oh1.1) (/11 oh2.2 + 112 oh2.1) (121 oh2.2 + 122 oh2.1) 

0 

/11 ohN, I 

/12 ohN.2 

0 

(/1 I ohN.2 + 112 ohN.1) 

hN 
/33 O-

X1 

N N 

/21 = L ohk.1 1u~; 
k=I 

112 = L ohu 1u1; 
k=I 

3. Nonlinear strain-displacement transformation matrix 

oh1.1 0 oh2.1 0 oh3, I 0 ohN.I 0 

oh1.2 0 oh2.2 0 oh3.2 0 ohN.2 0 

bBNL = 0 oh1.1 0 oh2. t 0 oh3. I 
0 oh1.2 0 oh2.2 0 oh3.2 

0 ohN.I 

0 ohN.2 
h, 

0 
h2 

0 
h3 

0 ?" o- iF' 
Xi X1 Xi 

hN 
0 o=-x, 
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TABLE 6.5 (cont.) 

4. Second Piola-Kirchhojf stress matrix and vector 

6S12 0 0 0 

[" [!Sul bS21 6S22 0 0 0 

!S = ~ 0 bS11 bS12 0 bS = ~S22 

0S12 
0 6S21 6S22 0 
0 0 0 f>S33 

B. Updated Lagrangian formulation 
l. Incremental strains 

au; 
where,u· · = -

l.J 01Xj 

,Eu = ,u1.1 + t((,u1.1)2 + (,u2.1>2) 

,E22 = ,u2.2 + H(,u1.2)2 + (,u2,2)2) 

,E12 = H,u1.2 + ,u2.1) + H,u1.1 ,u1.2 + ,u2.1 ,u2.2) 

for axisymmetric analysis 

2. Linear strain-displacement transformation matrix 
Using re = lBLii 

6S33 

where ,eT = [,e1 I ,e22 2,e12 1e33]; ur [u I Ui ut u~ . . . ur uf] 

[h,., 0 ,h2,1 0 ,hJ.I 0 

lBt = ,h~.2 

,h1,2 0 ,h2.2 0 ,h3,2 
,h1,1 ,h2.2 ,h2.1 1h3,2 1h3,I 

h1 
0 

h2 
0 

h3 
0 txi 'x1 'xi 

ahk N 

where rh1t:,j = -,- ; uJ = ,u.,uJ - 'uJ; 1X1 = ~ hk 'xf ; 
dXj k=I 

3. Nonlinear strain-displacement transformation matrix 

,h1,1 0 ,h2.1 0 ,hJ,J 0 

rhu 0 ,h2.2 0 ,h3,2 0 

:BNt = 
0 ,h1.1 0 ,h2.1 0 ,h3,I 
0 ,h1.2 0 ,h2.2 0 ,h3,2 

hi 
0 

h2 
0 

h3 
0 'x1 'x, 'xi 

4. Cauchy stress matrix and stress vector 

['" 
1
T12 0 0 

OJ 
1

'1"21 
1
'T22 0 0 0 

,, = ~ 0 1 
'T1 i 

1
T12 0 ; 

0 1 
'T21 

1
'T22 ,:3 0 0 0 

1hN,I 

0 
,hN,2 
hN 

'x1 

rh~.2] ,hN,I 

0 

N = number of nodes 

rhN.I 0 

,hN.2 0 
0 ,hN,l 
0 thN,2 

hN 
0 ,:x. 

553 
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EXAMPLE 6. 18: Establish the matrices bBLo, bBL1, and bBNL corresponding to the TL formu­
lation for the two-dimensional plane strain element shown in Fig. E6.18. 

t ,-------------, 
OTm 

2 1 ~ Attlme t 

31cm ox2, tx2 : 
........ -....--AttimeO 

3 ox,, tx, 4 I 
.,_ ..... .,__ ___ ,ec- - ...... 

' ' ,I 7717; 

l----3cm , I · • I 1cm 

Figure E6.18 Four-node plane strain 
element in large displacement/large strain 
conditions 

In this case we can directly use the information given in Table 6.5 with 

'ul = 1; 'ul = 0.5 
1ur = O; 'u~ = 0.5 

OJ= [t ~] 1u1 = 0; 'ul = 0 

'u1 = 1; 1u1 = 0 

The interpolation functions of the four-node element are given in Fig. 5.4 (and the required 
derivatives have been given in Example 5 .5), so that we obtain 

bBLO = 

1 
[(l + s) 0 -(1 + s) 0 -(1 - s) 0 (I - s) 0 ] 

6 0 {I + r) 0 (1 - r) 0 -(1 - r) 0 -(1 + r) 
(1 + r) (1 + s) (1 - r) -(1 + s) -(1 - r) -(1 - s) -(l + r) (1 - s) 

To evaluate bBL1 we also need the l,i values. where 
4 

Hence, we have 

bBu = 

lu = ~ oh1c.1 'u1 = Hh1., 'ul + h4,r 'ut} = i 
k=l 

4 

112 = ~ oh1c.2 'uf Hh,.s 'ul + h4.s 'ut} = 0 
k=l 

4 

l21 = ~ ohk,I 'u~ = Hh1,r 'u! + h2., 'uU = 0 
lc=l 

4 

122 = ~ ohu 'u~ = Hhi.s 'u! + h2., 'un = ~ 
k=l 

1 
[2(1 + s) 0 -2(1 + s) 0 --2(1 - s) 0 2(1 s) 

36 
0 (1 + r) 0 (1 - r) 0 -(1 - r) O 

2(1 + r) (1 + s) 2(1 - r) -(I + s) -2(1 - r) -(I - s) -2(1 + r) 
(1 ~ r)] 
(1 - s) 
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The nonlinear strain-displacement matrix can also directly be constructed using the derivatives 
of the interpolation functions and the Jacobian matrix: 

[

(1 + s) 0 
! (1 + r) 0 
6 0 (1 + s) 

0 (1 + r) 

-(l + s) 
(1 r) 

0 
0 

0 
0 

-(l + s) 

(1 - r) 

6.3.5 Three-Dimensional Solid Elements 

-(1 - s) 

-(1 - r) 

0 
0 

0 
0 

-(1 - s) 

-(1 - r} 

(l - s) 

-(1 + r) 

0 
0 

O J 0 
(1 - s) 

-(1 + r) 

The evaluation of the matrices required in three-dimensional isoparametric finite element 
analysis is accomplished using the same procedures as in two-dimensional analysis. Thus, 
referring to Section 6.3.4, we simply note that for a typical element we now use the 
coordinate and displacement interpolations, 

N 
0x; = L hk 0x1; 

k=I 

N 

'u, = L hk 'uf; 
""'' 

N 
1
Xi = ~ hk 'xf; 

k<=I 

N 

U; ~ hk uf; 

i = 1, 2, 3 (6.127) 

i = 1. 2, 3 (6.128) 

where the element interpolation functions h1t. have been given in Fig. 5.5. Using (6.127) and 
(6.128) in the same way as in two-dimensional analysis, we can develop the relevant 
element matrices used in the TL and UL formulations for three-dimensional analysis (see 
Table 6.6). 

TABLE 6.6 Matrices used in the three-dimensional element formulation 

A. Total Lagrangian formulation 
1. Incremental strains 

o£;j = !(ou;.J + 0U1,1) + Hbuk.i oUt.J + 0U1<.1 &ud + Houk,i oud 

OU; 
whereou· · = -,., iJ°x1 

2. Linear strain-displacement transformation matrix 
Using oe = bBLu 
where oer [oe11 oe22 oe:n 2oe12 2oe23 2oe3,J; 

fiT = [ul ul ui UT uhJ . . . ur uf ufl 
bBt bBm + bBt, 

oh1.1 0 0 
0 oh1.2 0 

&Bw = 
0 0 oh1,3 

oh1.2 oh1.1 0 

0 ohu oh1.2 

ohu 0 oh1,1 

where ohk,J 

oh2.1 
0 

0 

oh2.2 
0 

oh2,3 

i = 1. 2, 3; j = l, 2, 3; k l, 2, 3 

0 

0 

ohN,3 

0 

ohN,2 

ohN,I 
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TABLE 6.6 (cont.) 

111 oh1, 1 Iii oh1, 1 '31 oh1.1 111 oh2.1 

112 oh1.2 122 ohu. l32 ohu. 112 oh2.2 
lu oh1,3 /23 oh1.3 J33 oh1,3 J13 oh2,3 

(/11 oh1:1. + '12 oh1.1) (121 oh1,2 + h2 oh1.1) (/31 oh1.2 + h2 oh1.1) (!11 oh2, 2 + 112 oh2.1) 

(112 oh1.3 + /13 oh1.2) ('22 ohu + 123 oh1.2) ([32 ohu + /33 oh1.2) (lr1 oh2.3 + /13 oh2.2) 
011 oh1,3 + /13 oh1.1) 021 oh1.3 + /23 oh1.1) (/31 ohu + /33 oh1.1) (/11 oh2,3 + lu oh2, 1) 

N 

where iii = ~ oht,i 'ut 
"""! 

3. Nonlinear strain-displacement transformation matrix 

0 
bBNL 0 ; 

['ii., 
bBNL = ~ 

0 
0 ] 

6BNL O=m 
[oh,., 0 0 

where bBN1.. = oh1,2 0 0 

ohu 0 0 

4. Second Piola-Kirchhoff stress matrix and vector 

['s ij ~l bS = : bS 
0 bS 

bST = [bS11 6S22 bS33 bS12 

['s" &S,, &S.,] 
where bS bS21 bS22 bS23 

bS31 bS32 bS33 
B. Updated Lagrangian formulation 

1. Incremental strains 

oh2.1 ... ohN,O] 
oh2,2 ... ohN,2 

oh2.3 ohN,3 

u 
0 

~] ij 0 
0 

6S23 6S31] 

/31 ohN. I 

/32 ohN.2 

l33 ohN,3 

(/31 ohN,2 + In ohN, 1) 

(l;2 ohN, 3 + /33 ohN. 2) 

(/31 ohN,3 + f:i3 ohN, 1) 

,EiJ = H,ui.j + ,up) + H,uk.i ,u*.j) 

dU1 

i = I, 2, 3;j = I, 2, 3; k = l, 2, 3 

where 1u· · = -•,J a'Xj 

2. Linear strain-displacement transformation matrix 
Using ,e :Btu 
where ,er = [1e11 ,e22 ,e33 21e12 2,e23 2,e31] 

11r = [ul u! ul UT u! Uj • · · ur uf 
,h1,1 0 0 

0 ,h1,2 0 

~L= 
0 0 

,hu ,h1,1 

0 ,h1,3 

,h1,3 0 

ur] 
,h2,1 0 

0 0 
0 ,hN,3 

,h2,2 0 
0 ,hN.2 

,h2.J ,hN,l 
ahk 

where ,h1c,i = 01 Xj ; uj = 1+A1uj - 'uj; N = number of nodes 

3. Nonlinear strain-displacement transformation matrix 
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TABLE 6.6 (cont.) 

['h,., 0 0 ,h2.1 ,hN,<] 
where i8NL = ,h1,2 0 0 ,h2,2 ,hN,2 

,hu 0 0 ,h2,3 ,hN.3 

4. Cauchy stress matrix and stress vector 
1
T11 

[" 0 :1 
1
T22 

ij -[~ 

0 

~] 'pi , .. IT= 
1

1"33 
0 T 

0 1;: 
1
T12 

0 
1
7'23 

1
7'31 

[T" 
1
7'12 :T"] 

where 'T = :T21 
1
7'22 7'23 

T:u 1
7'32 

1
T33 

6.3.6 Exercises 

6.31. Consider the problem shown and evaluate the following quantities in terms of the given data: 
oeij, oT/u, bu1c,1, ou1c.J, bxi,k· 

TimeO Timet 0.2 

~ 
t 1-:!:=J·-, ~ t1 

~ 0.2 --• 
0L ... 2 tu= 0.8 

t~ 
t 

No change in cross-
sectional area during 

x Displacement• u deformations 

Node2 Node 1 
One 2-node element idealization 

' ~~d No displacement 

6.32. Consider the truss element shown. The truss has a cross-sectional area A and a Young's modulus 
E. We assume small strain conditions, i.e., !:l/0L <{ 1. 

(a) Evaluate the total stiffness matrix as a function of !:l and plot the linear strain stiffness 
matrix element bKt and nonlinear strain stiffness matrix element bKNi as a function of A. 

(b) Let R be the external load applied to obtain the displacement A. Plot the force R as a 
function of A. 
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6.33. Consider the snap-action toggle shown in its initial configuration. 
Assume small strain conditions and that each element has a cross-sectional area A and Young's 
modulus E. 
(a) For each element, calculate the linear and nonlinear strain stiffness matrices bKi and bKNi 

and the force vector 6F. 
(b) Calculate the linear and nonlinear strain stiffness matrices bKL and bKNi and the force 

vector bF of the complete toggle. 
Eliminate prescribed degrees of freedom. 
(c) Using your results from part (b), establish the force-deflection curve P versus 6.. 

5 5 
Initial stress-free configuration 

6.34. Consider the three-element truss structure shown. Derive the tangent stiffness matrix bK and 
force vector bF corresponding to the configuration at time t allowing for large displacements, 
large rotations, and large strains. Assume that the constitutive relationship is b Su = C be11t 
with C given as some function of the strain. 

6.35. Consider the evaluation of the stiffness matrix of the four-node element shown when calculated 
with the information given in Table 6.5. Let the two-dimensional element be loaded wit~ a 
deformation-dependent pressure between nodes 1 and 2. Establish the terms that should be 
added to the stiffness matrix if the effect of the pressure is included in the linearization to obtain 
the exact tangent stiffness matrix. Consider plane stress, plane strain, and axisymmetric condi­
tions. 

"2 t 2 

~ 
Pl time t = f(tx;) 

TimeO Timet 
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6.36. The initial configuration and configuration at time t of a four-node plane strain element are as 
shown. The material law is linear, bSij = l,Cijrs bErs, with E = 20,000 N/m2 and v = 0.3. 

(a) Calculate the nodal point forces required to hold the element in equilibrium at time t. Use 
an appropriate finite element formulation. 

(b) If the element now rotates rigidly from time t to time t + At by an angle of 90 degrees 
counterclockwise, calculate the new nodal point forces corresponding to the configuration 
at time t + O.t. 

3 

2 -~a, 
3 

TimeO 

-- 4 
l I (4, 1.5) 

2 3 4 5 6 x, 
Alt dimensions in meters 

6:37. During a TL analysis, we find that a plane strain element is deformed as shown. 

y 

All dimensions are 
x in meters 

The stress state, not including 1Tu, is 

'T = [5.849 X 10
7 

6.971 X 107
] 

6.971 X 107 1.514 X 108 Pa 

The Poisson's ratio v = 0.3 and the tangent Young's modulus is E. Compute bK11 • 



560 Finite Element Nonlinear Analysis in Solid and Structural Mechanics Chap.6 

6.38. The two-dimensional four-node isoparametric finite element shown is used in an axisymmetric 
analysis. Evaluate the last row in the bBL, bBNL and mL, ~BNL matrices at the material particle 
P corresponding to the TL and UL formulations. The last row in the strain-displacement 
matrices corresponds to the circumferential strain. 

3-----.... 
(6, 2) 

x, 

2 
(6, 14) 

4 
(20, 6) 

x, 

6.39. Consider the four-node plane stress element shown. Using the total Lagrangian formulation 
calculate the following. 
(a) The element of the tangent stiffness matrix corresponding to the incremental displacement 

ul; i.e., evaluate element (1, 1) of the matrix (bKL + bKNL), 
(b) The element of the force vector bF corresponding to ul; i.e., evaluate element (1) of bF, 

where bF is the force vector corresponding to the current element stresses. 
Assume that Young's modulus E and Poisson's ratio v = 0.3 relate the incremental 

second Piola-Kirchhoff stresses to the incremental Green-Lagrange strains and assume thick­
ness h at time 0. 

0.5 

6 

Constant stresses ~S11 and ~S22 and all other stresses are zero 

6.40. A two-node finite element for modeling large strain torsion problems is to be constructed. The 
element has a circular cross section and is straight, and all cross sections are parallel to the x1, 
x2 plane as shown. 

The kinematic assumption to be employed in the element is that each cross section rotates 
rigidly about its center. This is illustrated in the figure. Notice that the total rotation of fiber AA 
is fully described by '63 and that the fiber rotation can be large. Also, note that the fiber AA does 
not stretch or shrink and that the center of the fiber (point C) remains fixed. 
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L Fiber AA 
rotates to A' A' 

A' 
Enlarged view 

(a) Calculate the deformation gradient bX in terms of the initial coordinates and '83. 
(b) Calculate the Green-Lagrange strain tensor bE. Clearly identify any terms that are associ­

ated with large strain effects. 
(c) Calculate the mass density ratio 1p/0p in terms of the initial coordinates and 163. 
(d) Establish the strain-displacement matrix of the element. 

6.4 DISPLACEMENT /PRESSURE FORMULATIONS FOR LARGE 
DEFORMATIONS 

As discussed in Section 4.4.3, for (almost) incompressible analysis, a pure displacement­
based procedure is, in general, not effective and instead, a displacement/pressure formula­
tion is attractive. Materials in large deformations frequently behave as almost incompress­
ible, and it is therefore important to extend the total and updated Lagrangian formulations 
of the previous sections to incompressible analysis. Typical applications are in the large 
strain analysis of rubberlike materials and in the large strain inelastic analysis of metals. 

The formulations we present here are a direct and natural extension of the pure 
displacement-based large deformation formulations given in the previous section and of the 
pressure/displacement formulations that we discussed for linear analysis in Sections 4.4.3 
and 5.3.5. 

6.4.1 Total Lagrangian Formulation 

We make the fundamental assumption that the material description used has an incremental 
potential db W such that 

and hence 

db w = bSij dbEij 

- obW 
bSIJ = -,-

8oEij 

(6.129) 

{6.130) 

where the overbar in dbW and on the second Piela-Kirchhoff stress (and other quantities in 
the following discussion) denotes that the quantity is computed only from the displacement 
fields. Since we shall interpolate the displacements and the pressure independently, the 
actual stress b Sij will also contain the interpolated pressure. 
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We note that such incremental potential is given for elastic materials and also for 
inelastic materials provided the normality rule holds. A consequence of (6.129) is that the 
tensor 

- obSu ;)2 bW 
oCijrs = -;-;---- = 

uo Ers ob Ers iJb Eij 
(6.131) 

has the symmetry property tCijrs = oCrsij 

and the pure displacement and displacement/pressure formulations produce symmetric 
coefficient matrices. 

Using ( 6.130), the principle of virtual displacements at time tin total Lagrangian form 
with displacements as the only variables can be written as 

f. a~W &eu d 0V = J. BbW d 0V 
Oy dQEij Oy 

(6.132) 

The linearization and finite element discretization of (6.132) was presented in Section 6.3. 
We now use ( 6.132) as the starting equation to develop the displacement/pressure formula­
tion for large deformations. 

The basic element interpolations that we shall use are 
N 

1u; = ~ hk 1uf; 
k"'I 

q 

1fj ~ g; tPi 
ja;,1 

(6.133) 

where the hk are the displacement interpolation functions and the g; are the pressure 
interpolation functions, with 1p as the total element pressure at time t. Note that the 
interpolation of the pressure may correspond to the u/ p or to the u/ p-c formulation (see 
Section 5.3.5). 

The key step in the construction of the displacement/pressure formulation is to prop­
erly modify the potential to include the effect of the interpolated pressure. For this purpose 
we add to the potential b W a properly chosen potential bQ, which is a function of the 
displacements and the separately interpolated pressure 'p (see T. Sussman and K. J. Bathe 
(B]). The principle of virtual work is then given by 

(6.134) 

where bW = bW + bQ (6.135) 

and we now consider the variation with respect to the interpolated displacements and the 
interpolated pressure. 

The modified potential bW must fulfill the requirements that use of (6.134) gives 'p 
as the actual solution for the pressure and also yields a physically reasonable constraint 
between the interpolated pressure and the pressure computed only from the displacements. 

A potential that fulfills these requirements for the isotropic materials considered later 
is given by 

- 1 bW = bW - -('p 'p)2 

2K 
(6.136) 
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where K is the constant bulk modulus of the material. Using (6.136), the governing finite 
element equations can be derived with the approach for linearization presented in Sec­
tion 6.3.1. Hence, we obtain for a typical element, 

(

1KUU 1KUP) (u) = (r+AtR) _ ('FU) 
'KPU 'KPP p O 1FP 

(6.137) 

where u and p are vectors of the increments in the nodal point displacements 'u; and nodal 
point or element internal pressure variables 'p; [note that here 'u; is any one of the compo­
nents 1uf in (6.122), (6.128), and (6.133)]. The vectors 'FU and 'FP contain the entries 

I FU· = _E__ (l 'W d0 v) , !ll" 0 
v Ui Oy 

'FP· = _E__(J: 'W d0v) I i)I" 0 
Pi ov 

(6.138) 

and the matrices 'KUU, 'KUP, 'KPU, and 'KPP contain the elements 

i:J'FUi = IJ'FPi = 'KPU·· 
o'fi1 a,a, ,, (6.139) 

'KPP·· = a1FP1 
I} fJ'P1 

Using chain differentiation, we obtain 

I FU = l Is a&elt;/ dov 
i O kl !lt" 

Oy u U1 

'FP, = f !('jj - 'p) a:~ d0 v 
Jov K fJp1 

'KUU·· = l cuu iJbekl iJbErs dov + l ts ;)2 bEkt dov 
I} 0 k[r$ !lf A !lf A O kl 

0
, A iJf A 

Ov u U; v Uj Ov U; Uj 
(6.140) 

'KU'D .. = l CUP d6Ek1 iJ'p dov r,, o kl !lt" !lt" 
Oy {} u, u Pi 

1KPP1· = l _}:. ,lp iJ'p d0 V 
!J !ll" i:Jl" 

Oy K v p; P1 

where 
1 a'-
-(,p - 'P>-!-
K doEkt 

oCUUurs (6.141) 
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Note that in (6.141) we have 

'S- - t(at,W obW) 
O kl----+--

2 <ibE1c1 obE11c 

, c _ 1 (absk, + obS1c1) 
o klrs - 2 obErs obEsr 

Furthermore, we note that with the interpolations of (6.133) we have 

and (see Exercise 6.42) 

;;1-
p - g 

-;;::- - i 
vp; 

obE1c1 } (t h I h ) 
iJ'U;j = 2 oXn,k O L,I + oXn,/ 0 L,k 

(6.142) 

(6.143) 

(6.144) 

(6.145) 

where a typical nodal point displacement is denoted as 'u~ (with the appropriate indices n 
and L). These strain derivatives give the same contributions as do the quantities oeij and o1J;j 
used in Table 6.2. 

A study of the above relations shows that if the pressure interpolation is not included, 
the equations reduce to the total Lagrangian formulation already presented in Section 6.2.3 
(see Exercise 6.43). 

The displacement/pressure formulation is effective for the analysis of rubberlike 
materials in large strains. In this case, the Mooney-Rivlin or Ogden material laws may be 
used, for which the strain energy density per unit volume b W is explicity defined (see 
Section 6.6.2). 

Let us demonstrate that this formulation, when used in small strain elastic analysis, 
reduces to the formulation already discussed in Section 5.3.5. 

EXAMPLE 6. 19: Show how the displacement/pressure formulation discussed above reduces 
to the formulation presented in Section 5.3.5 when isotropic linear elasticity with small displace­
ments and small strains is considered. 

Considering the general equations (6.137) to (6.145), we note that in this case: 

The second Piola-Kirchhoff stress &S1c1 reduces to the engineering stress measure 1
0'k1· 

The Green-Lagrange strains 6Ek1 reduce to the infinitesimally small engineering strains 'eki· 
The nonlinear strain stiffness matrix in (6.140) is neglected. 
The integration is over the volume V ( which is equal to O V) and the subscript O on the 
constitutive tensors is also not needed. 

In this case we have 

where A and µ, are the Lame constants, 

.,\ = Ev . 
(1 + v)(l - 211)' 

E 
µ, = 2(1 + 11) 
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with E and v the Young's modulus and the Poisson's ratio. The bulk modulus K is 

E 

We have 

so that 

K=----
3(1 - 2v) 

a'-
_!!_= -,c 8kl 
fJ'et, 

if r-____ P_ = 0 
iJ'ekr fJ'ers 

'ukl = 1Sk1 - 'p 6k1 

CUUktrs = ck/rs - K 8k1 Brs 

CUPk1 = -81t:1 

565 

On substituting these quantities into ( 6.137), we note that the general formulation reduces, in this 
case, to the formulation already presented in Sections 4.4.3 and 5.3.5. 

6.4.2 Updated Lagrangian Formulation 

As we discussed in Section 6.2.3, the updated Lagrangian formulation is conceptually 
identical to the total Lagrangian formulation but uses the configuration at time t as reference 
configuration. In this case fS,i = 1 -rli and dfeiJ = d,eij, with the subscript T denoting the 
configuration8 that is fixed and used as reference, and 

d _ 1 (fJdu, fJdu1) 
,elJ-- -+-

2 a1x1 fJ'x, 

Following the presentation of the previous section, we thus obtain 

dfW = '7FIJ d,e;1 

and note that 

If in addition we use 

dTV 
dov = det ,;x 

we can write the principle of virtual work ( 6.134) as 

6 J (f W + f Q) arv = '0t 
Ty 

(6.146) 

(6.147) 

(6.148) 

(6.149) 

(6.150) 

Note that if we use the modification to the total potential b W in the previous section, 

bQ = -1-('p - 'p)2 
2,c 

(6.151) 

8 We use the capital letter T to denote the reference configuration considered fixed at time t, so that when 
differentiations are performed, it is realized that no variation of this configuration is allowed. 
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then 1 - 2 
t Q = - 2K* (' p , pJ (6.152) 

with K* = K det '{;X (6.153) 

The governing finite element equations can now be derived by chain differentiation, and 
provided the same physical material descriptions are used, the same finite element equations 
are obtained as in the total Lagrangian formulation. The details of the derivation are given 
by T. Sussman and K. J. Bathe [B]. 

6.4.3 Exercises 

6.41. Show that using (6.136), the actual solution for the pressure is given by the independently 
interpolated value 1p. 

6.42. Let 'u,. = l':L hi'u; and prove that (6.144) and (6.145) hold. Here you may want to recall that 

a(AM.i 'uP) 
aruf; = AM,i8ik8ML = AL,k 

where B;1c is the Kronecker delta. 

6.43. Show explicitly that the pressure/displacement mixed formulation reduces to the pure 
displacement-based formulation if the pressure interpolation is not included. 

6.44. Prove the relations in (6.140) and (6.141). 

6.45. Consider the 4/1 plane strain element shown. Develop in detail all expressions for the calcula­
tion of the matrices in (6.137) assuming large strain analysis but do not perform any integra­
tions. (Hint: See Example 4.32.) 

X2 

-,-. 
~ 

2 

I ~ 

~ 

11rl 
2 

x, 
Bulk modulus tr. 
Shear modulus G 

6.46. Consider the 4 / 1 element in Exercise 6.45 and develop in detail all expressions for the calcula­
tion of the matrices in (6.137) but corresponding to the updated Lagrangian formulation. 
However, do not perform any integrations. 

6.47. You want to obtain some insight into whether the computer program you use employs the 
tangent stiffness matrix in plane strain analysis. Consider a single nine-node element in the 
deformed state shown. Assuming that the calculation of the stresses and the force vector 'F is 
correct, design a test to determine whether the stiffness matrix calculation for node 1 is probably 
also correct. For this analysis case the u/p formulation (9/3 element) would be efficient. (Hint: 
Note that 'K = o'F I o'U.) 
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20mm 

I"' -1 

20mm I • 

TimeO 

20mm I 
Timet 

9-node element in plane strain 
Mooney-Rivlin rubber model 
C1 =0.6 MPa, 
C2 • 0.3 MPa, 
r= 2000 MPa 

6.48. Perform the numerical experiment in Exercise 6.47 for the case of the axisymmetric element 
shown. 

I 
I 

j ... 

All midnodes are halfway 
between corner nodes 

10 .. 1.. 10 1 I 1.. • I Node 1 
10 

Mooney-Rivlin rubber model 
C1 =0.6 MPa, 
C2 =0.3 MPa, 
K= 2000 MPa 

6.49. Use a computer program to analyze the thick disk shown. The applied pressure increases 
uniformly, and the analysis is required up to a maximum displacement of 3 in. 

E = 200 lb/in2 
V• 0.499 

6.50. Use a computer program to analyze the plate with a hole shown on the following page. The 
plate is stretched by imposing a uniform horizontal displacement at the right end. 
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10in 

6.5 STRUCTURAL ELEMENTS 

3in 

E • 200 lb/in2 
v = 0.499 
Plane strain conditions 

Prescribed 
displacement 
to3 in 

Chap.6 

A large number of beam, plate, and shell elements have been proposed for nonlinear 
analysis (see, for example, A. K. Noor [A]). Our objective here is not to survey the various 
formulations proposed in the literature but to present briefly those elements that we already 
have discussed for linear analysis in Section 5.4. These beam, plate, and shell elements have 
evolved from the isoparametric formulation and are particularly attractive because of the 
consistent formulation, the generality of the elements, and the computational efficiency. 

In the following discussion, we first consider beam and axisymmetric shell elements 
and then discuss plate and general shell elements. 

6.5.1 Beam and Axisymmetric Shell Elements 

In this section we consider the one-dimensional bending elements that we discussed in 
Section 5.4.1 for linear analysis; there we considered the plane stress and plane strain planar 
beam elements, an axisymmetric shell element, and a general three-dimensional beam 
element. We observed that the planar beam and the axisymmetric shell element formula­
tions are actually cases easily derivable from the general three-dimensional beam element 
formulation. Hence, we consider here the calculation of the element matrices pertaining to 
the large displacement-large rotation behavior of a general beam of rectangular cross­
sectional area. The relations given can be directly used to also obtain the matrices corre­
sponding to the planar beam elements and axisymmetric shell elements (see Examples 6.20 
and 6.21). 

Figure 6.5 shows a typical element in the original configuration and the position at 
time t. To describe the element behavior we use the same assumptions that we employed in 
linear analysis (namely, that plane sections initially normal to the neutral axis remain plane 
and that only the longitudinal stress and two shear stresses are nonzero), but the displace­
ments and rotations of the element can now be arbitrarily large. The element strains are still 
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Figure 6.5 Beam element undergoing 
large displacements and rotations 

assumed to be small, which means that the cross-sectional area does not change.9 This is 
an appropriate assumption for most geometrically nonlinear analyses of beam-type struc­
tures. 

Using the general continuum mechanics equations for nonlinear analysis presented in 
Section 6.2, the beam element matrices for nonlinear analysis are evaluated by a direct 
extension of the formulation given in Section 5.4.1. The calculations are performed as in 
the evaluation of the matrices of the finite elements with displacement degrees of freedom 
only (see Sections 5.4.1 and 6.3). 

With the same notation as in Section 5.4.1, the geometry of the beam element at time 
tis given by 

q q q 

'x1 = L hk 'xf + 2t L akhk 1n; + !..2 L b1ch1< 'V!i 
k=I k=I k=I 

i = 1, 2, 3 (6.154) 

where the coordinates of a typical point in the beam are 'xi, 'x2, 'x3. Considering the 

9 To have the element formulation applicable to large strains, the changes in thickness and width varying 
along the length of the element would need to be calculated. These changes depend on the stress-strain material 
relationship of the element. 
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configurations at times 0, t, and t + ~t, the displacement components are 

and 

Chap.6 

(6.155) 

(6.156) 

Substituting (6.154) into (6.155) and (6.156), we obtain expressions for the displacement 
components in terms of the nodal point displacements and changes in the direction cosines 
of the nodal point director vectors; i.e., 

q q q 

1
U; = L hk 'uf + 2' L akht('V:i - 0 Vt) + !..2 ~ bkM'V~; 0 V};) 

k=I k=I k=I 

and 
q q q 

U1 == L hkuf + _2t L akhk v:i + !..2 L bkhk v:i 
k=t k"'I k=I 

where 

(6.157) 

(6.158) 

(6.159) 

(6.160) 

The relation in (6.157) is directly employed to evaluate the total displacements and total 
strains (hence also total stresses) for both the UL and TL formulations and holds for any 
magnitude of displacement components. 

We use the relation in ( 6.15 8) in the linearization of the principle of virtual work and 
need to express the components Vt and V}; of the vectors Vf, V! in terms of nodal 
rotational degrees of freedom. Depending on the size of the incremental step, the actual 
rotation corresponding to the vectors V} and V~ may be a large rotation, and therefore 
cannot be represented by vector component rotations about the Cartesian axes. However, 
we recall that our objective is to express the continuum linear and nonlinear strain incre­
ments in Tables 6.2 and 6.3 by finite element degrees of freedom and corresponding 
interpolations so as to achieve a full linearization of the principle of virtual work (see 
Section 6.3.1 ). For this purpose we define the vector of nodal rotational degrees of freedom 
Oi with components measured about the Cartesian axes and use the second-order approxi­
mations (see Exercise 6.56) 

v, = Ok x 1VT + 1 Ok x (6k x 'V:) 

V~ = 6k x 1V! + ~ 6k x (6k x 'V!) 

(6.161) 

(6.162) 

The only purpose of using Ok is to evaluate (approximations to) the new director vectors, and 
Ok is discarded thereafter. 

Substituting from (6.161) and (6.162) into (6.158) we obtain the expression for u; to 
evaluate the continuum linear and nonlinear incremental strain tensors in Tables 6.2 and 
6.3. Since the relations in (6.161) and (6.162) involve quadratic expressions, we neglect all 
higher-order terms in the solution variables to obtain the fully linearized form of the 
principle of virtual work equation-linearized about the state at time t with respect to the 
solution variables ( the nodal point displacements and rotations). With this process, the 
exact tangent stiffness matrix is arrived at and employed in the incremental finite element 
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solution. However, we should note that the continuum linear strain increments in Tables 6.2 
and 6.3 now include quadratic terms in rotations, and hence the right-hand-side terms 

and I. t Ttj 6,e1J d' V 
'v 

in (6.74) and (6.75) contribute, in this case, to the tangent stiffness matrices of the TL and 
UL formulations. The same incremental equations are of course also obtained if we use the 
procedure in Section 6.3.1 to develop these equations. 

A kinematic assumption in this interpolation is that "plane sections remain plane," 
and hence warping is not included. However, warping displacement behavior can be added 
to the assumed deformations as discussed in Section 5.4.1. 

The linear and nonlinear strain displacement matrices of the beam element corre­
sponding to the UL formulation can now be evaluated using the approach employed in linear 
analysis. That is, using (6.158), the strain components are calculated corresponding to the 
global axes and are then transformed to obtain the strain components corresponding to the 
local beam axes, r,, f, {. Since the element stiffness matrix is evaluated using numerical 
integration, the transformation from global to local strain components must be performed 
during the numerical integration at each integration point. 

Considering the TL formulation, we recognize that, first, derivatives analogous to 
those used in the UL formulation are required, but the derivatives are taken with respect to 
the coordinates at time 0. In addition, however, in order to include the initial displacement 
effect, the derivatives of the displacements at time t with respect to the original coordinates 
are needed. These derivatives are evaluated using (6.157). 

The above interpolations lead to the displacement-based finite element formulation 
which, as discussed in Section 5.4.1, yields a very slowly converging discretization. In order 
to obtain an effective scheme a mixed interpolation should be used which, for the beam 
formulation, is equivalent to employing an appropriate Gauss integration order for the 
r-direction integration: namely one-point integration for the two-node element, two-point 
integration for the three-node element, and three-point integration for the four-node ele­
ment. 

The finite element equations thus arrived at are 

(6.163) 

Having solved ( 6.163) for Ut and Ob we obtain approximations for the nodal point displace­
ments and director vectors at time t + 6.t using 

t+Atuk = 'Uk + Uk 

and t+Arv~ = 'V} + I. d6k x "V~ 
ek 

t+AIV! = 'V! + I. d6k x "V~ .k 

(6.164) 

(6.165) 

(6.166) 
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The integrations in (6.165) and (6.166) can be performed in one step using an orthogonal 
matrix for finite rotations (see, for example, J. H. Argyris [B] and Exercise 6.55) or in a 
number of steps using a simple Euler forward method (see Section 9.6). Of course, 81c (and 
n1c) are approximations to the actual required increments (because of the linearization of the 
principle of virtual work), but with the integrations in (6.165) and (6.166) we intend to 
arrive at a more accurate evaluation of the new director vectors than by simply substituting 
into (6.161) and (6.162). 

The above presentation corresponds of course to the first iteration of the usual 
Newton-Raphson iterative solution process or to a typical iteration when the last calculated 
values of coordinates and director vectors are used. 

It should be noted that this beam element formulation admits very large displace­
ments and rotations and has an important advantage when compared with the formulation 
of a straight beam element based on Hermitian displacement interpolations: all individual 
displacement components are expressed using the same functions because the displacement 
expressions are derived from the geometry interpolation. Thus there is no directionality in 
the displacement interpolations, and the change in the geometry of the beam structure with 
increasing deformations is modeled more accurately than by using straight beam elements 
based on Hermitian functions, as for example presented by K. J. Bathe and S. Bolourchi [A]. 

We mentioned earlier that this general beam formulation can be used to derive the 
matrices pertaining to the formulations of planar beam elements for plane stress or plane 
strain conditions or axisymmetric shell elements. We demonstrate such derivations in the 
following examples. 

EXAMPLE 6.20: Consider the two-node beam element shown in Fig. E6.20. Evaluate the 
coordinate and displacement interpolations and derivatives that are required for the calculation 
of the strain-displacement matrices of the UL and TL formulations. 

At time O 
s ov:. [~] 

Figure E6.20 Two-node beam element in large displacements and rotations 
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Using the variables in Fig. E6.20, we have corresponding to (6.154), 

(1 - ') (1 + ') sh(I - ') . sh(t + ') . 'xi = -
2
- 'xi + -

2
- 1xr - 2 -

2
- sm 181 - 2 -

2
- sm 'lh. 

(l - ') (l + ') sh(l - ') sh(l + ') 1x2 = -
2
- 'x! + -

2
- 1x~ + 2 -

2
- cos 101 + 2 -

2
- cos 1(h 

( 1 + ') ox,= -2- OL 

Hence, the, displacement components are at any point at time t, 

ru1 = ex} + ';i oL) + CXT - r;\ - oL)r - S~ [ (1 ; ') sin r9, + (1 ; ') sin '(h] 

, ('x! + 'x~) ('x~ - 'x!) sh [(l - ') '(J (I + ') ,a_ 1] U2 = + r + - -- COS I + -- COS V2 -
2 2 2 2 2 

The incremental displacements are given by (6.158); hence, 

1 r 1 1 + r 2 sh (1 - ')[< ) 1 . 1 ( ) 2 ] u1 = -
2
-u, + -

2
-u, + 2 -

2
- -cos 181 81 + - sm ~·~ 

sh ( 1 + ') [ 1 . ] + 2 -2- (-cos ,lh.)lh. + 2 sm 'th.(lh.)2 
---

(a) 

1 - r 1 + r sh ( 1 - ') [ . 1 ] 
u2 = -

2
- u! + -

2
- ui + 2 -

2
- (-sm 18,)81 -

2 
cos 181(01)2 

- --

+ s~ (1 ; ') [ (-sin 182)02 - ~ cos 'lh.(0,.)2
] 

(b) 

We note the quadratic terms in nodal rotations, which are underlined with a dashed line. 
Using (a) and (b) to evaluate the continuum incremental strain terms oelJ, ,elJ, o'T/ij, and ,'T/u in 
Tables 6.2 and 6.3, we recognize that the fully linearized finite element equations are obtained 
by including the underlined terms in the evaluation of fov J S;i &,e/J d 0 V and frv I Tii 6,eij d' V. These 
terms add for the structural elements a contribution to the nonlinear strain stiffness matrices. 
However, these quadratic terms in rotation do not contribute in the linearized form of the other 
integrals because they result in those integrals in higher·order terms that are neglected in the 
linearization. 

In considering the UL formulation, the required derivatives for the Jacobian are 

01 

X J ( h) [ ( l - ') . ( 1 + ') . ] a;-= - 2 -
2
- sm 181 + -

2
- sm '82 

a1x2 L sin a sh 
- = -- + - (cos 'lh. - cos 181) 
fJr 2 4 
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a::2 
= ~[ (1 ; r) cos 191 + (1 ; ')cos%] 

where we assumed 1L = 0L = L. 
Next we consider the TL formulation. Here we use 

•1 = [i ;] 
Also, the initial displacement effect is taken into account using the derivatives 

bu1,1 = (cos a - 1) - ;: (sin 'fh - sin '6,) 

t (1 - ') , l(J 0U1.2 = - -
2
- sm I (1 ; ') sin 'fh 

bu2.1 = sin a + ;: (cos 'fh - cos%) 

I (1 ') tf'l (} + ') 0U2,2 = -
2
- COS u1 + -

2
- COS 1(}i - 1 

where we again assumed IL = 0 L = L. 

Chap.6 

In each case, we note that these expressions lead to the strain terms corresponding to the 
global stationary coordinate system. These terms must be transformed to the local '11, faxes for 
construction of the strain-displacement matrix of the element. 

Finally, we should note that the element can be employed in plane stress or plane strain 
conditions, depending on the stress-strain relation used (see Section 4.2.3). In plane stress 
analysis the thickness of the element (normal to the x1, x2 plane) must of course be given (this 
thickness is assumed to be unity in plane strain analysis). 

EXAMPLE 6.21: The two-node element in Example 6.20 is to be used as a shell element in 
axisymmetric conditions. Discuss what terms in addition to those given in Example 6.20 need to 
be included in the construction of the strain-displacement matrices for the TL formulation. 

In axisymmetric analysis the integration is performed over 1 radian and the hoop strain 
effect must be included (see Example 5.9). Table 6.5 gives the incremental hoop strain 0E33, which 
must be evaluated using the interpolations stated in Example 6.20 to give a third row in the 
strain-displacement matrices b BLO and b BLI. The third row of the matrix b Bw corresponds to the 
term u,/0x1, hence, 

bBio = [,: ~: r 
2 °x, 0 

l + r 

2 °x1 
0 

where we have used the following ordering of nodal variables in the solution vector 

ftT:::::: (u\ UT 
and 0

x1 = [(I + r)/2]L. The third row of the matrix bBL1 corresponds to the strain term 
'u1u1/(0xi)'i and for its evaluation the interpolations of 'ui, 0x,, and u1 are similarly used. 
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The terms in the nonlinear strain stiffness matrix corresponding to h S33 are evaluated from 
the expression 

hS33 { 88{s; (1 ; r) si~x
1

1

81 
( 1 + :::) ]01 + 6(h[s; (1 ; r) s~x',(h(1 + :::) ]fh 

+ (l..:..!. Bui _ [sh (1 - r) cos 
1

81] 681 + I + r But _ [sh (I + r) cos rfh]a0i) 
2 °x1 2 2 °x1 2 OXt 2 2 °x1 

x (1 - r ui _ [sh (1 - r) cos '8,]o, + 1 + r u'.f _ [sh(l +')cos 'fh]0i)} 
2 °x1 2 2 OXJ 2 2 2 OXt 

This expression is of the form 6ur(&KtL)u, where Kii represents a contribution to the element 
nonlinear strain stiffness matrix. 

6.5.2 Plate and General Shell Elements 

Many plate and shell elements have been proposed for the nonlinear analysis of plates, 
specific shells, and general shell structures. However, as with the beam element discussed 
in the previous section, the isoparametric formulations of plate and shell elements for 
nonlinear analysis are very attractive because these formulations are both consistent and 
general, and the elements can be employed in an effective manner for the analysis of a 
variety of plates and shells. As in linear analysis, in essence a very general shell theory is 
employed in the formulation so that the shell elements are applicable, in principle, to the 
analysis of any plate and shell structure. 

Considering a plate undergoing large deflections, we recognize that as soon as the plate 
has deflected significantly, the action of the structure is really that of a shell; i.e., the 
structure is now curved, and both membrane and bending stresses are significant. There­
fore, in the discussion below we consider only general shell elements, where we imply that 
if a specific element is initially flat, it represents a plate. 

In the following presentation we consider the nonlinear formulation of the MITC shell 
elements discussed for linear analysis in Section 5.4.2. Figure 6.6 shows a typical nine-node 

Figure 6.6 Shell element undergoing large displacements and rotations 
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element in its original position and its configuration at time t. The element behavior is based 
on the same assumptions that are employed in linear analysis, namely, that straight lines 
defined by the nodal director vectors (which, usually, give lines that in the original config­
uration are close to normal to the midsurface of the shell) remain straight during the element 
deformations and that no transverse normal stress is developed in the directions of the 
director vectors. However, the nonlinear formulation given here does admit arbitrarily large 
displacements and rotations of the shell element. 10 

The UL and TL formulations of the shell element are based on the general continuum 
mechanics equations presented in Section 6.2.3 and are a direct extension of the formula­
tion for linear analysis. Also, the calculation of the element matrices follows closely the 
calculations used for the beam elements (see Section 6.5.1). 

Using the same notation as in Section 5.4.2, the coordinates of a generic point in the 
shell element now undergoing very large displacements and rotations are (see K. J. Bathe 
and S. Bolourchi [B]) 

q q 

'xi ~ hk 'x} + -
2
' L akhk'V!i 

k=I k=I 

Using (6.167) at times 0, t, and t + At, we thus have 

and 

Substituting from (6.167) into (6.168) and (6.169), we obtain 

and 

where 

(6.167) 

(6.168) 

(6.169) 

(6.170) 

(6.171} 

(6.172) 

The relation in ( 6.170) is employed to evaluate the total displacements and total 
strains (hence also total stresses for both the UL and TL formulations) of the particles in 
the element. To apply ( 6.171) the same thoughts as in the beam element formulation for use 
of (6.158), (6.161), and (6.162) are applicable. Now we express the vector components V!i 
in terms ofrotations about two vectors that are orthogonal to 'V~. These two vectors 'Vi and 
'V~ are defined at time O (as in linear analysis) using 

e2 X 0V! 
11 e2 x 0v! 112 

(6.173) 

(6.174) 

where we set 0Vt equal to e3 if 0V~ is parallel to e2. The vectors for time t are then obtained 
by an integration process briefly described for the director vector in ( 6.177). 

10 As in the beam formulation in Section 6.5.1, to have the element formulation applicable to large strains, 
the change in thickness varying over the surface of the element would need to be calculated. The change in thickness 
depends on the material stress-strain relationship of the element. 
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Let ak and /3k be the rotations of the director vector r V! about the vectors 'Vi and 'V1 
in the configuration at time t. Then we have approximately for small angles ak and f3h but 
including second-order rotation effects (see Exercise 6.57), 

(6.175) 

We include the quadratic terms in rotations because we want to arrive at the consistent 
tangent stiffness matrix, and these terms contribute to the nonlinear strain stiffness effects. 
Namely, substituting from (6.175) into (6.171), we obtain 

(6.176) 

Using this expression to evaluate the continuum terms in Tables 6.2 and 6.3, we notice that 
the terms frv 'T;i 5,e;i d'V and fov l,S;i &,e;i d0V result in a stiffness contribution due to the 
quadratic terms in (6.176) that we naturally add to- the other terms of the nonlinear strain 
stiffness matrix. 

We arrived at a similar result in the formulation of the isoparametric beam elements 
discussed in the previous section [see (6.161) and (6.162) and the ensuing discussion]. 

The finite element solution will yield the nodal point variables uf, ak, and /3k, which 
Can then be employed to evaluate r+AtV!, 

r+drv: = 'V~ + f -"V! dak + TVf df3k 
ak,Pk 

(6.177) 

This integration can be performed in one step using an orthogonal matrix for finite rotations 
(see, for example, J. H. Argyris [B] and Exercise 6.57) or using the Euler forward method 
and a number of steps (see Section 9.6). 

The relations in (6.167) to (6.176) can be directly employed to establish the strain­
displacement matrices of displacement-based shell elements. However, as discussed in 
Section 5.4.2, these elements are not efficient because of the phenomena of shear and 
membrane locking. In Section 5.4.2, we introduced the mixed interpolated elements for 
linear analysis, and an important feature of these elements is that they can be directly 
extended to nonlinear analysis. (In fact, the elements were formulated originally for nonlin­
ear analysis, and the linear analysis elements are obtained simply by neglecting all nonlinear 
terms.) 

The starting point of the formulation is the principle of virtual work written in terms 
of covariant strain components and contravariant stress components. In the total Lagran­
gian formulation we use 

i t+d&Sii 5r+AbE1j dov t+At~ 

Oy 

and in the updated Lagrangian formulation we use 

f ,+4:slj 0,+Aiiij d'v = ,+A,~ 

'v 

(6.178) 

(6.179) 

The incremental forms are of course given in Tables 6.2 and 6.3, but here covariant strain 
and contravariant stress components are employed. 

As discussed in Section 5.4.2, the basic step in the MITC shell element formulation 
is to assume strain interpolations and to tie these to the strains obtained from the displace­
ment interpolations. 
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The strain interpolations are as detailed in Section 5.4.2, but of course the interpola­
tions are now used for the Green-Lagrange strain components 1+·1<i e ~s and r+.1: e- ~s, where 
the superscript AS denotes assumed strain. These assumed strain components are tied to the 
strain components ,+.1& e~1 and ,+.1: e~1

, obtained from the displacement interpolations 
(6.170) and (6.171). 

The covariant strain components tH.&eU1 and ,+.1~eW are calculated from the funda­
mental expressions using base vectors, 

and 

where 

t+AJei?l = !(t+Atg; • t+Atgj _ Ogi • Ogj) 

l+A~E~I = ! (t+Atg, • t+Atgj _ 'g; • 'g1) 

and we use r1 = r, r2 = s, r3 = t, and of course, 

(6.180) 

(6.181) 

(6.182) 

(6.183) 

Using the interpolations discussed in Section 5 .4.2, with the above strain components, the 
MITC shell elements already presented for linear analysis in Section 5.4.2 are now ob­
tained, including large displacement and large rotation effects. These elements satisfy the 
criteria of reliability and effectiveness that we enumerated in Section 5.4.2. 

The elements are general since no specific shell theory has been employed. In fact, the 
use of the general incremental virtual work equation with only the two basic assumptions 
that lines originally normal to the shell midsurface remain straight and that the transverse nor­
mal stress remains zero (here, actually, the lines/directions of the director vectors are used) 
is equivalent to using a general nonlinear shell theory, which in linear analysis is the 'basic 
shell mathematical model' identified in D. Chapelle and K. J. Bathe (C, E]. The formulation 
however is made even more general by relaxing these constraints and allowing a fully three­
dimensional behavior, see M. Bischoff and E. Ramm [A], W. B. Kratzig and D. Jun [A], D. 
Chapelle, A. Ferent and K. J. Bathe [A], D. N. Kim and K. J. Bathe [A], and to model very 
large deformations and strains T. Sussman and K. J. Bathe [D]. 

6.5.3 Exercises 

6.Sl. Consider the two-node beam element shown. 
(a) Plot the displacements of the material particles corresponding to 1ut, 'ut and 'th. and 

evaluate the Green-Lagrange strain components corresponding to these displacements at 
r = s = O. 

~ 
62 to2 

uf 

tu~ 

2 

x, 
6 ~ I 
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(b) Establish the derivatives ou;,j (i.e., au;/a0xi), i = 1, 2;j 1, 2, corresponding to the nodal 
incremental displacement and rotation variables ut, ut and Bi. 
At node 1 displacements and rotations are zero; at node 2 'u1 = 0, 1u~ = 2, 1(h = 10°. 

6.52. Consider the two-node beam element shown. Calculate for the degrees of freedom ut, ut and 
(h the stiffness matrix 'Kand nodal force vector 'Fusing the total Lagrangian formulation. 
(a) Use the displacement method and analytical integration. 
(b) Use one-point Gauss integration for the r direction. 

Xz 

20 

All nodal point displacements 

and rotations are zero at time t, 
except tut= 0.1 

uf x, 

Young's modulus E 
Shear modulus G 

6.53. Perform the same calculations as in Exercise 6.52 but now assume that the element is an 
axisymmetric shell element, with the x2 axis the axis of revolution. 

6.54. Consider the beam element in Exercise 6.52. Calculate the stiffness matrix 'K and force vector 
1F for the degrees of freedom at node 2 using the mixed interpolation of linear displacements 
and rotations and constant transverse shear strain ( see Section 5.4. l ). 

6.SS. Consider the four-node shell element shown. Evaluate the displacements of the particles in the 
element for the given nodal point displacements and director vectors at time t. Draw these 
displacements over the original geometry of the element. 

Original geometry of element 

x, 
20 

for i = 1, 2, 3; k = 1. 2, 3 

k = 1, 2, 3 

1u1 = 0.1; 'u~ = 1 

'V! ![~1] 
2 V3 
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6.56. Show that the expressions in (6.161) and (6.162) contain all second-order terms in Ok to obtain 
the increments in the director vectors. Obtain the result by a simple geometric argument and by 
the fact that the rotation can be expressed through the rotation matrix Q, see, for example, 
J. H. Argyris [B], where 

(

sin 'Yk)z 
Q _ I sin 'Yks 1 2 82. - +-- k+- -- b 

'Yk 2 'Yk 
2 

and 

6.57. Show that the expression in (6.175) includes all second-order terms in ak and /3k to obtain the 
increment in the director vector 1V~. Obtain the result by a simple geometric argument and by 
use of the matrix Q of Exercise 6.56 but with 

[
o o /3k] 

sk = 0 0 -a1c 

-/3k ak O 

( 2 2)! 'Yk = a1c + f31c 2 

6.58. Calculate the covariant strain terms be ~1 for the element and its deformation given in Exer­
cise 6.56. 

6.59. Use a computer program to solve for the large displacement response of the cantilever shown. 
Analyze the structure for a tip rotation of 1r ( 180 degrees) and compare your displacement and 
stress results with the analytical solution. (Hint: The four-node isoparametric mixed interpolated 
beam element performs particularly well in this analysis.) 

E· 200,000 
V• 0.30 
h=1 
L= 100 
b= 1 

6.60. Use a computer program to solve for the response of the spherical shell structure shown. Calculate 
the displacements and stresses accurately. (The solution of this structure has been extensively 
used in the evaluation of shell elements; see, for example, E. N. Dvorkin and K. J. Bathe [A}). 

All edges 
of shell 
are hinged 

2a 

p 

Radius • 2540 
Thickness • 99.45 
a• 784.90 
E=68.95 
V= 0.30 
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6.6 USE OF CONSTITUTIVE RELATIONS 

In Sections 6.3 to 6.5 we discussed the evaluation of the displacement and strain­
displacement relations for various elements. We pointed out that these kinematic relations 
yield an accurate representation of large deformations (including large strains in the case of 
two- and three-dimensional continuum elements). 

The kinematic descriptions in the element formulations are therefore very general. 
However, it must be noted that in order for a formulation of an element to be applicable to 
a specific response prediction, it is also necessary to use appropriate constitutive descrip­
tions. Clearly, the finite element equilibrium equations contain the displacement and strain­
displacement matrices plus the constitutive matrix of the material (see Table 6.4). There­
fore, in order for a formulation to be applicable to a certain response prediction. it is 
imperative that both the kinematic and the constitutive descriptions be appropriate. For 
example, assume that the TL formulation is employed to describe the kinematic behavior of 
a two-dimensional element and a material law is used which is formulated only for small 
strain conditions. In this case the analysis can model only small strains although the TL 
kinematic formulation does admit large strains. 

The objective in this section is to present some fundamental observations pertaining 
to the use of material laws in nonlinear finite element analysis. Many different material laws 
are employed in practice, and we shall not attempt to survey and summarize these models. 
Instead, our only objectives are to discuss the stress and strain tensors that are used 
effectively with certain classes of material models and to present some important general 
observations pertaining to material models, their implementations, and their use. 

The three classes of models that we consider in the following sections are those with 
which we are widely concerned in practice, namely, elastic, elastoplastic, and creep material 
models. Some basic properties of these material descriptions are given in Table 6. 7, which 
provides a very brief overview of the major classes of material behavior. 

In our discussion of the use of the material models, we need to keep in mind how the 
complete nonlinear analysis is performed incrementally. Referring to the previous sections, 
and specifically to relations (6.11), (6.78), and (6.79) and Section 6.2.3, we can summarize 
the complete process as given in Table 6.8. 

This table shows that the material relationships are used at two points of the solution 
process: the evaluation of the stresses and the evaluation of the tangent stress-strain ma­
trices. The stresses are used in the calculation of the nodal point force vectors and the 
nonlinear strain stiffness matrices, and the tangent stress-strain matrices are used in the 
calculation of the linear strain stiffness matrices. As we pointed out earlier (see Section 6.1 ), 
it is imperative that the stresses be evaluated with high accuracy since otherwise the 
solution result is not correct, and it is important that the stiffness matrices be truly tangent 
matrices since otherwise, in general, more iterations to convergence are needed than 
necessary. 

Table 6.8 shows that the basic task in the evaluation of the stresses and the tangent 
stress-strain matrix is the following: 

Given all stress components 'a and strain components 'e and any internal material 
variables that we call here 'K;, all corresponding to time t, 

{
I I t t } <1, e, K1, K2, • , , 
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TABLE 6.7 Overview of some material descriptions 

Material model 

Elastic, linear or 
nonlinear 

Hyperelastic 

Hypoelastic 

Elastoplastic 

Creep 

Viscoplasticity 

Characteristics 

Stress is a function of strain only; same 
stress path on unloading as on loading. 

linear elastic: 

'Ciirs is constant 

nonlinear elastic: 

'Ciirs varies as a function of strain 

Stress is calculated from a strain energy 
functional W, 

Stress increments are calculated from strain 
increments 

duii = Cijrs ders 

The material moduli Cij,s are defined as 
functions of stress, strain, fracture criteria, 
loading and unloading parameters, 
maximum strains reached, and so on. 

Linear elastic behavior until yield, use of 
yield condition, flow rule, and hardening 
rule to calculate stress and plastic strain 
increments; plastic strain increments are 
instantaneous. 

Time effect of increasing strains under 
constant load, or decreasing stress under 
constant deformations; creep strain 
increments are noninstantaneous. 

Time-dependent inelastic strains; rate effects 
are included. 

Examples 

Almost all materials 
provided the stresses 
are small enough: 
steels, cast iron, 
glass, rock, wood, 
and so on, before 
yielding or fracture 

Rubberlike materials, 
e.g., Mooney-Rivlin 
and Ogden models 

Concrete models (see, 
for example, K. J. 
Bathe, J. Walczak, A. 
Welch, and N. Mistry 
[A]) 

Metals, soils, rocks, 
when subjected to 
high stresses 

Metals at high 
temperatures 

Polymers, metals 

and also given all strain components corresponding to time t + At and end of itera­
tion (i - 1), denoted as r+A,e<H> 

Calculate all stress components, internal material variables, and the tangent stress­
strain matrix, corresponding to ,+a,e(i-1), 

{r+Ar(J'(i-1), c(i-l)' 1+A1Kii-1)' t+ArK~-l)' , , .] 

Hence we shall assume in the following discussion that the strains are known corre­
sponding to the state for which the stresses and the stress-strain tangent relationship are 
required. For ease of writing, we shall frequently also not include the superscript (i - l) 
but simply denote the current strain state as i+Ate. This convention shall not imply that no 
equilibrium iterations are performed. However, since the solution process for the stresses 
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TABLE 6.8 Solution process in incremental nonlinear finite element analysis 

Accepted and known solution at time t: stresses 'a 
strains 'e 
internal material parameters 1K., 1K2, ••• 

1. Known: nodal point variables z+t.tu(i- l) and hence element strains t+A1e<1-1> 

2. Calculate: stresses ,+A,a(i- i) 

tangent stress-strain matrix corresponding to ,+ArulH), denoted as C(Hl 

internal material parameters t+<it ,cf- ll, t+At K ~-1), , •• 
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a. In elastic analysis: the strains ,+Are<1-1> directly give the stresses 1+Ata<1-1> and the stress-strain matrix 
c(i-1) 

b. In inelastic analysis: an integration process is performed for the stresses 
•+41(1-1) 

r+A1(1(i-l) = 'O' + f d<1 

and the tangent stress-strain matrix c(i-1) corresponding to the state t + At, end of iteration (i - 1), is 
evaluated consistent with this integration process. 

In isoparametric finite element analysis these stress and strain computations are performed at 
all integration points of the mesh in order to establish the equations used in step 3. 

3. Calculate: nodal point variables AU<;> using t+A,K<Hl AU<il == ,+A1R - ,+Atf<Hl, and then t+AIU(ll = 
r+Aru(l-1) + .AU(I) 

Repeat Steps 1 to 3 until convergence. 

and the tangent stress-strain matrix is identfoal whether or not equilibrium iterations are 
used, we need not show the iteration superscript. All that matters is that the conditions are 
completely known at time t and a new strain state has been calculated for which the new 
stresses, internal material parameters, and the new tangent stress-strain matrix shall be 
evaluated. 

We should note that the evaluation of the stresses and the tangent stress-strain matrix 
is, in our numerical evaluation of the element stiffness matrix and force vector, performed 
at each element integration point. Hence, it is imperative that these computations be 
performed as efficiently as possible. 

In inelastic analysis, an integration process is needed from the state at time t to the 
current strain state, but in elastic analysis no integration of the stresses is required (as we 
employ a total strain formulation and not a rate-type formulation; see Example 6.24). In 
elastic analysis, the stresses and the tangent stress-strain matrix can be directly evaluated 
for a given strain state. Hence, in the following discussion when considering elastic condi­
tions (Sections 6.6.l and 6.6.2), we shall also, for further ease of writing, simply consider 
the strain state at time t and evaluate the corresponding stresses and tangent stress-strain 
matrix at that time [ the same procedure is used for any time, including time t + At]. 

6.6.1 Elastic Material Behavior-Generalization 
of Hooke's Law 

A simple and widely used elastic material description for large deformation analysis is 
obtained by generalizing the linear elastic relations summarized in Chapter 4 (see Table 4.3) 
to the TL formulation: 

(6.184) 
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where the &Sii and &Ers are the components of the second Piola-K.irchhoff stress and Green­
Lagrange strain tensors and the &Cors are the components of the constant elasticity tensor. 
Considering three-dimensional stress conditions, we have 

(6.185) 

where .,\ and µ are the Lame constants and 8,j is the Kronecker delta, 

A= Ev . E 
(1 + v)(l - 2v)' µ, = 2(1 + v) 

{
0; 

oii = l; 
i * j 
i = j 

The components of the elasticity tensor given in ( 6.185) are identical to the values given in 
Table 4.3 (see Exercise 2.10). 

Considering this material description we can make a number of important observa­
tions. We recognize that in infinitesimal displacement analysis, the relation in ( 6.184) 
reduces to the description used in linear elastic analysis because under these conditions the 
stress and strain variables reduce to the engineering stress and strain measures. However, 
an important observation is that in large displacement and large rotation but small strain 
analysis, the relation in ( 6.184) provides a natural material description because the compo­
nents of the second Piola-Kirchhoff stress and Green-Lagrange strain tensors do not change 
under rigid body rotations (see Section 6.2.2 and Examples 6.12 to 6.15). Thus, only the 
actual straining of material will yield an increase in the components of the stress tensor, and 
as long as this material straining (accompanied by large rotations and displacements) is 
small, the use of the relation (6.184) is completely equivalent to using Hooke's law in 
infinitesimal displacement conditions. 

The fundamental observation that "the second Piola-Kirchhoff stress and Green­
Lagrange strain components do not change measured in a fixed coordinate system when the 
material is subjected to rigid body motions" is important not only for elastic analysis. 
Indeed, this observation implies that any material description which has been developed for 
infinitesimal displacement analysis using engineering stress and strain measures can di­
rectly be employed in large displacement and large rotation but small strain analysis, 
provided second Piola-Kirchhoff stresses and Green-Lagrange strains are used. Figure 6.7 
illustrates this fundamental fact. A practical consequence is, for example, that inelastic mat­
erial models (see Section 6.6.3) can be directly used in large displacement, large rotation, infi­
nitesimally small strain analysis by simply substituting second Piola-Kirchoff stresses and 
Green-Lagrange strains for the engineering stress and strain measures. 

The preceding observations are of special importance because, in practice, Hooke's 
law is applicable only to small strains and because there are many engineering problems in 
which large displacements, large rotations, but only small elastic strain conditions are en­
countered. This is, for example, frequently the case in the elastic buckling or collapse analysis 
of slender (beam or shell) structures. 

The stress-strain description given in (6.184) implicitly assumes that a TL formula~ 
tion is used to analyze the physical problem. Let us now assume that we want to employ a 
UL formulation but that we are given the constitutive relationship in (6.184). In this case 
we can write, substituting (6.184) into (6.72), 

(6.186) 
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0x2, tx2 tx1IA, tx2IA, Pare large 

1.0-....J .T 
1.0 

A 

Original 
configuration 

t:r,, te,,, t822, o/,2 « 1 

Configuration 
at time t 

6S11 • t;;:11 

6~2 ... ff22 

6S,2 = tf12 

Figure 6. 7 Large displacement/large rotation but small strain conditions 

Thus, if we define a new constitutive tensor, 

t - tp t I I I I 
,Cmnpq - 0 oXm,i 0X11,j 0C1jrs oXp,r oXq,s 

p 

meaning that I - Op O O I O O 
oCijrs - -;-- t X;,m t Xj,n ,Cmnpq t Xr,p t Xs,q 

p 

and if we use (see Example 6.10) 

we recognize that ( 6.186) can be written as 

where 

and the ~E;q are the components of the Almansi strain tensor, 

585 

(6.187) 

(6.188) 

(6.189) 

(6.190) 

(6.191) 

(6.192) 

Like the Green-Lagrange strain tensor, the Almansi strain tensor can also be defined in a 
number of different but completely equivalent ways, 11 namely, 

and we have 

(6.193) 

(6.194) 

11 However. in contrast to the Green-Lagrange strain tensor, the components of the Almansi strain tensor are 
not invariant under a rigid body rotation of the material. 
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EXAMPLE 6.22: Prove that the definitions of the Almansi strain tensor given in {6.192) to 
(6.194) are all equivalent. 

The relation in (6.192) can be written in matrix form as 

But using (6.54) to substitute for 6E in (a) and recognizing that 

~X bX = I 
we obtain 

However, we have 

ieA = ! (I fXT fX) 

?X = [, V 0xTJT 

where, in accordance with ( 6.21 ), 

o'x1 
a Iv = -;;--- ; 

uX2 

a 
01

X3 

Substituting into (b), we obtain 

~E" = HI - [,V('xr - 'u7)][,V('x7 - 'u7)]1} 
Since ,V 'x7 = I 
we thus obtain ~EA = HI - (I - Iv 10 7)(1 - ,v 'u7)7'] 

or :eA = Hr V 'u7 + (1 V 'u7)T - (, V 10 7)(, V 10 7)7'] 

and the components of :eA in (c) are the relations in ( 6.193). 
To show that (6.194) also holds, we use the relation in (b) to obtain 

d1x7 ~EA d'x = ! (d'x7 d'x - d0x7 d0x) 

because d0x = ?X d'x 

But (d) can also be written as 

because d'xT d'x = (d's)2; 

and (e) is equivalent to ( 6.194 ). 

(a) 

(b) 

(c) 

(d) 

(e) 

Of course, using ( 6.190) with the Almansi strain and the constitutive tensor : Cmnpq is 
quite equivalent to transforming the second Piola-Kirchhoff stress bSii (obtained using 
b S;i = b Cijrs bers) to the Cauchy stress and then using ( 6.13) to evaluate 'ffi. Indeed, if b C;jrs 

is known, this procedure is computationally more efficient, and the definition and use of the 
Almansi strain with ( 6.190) may be regarded as only of theoretical interest. 

However, in the following example we prove an important result, which can be stated 
in summary as follows. 

Consider the TL and UL formulations in Tables 6.2 and 6.3, 

( oCijrsoers 13oeiJd0V + ( bSii 13or,ud0V = ,+b.,<Jlt - f bSu 13oeud0 V Jov )ov )ov 
(6.195) 
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f ,Cijrs ,ers o,eij d'V + f 1Tij &'T/v d'V = t+Arm - f 'TiJ 8,eij d'V J~ 1~ J~ (6.196) 

The corresponding integral terms in the formulations are identical provided the trans­
formations for the stresses given in (6.69) and for the constitutive tensors given in (6.187) 
are used. Hence, whether we choose the TL or the UL continuum formulation is decided 
merely by considerations of numerical efficiency. 

EXAMPLE 6.23: Consider the total and updated Lagrangian formulations in incremental form 
(see Tables 6.2 and 6.3). 

(a) Derive the relationship that should be satisfied between the tensors oCiJrs and ,Cijrs so 
that the incremental relations 

and 

oS;J = oCijrs oErs 

,Slj = ,Cijrs 1Er1 

refer to the same physical material response. 

(a) 

(b) 

(b) Show that when the relationship derived in part (a) is satisfied, each integral term in 
the linearized TL formulation is identical to its corresponding term in the UL formulation. 

A constitutive law relates a stress measure to a strain measure. Since there are different 
stress and corresponding strain measures, the constitutive law for a given material may take 
different forms, but these forms are related by the fact that they all describe the same given 
material. Hence, if equations (a) and (b) describe the same material, oCiJrs and ,Cy,s must be 
related by purely kinematic transformations. 

To derive the kinematic transformations we express ,SiJ in terms of 0S;b and ,E,, in terms 
of oE,s, 

We have ,SiJ = t+A~Su - 1 Tij (c) 

Using 

and 

and (c), we obtain 

t - 'pt I t 
Tij - o oXi,r oSrs oXj,I 

p 

t+At - 'p I t+At I ,Su - o ox,., oSrs oXJ,s 
p 

- 'pr t ,S;J - 0 oXi,r oXj,s oS,, 
p 

We also have for the strain terms 

and 

Hence, 

and 

oEij = i+AJEij - 6 EiJ 

,EiJ = t+A:£u 

0E1J = H'+AJxa:,1 r+AJxa:.J - dxk,i dxk.J) 

1Eij = ! ('+~Xk,i l+~Xk,j - O;j) 

(d) 

(e) 

(f) 

(g) 

We should note here that ,EiJ is the Green·Lagrange strain based an the displacements from time 
t to time t + At, with the reference configuration at time t. 12 

12 For example, ~Eu = 0, and this strain measure should not be confused with the Almansi strain le1 defined 
in (6.192). 
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Using (f) and (g), we obtain 

= 6Xp.i 6Xq,j 1Epq 
(h) 

We may now use (e) and (h) in the material law (b), which gives 

tp I I - 0 0 
O oXi,a oXJ,b oSab - ,C;Jrs tXp,r 1Xq,s oEpq 
p 

or - (
0
P o o o o ) oSij - 'p ,Xi,m 1Xj,n ,Cmnpq ,Xr,p 1Xs,q oErs 

Hence, for the same material to be described, the relation between the constitutive tensors is 

-
0
P o o o o 

0C1Jrs - T rXi,m 1Xj,n ,Cmnpq ,Xr,p ,Xs,q 
p 

(i) 

We note that the same material law transformation as earlier stated in (6.188) must be used 
if ,Cu,., is known and the TL formulation with (a) is to be employed. Of course, the transformation 
in (6.187) would be applicable if 0 CiJrs were known and the UL formulation were to be used. 

Next, we want to show that each term in the TL formulation is identical to its correspond­
ing term in the UL formulation. Considering the right-hand sides, ,+A~ is of course the same in 
both formulations, and 

because Boeij = 8 JE,1. 
The fact that B0e;1 = 8 6E';1 needs some explanation. In this evaluation of 8 6EiJ we calculate 

the variation in the Green-Lagrange strain corresponding to the configuration at time t, and the 
equation says that this value is equal to the linear strain increment corresponding to the virtual 
displacement 6u;. Let us recall that when taking the variation about the configuration at time 
t + ll.t, we used &+46EiJ = Boe;i + &,11i; (see Table 6.2). If the incremental displacements are 
zero, i.e., u; = 0, then the configuration at time t + ll.t is identical to the configuration at time t. 
Hence, 

~,+4, I _ ~, 
u oE;J u;=O - uoEij 

It follows that, considering 6u; as a variation on u,, 

c5'+4JE;J,u;"'O = 8bEij + 80Eijlu1=0 

= BoEulu, ... o here Bf>Eu = 0 because 6Eu is independent of u,. 
= Boeij lu,=0 + Bo'T}ij lu;•O 

= 8oeiJ 

because 6o 'TliJ is a linear function in u; and therefore Bo 'Tlii lu,"'o = 0. 
Next, we prove that 

(j) 

However, from (h) it also follows that, grouping the terms nonlinear in the incremental displace-
ments u1, 
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and hence, (k) 

Substituting from (d) and (k) into (j), with appropriate changes on indices, directly 
verifies (j). 

Finally, we prove that 

Here we again use (h), which also gives 

and hence, 

oe;i = 6Xp,i dXq,i ,eii 

8oeij = dXp,i dXq,J 8,e;J 

(l) 

(m) 

(n) 

Substituting from (i), (m), and (n) with appropriate changes on indices, into (1) also directly 
verifies (1). 

In summary, we note that if oCifrs and ,Cijrs in the incremental stress-strain relations (a) and 
(b) are for any material related in such a way as to represent the same physical material response, 
then the TL and UL incremental continuum mechanics formulations are identical. This observa­
tion pertains not only to elastic materials but is general and holds for any material. 

The preceding discussion shows that the UL formulation may be used if the constitu­
tive relationship corresponding to the TL formulation is known (and this observation holds 
for any material law that can be written in the form used in the TL formulation), and vice 
versa. This equivalence between the UL and TL formulations of course holds for any level 
of strain, but in most practical analyses, the linear elastic material behavior (Hooke's law) 
is valid only for small strain conditions. In that case, for an isotropic elastic material, the 
results using either (6.184) and (6.185), or directly 

,\ = Ev . 
(1 + v)(l - 2v) ' 

E 
µ, = 2(1 + v) 

(6.197) 

(6.198) 

where.,\ andµ., are the same constants as in (6.185), are practically the same. Hence, the 
same constants can be used to define the material law for the total and updated Lagrangian 
formulations, and only small differences would be observed in the solution results for large 
displacements and rotations as long as the strains are small. The reason is that considering 
large displacements and rotations but small strains, the transformations on the constitutive 
tensors given in ( 6.187) and ( 6.188) reduce to mere rotations. Therefore, since the material 
is assumed to be isotropic, the transformations do not change the components of the 
constitutive tensors and the use of either (6.184) and (6.185) or (6.197) and (6.198) to 
characterize the material response is quite equivalent. 

However, when large strains are modeled using (6.184) and (6.197) with the same 
elastic material constants, completely different response predictions must be expected. 
Figure 6.8 shows the results obtained in a simple analysis of this kind. We note that the 
force-displacement response is totally different when using the two descriptions and that an 
instability is observed in the TL formulation at the displacement (-2 + 2/V3). 
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Chap.6 
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-1.8 

(a) P·A response of 8-node element under uniform loading 
(E • 107 N/cm2, v • 0.30), A is restrained to be constant. 

E 
(i) Using JS11 = E 6E11 

'P = E; ( 1 + ::) ( ( 1 + ~J -1) 
('') u. t E"" I A 11 smg Tu = , E 11 

'P E2A (1 ( OL )2) 
0L + 'u 

(b) Basic relations 

Figure 6.8 One-dimensional response analysis; here the TL formulation is unstable in large compressive strain 

Of course, if the transformations of ( 6.187) or ( 6.188), whichever are applicable, were 
performed, the same force-displacement curves would be obtained using either the total or 
the updated Lagrangian formulations (see Exercise 6.62). 

Let us further demonstrate in the following example the differences in response that 
are observed when using different stress-strain measures with the same material constants. 

EXAMPLE 6.24: Consider the four-node element shown in Fig. E6.24. The displacements of 
the element are given as a function of time. 

Calculate the Cauchy stresses using the following two stress measures: 

(i) Use the total formulation of the second Piola-Kirchhoff stress and Green-Lagrange 
strain tensors, 

(a) 
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(ii} Use the rate formulation of the Jaumann stress rate and the velocity strain tensors (see 
L. E. Malvern [A]), 

(b) 

and let the constitutive tensors bCij,s and ,Cij,s be given by the same matrix in Table 4.2. 
We note that the components of the Jaumann stress rate tensor are given by (see 

L. E. Malvern [A]) 

(c) 

where the 'W;i are the components of the spin tensor [see (6.43)]. The relation (c) expresses that 
the rate of change of the Cauchy stress, 1 Tij, is equal to the Jaumann stress rate (which gives the 
rate of change in Cauchy stress due to material straining) plus the effect of rate of rigid body 
rotation of the material (and hence, rate of rotation of stress). The Jaumann stress rate is used 
in practice, although the rate formulation results in numerical integration errors and a nonphys­
ical behavior (see Section 6.6 and M. Kojic and K. J. Bathe [A]). 

Plane strain 
E= 5000 
v .. 0.30 

Figure E6.24 Four-node element subjected to motion 

Consider case (i). The deformation gradient is 

JX = [~ ~t] 
and hence, 

6E = [~ ~2] 
Using Table 4.2 with the given values of E and v, we obtain as nonzero values C1111 = 

6731, C2211 = C,122 = 2885, C2222 = 6731, C1212 = 1923. 
Hence, using the total Lagrangian description, we have 

JS22 = 13,462t2; JS12 = 3846t 

and using the standard transformations between the second Piola-Kirchhoff and Cauchy stresses 
(to two significant figures), 

[

1T11] [21,000t
2 

+ 54,000t
4

] 
1T22 = 13,000t2 

1T12 38()()t + 27,()()()t3 

(d) 
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Next consider case (ii). The velocity strain tensor 'Dis computed as given in (6.42). Hence, 

'L = [O 2]· 
0 0 ' 

'D = [O 1]· 
1 0 ' 

'W = [ 0 +l] 
-1 0 

Now we use the same constitutive matrix C to obtain 

[:!II]-[ ~ J 
,,.: - 3846 

We note that the Jaumann stress rate is independent of time. However, the material also rotates 
as expressed in 1W and the time rates of the Cauchy stress components are given by 

[ ::::] = [-~ :~: J 
1
f12 3846 + 1T22 - 'T11 

These differential equations can be solved to obtain (again to two significant figures and hence 

using G = 20 ~ v) = 1900) 

[ :~::] = [-!:g = :: ~:iJ 
1
T12 1900 sin 2t 

(e) 

We note that the results given in ( d) and ( e) are quite different when t is larger than about 0.1 and 
that in each material description normal stresses are generated ( that are zero when infinitesimally 
small strains are assumed). Also, the oscillatory behavior of the Cauchy stresses in ( e) with 
period 1T is peculiar. 

6.6.2 Rubberlike Material Behavior 

We introduced in Section 6.4 the displacement/pressure formulations that are much suited 
for the analysis of rubberlike materials because such materials exhibit an almost incom­
pressible response. The basic ingredient in these formulations is the strain energy density 
& W, which is defined by the specific material model used. 

Various definitions of & W are available, but two commonly used models are the 
Mooney-Rivlin and Ogden models (see R. S. Rivlin [A] and R. W. Ogden [A]). 

The conventional Mooney-Rivlin material model is described by the strain energy 
density per unit original volume 

bW = C1(bl1 - 3) + Ci(bl2 - 3); bh = 1 (6.199) 

where C1 and C2 are material constants and the invariants 1,/; are given in terms of the 
components of the Cauchy-Green deformation tensor (see 6.27) 

(6.200) 

&/3 = det bC 
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Note that the value &W in ( 6.199) is not yet a strain energy density &W that we use in our 
formulation, as we discuss below. 

We note that a so-called neo-Hookean material description is obtained with C2 = 0, 
and if small strains are considered 2(C1 + C2) is the shear modulus and 6(C1 + C2) is the 
Young's modulus. 

EXAMPLE 6.25: Consider the one-dimensional response of the bar shown in Fig. E6.25. Plot 
the force-displacement relationship for the following two cases: (i) C1 = 100, C1 = 0 and (ii) 
Ci = 75, C2 = 25. 

i ~.t+l-i7-H_n_H_n_s_;,-;;-i;;-J~-n--sf'"------': -- F 

I• .. ,-•-A-" 
OL 

10. 

8. 

6. 

4. 

2. 

0. 

-2. 

-4. 

-6. 

-8. 

x102 

o c, -100 
Cp• O 

• C1 • 75 
C2• 25 

-10. __________ ....._ .... 

--0.5 o.o 0.5 1.0 1.5 2.0 2.6 3.0 
Displacement M 0L 

Figure E6.25 One~dimensional response of rubber bar 

Using &Su = abW/o&E{i (see 6.129) with the Mooney-Rivlin material model in (6.199) 
specialized to the case considered, we obtain (using the stretch.,\ as the only variable to evalu-

ate blV) F = 2 0A[C,(,\ _ ..\-1) + c2(1 _ ,\-3)] 

,\=l+~ OL 

Substituting the values for Ci and c,., we obtain the curves shown in the figure. 

The description in ( 6.199) assumes that the material is totally incompressible (since 
JIJ = 1). A better assumption is that the bulk modulus is several thousand times as large 
as the shear modulus, which then means that the material is almost incompressible. This 
assumption is incorporated by dropping the restriction that J /3 = 1 and including a hydro­
static work term in the strain energy function to obtain 

(6.201) 

However, this expression cannot be used directly in the displacement/pressure formulations 
because all three terms contribute to the pressure. To obtain an appropriate expression, we 
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define the reduced invariants 

u. dl,(dJ3)- 113 

&12 &M&/3)-213 

&J3 = (&/3)1/2 

and we then use 

&W = C1(&J1 - 3) + C2(U2 - 3) + 4 ,c(JJ:, - 1)2 

where 1< is the bulk modulus. We note that in this description 
1 p = -K(JIJ - 1) 

(6.202) 

(6.203) 

(6.204) 

The relations in (6.203) and (6.204) are used to calculate, by chain differentiation, all 
required derivatives in the displacement/pressure formulation in Section 6.4. 

The basic (three-term) Ogden material description uses the form 

3 

&W = ~ #Ln(>.'t" + M" + M" - 3); 
n*I Cln 

(6.205) 

where the Ai are the principal values of the stretch tensor & U and the µ, and a, are material 
constants. We note that! I.!=i anJJ,n is the small strain shear modulus. 

The material description is more effectively used with the principal values Li of JC 
[instead of the principal values of &U, where &C = (&U)2

]. Then we have 

3 

JW ::: ~ µn (Lfn/2 + Lf/:'/2 + Mn/2 _ 3); 
n-1 CXn 

(6.206) 

As for the Mooney-Rivlin material model, we now assume that the rubberlike material is 
only almost incompressible and also replace the L, with the terms L,(L1 L2L3)- 113 so as to 
render the three terms under the summation sign unaffected by volumetric deformations. 
The modified Ogden material description is then given by 

JW = ± {µn[(LfnlZ + VJ:tlZ + U 1112)(L1 L2 L3)-a,./6 - 3]} + ! K(JIJ - 1)2 (6.207) 
n=I O!n 2 

Using (6.207) and (6.204), we can now directly obtain, by differentiation, all terms of the 
displacement/pressure formulation given in Section 6.4 (see T. Sussman and K. J. Bathe 
[BJ). 

In the foregoing presentation we implicitly assumed that the total Lagrangian formu­
lation is used for the analysis. Since the strain energy densities with the material constants 
are defined for this formulation, it is most natural and effective to use a total Lagrangian 
solution. However, an updated Lagrangian solution, given the values of &W above, could 
also be pursued and identical numerical results would be obtained if the transformation 
rules in Section 6.4.2 (or 6.6.1) are followed. 

Finally, we should also note that the basic Mooney-Rivlin and Ogden material models 
can be generalized in a straightforward manner to higher-order models with more terms in 
the expressions for 'W (see Exercise 6.69), see also T. Sussman and K.J. Bathe [C] for ano­
ther approach. 
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6.6.3 Inelastic Material Behavior; Elastoplasticity, Creep, 
and Viscoplasticity 

595 

(\ fundamental observation comparing elastic and inelastic analysis is that in elastic solu­
tions the total stress can be evaluated from the total strain alone [as given in (6.184) and 
(6.191)], whereas in an inelastic response calculation the total stress at time t also depends 
on the stress and strain history. Typical inelastic phenomena are elastoplasticity, creep, and 
viscoplasticity, and a very large number of material models have been developed in order 
to characterize such a material response. Our objective is again not to summarize or survey 
the models available but rather to present some of the basic finite element procedures that 
are employed in inelastic response calculations. We are mainly concerned with the general 
approach followed in inelastic finite element analysis and some formulations and numerical 
procedures that are used efficiently. 

In the incremental analysis of inelastic response, basically three kinematic conditions 
are encountered. 

Small displacement and small strain conditions: 
In this case a materially-nonlinear-only formulation is used that assumes infinites­
imally small displacements and rotations and considers only material nonlinearities. 
As long as the material is elastic, the solution using this formulation is identical to the 
linear elastic solution discussed in Section 4.2. 
Large displacements and rotations but small strains: 
In this case the total Lagrangian formulation is employed effectively. As discussed in 
Section 6.2.3, the kinematic assumptions permit large displacements, large rotations, 
and large strains. However, assuming small strains, the material model used for 
materially-nonlinear-only analysis can be directly employed in the TL formulation for 
large displacement and large rotation analysis by simply substituting in the material 
characterization the second Piola-Kirchhoff stresses and Green-Lagrange strains for 
the small displacement engineering stress and strain measures (see Section 6.6.1, 
Fig. 6. 7) - with the proviso that with small material strain hardening, a large strain ana­
lysis can be computationally more stable and be physically more accurate. 

Large displacements and large strains: 
In this case a total or updated Lagrangian formulation can be employed efficiently. 
However, the underlying constitutive formulations are more complex-although they 
are direct extensions of the materially-nonlinear-only and large displacement-small 
strain cases. There are various issues that need to be discussed specifically for the large 
strain analysis case, and for this reason we defer the presentation to Section 6.6.4. 

Since the large displacement-small strain case represents, from the computational 
view, a simple extension of the materially-nonlinear-only case, we consider in this section 
only inelastic conditions in small displacements and small strains. However, Table 6.9 
shows how in elastoplastic analysis some of the major equations, further discussed below, 
are simply used with second Piola-Kirchhoff stresses and Green-Lagrange strains to include 
large displacement effects. 
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TABLE 6.9 Continuum elastoplasticity formulations 

Materially-nonlinear-only formulation (infinitesimally small displacements): 

'F{1u1J• 11<, ••• ) = O; 

Total lAgrangian formulation (large displacements and large rotations, but small strains), 

di'"= Jd[2/3doEC doEC}1'2 < 2%: 

'F(/,SIJ, 1K, ••• ) = O; 

Referring to the summary of computations in Table 6.8, let us assume that the solution 
has been obtained accurately to time t and that the total strains r+A, e,, corresponding to time 
t + fl.t have been computed (we now omit any iteration superscript). Hence, we assume that 
all stresses, inelastic strains, and state variables for time t are known accurately. We then 
have two basic requirements for our solution scheme: 

The computation of the stresses, inelastic strains, and state variables corresponding to 
the total strains at time t + fl.t. 
The computation of the tangent constitutive relation corresponding to the state eval­
uated above, which in materially-nonlinear-only analysis can be written as 

(6.208) 

The tangent stress-strain law is employed in the evaluation of the tangent stiffness 
matrix. If the stress-strain relationship used in the evaluation of the stiffness matrix is not 
a true tangent relation, then the next calculated displacement (and hence strain) increment 
will, in general, not give as accurate an approximation to the solution sought as possible 
(and this will decrease the rate of convergence of the equilibrium iterations; see Sec­
tion 8.4). 

A crucial requirement is that the stresses for the new state be accurately calculated. 
If we denote the calculated total strains as r+llre, then our requirement is to obtain the stresses 
,+A,a accurately. We should note that, in general, any error introduced in the evaluation of 
r+Ara is an error that cannot be compensated for later in the solution by some corrective 
iterative scheme. Instead, errors present in the stresses and plastic strains, and the state 
variables for time t + fl.t will, in general, irreversibly deteriorate the subsequent response 
prediction. 

Let us point out here that of course in an equilibrium iteration, the tangent constitutive 
relation in ( 6.10) needs to be calculated corresponding to the current state, and also, the 
stresses to be calculated are ,H,a<H> for the given strains ,H,e<H> (see Section 8.4). 
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In the following presentation, we first consider the basic computational scheme for the 
case of elastoplasticity, and then we briefly consider the cases of creep and viscoplasticity. 

Elastoplasticity 

We assume that the elastoplastic response is governed by the classical incremental theory 
of plasticity based on the Prandtl-Reuss equations (see, for example, L. E. Malvern [A], 
R. Hill [B], A. Mendelson [A], and M. Zyczkowski [A]). 

Using the additive decomposition of strains, de,i = deij + de~, the stress increment 
is given by the basic relationship 

(6.209) 

where the Curs are the components of the elastic constitutive tensor and the de;j, dev, det 
are the components of the total strain increment, the elastic strain increment, and the plastic 
strain increment, respectively. This incremental relationship holds throughout the inelastic 
response. To calculate the plastic strains, we use three properties to characterize the mate­
rial behavior: 

A yield function, which gives the yield condition that specifies the state of multiaxial 
stress corresponding to start of plastic flow 
Aftow rule, which relates the plastic strain increments to the current stresses and the 
stress increments 
A hardening rule, which specifies how the yield function is modified during plastic 
flow. 

The yield function has the general form at time t, 

(6.210) 

where " . . . " denotes state variables that depend on the material characterization. The 
instantaneous material response is elastic if 

h <0 

and elastic or plastic depending on the loading condition if 

'!, = 0 

(6.211) 

(6.212) 

whereas 'h > 0 is inadmissible. Hence the relation (6.212) represents the yield condition, 
which must hold throughout the plastic response. 

Assuming that for the material the associated flow rule is applicable during plastic 
response we use the function 1/, in the flow rule to obtain the plastic strain increments 

a '!, 
der. = d.A.::...:!.1... 

IJ (1 t(]'ij 
(6.213) 

where dA is a scalar to be determined [and depending on the state variables additional 
quantities appear in (6.213)]. The hardening rule-which also depends on the particular 
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material model used-changes the state variables in 'fy as a consequence of plastic fl.ow and 
therefore changes the yield condition during the response. 

Let us consider von Mises plasticity with isotropic hardening, and a general three~ 
dimensional stress state. In the following we present a simple solution procedure that is 
widely used and referred to as the radial return method (see M. L. Wilkins [A] and R. D. 
Krieg and D. B. Krieg [A]). Our objective is to present the procedure such that it can be seen 
to be the basis of a general approach toward the solution of inelastic stress conditions. 

Since in von Mises plasticity the plastic volumetric strains are zero (as we shall see 
later), it is effective to write the general stress-strain relationship at time t + b..t in the form 
[see also (4.125) to (4.133)] 

(6.214) 

E 
t+At (T. = --- t+At e 

m 1 - 2v m 
(6.215) 

where ,+A,g is the deviatoric stress tensor with components13 

(6.216) 

t+At Um is the mean Stress 

t+ •t t+At O'u 
~v: := --

m 3 (6.217) 

r+A,e' is the deviatoric strain tensor with components 

(6.218) 

,+Atem is the mean strain 

(6.219) 

and t+tireP is the plastic strain tensor with components r+Ate~. Note that in (6.214) we have 
3 X 3 matrices on each side of the equal sign, with the components of the tensors. We 
should recall that the total strain at time t + b..t is known (see Table 6.8), and hence, ,+A'e' 
and t+t.., em are known. 

The relations (6.214) and (6.215) represent the integrated forms of (6.209), where we 
note that the deviatoric stresses depend on the plastic strains, which are in general highly 
dependent on the stress history, and that the mean stress is independent of the plastic strains 
(because the plastic mean strain is zero; i.e., the plastic deformation is isochoric). Hence, 
r+Atum is given directly by (6.215), and our task is now to calculate r+i1,er and ,Hrs. 

Since we assume that the complete stress and strain conditions are known at time t, 
we can write (6.214) in the form 

(6.220) 

where (6.221) 

is a known quantity. 
13 Note that the deviatoric stress does not carry a subscript O as does the second Piola-Kirchhoff stress. 
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Hence, the task of integrating the constitutive relations is now reduced to determining 
in ( 6.220) the stresses i+Arg and the plastic incremental strains ll.eP subject to the yield 
condition, flow rule, and hardening rule. 

In von Mises plasticity, the yield condition is at time t + ll.t, 

(6.222)14 

where r+.1, <Ty is the yield stress at time t + ll.t. This stress is a function of the effective plastic 
strain, which defines the hardening of the material, 

with 

Figure 6.9 shows a yield curve schematically. 

Effective stress 
and yield stress 

t+Ma= t+MO"y 

ta= tay 

O"yv 
O"yv= virgin yield stress 

Effective 
plastic strain 

Figure 6.9 General generic yield curve. Yielding is assumed at times t and t + flt. Let, at 
time T, 'fy = •u - •uy; then the response must satisfy •J., s 0, iP .?:: 0, iP '/., = 0. 

The flow rule gives for the finite step 

(6.223) 

(6.224) 

(6.225) 

Geometrically, this equation means that ll.eP is in the direction of i+A1S, and the equation 
shows that the volumetric plastic strains are zero (the trace of 1+618 is zero). 

To determine ,\. we take the dot products of the tensor components on each side of 
(6.225) to obtain15 

(6.226) 

where ll.eP is the increment in the effective plastic strain and ,+11,u is the effective stress 

r+ArU = \!~ r+Ars • r+Ats (6.227) 

14 Note that here and in the following we use the notation that for second-order tensors a and b we have 
a· b = aijb,1 [sum over all i,j; see (2.79)]. 

1~ Note that geometrically A simply gives the difference in the "lengths" of fleP and r+Ars. 
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The relations in (6.227) correspond to the plastic strain and the stress in a uniaxial stress 
condition (see Exercise 6.73), and using (6.225) we have that in general three-dimensional 
analysis the plastic work tuiJde~ is given by 'udeP. From (6.226) 

(6.228) 

However, using the requirement that during yielding the yield stress is equal to the effective 
stress (because the yield condition is satisfied), we can relate !ieP to the effective stress at 
time t + tit (and other known variables). This relation is obtained from the effective 
stress-effective plastic strain curve shown schematically in Fig. 6.9. 

We next substitute from ( 6.225) into ( 6.220) to obtain 

r+4rg = _1_ t+Ate" 

QE + .,\ 
(6.229) 

and so ,+A'e" is also in the direction of ,+A'S. To evaluate the scalar multiplier in ( 6.229) we 
can again simply take the dot product of the tensor components on each side of ( 6.229). We 
obtain 

where 

a2 t+AtU2 _ d2 = Q 

a,= ae + .,\; 1 + v 
aE=~ 

(6.230) 

(6.231) 

(6.232) 

We note that the coefficient dis constant, whereas the coefficient a varies with A, and hence 
with t+AtU. 

Let us define the function 
f(u*) = a 2(u*)2 - d 2 (6.233) 

and call f (u*) the effective stress function. Considering ( 6.230) we recognize that f = 0 
at u* = t+Atu. Hence, solving for the zero value of the effective stress function provides the 
solution for ,+A,u and A, and hence, the solution for the current stress state ,+A,S [see 
(6.229)] and the incremental plastic strains !ieP [see (6.225)]. Since the key step in the 
solution-here and in more complex inelastic analysis-is the calculation of the zero of a 
function f{u*), the complete solution algorithm has been termed the effective-stress­
function (ESF) algorithm (see K. J. Bathe, A. B. Chaudhary, E. N. Dvorkin, and M. Kojic 
[A], where the method is introduced for more complex thermoelastoplastic and creep solu­
tions}. 

The attractiveness of the ESF algorithm lies in the general applicability of the method. 
The effective stress function can be quite complicated (because of a complicated effective 
stress-effective plastic strain relationship) or because of thermal and creep effects (as 
considered later). The zero of the function is in general efficiently found by a numerical 
bisection scheme, which can be made very stable because the function contains only one 
unknown, the effective stress. 

However, if the material is modeled as bilinear (see Fig. 6.10), the effective stress­
effective strain relationship is a straight line with slope EP and we can solve directly for the 
effective stress at time t + tit. Namely, 

(6.234) 
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with 

Stress 

O'yv 

Total strain 

Figure 6.10 Bilinear elastoplastic material model 

E,. = EEr 
E- Er 

Plastic strain eP 

where Er is the tangent modulus, and hence, 

1+Atu = 2Ep d + 3'uy 
2EPaE + 3 

In case of perfect plasticity Ep = 0 and ,+Aiu = Uyv, so that from (6.230), 

d 
A=--aE 

O'yv 
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(6.235) 

(6.236) 

(6.237) 

The elastoplasticity computations are of course started by first testing whether the 
material is yielding from time t to time t + At. Yielding is assumed to be present throughout 
the time interval if ,+AiuE > 'O'y, where r+A'u8 is the elastic stress solution 

(6.238} 

The above solution process can be interpreted to consist of, first, an elastic prediction 
of stress (in which AeP is assumed to be zero) and then, if this stress prediction lies outside 
the yield surface corresponding to time t, a stress correction. Figure 6.11 illustrates geomet­
rically the solution process. 
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Figure 6.11 Geometric representation of stress solution in elastoplastic analysis (using 
principal stress directions) 
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Point A corresponds to the stress solution at time t. Point B corresponds to the elastic 
stress prediction, which from ( 6.220) is 

t+AISE = _E_ ('+A'e") 
1 + v 

The stress correction corresponds to the vector BC and is 

t+Argc = 2-(-AeP) 
1 + v 

where AeP is given by (6.225). 

(6.239) 

(6.240) 

Since t+Ars and t+Arsc are in the same direction and t+Ats = t+AtSE + t+Atsc, we note 
that the normal t+A,n is in the direction of ,+A•sE (and r+Ars, AeP, and r+A'e") and is given by 

t+At - t+Ale" 

n - II ,+A'e" 112 
(6.241) 

Since the stress correction along this vector returns the stress state to the yield surface 
radially, the method has been called the radial return method (see R. D. Krieg and 
D. B. Krieg [A]). 

This interpretation of the solution scheme gives some indication of the numerical 
error in the solution process. We see that the yield condition and hardening law are 
accurately satisfied at the discrete solution times, but the magnitude of the plastic strains is 
obtained in ( 6.225) by an estimate based on the Euler backward integration for the flow rule. 
If the direction of the deviatoric stress vector does not change (hence ,.n is constant for all 
r), the solution is exact, but any change in the direction of this vector will introduce 
numerical integration errors. Some studies on solution errors are presented by R. D. Krieg 
and D. B. Krieg [A], H. L. Schreyer, R. F. Kulak, and J.M. Kramer [A], M. Ortiz and E. P. 
Popov [A], and N. S. Lee and K. J. Bathe [B]. These investigations indicate the high 
accuracy that is achieved in using the solution algorithm. 

As we have pointed out, the second important requirement of the computational 
scheme is the evaluation of an accurate tangent stress-strain relation for the stiffness matrix. 
This tangent stress-strain matrix must be consistent with the numerical stress integration 
scheme used in order to have the full convergence benefits of the Newton-Raphson iteration 
(see Section 8.4.1 ). Let us consider that we require the tangent material matrix correspond­
ing to time t + At. We assume the schematic yield curve in Fig. 6.9 is applicable. 

For ease of writing let us define the stress and strain vectors 

t+AtaT = p+Atqll t+Atu22 t+AtU33 t+AtU12 1+AtU23 t+AtU31] 

= p+Ar Ut t+At q 2 t+At UJ t+At q 4 t+At Us t+At u 6] 

t+Ater = p+A•eu 

= p+Ate1 

t+Ate t+At "II t+At - t+At -v. ] 
33 ,12 /~3 131 

(6.242) 

(6.243) 

where we use the engineering shear strains r+A''Y;i = ,+A'e;i + ,+Ateii· Then the tangent 
stress-strain matrix at time t + At is given by the derivative of the stresses with respect to 
the strains, evaluated at time t + At, which we write as 

(6.244) 
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We now need to establish the derivative in ( 6.244) using the assumptions of the above 
stress integration, and in particular the fact that the effective stress alone (or effective plastic 
strain alone) determines the current stress state. Hence, using the stress integration assump­
tion and that r+Aru is a function of r+A,e and i+Atu 

(6.245) 

or instead of the effective stress we can use the effective strain. 
The derivation is achieved by careful differentiations. Let us present the first steps 

using for all stresses and strains the conventions in (6.242) and (6.243). 
With the earlier established relations, we have 

and 

Using ( 6.244 ), we obtain for the elements of the tangent stress-strain matrix, 

EP - I E . 
Cu - Cu+ 3(1 - 2v)' 

Czy,. = Cy; 

where , a ,+Ats, 
C1; = !} t+At 

u e; 

1 :s i,j :s 31 
otherwise 

(6.246) 

(6.247) 

(6.248) 

However, t+4 'S; is given by (6.229), in which A is given by (6.228) and aE is a constant. 
Therefore, (6.248) will ultimately involve a differentiation of A (and hence, of A.eP and 
1+41u) with respect to the strain components. Using the chain rule, we obtain 

(6.249) 

where from (6.221), 

(6.250) 

and from (6.218), 

1 :s l.j :s 3 

(6.251) 

otherwise 

Also, using ( 6.229), we obtain 

(6.252) 
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To conclude the derivation, in the evaluation of iJ>.Ja1+t:..,ez we use the relation (6.228), the 
given material relationship of effective stress versus effective plastic strain, and the condi­
tion that the effective stress function must be zero. 

Of course, we considered in the preceding discussion a very special but commonly 
used elastoplastic material assumption. We also considered the general three-dimensional 
stress state. However, the stress integrations and tangent stress-strain relationships for other 
stress and strain conditions can be derived directly using the above procedures. For exam­
ple, in axisymmetric and plane strain conditions, the appropriate strain variables would 
simply be set to zero. For plane stress conditions, the stress throughout the thickness is 
assumed zero, and so on (see Fig. 4.5). 

We have presented the solution procedure for von Mises plasticity with isotropic 
hardening, but the algorithm can also be developed directly for the conditions of kinematic 
hardening and combined isotropic-kinematic (i.e., mixed) hardening (see M. Kojic and 
K. J. Bathe [B, C], A. L. Eterovic and K. J. Bathe [A], and K. J. Bathe and F. J. Montans [A]). 

The salient feature of the plasticity model used here is that only a single state variable 
(the effective stress) needs to be solved from a governing equation (the effective stress 
function equation) to obtain the complete stress state. The solution procedure can of course 
also be employed for more complex plasticity models, in which a number of internal state 
variables or governing parameters define the stress state. In this case, we need to establish 
and solve the appropriate state variable equations in an analogous manner as for the 
effective stress function equation discussed above. 

To illustrate the application of the solution procedure to another easily tractable 
material law, we consider in the following example the Drucker-Prager material model, 
which is. widely used to characterize soil and rock structures. 

EXAMPLE 6.26: Consider the Drucker-Prager material model for which the yield function at 
time t + At is given by (see D. C. Drucker and W. Prager [A], C. S. Desai and H. I. Siriwardane 
[A]), 

r+t:.'f~P = a t+t:.11, + ~ - k (a) 

where r+ 41 I, = r+t:.r <Tu and r+t:.r Ji. = ! ,+ 41 Sii t+ t:., Sii and a, k are material property parameters, see 
Fig. E6.26. For example, if the cohesion c and angle of friction 8 of the material are measured 
in a triaxial compression test, we have 

2 sin 8 
a=-----

V3(3 sin 8) 

k= 6ccose 
V3(3 - sin 8) 

Consider the case of perfect plasticity, i.e., c and 8 constant, and derive the relations for the stress 
integration. 

_th Figure E6.26 Drucker-Prager yield 
function 
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Comparing the yield function of the Drucker-Prager material model with the von Mises 
yield function, we recognize that the mean stress is present in (a). Hence, volumetric plastic 
strains are present in the response when the Drucker-Prager material model is used. 

The constitutive relation for the material is 

r+Ars .. = _!_ (t+41e!. - 'ef.' - Aef.') lJ IJ IJ U 1/ 
aE 

(b) 

(c) 

where 'eij' and A.ef are the deviatoric plastic strains at time t and their increments, 'e' and A.e~ 
are the mean plastic strain at time t and its increment, and am = (1 - 2v)/E. 

The flow rule (6.213) gives 

Hence (d) 

and (e) 

Our objective is now to evaluate A. Since the material is nonhardening, this evaluation can 
be achieved analytically in terms of known quantities, and once A is known, the stresses for time 
t + A.t can be evaluated directly. 

Using the constitutive relation and the flow rule, we use (e) in (b), solve for ,+41 Sij, and take 
the scalar product of both sides of the resulting equation to obtain 

where 

and 

We also use (d) in (c) to obtain 

where 

t+Atd2 = t+Ateij • t+Atelj 

r+Ateij = t+Atelj - 'e~' 

(f) 

(g) 

Finally, we use the yield condition ,+A,pf = 0 and substitute for ,+41 /1 and~ from (f) and 
(g) to obtain 

3 t+Ald 
...!!.. t+41e" + --- - k 
am m Y2aE 

A=-------------------a2 1 
3-+­

am 2aE 

With A known we can now evaluate directly the plastic strain increments from (b), (d), and (e) 

[where we use (f) to substitute in (e) for~]. The stresses at time t + At are then obtained 
from (b) and (c). 
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Thermoelastoplasticity and Creep 

The effective-stress-function algorithm presented above was originally designed for the 
complex case of thermoelastoplasticity and creep (see K. J. Bathe, A. B. Chaudhary, 
E. N. Dvorkin, and M. Kojic [A]). In this case the relations presented earlier need to be 
generalized, and we obtain 

(6.253) 

(6.254) 

where the Young's modulus and Poisson's ratio are now considered temperature-dependent 
(which we model as time-dependent, with the temperature prescribed at each time step) and 
,+A,ec, t+A1e TH represent the creep and thermal strains, respectively. The thermal strain is 
calculated from 

(6.255) 

where r+Aram is the mean coefficient of thermal expansion and Orcr is the reference temper­
ature. 

The relation ( 6.220) now becomes 

(6.256) 

where the known strains are 

(6.257) 

Let us again consider the von Mises yield condition and isotropic hardening. The plastic 
strain increment .6.eP is calculated in the same way as enumerated above except that now 
the effective stress-effective plastic strain curves are temperature-dependent (see Fig. 
6.12). Hence, all relations derived are directly applicable, but the material constants are a 
function of temperature. 

Effective stress 
{yield stress) At temperature t9 

t+Atg> tg 

Effective plastic strain 

Figure 6.12 Effective stress-effective plastic strain curves at different temperatures (sche~ 
matic representation) 

The incremental creep strain t,.ec is calculated quite analogously to the incremental 
plastic strain (see, for example, H. Kraus [A]). Using the a~ method of time integration (see 
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M. D. Snyder and K. J. Bathe [A] and Section 9.6), we have 

Aec = At ,.'Y ,.S 

where 'l's = (1 - a) 'S + a t+Ats 

and a is the integration parameter (0 :S a :S 1). 
The function "'Y is given by 

where the effective creep strain increment is 

Aec = v~ AeC • AeC 

and the weighted effective stress is 

'l'u = (1 - a) 'u + a r+A'u 
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(6.258) 

(6.259) 

(6.260) 

(6.261) 

(6.262) 

Since the material is assumed incompressible in creep, we have in uniaxial stress conditions 
'u = 'u11 and 'ec = 'efi. 

These relations are like those used for the calculation of the plastic strain increment, 
but in that case we performed the integration with a = 1 (the Euler backward method). 

The evaluation of the scalar function "'Y is based on a creep law. A typical uniaxial 
creep law used in practice is 

(6.263) 

where 'ec and 'u are the creep strain and the stress, respectively, '8 is the temperature in 
degrees Celsius, and ao, a1, a2, a3 are constants. The generalization of (6.263) to multiaxial 
conditions is achieved by substitution of the effective stress and effective creep strain for the 
uniaxial variables, 

This equation and other creep laws are of the form 

'ec = /i('u)f2(t)J;('O) 

and we use 

where 

Aec = flt f.f'u)i2Mh('l'8) 

'1'{) = (1 - a) 'O + a ,+i1,9 

(6.264) 

(6.265) 

(6.266) 

(6.267) 

and T = t + a At. The incremental creep law in (6.266) is based on experimental evidence 
and corresponds to a time differentiation of the function.fi only. 

Using equations (6.266) and (6.262), the function,.,, can be determined for a given 
value of "u, and the creep strain increment can be calculated. This approach corresponds 
to the so-called time hardening procedure. Physical observations, however, show that the 
use of the strain hardening procedure gives better results for variable stress conditions. In 
the strain hardening method, the creep strain rate is expressed in terms of the effective creep 
strain tee instead of the time T. This is achieved by evaluating from (6.265) and (6.266) the 
pseudotime Tp, 

(6.268) 
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In general, this equation needs to be solved numerically for Tp, The creep strain increment 
· Aec can then be computed from (6.266) with T replaced by Tp, Figure 6.13 illustrates 
schematically the difference between the assumptions of time and strain hardening in creep 
strain calculations. 

Creep strain 

0 

Stress 

ta 

Creep strain at 
constant stress u2 

......:.:---i- Strain hardening 
Time hardening 

Creep strain at 
constant stress u1 

Time 

Time 

Figure 6.13 Creep strain in time hardening and strain hardening assumptions. In the time 
hardening assumption, curve A-B defines the incremental creep strain from time ta onward. 
In the strain hardening assumption, curve N. -B' defines the incremental creep strain from time 
ta onward. 

We should note that for cyclic loading conditions, additional considerations are neces­
sary to account for the reversal of stress (see H. Kraus [A]). 

The key observation regarding the above computation is that the inelastic strain 
increments are a function of the unknown effective stress t+Atu only. To solve for this stress 
value, we use the effective stress function for the problem. 

Let us substitute into ( 6.256) for AeP from ( 6.225) and for Aec from ( 6.258). Since 
all material properties are now a function of temperature, we obtain 

where 
} + t+AtV 

t+A'as=--­
r+ArE 

(6.269) 

(6.270) 

Taking the scalar product of both sides in ( 6.269), we find that the unknown effective stress 
satisfies 

Q2 t+Afu2 + b Ty - c2 T'Y2 - d2 = 0 (6.271) 
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where 

Use of Constitutive Relations 

a = t+t:t.,aE + allt "'y + A 

b = 3(1 - a) llt ,+A1e11 
• 'S 

c = (1 - a) llt''ii 

d2 = 1 ,+Ate" • ,+Ate" 
2 . 
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(6.272) 

The coefficients b, c, and d are constants that depend only on known values, whereas the 
coefficient a is a function of r+Aru. Since ,+A,u is the variable to be solved for, we define the 
effective stress function. 

f(u*} = a 2(u*)2 + b ... ,, - c 2 "'y2 - d 2 (6.273) 

The function/(u*) is zero at ,+Atu(see Fig. 6.14). Hence, the value of'+Atucan, in general, 
be evaluated by any numerical iterative scheme that calculates the zero of a function, for 
example, a stable and efficient bisection technique. Once ,+A,u is known, we can use the 
above equations to evaluate the inelastic strains and stresses at time t + llt. 

f(<J*) 

q* 

Figure 6.14 Effective stress function, schematically shown, with zero value at ,+A, u 

This solution scheme for the thermoplastic and creep inelastic response is clearly an 
extension of the method presented for the isothermal plastic strain calculations. Therefore, 
the considerations given earlier regarding the accuracy of the solution scheme are applicable 
here also. However, for the creep strain calculations the a- method with O :S a :S 1 is used 
in the incremental relations. In practice, stability considerations usually require that a 2:: ! 
(the a-integration scheme is unconditionally stable in linear analysis provided a 2:: !), and 
frequently we use a = l. We consider the a-integration scheme in some detail in Sec­
tion 9.6. 

In the foregoing presentation we discussed how the stresses at time t + llt are calcu­
lated but did not present the evaluation of the tangent stress-strain relationship. This 
evaluation requires the derivative of the stresses with respect to the strains [see (6.244)], 
and we refer to the remarks given at the end of the next section in which we consider 
viscoplastic strains. 

Viscoplasticity 

The plasticity model considered above does not model time effects that physically occur in 
the material. Such effects may be important and a viscoplastic material model may be more 
appropriate to characterize the material response. Let us consider a quite widely used 
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viscoplastic model proposed by P. Perzyna [A]. The model uses the concepts of the von 
Mises plasticity model but introduces time-rate effects. An important aspect of the theory 
of viscoplasticity is that there is no yield condition but instead the rate of the inelastic 
response is determined by the instantaneous difference between the effective stress and the 
"material" effective stress. 

The implementation of the model is representative of that of viscoplastic models and 
can be achieved using the methods already presented. 

Let us consider the Perzyna model without temperature effects. In this case the model 
postulates that the increments in strain are at any time 

de;1 = def + de~P (6.274) 

where the superscripts E and VP denote elastic and viscoplastic strain increments. The 
elastic strain increments are calculated as usual, and the viscoplastic strain increments at 
time tare 

if 'o- > 'o-o (6.275) 
if 10' :$ 'uo 

In this relation f3 is a material constant, 'u is the current effective stress, and 

(

r- r-)N 
cf:>('u) = q ,;o O'o (6.276) 

where ''uo is the material effective stress, that is, the effective stress corresponding to the 
accumulated effective viscoplastic strain 'evP (see Fig. 6.15), and N is another material 
constant. The relations for calculating deviatoric stresses, the effective stress, and the 
effective inelastic strain were given earlier [see (6.216), (6.227), and (6.224)]. We note that 
the expression for the viscoplastic strains in ( 6.27 5) is of the form of the expression for the 
creep strains [see (6.258)] and the plastic strains [see (6.225)] because the underlying 
physical phenomena of all these strain components are similar (but different time scales are 
applicable). A consequence is that the viscoplastic strains also correspond to an incom­
pressible response [as do the plastic and creep strain components in (6.225) and (6.258)]. 

The model requires the elastic constants E (Young's modulus) and v (Poisson's ratio), 
the material constants /3, N, and the curve in Fig. 6.15. We note that f3 (with unit I/time) 
and N determine the rate behavior of the material. That is, viscoplastic strains are accumu­
lated as long as the effective stress is larger than the material effective stress, and the rate 
of such accumulation is determined by f3 and N. 

Material 
effective stress 

teVP Accumulated effective 
viscoplastic strain 

Figure 6.15 Schematic representation of material effective stress versus accumulated effec~ 
tive viscoplastic strain 
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Let us now consider the calculation of the stresses at time t + At. We proceed as in 
the case of plasticity and creep. Assuming that the total strains corresponding to time 
t + At and all stress and strain variables corresponding to time tare known, we have (as 
in the case of plasticity and creep) 

E t+At(J', :::::: __ t+Ate 
m 1 - 2v m 

t+Ats = _E_(l+AteH - AeVP) 
1 + v 

(6.277) 

(6.278) 

(6.279) 

where the variables are as in (6.214) to (6.221) but we consider viscoplastic strains instead 
of plastic strains. 

The viscoplastic strain increment is given by [compare (6.258)] 

AeVP = At "'Y 1's 
where using the a-method of integration, 

"S = (1 - a) 'S + a t+Ats 

and the scalar 1' 'Y is given by 

(6.280) 

(6.281) 

(6.282) 

We note that "'Y depends on "u and "<io, where "uo depends on the accumulated 
effective viscoplastic strain (see Fig. 6.15). Hence, as in the analysis of creep response, the 
above relations represent a one-parameter system of equations in the effective stress 1+61u, 
which is obtained as the zero of the effective stress function, 

where 

/(u*) = a2(u*)2 + b ,.,, - c2 "12 - d2 (6.283) 

a = aE + a At "'Y 

b = 3(1 - a) At r+A1e11 
• 'S 

c = (1 - a) At 'u 

1 + 11 
aE=~ 

(6.284) 

This function is obtained as in the case of thermoplasticity and creep [see ( 6.271) and 
(6.272)] but neglecting all temperature dependency and the plastic parameter A (since the 
viscoplastic strains are calculated by the procedure used for the creep strains). Of course, 
a dependence on temperature for the material properties could be included directly. Indeed, 
an important consideration in the use of viscoplastic models is that various functional 
dependencies can be directly, and with relative ease, included in the calculations. The basic 
reason for this ease in use is that there is no explicit yield condition. Instead, the solution 
is obtained by integrating the inelastic strains until the effective stress is equal to the 
material effective stress (given by the effective viscoplastic strain). This integration is 
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efficiently performed with the a-method because with a;;;:::! the integration can proceed 
with relatively large time steps (see Section 9.6). 

We considered in the above discussions of thermoelastoplasticity and creep and vis­
coplasticity only the evaluation of the stresses corresponding to given total strains. The 
consistent tangent constitutive matrices would be calculated as discussed for the case of 
plasticity but, in general, can be obtained only in analytical form provided tractable func­
tional relationships for the inelastic strains are used. If the analytical derivation is not 
possible, a numerical evaluation of the tangent constitutive relation can be achieved by use 
of a finite difference scheme to calculate the required differentiations in ( 6.208) (see, for 
example, M. Kojic and K. J. Bathe [B]). 

6.6.4 Large Strain Elastoplasticity 

The formulations for inelastic response discussed in the previous section have been pre­
sented for small or large displacement response with small strains. Additional consider­
ations are important when large strains are modeled. 

The extension of the infinitesimal small strain theory of plasticity to large strains 
can be achieved by a number of alternative formulations (see, for example, A. E. Green 
and P.M. Naghdi [A], E.H. Lee [A], J. Lubliner [A], J.C. Simo [A], G.Weber and L. Anand [A], 
A.L. Eterovic and K.J. Bathe [A], D.N. Kim, F.J. Montans, and K.J. Bathe [A] and M.A. Cami­
nero, F. J. Montans, and K.J. Bathe [A]). However, our purpose here is to merely introduce the 
basic considerations, and hence we briefly discuss only one formulation, namely, a total strain 
formulation based on Cauchy stresses and logarithmic strains. 

The basic considerations in any formulation relate to the choice of adequate stress and 
strain measures, the characterization of the elastic behavior, and the proper characterization 
of plastic fl.ow. 

An effective large strain procedure should surely reduce to the formulations presented 
in the previous section when the strains are small. However, an important feature of the 
materially-nonlinear-only and large displacement-small strain analysis procedures pre­
sented is that these formulations are total strain and not rate-type formulations. That is, the 
equations of equilibrium are written for time t + At and the total strain for that time is 
calculated. Hence, numerical integration is used only in the calculation of the inelastic 
strain from time t to time t + At. In contrast, using a rate-type formulation, rates of stress, 
strain, and rotational effects are integrated, which leads to additional numerical errors and, 
for an accurate solution, requires significantly smaller solution steps than are needed in a 
total strain formulation. 

For large deformation analysis, rate-type formulations are frequently based on the 
Jaumann stress rate-velocity strain description (see Example 6.24). In addition to the 
numerical integration errors, such a hypoelastic stress-strain description also leads to non­
conservative and therefore nonphysical response predictions in purely elastic cyclic mo­
tions (see M. Kojic and K. J. Bathe [A]). This nonphysical behavior may be judged to be 
small, but is not due to numerical integration error. 

A natural approach based on micromechanical observations for large strain elasto­
plasticity is based on the hyperelastic material description with the product decomposition 
of the deformation gradient into elastic and plastic parts (see E. H. Lee [A], J. R. Rice [A], 
and R. J. Asaro [A]). Such an approach also lends itself to a total formulation that is a 
natural extension of the infinitesimal strain formulation discussed in the previous section. 
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One important feature of the large strain elastoplastic analysis is that the uniax:ial 
stress-strain law used to characterize the response is given by the Cauchy stress­
logarithmic strain relationship (see Fig. 6.16). The yield condition, fl.ow rule, and hardening 
rule are used for the Cauchy stresses. 

Cauchy stress 

( 
Force ) 

Current area 

Logarithmic strain 

In (Current length) 
\Original length 

Figure 6.16 Large strain elastoplastic one-dimensional response model 

Using the multiplicative decomposition of the deformation gradient ( to characterize 
the large strain elastoplastic deformation of a body), we have 

(6.285) 

where XE and XP represent, respectively, the elastic and plastic deformation gradients. The 
relation ( 6.285) is assumed to hold throughout the response, but for ease of writing we do 
not include the left superscripts and subscripts (until we present the actual computational 
procedure}; hence for example, we have X = JX. 

Relation ( 6.285) is a key equation in our large strain elastoplasticity formulation. At 
time t the relation ( 6.285) reads d X = d XE & XP, or we may-as mentioned following ( 6.29) 
and used in Example 6.9-also write dX = ;XE oXP for conceptual understanding. Hence, 
the approach used is conceptually based on a relaxed hypothetical configuration (corre­
sponding to T) which for each particle is obtained by unloading the material from the current 
configuration to a state of zero stress in such a way that no inelastic process takes place. The 
plastic deformation gradient XP corresponds to the deformation from the original to this 
hypothetical configuration. The elastic deformations and therefore stresses are measured 
using XE, which is thought of as a deformation gradient measured from the relaxed 
configuration T. 

Let us, as in Section 6.6.3, characterize the material with the von Mises yield condi­
tion and isotropic hardening. Hence, our only aim in the following discussion is to extend 
the plasticity formulation of Section 6.6.3 to large strains. 

As in small strain plasticity, we assume that the plastic deformation is incompressible; 
hence, 

det XP = 1 (6.286) 
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and J = det X = det xe = 0 p/r p. If we assume, for the moment, that XP is known, we have 

XE= X(XP)-1 

Also, since the velocity gradient L = xx-• [see (6.40)], we may write 

L=V+U 

(6.287) 

(6.288) 

where by substituting from (6.285), the elastic and plastic parts of the velocity gradient are, 
respectively, ' 

(6.289) 

The variables that characterize the large strain elastoplastic response are therefore X, XP, 
T, and Uy, where-rare the Cauchy stresses and Uy is the current yield stress (including the 
effect of hardening). The evaluation of -r must be based on evolution equations for XP and 
Uy (where in comparison to small strain plasticity XP is used instead of e"). Since the Cauchy 
stresses are calculated throughout the solution, the constitutive description is used 
efficiently in an updated Lagrangian formulation. 

Since det XP = 1, we have J = det XE > 0 and we can calculate the polar decompo­
sition 

(6.290) 

The logarithmic strain is used in the large strain one-dimensional response character­
ization (see Fig. 6.16), hence it is natural to use the elastic Hencky or logarithmic strain, 

(6.291) 

in the multidimensional characterization of the Cauchy stress. We note that the evaluation 
of EE requires a spectral decomposition of UE [see (6.\32) and (6.52)]. 

Since EE is associated with the (conceptual) intermediate configuration T, we next 
define a stress measure, If, corresponding to that configuration, 

(6.292) 

With these stress and strain measures we have the elastic work conjugacy (see S. N. Atluri 
[A] and Exercise 6.86), 

if • EE = lT • DE 

where DE = sym (LE). The appropriate plastic velocity gradient to use is then16 

[P = (XE)-ILPXE 

= :Xt(XP)-1 

16 We can prove that with the definitions of Tin (6.292) and Pin (6.294), we have 

JT • D = T • EE + i . fjP 

where Dis the (total) velocity strain [see (6.41)] and iV is given in (6.298) (see Exercise 6.87). 

(6.293) 

(6.294) 
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The stress if is given by the usual stress-strain relationship of isotropic elasticity. Let 
S be the deviatoric stress components and Um be the mean stress, then 

(6.295) 

where the elastic deviatoric strain components are given in EE' and E! is the elastic mean 
strain component. This choice of (hyperelastic) stress-strain law uses the total elastic strain 
and has the advantage of providing an excellent description of the stress even when the 
elastic strains are of moderate size (see L. Anand [A]). 

The yield condition is as in (6.222), but using the deviatoric Cauchy stresses S, hence 
we have17 

O' = v'i s. s 
= 1-1Vfs:s 

(6.296) 

where Sis the deviatoric stress corresponding to the relaxed configuration, S = J(RE)TSRE. 
We also note that the unit normal to the yield surface in the relaxed hypothetical 
configuration is 

(6.297) 

To obtain the evolution equation of the plastic deformation gradient, we use ( 6.293) and the 
plastic velocity strain tensor, 

fiP = sym (LP) 

This strain tensor is obtained from the flow rule, in analogy to (6.225), from 18 

DP= v1 iPn 
where iP == Yji5P. jjP 

(6.298) 

(6.299) 

(6.300) 

Substituting from (6.297) into (6.299) corresponds to (6.225) in the small strain case. Of 
course, the relation u = f(eP) is obtained from the uniaxial stress-strain relationship 
in Fig. 6.16:.... Consistent with the other assumptions used, the modified plastic spin tensor 
WP = skw(LP) is assumed to be zero. 

Hence, we notice that the basic equations used for the solution of infinitesimal strain 
problems have been generalized to large strains by use of the Cauchy stress-logarithmic 
strain relationship in Fig. 6.16, the corresponding elastic stress-strain law for the Cauchy 
stress and logarithmic (Hencky) strain, and a plastic deformation gradient that represents 
the inelastic response and conceptually a deformation from which the elastic response is· 
measured. Since the large strain formulation is a direct extension of the formulation used 
for small strains (see also Exercise 6.84), the computational procedures ·discussed earlier 
are also directly applicable and Table 6.10 summarizes the sequence of solution steps (see 
also A. L. Eterovic and K. J. Bathe [A] and F. J. Montans and K. J. Bathe [A]). 

In the preceding discussion we assumed a general three-dimensional response, but the 
equations can also be used directly for two-dimensional analyses, that is, plane stress, plane 
strain, and axisymmetric situations, by imposing the fundamental conditions of the specific 

17 Note that the effective stress carries the overbar defined in ( 6.227). 
18 This flow rule relation can be derived from the principle of maximum plastic dissipation (see J. Lubliner 

[A} and A. L. Eterovic and K. J. Bathe [Bl). 
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TABLE 6.10 Large strain elastoplastic updated Lagrangian Hencky formulation 

The trial elastic state: 
Obtain the trial elastic deformation gradient 

Perform the polar decomposition 

Obtain the trial elastic strain tensor 

El= In Ui 

Obtain the trial elastic stress tensor i * using the equation for the mean stress and the deviatoric stress 

tr (i*) = 3K tr (Ei) 

S* = 2µ.Ef 

Obtain the trial equivalent tensile stress 

u* = 1-1
\/~ s. · s. 

Check whether the solution step corresponds to elastic conditions: 
If cf* < 'uy, then the solution step was elastic and we conclude the solution step by setting 

Otherwise we continue as follows. 
Plastic solution step: 

EE. 
*' 

Use the effective-stress-function algorithm to calculate r+Aiu and ,+A,eP (see 6.233) 
Calculate the stress deviator of r+Ari, 

Calculate ,+o.,;:-, 

Calculate the Cauchy stresses, 

3 ,+Ale,, _ 'e,, 
,\ = 2 t+AtJ t+Atu 

l+AtS = s. 
1 + 2µ.,\ 

t+ArT = ('+At J)-1 Ri t+A•f(R!)T 

Update the plastic deformation gradient by integration of (6.294), 

,+A&xP = exp (At+A,S) &XP 

two-dimensional response being considered (see Fig. 4.5). In beam and shell analyses, these 
equations can also be employed, but the kinematic relations in Sections 6.5 must then 
include the effects of the change in thickness of the elements. 

The large strain formulation has been presented above for elastoplastic response, but 
we note that the same approach can also be employed for creep and viscoplastic response­
because of the analogies mentioned in Section 6.6.3-if the appropriate substitutions of 
variables and experimentally obtained formulas are made (see Exercise 6.90). 

Finally, we should note that l>ecause of the incompressibility constraint on the inelas­
tic strains ( 6.286), it is important to employ the displacement/pressure formulations dis­
cussed in Section 6.4 when analyzing two-dimensional plane strain, axisymmetric, or fully 
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three-dimensional response situations. This observation holds in elastoplasticity for small 
strain but particularly large strain conditions. Even in small strain analysis, the plastic 
strains are usually much larger than the elastic strains, and this is certainly the case in large 
strain conditions. 

6.6.5 Exercises 

6.61. Consider the eight-node brick element in Fig. 6.8. Plot the force-displacement responses assum­
ing plane stress conditions in the y and z directions. 

6.62. (2onsider the eight-node brick element in Fig. 6.8. Show explicitly that using (6.188) to transform 
E( $~Cy,,,) in the total Lagrangian formulation (i) for the figure, the force-displacement response 
is as calculated in (ii) in the figure. Also, show that using (6.187) to tra~form .E(•dCu,,,) in the 
updated Lagrangian formulation (ii) in the figure, the force-displacement response is as calcu­
lated in (i) in the figure. 

6.63. A four-node element spins without deformation about its center at a constant angular velocity "'· 
as shown. Use that the Jaumann stress rate is zero to calculate the Cauchy stresses (corresponding 
to the axes xi, x2) at any time t. 

100 100 

l 200 

~IJ • 0 • tf 11 + 'r1p 'WpJ + 'rjp 'Wp1 

6.64. Consider the Mooney-Rivlin material description in (6.199). Show that this formula results in a 
pressure, the value of which depends on dI1 and dh, Then show that in the description (6.203) 
only the last term with the bulk modulus results in a pressure. 

6.65. Consider the three-term Ogden material description in (6.205). Show that this formula results in 
a pressure as a function of the stretches, whereas in expression ( 6.207) the terms under the 
summation sign do not affect the pressure. 

6.66. Show that for the two-term Mooney-Rivlin model ( 6.199), in small strains, the Young's modulus 
is given by 6(C1 + C2) and the shear modulus is given by 2(C1 + C2). Also, show that these 
moduli are given in the Ogden model (6.205) by the values J I!.1 anµ,. and ! I!.1 a,.µ,., 
respectively. 
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6.67. Consider the four-node element in plane strain conditions shown. Calculate the force­
displacement response for case 1 and case 2. Assume the bulk modulus K to be very large. 

P/2 -,--::..£..»-------- _....... 

2mm 

x2~, 
'.'A:;11 ________ .. _...... 

I• 2 mm -.1 P/2 

X1 

Plane strain condition 

Case 1: 
Mooney-Rivlin material 
C1 • 0.3 MPa 
C2 • 0.2 MPa 

Case 2: 
Ogden material 
µ, • 1 MPa a 1 .. 2 
µ2 ""-0.6 MPa a 2 = -1 
µ3 = 0.1 MPa a3 = 4 

6.68. Consider the deformation of the four-node element shown. Calculate the force-displacement 
response. Assume the bulk modulus K to be very large. 

2mm 

2mm 

Plane strain condition 

Mooney-Rivlin material 

C1 = 0.3 MPa 
C2=0.2 MPa 

6.69. Assume that instead of ( 6.199) the following higher-order Mooney-Rivlin material model is used: 

&W = C1(&/1 - 3) + Cl{&/2 - 3) + C3(J/1 - 3)2 + CiM1 - 3)(&/i - 3) + C,(&/2 - 3)2 

with 

c) = 10; Cs= 10 

Plot the force-displacement relationship for the one-dimensional bar problem in Fig. E6.25. 
6.70. In plane stress solutions of incompressible response, we can use the pure displacement method 

of finite element analysis and adjust the element thickness to always fulfill the incompressibility 
constraint. Use this approach and derive for the Mooney-Rivlin law in (6.199) the stress-strain 
relationship &SiJ = &Cu,, 6Er.r and the tangent constitutive tensor oCu,s· 

6.71. Use a computer program to analyze the thick cylinder shown. The constitutive behavior is given 
by the Mooney-Rivlin law (6.203) with Ci = 0.6 MPa, C2 = 0.3 MPa, and K = 2000 MPa. 

The internal pressure increases uniformly until a maximum displacement of IO mm is 
reached. 

Use a sufficiently fine mesh to obtain an accurate solution. (Hint: The 9 /3 element is a 
much more effective element than the 4 / 1 element.) 



I · 10mm 10mm 

i 
't 10mm 

t Pressure p 

Initial configuration 

6. 72. Use a computer program to solve for the response of the elastic circular thick plate due to a 
concentrated load at its center. Increase the load P until the deflection under the load is 2 cm. 
(Hint: Here axisymmetric elements of the u/p formulation are effective.) 

I 
·p 

Ogden material law Radius of plate R • 10 cm 
µ, •0.7 MPa 
P2 •-0.3 MPa 
µ3 =0.01 MPa 
a, • 1.8; a2 • -1.6; a3 • 7.5 
K • 1000 MPa 

6.73. Show that in the uniaxial stress condition the effective stress '"ii' and effective plastic strain 'er 
reduce to the uniaxial (nonzero) stress and corresponding plastic strain. Then assume that in a 
uniaxial stress experiment the stress varies as shown by the points 1 to 6. Plot the stress-effective 
plastic strain relation for the stress path. 

E • 200,000 MPa 
ay•200 MPa 
Er· 100 MPa 

4 

0.018 e11 

isotropic hardening 

619 
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6.74. Prove that for a bilinear elastoplastic material described by the von Mises yield condition and flow 
rule, the effective stress function method gives the solution ( 6.236). State how the stress state at 
time t + At can therefore be computed if the complete state at time t is known and the strains 
at time t + At have been computed. 

6.75. Show that the effective stress function in (6.233) can also be written in terms of the equivalent 
plastic strain as 

j(e~) = 3µ,(e, - 1eP) + u1(et) - u* 

where the solutionj(e~) = 0 corresponds toe, = t+t:..,eP. Here u1(.) denotes the yield stress 
function and u* is the effective stress corresponding to the elastic stress prediction [see (6.239)]. 

6.76. Consider isothermal von Mises plasticity with kinematic hardening in three-dimensional stress 
conditions in which case the yield condition is 

t+A'j;M = 4 t+A1g • t+At§ - l (uyo)2 Q 

where 1+A,g is the shifted deviatoric stress due to the back stress ,+i1, a. 

and O'yv is the constant (virgin) yield stress. Assume small strain conditions and derive the 
effective-stress-function algorithm for this case. 

6.77. Assume that the bilinear elastoplastic von Mises material in Fig. 6.10 with isotropic hardening 
is considered. Derive the tangent stress-strain matrix consistent with the effective-stress-function 
algorithm as indicated in ( 6.245) to ( 6.252). 

6.78. Consider the creep law (6.263) with a0 = 6.4 X 10- 18
• a1 = 4.4, a2 2.0. and a3 = 0.0. The 

stress states are u = 100 MPa for O :s t < 4 hr and u = 200 MPa for t ~ 4 hr. For O :s t :s 
10 hr draw the creep strain response as calculated by the time hardening and the strain hardening 
methods. 

6.79. Derive the relation (6.268). 
6.80. Derive the effective stress function given in ( 6.273) and show that near the solution this function 

has the curvature shown in Fig. 6.14. 
6.81. A one-dimensional viscoplastic response is defined by evP = y[u - (uyv + EvpEvP)]. The elas­

tic strain response is given as usual by eE = u/E. 
Calculate analytically the total strain response when the applied stress O'applied > O'yv. 

Consider the cases of EvP > 0 and EvP = 0; y = constant. 
6.82. The constitutive behavior of a four-node plane stress element is given by the viscoplastic material 

model in (6.275) with the constants f3 = 10-4 (I/sec), N = 1. Also, E = 20,000 MPa, v = 
0.3, and the material effective stress-viscoplastic strain curve is given in the figure. 

Assume a one-dimensional stress situation, that the stress at time O is zero, and that a 
constant load is applied as shown. Calculate the viscoplastic strain and displacement response of 
the element. 

Effective 
material 
stress 

T 
O'IIV• 20 

Load 
p.40,-.-----------

Time 

p --~-~~~--........... 
Thickness 
1mm 

~.-------. ........... 
2cm 

p 
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6.83. Consider the general large strain elastoplastic formulation in Section 6.6.4. Derive from these 
general equations all equations for the one-dimensional response of the bar in Fig. 6.16. 

6.84. Show explicitly for each equation in Table 6.10 that the large strain elastoplasticity formulation 
reduces to the formulation for materially*nonlinear-only analysis if the displacements and strains 
are small. 

6.85. Consider the 8-node brick element in Fig. 6.8. Assume elastic conditions with E = 107 N/cm2 

and v = 0.30 and plot the force-displacement response using the updated Lagrangian Hencky 
formulation of Section 6.6.4. Also plot this response for plane stress conditions in they and z 
directions. 

6.86. Consider an elastic material and show that {6.293) holds with the stress and strain quantities 
defined in Section 6.6.4. (Refer to the general continuum mechanics relations given in Sec* 
tion 6.2.2.) 

6.87. Show that using the definitions in Section 6.6.4, we have lT • D = T • JtE + if· DP, where 
D = !(L + V) [see {6.41)). 

6.88. Use the large strain elastoplasticity options in a computer program to calculate for a four-node 
plane stress element the stress response corresponding to the following strain path: In {a) the 
element is pulled out, in (b) the element is sheared over, in (c) the sheared element is pushed 
down, in (d) the element is brought to its original configuration. Explain whether your results 
make physical sense. 

Assume A = .~, E = 200,000, v = 0.3, <Iy~ = 4000. 

Thickness • 1.0 

(a) (b) (c) (d) 

6.89. Use a computer program to calculate the elastoplastic large strain response of the plane strain 
cantilever shown. 

1 c~ 1 ...... -----------..... t Prescribed displacement a 

20cm ~ 
Let E = 200,000 MPa, v = 0.3, Er = 200 MPa, <Iy = 200 MPa and increase f, to the value 4L. 
Plot the force-displacement relationship and the stresses at 8 = L/ 1000, 8 = L/ 10, 8 = L/2. 
Refine the finite element model to obtain a reasonably accurate stress prediction. (Hint: The 9 /3 
element performs well in large strain analysis.) 

6.90. Assume that the large strain creep response of a material can be described by the theory in 
Section 6.6.4 with XP replaced by the inelastic deformation gradient XIN given by the creep 
deformations. Modify the entries in Table 6.10 to correspond to the creep solution. 
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Then use a computer program to calculate the large strain creep response of the thick 
cylinder shown. Obtain an accurate stress prediction for various values of internal pressure p. 

p 

' 
l....--1 cm II I 11 1 cm~ 
ct 

E • 200,000 MPa 
V•0.3 
et. 10-160'4t 

Pressure pt---
~ 

6. 7 CONTACT CONDITIONS 

A particularly difficult nonlinear behavior to analyze is contact between two or more bodies. 
Contact problems range from frictionless contact in small displacements to contact with 
friction in general large strain inelastic conditions. Although the formulation of the contact 
conditions is the same in all these cases, the solution of the nonlinear problems can in some 
analyses be much more difficult than in other cases. The nonlinearity of the analysis 
problem is now decided not only by the geometric and material nonlinearities considered 
so far but also by the contact conditions. 

The objective in this section is to briefly state the contact conditions in the context of 
a finite element analysis and present a general approach for solution. 

6.7.1 Continuum Mechanics Equations 

Let us consider N bodies that are in contact at time t. Let 1 Sc be the complete area of contact 
for each body L, L = 1, . . . , N; then the principle of virtual work for the N bodies at time 
t gives 

f {J. 1
Tij o,eij d'v} = ± {J. OU;'!? d'V + J. ouf 'ff d's} + f J. ouf 'ff d'S (6.301) 

i, .. 1 tv L=I 'v 'St L .. I 'sc 

where the part given in the braces corresponds to the usual terms (see Section 6.2.3) and 
the last summation sign gives the contribution of the contact forces. We note that the contact 
force effect is included as a contribution in the externally applied tractions. The components 
of the contact tractions are denoted as 1/f and act over the areas 1 Sc, and the components 
of the known externally applied tractions are denoted as 1f and act over the areas 'S1. We 
might assume that the areas 'S1 are not part of the areas 'Sc, although such assumption is not 
necessary. 

Figure 6.17 illustrates schematically the case of two bodies, which we now consider 
in more detail. The concepts given below can be directly generalized to multiple-body 
contact. 
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Bodies separated 
(conceptually) to show 
contact actions 

5JI (target surface) 

Figure 6.17 Bodies in contact at time t 

In Fig. 6.17 we denote the two bodies as body I and body J. Note that each body is 
supported such that without contact no rigid body motion is possible. Let 'f u be the vector 
of contact surface tractions on body I due to contact with body J, then 'fu = -'f11

• Hence, 
the virtual work due to the contact tractions in ( 6.301) can be written as 

f 8uf 'IV dSu + ( 6u{ 'f {1 dSJI = f 8u1' 'f 1' dSu 
) 511 ) 5 11 ) 5u 

(6.302) 

where Bui and Bu{ are the components of the virtual displacements on the contact surfaces 
of bodies I and J, respectively, and 

8ufl = 8uf - Bu{ (6.303) 

623 
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We call the pair of surfaces S'J and SJ' a "contact surface pair" and note that these 
surfaces are not necessarily of equal size. However, the actual area of contact at time t for 
body I is 'Sc of body/, and for body J is 'Sc of body J, and in each case this area is part of 
su and SJ1 (see Fig. 6.17). It is convenient to call S11 the "contactor surface" and SJ1 the 
"target surface." Hence, the right-hand side of ( 6.302) can be interpreted as the virtual work 
that the contact tractions produce over the virtual relative displacements on the contact 
surface pair. 

In the following we analyze the right-hand side of (6.302). 
Let n be the unit outward normal to SJ1 and lets be a vector such that n, s form a 

right-hand basis (see Fig. 6.18). We can decompose the contact tractions 'fu acting on su 
into normal and tangential components corresponding ton ands on SJ1

, 

'fu = ,\n + ts (6.304) 

where A and tare the normal and tangential traction components (for brevity of notation 
we do not use a superscript). Hence, 

.,\ = (1fuf n; t = ('fu)Ts (6.305) 

To define the actual values of n, s that we use in our contact calculations, consider a 
generic point x on su and let y*(x, t) be the point on sn satisfying 

11 x - y*(x, t) 112 = min {[Ix - y 112} (6.306) 
yes JI 

The (signed) distance from x to S 11 is then given by 

g(x, t) = (x - y*f n* (6.307) 

where n* is the unit "normal vector" that we use at y*(x, t) (see Fig. 6.18) and n*, s* are 
used in (6.304) corresponding to the point x. The function g is the gap function for the 
contact surface pair. 

Body I 

Figure 6.18 Definitions used in contact analysis 

With these definitions, the conditions for normal contact can now be written as 

g ~ 0; A~ 0; gA = 0 (6.308) 

where the last equation expresses the fact that if g > 0, then we must have A = 0, and vice 
versa. 

To include frictional conditions, let us assume that Coulomb's law of friction holds 
pointwise on the contact surface and that µ, is the coefficient of friction. This assumption 
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means of course that frictional effects are included in a very simplified manner (for more 
details see, for example, E. Rabinowicz[A]). 

Let us define the nondimensional variable r given by 

t 
'T = -

µ,A 
(6.309) 

where µ,>.. is the "frictional resistance," and the magnitude of the relative tangential velocity 

u(x, t) = (ti 1
ly•(x,t) - u1l(x.t)) • s* (6.310) 

corresponding to the unit tangential vectors at y*(x, t). Hence, u(x, t)s* is the tangential 
velocity at time t of the material point at y* relative to the material point at x. With these 
definitions Coulomb's law of friction states 

and 

while 

ITl:$1 } 
ITI < 1 impliesu = 0 

I TI = 1 implies sign (u) = sign (T) 

Figure 6.19 illustrates these interface conditions. 

(6.311) 

The solution of the contact problem in Fig. 6.17 therefore entails the solution of the 
virtual work equation ( 6.301) (specialized for bodies I and J) subject to the conditions 
(6.308) and (6.311). 

g 

Normal conditions 

+1-------
____ .. _, 

. 
u 

Tangential conditions 

Figure 6.19 Interface conditions in contact analysis 

In the preceding equations, we considered in essence static (or pseudo-static) contact 
conditions. In dynamic analysis, the distributed body force includes the inertia force effects, 
and the kinematic interface conditions must be satisfied at all instances of time. 

Various algorithmic approaches for general contact analyses have been proposed, see 
P. Wriggers [A] and N. El-Abbasi and K. J. Bathe [A] and the references therein. In the sim­
plest case, complete gluing is assumed and here different meshes are in essence glued firmly 
together. With proper mesh selections, although the meshes are quite different, full compati­
bility is achieved. With frictionless sliding and gap opening allowed, small displacement 
conditions are frequently assumed and the solution is considerably less complex than when 
large motions with frictional sliding, in statics or dynamics, are to be simulated. The changes 
in constraints and the possibility of ill-conditioning then require special attention, see for 
example K. J. Bathe and A. B. Chaudhary [B], G. Zavarise, P. Wriggers, and B. A. Schrefler 
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[A], K. J. Bathe and P.A. Bouzinov [A], D. Pantuso, K. J. Bathe, and P.A. Bouzinov [A], 
and, for insight through a mathematical analysis, K. J. Bathe and F. Brezzi [C]. 

To exemplify the solution of contact problems, let us consider in the next section how 
the contact constraints are imposed in one solution approach (see also A. L. Eterovic and 
K. J. Bathe [C]}. 

8.7 .2 A Solution Approach for Contact Problems: 
The Constraint Function Method 

Let w be a function of g and A such that the solutions of w(g, A) = 0 satisfy the conditions 
(6.308), and similarly, let v be a function of T and u such that the solutions of v(u, T) = 0 
satisfy the conditions (6.311). Then the contact conditions are given by 

w(g, A) = 0 (6.312) 

and v(u. T) == o (6.313) 

These conditions can now be imposed on the principle of virtual work equation using either 
a penalty approach or a Lagrange multiplier method (see Section 3.4). The variables A and 
T can be considered Lagrange multipliers, and so we let BA and 8T be variations in these 
quantities (see Section 4.4.2). 

Multiplying (6.312) by 8A and (6.313) by 8T and integrating over su, we obtain the 
constraint equation 

( [8A w(g, A) + 8T v(u, T)] dSu = 0 Jsu (6.314) 

In summary, the governing equations to be solved for the two-body contact problem 
in Fig. 6.17 are the usual principle of virtual work equation, with the effect of the contact 
tractions included through externally applied (but unknown) forces, plus the constraint 
equation (6.314). Of course, the principle of virtual work (6.301) is in the two-body contact 
problem specialized to bodies I and J only, and the contact force term is given by ( 6.302) 
and (6.303). 

The finite element solution of the governing continuum mechanics equations is 
obtained by using the discretization procedures for the principle of virtual work, and in 
addition now discretizing the contact conditions also. 

To exemplify the formulation of the governing finite element equations, let us consider 
the two-dimensional case of contactor and target bodies shown schematically in Fig. 6.20. 
We notice that node k1 and node k2 define a straight boundary but are not necessarily the 
corner nodes of an element. Instead they are any adjacent nodes on the target body. 

The discretization of the continuum mechanics equations (6.301) and (6.314) corre­
sponding to the conditions at time t + flt gives 

t+AtF('+AtU) t+AtR _ 1+AtRc(t+Atu, t+AtT) 

and t+A'Fc(t+A,u, ,+A,T) = 0 

where with m contactor nodes, 
t+6t T - [ \ \ l ) T - /\I, T1,, , , , l\k, 7'k,, , , , llm, Tm 

(6.315) 

(6.316) 

(6.317) 

Note that the relative velocity and gap functions are of course expressed in terms of 
the nodal point displacements. 
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Contactor 

Target 

Figure 6.20 Two-dimensional case of contact 

The vector t+A'Rc is obtained by assembling for all m contactor nodes, k = 1, ... , m, 
the nodal point force vectors due to contact. For the contactor node k and the corresponding 
target nodes, the nodal force vector is 

[ 

-Aink + /J.,1'kSk) J 
r+tl.rRi = (l - J3k)Aink + /J.,Tksk) 

/3k Ale( Dk + µ., Tk Si)] 

where /3k, Dk, sk are defined in Fig. 6.20. 
The vector r+ArFc can be written as 

t+AtFT = [t+AtFcT t+tl.tFcT] 
,. I , · • ·, m 

(6.318) 

(6.319) 

where r+A'F1 = [w(~k, At)] (6.320) 
V(Uk, Tk) 

The incremental equations for solution of (6.315) and (6.316) are obtained by 
linearization about the last calculated state. Following the procedures discussed in 
Section 6.3.1, the resulting equations corresponding to the linearization about the state at 
time tare 

(6.321) 

where AU and AT are the increments in the solution variables 'U and 'T, and 1Kiu, 'K~-r, 'K~u, 
and 1K~T are contact stiffness matrices, 

cfF 'Kc = _c, 
TU aru' 

a

1

R I 'K" =-" 
UT O''f 

'K" = a'Fc 
TT iJl'f: 

(6.322) 

The detailed expressions of these matrices depend on the actual constraint functions 
used. In practice, we use functions that very closely approximate the constraints shown in 
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Fig. 6.19 but that are differentiable as required by the expressions in (6.322) (see Exer­
cise 6.93). 

The continuum mechanics formulation in Section 6. 7 .1 has been given for very 
general conditions of deformations and constitutive relations (but Coulomb's law of friction 
was assumed). Of course, the formulation is also applicable to frictionless contact. In this 
case, only the constraint ( 6.308) needs to be imposed, and the finite element equations have 
only the normal forces at the contactor nodes as unknowns. Note that the coefficient matrix 
in (6.321) including frictional conditions is in general nonsymmetric, but a symmetric 
matrix can be obtained when friction is neglected. 

Of particular concern in the solution of contact problems is the capacity of the 
algorithm to converge when complex geometries, deformations, and contact conditions are 
analyzed. It should be noted here that although the incremental equations (6.321) corre­
spond to a full Iinearization, the use of too large incremental steps may lead to convergence 
difficulties in the equilibrium iterations because the predicted intermediate state is too far 
from the solution. Also, full quadratic convergence when near the solution may not be 
observed when the change in the tangent coefficient matrix is not sufficiently smooth, for 
example, as a result of geometric kinks on the target surface. 

6. 7 .3 Exercises 

6.91. Show that with the sign conventions used in (6.303) to (6.310) the statements of frictional 
contact in (6.308) and (6.311) are correct. 

6.92. Consider frictionless contact between two bodies. Develop the general governing finite element 
equations with the imposition of the constraint function (6.312) using a penalty method (see 
Section 3.4.1). 

6.93. The following constraint function w(g, A) for the constraint function algorithm is proposed 

w(g, ,\.) = +A ~(g - ,\)1 - -- +E 
2 2 

where Eis very small but larger than zero. Plot this function for various values of E and show that 
this w(g, A) is indeed a suitable function. 

6.94. Design a function v(u, T), as used in (6.313), to impose the frictional constraint given in (6.311). 

6.8 SOME PRACTICAL CONSIDERATIONS 

The establishment of an appropriate mathematical model for the analysis of an engineering 
problem is to a large degree based on sufficient understanding of the problem under consid­
eration and a reasonable knowledge of the finite element procedures available for solution 
(see Section 1.2). This observation is particularly applicable in nonlinear analysis because 
the appropriate nonlinear kinematic formulations, material models, and solution strategies 
need to be selected. 

The objective in this section is to discuss briefly some important practical aspects 
pertaining to the selection of appropriate models and solution methods for nonlinear anal­
ysis. 
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6.8.1 The General Approach to Nonlinear Analysis 

In an actual engineering analysis, it is good practice that a nonlinear analysis of a problem 
is always preceded by a linear analysis, so that the nonlinear analysis is considered an 
extension of the complete analysis process beyond the assumptions of linear analysis. Based 
on the linear response solution, the analyst is able to predict which nonlinearities will be 
significant and how to account for these nonlinearities most appropriately. Namely, the 
linear analysis results indicate the regions where geometric nonlinearities may be significant 
and where the material exceeds its elastic limit. 

Unfortunately, when performing a nonlinear analysis, there is frequently a tendency 
to select immediately a large number of elements and the most general nonlinear formula­
tions available for modeling the problem. The engineering time used to prepare the model 
is large, the computer time that is needed for the analysis of the model is also very 
significant, and usually a voluminous amount of information is generated that cannot be 
fully absorbed and interpreted. If there are significant modeling or program input errors, it 
may also happen that the analyst "gives up in despair,, during the course of the analysis 
because a relatively large amount of money has already been spent on the analysis, no 
significant results are as yet available, and the analyst is unable to realistically estimate how 
much further expense there would be until significant results could be produced. 

The important point is that such an approach to nonlinear analysis cannot be recom­
mended. Instead, a linear model should first be established that contains important charac­
teristics of the analysis problem. After some linear analyses have been performed that 
provide insight into the problem under consideration, the allowance for some nonlineari­
ties-and not necessarily immediately for all nonlinearities that can be anticipated­
should be made by choosing appropriate nonlinear formulations and material models. Here 
it should be noted that by employing the formulations discussed in Chapter 5 and this 
chapter, finite elements formulated using the linear analysis assumptions, the materially­
nonlinear-only formulation, and the TL and UL formulations can all be used together in one 
finite element idealization. If this finite element mesh is a compatible mesh in linear 
analysis, the elements will also remain displacement-compatible in nonlinear analysis. The 
subdivision of the complete finite element idealization into elements governed by different 
nonlinear formulations merely means that in the analysis different nonlinearities are being 
accounted for in different parts of the structure. An effective procedure for introducing 
different kinds of nonlinearities into the analysis is the use of linear· and nonlinear element 
groups. 

The complete process of analysis can be likened to a series of laboratory experiments 
in which different assumptions are made in each experiment-in the finite element 
analysis these experiments are performed on the computer with a finite element 
program. 

The advantages of starting with a linear analysis after which judiciously selected 
nonlinear analyses are performed are that, first, the effect of each nonlinearity introduced 
can more easily be explained, second, confidence in the analysis results can be established 
and, third, useful information is accumulated throughout the period of analysis. 
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In addition to the general recommendations for an appropriate approach to nonlinear 
analysis given above, some practical aspects can be important and are briefly discussed in 
the following sections. 

8.8.2 Collapse and Buckling Analyses 

The objective of a nonlinear analysis is in many cases to estimate the maximum load that 
a structure can support prior to structural instability or collapse. In the analysis the load 
distribution on the structure is known, but the load magnitude that the structure can sustain 
is unknown. 

Figure 6.21 illustrates schematically the response of some structures that collapse or 
buckle. In each case, only the kinematic nonlinearities are considered, and the response 
would be different if material nonlinearities were also present. 

A thin plate does not have a collapse point; indeed because of membrane action, the 
plate increases its stiffness as the displacements grow. An arch, however, for specific 
geometric parameters, will collapse if the load increases. As shown in Fig. 6.21 (a), the 
response beyond the collapse point A is referred to as the postbuckling behavior. In actual­
ity, the response beyond point A, when induced by a load increase, is a dynamic response. 
However, the prediction of the (idealized) static postbuckling response can be important 
because, if the points A and A' are very close to each other, then the collapse load corre­
sponding to point A may not be as serious a restriction in the design although in general a 
dynamic response solution from point A onwards may be more appropriate. 

The response of the column depicted in Fig. 6.2l(b) depends on the value of p. This 
parameter represents the imperfection in the geometry and material properties of the 
column or the load application (from being exactly vertical). We note that the bifurcation 
buckling response of a perfectly straight column with only an end compressive load is 
approached as p becomes very small. 

In all the analyses cases, however, the response can be calculated by an incremental 
analysis, provided the load can also decrease as the structural response dictates in the 
postbuckling regime. Hence, we should consider the following generic problem statement. 

Let A,R be the vector which defines the load distribution. This vector corresponds to 
the first load step. Also, let ,,/3 be the load multiplier for any time T to the load vector A,R 
such that the load at time Tis .,.p ArR. In practice, we are frequently interested in calculating 
the response of the structure as T increases. As illustrated in Fig. 6.21(a), this task requires 
that the load multiplier.,. p increase and decrease with 'T as the structural response is calculated. 

We present a specific algorithm for the solution of the load multiplier -rp and the 
structural response in Section 8.4.3. With this solution method, the response of structures 
such as those shown in Fig. 6.21 is evaluated. 

However, the complete incremental nonlinear solution of a structure up to collapse 
and beyond can be expensive, and a linearized buckling analysis for the lowest buckling 
loads may be of value (see Section 3.2.3). The lowest calculated buckling load may be a 
reasonably good estimate of the actual collapse load (but only when the prebuckling 
displacements are small), and it may be important to use the buckling modes to define 
geometric imperfections of the structure. That is, if imperfections that correspond to the 
lowest buckling modes are imposed on the "perfect" geometry of the structural model, the 
load-carrying capacity may be significantly reduced and be much more representative of 
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Figure 6.21 Instability and collapse analyses 

the load-carrying capacity of the actual physical structure (see the discussion of the analysis 
in Fig. 6.23). 

Let us consider the calculation of the linearized buckling load. The stiffness matrices 
at times t - At and tare ,-AiK and 'K., and the corresponding vectors of externally applied 
loads are ,-A,R and 'R. In the linearized buckling analysis, we assume that at any timer, 

(6.323) 
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and 

"R == t-A,R + A('R - ,-AIR) (6.324) 

where ,\ is a scaling factor, and we are interested in those values of,\ that are greater than 1. 
At collapse or buckling the tangent stiffness matrix is singular, and hence, the condi­

tion for calculating ,\ is 

det "K = 0 (6.325) 

or, equivalently (see Section 10.2), 

"Kcf> == 0 (6.326) 

where cf> is a nonzero vector. Substituting from (6.323) into (6.326), we obtain the eigen­
problem 

,-A'Kcf> = ,\(r-ArK - 'K)cf> (6.327) 

The eigenvalues A,, i = 1, ... , n give the buckling loads (by using (6.324)], and the 
eigenvectors cf,, represent the corresponding buckling modes. We assume that the matrices 
'K and ,-A,K are both positive definite but note that in general ,-.1,K - 1K is indefinite; 
hence, the eigenproblem will have both positive and negative solutions (i.e., some eigenval­
ues will be negative). We are interested in only the smallest positive eigenvalues and 
therefore rewrite (6.327) as 

where 
A - l 

-y=-­
.,\ 

(6.328) 

(6.329) 

The eigenvalues y, in ( 6.328) are all positive, and usually only the smallest values ,'1, 

'Y2, ••• , are of interest. Namely, 'Y1 corresponds to the smallest positive value of,\ in the 
problem ( 6.327). 

An important consideration is that the standard eigensolution techniques presented in 
Chapter 11 can be employed directly to solve for the smallest eigenvalues and corresponding 
vectors in ( 6.328) because both matrices in ( 6.328) are assumed to be positive definite. 
However, (6.329) shows that the eigenvalues y; may be very closely spaced so that an 
effective shifting strategy may be important (see Sections 10.2.3 and 11.2.3). 

Having evaluated ,'1, we obtain A1 from (6.329), and then the buckling (or collapse) 
load is given by (6.324), 

(6.330) 

Similarly, we can evaluate the linearized buckling loads corresponding to y;, i > 1. 
In practice, most frequently, the times t - A.t and t correspond to the times O (initial 

configuration with 0R = 0) and A.t (the first load step with 111R). However, the above 
equations are applicable to any load step prior to collapse. Also, the relations ( 6.323) and 
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( 6.324) show that this analysis can be performed equally well when geometric or material 
nonlinearities are considered. 

The assumptions used in the linearized buckling analysis are displayed in (6.323) and 
(6.324); namely, we assume that the elements in the stiffness matrix vary linearly from time 
t - llt onward, the slope of the change being given by the difference from time t - at to 
time t. The linearized buckling analysis therefore gives a reasonable estimate of the collapse 
load only if the precollapse displacements are relatively small (and any changes in the 
material properties are not significantly violating the assumption of linearity). Figure 6.22 
gives the results of two analyses that illustrate this observation. In the analysis of the 
column, the prebuckling displacements are negligible and excellent results are obtained. On 

p 
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(a) linearized buckling analysis of column; two Hermitian beam 
elements discussed in K. J. Bathe and S. Bolourchi (A) are used to 
model the column 
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(b) Linearized buckling analysis of arch in Fig. E6.3; L = 10; 
EA= 2.1 x 106 

Figure 6.22 Linearized buckling analyses of two structures; in each case time t-At corre­
sponds to time O (the unstressed state). 
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the other hand, in the analysis of the arch, the precollapse displacements are large and the 
linearized buckling analysis very much overestimates the collapse load unless the state of 
loading corresponding to At is already close to that load. In general, a linearized buckling 
analysis will give good results if the structure displays a column type of buckling behavior. 

However, as mentioned already, even if the linearized buckling load cannot be used 
as an estimate of the actual collapse load of the structure, it may be important to impose the 
buckling mode as an imperfection on the structural model. This imperfection may well be 
present in the actual physical structure and, if the effect is significant, should be included 
in the analysis. 

To illustrate these thoughts, consider the analysis of the arch in Fig. 6.23. The com­
plete structure is modeled using ten two-node isoparametric beam elements. In the analysis, 

R=64.85 
a= 22.5° 
E•2.1 x 106 

v=0.3 
h • b•1.0 

Cross section: 

(a) Arch considered; ten 2-node isoparametric beam 
elements are used to model the complete structure 
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Figure 6.23 Collapse analysis of arch 
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(c) Collapse loads and buckling modes using a linearized buckling analysis (Atp • 10) 
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(d) Response of arch with antisymmetric imperfection 

Figure 6.23 (continued) 

symmetry conditions were not used so as to allow antisymmetric behavior of the model. The 
objective was to predict the collapse and postcollapse response. 

Figure 6.23(b) shows the response calculated using a load-displacement-constraint 
method as described in Section 8.4.3. Also, a linearized buckling analysis was performed 
using as state t - At the unstressed configuration and as state At the configuration corre­
sponding to a pressure of 10. The two smallest critical pressures and corresponding buckling 
modes are shown in Fig. 6.23(c). We note that the smallest critical pressure corresponds to 
an antisymmetric buckling displacement. However, the response in Fig. 6.23(b) was ob­
tained assuming a perfectly symmetric arch, and hence symmetric deformations were 
calculated in each solution step. 

The antisymmetric linearized buckling deformations indicate that the structure is 
sensitive to antisymmetric imperfections. Hence, we introduced a geometric imperfection 
into the model of the arch by adding a multiple of the first buckling mode, cf>1, to the 
geometry of the undeformed arch. In this addition the mode is scaled so that the magnitude 
of the imperfection is less than 0.01 (one-hundredth of the cross-sectional depth). 

Figure 6.23(d) shows the calculated response-again using a load-displacement­
constraint method as discussed in Section 8.4.3-of the arch with this geometric imperfec­
tion. We notice that the collapse load now predicted is significantly smaller than the value 
given in Fig. 6.23(b). This reduction in the collapse load is associated with a nonsymmetric 
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behavior of the structural model which is made possible because of the imposed geometric 
imperfection. 

The collapse analysis of a structure requires, in general, an incremental load analysis, 
which should include the geometric and material nonlinearities. The preceding discussion 
indicates that structural imperfections can also have a major effect on the predicted load­
carrying capacity of a structure. Hence, when such a situation is anticipated, imperfections 
should be introduced in the structural model. Here we considered geometric imperfections 
and a simple example. In the analysis of a complex structure, multiples of the 2nd, 3rd, . . . 
buckling modes would also be added to the geometry, but it may also be appropriate to 
introduce perturbations in the material properties or the applied loading, all of which should 
serve to excite the structure to embark on the deformation path that corresponds to the 
smallest load-carrying capacity. 

While we have presented in this chapter the formulation of the incremental equations, 
the solution of these equations and the solution of the buckling eigenproblem are discussed 
in Chapters 8 and 1 L respectively. 

Finally, we should mention that in addition to the static buckling analyses, dynamic 
solutions also may need to be considered. A dynamic buckling or collapse analysis requires 
that complete dynamic incremental analyses be performed for given different load levels 
(including of course the possible effects of imperfections). Figure 6.24 illustrates a sequence 
of such analyses. The structural model is stable for the pressure levels p<0 and p<2

> but is 
unstable for the load level p<3>. If the difference between p<2> and p<3> is small, a good estimate 
of the collapse load is given by p<2>, otherwise further analyses are needed to decrease the 
difference between the load level at which the structure is still stable and the level at which 
it is unstable. Such dynamic solutions are obtained using the procedures described in 
Chapter 9. 

6.8.3 The Effects of Element Distortions 

We mentioned in Sections 5.3.3 and 5.5.5 that finite elements are in general most effective 
in the prediction of displacements and stresses when they are undistorted. However, in 
practice, elements must largely be of general straight-sided shapes with angular distortions 

Due to p«2) 
::.......- Due to p<1> ~~--~------------------......... Time 

Pressure 
P pl3) 

t===:m=:::1-====s pC2) ...,._ ______ pl1) 

Time 

Figure 6.24 Dynamic buckling of arch; the structure shows a stable dynamic response due 
to load levels po> and p<2> and a much larger response due to p<3>. 
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(for example, we use general quadrilateral elements in two-dimensional analysis) in order 
to provide mesh gradings and to mesh complex geometries effectively. To model curved 
boundaries, curved element sides or faces also need to be used. In addition, in geometric 
nonlinear analysis, significant angular and curved edge distortions and distortions due to 
movement of noncorner element nodes may arise as a consequence of the deformations. 
While the actual solution error increases as a result of all these element distortions, as long 
as the distortions are "small,, (as discussed in Section 5.3.3), the order of convergence is not 
affected. We also noted that frequently the Lagrangian elements are more effective than the 
elements lacking the interior nodes. 

Using the large displacement formulations, the principle of virtual displacements is 
applied to each individual element corresponding to the current configuration instead of the 
initial configuration used in linear analysis. Thus, element distortions must be expected to 
affect the accuracy of the nonlinear response prediction in a manner similar to that in linear 
analysis, but now the considerations concerning the element distortions in linear analysis 
summarized in Section 5.3.3 are applicable throughout the response history of the mesh. In 
an analysis it is therefore necessary to monitor the changing shape of each element, and if 
element distortions adversely affect the response prediction, a different and finer mesh may 
be required for the geometrically nonlinear analysis. Also, mesh rezoning can be used at 
certain critical times with the objective to keep closely to an element layout in which only 
the angular distortions are present. In these mesh constructions Lagrangian elements are 
used very effectively (see N. S. Lee and K. J. Bathe [A, B]). 

We should also point out that these considerations are equally applicable to the TL and 
the UL formulations because, except for certain constitutive assumptions, both formula­
tions are completely equivalent (see Example 6.23). 

6.8.4 The Effects of Order of Numerical Integration 

To select the appropriate numerical integration scheme and order of integration in nonlinear 
analysis, some specific considerations beyond those already discussed in Section 5.5.5 are 
important. 

Based on the information given above and in Section 5.5.5 on the required integration 
order for undistorted and distorted elements, we can directly conclude that in geometric 
nonlinear analysis, at least the same integration order should be employed as in linear 
analysis. 

However, a higher integration order than that used in linear analysis may be required 
in the analysis of materially nonlinear response simply in order for the analysis to capture 
the onset and spread of the materially nonlinear conditions accurately enough. Specifically, 
since the material nonlinearities are measured only at the integration points of the elements, 
the use of a relatively low integration order may mean that the spread of the materially 
nonlinear conditions through the elements is not represented accurately. This consideration 
is particularly important in the materially nonlinear analysis of beam, plate, and shell 
structures and also leads to the conclusion that the Newton-Cotes methods may be effective 
(say for integration in certain directions) because then integration points for stiffness and 
stress evaluations are on the boundaries of the elements (e.g., on the top and bottom surfaces 
of a shell). 
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Figure 6.25 Effect of integration order in elastic-plastic analysis of beam section 

Figure 6.25 gives the results of using different orders of Gauss integration for an 
eight-node plane stress element representing the section of a beam. The element is subjected 
to an increasing bending moment, and the numerically predicted response is compared with 
the response calculated using beam theory. This analysis illustrates that to predict the 
materially nonlinear response accurately a higher integration order in the thickness direc­
tion of the beam is required than in linear analysis. Another example that demonstrates the 
effect of using different integration orders in materially nonlinear analysis follows. 

EXAMPLE 6.27: Consider element 2 in Example 4.5 and assume that in an elastoplastic 
analysis the stresses at time t in the element are such that the tangent moduli of the material are 
equal to E/100 for O s x s 40 and equal to E for 40 < x s 80 as illustrated in Fig. E6.27. 
Evaluate the tangent stiffness matrix 'K using one-, two-, three-, and four-point Gauss integra­
tion and compare these results with the exact stiffness matrix. Consider only material nonlinear­
ities. 

Elastic (El 

Figure E6.27 Element 2 of Example 4.5 
in elastic-plastic conditions 
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For the evaluation of the matrix 1K we use the information given in Example 4.5 and in 
Table 5.6. Thus, we obtain the following results: 
One-point integration: 

Two-point integration: 

'K = 1 x 40[-~]~[-.!. .!.)(1 + 1 --1 )2 

80 100 80 80 V3 

+ I X40nH-8~ 8~](1 +I+ :nr 
[ 1 -11 = 0.04164E _

1 1 

Three-point integration: 

+ H-!]E[- 8~ 8~]o + 1 + V3fs>' 

[ 1 -IJ 'K = 0.02700£ - I l 

Four-point integration: 

n=4 :t:0.8611 .. . 0.3478 .. . 
:t:0.3399 .. . 0.6521 .. . 

'K ; 0.3478 .. (40)[-;] I~ [ -
8
~ ~)(I + I - 0.8611 ... )' 

+ ... 

'K = 0.04026£[ _ : -: ] 
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The exact stiffness matrix is 

'K = [-~]~ [-_!_ 2-){ (40 

(1 + L)2 

dy + f. 80 

100(1 + L)2 

dy} 
80 100 80 80 Jo 40 40 40 

[-JoJ [ 1 1 ]{ 40 ( y )
3

1
40 

40( y )
3

1
80

} = to E - 80 80 300 l + 40 
0 

+ 3 l + 40 40 

'K = 0.03973£[ _ ! -! ] 
It is interesting to note that in this case the two-point integration yields more accurate 

results than the three-point integration and that a good approximation to the exact stiffness 
matrix is obtained using four-point integration. 

The above remarks show that in nonlinear analysis the use of a higher integration 
order than in linear analysis may be appropriate. Such higher integration order, when 
needed, should of course be used for displacement-based and mixed finite elements. Hence, 
referring to Section 5.5.6, where we briefly mentioned the use of reduced and selective 
integration, our recommendations given in that section also pertain to, and are at least 
equally important in, nonlinear analysis. In short, the recommendations were that only 
well-formulated displacement-based and mixed elements should be used. To calculate the 
element matrices of a mixed formulation effectively, in some special cases a displacement­
based formulation with a special integration scheme can be used. We should, however, note 
that this correspondence may hold only in linear analysis, and it is important that the 
correspondence be studied for nonlinear analysis in each individual case. 

6.8.5 Exercises 

6.95. Use a computer program to calculate the linearized buckling load of the column structure shown. 
Compare your calculated results with an analytical solution. (Hint: Here you can use Hermitian 
beam elements, isoparametric beam elements, or plane stress elements to model the column.) 

T 
l El• 104 
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6.96. Use a computer program to calculate the large displacement response of the cantilever beam 
shown. Compare your results with an analytical solution (see, for example, J. T. Holden [A]). 

~l.______,d ~ :: ... ~ _________ J 1_i_n...i .. 1) M • 35 lb•ln 

Ls 12 in 

Thickness = 1 in 
E"" 1800 lb/in2 
V•O 

6.97. Use a computer program to analyze the arch shown in Fig. 6.23. 
(a) Perform the analysis described in Fig. 6.23. 
(b) Then change the geometry to consider that 2H/h = 20.0 and repeat the analysis. 

6.98. Verify the results given in Fig. 6.25. 



- CHAPTER SEVEN 

Finite Element Analysis 
of Heat Transfer, 
Field Problems, and 
Incompressible Fluid Flows 

7 .1 INTRODUCTION 

In the preceding chapters we considered the finite element formulation and solution of 
problems in stress analysis of solids and structural systems. However, finite element analysis 
procedures are now also widely used in the solution of nonstructural problems, in particu­
lar, for heat transfer, field, and fluid flow problems. 

Our objective in the following sections is to discuss the application of the finite 
element method to the solution of such problems. Since many of the finite element proce­
dures presented in the earlier chapters are directly applicable, we can frequently be brief. 
In addition to concentrating on some practical solution procedures, emphasis is directed to 
the general techniques that are employed and to demonstrating the commonality among the 
various problem formulations. In this way we also hope that the applicability of finite 
element procedures to the solution of problems not discussed here becomes apparent (e.g., 
coupled fluid flow-structural problems, general non-Newtonian flow conditions). 

7.2 HEAT TRANSFER ANALYSIS 

642 

In the study of finite element analysis of heat transfer problems it is instructive to first recall 
the differential and variational equations that govern the heat transfer conditions to be 
analyzed. These equations provide the basis for the finite element formulation and solution 
of heat transfer problems as we shall then discuss. 

7 .2.1 Governing Heat Transfer Equations 

Consider a three-dimensional body in heat transfer conditions as shown in Fig. 7 .1 and 
consider first steady-state conditions. For the heat transfer analysis we assume that the 
material obeys Fourier's law of heat conduction (see, for example, J. H. Lienhard [A]) 
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where qx, qy, and q,. are the heat flows conducted per unit area, 8 is the temperature of the 
body, and kx, ky, kz are the thermal conductivities corresponding to the principal axes x, y, 
and z. Considering the heat flow equilibrium in the interior of the body, we thus obtain 

a ( ae) a ( ao) a ( ao) - kx- + - k - + - kz- = -q8 

ax ax fly ' fly az az (7.1) 

where q8 is the rate of heat generated per unit volume. On the surfaces of the body the 
following conditions must be satisfied: 

Bise= 9s 

kn i){JI = qS 
on Sq 

(7.2) 

(7.3) 

where 85 is the known surface temperature on Se, k,, is the body thermal conductivity, n 
denotes the coordinate axis in the direction of the unit normal vector n (pointing outward) 
to the surface, qs is the prescribed heat flux input on the surface Sq of the body, and 
S9 U Sq = S, Se n Sq = 0. 

A number of important assumptions apply to the use of (7.l) to (7.3). A primary 
assumption is that the material particles of the body are at rest, and thus we consider the 
heat conduction conditions in solids and structures. If the heat transfer in a moving fluid is 
to be analyzed, it is necessary to include in (7 .1) a term allowing for the convective heat 
transfer through the medium (see Section 7.4). Another assumption is that the heat transfer 
conditions can be analyzed decoupled from the stress conditions. This assumption is valid 
in many structural analyses, but may not be appropriate, for example, in the analysis of 
metal forming processes where the deformations may generate heat and change the temper­
ature field. Such a change in turn may affect the material properties and result in further 
deformations. Another assumption is that there are no phase changes and latent heat effects 
(see Example 7.5 on how to incorporate such effects). However, we will assume in the 
following formulation that the material parameters are temperature-dependent. 
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A variety of boundary conditions are encountered in heat transfer analysis: 

Temperature conditions 
The temperature may be prescribed at specific points and surfaces of the body, 
denoted by S, in (7.2). 
Heat flow conditions 
The heat flow input may be prescribed at specific points and surfaces of the body. 
These heat fl.ow boundary conditions are specified in (7.3). 
Convection boundary conditions 
Included in (7 .3) are convection boundary conditions where 

q5 = h(811 - 8S) (7.4) 

and h is the convection coefficient, which may be temperature-dependent. Here the 
environmental temperature 6e is known, but the surface temperature 9s is unknown. 
Radiation boundary conditions 
Radiation boundary conditions are also specified in (7.3) with 

q5 = K(8r - 85
) (7.5) 

where 8, is the known temperature of the external radiative source and K is a 
coefficient, evaluated using absolute temperatures, 

I( = h,[(8,)2 + (85) 2](6, + 85) (7.6) 

The variable h, is determined from the Stefan-Boltzmann constant, the emissivity of 
the radiant and absorbing materials, and the geometric view factors. 

We assume here that (}, is known. If, on the other hand, the situation of two bodies 
radiating heat to each other is considered, the analysis is considerably more complicated 
(see Example 7 .6 for such a case). 

In addition to these boundary conditions the temperature initial conditions must also 
be specified in a transient analysis. 

For the finite element solution of the heat transfer problem we use the principle of 
virtual temperatures given as 

where t)'T = [;;(J 08 08] 
ax ay az 

[

kx O OJ 
k= 0 ky O 

0 0 ki 

(7.7) 

(7.8) 

(7.9) 

and the Q' are concentrated heat flow inputs. Each Q; is equivalent to a surface heat fl.ow 
input over a very small area. The bar over the temperature 8 indicates that a virtual 
temperature distribution is being considered. 
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The principle of virtual temperatures is an equation of heat flow equilibrium: for 8 to 
be the solution of the temperature in the body under consideration, (7. 7) must hold for 
arbitrary virtual (continuous) temperature distributions that are zero on Ss. 

We note thatthe principle of virtual temperatures is an expression like the principle 
of virtual displacements used in stress analysis (see Section 4.2). We use the principle of 
virtual temperatures in the same way as the principle of virtual displacements, and indeed 
all procedures discussed in Chapters 4 and 5 are directly applicable, except that we now 
only have the scalar of unknown temperature, whereas in the previous discussion we solved 
for the vector of unknown displacements. 

To further deepen our understanding of the principle of virtual temperatures, we 
derive the expression in (7.7) in the following example (this derivation is analogous to the 
presentation in Example 4.2). 

EXAMPLE 7. 1: Derive the principle of virtual temperatures from the basic differential equa­
tions (7.1) to (7.3). 

Here we follow the procedure in Example 4.2 (see also Section 3.3.4). 
Let us write the governing heat transfer equations in indicial notation. Using xi = x, 

xi = y, X3 = z, and the earlier definitions, we obtain the following. 

The differential heat flow equilibrium equation to be satisfied throughout the body 

(k;8,;),; + q 8 = 0 no sum on i in parentheses (a) 

The essential boundary condition 

(J = (JS on Se (b) 

The natural boundary condition 

kn8,n = qS (c) 

where S = Se U Sq, S6 n Sq= 0. 

Let us consider any arbitrarily chosen continuous temperature distribution 8, with 8 = 0 
on Se, Then we have 

I [ (k; 8,;),; + q8 ]6 dV = 0 (d) 

We call 8 the "virtual temperature distribution." Since 8 is arbitrary, (d) can be satisfied if and 
only if the quantity in the brackets vanishes. Hence, (d) is equivalent to (a). 

Our objective is to now transform (d) such that we lower the order of derivatives in the 
integral (from second to first order}, and we can introduce the natural boundary condition (c). 
For this purpose we use the mathematical identity 

[8(k;8,;)],; = 8,;(k;8,;) + 8(k;8,;),; 

to transform the relation in (d), to obtain 

I {[8(k;(J,,)],; - 8,;(k;(J,,) + q 8 8} dV = o (e) 
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Our objective is now achieved by using the divergence theorem (see also Example 4.2). We have 

L [9(k;8,,)],; dV = L [9(k;8,,)]n1 dS = L e(k,,9,,,) dS 

We thus obtain from (e) 

L [-8,i(k,8,1) + q8 8] dV + L O{_k,.0,,.) dS = 0 

In light of (c) and the condition that 9 = 0 on Se, we therefore have the required result 

f. -( ) f. -B i -s S 6,1 k,O,, dV = 8q dV + (J q dS 
V V Sq 

where we note that the prescribed heat flux condition ( the natural boundary condition) now 
appears as a forcing term on the right-hand side of the equation. 

It is also of value to recognize that the principle of virtual temperatures corresponds 
to the condition of stationarity of the following functional 

Namely, invoking 8Il = 0, we obtain 

J, SQ'T k9' dV = J, 88q 8 dV + f aosqs dS + ~ 681Q1 (7.11) 
v v Jsq I 

where 88 can be arbitrary but must be zero on S(J, Using integration by parts (i.e., the 
divergence theorem) on ( 7 .11) we can of course extract the governing differential equation 
of equilibrium (7.1) and the heat flow boundary condition (7.3) (which in essence corre­
sponds to reversing the process used in Example 7.1; see Example 3.18). However, on 
comparing (7 .11) with (7. 7), we recognize that (7 .11) is the principle of virtual tempera­
tures with 88 = 8. 

In the heat transfer problem considered above, we assumed steady-state conditions. 
However, when significant heat flow input changes are specified over a "short" time period 
(due to a change of any of the boundary conditions or the heat generation in the body), this 
period being short measured on the natural time constants of the system (given by the 
thermal eigenvalues; see Chapter 9), it is important to include a term that takes account of 
the rate at which heat is stored within the material. This rate of heat absorption is 

(7.12) 

where c is the material specific heat capacity. The variable qc can be understood to be part 
of the heat generated-of course, qc must be subtracted from the otherwise generated heat 
q8 in (7. 7) because it is heat stored-and the effect leads to a transient response solution. 

7 .2.2 Incremental Equations 

The principle of virtual temperatures expresses the heat flow equilibrium at all times of 
interest. For a general solution scheme of both linear and nonlinear, steady-state and 
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transient problems we aim to develop incremental equilibrium equations. As in an incre­
mental finite element stress analysis (see Section 6.1 ), assume that the conditions at time 
t have been calculated and that the temperatures are to be determined for time t + At, 
where l.lt is the time increment. 

Steady-State Conditions 

Considering first steady-state conditions, in which the time stepping is merely used to 
describe the heat flow loading, the principle of virtual temperatures applied at time t + l.lt 
gives 

fv fi'T t+Atk 1+At91 dV 

= t+At~ + f es t+Ath(t+Al(Je _ t+At(JS) dS +J, 9s t+AtK(l+AttJ,. _ t+At(JS) dS 
Jsc s,. 

(7.13) 

where the superscript t + l.lt denotes "at time t + At," Sc and S,. are the surface areas with 
convection and radiation boundary conditions, respectively, and i+A,~ corresponds to fur­
ther external heat flow input to the system at time t + l.lt. Note that in (7 .13) the tempera­
tures t+A18e and ,+Ate,. are known, whereas ,+A,(Js is the unknown surface temperature on Sc 
and Sr, The quantity ,+A,~ includes the effects of the internal heat generation t+AtqB, the 
surface heat flux inputs t+A,qs that are not included in the convection and radiation 
boundary conditions, and the concentrated heat flow inputs t+A,Qi, 

,+At!?! = J, 8 ,+AtqB dV + f 9s 1+A1qs dS + ~ 9; ,+A,Q' (7.14) 
V J~ I 

Considering the general heat flow equilibrium relation in (7 .13 ), we note that in linear 
analysis ,+A,k and ,+A,h are constant and radiation boundary conditions are not included. 
Hence, the relation in (7.13) can be rearranged to obtain in linear analysis, 

I. ii'Tk t+Ar9, dV + r osh t+At(JS dS = 1+A1~ + f osh t+Al(JII dS 
v Jsc Jsc 

(7.15) 

and it is possible to solve directly for the unknown temperature t+Ato. 

In general nonlinear heat transfer analysis the relation in (7.13) is a nonlinear equa­
tion in the unknown temperature at time t + l.lt. An approximate solution for this temper­
ature can be obtained by incrementally decomposing (7.13) as summarized in Table 7.1. 
As in stress analysis (see Section 6.1 ), this decomposition can be understood to be the first 
step of a Newton-Raphson iteration for heat flow equilibrium in which 

(7.16) 

where ,+a,0<1-
1> is the temperature distribution at the end of iteration (i - 1) and fl.8<;> is the 

temperature increment in iteration (i); also, ,+A,o<0> = 'O. In Table 7.1 we use Oto describe 
A8°> and consider the equation for the first iteration. 

In a full Newton-Raphson iteration the accurate solution of (7.13) would be obtained 
by using (7 .16) and updating all variables in the incremental equation of Table 7 .1. in each 
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TABLE 7 .1 Incremental nonlinear heat flow equilibrium equation 

1. Equilibrium equation at time t + At 

fv fftT 1+A1k 1+A191 dV = t+Ata + 1 9s t+Ath(t+At8e - t+AteS) dS + 1 os t+AtK(l+A19, - t+A,95) dS 
J1 ~ ~ 

2. Linearization of equation 
We use: 1+At9 = 18 + 8; t+A161 = 161 + 61

; 'R: = 4 'h,('85)3 

'K = 'h,.((•+Ar9,)2 + ('8S)2)(r+Ar(J,. + t(JS) 

Substituting into the equation of heat tlow equilibrium. we obtain 

f i'T 'k8' dV + 1 85 'h85 dS + 1 85 'R:85 dS = t+Ata + 1 85 'h(1+Ar9e - 185) dS 
Jv Sc s, Sc 

+ f. 7js 'K('+Ar(J, - '(JS) dS - f. i'T 'k '6' dV 
~ v 

iteration. Hence, we solve for i = I, 2, ... , 

= t+At£t + f es 1+A1h(i-l)(t+At9e - 1+A19S(i-l)) dS 
Jsc 

+ ( 9s 1+A1K<1-1>('+A19, _ 1+A19S(i-1)) dS _ J, 91r r+Atk(l-ll 1+A191(i-l} dV 
J~ v 

(7.17) 

where r+tuh(i-O, r+A,K(i-O, and r+A,k(H) are the convection and radiation coefficients and the 
conductivity constitutive matrix that correspond to the temperature ,+i1r9<;-o. 

Frequently, in practice, the modified Newton~Raphson iteration is employed, in which 
case the left-hand side of (7 .17) is evaluated only at the beginning of the time step and not 
updated until the next time increment (see Section 8.4.1 ). 

Although it might appear that an actual linearization of the heat flow equilibrium 
equation is achieved in Table 7 .1, a closer study shows that the equations in the table 
correspond to only an approximate linearization. Consequently, (7 .17) is, in general, also 
not a full linearization about the state of the last iteration. The difficulty lies in that the 
tangent relations of the material constants, that is, of the conduction, convection, and 
radiation coefficients when temperature-dependent, need to be included in the linearization, 
and this can be achieved only when the functional relationship between the material 
property and temperature is given in analytical form. We demonstrate this observation in 
the following example. 

EXAMPLE 1.2: Consider the analysis of the slab shown in Fig. E7 .2. Establish the incremental 
form of the principle of virtual temperatures for the modified Newton-Raphson iteration and for 
the full Newton-Raphson iteration. 
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The principle of virtual temperatures for the one-dimensional problem, considering a unit 
cross-sectional area of the slab, is 

f ii' ,.,.,k ,+A,9• dx 
0 

(a) 

= ['iJSqS] lx=O + [OS 1+Alh(1+A.18e _ r+At9S)] lx ... L + [OS t+AtK(1+A19, _ t+At6S)] lx=L 

where ,H,,9, = a ,+1:.,8/ox, 81 = 06/ax, and r+A,K is evaluated using degrees Kelvin. 
The incremental form in the modified Newton-Raphson iteration is based on the decom­

position given (for the first iteration) in Table 7.1, 

f ii'(IO + 2'9) M'(n dx + [0'(2 + '6') t,es<•lJ., + [ii'4h,('9')' dos<ij] 1.-, 
0 

(b) 

+ {ll' <+4',tHtJOO - <+4'9S(1-t>J} I,., - f ii'(IO + 2•+••1fH>y+M9•(Hl dx 

In the full Newton-Raphson iteration the same right-hand side is used, but the left-hand side is 
given by 

~hand side = J: il'(IO + 2 <+4'1)(1-1~ M'"' dx + [ii'(2 + <+"'6'(1- 1~ A9S(I>] ~-, 

+ [854h,(t+Ar9S(H))3 AOS(i)] lx=L (c) 

The actual linearization, however, is obtained by differentiating the equation of the prin­
ciple of virtual temperatures about the last calculated state and using the analytical expressions. 
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Let us consider as an example the conduction term in (a) and use the procedure of 
linearization about the state at time tthat we employed in Section 6.3.1. Hence, we use the Taylor 
series expansion 

8' l+Atq = O' 'q + !. (8' 'q) d(J 
88 

However, since ( a O' / 06) = 0, we have 

i.<e' 'q) do = [o' !. ('q)] d(J ao ao 
Now substituting for 'q = -(10 + 2'8)(a'8/ax). we obtain 

81 
t+Aiq = -0'([10 + 2 '8]~ + 2~ d8 + (10 + 2 '8)d(}') ox iJx 

I I 
Tenn 1 Tenn 2 Tenn 3 

(d) 

We note that the term 1 and term 3 on the right-hand side of (d) are included in the incremental 
principle of virtual temperatures given in (b) [and in (c)] but that term 2 is an extra expression 
not accounted for in (b), (c), and Table 7.1. In the finite element solution to the slab, this term 
would lead to a nonsymmetric tangent conductivity matrix. 

Also, in a similar manner, the actual linearization of the convection and radiation terms 
can be obtained. This development shows that for the convection part a temperature-dependent 
term is also neglected, whereas the linearization of the radiation part is complete because in this 
example the hr-coefficient is temperature-independent (see Exercise 7.2). 

As shown above in a specific example, (7 .17) does not, in general, correspond to the 
exact linearization of the principle of virtual temperatures about the last calculated temper­
ature state. However, (7 .17) represents a general iterative solution scheme which, in partic­
ular, can be applied when the material relationships are given piecewise linear as a function 
of temperature (such a definition can be convenient in the use of a general program 
implementation that is not based on specific analytical expressions of material properties). 
If iteration convergence is obtained, the correct solution of the principle of virtual temper­
atures (7.7) has been calculated [since the equation (7.7) is satisfied when the right-hand 
side in (7 .17) is zero], and frequently in practice only a few iterations are needed for 
reasonable time (load) step magnitudes. 

Of course, if specific analytical relationships of the material constants are to be used 
and convergence difficulties are encountered with (7 .17), it may be advantageous to use the 
exact linearization of the principle of virtual temperatures in the iterative solution (see 
Exercise 7.3). 

Transient Conditions 

In transient analysis, the heat capacity effect is included in much the same way as we 
introduced the inertia forces in stress analysis (see Sections 4.2.1 and 6.2.3). 

The principle of virtual temperatures at time t + At is now 

L 8r ,+A'(pc)r+A, iJ dV + L 8,r ,+A,k r+b.16 , dV 

t+At~ + ( es 1+1lth(1+At811 - t+At(JS) dS + f 9s tH..tK(l+Al(Jr - 1+ti.19s) dS 
k )~ 

(7.18) 
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where ,+A,~ is defined as in (7.14), but t+A1q8 is now the rate of heat generation excluding 
the heat capacity effect. 

The relation in (7.18) is used to calculate the temperature at time t + 6.t when an 
implicit time integration method is employed (such as the Euler backward method). On the 
other hand, in an explicit time integration scheme, the principle of virtual temperatures is 
applied at time t to calculate the unknown temperature at time t + 6.t (see Sections 7 .2.3 
and 9.6). Whereas a Newton-Raphson iterative method including the heat capacity effects 
is used in implicit integration (when nonlinearities are present), a simple forward integration 
without iteration is employed with an explicit method. 

7 .2.3 Finite Element Discretization of Heat Transfer 
Equations 

The finite element solution of the heat transfer governing equations is obtained using 
procedures analogous to those employed in stress analysis. We consider first the analysis of 
steady-state conditions. Assume that the complete body under consideration has been 
idealized as an assemblage of finite elements; then, in analogy to stress analysis we have at 
time t + At for element m, 

t+At(fm) = ff(m) 1+Ar9 

t+At9S(m) ffS(m} r+A19 (7.19) 

t+At@t(m} = B(m) t+A19 

where the superscript (m) denotes element m and ,+A,9 is a vector of all nodal point 
temperatures at time t + 6.t, 

(7.20) 

The matrices e<m> and B<m> are the element temperature and temperature-gradient 
interpolation matrices, respectively, and the matrix es<m> is the surface temperature interpo­
lation matrix. We evaluate in (7 .19) the element temperatures and temperature gradients at 
time t + At, but the same interpolation matrices are also employed to calculate the element 
temperature conditions at any other time, and hence for incremental temperatures and 
incremental temperature gradients. 

Linear SteadywState Conditions 

Using the relations in (7.19) and substituting into (7.15), we obtain the finite element 
governing equations in linear heat transfer analysis: 

(Kk + Kc)t+4te = t+6tQ + t+AtQe 

where Kk is the conductivity matrix, 

Kk = ~ r B(m)T k(m) B(m) dV(m) 
m Jv<m) 

and Kc is the convection matrix, 

Kc = ~ ( h(m) ffS(m)T ffS(m) dS(ml 
m Js~"'l 

(7.21) 

(7.22) 

(7.23) 
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The nodal point heat flow input vector r+AtQ is given by 

t+AtQ = t+4.tQB + t+A'Qs + t+AtQc 

Chap. 7 

(7.24) 

where (7.25) 

(7.26) 

and 1+.<1
1Qc is a vector of concentrated nodal point heat flow input. The nodal point heat flow 

contribution t+A,Qe is due to the convection boundary conditions. Using the element surface 
temperature interpolations to define the environmental temperature r+A, 8e on the element 
surfaces in terms of the given nodal point environmental temperatures t+At&e, we have 

t+Atoe = ~ f h(m)HS(m)T as(m) t+At6e ds-m> 
m Js~ml 

(7.27) 

The above formulation is effectively used with the variable-number-nodes isopara­
metric finite elements discussed in Chapter 5. We demonstrate the calculation of the element 
matrices in the following example. 

EXAMPLE 7.3: Consider the four-node isoparametric element in Fig. E7.3. Discuss the calcu­
lation of the conductivity matrix KA:, convection matrix Kc, and heat flow input vectors r+A'Qs 
and t+AtQe, 

For the evalution of these matrices we need the matrices H, B, U5, and k. The temperature 
interpolation matrix His composed of the interpolation functions defined in Fig. 5.4. 

H = HO + r)(l + s) (1 - r)(l + s) (1 - r)(l - s) {1 + r){l - s)] 

We obtain us by evaluating U at r = 1, so that 

as = H(l + s> o o c1 s)J 

To evaluate B we first evaluate the Jacobian operator J (see Example 5.3): 

J-l: :rJ 
Hence 

B = ![l -c : ;)][(I + s) -(I + s) -(I - s) (1 - s)] 
4 4 (1 + r) (1 - r) -(1 - r) -(1 + r) 

O (3 + r) 

1 [2(1 + s) -4(1 + s) 2(2s - r - 1) 2(2 + r - s)] 
= 4(3 + r) 4(1 + r) 4(1 - r) -4(1 - r) -4(1 + r) 

Finally. we have k = [~ ~] 
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Figure E7.3 Four-node element in heat transfer conditions 
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The element matrices can now be evaluated using numerical integration as in the analysis of 
solids and structures (see Chapter 5). 

Nonlinear Steady-State Conditions 

For general nonlinear analysis the temperature and temperature gradient interpolations of 
(7 .19) are substituted into the heat flow equilibrium relation (7 .17) to obtain 

('+AIKk(i-1) + t+AtKc(i-1) + t+AtKr(i-1)) ae(i) = t+AtQ + t+At<r(i-1) + t+AtQr{i-1) _ t+At~(l-l) 

where the nodal point temperatures at the end of iteration (i) are 

,+A,e<i) = ,+A,9(i-o + ae<I) 

(7.28) 

(7.29) 

The matrices and vectors used in (7 .28) are directly obtained from the individual terms used 
in (7 .17) and are defined in Table 7 .2. The nodal point heat flow input vector r+A,Q was 
already defined in (7.24). 

TABLE 7.2 Finite element matrices in nonlinear heat transfer analysis 

Integral 

L 91r i+Atk(i-1) A8'(il dV 

f es t+l,wi-1) AOS(i) dS 
Jsc 
f 9s 1+A1 (t.i-1) A8S(i) dS 
ls, 

( 8s ,+Ath<,-n('+Atolf _ ,+A,9s<,-n) dS 
Jsc 
( 'ijS 1+AIK(i-l)('+A19r _ t+A19S(i-ll) dS 
Js, 

IV 9°tT t+Atk(l-1) t+c.191({-I) dV 

Finite element evaluation 

t+AIKk(i-1) AO(i) = (~ ( s<miT t+Atk(m)(l-1) s<m) (!Vim>) AO(il 
m Jv<ml 

1+AIKc(I-I) AO(i) (~ ( t+Ath(m)(l-1) ffS(mluscm) ds<"'>) AO(i) 
m Js<m) 

t+AIK,{1-1) AQ(i) = (~ ( c t+At(t.m)(l-l)ffS(mlTffS(m) dS(m)) A8(i) 
,,, Js<m) 

r+At(Y(i-1) = ~ r t+Alh(m)(l~I) HS(m)T[ffS!m)(t+Ate .. - 1+A19(1-1))] dS(m) 

m Js<m) 
1+A1Qr(I-I} = ~ (. r+At,c(m)(l-1) HS(m)T[ffS{m)(t+AIO, - 1+A19(i-l))] ds<m) 

m Js<m) 
r+At<r{i-1) = i r s<m)T['+Ark(m)(l-t) s<m) t+A19(1-l)) dV(m) 

m Jv<m) 
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Specified Temperatures 

In addition to convection and radiation boundary conditions, nodal point temperature 
conditions may also be specified. These boundary conditions can be incorporated in the 
same way as known nodal point displacements are prescribed in stress analysis. 

A common procedure is to substitute the known nodal point temperatures in the heat 
flow equilibrium equations (7.21) and (7.28) and delete the corresponding equations from 
those to be solved (see Section 4.2.2). However, an effective way to impose nodal point 
temperatures can be the procedure that is employed to impose convection boundary condi­
tions. Namely, by assigning a very large value of convection coefficient h, where h is much 
larger than the conductivity of the material, the surface nodal point temperature will be 
equal to the prescribed environmental nodal point temperature. 

EXAMPLE 7.4: Establish the governing finite element equations for the analysis of the infinite 
parallel-sided slab shown in Fig. E7 .2 but neglect the radiation effects. Use the modifed Newton­
Raphson solution and only one parabolic one-dimensional element to model the slab. (In prac­
tice, depending on the temperature gradient to be predicted by the analysis, many more elements 
may be needed.) 

where 

and 

The governing equations for this problem are obtained from (7.28), 

tKk = L B7 'kB dV 

'K" = f 'h Hs7 H5 dS 
Jsc 

r+ArQc(i-1) = f 1+Arh(i-1)HST(HS(1H19e _ t+AtQ(i-1))] dS 
Jsc 

t+AtQk(i-1) = L BT['+Atk{i-l)B 1+A19U-1J] dV 

t+AtQT = [O qS O] 

AQ<il = [Mfl AO~> AB~'] 

t+Ar9(i-l)T = [1+Ar9tl) tH.r(J~-1) t+A19tl)] 

,+A,e; = [20 o oJ 

(a) 

For the one-dimensional parabolic element, we use the interpolation functions h1, h2, and h3 in 
Fig. 5.3 to construct H, 

H = [!r(l + r) -}r(l - r) (1 - r 2
)] 

and Hs corresponding to node 1 is equal to H evaluated at r = + 1, 

H5 = (1 0 O] 



Sec. 7.2 Heat Transfer Analysis 

We also have J = L/2; hence, 

B = IU(l + 2r) -1(1 -2r) -2,] 

Also, the conductivity of the material is given by, for example, for time t, 
3 

'k = 10 + 2 ~ h; 16; 
i•l 

and similarly for the convection coefficient we have 

'hlr•+l = 2 + 181 
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With these quantities defined we can now evaluate all matrices in (a) and perform the tempera­
ture analysis. Note that we are using Sc = 1 and V = 1 X L. 

See Exercise 7 .6 for the analysis including the radiation effects. 

Transient Analysis 

As mentioned earlier, in transient heat transfer analysis the heat capacity effects are in­
cluded in the analysis as part of the rate of heat generated. The equations considered in the 
solution depend, however, on whether implicit or explicit time integration is used, just as in 
structural analysis (see Chapter 9 and, for example, K. J. Bathe and M. R. Khoshgoftaar 
[A]). 

If the Euler backward implicit time integration is employed, the heat flow equilibrium 
equations used are obtained directly from the equations governing steady-state conditions 
[see (7.18)]. Namely, using for element m, 

e<m)(x. y, Z, t) = ff(m)(x, y, z)O(t) 

and now using (7.12), we have in (7.28), 

t+41QB = ~ ( ff(mf ('+AtqB(m) _ t+At(pc)(m) ff(m) t+41Q) dV(m) 
m Jv{m) 

(7.30} 

(7.31) 

where ,+r..,qB<m> no longer includes the rate at which heat is stored within the material. Hence, 
the finite element heat flow equilibrium equations considered in transient conditions are, in 
linear analysis, 

(7.32) 

and in nonlinear analysis (using the full Newton-Raphson iteration but without linearizing 
the heat capacity effect, see Section 9.6), 
1+.:1rc(i) t+A19(i) + (l+AtKk(i-1) + t+AfKC'(l-l) + t+AtKr{i-1)) ,M)(i) 

(7.33) 
= 1+A1Q + 1+A1Qc(l-l) + t+AtQr(i-1} _ t+At(l(i-1) 

where C, r+.1,c<i) are the heat capacity matrices, 

c = L ( u<m)T pc<m) H(m) dV(m) 
m Jv<m) 

t+Atc(i) = ~ r e<m)T 1+At(pc)<m)(i) u<m) dV(m) 

m Jv(m) 

(7.34) 
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The matrices defined in (7 .34) are consistent heat capacity matrices because the same 
element interpolations are employed for the temperatures as for the time derivatives of 
temperatures. Following the concepts of displacement analysis, it is also possible to use a 
lumped heat capacity matrix and lumped heat flow input vector, which are evaluated by 
simply lumping heat capacities and heat flow inputs, using appropriate contributory areas, 
to the element nodes (see Section 4.2.4). 

If, on the other hand, the Euler forward explicit time integration is used, the solution 
for the unknown temperatures at time t + At is obtained by considering heat flow equi­
librium at time t. Applying the relation in (7.7) at time t and substituting the finite element 
interpolations for temperatures, temperature gradients, and time derivatives of tempera­
tures, we obtain in linear and nonlinear analysis, respectively, 

c 18 = 1Q + '<Y 'Qi (7 .35) 

'C '6 = 'Q + 'QC + 'Q' - 'Qi (7.36) 

where the nodal point heat flow input vectors on the right of (7 .35) and (7 .36) are defined 
in Table 7 .2 [but the superscript (i - 1) is not used and t + At is replaced by t). The 
solution using explicit time integration is effective only when a lumped heat capacity matrix 
is employed. 

In closing this section we recall that we did not include in the above formulations the 
effects of phase changes and latent heat generation and of bodies radiating onto each other. 
These effects can be included in the analysis as briefly described in the following examples. 
We discuss the solution of the governing equations as a function of time in Section 9.6. 

EXAMPLE 7.5: Consider that the slab shown in Fig. E7 .2 is initially at a temperature 9; and 
that 8; is below the phase change temperature 8flh, The heating of the slab will result in traversing 
8flh and hence in a phase change. Assume that the slab is a pure substance with latent heat l per 
unit mass and a constant mass density of p and specific beat capacity c. Show how the latent heat 
effect can be included in the transient analysis of the slab. 

In this problem solution, the following boundary conditions must be satisfied at the phase 
transition interface Sflh, 

8 = II,. dV\ 
!).qS dS = -pl dt 

on sph (a) 

where dV/dt is the rate of volume currently converted on Sflh, The relations in (a) state that at the 
interface separating the two phases heat is absorbed at a rate proportional to the volumetric rate 
of conversion of the material. 

In this case a transient analysis is required. We use the simple three*node element idealiza­
tion with a lumped heat capacity matrix (for a unit cross section), 

C= 
L 

pc-
2 

L 
pc-

4 

(b) 
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We also choose to use the Euler backward time integration scheme (see Section 9.6 for details), 
with a constant time step At, in which 

• t+Ar9Cil _ 19 9Ci) 
t+Ar6(i) = = _ 

tit tit 
(c) 

Using (b) and (c) with the given initial condition and the matrices defined in Example 7.4, a 
transient analysis not including latent heat effects can be performed directly. 

However, to introduce the interface conditions in (a), we calculate for each nodal point a 
"latent heat contribution." This results in the vector H,. 

L 
pl-

4 

H,= L 
(d) pl-

2 
L 

pl-
4 

Let us call H1.rota1,1t. the entry in H, corresponding to nodal point k. The transient analysis 
including the latent heat effects can then be performed as follows. 

As long as r+Ar er) as calculated by the usual step-by-step solution is smaller than 8p11, no 
considerations for latent heat enter the solution. 

However, consider that at the start of a new step' 81t. + A8i0 = r+A, Bin ~ 8p11 and that with 
the adjustment for latent heat given below, the "projected" (but not accepted) increments in 
nodal temperatures are A8~> > 0. Then we calculate for the first step traversing the phase change: 

Ok = Op11 - '()k (e) 

tiQ0 
> = f. ..!_ pc(M0 

> - 8 ) dV r.1t. At k 'k 
vk 

t:,.Q<i> = f. _!_ pc /.l()Cil dVi i - 2 3 ,.1c vk At le ' - ' ' ••• 

for all subsequent steps and iterations transversing the phase change: 

AQ<;> = f. ..!_ pc AfJ<i> dV· 2 3 ,. k At k ' i = 1, , ' . . . 
vk 

where the volume integration is peformed over the volume Vt associated with the finite element 
node k, until 

~ AQn At = H1.tota1,t 
steps. 

iterations 

(f) 

In the last iteration only a portion of the value of AQtl At may be used to reach H1,to1a1.1c, 

The solution procedure is based on the condition that as long as a value AQ}'.1 is applicable, 
the temperature increment at node k is given only by the 81c defined in (e) rather than by the usual 
sum of all AOf>. These temperature increments are added as usual to the current temperatures 
only after condition (f) has been fulfilled. Hence, in essence the temperature increase at a node 
is constrained to the phase change temperature 8p1i until H,. total. k has been supplied to the node. 
The same concept is used when the phase change occurs during cooling and when a nonpure 
substance is being considered (in which case the temperature during the phase change is not 
constant). More details on this solution approach are given by W. D. Rolph, III, and K. J. Bathe 
[A]. 
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EXAMPLE 7.6: Consider the two slabs shown in Fig. E7.6 radiating on each other. Assume 
gray diffuse surface radiation. Formulate the problem of heat flow between the slabs. 

l 

s 'Temperature 91 

n, , ...... ......,,,_ 

Slab 1 

s, 

Emissivities 
e1 • £2 \ 

\ Slab 2 
\ 

Figure E7.6 Two slabs radiating upon each other 

10 

l 

In this example, we assume that the temperatures of the two slabs are given quantities. Of 
course, in an actual analysis the temperatures of the slab surfaces would also have to be calcu­
lated. To obtain the heat flow·between the two slabs due to radiation, we introduce an additional 
variable to the temperature, namely, radiosity. The radiosity equations between two radiating 
surfaces, called surface 1 and surface 2, are based on Lambert's cosine law (see E. M. Sparrow 
and R. D. Cess [A]). 

(a) 

(b) 

where for the two surfaces e,, E2 are the emissivities, u is the Stefan-Boltzman constant, Pt, {>). 

are the reflectivities (for gray diffuse radiation p1 = 1 - E1, />2 = 1 - E2), and a1, a2 are the 
angles between the normals and the ray of radiation between the points considered. The length 
of that ray is r. Once the radiosities over the slab surfaces are known, the radiative heat flux 
leaving surface i at point (y,, z,) is given by 

(c) 
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For the finite element solution of the radiosities, we use the Galerkin method to weigh (a) 
with aR, and (b) with SR2 [see (3.14)]. We then discretize the two surfaces in the usual way; e.g., 
using four-node elements, we have for each element on surface 1 

4 

Y1 =~Mr, s)yf 
k•l 

4 

z1 = ~ hk(r, s)d 
k-t 

4 

Ri = ~ Mr, s)Rt 
l•l 

where the R1 are the unknown nodal radiosities for the element on surface 1. 
The Galerkin procedure with the finite element expansions then gives the equation 

(d) 

where the vector R lists all nodal variables of radiosities (of both surfaces) and Q• is a forcing 
vector corresponding to the emitted energies {Ei/p1)u8t and (E2/P2)u81. over the surfaces. The 
solution of (d) gives the radiosities of the surfaces, and then the heat flow into the surfaces is 
calculated using (c). Note that the evaluation of the elements in KR is performed by numerical 
integration which includes the evaluation of the term (cos a 1 cos a2)/1rr2• 

In a practical analysis, this procedure can include general curved surfaces and also obstruc­
tions, in which case a test must be included that identifies whether two differential surfaces (such 
as the contributory areas of integration points) can "see each other." Of course, as pointed out 
already, in practice the temperature of the surfaces is usually unknown and also needs to be 
calculated. 

7 .2.4 Exercises 

7.1. Consider the square column shown. Assume planar heat flow conditions (in the x, y plane) and 
state the principle of virtual temperatures (7.7) for this case. Then derive from the principle of 
virtual temperatures the governing differential equations of heat flow within the column and on 
its surface. 

Prescribed heat flow 
input er per unit area 

L Prescribed temperature 69 

Very long column, 
thermal conductivity k 

7.2. Consider Example 7.2 and establish the actual linearization of the principle of virtual tempera­
tures about the state t + At, iteration (i - 1). (The actual linearization of the conduction term 
was achieved in Example 7 .2.) 



660 Heat Transfer, Field Problems, and Incompressible Fluid Flows Chap. 7 

7.3. Assume that the slab shown, in steady-state conditions, is to be anlayzed using the full Newton­
Raphson iteration. Establish the incremental equation of the principle of virtual temperatures 
corresponding to the general equation in Table 7 .1 and then determine any additional terms that 
should be added to achieve a full linearization in the full Newton-Raphson solution. 

Be• 20 

Uniform convection 
with coefficient h ""' 4 + 8 

00 

65 = 100 

00 
Conductivity k • 60 + 9 

7.4. The four-node isoparametric element shown is to be used in a linear transient heat transfer 
analysis. Establish all expressions/matrices needed to calculate the heat capacity, conductivity 
and convection matrices, and heat flow load vectors but do not perform any integrations. (Con­
sider 1 radian for the axisymmetric analysis.) 

I 

q_ 

10 

14 

4-node element in 
axisymmetric conditions 

Node 1 
Heat generated 
per unit volume = q8 

Material properties 
k,p, C, h 

Face exposed to convection, 
environmental temperature 8 8 

7.S. Consider the nine-node isoparametric element used in a heat transfer analysis as shown. Calcu­
late the entries K(l, l) and C(l, 1) corresponding to 81 of the conductivity and heat capacity 
matrices. 

s 

, .. 
6 

.. , 
r 

Planar heat flow conditions 
Thickness = 2.0 
Isotropic conductivity k 
Specific heat capacity c 
Density p 
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7 .6. Consider Example 7 .4 and evaluate all additional matrices needed to include the radiation effects 
shown in Fig. E7.2. 

7.7. Use a computer program to solve for the steady-state temperature and heat flow distributions in 
the square column shown. Verify that an accurate solution has been obtained. (Hint: The 
isobands of heat flow can be used to indicate the solution error; see Section 4.3.6.) 

100°F 

Conductivity k 

4in 

Infinitely long column 

7..8 Use a computer program to solve for the solidification of the semi-infinite slab of liquid shown 
(see Example 7.5 and use a one-dimensional model). 

Suddenly a surface 
temperature of -45°F 
is applied and kept constant 

7 .3 ANALYSIS OF FIELD PROBLEMS 

Material properties: 
k· 1.08 Btu/(sec·in·°F) 
pc ... 1 Btu/(in3·°F) 
pl• 70.26 Btu/in3 
8ph •-0.1°F 

The heat transfer governing equations described in Section 7 .2 using finite element proce­
dures are directly applicable to a number of field problems. This analogy is summarized in 
Table 7 .3. Hence, it follows that, in practice, if a finite element program is available for heat 
transfer analysis, the same program can also be employed directly for a variety of other 
analyses by simply operating on the appropriate field variables. We consider in the following 
a few field problems in more detail. 
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TABLE 7.3 Analogies in analysis of field problems 

Constants 
Problem Variable 8 kx, k1 , kz. 

Heat transfer Temperature Thermal 
conductivity 

Seepage Total head Permeability 

Torsion Stress function (Shear 
modulus)-1 

Inviscid incom- Potential 1 
pressible irrota~ function 
tional ff.ow 

Electric conduc- Voltage Electric con-
tion ductivity 

Electrostatic field Field potential Permittivity 
analysis 

7 .3.1 Seepage 

Input q8 

Internal heat 
generation 

Internal flow 
generation 

2 x (Angle 
of twist) 

Source or sink 

Internal current 
source 

Charge density 

Input qs 

Prescribed heat 
flow 

Prescribed flow 
condition 

Prescribed velocity 

Prescribed current 

Prescribed field 

The equations discussed in Section 7 .2.1 are directly applicable in seepage analysis pro­
vided confined flow conditions are considered. In this case the boundary surfaces and 
boundary conditions are all known. To solve for unconfined flow conditions the position of 
the free surface must also be calculated, for which a special solution procedure needs to be 
employed (see C. S. Desai [A] and K. J. Bathe and M. R. Khoshgoftaar [B]). 

The basic seepage law used in the analysis is Darcy's law, which gives the flow 
through the porous medium in terms of the gradient of the total potential <!> (see, for 
example, A. Verruijt [A]), 

(7.37) 

Continuity of flow conditions then results in the equation 

}_ (k/J<f>) + ~ (k 04>) + ~ (k,. 04>) = -qs 
ax ax &y ' &y az az (7.38) 

where kx, ky, and kz are the permeabilities of the medium and q8 is the flow generated per 
unit volume. The boundary conditions are those of a prescribed total potential cf, on the 
surface Sit», 

</>Is" = 'Ps 
and of a prescribed flow condition along the surface Sq, 

kn a"' I = qs 
ans 

q 

(7.39) 

(7.40) 

where n denotes the coordinate axis in the direction of the unit normal vector n (pointing 
outward) to the surface. In (7 .38) to (7.40) we are employing the same notation as in (7 .1) 
to (7.3 ), and on comparing these sets of equations we find a complete analogy between the 
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Impermeable rock 

Domain of 
discretization 

Figure 7.2 Analysis of seepage conditions under a dam 
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heat transfer conditions considered in Section 7 .2 and the seepage conditions considered 
here. Figure 7 .2 illustrates a finite element analysis of a seepage problem. 

7 .3.2 Incompressible Inviscid Flow 

Consider an incompressible fluid in irrotational two-dimensional flow conditions. In this 
case the vorticity vanishes, so that (see, for example, F. M. White (A]) 

(7.41) 

where Vx and Vy are the fluid velocities in the x and y directions, respectively. The continuity 
condition is given by 

OVx + OOy = O 
ax ay 

(7.42) 

To solve (7.41) and (7.42) we define a potential function cf>(x, y) such that 

a4> a4> 
Vx = i:Jx; Vy = oy (7.43) 

The relation in (7 .41) is then identically satisfied, and (7.42) reduces to 

a24, a24, 
-+-=O 
3x2 iJy2 

(7.44) 

Using (7 .43), we impose all boundary normal velocities, v! using 

0"'1 = v~ (7.45} an s 

where i:Jcp/an denotes the derivative of cf> in the direction of the unit normal vector (pointing 
outward) to the boundary. In addition, we need to prescribe an arbitrary value cf> at an 
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arbitrary point because the solution of (7.44) and (7.45) can be determined only after one 
value of q, is fixed. 

The solution of (7 .44) with the boundary conditions is analogous to the solution of a 
heat transfer problem. Once the potential function q, has been evaluated, we can use 
Bernoulli's equation to calculate the pressure distribution in the fluid. Figure 7.3 illustrates 
a finite element analysis of the flow around an object in a channel. 

n 
8' 

~ =bat boundary 

L1~ 

Figure 7.3 Analysis of flow in a channel with an island, r.;1, is the prescribed velocity. Note 
that on the boundary A-A' the inflow condition requires that a negative gradient of <p be 
imposed, whereas on the boundary B·B' a positive gradient is prescribed. (However, using 
a heat transfer program, the boundary conditions would be qs vP on A~A' and q5 = -vP 
on B· B' for a flow to the right because the flow is calculated as proportional to minus the 
gradient of the potential.) 

7 .3.3 Torsion 

With the introduction of a stress function <j,, the elastic torsional behavior of a shaft is 
governed by the equation (see, for example, Y. C. Fung (A]) 

iJ2<J:, ,P<J:, 
-+-+2GO=O ax2 iJy 2 

(7.46) 

where 8 is the angle of twist per unit length and G is the shear modulus of the shaft material. 
The shear stress components at any point can be calculated using 

a<J:, 
T = --

:y ax (7.47) 

and the applied torque is given by 

T = 2 L q,dA (7.48) 
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where A is the cross-sectional area of the shaft. The boundary condition on 4> is that 4> is 
zero on the boundary of the shaft. Hence, the heat transfer equations in (7 .1) and (7 .2) also 
govern the torsional behavior of a shaft provided the appropriate field variables are used. 

EXAMPLE 7. 7: Evaluate the torsional rigidity of a square shaft using the two different finite 
element meshes shown in Fig. E7. 7. 

-

© © , 
SL 0 0' 

T 
2cm 

-; t 
2cm 

l 

- -
I © 03© • 

4 1 ~ 
- -

0 ©; •50 11 

- -

T 
2cm 

t 
2cm 

l - -
I~ -I.. ~1 2cm 2cm 

I• .. 1.. • I 
2cm 2cm 

Mesh (a) Mesh (b) 

Figure E7. 7 Finite element meshes used in calculation of torsional rigidity of a square shaft 

Using the analogy between this torsional problem and a heat transfer problem for which 
the governing finite element equations have been stated in Section 7.2.3, we now want to solve 

[~ J, B(m)T k*(m) B(m) dv<m>]cf> = ~ J, ff(m)T 8 dV(m) (a) 
m y(m) m y(m) 

where <t,(m) == ff(m) cf> 

cf> I (m) = B(m) cf> 

cf>T = [ q>1 <l>i q>n] 

k*(m} = [
2
~ i] 

O 2G 

cf>'(m) = [-:::] 

= e<m1 cf> 

T = ~ f 2<f,(m) dA(m) 
m A(m) 

and (b) 

In each of the analysis cases we need to consider only one element because of symmetry 
conditions. Using mesh (a), we have for element l, 

<f, = ! (l + r)(l + s)<f,, 
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and rn1 = 1 [::: :1~ 
Hence the equations in (a) reduce to (considering a unit length of shaft) 

{ f +t f +t 1 1 1 [(1 + s)] } 
4 _

1 
_

1 4[(1 + s) (1 + r)] 20 4 (I + r) det J dr ds <f,1 

f
+I f+I 1 

= 48 -• _
1 4(1 + r)(l + s) det J dr ds; detJ=l 

or 
I 

3G <Pi = fJ 

Hence, cl,1 = 308 

Using (b). we thus obtain 

T = 4 r· f: Hi + r)(I + s)(3G8) dr ds = 24G8 

so that ! = 24G 
(J 

Considering next mesh (b ), we recognize that the <f> values on the boundary are zero and 
that for element 1 we have <f,4 = "'5. Hence, we have only two unknowns cf,1 and <f,4 to be 
calculated. The interpolation functions for the eight-node element are given in Fig. 5.5. Proceed­
ing in the same way as in the analysis with mesh (a), we obtain 

so that 

<Pi = 2.15708 

<f,4 = 1.92108 

T = 35.208 

T 

8 = 35.2G 

The exact solution of (7.46) for'T/8 is 36.IG. Hence, the analysis with mesh (a) gives an error 
of 33.5 percent, whereas the analysis with mesh (b) yields a result of only 2.5 percent error. 1 

7 .3.4 Acoustic Fluid 

Consider an inviscid isentropic fluid with the fluid particles undergoing only small displace­
ments. Not including body force effects, the equations governing the response of the fluid 
are the momentum equations (see, for example, F. M. White (A]), 

pv + Vp = 0 (7.49) 

I Note that this finite element analysis underestimates the stress function values <f> ( for an imposed value of 
twist 6) and thus yields a lower bound on the torsional rigidity, whereas a displacement and stress analysis using the 
procedures in Chapter 4 would yield an upper bound on T/8 (provided the monotonic convergence requirements 
of Section 4.3.2 are fulfilled). 
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and the constitutive equation 

pv. v + p = o (7.50) 

where v is the velocity of the fluid particles, p is the pressure, and (3 is the bulk modulus. 
The boundary conditions are as follows. 

On the boundary Sv a prescribed velocity o! in the direction of the unit normal vector 
n (pointing outward) to the fluid boundary, 

On the boundary S1 a prescribed pressure ps, 

Pls1 = Ps 

(7.51) 

(7.52) 

To solve for the fluid motion, it is convenient to introduce the velocity potential <f>, 
where 

v = V<f,; p = -pef, (7.53) 

With this definition (7 .49) is identically satisfied [neglecting changes in density in 
(7.49) ], and (7 .50) becomes the acoustic equation 

1 1 v2<1> = -{II c2 (7.54) 

with the wave speed c = viifi,. The boundary conditions are now of course 

act,! = o! 
on Su 

(7.55) 

and -pci,ls1 = Ps (7.56) 

On comparing the governing equations (7 .54) to (7 .56) with the heat transfer govern­
ing equations, we recognize that a strong analogy exists. However, in the analysis of the 
fluid, the second time derivative of the solution variable is taken instead of the first time 
derivative in heat transfer analysis. Hence, for example, when using a heat transfer program 
to calculate the frequencies of an acoustic fluid, the frequencies sought are obtained by 
taking the square roots of the calculated frequencies. We demonstrate this observation in the 
following example. 

EXAMPLE 7.8: Consider an acoustic fluid in a closed rigid cavity (see Fig. E7 .8). Use a 2 X 2 
mesh of eight-node elements to model the fluid and estimate the lowest frequency of vibration of 
the fluid. 

We use the governing fluid equation (7 .54) with the boundary condition (7 .55). Hence, by 
analogy to the development of the principle of virtual temperatures (see Example 7 .1), the 
appropriate variational equation is 

I. B<J,~ i/> dV + I. (V6<f,) • (Vet,) dV = 0 
v c v 

Substituting the finite element interpolations into (a), we obtain 

Mif, + K«f> = 0 

(a) 

(b) 
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n 

Unit depth 

n 

Acoustic fluid, ,B • 3.16 x 105 psi, 
p = 9.35 x 10-5 lb·sec2Jin4 

State variable ; 
Boundary condition a; • O on 

Figure E7 .8 Problem and finite element discretization of fluid in rigid cavity 

Chap. 7 

where the Mif, term corresponds to the strain energy and the K<f> term to the kinetic energy. The 
corresponding eigenvalue problem is 

K<f> = c,,2M<f> (c) 

The matrices K and M are calculated as in heat transfer analysis ( the heat conduction matrix K 
(with unit material conductivities in all directions) corresponds to the matrix Kin (b), and the 
heat capacity matrix C (with pc hieat replaced by 1 /c2lacoustic) corresponds to the matrix M 
in (b)]. transfer fluid 

The problem (c) can therefore be solved directly with a heat transfer program that calcu­
lates the eigenvalues of the problem Ke = A.Ce (see Section 9.6). For a 2 x 2 finite element 
discretization of eight-node elements, the results are A, = 0, A2 = (9166)2, .\.3 = (15,277)2, and 
hence, the lowest nonzero calculated frequency of the problem in (c) is Wi = 9166. We should 
note that the zero frequency corresponds to 4> = constant in the cavity. The analytical solution 
to the problem gives Wi = 9132. 

Equations (7 .54) to (7.56) have been used to develop an efficient finite element 
formulation to model the interaction between acoustic fluids and structures (see 
G. C. Everstine [A], L. G. Olson and K. J. Bathe [A], and Example 7.9). Also, the analysis 
procedure has been generalized to consider the fluid to undergo very large particle motions 
(see C. Nitikitpaiboon and K. J. Bathe (B]). 

EXAMPLE 7.9: Consider the problem shown in Fig. E? .9 and the model indicated. Evaluate 
the matrices for the fluid-structure interaction problem and calculate the lowest frequency of 
vibration. 

The analysis of the problem requires the coupling of the fluid response with the response 
of the spring. 

The principle of virtual work for the piston/spring gives 

iimu + iiku = iijF + iiR(t) (a) 

where r corresponds to the force exerted by the fluid on the piston/spring. The "principle of 



Unit cross-sectional area 
Bulk modulus /J"' 2.1 x 109 Pa 
Mass density p = 1000 kg/m3 

Spring element k = 107 

;, ~3 ~4 ;z .l· 
I • 10 

Frictionless 
rollers 

10 

One 3-node 
one-dimensional element 
to represent fluid 

Figure E7.9 Acoustic fluid in a cavity with piston 

virtual potentials" of the fluid is 

f cj, ~ i/J di'[+ f Vef, • VcJ, di'[= f ef,'u. di Jv, c Jv, J, (b) 

where I denotes the (wetted) fluid-structure interface and u. is the velocity of that interface (of the 
piston). We note that (b) is derived from (7.54) as we have shown (for the principle of virtual 
temperatures) in Example 7.1. Also, we have o</>/on I,= u., with n denoting the direction of the 
unit normal vector on the fluid domain (pointing outward to this domain). 

We now represent the fluid domain by one three-node element. Using the developments of 
Chapter 5 (see specifically Section 5.3), we have corresponding to (b), 

with MF, KF, and R. defined by 

[4 I 2][ .. J [ 7 I -8][ J [ J l 3 - 3 3 </>1 30 30 30 </>1 0 
2 iii/Ji+ -fo"j~ </>i= u. 
c Sym. 1/ ~ Sym. ~ </>J O 

(c) 

Next we can couple (a) and (c) by noting that u. in (c) is equal to the time derivative of the 
displacement u in (a) and thatfF in (a) is given by the pressure in the fluid, 

r = -pFci>I, = -pFci>i 

since the cavity has unit cross-sectional area. 
The coupled fluid-structure equations are 

m: 0 0 0 ii 0 0 PF 0 u 
---1-------------I 

0 
I 

</>1 0 0 I 0 0 I ci>1 
I 
I + 0 I -pFMF <bi 0 0 0 I PF I ci>i 
I 
I 

~ 0 I 0 0 0 0 I ~ 
k: 0 0 0 u R(t) ··r···---------

I 
I o• I </>1 0 
I 
I (d) o: -pFKF </>i 0 
I 

+ 
I 
I 

o: </>J 0 

669 
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TABLE E7.9 Frequencies of fluid-structure model in Fig. E7.9 

Coupled system 

<t>1 = 0 
<vi= 212 
un = 744 

Piston without fluid 

w = Vk/m = 100 

Fluid without piston, 
open cavity 

0 
229 
822 

Fluid with 
stationary piston, 

k = 00 

0 
502 

1122 

We note that to obtain symmetric coefficient matrices in (d) we have multiplied both sides 
of (c) by -pF, Also, note that in (d) the coefficient matrix to the first time derivatives of the nodal 
variables is not a damping matrix but simply a matrix that couples the fluid and structural 
response. There is no physical damping in this problem. 

The solution to the problem would be obtained by the time integration of the dynamic 
response using for example the trapezoidal rule (see Section 9.2.4). However, it is also interesting 
to evaluate the free-vibration frequencies of the fluid-structure system and compare them with 
the frequencies of the fluid and the structure when acting alone. Table E7. 9 lists these frequencies. 
We notice that in the fluid~structure system, because of the fluid, the (lowest frequency) structural 
vibration occurs at a 112 percent higher frequency. This frequency can be expressed as "'2 = 
V(k + k')/(m + m'), where k' and m' are an increase in stiffness and mass due to the fluid. 
Note also that the first frequency u>t = 0 corresponds to a "rigid body mode" with u = 0 and 
<J,1 = </>2 = c/>3 = constant. 

Further details of this formulation are given by L. G. Olson and K. J. Bathe [A] and 
C. Nitikitpaiboon and K. J. Bathe [B]. 

7 .3.5 Exercises 

7 .9. Use a computer program to solve for the seepage flow in the problem shown. Assume a very long 
dam. Verify that an accurate solution of the response has been obtained. 

~~ 
2 ft 

' Impermeable rock 

7.10. Use a computer program to solve for the flow of a fluid around the circular object shown. Assume 
an inviscid fluid and planar flow conditions. 
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Uniform velocity v 

7 .11. Use a computer program to solve for the torsional rigidity of the shaft considered in Example 7. 7. 
7.12. Calculate the steady-state distribution of voltage in the specimen shown. The solution of this kind 

of problem is of interest in monitoring crack growth (see, for example, R. 0. Ritchie and 
K. J. Bathe [A)). 

5.2inlf 
I 45° 
I 

~~~:: ~urrent ...... g1 ....... _,.~~~~t~2-o_ -_in~J_: .. ::::::: .. :~......., 
c.:; 50in + 60in ~ 

Electric conductivity Line of 
k = 1.0 symmetry 

Uniform current 
outflow-1 

7 .13. Use a computer program to solve for the three lowest frequencies of the fluid-spring system 
considered in Example 7 .9. Use a coarse and a fine finite element discretization and compare your 
results with those given in Example 7.9. 

7 .14. Use a computer program to solve for the frequency of the cylinder shown oscillating in a cavity 
of water. (Hint: Here the <I> formulation in Section 7.3.4 is effective.) 

7.4 ANAL VSIS OF VISCOUS INCOMPRESSIBLE FLUID FLOWS 

A frequently followed approach in the analysis of fluid mechanics problems is to develop the 
governing differential equations for the specific flow, geometry, and boundary conditions 
under consideration and then solve these equations using finite difference procedures. 
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However, during the last decade, much progress has been made toward the analysis of 
general fluid flow problems using finite element procedures, and at present very complex 
fluid flows are solved. Inviscid and viscous, compressible and incompressible fluid flows 
with or without heat transfer are analyzed and also the coupling between structural and fluid 
response is considered (see, for example, K. J. Bathe, H. Zhang, and M. H. Wang [A]). 

The objective in this section is to discuss briefly how the finite element procedures 
presented earlier can also be employed in the analysis of fluid flow problems and to present 
some important additional techniques that are required if practical problems of fluid flows 
are to be solved. We consider the large application area of incompressible viscous fluid flow 
with or without heat transfer. The methods applicable in this field of analysis are also 
directly used for compressible flow solutions, although additional complex analysis phe­
nomena (notably the calculation of shock fronts) need to be addressed when compressible 
fluid flow is analyzed. 

In order to identify the similarities and differences in the basic finite element formu­
lations of problems in solid (see Chapter 6) and fluid mechanics, consider the summary of 
the governing continuum mechanics equations given in Table 7.4. In this table and in the 
discussion to follow we use the indicial notation employed in Chapter 6. Considering the 
kinematics of a viscous fluid, the fluid particles can undergo very large motions and, for a 
general description, it is effective to use an Eulerian formulation. The essence of this 
formulation is that we focus attention on a stationary control volume and that we use this 
volume to measure the equilibrium and mass continuity of the fluid particles. This means 
that in the Eulerian formulation a separate equation is written to express the mass conser­
vation relation-a condition that is embodied in the determinant of the deformation gradi­
ent when using a Lagrangian formulation. It further means that the inertia forces involve 
convective terms that, in the numerical solution, result in a nonsymmetric coefficient matrix 
that depends on the velocities to be calculated. 

An advantage of an Eulerian formulation lies in the use of simple stress and strain rate 
measures, namely, measures that we use in infinitesimal displacement analysis, except that 
velocities must be calculated instead of displacements. However, if the domain of solution 
changes, such as in free surface problems, a pure Eulerian formulation would require the 
creation of new control volumes, and it is more effective to use an arbitrary Lagrangian­
Eulerian formulation, as briefly enumerated below. 

In the Lagrangian formulations (as discussed in Chapter 6), the mesh moves with (is 
"attached to") the material particles. Hence, the same material particle is always at the same 
element mesh point (given in an isoparametric element by the r, s, t coordinates). In the 
finite element pure Eulerian formulation the mesh points are stationary and the material 
particles move through the finite element mesh in whichever way the flow conditions govern 
such movements. In an arbitrary Lagrangian-Eulerian formulation, the mesh points move 
but not necessarily with the material particles. In fact, the mesh movement corresponds to 
the nature of the problem and is imposed by the solution algorithm. While the finite element 
mesh spans the complete analysis domain throughout the solution and its boundaries move 
with the movements of free surfaces and structural (or solid) boundaries, the fluid particles 
move relatively to the mesh points. This approach allows the modeling of general free 
surfaces and interactions between fluid flows and structures (see, for example, J. Donea, S. 
Giuliani, and J.P. Halleux [A], A. Huerta and W. K. Liu [A], C. Nitikitpaiboon and K. J. Bathe 
[B], K. J. Bathe, H. Zhang, and M. H. Wang [A] and S. Rugonyi and K. J. Bathe [A]). 
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To demonstrate the differences in the Lagrangian and Eulerian formulations consider 
the following example. 

EXAMPLE 7.10: The motions of fluid particles in a duct are given by 

'x, = -5 + v'25 + 10 °x1 + (0x1)
2 + 4t (a) 

(i) Calculate the velocities and accelerations of the particles. Express your results in the Lagran­
gian form 'u, = /1(0x1, t), 'u1 = Ji(0

x1, t). 

(ii) Eliminate 0x1 from your expressions in (i) to obtain the spatial expressions for the velocities 
and accelerations. 

(iii) Show that your expression for the acceleration in (ii) may also be obtained by combining the 
local acceleration and convective acceleration (i.e., by use of the usual Eulerian expression). 

To obtain the result requested in (i) we simply differentiate the expression in (a) with 
respect to time and note that d'xi/dt = d 1u1/dt (because d0x 1/dt = 0) 

d'u1 2 
(b) -= 

(25 + 10 OXt + (0x,)2 + 4t]112 dt 

Similarly, 
d2 'u1 -4 

(c) --= 
dt 2 [25 + 10 OXl + (0x1)2 + 4t ]312 

To express (b) and (c) in terms of 'xi we might solve from (a) for 0x1 in terms of 'x1 and t. 
However, in this simple example we note 

'xi + 5 = V25 + 10 °x1 + (0x1)2 + 4t 

and hence 

d2 'u1 -4 
dt2 = ('x, + 5)3 (d) 

In the Eulerian formulation, we simply writex1 = 1x1, and it is implied thatx1 can be any 
coordinate value. Of course, the expressions in (d) are also valid for any time. We should 
recognize that in (d) we focus our attention on the coordinate x, and measure the velocity and 
acceleration of the particles as they pass that coordinate. In this calculation we do not use (and 
generally do not care to know) the initial positions of the particles. 

On the other hand, if we use (b) and (c), we focus our attention on the particles given by 
their initial positions and we measure the velocities and accelerations of these particles at a 
particular given time. 

We may also obtain the acceleration in (d) from the general Eulerian expression of 
acceleration (see Table 7.4). Here we employ (without using the superscript) 

which gives 

Dv av av -=-+-v· 
Dt at ax ' 

1:;: :, (x 1 s) + [ :x (x ! s)] (x 1 s) - 0 (x : 5)3 

Hence, the local derivative of the velocity is zero and the convective part of the acceleration is 
-4/(x + 5)3. 
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7 .4.1 Continuum Mechanics Equations 

Let us summarize the continuum mechanics equations for incompressible fluid flow includ­
ing heat transfer. These equations are of course developed in detail in standard textbooks 
on fluid mechanics (see, for example, F. M. White [A] or H. Schlichting [A]), but we 
summarize the equations here to state the notation and provide the basis for the derivation 
of the governing finite element equations. We will note that in some respects the notation 
below is different from the notation we used in the analysis of solid mechanics problems (see 
Chapter 6) because, for example, the velocity v, is now the basic kinematic variable to be 
calculated instead of the displacement solved for in the analysis of solids. 

Using a stationary Cartesian reference frame (xi, i = l, 2, 3), the governing equations 
of incompressible fluid flow within the domain V are, using index notation, the usual 
summation convention, and implying that the conditions at time t are considered without 
use of a superscript t (which is used in Table 7.4), 

momentum: 

constitutive: 

continuity: 

heat transfer: 

Here we have 

(av, ) 8 P - + V1 ·Vi = T:1· · + f· df ,J J i),J I 

Tij = - p8;j + 2µeij 

V;,; = 0 

v, = velocity of fluid flow in direction x, 
p = mass density 

Tu = components of stress tensor 
ff = components of body force vector 
p == pressure 
8;i = Kronecker delta 
µ, = fluid (laminar) viscosity 

eii == components of velocity strain tensor= !(v;,i + Vj,1) 

Cp = specific heat at constant pressure 
(J = temperature 

k = thermal conductivity 

(7.57) 

(7.58) 

(7.59) 

(7.60) 

q8 = rate of heat generated per unit volume [this term also includes the rate of heat 
dissipated ( =2µ,e;ieii)] 

The boundary conditions corresponding to (7 .57) to (7 .60) are 

Prescribed fluid velocities vr on the surface S0 

(7.61) 
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Prescribed tractions ff on the surface S1, 

~~ ft n~ 
where the ni are the components of the unit normal vector n (pointing outward) to the 
fluid surface and the ff are the components of the (physical) traction vector. 
Prescribed temperatures 85 on the surface Se, 

8 ls8 = 05 (7 .63) 

Prescribed heat flux into the surface Sq, 

iJ(J I k- = qS 
fJn s 

q 

(7.64} 

where q5 is the heat flux input to the body. We note that for (7.61) to (7.64) the 
discussions in Sections 4.2.1 and 7 .2.1 are directly applicable. 

The heat flux input in (7.64) comprises the effect of actually applied distributed heat 
flow, and the effect of convection and radiation heat transfer. These applied heat fluxes are 
included in the analysis as discussed in Section 7 .2. 

Another form of (7 .57) is obtained if these momentum equations are written to also 
include the continuity condition, see Example 7.12. This form is referred to as the conser­
vative form (because momentum conservation is explicitly imposed) and is largely used in 
finite volume discretization methods, see S. V. Patankar [A]. 

Equations (7.57) to (7.60) are the standard Navier-Stokes equations governing the 
motion of a viscous, incompressible fluid in laminar flow with heat transfer. Inherent 
nonlinearities are due to the convective terms in (7 .57) and (7 .60) and the radiation 
boundary condition in (7 .64 ). Additional nonlinearities arise if the viscosity coefficient 
depends on the temperature or on the velocity strain, if the specific heat Cp, conductivity k, 
and convection and radiation coefficients depend on temperature, and of course if turbu­
lence descriptions are included (see, for example, W. Rodi [A]). 

Before proceeding to develop the finite element equations, let us assume thatµ, cp, and 
k are constant and rewrite (7 .57) to (7 .60) into standard forms that reflect some important 
characteristics of fluid flows. If we substitute (7.58) and (7.59) into (7.57), we obtain 

p(V; + V;,jVj) = - p,; + Jf + µVi,jj (7.65) 

Hence (7 .65) is the momentum equation containing the incompressibility condition. 
Let us now define the nondimensionalized variables 

x* = :!!. 
I L' 

V· vf == ...!; 
v 

tv 
t* = -

L 

p* == J!_, 
pv2' 

JiJ* = JfL 
I pV2 

(}*=~· B*-~ 
A8 • q - pep Jl(}v 

(7.66) 

where L, v, 80, and d8 are chosen characteristic values for length, velocity, temperature, and 
temperature difference of the problem considered. Using these nondimensionalized vari­
ables, we can rewrite the momentum and energy equations in the following forms. 
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t}:I' + i,:1',v:1' = -p*,· + 1r· + _!_ vfjj ' ,.1 J • Re . 

and 

'-v--' ·------
convection diffusion 

. s• 1 * ()* + (J:+!v~ = q + -() .. ., ' Pe ·" 
'-v--' .__...., 

convection diffusion 

where Re is the Reynolds number 

and Pe is the Peclet number 

vL 
Re=-; 

v 

vL 
Pe=-; 

a 
k 

a=­
pcp 
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(7.67) 

(7.68) 

(7.69) 

(7.70) 

in which v and a are the kinematic viscosity and diffusivity of the fluid. Note that using the 
Prandtl number Pr = v/a, we have Pe = (Pr)(Re). 

The relations (7 .67) and (7 .68) demonstrate a fundamental difficulty in the solution 
of fluid flow problems: as the Reynolds number increases, the fluid flow is dominated by the 
convection term in (7 .67), and similarly, as the Peclet number increases, the heat transfer 
in the fluid is dominated by the convection term in (7 .68). General analysis procedures must 
therefore be able to solve for the response governed primarily by diffusion at low Reynolds 
and Peclet numbers and primarily by convection at high Reynolds and Peclet numbers. We 
will refer to this observation again in Section 7.4.3. 

7 .4.2 Finite Element Governing Equations 

The finite element solution of the continuum mechanics equations governing the fluid flow 
is obtained by establishing a weak form of the equations using the Galerkin procedure (see 
Section 3.3.4 and Examples 4.2 and 7 .1 ). The momentum equations are weighted with the 
velocities, the continuity equation is weighted with pressure, and the heat transfer equation 
is weighted with temperature. Integrating over the domain of interest V and using the 
divergence theorem-to lower the order of the derivatives in the expressions and to incor­
porate the natural boundary conditions as forcing terms-gives the variational equations 
to be discretized by finite element interpolations: 
momentum: 

(7.71) 

continuity: I P1>t,I dV = 0 (7.72) 
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heat transfer: 

J, 8pcp(iJ + 6,,v,) dV + J, k6,;8,1 dV = J, 6q8 dV + r 6 5q5 dS (7.73) 
v v v Jsq 

where the overbar denotes a virtual quantity. 
We may refer to the relation in (7. 71) as the principle of virtual velocities, and of 

course (7.73) represents the principle of virtual temperatures [see (7.7)]. The relations in 
(7.71) to (7.73) are very similar to the equations we used in Sections 4.2 and 7.2 for the 
stress and temperature analysis of solids, but the Eulerian formulations in (7.71) and (7.73) 
include the convective terms. Also, incompressible conditions are considered, and there­
fore, the finite element formulations and discussions in Sections 4.4.3 and 4.5 are now 
important. Indeed, we can now directly apply the mixed formulations in Section 4.4.3 but 
using velocity (instead of displacement) and pressure as variables. 

Assume that the finite element discretization of (7. 71) to (7. 73) is performed with any 
one of the elements presented in Section 4.4.3, with velocity and pressure as variables and 
temperature as an additional variable at all velocity nodes (in practice, we would of course 
use the isoparametric generalizations; see Section 5.3.5). The governing matrix equations 
for a single element are then 

Mo i + (Kµ.ov + Kvo)V + Kt>pf, = Ra + Rs 

Krpv = o 
ci + (Kve + Koo)O = Qs + Qs 

(7.74) 

(7.75) 

(7.76) 

where v, 0, and p are, respectively, the unknown nodal point velocities and temperatures, 
and nodal point or element internal pressure variables. 

For example, in two-dimensional planar flow analysis, we have for an element in the 
x2, X3 plane, 

Mv2 

0 

Sym. C 

K,...v203 
Kµ.v 3v3 + Kvv3 

Ki3P 
0 

[

Rs2 + Rs2] 
_ Rs3 + Rs3 (7.77) 
- 0 

Qa + Qs 

Let Hand H contain the interpolation functions corresponding to the velocities and temper­
ature, and pressure, respectively; then 

Mvz = Mo3 = p L H7 H dV (7.78) 

KIWZ"Z = L (2µH:'°x2 H,x2 + µH:x3H,x3) dV 

Kµu 2u3 = L (µ,H?"x3ff,x2) dV (7.79) 
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K,.tt;3o3 L {2µ,H;x3H,x3 + µ,H;x2H,x2) dV 

Kvo2 :=: Kw3 = p L (HTHv2 H,x2 + ffTHV3 H,x3) dV 

Ko:zp = - L H;;iJi dV 

K.,3P = - L H;x3B dV 

RB= L errs dV 

Rs = l esrrs dS s, 
c = p L CpHTff dV 

Koo = L k(H;x2 H.x2 + H:x3 H,x3) dV 

K.,, = p L CpHTHv2H.x2 dV + p L CpHTHv3H,.r3 dV 

QB= L HTq 8 dV 

Qs = l ffS1"qS dS 
Sq 

679 

(7.80) 

(7.81) 

(7.82) 

(7.83) 

(7.84) 

(7.85) 

(7.86) 

(7.87) 

(7.88) 

(7.89) 

Here we should note that in considering a straight boundary the components of rs are 

OVn 
f,, = - p + 2µ, an 
!, _ (ov, + OVn) 

I - /J, On at 

(7.90) 

(7.91) 

where n and t denote the coordinate axes in the normal and tangential directions on the 
boundary and Vn and v, are the normal and tangential boundary velocities. 

We note that since totally incompressible conditions are considered, the diagonal 
elements corresponding to the pressure variables are zero. Hence, even if the pressure 
variables stored in p correspond to element internal variables and not nodal point variables 
(as in the u/p formulation; see Section 4.4.3), the pressure variables cannot be statically 
condensed out at the element level. For such a procedure to be used, we must consider an 
almost incompressible condition, meaning that (7.72} would need to be replaced by (see 
Sections 4.4.3 and 4.5) 

[P(! + v,.,) dV = o (7.92) 

in which K (being very large) is the bulk modulus. 
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We can now refer to all the procedures discussed in Chapters 4 (notably Sections 4.4 
and 4.5) and 5. They are directly applicable to obtain appropriate finite element discretiza­
tions of the governing fluid flow equations (see also the exercises at the end of this section). 
Of course, we note that the resulting finite element equations are in general highly nonlinear 
equations [see (7 .77)] because of the convective terms and boundary radiation conditions 
and because in general the material properties are not constant (e.g., the viscosity µ, 
depends significantly on the temperature 8). 

The finite element governing fluid flow equations-given for a two-dimensional ele­
ment in (7.77)-can be written in the form 

R-F=O (7.93) 

This relation must hold for all times considered, and the solution can be obtained 
incrementally for times At, 2At, ... , as discussed in Chapters 6 and 9. In steady-state 
analysis, the terms Mv and CO are neglected, and the incremental analysis can be pursued 
using a form of Newton-Raphson iteration for each time t + At considered, time then 
denoting merely the load levels (see Chapter 6). In transient analysis, using implicit integra" 
tion, a form of Newton-Raphson iteration should also be used for each time step. Alterna­
tively, explicit integration can be performed on the velocity and temperature variables, while 
the incompressibility constraint demands implicit integration of the pressure equations. 

A major difficulty in the solution of fluid flow problems is that the number of solution 
variables is generally very large ( to obtain a realistic resolution of the fluid response, very 
fine finite element discretizations need to be employed) and that the coefficient matrices are 
nonsymmetric. Hence, explicit schemes that do not require the solution of a set of equations 
(see Sections 9.5.1 and 9.6.1) and iterative methods for the solution of equations are very 
attractive (see Section 8.3 ). 

Finally, we may ask why the relations (7.57) and (7.60) were used to develop the finite 
element equations instead of (7 .67) and (7 .68). One reason is that (7 .57) and (7 .60) are 
directly applicable to flow with nonconstant material conditions. Another reason is that the 
momentum equation (7 .57) when used in the Galer.kin method leads to a surface force 
vector that contains the physical tractions given in (7.90) and (7.91), whereas if (7.67) is 
used, the resulting surface "force" vector contains nonphysical components (see Exam­
ple 7.11). Therefore, the formulation based on (7.57) is frequently more general and 
natural, in particular when arbitrary Lagrangian-Eulerian formulations are developed that 
are used for the analysis of free surface flows and interactions between fluid flows and 
structures. Of course, the finite element matrix equations (7.74) to (7.76) are applicable to 
the solution of fluid flow and heat transfer problems in any set of consistent units, including 
the use of nondimensionalized variables. 

In the following examples we consider two additional forms of the Navier-Stokes 
equations that can be used for finite element solutions. 

EXAMPLE 7.11: Consider the solution of the Navier-Stokes equations [see (7.67)], 

1 
V;,ivi - p,; + Re Vi.ii i, j = l, 2 

Use the Galerkin procedure by weighting this equation with velocity and derive the naturally 
arising boundary terms. Consider two-dimensional analysis and compare these terms with the 
expressions of the physical tractions. 
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Using the Galerldn procedure. we obtain 

f v·(v· ·V· + p · - ..!..v . .. ) dV = 0 Jv , '·J , ., Re ,. 1, 
(a) 

The boundary terms are established as in Examples 4.2 and 7.1. Here we use the identities 

V;p,jOij = (vipo;..;),j - Vt,jPOij 

and V1V1,JJ = (V1V1.1).1 - V1,JVl,j 

Hence, using the divergence theorem, we obtain from (a) the boundary term 

( v·(- pa .. + ..!.. V· )n· dS J s ' ,, Re '· i " 

However, this relation can be interpreted as 

L V1fi dS 

where - 1 Ji = (-p8ii + Re V;,)n1 

Considering a straight boundary. we have 

- 1 8vn f,,=-p+-­
Re iJn 

ii =..!__av, 
Re 8n 

(b) 

where n and t denote the coordinate axes in the directions normal and tangential to the surface 
boundary. 

The relation (7.67) was obtained using nondimensionalized variables, and for given char­
acteristic velocity and length we have 1/Re - v. Hence. we see that the expressions in (b) are 
not equal to the actual force expressions in (7.90) and (7.91). 

EXAMPLE 7.12: Show that the momentum equations (7 .57) can also be written as 

8Vi B 
P - + F,... = !· Qf IJ.J I 

(a) 

where (b) 

Then identify the difference that will arise when (a) is used instead of (7 .57) in the Galerkin 
procedure to obtain the governing finite element equations. 

Using (b), we obtain 

Fu. 1 = (pVfV1 - Tij). 1 = pv1.1v, + pvivi,i - Tu,i = pv,.jVJ - 'ltJ,i (c) 

Hence, by inspection we see that (c) used in (a) gives (7.57). 
The form (a) is referred to as the conservative form of the momentum equations because, 

by the divergence theorem, for any subdomain Vso of the fluid 

f Flj,J dV = f FJ)ni dS 
Jvso Jsso 

where Sso is the surface area of the volume Vso and the ni are the components of the unit normal 
vector to Sso, Similarly. the energy equation can also be written in conservative form. 
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To identify the difference in the finite element discretization. we only need to compare the 
terms f v vt(viv,),j dV and f v v;(V1.jV;) dV because the other terms are identical, and the difference 
is the term f v v;(v,vi,,) dV. The form of the momentum equations in (a) is typically used in finite 
volume methods (see$. V. Patankar (A]). Note, however, that if (a) is used in a finite element 
(Galerkin) formulation, the use of the divergence theorem gives on the surface S1 the usual 
traction term (see Example 4.2) and an additional term involving the unknown velocities. 

7 .4.3 High Reynolds and High Peclet Number Flows 

The finite element formulation of fluid flows presented in the previous section is a natural 
development when we consider the formulations presented earlier for the analysis of solids. 
The standard Galerkin procedure was used on the differential equations of motion and heat 
transfer, resulting in the "principle of virtual velocities" and the "principle of virtual 
temperatures." The finite element discretization is appropriately obtained with finite ele­
ments that are stable and convergent with the incompressibility constraint. Hence, we used 
elements that satisfy the inf-sup condition, as discussed in Sections 4.4.3 and 4.5. With such 
elements, excellent results are obtained for low-Reynolds-number flows (in particular 
Stokes flows). 

However, as we pointed out in Section 7.4.2, a major difference between the formu­
lations for the analysis of fluid flows and of solids is the convective terms arising in the 
Eulerian fluid flow formulation. These convective terms give rise to the nonsymmetry in 
the finite element coefficient matrix, and when the convection is strong (as defined by the 
Reynolds and Peclet numbers; see discussion below), the system of equations is strongly 
nonsymmetric and then an additional numerical difficulty arises. 

However, before we discuss this difficulty, let us recall that of course depending on the 
flow considered, as the Reynolds number increases and when a certain range is reached, the 
flow condition turns from laminar to turbulent. In theory, the turbulent flow could still be 
calculated by solving the general Navier-Stokes equations presented in the previous section, 
but such solution would require extremely fine discretization to model the details of turbu­
lence. For practical flow conditions, the resulting finite element systems would be too large, 
by far, for present software and hardware capabilities. For this reason, it is common practice 
to solve the Navier-Stokes equations for the mean flow and express the turbulence effects 
by means of turbulent viscosity and heat conductivity coefficients and use wall functions to 
describe the near-wall behaviors. 

The modeling of turbulence is a very large and important field (see W. Rodi [A]). and 
the finite element procedures we presented earlier for solution are in many regards directly 
applicable. However, one important factor in the finite element scheme must then also be 
that the Navier-Stokes equations corresponding to laminar flow at high Reynolds and Peclet 
numbers can be solved (with reasonably sized meshes). Namely, it is this solution that 
provides the basis for obtaining the solution of the turbulent flow. 

Hence, in the following we briefly address the difficulty of solving high Reynolds (or 
Peclet) number conditions assuming laminar flow. For this purpose let us consider the 
simplest possible case that displays the difficulties that we encounter in general flow condi­
tions. These difficulties arise from the magnitude of the convective terms when compared 
to the diffusive terms in (7.67) and (7.68). Hence, we consider a model problem of one­
dimensional flow with prescribed velocity v (see Fig. 7.4). The temperature is prescribed 
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Figure 7.4 Heat transfer in one· 
dimensional flow condition; prescribed 

vL 
velocity v; q8 = O; Pe=-, a= k/pc,, 

a 

at two points, which we label x = 0 and x = L, and we want to calculate the temperature 
for O < x < L. 

The governing differential equation obtained from (7 .60) is 

with the boundary conditions 
atx = 0 

atx = L 

(7.94) 

(7.95) 

and the left-hand side in (7.94) represents the convective terms and the right-hand side the 
diffusive terms. 

Of course, the convective and diffusive terms appear in a similar form in the Navier­
Stokes equations [see (7.67)]. which can also be considered in a one-dimensional 
analogously simple form. However, the resulting differential equation is nonlinear in v, 
whereas (7.94) is lineaiin 8. Since the solution of (7.94) already displays the basic solution 
difficulties, we prefer to consider (7.94) but recognize that the basic observations are also 
applicable to the solution of the Navier-Stokes equations. 
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Figure 7.4 shows for various Peclet numbers, Pe = vL/a, the exact solution to the 
problem in (7.94), given by 

exp (~L'\) - 1 
(J - OL ---= 
(JR - (JL exp (Pe) - 1 

(7.96) 

Hence, as Pe increases, the exact solution curve shows a strong boundary layer at x = L. 
To demonstrate the inherent difficulty in the finite element solution, let us use two­

node elements each of length h corresponding to a linearly varying temperature over each 
element. If we use the principle of virtual temperatures corresponding to (7. 73) ( that is, we 
use the (standard] Galerkin method), we obtain for the finite element node i the governing 
equation 

(-1 - p;')oi-1 + 28, + (p;e - 1 )oi+l = 0 (7.97) 

where the element Peclet number is Pee = vh/a. 

1 - Pee/2 1 + Pee/2 
Hence 8; == 

2 
81+1 + 

2 
8,-1 (7.98) 

However, this equation already shows that for high values of Pee, physically unrealistic 
results are obtained. For example, if 6;-1 = 0 and 8i+1 = 100, we have 8, = 50(1 - Pe"/2), 
which gives a negative value if Pe"> 2! 

Figure 7 .5 shows results obtained in the solution of the model problem in Fig. 7.4 with 
the two-node element discretization for the case Pe = 20 when using increasingly finer 
meshes. Actually, the analytical solution of (7 .97) shows that for a reasonably accurate 
response prediction we need Pe" smaller than 2. This result is also reflected in Fig. 7 .5 and 
means that a very fine mesh is required when Pe is large. In practical analyses, flows of very 
high Peclet and Reynolds numbers (Re - 106) need be solved, and the finite element 
discretization scheme discussed in the previous section must be amended to be applicable 
to such problems. 
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The shortcoming exposed above was recognized and overcome early by researchers 
using finite difference methods (see R. Courant, E. Isaacson, and M. Rees [A]). Namely, 
considering (7.97), we realize that this equation is also obtained when central differencing 
is used to solve (7.94) (see Section 3.3.5). Hence, the same solution inaccuracies are seen 
when the commonly employed central difference method is used to solve (7.94). 

The remedy designed to overcome the above difficulties is to use upwinding. In the 
finite difference upwind scheme, we use 

dfJ I· = 8; - ei-1 
dx I h ifo > 0 

dfJ I· = (Ji+ I 81 
dx I h 

(7.99) 

ifv < 0 
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In the following discussion we first assume v > 0 and then we generalize the results to 
consider any value of v [see (7.115)]. 

If v > 0, the finite difference approximation of (7.94) is 

(-1 - Pee)8;-1 + (2 + Pee)8; - 8;+1 = 0 (7.100) 

Figure 7.5 shows the results obtained with this upwinding (denoted as "full upwinding") for 
the problem being considered and shows that the oscillating solution behavior is no longer 
present. 

This solution improvement is explained by the nature of the (exact) analytical solu­
tion: if the fl.ow is in the positive x-direction, the values of (J are influenced more by the 
upstream value 8L than by the downstream value OR, Indeed, when Pe is large, the value of 
O is close to the upstream value (JL over much of the solution domain. The same observation 
holds when the flow is in the negative x-direction, but then fJR is of course the upstream 
value. 

The intuitive implication of this observation is that in the finite difference discretiza­
tion of (7.94), it should be appropriate to give more weight to the upstream value, and this 
is in essence accomplished in (7.100). Of course, it is desirable to further improve on the 
solution accuracy, and for the relatively simple (one-dimensional) equation (7.94), such 
improvement is obtained using different approaches. We briefly present below three such 
techniques that are actually closely related and result in excellent accuracy in one­
dimensional analysis cases. However. the generalization of these methods to obtain small 
solution errors using relatively coarse discretizations in general two- and three-dimensional 
flow conditions is a difficult matter (see the end of this section). 

Exponential Scheme 

The basic idea of the exponential scheme is to match the numerical solution to the analytical 
(exact) solution, which is known in the case considered here (see D. B. Spalding [A] and 
S. V. Patankar [A] for the development in control volume finite difference procedures). 

To introduce the scheme, let us rewrite (7.94) in the form 

df 
dx 

0 

where the flux f is given by the convective minus diffusive parts, 

d8 
f = v9 - a dx 

The finite difference approximation of the relation in (7.101) for station i gives 

f l1+1/2 - /IH/2 = 0 

(7.101) 

(7.102) 

(7.103) 

This equation of course also corresponds to satisfying flux equilibrium for the control 
volume between the stations i + ! and i - ! . 

We now use the exact solution in (7.96) to express fi+1/2 and fi-112 in terms of the 
temperature values at the stations i - l, i, i + 1. Hence, using (7 .96) for the interval i to 
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i + 1, we obtain 

/i+112 = v[ 8; + e;\;ee~i+~ 1] 

Similarly, we obtain an expression for fi-1/2, and the relation (7 .103) gives 

(-1 - c)8;-1 + (2 + c)O; 61+1 0 

where 

687 

(7.104) 

(7.105) 

(7.106) 

We notice that for Pee = 0 the relation in (7 .105) reduces to the use of the central difference 
method (and the Galerkin method) corresponding to the diffusive term only (because the 
convective term is zero) and that (7 .105) has the form of (7 .100) with c replacing Pee. This 
scheme based on the analytical solution of the problem in Fig. 7 .4 of course gives the exact 
solution even when only very few elements are used in the discretization (see Fig. 7 .5). The 
scheme also yields very accurate solutions when the velocity v varies along the length of the 
domain considered and when source terms are included. A computational disadvantage is 
that the exponential functions need to be evaluated, and in practice it is sufficiently accurate 
and somewhat more effective to use a polynomial approximation instead of the (exact) 
analytical solution, which is referred to as the power law method. 

Petrov-Galerkin Method Scheme with a Parameter 

The principle of virtual temperatures, as presented and used in Section 7 .2, represents an 
application of the classical Galerkin method in which the same trial functions are used to 
express the weighting and the solution (see Section 3.3.3). However, in principle, different 
functions may be employed, and for certain types of problems such an approach can lead 
to increased solution accuracy. 

In the Petrov-Galerkin method, different functions are employed for the weighting 
than for the solution quantities. Let us assume that we are still using two-node elements to 
discretize the domain of the problem in Fig. 7.4. Then the ith equation is 

I 
+h ~ dhj I +h dii, dhj 

h;v-d ~dx+ -d a-d Ojdx=O 
-h x -h x x 

j = i - 1, i, i + 1 (7.107) 

where ii., denotes the weighting function and the h1 are the usual functions of linear temper­
ature distributions between nodes i - l, i, and i + 1 (see Fig. 7.6). 

l....,.__ h--111+-+---h~ 
i-1 i+1 

x 
Figure 7.6 Finite element functions 
used in (7.107) 
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The basic idea is now to choose h
1 

such as to obtain optimal accuracy. An efficient 

scheme to use is 

- h dh1 h. = h - r-- for v < 0 
I I 2 dx (7.108) 

Using this weighting function in (7 .107), we obtain for the case v > 0, 

[-1- Pf (r+ 1) Jo,_,+( 2+ rPe')o, +[- Pf (r-1)-1]0,.,; o (7.109) 

We note that with y = 0 the standard Galerkin finite element equation in (7.97) is 
recovered, and when r 1, the full upwind finite difference scheme in (7 .100) is obtained. 

The variable r can be evaluated such that nodal exact values are obtained for all values 
of Pee (see I. Christie, D. F. Griffiths, A. R. Mitchell, and 0. C. Zienkiewicz [A] and Exercise 
7.19). 

r = coth( Pf)- p!• (7.110) 

The case v < 0 is solved similarly. Of course, the results of our test problem in Fig. 7 .5 using 
the Petrov-Galerkin method with the r value given above are the same as those using the 
exponential upwinding. 

Flow-Condition-Based Interpolation Schemes 

Since the analytical solution to the one-dimensional problem is known, we can directly use it in 
constructing the finite element interpolation functions. This is the basic approach in the flow­
condition-based interpolation (FCBI) schemes, see K.J. Bathe and H. Zhang [A]. In this 
approach the interpolation function for 8 , the advection variable, is chosen based on the flow 
velocity conditions. 

Using again two-node elements, the governing ith equation is given by the Petrov-
Galerkin formulation 

I+h dh f h dh dh 
h,v-1 8 dx+ - 1 a-1 8. dx = 0 

h dx j h dx dx J 

j = i - 1, i, i + 1 (7.111) 

where now the solution variable 8 is interpolated in an element based on (7.96) using h. with 
J 

q = Pe" I h 

h
-. = 

1 
exp(qx)-1 h- = exp(qx)-1 

- (left node) or - (right node) 
I exp(Pee) -1 1 exp(Pe") -1 

(7.112) 

Comparison of Methods 

Each of the above schemes gives of course the exact nodal point solutions in the one­
dimensional solution of (7.94) and (7.95). The differences in the schemes arise when source 
terms are imposed and the schemes are used in multiple dimensions. 

An interesting observation and valuable interpretation is that all these methods are in 
essence equivalent to a Galerkin approximation with an additional diffusion term. Namely if 
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we write the Galerkin solution of (7.94) with an additional diffusion term a/3, we obtain 

I+h[ dh. dh dh. J h.v-1 fl +-i (1 + P)a-1 0. dx = o 
h 

1 dx' dx dxJ 
j = i -1, i, i + 1 (7.113) 

where /3 is a nondimensional constant, and we now consider v to be positive or negative. 

The solution of (7.113) is 

-( 1 + q) °'-I + 2{Ji - ( 1- q) ~+I = 0 

where 
Pe" 1 

q=---
2 1 + /3 

(7.114) 

(7.115) 

The value of /3 depends on which method is used, with /3 = 0 giving the standard Galerkin 

technique. Note that this observation does not suggest that we solve (7.94) with the diffusivity 
(1 + /3)a . Instead, the observation shows that the above upwinding techniques give discretized 

equations obtained with the Galerkin method for the diffusivity (1 + /3)a in order to obtain an 

accurate solution of (7.94). 

Generalization of Techniques to Multi-dimensions 

With the excellent experiences of the schemes in one-dimensional solutions, the 
approaches seem attractive for the development of methods for general two- and three­
dimensional flow conditions. In fluid flows, of course, the Reynolds number is used instead of 
the Peclet number. However, effective and accurate solution schemes for two- and three­
dimensional complex flows have been difficult to reach. The difficulty is to have stability and 
obtain good accuracy in solutions. 

In finite difference control volume methods, the exponential and power law schemes 
(see Exercise 7.18) have been quite simply applied to the different coordinate directions using 
respective flow velocities, and generalizations have also been achieved; see, for example, W.J. 
Minkowycz, E.M. Sparrow, G.E. Schneider, and R.H. Pletcher [A]. 

For finite element analyses the Petrov-Galerkin scheme has been developed for general 
two- and three-dimensional solutions by applying, in essence, the one-dimensional scheme 
along the streamlines within each element, resulting in the streamline upwind Petrov-Galerkin 
(SuPG) method (see A.N. Brooks and T.J.R. Hughes [A] and C. Johnson, U. Navert, and J. 
Pitk!ranta [A]). The method can yield quite accurate and effective solutions when fine meshes 
are used but is not very stable, in particular when fluid-structure interaction solutions are 
sought, in which the boundary of the fluid domain changes. 

In such analyses, a flow-condition-based scheme can be more effective. Here the flow 
conditions establish interpolation functions for the advection terms along the element edges 
(see above) that are then interpolated over the element domain, see K.J. Bathe and H. Zhang 
[A] and H. Kohno and K.J. Bathe [A, B]. In addition, with the FCBI approach also a control 
volume-type scheme is used in the Galerkin formulation; for example, for the heat transfer 
equation 

(7.116) 
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where w is a constant weight function over the control volume V associated with the node. This 
approach enforces the momentum conditions strongly and directly on the nodes of the mesh 
(satisfying nodal and element properties like in solid mechanics, see Section 4.2.1) and 
provides for further stability (see K.J. Bathe and H. Zhang [A] and B. Banijamali and K.J. 
Bathe [A]). 

7 .4.4 Fluid-Structure Interactions 

Based on the solution schemes of solids and structures and fluid flow problems, we can 
proceed to also briefly show how coupled fluid flow structural interactions (FSI) problems can 
be solved. Numerous publications have appeared on this subject, see for example S. Rugonyi 
and K. J. Bathe [A], K. J. Bathe and H. Zhang [B,C] and X. Wang [A] with the references 
therein, and various approaches can be followed for solutions. We shall only briefly focus here 
on a natural extension of the finite element procedures already presented in this book. 
Fundamentally, the discretizations of fluid flows and structures need to be coupled to satisfy 
the conditions of equilibrium (momentum transfer) and compatibility along the fluid-structure 
interfaces. Specific considerations arise because, in general, the fluid-structure boundaries will 
move and the meshes used for the structure and the fluid are quite different. For the structure 
a Lagrangian formulation is used in which the particles and boundaries are traced ( the finite 
elements are attached to the material particles moving through space) and no special 
considerations arise for FSI solutions. However, for the fluid a pure Eulerian formulation is 
not adequate because then the boundaries must be stationary ( the control volumes, and 
elements describing them, are fixed in space). Also, the fluid flow is typically solved using a 
much finer mesh than used for the structure. 

Since in general FSI solutions, the fluid domain changes as the structure deforms, an 
arbitrary Lagrangian-Eulerian (ALE) formulation can be used, see for example C. 
Nitikitpaiboon and K. J. Bathe [B]. Let u be the fluid velocity and ij be the velocity of a 
reference domain, then the time derivatives in the continuity, momentum and energy equations 
are obtained by considering an arbitray volume V of the reference domain. For example, the 
continuity equation is 

(7.117) 

where S is the surface of V and n the outward unit normal to it. In practice, the velocity of the 
reference domain is the velocity of the finite element mesh used and for large motions of the 
boundary, this mesh needs to be moved incrementally, or even newly generated, throughout the 
finite element analysis of the FSI problem. Special algorithms based on the solution of 
Laplace equations and spring models have been established to calculate the new nodal point 
positions in the fluid mesh. Then the solution schemes discussed above for the structure and 
the fluid flow can directly be used. 

However, throughout the solution, the fluid-structure interface conditions need to be 
satisfied. Referring to Fig. 7.7, the fluid mesh nodes are constrained to be on the solid 
boundary, they can slide along the solid elements (to preserve a good fluid mesh quality) but 
must stay on the boundary. As also implied in the figure, the tractions resulting from the fluid 
stresses in element m and represented as fluid nodal point forces 

(7.118) 
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are applied to the structure, using the virtual work principle. In this way, the elementary patch 
tests are satisfied for the combined fluid-structure finite element assemblage, see K.J. Bathe 
and G .A. Ledezma [A]. 

For the solution of the FSI problems, the complete governing equations lead to 

(7.119) 

where the subscripts f and s denote the fluid and solid domains and s-f denotes the fluid-solid 
interface. 

-motions 

......... tractions 

Figure 7. 7 Schematic of conditions at FSI interface 

Here the interface conditions are contained in (7.119). The unknowns are the nodal 
displacements (and if applicable rotations) in the solid or structure, the nodal fluid velocities, 
the fluid element or nodal pressures, the nodal temperatures, and the nodal positions of the 
fluid mesh (separately solved for). The equations (7.119) are solved using an iterative scheme, 
where a full Newton-Raphson direct sparse solver solution may require a large coefficient 
matrix and significant memory and solution time. Irrespective of which iterative scheme is 
used, of course, the fully coupled solution is obtained once convergence has been reached to 
satisfy (7.119), see K.J. Bathe, H. Zhang, and S. Ji [A] and K. J. Bathe and H. Zhang [BJ. 

The above scheme is very general, since all mechanical conditions are satisfied. In some 
analyses, simplifying assumptions can be used. For example, if the structure is very stiff, it 
may be assumed that the fluid domain does not change. Then the complete fluid analysis may 
first be carried out and thereafter the fluid actions are applied to the structure (referred to as 
one-way coupling). For lightly coupled systems, it may be sufficient to use a staggered 
solution procedure, in which the structure and fluid domains are solved separately and the 
interactions are lagging a solution step behind. 

7 .4.5 Exercises 

7.15. Starting with the basic equations (7.57) to (7.60), derive (7.65) and then also derive (7.67) and 
(7.68). 

7.16. Show in detail that the matrix expressions for the two-dimensional planar flow conditions given 
in {7.77) to (7.89) are correct. 

7.17. Consider that the matrix equations in (7.77) are to be solved for the steady-state case using a full 
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Newton-Raphson iteration. Develop the coefficient matrix and give all details of the evaluations 
to be performed. 

7.18. Derive the expressions for upwinding given in (7.105) and (7.106). 

7.19. Derive the expressions for upwinding given in (7.109) and (7.110). 

7.20. Establish the equation for node i in (7.111) for the FCBI scheme. 

7.21. Show analytically that the equations (7.105), (7.109) and (7.111) give identical solutions. 

7 .22. Show that the solution of (7.113) is given by (7 .114) and (7.115), and give /3 for the scheme of 
(7.109). 

7 .23. Prove that the ALE equation (7 .117) is correct and derive the momentum and energy equations. 

7.24. Derive the governing finite element equation for the solution of (7.94) for node 20 of the 
assemblage of the two-node elements shown. 

(a) Use the FCBI scheme. 

(b) Use full upwinding. 

19 -v 20 21 
Constant velocity v 
Cross-sectional area = 1.0 

7.25. Consider the three-node one-dimensional element shown for the solution of (7.94). Show that the 

bubble function h
3 

introduces, in essence, upwinding in the element. [Hint: Apply the Galerkin 

procedure to the element and evaluate the value of p when comparing the equations you have 
established with (7.113).] See F. Brezzi and A. Russo [A]. 

I· 
h 

1--x 
3 2 

h1 =!(1-t ): h2= fc1 +t) 
- 2x 2 
h3 = 1 -(71) 

7.26. Consider the two-dimensional element shown. Develop a flow-condition based scheme for this 
element for heat transfer analysis based on (7 .116). Here use the functions (7 .112) along opposing 
element edges and a linear variation across. 

~-~-+-~-I 
2 1 

;il: 
Element (m) 

Control volume 
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7.27. Consider the water-filled cavity acted upon by gravity as shown. Use a computer program to 
calculate (with a very coarse mesh) the velocities (to be calculated as zero, of course) and the 
pressure distribution in the water. Prescribe that the velocities are zero on the boundary (but 
calculate "unknown" velocities in the domain). 

g-10 
p= 1.0 
p= 0 atz• 0 

7 .28. Use a computer program to analyze the fully developed flow between two concentric cylinders 
rotating at speeds w1 and <"2 as shown. Verify that an accurate solution has been obtained. 

'1 = 1; r2 = 2; 
w, = 1; l02 = 2; 
p=1;µ=1; 
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7.29. Use a computer program to analyze the forced convection steady-state flow between two parallel 
plates as shown. Verify that an accurate solution has been obtained. 

'L 
y 

L 

dp/dy--2.0 

h•1.0 p•1.0 
k• 1.0 Cp • 1.0 
µ • 1.0 L = 15.0 

7.30. Use a computer program to analyze the steady-state conjugate heat transfer in a pipe. The 
analysis problem is described in the figure. Verify that accurate results have been obtained (see 
J. H. Lienhard [A]). 

qw = heat flow input on external surface of pipe 

dp = -4 
dz 

L • 10.0 For solid: For fluid: 
t•0.1 k,-1.0 k,-1.0 
R· 1.0 p • 1.0 

I Cp • 5.0 l 
--::::4 -~ 1--- -- - -- -- -- -- --!- -ft.-+-oo 

B • O y, r ~u:T~"mzmrnrrrrff rrnrrrr"u;;,,mJ 
I t J nw•O I qw• 1,0 I </w•~ I 
~5.0 • ·,. L • ·,. 6.0~ 



• CHAPTER EIGHT ___________ _ 

Solution of Equilibrium 
Equations in Static Analysis 

8.1 INTRODUCTION 

So far we have considered the derivation and calculation of the equilibrium equations of 
a finite element system. This included the selection and calculation of efficient elements 
and the efficient assemblage of the element matrices into the global finite element system 
matrices. However, the overall effectiveness of an analysis depends to a large degree o,i the 
numerical procedures used for the solution of the system equilibrium equations. As dis­
cussed earlier, the accuracy of the analysis can, in general, be improved if a more refined 
finite element mesh is used. Therefore, in practice, an analyst tends to employ larger and 
larger finite element systems to approximate the actual structure. However, this means that 
the cost of an analysis and, in fact, its practical feasibility depend to a considerable degree 
on the algorithms available for the solution of the resulting systems of equations. Because 
of the requirement that large systems be solved, much research effort has gone into optimiz­
ing the equation solution algorithms. During the early use of the finite element method, 
equations of the order 10,000 were in many cases considered of large order. Currently, 
equations of the order 100,000 are solved without much difficulty. 

Depending on the kind and number of elements used in the assemblage and on the 
topology of the finite element mesh, in a linear static analysis the time required for solution 
of the equilibrium equations can be a considerable percentage of the total solution time, 
whereas in dynamic analysis or in nonlinear analysis, this percentage may be still higher. 
Therefore, if inappropriate techniques for the solution of the equilibrium equations are used, 
the total cost of analysis is affected a great deal, and indeed the cost may be many times, 
say 100 times, larger than is necessary. 

In addition to considering the actual computer effort that is spent on the solution of 
the equilibrium equations, it is important to realize that an analysis may, in fact, not be 
possible if inappropriate numerical procedures are used. This may be the case because the 
analysis is simply too costly using the slow solution methods. But, more seriously, the 
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analysis may not be possible because the solution procedures are unstable. We will observe 
that the stability of the solution procedures is particularly important in dynamic analysis. 

In this chapter we are concerned with the solution of the simultaneous equations that 
arise in the static analysis of structures and solids, and we discuss first at length (see Sections 
8.2 to 8.3) the solution of the equations that arise in linear analysis, 

KU== R (8.1) 

where K is the stiffness matrix, U is the displacement vector, and R is the load vector of the 
finite element system. Since R and U may be functions of time t, we may also consider ( 8.1) 
as the dynamic equilibrium equations of a finite element system in which inertia and 
velocity-dependent damping forces have been neglected. It should be realized that since 
velocities and accelerations do not enter (8.1 ), we can evaluate the displacements at any 
time t independent of the displacement history, which is not the case in dynamic analysis 
(see Chapter 9). However, these thoughts suggest that the algorithms used for the evaluation 
of U in (8.1) may also be employed as part of the solution algorithms used in dynamic 
analysis. This is indeed the case; we will see in the following chapters that the procedures 
discussed here will be the basis of the algorithms employed for eigensolutions and direct 
step-by-step integrations. Furthermore, as noted already in Chapter 6 and further discussed 
in Section 8.4, the solution of (8.1) also represents a very important basic step of solution 
in a nonlinear analysis. Therefore, a detailed study of the procedures used to solve { 8.1) is 
very important. 

Although we consider explicitly in this chapter the solution of the equilibrium equa­
tions that arise in the analysis of solids and structures, the techniques are quite general and 
are entirely and directly applicable to all those analyses that lead to symmetric (positive 
definite) coefficient matrices {see Chapters 3 and 7). The only sets of equations presented 
earlier whose solution we do not consider in detail are those arising in the analysis of 
incompressible viscous fluid flow (see Section 7.4)-because in such analysis a nonsymmet­
ric coefficient matrix is obtained-but for that case most basic concepts and procedures 
given below are still applicable and can be directly extended (see Exercise 8.11 ). 

Essentially, there are two different classes of methods for the solution of the equations 
in (8.1): direct solution techniques and iterative solution methods. In a direct solution the 
equations in ( 8.1) are solved using a number of steps and operations that are predetermined 
in an exact manner, whereas iteration is used when an iterative solution method is em­
ployed. Either solution scheme will be seen to have certain advantages, and we discuss both 
approaches in this chapter. At present, direct techniques are employed in most cases, but for 
large systems iterative methods can be much more effective. 

8.2 DIRECT SOLUTIONS USING ALGORITHMS BASED 
ON GAUSS ELIMINATION 

The most effective direct solution techniques currently used are basically applications of 
Gauss elimination, which C. F. Gauss proposed over a century ago (see C. F. Gauss [A]). 
However, although the basic Gauss solution scheme can be applied to almost any set of 
simultaneous linear equations (see, for example, J. H. Wilkinson [A], B. Noble [A], and R. 
S. Martin, G. Peters, and J. H. Wilkinson [A]), the effectiveness in finite element analysis 
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depends on the specific properties of the finite element stiffness matrix: symmetry, positive 
definiteness, and handedness. 

In the following we consider first the Gauss elimination procedure as it is used in the 
solution of positive definite, symmetric, and banded systems. We briefly consider the solu­
tion of symmetric indefinite systems in Section 8.2.5. 

8.2.1 Introduction to Gauss Elimination 

We propose to introduce the Gauss solution procedure by studying the solution of the 
equations KU = R derived in Example 3.27 with the parameters L = 5, EI = 1; i.e., 

(8.2) 

In this case the stiffness matrix K corresponds to a simply supported beam with four 
translational degrees of freedom, as shown in Fig. 8.1. (We should recall that the equi­
librium equations have been derived by finite differences; but, in this case, they have the 
same properties as in finite element analysis.) 

The Mathematical Operations 

Let us first consider the basic mathematical operations of Gauss elimination. We proceed 
in the following systematic steps: 

Step 1: Subtract a multiple of the first equation in (8.2) from the second and 
third equations to obtain zero elements in the first column of K. This means that - ! 
times the first row is subtracted from the second row, and ! times the first row is 
subtracted from the third row. The resulting equations are 

(8.3) 

Step 2: Considering next the equations in (8.3), subtract - ~ times the second 
equation from the third equation and f4 times the second equation from the fourth 
equation. The resulting equations are 

(8.4) 
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(a) 

Ri-·1 l 
Ji; lu. l u, fu. ~ 

[ ¥ 
16 

~1 lm-m 
-5 

16 2.9 
(b) -5 5 

1 -4 

11:i-d t R,·-~ 
j;; L t. ~ 

(c) [_; -:1 [~]-[_i] u. 

l R••i Figure 8.1 Stiffness matrices and load 

LA vectors considered in the Gauss elimina-

j;; tion solution of the simply supported 
beam. The stiffness matrices in (b), (c), 

(d) [f] [u,] = [i] and (d) are the entries below the dashed 
lines in (8.3), (8.4), and (8.5). 

Step 3: Subtract ij times the third equation from the fourth equation in (8.4). 
This gives 

(8.5) 
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Using (8.5), we can now simply solve for the unknowns U4, U3, U2, and U1: 

; - (-a2)U4 12 
U3= 1 =-

1/- 5 

_ 1 - (-!l)U3 - (l)U4 _ 13 
U2 - li - 5 

5 

0 - (-4)ll - (l)ll - (0)1 8 Ui = s s s = _ 
5 5 
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(8.6) 

The procedure in the solution is therefore to subtract in step number i in succession 
multiples of equation i from equations i + l, i + 2, . . . , n, where i = 1, 2, . . . , n - 1. 
In this way the coefficient matrix K of the equations is reduced to upper triangular form, 
i.e., a form in which all elements below the diagonal elements are zero. Starting with the 
last equation, it is then possible to solve for all unknowns in the order Un, Un-1, ... , U1. 

It is important to note that at the end of step i the lower right submatrix of order n - i 
[indicated by dashed lines in (8.3) to (8.5)] is symmetric. Therefore, the elements above and 
including the diagonal can give all elements of the coefficient matrix at all times of the 
solution. We will see in Section (8.2.3) that in the computer implementation we work with 
only the upper triangular part of the matrix. 

Another important observation is that this solution assumes in step i a nonzero ith 
diagonal element in the current coefficient matrix. It is the nonzero value of the ith diagonal 
element in the coefficient matrix that makes it possible to reduce the elements below it to 
zero. Also, in the back-substitution for the solution of the displacements, we again divide 
by the diagonal elements of the coefficient matrix. Fortunately, in the analysis of 
displacement-based finite element systems, all diagonal elements of the coefficient matrix 
are positive at all times of the solution, which is another property that makes the application 
of the Gauss elimination procedure very effective. (This property is not necessarily pre­
served when the stiffness matrices are derived using a mixed formulation or by finite 
differences; see Sections 3.3.4 and 4.4.2). We will prove in Section 8.2.5 that the diagonal 
elements must remain larger than zero, but this property is also observed by considering the 
physical process of Gauss elimination. 

The Physical Process 

In order to identify the physical process corresponding to the mathematical operations in 
Gauss elimination, we note first that the operations on the coefficient matrix K are indepen­
dent of the elements in the load vector R. Therefore, let us consider now only the operations 
on the coefficient matrix K and for ease of explanation again use the above example and 
Fig. 8.1. We consider that no loads are applied and hence have 

(8.7) 
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Using the condition given by the first equation, i.e., 

SU1 - 4U2 + U3 = 0 

we can write (8.8) 

and eliminate U1 from the three equations remaining in (8.7). We thus obtain 

-4(!U2 - !U3) + 6U2 - 4U3 + U4 = 0 

(!U2 - !U3) 4U2 + 6U3 - 4U4 = 0 

U2 - 4U3 + 5U4 = 0 

or, in matrix form, 
[ 

14 
5 

-¥ 
1 

(8.9) 

Comparing (8.9) with (8.3), we observe that the coefficient matrix in (8.9) is actually the 
lower right 3 X 3 submatrix of the coefficient matrix in (8.3). However, we obtained the 
coefficient matrix of (8.9) by using (8.7) and the condition in (8.8), which expresses that 
no force is applied at the degree of freedom 1 of the beam. It follows that the coefficient 
matrix in (8.9) is, in fact, the stiffness matrix of the beam that corresponds to the degrees 
of freedom 2, 3, and 4 when no force is applied at the degree of freedom l, i.e., when the 
degree of freedom 1 has been "released'' (which we shall also refer to as "statically con­
densed out"). By the same reasoning, we have obtained in (8.4) the stiffness matrix of the 
beam when the first two degrees of freedom have been released; and in (8.5), the element 
( 4, 4) of the coefficient matrix represents the stiffness matrix of the beam corresponding to 
degree of freedom 4 when the degrees of freedom 1, 2, and 3 have all been released. These 
stiffness matrices are given in Figs. 8.l(b) to (d). 

Let us gain further insight into the Gauss elimination process by considering a (hypo­
thetical) laboratory experiment-that is, a Gedankenexperiment. Suppose that in the labo­
ratory we construct a physical beam corresponding to the model shown in Fig. 8.1. At the 
locations where the degrees of freedom are measured in Fig. 8.l(a), we fasten clamps to the 
beam with a force-measuring device, as shown in Fig. 8.2. We now impose the displace­
ments shown in Figs. 8.3(a) to (d) to the beam and measure the required forces. These forces 
correspond to the columns of the stiffness matrix in (8.2). (Of course, depending on the 
appropriateness of our mathematical model, the accuracy of our numerical representation, 

Frictionless 
hinge 

Figure 8.2 Experimental set~up for measurements on beam 

Displacement 
/ imposing and 

force 
measuring 
device 
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Figure 8.3 Experimental results of forces (given to one digit) in clamps due to unit displace~ 
ments. (Note that the zero force in the top and bottom results is unrealistic with the given 
beam curvature but the value of the force is so small that we neglect it.) 
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and the accuracy of the laboratory measurements, the measured forces will be slightly 
different, but in our Gedankenexperiment we neglect that difference.) 

We now remove clamp 1 and repeat the experiment in the laboratory on the same 
physical beam. The results are shown in Fig. 8.4. The measured forces now correspond to 
the columns in the stiffness matrix (8.9) [shown also in Fig. 8.l(b)]. Next, we also remove 
clamp 2 and continue the experiment to obtain the force measurements shown in Fig. 8.5. 
These results correspond to the stiffness matrix in Fig. 8.l(c). Finally, we also remove 
clamp 3, and the force measurement gives the result shown in Fig. 8.6, which corresponds 
to the stiffness given in Fig. 8.l(d). 

The important point of our Gedankenexperiment is that the mathematical operations 
of Gauss elimination correspond to releasing degrees of freedom, one degree of freedom at 
a time, until only one degree of freedom is left (in our example U4). The process of releasing 
a degree of freedom corresponds physically to removing the corresponding clamp. Hence, 
at every stage of the Gauss elimination a new stiffness matrix of the same physical structure 
is established, but this matrix corresponds to fewer degrees of freedom than were previously 
used. 

Of course, in a laboratory experiment we are free to establish stiffness matrices of the 
structure considered corresponding to any arbitrary set of selected degrees of freedom. 
Indeed, considering the beam in Fig. 8.2, we could by measurements establish first the 
stiffness in Fig. 8.l(d), then the stiffness matrix in Fig. 8.l(c), then the stiffness matrix in 
Fig. 8.l(b), and finally the stiffness matrix in Fig. 8.l(a), or use any other order of measure­
ments. Also, we could move the clamps to any other locations and introduce more clamps, 
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14/6 -16/5 1 

--------J~! ~ 1.0 
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1 -4 5 

i ~A~ 
Figure 8.4 Experimental results of forces in clamps due to unit displacements with clamp 
1 not present. 

Figure 8.5 Experimental results of forces in clamps due to unit displacements with clamps 
I and 2 not present. 

6/6 

~ _-""-J1_,s_---1f_413 ___ b 
Figure 8.6 Experimental results of forces in clamps due to unit displacement with clamps 
1, 2, and 3 not present. 
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and then establish stiffness matrices for the corresponding displacement degrees of free­
dom. However, in the finite element analysis we need a certain number of degrees of 
freedom to accurately describe the behavior of the structure (see Section 4.3), which results 
in a specific finite element model, and then we are able to establish the stiffness matrices 
of only this finite element model with certain degrees of freedom released. Gauss elimina­
tion is the process of releasing degrees of freedom. 

EXAMPLE 8.1: Assume that you know a laboratory technician who knows nothing about 
finite elements and equation solutions. She/he has performed an experiment using clamps that 
measure forces on a beam structure in the laboratory; see Fig. ES.I. By moving the clamps to 
"unit" and "zero" positions, the following forces have been measured. 

Clamp for U1 Clamp for U2 Clamp for U, Clamp for U4 

Figure E8.l Beam with clamps 

The result of the first experiment is 

Ui U2 U3 
, .. -,,.., -4 1 

Forces in clamps ·---·":_4 : 6 _ 4 due to U 1 = 1 and , 1 
(a) 

U2 = U3 = U4 = O F3 : 1 : -4 5 
F4 1

, 0) 1 -2 ... _,, 

The technician has in a second experiment removed the clamp for U2 and repeated the 
measurement to obtain the following forces. 

The result of the second experiment is 

U3 u4 

Forces in clamps -s 

fl T 
due to U1 = l FJ 10 (b) T 
and UJ = U4 = 0 F

4 
-4 
T 

You are suspicious of whether she/he measured the forces correctly in this second exper­
iment. Assume that the first experiment was correctly performed. Check whether the second 
experiment was also correctly performed. 

The stiffness matrix (b) is correct if it is obtained from (a) after releasing the degree of 
freedom U2, Performing Gauss elimination on U2. we obtain from the matrix in (a), 

[ 
13 S 2] T -j 3 
S "i' 4 K= -,.. ,_, __ 
3 \ 3 I J 
2 "'; S 
3 -3 6 
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Hence, we see that the measurement was not correctly performed for the force in clamp 3 when 
U3 = 1 and U1 = U4 = 0. 

So far we have assumed that no loads are applied to the structure since the operations 
on the stiffness matrix are independent of the operations on the load vector. When the load 
vector is not a null vector, the elimination of degrees of freedom proceeds as described 
above, but in this case the equation used to eliminate a displacement variable from the 
remaining equations involves a load term. In the elimination the effect of this load is carried 
over to the remaining degrees of freedom. Therefore, in summary, the physical process of 
the Gauss elimination procedure is that n stiffness matrices of order n, n - l, . . . , 1, 
corresponding to the n - i last degrees of freedom, i == 0, 1, 2, . . . , n - 1, respectively, 
of the same physical system are established. In addition, the appropriate load vectors 
corresponding to the n stiffness matrices are calculated. These load vectors are such that the 
corresponding displacements at the unreleased degrees of freedom are the displacements 
calculated for the system when described by all n degrees of freedom. The unknown 
displacements are then obtained by considering in succession the systems with only one, 
two, . . . , degrees of freedom ( these correspond to the last, two last, . . . , of the original 
number of degrees of freedom). 

We can now explain why, because of physical reasons, all diagonal elements in the 
Gauss elimination procedure must remain positive. This follows because the final ith 
diagonal element is the stiffness at degree of freedom i when the first i - 1 degrees of 
freedom of the system have been released, and this stiffness should be positive. If a zero (or 
negative) diagonal element occurs in the Gauss elimination, the structure is not stable. An 
example of such a case is shown in Fig. 8.7, where after the release of degrees of freedom 
U1, U2, and U3, the last diagonal element is zero. 

7 
Flexural rigidity El 

Figure 8.7 Example of an unstable 
structure 

So far we have considered that the Gauss elimination proceeds in succession from the 
first to the (n - 1 )st degree of freedom. However, we may in the same way perform the 
elimination backward (i.e., from the last to the second degree of freedom), or we may 
choose any desirable order, as we already indicated in the discussion of the physical 
laboratory experiment shown in Fig. 8.2. 

EXAMPLE 8.2: Obtain the solution to the equilibrium equations of the beam in Fig. 8.1 by 
eliminating the displacement variables in the order U3, U2, U4. 

We may either write down the individual equations during the elimination process or 
directly perform Gauss elimination in the prescribed order. In the latter case we obtain, 
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eliminating U 3, l ~ -12 0 

=~rnJ =rn 
3 

-12 12 0 3 3 

1 -4 6 
2 -1 0 j 3 

Next, we eliminate U2 and obtain 

[-f 
0 0 

=l][~} [!] 10 0 3 
-4 6 

-1 0 0 

and finally we eliminate U4, 

[-t 
0 0 01[] [] 10 

0 -i .U2 = l 3 
-4 6 -4 U3 0 

-1 0 o i u4 I 
The solution for the displacements is now obtained as follows: 

U1 = J 
u4 = 4 - (-1)! = ~ 

! 5 

1 - (-12)! - (-1)1 13 u
2 

= 3 3 s = _ 
~ 5 

0 - (l)! - (-4)1 - (-4)il 12 u
3 
= s s s == _ 

6 5 

which is the solution obtained earlier. 

8.2.2 The LDL r Solution 

705 

We have seen in the preceding section that the basic procedure of the Gauss elimination 
solution is to reduce the equations to correspond to an upper triangular coefficient matrix 
from which the unknown displacements U can be calculated by a back-substitution. We now 
want to formalize the solution procedure using appropriate matrix operations. An addi­
tional important purpose of the discussion is to introduce a notation that can be used 
throughout the following presentations. The actual computer implementation is given in the 
next section. 

Considering the operations performed in the Gauss elimination solution presented in 
the preceding section, the reduction of the stiffness matrix K to upper triangular form can 
be written 

(8.10) 
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where S is the final upper triangular matrix and 

1 elements 

-li+l,i 

-l1+2,; 

not shown 
are zeros1 

k~+i) .. 
l - :.:..!.::b! 
i+ j,i - k~~) 

II 

Chap.8 

(8.11) 

The elements l;+ i,; are the Gauss multiplying factors, and the right superscript (i) indicates 
that an element of the matrix L,::.\ ... L2 1L1 1K is used. 

We now note that L; is obtained by simply reversing the signs of the off-diagonal 
elements in L, 1

• Therefore, we obtain 

where L;= 

Hence, we can write 

K = L1L2 ... Ln-18 

1 

11+1,; 

l;+2,i 

K = LS 

where L = L, L2 ... Ln-1; i.e., L is a lower unit triangular matrix, 

lz1 
/31 [32 

L = /41 /42 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

Since S is an upper triangular matrix and the diagonal elements are the pivots in the Gauss 
elimination, we can write S = DS, where D is a diagonal matrix storing the diagonal 

I Throughout this book. elements not shown in matrices are zero. 
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elements of S; i.e., du = s;;. Substituting for S into (8.14) and noting that K is symmetric 
and the decomposition is unique, we obtain S = LT, and hence, 

K = LDLT (8.16) 

It is this LDU decomposition of K that can be used effectively to obtain the solution of the 
equations in ( 8.1) in the following two steps: 

LV = R (8.17) 

DLTU = v 
where in (8.17) the load vector R is reduced to obtain V, 

V = L;..!1 ... Li 1 L11R 

and in (8.18) the solution U is obtained by a back-substitution, 

Fu= n-1v 

(8.18) 

(8.19) 

(8.20) 

In the implementation the vector V is frequently calculated at the same time as the 
matrices L,1 are established. This was done in the example solution of the simply supported 
beam in Section 8.2.1. 

It should be noted that in practice the matrix multiplications to obtain Lin (8.15) and 
V in (8.19) are not formally carried out, but that L and V are established by directly 
modifying K and R. This is discussed further in the next section, in which the computer 
implementation of the solution procedure is presented. However, before proceeding, con­
sider the example in Section 8.2.1 for the derivation of the matrices defined above. 

EXAMPLE 8.3: Establish the matrices Li" 1
, i = l, 2, 3, S, L, and D and the vector V corre­

sponding to the stiffness matrix and the load vector of the simply supported beam treated in 
Section 8.2.1. 

Using the information given in Section 8.2. l, we can directly write down the required 
matrices: 

L>' = [! -4 1 01 ¥ -¥ 1 
ll _ag 
7 7 

5 
6 

where the matrix L, 1 stores in the ith column the multipliers that were used in the elimination 
of the ith equation and the matrix S is the upper triangular matrix obtained in (8.5). The matrix 
D is a diagonal matrix with the pivot elements on its diagonal. In this case, 
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To obtain L we use (8.15}; hence, 

and we can check that S = DLr. 
The vector V was obtained in (8.5}: 

v =[ll 
8.2.3 Computer Implementation of Gauss Elimination­

The Active Column Solution 

The aim in the computer implementation of the Gauss solution procedure is to use a small 
solution time. In addition, the high-speed storage requirements should be small to avoid the 
use of backup storage. However, for large systems it will nevertheless be necessary to use 
back.up storage, and for this reason it should also be possible to modify the solution 
algorithm for effective out-of-core solution. 

An advantage of finite element analysis is that the stiffness matrix of the element 
assemblage is not only symmetric and positive definite but also banded; i.e., k;i = 0 for 
j > i + mK, where mK is the half-bandwidth of the system (see Fig. 2.1). The fact that in 
finite element analysis all nonzero elements are clustered around the diagonal of the system 
matrices greatly reduces the total number of operations and the high-speed storage required 
in the equation solution. However, this property depends on the nodal point numbering in 
the finite element mesh, and the analyst must take care to obtain an effective nodal point 
numbering (see Chapter 12). 

Assume that for a given finite element assemblage a specific nodal point numbering 
has been determined and the corresponding column heights and the stiffness matrix K have 
been calculated (see Section 12.2.3 for details). The LDL7 decomposition of K can be 
obtained effectively by considering each column in turn; i.e., although the Gauss elimination 
is carried out by rows, the final elements of D and L are calculated by columns. Using 
di 1 = k11, the algorithm for the calculation of the elements lii and dii in the jth column is, 
for j == 2, . . . , n, 

i-1 

gij = kij - ~ lri8rJ i = m1 + 1, ... ,j - 1} (8.21) 

where mi is the row number of the first nonzero element in columnj and mm = max {m,, mil 
(see Fig. 12.2). The variables m;, i = 1, ... , n, define the skyline of the matrix; also, the 
values i - mi are the column heights and the maximum column height is the half­
bandwidth mK. The elements g;i in (8.21) are defined only as intermediate quantities, and 
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the calculation is completed using 

gij [ .. = -
IJ d;; i = mb •••• j - 1 

j-1 

djj = kjj - L zrjgrj 
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(8.22) 

(8.23) 

It should be noted that the summations in (8.21) and (8.23) do not involve multiplications 
with zero elements outside the skyline of the matrix and that the lii are elements of the 
matrix U rather than of L. We refer to the solution algorithm given in (8.21) to· (8.23) 
[actually with (8.24) and (8.25)] as the active column solution or the skyline (or column) 
reduction method. 

Considering the storage arrangements in the reduction, the element l1i when calculated 
for use in (8.23) immediately replaces 8ii, and dii replaces kii· Therefore, at the end of the 
reduction we have elements dJJ in the storage locations previously used by kJJ, and lrJ is stored 
in the locations of krj, j > r. 

In order to get familiar with the solution algorithm, we consider the following exam­
ples. 

EXAMPLE 8.4: Use the solution algorithm given in (8.21) to (8.23) to calculate the triangular 
factors D and Lr of the stiffness matrix of the beam considered in Example 8.3. 

The initial elements considered are, when written in their respective matrix locations, 

with m1 = l, m2 = l, m3 = I. and m4 = 2. Using (8.21) to (8.23), we obtain, for j = 2, 

du = ku = 5 

g12 = k12 = -4 

g,2 4 
lri = - = --

du 5 

d22 = k22 lrig12 = 6 - (-4)(-!) = ¥ 
and thus the resulting matrix elements are now, using a dotted line to separate the reduced from 
the unreduced columns, 

Next, we obtain, for j = 3, 

g13 = k13 = 1 

ls -~ -! tj 
6 -4 

5 

823 = k23 - 112813 = -4 - (- !)(1) = -11-
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g13 1 
/13 = - = -

dn 5 
g23 _ !§ 8 

l23 == - = -' = - -
d22 ¥ 7 

d33 = k33 - l13g13 - l23g23 = 6 - 0)(1) - ( - f )(-1/) = ¥ 
and the resulting matrix elements are 

Finally. we have, for j = 4, 

g24 = k24 = 1 

¥ 
[

5 -! 
! : J !i I 

-l : 1 
¥ j-4 

: 5 

834 = k34 - b824 = -4 - ( - J)(l) = - ' 

g24 1 5 
l24 = - = = -

d22 14 

l34 = 834 = - ~ = 4 
d33 ¥ 3 

d.w = """ - 124824 - [34g34 = 5 - (P.i)(l) - ( - !) ( - ') = i 
and the final elements stored are 

Chap.8 

We should note that the elements of D are stored on the diagonal and the elements lij have 
replaced the elements ku,i > i. 

Although the details of the solution procedure have already been demonstrated in 
Example 8.4, the importance of using the column reduction method could not be shown, 
since the skyline coincides with the band. The effectiveness of the skyline reduction scheme 
is more apparent in the factorization of the following matrix. 

EXAMPLE 8.5: Use the solution algorithm given in (8.21) to (8.23) to evaluate the triangular 
factors D and U of the stiffness matrix K, where 

2 -2 -1 

3 -2 0 
K= 5 -3 0 

Symmetric 10 4 

10 

For this matrix we have m1 = l, m2 = 1, m3 = 2, m4 = 3, and ms= I. 
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The algorithm gives, in this case with du = 2, for j = 2, 

K12 = k12 = -2 

812 -2 
112 = - = - = -1 

d11 2 

d22 = k22 - l12g12 = 3 - (-1)(-2) = 1 

and thus the resulting matrix elements are 

Forj = 3, 

2 -1 
1 -2 

-1 

0 
5 -3 0 

10 4 

10 

823 = k23 = -2 

823 -2 
123 = - = - = -2 

d22 1 

d33 = k33 - l23g23 = 5 - (-2)(-2) = 1 

and the coefficient array is now 

For}= 4, 

2 -1 -1 
1 -2 0 

g34 = k34 = -3 

834 -3 
/34 = - = - = -3 

d33 1 

-3 0 
10 4 

10 

dw = ~ - [34g34 = 10 - (-3)(-3) = 1 

and the resulting matrix elements are 

Finally we have, for j = 5, 

81s = k1s = -I 

2 -1 -1 
l -2 0 

-3 0 
1 4 

10 

g25 = k25 - lr2g15 = 0 - (-1)(-1) = -1 

g35 = k33 - /2382, = 0 (-2)(-1) = -2 

g45 = k4s - /34g35 = +4 - (-3)(-2) = -2 

711 
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g15 -1 1 
115 =- = - = --

du 2 2 

g25 -1 
l2s = - = - = -1 

d22 1 

g35 -2 
l35 = - = - = -2 

d-:,3 1 

-2 
-= -2 

1 

dss = kss - l1s81s - l2sg2s [35g3s - [45g4s 

= 10 (-})(-1) - (-1)(-1) - (-2)(-2) - (-2)(-2) = i 
and the final matrix elements are 

2 -1 -! 
-2 -1 

-3 -2 
-2 

! 
As in Example 8.4, we have the elements of D and Lr replacing the elements ku and kii,j > i of 
the original matrix K, respectively. 

In the preceding discussion we considered only the decomposition of the stiffness 
matrix K, which constitutes the main part of the equation solution. Once the L, D factors 
of K have been obtained, the solution for U is calculated using (8.19) and (8.20), where it 
may be noted that the reduction of R in (8.19) can be performed at the same time as the 
stiffness matrix K is decomposed or may be carried out separately afterward. The equation 
to be used is similar to (8.23); i.e., we have Vi = R1 and calculate for i = 2, ... , n, 

1-1 

"' = R; - 2: lrNr (8.24) 

where R; and Vt are the ith elements of R and V. Considering the storage arrangements, the 
element V; replaces R;. 

The back-substitution in (8.20) is performed by evaluating successively Un, 
Un-1, . .. , u .. This is achieved by first calculating V, where V = n-1v. Then using 
v<n) = V, we have Un = Vt) and we calculate for i == n, ... , 2, 

V~ - 1
i = v~o - lnUi; r = m1, ••. , i - 1} (8.25) 

U1-1 = V~'.::".° 

where the superscript (i - 1) indicates that the element is calculated in the evaluation of 
U1-1. It should be noted that Vii> for all j is stored in the storage location of Vk, i.e., the 
original storage location of Rk, 
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EXAMPLE 8.6: Use the algorithm given in (8.24) and (8.25) to calculate the solution to the 
problem KU = R, when K is the stiffness matrix considered in Example 8.5 and 

0 
1 

R = 0 
0 
0 

In the solution we employ the D, LT factors of K calculated in Example 8.5. Using (8.24) 
for the forward reduction, we obtain 

Vi= R1 = 0 

V2 = R2 - l12 Vi = 1 - 0 = 1 

V3 = R3 - b V2 = 0 - (-2)(1) = 2 

V4 = ~ - /34 V3 = 0 - (-3)(2) = 6 

= 0 - 0 - (-1)(1) - (-2)(2) - (-2)(6) = 17 

Immediately after calculation of V;. the element replaces R,. Thus, we now have in the vector that 
initially stored the loads, 

0 
1 

V= 2 
6 

17 

The first step in the back-substitution is to evaluate V, where V = o-1v. ~ere we obtain 

and thus, 

0 
1 

V= 2 
6 

34 

Us= Vs== 34 

Now we use (8.25) with yes> = V of (a). Hence we obtain, for i = 5, 

Vi4> = vis> - l1s Us= 0 - (-!}(34) = 17 

V~4
> = v~> - lzsUs = 1 - (-1)(34) = 35 

Vi4> = v~> - /3s Us = 2 - (-2)(34) = 70 

V~4
> = v~> - l4s Us = 6 - (-2)(34) = 74 

and u4 = Vi4> = 74 

For i = 4, vr> = V~4
> - l34 U4 = 70 - (-3)(74) = 292 

(a) 
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and 

For i = 3, 

and 

For i = 2, 

and 

Solution of Equilibrium Equations in Static Analysis 

u3 = v~3
> = 292 

Vi2> = v?> - 123 LJ3 = 35 - (-2)(292) = 619 

U2 = Yi2) = 619 

Vi'> = Vi2> - 112 U2 = 17 - (-1)(619) = 636 

U, = V;') = 636 

Chap.8 

The elements stored in the vector that initially stored the loads are after step i = 5, 4. 3, 
2, respectively: 

17 17 17 636 
35 35 619 619 
70 292 292 292 
74 74 74 74 
34 34 34 34 

where the last vector gives the solution U. 

Considering the effectiveness of the active column solution algorithm, it should be 
noted that for a specific matrix K the algorithm frequently gives an efficient solution 
because no operations are performed on zero elements outside the skyline, which also 
implies that only the elements below the skyline need be stored. However, the total number 
of operations performed is not an absolute minimum because, in addition, all those multi­
plications could be skipped in (8.21) to (8.25) for which lr, or gri is zero. This skipping of 
course requires additional logic, but is effective if there are many such cases, which is the 
main premise on which sparse solvers are based. These solvers, which can be very effective 
in large three-dimensional solutions, avoid the storage of elements that remain zero and 
skip the relevant operations, see, for example, A. George, J. R. Gilbert, and J. W. H. Liu 
(eds.) [A]. 

To evaluate the efficiency of the active column solution, let us consider a system with 
constant column heights, i.e. a half-bandwidth mK such that mK = i - m; for all i, i > mK, 
and perform an operation count based on (8.16) to (8.25). We define one operation to 
consist of one multiplication (or division), which is nearly always followed by an addition. 
In this case the number of operations required for the LDF decomposition of K are 
approximately n[mK + (mK - 1) + · · · + 1] = !nmi, and for the reduction and back­
substitution of a load vector, an additional number of approximately 2nmK operations are 
needed. In practice, systems with exactly constant column heights are encountered rather 
seldom and therefore these operation counts should be refined to ! ~1 (i - m;)2 and 
2 I; (i - m;), respectively. However, we frequently still use the constant half-bandwidth 
formulas with a mean or effective half-bandwidth merely to obtain an indication of the 
required solution effort. 

Since the number of operations is governed by the pattern of the nonzero elements in 
the matrix, algorithms have been developed that reorder the equations so as to increase the 
effectiveness of the equation solution. When the active column solution scheme is used, the 
reordering is to reduce the column heights for an effective solution (see E. Cuthill and 
J. McKee [A] and N. E. Gibbs, W. G. Poole, Jr., and P. K. Stockmeyer [Al), while when a 
sparse solver is used the reordering is to reduce the total number of operations taking due 
account of not operating on elements that remain zero throughout the solution. This 
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requirement for a sparse solver means that the number of fill-in elements (elements that 
originally are zero but become nonzero) should be small (see A. George, J. R. Gilbert, and 
J. W. H. Liu (eds.) [A]). The use of such reordering procedures, while generally not giving 
the actual optimal ordering of the equations, is very important because in practice the initial 
ordering of the equations is usually generated without regard to the efficiency of the 
equation solution but merely with regard to the effectiveness of the definition of the model. 

The solution algorithm in (8.21) to (8.25) has been presented in two-dimensional 
matrix notation; e.g., element (r,j) of K has been denoted by kri· Also, to demonstrate the 
working of the algorithm, in Examples 8.4 and 8.5 the elements considered in the reduction 
have been displayed in their corresponding matrix locations. However, in actual computer 
solution, the active columns of the matrix K are stored effectively in a one-dimensional 
array. Assume that the storage scheme discussed in Chapter 12 is used; i.e., the pertinent 
elements of K are stored in the one-dimensional array A of length NWK and the addresses 
of the diagonal elements of K are stored in MAXA. An effective subroutine that uses the 
algorithm presented above [i.e., the relations in (8.21) to (8.25)] but operates on the 
stiffness matrix using this storage scheme is given next. 

Subroutine COLSOL. Program COLSOL is an active column solver to obtain the 
LDL7 factorization of a stiffness matrix or reduce and back-substitute the load vector. The 
complete process gives the solution of the finite element equilibrium equations. The argu­
ment variables and use of the subroutine are defined by means of comments in the program. 

c 
c . 
c . 
c . 
c . 
c . 
c . 
c . 
c • 
c . 
c . 
c • 
c . 
c • 
c . 
c • 
c . 
c . 
c • 
c . 
c . 
c . 
c . 
c . 

SUBROUTINE COLSOL (A,V,MAXA,NN,NWK,NNM,KKK,IOUT) COLOOOOl 
• COL00002 
• COL00003 

P R O G R A M • COL00004 
TO SOLVE FINITE ELEMENT STATIC EQUILIBRIUM EQUATIONS IN • COLOOOOS 
CORE, USING COMPACTED STORAGE AND COLUMN REDUCTION SCHEME • COL00006 

• COL00007 
INPUT VARIABLES - - • COL00008 

A{NWk) • STIFFNESS MATRIX STORED IN COMPACTED FORM • COL00009 
V{NN) • RIGHT-HAND-SIDE LOAD VECTOR , COLOOOlO 
MAXA(NNM). VECTOR CONTAlNlNG ADDRESSES or DIAGONAL • COLOOOll 

ELEMENTS OF STIFFNESS MATRIX IN A • COL00012 
NN • NUMBER or EQUATIONS • COL00013 
NWK • NUMBER or ELEMENTS BELOW SKYLINE or MATRIX • COL00014 
NNM • NN + 1 • COL00015 
KKK • INPUT FLAG • COL00016 

EQ. 1 TRIANGULARIZATION or STIFFNESS MATRIX • COL00017 
EQ. 2 REDUCTION AND BACK-SUBSTITUTION OF LOAD VECTOR. COL00018 

IOUT • UNIT NUMBER USED FOR OUTPUT • COL00019 

- - OUTPUT - -
A(NWK) 
V(NN) 

• D AND L - FACTORS or STIFFNESS MATRIX 
• DISPLACEMENT VECTOR 

. . . . . . . . . . . . . . . . . . . . . . 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

• COL00020 
• COL00021 
• COL00022 
• COL00023 
• COL00024 

COL00025 
COL00026 

c • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• COL00027 
C. THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON CRAY 
C. EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM MACHINES, 
C. ENGINEERING WORKSTATIONS AND PCS. DEACTIVATE ABOVE LINE FOR 
C. SINGLE PRECISION ARITHMETIC. 
c . . . . . . . . . . • . . . . . . . . • . . . . . . . . 
c 
c 
c 

DIMENSION A(NWK),V(NN),MAXA(NNM) 

PERFORM L*D*L(T) FACTORIZATION or STIFFNESS MATRIX 

IF (KKK-2) 40,150,150 
40 DO 140 N•l,NN 

KN•MAXA(N) 
KL•KN + 1 

• COL00028 
• COL00029 
• COL00030 
• COL0003l 
• COL00032 

COL00033 
COL00034 
COL00035 
COL00036 
COL00037 
COI.00038 
COL00039 
COL00040 
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c 

KU•MAXA(N+l) - 1 
KH•KU - KL 
IF (KH) 110,90,50 

50 K•N - KB 
IC•O 
KLT•KU 
DO 80 J•l,KH 
IC•IC + l 
KLT•KLT - 1 
KI•MAXA(K) 
ND•MAXA(K+l) - KI - l 
IF (ND) 80,80,60 

60 KK•MINO(IC,ND) 
c-o. 
DO 70 L•l,KK 

70 C•C + A(KI+L)*A(KLT+L) 
A(KLT)•A(KLT) - C 

80 I<•K + l 
90 I<•N 

B•O. 
DO 100 KK•KL,KU 
K•K - l 
KI•MAXA(K) 
C•A(KK)/A(KI) 
B•B + C*A(KK) 

100 A(KK)•C 
A(KN)•A(KN) - B 

110 IF (A(KN)) 120,120,140 
120 WRITE (IOUT,2000) N,A(KN) 

GO TO 800 
140 CONTINUE 

GO TO 900 

C REDUCE RIGHT-HAND-SIDE LOAD VECTOR 
c 

150 DO 180 N•l,NN 
KL•MAXA(N) + 1 
KU•MAXA(N+l) - 1 
IF (KU-KL) 180,160,160 

160 K•N 
C•O. 
DO 170 KK•KL,KU 
K•K - 1 

170 C•C + A(KK)*V(K) 
V(N)•V(N) - C 

180 CONTINUE 
c 
C BACK-SUBSTITUTE 
c 

c 

DO 200 N•l,NN 
K•MAXA(N) 

200 V(N)•V(N}/A(K) 
IF (NN.EQ.1) GO TO 900 
N•NN 
DO 230 L•2,NN 
KL•MAXA(N) + 1 
KU•MAXA(N+l) - 1 
IF (KU-KL) 230,210,210 

210 K•N 
DO 220 KK•KL,KU 
K•K - 1 

220 V(K)•V(K) - A(KK)*V(N) 
230 N•N - l 

GO TO 900 

800 STOP 
900 RETURN 

c 
2000 FORMAT 

l 
2 

END 

(//' STOP - STIFFNESS MATRIX NOT POSITIVE DEFINITE',//, 
'NONPOSITIVE PIVOT FOR EQUATION ',18,//, 
'PIVOT• ',El0.12 ) 
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8.2.4 Cholesky Factorization, Static Condensation, 
Substructures, and Ftontal Solution 

In addition to the LDLT decomposition described in the preceding sections, various other 
schemes are used that are closely related. All methods are applications of the basic Gauss 
elimination procedure. 

In the Cholesky factorization the stiffness matrix is decomposed as follows: 

K = Lil (8.26) 

where 

L = LD112 (8.27) 

Therefore, the Cholesky f~tors could be calculated from the D and L factors, but, more 
generally, the elements of L are calculated directly. An operation count shows that slightly 
more operations are required in the equation solution if the Cholesky factorization is used 
'rather than the LDL7 decomposition. In addition, the Cholesky factorization is suitable only 
for the solution of positive definite systems, for which all diagonal elements du are positive, 
because otherwise complex arithmetic would be required. On the other hand, the LDL7 
decomposition can also be used effectively on indefinite systems (see Section 8.2.!5). 

Considering a main use of the Cholesky factorization, the decomposition is employed 
effectively in the transformation of a generalized eigenproblem to the standard form (see 
Section 10.2.5). 

EXAMPLE 8. 7: Calculate the Cholesky factor L of the stiffness matrix K of the simply 
supported beam treated in Section 8.2.1 and in Examples 8.2 to 8.4. 

The L and D factors of the beam stiffness matrix have been given in Example 8.3. 
Rounding to three significant decimals, we have 

t 
1.000 

-0.800 1.000 
L = 0.200 -1.143 

0.000 0.357 

Hence, 

0 

1.000 
-1.333 l [.000 

; D= 

i.000 

2.800 

2.143 l 
0.833 

[ I.~ l r-236 
,., _ -0.800 1.000 

1.673 l L - 0.200 -1.143 1.000 1.464 
0.000 0.357 -1.333 1.000 0.913 t 2.236 

- _ -1.789 1.673 
or L - 0.447 -1.912 I.™ ] 

0 0.597 -1.952 0.913 

An algorithm that in some cases can effectively be used in the solution of the equi­
librium equations is static condensation (see E. L. Wilson [BJ). The name "static conden­
sation" refers to dynamic analysis, for which the solution technique is demonstrated in 
Section 10.3.1. Static condensation is employed to reduce the number of element degrees 
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off reedom and thus, in effect, to per/ orm part of the solution of the total finite element 
system equilibrium equations prior to assembling the structure matrices K and R. Consider 
the three-node truss element in Example 8.8. Since the degree of freedom at the midnode 
does not correspond to a degree of freedom of any other element, we can eliminate it to 
obtain the element stiffness matrix that corresponds to the degrees of freedom 1 and 3 only. 
The elimination of the degree of freedom 2 is carried out using, in essence, Gauss elimina­
tion, as presented in Section 8.2.1 (see Example 8.1 ). 

In order to establish the equations used in static condensation, we assume that the 
stiffness matrix and corresponding displacement and force vectors of the element under 
consideration are partitioned into the form 

(8.28) 

where Ua and Uc are the vectors of displacements to be retained and condensed out, 
respectively. The matrices Kaa, Kac, and Kee and vectors Ra and Re correspond to the 
displacement vectors Ua and Uc, 

Using the second matrix equation in (8.28), we obtain 

(8.29) 

The relation in (8.29) is used to substitute for Uc into the first matrix equation in (8.28) to 
obtain the condensed equations 

(8.30) 

Comparing (8.30) with the Gauss solution scheme introduced in Section 8.2.1, it is seen that 
static condensation is, in fact, Gauss elimination on the degrees of freedom Uc (see Exam­
ple 8.8). In practice, therefore, static condensation is carried out effectively by using Gauss 
elimination sequentially on each degree of freedom to be condensed out, instead of follow­
ing through the formal matrix procedure given in (8.28) to (8.30), where it is valuable to 
keep the physical meaning of Gauss elimination in mind (see Section 8.2.1 ). Since the 
system stiffness matrix is obtained by direct addition of the element stiffness matrices, we 
realize that when condensing out internal element degrees of freedom, in fact, part of the 
total Gauss solution is already carried out on the element level. 

The advantage of using static condensation on the element level is that the order of the 
system matrices is reduced, which may mean that use of backup storage is prevented. In 
addition, if subsequent elements are identical, the stiffness matrix of only the first element 
needs to be derived, and performing static condensation on the element internal degrees of 
freedom also reduces the computer effort required. It should be noted, though, that if static 
condensation is actually carried out for each element (and no advantage is taken of possible 
identical finite elements), the total effort involved in the static condensation on all element 
stiffness matrices and in the Gauss elimination solution of the resulting assembled equi­
librium equations is, in fact, the same as using Gauss elimination on the system equations 
established from the uncondensed element stiffness matrices. 

EXAMPLE 8.8: The stiffness matrix of the truss element in Fig. E8.8 is given on the next page. 
Use static condensation as given in (8.28) to (8.30) to condense out the internal element degree 
of freedom. Then use Gauss elimination directly on the internal degree of freedom. 
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L .. , 

)~. 
A, B

E-Young's 
modulus ___ _.....,.....____ -

U2 Ua 

2A1 

Figure E8.8 Truss element with linearly varying area 

We have for the element, 

EA1 [-~~ -~~ _ 2!][~:J = [::J 6
L 3 -28 25 U3 R3 

(a) 

In order to apply the equations in (8.28) to (8.30), we rearrange the equations in (a) to obtain 

- 3 25 -28 U3 = R3 EAi [ 17 3 -20J[U1] [R1] 
6

L -20 -28 48 U2 R2 

The relation in (8.30) now gives 

EA1 {[17 3] _ [-2o][I.]r-20 -2sJ}[U1] = [Ri + ! R2] 
6L 3 25 -28 48 U3 R3 + a R2 

or 

Also, (8.29) yields 

Using Gauss elimination directly on (a) for U2, we obtain 

17 _ (20)(20) 
48 

EA1 . _
20 

6L 3 - (20)(28) 

48 

0 3 - (20)(28) [U J [R + 1Q R J 48 I 1 482 

48 -28 U2 = R2 
(28)(28) U3 R3 + ff R2 

0 25- 48 

(b) 

(c) 

But separating the equations for U1 and U3 from the equation for U2, we can rewrite the relation 
in (c) as 

~ EA, [ 1 -l][U'] = [R• + t,; R2] 
9 L -1 1 U3 R3 + ti. R2 

and 1 [ 3L ] U2 = 24 EAi R2 + IOU, + 14U3 

which are the relations obtained using the formal static condensation procedure. 
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EXAMPLE 8.9: Use the stiffness matrix of the three degree of freedom truss element in 
Example 8.8 to establish the equilibrium equations of the structure shown in Fig. E8.9. Use Gauss 
elimination directly on degrees of freedom U2 and LJ4. Show that the resulting equilibrium 
equations are identical to those obtained when the two degree of freedom truss element stiffness 
matrix derived in Example 8.8 (the internal degree of freedom has been condensed out) is used 
to assemble the stiffness matrix corresponding to U,, U3, and Us. 

Figure ES.9 Structure composed of two truss elements of Fig. E8.8 and a spring support 

The stiffness matrix of the three"element assemblage in Fig. E8.9 is obtained using the 
direct stiffness method; i.e., we calculate 

3 

K=~K<m) (a) 
m ... l 

6 0 0 0 0 

K(l) = EA1 
0 0 0 0 0 

where 0 0 0 0 0 
6L 

0 0 0 0 0 
0 0 0 0 0 

17 -20 3 0 0 
-20 48 -28 0 0 

K(2> = EA1 3 -28 25 0 0 
6L 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 
K<3> = EA1 0 0 34 -40 6 

6L 
0 0 -40 96 -56 
0 0 6 -56 50 

Hence the equilibrium equations of the structure are 

23 -20 3 0 0 u, 0 
-20 48 -28 0 0 U2 0 

EA1 
3 -28 59 -40 6 U3 0 

6L 
0 0 -40 96 -56 U4 0 

0 0 6 -56 50 Us Rs 
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Using Gauss elimination on degrees of freedom U2 and U4, we obtain 

23 -
(20)(20} 

0 3-
(20)(28) 

0 0 
48 48 

U1 0 
-20 48 -28 0 0 
(20)(28) (28)(28) (40)(40) (40)(56) 

U2 0 
(b) EA1 

3- 0 59 - 0 6- U3 0 -
6L 48 48 96 96 u4 0 

0 0 -40 96 -56 
Us Rs 

(40)(56) (56)(56) 
0 0 6-

96 
0 50 -

96 

Now, extracting the equilibrium equations corresponding to degrees of freedom 1, 3, and 5 and 
degrees of freedom 2 and 4 separately, we have 

and 

13 EAt [ ij -1 o][u'] [OJ -- -1 3 -2 U3 = 0 
9 L 

0 -2 2 Us Rs 

Ui = ti[SU1 + 7U3] 

U4 = f2[5U3 + 1Us] 

(c) 

(d) 

However, using the two degree of freedom truss element stiffness matrix derived in Example 8.8 
to directly assemble the structure stiffness matrix corresponding to degrees of freedom l, 3, and 
5, we use as element stiffness matrices in (a), 

Km = 13 EA, 0 0 0 
[

fi O OJ 
9 L O O O 

-1 
1 
0 

O OJ 2 -2 
-2 2 

(e) 

(f) 

and obtain the stiffness matrix in (c). Also, the relation (b) in Example 8.8 corresponds to 
relations (d) in this example. It should be noted that the total effort to solve the equilibrium 
equations using the condensed truss element stiffness matrix is less than when the original three 
degree of freedom element stiffness matrix is used because in the first case the internal degree 
of freedom was statically condensed out only once, whereas in (b) the element internal degree 
of freedom is, in fact, statically condensed out twice. The direct solution using the condensed 
element stiffness matrices in (e) and (f) is, however, possible only because these stiffness matrices 
are multiples of each other. 

As indicated in Example 8.9, it can be particularly effective to employ static conden­
sation when the same element is used many times. An application of this concept is 
employed in substructure analysis, in which the total structure is considered to be an 
assemblage of substructures (see, for example, J. S. Przemienieck.i [A] and M. F. Rubinstein 
[A]). Each substructure, in turn, is idealized as an assemblage of finite elements, and all 
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internal degrees of freedom are statically condensed out. The total structure stiffness is 
formed by assembling the condensed substructure stiffness matrices. Therefore, in effect, 
a substructure is used in the same way as an individual finite element with internal degrees 
of freedom that are statically condensed out prior to the element assemblage process. If 
many substructures are identical, it is effective to establish a library of substructures from 
which a condensed total structure stiffness matrix is formed. 

It should be noted that the unreduced complete structure stiffness matrix is never 
calculated in substructure analysis, and input data are required only for each substructure 
in the library plus information on the assemblage of the substructures to make up the 
complete structure. Typical applications of finite element analysis using substructuring are 
found in the analysis of buildings and ship hulls, where the substructure technique has 
allowed economical analysis of very large finite element systems. The use of substructuring 
can also be effective in the analysis of structures with local nonlinearities in static and 
dynamic response calculations (see K. J. Bathe and S. Gracewski (A]). 

As a simple example of substructuring, we refer to Example 8.9, in which each 
substructure is composed simply of one element, and the uncondensed and condensed 
stiffness matrix of a typical substructure was given in Example 8.8. 

The effectiveness of analysis using the basic substructure concept described above can 
in many cases still be improved on by defining different levels of substructures; i.e., since 
each substructure can be looked on as a "super-finite element," it is possible to define second, 
third, etc., levels of substructuring. In a similar procedure, two substructures are always 
combined to define the next-higher-level substructure until the final substructure is, in fact, 
the actual structure under consideration. The procedure may be employed in one-, two-, or 
three-dimensional analysis and, as pointed out earlier, is indeed only an effective applica­
tion of Gauss elimination, in which advantage is taken of the repetition of submatrices, 
which are the stiffness matrices that correspond to the identical substructures. The possibil­
ity of using the solution procedure effectively therefore depends on whether the structure 
is made up of repetitive substructures, and this is the reason the procedure can be very 
effective in special-purpose programs. 

EXAMPLE B. 10: Use substructuring to evaluate the stiffness matrix and the load vector corre­
sponding to the end nodal point degrees of freedom U1 and U9 of the bar in Fig. ES.10. 

The basic element of which the bar is composed is the three degree of freedom truss 
element considered in Example 8.8. The equilibrium equations of the element corresponding to 
the two degrees of freedom U1 and U3 as shown in Fig. E8.10 are 

~A1E[ 1 -l][U1]=[R1+fiR2] (a) 
9 L - 1 1 U3 R3 + ti R2 

Since the internal degree of freedom U2 has been statically condensed out to obtain the equi­
librium relations in (a), we may regard the two degree of freedom element as a first-level 
substructure. We should recall that once U1 and U3 have been calculated, we can evaluate U2 
using the relation (b) in Example 8.8: 

1 ( 3L ) U2 = - -R2 + lOU1 + 14U3 
24 EA1 

(b) 

It is now effective to evaluate a second-level substructure corresponding to degrees of 
freedom U1 and Us of the bar. For this purpose we use the stiffness matrix and load vector in (a) 
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Bar with linearly varying area 

__....... • •--+-u, __.......... U3 
U2 

__....... • ............. 
u, U3 

(a) First-level substructure 

__...... . • • • .__,..... 
u, __..,..... 

U3 
Us 

---,...... . • • • ._....... 
U1 Us 

(b) Second-level substructure 

---,...... . • • • • • • • .--....... 
u, __...... u, 

U61 R6 

---,...... . • • • • • • • . ---,...... 
u, u, 

(c) Third-level substructure and actual structure 

Figure ES.10 Analysis of bar using substructuring 

to evaluate the equilibrium relations corresponding to U1, U3, and U5: 

l3 AiE[ l -1 OJ[U1] [ R17 + fi R\, J 
9 T -1 3 -2 u3 = R3 + ii R2 + ii R4 

0 -2 2 Us Rs + ti R4 
(c) 

The relation for calculating u,. is similar to the one in (b): 

1 ( 3L ) U,. = 24 2EAi R4 + lOU3 + 14Us 

Using Gauss elimination on the equations in (c) to condense out Uh we obtain 

13 AiE[ J O -j][U'] [Rt+ ijR~ + f R\+ f6R4
] 9 T -1 3 -2 U3 = R3 + ii R2 + Il R4 

- } 0 J Us ~ R2 + J R3 + * R4 + Rs 
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or (~)(13)A1E [ 1 -11[u11 = [R' + fi Rz + i R3 + ,k R4] 
3 9 L - 1 l Us ~ Rz + i R3 +. ii R4 + Rs 

(d) 

and U3 = 1(:3 A~E (R3 + :2 R2 + :2 R4) + U1 + 2Us] 

We should note that the stiffness matrix of the second-level substructure in (d) is simply} times 
the stiffness matrix of the first-level substructure in (a). Therefore, we could continue to build up 
even higher-level substructures in an analogous manner; i.e .• the stiffness matrix of the nth-level 
substructure would simply be a factor times the stiffness matrix given in (a). 

In most cases loads are applied only at the boundary degrees of freedom between substruc­
tures. such as in this example. Using the stiffness matrix of the second-level substructure to 
assemble the stiffness matrix of the complete bar and assembling the actual load vector for this 
example, we obtain 

H':tt[-1 :~ -nrnJ = m 
Eliminating Us, we have 

(1)(~)(1t)A/[ _! 
where the stiffness matrix is simply the third-level substructure stiffness matrix corresponding to 
the algorithm given above. We also have 

U5 = ! (27 
.!::._ Rs + U, + 4U9) 

5 36A,E 

To solve for specific displacements. it is necessary to impose boundary conditions on the 
bar, hence obtain U1 and U9, and then obtain the internal bar displacements using previously 
derived relations. It should be noted that corresponding relations must also be employed to 
evaluate U6 to Us. 

So far, we have not mentioned how to proceed in the solution if the total system matrix 
cannot be contained in high-speed storage. If substructuring is used, it is effective to keep 
the size of each uncondensed substructure stiffness matrix small enough so that the static 
condensation of the internal degrees of freedom can be carried out in high-speed core. 
Therefore, disk storage would mainly be required to store the required information for the 
calculation of the displacements of the substructure internal nodes as expressed in 
(8.29). 

However, it may be necessary to use multilevel substructuring (i.e., to define substruc­
tures of substructures) in order that the final equations to be solved can be taken into 
high-speed storage. 

In general, it is important to use disk storage effectively since a great deal of reading 
and writing can be very expensive and indeed may limit the system size that can be solved, 
because not enough backup storage may be available. In out-of-core solutions the particular 
scheme used for solving the system equilibrium equations is largely coupled with the specific 
procedure employed to assemble the element stiffness matrices to the global structure 
stiffness matrix. In many programs the structure stiffness matrix is assembled prior to 
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performing the Gauss solution. In the program ADINA the equations are considered in 
blocks that can be taken into high-speed core. The block sizes (number of columns per 
block) are automatically established in the program and depend on the high-speed storage 
available. The solution of the system equations is then obtained in an effective manner by 
first reducing in blocks the stiffness matrix and the load vectors consecutively and then 
performing the back-substitution. Similar procedures are presently used in many analysis 
programs. 

Instead of first assembling the complete structure stiffness matrix, we may assemble 
and reduce the equations at the same time. A specific solution scheme proposed by B. M. 
Irons [DJ called the frontal solution method has been used effectively. In the solution 
procedure only those equations that are actually required for the elimination of a specific 
degree of freedom are assembled, the degree of freedom considered is statically condensed 
out, and so on. 

As an example, consider the analysis of the plane stress finite element idealization of 
the sheet in Fig. 8.8. There are two equations associated with each node of the finite element 
mesh. namely. the equations corresponding to the U and V displacements, respectively. In 
the frontal solution scheme the equations are statically condensed out in the order of the 
elements; i.e., the first equations considered would be those corresponding to nodes l, 
2, . . . . To be able to eliminate the degrees of freedom of node 1 it is only necessary to 
assemble the final equations that correspond to that node. This means that only the stiffness 
matrix of element 1 needs to be calculated, after which the degrees of freedom correspond­
ing to node 1 are statically condensed out. Next (for the elimination of the equations 
corresponding to node 2), the final equations corresponding to the degrees of freedom at 
node 2 are required, meaning that the stiffness matrix of element 2 must be calculated and 
added to the previously reduced matrix. Now the degrees of freedom corresponding to 
node 2 are statically condensed out; and so on. 

It may now be realized that the complete procedure, in effect, consists of statically 
condensing out one degree off reedom after the other and always assembling only those 
equations (or rather element stiffness matrices) that are actually required during the 
specific condensation to be performed. The finite elements that must be considered for the 

Elementq Element q+ t 

Vt N~~1 

Element 1 

Wavefront 
for node 1 

Elementq+2 

,4 

Wave front 
for node 2 

Element q+3 

m+3 

Element4 

Figure 8.8 Frontal solution of plane 
stress finite element idealization 
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static condensation of the equations corresponding to one specific node define the wave 
front at that time, as shown in Fig. 8.8. 

In principle, the frontal solution is Gauss elimination and the important aspect is the 
specific computer implementation. Since the equations are assembled in the order of the 
elements, the length of the wave front and therefore the half-bandwidth dealt with are 
determined by the element numbering. Therefore, an effective ordering of the elements is 
necessary, and we note that if the element numbering in the frontal solution corresponds to 
the nodal point numbering in the active column solution (see Section 8.2.3), the same 
number of basic (i.e., excluding indexing) numerical operations is performed in both 
solutions. An advantage of the wave front solution is that elements can be added with 
relative ease because no nodal point renumbering is necessary to preserve a small band­
width. But a disadvantage is that if the wave front is large, the total high-speed storage 
required may well exceed the storage that is available, in which case additional out-of-core 
operations are required that suddenly decrease the effectiveness of the method by a great 
amount. Also, the active column solution is implemented in a compact stand-alone solver 
that is independent of the finite elements processed, whereas a frontal solver is intimately 
coupled to the finite elements and may require more indexing in the solution. 

8.2.5 Positive Definiteness, Positive Semidefiniteness, and 
the Sturm Sequence Property 

In the Gauss elimination discussed so far, we implicitly assumed that the stiffness matrix K 
is positive definite, that is, that the structure considered is properly restrained and stable. 
As discussed in Sections 2.5 and 2.6, positive definiteness of the stiffness matrix means that 
for any displacement vector U, we have 

(8.31) 

Since! U7KU is the strain energy stored in the system for the displacement vector U, (8.31) 
expresses that for any displacement vector Uthe strain energy of a system with a positive 
definite stiffness matrix is positive. 

Note that the stiffness matrix of a finite element is not positive definite unless the 
element has been properly restrained, i.e., the rigid body motions have been suppressed. 
Instead, the stiffness matrix of an unrestrained finite element is positive semidefinite, 

UTKU 2: 0 (8.32) 

where U7KU = 0 when U corresponds to a rigid body mode. Considering the finite element 
assemblage process, it should be realized that positive semidefinite element matrices are 
added to obtain the positive semidefinite stiffness matrix corresponding to the complete 
structure. The stiffness matrix of the structure is then rendered positive definite by eliminat­
ing the rows and columns that correspond to the restrained degrees of freedom, i.e., by 
eliminating the possibility for the structure to undergo rigid body motions. 

It is instructive to consider in more detail the meaning of positive definiteness of the 
structure stiffness matrix. In Section 2.5, we discussed the representation of a matrix by its 
eigenvalues and eigenvectors. Following the development given in Section 2.5, the eigen­
problem for the stiffness matrix K can be written 

(8.33) 
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The solutions to (8.33) are the eigenpairs (A;, ct,,), i = 1, ... , n, and the complete solution 
can be written 

K4> = 4>A 

where ti) is a matrix of the orthonormalized eigenvectors, ti) = [ cl>1, ••• , cl>n], and A is a 
diagonal matrix of the corresponding eigenvalues, A = diag(A;). Since ct,T ct, = 4>ct,T = I, 
we also have 

and 

(8.34) 

(8.35) 

Referring to Section 2.6, we recall that A, of K represents the minimum that can be 
reached by the Rayleigh quotient when an orthonormality constraint is satisfied on the 
eigenvectors cl>1, ••• , ct>,-1: 

with 
. {cf>rKcf>} 

>..; = mm cf>T cf> } 

cf>T cf>r = 0; for r = 1, 2, , , , , i - 1 
(8.36) 

Therefore, ! A1 is the minimum strain energy that can be stored in the element assemblage, 
and the corresponding displacement vector is ct>,. For a positive definite system stiffness 
matrix, we therefore have A1 > 0. On the other hand, for the stiffness matrix of an unre­
strained system, we have A1 = A2 = · · · = Am = 0, where m is the number of rigid body 
modes present, m < n. As the system is restrained, the number of eigenvalues of K is 
decreased by 1 for each degree of freedom that is eliminated, and a zero eigenvalue is lost 
if the restraint results in the elimination of a rigid body mode. 

EXAMPLE 8. 11: Determine whether the deletion of the four degrees of freedom of the plane 
stress element in Fig. E8. l l results in the elimination of the rigid body modes. 

The plane stress element has three rigid body modes: ( 1) uniform horizontal translation, 
(2) uniform vertical translation, and (3) in-plane rotation. Consider the sequential deletion of the 
degrees of freedom, as shown in Fig. E8.1 l. The deletion of U4 results in eliminating the 
horizontal translation rigid body mode. Similarly the deletion of V4 results in the deletion of 

Degrees of freedom 
of plane stress element 

qq 
U4 deleted U4 and V, deleted 

u,, v.., and V1 deleted U4, V4 , V1, and U2 deleted 

Figure E8.11 Deletion of degrees of freedom of plane stress element 
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the vertical translation rigid body mode. However, deleting Vi in addition does not result in the 
elimination of the last rigid body mode; i.e., the in-plane rotation rigid body mode is eliminated 
only with the additional deletion of U2. Therefore, the deletion of U4 and V4 and Vi and U2 
eliminates all rigid body modes of the element, although we should note that, in fact, by the 
deletion of U4, V4, and U2 alone we would achieve the same result. 

The transformation performed in (8.34) has important meaning. Considering the 
relation and referring to Section 2.5, we realize that in (8.34) a change of basis is performed. 
The new basis vectors are the finite element interpolations corresponding to the eigenvec­
tors of K, and in this basis the operator is represented by a diagonal matrix with the 
eigenvalues of K on its diagonal. We may therefore look at A as being the stiffness matrix 
of the system when the finite element displacement functions used in the principle of virtual 
work in (4.7) are those corresponding to nodal point displacements <f,i, i = 1, ... , n, 
instead of unit nodal point displacements U1, i = l, ... , n (see Section 4.2.1 ). The relation 
in (8.34) is therefore a statement of virtual work resulting in a diagonal stiffness matrix. If 
the system considered is properly restrained, all stiffness coefficients in A are positive; i.e., 
the stiffness matrix A (and hence K) is positive definite, whereas for an unrestrained system 
some diagonal elements in A are zero. 

Before studying the solution of nonpositive definite systems of equations, another most 
important observation should be discussed. In Section 2.6 we introduced the Sturm se­
quence property of the leading principal minors of a matrix. We should note here the 
physical meaning of the Sturm sequence. Let K<r> be the matrix of order n - r obtained by 
deleting from K the last r rows and columns and consider the eigenproblem 

KCr)4>(r) = A(r)ct,(r) (8.37) 

where 4,<r> is a vector of order n - r. We say that ( 8.37) is the eigenproblem of the rth 
associated constraint problem of the problem K<f, = A<f>. Then we have shown in Sec­
tion 2.6 that the eigenvalues of the (r + 1 )st constraint problem separate those of the rth 
constraint problem, 

Ar s Air+o s .\,r> s Ar+ 0 s · · · s A~l.,-1 s M;..:,111 s A~l.r (8.38) 

As an example, the eigenproblems of the simply supported beam discussed in Section 8 .2.1 
and of its associated constraint problems can be considered. Figure 8.9 shows the eigenval­
ues calculated and, in particular, displays their separation property. We should note that as 
we proceed from the (r + l)st constraint problem to the rth constraint problem by includ­
ing the (n - r)th degree of freedom, the new system has an eigenvalue smaller than (or 
equal to) the smallest eigenvalue of the (r + 1 )st constraint problem, and also an eigenvalue 
larger than (or equal to) the largest eigenvalue of the (r + 1 )st constraint problem. 

Using the separation property of the eigenvalues and realizing that any rows and 
columns may be interchanged at convenience to become the last rows and columns in the 
matrix K, it follows that if the stiffness matrix corresponding to the n degrees of freedom 
is positive definite (i.e., Ai > 0), then any stiffness matrix obtained by deleting any rows 
and corresponding columns is also positive definite. Furthermore, the smallest eigenvalue 
of the new matrix can only have increased, and the largest eigenvalue can only have 
decreased. This conclusion applies also if the matrix K is positive semidefinite and would 
apply if it were indefinite since we showed the eigenvalue separation theorem to be applica­
ble to all symmetric matrices. 
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Figure 8.9 Eigenvalue solutions of simply supported beam and of associated constraint 
problems 
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We shall encounter the use of the Sturm sequence property of the leading principal 
minors more extensively in the design of eigenvalue solution algorithms (see Chapter 11 ). 
However, in the following we use the property to yield more insight into the solution of a 
set of simultaneous equations with a symmetric positive definite, positive semidefinite, or 
indefinite coefficient matrix. A symmetric indefinite coefficient matrix will be encountered 
in the solution of eigenproblems. 

We showed in Sections 8.2.1 and 8.2.2 that if K is the stiffness matrix of a properly 
restrained structure, we can factorize K into the form 

K = LDL7 (8.39) 
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where L is a lower unit triangular matrix and D is a diagonal matrix, with du > 0. It follows 
that 

det K = det L det D det U 

=Ildu>O 
(8.40) 

i=I 

This result can also be obtained by considering the characteristic polynomial of K, 
defined as 

p(A) = det(K - Al) (8.41) 

Since A1 is the smallest root of p(A) and A1 > 0 for K being positive definite, it follows 
that det K > 0. However, it does not yet follow that du> 0 for all i. 

In order to formally prove that du > 0, i = 1, ... , n, when K is positive definite, and 
to identify what happens during the factorization of K, it is expedient to compare the 
triangular factors of K with those of K<i), where K(i> is the stiffness matrix of the ith 
associated constraint problem. Assuming that the factors L and D of K have been calcu­
lated, we have, for the associated constraint problems, 

i = l, ... , n - 1 (8.42) 

where vn and n<i) are analogously the factors of K<n. Since Lis a lower-unit triangular 
matrix and Dis a diagonal matrix, the factors Vi) and D(i) are obtained from Land D, 
respectively, by striking out the last i rows and columns. Therefore, V 0 and D(i) are the 
leading principal submatrices of L and D, respectively, and they are actually evaluated in 
the factorization of K. However, because A ii) > 0, it now follows that we can use the 
argument in (8.39) and (8.40) starting with i = n - 1 to show that du > 0 for all i. 
Therefore, the factorization of K into LDF is indeed possible if K is positive definite. We 
demonstrate the result in the following example. 

EXAMPLE 8.12: Consider the simply supported beam in Fig. 8.9 and the associated constraint 
problems. The same beam was used in Section 8.2.1. Establish the Vi) and D(i) factors of the 
matrices KCi>, i = 1, 2, 3, and show that du must be greater than zero because A.1 > 0. 
The required triangular factorizations are 

[5) = [1][5][1] (a) 

[ s -4] = [ ~ o] [s ~] [ 1 -!] 
-4 6 - 5 I O 5 0 1 

(b) 

[-! -: -!] = [-; ~ ~][~ ; ~][~ -1 -l] 
1 -4 6 ! - ; 1 0 0 ¥ 0 0 1 

(c) 

where the matrices VI) and D(i) are obtained from the L and D factors given in Example 8.3 by 
striking out the last i rows and columns. (As a check, we may want to calculate the product of 
the matrices on the right sides of the relations in (a) to (c) to obtain the matrices on the left sides.] 

Considering the elements du, we have .;\ ~3> 2: ,\ \2> 2: A ~n 2: A1 > 0. But using the relation 
(a), we have Ai3> = du; hence d11 > 0. Next we consider K(2>. Since Ai2> > 0, we have, using 
(8.39) and (8.40), dnd22 > 0, which means that d22 > 0. Similarly, considering Km, we have 
A\0 > 0, and hence dud22d33 > 0, from which it follows that d33 > 0. Finally, considering K, 
we have A1 > 0, and hence d11d22d33d44 > 0. Therefore. d44 > 0 also. 
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Assume next that the matrix K is the stiffness matrix of a finite element assemblage 
that is unrestrained. In this case, K is positive semidefinite, A = 0.0 is a root, and det K is 
zero, which, using (8.40), means that dii for some i must be zero. Therefore, the factoriza­
tion of K as shown in the preceding sections is, in general, not possible because a pivot 
element will be zero. It is again instructive to consider the associated constraint problems. 
When K is positive semidefinite, we note that the characteristic polynomial corresponding 
to K(i) will have a zero eigenvalue, and this zero eigenvalue will be retained in all matrices 
K<,-1), . . . , K. This follows because, first, the Sturm sequence property ensures that the 
smallest eigenvalue of K<i-t) is smaller or equal to the smallest eigenvalue of KCi\ and 
second, K has no negative eigenvalues. For the ith associated constraint problem, we will 
therefore have 

(8.43) 

from which it follows that an element of n<0 is zero. However, assuming that the zero root 
occurs only in the ith associated constraint problem [i.e., det (V')D<'>L(r)7) > 0 for r > i], 
it follows that dn-i, n-i is zero. In summary therefore, if K is positive semidefinite, the 
factorization of K into LDU (i.e., the Gauss elimination process) will break down at the 
time a zero diagonal element dkk is encountered, which means that the (n - k)th associated 
constraint problem with a zero eigenvalue prevents the continuation of the factorization 
process. 

In the case of a positive semidefinite matrix, a zero diagonal element must be encoun­
tered at some stage of the factorization. However, considering the decomposition of an 
indefinite matrix (i.e., some of the eigenvalues of the matrix are negative and some are 
positive), a zero diagonal element is encountered only if one of the associated constraint 
problems has a zero eigenvalue. Namely, as in the case of a positive semidefinite matrix, dkk 
is zero if the (n - k)th associated constraint problem has a zero eigenvalue. However, if 
none of the associated constraint problems has a zero eigenvalue, all elements du are 
nonzero and, in exact arithmetic, no difficulties are encountered in the factorization. We 
shall discuss the decomposition of indefinite coefficient matrices further in the solution of 
eigenproblems (see Section 11.4.2). Figure 8.10 shows typical cases that use the simply 
supported beam in Fig. 8.9 on spring supports for which, in the decompositions, we would 
and would not encounter a zero diagonal element. 

Assume that a zero diagonal element du is encountered in the Gauss elimination. To 
be able to proceed with the solution, it is necessary to interchange the ith row with another 
row, say the jth row, where j > i. The new diagonal element should not be zero, and to 
increase solution accuracy, it should be large (see Section 8.2.6). This row interchange 
corresponds to a rearranging of the equations, where it should be noted that the row 
interchange results in the coefficient matrix no longer being symmetric. On the other hand, 
symmetry would be preserved if we were to interchange not only the ith and jth rows but 
also the corresponding columns to obtain a nonzero diagonal element in row i, which is not 
always possible (see Example 10.4). In effect, the interchange of columns and rows corre­
sponds to a rearranging of the associated constraint problems in such a way that these have 
nonzero eigenvalues. 

The remedy of row interchanges assumes that it can be arranged for the new diagonal 
element to be nonzero. In fact, this will always be the case unless the matrix has a zero 
eigenvalue of multiplicity m and i = n - m + 1. In this case the matrix is singular and du 
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Figure 8.10 Simply supported beam on 
spring supports; negative spring stiffness 
can result in solution difficulties. 

is zero, but all other elements of the last m rows of the upper triangular factor of the 
coefficient matrix are also zero, and the factorization of the matrix has already been 
completed. In other words, since the number of rows that are made up of only zero elements 
is equal to the multiplicity m of the zero eigenvalue, the last m - 1 matrices L;.!1, 
L;.!2, ... , L;.!m+1 in (8.10) cannot and need not be calculated. We shall therefore be able 
to solve for m linearly independent solutions by assuming appropriate values for the m last 
entries of the solution vector. 

Consider the following example. 

EXAMPLE 8.13: Consider the beam element in Fig. E8.13(a). The stiffness matrix of the 
element is 

[ 
12 -6 -12 -6] 
-6 4 6 2 

K= -12 6 12 6 
-6 2 6 4 

Show that Gauss elimination results in the third and fourth row consisting of only zero elements 
and evaluate formally the rigid body mode displacements. 

Using the procedure in (8.10), we expect to arrive at a matrix S with its last two rows 
consisting of only zero elements because the beam element has two rigid body modes corre-
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El• 1.0 

L 
L• 1.0 

{a) Initial degree of freedom numbering (b) Degree of freedom numbering 
that requires column and row interchange 

Figure ES.13 Beam element with two rigid body modes 

sponding to vertical translation and rotation. We have 

L-1 = [: I ] I l Q 

! 0 0 

[2 -6 12 -] Hence, L-•K= 0 I 0 -1 
I O O 0 0 

0 -1 0 1 

Then L-' =~ I ] 2 0 0 1 
O I 0 

[2 
-6 -12 -] 

and S = L2
1
Li

1
K = ~ 0 -1 

(a) 
0 0 0 
0 0 0 

Therefore, as expected, the last two rows in S consist of zero elements, and L31 cannot and 
need not be calculated. We should also note that if the numbering of the degrees of freedom of 
the beam element were initially as in Fig. E8.13(b), we would need to interchange rows and 
columns 2 with rows and columns 3 in order to be able to continue with the triangularization. 
This, however, is equivalent to using the degree of freedom numbering that we were concerned 
with in the first place, i.e .• the numbering in Fig. E8.13(a). 

Using the matrix S in (a), we can now formally evaluate the rigid body mode displacements 
of the beam, i.e., solve the equations KU = 0 to obtain two linearly independent solutions for U. 

First, assume that U4 = 1 and U3 = O; then using S, we obtain 

12U, - 6U2 = 6 

U2 = 1 

Hence, 

Then assume that U4 = 0, U3 = l, to obtain 

12U1 - 6U2 = 12 

U2 = 0 
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Hence, U1 = 1, U2 = O. U3 = l, U4 = 0 

It should be noted that the rigid body displacement vectors are not unique, but instead the 
two-dimensional subspace spanned by any two linearly independent rigid body mode vectors is 
unique. Therefore, any rigid body displacement vector can be written as 

(b) 

where ')'1 and ')'2 are constants. Note that the rank of K is 2 and the kernel of K is given by the 
two basis vectors in (b) (see Section 2.3). 

8.2.6 Solution Errors 

In the preceding sections we presented various algorithms for the solution of KU = R. We 
applied the solution procedures to some small problems for instructive purposes, but in 
practical analysis the methods are employed on large systems of equations using a digital 
computer. It is important to note that the elements of the matrices and the computational 
results can then be represented to only a fixed number of digits, which introduces errors in 
the solution. The aim in this section is to discuss the solution errors that can occur in Gauss 
elimination and to give guidelines for avoiding the introduction of large errors. 

In order to identify the source of the errors, let us assume that we use a computer in 
which a number is represented using t digits in single precision. Then, to increase accuracy, 
double-precision arithmetic may be specified, in which case each number is approximately 
represented using 2t (or more) digits. As an example, on IBM computers single-precision 
numbers are represented with 6 digits, whereas double-precision numbers are represented 
with 16 digits. 

Considering the finite digit arithmetical operations, the t digits may be used quite 
differently in different machines. However, most computers, in effect, perform the arith­
metic operations and afterward "chop off" all digits beyond the number of digits carried. 
Therefore, for demonstration purposes we assume in this section that the computer at hand 
first adds, subtracts, multiplies, and divides two numbers exactly, and then to obtain the 
finite precision results, chops off all digits beyond the t digits used. 

In order to demonstrate the finite precision arithmetic, assume that we want to solve 
the system of equations 

[ 
3.42521 -3.42521] [Ui] = [1.3021] 

-3.42521 101.2431 U2 0.0 
(8.44) 

where Kand Rare given "exactly." The exact solution is (to 10 digits) 

U1 = 0.3934633449; U2 0.0133114709 (8.45) 

Assume now that for a (hypothetical) computer at hand, t = 3; i.e., each number is repre­
sented to only three digits. In this case the solution to the equations in (8.44) would be 
obtained by first representing K and R using only the first three digits in each number and 
then calculating the solution by always using only three-digit representations with chopping 
off of the additional digits. Employing the basic Gauss elimination algorithm (see Sec-
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tion 8.2.1), the solution would be as follows: 

[ 3.42 -3.42][~·] = [l.30] 
-3.42 101 U2 0 

(8.46) 

where the hats over U1 and U2 indicate that the solution of (8.46) is different from the 
solution of (8.44). Using that with chopping to three digits, 

(
-3 42) 101 - 3.~2 (-3.42) = 101 - (-1)(-3.42) 97.5 

we obtain [
3.42 -3.42][~1] = [l.30] 
0.0 97.5 U2 1.30 

(8.47) 

where the bars over U1 and U2 indicate that we solve (8.46) approximately. Continuing to 
use three-digit chopping arithmetic, we have 

- 1.30 
U2 = 97.S = 0.0133 

.and 
- 1 1 
U1 = 

3
.
42 

[1.30 - (-3.42)(0.0133)] = 
3

.
42 

(1.34) 
(8.48) 

= 0.391 

Referring to the above example, we can identify two kinds of errors: a truncation error 
and a roundMoff error. The truncation error is the error arising because the exact matrix K 
and load vector R in ( 8.44) are represented to only three-digit precision, as given in ( 8.46). 
The round-off error is the error that arises in the solution of (8.46) because only three-digit 
arithmetic is used. Considering the situations in which each type of error would be large, 
we note that the truncation error can be large if the absolute magnitude of the elements in 
the matrix K including the diagonal elements varies by a large amount. The round-off error 
can be large if a small diagonal element du is used that creates a large multiplier l;i· The 
reason that the truncation and round-off errors are large under the above conditions is that 
the basic operation in the factorization is a subtraction of a multiple of the pivot row from 
the rows below it. If in this operation numbers of widely different magnitudes are sub­
tracted-that have, however, been represented to only a fixed number of digits-the errors 
in this basic operation can be relatively large. 

To identify the round-off errors and the truncation errors individually in the example, 
we need to solve (8.46) exactly, in which case we obtain 

[
3.42 -3.42][Q1] = [1.30] 

0 97 .58 U2 1.30 
(8.49) 

and 01 = o.3934393613 

02 = 0.0133224020 
(8.50) 

The error in the solution arising from initial truncation is therefore 

r = [u'] _ [Qi] = [ 0.0000239836] 
U2 U2 -0.000010931 l 

(8.51) 
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and the round-off error is 

f = [~'] _ [~I] = [0,()()243936}3] 
U2 U2 0.0000224020 

(8.52) 

The total error r is the sum of r and r, or 

r = [u•] _ [~i] = [0.0024633449] 
U2 U2 0.0000114709 

(8.53) 

In this evaluation of the solution errors, we used the exact solutions to ( 8.44) and 
(8.49). In practical analyses, these exact solutions cannot be obtained; instead, double­
precision arithmetic could be employed to calculate close approximations to them. 

Consider now that in a specific analysis the solution obtained to the equations 
KU = R is U; i.e., because of truncation and round-off errors, U is calculated instead of 
U. It appears that the error in the solution can be obtained by evaluating a residual AR, 
where 

AR=R KU (8.54) 

In practice, AR would be calculated using double-precision arithmetic. Substituting KU for 
R into (8.54), we have for the solution error r = U - U, 

(8.55) 

meaning that although AR may be small, the error in the solution may still be large. On the 
other hand, for an accurate solution AR must be small. Therefore, a small residual AR is 
a necessary but not a sufficient condition for an accurate solution. 

EXAMPLE 8. 14: Calculate AR and r for the introductory example considered above. 
Using the values for R, K, and U given in (8.44) and (8.48), respectively, we obtain, 

using (8.54 ), 

AR = [1.3021] _ [ 3.42521 --3.42521][ 0.391 ] 
0 -3.42521 101.2431 0.0133 

or AR = [ 0.00839818] 
-0.00042520 

Hence, using (8.55), we have 

= [0.00253338] 
r 0.00008151 

In this case, AR and rare both relatively small because K is well-conditioned. 

EXAMPLE 8. 16: Consider the system of equations 

[

4~!5 5~;5 ~4 ~ l i~:J = [- ~.59] 
1 -4 5.855 -4 U3 1 
o 1 -4 4.sss u4 -1.64 

Use six-digit arithmetic with chopping to calculate the solution. 
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Following the basic Gauss elimination process, we have 

-4 
2.55944 -3.17610 

-3.17610 5.64902 
-4 

-4 1 
2.55944 -3.17610 

0 1.70771 
0 -2.75907 

-4 
2.55944 -3.17610 

1.70771 

The back-substitution yields U = 1.63768 

[

0.68670] 

1.62674 

The exact answer (to seven digits) is 

0.665151 

[

o. 1031241] 
U = 1.6652256 

1.6542831 
0.6821567 

Evaluating AR as given in (8.54), we obtain 

[

-1.59] [- 1.59002237 l [ 0.00002237 l 
AR = 1 _ 0.99998340 = 0.00001660 

1 0.99994470 0.00005530 
-1.64 -1.639971895 . -0.000028105 

~

.017021 
0.02756 

r = 0.02754 

0.01701 

Also evaluating r, we have 

737 

We therefore see that AR is relatively much smaller than r. Indeed, the displacement errors 
are of the order 1 to 2 percent, although the load errors seem to indicate an accurate solution of 
the equations. 

Considering (8.55), we must expect that solution accuracy is difficult to obtain when 
the smallest eigenvalue ofK is very small or nearly zero; i.e., the system can almost undergo 
rigid body motion. Namely, in that case the elements in K- 1 are large and the solution errors 
may be large although A.R is small. Also, to substantiate this conclusion, we may realize 
that if A1 of K is small, the solution KU = R may be thought of as one step of inverse 
iteration with a shift close to A1. But the analysis in Section 11.2.1 shows that in such a case 
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the solution tends to have components of the corresponding eigenvector. These components 
now appear as solution errors. 

To obtain more information on the solution errors, an analysis can be performed that 
shows that it is not only a small (near zero) eigenvalue At but a large ratio of the largest to 
the smallest eigenvalues of K that determines the solution errors. Namely, in the solution 
of KU = R, owing to truncation and round-off errors, we may assume that we in fact solve 

(K + 8K)(U + cSU) = R (8.56) 

Assuming that .SK .SU is small in relation to the other terms, we have approximately 

au= -K- 1 aK u 

or, taking norms, llrSUII ll8KII 
lfuij s cond (K) IIKII 

where cond(K) is the condition number of K, 

cond(K) = An 
A1 

(8.57) 

(8.58) 

(8 . .59) 

Therefore, a large condition number means that solution errors are more likely. To evaluate 
an estimate of the solution errors, assume that for at-digit precision computer, 

ll 8KII = 10-t 
IIKII (8.60) 

Also, assumings-digit precision in the solution, we have 

II au II = 10_s 

11011 
(8.61) 

Substituting (8.60) and (8.61) into (8.58), we obtain as an estimate of the number of 
accurate digits obtained in the solution, 

s 2!: t - log10 [cond(K)] (8.62) 

EXAMPLE 8.16: Calculate the condition number of the matrix K used in Example 8.15. Then 
estimate the accuracy that can be expected in the equation solution. 

In this case we have 

A1 = 0.000898 

A.a = 12.9452 

Hence, cond(K) = 14415.6 

log10 [cond(K)] = 4.15883 and 

Thus the number of accurate digits using six-digit arithmetic predicted using (8.62) is 

s;;:,; 6 - 4.16 

or one- to two-digit accuracy can be expected. Comparing this result with the results obtained 
in Example 8.15, we observe that, indeed, only one- to two-digit accuracy was obtained. 
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The condition number of K can in practice be evaluated approximately by calculating 
an upper bound for A,,, say ,\~, 

(8.63) 

where any matrix norm may be used (see Example 8.17), and evaluating a lower bound for 
A1, say ,\1, using inverse iteration (see Section 11.2.1). We thus have 

cond(K) = ~~ (8.64) 

EXAMPLE 8.17: Calculate an estimate of the condition number of the matrix K used in 
Example 8.15. 

Here we have, using the oo norm (see Section 2. 7), 

II Kllao = 14.855 

and by inverse iteration we obtain A1 = 0.0009. Hence, 

log1o(cond (K)) = 4.2176 

and the conclusions reached in Example 8.16 are still valid. 

The preceding considerations on round-off and truncation errors yield the following 
two important results: 

1. Both types of errors can be expected to be large if structures with widely varying 
stiffness are analyzed. Large stiffness differences may be due to different material 
moduli, or they may be the result of the finite element modeling used, in which case 
a more effective model can frequently be chosen. This may be achieved by the use of 
finite elements that are nearly equal in size and have almost the same lengths in each 
dimension, the use of master-slave degrees of freedom, i.e., constraint equations (see 
Section 4.2.2 and Example 8.19), and relative degrees of freedom (see Example 8.20). 

2. Since truncation errors are most significant, to improve the solution accuracy it is 
necessary to evaluate both the stiffness matrix K and the solution of KU = R in 
double precision. It is not sufficient (a) to evaluate Kin single precision and then solve 
the equations in double precision (see Example 8.18), or (b) to evaluate K in single 
precision, solve the equations in single precision using a Gauss elimination procedure, 
and then iterate for an improvement in the solution employing, for example, the 
Gauss-Seidel method. 

We demonstrate these two conclusions by means of some simple examples. 

EXAMPLE 8. 18: Consider the simple spring system in Fig. ES.18. Calculate the displacements 
when k = 1, K = 10,000 using four-digit arithmetic. The equilibrium equations of the sys­
tem are 

[-~ ~: -OK][~:]=[~] 
0 -K K + k U3 1 



740 Solution of Equilibrium Equations in Static Analysis Chap.a 

Stiffness k 

R1 • 1 Figure E8.18 Simple spring system 

Substituting K = 10,000, k = 1 and using fouNligit arithmetic, we have 

[ 
10,000 -10,000 o J[u'] [1] -10,000 20,000 -10,000 U2 = 0 

0 -10,000 10,000 U3 l 

The triangularization of the coefficient matrix gives 

[
10,000 -10,000 _ 0 J[U']- [I.OJ 0 10,000 10,000 U2 - 1.0 

0 0 0 U3 2.0 

Hence, a solution is not possible, because dnn = 0.0. 
To obtain a solution we may employ higher-digit arithmetic. In practice, this would mean 

that double-precision arithmetic would be used, i.e., in this case, eight- instead of four-digit 
arithmetic. 

Using eight-digit arithmetic (indeed five digits would be sufficient), we obtain the exact 
solution as follows: 

[ 10,000 -10,000 -Ii~][~:]=[~] -10,000 20,000 
0 -10,000 10,001 U3 1 

[°'r 
-10,000 O Jn [.OJ 10,000 -10,000 U2 = 1.0 

0 1 U3 2.0 

[2.~m] Hence, U = 2.0001 
2.0 

This example shows that a sufficient number of digits carried in the arithmetic may be vital 
for the solution not to break down. 

EXAMPLE 8.19: Use the master-slave solution procedure to analyze the system considered in 
Fig. ES.18. 

The basic assumption in the master-slave analysis is the use of the constraint equations 

U1 = U2 = UJ 

The equilibrium equation governing the system is thus 

kU, = 2 

Substituting fork, we obtain u. = 2 
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and the complete solution is 
[

2.0] U = 2.0 
2.0 

This solution is approximate. However, comparing the solution with the exact result (see 
Example 8.18), we find that the main response is properly predicted. 

EXAMPLE 8.20: Use relative degrees of freedom to analyze the system in Fig. E8.18. 
Using relative degrees of freedom, the displacement degrees of freedom defined are UJ, ti 1, 

and A2, where 

or we have 

U2 = UJ + 42 

U, = U2 + 41 

[ ~:] = [~ ~ ~][!:] 
U3 0 0 1 U3 

(a) 

The matrix relating the degrees of freedom ti., ti2, and U3 to the degrees of freedom u., U2, and 
U3 is the matrix T. The equilibrium equations for the system using relative degrees of freedom 
are (T 7 KT)Urc1 = TTR; i.e., the equilibrium equations are now 

['°f 
0 O r•J [''OJ 10.000 0 42 = 1.0 (b) 

0 1.0 U3 2.0 

with the solution 41 = 0.0001 

42 = 0.0001 

U3 = 2.0 

Hence, we obtain u. = 2.0002 

U2 = 2.0001 

LJ3 = 2.0000 

Therefore, using four-digit arithmetic, we obtain the exact solution of the system if relative 
degrees of freedom are used (see Example 8.18). However, it should be noted that the equilibrium 
equations corresponding to the relative degrees of freedom would have to be formed directly, i.e., 
without the transformation used in this example. 

8.2. 7 Exercises 

8.1. Consider the cantilever beam in Example 8.1 with the given stiffness matrix. Calculate the 
experimental results that you expect to obtain in a laboratory experiment for the stiffnesses of the 
beam, as described in Figs. 8.3 to 8.6 for the simply supported beam discussed in the text. That 
is, give the forces in the clamps and the deflected shapes of the cantilever beam corresponding 
to the stiffness measurements of the four cases: all four clamps present, clamp 1 removed, clamps 
1 and 2 removed, and clamps 1, 2, and 3 removed. 

8.2. Given the stiffness matrix of the cantilever beam in Example 8.1, calculate the stiffness matrix 
corresponding to U2 and U4 only, that is, with the degrees of freedom U1 and U3 released. Then 
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calculate and plot the deflected shapes of the beam described by U2 and U4 only when U2 1, 
U4 = 0 and when U2 = 0, U4 = 1. 

8.3. A laboratory experiment is performed to obtain the stiffness matrix of a structure. The clamps 
shown are used, and the following 4 X 4 stiffness matrix is measured: 

K = t~:~ ~: -~ 
-7 16 

-8 
-!] 
18 

Clamp 1 

All clamps are firmly attached to structure 

Clamp 2 is then removed, and the following 3 x 3 stiffness matrix is measured: 

K = [-? -~ -JJ 
; -¥ 17 

While you are sure ... that the matrix K has been correctly established, there is some doubt 
as to whether the matrix K has been measured cortectly because clamp 3 might not have worked 
properly. Check whether the stiffness elements in K are correct, and if there is an error, give the 
details of the error. 

8.4. The stiffness matrix of the beam element shown in (a) is given as 

U1 U2 U3 U4 

K =El[~! -: -l! -~~· 
-12 6 12 6 
-6 2 6 4 

Calculate the stiffness of the element assemblage in (b) corresponding to the degree of 
freedom () only. 
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,, 

U2 ~ El 
u, ~ 

I I 
I· L•1 ~ I 

(a) 

I.. L=1 -+· L=1 ~1 

1-·---· El·-·-· ~M _____ 2El·-·-·-l 
Roller 

M=k,18; k11•7 

{b) 

S.S. The cantilever beam in Example 8.1 is loaded with a concentrated force corresponding to U2; 
hence, the governing equations are 

[_; -: -! ~i [~21 = [~] 
1 -4 5 -2 U3 0 
o -2 1 u4 o 

Calculate the displacement solution by performing Gauss elimination on the displacement vari­
ables in the order U4, U3, and U1• 

8.6. Consider the four-node finite element shown with its boundary conditions. Assume that Gauss 
elimination is performed in the usual order for U1, U2, .· .. , and so on, i.e., from the lowest to 
the highest degree of freedom number. Determine for cases l to 3 whether any zero diagonal 
element will be encountered in the elimination process, and if so, at what stage of the solution 
this will be the case. 

u, U2 
/ U3 U1 

U3 U2 
u, U2 

U5 u, Us 
U3 u, 

Case 1 Case2 Case3 

8.7. Establish the LDU factorization of the cantilever beam stiffness matrix Kin Example 8.1 (K is 
the result of the first experiment;_Jee Exercise 8.5). Use this factorization to calculate det Kand 
to calculate the Cholesky factor L of K. 

8.8. Prove that corresponding to (8.10) and (8.14) we indeed have S = DS and S = L7• 
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8.9. Consider the equations 

Establish the LDU factorization of the coefficient matrix and the,!l solve the equations as given 
in (8.19) and (8.20). Finally, also calculate the Cholesky factor L of the coefficient matrix. 

8.10. Consider the equations 

[-~ -! ~1 ][~:] = [~] 
0 -1 2 + k U3 0 

Establish for which value(s) of k (a) the coefficient matrix is indefinite and (b) the equations 
cannot be solved. 

8.11. Use the basic steps of Gauss elimination given in Section 8.2.1 to solve the following nonsymmet­
ric set of equations. Then show that these solution steps can be written in the form (8.10) to 
(8.20), except that we need to replace U in these equations by an upper unit triangular matrix 
Lu, Establish Lu, 

[-~ -! -~][~:] = [~] 
0 -2 3 U3 0 

8.12. Carry out Exercise 8.11 but use the following set of equations: 

8.13. Establish the LDL7 factorization of the following set of equations: 

~i-l-~i-t-!J[~:] = [ •• [ •• ] 

Here Ui, U2 , and U3 are displacements and A is a Lagrange multiplier (force) (see Section 3.4.1). 
Also establish a simple finite element model whose response is governed by these equa­

tions. 
8.14. Consider the following set of equations 

where K is a symmetric positive definite matrix of order n (K corresponds to a finite element 
model properly supported to not contain rigid body modes), and the KA matrix and RA vector 
correspond top constraint equations (as, for example, are encountered in contact analysis; see 
Section 6.7). The vector). contains the Lagrange multipliers. 

Show that as long as the constraint equations are linearly independent and p < n, we can 
use the solution procedure in (8.10) to (8.20) to solve for the unknown displacements and 
Lagrange multipliers. 
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8.15. Consider the structural model in Example 8.9 and assume that a stiffness of k, (EAi/L) X i 
is added to the degree of freedom U;, i = 1, 2, ... , 5. Hence, these stiffness values are only 
an addition to the diagonal elements of the original stiffness matrix given in Example 8.9. Use 
substructuring to solve for the stiffness matrix of the resulting structure defined by the degrees 
of freedom U1t U3, and Us only. 

8.16. Use substructuring to solve for the 3 X 3 stiffness matrix and corresponding force vector of the 
bar structure in Fig. ES.IO corresponding to the degrees of freedom Ui. U1, and U9. 

8.17. Consider the cantilever beam in Example 8.1 and its stiffness matrix (which is given in the result 
of the first experiment; see Exercise 8.5}. Calculate the eigenvalues of the original problem and 
of the associated constraint problems and thus show that the Sturm sequence property holds in 
this case. (Hint: See Fig. 8.9.) 

8.18. Consider the stiffness matrix in Exercise 8.4. Calculate the eigenvalues of the original problem 
and of the associated constraint problems and thus show that the Sturm sequence property holds 
in this case. (Hint: See Figure 8.9.) 

8.19. Consider the following matrix: 

[-!~ 1~_: k 10~:J 
Evaluate the value of k such that the condition number of the matrix is about 108• 

8.20. Calculate the exact condition number of the simply supported beam stiffness matrix in Fig. 8.1 (a) 
and an approximation thereof using a norm. [Hint: See Fig. 8.9 and (8.63).] 

8.3 ITERATIVE SOLUTION METHODS 

In many analyses some form of direct solution based on Gauss elimination to solve the 
equilibrium equations KU = R is very efficient (see Section 8.2). It is interesting to note, 
however, that during the initial developments of the finite element method, iterative solution 
algorithms have been employed (see R. W. Clough and E. L. Wilson [A]). 

A basic disadvantage of an iterative solution is that the time of solution can be 
estimated only very approximately because the number of iterations required for conver­
gence depends on the condition number of the matrix K and whether the acceleration 
schemes used are effective for the particular case considered. It is primarily for this reason 
that the use of iterative methods in finite element analysis was largely abandoned during the 
1960s and 1970s, while the direct methods of solution have been refined and rendered 
extremely effective (see Section 8.2). 

However, when considering very large finite element systems, a direct method of 
solution can require a large amount of storage and computer time. The basic reason is that 
the required storage is proportional to nmK, where n = number of equations, mK == half­
bandwidth, and a measure of the number of operations is ! nmi:. Since the half-bandwidth 
is (roughly) proportional to Vn, we recognize that as n increases, the demands on storage 
and computation time can become very large. In practice, the available storage on a 
computer frequently limits the size of finite element system that can be solved. 

On the other hand, in an iterative solution the required storage is much less because 
we need to store only the actually nonzero matrix elements under the skyline of the matrix, 
a pointer array that indicates the location of each nonzero element, and some arrays, also 
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of small size measured on the value of nmK, for example, for the preconditioner and 
iteration vectors. The nonzero matrix elements under the skyline are only a small fraction 
of all the elements under the skyline, as we demonstrate in the following example. 

EXAMPLE 8.21: Consider the finite element model of three-dimensional elements shown in 
Fig. E8.21. Estimate the number of matrix elements under the skyline (to be stored in a direct 
solution) and the number of actually nonzero matrix elements ( to be stored in an iterative 
solution). 

~ 
q • number of element layers in each direction 

Figure ES.21 Assemblage of eight­
node three-dimensional elements, 3 
degrees of freedom per node 

The half-bandwidth is given by the maximum difference in nodal point numbers in an 
element. Here we have for q element layers in each direction, 

mK = [(q + 1)2 + q + 3] X 3 - 1 

or when q is large 

(a) 

For the problem considered, the column heights are practically constant, and hence the number 
of elements under the skyline is about 

nmK = (3q3)(3q2) = 9q' 

On the other hand, the number of actually nonzero elements in the skyline is determined by the 
fact that each nodal point i actually couples to only the directly surrounding nodal points. For an 
interior nodal point and eight-node elements the coupling pertains to 27 nodal points, hence the 
"compressed" half-bandwidth is 

mx !compressed = ¥ X 3 .... 40 .(b) 

and we note that this result is independent of the number of elements and the number of nodal 
points used in the model. Namely, the result in (b) depends only on how many elements couple 
into a typical nodal point. Comparing (a) and (b) we observe that the number of nonzero 
elements under the skyline increases only linearly with n, and the percentage measured on all 
elements under the skyline is very small when q is large. 
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The fact that considerable storage can be saved in an iterative solution has prompted 
a large amount of research effort to develop increasingly effective iterative schemes. The 
key to effectiveness is of course to reach convergence within a reasonable number of 
iterations. 

As we shall see, of major importance in an iterative scheme is therefore a procedure 
to accelerate convergence when slow convergence is observed. The fact that effective 
acceleration procedures have become available for many applications has rendered iterative 
methods very attractive. 

In the next sections we first consider the classical Gauss-Seidel iterative procedure and 
then the conjugate gradient method. The Gauss-Seidel method was used in the early 
applications of the finite element method (see R. W. Clough and E. L. Wilson [A]) and 
continues to find use. However, the conjugate gradient method presented here is particu­
larly attractive. 

8.3.1 The Gauss-Seidel Method 

Our objective is to calculate iteratively the solution to the equations KU = R. Let U(l) be 
an initial estimate for the displacements U. If no better value is known, u<l} may be the null 
vector. 

In the Gauss-Seidel iteration (see L. Seidel [A] and R. S. Varga [A]), we then evaluate 
for s = 1, 2, . . . : 

(8.65) 

where u~s> and R; are the ith component of U and R and s indicates the cycle of iteration. 
Alternatively, we may write in matrix form, 

(8.66) 

where Ko is a diagonal matrix, KD = diag(ku), and KL is a lower triangular matrix with the 
elements kii such that 

K =Ki+ Ko+ KI (8.67) 

The iteration is continued until the change in the current estimate of the displacement vector 
is small enough, i.e., until 

(8.68) 

where Eis the convergence tolerance. The number of iterations depends on the "quality" of 
the starting vector u<0 and on the conditioning of the matrix K. But it is important to note 
that the iteration will always converge, provided that K is positive definite. Furthermore, the 
rate of convergence can be increased using overrelaxation, in which case the iteration is as 
follows: 

(8.69) 
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where f3 is the overrelaxation factor. The optimum value of {3 depends on the matrix K but 
is usually between 1.3 and 1.9. 

EXAMPLE 8.22: Use the Gauss-Seidel iteration to solve the system of equations considered in 
Section 8.2.1. 

The equations to be solved are 

In the solution we use (8.69), which in this case becomes 

[

U
1] (s+I) [lj1] {s) r~ ! ] 

U2 U2 + {3 6 

U3 U3 i 
u4 u4 t 

x[m-[-l-1 _~ J[~J .. "{ -4 

We use as an initial guess 

6 -4 
6 

Consider first the solution without overrelaxation, i.e., f3 = 1. We obtain 

!~;] <2> [o. ~67 l [~;] (3> i~:;~;i 
U3 = 0.111 ; U3 = 0.222 
lj4 0.0556 lj4 0.116 

-ll[~JI 

Using the convergence limit in (8.68) with e = 0.001, we have convergence after 104 itera­
tions and 

with the exact solution being 

[
u] (104) ll.59) U2 _ 2.59 
U3 - 2.39 
u4 1.39 

[u] 11.601 U2 _ 2.60 
U3 - 2.40 
u4 I.40 
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We now vary /3 and recalculate the solution. The following table gives the number of iterations 
required for convergence with E = 0.001 as a function of /3: 

/3 LO 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

Number of iterations 104 88 74 61 49 37 23 30 43 82 

Hence, for this example, we find that the minimum number of iterations is required at 
/3 = 1.6. 

It is instructive to identify the physical process that is followed in the solution proce­
dure. For this purpose we note that on the right-hand side of (8.69) we evaluate an out-of­
balance force corresponding to degree of freedom i, 

i-1 n 

Q)s> = R; ~ ku u;5+o - ~ ku UJ1> (8.70) 
j=l i""i 

and then calculate an improved value for the corresponding displacement component u~s+ 0 

using 

(8.71) 

where i = 1, ... , n. Assuming that f3 = l, the correction to Uf'> in (8.71) is calculated by 
applying the out-of-balance force Q~s> to the ith nodal degree of freedom, with all other 
nodal displacements kept fixed. The process is therefore identical to the moment­
distribution procedure, which has been used extensively in hand calculation analysis of 
frames (see E. Lightfoot [A]). Howevert faster convergence is achieved if the acceleration 
factor f3 is used. 

In the above equations, we summed over all .off-diagonal elements [see (8.65) and 
(8.70)]. However, in practice we would of course include in the summation only those 
degrees of freedom that correspond to nonzero entries in the stiffness matrix. As we pointed 
out earlier, only the nonzero matrix elements would be stored and be operated on. 

8.3.2 Conjugate Gradient Method with Preconditioning 

One of the most effective and simple iterative methods (when used with preconditioning) 
for solving KU = R is the conjugate gradient algorithm of M. R. Hestenes and E. Stiefel 
[A] (see also J. K. Reid [A] and G. H. Golub and C. F. van Loan [A]). 

The algorithm is based on the idea that the solution of KU = R minimizes the total 
potential II = ! U7 KU - U7 R [see ( 4.96) to ( 4.98)). Hence, the task in the iteration is, 
given an approximation u<s> to U for which the total potential is rr<s>, to find an improved 
approximation u<s+t> for which rr<s+t> < rrcs>. However, not only do we want the total 
potential to decrease in each iteration but we also want u<s+i> to be calculated efficiently and 
the decrease in the total potential to occur rapidly. Then the iteration will converge fast. 

In the conjugate gradient method, we use in the sth iteration the linearly independent 
vectors p<l), p<2>, p(3>, ..• , p<s> and calculate the minimum of the total potential in the space 
spanned by these vectors. This gives u<s+n (see Exercise 8.23). Also, we establish the 
additional basis vector p<s+ t) used in the subsequent iteration. 
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The algorithm can be summarized as follows. 

Choose the starting iteration vector U(l) (frequently u0 > is the null vector). 
Calculate the residual r( n = R - KU< n. If r< n = 0, quit. 
Else: 

Set p<t> = r 0 >. 
Calculate for s = l, 2, . . . , 

rWT r<,> 
a,= p(s)TKp(s) 

u<s+ I) = u<,) + a,p(s) 

r<s+ o = r<1> - a, Kp<1> 

f(s+ l)T r<s+ l) 

/3,=--­
r<s)T r<s) 

p<s+l) = r<s+l) + /3,p<s) 

Chap.a 

(8.72) 

We continue iterating until II r<s> II s E, where Eis the convergence tolerance. A convergence 
criterion on llu<'>II could also be used. 

The conjugate gradient algorithm satisfies two important orthogonality properties 
regarding the direction vectors p<i) and the residuals r<;>, namely, we have (see Exercise 8.22) 

and 

where 

all i, j but i =I= j 

p(j) = [plO, ... , p<il] 

(8.73) 

(8.74) 

(8.7S) 

The orthogonality property in (8.73) means that the minimum of the total potential 
over the space spanned by p<l), . . • , p<1> is obtained by using the minimum over the space 
spanned by p<O, ... , p<,- 1

> (i.e., the solution of the previous iteration) and minimizing the 
total potential with respect to only a multiplier of p<s>. This process gives a., and the 
improved iterative solution u<s+ o. 

The orthogonality in (8.74) means that the (j + l)st residual is orthogonal to all 
direction vectors used. This equation shows that convergence to the solution U will be 
reached and, in exact arithmetic, convergence is achieved in at most n iterations. Of course, 
in practice, we want convergence to be reached (to a reasonable convergence tolerance) in 
much fewer than n iterations. 

The rate of convergence of the conjugate gradient algorithm depends on the condition 
number of the matrix K, defined as cond(K) = >..,J Ai, where >..1 is the smallest eigenvalue 
and An is the largest eigenvalue of K (see Section 8.2.6). The larger the condition number, 
the slower the convergence, and in practice, when the matrix is ill-conditioned, convergence 
can be very slow. For this reason, the conjugate gradient algorithm as given in (8.72) is 
hardly effective. 

At this point, we should also note that the properties above enumerated are valid only 
in exact arithmetic. In practice, because of the finite precision arithmetic, the orthogonality 
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properties in (8.73) and (8.74) are not exactly satisfied, but this loss of orthogonality is not 
detrimental. 

To increase the rate of convergence of the solution algorithm, preconditioning is used. 
The basic idea is that instead of solving KU = R, we solve 

where 
i:u = i 

i = cz 1Kc;1 

u = CRU 

R = Ci 1R 

(8.76) 

(8.77) 

The nonsingular matrix KP = Ct CR is called the preconditioner. The objective with this 
transformation is to obtain a matrix K with a much improved condition number. Various 
preconditioners have been proposed (see G. H. Golub and C. F. van Loan [A], T. A. Manteuf­
fel [A), and J. A. Meijerink and H. A. van der Vorst [A]), but one approach is particularly 
valuable, namely, using some incomplete Cholesky factors of K. 

In this approach a reasonable matrix KP is obtained from inexact factors of K such that 
any equation solution with KP as coefficient matrix can be oalculated very efficiently. In 
principle, many different incomplete Cholesky factors of K could be calculated. In one 
scheme, incomplete Cholesky factors of K are obtained by performing the usual factoriza­
tion, as described in Section 8.2, but considering only and operating only on those locations 
where K has nonzero entries. Hence, all matrix elements below the skyline that originally 
are zero remain zero during the factorization and therefore need not be stored. 

Instead of considering all initially nonzero elements in K, we may also decide to 
include in the factorization only those elements that are larger in magnitude than a certain 
threshold and set all other elements to zero. This approach leads to additional storage 
savings. Also, it can be effective to scale all diagonal elements in relation to the off-diagonal 
elements prior to performing the incomplete factorization, and of course we may use an 
exact factorization of certain submatrices in K to establish the incomplete factors (see 
Exercises 8.27 and 8.28). Clearly, there are many different possibilities, and various inter­
esting relations between different approaches can be derived (see, for example, G. H. Golub 
and C. F. van Loan [A]). 

Let L and L7 be the chosen incomplete Chole~t_ factors of K; !_hen in the p~condi­
tioning with these factors we use the matrix Kp = LL7 with CL= Land CR = L7

. 

Whichever preconditioner KP is employed,using the conjugate gradient algorithm of 
(8.72) for the problem in (8.76), we thus arrive at the following algorithm. 

Choose the starting iteration vector u< 1 >. 
Calculate the residual r< 0 = R - Kum. If r<o = O, quit. 
Else: 

Calculate z0 > = K; 1ro>. 
Set p0 > = z< 0 . 
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Calculate for s = 1, 2, . . . , until a convergence tolerance is reached, 
z(s)T r(s) 

a.,= T p(s) Kp(s) 

u<.r+ I) = u<s) + a,p<s) 

r<s+ I) = r<s} - a,Kp(s) 

z(s+I) = K;lr(s+I) 

z(1+1f r<s+l) 
/3, = T 

z(s) r<s) 

p<s+l) = zC.r+I) + /3,p<s) 

Chap.8 

(8.78) 

In this iteration we define an intermediate vector z<1>, which is equal to r<1> if no 
preconditioning is used (i.e., when Kp = I). Of course, the matrix KP need not be calcu­
lated, but rather zCs+t> is directly computed using r<,+ 1>. Also, all multiplications with Kare 
performed by operating on only the nonzero elements in the matrix. Note that the iteration 
in (8.78) reduces to the iteration in (8.72) when no preconditioning is employed and that 
convergence would be immediate if Kp were equal to K. 

We assume in this iteration that Kp is nonsingular. In practice, this condition is usually 
met, and if not, we may slightly perturb the coefficient matrix (or rather its factors) so as 
to be able to solve for z<1>. 

While we still cannot predict how fast convergence will be achieved in the iteration, 
practical experience with the iterative scheme in (8.78) has shown that very significant 
savings in required storage and computer time are frequently realized (see K. J. Bathe, 
J. Walczak, and H. Zhang [A]). Of course, the required number of iterations depends on the 
structure of the matrix K, its condition number, the details of the preconditioning used, and 
the accuracy to be achieved. 

We considered in this section only the case of a symmetric coefficient matrix, and 
should note that also of much interest is the iterative solution of equations with nonsymmet­
ric coefficient matrices (as we encounter in the analysis of fluid flows). Here the benefits of 
savings in storage and computing time can be even more significant. For nonsymmetric 
coefficient matrices, the conjugate gradient method has been generalized and other itera­
tive schemes, notably, the generalized minimal residual (GMRes) method, have been devel­
oped and researched (see, for example, R. Fletcher [A], Y. Saad and M. H. Schultz [A], and 
Y. Saad [A]. 

Finally, we should also recognize that there is the possibility of combining the direct 
and iterative solution schemes discussed above. As an example, the substructuring proce­
dures described in Section 8.2.4 might be used to assemble governing equations (after static 
condensation of the internal degrees of freedom of the substructures) that are solved using 
conjugate gradient iteration. Such combinations can lead to a variety of procedures that 
may display considerable advantage in specific applications. 

8.3.3 Exercises 

8.21. Solve the system of equations given using the Gauss-Seidel iterative method. Use the overrelax­
ation factor {3, and study the convergence properties as /3 is varied from 1.0 to 2.0. 



Sec. 8.3 Iterative Solution Methods 753 

[ - ~ 2 - ~][~:] = [~] 
0 -1 l U3 0 

8.22. Show that the orthogonality properties (8.73) and (8.74) hold in the conjugate gradient iteration 
technique (using exact arithmetic). 

8.23. Show that with the conjugate gradient algorithm in (8.72), the minimum of II in the space 
spanned by the vectors pO>, ..• , p<s> is obtained by using the minimum of II in the space 
spanned by p0>, ••• , p<s-t) and the solution for cxs given by the algorithm. 

8.24. Derive the preconditioned incomplete Cholesk:y conjugate gradient algorithm in (8.78) from the 
standard algorithm in (8.72). 

8.25. Solve the system of equations in Exercise 8.21 using the conjugate gradient algorithm (without 
preconditioning). 

8.26. Solve the system of equations in Exercise 8.21 using the conjugate gradient method with precon­
ditioning. Use the following preconditioner: 

8.27. Consider the following system of equations: 

(a) Solve the equations using the preconditioned conjugate gradient algorithm with KP corre­
sponding to the incomplete Cholesk:y factors that are obtained by performing the factoriza­
tion on K as usual but ignoring all zero elements. 

(b) Solve the equations using the preconditioned conjugate gradient algorithm with the precon­
ditioner 

8.28. Consider the simply supported beam problem in Fig. 8.1, governed by the equations, 

[-! -: -! ~i [~:] = [~] 
1 -4 6 -4 U; 0 
0 -4 5 U4 0 

Solve this set of equations by the conjugate gradient method using two different preconditioners 
that you shall propose. 
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8.29. Consider the cantilever beam in Example 8.1 with a concentrated load corresponding to degree 
of freedom U 4, The governing equations are 

Solve this set of equations by the conjugate gradient method using two different preconditioners 
that you shall propose. 

8.30. Assume that each eight-node element in Fig. ES.21 is replaced by a 20-node three-dimensional 
element. Estimate the number of matrix elements under the skyline ( to be stored in a direct 
solution) and the number of actually nonzero matrix elements ( to be stored in an iterative 
solution.) 

8.4 SOLUTION OF NONLINEAR EQUATIONS 

We discussed in Sections 6.1 and 6.2 that the basic equations to be solved in nonlinear 
analysis are, at time t + At, 

(8.79) 

where the vector ,+A,R stores the externally applied nodal loads and r+A,F is the vector of 
nodal point forces that are equivalent to the element stresses. Both vectors in (8.79) are 
evaluated using the principle of virtual displacements. Since the nodal point forces t+ArF 
depend nonlinearly on the nodal point displacements, it is necessary to iterate in the solution 
of (8. 79). We introduced in Section 6.1 the Newton-Raphson iteration, in which, assuming 
that the loads are independent of the deformations, we solve for i = 1, 2, 3, ... 

t+AtK(i-l)AU(i) = AR(i-1) 

t+Atl]<i) = r+.11u(i- I) + Au<i) 

with t+Aru(o) = 'U; 1+AtF(O) = 'F 

(8.80) 

(8.81) 

(8.82) 

(8.83) 

These equations were obtained by linearizing the response of the finite element system 
about the conditions at time t + At, iteration (i - 1). In each iteration we calculate in 
(8.80) an out-of-balance load vector that yields an increment in displacements obtained in 
(8.81), and we continue the iteration until the out-of-balance load vector AR<H> or the 
displacement increments AU<i> are sufficiently small. 

The objective in this section is to discuss the above iterative scheme and others for the 
solution of (8.81) in more detail. Important ingredients of all solution schemes to be 
presented are the calculation of the vector t+A,F<i) and the tangent stiffness matrix ,+A,K<i-O, 
and the solution of equations of the form (8.81 ). The appropriate evaluation of nodal point 
force vectors and tangent stiffness matrices was discussed in Chapter 6, and the solution of 
the linearized equations in (8.81) was presented in Sections 8.2 and 8.3; hence, the only, 
but very important, aspect of concern now is the construction of iterative schemes of the 
form (8.80) to (8.82) that display good convergence characteristics and can be employed 
effectively. 
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The methods we now present are basic techniques that in practice would be combined 
in a self-adaptive procedure that chooses load steps, iterative method, and convergence 
criteria automatically depending on the problem considered and solution accuracy sought. 

8.4.1 Newton-Raphson Schemes 

The most frequently used iteration schemes for the solution of nonlinear finite element 
equations are the Newton-Raphson iteration given in (8.80) to (8.83) and closely related 
techniques. Because of the importance of the Newton-Raphson method, let us derive the 
procedure in a more formal manner. 

The finite element equilibrium requirements amount to finding the solution of the 
equations 

f(U*) = 0 

where f(U*) = t+AtR(U*) - rdrF{U*) 

(8.84) 

(8.85) 

We denote here and in the following the complete array of the solution as U* but 
realize that this vector may also contain variables other than displacements, for example, 
pressure variables and rotations (see Sections 6.4 and 6.5). 

Assume that in the iterative solution we have evaluated r+A,u<H>~ then a Taylor series 
expansion gives 

f(U*) = f('+A•u<Hl) + [~] I (U* - t+Aru<Hl) + higher-order terms (8.86) 
oU t+lirU(l-1) 

Substituting from (8.85) into (8.86) and using (8.84), we obtain 

[aF] I (U* - •+4,u<1-1>) + higher-order terms = r+A,R - ,+A,F(i-O (8.87) au ,+A1u<1- n 

where we assumed that the externally applied loads are deformation-independent [see 
(6.83) and (6.84) regarding deformation-dependent loading]. 

Neglecting the higher-order terms in (8.87), we can calculate an increment in the 
displacements, 

(8.88) 

where i+A,Ko-n is the current tangent stiffness matrix 

(8.89) 

and the improved displacement solution is 

(8.90) 

The relations in (8.88) and (8.90) constitute the Newton-Raphson solution of (8.79). Since 
an incremental analysis is performed with time (or load) steps of size At (see Chapter 6), 
the initial conditions in this iteration are ,+A,K<0> = 'K, i+A1F<0> = 'F and i+A,u<0

> = 'U. The 
iteration is continued until appropriate convergence criteria are satisfied as discussed in 
Section 8.4.4. 
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A characteristic of this iteration is that a new tangent stiffness matrix is calculated in 
each iteration, which is why this method is also referred to as the full Newton~Raphson 
method. We shall mention below methods in which a current tangent stiffness matrix is not 
used, and these techniques are therefore not full Newton-Raphson methods (but related 
techniques). 

Figure 8.11 illustrates the process of solution when used for a single degree of freedom 
system. The nonlinear response characteristics are such that convergence is rapidly ob­
tained. However, we can imagine a more complex response characteristic with a starting 

Load 

Slope t+ ArK10> 

Displacement 

f 

Displacement 

Figure 8.11 Illustration of Newton-Raphson iteration in solution of a (generic) single degree 
of freedom system. Top shows load-displacement relation, bottom shows iteration for zero of 
function fused in (8.84). Here/ = 1+41R - 1+t.1F(u). 
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point of iteration for which the procedure does not converge (see Exercise 8.31 ). Hence, the 
representation in Fig. 8.11 is rather simplistic because a very special case is considered­
that of a well .. behaved single degree of freedom system. In the solution of systems with many 
degrees of freedom, the response curves will in general be rather nonsmooth and compli­
cated. 

The Newton-Raphson iteration is demonstrated in the solution of a simple problem as 
follows. 

EXAMPLE 8.23: For a single degree of freedom system we have 

,+o.,R = to; ,+A,p = 4 + 21 ('+A,u)•12
1 

and 'U = 1. Use the Newton-Raphson iteration to calculate ,+o.,u. 
In this case we have, corresponding to (8.88) as the governing equation, 

( t ) Auo> - 6 - 21 v,+Atu<i-l) I I (t+AILJ<i-1))1/21 "' -

Using (a) with t+Aru<0> = 1, we obtain 

r+Aruco = 5.0000; 

r+AILJ(3) = 8.9902; 

and convergence is achieved in four iterations. 

t+AtLJ(l) = 8.4164 

tHl.tLJ(4) = 9.0000 

(a) 

Since the Newton-Raphson iteration is so widely used in finite element analysis and 
indeed represents the primary solution scheme for nonlinear finite element equations, it is 
appropriate that we summarize some major properties of the method (see, for example, 
D. P. Bertsekas [A]). 

The first property is 
If the tangent stiffness matrix r+A,K<;-o is nonsingular, if f and its first derivatives with 
respect to the solution variables (i.e. the elements of the tangent stiffness matrix} are 
continuous in a neighborhood of U*, and if r+A,u<H> lies in that neighborhood, then 
rHru<i) will be closer to U* than i+A,u<H> and the sequence of iterative solutions 
generated by the algorithm (8.88) to (8.90) converges to U*. 
The second property is 
If the tangent stiffness matrix also satisfies 

11,+A,Kh.1, ,+A,Klu
2

11 s Lllu1 - 0211 <s.91) 

for all U1 and U2 in the neighborhoodofU* andL > 0, then convergence is quadratic. 
This means that if the error after iteration i is of order e, then the error after iteration 
i + 1 will be of the order E2

• The condition in (8.91) is referred to as Lipschitz 
continuity,· it is stronger than mere continuity in the stiffness matrix but weaker than 
differentiability of the matrix. 

The practical consequence of these properties is that if the current solution iterate is 
sufficiently close to the solution U* and if the tangent stiffness matrix does not change 
abruptly, we can expect rapid (i.e., quadratic) convergence. The assumption is of course that 
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the exact tangent stiffness matrix is used in the iteration; that is, (8.89) must be satisfied, 
meaning that t+A,K<H> must be evaluated consistent with the evaluation of i+A,f<H> (see 
Chapter 6 and in particular Sections 6.3.1 and 6.6.3). On the other hand, if the current 
solution iterate is not sufficiently close to U* and/or the stiffness matrix used is not the exact 
tangent matrix and/or changes abruptly, then the iteration may diverge. 

In an effective finite element program, the exact tangent stiffness matrix will be used, 
if possible, and hence the primary procedure for reaching convergence ( if convergence 
difficulties are encountered) is to decrease the magnitude of the load step. 

Considering the Newton-Raphson iteration it is recognized that in general the major 
computational cost per iteration lies in the calculation and factorization of the tangent 
stiffness matrix. Since these calculations can be quite expensive when large-order systems 
are considered, the use of a modification of the full Newton-Raphson algorithm can be 
effective. 

Load 

Load 

Displacement 

Initial stress method 

~~--lf---!-, _..;:::::... Slope t+MKIO) • tK 
I 
I 
I 
I 
I 
I 
I 
I 
I 

!N! I I I 
I I 
: : : au12t 
I I I 
I I I 

Displacement 

Modified Newton-Raphson method 

Figure 8.12 Illustration of initial stress 
and modified Newton~Raphson methods. 
The problem in Fig. 8.11 is considered. 
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One such modification is to use the initial stiffness matrix °K in (8.88) and thus 
operate on the equations: 

(8.92) 

with the initial conditions t+ArF<0> = 1F, r+Aru<0> = 1U. In this case only the matrix °K needs 
to be factorized, thus avoiding the expense of recalculating and factorizing many times the 
coefficient matrix in (8.88). This "initial stress" method corresponds to a linearization of 
the response about the initial configuration of the finite element system and may converge 
very slowly or even diverge. 

In the modified Newton-Raphson iteration an approach somewhat in between the full 
Newton-Raphson iteration and the initial stress method is employed. In this method we use 

"K au<i) = ,+ 111R 1+111F<H> {8.93) 

with the initial conditions ,+.1,F<0> = 'F, r+A1u<0> = 'U, and T corresponds to one of the 
accepted equilibrium configurations at times 0, ilt, 2 ilt, ... , or t (see Example 6.4). The 
modified Newton-Raphson iteration involves fewer stiffness reformations than the full 
Newton-Raphson iteration and bases the stiffness matrix update on an accepted equilibrium 
configuration. The choice of time steps when the stiffness matrix should be updated depends 
on the degree of nonlinearity in the system response; i.e. the more nonlinear the response, 
the more often the updating should be performed. 

Figure 8.12 illustrates the performance of the initial stress and the modified Newton­
Raphson methods for the single degree of freedom system already considered in Fig. 8.11. 

With the very large range of system properties and nonlinearities that may be encoun­
tered in engineering analysis, we find that the effectiveness of the above solution approaches 
depends on the specific problem considered. The most powerful procedure for reaching 
convergence is the full Newton-Raphson iteration in (8.88) to (8.90), but if the initial stress 
or modified Newton-Raphson method can be employed, the solution cost may be reduced 
significantly. Hence, in practice, these solution options can also be very valuable, and an 
automatic procedure that self-adaptively chooses an effective technique is most attractive. 

8.4.2 The BFGS Method 

As an alternative to forms of Newton-Raphson iteration, a class of methods known as 
matrix update methods or quasi-Newton methods has been developed for iteration on 
nonlinear systems of equations (see J.E. Dennis, Jr. [A]). These methods involve updating 
the coefficient matrix (or rather its inverse) to provide a secant approximation to the matrix 
from iteration (i - 1) to (i). That is, defining a displacement increment 

and an increment in the out-of-balance loads, using (8.80), 

'Y(i) = .liR{i-o - aRm 

the updated matrix ,+ArK<i> should satisfy the quasi-Newton equation 

,+A,K(i) 6(i) = y<n 

(8.94) 

(8.95) 

(8.96) 

These quasi-Newton methods provide a compromise between the full re-formation of the 
stiffness matrix performed in the full Newton-Raphson method and the use of a stiffness 
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matrix from a previous configuration as is done in the modified Newton-Raphson method. 
Among the quasi-Newton methods available, the BFGS (Broyden-Fletcher-Goldfarb­
Shanno) method appears to be most effective. 

In the BFGS method, the following procedure is employed in iteration (i) to evaluate 
r+Aru(i) and t+A.rKCi>, where r+ArK(O) = .,.K (see H. Matthies and G. Strang [A] and K. J. Bathe 
and A. P. Cimento [A]). 

Step 1: Evaluate a displacement vector increment: 

~u = ('HrK-l)(i-l)('+AIR _ t+Atf(l-1)) (8.97) 

This displacement vector defines a "direction,, for the actual displacement increment. 
Step 2: Perform a line search in the direction AU to satisfy "equilibrium" in this 
direction. In this line search we evaluate the displacement vector 

(8.98) 

where f3 is a scalar multiplier, and we calculate the out-of-balance loads correspond­
ing to these displacements (1+ArR - t+AtFW). The parameter f3 is varied until the 
component of the out-of-balance loads in the direction ~U, as defined by the inner 
product AUT('+ArR - t+ArF<i)), is small. This condition is satisfied when, for a conver­
gence tolerance STOL, the following equation is satisfied: 

(8.99) 

The final value of f3 for which (8.99) is satisfied determines ,+a,u(i) in (8.98). We 
can now calculate 6(i) and -y0> using (8.94) and (8.95) and proceed with the ·evaluation 
of the matrix update that satisfies (8.96). 
Step 3: Evaluate the correction to the coefficient matrix. In the BFGS method the 
updated matrix can be expressed in product form: 

('+AtK-l)(i) = A(l)T(,+A,K-1)(1-l)A(il 

where the matrix A'0 is an n X n matrix of the simple form 

AY> = I + vm w<0T 

(8.100) 

(8.101) 

The vectors vcn and w<il are calculated from the known nodal point forces and dis­
placements using 

and 
6(i) 

w<il=--
6(1)T ,,/!) 

(8.102) 

(8.103) 

The vector r+ArK<H> S(i) in (8.102) is equal to /3('+ArR - r+A,F<H>) and has already 
been computed. 

Since the product defined in (8.100) is positive definite and symmetric, to avoid 
numerically dangerous updates, the condition number c<i> of the updating matrix A(i) 
is calculated: 

(8.104) 
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This condition number is then compared with some preset tolerance, a large number, 
and the updating is not performed if the condition number exceeds this tolerance. 

Considering the actual computations involved, it should be recognized that using the 
matrix updates defined above, the calculation of the search direction in (8.97) can be 
rewritten as 

AU = (I + wCi-O v(i-Or) · · · (I + wrn v<l)r)'1K- 1(I + vO> w<l)T) ..• 

(I + v<H> w<;-oT)('+4tR _ 1+4tF(i-O) (8.105) 

Hence, the search direction can be computed without explicitly calculating the updated 
matrices or performing any additional costly matrix factorizations as required in the full 
Newton-Raphson method. 

As pointed out above, the line search is an integral part of the solution method. Of 
course, such line searches as performed in (8.98) and (8.99) can also be used in the 
Newton-Raphson methods presented in Section 8.4.1. With the line search performed 
within an iteration (i), the expense of the iteration increases, but fewer iterations may be 
needed for convergence. Also, the line search may prevent divergence of the iterations, and 
in practice, this increased robustness is the major reason why a line search can in general 
be effective. 

We demonstrate the BFGS iteration in the following simple example. 

EXAMPLE 8.24: Use the BFGS iteration method to solve for t+Alu of the system considered 
in Example 8.23. Omit the line searches in the solution. 

Since this is a single degree of freedom system, the solution for •+fl.tu could be evaluated 
using only line searches, i.e., by applying (8.99), provided STOL is a tight enough convergence 
tolerance. However, to demonstrate in this example the basic steps of the BFGS method more 
clearly [the use of relations (8.94) to (8.96)], we do not include line searches in the iterative 
solution. 

In this analysis (8.97) reduces to 

AV = e+ArK-l){i-1)(6 - 21 v,+AtU(i-1) I) 

with ('+fl.tK- 1)<0) = l, t+Aru<0> = l and using f3 = 1.0, we obtain the following values: 

t+Aru(i-1) 6,"'{j == 8(i) t+AtU(i) y(i) (•+AtK-l)(i) 

1 1.000 4.000 5.000 2.472 1.618 
2 5.000 2.472 7.472 0.995 2.485 
3 7.472 1.324 8.796 0.465 2.850 
4 8.796 0.194 8.991 0.065 2.982 
5 8.991 0.009 9.000 0.003 2.999 

and convergence is achieved after five iterations. 

8.4.3 Load-Displacement-Constraint Methods 

An important requirement of a nonlinear analysis is frequently the calculation of the 
collapse load of a structure. Figure 8.13 illustrates schematically the response of a structural 
model that we might seek. For very small loads the load-displacement response is linear. 
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Load increments Displacement 
can be large 

Figure 8.13 Collapse response of a 
structural model (the graph depicts sche~ 
matically the load that is carried by a 
structure) 

Then, as the load increases, the structural response becomes increasingly nonlinear and at 
point A the collapse load is reached. The response beyond point A is referred to as postcol­
lapse or postbuckling response. We note that in Fig. 8.13 the load first decreases in this 
regime and then increases again as the displacement increases. Of course, the response 
depicted in Fig. 8.13 is a simplistic and generic representation because in the analysis of a 
multiple degree of freedom system a multidimensional "response surface" must be imag­
ined, but Fig. 8.13 shows the essence of our requirements. 

In order to calculate the response in Fig. 8.13 initially relatively large load increments 
can be employed, but as the collapse of the structural model is approached, the load 
increments must become smaller and there is also the difficulty of traversing the collapse 
point. At that point, the stiffness matrix is singular (the slope of the load-displacement 
response curve is zero), and beyond that point a special solution procedure that allows for 
a decrease in load and an increase in displacement must be used to calculate the ensuing 
response. 

To solve for the response shown schematically in Fig. 8.13, a load-displacement­
constraint method can be used, as in essence proposed by E. Riks [A]. The basic idea of such 
methods is to introduce a load multiplier that increases or decreases the intensity of the 
applied loads, so as to obtain fast convergence in each load step, to be able to traverse the 
collapse point and evaluate the postcollapse response. 

Various efficient schemes have been proposed in which some numerical details can be 
important (see M.A. Crisfield [A], E. Ramm [A], and K. l Bathe and E. N. Dvorkin [C]). 
However, we shall present in the following only the general approach of these methods and 
will omit some details that can be found in the references. 

A basic assumption in the analysis is that the load vector varies proportionally during 
the response calculation. The governing finite element equations at time t + At are 

t+.6.1 AR - t+AIF ::::; 0 (8.106) 

where r+ArA is a (scalar) load multiplier, unknown and to be determined, and R is the 
reference load vector for the n degrees of freedom of the finite element model. This vector 
can contain any loading on the structure but is constant throughout the response calculation. 
The vector r+ArF is our usual vector of n nodal point forces corresponding to the element 
stresses at time t+ At [see (8.79) ]. The value of the load multiplier can increase or decrease, 
and the increment per step should in general also change, depending on the structural 
response characteristics. 
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Since (8.106) represents n equations in n + 1 unknowns, we need an additional 
equation that is used to determine the load multiplier. If we apply one of the previously 
presented methods to solve (8.106), we obtain 

(8.107) 

where the coefficient matrix "'K corresponds to the solution schemes discussed in the 
previous sections. 

The unknowns in then equations (8.107) are the vector of displacement increments2 

au<i) and the load multiplier increment A,\ c;>. The additional equation required for solution 
is a constraint equation between a,\<0 and au0>, of the form, 

J(t,.>.,<i), AU<i)) = 0 (8.108) 

Let us define within a load step 

um = t+Atv(i) - 'U 

and >,.,{i) = t+At>,.,(i) 'A 

(8.109) 

(8.110) 

Hence, u<i) represents the total increment in displacements within the load step [ up to 
iteration (i)] and ,\0> represents the corresponding total increment in load multiplier. An 
effective constraint equation is given by the spherical constant arc length criterion (see 
M. A. Crisfield [A] and E. Ramm [A]), 

U(i)TU(i) 
(>,.,{i>)2 + -- = (Al)2 r; (8.111) 

where Al is the arc length for the step and f3 is a normalizing factor ( to render the terms 
dimensionless). Figure 8.14(a) illustrates this criterion. In practice, the magnitude of Al is 
selected based on the history of iterations in the previous steps and is reduced in the current 
step if convergence difficulties are encountered. Typically, Al should be large when the 
response is almost linear and should be small when the response is highly nonlinear. 

Load 

Displacement 

(a) Spherical constant arc length criterion 

Load 

t+M,t{11R 

t.tR1---~~ 

w 

tu t+Atum Displacement 

(b} Constant increment of external work criterion 

Figure 8.14 Load·displacemenHonstraint criteria (single degree of freedom simplification) 

Another effective constraint equation (see K. J. Bathe and E. N. Dvorkin [C]), is the 
scheme of constant increment of external work given by 

2 This vector also contains in general. of course, other variables such as rotations and pressures, and R. 
and 1+41f(i-t) contain the corresponding entries. 
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(8.112) 
and ('+A,A<Hl + ! AA(il)RT AU<i> = O i = 2, 3, ... 

where W is selected based on the history of iterations in the previous incremental steps. 
Figure 8.14(b) illustrates this constraint equation. The use of this scheme can be particu­
larly effective near collapse points. 

To solve the governing equations we may rewrite (8.107) to obtain 

TK AU= R 

and hence, AU(I) = AiJ<il + AA(i) AU 

Employing the spherical constant arc length criterion (8.111 ), we then use 

A<0 = A<;-o + AAm 

and 

(8.113) 

(8.114) 

(8.115) 

(8.116) 

(8.117) 

Substituting from (8.116) and (8.117) into (8.111) gives a quadratic equation in AAY>. We 
select the appropriate value to proceed with the solution (see Exercise 8.35). 

Using the constant increment in external work criterion, AA m is directly calculated 
from (8.112) and then the AA(;) values for i == 2, 3, ... , are obtained from (8.112} as 

RTA[j<il 

R7 AU 
(8.118) 

The relation (8.112} also admits the solution 1+A,.,\Ci) == _,+A,.,\Ci-ll, but this solution corre­
sponds to a load reversal, which we disregard. 

A complete solution algorithm based on the above load-displacement-constraint pro­
cedures must of course also contain a special scheme to start the incremental solution and 
must have procedures to self-adaptively select Al and/or W. Also, the algorithm should stop 
iterating when divergence is imminent and then restart itself with new iterative parameters. 
Complete solution methods with these ingredients are very valuable and are in common use 
for the analysis of the collapse response of structures. 

8.4.4 Convergence Criteria 

If an incremental solution strategy based on iterative methods is to be effective, realistic 
criteria should be used for the termination of the iteration. At the end of each iteration, the 
solution obtained should be checked to see whether it has converged within preset toler­
ances or whether the iteration is diverging. If the convergence tolerances are too loose, 
inaccurate results are obtained, and if the tolerances are too tight, much computational 
effort is spent to obtain needless accuracy. Similarly, an ineffective divergence check can 
terminate the iteration when the solution is not actually diverging or force the iteration to 
search for an unattainable solution. The objective in this section is to discuss briefly some 
convergence criteria. 

Since we are seeking the displacement configuration corresponding to time t + At, it 
is natural to require that the displacements at the end of each iteration be within a certain 
tolerance of the true displacement solution. Hence, a realistic convergence criterion is 

IIAU(i)ll2 
111+A1u11

2 
:S ED (8.119) 
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where ED is a displacement convergence tolerance. The vector 1+41U is not known and must 
be approximated. Frequently, it is appropriate to use in (8.119) the last calculated value 
,+41U<il as an approximation to ,+A,U and a sufficiently small value Eo. However, in some 
analyses the actual solution may still be far from the value obtained when convergence is 
measured using (8.119) with ,+i1,uCi>. This is the case when the calculated displacements 
change only little in each iteration but continue to change for many iterations, as may occur, 
for example, in elastoplastic analysis under loading conditions when the modified Newton­
Raphson iteration is used. 

A second convergence criterion is obtained by measuring the out-of-balance load 
vector. For example, we may require that the norm of the out-of-balance load vector be 
within a preset tolerance EF of the original load increment 

IJt+t1tR - t+t1IF(i)ll2 s EFll'+AtR - 'Fll2 (8.120) 

A difficulty with this criterion is that the displacement solution does not enter the termina­
tion criterion. As an illustration of this difficulty, consider an elastoplastic truss with a very 
small strain-hardening modulus entering the plastic region. In this case, the out-of-balance 
loads may be very small while the displacements may still be much in error. Hence, the 
convergence criteria in (8.119) and (8.120) may have to be used with very small values of 
ED and EF. Also, the expressions must be modified appropriately when quantities of different 
units are measured (such as displacements, rotations, pressures, and so on). 

In order to provide some indication of when both the displacements arid the forces are 
near their equilibrium values, a third convergence criterion may be useful in which the 
increment in internal energy during each iteration (i.e., the amount of work done by the 
out-of-balance loads on the displacement increments) is compared to the initial internal 
energy increment. Convergence is assumed to be reached when, with EE a preset energy 
tolerance, 

(8.121) 

Since this convergence criterion contains both the displacements and the forces, it is 
in practice an attractive measure. Some experiences with these convergence measures are 
given by K. J. Bathe and A. P. Cimento [A]. An important point is that the convergence 
tolerances ED, EF, and EE may need to be quite small in some solutions in order to reach a 
good solution accuracy. In general, use of the full Newton-Raphson method in the incre­
mental solution leads to a higher accuracy in the solution than use of the modified Newton­
Raphson method since, if convergence occurs, the solution error diminishes quite rapidly in 
the last iterations of the full Newton-Raphson method (consider, for example, Exer­
cises 8.40 and 9.31). 

8.4.5 Exercises 

8.31. Consider the single degree of freedom system shown. 
(a} Use the full Newton-Raphson iteration method, the initial stress method. and the BFGS 

method to calculate the response of the system. 
(b) Establish a value of the constant c for which the full Newton-Raphson method will not 

converge. 
J R,.,.u 

YM----i.. R= 4 

F'"' force in the spring = u + cu3; c = 0.1 
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8.32. Consider the single degree of freedom system in Exercise 8.31 but with F = sin (u/ L), L = LO, 
and R = 0.5. Perform the solution as in Exercise 8.31(a). 

8.33. Consider the system in Exercise 8.31 and solve for the response by line searching only. (Hence 
do not perform any Newton-type iteration.) 

8.34. Consider the four-node plane stress element shown. 
(a) Use a computer program to calculate the stiffness coefficient corresponding to the displace­

ment uJ. [Hint: Use (8.89) in finite difference form.] 
(b) Also calculate this stiffness coefficient using the formulation given in Chapter 6. 

--1 • --2---........i ... I r--o., 

V•0.3 
Total Lagrangian 
formulation 
Unit thickness 

8.35. Derive the quadratic equation for A..\ (i) used in the spherical constant arc length criterion and 
calculate the roots of this equation. Discuss the solutions and identify which solution you would 
use in the practical implementation. 

8.36. Use a computer program to solve for the collapse and postbuckling response of the simple arch 
structure considered in Example 6.3. 

8.37. Use a computer program to solve for the collapse response of the three element truss shown. 
Compare your results with an analytical solution. (Hint: Use a large displacement formulation 
and a load-displacement-constraint solution method. You may also refer to the paper by P. G. 
Hodge, K. J. Bathe, and E. N. Dvorkin [A].) 

H·5 
Bar areas• 1.0 
E• 200,000 
Er• 0.0 
O'y• 100 
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8.38. Use a computer program to calculate the collapse and postcollapse response of the structure 
shown. Consider various areas A1 that you choose. 

E• 3 x 106 

3 

8.39. Use a computer progam to calculate the response of the plane stress cantilever shown. Use the 
von Mises yield condition with isotropic hardening and increase the load P until full collapse of 
the structure. 

Compare the solution efficiencies when using the full Newton-Raphson, modified Newton­
Raphson. and the BFGS methods and also use a load-displacement-constraint procedure. 

4mm 

,-..-------100 mm------11-I 
Width• 1 mm 

p 
E • 200,000 MPa 
V•0.30 
Uy•200 MPa 
Er• 20 MPa 

8.40. Use a computer program to solve for the large displacement response of the cantilever beam 
shown below. Increase P to reach a tip deflection of A = 10 in. Compare the solution 
efficiencies when using the full Newton-Raphson and modified Newton-Raphson methods, with 
or without line searches, and the BFGS method. 

I;,.---... ---v 14 _ I 0.1 in J--1 
-------10.0 in--------i""'1 

Width= 1.0 in 

E • 1.2 x 104 lblin2 

V•0.2 
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In Section 4.2.1 we derived the equations of equilibrium governing the linear dynamic 
response of a system of finite elements 

MU+CU+KU=R (9.1) 

where M, C, and K are the mass, damping, and stiffness matrices; R is the vector of 
externally applied loads; and U, U, and U are the displacement, velocity, and acceleration 
vectors of the finite element assemblage. It should be recalled that (9.1) was derived from 
considerations of statics at time t; i.e., (9.1) may be written 

FJ(t) + FD(t) + FE(t) = R(t) (9.2) 

where F,(t) are the inertia forces, F,(t) = MU, Fv(t) are the damping forces, Fv(t) = CU, 
and FE(t) are the elastic forces, FE(t) = KU, all of them being time-dependent. Therefore, 
in dynamic analysis, in principle, static equilibrium at time t, which includes the effect of 
acceleration-dependent inertia forces and velocity-dependent damping forces, is consid­
ered. Vice versa, in static analysis the equations of motion in ( 9 .1) are considered, with 
inertia and damping effects neglected. 

The choice for a static or dynamic analysis (i.e., for including or neglecting velocity­
and acceleration-dependent forces in the analysis) is usually decided by engineering judg­
ment, the objective thereby being to reduce the analysis effort required. However, it should 
be realized that the assumptions of a static analysis should be justified since otherwise the 
analysis results are meaningless. Indeed, in nonlinear analysis the assumption of neglecting 
inertia and damping forces may be so severe that a solution may be difficult or impossible 
to obtain. 

Mathematically, (9.1) represents a system of linear differential equations of second 
order and, in principle, the solution to the equations can be obtained by standard procedures 
for the solution of differential equations with constant coefficients (see, for example, 
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L. Collatz [A]). However, the procedures proposed for the solution of general systems of 
differential equations can become very expensive if the order of the matrices is large­
unless specific advantage is taken of the special characteristics of the coefficient matrices 
K, C, and M. In practical finite element analysis, we are therefore mainly interested in a few 
effective methods and we will concentrate in the next sections on the presentation of those 
techniques. The procedures that we will consider are divided into two methods of solution: 
direct integration and mode superposition. Although the two techniques may at first sight 
appear to be quite different, in fact, they are closely related, and the choice for one method 
or the other is determined only by their numerical effectiveness. 

In the following we consider first (see Sections 9 .2 to 9 .4) the solution of the linear 
equilibrium equations (9.1), and then we discuss the solution of the nonlinear equations of 
finite element systems idealizing structures and solids (see Section 9.5). Finally, we show 
in Section 9.6 how the basic concepts discussed are also directly applicable to the analysis 
of heat transfer and fluid flow. 

9.2 DIRECT INTEGRATION METHODS 

In direct integration the equations in (9.1) are integrated using a numerical step-by-step 
procedure, the term "direct" meaning that prior to the numerical integration, no trans! or­
mation of the equations into a different form is carried out. In essence, direct numerical 
integration is based on two ideas. First, instead of trying to satisfy (9.1) at any time t, it is 
aimed to satisfy ( 9 .1) only at discrete time intervals at apart. This means that, basically, 
(static) equilibrium, which includes the effect of inertia and damping forces, is sought at 
discrete time points within the interval of solution. Therefore, it appears that all solution 
techniques employed in static analysis can probably also be used effectively in direct 
integration. The second idea on which a direct integration method is based is that a variation 
of displacements, velocities, and accelerations within each time interval at is assumed. As 
will be discussed in detail, it is the form of the assumption on the variation of displacements, 
velocities, and accelerations within each time interval that determines the accuracy, stabil­
ity, and cost of the solution procedure. 

In the following, assume that the displacement, velocity, and acceleration vectors at 
time 0, denoted by 0U,0U, and 00, respectively, are known and let the solution to (9.1) be 
required from time O to time T. In the solution the time span under consideration, T, is 
subdivided into n equal time intervals at (i.e., at = T/n), and the integration scheme 
employed establishes an approximate solution attimes at, 2at, 38.t, ... , t, t + 8.t, ... , T. 
Since an algorithm calculates the solution at the next required time from the solutions at the 
previous times considered, we derive the algorithms by assuming that the solutions at times 
0, at, 28.t, ... , t are known and that the solution at time t + at is required next. 

In the following sections some effective direct integration methods are presented, but only 
schemes that solve the full dynamic equilibrium equations at specific times and only use the 
solutions obtained at those times. Other schemes, like the Wilson 0 method (see E. L. Wilson, 
I. Farhoomand, and K.J. Bathe [A]), the HHT method (see H.M. Hilber, T. J. R. Hughes, and R. 
L. Taylor [A]) and the generalized a method (see J. Chung and G. M. Hulbert [A]), and varia-
tions thereof, have some undesirable properties (see for example J.M. Benitez and F. J. Montans 
[A]). We also assume a constant time step size, a restriction, that could of course be easily re­
moved. 
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9.2.1 The Central Difference Method 

If the equilibrium relation in (9. l) is regarded as a system of ordinary differential equations 
with constant coefficients, it follows that any convenient finite difference expressions to 
approximate the accelerations and velocities in terms of displacements can be used. There­
fore, a large number of different finite difference expressions could theoretically be em­
ployed. However, the solution scheme should be effective, and it follows that only a few 
methods need to be considered. A simple widely used scheme (although with limitations, see 
G. Noh and K.J. Bathe [A]) is the central difference method, in which it is assumed that 

.• 1 
'U = -('-Aru _ 2 tu + t+Aru) 

A.t2 (9.3) 

The error in the expansion (9.3) is of order ('1t)2
, and to have the same order of error in the 

velocity expansion, we can use 

'U = _1_(_1-Aru + t+AtU) 
2At 

(9.4) 

The displacement solution for time t + dt is obtained by considering (9.1) at time t, i.e., 

M'U + C 1V + K'U = 'R (9.5) 

Substituting the relations for'U and 'U in (9.3) and (9.4), respectively, into (9.5), we obtain 

(_l M + -1 c) 1+41U = 'R - (K - ~ M) 1U - (-
1 

M - -
1 c) ,-410 (9.6) 

A.t2 2At At2 At2 2At 

from which we can solve for ,H,U. It should be noted that the solution of t+A,U is thus based 
on using the equilibrium conditions at time t; i.e., ,+A,u is calculated by using (9.5). For this 
reason the integration procedure is called an explicit integration method, and it is noted that 
such integration schemes do not require a factorization of the (effective) stiffness matrix in 
the step~by-step solution. On the other hand, the Houbolt, Newmark and Bathe methods, 
considered in the next sections, use the equilibrium conditions at time t + At and are called 
implicit integration methods. 

A second observation is that using the central difference method, the calculation of 
,H.,U involves 'U and ,-Aru. Therefore, to calculate the solution at time A.t, a special starting 
procedure must be used. Since 0U, 0U, and 00 are known [note that with 0 U and 0U known, 
0U can be calculated using (9.1) at time O; see Example 9.1], the relations in (9.3) and (9.4) 
can be used to obtain -A'U; i.e., we have 

. At2 .. -Aru. = 0u. - At 0u. + - 0u. 
I I I 2 I 

(9.7) 

where the subscript i indicates the ith element of the vector considered. Table 9.1 summa­
rizes the time integration scheme as it might be implemented in the computer. 

We discuss below the fact that the method is only effective when each time step 
solution can be performed very efficiently (because a small time step size and therefore a 
large number of time steps generally need to be used). For this reason, the method is largely 
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TABLE 9.1 Step·by·step solution using central difference method ( general mass and damping matrices) 

A. Initial calculations: 
1. Form stiffness matrix K. mass matrix M, and damping matrix. C. 
2. Initialize 0U, 0i:J, and 0u. 
3. Select time step At, At s Ater. and calculate integration constants: 

I 
ao = At2; a1 = 2 At; 

4. Calculate -Aiu = 0u - At 0u + a3 °u. 
5. Form effective mass matrix M = aoM + a,C. 
6. Triangularize M: M = LDLr. 

B. For each time step: 
1. Calculate effective loads at time t: 

'R = 'R - (K - a2M) 1U - (aoM - a1C) ,-Aiu 

2. Solve for displacements at time t + At: 

LDLT r+Atu = 'R 
3. If required, evaluate accelerations and velocities at time t: 

'U = ao('-AIU 2 1U + !+Alu) 

ri:J = a1( _1-A1u + t+AIU) 
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applied only when a lumped mass matrix can be assumed and velocity-dependent damping 
can be neglected. Then (9.6) reduces to 

(-1 M) ,+A,u = 'R (9.8) At2 

where 'R = 'R - (K - 2.M) 1u - (-1 M) ,-A,0 
fl.t2 fl.t2 

(9.9) 

Therefore, if the mass matrix is diagonal, the system of equations in (9.1) can be solved 
without factorizing a matrix; i.e., only matrix multiplications are required to obtain the 
right-hand-side effective load vector 'R after which the displacement components are 
obtained using 

(9.10) 

where r+ru Ut and 'R; denote the ith components of the vectors ,+ruu and 'R, respectively, mu 
is the ith diagonal element of the mass matrix, and it is assumed that mu > 0. 

If the stiffness matrix of the element assemblage is not to be triangularized, it is also 
not necessary to assemble the matrix. We have shown in Section 4.2.1 [see (4.30)] that 

(9.11) 

which means that K 'U as required in (9.9) can be evaluated on the element level by 
summing the contributions from each element to the effective load vector. Hence, 'R can be 
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evaluated efficiently using 

'R = 'R - ~ 1F<1> - -
1
-M(' - A,u - 2 'U) 

j a,2 (9.12) 

where 1F<0 is evaluated and added in compacted form (see Section 12.2.3). 
Another advantage of using the central difference method in the form given in (9.10) 

now becomes apparent. Since no stiffness matrix of the complete element assemblage needs 
to be calculated, the solution can essentially be carried out on the element level and 
relatively little high speed storage is required. Using this approach, systems of very large 
order have been solved effectively. 

However, we have already mentioned that for solution a relatively small time step size 
must generally be used. Actually, an important consideration in the use of the central 
difference scheme is t~at the integration method requires that the time step At be smaller 
than a critical value, Aten which can be calculated from the mass and stiffness properties 
of the complete element assemblage. More specifically, we will show in Section 9.4.2 that 
to obtain a valid solution, 

T,, 
'IT 

(9.13) 

where T,, is the smallest period of the finite element assemblage with n degrees of freedom. 
The period T,, could be calculated using one of the techniques discussed in Chapter 11, or 
a lower bound on T,. may be evaluated using norms (see Section 2.7). In practice we 
frequently estimate an appropriate time step flt using the considerations given in Sec­
tion 9.4.4. 

In the solution using (9.10), it was assumed that mu > Ofor all i. The relation in (9.13) 
states this requirement once more because a zero diagonal element in a diagonal mass 
matrix means that the element assemblage has a zero period (see Section 10.2.4 ). In 
general, all diagonal elements of the mass matrix can be assumed to be larger than zero, in 
which case (9.13) gives a limit on the magnitude of the time step flt that can be used in the 
integration. In the analysis of some problems (namely, for wave propagation problems) 
(9.13) does not require an unduly small time step; but, in other cases (namely, for structural 
dynamics problems) the time step small enough for accuracy of integration should be 
much larger than fltcr obtained from (9.13). 

These thoughts point toward the importance of establishing an effective finite element 
discretization and time step for a dynamic solution. We discuss these issues in Section 9.4, 
but already mention the following considerations now. 

Assume that we solve using the central difference method a large system of equi­
librium equations. The time step for the integration would be selected using (9 .13 ). Assume 
that we now change the smallest diagonal element of the mass matrix to become very small 
and, in fact, nearly zero. As enumerated above, a diagonal element in the mass matrix 
cannot be exactly zero because Tn would then be zero and the integration would not be 
possible. However, as the diagonal element in the mass matrix approaches zero, the smallest 
period of the system, and hence fltcr, approaches zero. Therefore, the reduction of one 
element mu necessitates a severe reduction in the time step size that can be used in the 
integration. On the other hand, since the order of the system is large, we can envisage a 
certain dynamic loading for which we would hardly expect that the response of the element 
assemblage changes very much when the smallest element mu is reduced, even to become 
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zero. Hence, the cost of analysis would in that case be unduly large only because of one very 
small diagonal element in the mass matrix. The same condition is also reached when an 
element in the stiffness matrix is changed to become large. 

Integration schemes that require the use of a time step At smaller than a critical time 
step Ater, such as the central difference method, are said to be conditionally stable. If a time 
step larger than Ate, is used, the integration is unstable, meaning that, for example, any 
errors resulting from round-off in the computer grow and make the response calculations 
worthless in most cases. The concept of stability of integration is very important, and we 
will discuss it further in Section 9.4. However, at this stage it is useful to consider the 
following example. 

EXAMPLE 9. 1: Consider a simple system for which the governing equilibrium equations are 

[2 o][Di] + [ 6 -2J[u•] _ [ o] 
0 1 U2 -2 4 U2 - 10 

(a) 

The free-vibration periods of the system are given in Example 9.6, where we find that T1 = 4.45, 
T2 = 2.8. Use the central difference method in direct integration with time steps (1) At = T2/10 
aJ!d ( 2) At = l OT2 to calculate the response of the system for 12 steps. Assume that 0u = 0 and 
0U = 0. 

The first step is to calculate 0U using the equations in (a) at time O; i.e., we use 

Hence, 

[~ ~]°u + [ _~ -!][~] = [1~] 
oij = [i~] 

Now we follow the calculations in Table 9.1. 
Consider case ( 1 ), in which At = 0.28. We then have (listed to three digits) 

Hence, 

1 
ao = (0.2S)2 = 12.8; 

1 
a1 = (2)(0.28) = 1.79 

a2 = 2ao = 25.5; 

-A,u = [~] - 0.28[~] + o.0392[i~] = [o.~92] 
M = 12.s[~ ~] + 1.19[~ ~] 

= [
2~5 1i.s] 

The effective loads at time t are 

'R = [1~] + [ 4~.o 2~.s] 'V - [2~s ii.s] ,-A,u 

Hence, we need to solve the following equations for each time step, 

[
25.5 0 ] l+Aru = 'R 

0 12.8 
(b) 
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The solution of the equations in (b) is trivial because the coefficient matrix is diagonal. 

Calculating the solution to (b) for each time step we obtain 

Time 6.1 26./ 3At 4At 5Af 66.t 76.t 8At 96.t 106./ 116./ 12.iit 

'U 
0 0.0307 0.168 0.487 1.02 1.70 2.40 2.91 3.07 2.77 2.04 1.02 

0.392 1.45 2.83 4.14 5.02 5.26 4.90 4.17 3.37 2.78 2.54 2.60 

The solution obtained is compared with the exact results in Example 9.7. 

Consider now case (2), in which 6.t = 28. Following through the same calculations, we find that 

[ ] [ 
6 J !J.t O 2At 3.03 x 10 

U= · U= 
3.83 x 10

3 
' -1.21 x 107 

and the calculated displacements continue to increase. Since the time step 6.t is about 6 times larger 
than T1 and 10 times larger than T2, we can certainly not expect accuracy in the numerical 
integration. But of particular interest is whether the calculated values decrease or increase. The 
increase in the values as observed in this example is a consequence of the time integration scheme 
not being stable. As pointed out above, the time step M must not be larger than Aler for stability in 
the integration using the central difference method, where 8.tcr = (lht) T2. In this case the time step 
6.t is much larger, and the calculated response increases without bound. This is the typical 
phenomenon of instability. We shall see in Examples 9.2 to 9.4 that the response predicted using Al 
= 28 with the unconditionally stable Houbolt, Newmark and Bathe methods is also very inaccurate 
but does not increase. 

We discussed above some advantages and disadvantages of the central difference 
method. Another disadvantage is that the solutions can contain significant spurious 
oscillations. An explicit scheme that shows less such errors has been presented by G. Noh and 
K.J. Bathe [A]. However, the effective use of conditionally stable methods is limited to certain 
problems. Therefore we consider in the following sections integration schemes which are 
unconditionally stable. With these methods, the time step At is selected without a requirement 
such as (9.13), namely, only based on accuracy considerations, and in many cases l:lt can be 
orders of magnitude larger than (9.13) would allow. However, the integration methods 
discussed in the following are implicit; i.e., a triangularization of an effective stiffness matrix 
that includes K, is required for solution. 

9.2.2 The Houbolt Method 

The Houbolt integration scheme is somewhat related to the previously discussed central 
difference method in that standard finite difference expressions are used to approximate the 
acceleration and velocity components in terms of the displacement components. The following 
finite difference expansions are employed in the Houbolt integration method (see J.C. Houbolt 
[A]): 

(9.14) 
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,+A,iJ = _1_<11 ,+Atu - is 'U + 9 ,-A,u - 2 ,-21110) 
M.t 

which are two backward-difference formulas with errors of order (At)2. 
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(9.15) 

In order to obtain the solution at time t + At, we now consider (9.1) at time t + dt 
(and not at time t as for the central difference method), which gives 

M t+Atij + c t+AtiJ + K l+Aru = t+AtR (9.16) 

Substituting (9.14) and (9.15) into (9.16) and arranging all known vectors on the right-hand 
side, we obtain for the solution of t+Aru, 

(.3...M +..!le+ K) t+Atu = t+AtR + (~M + ~c) 'U 
At2 6At At2 At 

- (~M + ~c) ,-A,u + (-1 M + _1 c) HA,u (9.17) 
At2 2At At2 3At 

As shown in (9.17), the solution of t+Atu requires knowledge of 'U, r-Atu, and ,-24'U. 
Although the knowledge of 0U, 0tr, and 0u is useful to start the Houbolt integration scheme, 
it is more accurate to calculate 4 'U and 2A

1U by some other means; i.e., we employ special 
starting procedures. One way of proceeding is to integrate ( 9 .1) for the solution of A,U and 
2
A

1U using a different integration scheme, possibly a conditionally stable method such as the 
central difference scheme with a fraction of At as the time step (see Example 9.2). Table 9.2 
summarizes the Houbolt integration procedure for use in a computer program. 

TABLE 9.2 Step-by-step solution using Houbolt integration method 

A. Initial calculations: 
1. Form stiffness matrix K, mass matrix M, and damping matrix C. 
2. Initialize 0U, 0U, and 0u. 
3. Select time step tit and calculate integration constants: 

2 
ao=-· 

Ar 2 ' 

-a3 ao a3 
as= 2 ; a6= 2 ; a1== 9 

4. Use special starting procedure to ca1cul1-te "''U and 2ti.tu. 
5. Calculate effective stiffness matrix K: K = K + aoM + a1C, 
6. Triangularize K: K = LDLT. 

B. For each time step: 
1. Calculate effective load at time t + lit: 

t+Ati = t+A,R + M(a2 'U + Q4 ,-Alu + 06 ,-2""U) + C(a3 'U + as ,-ti.tu + a1 ,-lA,u) 

2. Solve for displacements at time t + tit: 

3. If required, evaluate accelerations and velocities at time t + At: 

t+Atij = ao t+Aru - a2 'U - a4 ,-A,u - a6 ,-21i.,u 
t+ti.,i, == a1 t+Aru - Q3 'U - as ,-AIU - a1 1-2A,u 
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A basic difference between the Houbolt method in Table 9 .2 and the central difference 
scheme in Table 9 .1 is the appearance of the stiffness matrix K as a factor to the required 
displacements t+Atu. The term K r+Aru appears because in (9.16) equilibrium is considered 
at time t + f:..t and not at time t as in the central difference method. The Houbolt method 
is, for this reason, an implicit integration scheme, whereas the central difference method 
was an explicit procedure. With regard to the time step llt that can be used in the integration, 
there is no critical time step limit and at can in general be selected much larger than given 
in (9.13) for the central difference method. 

A noteworthy point is that the step-by-step solution scheme based on the Houbolt 
method reduces directly to a static analysis if mass and damping effects are neglected, 
whereas the central difference method solution in Table 9 .1 could not be used. In other 
words, if C = 0 and M = 0, the solution method in Table 9.2 yields the static solution for 
time-dependent loads. 

EXAMPLE 9.2: Use the Houbolt direct integration scheme to calculate the response of the 
system considered in Example 9.1. 

First, we consider the case At = 0.28. We then have, following Table 9.2, and showing 
three digits, 

ao = 25.5; 

04 = -51.0; 

a1 = 6.55; 

as= -5.36; 

a2 = 63.8; 

a6 = 12.8; 

a3 = 10.7; 

a1 = 1.19 

To start the integration we need 41U and 2
A

1U. Let us here use simply the values calculated with 
the central difference method in Example 9.1, i.e., 

AIU = [ 0.0 ]· 2A'lJ = [0.0307] 
0.392 ' 1.45 

Next we calculate K and obtain 

K = [-~ -!] + 2s.s[~ ~] = [ ~~ 2;.~] 
For each time step we need ,+A1R, which is in this case 

,+A,i [
1
~] + [~ ~]<63.s 'U 51.0 ,-A,u + 12.s 1-2A,u) 

Solving K t+Aru = r+Ari for 12 time steps, we obtain 

Time Jlt 2ilt 3Jlt 4ilt 5At 6At 1ilt 8At 9Jlt lOiit llilt 12ilt 

'U 0 0.0307 0.167 0.461 0.923 1.50 2.11 2.60 2.86 2.80 2.40 1.72 
0.392 1.45 2.80 4.08 5.02 5.43 5.31 4.77 4.01 3.24 2.63 2.28 

The solution obtained is compared with the exact results in Example 9.7. 
Next we consider the case At 28 in order to observe the unconditional stability of the 

Houbolt operator. To start the integration we use the exact response at times At and 2At (see 
Example 9. 7), 

AtU = [2.19]. 
2.24 ' 

2AtU = [2.92] 
3.12 
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It is interesting to compare K with K, 

K = [ ~2 : J+ 0.00255[: OJ= [6.0051 
1 -2.000 

-2.000 J 
4.00255 
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where it is noted that K is almost equal to K. The displacement response over 12 time steps is 
given in the following table: 

'U 
2.19 2.92 1.00 1.00 l.00 1.00 1.00 l.00 1.00 l.00 LOO 1.00 

2.24 3.12 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

The static solution is 
1 
U [I.OJ 

3.0 

Therefore, the displacement response very rapidly approaches the static solution. 

9.2.3 The Newmark Method 

The Newmark integration scheme uses the following assumptions (see N. M. Newmark [A]): 

t+.\tiJ ='ir + [ ( 1- o) 'ir + o t+Lllir] /).t (9.18) 

(9.19) 

where a and o are parameters that can be determined to obtain integration accuracy and 

stability. When o = f and a=!, we have the linear acceleration method. Newmark originally 

proposed as an unconditionally stable scheme the constant-average-acceleration method ( also 

called trapezoidal rule, TR), in which case o = f and a = -; . The acceleration assumptions in 

Figures 9.1 and 9.2 are integrated in 7: to obtain the schemes. 

2U 
t 1: t+!:J.t t + l!:.t t 't' 

Figure 9.1 Linear acceleration method Figure 9.2 TR scheme 

In addition to (9 .18) and (9 .19), for solution of the displacements, velocities, and 
accelerations at time t + /).t, the equilibrium equations (9.1) at time t +A.tare also used: 

(9.20) 



778 Solution of Equilibrium Equations in Dynamic Analysis Chap. 9 

Considering the trapezoidal rule, which is mostly used, solving for ,+lJ.IU and i+Atij from (9.18) 

and (9.19) in terms of i+Atu, we solve for each time step 

-M+-C+K ,+u,U='fo'R+M - 1U+- 1U+'U +C -'U+'U ( 
4 2 ) .. • ( 4 4 . .. ) ( 2 . ) 

At2 At At2 At At 
(9.21) 

and then calculate i+Atij and i+AtU. The complete solution procedure using the Newmark 

method is given in Table 9.3 and a problem is solved in Example 9.3. 

TABLE 9.3 Stefrby~step solution using Newmark integration method 

A. Initial calculations: 

1. Form stiffuess matrix K. mass matrix M, and damping constant C. 

2. Initialize 0 U, 00, and 0 0. 
3. Select time step llt and parameters a and oand calculate integration constants: 

8;?: 0.50; a ~ 0.25(0.5 + 0)2 

4. 1 0 _1_. 
ao = all.ti ; ai = ab.t; a2 ab.I' 

a =Jt-1. 
• a ' 

a = l1t ( ~-2) · 
$ 2 a , a

6 
= at(l 

5. Form effective stiffuess matrix K : K K + a0 M + a1C. 

6. Triangularize K : K = LDII. 

B. For each time step: 

1. Calculate effective loads at time t + b.t: 

2. Solve for displacements at time t + b.t: 

3. Calculate accelerations and velocities at time t + lit: 

i+At U = a
0 

( t+6l U -'U) - Oz 
10 - a3 

10 

i+t., iJ ='U + a6 'U + a, r+At(j 

o); 

1 
a1 = 2a -1; 

a7 8/l.t 

EXAMPLE 9.3: Calculate the displacement response of the system considered in Examples 9.l 
and 9.2 using the Newmark method. Use a= 0.25, 8= 0.5. 

Consider the case At= 0.28. Following the steps of calculations given in Table 9.3, we have 

The integration constants are ( showing three digits) 
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a
1 

7.14; 

a. = 1.00; a
5 
= 0.00; 

Thus the effective stiffness matrix is 

K [6 
-2 

-2J [2 4 +51.0 0 

For each time step we need to evaluate 

a
2 
= 14.3; 

a
6 

= 0.14; 

OJ= [108 
1 -2 

a
3 

= 1.00; 

a, = 0.14 

-2J 
55 

""R {:H: ~]{s1 'u +14.3 'ir + 1.0 'U) 

Then 

and 
t+Alu = s1.o( l+illu 'u) 14.3 'u 1.o'u 

l+Alu ='u + o.14'u + o.14'+Alu 

Performing these calculations, we obtain 

Time M 2/lt 3M 4M Silt Mt 1!1t Mt 

iu 0.00673 0.0505 0.189 0.485 0.961 1.58 2.23 2.76 

0.364 1.35 2.68 4.00 4.95 5.34 5.13 4.48 

9M 

3.00 

3.64 

The solution we obtained is compared with the exact results in Example 9.7. 
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101'.\t 11/lt 12M 

2.85 2.28 1.40 

2.90 2.44 2.31 

Considering next the solution using flt 28, ideally the static solution would rapidly be obtained, 
as when using the Houbolt method, see Example 9.2. However, we find that the solution is quite 
inaccurate with the displacements being 0.894 (instead of 1) and 1.45 (instead of 3) at 12/lt. The static 
solution is more closely obtained if the initial accelerations are set to zero (but the error for the static 
solution is then larger after 12 steps than after the first step where the error is very small). 

9.2.4 The Bathe Method 

The Bathe method uses two sub-steps for each time integration step tJ.t. In the first sub-step the 
Newmark trapezoidal rule is used and in the second sub-step, the 3-point Euler backward 
method is employed, see K. J. Bathe [F]. Although different size sub-steps can be used, see K. 
J. Bathe and M.M.I. Baig [A], we present here, for clarity, the scheme with equal size sub­
steps (the approach of integrating is the same when different sub-step sizes are used.). For the 
first sub-step we use 

t+At/2 ' t • [A'] t" t+l!,.t/2 •• U:::: U + - (U + U) 
4 

(9.22) 

""" u = 'u + [: J ('iJ + "'"' iJJ (9.23) 

and for the second sub-step we use 
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t+!J.t (J 1 t 4 l+!J.112 3 t+!J.t -U-- U+- U (9.24) 
M ll.t ll.t 

t+!!.t(J 1 I ' 4 l+!J.t/2 • 3 t+!J.1 ' - u-- u+- u (9.25) 
M M M 

With (9.22) and (9.23) and the finite element equilibrium equations at time t + M/2, that is, 

(9.16) but at time t + ll.t/2, and then (9.24) and (9.25) with the finite element equilibrium 

equations at time t + M , that is (9 .16), we obtain 

(~ M + ~ c + K) l+Al/2 u = t+Atl2R 

6t 2 M 
(9.26) 

r+t,,/
2R = t+!J.t/

2R+M(~ 'U +~ '(J + 'u)+c(~ 'U + t1) 
M2 M M 

with (9.27) 

and 
9 3 . . " (-M +-C+K) l+ulU= l+u/R 

M2 M 
(9.28) 

with t+!J.tl
2 R in general best interpolated linearly from the load values at times t and t + At (see 

G. Noh and K.J. Bathe [A]) and 

,.!J.,R ='+!J.IR+ M - l+!J.tl u -- 'u +- ,+At/ u-- 'u +c - l+AI u - 1U (9.29) " ( 12 2 3 4 2 • 1 · ) ( 4 /2 1 ) 
t:,,i at2 M at at at 

The complete solution scheme is given in Table 9.4. While it appears that the solution requires 
twice the computational effort as the trapezoidal rule, in fact, the accuracy and stability 
characteristics are such that larger time steps can be used and the scheme is in general quite 
effective, in particular for nonlinear solutions, see K.J. Bathe [F], K.J. Bathe and G. Noh [A] 
and G. Noh, S. Ham, and K.J. Bathe (A]. 

Table 9.4 Step-by-step solution using the Bathe integration method 

A. Initial calculations: 
1. Form stiffness matrix K, mass matrix M, and damping matrix C 

2. Initialize 0 U, 0ir and 00 . 
3. Select time step At and calculate integration constants: 

16 • 4 . 9 • 
ao = /t;.t2 , a1 = lit , ai = -,;:;;: ' 

4. Fonn effective stiffness matrices K1 and K,: 

3 
a, = flt ; 

1 
a, = -7;; 
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B. For each time step: 
First sub-step 

l. Calculate effective loads at time t + !:it/2: 

t+Mna =1+81/2R + M(ao 'U + a. tiJ +'U) + c (al 1u +tiJ) 

2. Solve for displacements at time t + At/2: 

L,D1IJ; 1+M12u =1+M12R 

3. Calculate velocities at time t + At/2: 

l+Ml2iJ = a. ( l+8//2u - 'U) -'U 
4. If required, evaluate accelerations at time t+ At/2: 

1+M12u = a
1 

( 1+t.112 U - 'U) -'U 
Second sub-step 

1. Calculate effective loads at time t + M: 

t+MR. =1+81R + M(a, t+M/2u + a6 'U + a, t+&t12iJ +a, 'U) + c (al l+M/2u + a, ru) 

2. Solve for displacements at time t + !lt: 
L

2
D

2
~ t+Mu = t+AIR 

3. Calculate velocities and accelerations at time t + !::.t: 
t+MiJ =- a, 'U - a, 1+81/2U+ al 1+81u 

1+Atij =-a, tiJ-a
1

1+Att2iJ+a3 1+&1iJ 

EXAMPLE 9.4; Calculate the displacement response of the system considered in Examples 9.1 to 9.3 
using the Bathe method. 

First we consider the case llt = 0.28. Following the steps of calculations in Table 9.4, we 
have 

0
• [OJ U= ; 

0 
Then (listed to three digits) 

a
0 

= 204; a, 14.3; a
2 

= 114; a
3 

= 10.7; a, = 28.6; a, = 153; a
6 

= -38.3; a, = -3.57 

Thus the effective stiffness matrices are 

" [414 K = 
l -2 

,.. [235 
K = 

2 -2 
-2J 
118 

-2J 
208 ' 

For each time step, in the first sub-step, we first evaluate 

and then calculate 
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In the second sub-step, we evaluate 

K, "Mu ;[
1
:J+ [: :}153 "M"u -38.3 'u + 14.3 '"""tr -3.57 'UJ 

and then calculate 

t+Mlf :J,57'lJ -}4.3 t+M/
2lJ+ 10.7 t+MlJ 

With these calculations we obtain 

0.00458 0.0445 0.183 0.486 0.979 1.62 2.28 2.81 3.03 2.83 

Chap.9 

2.21 1.28 

0.373 1.38 2.73 4.04 4.97 5.31 5.06 4.38 3.55 2.85 2.46 2.40 

Considering next the solution using l1t = 28, the solution is immediately close to the static solution and 
exactly equal to the static solution from 4!1t onwards, as is much desired. 

The scheme as presented here requires the use of two effective stiffness matrices, see (9.26) 

and (9.28). If, however, the first sub-step is yM, with r = 2 -Ji., the same matrices are 
obtained, see K.J. Bathe and M.M.I. Baig [A]. Hence, in linear analysis it is most effective to 
use the sub-steps r lit and (1- r At), also because the accuracy characteristics are quite close 
to those when using equal-size sub-steps, see K.J. Bathe and G. Noh [A]. 

The use of different matrices is of course not a disadvantage in nonlinear analysis since 
new tangent stiffness matrices are in any case established during the Newton-Raphson iterations, 
see Section 9.5.2. Considering nonlinear solutions, values of r other than 0.5 could also be used 
but the optimal value is problem-dependent. The optimal sub-step size for a specific problem 
solution should be measured on the best accuracy and least computational effort (in terms of total 
number of required Newton-Raphson iterations for the complete response evaluation), and the 
value of r thus obtained would ideally be independent of the total number of time steps used. 
Considering the solutions of two problems with different physical characteristics shows that 
different optimal values of r are obtained for such cases, see K.J. Bathe [K]. 

The Bathe method was initially proposed for nonlinear dynamic analyses with large 
deformations and long time durations, that is, cases, in which the trapezoidal shows an unstable 
behavior, see K.J. Bathe and M.M.I. Baig [A] and K.J. Bathe [F]. However, it was then found in 
practical analyses that the method is also effective in linear solutions. In structural dynamics, 
spurious oscillations (due to artificially stiff elements) are cut out of the solutions, see K.J. Bathe 
and G. Noh [A], and in wave propagations, modes that cannot be resolved spatially are 
automatically not included in the response prediction, see G. Noh, S. Ham, and K.J. Bathe [A]. 

9.2.5 The Coupling of Different Integration Operators 

So far we have assumed that all dynamic equilibrium equations are solved using the same 
time integration scheme. As discussed in Section 9.4, the choice of which method to use for 
an effective solution depends on the problem to be analyzed. However, for certain kinds 
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of problems it may be advantageous to use different time integration schemes to solve for the 
response in different regions of the total element assemblage, specifically, an explicit scheme 
and an implicit technique may be employed coupled in one solution. This is particularly the 
case when the stiffness and mass characteristics (i.e., the characteristic time constants) of 
the total element assemblage are quite different in different parts of the element assemblage. 
An example is the analysis of fluid~structure systems, in which the fluid is very flexible when 
measured on the stiffness of the structure. Here the explicit time integration of the fluid 
response using the conditionally stable central difference method and an implicit uncondi­
tionally stable time integration of the structural response (using, for example, the Newmark 
method) may be a natural choice (see Section 9.4). The reasons are that, first, the physical 
phenomenon to be analyzed may be a wave propagation in the fluid and a structural 
vibration of the structure, and second, the critical time step size for an explicit time 
integration of the fluid response is usually much larger than the time step required for 
explicit time integration of the structural response. The result may be that by proper choice 
of the finite element idealizations of the fluid and the structure, the explicit time integration 
of the fluid response and implicit time integration of the structural response can be per­
formed with a time step that is relatively large but small enough to yield a stable and 
accurate solution. Of course, it may also be efficient to use different time step sizes for the 
explicit and implicit integrations, with one time step size being a multiple of the other. 

The use of a combination of operators for the integration of dynamic response raises 
the questions of which methods to choose and how to couple them. There are a large 
number of possibilities, but in general the selection of the schemes depends on their 
stability and accuracy characteristics, including the effects due to the operator coupling, and 
the overall effectiveness of the resulting time integration. We demonstrate the use of 
explicit-implicit time integration in the analysis of the simple problem considered in Exam­
ples 9.1 to 9.4. 

EXAMPLE 9.5: Solve for U1 and U2 of the simple system considered in Example 9.1 using the 
explicit central difference method for U I and the implicit trapezoidal rule (Newmark' s method 
with a = !, 13 =!)for U2. 

In the explicit integration we consider the equilibrium at time t to calculate the displace­
ment for time t + At. For degree of freedom l, we have 

2 'U1 + 6 'U1 - 2 1U2 = 0 (a) 

In the implicit integration we consider the equilibrium at time t + IJ.t to calculate the 
displacement for time t + IJ.t. Thus, we have for degree of freedom 2, 

r+Atfj2 - 2 t+ArUi + 4 t+A'Uz = 10 

For (a) we now use the central difference method, 

.. t+Atu1 - 2 'U, + ,-t.ru, 
'U, = (At)2 

and for (b) we use the trapezoidal rule. 

t+A.t(J2 = 'U2 + At (1U2 + t+A1[J2) 
2 

(b) 

(c) 

(d) 
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The initial conditions are 
0 U1 = 0 01 = 0 01 = 0 U2 = 0 02 = O; 0 02 = 10 

Hence, using (9.7) to obtain the starting value -A,Ui, we obtain -Aru1 = 0. 
We can now use, for each time step, (a) and (c) to solve for ,+A, U, and then (b) and (d) to 

solve for r+A, U2. We should note that in this solution we evaluate r+At U, by projecting ahead from 
the equilibrium configuration at time t of the degree of freedom l, and we then accept this value 
of ,+A, U1 to evaluate r+Ai U2 implicitly. Using this procedure we obtain with flt = 0.28 the 
following data: 

Time At 2At 3At 4iit 5At 66.t ?At 8At 9At lOAt llAt 12At 

10 0.0 0.0285 0.156 0.457 0.962 1.63 2.33 2.88 3.11 2.90 2.24 1.25 
0.364 1.35 2.68 3.98 4.93 5.32 5.12 4.50 3.70 2.99 2.54 2.39 

This solution compares with the response calculated in Example 9 .1. If, however, we now try to 
obtain a solution with At = 28, we find that the solution is unstable; i.e., the predicted displace­
ments very rapidly grow out of bound. 

While here explicit and implicit integrations are combined, in an alternative solution app­
roach, a single implicit time integration scheme is used for the complete domaint but the stiff­
ness of the very flexible part is not added to the coefficient matrix, and dynamic equilibrium is 
satisfied by iteration (see, for example, K. J. Bathe and V. Sonnad [A] and Section 8.3.2). Fin­
allyt it may also be effective to switch between explicit and implicit integrations during the 
complete response solution. 

9.2.6 Exercises 

9.1. Consider the two degree of freedom system 

with the initial conditions 0u 0U = 0. Use the central difference method to calculate the 
response of the system to a reasonable accuracy for time Oto time 4. 

9.2. Consider the same system equations as in Exercise 9.1 but use the trapezoidal rule to calculate 
the system response. 

9.3. Develop a computational scheme for which the Wilson O method and the trapezoidal rule are 
special cases. Give the computational scheme in tabular form (as Table 9.3 for the Newmark 
method). See E.L. Wilson, I. Farhoomand and K.J. Bathe [A]. 

9.4. Show that when using as the first substep (2 -"12).6.t in the Bathe method, the two coefficient ma­
trices (used in Table 9.4) are identical. 

9.5. Consider the single degree of freedom equation 

20 + 4U = 0; o(J == 0 

(which is obtained by setting U1 == 0 in the system in Exercise 9.1). 
Assume that the time step used in the time integration is 1.01 X Ater, Estimate after how 

many time steps the solution will reach overflow (which is, for the computer used, given by 1030
). 
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9.6. Solve the equations given in Exercise 9.1 by using the central difference method for the time 
integration of U1 and the trapezoidal rule for the time integration of U2. 

9.3 MODE SUPERPOSITION 

Tables 9.2 to 9.4, summarizing the implicit direct integration schemes, show that if a 
diagonal mass matrix and no damping are assumed, the number of operations for one time 
step are-as a rough estimate-somewhat larger than 2nmK, where n and mK are the order 
and half-bandwidth of the stiffness matrix considered, respectively (assuming constant 
column heights or a mean half-bandwidth, see Section 8.2.3). The 2nmK operations are 
required for the solution of the system equations in each time step. The initial triangular 
factorization of the effective stiffness matrix requires additional operations. Furthermore, 
if a consistent mass matrix is used or a damping matrix is included in the analysis, an 
additional number of operations proportional to nmK is required per time step. Therefore, 
neglecting the operations for the initial calculations, a total number of about anmKs oper­
ations is required in the complete integration, where a depends on the characteristics of the 
matrices used and s is the number of time steps. 

Using the central difference method, the number of operations per step is usually 
much less (for the reasons given in Section 9 .2.1 ). 

These considerations show that the number of operations required in a direct integra­
tion solution are directly proportional to the number of time steps and that the use of 
implicit direct integration can be expected to be effective only when the response for a 
relatively short duration (i.e., for not too many time steps) is required. If the integration 
must be carried out for many time steps, it may be more effective to first transform the 
equilibrium equations (9.1) into a form in which the step-by-step solution is less costly. In 
particular, since the number of operations required is directly proportional to the half­
bandwidth mK of the stiffness matrix, a reduction in mK would decrease proportionally the 
cost of the step-by-step solution. 

It is important at this stage to fully recognize what we have proposed to pursue. We 
recall that (9.1) are the equilibrium equations obtained when the finite element interpola­
tion functions are used in the evaluation of the virtual work equation ( 4.7) (see Sec­
tion 4.2.1). The resulting matrices K, M, and C have a bandwidth that is determined by the 
numbering of the finite element nodal points. Therefore, the topology of the finite element 
mesh determines the order and bandwidth of the system matrices. In order to reduce the 
bandwidth of the system matrices, we may rearrange the nodal point numbering; however, 
there is a limit on the minimum bandwidth that can be obtained in this way, and we therefore 
set out to follow a different procedure. 

9.3.1 Change of Basis to Modal Generalized Displacements 

We propose to transform the equilibrium equations into a more effective form for direct 
integration by using the following transformation on the n finite element nodal point dis­
placements in U, 

V(t) = PX(t) (9.30) 

where Pis an n X n square matrix and X(t) is a time-dependent vector of order n. The 
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transformation matrix P is still unknown and will have to be determined. The components 
ofX are referred to as generalized displacements. Substituting (9.30) into (9.1) and premul­
tiplying by pr, we obtain 

where M = P7MP; 

MX(t) + ex(,) + ixc,) = i(,) 

c = prep; K = PTKP; 

(9.31) 

(9.32) 

It should be noted that this transformation is obtained by substituting (9.30) into ( 4.8) 
to express the element displacements in terms of the generalized displacements, 

u<'">(x, y, z, t) = H<'">PX(t) (9.33) 

and then using (9.33) in the virtual work equation ( 4.7). Therefore, in essence, to obtain 
(9.31) from (9.1), a change of basis from the finite element displacement basis to a gener­
alized displacement basis has been performed (see Section 2.5). 

The objectiv~ of.... the tra..Psformation is to obtain new system stiffness, mass, and 
damping matrices K, M, and C, which have a smaller bandwidth than the original system 
matrices, and the transformation matrix P should be selected accordingly. In addition, it 
should be noted that P must be nonsingular (i.e., the rank of P must be n) in order to have 
a unique relation between any vectors U and X as expressed in (9.30). 

In theory, there can be many different transformation matrices P, which would reduce 
the bandwidth of the system matrices. However, in practice, an effective transformation 
matrix is established using the displacement solutions of the free-vibration equilibrium 
equations with damping neglected, 

MU+KU=O 

The solution to ( 9 .34) can be postulated to be of the form 

U = cf> sin w(t - to) 

(9.34) 

(9.35) 

where cf:, is a vector of order n, tis the time variable, to is a time constant, and w is a constant 
identified to represent the frequency of vibration (radians/second) of the vector cf:,. 

Substituting (9.35) into (9.34), we obtain the generalized eigenproblem, from which 
cf:, and w must be determined, 

(9.36) 

The eigenproblem in (9.36) yields the n eigensolutions (wr, cf:,1), (wt cf:,2), ••• , (w;, cf:,n), 
where the eigenvectors are M-orthonormalized (see Section 10.2.1); i.e., 

and 

ct>TM~ {= l; 
'J = O; 

i = j 

i ¢ j 
(9.37) 

(9.38) 

The vector cf:,i is called the ith-mode shape vector, and w; is the corresponding 
frequency of vibration (radians/second). It should be emphasized that (9.34) is satisfied 
using any of the n displacement solutions cf:,, sin w;(t - to), i = 1, 2, ... , n. For a physical 
interpretation of w; and cf:,,, see Example 9.6 and Exercise 9.8. 
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Defining a matrix cl> whose columns are the eigenvectors «f>; and a diagonal matrix {}2, 
which stores the eigenvalues wr on its diagonal; i.e., 

O'=r~ .J (9.39) 

we can write then solutions to (9.36) as 

K <I> = M<l>fl.2 (9.40) 

Since the eigenvectors are M-orthonormal, we have 

(9.41) 

It is now apparent that the matrix cl> would be a suitable transformation matrix P in 
(9.30). Using 

U(t) = <l>X(t) (9.42) 

we obtain equilibrium equations that correspond to the modal generalized displacements 

X(t) + <f>TC<f>X(t) + 0 2 X(t) == <1>7 R(t) (9.43) 

The initial conditions on X(t) are obtained using (9.42) and the M-orthonormality of cl); 

i.e., at time O we have 

ox = <f>TM ou; ox = (!)TM oi.J (9.44) 

The equations in (9.43) show that if a damping matrix is not included in the analysis, 
the finite element equilibrium equations are decoupled when using in the transformation 
matrix P the free-vibration mode shapes of the finite element system. Since the derivation 
of the damping matrix can in many cases not be carried out explicitly and the damping 
effects can be included only approximately, it is reasonable to use a damping matrix that 
includes all required effects but at the same time allows an effective solution of the equi­
librium equations. In many analyses damping effects are neglected altogether, and it is this 
case that we shall discuss first, see also J.W. Tedesco, W.G. McDougal, and C.A. Ross [A]. 

EXAMPLE 9.6: Calculate the transformation matrix ct, for the problem considered in Exam­
ples 9.1 to 9.4 and thus establish the decoupled equations of equilibrium in the basis of mode 
shape vectors. 

For the system under consideration we have 

[ 6 -2J K = -2 4; M = [~ ~l 
The generalized eigenproblem to be solved is therefore 

[ 6 -2]4> = w2[2 0]4> 
-2 4 0 I 

The solution is obtained by one of the methods given in Chapters 10 and 11. Here we simply give 
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the two solutions without derivations: 

WT= 2; 

w~ = 5; 

Therefore. considering the free-vibration equilibrium equations of the system 

[~ ~]ucr) + [-~ -~Ju(t) = o 
the following two solutions are possible: 

U,(1) = [ ±] mD V2 (1 - 16) 

! ~ 
2"'y3 

-~ 

sin vs (t - ta) 

Chap.9 

(a) 

That the vectors U,(t) and U2{t) indeed satisfy the relation in (a) can be verified simply by 
substituting U, and U2 into the equilibrium equations. The actual solution to the equations in (a) 
is of the form 

U(1) = J0 l mn V2 (1 - 16) + f:1 ~~ sin \15 (1 - 13) 

lVJJ -~ 
where a. (3, tA, and ta are determined by the initial conditions on U and U. In particular. if we 
impose initial conditions corresponding to a (or {J) only, we find that the system vibrates in the 
corresponding eigenvector with frequency V2 rad/sec (or V5 rad/sec). The general procedure 
of solution for a, {3, t?, and t~ is discussed in Section 9.3.2. 

Having evaluated (wt, cf>1) and (wt cf,2) for the problem in Examples 9.1 to 9.4. we arrive 
at the following equilibrium equations in the basis of eigenvectors: 

.. [2 o] v'3 v'3 [ o] 
[

_1_ -·-i 
X(I) + 0 5 X(I) = i ~ -~ 10 

or X(t) + [~ ~]x(r) = [ ~ fi] 
-10y3 
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9.3.2 Analysis with Damping Neglected 

If velocity-dependent damping effects are not included in the analysis, (9.43) reduces to 

X(t) + 0 2 X(t) = fllTR(t) (9.45) 

i.e., n individual equations of the form 

with 

X;(t) + <PT xh) = r,(t)} 
r;(t) = ct,f R(t) 

i = 1, 2, ... , n 

x, l,=o = ti>fM 00 

(9.46) 

We note that the ith typical equation in (9.46) is the equilibrium equation of a single degree 
of freedom system with unit mass and stiffness wr and initial conditions established from 
(9.44). The solution to each equation in (9.46) can be obtained using the integration 
algorithms in Tables 9.1 to 9.4 or can be calculated using the Duhamel integral: 

(9.47) 

where a, and {3, are determined from the initial conditions in (9.46). The Duhamel integral 
in (9.47) may have to be evaluated numerically. In addition, it should be noted that various 
other integration methods could also be used in the solution of (9.46). 

For the complete response, the solution to all n equations in (9.46), i = 1, 2, ... , n, 
must be calculated and then the finite element nodal point displacements are obtained by 
superposition of the response in each mode; i.e., using (9.42), we obtain 

U(t) = i ct,ixi(t) (9.48) 
i=l 

Therefore, in summary, the response analysis by mode superposition requires, first, 
the solution of the eigenvalues and eigenvectors of the problem in (9.36), then the solution 
of the decoupled equilibrium equations in (9.46), and finally, the superposition of the 
response in each eigenvector as expressed in (9.48). In the analysis, the eigenvectors are the 
free-vibration mode shapes of the finite element assemblage. As mentioned earlier, 
the choice between mode superposition analysis and direct integration described in Section 
9.2 is merely one of numerical effectiveness. The solutions obtained using either procedure 
are identical within the numerical errors of the time integration schemes used [if the same 
time integration methods are used in direct integration and the solution of (9.46), the same 
numerical errors are present) and the round-off errors in the computer. 

EXAMPLE 9.7: Use mode superposition to calculate the displacement response of the system 
considered in Examples 9.1 to 9.4 and 9.6. 

( 1) Calculate the exact response by integrating each of the two decoupled equilibrium equations 
exactly. 

(2) Use the Newmark method with time step At = 0.28 for the time integration. 
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We established the decoupled equilibrium equations of the system under consideration in 
Example 9.6; i.e., the two equilibrium equations to be solved are 

.. 2 lO .. + 5 10 {2 
X1 + Xi ::;:: V3; X2 X2 = - \J 3 (a) 

The initial conditions on the system are U l,=o = 0, U 1,-o = 0, and hence, using (9 .46), 
we have 

x1J, .. o = 0 

X2lr=O = Q 

i1 l,==o = 0 

.t2l1=0 = 0 
(b) 

Also, to obtain U we need to use the relation in (9.42), which, using the eigenvectors calculated 
in Example 9.6. gives 

1 

V3 
U(t) = 

1 

V3 

! ~ 
2\J3 

-~ 
X(t) 

The exact solutions to the equations in (a) and (b) are 

5 {2 
Xt = \/3(1 - COS V2t);x2 = 2\/3(-1 + COS V5t) 

Hence, using (c), we have 

1 
!~ ~ (1 - cos V2t) 

V3 2 3 

U(t) = 
1 

-~ 2~(-1 + cos v'st) V3 

(c) 

(d) 

(e) 

Evaluating the displacements from (e) for times !,.t, 2!,.t, ... , 12!,.t, where M = 0.28, we obtain 

Time At 2At 3At 4At 5At 6.At 1A.t 8At 9At lOAt llA.t 12At 

'U 0.003 0.038 0.176 0.486 0.996 1.66 2.338 2.861 3.052 2.806 2.131 1.157 
0.382 1.41 2.78 4.09 5.00 5.29 4.986 4.277 3.457 2.806 2.484 2.489 

The results obtained are compared in Fig. E9.7 with the response predicted using the 
central difference, Houbolt, Newmark and Bathe methods in Examples 9.1 to 9.4, respec­
tively. The discussion in Section 9.4 will show that the time step M selected for the direct 
integrations is relatively large, and with this in mind it may be noted that the direct integration 
schemes predict a fair approximation to the exact response of the system. 

Instead of evaluating the exact response as given in (d) we could use a numerical integra­
tion scheme to solve the equations in (a). Here we employ the Newmark method and obtain 
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4 

3 

2 

0 

U,(t) 
- - Central difference method 

•• ....... Houbolt method 

·-··-·· Newmark method 

-·-· Bathe method 

--Exact 
Exact 

Central difference, 
~ 

5At 
(a) 

5 

4 

3 

2 

Bathe 

10M 0 

Central difference method 

• ·••••·•• Houbolt method 

·-··-·· Newmark method 

-·-· Bathe method 

-- Exact 

SM 
(b) 

10M 

Figure E9.7 Displacement response of system considered in Examples 9.1, 9.2, 9.3, 9.4, and 9.7 

X1(I) 0.2178 0.8383 1.768 2.866 3.968 4.906 

X2(l) -0.2915 -1.062 -2.036 -2.867 -3.257 -3.067 

71:it 81:it 91:it 10/:it ll!:it 12/:it 

5.540 5.773 5.571 4.964 4.043 2.948 

-2.365 -1.402 -0.5216 -0.03776 -0.1234 -0.7480 

The solution for U1(t) and Ui(t) is now evaluated by substituting for X(t) in the relation given in 
( c ). As expected, it is found that the displacement response thus predicted is the same as the 
response obtained when using the Newmark method in direct integration. 

As discussed so far, the only difference between a mode superposition and a direct 
integration analysis is that prior to the time integration, a change of basis is carried out, 
namely, from the finite element coordinate basis to the basis of eigenvectors of the 
generalized eigenproblem K<J> = arM4>. Since mathematically the same space is spanned 
by the n eigenvectors as by the n nodal point finite element displacements, the same 
solution must be obtained in both analyses. The choice of whether to use direct integration 
or mode superposition will therefore be decided by considerations of effectiveness only. 
However, this choice can only be made once an important additional aspect of mode 
superposition has been presented. This aspect relates to the distribution and frequency 
content of the loading and renders the mode superposition solution of some structures 
much more effective than the use of direct integration. 

Consider the decoupled equilibrium equations in (9.46). We note that if ri(t) = 0, 

i = l, ... , n, and either the initial displacements 0U or the initial velocities 0U are a 
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multiple of c1>i, and only of 4>i, then only xj(,) is nonzero and the structure will vibrate only 
in this mode shape. In practice, such transient response will decrease in magnitude due to 
damping (see Section 9.3.3) and frequently the effect of the external loading is more 
important. 

Therefore, consider next that °U = 0U = 0, and that the loading is of the form 
R(t) = M<t>J/(t), where/(t) is an arbitrary function oft. In such a case, since c:t>TM<f>i = 8;i 
(8ii = Kronecker delta), we would have that only xif) is nonzero. These are rather stringent 
conditions, and in general analysis can hardly be expected to apply exactly to many of the 
n equations in (9.46) because the loading is in general arbitrary. However, in addition to the 
fact that the loading may be nearly orthogonal to <f>;, it is also the frequency content of 
the loading that determines whether the ith equation in (9.46) will contribute significantly 
to the response. Namely, the response xt{t) is relatively large if the excitation frequency 
contained in r; lies near W;. 

To demonstrate these basic considerations we introduce the following example. 

EXAMPLE 9.8: Consider a one degree of freedom system with the equilibrium equation 

x(t) + w2x(t) = R sin wt 
and initial conditions 

xl,-o = 0, i l,,,.o = 1 

Use the Duhamel integral to calculate the displacement response. 

(a) 

We note that the system is subjected to a periodic force input and a nonzero initial velocity. 
Using the relation in (9.47), we obtain 

x(t) = ~ I.' sin WT sin w(t - T) dT + a sin wt + P cos wt 
W O 

Evaluating the integral, we obtain 

( ) R/w2 
• ,. • tJ 

x t = 
1 

,. 2/ 2 sm wt + a sm wt + ,., cos wt 
- w w 

(b) 

We now need to use the initial conditions to evaluate a and {3. The solution at time t = 0 is 

xl,-o = P 
. Rw/w2 

x 1,-o = 1 " 2 / 2 + aw - w w 

Using the conditions in (a), we obtain 

p = O; 
1 Rw/w3 

a=--
w 1 - w2 /w2 

Substituting for a and f3 into (b), we thus have 

( ) R/w2 
• ,. ( 1 Rw/w3 

) • 
x t = 1 _ w2/w 2 sm wt + ; - 1 _ w2/w2 sm wt 

which may also be written as 

x(t) = DXstat + Xtrans 
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where Xstat is the static response of the system, 

x,nms is the transient response, 

R . A 

Xstat = 2 Sill (t)t 
(t) 

( 
1 Rw/"'3 

) • 
Xtrans = ; - l _ 6.,2 /(t)Z Slll (t)t 

and D is the dynamic load factor, indicating resonance when w = (I), 

D = 1 
1 - 6)2 /(1)2 

793 

The analysis of the response of the single degree of freedom system considered in this 
example showed that the complete response is the sum of two contributions: 

1. A dynamic response obtained by multiplying the static response by a dynamic load 
factor ( this is the particular solution of the governing differential equation), and 

2. An additional dynamic response which we called the transient response. 

These observations pertain also to an actual practical analysis of a multiple degree of 
freedom system because, first, the complete response is obtained as a superposition of the 
response measured in each modal degree of freedom, and second, the actual loading can be 
represented in a Fourier decomposition as a superposition of harmonic sine and cosine 
contributions. Therefore, the above two observations apply to each modal response corre­
sponding to each Fourier component of the loading. 

An important difference between an actual practical response analysis and the solu­
tion in Example 9.8 is, however, that in practice the effect of damping must be included as 
discussed in Section 9.3.3. The presence of damping reduces the dynamic load factor (which 
then cannot be infinite) and damps out the transient response. 

Figure 9.3 shows the dynamic load factor as a function of w/w (and the damping ratio 
f discussed in Section 9.3.3). The information in Fig. 9.3 is obtained by solving (9.54) as 
in Example 9.8. If we apply the information given in this figure to the analysis of an actual 
practical system, we recognize that the response in the modes with w/w large is negligible 
(the loads vary so rapidly that the system does not move), and that the static response is 
measured when w/w is close to zero (the loads vary so slowly that the system simply follows 
the loads statically). Therefore, in the analysis of a multiple degree of freedom system, the 
response in the high frequencies of the system ( that are much larger than the highest 
frequencies contained in the loads) is simply a static response. 

The essence of a mode superposition solution of a dynamic response is that frequently 
only a small fraction of the total number of decoupled equations needs to be considered in 
order to obtain a good approximate solution to the exact solution of (9 .1 ). Most frequently, 
only the first p equilibrium equations in (9.46) need to be used; i.e., we need to include in 
the analysis the equations (9.46) only for i = l, 2, ... , p, where p ~ n, in order to obtain 
a good approximate solution. This means that we need to solve only for the lowest p 
eigenvalues and corresponding eigenvectors of the problem in (9.36) and we only sum in 
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Equation: 
x+ 2~x+ o,2x- sin wt 
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Figure 9.3 The absolute value of the dynamic load factor 

(9.48) the response in the first p modes; i.e., we use 
p 

U'(t) = L 4,;X;(t) (9.49) 
l•I 

where U' approximates the exact solution U of (9.1). 
The reason that only the lowest modes are considered in a practical finite element 

analysis lies in the complete modeling process for dynamic analysis. Namely, so far, we have 
been concerned only with the exact solution of the finite element system equilibrium 
equations in (9.1). However, what we really want to obtain is a good approximation to the 
actual exact response of the mathematical model under consideration. We showed in Sec­
tion 4.3.3 that under certain conditions the finite element analysis can be understood to be 
a Ritz analysis. In such case, upper bounds to the exact frequencies of the mathematical 
model are obtained. Moreover, in general, even when the monotonic convergence condi­
tions are not satisfied, the finite element analysis approximates the lowest exact frequencies 
best, and little or no accuracy can be expected in approximating the higher frequencies and 
mode shapes. Therefore, there is usually little justification for including the dynamic re­
sponse in the mode shapes with the high frequencies in the analysis. In fact, the finite 
element mesh should be chosen such that all important exact frequencies and vibration 
mode shapes of the mathematical model are well approximated, and then the solution needs 
to be calculated including only the response in these modes. However, this can be achieved 
precisely using mode superposition analysis by considering only the important modes of the 
finite element system. 

It is primarily because of the fact that in a mode superposition analysis only a few 
modes may need to be considered that the mode superposition procedure can be much more 
effective than direct integration. However, it also follows that the effectiveness of mode 
superposition depends on the number of modes that must be included in the analysis. In 
general, the structure considered and the spatial distribution and frequency content of the 
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loading determine the number of modes to be used. For earthquake loading, in some cases 
only the 10 lowest modes need to be considered, although the order of the system n may be 
quite large. On the other hand, for blast or shock loading, many more modes generally need 
to be included, and p may be as large as 2n/3. Finally, in vibration excitation analysis, only 
a few intermediate frequencies may be excited, such as all frequencies between the lower 
and upper frequency limits w1 and w11 , respectively. 

Considering the problem of selecting the number of modes to be included in the mode 
superposition analysis, it should always be kept in mind that an approximate solution to the 
dynamic equilibrium equations in (9.1) is sought. Therefore, if not enough modes are 
considered, the equations in (9.1) are not solved accurately enough. But this means, in 
effect, that equilibrium, including the inertia forces, is not satisfied for the approximate 
response calculated. Denoting by lJP the response predicted by mode superposition when p 
modes are considered, an indication of the accuracy of analysis at any time t is obtained by 
calculating an error measure eP, such as 

P( ) = !I R(t) - [MLJP(t) + KfY'(t)] 112 

E t II R(t) 112 
(9.50) 

where we assume that II R(t) 112 if; 0. If a good approximate solution of the system equi­
librium equations in (9.1) has been obtained, eP(t) will be small at any time t. But IJP(t) must 
have been obtained by an accurate calculation of the response in each of the p modes 
considered because in this way the only error is due to not including enough modes in the 
analysis. 

The error measure eP calculated in (9.50) determines how well equilibrium including 
inertia forces is satisfied and is a measure of the nodal point loads not balanced by inertia 
and elastic nodal point forces [see (9.2)]. Alternatively, we may say that EP is a measure of 
that part of the external load vector that has not been included in the mode superposition 
analysis. Since we have R = ~7= 1 r;M<f>;, we can evaluate 

p 

AR= R - L r;(M<f>;} (9.51) 
i•I 

For a properly modeled problem the response to AR should be at most a static response. 
Therefore, a good correction LiU to the mode superposition solution UP can be obtained 
from 

K AU{t) = AR(t) (9.52) 

where the solution of (9.52) may be required only for certain times at which the maximum 
response is measured. We call LiU calculated from (9.52} the static correction. 

In summary, therefore, assuming that the decoupled equations in (9.46) have been 
solved accurately, the errors in a mode superposition analysis using p < n are due to the fact 
that not enough modes have been used, whereas the errors in a direct integration analysis 
arise because too large a time step is employed. 

From the preceding discussion it may appear that the mode superposition procedure 
has an inherent advantage over direct integration in that the response corresponding to the 
higher, probably inaccurate frequencies of the finite element system is not included in the 
analysis. However, assuming that in the finite element analysis all important frequencies are 
represented accurately, meaning that negligible dynamic response is calculated in the modes 



796 Solution of Equilibrium Equations in Dynamic Analysis Chap.9 

that are not represented accurately, the inclusion of the finite element system dynamic 
response in these latter modes will not seriously affect the accuracy of the solution. In 
addition, we will discuss in Section 9 .4 that in implicit direct integration, advantage can be 
taken also of integrating accurately only the first p equations in (9.46). This is achieved by 
using an unconditionally stable direct integration method and selecting an appropriate 
integration time step A.t, which, in general, is much larger than the integration step used with 
a conditionally stable integration scheme. 

9.3.3 Analysis with Damping Included 

The general form of the equilibrium equations of the finite element system in the basis of 
the eigenvectors cf,;, i = 1, ... , n was given in (9.43), which shows that provided damping 
effects are neglected, the equilibrium equations decouple and the time integration can be 
carried out individually for each equation. Considering the analysis of systems in which 
damping effects cannot be neglected, we still would like to deal with decoupled equilibrium 
equations in (9.43), and use essentially the same computational procedure whether damp­
ing effects are included or neglected. In general, the damping matrix C cannot be con­
structed from element damping matrices, such as the mass and stiffness matrices of the 
element assemblage, and it is introduced to approximate the overall energy dissipation 
during the system response (see, for example, R. W. Clough and J. Penzien [A]). The mode 
superposition analysis is particularly effective if it can be assumed that damping is propor­
tional, in which case 

(9.53) 

where f1 is a modal damping parameter and 8iJ is the Kronecker delta (81j = 1 for i = j, 
aij = 0 for i -::f::. j). Therefore, using (9.53), it is assumed that the eigenvectors <l>1, i = 1, 
2, ... , n, are also C-orthogonal and the equations in (9.43) reduce ton equations of the 
form 

(9.54) 

where r;(t) and the initial conditions on xh) have already been defined in (9.46). We note 
that (9.54) is the equilibrium equation governing motion of the single degree of freedom 
system considered in (9.46) when f1 is the damping ratio. 

If the relation in (9.53) is used to account for damping effects, the procedure of 
solution of the finite element equilibrium equations in ( 9 .43) is the same as in the case when 
damping is neglected (see Section 9.3.2), except that the response in each mode is obtained 
by solving (9.54). This response can be calculated using an integration scheme such as those 
given in Tables 9 .1 to 9 .4 or by evaluating the Duhamel integral to obtain 

(9.55) 

where 

and a; and /3, are calculated using the initial conditions in (9.46). 
In considering the implications of using (9.53) to take account of damping effects, the 

following observations are made. First, the assumption in (9.53) means that the total 
damping in the structure is the sum of individual damping in each mode. The damping in 
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one mode could be observed, for example, by imposing initial conditions corresponding to 
that mode only (say 0U = cf>; for mode i) and measuring the amplitude decay during the 
free damped vibration. In fact, the ability to measure values for the damping ratios fi, and 
thus approximate in many cases in a realistic manner the damping behavior of the complete 
structural system, is an important consideration. A second observation relating to the mode 
superposition analysis is that for the numerical solution of the finite element equilibrium 
equations in (9.1) using the decoupled equations in (9.54), we do not calculate the damping 
matrix C but only the stiffness and mass matrices K and M. 

Damping effects can therefore readily be taken into account in mode superposition 
analysis provided that (9.53) is satisfied. However, assume that it would be numerically 
more effective to use direct step-by-step integration when realistic damping ratios g,, 
i = 1, . . . , r are known. In that case, it is necessary to evaluate the matrix C explicitly, 
which when substituted into (9.53) yields the established damping ratios fj. If r = 2, 
Rayleigh damping can be assumed, which is of the form 

C = aM + J3K (9.56) 

where a and f3 are constants to be determined from two given damping ratios that corre­
spond to two unequal frequencies of vibration. 

EXAMPLE 9.9: Assume that for a multiple degree of freedom system w1 = 2 and u>i = 3, and 
that in those two modes we require 2 percent and 10 percent critical damping, respectively; i.e .• 
we require f1 = 0.02 and ~2 = 0.10. Establish the constants a and J3 for Rayleigh damping in 
order that a direct step-by-step integration can be carried out. 

In Rayleigh damping we have 

C = aM + J3K 

But using the relation in (9.53) we obtain, using (a), 

or 

tf>;(aM + /3K)<f>; = 2w;~ 

a + J3w; = 2w;f1 

Using this relation for w1, f1 and w2, f2, we obtain two equations for a and 13, 

a+ 4/3 = 0.08 

a+ 9J3 = 0.60 

(a) 

(b) 

(c) 

The solution of (c) is a = -0.336 and J3 = 0.104. Thus, the damping matrix to be used is 

C = -0.336M + 0.104K (d) 

With the damping matrix given, we can now establish the damping ratio that is specified 
at any value of w,, when the Rayleigh damping matrix in (d) is used. Namely, the relation in (b) 
gives 

for all values of w,. 

Ci= -0.336 + o.104w: 
2w; 

In actual analysis it may well be that the damping ratios are known for many more 
than two frequencies. In that case two average values, say ~1 and 6, are used to evaluate a 
and /3. Consider the following example. 
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EXAMPLE 9. 10: Assume that the approximate damping to be specified for a multiple degree 
of freedom system is as follows: 

€1 = 0.02; 

f3 = 0.04; 

€s = 0.14; 

W1 = 2; 

"'3 = 7; 

c:us = 19 

6 = 0.03; 

~ = 0.10; 

Choose appropriate Rayleigh damping parameters a and /3. 
As in Example 9.9, we determine a and f3 from the relation 

a + {3w; = 2<c>iE, (a) 

However, only two pairs of values, e1, w1 and fu, 'wi, determine a and /3. Considering the spacing 
of the frequencies, we use 

€1 = 0.03; 

€2 0.12; 

For the values in (b) we obtain, using (a), 

w'r = 4 

<Ji= 17 

a + 16/3 = 0.24 

a + 289/3 = 4.08 

Hence a = 0.01498, f3 = 0.01405, and we obtain 

0.30 

0.20 

0.10 

0.05 
I 

I 

C = 0.01498M + 0.01405K 

(b) 

(c) 

~-----..~-------------------------....... ',,.__.,.....," 10 20 30 
Figure E9.10 Damping as a function of 
frequency 
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We can now calculate which actual damping ratios are employed when the damping matrix 
C in (c) is used. From (a) we obtain 

€,· = 0.01498 + 0.01405w; 
I 2CU; 

Figure E9.10 shows the relation of{; as a function of cu;, where, based on the use of{; in (9.54), 
we also indicate the "mass proportional" and "stiffness proportional" damping regions. 

The procedure of calculating a and f3 in Examples 9. 9 and 9 .10 may suggest the use 
of a more general damping matrix if more than only two damping ratios are used to 
establish C. Assume that the r damping ratios f;, i = 1, 2, ... , rare given to define C. 
Then a damping matrix that satisfies the relation in (9.53) is obtained using the Caughey 
series, 

r-1 

C = M ~ ak[M-1 K]k (9.57} 
k•O 

where the coefficients ak, k = 0, . . . , r - 1, are calculated from the r simultaneous 
equations 

We should note that with r = 2, (9.57) reduces to Rayleigh damping, as presented in 
(9.56). An important observation is that if r > 2, the damping matrix C in (9.57) is, in 
general, a full matrix. Since the cost of analysis is increased by a very significant amount 
if the damping matrix is not banded, in most practical analyses using direct integration, 
Rayleigh damping is assumed. A disadvantage of Rayleigh damping is that the higher modes 
are considerably more damped than the lower modes, for which the Rayleigh constants have 
been selected (see Example 9.10). 

In practice, reasonable Rayleigh coefficients in the analysis of a specific structure may 
often be selected using available information on the damping characteristics of a typical 
similar structure; i.e., approximately the same a and f3 values are used in the analysis of 
similar structures. The magnitude of the Rayleigh coefficients is to a large extent determined 
by the energy dissipation characteristics of the construction, including the materials. 

In the above discussion we assumed that the damping characteristics of the structure 
can be represented appropriately using proportional damping, either in a mode superposi­
tion analysis or in a direct integration procedure. In many analyses, the assumption of 
proportional damping [i.e., that (9.53) is satisfied] is adequate. However, in the analysis of 
structures with widely varying material properties, nonproportional damping may need 
to be used. For example, in the analysis of foundation-structure interaction problems, 
significantly more damping may be observed in the foundation than in the surface structure. 
In this case it may be reasonable to assign in the construction of the damping matrix 
different Rayleigh coefficients a and f3 to different parts of the structure, which results in 
a damping matrix that does not satisfy the relation in (9.53). Another case of nonpropor­
tional damping is encountered when concentrated dampers corresponding to specific de­
grees of freedom (e.g., at the support points of a structure) are specified. 

The solution of the finite element system equilibrium equations with nonproportional 
damping can be obtained using the direct integration algorithms in Tables 9.1 to 9.4 without 
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modifications because the property of the damping matrix did not enter into the derivation 
of the solution procedures. On the other hand, considering mode superposition analysis 
using the free-vibration mode shapes with damping neglected as base vectors, we find that 
cJ>TCcJ> in (9.43) is in the case of nonproportional damping a full matrix. In other words, 
the equilibrium equations in the basis of mode shape vectors are no longer decoupled. But, 
if it can be assumed that the primary response of the system is still contained in the subspace 
spanned by cl,1, ... , ct,p, it is necessary to consider only the first p equations in (9.43). 
Assuming that the coupling in the damping matrix cJ>TCcJ> between x;, i = l, ... , p, and 
Xi, i = p + l, ... , n, can be neglected, the first p equations in (9.43) decouple from the 
equations p + 1 to n and can be solved by direct integration using the algorithms in 
Tables 9.1 to 9.4 (see Example 9.11). In an alternative analysis procedure, the decoupling 
of the finite element equilibrium equations is achieved by solving a quadratic eigenproblem, 
in which case complex frequencies and vibration mode shapes are calculated (see 
J. H. Wilkinson [A]). 

EXAMPLE 9. 11: Consider the solution of the equilibrium equations 

[ t I ,Ju+ [O.l O Ju+ [-~ -: -~Ju= R(t) (a) 

2 0.5 0 -1 2 

The free-vibration mode shapes with damping neglected and corresponding frequencies of 
vibration are calculated in Example 10.4 and are 

1 1 

V2 - \/2 

<I>= 
1 

0 
1 O' = [2 J V2 V2 

4 

1 l 
V2 -1 -\/2 

Transform the equilibrium equations in (a) to equilibrium relations in the mode shape basis. 
Using U = <I>X. we obtain corresponding to (9.43) the equilibrium relations 

[ 
0.3 -0.2Y2 -0.3 J [2 ] 

X(t) + -0.2V2 0.6 0.2\/2 X(t) + 4 

6 
X(t) 

-0.3 0.2V2 0.3 

1 1 1 

V2 V2 V2 
1 0 -1 R(t) (b) 
1 1 1 

V2 V2 -V2 

If it were now known that because of the specific loading applied, the primary response lies only 
in the first mode, we could obtain an approximate response by solving only 

(c) 
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and then calculating 

1 

\/1 

U(t) = 1 X1(t) 
\/1 

1 

\/1 
However, it should be noted that because cI>TCfll in (b) is full, the solution of x,(t) from 

(c) does not give the actual response in the first mode because the damping coupling has been 
neglected. 

9.3.4 Exercises 

9.7. Obtain the solution of the finite element equations in Exercise 9.1 by mode superposition using 
all modes of the system (see Example 9.6). 

9.8. Consider the finite element system in Exercise 9.1. 
(a) Establish a load vector which will excite only the second mode of the system. 
(b) Assume that R = 0 and 0U = 0 but 0U #: 0. Establish a value of 0U which will make the 

system vibrate only in its first mode. 
9.9. Calculate the curve corresponding to~ 0.2 given in Fig. 9.3. 

9.10. Perform a mode superposition solution of the equations given in Exercise 9.1 but using only the 
lowest mode. Also, evaluate the static correction [i.e., in (9.51) we have p = 1]. 

9.11. Establish a damping matrix C for the system considered in Exercise 9.1, which gives the modal 
damping parameters f1 = 0.02, f2 = 0.08. 

9.12. A finite element system has the following frequencies: c.o1 = 1.2, c.o2 = 2.3, C.03 = 2.9, C.04 = 3.1, 
c.os = 4.9, W6 = 10.1. The modal damping parameters at c.o1 and tu4 shall be ~1 = 0.04, 
~ = 0.10, respectively. Calculate a Rayleigh damping matrix and evaluate the damping ratios 
used at the other frequencies. 

9.4 ANALYSIS OF DIRECT INTEGRATION METHODS 

In the preceding sections we presented the two principal procedures used for the solution 
of the dynamic equilibrium equations 

MU(t) + CU(t) + KU(t) = R(t) (9.58) 

where the matrices and vectors have been defined in Section 9 .1. The two procedures were 
mode superposition and direct integration. The integration schemes considered were the 
central difference method, the Houbolt method, the Newmark integration procedure (see 
Tables 9.1 to 9.4 ), and the Bathe method. We stated that using the central difference 
scheme, a time step !:.t smaller than a critical time step !:.tcr has to be used; but when 
employing the other three integration schemes, a similar time step limitation is not appli­
cable. 

An important observation was that the cost of a direct integration analysis (i.e., the 
number of operations required) is directly proportional to the number of time steps required 
for solution. It follows that the selection of an appropriate time step in direct integration is 
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of much importance. On one hand, the time step must be small enough to obtain accuracy 
in the solution; but, on the other hand, the time step must not be smaller than necessary 
because with such time step the solution is more costly than actually required. The aim in 
this section is to discuss in detail the problem of selecting an appropriate time step At for 
direct integration. The two fundamental concepts to be considered are those of stability and 
accuracy of the integration schemes. The analysis of the stability and accuracy characteris­
tics of the integration methods results in guidelines for the selection of an appropriate time 
step. 

A first fundamental observation for the analysis of a direct integration method is the 
relation between mode superposition and direct integration. We pointed out in Section 9 .3 
that, in essence, using either procedure the solution is obtained by numerical integration. 
However, in the mode superposition analysis, a change of basis from the finite element nodal 
displacements to the basis of eigenvectors of the generalized eigenproblem, 

Ket, = w 2Mct, (9.59) 

is performed prior to the time integration. Writing 

U(t) = 4>X(t) (9.60) 

where the columns in ell are the M-orthonormalized eigenvectors (free-vibration modes) 
«f,1, ..• , «f>n, and substituting for U(t) into (9.58) we obtain 

X(t) + AX(t) + 0 2X(t) = 4>TR(t) (9.61) 

where 0 2 is a diagonal matrix listing the eigenvalues of (9.59) (free-vibration frequencies 
squared) wt, . . . , w;. Assuming that the damping is proportional, A is a diagonal matrix, 
A = diag(2w1f,), where €1 is the damping ratio in the ith mode. 

The equation in (9.61) consists of n uncoupled equations, which can be solved, for 
example, using the Duhamel integral. Alternatively, one of the numerical integration 
schemes discussed as direct integration procedures may be used. Because the periods of 
vibration T1t i = l, ... , n, are known, where~ = 21T/w1, we can choose in the numerical 
integration of each equation in (9.61) an appropriate time step that ensures a required level 
of accuracy. On the other hand, if all n equations in (9.61) are integrated using the same 
time step At, then the mode superposition analysis is completely equivalent to a direct 
integration analysis in which the same integration scheme and the same time step At are 
used. In other words, the solution of the finite element system equilibrium equations would 
be identical using either procedure. Therefore, to study the accuracy of direct integration, 
we may focus attention on the integration of the equations in (9.61) with a common time step 
At instead of considering (9.58). In this way, the variables to be considered in the stability 
and accuracy analysis of the direct integration method are only At, W;, and g;, i = 1, . . . , 
n, and not all elements of the stiffness, mass, and damping matrices. Furthermore, because 
all n equations in (9.61) are similar, we only need to study the integration of one typical 
row in (9.61), which may be written 

(9.62) 

and is the equilibrium equation governing motion of a single degree of freedom system with 
free-vibration period T, damping ratio ~' and applied load r. 

It may be mentioned here that this procedure of changing basis, i.e., using the trans­
formation in (9.60), is also used in the convergence analysis of eigenvalue and eigenvector 
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solution methods (see Section 11.2). The reason for carrying out the transformation in 
Section 11.2 is the same, namely, many fewer variables need to be considered in the 
analysis. 

Considering the solution characteristics of a direct integration method, the problem is, 
therefore, to estimate the integration errors in the solution of (9.62) as a function of At/T, 
g, and r. For such investigations, see, for example, L. Collatz [A] and R. D. Richtmyer and 
K. W. Morton [A]. In the following discussion we employ a relatively simple procedure in 
which the first step is to evaluate an approximation and load operator that relates explicitly 
the unknown required variables at time t + At to previously calculated quantities (see 
K. J. Bathe and E. L. Wilson [A]). 

9.4.1 Direct Integration Approximation and Load Operators 

As discussed in the derivation of the direct integration methods (see Section 9.2), assume 
that we have obtained the required solution for the discrete times 0, At, 2At, 3At, ... , 
t - At, t and that the solution for time t + At is required next. Then for the specific 
integration method considered, we aim to establish the following recursive relationship: 

t+Ari = A 'X + L(t+"r) (9.63) 

Where t+AtX and 1:X are Vectors Storing the Solution quantities (e.g., displacements, Veloc­
ities) and ,+.,r is the load at time t + v. We will see that v may be 0, At, or 8 At for the 
integration methods considered. The matrix A and vector L are the integration approxima­
tion and load operators, respectively. Each quantity in (9.63) depends on the specific 
integration scheme employed. However, before deriving the matrices and vectors corre­
sponding to the different integration procedures, we note that (9.63) can be used to calculate 
the solution at any time t + nAt, namely, applying (9.63) recursively, we obtain 

1+nA1i = An 'X + An-1 L('+"r) + An-2L(t+At+vr) + .. , 
+ A L('+(n-2)At+vr) + L(t+(n-1)4r+vr} (9.64} 

It is this relation that we will use for the study of the stability and accuracy of the integration 
methods. In the following sections we derive the operators A and L for the different 
integration methods considered, where we refer to the presentations in Sections 9 .2.1 
to 9.2.4. 

The central difference method. In the central difference integration scheme we 
use (9.3) and (9.4) to approximate the acceleration and velocity at time t, respectively. The 
equilibrium equation (9.62) is considered at time t; i.e., we use 

'x + 2fw 'x + w2 'x = 'r 

'x = -1
-('-4'x - 2 'x + t+41x) 

At2 

,.t = _I_(_,-Arx + 1+4,x) 
2At 

Substituting (9.66) and (9.67) into (9.65) and solving for r+Atx, we obtain 

,+A, 2 - w2 At2 
, l fw At ,-Ar At2 , x= x- x+ r 

1 + ~ At I + fw At 1 + fw At 

(9.65) 

(9.66) 

(9.67) 

(9.68) 
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The solution (9.68) can now be written in the form (9.63); i.e., we have 

(9.69) 

where (9.70) 

and {9.71) 

As we pointed out in Section 9.2.1, the method is usually employed with?= 0. 

The Houbolt method. In the Houbolt integration scheme the equilibrium equation 
(9.62) is considered at time t + M; i.e., we use 

{9.72) 

with t+AI •• 1 (2 1+61 5 I 4 1-1:;J 1-2il.l ) x=- x- x+ x- x 
t,i 

(9.73) 

t+t.l • 1 (11 t+IJ.t 18 I +9 1-t,t 2 t-2AI ) x=- x- x x- x 
6/J.t 

(9.74) 

Substituting (9.73) and (9.74) into (9.72), we can establish the relation 

[",:xi= A[ .::x]+L i+t.Jr 

1-1:J t-2e.s 
x x 

(9.75) 

/J 2K 
--+-
o/ l!,i 3 

where (9.76) 
0 0 

0 0 

/3= J ~p 
K=--

OJ!lt 
(9.77) 

/3 
2 

w 
and L= 0 

(9.78) 

0 
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The Newmark method. In the Newmark integration scheme the equilibrium equation 
(9 .62) is considered at time t + At; i.e., we use 

HAI x + 2t;w t+ill x + {t} 2 Hill x = HAI r (9.79) 

and the following expansions are employed for the velocity and displacement at time t + 1:,.t: 

l+!JJ , I , [(t ~) 1.. ~ t+/ll ••] A x=x+ -u x+u x ut (9.80) 

1+81 t I, A~ [(I )'" t+ru .. ] 8 ,2 x=x+xUJ+ 2 -a x+a x (9.81) 

where o and a are parameters to be chosen to obtain optimum stability and accuracy. Newmark 
proposed as an unconditionally stable scheme the constant-average-acceleration method, in 
which case o = Yi and a= 1/.i.. 

Substituting for i+/llx and i+Alx into (9.79), we can solve for t+/llx and then use (9.80) and 

(9.81) to calculate l+Alx and i+.1
1x. We can thus establish the relation 

where A= A{t- o-{;-a )op- 2(1-o)oK J 
M 

2 
[ ;- a -( ;- a) ap - 2 ( I - 8) aK J 

( )

-1 

I 2i;o 
P= --+--+a 

a/ 8/ w8t 

p 

al tJ./ 

1 
-(-p-2x,) 
M 

fit ( 1- ap - 2aK) 

I 
-(-p) 
ti 
I 

-(-po) 
M 

(t-ap) 

(9.82) 

(9.83) 

(9.84) 

L= 
p,5 

a/ M 
and (9.85) 

afl 
2 

(/} 

The Bathe method. In the Bathe integration scheme, the equilibrium equation (9.62) is 
solved at t + At 

t+M X + 2t; (1) t+t.l ,X + (1) 2 t+& X = l+i'J r (9.86) 

with two equal sub-steps: in the first sub-step the trapezoidal rule is used 

l+A//2 • I • 1:,.t (I•• t+!JJ/2 ") x=x+- x+ x 
4 

(9.87) 
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l+At/2 t + At ( 1 • +t+At/2.) x=x - x x 
4 

(9.88) 

and in the second sub-step, the 3-point Euler backward method is employed, see L. Collatz [A], 

t+At • 1 I 4 l+Al/2 3 l+At x=-x-- x+- x 
At At At 

(9.89) 

t+At •• 1 I • 4 t+A112 • 3 t+/JJ • x=-x-- x+- x (9.90) 
At At At 

Using (9.87) and (9.88) with the equilibrium equation (9.62) at time t + !lt/2 and then (9.89) and 
(9 .90) with (9 .86), we obtain 

[

l+t\l ··i [' ··i l+At ~ _ A 1 ~ L t+Al/2 L HAI 
x - x + a r+ b r 

t+AJ I 
x x 

(9.91) 

where A, Lu, and Lb are the integration approximation and load operators, respectively, 

[

-4wL\l(24{ + 7wL\l) w{-288{ + l44w
2 !:!i -144wAt + so/ t!!.l + 48t wL\l) 

1 ( , ') 2 2 3 3 J: A=-- -4At -12+wl\t 144-47wl\t -84wAt -241:,WAI 

PA '( ) ( 2 2 2 2 2) 4L\l 7 + 2?wl\t At 144 - SW At + 80?wAt + 16( w At 

2( 2 2 ) l w 24,wA.t + l9w At 144 

2 ( 2 2) W flt -96 - 24, WAt + W /;.t 

22 222 33 
-l9w L\l + 144 + l68(wAt + 48, w L\l - 2(w At 

(9.92) 

[

-4wAt(24( + 1wAt )] [ 9 l 
La =-

1
- -4l\t(-12+w

2
A/) ; Lb=__!_ 3M 

fJJ32 2 ( ) fl2 2 
4At 7 + 2t wilt At 

(9.93) 

with (9.94) 

Of course, the same analysis can also be performed when using a general intermediate time 
position, that is, t + yA t instead oft + At I 2, where y is a parameter, and it turns out that for 

r = 2-.Ji (9.95) 
the amplitude decay is at its maximum and the period elongation is at its minimum (but not 
much different than at r = 0.5), see K..J. Bathe and G. Noh (A]. The idea of sub-stepping to 
introduce numerical dissipation (for reducing the solution error) has also been used to design 
an explicit integration scheme in G. Noh and K.J. Bathe [A]. 

9.4.2 Stability Analysis 

The aim in the numerical integration of the finite element system equilibrium equations is to 
evaluate a good approximation of the actual dynamic response of the structure under 
consideration. In order to predict the dynamic response of the structure accurately, it would 
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seem that all system equilibrium equations in (9.58) must be integrated to high precision, 
and this means that all n equations of the form (9.62) need to be integrated accurately. Since 
in direct integration the same time step is used for each equation of the form (9.62), At 
would have to be selected corresponding to the smallest period in the system, which may 
mean that the time step is very small indeed. As an estimate of At thus required, it appears 
that if the smallest period is Tn, At would have to be about Tn/10 (or smaller; see Sec­
tion 9.4.3). However, we discussed in Section 9.3.2 that in many analyses practically all 
dynamic response lies in only some modes of vibration and that for this reason only some 
mode shapes are considered in mode superposition analysis. In addition, it was pointed out 
that in many analyses there is little justification to include the response predicted in the 
higher modes because the frequencies and mode shapes of the finite element mesh can be 
only crude approximations to the "exact" quantities. Therefore, the finite element idealiza­
tion has to be chosen in such a way that the lowest p frequencies and mode shapes of the 
structure are predicted accurately, where pis determined by the distribution and frequency 
content of the loading. 

It can therefore be concluded that in many analyses we are interested in integrating 
only the firstp equations of then equations in (9.61) accurately. This means that we would 
be able to revise At to be about Tp/10, i.e., TP/Tn times larger than our first estimate. In 
practical analysis the ratio Tp/Tn can be very large, say of the order 1000, meaning that the 
analysis would be much more effective using flt = Tp/10. However, assuming that we 
select a time step At of magnitude Tp/10, we realize that in the direct integration also the 
response in the higher modes is automatically integrated with the same time step. Since we 
cannot possibly integrate accurately the response in those modes for which At is larger than 
half the natural period T, an important question is: What "response" is predicted in the 
numerical integration of (9.62) when At/Tis large? This is, in essence, the question of 
stability of an integration scheme. Stability of an integration method means that the physical 
initial conditions for the equations with a large value At/T must not be amplified artificially 
and thus render worthless any accuracy in the integration of the lower mode response. 
Stability also means that any "initial" conditions at time t given by errors in the displace­
ments, velocities, and accelerations, which may be due to round-off in the computer, do not 
grow in the integration. Stability is ensured if the time step is small enough to integrate 
accurately the response in the highest-frequency component. But this may require a very 
small step, and, as was pointed out earlier, the accurate integration of the high-frequency 
response predicted by the finite element assemblage is in many cases not justified and 
therefore not necessary. 

The stability of an integration method is therefore determined by examining the 
behavior of the numerical solution for arbitrary initial conditions. Therefore, we consider 
the integration of (9.62) when no load is satisfied; i.e., r = 0. The solution for prescribed 
initial conditions only as obtained from (9.64) is, hence, 

(9.96) 

Considering the stability of integration methods, we have procedures that are uncon­
ditionally stable and that are only conditionally stable. An integration method is uncondi­
tionally stable if the solution for any initial conditions does not grow without bound for any 
time step At, in particular when At/Tis large. The method is only conditionally stable if 
the above only holds provided that At/Tis smaller than or equal to a certain value. usually 
called the stability limit. 
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For the stability analysis we use the spectral decomposition of A given by A = PJP"1
, 

where P is the matrix of eigenvectors of A, and J is the Jordan canonical form of A with 
eigenvalues A; of A on its diagonal. We considered in Section 2.5 the case of A being 
symmetric, in which case J = A [see (2.108)], P = V, and p-1 vr. However, the 
approximation operator A is in general a nonsymmetric matrix, and we therefore must use the 
more general decomposition A= PJP-1

, in which J is not necessarily a diagonal matrix but 
may exhibit unit elements on the superdiagonal line ( corresponding to multiple eigenvalues), 
(see, for example, J. H. Wilkinson [A]). 

Of course, using the above spectral decomposition, we have 

An = pJnp-1 (9.97) 

and with this expression we can determine the stability of the time integration scheme. 
Let p( A) be the spectral radius A defined as 

p(A) = max 111.;I (9.98) 
I= 1,2, ... 

where the absolute value sign requires the evaluation of the absolute magnitude of A; in the 
complex plane. Then our stability criterion is that 

1. If all eigenvalues are distinct, we must have p(A) ~ l, whereas 

2. If A contains multiple eigenvalues, we require that all such eigenvalues be (in 
modulus) smaller than l .1 

If this stability criterion is fulfilled, we have J11 and hence A II bounded for n ~ oo, 

Furthermore, if p(A) < l, we have Jn ~ 0 and hence A"~ 0, and the decrease in An is 

more rapid when p(A) is small. 

Since the stability of an integration method depends only on the eigenvalues of the 
approximation operator, it may be convenient to apply a similarity transformation on A before 
evaluating the eigenvalues. For example, in the case of the Newmark method we apply the 
similarity transformation ff 1AD, where D is a diagonal matrix with du= (Mi. As might be 
expected, we then find that the spectral radius and therefore the stability of the integration 
method depends only on the time ratio /J,.t/T, the damping ratio ~ and the integration 
parameters used. Therefore, for any given MIT and .;, it is possible in the Newmark method 
and the Bathe method to vary the parameters a, 8, and y respectively, to obtain optimum 
stability and accuracy characteristics. 

Consider as a simple example the stability analysis of the central difference method. 

EXAMPLE 9.12: Analyze the central difference method for its integration stability. Consider the 
case 0.0 used in (9.8) to (9.12). 

We need to calculate the spectral radius of the approximation operator given in (9.70) when 
0. The eigenvalue problem Au 1.u to be solved is 

[ 2 ~, At' ~} = 1.u (a) 

I The Jordan form of a 2 x 2 nonsymmetric matrix with A an eigenvalue of multiplicity 2 would be J = 

[: : ]. with a• O ora • t. Hence J" • [ ": "".:~'] and J" is not bounded when a- t and !,ii • t. In the case a• 0 

we could actually allow Iii = 1. 
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The eigenvalues are the roots of the characteristic polynomialp(A) (see Section 2.5) defined as 

p(J) =(2-,i/1::,.i-J)(-J)+l 

(2-a?ru2)2 
1--------1 A = 2-a?t>.12 + 

I 2 4 
Hence, 

(2-arru2 )2 
1...:.-------1 

4 

809 

For stability we need that the absolute values of J 1 and 11.:2 be smaller than or equal to 1; i.e., the spectral 
radius p(A) of the matrix A in (a) must satisfy the condition p(A) :s; 1, and this gives the condition 
!::,.t/T :S: lht. Hence, the central difference method is stable provided that l::,.t :s; Mc,., where l::,.tcr=T ,/ 1C. It is 
interesting to note that this same time step stability limit is also applicable when~> 0 (see Exercise 9.14). 

By the same procedure as employed in Example 9.12, the Houbolt, Newmark, and Bathe 
methods can be analyzed for stability using the corresponding approximation operators; Fig. 
9 .4 shows the stability characteristics. It is noted that the central difference method is only 
conditionally stable as evaluated in Example 9.12 and that the Newmark, Houbolt, and Bathe 
methods are unconditionally stable. 

Central difference method 
1.2 / 

Newmark method 6 = 1/2, a= 1/4 

6 = 11/20, a= 3/10 

p(A) 0.8 

0.6 

/ 
0.4 Houbolt method 

0.2 

fo·3 11>"2 10·1 

MIT 

Figure 9.4 Spectral radii of approximation operators, case t = 0.0 

Fig. 9.5 focuses on the spectral radii of the Newmark method with various parameters, 
the Houbolt and the Bathe methods and also the Wilson (:) method, see E.L. Wilson, I. 
Farhoomand and K.J. Bathe [A], for small time steps. The behavior in the range shown is of 
interest because it is desirable to have a spectral radius very close to 1.0 until about 
At IT = 0.3 and then a very rapid decrease to 0.0 thereafter, like displayed in Fig. 9.4 and 9.5 
for the Bathe method. 

Considering the Newmark method, the two parameters a and o can be varied to obtain 
optimum stability and accuracy. The integration scheme is unconditionally stable provided 
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that <5 ~ 0.5 and a~ 0.25( <5 + 0.5)2. The method much used in practice corresponds to <5 = 0.5 

and a= 0.25 (the trapezoidal rule), but we discuss in the next section that the scheme can show 
undesirable characteristics in practical analyses. 

1.3 

1.2 

0.1 

I 

Central difference method----._/ 
I 

Newmark method 6 =1/2, a= 1/4 

0.15 0.2 0.25 0.3 
MIT 

0.35 

Figure 9.5 Spectral radii for small time steps 

0.4 

Although only some widely used integration schemes have been discussed, the above 
considerations already show that the analyst has to make a choice as to which method to use. 
This choice is influenced by the accuracy characteristics of the method, i.e., the accuracy that 
can be obtained in the integration for a given time step at. 

9.4.3 Accuracy Analysis 

The decision as to which integration operator to use in a practical analysis is governed by the 
cost of solution for a desired accuracy, which in tum is determined by the number of time steps 
required in the integration. If a conditionally stable algorithm such as the central difference 
method is employed, the time step size, and hence the number of time steps for a given time 
range considered, is in practice largely determined by the critical time step ll.tcr However, 
using an unconditionally stable operator, the time step has to be chosen to yield an accurate 
and effective solution. Because the direct integration of the equilibrium equations in (9.58) is 
equivalent to integrating simultaneously all n decoupled equations of the form (9.62), we can 
study the integration accuracy of (9.62) as a function of MIT, ? and r. The solution to (9.62) 
was given in (9.64), and it is this equation that we use to assess the integration errors. 

Let us consider for a simple accuracy analysis the solution of the initial value problem 
defined by 

o,. ,} 
x = -{I) 

(9.99) 
and 0

x = 1.0; 
0.x = 0.0~ 

for which the exact solution is x = cos OJt. For a complete analysis we would have to consider 
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also the initial value problem corresponding to O
x == 0.0, 0 x = (J), and 

Ox = 0, with the exact 

solution x = sin mt, and the solution for a general loading condition. In addition, the influence 
of the damping parameter l; would need to be investigated. However, the significant numerical 
characteristics can be demonstrated by considering only the numerical solution of the problem 
in (9.99). 

The Newmark and Bathe methods can be used directly with the initial conditions given in 
(9.99). However, in the Houbolt method, the initial conditions are defined only by initial 
displacements, and in the following study the exact displacement values for Lltx and 2Lltx 
obtained using the solution x = cos wt have been employed. 

The numerical solution of (9.99) using the different integration methods shows that the 
errors in the integrations can be measured in terms of period elongation and amplitude decay. 
Figure 9 .6 shows the percentage period elongations and amplitude decays in the implicit 
integration schemes discussed as a function of llt!T. These relationships have been obtained by 
evaluating (9.64) and comparing the exact solution x = cos wt with the numerical solutions 
(see K. J. Bathe and E. L. Wilson [A]). For curves of period elongations and amplitude decays 
of the Newmark method when other parameters are used and some explicit schemes, see K.J. 
Bathe and G. Noh [A] and G. Noh and K.J. Bathe [A]. 

0.05 0.10 0.15 0.20 
lit/ T 

0.05 0.10 0.15 0.20 
t:.t! T 

Figure 9.6 Percentage period elongations and amplitude decays 

The curves in Fig. 9.6 show that, in general, the numerical integrations using any of the 
methods are accurate when MIT is smaller than about 0.01. However, when the time 
step/period ratio is larger, the various integration methods exhibit quite different 
characteristics. Notably, for a given ratio MIT, the Bathe method introduces less amplitude 
decay and period elongation than the Houbolt method, and the Newmark constant-average­
acceleration method introduces only period elongation and no amplitude decay. Since for a 
given At, the period elongation depends on T, the use of the direct time integration schemes 
introduces numerical dispersion in wave propagation solutions, see G. Noh, S. Ham, and K.J. 
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Bathe [A]. 

The characteristics of the integration errors exhibited in Fig. 9.6 are used in the 
discussion of the simultaneous integration of all n equations of form (9.62) as required in the 
solution of (9.61) and thus in the solution of (9.58). We observe that all equations for which 
the time step to period ratio is small are integrated accurately, but that the response in the 
equations for which MIT is large is not obtained with any precision. 

These considerations lead to the choice of an appropriate time step M. Using the central 
difference method, the time step has to be chosen such that M is smaller than or equal to Iller 
evaluated in Example 9 .12. Only in the exceptional case in which the loading or initial 
conditions significantly excite the highest frequencies do we need to use a much smaller time 
step than ll.tcr· However, using one of the unconditionally stable schemes, we realize that the 
time step ll.t can be much larger and should only be small enough that the response in all modes 
that significantly contribute to the total structural response is calculated accurately. The other 
modal response components are not evaluated accurately in practice (in fact, can not be 
evaluated accurately for a well-chosen mesh, see Section 9.4.4), and are frequently best 
rapidly damped out to not pollute the total response solution. 

As an example, K.J. Bathe and G. Noh [A] considered the 'model problem' in Figure 
9. 7. Here, a very stiff spring connected to a flexible spring is considered. While very simple, 
the model problem represents the essence of stiff and flexible parts in a complex structural 
system, containing many degrees of freedom. The high stiffness spring represents very stiff 
parts or constraints (introduced by stiff springs or beams) while the flexible spring represents 
the flexible parts of the complex structural model. Of course, in a mode superposition 
solution, the detailed response within the stiff parts would naturally not be included. 

When using the Newmark and Bathe methods, the displacements are quite accurately 
predicted but the acceleration of the mass m2 shows very large errors when using the 
trapezoidal rule, which means that the reaction is also solved for very inaccurately. These 
errors can be controlled using the Newmark method by choosing parameters to introduce 
numerical damping but the appropriate values may depend on the problem solved. The same 
also holds when using the generalized alpha method, see J. Chung and G. M. Hulbert [A]. 

Figure 9.7 Two spring model problem; using At= 0.2618 (hence ll.t/TP =0.05, ll.t/T, =0.0417 and ll.t/T2 

=131.76) the acceleration at node 2 using the trapezoidal rule is grossly in error whereas the Bathe 
method gives an accurate prediction (for the first half-step only, the parameters 8=3/4, a=l are best 
used) 
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In the practical direct integration solution of such systems, it is effective to use an 
implicit scheme that in essence "works like a mode superposition solution", in that it automa­
tically does not include the undesirable response - here the response in possibly artificially 
stiff components of the finite element model. Considering explicit schemes, the Noh-Bathe 
method does have this characteristic as well but with a critical time step and hence is mostly 
only valuable for wave propagation analyses, see G. Noh and K.J. Bathe [A]. 

9.4.4 Some Practical Considerations 

In order to obtain an effective solution of a dynamic response, it is important to choose an 
appropriate time integration scheme. This choice depends on the finite element idealization, 
which in turn depends on the actual physical problem to be analyzed. It follows therefore 
that the selection of an appropriate finite element idealization of a problem and the choice 
of an effective integration scheme for the response solution are closely related and must be 
considered together. The finite element model and time integration scheme are chosen 
differently depending on whether a structural dynamics or a wave propagation problem is 
solved. 

Structural Dynamics 

The basic consideration in the selection of an appropriate finite element model of a struc­
tural dynamics problem is that only the lowest modes (or only a few intermediate modes) 
of a physical system are being excited by the load vector. We discussed this consideration 
already in Section 9.3.2, where we addressed the problem of how many modes need to be 
included in a mode superposition analysis. Referring to Section 9.3.2, we can conclude that 
if a Fourier analysis of the dynamic load input shows that only frequencies below Wu are 
contained in the loading, then the finite element mesh should at most represent accurately 
the frequencies to about Wco = 4wu of the actual system. There is no need to represent the 
higher frequencies of the actual physical system accurately in the finite element system 
because the dynamic response contribution in these frequencies is negligible; i.e., for values 
of w/w in Fig. 9.3 smaller than 0.25, an almost static response is measured and this 
response is directly included in the direct integration step-by-step dynamic response calcu­
lations. We should also note that the static displacement response in the higher modes is 
small if the mode shapes are almost orthogonal to the load vector and/or the frequencies 
are high, see (9.46) (i.e., when the structure is very stiff in these mode shapes). When the 
static response is small it may well be expedient to use Wco closer to Wu than given by the 
factor 4 used above. This reduction of Wco may be considerable, for example, in earthquake 
response analysis of certain structures. 

The complete procedure for the modeling of a structural vibration problem is there­
fore: 

1. Identify the frequencies significantly contained in the loading, using a Fourier analysis 
if necessary. These frequencies may change as a function of time. Let the highest 
frequency significantly contained in the loading be Wu. 

2. Choose a finite element mesh that can accurately represent the static response and 
accurately represents all frequencies up to about Wco = 4wu, 
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3. Perform the direct integration analysis. The time step At for this solution should equal 
about fa Teo, where Teo = 271'/Wco (or be smaller for stability reasons when the central 
difference method is used). 

Note that if a mode superposition solution were used for this step (as described in Sec­
tion 9.3), then Wco would be the highest frequency to be included in the solution. Hence p 
in (9.49) is equal to the number of modes with frequencies smaller than or equal to Wco, 

When analyzing a structural dynamics problem, in most cases, an implicit uncondi­
tionally stable time integration is most effective. Then the time step At need generally be 
only t5Tc0 (and not smaller, unless convergence difficulties are encountered in the iteration 
in a nonlinear response calculation; see Section 9.5.2). If an implicit time integration is 
employed, it is frequently effective to use higher-order finite elements, for example, the 9-
and 27-node elements (see Section 5.3) in two- and three-dimensional analysis, respec­
tively, and a consistent mass idealization. The higher-order elements are effective in the 
representation of bending behavior, but generally need to be employed with a consistent 
load vector so that the midside and the corner nodes are subjected to their appropriate load 
contributions in the analysis. 

The observation that the use of higher-order elements can be effective with implicit 
time integration in the analysis of structural dynamics problems is consistent with the fact 
that higher-order elements have generally been found to be efficient in static analysis, and 
structural dynamics problems can be thought of as "static problems including inertia 
effects." If, on the other hand, the finite element idealization consists of many elements, it 
can be more efficient to use explicit time integration with a lumped mass matrix, in which 
case no effective stiffness matrix is assembled and triangularized but a much smaller time 
step At must generally be employed in the solution. 

Wave Propagation 

The major difference between a structural dynamics problem and a wave propagation 
problem can be understood to be that in a wave propagation problem a large number of 
frequencies are excited in the system. It follows that one way to analyze a wave propagation 
problem is to use a sufficiently high cutoff frequency Wco to obtain enough solution accuracy. 
The difficulties are in identifying the cutoff frequency to be used and in establishing a 
corresponding finite element model. 

Instead of using these considerations to obtain an appropriate finite element mesh for 
the analysis of a wave propagation problem, it is generally more effective to employ the 
concepts used in finite difference solutions. 

If we assume that the critical wavelength to be represented is L ..... , the total time for this 
wave to travel past a point is 

(9.100) 
c 

where c is the wave speed. Assuming that n time steps are necessary to represent the travel 
of the wave, 

t..­
At= -

n 
(9.101) 
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and the "effective length" of a finite element should be 

L, = c flt 

815 

(9.102) 

This effective length and corresponding time step must be able to represent the complete 
wave travel accurately and are chosen differently depending on the kind of element idealiza­
tion and time integration scheme used. 

Although a special case, the effectiveness of using (9.102) becomes apparent when a 
one-dimensional analysis of a bar is performed with a lumped mass idealization and the 
central difference method. If a uniform bar free at both ends and subjected to a sudden 
constant step load is idealized as an assemblage of two-node truss elements each of length 
c fl.t, the exact wave propagation response is obtained in the solution of the model. It is also 
interesting to note that the time step tit given in (9.102) then corresponds to the stability 
limit Tn/1rderived in Example 9.12, i.e., Wn = 2c/L~, and the nonzero (highest) frequency 
of a single unconstrained element is w,.. Hence, the most accurate solution is obtained by 
integrating with a time step equal to the stability limit and the solution is less accurate when 
a smaller time step is employed! This deterioration in the accuracy of the predicted solution 
when tl..t is smaller than fl..tcr is most pronounced when a relatively coarse spatial discretiza­
tion is used. The scheme is studied, to some extent, in G. Nob and K.J. Bathe [A]. 

In more complex two- and three-dimensional analyses, the exact solution is generally 
not obtained, and L« is chosen depending on whether the central difference method or an 
implicit method is employed for solution. 

If the explicit central difference method is used, a lumped mass matrix should be 
employed, and in this case low-order finite elements in uniform meshes are probably most 
effective; i.e. the four- and eight-node elements in Figs. 5.4 and 5.5 are frequently em­
ployed in two- and three-dimensional analyses, respectively. Using these elements, we 
construct a mesh as uniform as possible and L, is equal to the smallest distance between any 
two of the nodes of the mesh employed. This length determines fl..t as given by (9.102). If 
higher-order (parabolic or cubic) continuum elements are used, again a mesh as uniform as 
possible should be constructed with the same measure L,, but the time step has to be further 
reduced because the interior nodes are nstiffer" than the corner nodes. Also, if structural 
(beam, plate, or shell) elements are included in the mesh, the time step size tit may be 
governed by the flexural modes in these elements so that the distances between nodes do not 
alone determine fl.t (see Table 9.5). Since the condition is always that tit s T,J ?T, where Tn 
is the smallest period of the mesh, we aim to use, for an effective solution, an inexpensively 
calculated lower bound on Tn, This bound is given by the smallest period 'Jit•> of any 
element, considered individually, measured over all elements in the mesh, as we show in the 
following example. 

EXAMPLE 9. 13: Let wn be the largest frequency of an assembled finite element mesh and let 
w~m> be the largest frequency of element m. Show that 

i.> < max~.,(m) 
...,II - (m) ....,n 

where max<m> wim> is the largest element frequency of all elements in the mesh. 
Hence, for the central difference method we can then use the time step 

2 
flt = -- S Ater 

maXu,(m) 
(m) n 

(a) 
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Using the Rayleigh quotient (see Section 2.6), we have with K<m) and M<m> defined in ( 4.19) 
and (4.25), 

Let 

then 

<f>I(: K(m))<f>n 
(wn)2 = -----

cf, { (: M(m)) <f>n 

6U,(m) = <f>IK(m) cf>11 and !J(m) = 4,!M(m) <f>n 

2 oU,(m) 

(
w)2 _ _ m __ 

n - 2 !}(m) 

m 

Now consider the Rayleigh quotient for a single element, 

(b) 

(c) 

(m) - <f,IK(m) <l>n - oU,(m) (d} 
p - <J,!M(m) <f>n - !}(m) 

Since M<ml and K<m> are of the same size as K, we could theoretically imagine au.<m> and :J<m> to 
be zero (but not for all m). However, in any case we have for each element (see Section 2.6) 

oU,(m) S (w~m))2 :J(m) 

and therefore from (c), 

2 (w~ml)2:J(m) 
( )

2 < _m ___ _ 

Wn - 2 :J<m) 

s [ma:(w<m>)2
] : :J(m) 

m n I :J(m) 
m 

which proves (a). Note that in (b) we used the K<m> and M<m> matrices of element m defined in 
(4.19) and (4.25}, that is with all boundary conditions (and the actions of the other elements) 
removed. Of course, the same proof is applicable if some elements are constrained at certain 
degrees of freedom (applied to the assemblage of elements). 

For some elements the smallest period can be established exactly in closed form, 
whereas for more complex (distorted and curved) elements, a lower bound on Tim> may have 
to be employed. Table 9 .5 summarizes some results. 

The condition that At s ("element length,,/wave speed) is referred to as the CFL 
condition after R. Courant, K. Friedrichs, and H. Lewy [A]. We also use the Courant (or 
CFL) number At/ Ater to indicate the size of time step actually used in a dynamic solution. 

The choice of the effective length Le, and hence time step At, is considerably simpler 
if an implicit unconditionally stable time integration method is used. In this case, Le can be 
chosen according to (9.100) to (9.102) as Le = L .. .,/n in the direction of the wave travel, and 
then f:..t follows from (9.102). Nonuniform meshes and low- or high-order elements can be 
used, and when high-order elements are employed, a consistent mass matrix is usually 
appropriate. A study using the Bathe method is given in G. Noh, S. Ham and K.J. Bathe [A). 

These considerations have been put forward for linear dynamic analysis but are largely 
also applicable in nonlinear analysis. An important point in nonlinear analysis is that the 
periods and wave velocities represented in the finite element system change during its 
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TABLE 9.5 Central difference rMthod critical tirM steps for some elements: 
At~':) = n,ml / 1r = 2/ cu~"', 

Two-node truss element: 

K<"'' = AE[ l -1], 
L -1 I ' 

L 
At~>=-; 

c 

Two-node beam element (see Example 4.1): 

12 6 12 
L2 L - Lz 

4 
6 

K<in> = El L 
L 

12 
Sym. L2 

[
12 0 0 OJ 

M<m) = pAL L
2 

0 0 
24 Sym. 12 O 

L2 

Four-node square plane stress element (see Example 4.6): 

6 
L 

2 

6 
L 
4 

3 - v -Elements are 
function of v 

Et 
K<111> = -- Sym. 

1 - v2 

At~':>=!:.~ 
c 

3 - v 
6 

817 

where E = Young's modulus, v = Poisson's ratio, L = length (side length) of element, A = cross-sectional 
area of element. p = mass density. I = flexural moment of inertia, t = thickness of plane stress element, 
c = one-dimensional wave speed = VE/p 
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response. Therefore, the selection of the time step size must take into account that in 
structural dynamics problems the significantly excited frequencies change magnitudes and 
that in a wave propagation problem the value of c in (9.102) is not constant. 

We discuss additional considerations pertaining to nonlinear analysis in Section 9.5. 
Let us now present an example demonstrating the above modeling features. 

EXAMPLE 9.14: Consider the bar shown in Fig. E9.14(a) initially at rest and subjected to a 
concentrated end load. The response of the bar at time 0.01 sec is sought. 

Cross~sectional 
area 4cm2 

p = 1560 kg/m3 

E= 2 x 105 MPa 

5cm 

95cm 

E= 4.432 MPa 

P(t) (MPs} 

Figure E9.14(a) Problem description 

Solve this problem using two-node truss elements 
(i) With the mode superposition method and 
(ii) By direct integration with the trapezoidal rule and the central difference method. 

We note that the bar is made of two materials (giving a stiff and a flexible section), and 
that the choice of truss elements to model the bar implies the use of a one-dimensional mathemat­
ical model (see Example 3.17). Of course, in practice. the actual problem and solution may be 
of much more complex nature, and we use this simplified problem statement and mathematical 
model merely to demonstrate the modeling and solution procedures discussed above. 

To solve this problem we need to first select a discretization that accurately represents a 
sufficient number of the exact frequencies and corresponding mode shapes. Using lumped and 
consistent mass representations, the frequencies listed in Table E9 .14 are calculated with dis­
cretizations using 20 and 40 equal-length elements. In this analysis we note that the frequencies 
of the lumped mass models are always below the frequencies of the consistent mass models. 
Because of the relatively stiff short section of the bar at its top, the twentieth frequency in the 
20-element models is considerably higher than the nineteenth frequency (and the thirty-ninth and 
fortieth frequencies of the 40-element models are much higher than the thirty-eighth frequency). 
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TABLE E9.14 Predicted frequencies ( radians/second) 

Lumped mass matrix Consistent mass matrix 

Frequency 
assumption assumption 

number 20-element model 40-element model 20-element model 40-element model 

7.02516E + 01 7.02648E + 01 7.02770E + 01 7.02712E + 01 
2 2. l 9037E + 02 2.19393E + 02 2.19812E + 02 2.19587E + 02 
3 3.78880E + 02 3.80576E + 02 3.82932E + 02 3.81591E + 02 
4 5.430978 + 02 5.479368 + 02 5.55239E + 02 5.50977E + 02 
5 7 .06967E + 02 7.176108 + 02 7.343958 + 02 7.244828 + 02 
6 8.67764E + 02 8.87724E + 02 9.20054E + 02 9.008348 + 02 

19 2.12481E + 03 2.89023E + 03 3.65556E + 03 3.47009E + 03 
20 1.93925E + 05 3.01715E + 03 3.25207E + 05 3.69646E + 03 

38 4.26046E + 03 7 .36679E + 03 
39 2.73219E + 05 3.365968 + 05 
40 3.97280E + 05 6.76577E + 05 

The frequency of the load application lies between the first and second frequencies of the 
model. Using 4 X w as the cutoff frequency, we note that it should be sufficient to include the 
response of four modes in the mode superposition solution, i.e., to use p = 4 in (9.49). However, 
for instructive purposes we consider the response corresponding top = l, 2, ... , 5. We also 
note that the 20-element models are predicting the significantly excited frequencies to sufficient 
accuracy (we compare the frequencies of the 20-element models with those of the 40-element 
models), and we use these models for the response solution. 

For the mode superposition solution we use the consistent mass model and obtain at time 
0.01 sec the results shown in Figs. E9.14(b) and (c). 

Figures E9.14(b) and (c) illustrate how, as we increase the number of modes included in 
the response prediction, the predicted response converges. The predicted response using four 
modes is almost the same as using five modes. However, we also note that the static correction 
[i.e., use of (9.52)] improves the response prediction very significantly when only one, two, or 
three modes are used in the superposition solution. The modal solutions have been obtained by 
numerical integration of the decoupled equation (9.46) with a time step At = 0.0004 (which is 
about Ts/20). 

For the direct integration with the trapezoidal rule we also use the consistent mass 20-
element model and the same time step as in the mode superposition solution. This time step 
ensures that the response in the modes 4>, to 4>s is accurately integrated. Figure E9.14(d) shows 
the calculated response and the excellent comparison with the mode superposition solution. 

For the central difference method solution we use the 20-element lumped mass model. The 
time step needs to be sufficiently small for stability. If we use the highest frequency in the model, 
we obtain Ater = 2/w20 = 1.03 X 10-s sec, and if we use the formula given in Table 9.5, we 
obtain Ater 2: minm=t, .... io A.t~';.1> = 0.98 X 10-s sec. Therefore, in practice, we would use 
At = 0.98 X 10-s sec, but here we can use At = 1.0 X 10-5 sec. Note that whereas we need 
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0.8 
Five modes 

Four modes ( _____ ) 

Three modes <-·-·-· ) 
Two modes <.. ........... ) 

One mode ( __ _ 

0.2 

0 _________ ...... __ __.....__......_ __ ...... ________ .._ ______ ......... __ ___. 

4 3 2 1 
x-displacement (m) 

0 -1 
x 104 

Figure E9.14(b) Solution using mode superposition without static correction 
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0.8 Five modes <--- ) 

Four modes <---- ) 
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Two modes <....... .... ) 
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0.2 

o..__.... ____ ...... __ ......li..---...._ __ ..... __ _... ____ .._ __ ....., __ --'"----

4 3 2 
x·displacement (m) 

0 -1 
x 104 

Figure E9.14(c) Solution using mode superposition with static correction 
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0.8 

§ 0.6 
s 
1 

l 0.6 

0.2 

Trapezoidal rule (_,_),.I.I• 0.0004 aec \ 

Five modes<-----> 

COM( ............. ), At• 10-5 sec ) 
// 

~/ 

_,~ ,__.,,,.. 
3 3 

x--displacement (mt 

0 -1 
x 1o-' 

Figure E9.14(d) Comparison of solutions obtained by mode superposition and direct inte­
gration 
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I: 
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,,.,,. 
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I-' 
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.,,.,,,. 
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Figure E9.14(e) Comparison of direct integration solutions using the trapezoidal rule 
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only 25 time steps with the trapezoidal rule (hence the CFL number= 40), we require 1000 time 
steps with the central difference method. Of course, this is due to the relatively stiff top part of the 
bar. The solution using the central difference method compares very well with the mode 
superposition and implicit direct integration (by the trapezoidal rule) solutions [see Fig. E9.14(d)]. 

Finally, let us investigate the solution accuracy if we were to increase the time step size using 
the trapezoidal rule of time integration. If we consider the third frequency @

3 
= 382.93 rad/sec, we 

have m I @
3 

::::: 0.39. Figure 9.3 shows that for this frequency and the larger frequencies the increase 

in response above the static response is less than 50 percent. However, the static response in a mode 

q,i decreases proportionally with the factor I / a.>
1

2 
and is in any case included in the direct time 

integration. Ifwe use M 0.002 sec, we still integrate the third mode dynamic response with about 
5 percent accuracy (see Fig. 9.6) (and of course the first and second mode responses more 
accurately). Hence, the choice of the time step M 0.002 sec appears reasonable (the CFL number 
is then approximately 200). 

Figure E9.14(e) indeed shows that the solution with the time step M = 0.002 sec is not far from 
the solution with the smaller time step. This result corresponds also to the results given in Fig. 
E9.14(c), where it is seen that the mode superposition solution using three modes is already quite 
accurate, provided the static correction is included. Hence, the selection and use of the finer time 
step At= 0.0004 sec for the trapezoidal rule integration was conservative. 

9.4.5 Exercises 

9.13. Consider the Bathe method using as the first substep (2 - -Ji )At . The second substep is then of 

course of size (-Ji - l)At . Show explicitly that with this substep, the amplitude decay is 

maximized and the period elongation is minimized in the Bathe method. Assume that the physical 
damping:= 0. 

9.14. Assume that the central difference method is used to solve the dynamic equilibrium equations 
including proportional damping [that is, we have 4 > 0 in (9.62)]. Show that the critical time step 
is still given by 2/ <4i. 

9.15. Consider the spectral radii corresponding to the Houbolt, Newmark (b'= ~. a= Y4), and Bathe 
methods. Show that the values given in Fig. 9.4 for MIT= 10,000 are correct. 

9.16. Calculate the percentage period elongations and amplitude decays of the Houbolt, Newmark (b'= 
Y:z, a = Y4), and Bathe methods corresponding to the initial value problem in (9.99) for the case 
MIT =0.10. Thus, show that the values given in Fig. 9.6 are correct. 

9.17. Use a computer program to solve for the lowest six frequencies of the cantilever shown. Consider 
three different mathematical models: a Hermitian beam model, a plane stress model, and a fully 
three~dimensional model. In each case, choose appropriate finite element discretizations and 
consider the lumped and consistent mass matrix assumptions. Verify that accurate results have 
been obtained. 
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0.01 m 

---~}.04m 
0.60m 

Young's modulus E • 200,000 MPa 
Poisson's ratio v • 0.3 
Mass density p • 7800 kg/m3 
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9.18. Use a computer program to solve for the lowest six frequencies of the curved cantilever shown. 
Use the isoparametric mixed interpolated beam element with two, three, or four nodes and use 
the lumped or consistent mass matrix. Verify that you have obtained accurate results. 

E• 200,000 
V•0.3 
p• 7800 
h•0.1 
Depth• 0.1 

h 

Consider vibrations in 
the x, y plane only 

9.19. Consider the problem of a concentrated load P traveling over a simply supported beam. Use a 
computer program to solve this problem for various values of velocity v. 

L 

E • 200,000 MPa 
V•0.3 
p • 7800 kg/m3 

L• 10m 
h·0.2m 
Depth • 0.02 m 
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9.20. An 11-story tapered tower is subjected to an air blast as shown. Use a computer program to solve 
for the response of the tower. 

Pressure 
induced 
by 
blast 

11 story tapered tower 

32m 

Girder properties: 

E • 2.07 x 1011 Pa 
v•0.3 
A= 0.01 m2 

A6 • 0.009 m2 

I• 8.33 x 10-5 m4 

P • 7800 kg/m3 

Applied load (blast): 

Force 2000 

per 
unit 
length 1000 
(N/m) 

0 50 100 150 200 
_..., l---- Time (msec) 

6.4m 

9.5 SOLUTION OF NONLINEAR EQUATIONS IN DYNAMIC ANALYSIS 

The solution of the nonlinear dynamic response of a finite element system is, in essence, 
obtained using the procedures already discussed: the incremental formulations presented in 
Chapter 6, the iterative solution procedures discussed in Section 8.4, and the time integra­
tion algorithms presented in this chapter. Hence, the major basic procedures used in a 
nonlinear dynamic response solution have already been presented, and we only need to 
briefly summarize in the following how these procedures are employed together in a nonlin­
ear dynamic analysis. 

9.5. 1 Explicit Integration 

The most common explicit time integration operator used in nonlinear dynamic analysis is 
probably the central difference operator. As in linear analysis (see Section 9.2), the equi­
librium of the finite element system is considered at time tin order to calculate the displace­
ments at time t + At. Neglecting the effect of a damping matrix, we operate for each 
discrete time step solution on the equations, 

M'U = 'R- 1F (9.103) 

where the nodal point force vector 'Fis evaluated as discussed in Section 6.3. The solution 
for the nodal point displacements at time t + At is obtained using the central difference 
approximation for the accelerations [given in (9.3)] to substitute for rfi in (9.103). Thus, as 
in linear analysis, if we know ,-.1'U and 1U, the relations in (9.3) and (9.103) are employed 
to calculate ,+a,u. The solution therefore simply corresponds to a forward marching in time; 
the main advantage of the method is that with Ma diagonal matrix the solution of ,+aru does 
not involve a triangular factorization of a coefficient matrix. 
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The shortcoming in the use of the central difference method lies in the severe time step 
restriction: for stability, the time step size At must be smaller than a critical time step Ater, 
which is equal to Tn/1r, where T,, is the smallest period in the finite element system. This time 
step restriction was derived considering a linear system (see Example 9.12), but the result 
is also applicable to nonlinear analysis, since for each time step the nonlinear response 
calculation may be thought of-in an approximate way-as a linear analysis. However, 
whereas in a linear analysis the stiffness properties remain constant, in a nonlinear analysis 
these properties change during the response calculations. These changes in the material 
and/or geometric conditions enter into the evaluation of the force vector 'F as discussed in 
Chapter 6. Since therefore the value of T,, is not constant during the response calculation, 
the time step At needs to be decreased if the system stiffens, and this time step adjustment 
must be performed in a conservative manner so that the condition At ::5 T,,/ 7T is satisfied 
with certainty at all times. 

To emphasize this point, consider an analysis in which the time step is always smaller 
than the critical time step except for a few successive solution steps, and for these solution 
steps the time step At is just slightly larger than the critical time step. In such a case, the 
analysis results may not show an "obvious" solution instability but instead a significant 
solution error is accumulated over the solution steps for which the time step size was larger 
than the critical value for stability. The situation is quite different from what is observed in 
linear analysis, where the solution quickly "blows up" if the time step is larger than the 
critical time step size for stability. This phenomenon is demonstrated somewhat in the 
response predicted for the simple one degree of freedom spring-mass system shown in 
Fig. 9.8. In the solution the time step At is slightly larger than the critical time step for 
stability in the stiff region of the spring. Since the time step corresponds to a stable time step 
for small spring displacements, the response calculations are partly stable and partly 
unstable. The calculated response is shown in Fig 9 .8, and it is observed that although the 
predicted displacements are grossly in error, the solution does not blow up. Hence, if this 
single degree of freedom system corresponded to a higher frequency in a large finite element 
model, a significant error accumulation could take place without an obvious blow-up of the 
solution. 

The proper choice of the time step At is therefore a most important factor. Guidelines 
for the choice of At have been given in Section 9.4.4. 

xr 
Displacement 

Ox• 0.0 
OX• 0.965 
Xp• 0.0025 

Force-displacement relation in tension and compression 

Figure 9.8 Response of bilinear elastic system as predicted using the central difference 
method; Ate, = 0.001061027; the accurate response with displacement ~ 0.1 was calculated 
with At = 0.000106103; the "unstable" response was calculated with At = 0.00106103. 
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9.5.2 Implicit Integration 

0.4 0.5 0.6 
Figure 9.8 (continued) 

Chap.9 

All the implicit time integration schemes discussed previously for linear dynamic analysis 
can also be employed in nonlinear dynamic response calculations. Although unstable in 
certain analyses, see K. J. Bathe [F], a very common technique used is the trapezoidal rule 
and we use this method to demonstrate the basic additional considerations involved in a non­
linear analysis. 

As in linear analysis, using implicit time integration, we consider the equilibrium of 
the system at time t + !:J.t. This requires in nonlinear analysis that an iteration be performed. 
In practice, a full Newton-Raphson is usually best (see Section 8.4), but for illustration we 
consider here the modified Newton-Raphson iteration (and also neglect damping effects): 

M t+Arij(k) + 'K AU(k) = 1+A1R _ r+ArF(k-1) 

t+AIU(k) = r+Aru(k-1) + AU(k) 

(9.104) 

(9.105) 

Using the trapezoidal rule of time integration (Newmark's method with o = Yi and a 
= Y.i), the following assumptions are employed: 

r+Aru = 'U + At ('U + t+AtiJ) 
2 

t+AtiJ = 'lJ + At ('U + t+Arfi) 
2 

Using the relations in (9.105) to (9.107), we thus obtain 

•. 4 4 . .• ,+.1,u<k> = -('+Aru<k-1) _ ,0 + Au<k>) __ ,0 _ ,0 
At2 At 

and substituting into (9.104), we have 

,. ( 4 4 . ••) 'K Au<k> = ,+.1,R _ ,+A,F(k-1) _ M -e+.1,u<k-1> _ 'U) __ ,0 _ ,0 
At2 At 

(9.106) 

(9.107) 

(9.108) 

(9.109) 
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(9.110) 

We now notice that the iterative equations in dynamic nonlinear analysis using im­
plicit time integration are of the same form as the equations that we considered in static 
nonlinear analysis, except that both the coefficient matrix and the nodal point force vector 
contain contributions from the inertia of the system. We can therefore directly conclude that 
all iterative solution strategies discussed in Section 8.4 for static analysis are also directly 
applicable to the solution of (9.109). However, since the inertia of the system renders its 
dynamic response, in general, "more smooth" than its static response, convergence of 
the iteration can, in general, be expected to be more rapid than in static analysis, and the 
convergence behavior can be improved by decreasing At. The numerical reason for the 
better convergence characteristics in a dynamic analysis as At decreases lies in the contri­
bution of the mass matrix to the coefficient matrix. This contribution increases and ulti­
mately becomes dominant as the time step decreases (see. Section 8.4.1 ). 

It is interesting to note that in the first solutions of nonlinear dynamic finite element 
response, equilibrium iterations were not performed in the step-by-step incremental analy­
sis; i.e., the relation in (9.109) was simply solved fork = 1 and the incremental displace­
ment A Um was accepted as an accurate approximation to the actual displacement increment 
from time t to time t + At. However, it was then recognized that the iteration can actually 
be of utmost importance (see K. J. Bathe and E. L. Wilson [B]) since any error admitted 
in the incremental solution at a particular time directly affects in a path-dependent manner 
the solution at any subsequent time. Indeed, because any nonlinear dynamic response is 
highly path-dependent, the analysis of a nonlinear dynamic problem requires iteration at 
each time step more stringently than does a static analysis. 

A simple demonstration of this observation is given in Fig. 9.9. This figure shows the 
results obtained in the analysis of a simple pendulum that was idealized as a truss element 
with a concentrated mass at its free end. The pendulum was released from a horizontal 
position, and the response was calculated for about one period of oscillation. In the analysis 
the convergence tolerances already discussed in Section 8.4.4 were used, but including the 

90 

60 
T= 4.13 sec 

At= 0.1 sec 
09 = goo 

1 30 

g> 

00-0 

:S 01----__,..,__ ______ ---;r>+---__.. ____ _.._ __ -ti_ 

(b 
Q) 

g> _30 
<( 

-60 

-90 

4 5 t(sec) 

• tight tolerances 

o loose tolerances Figure 9.9 Analysis of simple pendulum 
using trapezoidal rule, RNORM = mg 
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effect of inertia, i.e., convergence is reached when the following conditions are satisfied: 

(9.111) 

and 
AU(l)T(t+AtR _ t+AtF(i-1) _ M t+Arfi(i-1)) 
~~~~~~~~~~.-.~---sErOL 

AU0)T(t+AtR - 'F - M 'U) 
(9.112) 

in which RTOL is a force tolerance and ETOL is an energy tolerance. Figure 9.9 demon­
strates the importance of iterating and doing so with a sufficiently tight convergence 
tolerance. In this analysis energy is lost if the convergence tolerance is not tight enough, but 
depending on the problem being considered, the predicted response may also blow up. 
We used in this example the Newmark trapezoidal rule, and obtained good results. However, it 
is known that this method can actually become unstable in nonlinear dynamic solutions ( even 
though very tight convergence tolerances for the iterations are used). For such analyses, the 
Bathe method is effective for the reasons discussed in Section 9.4.3, because no parameters 
need to be set and only a reasonable time step size needs to be chosen, like in any direct time 
integration solution, see K.J. Bathe [F] and Z. Kazanci and K.J. Bathe [A]. 

9.5.3 Solution Using Mode Superposition 

In considering linear analysis, we discussed in Section 9.3 that the essence of mode super­
position is a transformation from the element nodal point degrees of freedom to the gener­
alized degrees of freedom of the vibration mode shapes. Since the dynamic equilibrium 
equations in the basis of the mode shape vectors decouple (assuming proportional damp­
ing), mode superposition analysis can be very effective in linear analysis if only some 
vibration modes are excited by the loading. The same basic principles are also applicable 
in nonlinear analysis; however, in this case the vibration mode shapes and frequencies 
change, and to transform the coefficient matrix in (9.109) into diagonal form the free­
vibration mode shapes of the system at time t need to be used in the transformation. The 
calculation of the vibration mode shapes and frequencies at time t, when these quantities 
have been calculated at a previous time, could be achieved economically using the subspace 
iteration method (see Section 11.6). However, the complete mode superposition analysis of 
nonlinear dynamic response is generally effective only when the solution can be obtained 
without updating the stiffness matrix too frequently. In this case, the governing finite 
element equilibrium equations for the solution of the response at time t + Jl.t are 

k = 1, 2, ... (9.113) 

where 1'K is the stiffness matrix corresponding to the configuration at some previous time 
T. In the mode superposition analysis we now use 

s 

t+AtU = ~ cf>; t+AtXi 

i=r 

where ,+i1,x, is the ith generalized modal displacement at time t + Jl.t and 

i = r, ... , s 

(9.114) 

(9.115) 
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that is, wi, cf,i are free-vibration frequencies (radians/second) and mode shape vectors of the 
system at time T. Using ( 9 .114) in the usual way, the equations in (9 .113) are transformed to 

t+Ari(k) + fi2 ax<«) = (l>T(t+AtR - t+ArF(k-1)) k = 1. 2, . . . (9.116) 

where 

[
w; ] 

02 = . . w: ; (9.117) 

The relations in (9.116) are the equilibrium equations at time t + At in the generalized 
modal displacements of time T; the corresponding mass matrix is an identity matrix, the 
stiffness matrix is 0 2, the external load vector is ({)7 r+ArR, and the force vector correspond­
ing to the element stresses at the end of iteration (k - 1) is <)7 t+Arf(k-o. The solution of 
(9.116) can be obtained using, for example, the trapezoidal rule of time integration (see 
Section 9.5.2). 

In general, the use of mode superposition in nonlinear dynamic analysis can be 
effective if only a relatively few mode shapes need to be considered in the analysis. Such 
conditions may be encountered, for example, in the analysis of earthquake response and 
vibration excitation, and it is in these areas that the technique has been employed. 

9.5.4 Exercises 

9.21. Consider the simple pendulum idealization shown. Use a finite element program to solve for the 
response of the system (see Fig. 9.9), for 100 cycles. 

g ... 980 cm/sec2 

i 
Initial conditions: 
09. goo 
09.Q 

EA"" 1010 (kg·cm)/sec2 

Tip mass= 10 kg 

One truss element with tip concentrated mass is employed 

9.22. Consider the cantilever beam shown. The beam is initially at rest when the tip load P is suddenly 
applied. Use a finite element program to solve for the dynamic response of the beam, allowing 
for the large displacement effects. Use the trapezoidal rule, the central difference method and, 
if available, also mode superposition to solve for the response. 

I

p p 

~,. 0.5 lb.,__ ___ _ 
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Poisson's ratio v = 0.2 
Mass density p ... 1.0 x 10-4 (lb·sec2)/in4 

Width= 1 in 

Time 
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9.23. Use a computer program to solve for the dynamic buckling load of the arch considered in 
Fig. 6.23. 

9.24. Use a computer program to analyze the pipe whip problem described in the figure. You can 
perform a direct integration solution or a mode superposition solution. (These types of problems 
are of importance in the analysis of postulated accident conditions; see, for example, S. M. Ma 
and K. J. Bathe [A].) 

p 

~=· ~~~-L~~-------'·t-------~~- Ioo ~1----------...... ---!---- r~· 
Diameter d ......_ n i: 

00 • 30.0 in 
o,-27.75 in 
L • 360.0 in 

a-3.0in ~ 
b ,. 2l .O in Restraint 

d • 5.75 in 

£ 

Pipe material: 

E • 2.698 >< 107 psi 
v•0.3 
CTy• 2.914 x 104 psi 
p • 7.18 x 104 slug/in3 

-0.125 

PW 

9.6 SOLUTION OF NONSTRUCTURAL PROBLEMS; HEAT TRANSFER 
AND FLUID FLOWS 

6.57 x 105 Jb 

£ 

Restraint material: 

E • 2.99 >< 107 psi 
CTy• 3.80 >< 104 psi 

Although we considered in the previous sections the solution of the dynamic response of 
structures and solids, it should be recognized that many of the basic concepts discussed are 
also directly applicable to the analysis of other types of problems. Namely, in the solution 
of a nonstructural problem, the choice lies again between the use of explicit or implicit time 
integration, mode superposition analysis needs to be considered, and it may also be advan­
tageous to use different time integration schemes for different domains of the complete 
element assemblage (see Section 9.2.5). The stability and accuracy properties of the time 
integration schemes used are analyzed in basically the same way as in structural analysis, 
and the important basic observations made concerning nonlinear structural analysis are also 
applicable to the analysis of nonlinear nonstructural problems. 

9.6.1 The a-Method of Time Integration 

The nonstructural problems that we have in mind are heat transfer, field problems, and fluid 
flow (see Chapter 7). The major difference in the time integration of the governing equa­
tions of these problems, when compared to structural analysis, is that we now deal only with 
first derivatives in time. Therefore, time integration operators different from those discussed 
in the previous sections are employed. 
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Based on the discussion in Section 9 .4 we can present a time integration scheme used 
in the analysis of heat transfer and fluid flows by considering a typical one degree of freedom 
equilibrium equation, 

iJ + A71 = r; 71 J, ... o = 011 (9.118) 

where, for example, considering a heat transfer problem, r, is the unknown temperature, ,\ 
is the diffusivity, and r is the heat input to the system. The a-method of time integration can 
be employed effectively for the solution of (9.118) and is given by the following assump­
tions: 

t+aAtTJ = (t+AtTJ _ 'TJ)/!,.t 

r+aA,11 = (1 _ a) ,11 + a ,+A,11 

(9.119) 

where a is a constant that is chosen to yield optimum stability and accuracy properties. To 
solve for r+a,T'J we proceed as described in Section 9.2. Namely, if 'T'J is known, we can use 
(9.118) at time t + a At and (9.119) to solve for ,u,T/, and so on. This a-method was 
already used in Section 6.6.3 in the solution of the inelastic response of finite element 
systems. 

The properties of the integration procedure depend on the value of a that is employed. 
The following procedures are in frequent use (see, for example, L. Collatz [A]). 

a == 0, explicit Euler forward method, stable provided 6.t s 2/ ,\, first-order accu­
rate in At 

a == } , implicit trapezoidal rule, unconditionally stable, second-order accurate 
in At 

a = l, implicit Euler backward method, unconditionally stable, first-order accu­
rate in At. 

To evaluate these stability properties we proceed as in Section 9.4.2. Now we use 
(9.118),withr = OandJ\.constant,attimet + a At,substitutefrom(9.119),andsolvefor 
the variable n at time t + /J.t in terms of all known auantities. 

Therefore, for stability we need 

t+At1J 
1 - (1 - a),\ At 

I 

1 + a,\ At 1J 

1

1 - (1 - a),\ llt I ::5 1 
1 + aA At 

(9.120) 

(9.121) 

which shows that the a-method is unconditionally stable if a ~ } . In the case a <!,the 
method is only stable provided 

2 
llt s (1 - 2a)A (9.122) 

These results have been used in the summary given above for the cases a = O. ! , and 1. 
To evaluate the accuracy properties we proceed in a similar manner as in Section 9.4.3 

but now consider the initial value problem 

Tl+ A.71 = 0; (9.123) 
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Assume that we perform the numerical solution of (9.123) for a time period 1/A, with time 
step magnitude 1 /n>.., where n is the number of time steps used for the time period 1 / >... Then 
we can define as our error measure the percentage in absolute difference between the 
numerical and exact solutions at time 1 / >... Figure 9 .10 shows this error measure for the 
Euler forward and backward methods and the trapezoidal rule. 

The information in Fig. 9 .10 is useful for a direct integration solution if the largest 
value of >.. in the finite element mesh, for which the response is to be accurately integrated, 
is known. Namely, the relation in (9.118) can be considered as the governing differential 
equation in time for the mode shape corresponding to the value A (see the discussion in 
Sections 9.3.2 and 9.4.4). 

20 
.... 
e 1a. 

: § 12 s x 
; L.Ul'i 8 e Q) 

d?. 
4 

3 4 

1/,t 

5 6 7 

o a•O 
• a•0.6 
<> a• 1 

8 9 10 
Number of steps used per 1/;t time period 

Figure 9.10 Error in numerical solution of (9.123) using the a method 

However, in actual analysis, we need to select the finite element discretization, the 
time integration scheme, and the time step At. The following considerations are then useful. 

Consider a one-dimensional heat transfer condition in a continuous medium, as shown 
in Fig. 9 .11. The uniform initial temperature is 81, when suddenly the free surface at x = 0 
is subjected to a temperature fJo. The governing differential equation of equilibrium of this 
problem was derived in Example 3.16. 

The exact solution of the mathematical model gives the temperature distributions 
shown schematically in Fig. 9.ll(b). This figure also shows the penetration depth y 
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Figure 9.11 Analysis of continuous medium 

y=4Vai 

where a is the thermal diffusity,2 a = k/pc. At this distance, 

B(y) - O; < 0.01 
8o - 9, 

(see Fig.9.11). 

833 

x 

(9.124) 

(9.125} 

This penetration depth is also used for the problem when instead of an imposed 
temperature, suddenly a heat flux is imposed. In this case we have 

6
~~) _-

6
~

1 < 0.01 (9.126} 

where 05 is the surface temperature at time t. 
The finite element discretization is chosen by use of ')'. Assume that tmin is the 

minimum time at which temperature results are desired. Then, if N is the number of 

2 We use here the symbol a to denote the diffusivity (instead of a in Section 7.4). because the symbol a is 
here used to denote the time integration parameter. 
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elements needed to discretize the penetration depth, we use 

4 
Ax = - v"'iii::.. (9.127) N rrun 

Typically, for two-node elements, we use N = 6 to 10, and this element size would be used 
throughout the mesh. 

Next, the time step At for the integration scheme must be chosen. Assume that we use 
two-node elements and a lumped heat capacity matrix. If the Euler forward method is 
employed, the stability limit dictates the time step to be (see Exercise 9 .27), 

At s (Ax)2 (9.128) 
2a 

Whereas using the trapezoidal rule or Euler backward method we can employ 

or an even larger time step. 

At = (Ax)2 
a 

(9.129) 

When using the implicit methods, a = 1 or ! , it is, however, frequently effective to 
:use higher-order (parabolic) elements and the consistent heat capacity matrix because 
significantly better accuracy might be achieved. In this case Ax is the distance between 
adjacent nodes. 

These considerations are also directly useful in two- and three-dimensional analysis. 
In these cases we use the Euler forward method with the low-order elements (four-node 
quadrilateral elements in two-dimensional analysis and eight-node brick elements in three­
dimensional analysis) and a lumped heat capacity matrix, and a mesh as close as possible 
to a uniform mesh. The time step is given by (9.128), where Ax is now the smallest distance 
between any nodes. On the other hand, with the trapezoidal rule or Euler backward method, 
we usually use the parabolic elements (nine-node elements in two-dimensional analysis and 
27-node elements in three-dimensional analysis), the consistent heat capacity matrix, and 
a time step of magnitude (9.129), where Ax is again the smallest distance between any 
nodes. 

Finally, let us demonstrate the application of the a-method of time integration in two 
examples. 

EXAMPLE 9. 15: Develop the equations to be solved in a nonlinear transient heat transfer 
analysis using the Euler backward method and the full Newton-Raphson method. 

The governing equations in a nonlinear heat transfer analysis using an implicit time 
integration procedure are (see Section 7.2.3) 

t+Atc{i) t+at9(il + t+AtK(i-1) AO(i) = t+AIQ(H) (a) 

where ,+A,0<1-1> is a vector of nodal point heat flows corresponding to time t + 4.t and iteration 
(i - l ). Using the Euler backward method, we have 

• 1+A19(i- I) + AO(I) - '9 
1+A19(i) = -------

J1t 
and hence (a) reduces to 

(+"'K(l-1) + ~I <+&C(il) ,:lt.Q(I) = <+"'Q(l-1) _ <+MC") <+&6(1-1) (b) 
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. r+.A,6(1-1) _ r9 t+.A19(i-l) = -----
/:,.t 

where 

For solution the relation (b) is further linearized (corresponding to a full Newton-Raphson 
iteration) using 

EXAMPLE 9.16: Referring to Example 9.15, develop the equations to be solved in incompress­
ible fluid flow without heat transfer using the Euler backward method. 

The governing finite element equations in fluid flow are given in (7.74) and (7.75). which 
we can restate as 

(a) 

where the vector V denotes all velocity degrees of freedom and P lists all pressure degrees of 
freedom. 

We note that the fully incompressible flow condition results in the zero diagonal elements 
corresponding to the pressure degrees of freedom. Hence, an implicit time integration is neces­
sary. In the Euler backward integration we use (now showing the superscripts denoting time and 
iteration number), 

([M 0][1+.:.\1~1'.-''] + [K Kp]I [1+.A1y('.-I)]) 
0 0 r+Arp<,- I} Ki O evaluated at r+.Atph-1) 

(b) 
, ... A,y!i-ll, 1+A1p1i-l) 

The equations in (b) correspond simply to a solution by successive substitution because the 
coefficient matrices are not tangent matrices. A Newton-Raphson type of iteration would have 
to be developed as described in Sections 6.3.1 and 8.4. l. 

In practice, the simple iteration in (b) frequently works quite well, particularly if the time 
step !:,.tis sufficiently small. However, the right-hand-side vector must then be very efficiently 
calculated by minimizing the multiplications actually required. 

In the preceding example solutions, we considered nonlinear systems with an implicit 
time integration scheme. Hence, as pointed out in Section 9.5.2, it is important to iterate for 
the solution. In heat transfer analysis we can also employ the explicit Euler forward method, 
in which case no iteration is performed, but the time step At must be smaller than 2/>..n, 
where A,, is the largest eigenvalue of the problem K<f> = AC<f>, with Kand C changing in 
nonlinear analysis (see Exercise 9.25). This time step can be estimated from (9.128) or the 
matrices of the individual finite elements (see Example 9.13 and Exercise 9.27). On the 
other hand, in incompressible fluid flow solutions, an unconditionally stable implicit time 
integration method must be used for the pressure equations, whereas implicit or explicit 
integration can be performed for the velocity and temperature equations (see Section 9.2.5 
for an example of coupling integration schemes, and Exercise 9.28). 
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9.6.2 Exercises 

9.25. The governing heat transfer equations of a general linear finite element system are 

CO+ K8 = Q 

Olumeo = 06 
(a) 

(i) Consider the unforced system with Q == 0, assume 6 = +e-At, and develop the eigen­
problem 

Kct, = 1'.Cct, (b) 

(Ii) Use the eigensolutions of (b) and show how to solve the equations in (a) by mode superpo­
sition. 

(iii) Assume now the specific case 

c = [t ~l 
Q = [~] 

K=[2 -1] 
-1 1 

and obtain the solution using the mode superposition proposed in part (ii). 
9.26. Assume that for the general system in Exercise 9.25 a mode superposition solution is performed 

using only the modes corresponding to the smallest p eigenvalues (i.e., using only the equations 
corresponding to 1'.1, ... , Ap), Show how the error in the solution of the governing finite element 
equations could be evaluated and also develop a correction scheme similar to the static correction 
used in the dynamic analysis of structural systems [see (9.52)]. 

9.27. Assume that the Euler forward method is used in the solution of the governing heat transfer 
equation CO + K6 = Q. Show how the critical time step can be evaluated from the individual 
element matrices. (Hint: See Example 9.13.) Apply your result to evaluate the critical time step 
for the finite element model of the one-dimensional heat transfer problem shown and compare 
your result with the value given in (9.128). 

Uniform slab of material constants 
k, pc; initial temperature 6;; 
suddenly th and DR are applied 

(Jt"-...,. r X 9R -r······ ...... ~ 
Model of none-dimensional 2-node 
elements, unit cross-sectional area 

9.28. Consider the governing finite element equations of incompressible transient fluid flow (7.74) to 
(7.76). Propose a time integration scheme in which the pressure equations are integrated implic­
itly and the velocity and temperature equations are integrated explicitly (see Section 9 .2.5). 
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9.29. Use a finite element program to solve for the transient response of the mathematical model shown 
in the figure in Exercise 9.27. Choose a reasonable finite element discretization and select a time 
integration scheme and an appropriate time step At. Show that your results are reasonably 
accurate. In this analysis, k = 0.10, pc = 0.01, fJ; = 70, (JR = 70, fJL = 400, L = 10. 

9.30. Proceed as in Exercise 9.29 but for the two-dimensional mathematical model of a comer where 
the surface temperature os is suddenly applied at time O +. 

Region 
discretized, 
unit thickness 

00 

9.31. Use a computer program to solve for the transient response of a fluid between two rotating 
cylinders. Use the same geometries and material properties as in Exercise 7.28. Assume that the 
cylinders are initially at rest and that the full rotational velocities are developed in the time 
interval O to 1. 

Compare your results with the analytically calculated steady-state solution (see, for exam­
ple, F. M. White [A]). 

9.32. Use a computer program to solve for the transient response of a fluid between two plates; see the 
figure for the data to be used. The bottom plate is at rest, and the top plate starts from rest and 
with a linear increase reaches a steady~state velocity V. The fluid is subjected to a pressure 
gradient. 

Compare your results with the analytically calculated steady-state solution (see, for exam~ 
pie, H. Schlichting [A]). 

Z t > !,wmm>~»mm_Jm»m»» 

dp =-1 
dy 
V=60 
h=3 
p= 1 
µ = 0.01 
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Preliminaries 
to the Solution 
of Eigenproblems 

10.1 INTRODUCTION 

In various sections of the preceding chapters we encountered eigenproblems and the state­
ment of their solutions. We did not at that time discuss how to obtain the required eigenval­
ues and eigenvectors. It is the purpose of this and the next chapter to describe the actual 
solution procedures used to solve the eigenproblems of interest. Before presenting the 
algorithms, we discuss in this chapter some important basic considerations for the solution 
of eigenproblems. 

838 

First, let us briefly summarize the eigenproblems that we want to solve. The simplest 
problem encountered is the standard eigenproblem, 

(10.1) 

where K is the stiffness matrix of a single finite element or of an element assemblage. We 
recall that K has order n, and for an element assemblage the half-bandwidth mK (i.e., the 
total bandwidth is 2mK + 1 ), and that K is positive semidefinite or positive definite. There 
are n eigenvalues and corresponding eigenvectors satisfying (10.1). The ith eigenpair is 
denoted as (,.\, cl>i ), where the eigenvalues are ordered according to their magnitudes: 

O S Ai S A2 • • • S An-I S An (10.2) 

The solution for p eigenpairs can be written 

K<I> = <l>A (10.3) 

where <I> is an n x p matrix with its columns equal to the p eigenvectors and A is a p X p 
diagonal matrix listing the corresponding eigenvalues. As an example, ( 10.3) may represent 
the solution to the lowest p eigenvalues and corresponding eigenvectors of K, in which case 
<I> = [ct,1, ... , cf>p] and A = diag(,t). i = 1, ... ,p. We recall that ifK is positive definite, 
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Ai > 0, i = l, ... , n, and if K is positive semidefinite, A; 2: 0, i = I, ... , n, where the 
number of zero eigenvalues is equal to the number of rigid body modes in the system. 

The solution of the eigenvalue problem in ( 10.1) is, for example, sought in the 
evaluation of an element stiffness matrix or in the calculation of the condition number of 
a structure stiffness matrix. We discussed in Section 4.3.2 that the representation of the 
element stiffness matrix in its canonical form (i.e., in the eigenvector basis) is used to 
evaluate the effectiveness of the element. In this case all eigenvalues and vectors of K must 
be calculated. On the other hand, to evaluate the condition number of a stiffness matrix, 
only the smallest and largest eigenvalues are required (see Section 8.2.6). 

Before proceeding to the generalized eigenproblems, we should mention that other 
standard eigenproblems may also need to be solved. For example, we may require the 
eigenvalues of the mass matrix M, in which case M replaces K in ( I 0.1 ). Similarly, we may 
want to solve for the eigenvalues of a conductivity or heat capacity matrix in heat flow 
analysis (see Section 7 .2). 

A very frequently considered eigenproblem is the one to be solved in vibration mode 
superposition analysis (see Section 9.3). In this case we consider the generalized eigen­
problem, 

K<t> = AM<f> (10.4) 

where K and M are, respectively, the stiffness matrix and mass matrix of the finite element 
assemblage. The eigenvalues A; and eigenvectors cf>; are the free · vibration frequencies 
(radians/second) squared, wr, and corresponding mode shape vectors, respectively. The 
properties of K are as discussed above. The mass matrix may be banded, in which case its 
half-bandwidth mM is equal to mK, or M may be diagonal with mu;;;;: O; i.e., some diagonal 
elements may possibly be zero. A banded mass matrix, obtained in a consistent mass 
analysis, is always positive definite, whereas a lumped mass matrix is positive definite only 
if all diagonal elements are larger than zero. In general, a diagonal mass matrix is positive 
semidefinite. 

In analogy to ( I 0.3 ), the solution for p eigenvalues and corresponding eigenvectors of 
( 10.4) can be written 

Ktl> = Mtl>A (10.5) 

where the columns in «I> are the eigenvectors and A is a diagonal matrix listing the corre­
sponding eigenvalues. 

Of course, the generalized eigenproblem in ( 10.4) reduces to the standard eigenprob­
lem in ( 10.1) if M is an identity matrix. In other words, the eigenvalues and eigenvectors 
in ( 10.3) can also be thought of as frequencies squared and vibration mode shapes of the 
system when unit mass is specified at each degree of freedom. Corresponding to the possible 
eigenvalues in the solution of ( 10.1), the generalized eigenproblem in ( 10.4) has eigenvalues 
A; 2: 0, i = l, . . . , n, where the number of zero eigenvalues is again equal to the number 
of rigid body modes in the system. 

Two additional generalized eigenproblems should be mentioned briefly. A second 
problem is solved in linearized buckling analysis, in which case we consider (see Sec­
tion 6.8.2) 

(10.6) 
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where ,-A,K and 'K are the stiffness matrices corresponding to times (i.e., load levels) 
t - At and t, respectively. 

A third generalized eigenproblem is encountered in heat transfer analysis, where we 
consider the equation 

K4> = AC(J> (10.7) 

where K is the heat conductivity matrix and C is the heat capacity matrix. The eigenvalues 
and eigenvectors are the thermal eigenvalues and mode shapes, respectively. The solution 
of (10.7) is required in heat transfer analysis using mode superposition (see Exercise 9.25). 
The matrices K and C in (10.7) are positive definite or positive semidefinite, so that the 
eigenvalues of ( 10. 7) are ..\; ~ 0, i = l, . . . , n. 

In this and the next chapter we discuss the solution of the eigenproblems Ket, = ..\ct, 
and Kt1, = ..\Mt1, in (10.1) and (10.4). These eigenproblems are encountered frequently in 
practice. However, it should be realized that all algorithms to be presented are also applica­
ble to the solution of other eigenproblems, provided they arc of the same form and the 
matrices satisfy the appropriate conditions of positive definiteness, semidefiniteness, and so 
on. For example, to solve the problem in (10.7), the mass matrix M simply needs to be 
replaced by the heat capacity matrix C, and the matrix K is the heat conductivity matrix. 

Considering the actual computer solution of the required eigenproblems, we recall 
that in the introduction to equation solution procedures in static analysis (see Section 8.1), 
we observed the importance of using effective calculation procedures. This is even more so 
in eigensystem calculations because the solution of eigenvalues and corresponding eigen­
vectors requires, in general, much more computer effort than the solution of static equi­
librium equations. A particularly important consideration is that the solution algorithms 
must be stable, which is more difficult to achieve in eigensolutions. 

A variety of eigensystem solution methods have been developed and are reported in 
the literature (see, for example, J. H. Wilkinson (A]). Most of the techniques have been 
devised for rather general matrices. However, in finite element analysis we are concerned 
with the solution of the specific eigenproblems summarized above, in which each of the 
matrices has specific properties such as being banded, positive definite, and so on. The 
eigensystem solution algorithms should take advantage of these properties in order to make 
a more economical solution possible. 

The objective in this chapter is to lay the foundation for a thorough understanding of 
effective eigensolution methods. This is accomplished by first discussing the properties of 
the matrices, eigenvalues, and eigenvectors of the problems of interest and then presenting 
some approximate solution techniques. The actual solution methods recommended for use 
are presented in Chapter 11. 

10.2 FUNDAMENTAL FACTS USED IN THE SOLUTION 
OF EIGENSVSTEMS 

Before the working of any eigensystem solution procedure can be properly studied, it is 
necessary first to thoroughly understand the different properties of the matrices and eigen­
values and eigenvectors considered. In particular, we will find that all solution methods are, 
in essence, based on these fundamental properties. We therefore want to summarize in this 
section the important properties of the matrices and their eigensystems, although some of 
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the material has already been presented in other sections of the book. As pointed out in 
Section 10.1, we consider the eigenproblem Ket, = ..\Met,, which reduces to Ket, = Act, 
when M = I, but the observations made are equally applicable to other eigenproblems of 
interest. 

10.2.1 Properties of the Eigenvectors 

It was stated that the solution of the generalized eigenproblem K<J, = AM<J, yields n 
eigenvalues .,\1, ••• , An, ordered as shown in (10.2), and corresponding eigenvectors 
cf>1, ••. , cf>n, Each eigenpair (A;, ct,i) satisfies (10.4); i.e.; we have 

Kct-i = ,\;Met-;; i = 1, ... , n (10.8) 

The significance of ( 10.8) should be well understood. The equation says that if we establish 
a vector Ai Met,; and use it as a load vector R in the equation KU = R, then U = ct,;. This 
thought may immediately suggest the use of static solution algorithms for the calculation of 
an eigenvector. We will see later that the LDF decomposition algorithm is indeed an 
important part of eigensolution procedures. 

The equation in ( 10.8) also shows that an eigenvector is defined only within a multiple 
of itself; i.e., we also have 

(10.9) 

where a is a nonzero constant. Therefore, with ct,; being an eigenvector, a ct,; is also an 
eigenvector, and we say that an eigenvector is defined only by its direction in the n­
dimensional space considered. However, in our discussion we refer to the eigenvectors 4>1 
as satisfying ( 10.8) and also the relation ct,1Mct,, = l, which fixes the lengths of the 
eigenvectors, i.e., the absolute magnitude of the elements in each eigenvector. However, we 
may note that the eigenvectors are still defined only within a multiplier of -1. 

An important relation which the eigenvectors satisfy is that of M-orthonormality; i.e., 
we have 

(10.10) 

where 8,i is the Kronecker delta. This relation follows from the orthonormality of the 
eigenvectors of standard eigenproblems (see Section 2.5) and is discussed further in Sec­
tion 10.2.5. Premultiplying (10.8) by cl>i transposed and using the condition in (10.10), we 
obtain 

(10.11) 

meaning that the eigenvectors are also K-orthogonal. When using the relations in (10.10) 
and ( 10.11) it should be kept in mind that the M- and K-orthogonality follow from ( 10.8) 
and that (10.8) is the basic equation to be satisfied. In other words, if we believe that we 
have an eigenvector and eigenvalue, then as a check we should substitute them into ( 10.8) 
(see Example 10.3 ). 

So far we have made no mention of multiple eigenvalues and corresponding eigenvec­
tors. It is important to realize that in this case the eigenvectors are not unique but that we 
can always choose a set of M-orthonormal eigenvectors which span the subspace that 
corresponds to a multiple eigenvalue (see Section 2.5). In other words, assume that A; 
has multiplicity m (i.e., A; = A;+1 = · · · = Ai+m-1); then we can choose m eigenvectors 
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4,1, • • • , 4,;+m-1 that span the m-dimensional subspace corresponding to the eigenvalues 
of magnitude A, and which satisfy the orthogonality relation in (10.10) and (10.11). How~ 
ever, the eigenvectors are not unique; instead, the eigenspace corresponding to A; is unique. 
We demonstrate the results by means of some examples. 

EXAMPLE 10.1: The stiffness matrix and mass matrix of a two degree of freedom system are 

[ 5 -2] 
K = -2 2 ; M = [i ~] 

It is believed that the two eigenpairs of the problem Kt1, = At1, are 

(d,, v,) = (I{±} (d,, v,) = ({ ~} (a) 

and the two eigenpairs of the problem K(f> = ,\Mt1, are 

{gi, W1) = (2,[n); {g2, W2) = (12,[ _t} (b) 

Verify that we indeed have in (a) and (b) the eigensolutions of the problems Kt1, = ,\(f> and 
Kt1, = AM(f>, respectively. 

Consider first the problem Kt1, = At1,. The values given in (a) are indeed the eigensolution 
if they satisfy the relation in ( 10.8) with M = I and, to fix the lengths of the vectors, the 
orthonormality relations in (10.10) with M = I. Substituting into (10.3), which expresses the 
relation in (10.8) for all eigenpairs, we have 

[ s -2] [Js ~J = [Js ~J[1 o] -2 2 2 1 2 1 0 6 
V5 -vs V5 -vs 

or l l 12J l 1 12J v: _V:=V: _v; 
vs vs vs V5 

Evaluating ( 10.10), we obtain 
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Therefore, the relations in (10.3) and (10.10) are satisfied, and we have A1 = d1, A2 = d2, 
cf>r = V1, and cf>2 = Vz. 

To check whether we have in (b) the eigensolution to Ket, AMcf,, we proceed in an 
analogous way. Substituting into ( I 0.5), we have 

[ _; -~] u J] = [i ~] [: -!] [~ 1~] 
or [i -i] = [i -~!] 
and evaluating (10.10), we obtain 

wlMw, = [~ Im mn = I 
wlMw, = rn -2m mn = 0 
wfMw, [~ -2m mjJ = I 
wfMw2 = wIMw1 = 0 

Hence, the relations in (10.5) and (10.10) are satisfied and we have 

cf>2 = W2 

EXAMPLE 10.2: Consider the eigenproblem 

Ket, = Act, with K --[2 2 3] 
and show that the eigenvectors corresponding to the multiple eigenvalue are not unique. 

The eigenvalues of K are Ai = 2, A2 = 2, and A.3 = 3, and a set of eigenvectors is 

(a) 

where cf,3 is unique. These values could be checked as in Example IO.I. However, any linear 
combinations of cf>1 and (f>2 given in (a) that satisfy the orthonormality conditions in (10.10) with 
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M = I would also be eigenvectors. For example, we could use 

1 1 

V2 V2 
4>1 = 1 and 4>2 = 1 

V2 -V2 
0 0 

That these are indeed eigenvectors corresponding to At = A2 = 2 can again be checked as in 
Example 10.1. It should be noted that any eigenvectors «t,1 and «t,2 provide a basis for the unique 
two-dimensional eigenspace that corresponds to A1 and A2. 

The solution to (10.4) for all p required eigenvalues and corresponding eigenvectors 
was established in (10.5). Using the relations in (10.10) and (10.11), we may now write 

(J>TK(J> ::=: A (10.12) 

and «J>TM«J> = I (10.13) 

where the p columns of fl) are the eigenvectors. It is very important to note that ( 10.12) and 
( 10.13) are conditions that the eigenvectors must satisfy, but that if the M-orthonormality 
and K-orthogonality are satisfied, the p vectors need not necessarily be eigenvectors unless 
p = n. In other words, assume that X stores p vectors, p < n, and that X7KX = D and 
X7MX = I; then the vectors in X and the diagonal elements in D may or may not be 
eigenvectors and eigenvalues of (10.4). However, if p = n, then X = flJ and D = A be­
cause only the eigenvectors span the complete n-dimensional space and diagonalize the 
matrices K and M. To underline this observation we present the following example. 

EXAMPLE 10.3: Consider the eigenproblem K«f> = J\M«f>, where 

K = H :~ -n M = u ! ~J 
and the two vectors 

v, = [~l v,= [- ~] 

Show that the vectors V1 and v2 satisfy the orthogonality relations in (10.12) and (10.13) [i.e., 
the relations in (10.11) and (10.10)] but that they are not eigenvectors. 

For the check we let v1 and v2 be the columns in «I>, and we evaluate (10.12) and (10.13). 
Thus, we obtain 

1 (4 - V2) 0 Ii -V: = [ o (4 + vziJ (a) 
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and 

Hence, the orthogonality relations are satisfied. To show that V1 and v2 are not eigenvectors, we 
employ ( 10.8). For example, 

l 
2--

V2 2 

Kv1 
4 

Mv1 = 1 -1 +-. V2. 
V2 

I 
0 -V2 

However, the vector Kv1 cannot be equal to the vector aMv1, where a is a scalar; i.e., Kv1 is not 
parallel to Mv,, and therefore Vi is not an eigenvector. Similarly, V2 is not an eigenvector and the 
values (4 - V2) and (4 + V2) calculated in (a) are not eigenvalues. The actual eigenvalues and 
corresponding eigenvectors are given in Example 10.4. 

In the preceding presentation we considered the properties of the eigenvectors of the 
problem Ket, = AM«t,. and we should now briefly comment on the properties of the eigen­
vectors calculated in the solution of the other eigenvalue problems of interest. The comment 
is simple: the orthogonality relations discussed here hold equally for the eigenvectors of the 
problems encountered in buckling analysis and heat transfer analysis. That is, we also have 
in buckling analysis, using the notation in ( 10.6), 

<i,; ,-A,Kct>j = 6ij; ct>; 1K<J,j = A.;8ij} 
(10.14) 

4>T 1-AIK<f) = I; 4>T 'K<ll = A 

and in heat transfer analysis, using the notation in (10.7), we have 

ct>;C<J,i = Sii; <J,;K<J,i = Ai6ij} 

(>TC<f) = I~ <)TK<f) = A 
(10.15) 

As for the eigenproblem K<f> = AM«t,, the proof of the relations in (10.14) and 
(10.15) depends on the fact that the generalized eigenproblems can be transformed to a 
standard form. We discuss this matter further in Section 10.2.5. 

10.2.2 The Characteristic Polynomials 
of the Eigenproblem Ket, = A.Met, 
and of Its Associated Constraint Problems 

An important property of the eigenvalues of the problem Ket, = AM«t, is that they are the 
roots of the characteristic polynomial, 

p(>,.) = det(K - AM) (10.16) 
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We can show that this property derives from the basic relation in (10.8). Rewriting (10.8) 
in the form 

(K - Ai M)cf>; = 0 (10.17) 

we observe that (10.8) can be satisfied only for nontrivial cf); (i.e., cf); not being equal to a 
null vector) provided that the matrix K - A;M is singular. This means that if we factorize 
K - >..,Minto a unit lower triangular matrix Land an upper triangular matrix S using 
Gauss elimination, we have snn. = 0. However, since 

II 

p(A;) = det Ls = n s;; 
i•l 

(10.18) 

it follows that p(>..,) = 0. Furthermore, if >.., has multiplicity m, we also have 
Sn-1,n-l = ... = Sn-m+l,n-m+l = 0. We should note that in the factorization of K - A;M, 
interchanges may be needed, in which case the factorization of K - A; M with its rows and 
possibly its columns interchanged is obtained (each row and each column interchange then 
introduces a sign change in the determinant which must be taken into account; see Section 
2.2). If no interchanges are carried out, or row and corresponding column interchanges are 
performed, which in practice is nearly always possible (but see Example 10.4 for a case 
where it is not possible), the coefficient matrix remains symmetric. In this case we can write 
for (10.18) 

n 

p(>..;) = det LDU = Il d;; (10.19) 
i•l 

where LDL r is the factorization of K - A; M or of the matrix derived from it by interchang­
ing rows and corresponding columns, i.e., using a different ordering for the system degrees 
of freedom (see Section 8.2.5). The condition Snn = 0 is now dnn = 0, and when A; has 
multiplicity m, the last m elements in Dare zero. 

In Section 8.2.5 we discussed the Sturm sequence property of the characteristic 
polynomials of the constraint problems associated with the problem Ket, = >..cf). The same 
properties that we observed in that discussion are applicable also to the characteristic 
polynomials of the constraint problems associated with the problem Ket, = >..M-t,. The 
proof follows from the fact that the generalized eigenproblem Ket, = >..Met, can be trans­
formed to a standard eigenproblem for which the Sturm sequence property of the character~ 
istic polynomials holds. Referring the proof to Section 10.2.5, Example 10.11, let us 
summarize the important result. 

The eigenproblem of the rth associated constraint problem corresponding to 
K4> = >..M-t, is given by 

(10.20) 

where all matrices are of order n - r and K<r) and M<r> are obtained by deleting from K and 
M the last r rows and columns. The characteristic polynomial of the rth associated con­
straint problem is 

(10.21) 

and as for the special case M = I, the eigenvalues of the (r + l)st constraint problem 
separate those of the rth constraint problem; i.e., as stated in (8.38)~ we again have 

Ar> s w+ 0 s >..r> s ,w+ 0 s ... s A~'t-· s ,.\~:,.11, s "~1., 00.22> 

Consider the following example. 
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EXAMPLE 10.4: Consider the eigenproblem Ket, = AMct,. where 

[ 
2 -l OJ 

K = -l 4 -1 ; 
0 -1 2 

(a) Calculate the eigenvalues using the characteristic polynomial as defined in ( 10.16). 
(b) Solve for the eigenvectors cf>;, i = 1, 2, 3, by using the relation in (10.17) and the 

M-orthonormality condition of the eigenvectors. 
(c) Calculate the eigenvalues of the associated constraint problems and show that the eigen­

value separation property given in (10.22) holds. 

Using (10.16), we obtain the characteristic polynomial 

p(A) = (2 iA)(4 A)(2 - ~A) - (-1)(-1)(2 - !A) - (-1)(-1)(2 - !A) 

Hence, p(A) = - ! A 3 + 3A 2 
- 1 lA + 12 

and we have A1 = 2; A2 = 4; ,\3 = 6 

To obtain the corresponding eigenvectors. we use the relation in (10.17). For A1 we have 

H :~ -}=o (a) 

The coefficient matrix K - A1M in (a) can be factorized into LDLr without interchanges. Using 
the procedure described in Section 8.2.2, we obtain 

[-! 1 
0 -1 

We note that d33 = 0.0. To evaluate cf>,, we obtain from (b), 

Using also ct,fMct,1 = l, we have 

-1 

1 

(b) 

To obtain 4>2 and cf>3, we proceed in an analogous way. Evaluating K - A2M, we obtain 
from (10.17), 

[ 
0 -1 OJ 

-1 0 -1 4>2=0 
0 -1 0 

In this case we cannot factorize the coefficient matrix preserving symmetry; i.e., we need to 
interchange only the first and second rows (and not the corresponding columns). This row 
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interchange results into the relation 

0 -1] 
-1 0 4,2=0 
-1 o· 

Factorizing the coefficient matrix into a unit lower triangular matrix L and an upper triangular 
matrix S, we obtain 

and hence, S33 = 0. To solve for cf,2, we use 

C' -~ -fl.,= 0 

and ct,fM<t,2 = 1. Thus, we obtain 

<f,f = [-1 0 I] 

To calculate ct,3, we evaluate K - ,\3M and have 

[ =: = ~ -~]ct,3 = 0 
0 -1 l 

The coefficient matrix can be factorized into LDU without interchanges; i.e., we have 

[i : J[-1 -1 J[l : :]+, = 0 
We note that d33 = 0. To calculate <f,3 we use 

and ct>fMcf>3 = 1. Hence, 

[
-1 -1 OJ 

-1 -~ '1,3 = 0 

1 

V2 
The eigenvalues of the first associated constraint problem are obtained from the solution of 

[ 2 -l]ct>o) = ,\o)[! o]ct><o 
-1 4 0 l 

pOl(,\Cll) = f ,\Ul2 
- 4A(l) + 7 

and ,\ill = 4 - V2; ,\~1> = 4 + V2 
Also A\

2
> = 4, and hence the eigenvalue separation property given in (10.22) is in this case: 
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1. For the eigenvalues of the first and second associated constraint problems, 

4 V2<4<4+V2 

2. For the eigenvalues of Kti> = ,\.Mtp and the first associated constraint problem, 

2 < (4 - V2) < 4 < (4 + Y2) < 6 

849 

An important fact that follows from the property of the separation of eigenvalues as 
expressed in ( 10.22) is the following. Assume that we can factorize the matrix K - µ,M 
into LDLr; i.e., none of the associated constraint problems has a zero eigenvalue. For 
simplicity of discussion let us first assume that all eigenvalues are distinct; i.e., there are no 
multiple eigenvalues. The important fact is that in the decomposition of K - µ,M, the 
number of negative elements in D is equal to the number of eigenvalues smaller than J.L. 
Conversely, if Ai < µ, < A;+ 1, there are exactly i negative diagonal elements in D. The proof 
is obtained using the separation property in ( 10.22) and is relatively easily outlined by the 
following considerations. Referring to Fig. 10.1, assume that in the sketch of the character­
istic polynomials we connect by straight lines all eigenvalues Air>, r = 0, 1, . . . , with 
A~0

> = Ai, and call the resulting curve C1. Similarly, we establish curves C2, C3, ... , as 
indicated in Fig. 10.1. Consider now that A; < J.L < A1+ 1 and draw a vertical line corre­
sponding to µ, in the figure of the characteristic polynomials; i.e., this line establishes where 
J.L lies in relation to the eigenvalues of the associated constraint problems. We note that the 
line corresponding toµ, must cross the curves Ci, ... , C; and because of the eigenvalue 

pC•>u.14)) 

..tl4) 

p(3)u_(3)) 

..it3) 

pl21(il2)) 

..t12) 

Figure 10.1 Construction of curves C; for the characteristic polynomials of the problem 
K<t, = AMti, and of the associated constraint problems 
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separation property cannot cross the curves C;+ 1, • • • , Cn, However, since 
n-r 

p(r)(µ) = II du 
i=I 

(10.23) 

and since each crossing of IL with an envelope Ck corresponds to a negative element 
appearing in D, we have exactly i negative elements in D. 

These considerations also hold in the case of multiple eigenvalues; i.e., in Fig. 10.1 we 
would merely find that some eigenvalues are equal, but the argument given above would not 
change. 

The property that the number of negative elements in Dis equal to the number of 
eigenvalues smaller than IL can be used directly in the solution of eigenvalues (see Section 
11.4.3). Namely, by assuming a shift IL and checking whether IL is smaller or larger than the 
required eigenvalue, we can successively reduce the interval in which the eigenvalue must 
lie. We demonstrate the solution procedure in the following example. 

EXAMPLE 10.5: Use the fact that the number of negative elements in D, where LDLT = 
K - µM, is equal to the number of eigenvalues smaller than µ in order to calculate A2 of 
Kcf> = ,\Mcf>, where 

[ 
2 -1 OJ 

K = -1 4 -1 ; 
0 -1 2 

The three eigenvalues of the problem have already been calculated in Example 10.4. We 
now proceed in the following systematic steps. 

1. Let us assumeµ= land evaluate LDLr of K - µM, 

K - µM = [-: -! -~J 
0 -1 } 

Hence, LDL'= H 
Since all elements in Dare larger than zero, we have A1 > 1. 

2. We now try µ = 8, where 

[

-2 -1 OJ 
K - µM = -1 -4 -1 

0 -1 -2 

and 

Since all three diagonal elements are smaller than zero, it follows that A3 < 8. 
3. The next estimateµ should logically lie between 1 and 8; we chooseµ = 5, for which 

[

-.!. -1 OJ 
K - µM = -: -1 -1 

0 1 ! 
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LDL7 = [~ 1 
0 -1 

and 

Since two negative elements are in D, we have A2 < 5. 
4. The next estimate must lie between 1 and 5. Let us useµ, = 3, in which case 

K - µM = [-
0
: -! -~] 

-1 ! 

and LDL' = H : I4 _, J -2 n 
Hence A2 > 3, because there is only one negative element in D. 

The pattern of the solution procedure has now been established. So far we know that 
3 < A2 < 5. In order to obtain a closer estimate on ..\2 we would continue choosing a shift 
µ, in the interval 3 to 5 and investigate whether the new shift is smaller or larger than A2. 
By always choosing an appropriate new shift, the required eigenvalue can be determined 
very accurately (see Section 11.4.3). It should be noted that we did not need to use 
interchanges in the factorizations of K - µM carried out above. 

10.2.3 Shifting 

An important procedure that is used extensively in the solution of eigenvalues and eigenvec­
tors is shifting. The purpose of shifting is to accelerate the calculations of the required 
eigensystem. In the solution Kcf> = A Mcf>, we perform a shift p on K by calculating 

K = K - pM (10.24) 

and we then consider the eigenproblem 

KtJ, = µMIJ, (10.25) 

To identify how the eigenvalues and eigenvectors of Kcf> = i\Mcf> are related to those 
of the problem K.'1J = µM'1J we rewrite (10.25) in the form 

(10.26) 

where y = p + µ. However, ( 10.26) is, in fact, the eigenproblem Kcf> = i\Mcf>, and since 
the solution of this problem is unique, we have 

cf>; == \JI; (10.27) 

In other words, the eigenvectors of K\fl = µM\fl are the same as the eigenvectors of 
Kcf> = i\Mcf>, but the eigenvalues have been decreased by p. A frequent application of 
shifting occurs in the calculation of rigid body modes when an algorithm is to be used that 
is not designed explicitly to calculate zero eigenvalues. We illustrate such an application in 
the following example. 
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EXAMPLE 10.6: Consider the eigenproblem 

[-! -~]+ = A[: ~]+ (a) 

Calculate the eigenvalues and eigenvectors. Then impose a shift p = - 2 and solve again for the 
eigenvalues and corresponding eigenvectors. 

To calculate the eigenvalues we use the characteristic polynomial 

p(A) = det(K - AM) = 3A 2 - 18,\ 

and thus obtain A1 = 0, A2 == 6. To calculate 4>, and 4>2 we use the relation in (10.17) and the 
mass orthonormality condition + ;M+, = 1. We have 

[ 3 -3] 
-3 3 +, 0; 00=.~· = [t] (b) 

and [-9 -9] 
-9 -9 4>2 = 0; he~e. ~, = ~i] (c) 

Imposing a shift of p = -2, we obtain the problem 

[-~ -~]+=A[~ ~]+ (d) 

Proceeding as before, we have 

p(A) = A 2 - lOA + 16 

and obtain as the roots A1 = 2, A2 = 8. Hence the eigenvalues have increased by 2; i.e., they have 
decreased by p. 

The eigenvectors would be calculated using (10.17). However, we note that this relation 
again yields the equations in (b) and (c), and therefore the eigenvectors of the problem in (d) are 
those of the problem in (a). 

An important observation resulting from the above discussion is that, in principle, we 
need only solution algorithms to calculate the eigenvalue& and corresponding eigenvectors 
of the problem K<1> = AM<1> when all eigenvalues are larger than zero. This follows, 
because if rigid body modes are present, we may always operate on a shifted stiffness matrix 
that renders all eigenvalues positive. 

Extensive applications of shifting are given in Chapter 11, where the various eigensys­
tem solution algorithms are discussed. 

10.2.4 Effect of Zero Mass 

When using a lumped mass matrix, Mis diagonal with positive and possibly some zero 
diagonal elements. If all elements mu are larger than zero, the eigenvalues A1 can usually not 
be obtained without the use of an eigenvalue solution algorithm as described in Chapter 11. 
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However, if M has some zero diagonal elements, say r diagonal elements in Mare zero, we 
can immediately say that the problem Kcf> = AMcf> has the eigenvalues An = An- i = 
· · · = An-,+1 = oo and can also construct the corresponding eigenvectors by inspection. 

To obtain the above result, let us recall the fundamental objective in an eigensolution. 
It is important to remember that all we require is a vector cf> and scalar A that satisfy the 
equation 

Kcf> == AMcf> (10.4) 

where cf> is nontrivial; i.e., cf> is a vector with at least one element in it nonzero. In other 
words, if we have a vector cf> and scalar A that satisfy ( 10.4 ), then A and cf> are an eigenvalue 
Ai and eigenvector cf>i, respectively, where it should be noted that it does not matter how cf> 
and A have been obtained. If, for example, we can guess cf> and A, we should certainly take 
advantage of it. This may be the case when rigid body modes are present in the structural 
element assemblage. Thus, if we know that the element assemblage can undergo a rigid 
body mode, we have A1 = 0 and need to seek <l>1 to satisfy the equation K<l>1 = 0. In 
general, the solution of cf.,1 must be obtained using an equation solver, but in a simple finite 
element assemblage we may be able to identify cf>, by inspection. 

In the case of r zero diagonal elements in a diagonal mass matrix M, we can always 
immediately establish r eigenvalues and corresponding eigenvectors. Rewriting the eigen­
problem in (10.4) in the form 

Met> == µKet> (10.28) 

where µ, = A- 1
, we find that if ,nkk == 0, we have an eigenpair (µ,;, cf>i) = (O, e,:); i.e., 

ct>;= [O O . . . 0 I O . . . O]; 
t 
kth element 

µ; = 0 (10.29) 

That cf.,; and µ,; in ( 10.29) are indeed an eigenvector and eigenvalue of ( 10.28) is verified by 
simply substituting into (10.28) and noting that (µ,i, cf>;) is a nontrivial solution. Sinceµ, = 
A-1, we therefore found that an eigenpair of Kcf., = AMcf., is given by (A;, cf.,;) = (oo, ek). 
Considering the case of r zero diagonal elements in M, it follows that there are r infinite 
eigenvalues, and the corresponding eigenvectors can be taken to be unit vectors with each 
unit vector having the 1 in a location corresponding to a zero mass element in M. Since An 
is then an eigenvalue of multiplicity r, the corresponding eigenvectors are not unique (see 
Section 10.2.1 ). In addition, we note that the length of an eigenvector cannot be fixed using 
the condition of M-orthonormality. We demonstrate how we establish the eigenvalues and 
eigenvectors by means of a brief example. 

EXAMPLE 10.7: Consider the eigenproblem 
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There are two zero diagonal elements in M; hence, ,\3 = oo, A4 == oo. As corresponding 
eigenvectors we can use 

(a) 

Alternatively. any linear combination of ct,3 and ct,4 given in (a) would represent an eigenvector. 
We should note that ct,;Mct,; = 0 for i = 3, 4, and therefore the magnitude of the elements in 
ct,; cannot be fixed using the M-orthonormality condition. 

10.2.5 Transformation of the Generalized Eigenproblem 
K<f, = AM<f, to a Standard Form 

The most common eigenproblems that are encountered in general scientific analysis are 
standard eigenproblems, and most other eigenproblems can be reduced to a standard form. 
For this reason, the solution of standard eigenproblems has attracted much attention in 
numerical analysis, and many solution algorithms are available. The purpose of this section 
is to show how the eigenproblem K<f> = AM4> can be reduced to a standard form. The 
implications of the transformation are twofold. First, because the transformation is possible, 
use can be made of the various solution algorithms available for standard eigenproblems. 
We will see that the effectiveness of the eigensolution procedure employed depends to a 
large degree on the decision whether or not to carry out a transformation to a standard form. 
Second, if a generalized eigenproblem can be written in standard form, the properties of 
the eigenvalues, eigenvectors, and characteristic polynomials of the generalized eigenprob­
lem can be deduced from the properties of the corresponding quantities of the standard 
eigenproblem. Realizing that the properties of standard eigenproblems are more easily 
assessed, it is to a large extent for the second reason that the transformation to a standard 
eigenproblem is important to be studied. Indeed, after presenting the transformation proce­
dures, we will show how the properties of the eigenvectors (see Section 10.2.1) and the 
properties of the characteristic polynomials (see Section 10.2.2) of the problem Ket, = 
AM«t, are derived from the corresponding properties of the standard eigenproblem. 

In the following we assume that Mis positive definite. This is the case when M is 
diagonal with mu > 0, i = 1, . . . , n, or M is banded, as in a consistent mass analysis. If 
M is diagonal with some zero diagonal elements, we first need to perform static condensa­
tion on the massless degrees of freedom as described in Section 10.3.1. Assuming that M 
is positive definite, we can transform the generalized eigenproblem Ket, = AM<f> given in 
( 10.4) by using a decomposition of,M of the form 

M = ssr 
where S is any nonsingular matrix. Substituting for M into ( 10.4 ), we have 

Ket,= ASSrct, 

Premultiplying both sides of (10.31) bys-• and defining a vector, 

4> = ST<f> 

(10.30) 

(10.31) 

(10.32) 



Sec. 10.2 Fundamental Facts Used in the Solution of Eigensystems 

we obtain the standard eigenproblem, 

where 

855 

(10.33) 

(10.34) 

One of two decompositions of M is used in general: the Cholesky factorization or the 
spectral decomposition of M. T,!te fholesky factorization of M is obtained as described in 
Section 8.2.4 and yields M = LMU:1. In (10.30) to (10.34) we therefore have 

(10.35) 

The spectral decomposition of M requires solution of the complete eigensystem of M. 
Denoting the matrix of orthonormal eigenvectors by R and the diagonal matrix of eigenval­
ues by 0 2

, we have 

(10.36) 

and we use in (10.30) to (10.34), 

S = RD (10.37) 

It should be noted that when Mis diagonal, the matrices Sin (10.35) and (10.37) are the 
same, but when M is banded, they are different. 

Considering the effectiveness of the solution of the required eigenvalues and eigenvec­
tors of (10.33), it is most important that K has the same bandwidth as K when M is 
diagonal. However, when Mis banded, Kin ( 10.33) is in general a full matrix, which makes 
the transformation ineffective in almost all large-order finite element analyses. This will 
become more apparent in Chapter 11 when various eigensystem solution algorithms are 
discussed. 

Comparing the Cholesky factorization and the spectral decomposition of M, it may be 
noted that the use of the Cholesky factors is in general computationally more efficient than 
t!ie use of the spectral decomposition because fewer operations are involved in calculating 
LM than Rand 0. However, the spectral decomposition of M may yield a more accurate 
solution of K<f> = AM<f:,. Assume that M is ill-conditioned with respect to inversion; then 
the transformation process to the standard eigenproblem is also ill-conditioned. In that case 
it is important to employ the more stable transf~mation procedure. Using the Cholesky 
factorization of M without pivoting, we find that Li.1 has large elements in many locations 
because of the coupling in M and Lii. Consequently, K is calculated with little precision, 
and the lowest eigenvalues and corresponding eigenvectors are determined inaccurately. 

On the other hand, using the spectral decomposition ·of M, good accuracy may be 
obtained in the elements of R and 0 2

, although some elements in 0 2 are small in relation 
to the other elements. The ill-conditioning of M is now concentrated in only the small 
elements of 0 2

, and considering K, only those rows and columns that correspond to the 
small elements in O have large elements, and the eigenvalues of normal size are more likely 
to be preserved accurately. 

Consider the following examples of transforming the generalized eigenvalue problem 
K<t, = AM<t, to a standard form. 
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EXAMPLE 10.8: Consider the problem Kcf> = ..\Mcf>, where 

K = [-~ - ~ - ~]; M = [~ ! ~] 
0 -1 1 0 1 2 

Use the Cholesky factorization of M to calculate the matrix K of a corresponding standard 
eigenproblem. 

We first calculate the LDU decomposition of M, 

Hence, the Cholesky factor of Mis (see Section 8.2.4) 

V2 
1 @.25 

LM = V2 -v~ 
O Is~ 

l 

V2 
1 Is and l-1 - - vio M -

1 1 J wo v1o 

The matrix of the standard eigenproblem K = Lii1 KLi:l is in this case, 

3 V5 V5 -
2 2 4 

K= V5 3 5 
2 2 4 

V5 5 3 -
4 4 2 

EXAMPLE 10.9: Consider the generalized .... eigenproblem in Example 10.8. Use the spectral 
decomposition of M to calculate the matrix K of a corresponding standard eigenproblem. 

The eigenvalues and corresponding eigenvectors of the problem Met> = Act> can be calcu­
lated as shown in Example 10.4. We obtain A1 = 1, ..\2 = 2, ..\3 = 4, and 

1 l 1 

Y3 V2 V6 

cf>1 = 
1 

cf>2 = 0 cf>3 = 
2 -V3; 

V6 
l 1 l 

Y3 - \12 V6 
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Hence, the decomposition M = RD2R7 is 

1 l l 1 1 

V3 V2 V6 

[1 J 
V3 -V3 

M= 
1 

0 
2 2 1 

0 -Y3 V6 V2 
1 1 1 1 2 

V3 V2 V6 V6 V6 
Noting that 8 = RD and s- 1 = n- 1 RT because RRT = I, we obtain 

s-1 = 

1 1 1 
V3 -V3 V3 

1 
2 

0 

1 1 1 

1 
2 

2V6 V6 2V6 
The matrix of the standard eigenproblem is i = s-1Ks-r; i.e., 

i= 

10 1 1 
3 V3 - 3V2 
1 

V3 
1 

1 

2V6 
l 1 1 

3V2 2V6 6 
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1 

V3 
1 

-V2 
1 

V6 

We should note that the matrix K obtained here is different from the matrix i derived in 
Example 10.8. 

In the above discussion we considered only the factorization of M into M = ssr and 
then the transformation of K«i, = AM«i, into the form given in ( 10.33 ). We pointed out that 
this transformation can yield inaccurate results if M is ill-conditioned. In such a case it 
seems natural to avoid the decomposition of M and instead use a factorization of K. 
Rewriting K«i, = AMc:1> in the form Mtf> = (1/A)Ktf>, we can use an analogous procedure 
to obtain the eigenproblem 

- - 1 .. (10.38) Mcf> = -cf> 
A 

where M = s-1Ms-r (10.39) 

K = ssr (10.40) 

cf, = sr cf> (10.41) 

and S is obtained using the Cholesky factor or spectral decomposition of K. If K is 
well-conditioned, the transformation is also well-conditioned. However, since K is always 
banded, M is always a full matrix, and the transformation is usually inefficient for the 
solution of Ktf> = AMc:f>. 
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As we pointed out earlier, the possibility of actually solving a generalized eigenprob­
lem by first transforming it into a standard form is only one reason why we considered the 
above transformations. The second reason is that the properties of the eigensolution of the 
generalized eigenproblem can be deduced from the properties of the solution of the corre­
sponding standard eigenproblem. Specifically, we can derive the orthogonality properties 
of the eigenvectors as given in ( 10.10) and ( 10.11 ), and the Sturm sequence property of the 
characteristic polynomials of the eigenproblem K<t, = AM<t, and of its associated con­
straint problems as given in ( 10.22). In both cases no fundamentally new concepts need be 
proved; instead, the corresponding properties of the standard eigenproblem, which is ob­
tained from the generalized eigenproblem, are used. We give the proofs in the following 
examples as an application of the transformation of a generalized eigenproblem to a stan­
dard form. 

EXAMPLE 10.10: Show that the eigenvectors of the problem Kq, = AMq, are M- and K­
orthogonal and discuss the orthogonality of the eigenvectors of the problems rKq, = ,\r-A'Kq, 
given in (10.6) and Kcf> = ACq, given in (10.7). 

The eigenvector orthogonality is proved by transforming the generalized eigenproblem to 
a standard form and using the fact that the eigenvectors of a standard eigenproblem with a 
symmetric matrix are orthogonal. Consider first the problem Kq, = AMq, and assume that M 
is positive definite. Then we can use the transformation in (10.30) to (10.34) to obtain, as an 
equivalent eigenproblem, 

where 

Kcf, = Acf, 
K = s-1Ks-r; 

But since the eigenvectors cl,; of the problem Kcl, = "-4> have the properties (see Section 2.7) 

1T.i.. _ ". .i..TK-.i.. - \ " 'fl; 'ii} - Uij, 'iii 'ii} - l\jUij 

we have, substituting cf,; = sr q>;, cl,1 = sr q,1, 

q,;Mq,i = 0;1; q,fKt1>1 = A1811 (a) 

If M is not positive definite, we consider the eigenproblem Mcf> = (l / A)Kcf> (with K 
positive definite or a shift must be imposed; see Section 10.2.3). We now use the transformation 

-- (1) -Met>= A q, 

where 

and the properties 

Substituting for cf,, and cl,1, we obtain 

(b) 

with the eigenvectors now being K-orthonormalized, because the problem Mcf> = (1/A)Kcf> was 
considered. To obtain the same vectors as in the problem Kcf> = AM«f>, we need to multiply the 
eigenvectors cf>; of the problem Mq, = (1/A)Kq, by the factors v'A;: i = 1, ... , n. 

Considering these proofs, we note that we arranged the eigenproblems in such a way that 
the matrix associated with the eigenvalue, i.e., the matrix on the right-hand side of the eigenvalue 
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problem, is positive definite. This is necessary to be able to carry out the transformation of the 
generalized eigenproblem to a standard form and thus derive the eigenvector orthogonality 
properties in (a) and (b). However, considering the problems 'Kcf> = ,\1

-
4'Kcf> and Kcf> = ,\Ccf> 

given in (10.6) and (10.7), we can proceed in a similar manner. The results would be the 
eigenvector orthogonality properties given in (10.14) and (10.15). 

EXAMPLE 10.11: Prove the Sturm sequence property of the characteristic polynomials of 
the problem Ket> = ,\Mcf> and the associated constraint problems. Demonstrate the proof for the 
following matrices: 

[ 

3 -1 J 
K = -1 2 -1 ; 

-1 1 

(a) 

The proof that we consider here is based on the transformation of the eigenproblems 
Ket> = ,\Mcf> and K(r>ct,<r> = A<r>M(r)cf>(r> to standard eigenproblems, for which the characteristic 
polynomials are known to form a Sturm sequence (see Sections 2.6 and 8.2.5). 

As in Example 10.10, we assume first that M is positive definite. In this case we can 
transform the problem Kcf> = AMcf> into the form 

icf, = ..\cf, 

where 

and LM is the Cholesky factor of M. 
Considering the eigenproblems Kcf, = Acf, and K,(r>cf,<r> = ,\<r>cJ,<r>, r = l, ... , n - 1 

[see (8.37)]. we know that the characteristic polynomials form a Sturm sequence. On the other 
hand, if we consider the eigenproblem Ket> = AMcf> and the eigenproblems of its associated 
constraint problems, i.e., KCr>cf>Cr) = ,\,t'>M<r>ct><r> [see (10.20)], we note that the problems 
i.<r>cJ,<r) = A(r)cf,(r) and K(r)ct>(r) = ,\(r)M(r)cf>(r) have the same eigenvalues. Namely, K(r)cf>(r) = 
A<r>cJ,<r> is a standard eigenproblem corrssponding t2 K<,>ct><r> = ,\Cr>MCrlct,<,>,· i.:..e., instead of 
eliminating the r rows and columns from K ( to obtain K(r)), we can also calculate K(r) as follows: 

i{Cr) = L~,tlK(r)f,~-T; M(r) = L~L~f; cJ,<r) = i,~T cf>Cr) (b) 

Note Jhat L~ and (~-• can be obtained simply by deleting the last r rows and columns of LM 
and Li"i, respectively. 

Hence, the Sturm sequence property also holds for the characteristic polynomials of 
Kcf> = AMcf> and the associated constraint problems. 

For the example to be considered, we have 

Hence, 

K = [-:~i ~ 
-! 

2 

[
2 0 OJ LM= 2 2 0 
0 2 2 

Using Kin (d) to obtain i.m and i:<2>, we have 

Kn>= 4 • - [ 1 -IJ 
-1 i ' 

(c) 

(d) 
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On the other hand, we can obtain the same matrices i<o and i<2
> using the relations in (b), 

i<o = i,~>-• Ko>i,~>-r; i:<2> = i,~H K<2>i,~>-r 

where K<r> and M{r) (to calculate L~) are obtained from Kand Min (a) .. 
In the preceding discussion we assumed that M is positive definite. If M is positive 

semidefinite, we can consider the problem Met, = (l/,\)Kct, instead, in which K is positive 
definite (this may mean that a shift has to be imposed; see Section 10.2.3) and thus show that 
the Sturm sequence property still holds. 

It may be noted that it follows from this discussion that the characteristic polynomials of 
the eigenproblems 'Ket, = ,\1-A'Kct, and K<t, = A.C<f> given in (10.6) and (10.7) and of their 
associated constraint problems also form a Sturm sequence. 

10.2.6 Exercises 

10.1. Consider the generalized eigenproblem 

[ 

6 -1 
-1 4 

0 -1 

o] [2 o o] -1 ct,=,\ 0 2 1 <t, 
2 0 1 1 

(a) Calculate the eigenvalues and eigenvectors and show explicitly that the eigenvectors are 
M-orthogonal. 

(b) Find two vectors that are M-orthogonal but are not eigenvectors. 
10.2. Calculate the eigenvalues of the eigenproblem in Exercise 10.1 and of its associated constraint 

problems. Show that the eigenvalues satisfy the separation property (10.22). 
10.3. Consider the eigenproblem 

[
- ~ - ~ ~]<t> = ,\[1 2 ]<t> 

0 0 3 ! 
(a) Calculate the eigenvalues and eigenvectors of the problem. Also, calculate the eigenvalues of 

the associated constraint problems [see (10.20)]. 
(b) Establish two vectors that are M-orthogonal but are not eigenvectors. 

10.4. Calculate the eigenvalues and eigenvectors of the problem 

[ 6 -1] <t> = ,\[2 o]<t> 
-1 4 0 0 

Then apply a shift p = 3 on Kand calculate the eigenvalues and eigenvectors of the new problem 
[see (10.25}]. 

10.S. Transform the generalized eigenproblem in Exercise 10.1 into a standard form. 
10.6. (a) The eigenvalues and eigenvectors of the problem 

Kcf> = ,\cf> 

are 4>1 = _1 [l] 
V2 1 

A2 = 4; <t,2 = _1 [ I] 
V2 -1 

Calculate K. 
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(b) The eigenvalues and eigenvectors of the problem 

Ket, = A.Met, 

are cf>1 = _1 [1] 
V3 l 

Calculate Kand M. Are the Kand M matrices in (a) and (b) unique? 

10.3 APPROXIMATE SOLUTION TECHNIQUES 

861 

It is apparent from the nature of a dynamic problem that a dynamic response calculation 
must be substantially more costly than a static analysis. Whereas in a static analysis the 
solution is obtained in one step, in dynamics the solution is required at a number of discrete 
time points over the time interval considered. Indeed, we found that in a direct step-by-step 
integration solution, an equation of statics, which includes the effects of inertia and damping 
forces, is considered at the end of each discrete time step (see Section 9.2). Considering a 
mode superposition analysis, the main computational effort is spent in the calculation of the 
required frequencies and mode shapes, which also requires considerably more effort than 
a static analysis. It is therefore natural that much attention has been directed toward 
effective algorithms for the calculation of the required eigensystem in the problem 
Kc:f, = AMct,. In fact, because the "exact" solution of the required eigenvalues and corre­
sponding eigenvectors can be prohibitively expensive when the order of the system is large 
and a "conventional'' technique is used, approximate techniques of solution have been 
developed. The purpose of this section is to present the major approximate methods that 
have been designed and are currently still in use. 

The approximate solution techniques have primarily been developed to calculate the 
lowest eigenvalues and corresponding eigenvectors in the problem Kc:f, = AMc:f, when the 
order of the system is large. Most programs use exact solution techniques in the analysis 
of small-order systems. However, the problem of calculating the few lowest eigenpairs of 
relatively large-order systems is very important and is encountered in all branches of 
structural engineering and in particular in earthquake response analysis. In the following 
sections we present three major techniques. The aim in the presentation is not to advocate 
the implementation of any one of these methods but rather to describe their practical use, 
their limitations, and the assumptions employed. Moreover, the relationships between the 
approximate techniques are described, and in Section 11.6 we will, in fact, find that the 
approximate techniques considered here can be understood to be a first iteration ( and may 
be used as such) in the subspace iteration algorithm. 

10.3.1 Static Condensation 

We have already encountered the procedure of static condensation in the solution of static 
equilibrium equations, where we showed that static condensation is, in fact, an application 
of Gauss elimination (see Section 8.2.4 ). In static condensation we eliminated those degrees 
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of freedom that are not required to appear in the global finite element assemblage. For 
example, the displacement degrees of freedom at the internal nodes of a finite element can 
be condensed out because they do not take part in imposing interelement continuity. We 
mentioned in Section 8.2.4 that the term "static condensation" was actually coined in 
dynamic analysis. 

The basic assumption of static condensation in the calculation off requencies and 
mode shapes is that the mass of the structure can be lumped at only some specific degrees 
of freedom without much effect on the accuracy of the frequencies and mode shapes of 
interest. In the case of a lumped mass matrix with some zero diagonal elements, some of 
the mass lumping has already been carried out. However, additional mass lumping is in 
general required. Typically, the ratio of mass degrees of freedom to the total number of 
degrees of freedom may be somewhere between ! and fo. The more mass lumping is 
performed, the less computer effort is required in the solution; however, the more probable 
it is also that the required frequencies and mode shapes are not predicted accurately. We 
shall have more to say about this later. 

Assume that the mass lumping has been carried out. By partitioning the matrices, we 
can then write the eigenproblem in the form 

[Kaa Kac] [ct>a] = ,\ [Ma OJ [ct>a] 
Kea Kee cf>c O O cf>c 

(10.42) 

where cf>a and cf>c are the displacements at the mass and the massless degrees of freedom, 
respectively, and Ma is a diagonal mass matrix. The relation in (10.42) gives the condition 

Kcacf>a + Kcccf>c = 0 (10.43) 

which can be used to eliminate cf>c· From {10.43) we obtain 

cf>c = -K;1Kcacf>a 

and substituting into ( 10.42), we obtain the reduced eigenproblem 

Kacf>a = AMacf>a 

where 

(10.44) 

(10.45) 

(10.46) 

The solution of the generalized eigenproblem in ( 10.45) is in most cases obtained by 
transforming the problem first into a standard form as described in Section 10.2.5. Since Ma 
is a diagonal mass matrix with all its diagonal elements positive and probably not small, the 
transformation is in general well-conditioned. 

The analogy to the use of static condensation in static analysis should be noted. 
Realizing that the right-hand side of ( 10.42) may be understood to be a load vector R, where 

(10.47) 

we can use Gauss elimination on the massless degrees of freedom in the same way as we do 
on the degrees of freedom associated with the interior nodes of an element or a substructure 
(see Section 8.2.4). 

One important aspect should be observed when comparing the static condensation 
procedure on the massless degrees of freedom in (10.42) to (10.46) on the one side, with 
Gauss elimination or static condensation in static analysis on the other side. Considering 
( 10.47), we find that the loads at the cf>a degrees of freedom depend on the eigenvalue 
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(free-vibration frequency squared) and eigenvector (mode shape displacements). This 
means that in (10.45) a further reduction of the number of degrees of freedom to be 
considered is not possible. This is a basic difference to static condensation as applied in 
static analysis, where the loads are given explicitly and their effect can be carried over to 
the remaining degrees of freedom. 

EXAMPLE 10. 12: Use static condensation to calculate the eigenvalues and eigenvectors of the 
problem K<f> = AM<f>, where 

[ 
2 -1 0 OJ = -1 2 -1 0 . 

K O -1 2 -1 ' 

0 0 -1 1 
M=[ 

2 0 ] 
First we rearrange columns and rows to obtain the form given in (10.42), which is 

[j ! -~ =!][!:] = A[2 I O ][!:] 
-1 -1 0 2 0 

Hence, Ka given in { 10.46) is in this case, 

Ka = [ ~ ~] - [ - ~ = : ] [ t ~] [ = ~ -~] = [ -~ 

The eigenproblem Ka <l>a = ..\Ma<f>a is, therefore, 

[ _ ~ -n<f>a = A [2 1]<t>a 
and we have det(Ka - AMa) = 2A 2 - 2A + ! 

Hence, 1 V2 1 V2 
Ai= 2-4; "-2 = 2 + 4 

The corresponding eigenvectors are calculated using 

(Ka - A; Ma)<l>a, = O; 

Hence 

Using (10.44), we obtain [~ 

<l>c1 = -
0 

~,, = -[: 

-u 
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Therefore, the solution to the eigenproblem Ket> = ,\Met, is 

1 

l V2 
At = 2 - 4 ; 

l V2 
A2 = 2 + 4; 

4>1 = 

4>2 = 

-
4 
1 
2 

1 + V2 
4 

V2 
2 

4 

1 
2 

-1 + V2 
4 

V2 
2 

Chap. 10 

In the above discusssion we gave the formal matrix equations for carrying out static 
condensation. The main computational effort is in calculating Ka given in ( 10.46), where 
it should be noted that in practice a formal inversion of Kee is not performed. Instead, Ka 
can be obtained conveniently using the Cholesky factor Lee of Kee· If we factorize Kee, 

Kee= Lil (10.48) 

we can calculate Ka in the following way: 

where Y is solved from 

Ka= Ki.1a -vrY 

LcY = Kea 

(10.49) 

(10.50) 

As pointed out earlier, this procedure is, in fact, Gauss elimination of the massless 
degrees of freedom, i.e., elimination of those degrees of freedom at which no external forces 
(mass effects) are acting. Therefore, an alternative procedure to the one given in (10.42) to 
( 10.50) is to directly use Gauss elimination on the c.f>c degrees of freedom without partition­
ing K into the submatrices Kaa, Kee, Kae, and Kea because Gauss elimination can be 
performed in any order (see Example 8.1, Section 8.2.1). However, the bandwidth of the 
stiffness matrix will then, in general, increase during the reduction process, and problems 
of storage must be considered. 
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For the solution of the eigenproblem Katf>a = AMatf>a, it is important to note that Ka 
is, in general, a full matrix, and the solution is relatively expensive unless the order of the 
matrices is small. 

Instead of calculating the matrix Ka, it may be preferable to evaluate the flexibility 
matrix Fa = K; 1, which is obtained using 

[
Kaa Kac] [Fa] [I] 
Kea Kee Fe = 0 

(10.51) 

where I is a unit matrix of the same order as Kaa· Therefore, in (10.51), we solve for the 
displacements of the structure when unit loads are applied in turn at the mass degrees of 
freedom. Although the degrees of freedom have been partitioned in (10.51), there is no 
need for it in this analysis (see Example 10.13). Having solved for Fa, we now consider 
instead of ( 10.45) the eigenproblem 

(10.52) 

Although this eigenproblem is of a slightly different form than the generalized problem 
Ktf, = AMtf,, the transformation to a standard problem proceeds in much the same way 
(see Section 10.2.5). For the transformation we define 

(10.53) 

where M!/2 is a diagonal matrix with its ith diagonal element equal to the root of the ith 
diagonal element of Ma. Premultiplying both sides of (10.52) by M!l2 and substituting the 
relation in ( 10.53), we obtain 

(10.54) 

(10.55) 

Once the displacements tf>a have been calculated, we obtain the complete displace­
ment vector using 

[ct>a] _ [ I ]ct> 
cJ>e - FcKa a 

(10.56) 

where Fe was calculated in (10.51). The relation in (10.56) is arrived at by realizing that 
the forces applied at the mass degrees of freedom to impose tf>a are K 0 tf>a, Using (10.51), 
the corresponding displacements at all degrees of freedom are given in ( 10.56). 

EXAMPLE 10.13: Use the procedure given in (10.51) to (10.56) to calculate the eigenvalues 
and eigenvectors of the problem Kcf> = ..\Mcf> considered in Example 10.12. 

The first step is to solve the equations 

[-1-l J -!}v, v,J = [! !] (a) 

where we did not interchange rows and columns in K in order to obtain the form in ( 10.51 ). 
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For the solution of the equations in (a), we use the LDLT decomposition of K, where 

Hence, we obtain 

and hence, 

L = [-! 1 
0 -! 

vf = [l 2 2 

Fa=[~ !l 
2]; 

Fe= g 
F = [V2 0][2 2r'2 

a O 1 2 4 0 

The solution of the eigenproblem 

gives µ1 = 4 - 2V2; 

µ2 = 4 + 2V2; 

Since 4>a = M;112t1,a, we have 

v[ = [l 2 3 4] 

~] 
~] = [2~ 21] 

The vectors cf,c1, and 4>c2 are calculated using ( 10.56); hence, 

(b) 

(c) 

(d) 

Sinceµ == 1/>.. we realize that in (b) to (d) we have the same solution as obtained in Exam­
ple 10.12. 

Considering the different procedures of eliminating the massless degrees of freedom, 
the results of the eigensystem analysis are the same irrespective of the procedure followed, 
i.e., whether Ka or Fa is established and whether the eigenproblem in ( 10.45) or in ( 10.52) 
is solved. The basic assumption in the analysis is that resulting from mass lumping. As we 
discussed in Section 10.2.4, each zero mass corresponds to an infinite frequency in the 
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system. Therefore, in approximating the original system equation K<f, = AM<f, by the 
equation in ( 10.42), we replace, in fact, some of the frequencies of K<f, = AM<f, by infinite 
frequencies and assume that the lowest frequencies solved from either equation are not 
much different. The accuracy with which the lowest frequencies of K<f, = AM<f, are ap­
proximated by solving Ka<J,a = AMa<J,a depends on the specific mass lumping chosen and 
may be adequate or crude indeed. In general, more accuracy can be expected if more mass 
degrees of freedom are included. However, realizing that the static condensation results in 
Ka having a larger bandwidth than K (and Fa is certainly full), the computational effort 
required in the solution of the reduced eigenproblem increases rapidly as the order of Ka 
becomes large (see Section 11.3 }. On the other hand, if sufficient mass degrees of freedom 
for accuracy of solution are selected, we may no longer want to calculate the complete 
eigensystem of Ka<J,a = AMa<J,a but only the smallest eigenvalues and corresponding vec­
tors. However, in this case we may just as well consider the problem K<f, = AM<I> without 
mass lumping and solve directly only for the eigenvalues and vectors of interest using one 
of the algorithms described in Chapter 11. 

In summary, the main shortcoming of the mass lumping procedure followed by static 
condensation is that the accuracy of solution depends to a large degree on the experience 
of the analyst in distributing the mass appropriately and that the solution accuracy is 
actually not assessed. We consider the following example to show the approximation that 
can typically result. 

EXAMPLE 10.14: In Example 10.4 we calculated the eigensystem of the problem Ket> = 
.,\M<f>, where K and M are given in the example. To evaluate an approximation to the smallest 
eigenvalue and corresponding eigenvector, consider instead the following eigenproblem, in 
which the mass is lumped 

[-~ -! -~Jct>= "-[o 2 Jct> 
0 -1 2 0 

Using the procedure given in ( 10.51) to ( 10.56), we obtain 

Fa=UJ; 

Hence, ..\1 = J, tf>a1 = [l/Y2], and 

F,= m 

(a) 

The solution of the eigenproblem in (a) for the smallest eigenvalue and corresponding eigenvector 
is hence 

1 

2V2 
1 

V2 
1 

2V2 
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whereas the solution of the original problem (see Example 10.4) is 

1 

V2 

At = 2; 

It should be noted that using the mass lumping procedure, the eigenvalues can be smaller-as 
in this example-or larger than the eigenvalues of the original system. 

10.3.2 Rayleigh-Ritz Analysis 

A most general technique for finding approximations to the lowest eigenvalues and corre­
sponding eigenvectors of the problem Kcf> = 1'.M<t, is the Rayleigh-Ritz analysis. The static 
condensation procedure in Section 10.3.l, the component mode synthesis described in the 
next section, and various other methods can be understood to be Ritz analyses. As we will 
see, the techniques differ only in the choice of the Ritz basis vectors assumed in the analysis. 
In the following we first present the Rayleigh-Ritz analysis procedure in general and then 
show how other techniques relate to it. 

The eigenproblem that we consider is 

Kcf> = ,\Mcf> (10.4) 

where we now first assume for clarity of presentation that K and Mare both positive 
definite, which ensures that the eigenvalues are all positive; i.e., "-• > 0. As we pointed out 
in Section 10.2.3, K can be assumed positive definite because a shift can always be intro­
duced to obtain a shifted stiffness matrix that satisfies this condition. As for the mass 
matrix, we now assume that M is a consistent mass matrix or a lumped mass matrix with 
no zero diagonal elements, which is a condition that we shall later relax. 

Consider first the Rayleigh minimum principle, which states that 

Ai = min p(cf>) (10.57) 

where the minimum is taken over all possible vectors ct,, and p(cf>) is the Rayleigh quotient 

cf>TKcf> 
p(cf>) = cf>TMcf> (10.58) 

This Rayleigh quotient is obtained from the Rayleigh quotient of the standard eigenvalue 
problem K<f, = A<i, (see Sections 2.6 and l 0.2.5). Since both K and M are positive definite, 
p(_ <t,) has finite values for all <t,. Referring to Section 2.6, the bounds on the Rayleigh 
quotient are 

0 < .\ 1 s p( cf>) s ,\11 < oo (10.59) 

In the Ritz analysis we consider a set of vectors cf>, which are linear combinations of 
the Ritz basis vectors IJ,i, i = 1, ... , q; i.e., a typical vector is given by 

(10.60) 
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where the X; are the Ritz coordinates. Since «I> is a linear combination of the Ritz basis 
vectors, cf> cannot be any arbitrary vector but instead lies in the subspace spanned by the 
Ritz basis vectors, which we call Vq (see Sections 2.3 and 11.6). It should be noted that the 
vectors "'" i = l, ... , q, must be linearly independent; therefore, the subspace Vq has 
dimension q. Also, denoting then-dimensional space in which the matrices Kand Mare 
defined by Vn, we have that Vq is contained in Vn, 

In the Rayleigh-Ritz analysis we aim to determine the specific vectors cf>h i = 1, . . . , 
q, which, with the constraint of lying in the subspace spanned by the Ritz basis vectors, 
"best" approximate the required eigenvectors. For this purpose we invoke the Rayleigh 
minimum principle. The use of this principle determines in what sense the solution "best" 
approximates the eigenvectors soµght, an aspect that we shall point out during the presen­
tation of the solution procedure. 

To invoke the Rayleigh minimum principle on cf>, we first evaluate the Rayleigh 
quotient, 

(10.61) 

where (10.62) 

mj1 = -t,;M\f,J (10.63) 

The necessary condition for a minimum of p(4>) given in (10.61) is op(4>)/ox, = 0, 
i = 1, ... , q, because the X; are the only variables. However, 

q - - q 
!lp(I) 2m .I x1kiJ - 2k . .I x/nu 
U 'f' J .. 1 1•1 (10.64) 

and using p = k/m, the condition for a minimum of p(cf>) is 
q 

~ (ki; - pfii;;)X; = 0 for i = 1, ...• q (10.65) 
Ja:1 

In actual analysis we write the q equations in (10.65) in matrix form, thus obtaining the 
eigenproblem 

ix = pMx (10.66) 

where Kand Mare q X q matrices with typical elements defined in (10.62) and (10.63), 
respectively, and x is a vector of the Ritz coordinates sought: 

(10.67) 

The solution to (10.66) yields q eigenvalues pi, ... , pq, which are approximations to 
A1, •.• , Aq, and q eigenvectors, 

xr = [xi x! x~] 

xI = [xt x~ x~] 
(10.68) 

xf = [xi x! ... xZ] 
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The eigenvectors Xi are used to evaluate the vectors 4,1, ... , 4,q, which are approximations 
to the eigenvectors «f>1, •.. , «f>q· Using (10.68) and (10.60), we have 

q 

cl>, = ~ xJ "1i; i = 1, ... , q (10.69) 
J•l 

An important feature of the eigenvalue approximations calculated in the analysis is 
that they are upper bound approximations to the eigenvalues of interest; i.e., 

(10.70) 

meaning that since K and M are assumed to be positive definite, K and M are also positive 
definite matrices. 

The proof of the inequality in (10.70) shows the actual mechanism that is used to 
obtain the eigenvalue approximations p,. To calculate P1 we search for the minimum of p( «f:,) 
that can be reached by linearly combining all available Ritz basis vectors. The inequality 
A, :::;; Pi follows from the Rayleigh minimum principle in (10:57) and because Vq is con­
tained in the n-dimensional space Vn, in which K and M are defined. 

The condition that is employed to obtain p2 is typical of the mechanism used to 
calculate the approximations to the higher eigenvalues. First, we observe that for the 
eigenvalue problem K«f:, = AM«f:,, we have 

A2 = min p(cl>) (10.71) 

where the minimum is now taken over all possible vectors «f:, in V" that satisfy the orthog­
onality condition (see Section 2.6) 

(10.72) 

Considering the approximate eigenvectors ci>j obtained in the Rayleigh-Ritz analysis, 
we observe that 

(10.73) 

where 8;1 is the Kronecker delta, and that, therefore, in the above Rayleigh-Ritz analysis we 
obtained p2 by evaluating 

P2 = min p(<i>) (10.74) 

where the minimum was taken over all possible vectors 4> in Vq that satisfy the orthogonality 
condition 

(10.75) 

To show that A2 s p2, we consider an auxiliary problem; i.e., assume that we evaluate 

p2 = min p(<i,) (10.76) 

where the minimum is taken over all vectors cii' that satisfy the condition 

<i>TM<l>1 = 0 (10.77) 

The problem defined in (10.76) and ( 10.77) is the same as the problem in ( 10.71) and 
(10.72), except that in the latter case the minimum is taken over all «f:,, whereas in the 
problem in (10.76) and (10.77) we consider all vectors ti, in Vq, Then since Vq is contained 
in Vn, we have A2 s p2. On the other hand, f>2 s p2 because the most severe constraint on 
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4i' in (10.77) is 4>1, Therefore, we have 

A2 s P2 s p2 (10.78) 

The basis for the calculation of 4>2, and hence pi, is that the minimum of p(<f,) is 
sought with the orthogonality condition in (10.75) on 4>1, Similarly. to obtain Pi and 4,i, we 
in fact minimize p(«f>) with the orthogonality conditions 4,rM«f>i = 0 for j = 1, ... , 
i - 1. Accordingly, the inequality on p; in (10.70) can be proved in an analogous manner 
to the procedure used above for p2, but all i - 1 constraint equations need to be satisfied. 

The observation that i - 1 constraint equations need to be fulfilled in the evaluation 
of Pi also indicates that we can expect less accuracy in the approximation of the higher 
eigenvalues than in the approximation of the lower eigenvalues, for which fewer constraints 
are imposed. This is generally also observed in actual analysis. 

Considering the procedure in practical dynamic analysis, the Ritz basis functions may 
be calculated from a static solution in which q load patterns are specified in R; i.e., we 
consider 

K'i" = R (10.79) 

where 'It is an n X q matrix storing the Ritz basis vectors;, Le., 'It = [ "61, ... , \f,q]. The 
analysis is continued by evaluating the projections of K and M onto the subspace Vq spanned 
by the vectors tf,;, i = l, ... , q; i.e., we calculate 

K = wrK\fl (10.80) 

and (10.81) 

where because of (10.79) we have 

(10.82) 

Next we solve the eigenproblem Kx = pMx, the solution of which can be written 

KX = MXp (10.83) 

where pis a diagonal 1!,!-atrix listing the eigenvalue approximations p1, p = diag(pt), and X 
is a matrix storing the M- orthonormal eigenvectors x 1, ••• , Xq. The approximations to the 
eigenvectors of the problem K<f> = AM<f> are then 

4> = wx (10.84) 

So far we have assumed that the mass matrix of the finite element system is positive 
definite; i.e., Mis not a diagonal mass matrix with some zero diagonal elements. The reason 
for this assumption was to avoid the case 4i'TM4> equal to zero in the calculation of the 
Rayleigh quotient, in which case p(4,) gives an infinite eigenvalue. However, the Rayleigh­
Ritz analysis can be carried out as described above when M is a diagonal matrix with some 
zero diagonal elements, provided the Ritz basis vectors are selected to lie in the subspace 
that corresponds to the finite eigenvalues. In addition, the Ritz basis vectors must be linearly 
independent wh~ considering only the mass degrees of freedom in order to obtain a positive 
definite matrix M. One way of achieving this in practice is to excite different mass degrees 
of freedom in each of the load vectors in R in (10.79) (see Section 11.6.3 and Exam­
ple 10.16). 

Of particular interest are the errors that we may expect in the solution. Although we 
have shown that an eigenvalue calculated from the Ritz analysis is an upper bound on the 
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corresponding exact eigenvalue of the system, we did not establish anything about the 
actual error in the eigenvalue. This error depends on the Ritz basis vectors used because the 
vectors cf> are linear combinations of the Ritz basis vectors "6,, i = 1, ... , q. We can obtain 
good results only if the vectors tf,, span a subspace Vq that is close to the least dominant 
subspace of Kand M spanned by cf>1, ..• , tf,q, It should be noted that this does not mean 
that the Ritz basis vectors should each be close to an eigenvector sought but rather that linear 
combinations of the Ritz basis vectors can establish good approximations of the required 
eigenvectors of Ktf> = AM<f,. We further discuss the selection of good Ritz basis vectors and 
the approximations involved in the analysis in Section 11.6 when we present the subspace 
iteration method, because this method uses the Ritz analysis technique. 

To demonstrate the Rayleigh-Ritz analysis procedure, consider the following exam­
ples. 

EXAMPLE 10.15: Obtain approximate solutions to the eigenproblem K4f, = AM4f, consid­
ered in Example 10.4, where 

[ 

2 -1 OJ 
K = -1 4 -1 ; 

0 1 2 

The exact eigenvalues are A1 = 2, A.2 4, A.3 = 6. 

1. Use the following load vectors to generate the Ritz basis vectors 

R= [i n 
2. Then use a different set of load vectors to generate the Ritz basis vectors 

R = [: !J 
In the Ritz analysis we employ the relations in (10.79) to (10.84) and obtain, in case l, 

H -1 OJ [' OJ 4 -I "II'= 0 0 
-1 2 0 1 

[HJ Hence, "II'= t i 
l 7 

12 12 

and - 1 [' K = 12 1 ~l - 1 [29 
M = 144 11 

The solution of the eigenproblem Kx = pMx is 

[
1.3418] 

(pi, X1) = (2.4004, 1.J4lS ); 

11) 
29 
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Hence, we have as eigenvalue approximations p, = 2.40, P2 = 4.00, and evaluating 

4' = i i . . = 0.447 0 - [Ti *][1 3418 2 0008] [0
·
895 

l.OO] 
ii. Ti 1.3418 -2.0008 0.895 -1.00 

we have [
0.895] [ 1.00] 

ci>1 = 0.447 ; ci>2 = 0.00 
0.895 -1.00 

Next we assume the load vectors in case 2 and solve 

H 
-1 

-n~= G !J 4 
-1 

Hence, ~ -[! 1J - j 3 
S I 
6 6 

and M = 1-[41 13] 
36 13 5 

The solution of the eigenproblem Kx = pMx gives 

[
0.70711] 

(pi' X1) = (2.000, 0.70711 ); [
-2.1213] 

(()2, X2) = (6.0000, 
6

.
3640 

) 

Hence, we have as eigenvalue approximations P• = 2.00, p2 = 6.00, and evaluating 

4i = j i 0.70711 -2.1213 = 0.70711 0.70713 
[
i i] [ ] [0.70711 -0.70708] 

1 i 0.70711 6.3640 0.70711 -0.70708 

[

-0.70708] 
tf>2 = 0. 70713 

-0.70708 
we have 

[

0.70711] 
ci>1 = 0.70711 ; 

0.70711 

873 

Comparing the results with the exact solution, it is interesting to note that in case 1, 
Pt > A1 and P2 = A2, whereas in case 2, Pt = A1 and p2 = A:;. In both cases we did not obtain 
good approximations to the lowest two eigenvalues, and it is clearly demonstrated that the results 
depend completely on the initial Ritz basis vectors chosen. 

EXAMPLE 10. 16: Use the Rayleigh-Ritz analysis to calculate an approximation to At and +1 
of the eigenproblem considered in Example 10.12. 

We note that in this case M is positive semidefinite. Therefore, to carry out the Ritz 
analysis we need to choose a load vector in R that excites at least one mass. Assume that we use 

RT= [O 1 0 O] 

Then the solution of (10.79) yields (see Example 10.13) 

,pr= [1 2 2 2] 
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Hence, 

and 

i = [2]; 

1 
P• = 6; 

M = [12] 

X1 = [
2
~] 

ct>r = [
2 

... 1r::;
3 

1 1 1 ] 
V.1 Y3 Y3 Y3 

Hence we have, as expected, P1 > ..\ 1. 

The Ritz analysis procedure presented above is a very general tool, and, as pointed out 
earlier, various analysis methods known under different names can actually be shown to 
be Ritz analyses. In Section 10.3.3 we present the component mode synthesis as a Ritz 
analysis. In the following we briefly want to show that the technique of static condensation 
as described in Section 10.3.1 is, in fact, also a Ritz analysis. 

In the static condensation analysis we assumed that all mass can be lumped at q 
degrees of freedom. Therefore, as an approximation to the eigenproblem K<t, = AM<t,, we 
obtained the following problem: 

(10.42) 
with q finite and n - q infinite eigenvalues, which correspond to the massless degrees 1of 
freedom (see Section 10.2.4). To calculate the finite eigenvalues, we used static condensa­
tion on the massless degrees of freedom and arrived at the eigenproblem 

Kacf>a = AMacf>a (10.45) 

where Ka is defined in (10.46). However, this solution is actually a Ritz analysis of the 
lumped mass model considered in ( 10.42). The Ritz basis vectors are the displacement 
patterns associated with the <i>a degrees of freedom when the <t>c degrees of freedom are 
released. Solving the equations 

[
Kaa Kac][Fa] [I] 
Kea Kee Fe = 0 (10.51) 

in which Fa = K;1, we find that the Ritz basis vectors to be used in (10.80), (10.81), and 
(10.84) are 

(10.85) 
To verify that a Ritz analysis with the base vectors in (10.85) yields in fact (10.45), 

we evaluate (10.80) and (10.81). Substituting for 'It and Kin (10.80), we obtain 

K = [I (FcKYJ[!:: !::][Fc~J (10.86) 
which, using (10.51), reduces to 

K = Ka 

Similarly, substituting for 'It and M in ( 10.81 ), we have 

M = [I (FcKaY][~a :][Fe~J 

(10.87) 

(10.88) 
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(J0.89) 

Hence, in the static condensation we actually perform a Ritz analysis of the lumped 
mass model. It should be noted that in the analysis we calculate the q finite eigenvalues 
exactly (i.e., p; = A; for i = 1, ... , q) because the Ritz basis vectors span the q­
dimensional subspace corresponding to the finite eigenvalues. In practice, the evaluation of 
the vectors 111' in (10.85) is not necessary (and would be costly), and instead the Ritz 
analysis is better carried out using 

"'= [!:] (10.90) 

Since the vectors in (10.90) span the same subspace as the vectors in (10.85), the same 
eigenvalues and eigenvectors are calculated employing either set of base vectors. 
Specifically, using (10.90), we obtain in the Ritz analysis the reduced eigenproblem 

(10.91) 

To show that this eigenproblem is indeed equivalent to the problem in ( 10.45), we premul­
tiply both sides in ( 10.91) by Ka and use the transformation x = Kai, giving Kai = A Mai, 
i.e., the problem in ( 10.45). 

EXAMPLE 10.17: Use the Ritz analysis procedure to perform static condensation of the 
massless degrees of freedom in the problem K4> = "-M4> considered in Example 10.12. 

We first need to evaluate the Ritz basis vectors given in (10.90). This was done in 
Example 10.13, where we found that 

The Ritz reduction given in (10.91) thus yields the eigenproblem 

[
2 2] [12 16] 
2 4 x == A 16 24 x 

Finally, we should note that the use of the Ritz basis vectors in ( 10.85) [(or in ( 10.90)] 
is also known as the Guyan reduction (see R. J. Guyan [A]). In the Guyan scheme the Ritz 
vectors are used to operate on a lumped mass matrix with zero elements on the diagonal as 
in ( 10.88) or on general full lumped or consistent mass matrices. In this reduction the cf>a 
degrees of freedom are frequently referred to as dynamic degrees of freedom. 

10.3.3 Component Mode Synthesis 

As for the static condensation procedure, the component mode synthesis is, in fact, a Ritz 
analysis, and the method might have been presented in the previous section as a specific 
application. However, as was repeatedly pointed out, the most important aspect in a Ritz 
analysis is the selection of appropriate Ritz basis vectors because the results can be only as 
good as the Ritz basis vectors allow them to be. The specific scheme used in the component 
mode synthesis is of particular interest, which is the reason we want to devote a separate 
section to the discussion of the method. 
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The component mode synthesis has been developed to a large extent as a natural 
consequence of the analysis procedure followed in practice when large and complex struc­
tures are analyzed. The general practical procedure is that different groups perform the 
analyses of different components of the structure under consideration. For example, in a 
plant analysis, one group may analyze a main pipe and another group a piping system 
attached to it. In a first preliminary analysis, both groups work separately and model the 
effects of the other components on the specific component that they consider in an approx­
imate manner. For example, in the analysis of the two piping systems referred to above, the 
group analyzing the side branch may assume full fixity at the point of intersection with the 
main pipe, and the group analyzing the main pipe may introduce a concentrated spring and 
mass to allow for the side branch. The advantage of considering the components of the 
structure separately is primarily one of time scheduling; i.e., the separate groups can work 
on the analyses and designs of the components at the same time. It is primarily for this 
reason that the component mode synthesis is very appealing in the analysis and design of 
large structural systems. 

Assume that the preliminary analyses of the components have been carried out and 
that the complete structure shall now be analyzed. It is at this stage that the component 
mode synthesis is a natural procedure to use. Namely, with the mode shape characteristics 
of each component known, it appears natural to use this information in estimating the 
frequencies and mode shapes of the complete structure. The specific procedure may vary 
(see R. R. Craig, Jr. [A]), but, in essence, the mode shapes of the components are used in 
a Rayleigh-Ritz analysis to calculate approximate mode shapes and frequencies of the 
complete structure. 

Consider for illustration that each component structure was obtained by fixing all its 
boundary degrees of freedom and denote the stiffness matrices of the component structures 
by Ki, Kn, ... , KM (see Example 10.18). Assume that only component structures L - 1 
and L connect, L = 2, . . . , M; then we can write for the stiffness matrix of the complete 
structure, 

·Ku· 

K= (10.92) 

Using an analogous notation for the mass matrices, we also have 

M1· 

·Mn· 

M= (10.93) 

Assume that the lowest eigenvalues and corresponding eigenvectors of each component 
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structure have been calculated; i.e., we have for each component structure, 

Kx<l>r = M1<l>1A1 

Kn <l>u = Mu <1>11 An 

KM~ =MM<l>MAM 

877 

(10.94) 

where «l>L and AL are the matrices of calculated eigenvectors and eigenvalues of the Lth 
component structure. 

In a component mode synthesis, approximate mode shapes and frequencies can be 
obtained by performing a Rayleigh-Ritz analysis with the following assumed loads on the 
right-hand side of (10.79), 

<1>1 0 0 
0 11.n 0 

<l>u 0 0 
R= 0 0 In.m (10.95) 

cJ>M 0 

where IL-1,L is a unit matrix of order equal to the connection degrees of freedom between 
component structures L - 1 and L. The unit matrices correspond to loads that are applied 
to the connection degrees of freedom of the component structures. Since in the derivation 
of the mode shape matrices used in (10.95) the component structures were fixed at their 
boundaries, the unit loads have the effect of releasing these connection degrees of freedom. 
If, on the other hand, the connection degrees of freedom have been included in the analysis 
of the component structures, we may dispense with the unit matrices in R. 

An important consideration is the accuracy that can be expected in the above compo­
nent mode synthesis. Since a Ritz analysis is performed, all accuracy considerations dis­
cussed in Section 10.3.2 are directly applicable; i.e., the analysis yields upper bounds to the 
exact eigenvalues of the problem K<J> = ..\M<f>. However, the actual accuracy achieved in 
the solution is not known, although it can be evaluated, for example, as described in 
Section 10.4. The fact that the solution accuracy is highly dependent on the vectors used in 
R (i.e., the Ritz basis vectors) is, as in all Ritz analyses, the main defect of the method. 
However, in practice, reasonable accuracy can often be obtained because the eigenvectors 
corresponding to the smallest eigenvalues of the component structures are used in R. We 
demonstrate the analysis procedure in the following example. 

EXAMPLE 10. 18: Consider the eigenproblem Ket, = AM<f,, where 

2 -1: 
-1 ____ 2J -1 

K = -1 2 -1 
-1 r 2 -1 

1 -1 1 

M= 

I 
I 
I 

1 : __ ... __ .... 

r-··--
: 1 
I ! 

Use the substructure eigenproblems indicated by the dashed lines in K and M to establish the load 
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matrix given in ( 10. 95) for a component mode synthesis analysis. Then calculate eigenvalue and 
eigenvector approximations. 

Here we have for substructure I, 

K1 = [ 2 
-1 

-ll 2 . M = [1 OJ 1 
0 I 

with the eigensolution 

•. =[~]. +, = [-JJ ,\1 = I, ,\2 = 3; 

and for substructure II, 

Kn=[-~ -ll 
1 ' Mu=[~ ~] 

with the eigensolution 

Ai= 2 - V2, A.2 = 2 + V2; +, = [f]. ~=[-1] 
Thus we have for the matrix R in (10.95), 

V2 V2 
0 

2 2 
V2 V2 

0 
R= 

0 0 
V2 V2 

0 
2 2 

0 

Now performing the Ritz analysis as given in (10.79) to (10.84), we obtain 

and hence, 

[

22.40 5.328 7.243] 
K = 5.328 2.251 1.586 

7 .243 1.586 3 

[

222.4 50.69 77 .69] 
M = 50.69 11.94 17.59 

77.69 17.59 27.5 

p= 
[0.098 

2.83 I.SJ 
0.207 -0.773 0.00690 
0.181 0.0984 -0.0655 •= 0.509 1.47 0.443 
0.594 -0.385 -0.166 
0.655 0.574 -0.978 
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The exact eigenvalues are 

A1 == 0.09789 i\2 = 0.824; ,\3 = 2.00; A4 = 3.18; As = 3.90 

and hence we note that we obtained in P1 a good approximation to .\1, but p2 and p3 do not 
represent approximations to eigenvalues. 

10.3.4 Exercises 

10.7. Consider the eigenproblem 

H : ~ -n~ = {~ ; t} 
Perform the static condensation as usually performed [see (10.46)] and then by the Rayleigh­
Ritz analysis procedure [see (10.51)]. 

10.8. Consider the eigenproblem in Exercise 10.1. Perform a Rayleigh-Ritz analysis with the two 
vectors 

to calculate an approximation to the smallest eigenvalue and corresponding eigenvector. 
10.9. It is being claimed that if, in the solution of the generalized eigenproblem Ket, = ,\Mel,, the 

Ritz vectors are 

"-'• = cf>, + 2cl,2 

"62 = 3cl,1 - <t>2 

where cl,1 and cl,2 are the eigenvectors corresponding to ,\1 and ,\2, then the Rayleigh-Ritz 
analysis will give the exact eigenvalues Ai and ..\2 and the corresponding eigenvectors cl,1 and cl,2. 
Show explicitly that this result is indeed obtained. 

10.10. Consider the following spring system. 
(a) Evaluate the exact smallest frequency of the system. 
(b) Evaluate an approximation of the smallest frequency by using the component mode synthe­

sis technique in Section 10.3.3. Use only the eigenvector of the smallest frequency of each 
component in the system. 

Component I 

~-----------~, 
/ k m*\ 
I I 
\ , , _____________ .,, 

K= 10 
k=1 
m=2 
m*=1 
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10.4 SOLUTION ERRORS 

An important part of an eigenvalue and vector solution is to estimate the accuracy with 
which the required eigensystem has been calculated. Since an eigensystem solution is 
necessarily iterative, the solution should be terminated once convergence within the pre­
scribed tolerances giving the actual accuracy has been obtained. When one of the approx­
imate solution techniques outlined in Section 10.3 is used, an estimate of the actual solution 
accuracy obtained is of course also important. 

10.4.1 Error Bounds 

In order to identify the accuracy that has been obtained in an eigensolution, we recall that 
the equation to be solved is 

K<f> = AM<f> (10.96) 

Let us first assume that using any one solution procedure we obtained an approximation X 
and «f, to an eigenpair. Then without regard to how the values have been obtained, we can 
evaluate a residual vector that gives important information about the accuracy with which 
X and <f> approximate the eigenpair. The results are given in (10.101) to (10.104). We then 
present also error bound calculations useful in solutions based on inverse iterations and a 
simple error measure. 

Standard Eigenproblem 

Consider first that M = I. In that case we can write 

r = K4> - X<!i 
and using the relations in (10.12) and (10.13), we have 

r = 4)(A - XI)<ItT4> 

or because X is not equal but only close to an eigenvalue, we have 

<ti = 4)(A XI)-14)rr 

Hence, because II «f, 112 = l, taking norms we obtain 

1 s ll(A - Xl)-1 112 II rll2 

But since ll(A X1)-
1 ll2 = mrx I Ai~ Al 

we have ~n IA; - XI :s II rll2 
I 

(10.97) 

(10.98) 

(10.99) 

(10.100) 

(10.101) 

Therefore, a conclusive statement can be made about the accuracy with which~ approxi­
mates an eigenvalue '>-.., by evaluating 11 r 112 as expressed in ( 10.10 I). This is quite different 
from the information that could be obtained from the evaluation of the residual vector r in 
the solution of the static equilibrium equations. 

Although the relation in ( 10.101) establishes that X is close to an eigenvalue provided 
that I\ r 112 is small, it should be recognized that the relation does not tell which eigenvalue 
is approximated. In fact, to identify which specific eigenvalue has been approximated, it is 
necessary to use the Sturm sequence property (see Section 10.2.2 and the following exam­
ple). 
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EXAMPLE 10. 19: Consider the eigenproblem Kt1, = At1,. where 

K = [-~ -~ -~] 
0 -1 3 

The eigensolution is A, = l, Ai = 3, ,\3 = 4, and 

Assume that we calculated 

A= 3.1 
[ 

0.7 J <f, = 0.1414 
-0.7 

and 

as approximations to Ai and t1,2. Apply.the error bound relation in (10.101). 
We have in this case 

r = [-0 
3
1 -~ -~J[o.~:14]- 3.1[

1 
1 J[o.~:14] 

-1 3 -0.7 1 -0.7 

r = [=~::~~;]; 
-0.2114 

Hence llrlli = 0.3370 

The relation in (10.101) now gives 

I A2 x I s 0.3370 

which is indeed true because X - A2 = 0.1. 
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Assume now that we have calculated only X and c1i and do not know which eigenvalue and 
eigenvectorthey approximate. In this case we can use the relation in (10.101) to establish bounds 
on the unknown exact eigenvalue in order to apply Sturm sequence checks (see Section 10.2.2). 

For the example considered here we have 

2.7630 s A; s 3.4370 

Let us use as a lower bound 2.7 and as an upper bound 3.5. The LDLr triangular factorization 
of K - µ.I gives, atµ.= 2.7, 

[~~ -~~ -~] 
0 -1 0.3 

= [-3}33 0.2~79 J[0.3 -4.033 0.3248][1 -3;333 o.~79 J (a) 

and at µ. = 3.5, 

[-~;5 -~;5 O J -1 
-0.5 

J[-0.5 0.5 -2.Jl 2 -;] (b) 
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But there is one negative element in D in (a) and there are two negative elements in D in 
(b); hence, we can conclude that 2.7 < A2 < 3.5. Furthermore, it follows that X and cf> are 
approximations to A2 and 4>2. 

Considering now the accuracy with which <f> approximates an eigenvector, an analysis 
equivalent to this one not only requires the evaluation of 11 r 112 but the spacing between the 
individual eigenvalues is also needed. In actual analysis this spacing is known only approx­
imately because the eigenvalues have been evaluated only to a specific accuracy. 

Assume that X and ct>' have been calculated, where II <f> 112 = 1, and that X approximates 
the eigenvalues A;, i = p, ... , q. For the error analysis we also assume that the eigenvalues 
A; for all i but i =f:. p, ... , q are known (although we would need to use the calculated 
eigenvalues here). The final result of the accuracy analysis is that if I A; XI s llrll2 for 
i = p, ... , q and I A; - XI _;2: s fpr all i, i =f:. p, ... , q, then there is a vector ti, =_ ap<f>p 
+ · · · + aq<f>q, for which 11<1> - <f> 112 s llr 112/s (see Example 10.20). Therefore, if..\ is an 
approximation to a single eigenvalue A;, the corresponding vector «ii" is an approximation to 
<f>;, where 

llct> - a,cf>;ll2 s II rll2; s = mii:t !Ai - XI (10.102) 
S allJ 

- ~ 
However, if..\ is close to a number of eigenvalues Ap, •.• , Aq, then the analysis only shows 
that the corresponding vector cf> is close to a vector that lies in the subspace corresponding 
to <f>p, ••• , <f>q· In practical analysis (i.e., mode superposition in dynamic response calcu­
lations), this is most likely all that is required because the close eigenvalues may almost be 
dealt with as equal eigenvalues, in which case the calculated eigenvectors would also not be 
unique but lie in the subspace corresponding to the equal eigenvalues. In the following we 
first give the proof for the accuracy with which cf> approximates an eigenvector and then 
demonstrate the results by means of examples. 

EXAMPLE 10.20: Assume that we have calculated X, <{i, with 11 ~112 = l, as eigenvalue and 
eigenvector approximations and tha1:_ K<{i - X 4i' = r. Consider the case in which l,\i - _A I s 
II r lb for i = 1, . . . , q and I A; - ,\ I ~ s for i = q + 1, . . . , n. Show that 114> - cf> Iii s 
Jlrlli/s, where cl> is a vector in the subspace that ~rresponds to 4>1, ... , cf,q, 

The calculated eigenvector approximation cf> can be written as 
n 

<ti= L a1ct>1 
i•I 

Using cl> = i ai 4>1, we have 
i=I 

11 ~ - ci>ll2 = ( ± ar)112 

i=q+I 

(a) or, because cf>f 4>i = Bu, 

But llr 112 = II K<i, - X <f> 112 

= II t. a.(A, - xi~. \I, 

llr lb = (~ a~(A1 - X)2
)

112 

'""' 
or 
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which gives ( 

n )1/2 
llrlk =?: s ;.;., a; (b) 

Hence, combining (a) and (b), we obtain 

II ct> - cf> 112 s llr 112 

s 

EXAMPLE 10.21: Consider the eigenproblem in Example 10.19. Assume that ,\1 and A3 are 
known (i.e., .,\1 = l, .,\3 = 4) and that X and ci> given in Example 10.19 have been evaluated. (In 
actual analysis we would have only approximations to A1 and ,\3, and all error bound calculations 
would be approximate.) Estimate the accuracy with which ci, approximates 4>2. 

For the estimate we use the relation in (10.102). In this case we have 

llcii - a2cf>2ll2 s 
0

·
337

0 
s 

with 

Hence, since X = 3.1, we haves= 0.9 and 

llcii - a24>2ll2 S 0.3744 

Evaluating llci> - 4>2 ll2 exactly, we have 

11• - ct>,I~ = [ ( 0.7 - ~)' + (0.1414 - 0)
2 + (-o.7 +~Yr= 0.1418 

EXAMPLE 10.22: Consider the eigenproblem Kcf> = A4>, where 

K= [t~ ~] 
The eigenvalues and eigenvectors of the problem are 

A.1 = 99, 4>1 = ~[~l A2 = 101, 4>z = -
1
-[ l ] V2 -1 

Assume that we have calculated eigenvalue and eigenvector approximations X = 100, ci, = [ ~] · 

Evaluate rand thus establish the relations given in (10.101) and (10.102). 
First, we calculate r as given in ( I 0.97), 

r = (
1~ ;~][~] - 100[~] = [ _~] 

Hence, 1lrll2 = 1 and (10.101) yields 

min IA; - XI s 1 
I 

(a) 

Therefore, we can conclude that an eigenvalue has been approximated with about 1 percent or 
less error. Since we know A, and A2. we can compare X with Ai or A2 and find that (a) does indeed 
hold. 

Considering now the eigenvector approximation cii, we note that ci> does not approximate 
either 4>1 or 4,2. This is also reflected by evaluating the relation ( 10.102). Assuming that ci> is an 
approximation to 4> 1, which gives s = 1, we have 

llcii - a1+dl2 s 1 
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Similarly, assuming that cf> is an approximation to cf>2, we obtain 

II cf> - a2cf>2 ll2 :s 1 

and in both cases the'bound obtained is very large (note that llct>ill2 = 1 and ll4>2ll2 = 1), 
indicating that <f> does not approximate an eigenvector. 

Generalized Eigenproblem 

Consider now that we wish to estimate the accuracy obtained in the solution of a generalized 
eigenproblem K<f> = AM<f,. Assume that we have calculated as an approximation to Ai and 
<f>i the values X and cf>. Then, in analogy to the calculations performed above, we can 
calculate an error vector rM, where 

(10.103) 

In order to relate the error vector in (10.103) to the error vector that corresponds to the 
standard eigenproblem, we use M = ssr, and then 

r = icf, - Xcf, (10.104) 

where r = s-1rM, ct, = sr<t,, and K = s-•KS-r (see Section 10.2.5). It is the vector s-•rM 
that we would need to use, therefore, to calculate the error bound given in (10.101). These 
error bound calculations would require the factorization of M into SS7, where it is assumed 
that M is positive definite.• 

During Computations 

In actual computations we frequently use the method of inverse iteration (see Sections 11.2 
and 11.6), and then an error bound based on the following evaluations can be efficiently 
obtained (see H. Matthies [A] and also Exercise l 0.11 ). Let 

K<f, = Mel, (10.105) 

Then we have _ {(tf>TM«i,) _ }1/2 mjn J ,\, - p(cf>) I :s <i,TM<i, - [p(cf> )]2 (10.106) 

and min I A; - p(4,) I :s { 1 - A (p!<f>2?2 -}1/2 
A;~O A; 4>TM4>/ct,7Mcf, 

(10.107) 

where p(cj,) is the Rayleigh quotient, 
- <f,TK<i, 

p(«f,) = <i,TM<f, 

We will see that (10.105) is the typical step in an inverse iteration, Lanczos iteration, 
and subspace iteration, and p(cf>) is in practice also almost always calculated because of the 
good approximation quality of the Rayleigh quotient to an eigenvalue. Notice also that the 
term 4,7Mtt, /4>7M4> consists of two numbers that are easily calculated in the iterations. 

While the above error bounds are very effective, it is finally also of interest to consider 
the following simple error measure: 

- IIK<f> - XM<i, 112 (10.108) 
E - IIKct> 112 

I To avoid the factorization of M we may instead consider the problem Met, = A - 1 Ktl, if the factorization 
of K is already available, and then establish bounds on A - 1• 
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Since, physically, Kcji represents the elastic nodal point forces and XMit, represents the 
inertia nodal point forces when the finite element assemblage is vibrating in the mode cp, 
we evaluate in (10.108) the norm of out-of-balance nodal point forces divided by the norm 
of elastic nodal point forces. This quantity should be small if X and cp are an accurate 
solution of an eigenpair. 

If M = I, it should be noted that we can write 

XE = llrll2 (10.109) 

and hence, (10.110) 

EXAMPLE 10.23: Consider the eigenproblem K<f> = AM<J,, where 

K = [-!~ ~:} M = [~ !] 
The exact eigenvalues and eigenvectors to 12-digit precision are 

[
0.640776011246] 

A, = 3.863385512876; 4>1 = 0.10S070337503 

A2 = 33.279471629982; ~ = [-0.401041986380] 
0.524093989558 

Assume that <ti'= (<J,1 + Scf>2)c, where c is such that <fi'TM<f, = I and 8 = 10-1, 10-3, 

and 10-6
• For each value of 6 evaluate X as the Rayleigh quotient of <ti' and calculate the error 

bounds based on (10.104), (10.106), and the error measure e given in (10.108). 
The following table summarizes the results obtained. The equations used to evaluate the 

quantities are given in (10.103) to ( 10.108). The results in the table show that for each value of 
8 the error bounds are satisfied and that e is also small for an accurate solution. 

a 10-• 10-3 10-6 

+ 
0.597690792656 0.640374649073 0.640775610204 
0.156698194481 0.105594378695 0.105070861597 

cj;TK+ 4.154633890275 3.863414928932 3.863385512905 

x 4.154633890275 3.863414928932 3.863385512905 

-1.207470493734 -0.008218153965 -0.000008177422 rM 4.605630581124 0.049838803226 0.000049870085 

1.634419466242 0.021106743617 0.000021152364 
r 

1.411679295681 0.015042545327 0.000015049775 

!At - XI 0.291248377399 0.000029416056 0.000000000029 

Bound 2.159667897036 0.025918580132 0.000025959936 
(10.101/10.104) 

Bound 2.912483773983 0.029416056744 0.000029433139 
(10.106) 

Measure 0.447113235813 0.007458208660 0.000007491764 
(10.108) 
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10.4.2 Exercises 

10.11. The following error bound is discussed by J. Stoer and R. Bulirsch [A]. Let A be a symmetric 
matrix and,\, be an eigenvalue of A; then 

I 
xrAxl min A; - -- :S 

i x7x 

for any vector x ::fo 0. 
Show that (10.105} to ( 10.107) follow from this formula. 

10.12. Consider the eigenproblem in Exercise 10.1. Let 

Calculate <i, using (10.105) and p(cf>). These values, p(<t,) and <t,, are now the best approxima­
tions to an eigenvalue and eigenvector. 

Establish the error bounds (10.101) [with (10.103)] and (10.106). Also evaluate the error 
measure (10.108). 



• CHAPTER ELEVEN __________ _ 

Solution Methods 
for Eigenproblems 

11.1 INTRODUCTION 

In Chapter 10 we discussed the basic facts that are used in eigenvalue and vector solutions 
and some techniques for the calculation of approximations to the required eigensystem. The 
purpose of this chapter is to present effective eigensolution techniques. The methods consid­
ered here are based on the fundamental aspects discussed in Chapter 10. Therefore, for a 
thorough understanding of the solution techniques to be presented in this chapter, it is 
necessary to be very familiar with the material discussed in Chapter 10. In addition, we also 
employ the notation that was defined in that chapter. 

As before, we concentrate on the solution of the eigenproblem 

K<I> = AM<!> (11.1) 

and, in particular, on the calculation of the smallest eigenvalues A1, ... , ,\P and corre­
sponding eigenvectors 4>1, ... , <J>P. The solution methods that we consider here first (see 
Sections 11.2 to 11.4) can be subdivided into four groups, corresponding to which basic 
property is used as the basis of the solution algorithm (see, for example, J. H. Wilkinson 
[A]). 

The vector iteration methods make up the first group, in which the basic property used 
is that 

K<!>; = A; M<!>; 

The transformation methods constitute the second group, using 

cl>7Kcl> = A 

(11.2) 

(11.3) 

and cl>7Mcl> = I (11.4) 

where cl> = [4>1, ... , <l>n] and A = diag(A;), i = 1, ... , n. The solution methods of the 

887 
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third group are polynomial iteration techniques that operate on the fact that 

p(A;) = 0 

where p(i\) = det(K - AM) 

(11.5) 

(11.6) 

The solution methods of the fourth group employ the Sturm sequence property of the 
characteristic polynomials 

p(i\) == det(K - i\M) 

and r = l, ... , n - 1 

(11.7) 

(11.8) 

where p<r>(A(r)) is the characteristic polynomial of the rth associated constraint problem 
corresponding to Kcf> = >..Mcf>. 

A number of solution algorithms have been developed within each of these four groups 
of solution methods. However, for an effective calculation of the required eigensystem of 
Kcf> = AM<f>, only a few techniques need to be considered, and we present important 
methods for finite element analysis in the following sections. Vector iteration and transfor­
mation methods are presented separately in Sections 11.2 and 11.3, respectively. However, 
polynomial and Sturm sequence iteration methods are presented together in one section, 
Section 11.4, because both of these methods use the characteristic polynomials and can be 
directly employed in one solution scheme. In addition to those techniques that can be 
classified as falling into one of the four groups, we discuss in Sections 11.5 and 11.6 the 
Lanczos method and the subspace iteration method, both of which use a combination of the 
fundamental properties given in (11.2) to (11.8). 

Before presenting the solution techniques of interest, a few basic additional points 
should be noted. It is important to realize that all solution methods must be iterative in 
nature because, basically, solving the eigenvalue problem Kcf> = AM<f:, is equivalent to 
calculating the roots of the polynomial p(A), which has order equal to the order of K and 
M. Since there are for the general case no explicit formulas available for the calculation of 
the roots of p(A) when the order of p is larger than 4, an iterative solution method has to be 
used. However, before iteration is started, we may choose to transform the matrices K and 
M into a form that allows a more economical solution of the required eigensystem (see 
Section 11.3.3). 

Although iteration is needed in the solution of an eigenpair (A;, cf>,), it should be noted 
that once one member of the eigenpair has been calculated, we can obtain the other member 
without further iteration. Assume that A, has been evaluated by iteration; then we can obtain 
<I>, using ( 11.2); i.e., cf>, is calculated by solving 

(K - A1·M)cf>; = 0 (11.9) 

On the other hand, if we have evaluated cf>, by iteration, we can obtain the required 
eigenvalue from the Rayleigh quotient; i.e., using ( 11.3) and ( 11.4 ), we have 

(11.10) 

Therefore, when considering the design of an effective solution method, a basic question is 
whether we should first solve for the eigenvalue A; and then calculate the eigenvector <f:,;, or 
vice versa, or whether it is most economical to solve for both A, and <f:,, simultaneously. The 
answer to this question depends on the solution requirements and the properties of the 
matrices K and M, i.e., such factors as the number of required eigenpairs, the order of K 
and M, the bandwidth of K, and whether M is banded. 
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The effectiveness of a solution method depends largely on two factors: first, the 
possibility of a reliable use of the procedure, and second, the cost of solution. The solution 
cost is essentially determined by the number of high-speed storage operations and an 
efficient use of backup storage devices. However, it is most important that a solution method 
can be employed in a reliable manner. This means that for well-defined stiffness and mass 
matrices the solution is always obtained to the required precision without solution break­
down. In practice, a solution is then interrupted only when the problem is ill-defined; for 
example, due to a data input error the stiffness and mass matrices are not properly defined. 
This solution interruption then occurs best as early as possible during the calculations, i.e., 
prior to any large computational expense. We should study the algorithms presented in the 
following with these considerations. 

11.2 VECTOR ITERATION METHODS 

As has been pointed out already, in the solution of an eigenvector or an eigenvalue we need 
to use iteration. In Section 11.1 we classified the solution methods according to the basic 
relation on which they operate. In the vector iteration methods the basic relation consid­
ered is 

Kc1, = .\Mc1, {11.1) 

The aim is to satisfy the equation in ( 11.1) by directly operating on it. Consider that 
we assume a vector for <f>, say Xi, and assume a value for A, say A = 1. We can then evaluate 
the right-hand side of (11.1); i.e., we may calculate 

(l l.11) 

Since x1 is an arbitrarily assumed vector, we do not have, in general, Kx1 = R1. IfKx1 were 
equal to R1, then X1 would be an eigenvector and, except for trivial cases, our assumptions 
would have been extremely lucky. Instead, we have an equilibrium equation as encountered 
in static analysis (see Section 8.2), which we may write 

(11.12) 

where X2 is the displacement solution corresponding to the applied forces R1. Since we 
know that we have to use iteration to solve for an eigenvector, we may now feel intuitively 
that X2 may be a better approximation to an eigenvector than X1 was. This is indeed the case, 
and by repeating the cycle we obtain an increasingly better approximation to an eigenvector. 

This procedure is the basis of inverse iteration. We will see that other vector iteration 
techniques work in a similar way. Specifically, in forward iteration, the iterative cycle is 
reversed; i.e., in the first step we evaluate R1 = Kx1 and then obtain the improved approx­
imation, x2, to an eigenvector by solving Mx2 = R1. 

The basic steps of the vector iteration schemes and of the other solution methods that 
we consider later can be introduced using intuition. Namely, we need to satisfy one of the 
basic relations summarized in Section 11.1 and try to do so by some iterative cycle. 
However, the real justification for using any one of the methods derives from the fact that 
they do work and that they can be used economically. 
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11.2.1 Inverse Iteration 

The technique of inverse iteration is very effectively used to calculate an eigenvector, and 
at the same time the corresponding eigenvalue can also be evaluated. Inverse iteration is 
employed in various important iteration procedures, including the subspace iteration 
method described in Section 11.6. It is therefore important that we discuss the method in 
detail. 

In this section we assume that K is positive definite, whereas M may be a diagonal 
mass matrix with or without zero diagonal elements or may be a banded mass matrix. If K 
is only positive semidefinite, a shift should be used prior to the iteration (see Sec­
tion 11.2.3). 

In the following we first consider the basic equations used in inverse iteration and then 
present a more effective form of the technique. In the solution we assume a starting iteration 
vector X1 and then evaluate in each iteration step k = 1, 2, ... : 

Ki'1c+1 = Mxk 

and i1c+1 
Xk+I = ( T M- )1/2 X1c+1 X1c+1 

(11.13) 

(11.14) 

where provided that X1 is not M-orthogonal to 4>1, meaning that xfM4>1 =t:. 0, we have 

ask~oo 

The basic step in the iteration is the solution of the equations in ( 11.13) in which we 
evaluate a vector xk+ 1 with a direction closer to an eigenvector than had the previous 
iteration vector Xk, The calculation in ( 11.14) merely ensures that the M-weighted length 
of the new iteration vector XH1 is unity; i.e., we want XH1 to satisfy the mass orthonormal­
ity relation 

xf+1MxH1 = 1 (11.15) 

Substituting for Xk+t from (11.14) into (11.15), we find that (11.15) is indeed satisfied. If 
the scaling in (11.14) is not included in the iteration, the elements of the iteration vectors 
grow (or decrease) in each step and the iteration vectors do not converge to 4>1 but to a 
multiple of it. We illustrate the procedure by means of the following example. 

EXAMPLE 11.1: Consider the eigenproblem Ket, = AMcf>, where 

[ 
2 -I O OJ 

= -1 2 -1 0 . 
K O -1 2 -1 ' 

0 0 -1 1 

The eigenvalues and corresponding vectors of the problem have been evaluated in Exam­
ples 10.12 and 10.13. Use two steps of inverse iteration to evaluate an approximation to <1>1, 

The first step is to decompose K into LDL7 in order to be able to solve the equations in 
(11.13). We obtained the triangular factors of Kin Example 10.13. 

As starting iteration vector we need a vector that is not orthogonal to <1>1, Since we do not 
know <f>i, we cannot make sure that <1>fMx1 * 0, but we want to pick a vector that is not likely 
to be orthogonal to 4>1• Experience has shown that a good starting vector is in many cases a unit 
full vector (but see Example 11.6 for a case in which a unit full vector is a bad choice). In this 
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example we use 

xf == [1 l 1 1] 

and then obtain, for k = l, 

[-l 
-1 0 

iii,= r ][!] 2 -1 2 
-1 2 0 

0 -1 

Hence, 
x. =rn xIMx2 = 136 

and 
x,= ~[!] 

Note that the zero diagonal elements in M do not introduce solution difficulties. Proceeding to 
the next iteration, k = 2, we use 

[-1 
-1 0 

2 
-1 2 

0 -1 

Hence, 

and 

3 

Yl36 

-!] i, =[° J 
6 

2 Yl36 
0 7 

Yl36 
8 

Yl36 

-T __ 6336 
X3MX3 - 136 

[
20] 1 40 

x, = V6336 :: 

Comparing X3 with the exact solution (see Ex.ample 10.12), we have 

x, J~:~~l and +, = [~:L;l 
l~.704 J 0.70;J 

Hence, with only two iterations we have already obtained a fair approximation to cf>1, 
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The relations in (11.13) and (11.14) state the basic inverse iteration algorithm. 
However, in actual computer implementation it is more effective to iterate as follows. 
Assuming that Y• = Mx1, we evaluate fork = 1, 2, ... , 

Kxk+1 = Yt 

Y1:+1 = Mxk+, 

(- ) xf+1 Y.t 
p Xk+1 = -T -

XA:+1 Yk+I 

YHI 
Yk+I = (-T - )1/2 

XH1YH1 

(11.16) 

(11.17) 

(11.18) 

(11.19) 

Where, provided that Y f 4, I =F- Q, 

YH1-+ Mcf>1 and p(i"H1) ~ .A1 as k __,. 00 

It should be noted that we essentially dispense in ( 11.16) to ( 11.19) with the calculation of 
the matrix product Mxk in ( 11.13) by iterating on y" rather than on X.t. But the value of YH 1 

is evaluated in either procedure; i.e., Yk+ 1 must be calculated in ( 11.14) and is evaluated in 
( 11.17). Using the second iteration procedure, we obtain in ( 11.18) an approximation to the 
eigenvalue A1 given by the Rayleigh quotient p(xk+1). It is this approximation to A, that is 
conveniently used to measure convergence in the iteration. Denoting the current approxi­
mation to A1 by A~k+O [i.e., A\k+t> = p(XH1)], we measure convergence using 

(11.20) 

or ( 10.107) is used for the left-hand side in (11.20), where tol should be 10-2s or smaller 
when the eigenvalue A1 is required to 2s-digit accuracy. The use of the right-hand side of 
( 10.107) is preferable but requires more computations, and it is in general sufficient to 
evaluate the error bound in ( 10.107) only after ( 11.20) has been met and to restart the 
iteration if the error is considered to be too large. 

The eigenvector will then be accurate to abouts or more digits [see text following 
( 11.33)]. Let l be the last iteration; then we have 

and 

.A, ~ p('x.1+1) 

• i1+1 

cf>i = (-T - )1/2 
X1+1 Y /+I 

(11.21} 

(11.22} 

EXAMPLE 11.2: Use the inverse iteration procedure given in ( 11.16) to ( 11.19) to evaluate an 
approximation to .A, and cf>, of the eigenproblem Kcf> = .\Mcf> considered in Example 11.1. Use 
tol = 10-6 (i.e., s = 3) in (11.20), in order to measure convergence. 

As in Example 11.1, we start the iteration with 

x, = [! l 
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Proceeding as given in (11.16) to (11.19), we obtain fork = 1, 

Y· = l!J ~ = m y, = m -r 
(-) X2Y1 p X2 = =r-=:- = 0.1470588 

X2Y2 

[

0.0 ] _ 1.02899 
Yz - 0.0 

0.68599 

and 

The next iterations are carried out in the same way. The results are summarized in Table El 1.2. 
It is seen that after five iterations. convergence has been achieved. It should be noted that the 
Rayleigh quotient p(iH 1) converges much faster than the vector XH 1 (see Example 11.3) and 
converges from above to A 1, Using (11.21) and (11.22 ). we have 

1
0.25001) 

ct> = 0.50001 
I 0.60355 

0.70709 

A1 = 0.146447; 

Also, at the end of iteration 5 we have I A fxac' - p(x6) I / A fgcf = 3.14 x 10-9 and the right-hand 
side in (10.107) is 1.23 X 10-4

, Note that in this case (10.107) significantly overestimates the 
error. 

TABLE E11.2 

k x'.t+1 

3 
6 
7 
8 

2 1.71499 
3.42997 
4.11597 
4.80196 

3 1.70856 
3.41713 
4.12066 
4.82418 

4 1.70736 
3.41472 
4.12121 
4.82771 

5 1.70715 
3.41430 
4.12130 
4.82830 

Y1+1 

0 
12 
0 
8 
0 
6.85994 
0 
4.80196 
0 
6.83426 
0 
4.82418 
0 
6.82944 
0 
4.82771 
0 
6.82860 
0 
4.82830 

0.1470588 

0.1464646 

0.1464471 

0.1464466 

0.1464466 

1Ar0 - Af)I 
,\ (k+ I) 

I 

0.004056795132 

0.00011953858 

0.0000035 I 8989 

0.000000 l 03589 

0 
1.02899 

0 
0.68599 

0 
1.00504 

0 
0.70353 

0 
l.00087 

0 
0.70649 

0 
1.00015 

0 
0.70700 

0 
1.00003 

0 
0.70709 
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In the above discussion we have merely stated the iteration scheme and its conver­
gence. We then applied the method in two examples but did not formally prove convergence. 
In the following we derive the convergence properties because we believe that the proof is 
very instructive. 

The first step in the proof of convergence and of the convergence rate given here is 
similar to the procedure used in the analysis of direct integration methods (see Section 9 .4). 
The fundamental equation used in inverse iteration is the relation in ( 11.13 ). Neglecting the 
scaling of the elements in the iteration vector, we basically use for k == l, 2, . . . , 

l{xHI = Mxk (11.23) 

where we stated that Xk+1 will now converge to a multiple of <f>1. To show convergence it 
is convenient (as in the analysis of direct integration procedures) to change basis from the 
finite element coordinate basis to the basis of eigenvectors; namely, we can write for any 
iteration vector Xk, 

(11.24) 

where 4l is the matrix of eigenvectors 4l = [ <J,1, .•• , <f>n], It should be realized that 
because 4l is nonsingular, there is a unique vector Zk for any vector xk. Substituting for Xk 

and XH1 from (11.24) into (11.23), premultiplying by «1>7, and using the orthogonality 
relations f)TKf) == A and 4l7M4l = I, we obtain 

(11.25) 

where A = diag(A,). Comparing ( 11.25) with ( 11.23) we find that the iterations are of the 
same form with K = A and M = I. We may wonder why the transformation in ( 11.24) is 
used since 4l is unknown. However, we should realize that the transformation is employed 
only to investigate the convergence behavior of inverse iteration. Namely, because in theory 
(11.25) is equivalent to (11.23 }, the convergence properties of (11.25) are also those of 
( 11.23 ). But the convergence characteristics of ( 11.25) are relatively easy to investigate, 
since the eigenvalues are the diagonal elements of A and the eigenvectors are the unit 
vectors ei, where 

r- ith location 

ef = [O . . . 0 1 0 . . . O] (11.26) 

In the presentation of the inverse iteration algorithms given in ( 11.13) and ( 11.14) 
and (11.16) to (11.22), we stated that the starting iteration vector X1 must not be M­
orthogonal to <f>1. Equivalently, in ( 11.25) the iteration vector z1 must not be orthogonal to 
e1. Assume that we use 

zf = [I 1 1 . . . l] (11.27) 

We discuss the effect of this assumption in Section 11.2.6. Then using (11.25) fork = 
1, ... , l, we obtain 

Zi+I = [ GJ GJ • • • GJ] (11.28) 

Let us first assume that A1 < A2. To show that Z1+1 converges to a multiple of e1 as l-+ oo, 
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we multiply Z1+1 in (11.28) by (.,\1)1 to obtain 

z'1+1 = 
(11.29) 

and observe that i1+1 converges to e1 as l ~ oo. Hence, Z1+1 converges to a multiple of e1 as 
1~00. 

To evaluate the order and rate of convergence, we use the convergence definition given 
in Section 2. 7. For the iteration under consideration here we obtain 

lim II i1+1 - e1 112 = ..\1 
,_,,, II z, - e1 lb A2 

(11.30) 

Hence convergence is linear, and the rate of convergence is .,\ifA2, This convergence rate 
is also shown in the iteration vector Z1+ 1 in ( 11.29); i.e., those elements in the iteration 
vector that should tend to zero do so with at least the ratio .,\if A2 in each additional iteration. 
Thus, if .,\z > A1, it is the relative magnitude of A1 to A2 that determines how fast the iteration 
vector converges to the eigenvector ct, 1 • 

In this discussion we assumed that A1 < .,\z, Let us now consider the case of a multiple 
eigenvalue, namely, A1 = .,\z = · · · = Am, Then we have in ( 11.29), 

zf+1 = [ 1 1 1 c~:J eJJ (11.31) 

and the convergence rate of the iteration vector is Ai/Am+1, Therefore, in general, the rate 
of convergence of the iteration vector in inverse iteration is given by the ratio of At to the 
next distinct eigenvalue. 

In the iteration given in (11.16) to (11.22), we obtain an approximation to the 
eigenvalue A1 by evaluating the Rayleigh quotient. Corresponding to ( 11.18), the Rayleigh 
quotient calculated in the iteration of ( 11.25) would be 

(11.32) 

Assume that we consider the last iteration in which k = l. Then substituting for z, and Z1+1 

from ( 11.28) into ( 11.32), we obtain 
II 

A1 k (..\i/A,)21-1 

p(Z1+1) = -'...,...·:-' --­
k (..\i/..\;) 21 

/=I 

Hence we have for A1 being a simple or multiple eigenvalue, 

p(z1+1)-+ A, as l-+ oo 

(11.33) 

Also, convergence is linear with the rate equal to (Ai/Am+1)2, where Am+1 is defined as in 
( 11.31 ). This convergence rate substantiates the observation that if an eigenvector is known 
with an error e, then the Rayleigh quotient yields an approximation to the corresponding 
eigenvalue with error e2 (see Section 2.6). 
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Before demonstrating the results by means of a brief example, it should be recalled 
that we assumed in the above analysis a full unit starting iteration vector as given in ( 11.27). 
The convergence properties derived hold for any starting iteration vector that is not orthog­
onal to the eigenvector of interest, but the convergence rates can in many practical analyses 
be observed only as the number of iterations becomes large. The same observation also 
holds for any of the other convergence analyses that are presented in the following sections. 
We discuss this observation with other important practical aspects in Section 11.2.6. 

EXAMPLE 11.3: For the problem considered in Example 11.2, calculate the ultimate conver­
gence rates of the iteration vector and the Rayleigh quotient. Compare the ultimate convergence 
rates with those actually observed in the inverse iteration carried out in Example 11.2. 

For the evaluation of the theoretical convergence rates, we need A.1 and ..\2 • We calculated 
the eigenvalues in Example 10.12 and found 

1 V2 
A1 =2-4 

1 V2 
A2=2+4 

Hence, the ultimate convergence rate of the iteration vector is 

~: = 0.17 

and the ultimate convergence rate of the Rayleigh quotient is 

(~:Y = 0.029 

The actual vector convergence obtained is observed by evaluating the ratio rk+1, k l, 
2, ... , where 

II XI(+ I - <f,1 112 
rk+i = II X1: - <!>1 112 

and we assume that <f,1 is obtained in the last iteration [see ( 11.22) ]. 
For the iteration in Example 11.2, we thus obtain 

r2 = 0.026083; r3 = 0.170559; r4 = 0.167134; rs = 0.144251 

Ignoring r2 because the iteration just started, we see that the theoretical and actual convergence 
rates compare quite well. 

Similarly, the actual convergence of the Rayleigh quotient calculated in Example 11.2 is 
observed by evaluating 

I p(ik+1) - A1 I 
Ek+l = I p(ik) - A1 I 

where we use the converged value of the Rayleigh quotient for A1. In the iteration of Example 11.2 
we have 

E3 = 0.028768; E4 = 0.027778; Es= 0 

Hence, we see that the theoretical and observed convergence rates again agree quite well 
in this solution. 
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11.2.2 Forward Iteration 

The method of forward iteration is complementary to the inverse iteration technique in that 
the method yields the eigenvector corresponding to the largest eigenvalue. Whereas we 
assumed in inverse iteration that K is positive definite, we assume in this section that M is 
positive definite; otherwise, a shift must be used (see Section 11.2.3). Having chosen a 
starting iteration vector x,, in forward iteration we evaluate, for k = 1, 2, . . . , 

and xk+l = c-T M- >112 
Xk+I Xk+I 

where provided that X1 is not M-orthogonal to <f>n, we have 

ask-+oo 

(11.34) 

(11.35) 

The analogy to inverse iteration should be noted; the only difference is that we solve 
( 11.34) rather than ( 11.13) to obtain an improved eigenvector. This means, in practice, that 
in the inverse iteration we need to triangularize the matrix K and in the forward iteration 
we decompose M. 

A more effective forward iteration procedure than that in ( 11.34) and ( 11.35) would 
be obtained by using equations that are analogous to those in ( 11.16) to ( 11.22). Assuming 
that Y1 = Kx1, we evaluate for k = l, 2, . . . , 

where provided that <f>!Y1 * 0, 

Mx.t+1 = Yk 

Yk+I = Ki'k+l 

-T -
(

- ) _ XH1YH1 
p XHt - -T 

X1c+1Yk 

Y1c+1 
YHI = (-T )1/2 

XH1Yk 

Y1c+1-+ K«I>,, and p(i'1c+1)--+ A,, ask-+oo 

(11.36) 

(11.37) 

(11.38) 

(11.39) 

Convergence in the iteration could again be measured as given in ( 11.20), and 
denoting the last iteration by l, we have 

and ..... . X/+1 
"1'11 = (-T )l/2 

X1+1Y1 

(11.40) 

(11.41) 

Considering the analysis of convergence of the iteration vector to cJ,n, it can be carried 
out following the same procedure that was used in the evaluation of the convergence 
characteristics of inverse iteration. Alternatively, we may use the results that we obtained 
in the analysis of inverse iteration. Namely, assume that we write the eigenproblem K<f, = 
AM<f, in the form M<f, = A- 1K4>; then using inverse iteration to solve for an eigenvector 
and corresponding eigenvalue is equivalent to performing forward iteration on the problem 
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Ket> = AM<t,. But since we converge in the inverse iteration of (11.16) to (11.22) to the 
smallest eigenvalue and corresponding eigenvector, and since for the problem Mq, = 
A - 1 Ket> this eigenvalue is A; 1 , where An is the largest eigenvalue of Kq, = AM<f>, we 
converge in the forward iteration of ( 11.36) to ( 11.41) to An and c.f>n and the convergence 
rate of the iteration vector is An-1/ An, We should note that the Rayleigh quotient evaluated 
in (11.38) is xf+1KiHi/if+1MiH1, i.e., just the inverse of the Rayleigh quotient for 
calculating an approximation to A; 1 in the problem Mc:f, = A- 1 Kc:f,. 

We demonstrate the iteration and convergence in the following example. 

EXAMPLE 17.4: Use forward iteration as given in (11.36) to (11.41) with tol = 10-6 in 
{11.20) to evaluate .,\4 and cf>4 of the eigenproblem Ket> = AMcf>, where 

-4 ~]· 6 -4' 
-4 5 

The physical problem considered in this example is the free-vibration response of the 
simply supported beam shown in Fig. 8.1 with the above mass matrix. 

Starting the iteration with 

we calculate in the inverse iteration the values summarized in Table Ell.4. 
Hence, we need 10 iterations for a convergence tolerance of 1 o-6 in ( 11.20), and we then 

use, as given in (11.40) and (11.41), 

.,\4 = 10.63845; 
[

-0.107311 
cf> = 0.25539 

4 ....-0.72827 
0.56227 

Comparing after iteration 10 the predicted value of A4 with the exact value, we have 

Also, the right~hand side in ( 10.107) gives 5.24 X 10-4
• 
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TABLE E11.4 

XHJ YHI PC'ik+i) 
lt\ik+I) - At>1 

k YHI ,\~HI) 

1 6 5.93333 2.1909 
-0.5 -1 -0.3651 
-1 -11 -4.0166 

2 13.5 4.9295 
2 1.0954 2.1909 8.57887 0.3345 0.3084 

-0.1826 15.5188 2.3694 
-4.0166 -41.9921 -6.4112 

4.9295 40.5315 6.1882 
3 0.1672 -10.3137 10.15966 -1.1372 0.1556 

1.1847 38.2720 4.2198 
-6.4112 -67.7914 -7.4745 

6.1882 57.7704 6.3696 
8 -1.1285 -24.2083 10.63838 -2.2756 0.00003304 

2.7044 57.7298 5.4267 
-7.7481 -82.4222 -7.7478 

5.9969 63.6811 5.9861 
9 -1.1378 -24.2902 10.63844 -2.2833 0.000005584 

2.7133 57.8086 5.4340 
-7.7478 -82.4224 -7.7476 

5.9861 63.6351 5.9816 
10 -1.1416 -24.3237 10.63845 -2.2864 0.0000009437 

2.7170 57.8405 5.4369 
-7.7476 -82.4219 -7.7476 

5.9816 63.6157 5.9798 

11.2.3 Shifting in Vector Iteration 

The convergence analysis of inverse iteration in Section 11.2.1 showed that assuming 
Ai < A2, the iteration vector converges with a rate Ai/A2 to the eigenvector <1>1. Therefore, 
depending on the magnitude of A1 and A2, the convergence rate can be arbitrarily low, say 
Ai/A2 = 0.99999, or can be very high, say Ai/A2 = 0.01. Similarly, in forward iteration the 
convergence rate can be low or high. Therefore, a natural question must be how to improve 
the convergence rate in the vector iterations. We show in this section that the convergence 
rate can be much improved by shifting. In addition, a shift can be used to obtain conver­
gence to an eigenpair other than (A.1, <l>1) and (A,,, cf>,,) in inverse and forward iterations, 
respectively, and a shift is used effectively in inverse iteration when K is positive 
semidefinite and in forward iteration when M is diagonal with some zero diagonal elements 
(see Example I 1.6). 

Assume that a shiftµ is applied as described in Section 10.2.3; then we consider the 
eigenproblem 

(K - µM)4> = 17Mcf> (11.42) 
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where the eigenvalues of the original problem Ket, = ,\Met, and of the problem in ( 11.42) 
are related by TJi = Ai - µ,, i = 1, ... , n. To analyze the convergence properties of in­
verse and forward iteration when applied to the problem in ( 11.42), we follow in all respects 
the procedure used in Section 11.2.1. The first step is to consider the problem in the basis 
of eigenvectors 4'. Using the transformation 

cf> = •+ (11.43) 

we obtain for the convergence analysis the equivalent eigenproblem 

(A - µ.I)-t, = 11"1 (11.44) 

Consider first inverse iteration and assume that all eigenvalues are distinct. In that 
case we obtain, using the notation in Section 11.2.1, 

T [ 1 } } ] (11.45) 
Zt+ 1 = (Aa - µ,)1 (A2 - µ,)1 • • • (An - µ,)1 

where it is assumed that all A; - µ, are nonzero, but they may be positive or negative. 
Assume that A; - µ, is smallest in absolute magnitude when i = j; then multiplying Z1+, by 
(,\i - µ,)1

, we obtain 

( ,\i - µ, )' 
A1 - µ, 

(,\,-µ,)' 
A.j~I - JJ, 

Zt+I = 1 (11.46) 

(,\-µ,)' 
Aj~I - JJ, 

(,\j-µ,)' 
An - µ, 

where I (Aj - µ,)/(Ap - µ,) I < 1 for all p -::/= j. Hence, in the iteration we have Z1+1 --+ ej, 
meaning that in inverse iteration to solve ( 11.42), the iteration vector converges to <f»i· 
Furthermore, we obtain AJ = 'TJi + µ,. The convergence rate in the iteration is determined 
by the element (,\i - µ,)/(Ap - µ,) which is largest in absolute magnitude, p * j; i.e., the 
convergence rate r is 

r = max I Aj - µ, I 
P•i Ap - µ, 

(11.47) 

Since Aj is nearest µ,, the convergence rate of the iteration vector in ( 11.42) to the eigenvec­
tor <J,i is either 

I Aj - µ. I 
Aj-1 - µ, 

or 

whichever is larger. The convergence rate for a typical case is shown in Fig. 11.1. 
Using the results of the above convergence analysis and of the analysis of inverse 

iteration without shifting (see Section 11. 2.1 ), two additional conclusions are reached. 
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p(A.) • det (K - ..tM) 

µ-..t2 , __ _ 
µ-..t, 

Figure 11.1 Example of vector convergence rate r in inverse iteration 

First, we observe that the convergence rate of the Rayleigh quotient, which for µ, nearest to 
Ai converges to Ai - µ,, is 

or 

whichever is larger. 
The second observation concerns the case of Ai being a multiple eigenvalue. The 

analysis in Section 11.2.1 and the conclusions above show that if Ai = A1+ 1 = · · · = Ai+m-1, 

the rate of convergence of the iteration vector is 

max _:J __ ,-

IA- - II. I 
P~ J,J+ I, ... ,J+m-1 Ap - µ 

and convergence occurs to a vector in the subspace corresponding to Aj. 
The important point in inverse iteration with shifting is that by choosing a shift near 

enough the specific eigenvalue of interest, we can, in theory, have a convergence rate that 
is as high as required; i.e., we would only need to make I Aj - µ, I small enough in relation 
to I Ap - µ, I defined above. However, in an actual solution scheme the difficulty is to find 
an appropriate µ,, for which we consider various methods in the next sections. 

EXAMPLE 11.5: Use inverse iteration as given in (11.16) to (11.22) in order to calculate 
(A1. cf>1) of the problem Ket, = AMcf,, where K and M are given in Example 1 L4. Then impose 
the shift µ = 10 and show that in the inverse iteration convergence occurs toward "'4 and cf,4. 

Using inverse iteration on Ket, = AMct, as in Example 11.2 gives convergence after three 
iterations with a tolerance of 10-6, 

A1 == 0.09654; 
[

0.3126] 
cf, == 0.4955 

I 0.479} 

0.2898 

Now imposing a shift ofµ = 10, we obtain 

[

-15 
-4 

K - µM = ~ 

-4 
-14 -4 
-4 -4 

1 -4 
-!] 
-5 
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Using inverse iteration on the problem (K - µ,M)cf> = 17Mcf>, we obtain convergence after six 
iterations with 

p(x,) = o.6385; 
[

-0.1076] 
0.2556 

X7 = -0.7283 

0.5620 

Since we imposed a shift, we do know that µ, + p(i'1) is an approximation to an eigenvalue and 
x, is an approximation to the corresponding eigenvector. But we do not know which eigenpair has 
been approximated. By comparing x, with the results obtained in Example 11.4 we find that 

A.4 = µ, + p(x,) = 10.6385; cf,4 = x, 

EXAMPLE 11.6: Consider the unsupported beam element depicted in Fig. E8.13. Show that 
the usual inverse iteration algorithm of calculating A1 and cf,1 does not work, but that after 
imposing a shift the standard algorithm can again be applied. 

The first step in the inverse iteration defined in ( 11.16) is, in this case with M = I and x1 

a full unit vector, 

[ 
12 -6 -12 -6] [1] -6 4 6 2 _ 1 

- 12 6 12 6 X
2 = 1 

-6 2 6 4 1 

(a) 

Using Gauss elimination to solve the equations, we arrive at 

and hence the equations in (a) have no solution. They have a solution only if the right-hand side 
[i.e., x, in (11.16)] is a null vector. There would be no difficulty in modifying the solution 
procedure when a singular coefficient matrix is encountered, and the advantage would be that the 
eigenvector would be calculated in one iteration. On the other hand, if we impose a shift, we can 
use the standard iteration procedure, and stability problems are avoided in the calculation of 
other eigenvalues and eigenvectors. Assume that we use µ. = -6 so that all A; are positive. Then 
we have 

[ 

18 -6 
-6 10 

K - µ,I= -12 6 

-6 2 

12 ·-6] 6 2 
18 6 

6 10 

The inverse iteration can now be performed in the standard manner using a full unit 
starting iteration vector. Convergence is achieved after five iterations to a tolerance of 1 o-6

, and 
we have 

p(°f6) = 6.000000; [

0.73784j 
0.42165 

X6 = 0.31625 

0.42165 
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Hence, taking account of the shift, we have 

A1 == 0.0; 
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We showed before that the rate of convergence in inverse iteration can be greatly 
increased by shifting. We may now wonder whether the convergence rate in forward 
iteration can be increased in a similar way. In analogy to the convergence proof of inverse 
iteration with a shift, we can generalize the convergence analysis of forward iteration when 
a shift µ, is used. The final result is that the iteration vector converges to the eigenvector <l>i 
that corresponds to the largest eigenvalue I Aj - µ I of the problem in ( 11.42), where 

!Ai - µI = max IA1 - µ.I (11.48) 
all i 

The convergence rate of the iteration vector is given by 

r = max _r __ I A - µ. I 
p+; Ai - µ 

(l l.49) 

which, in fact, is the ratio of the second largest eigenvalue to the largest eigenvalue (both 
measured in absolute values) of the problem (K - µ,M)<J> = 17M<f>. In the case of Aj being 
a multiple eigenvalue, say Aj = Aj+ 1 = · · · = Aj+m-1, the iteration vector converges to a 
vector in the subspace corresponding to Aj, and the rate of convergence is 

max _P __ 

I"' - µ I 
p,;, j,J+ I .... ,j+m-1 A; - µ 

The main difference between the convergence rate in (11.47) and ( 11.49) is that in 
(11.47), Ap is in the denominator, whereas in (11.49), Ar is in the numerator. This limits the 
convergence rate in forward iteration and by means of shifting convergence can be obtained 
only to the eigenpair (An, <f>n) or to the eigenpair (>..1, <f>1), To achieve the highest convergence 
rates to tl,n and 4>1, we need to chooseµ, = (>..1 + An-1)/2 andµ = (>..2 + An)/2, respec­
tively, and have the corresponding convergence rates 

+ 
An-1 -

2 

At + An-I 
An -

2 

and 

(see Fig. 11.2). Therefore, a much higher convergence rate can be obtained with shifting in 

p(,t) • det (K - ,tM) 

µ J.s-µ 
f•--J.e-µ 

Figure 11.2 Shifting to obtain best convergence rate r in forward iteration for 
A6 (A6 = largest eigenvalue) 
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inverse iteration than using forward iteration. For this reason and because a shift can be 
chosen to converge to any eigenpair, inverse iteration is much more important in practical 
analysis, and in the algorithms presented later, we always use inverse iteration whenever 
vector iteration is required. 

11.2.4 Rayleigh Quotient Iteration 

We discussed in Section 11.2.3 that the convergence rate in inverse iteration can be much 
improved by shifting. In practice, the difficulty lies in choosing an appropriate shift. One 
possibility is to use as a shift value the Rayleigh quotient calculated in ( 11.18), which is an 
approximation to the eigenvalue sought. If a new shift using ( 11.18) is evaluated in each 
iteration, we have the Rayleigh quotient iteration (see A. M. Ostrowski [A]). In this proce­
dure we assume a starting iteration vector X1, hence Yi = Mx1, a starting shift p{x1), which 
is usually zero, and then evaluate for k = 1, 2, . . . : 

YHI = Mx..:+1 

-r 
( - ) - XH1 y1c; + p(-x1c;) P Xk+1 - -r -

Xk+I YHI 

YH1 
Y1c+1 = (-r - )112 

X1c+1 YH1 

where now Y1:+1 ~ M<f,i and p(iH1) ~ Ai ask~ oo 

(11.50) 

(11.51) 

(11.52) 

(11.53) 

The eigenvalue Ai and corresponding eigenvector <f,; to which the iteration converges depend 
on the starting iteration vector X1 and the initial shift p(x1), If x1 has strong components of 
an eigenvector, say <f,k, and p(x2) provides a sufficiently close shift to the corresponding 
eigenvalue Ak, then the iteration converges to the eigenpair (Ak, <f,k) and the ultimate order 
of convergence for both Ak and <f,k is cubic. Hence, in practice we need to ensure that X1 is 
reasonably close to the eigenvector of interest, and then convergence will always be cubic. 
This excellent convergence behavior is a most important observation. We may intuitively 
explain it by.the fact that in inverse iteration the vector converges linearly, and with an error 
of order e in the vector the Rayleigh quotient predicts the eigenvalue with an error of order 
e2

• Since the eigenvalue approximation used as a shift has a direct effect on the approxima­
tion to be obtained for the eigenvector, and vice versa, it seems probable that in Rayleigh 
quotient iteration the order of convergence is cubic for both the eigenvalue and eigenvector. 

To analyze the convergence characteristics of Rayleigh quotient iteration we may 
proceed in the same way as in the analysis of inverse iteration; i.e., we consider the iteration 
in the basis of the eigenvectors. In this case we use the transformation in ( 11.24) and write 
the two basic equations of Rayleigh quotient iteration [i.e., (11.50) and (11.52), respec­
tively] in the following form: 

(11.54) 

(11.55) 

where the length normalization of the iteration vector has been omitted. 
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To consider the convergence characteristics of the iteration vector, let us perform an 
approximate convergence analysis that gives insight into the working of the algorithm. 
Assume that the current iteration vector z, is already close to the eigenvector e1; i.e., we have 

z; = (1 o(e) o(e) . . . o(e)] (11.56) 

where o(e) denotes "of order e" and e ~ 1. We then obtain 

p(z,) = A1 + o(e2) (11.57) 

Solving from ( 11.54) for Z1+ 1, we thus have 

z;+1 = [-1- o(e) . . . o(e) ] 
o(e2

) A2 - A1 An - A1 
(11.58) 

In order to assess the convergence of the iteration vector we normalize to 1 the first 
component of Z1+ 1, to obtain 

Zi+ 1 = [l o(e3) o(e3) • • • o(e3)] (11.59) 

Hence, the elements that in i1 have been of order e are now of order e3
, indicating cubic 

convergence. 
Consider the following example to demonstrate the characteristics of Rayleigh quotient 

iteration. 

EXAMPLE 11.7: Perform the Rayleigh quotient iteration on the problem Ati> = Ati>, where 

A=[~ ~] 
Use as starting iteration vectors x 1 the vectors 

and 

(1) x, = [!} (2) X1 = [0\] 

Using the relations given in (11.50) to ( 11.53) [with p(x,) = 0.0], we obtain, in case 1, 

_ [0.500 ] 
X2 = 0.166667 ; 

[
0.94868] 

Yz = 0.31623 

_ [-2.37171] 
XJ = 0.08784 ; 

[
-0.99931] 

Y3 = 0.03701 

_ = [182.37496]· 
x. 0.00927 , 

[
l.0000 ] 

Y4 = 0.00005 

p(i'2) = 2.40 

p(L) = 2.000000 

Hence, we see that in three steps of iteration we have obtained a good approximation to the 
required eigenvalue and eigenvector. 
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In case 2 we have 

and then 

Solution Methods for Eigenproblems 

_ [0.50000 ] 
X:2 = 0.016667 ; 

[
0.99944 ] 

y2 = 0.033315 

__ [-225.125]· 
X

3 
- 0.00834 ' 

[
-1.00000 ] 

y3 = 0.000037 

p(x3) = 2.000001 

Chap. 11 

We observe that in this case two iterations are sufficient to obtain a good approximation 
to the required eigenvalue and eigenvector because the starting iteration vector was already closer 
to the required eigenvector. 

As was pointed out in the preceding discussion, the Rayleigh quotient iteration can, in 
principle, converge to any eigenpair. Therefore, if we are interested in the smallest p 
eigenvalues and corresponding eigenvectors, we need to supplement the Rayleigh quotient 
iterations by another technique to ensure convergence to one of the eigenpairs sought. For 
example, to calculate the smallest eigenvalue and corresponding eigenvector, we may first 
use the inverse iteration in ( 11.16) to ( 11.19) without shifting to obtain an iteration vector 
that is a good approximation of ct,1, and only then start with Rayleigh quotient iteration. 
However, the difficulty lies in assessing how many inverse iterations must be performed 
before Rayleigh quotient shifting can be started and yet convergence to <f.,1 and A1 is 
achieved. Unfortunately, this question can in general not be resolved, and it is necessary to 
use the Sturm sequence property to make sure that the required eigenvalue and correspond­
ing eigenvector have indeed been calculated (see Section 11.4). 

11.2.5 Matrix Deflation and Gram-Schmidt 
Orthogonalization 

In Sections 11.2.1 to 11.2.4 we discussed how an eigenvalue and corresponding eigenvector 
can be calculated using vector iteration. The basic inverse iteration technique converges to 
A1 and <f.,1 (see Section 11.2.1), and the basic forward iteration can be used to calculate An 
and c:t>n (see Section 11.2.2), but the methods can also be employed with shifting to calculate 
other eigenvalues and corresponding eigenvectors (see Section 11.2.3). Assume now that 
we have calculated a specific eigenpair, say (Ak, <f>1c), using either method and that we require 
the solution of another eigenpair. To ensure that we do not converge again to A1c and <f.,k, we 
need to deflate either the matrices or the iteration vectors. 

Matrix deflation has been applied extensively in the solution of standard eigenprob­
lems. The problem may be K<f., = ,\c:t,, i.e., when Mis the identity matrix in K<f., = ,\Met,, 
or may be K<t- = ..\<f., which is obtained by transforming the generalized eigenproblem into 
a standard form (see Section 10.2.5). We recall that this transformation is effective 21hen 
M is diagonal and all diagonal elements are larger than zero because in such a case K has 
the same bandwidth as K. 

Consider the deflation of Ket> = ..\cf> because the deflation of K<t- = ..\4> would be 
obtained in the same way. A stable matrix deflation can be carried out by finding an 
orthogonal matrix P whose first column is the calculated eigenvector <f.,k, 



Sec. 11.2 Vector Iteration Methods 907 

Writing Pas P = (-t,k, P2, .. · , Pn] (11.60) 

we need to have cf>f p, = 0 for i = 2, ... , n. It then follows that 

prKP = [..\t O] 
O K1 

(11.61) 

because cf>fcf>k = 1. The important point is that prKP has the same eigenvalues as K, and 
therefore K 1 must have all eigenvalues ofK except Ak, In addition, denoting the eigenvectors 
of pr KP by <f>;, we have 

{11.62) 

It is important to note that the matrix P is not unique and that various techniques can 
be used to construct an appropriate transformation matrix. Since K is banded, we would like 
to have that the transformation does not destroy the bandform (see, for example, H. Rutis­
hauser [A]). 

From this discussion it follows that once a second required eigenpair using K1 has been 
evaluated, the process of deflation can be repeated by working with K1 rather than with K. 
Therefore, we may continue deflating until all required eigenvalues and eigenvectors have 
been calculated. The disadvantage of matrix deflation is that the eigenvectors have to be 
calculated to very high precision to avoid the accumulation of errors introduced in the 
deflation process. 

Instead of matrix deflation, we may deflate the iteration vector in order to converge to 
an eigenpair other than (Ak, cf>k), The basis of vector deflation is that in order for an iteration 
vector to converge in forward or inverse iteration to a required eigenvector, the iteration 
vector must not be orthogonal to it. Hence, conversely, if the iteration vector is orthogonal­
ized to the eigenvectors already calculated, we eliminate the possibility that the iteration 
converges to any one of them, and, as we will see, convergence occurs instead to another 
eigenvector. 

A particular vector orthogonalization procedure that is employed extensively is the 
Gram-Schmidt method. The procedure can be used in the solution of the generalized 
eigenproblem Kcf> = .\Met,, where M can take the different forms that we encounter in 
finite element analysis. 

In order to consider a general case, assume that we have calculated in inverse iteration 
the eigenvectors «1,1, cf>2 , ••• , «1,m and that we want to M-orthogonalize X1 to these eigen­
vectors. In Gram-Schmidt orthogonalization a vector i1, which is M-orthogonal to the 
eigenvectors cf>,, i = 1, . . . , m, is calculated using 

X1 == X1 - f a1.f>; (11.63) 
l•l 

where the coefficients a, are obtained using the conditions that cf> ;Mx 1 = 0, i = l, . . . , 
m, and cf> ;Mcf>i = &1• Premultiplying both sides of ( 11.63) by cf> ;M, we therefore obtain 

a,== -t,;Mx1; i = l, ... , m (11.64) 

In the inverse iteration we would now use i1 as the starting iteration vector instead of 
x1 and provided that xfMcf>m+t :/= 0, convergence occurs (at least in theory; see Sec­
tion 11.2.6) to cf>m+t and Am+t· 

To prove the convergence given above, we consider as before the iteration process in 
the basis of eigenvectors; i.e., we analyze the iteration given in (11.25) when the Gram-
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Schmidt orthogonalization is included. In this case the eigenvectors corresponding to the 
smallest eigenvalues are e1, i = 1, . . . , m. Carrying out the deflation of the starting itera­
tion vector z1 in ( 11.27), we obtain 

with 

m 

i1 = z1 - ~ aiei 
i=l 

i = 1, ... , m 

(11.65) 

(11.66) 

Hence, 

r-Element m + 1 

zf = [O . . . 0 1 . . . 1] (11.67) 

Using now z1 as the starting iteration vector and performing the convergence analysis 
as discussed in Section 11.2.1, we find that if Am+2 > Am+t, we have Z1+1 -+ em+t, as was 
required to prove. Furthermore, we find that the rate of convergence of the eigenvector is 
Am+ i/ Am+2, and when Am+ 1 is a multiple eigenvalue, the rate of convergence is given by the 
ratio of Am+ 1 to the next distinct eigenvalue. 

Although so far we have discussed Gram-Schmidt orthogonalization in connection 
with vector inverse iteration, it should be realized that the orthogonalization procedure can 
be used equally well in the other vector iteration methods. All convergence considerations 
discussed in the presentation of inverse iteration, forward iteration, and Rayleigh quotient 
iteration are also applicable when Gram-Schmidt orthogonalization is included if it is taken 
into account that convergence to the eigenvectors already calculated is not possible. 

EXAMPLE 11.8: Calculate, using Gram-Schmidt orthogonalization, an appropriate starting 
iteration vector for the solution of the problem Kcf> = AM<f>, where K and M are given in 
Example 11.4. Assume that the eigenpairs (.,\1, <f,1) and (A.., cf,4) are known as obtained in 
Example 11.5 and that convergence to another eigenpair is sought. 

To determine an appropriate starting iteration vector, we want to deflate the unit full vector 
of the vectors cf>1 and <f>4; i.e., (11.63) reads 

where a1 and a. are obtained using (11.64): 

a1 = q,fMx1; 
Substituting for M, q,1, and q,4, we obtain 

a1 = 2.385; 

Then, to a few-digit accuracy, 

a.= 0.1299 

l 0.2683 j 
-0.2149 
-0.04812 

0.2358 
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11.2.6 Some Practical Considerations Concerning Vector 
Iterations 

909 

So far we have discussed the theory used in vector iteration techniques. However, for a 
proper computer implementation of the methods, it is important to interpret the theoretical 
results and relate them to practice. Of particular importance are practical convergence and 
stability considerations when any one of the techniques is used. 

A first important point is that the convergence rates of the iterations may turn out to 
be rather theoretical when measured in practice, namely, we assumed that the starting iter­
ation vector z1 in (11.27) is a unit full vector, which corresponds to a vector X1 = I7 ... 1 4>;. 
This means that the starting iteration vector is equally strong in each of the eigenvectors <J,;. 
We chose this starting iteration vector to identify easily the theoretical convergence rate 
with which the iteration vector approaches the required eigenvector. However, in practice 
it is hardly possible to pick X1 = I7=i 4>1 as the starting iteration vector, and instead we have 

(11.68) 

where the ai are arbitrary constants. This vector X1 corresponds to the following vector in 
the basis of eigenvectors: 

{11.69) 

To identify the effect of the constants ai, consider as an example the convergence 
analysis of inverse iteration without shifting when the starting vector in ( 11.68) is used and 
A2 > A1. The conclusions reached will be equally applicable to other vector iteration meth­
ods. As before, we consider the iteration in the basis of eigenvectors ell and require a1 :f:. 0 
in order to have xfM<J,1 -:f::. 0. After l inverse iterations we now have instead of ( 11.29), 

1 

132(~:)' 
z1+1 = (11.70) 

i = 2, ... , n (11.71) 

Therefore, the iteration vector obtained now has the multipliers {3i in its last n - 1 
components. In the iteration the ith component is still decreasing with each iteration, as in 
( 11.29) by the factor Ai/ Ai, i = 2, ... , n, and the rate of convergence is Ai/ A2, as already 
derived in Section 11.2.1. However, in practical analysis the unknown coefficients {31 may 
produce the result that the theoretical convergence rate is not observed for many iterations. 
In practice, therefore, not only the order and rate of convergence but equally importantly 
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the "quality" of the starting iteration vector determines the number of iterations required 
for convergence. Furthermore, it is important to use a high enough convergence tolerance 
to prevent premature acceptance of the iteration vector as an approximation to the required 
eigenvector. 

Together with the vector iterations, we may use a matrix deflation procedure or 
Gram-Schmidt vector orthogonalization to obtain convergence to an eigenpair not already 
calculated (see Section 11.2.5). We have mentioned already that for matrix deftationt the 
eigenvectors have to be evaluated to relatively high precision to preserve stability. Consid­
ering the Gram-Schmidt orthogonalization, the method is sensitive to round-off errors and 
must also be used with care. If the technique is employed in inverse or forward iteration 
without shifting, it is necessary to calculate the eigenvectors to high precision in order that 
Gram-Schmidt orthogonalization will work. In additiont the iteration vector should be 
orthogonalized in each iteration to the eigenvectors already calculated. 

Let us now draw an important conclusion. We pointed out earlier in the presentation 
of the vector iteration techniques that it is difficult (and indeed theory shows impossible) to 
ensure convergence to a specific (but arbitrarily selected) eigenvalue and corresponding 
eigenvector. The discussion concerning practical aspects in this section substantiates those 
observations, and it is concluded that the vector iteration procedures and the Gram­
Schmidt orthogonalization process must be employed with care if a specific eigenvalue and 
corresponding eigenvector are required. We will see in Sections 11.5 and 11.6 that, in fact, 
both techniques are best employed and are used very effectively in conjunction with other 
solution strategies. 

11.2. 7 Exercises 

11.1. Consider the generalized eigenproblem 

H :~ -n·=Au ~ :} 
with the starting vector for iteration 

xr = (1 1 l] 

(a) Perform two inverse iterations and then use the Rayleigh quotient to calculate an approxi­
mation to A1. 

(b) Perform two forward iterations and then use the Rayleigh quotient to calculate an approx­
imation to A3. 

11.2. Proceed as in Exercise 11.1, but for the following eigenproblem, 

H -~ !J·={ ! } 

11.3. The eigenvectors corresponding to the two smallest eigenvalues A, = l, ..\2 == 2 of the problem 

[
2 1 OJ 
1 3 1 <f> = ,\<f> 
O l 2 
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are 

Let 

Use the Gram-Schmidt orthogonalization procedure to extract from Xi a vector orthogonal to cl>1 
and 4>2. Show explicitly that this vector is the third eigenvector 4>3 and calculate A3. 

11.4. Consider the eigenproblem 

[-~ -! -~Jct, = A[! I ,Jct> 
0 -1 2 2 

For this problem, 4> 1 = -
1-[!J; ct:,3 = -

1-[-!J 
Y2 1 V2 1 

Use Gram-Schmidt orthogonalization to calculate 4>2 and calculate all eigenvalues. 

11.3 TRANSFORMATION METHODS 

We pointed out in Section 11.1 that the transformation methods comprise a group of 
eigensystem solution procedures that employ the basic properties of the eigenvectors in the 
matrix <I>, 

and 

(11.3) 

(11.4) 

Since the matrix <I>, of order n X n, which diagonalizes Kand Min the way given in 
(11.3) and (11.4) is unique, we can try to construct it by iteration. The basic scheme is to 
reduce K and M to diagonal form using successive pre- and postmultiplication by matrices 
Pf and Pk, respectively, where k = l, 2, .... Specifically, if we define K1 = Kand M1 = 
M, we form 

Si~larly, 

K2 = PfK1P1 

K3 = PIK2P2 

M2 = PfM1P1 

M3 = PIM2P2 

(11.72) 

(11.73) 
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where the matrices Pk are selected to bring Kk and Mk closer to diagonal form. Then for a 
proper procedure we apparently need to have 

Kk+1-+ A and M1c+1-+ I ask-+oo 

in which case, with l being the last iteration, 

cl> = P1P2 ... P, (11.74) 

In practice, it is not necessary that Mk+ 1 converges to I and Kk+ 1 to A, but they only need 
to converge to diagonal form. Namely, if 

KH1-+ diag(Kr) and M1c+1-+ diag(M,) ask-+oo 

then with l indicating the last iteration and disregarding that the eigenvalues and eigenvec­
tors may not be in the usual order, 

. (Ky+o) 
A = d1ag MY+ 0 

(11.75) 

and cl> = P1P2 ... P, diag(~) (11.76) 
MY+!) 

Using the basic idea described above, a number of different iteration methods have 
been proposed. We shall discuss in the next sections only the Jacobi and the Householder­
QR methods, which are believed to be most effective in finite element analysis. However, 
before presenting the techniques in detail we should point out one important aspect. In the 
above introduction it was implied that iteration is started with pre- and postmultiplication 
by Pf and Pa, respectively, which is indeed the case in the Jacobi solution methods. How­
ever, alternatively, we may first aim to transform the eigenvalue problem Kcf, = ,\Mcf, into 
a form that is more economical to use in the iteration. In particular, when M = I, the first 
m transformations in ( 11. 72) may be used to reduce K into tridiagonal form without 
iteration, after which the matrices P,, i = m + 1, ... , l, are applied in an iterative manner 
to bring Km+1 into diagonal form. In such a case the first matrices P1, ... , Pm may be of 
different form than the later applied matrices Pm+ 1, • • • , P,. An application of this proce­
dure is the Householder-QR method, in which Householder matrices are used to first 
transform K into tridiagonal form and then rotation matrices are employed in the QR 
transformations. The same solution strategy can also be used to solve the generalized 
eigenproblem Ket, = ,\Mc:f>, M =I= I, provided that the problem is first transformed into the 
standard form. 

11.3.1 The Jacobi Method 

The basic Jacobi solution method has been developed for the solution of standard eigen­
problems (M being the identity matrix), and we consider it in this section. The method was 
proposed over a century ago (see C. G. J. Jacobi [A]) and has been used extensively. A major 
advantage of the procedure is its simplicity and stability. Since the eigenvector properties 
in (11.3) and (11.4) (with M = I) are applicable to all symmetric matrices K with no 
restriction on the eigenvalues, the Jacobi method can be used to calculate negative, zero, or 
positive eigenvalues. 
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Considering the standard eigenproblem K4> = Act,, the kth iteration step defined in 
(11.72) reduces to 

where Pk is an orthogonal matrix; i.e., (11.73) gives 

Pf Pk= I 

(11.77) 

(11.78) 

In the Jacobi solution the matrix Pk is a rotation matrix that is selected in such way that an 
off-diagonal element in Kt is zeroed. If element (i,j) is to be reduced to zero, the corre­
sponding orthogonal matrix Pk is 

1 

ith 

cos 8 
1 

sin O 

jth column 

(11.79) 

where 8 is selected from the condition that element (i,j) in K1c+1 be zero. Denoting element 
(. '). K b k<k> i, J m 1r. y ,, , we use 

(11.80) 

and 

(11.81) 

It should be noted that the numerical evaluation of K1r.+ 1 in ( 11. 77) requires only the linear 
combination of two rows and two columns. In addition, advantage should also be taken of 
the fact that K1r. is symmetric for all k; i.e., we should work on only the upper (or lower) 
triangular part of the matrix, including its diagonal elements. 

An important point to emphasize is that although the transformation in (11.77) 
reduces an off-diagonal element in K1r. to zero, this element will again become nonzero 
during the transformations that follow. Therefore, for the design of an actual algorithm, we 
have to decide which element to reduce to zero. One choice is to always zero the largest off­
diagonal element in K1r.. However, the search for the largest element is time-consuming, and 
it may be preferable to simply carry out the Jacobi transformations systematically, row by 
row or column by column, which is known as the cyclic Jacobi procedure. Running once 
over all off-diagonal elements is one sweep. The disadvantage of this procedure is that 
regardless of its size, an off-diagonal element is always zeroed; i.e., the element may already 
be nearly zero, and a rotation is still applied. 
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A procedure that has been used very effectively is the threshold Jacobi method, in 
which the off-diagonal elements are tested sequentially, namely, row by row (or column by 
column), and a rotation is applied only if the element is larger than the threshold for that 
sweep. To define an appropriate threshold we note that, physically, in the diagonalization 
of K we want to reduce the coupling between the degrees of freedom i andj. A measure of 
this coupling is given by (kt/kukJi) 112, and it is this factor that can be used effectively in 
deciding whether to apply a rotation. In addition to having a realistic threshold tolerance, 
it is also necessary to measure convergence. As described above, Kk+ 1 ~ A as k ~ oo, but 
in the numerical computations we seek only a close enough approximation to the eigenval­
ues and corresponding eigenvectors. Let l be the last iteration; i.e., we have, to the ·precision 
required, 

K1+1 = A (11.82) 

Then we say that convergence to a tolerance s has been achieved provided that 

i = 1, ... , n (11.83) 

and 
[ 

(k(~+ 0)2 ] 1/2 
k~:+i)kj~+O :S 10-s; all i, j; i < j (11.84) 

The relation in (11.83) has to be satisfied because the element k~!+ 0 is the current approx­
imation to an eigenvalue, and the relation states that the current and last approximations to 
the eigenvalues did not change in the firsts digits. This convergence measure is essentially 
the same as the one used in vector iteration in ( 11.20). The relation in ( 11.84) ensures that 
the off-diagonal elements are indeed small. 

Having discussed the main aspects of the iteration, we may now summarize the actual 
solution procedure. The following steps have been used in a threshold Jacobi iteration. 

1. Initialize the threshold for the sweep. Typically, the threshold used for sweep m may 
be 10-2m. 

2. For all i,j with i < j calculate the coupling factor [ (k~;>)2 /k~:> kJ~>] 1f2 and apply a 
transformation if the factor is larger than the current threshold. 

3. Use (11.83) to check for convergence. If the relation in (11.83) is not satisfied, 
continue with the next sweep; i.e., go to step 1. If (11.83) is satisfied, check if (11.84) 
is also satisfied; if "yes," the iteration converged; if "no/' continue with the next 
sweep. 

So far we have stated the algorithm but we have not shown that convergence will 
indeed always occur. The proof of convergence has been given elsewhere (see J. H. Wilkin­
son [A]) and will not be repeated here because little additional insight into the working of 
the solution procedure would be gained. However, one important point should be noted­
that convergence is quadratic once the off-diagonal elements are small. Since rapid conver­
gence is obtained once the off-diagonal elements are small, little extra cost is involved in 
solving for the eigensystem to high accuracy when an approximate solution has been ob­
tained. In practical solutions we use m = 2 and s = 12, and about six sweeps are required 
for solution of the eigensystem to high accuracy. A program used is given in the next section, 
when we discuss the solution of the generalized eigenproblem K«f> = ,\M«f>. 
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EXAMPLE 11.9: Calculate the eigensystem of the matrix K, where 

K = [-! -: _: ~1 
1 -4 6 -4 
0 1 -4 5 

Use the threshold Jacobi iteration described above. 
To demonstrate the solution algorithm we give one sweep in detail and then the results 

obtained in the next sweeps. 
For sweep 1 we have as a threshold 10-2• We therefore obtain the following results. For 

i = l,j = 2: 

and thus 

For i = 1, j = 3: 

cos 8 = 0.7497; sin fJ = 0.6618 

[

0.7497 -0.6618 o~ o

1

] 
p _ 0.6618 0.7497 0 

1 
- 0 0 1 

0 0 0 

[ 

1.469 

T - Q 
P1KP1 - -1.sgg 

0.6618 

cos 8 = 0.9398; 

r0.9398 

P, = l0.~416 

9.~31 =!:!:~ ~:~!!~] 
-3.661 6 -4 

0.7497 -4 5 

sin 8 = 0.3416 

0 -0.3416 
1 0 
0 0.9398 
0 0 !] 
-1.250 0 [ 0.7792 -0.7~] 

prJ>TKP p _ -1.250 9.531 -3.440 0.7497 
2 I l 2 - Q -3.440 6.690 -3.986 

-0.7444 0.7497 -3.986 5 

r~6 -0.6618 -0.2561 

!] 
0.6220 0.7497 -0.2261 

P,P, = 0.~16 0 0.9398 
0 0 

For i = l,j = 4: 

cos 6 = 0.9857; sin 8 = 0.1687 

[

0.9i57 

p3 = 
0 

0.1687 

: ~ -0.r] 
0 0 0.9857 
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-1.106 -0.6725 
T T T . _ -1.106 

[ 0.6518 
P,P,P 1KP1P,P, - -0.~725 

9.531 -3.440 o.~99] 

2,j = 3: 

-3.440 6.690 -3.928 
0.9499 -3.928 5.127 

['6945 -0.6618 -0.2561 -0.1189] 
0.6131 0.7497 -0.2261 -0.1050 

P1P2P3 = 0.3367 0 0.9398 -0.0576 
0.1687 0 0 0.9857 

cos O = 0.8312; sin 9 = -0.5560 

1
1 0 

P. = 0 0.8312 
4 

0 -0.5560 
0 0 

0 
0.5560 
0.8312 

0 !] 
0.5453 -1.174 

prprpn>fKP P p P. = -0.5453 
[ 0.6518 

4 3 2 I 2 3 4 - }.
174 

11.83 0 2.~1 0 4.388 -2.737 
0 2.974 -2.737 5.127 

r945 
-0.4077 -0.5808 -0.118] 0.6131 0.7488 0.2289 -0.1050 P1 P2P3P4 = 0.

3367 -0.5226 0.7812 -0.0576 
0.1682 0 0 0.9857 

For i = 2, j = 4: 

cos 6 = 0.9349; sin O = 0.3549 

[

1 0 

p = 0 0.9349 
s O O 

0 0.3549 

0 0 l 0 -0.3549 
1 0 
0 0.9349 

[ o.~18 0.5098 -1.174 o.~935] 
T T -Q.5098 12.96 0.9713 

PfP.l'J>3PfP.1KP1P2P3P4Ps = -1.1
74 -0.9713 4.388 -2.559 

. 0.1935 0 -2.559 3.999 

[0.@45 -0.4233 -0.5808 0.0335] 
0.6131 0.6628 0.2289 -0.3639 

P1 P2P3P4Ps = 0.
3367 0.5090 0.7812 0.1316 

0.1687 0.3498 0 0.9213 
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To complete the sweep, we zero element (3, 4), using 

cos fJ = 0.7335; sin O = -0.6797 

p• = [j 0 0 

0.6q 1 0 
0 0.7335 
0 -0.6797 0.7335 

and hence, the approximations obtained for A and 41> are 

A = Pl ... PfKP1 ... P6 

i.e., 

[ o.~1s -0.5098 -0.9926 -0.6560] 
A= -0.5098 12.96 -0.7124 -0.6602 

-0.9926 -0.7124 6.7596 0 
-0.6560 -0.6602 0 l.6272 

and 41> = P, ... P6 

[°.6945 -0.4233 -0.4488 -0.3702] 
41> = 0.6131 0.6628 0.4152 -0.1113 

0.3367 -0.5090 0.4835 0.6275 
0.1687 0.3498 -0.6264 0.6759 

i.e., 

After the second sweep we obtain 

[ 0.1563 -0.3635 0.0063 

-or] A= -0.3635 13.08 -0.0020 
0.0063 -0.0020 6.845 

-0.0176 0 0 1.910 

[°.3875 -0.3612 -0.6017 -0.597] 
41> = 0.5884 0.6184 0.3710 -0.3657 

0.6148 -0.5843 0.3714 0.3777 
0.3546 0.3816 -0.6020 0.6052 

And after the third sweep we have 

A = [.1459 13.09 ] 

6.854 
l.910 

[

o 3717 -0.3717 -0.6015 -o 601s] 
41> = o:6ots o.601s o.3717 -0~3111 

0.6015 -0.6015 0.3717 0.3717 
0.3717 0.3717 -0.6015 0.6015 
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The approximation for A is diagonal to the precision given. and we can use 

[

0.3717] 
cf> = 0.6015 

I 0.6015 

0.3717 

A1 = 0.1459; 

A2 = 1.910; 
[

-0.6015] 
cf> = -0.3717 

2 
0.3717 

0.6015 

,\3 = 6.854; 
[

-0.6015] 
cf> = 0.3717 

3 
0.3717 

-0.6015 

.A4 = 13.09; 
[

-0.3717] 
cf> = 0.6015 

4 -0.6015 
0.3717 

It should be noted that the eigenvalues and eigenvectors did not appear in the usual order in the 
approximation for A and 4>. 

In the following example we demonstrate the quadratic convergence when the off­
diagonal elements are already small (see J. H. Wilkinson [B]). 

EXAMPLE 11.10: Consider the Jacobi solution of the eigenproblem Kcf> = ,\cf>, where 

[

k11 o(E) o(E)J 
K = o(e) k22 o(e) 

o(E) o(e) k33 

The symbol o(E) signifies "of order e," where E <:g kii, i = 1, 2, 3. Show that after one complete 
sweep, all off-diagonal elements are of order e2, meaning that convergence is quadratic. 

Since the rotations to be applied are small, we make the assumption that sin 8 = 8 and 
cos () = 1. Hence, the relation in (11.80) gives 

k~~) 
8 - IJ 

- k\~> - k\~) 
II JJ 

In one sweep we need to set to zero, in succession, all off-diagonal elements. Using K1 = 
K, we obtain K2 by zeroing element (1, 2) in K1, 

K2 = PfK1P1 

-o(e) 
0 

k11 - k22 

where P1 = 
O(E) 

0 
k11 - k22 

0 0 
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[

k11 + o(e
2
) 0 o(e)] 

K2 == 0 k22 + o(e2
) o(e) 

o(e) o(E) k33 

Hence, 

Similarly, we zero element (1, 3) in K2 to obtain K3, 

[

k11 + o(e2
) o(e2

) 

KJ = o(e2
) k22 + o(e2

) 

O o(e) 

Finally, we zero element (2, 3) in K3 and have 

[

k11 + o(e2
) o(e2

) 

L = o(E2) k22 + o(e2) 
o(e2) 0 

with all off-diagonal elements at least o(e2). 

11.3.2 The Generalized Jacobi Method 

In the previous section we discussed the solution of the standard eigenproblem Kcl> = .\cl> 
using the conventional Jacobi rotation matrices in order to reduce K to diagonal form. To 
solve the generalized problem Kcl> = .\Mel>, M * I, using the standard Jacobi method, it 
would be necessary to first transform the problem into a standard form. However, this 
transformation can be dispensed with by using a generalized Jacobi solution method that 
operates directly on Kand M (see S. Falk and P. Langemeyer [A] and K. J. Bathe [A]). The 
algorithm proceeds as summarized in (11.72) to (11.76) and is a natural extension of the 
standard Jacobi solution scheme; i.e., the generalized method reduces to the scheme pre­
sented for the problem Kcl> == .\<f, when M is an identity matrix. 

Referring to the discussion in the previous section, in the generalized Jacobi iteration 
we use the following matrix Pk: 

ith jth column 

a-----ith 
(11.85) 

1----+-:ith row 

where .the constants a and 'Y are selected in such a way as to reduce to zero simultaneously 
elements (i,j) in Kk and Mk. Therefore, the values of a and 'Y are a function of the elements 
ki>, ki}>, kjJ>, m}J>, m}}>, and m;J>, where the superscript (k) indicates that the kth iteration is 
considered. Performing the multiplications PIKA:Pk and PIMkP1 and using the condition 
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that k};+ 1
> and m!;+ 0 shall be zero, we obtain the following two equations for a and '}': 

and 

If 

ak~:> + (l + ay)k~> + ykJJ> = 0 

am~f> + (1 + ay)m)J> + ymJJ> = 0 

k~:> - kt) - kt> 
m~~> - m~~> - m<iJ1> 

II JJ I 

(11.86) 

(11.87) 

(i.e., the submatrices considered are scalar multiples, which may be regarded to be a trivial 
case), we use a = 0 and 'Y = -k}J> /kjJ>. In general, to solve for a and 'Y from ( 11.86) and 
(11.87), we define 

and 

kJ~> == k~~>m\~> - m\~> k~~)I fl II I) II IJ 

kjJ> = kjJ>mt> - mjJ>ki> 
p1c> = k[f>mjJ> - kjJ)mW> 

kif' k{k) 
y=--; a='::t.L 

x x 

The value of x needed to obtain a and 'Y is then to be determined using 

- + k~~) f;(~) (
'f<k))l 
2 II JJ 

(11.88) 

(11.89) 

(11.90) 

The relations for a and '}' are used and have primarily been developed for the case of 
M being a positive definite full or banded mass matrix. In that case (and, in fact, also under 
less restrictive conditions), we have 

- + f,Wfi:\~> > 0 (
1<,(k))l 
2 II JJ 

and hence x is always nonzero. In addition, det Pk if:. 0, which indeed is the necessary 
condition for the algorithm to work. 

The generalized Jacobi solution procedure has been used a great deal in the subspace 
iteration method (see Section 11.6) and when a consistent mass idealization is employed. 
However, other situations may arise as well. Assume that M is a diagonal mass matrix, 
M ::fo I and mu > 0, in which case we employ in ( 11.88), 

(11.91) 

and otherwise (11.85) to (11.90) are used as before. However, if M = I, the relation in 
( 11.87) yields a = -'}', and we recognize that Pk in ( 11.85) is a multiple of the rotation 
matrix defined in ( 11.79) (see Example 11.11 ). In addition, it should be mentioned that the 
solution procedure can be adapted to solve the problem K<f, = .,\Mcf, when M is a diagonal 
matrix with some zero diagonal elements. 

The complete solution process is analogous to the Jacobi iteration in the solution of the 
problem Ket, = .,\<f,, which was presented in the preceding section. The differences are that 
now a mass coupling factor [(m}J')2 /m}f>m;J>]1! 2 must also be calculated, unless Mis diago­
nal, and the transformation is applied to Kk and Mk, Convergence is measured by compar­
ing successive eigenvalue approximations and by testing if all off-diagonal elements are 
small enough; i.e., with l being the last iteration, convergence has been achieved if 

IA(/+1) A~')I 
{ I <:: 10-s 

,\il+I) - ' i = l, ... , n (11.92) 
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where 

and 

Transformation Methods 

k(t) 
l(I) _ ii , 
l\j --w, 

mu 

k(l+I) 
J\<1+0 - _;_1 -

i - m}f+O 

921 

(11.93) 

[ 
(k~~+ 1))2 ]1/2 

I} < -s 
kt 0 k;~+l) - lO ; [ 

(m{~+o)2 ]112 
IJ < -s 

(l+I} (l+I) - 10 ; 
mu m11 

all i,j; i < j (11.94) 

where 10-s is the convergence tolerance. 
Table 11.1 summarizes the solution procedure for the case of M being full (or banded) 

and positive definite. The relations given in Table 11.1 are employed directly in the subrou­
tine JACOBI, which is presented at the end of this section. Table 11.1 also gives an 
operation count of the solution process and the storage requirements. The total number of 
operations in one sweep as given in the table are an upper bound because it is assumed that 
both matrices are full and that all off-diagonal elements are zeroed; i.e., the threshold 
tolerance is never passed. Considering the number of sweeps required for solution, the same 
experience as with the solution of standard eigenproblems holds; i.e., with m = 2 and 
s = 12 in the iteration (see Section 11.3 .1) about six sweeps are required for solution of the 
eigensystem to high accuracy. 

TABLE 11.1 Summary of generalized Jacobi solution 

Operation 

Calculation of 
coupling factors 

Transfonnation 
to zero elements (i, j) 

Calculation of 
eigenvectors 

Total for one sweep 

Calculation 

(klj>)
2 

• {m~>)2 

k):>k<;>' m!:>m<;> 
r~:) = kf:>m~) m}flk~) 
ri> = kJ>m~> - m;>k~) 

f<k> = k}:>mJ> - kff>m}f1 

-(le) 

x = k + (sign f<kl) 

p> f\k) 
'Y = - _,_, • a = :::JL 

x x 

Kk+t = PiK1cPk. Mk+1 = PrM.tP1c 
(Pi ... Pk-1)Pk 

Number of 
operations 

6 

4n + 12 

2n 

Required storage 

Using symmetry of 
matrices n(n + 2} 

n2 

3n3 + 6n2 2n2 + 2n 

The following examples demonstrate some of the characteristics of the generalized 
Jacobi solution algorithm. 

EXAMPLE 11.11: Prove that the generalized Jacobi method reduces to the standard technique 
when M = I. 

For the proof we need only consider the calculation of the transformation matrices that 
would be used to zero typical off-diagonal elements. We want to show that the transforma­
tion matrices obtained in the standard and generalized Jacobi methods are multiples of each 
other; namely, in that case we could, by proper scaling, obtain the standard method from the 
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generalized scheme. Since each step of iteration consists of applying a rotation in the (i,j)th 
plane, we can without loss of generality consider the solution of the problem 

[ ku k12]<t> = Act, 
k,2 kn 

Using ( 11.88) to ( 11.90), we thus obtain 

and 

a= -y; 

-ku + k22 ± V(ku - k22)2 + 4kr2 
'Y = 

2k12 

On the other hand, in the standard Jacobi solution we use 

Pi = [c?s 8 -sin 8] 
smfJ cos8 

which may be written as 

[ 
1 -tan 8] P, = cos 6 

8 tan 1 

(a) 

(b) 

Thus, Pi in (b) would be a multiple of P1 in (a) if tan (J = y. In the standard Jacobi method we 
obtain tan 28 using ( 11.80). In this case, we have 

2k12 
tan26=k k 

II - 22 

We also have, by simple trigonometry, 

2 tan (J 
tan 2(J = ----

1 - tan2 
(;) 

Using (c) and (d), we can solve for tan (J to be used in (b} and obtain 

(J 
_ -ku + k22 ± V(k11 - k22)2 + 4kr2 

tan - 2k12 

(c) 

(d) 

Hence, y = tan 8 and the generalized Jacobi iteration is equivalent to the standard method when 
M = I. 

EXAMPLE 11. 12: Use the generalized Jacobi method to calculate the eigensystem of the 
problem K<f> = AMtf>. 

(1) In the first case let 

[ I -1] 
K = -1 I ; 

We note that K is singular, and hence we expect a zero eigenvalue. 
(2) Then let 

K = [~ ~l M = [~ ~] 

in which case we have an infinite eigenvalue. 
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For solution, we use the relations in (11.85) to (11.90). Considering the problem in case 
( 1 ). we obtain 

fW = 3; k~~ = 3; 

x = 3; 'Y = -1; 

P1 = [-~ !] 
Hence, T _ [4 Q]· P1KP1- O O. 

k'-1) = 0 

a= I 

To obtain A and cl> we use ( 11. 7 5) and ( 11. 76) and arrange the columns in the matrices 
in the appropriate order. Hence, 

cl>= [0 -~] 
V'6 V2 

Now consider the problem in case (2). Here we have 

kW -2; k~~ = O; 'fO) = -4 

x = -4; a= O; 'Y = -! 

Pi= [ ~ -, ~] 
Hence, PfKP, = rn ~l PfMP1 = [~ ~] 

and 
cf>,= [- 0] 

2V2 

The above discussion of the generalized Jacobi solution method has already indicated 
in some way the advantages of the solution technique. First, the transformation of the 
generalized eigenproblem to the standard form is avoided. This is particularly advantageous 
( 1) when the matrices are ill-conditioned, and ( 2) when the off-diagonal elements in K and 
M are already small or, equivalently when there are only a few nonzero off-diagonal 
elements. In the first case the direct solution of Ket, = ,\Met, avoids the solution of a 
standard eigenproblem of a matrix with very large and very small elements (see Sec­
tion 10.2.5). In the second case the eigenproblem is already nearly solved, because the 
zeroing of small or only a few off-diagonal elements in Kand M will not result in a large 
change in the diagonal elements of the matrices, the ratios of which are the eigenvalues. In 
addition, fast convergence can be expected when the off-diagonal elements are small (see 
Section 11.3.1 ). We will see that this case arises in the subspace iteration method described 
in Section 11.6, which is one reason why the generalized Jacobi method is used effectively 
in that technique. 
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It should be noted that the Jacobi solution methods solve simultaneously for all 
eigenvalues and corresponding eigenvectors. However, in finite element analysis we require 
in most cases only some eigenpairs, and the use of a Jacobi solution procedure can be very 
inefficient, in particular when the order of K and M is large. In such cases much more 
effective solution methods are available, which solve only for the specific eigenvalues and 
eigenvectors that are actually required. However, the generalized Jacobi solution method 
presented in this section can be used very effectively as part of those solution strategies (see 
Section 11.6). When the order of the matrices K and M is relatively small, the solution of 
the eigenproblem is not very expensive, and the Jacobi iteration may also be attractive 
because of its simplicity and elegance of solution. 

Subroutine JACOBI. Program JACOBI is used to calculate all eigenvalues and 
corresponding eigenvectors of the generalized eigenproblem K<f, = J\.M<f,. The argument 
variables and use of the subroutine are defined using comment lines in the program. 

SUBROUTINE JACOBI (A 1 B1 X1 EIGV,D,N,RTOL,NSMAX,IFPR,IOUT) JACOOOOl 
C .....•......•..•......•. , , . , , .• , • , •.•••••••.....•• , ••••••••.• , .....•• JAC00002 
C. • JAC00003 
C, PROGRAM • JAC00004 
C. TO SOLVE THE GENERALIZED EIGENPROBLEM USING THE • JACOOOOS 
C. GENERALIZED JACOBI ITERATION • JAC00006 
C. • JAC00007 
C , INPUT VARIABLES - - JAC00008 
C, A(N,N) • STIFFNESS MATRIX (ASSUMED POSITIVE DEFINITE) • JAC00009 
C. B(N,N) • MASS MATRIX (ASSUMED POSITIVE DEFINITE) . JAC00010 
C. X(N,N) • STORAGE FOR EIGENVECTORS • JACOOOll 
C. EIGV(N) • STORAGE FOR EIGENVALUES , JAC00012 
C, D(N) • WORKING VECTOR . JAC00013 
C. N • ORDER OF MATRICES A AND B JAC00014 
C. RTOL • CONVERGENCE TOLERANCE (USUALLY SET TO 10.**-12), JACOOOlS 
C. NSMAX • MAXIMUM NUMBER OF SWEEPS ALLOWED • JAC00016 
C. (USUALLY SET TO 15) . JAC00017 
C. IFPR • FLAG FOR PRINTING DURING ITERATION , JAC00018 
C. EQ.0 NO PRINTING • JAC00019 
C EQ.1 INTERMEDIATE RESULTS ARE PRINTED . JAC00020 
C, IOUT • UNIT NUMBER USED FOR OUTPUT • JAC00021 
C , , JAC00022 
C. - - OUTPUT - - . JAC00023 
C. A(N,N) • DIAGONALIZED STIFFNESS MATRIX • JAC00024 
C. B(N,N) • DIGONALIZED MASS MATRIX , JAC00025 
C. X(N,N) • EIGENVECTORS STORED COLUMNWISE , JAC00026 
C EIGV(N) • EIGENVALUES . JAC00027 
C. . JAC00028 
C , , •• , •••..•••.••• , ••••. , , , ••••••.•••.....••. , ••••.•••.••.•..•. , ...•.• JAC00029 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) JAC00030 
C • , , , , ••• , ••••• , , •••• , , •••••• , •• , •• , , • , , • , •• , •••• , •• , , •••••• , ••••••••• JAC00031 
C. THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON CRAY , JAC00032 
C. EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM MACHINES, • JAC00033 
C. ENGINEERING WORKSTATIONS ANO PCS. DEACTIVATE ABOVE LINE FOR • JAC00034 
C. SINGLE PRECISION ARITHMETIC. • JAC00035 
C •••• , ••• , , •••••• , ••••••••••••••••• , ••••••••••••• , •••••••••••••••••••• JAC00036 

c 
c 
c 

DIMENSION A(N,N)~B(N,N),X(N,N},EIGV(N),D(N) JAC00037 

INITIALIZE EIGENVALUE AND EIGENVECTOR MATRICES 

DO 10 I•l,N 
IF (A(I,I).GT.0 .• AND. 
WRITE (IOUT,2020) 
GO TO 800 

4 D(I)•A(I,I)/B{I,I) 
10 EIGV(I)•O(I) 

DO 30 I•l,N 
DO 20 J•l,N 

B(I,I).GT,0.) GO TO 4 

JAC00038 
JAC00039 
JAC00040 
JAC00041 
JAC00042 
JAC00043 
JAC00044 
JAC00045 
JAC00046 
JAC00047 
JAC00048 
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20 X{I,J)•O. 
30 X( I, I )•l. 

IF (N.EQ.1) GO TO 900 

C INITIALIZE SWEEP COUNTER AND BEGIN ITERATION 
c 

c 

NSWEEP•O 
NRaN - 1 

40 NSWEEP•NSWEEP + 1 
IF (IFPR.EQ.l) WRITE (IOUT,2000) NSWEEP 

C CHECK IF PRESENT OFF-DIAGONAL ELEMENT IS LARGE ENOUGH TO 
C REQUIRE ZEROING 
c 

EPS•(.Ol)**(NSWEEP*2) 
DO 210 J•l,NR 
JJ•J + l 
DO 210 K•JJ,N 
EPTOLA•(A(J,K)/A(J,J))*(A(J,K)/A(K,K)) 
EPTOLB•(B(J,K)/B(J,J))*(B(J,K)/B(K,K)) 
IF (EPTOLA.LT.EPS .AND. EPTOLB.LT.EPS) GO TO 210 

c 
C IF ZEROING IS REQUIRED, CALCULATE THE ROTATION MATRIX 
C ELEMENTS CA AND CG 
c 

c 

AKK•A(K,K)*B(J,K) - B(K,K)*A(J,K) 
AJJ•A(J,J)*B(J,K) - B(J,J)*A(J,K) 
AB•A(J,J)*B(K,K) - A(K,K)*B(J,J) 
SCALE•A(K,K)*B(K,K) 
ABCH•AB/SCALE 
AKKCH•AKK/SCALE 
AJJCH•AJJ/SCALE 
CHECK•(ABCH*ABCH + 4.*AKKCH*AJJCH)/4. 
IF (CHECK) 50,60,60 

50 WRITE (IOUT,2020) 
GO TO 800 

60 SQCH•SCALE*SQRT(CHECK) 
Dl•AB/2. + SQCH 
D2•AB/2. - SQCH 
DEN•Dl 
IF (ABS( D2) •. GT.ABS(Dl)) DEN•D2 
IF (DEN) 80,70;80 

70 CA•O. 
CG•-A(J,K)/A(K,K) 
GO TO 90 

80 CA•AKK/DEN 
CG•-AJJ/DEN 

C PERFORM THE GENERALIZED ROTATION TO ZERO ELEMENTS 
c 

90 IF (N-2) 100,190,100 
100 JPl•J + 1 

JMl•J - 1 
KPl•K + l 
KMl•K - 1 
IF (JMl-1) 130,110,110 

110 DO 120 I•l,JMl 
AJ•A(I,J) 
BJ•B(I,J) 
AK•A(I,K) 
BK•B(I,K) 
A(I,J)•AJ + CG*AK 
B(I,J)•BJ + CG*BK 
A(I,K)•AK + CA*AJ 

120 B(I,K)•BK + CA*BJ 
130 IF (KPl-N) 140,140,160 
140 DO 150 I•KPl,N 

AJ•A( 3, I) 
BJ•B(J,l) 
AK•A(K,I) 
BK•B(K,I) 

925 

JAC00049 
JACOOOSO 
JAC00051 
JAC00052 
JAC00053 
JAC00054 
JAC00055 
JAC00056 
JAC00057 
JACOOOS8 
JAC00059 
JAC00060 
JAC00061 
JAC00062 
JAC00063 
JAC00064 
JAC00065 
JAC00066 
JAC00067 
JAC00068 
JAC00069 
JAC00070 
JAC00071 
JAC00072 
JAC00073 
JAC00074 
JAC00075 
JAC00076 
JAC00077 
JAC00078 
JAC00079 
JAC00080 
JAC00081 
JAC0006~ 
JAC00083 
JAC00084 
JAC00085 
JAC00086 
JAC00087 
JAC00088 
JAC00089 
JAC00090 
JAC00091 
JAC00092 
JAC00093 
JAC00094 
JAC00095 
JAC00096 
JAC00097 
JAC00098 
JAC00099 
JACOOlOO 
JAC00101 
JAC00102 
JAC00103 
JAC00104 
JACOOlOS 
JAC00106 
JAC00107 
JAC00108 
JAC00109 
JACOOllO 
JACOOlll 
JAC00112 
JAC00113 
JAC00114 
JAC00115 
JAC00116 
JAC00117 
JAC00118 
JAC00119 
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A(J, I )•.AJ + CG*AK JAC00120 
B(J,I)•BJ + CG*BK JAC00121 
A( K,I )•AK + CA*AJ JAC00122 

150 B( K, I )•BK + CA*BJ JAC00123 
160 IF (JPl-KMl) 170,170,190 JAC00124 
170 DO 180 I•JPl, KMl JAC00125 

AJ•A(J,I) JAC00126 
BJ•B(J,I) JAC00127 
AK-A(L.Jt) JAC00128 
BK•B(I,K) JAC00129 
A(J,I)•AJ + CG*AK JAC00130 
B{J,I)•BJ + CG*BK JAC0013l 
A(I, K)•AK + CA*AJ JAC00132 

160 B(I,K)•BK + CA*BJ JAC00133 
190 AK•A(K,K) JAC00134 

BK•B(K,K) JAC00135 
A(K,K)•AK + 2.*CA*A(J,K) + CA*CA*A(J,J) JAC00136 
B(K,K)•BK + 2.*CA*B(J,K) + CA*CA*B(J,J) JAC00137 
A(J,J)•A(J,J) + 2.*CG*A(J,K) + CG*CG*AK JAC00138 
B(J,J)•B(J,J) + 2.*CG*B(J,K) + CG*CG*BK JAC00139 
A(J,K)•O. JAC00140 
B(J,K)•O. JAC00141 

C JAC00142 
C UPDATE THE EIGENVECTOR MATRIX AFTER EACH ROTATION JAC00143 
C JAC00144 

DO 200 I•l,N JAC00145 
XJ•X(I,J) JAC00146 
XK•X(I,K) JAC00147 
X(I,J)•XJ + CG*XK JAC00148 

200 X(I,K)•XK + CA*XJ JAC00149 
210 CONTINUE JAC00150 

C JAC00151 
C UPDATE THE EIGENVALUES AFTER EACH SWEEP JAC00152 
C JAC00153 

DO 220 I•l,N JAC00154 
IF (A(I,I).GT.0 •• AND. 8(1,I).GT.0.) GO TO 220 JAC00155 
WRITE (!OUT, 2020) JACOOl 56 
GO TO 800 JAC00157 

220 EIGV(I)•A(I,I)/B(I,I) JAC00158 
IF (IFPR,EQ.0) GO TO 230 JAC00159 
WRITE (IOUT,2030) JAC00160 
WRITE (IOUT,2010) (EIGV(I),I•l,N) JAC00161 

C JAC00162 
C CHECK FOR CONVERGENCE JAC00163 
C JAC00164 

230 DO 240 I•l,N JAC00165 
TOL•RTOL*D(I) JAC00166 
DIF•ABS(EIGV(I)-D(I)) JAC00167 
IF (DIF.GT.TOL) GO TO 280 JAC00168 

240 CONTINUE JAC00169 
C JAC00170 
C CHECK OFF-DIAGONAL ELEMENTS TO SEE IF ANOTHER SWEEP IS NEEDED JAC00171 
C JAC00172 

EPS•RTOL**2 JAC00173 
DO 250 J•l,NR JAC00174 
JJ•J + l JAC00175 
DO 250 K•JJ,N JAC00176 
EPSA•(A( J, K)/A( J, J)) * (A( J, K)/A( K, K)) JACOOl 77 
EPSB•(B(J,K)/B(J,J))*(B(J,K)/B{K,K)) JAC00178 
IF (EPSA.LT.EPS .ANO. EPSB.LT.EPS) GO TO 250 JAC00179 
GO TO 280 JAC00180 

250 CONTINUE JAC00181 
C JAC00182 
C FILL OUT BOTTOM TRIANGLE OF RESULTANT MATRICES, SCALE EIGENVECTORSJAC00183 
C JAC00184 

255 DO 260 I•l,N JAC00185 
DO 260 J•I,N JAC00186 
A(J,I)•A(I,J) JAC00187 

260 B(J,I)•B(I,J) JAC00188 
DO 270 J•l,N JAC00189 
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BB•SORT(B{J,J)) 
DO 270 K•l,N 

270 X(K,J)•X(K,J)/BB 
GO TO 900 

927 

C UPDATE D MATRIX AND START NEW SWEEP, IF ALLOWED 

JAC00190 
JAC00191 
JAC00192 
JAC00193 
JAC00194 
JAC00195 
JAC00196 
JAC00197 
JAC00198 
JAC00199 
JAC00200 
JAC00201 
JAC00202 
JAC00203 
JAC00204 
JAC00205 
JAC00206 
JAC00207 
JAC00208 
JAC00209 
JAC00210 

c 

c 

c 

280 DO 290 I•l,N 
290 D( I )•EIGV( I) 

IF (NSWEEP,LT.NSMAX) GO TO 40 
GO TO 255 

800 STOP 
900 RETURN 

2000 FORMAT 
2010 FORMAT 
2020 FORMAT 

1 
2030 FORMAT 

ENO 

(//,' SWEEP NUMBER IN *JACOBI*• ',IS) 
(' ', 6E20 .12) 
(//,' ***ERROR*** SOLUTION STOP',/, 

I MATRICES NOT POSITIVE DEFINITE') 
(//,' CURRENT EIGENVALUES IN *JACOBI* ARE',/) 

11.3.3 The Householder-QR-Inverse Iteration Solution 

Another most important transformation solution technique is the Householder-QR-inverse 
iteration (HQRI) method, although this procedure is restricted to the solution of the stan­
dard eigenproblem (see J. G. F. Francis [A], J. H. Wilkinson [B], B. N. Parlett [A, B], and 
R. S. Martin, C. Reinsch, and J. H. Wilkinson [A]). Therefore, if the generalized eigenprob­
lem K«f, = ..\M«f> is considered, it must first be transformed into the standard form before 
the HQRI solution technique can be used. As pointed out in Section 10.2.5, this transforma­
tion is effective in only some cases. 

In the following discussion, we consider the problem K«f, = ..\«f>, in which K may have 
zero (and could also have negative) eigenvalues. Therefore, it is not necessary to impose a 
shift prior to applying the HQRI algorithm in order to solve for only positive eigenvalues (see 
Section 10.2.3). The name "HQRI solution method" stands for the following three solution 
steps: 

1. Householder transformations are employed to reduce the matrix K to tridiagonal form. 
2. QR iteration yields all eigenvalues. 

3. Using inverse iteration the required eigenvectors of the tridiagonal matrix are calcu­
lated. These vectors are transformed to obtain the eigenvectors of K. 

A basic difference from the Jacobi solution method is that the matrix is first trans­
formed without iteration into a tridiagonal form. This matrix can then be used effectively 
in the QR iterative solution, in which all eigenvalues are calculated. Finally, only those 
eigenvectors that are actually requested are evaluated. We will note that unless many 
eigenvectors must be calculated, the transformation of K into tridiagonal form requires most 
of the numerical operations. In the following we consider in detail the three distinct steps 
carried out in the HQRI solution. 

The Householder reduction. The Householder reduction to tridiagonal form in­
volves n - 2 transformations of the form ( 11.72); i.e., using K1 = K, we calculate 

Kk+1 = PrKkPk; k = 1, ... , n - 2 (11.95) 
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where the P1c are Householder transformation matrices (reflection matrices, see Exer­
cise 2.6): 

(11.96) 

(11.97) 

To show how the vector w1c that defines the matrix P1c is calculated, we consider the 
case k = 1, which is typical. First, we partition K1, P1, and W1 into submatrices as follows: 

P1 = [!-t iJ Wt = tJi1 
(11.98) 

where K11, P1, and W1 are of order n - 1. In the general case of step k, we have correspond­
ing matrices of order n - k. Performing the multiplications in ( 11.95), we obtain, using the 
notation of ( 11.98), 

[ 

• r- J 
K2 = ~;---~-=-=f J_J!!_:: (11.99) 

P1k 1 : P1KnP1 

The condition is now that the first column and row of K2 should be in tridiagonal form; i.e., 
we want K2 to be in the form 

k11 x O . . . 0 
---- ---------------x 
0 

(11.100) 

0 

where x indicates a nonzero value and 

K2 = PfK11P1 (11.101) 

The form of K2 in ( 11.100) is achieved by realizing that P 1 is a reflection matrix. Therefore, 
we can use Pi to reflect the vector k, of Ki in ( 11.98) into a vector that has only its first 
component nonzero. Since the length of the new vector must be the length of k1, we 
determine w1 from the condition 

(I - 8w1wDk1 = :tll kill2e, (11.102) 

where e1 is a unit vector of dimension n - l; i.e., e[ = [l O O . . . O], and the+ or 
- sign can be selected to obtain the best numerical stability. Noting that we only need to 
solve for a multiple of w 1 (i.e., only the direction of the vector normal to the plane of 
reflection is important, see Exercise 2.6), we obtain from (11.102) as a suitable value 
for W1, 

(11.103) 

where k21 is element (2, l) of K1. 
With w1 defined in (11.103), the first Householder transformation, k = 1 in (11.95), 

can be carried out. In the next step, k = 2, we can consider the matrix K2 in ( 11.100) in 
the same way as we considered K 1 in ( 11. 98) to ( 11.103) because the reduction of the first 



Sec. 11.3 Transformation Methods 929 

column and row of K2 does not affect the first column and row in K2. Thus, the general 
algorithm for the transformation of K into tridiagonal form is established. We demonstrate 
the procedure in the following example. 

EXAMPLE 11.13: Use Householder transformation matrices to reduce K to tridiagonal form, 
where 

[ 

5 -4 1 OJ 
K = -4 6 -4 I 

l -4 6 -4 
0 1 -4 5 

Here, using { 11. 95) to ( 11.103) to reduce column 1, we have 

Hence, 

and 

[-4] [1] [-8.1231] w1 = ~ - 4.1231 ~ = ~ 

-[-8.1~3l · W1 - l , 

0 

[

l O 

p =. 0 -0.9701 
I O 0.2425 

0 0 

81 = 0.0298575 

0 
0.2425 
0.9701 

0 !] 
[ 

5 4.1231 0 0 J 
K

2 
= 4.1~231 7.8823 3.5294 -1.9403 

3.5294 4.1177 -3.6380 
-1.9403 - 3.6380 5 

Next we reduce column 2, 

_ [ 3.5294] [l] [ 7.5570] 
W

2 = - l.9403 + 4·0216 0 = -1.9403 

w, = [ 7I1 (h = 0.0328553 

-1.9403 

P, = [! 
0 0 

o.L] 1 0 
0 -0.8763 
0 0.4817 0.8763 

K, = [4.1131 
4.1231 0 

2.t] Hence, 7.8823 -4.0276 
-4.0276 7.3941 

0 2.3219 1.7236 
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Some important numerical aspects should be noted. First, the reduced matrices K2, 
K3, ... , Kn-1 are symmetric. This means that in the reduction we need to store only the 
lower symmetric part of K. Furthermore, to store the Wk, k = 1, 2, ... , n - 2, we can use 
the storage locations below the subdiagonal elements in the matrix currently being reduced. 

A disadvantage of the Householder transformations is that the bandwidth is increased 
in the unreduced part of Kk+ 1. Hence, in the reduction, essentially no advantage can be 
taken of the handedness of K. 

An important aspect of the transformation is the evaluation of the matrix product 
Pf K11 P1 and the similar products required in the next steps. In the most general case a triple 
matrix product with matrices of order n requires 2n 3 operations, and if this many operations 
were required, the Householder reduction would be quite uneconomical. However, by 
taking advantage of the special nature of the matrix P1, we can evaluate the product 
PfK11P1 by calculating 

and then 

V1 = K11W1 

pf= 81vf 

/31 = pfw1 

Q1 == Pt - 81/31W1 

PfKllPt = K11 - W1Pf - Q1Wf 

(11.104) 

(11.105) 

which requires only about 3m2 + 3m operations, where mis the order of P1 and K,1 (i.e., 
m = n - 1 in this case). Hence, the multiplication PfKuP, requires a number of opera­
tions of the order m-squared rather than m-cubed, which is a very significant reduction. We 
demonstrate the procedure given in (11.104) and (11.105) by reworking Example 11.13. 

EXAMPLE 11.14: Use the relations given in (11.104) and (11.105) to reduce the matrix Kin 
Example 11.13 to tridiagonal form. 

or 

Here we obtain for the reduction of column I using W1 and 81 calculated in Example 11.13, 

[ 
6 -4 I] [-52.738 ] 

V1 = -4 6 -4 Wt = 38.4924 
1 -4 5 -12.1231 

pf= (-1.5746 1.1493 -0.36197]; /31 = 13.9403; 

2.9403] 
-0.3620 

0 

[ 
1.8064] 

qi = 0.7331 
-0.3620 

[

-14.6734 t.8064 o~] 
- -5.9548 0.73307 

2.9403 -0.3620 

[ 

7.8823 3.5294 -1.9403] 
PfK11P1 = 3.5294 4.1177 -3.6380 

-1.9403 -3.6380 5 
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and hence, ~=[4tl 4.1231 
7.8823 
3.5294 

-1.9403 

0 
3.5294 
4.1177 

-3.6380 

Next we reduce the second column 

_ [ 4.1177 -3.6380] __ [ 38.1759] 
V

2 
- -3.6380 5 W

2 
- -37.1941 

p! = [1.2543 -1.2220]; {32 = 11.8497~ 

931 

-l.9~03] 
-3.6380 

s 

_ [-1.6878] 
qz - -0.4666 

P-rK ji = [ 4.1177 -3.6380] _ [ 9.4786 
2 22 2 -3.6380 5 -2.4337 

-9.2348] _ [-12.7550 3.2749 ] 
2.3711 -3.5263 0.90538 

= [7.3941 2.3219] 
2.3219 1.7236 

and hence, 

4.1231 0 
7 .9823 -4.0276 

-4.0276 7.3941 
0 2.3219 

2.3t9J 
l.7236 

The QR iteration. In the HQRI solution procedure, the QR iteration is applied to 
the tridiagonal matrix obtained by the Householder tansformation of K. However, it should 
be realized that the QR iteration could be applied to the original matrix K as well, and that 
the transformation of K into tridiagonal form prior to the iteration is merely carried out to 
improve the efficiency of solution. In the following we therefore consider first how the 
iteration is applied to a general symmetric matrix K. 

The name "QR iteration" derives from the notation used in the algorithm. Namely, the 
basic step in the iteration is to decompose K into the form 

K= QR 

where Q is an orthogonal and R is an upper triangular matrix. We then form 

RQ = QTKQ 

(11.106) 

(11.107) 

Therefore, by calculating RQ we in fact carry out a transformation of the form (11.72). 
The factorization in (11.106) could be obtained by applying the Gram-Schmidt 

process to the columns of K. In practice, it is more effective to reduce K into upper 
triangular form using Jacobi rotation matrices; i.e., we evaluate 

P!,n-1 ... Pf.,PLK = R (11.108) 

where the rotation matrix PI; is selected to zero element (j, i). Using ( 11.108 ), we have, 
corresponding to ( 11.106), 

Q == P2, 1P3, I • , • Pn,n-1 (11.109) 

The QR iteration algorithm is obtained by repeating the process given in ( 11.106) and 
(11.107). Using the notation K1 = K, we form 

(11.110) 
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and then 

(11.111) 

where, then, disregarding that eigenvalues and eigenvectors may not be in the usual order, 

ask-+oo 

We demonstrate the iteration process in the following example. 

EXAMPLE 11. 15: Use the QR iteration with Q obtained as a product of Jacobi rotation 
matrices to calculate the eigensystem of K. where 

K == [-! -: -! ~] 
1 -4 6 -4 
O l -4 S 

The Jacobi rotation matrix Pr; to zero element (j, i} in the current matrix is given by 

1 

PT. -
j,i -

. 1 
cos 6 sin 8 ----ith row 

1 

1 
-sin 8 cos 8-----itb row 

l 

. t L 
where sin 8 = (k! + k},)''2 ; cos 8 = (k! + kJ,)'12 

and the bar indicates that the elements of the current matrix are used. 

and 

Proceeding as in (11.108), we obtain for element (2, 1), 

sin 8 = -0.6247; cos 8 = 0.7809 

[ 

o.7809 o.6247 o 0~

1

1 
-0.6247 0.7809 0 

P2.1 = 0 0 l 

0 0 0 

[

6.403 -6.872 3.280 

Pr K::: 0 2.186 -2.499 
1 

l -4 6 
0 1 -4 

-0.6247] 
0.7809 

-4 
5 

Next we zero element (3, 1), 

[

6.481 

Pf.1P[1K = ~ 
-7.407 4.166 

2.186 -2.499 
-2.892 5.422 

-4 

-1.234] 
0.7809 

-3.856 
5 
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Noting that element (4, I) is zero already, we continue with the factorization by zeroing element 
(3, 2), 

[

6.481 -7.407 4.166 -1.234] 
pr pr pr K _ 0 3.625 -5.832 3.546 

3
'
2 3

' 1 
2

• 1 - 0 0 1.277 -1.703 

0 1 -4 5 

Proceeding in the same manner, we obtain 

and finally, 

Also, we have 

[

6.481 -7.407 

pr pr pr pr K _ 0 3.761 4,2 3,2 3,1 2,1 - 0 0 

0 0 

R1 = PI,3PLPf.2Pf.1PLK 

[

6.481 -7.407 4.166 
R _ 0 3.761 -6.686 

I - 0 0 2.635 

0 0 0 

4.166 -1.234] 
-6.686 4.748 

1.277 -1. 703 
-2.305 3.877 

-1.234] 
4.748 

-4.216 
0.3892 

[ 0.7715 0.4558 0.3162 0.3114] 
Q = -0.6172 0.3799 0.4216 0.5449 

I 0.1543 -0.7597 0.1054 0.6228 
0 0.2659 -0.8433 0.4671 

The first iteration step of QR is completed by calculating 

K2 = R1Q1 

[1021 -3.353 0.4066 

0.1~5] to obtain K2 = -3.353 7.771 -3.123 
0.4066 -3.123 3.833 -0.3282 

0 0.1035 -0.3282 0.1818 

The following results are obtained in the next steps of QR. For k = 2: 

[

10.76 -5.723 1.504 -0.0446] 
R _ 0 6.974 -4.163 0.2284 

2 
- O O 2.265 -0.2752 

0 0 0 0.1471 

l 0.6024 0.4943 0.5084 0.366511 
Q Q _ -0.6885 -0.0257 0.4099 0.5978 

I 
2 

- 0.3873 -0.6409 -0.2715 0.6046 

-0.1147 0.5867 0.7070 0.3779 

[ 

12.05 
-2.331 

K3 = R2Q2 = 0.~856 

-2.331 0.0856 
7.726 -0.9483 

-0.9483 2.0740 
0.0022 -0.oI 73 

0 ] 0.0022 
-0.0173 

0.1461 



934 Solution Methods for Eigenproblems 

Fork= 3: 

[

2

0~ 
-3.761 0.2785 

-0.:J 7.202 -1.173 0.0044 R3 = 
0 1.938 -0.0182 0 

0 0 0 0.1459 

[ o.~11 0.5302 0.5743 03713~ Q Q Q = -0.6682 -0.2076 0.3860 0.6012 
I 2 3 0.5000 -0.5157 -0.3492 0.6018 

-0.2290 0.6401 -0.6319 0.3722 

[ 1277 
-1.375 0.0135 

O J -1.375 7.162 -0.2481 0 
Ki= R3Q3 = o.il35 -0.2481 1.922 -0.0013 

0 -0.0013 0.1459 

And after nine iterations, we have 

-0.0869 0 0 J 
6.854 -0.0005 0 

0 1.910 0 
0 0 0.1459 

0.5997 0.6015 
-0.3689 0.3718 
-0.3746 -0.3717 

0.6033 -0.6015 

-0.0298 0 
6.8542 -0.0001 

-0.0001 1.910 

0 0 

0.3717] 
0.6015 
0.6015 
0.3718 

o.LJ 
Thus we have, after nine steps of QR iteration, 

A1 = 0.1459; 
[

0.3717~ 
<1> = 0.6015 

I 0.6015 

0.3718 

[ 

0.60151 
.:.. 0.3718 

<1>
2 

- -0.3717 

-0.6015 

,\.3 == 6.854; 
[ 

0.5997] 
<1> == -0.3689 

3 
-0.3746 

0.6033 

Chap. 11 
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[ 

0.3746] 
4> .;,., -0.6033 

4 
0.5997 

-0.3689 

These results can be compared with the results obtained using the Jacobi method in 
Example 11.9. It is interesting to note that in the above solution, A1 and 4>1 converged first and 
indeed were well predicted after only three QR iterations. This is a consequence of the fact that 
QR iteration is closely related to inverse iteration (see Example 11.16), in which the lowest 
eigenvalues and corresponding vectors converge first. 

Although the QR iteration may look similar to the Jacobi solution procedure, the 
method is, in fact, completely different. This may be observed by studying the convergence 
characteristics of the QR solution procedure because it is then found that the QR method is 
intimately related to inverse iteration. In Example 11.16 we compare QR and inverse 
iteration, where it is assumed that the matrix K is nonsingular. As we may recall, this 
assumption is necessary for inverse iteration and can always be satisfied by using a shift (see 
Section 10.2.3 ). 

EXAMPLE 11.16: Show the theoretical relationship between QR and inverse iteration. 
In the QR method, we obtain after I steps of iteration, 

or 

Let us define 

Then we have 

If we note that 

we get 

K1+1 = QfQf_, ... QfK1Q1 ... Q1-1Q1 

Si= R1 ... R, 

P, S, = P,-1 Q, R, S,-1 

P1-1K1S1-1 

K,P1-1 = P1-1Kt 

P,S, = K1P1-1S1-1 

In an analogous manner we obtain P,-1 81-1 = K1 P1-2 S1-2, and so on, and thus conclude that 

P,S, = K' 

Assuming that K is nonsingular, we have from (a), 

P, K-1s; 
or equating columns on both sides, 

P,E = K-1sfE 

where E consists of the last p columns of I. 
Consider now inverse iteration on p vectors. This iteration process can be written 

k = 1, 2, ... 

(a) 

(b) 

where Lk is a lower triangular matrix chosen so that XIXk = I. The matrix Lk can be determined 
using the Gram-Schmidt process on the iteration vectors. Hence, after l steps we have 

(c) 



936 Solution Methods for Eigenproblems 

On the other hand, the relation in (b) can be written 

P,E = K-1ES1 

Chap. 11 

(d) 

where S, consists of the last p columns and rows of s;. Using x;x, = I and (P,E)T(P,E) = I, 
we obtain from (c) and (d), respectively, 

and 

[,r[, 1 = X6K-21Xo 

s,7s,1 = E7 K-2'E 

(e) 

(f) 

The equations in (e) and (f) can now be used to show the relationship between inverse 
iteration and the QR solution procedure. Namely, if we choose Xo = E, we find from (e) and (f) 
that[, = S, because these matrices are the Cholesky factors of the same positive definite matrix. 
However, referring then to (c) and (d), we can conclude that the inverse iteration yields vectors 
X, which are the last p columns in P, of the QR solution. 

The relationship between the QR solution method and simple inverse iteration sug­
gests that an acceleration of convergence in the QR iteration described in ( 11.110) and 
( 11.111) should be possible. This is indeed the case and, in practice, QR iteration is used 
with shifting; i.e., instead of ( 11.110) and ( 11.111 ), the following decompositions are 
employed: 

where then, as before, 

Kk+i-+ A and Qi ... Qk-1Qk-+ ci, ask-+oo 

(11.112) 

(11.113) 

However, if µ,1c is element (n, n) of Kk, the QR iteration corresponds to Rayleigh quotient 
iteration, ultimately giving cubic convergence. 

As pointed out earlier, in practice the QR iteration should be applied after reduction 
of K to tridiagonal form using Householder transformation matrices; i.e., the QR solution 
should be applied to the matrix Kn-1 in (11.95), which we now call T1. When the matrix 
is tridiagonal, the QR process is very effective; i.e., by experience about 9n2 operations are 
required for solution of all eigenvalues. It is also not necessary to formally go through the 
procedure discussed above and demonstrated in Example 11.15; instead, we may use 
explicit formulas that relate the elements in T1c+ 1 to the elements of T1c, k = 1, 2, ... (see 
J. H. Wilkinson [A]) 

Calculation of eigenvectors. The eigenvalues are generally calculated to full 
machine precision because convergence is very rapid in the QR iteration with shifting. Once 
the eigenvalues have been evaluated very accurately, we calculate only the required eigen­
vectors of the tridiagonal matrix T1 by simple inverse iteration with shifts equal to the 
corresponding eigenvalues. Two steps of inverse iteration starting with a full unit vector are 
usually sufficient. The eigenvectors of T1 then need to be transformed with the Householder 
transformations used to obtain the eigenvectors of K; i.e., denoting the ith eigenvector of Ti 
by \fl;, we have, using the transformation matrices Pk in ( 11.95), 

(11.114) 

With the three basic steps of the HQRI solution method described above, Table 11.2 
summarizes the complete procedure and presents the high~speed storage needed and the 
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TABLE 11.2 Summary of Householder-QR-inverse iteration solution 

Operation 

Householder 
transformation 

QR iterations 

Calculation of 
p eigenvectors 

Transformation 
of eigenvectors 

Total for all eigenvalues 
and p eigenvectors 

Calculation 

Kk+t = P~KkPk; 
k = l, 2, ... , n - 2; K1 = K 

Tk+ 1 = QiTkQk; k = l, 2, ... 
T1 = Kn-I 

(Kn-1 - A1I)xlk+I) = x~k); 
. k = l, 2; i = I, 2, ... , p 

cf>1 = P1 , • • P11-2x)3>; 
i = 1, 2, ... , p 

9n 2 

Number of 
operations 

lOpn 

pn(n - 1) 

}n3 + ¥n 2 + pn2 + 9pn 

937 

Required storage 

Using symmetry 
of matrix 
n 

2(n + 1) + 6n 

number of operations required. It is noted that the greater part of the total number of 
operations is used for the Householder transformations in ( 11. 95) and, if many eigenvectors 
need to be calculated, for the eigenvector transformations in ( 11.114 ). Therefore, it is seen 
that the calculation of the eigenvalues of T 1 is not very expensive, but the preparation of K 
in a form that can be used effectively for the iteration process requires most of the numerical 
effort. 

It should be noted that Table 11.2 does not include the operations required for 
transforming a generalized eigenproblem into a standard form. If this transformation is 
carried out, the eigenvectors calculated in Table 11.2 must also be transformed to the 
eigenvectors of the generalized eigenproblem as discussed in Section 10.2.5. 

11.3.4 Exercises 

11.S. Use the Jacobi method to calculate the eigenvalues and eigenvectors of the problems 

and 

[-~ -!]4>=A[~ ~]4> 
[-~ -:]4> = A[~ ~]~ 

11.6. Use the Jacobi method to calculate the eigenvalues and eigenvectors of the eigenproblem in 
Exercise 10.3. 

11.7. Derive in detail the values for a and 'Y given in ( 11.89). 
11.8. Perform the QR iteration on the eigenvalue problem 

Note: Here you need to first transform the eigenproblem into a standard form. 
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11.4 POLYNOMIAL ITERATIONS AND STURM SEQUENCE 
TECHNIQUES 

Chap. 11 

The close relationship between the calculation of the zeros of a polynomial and the evalu­
ation of eigenvalues has been discussed in Section 10.2.2. Namely, defining the characteris­
tic polynomial p(>..), where 

p(A) = det(K - AM) (11.6) 

the zeros of p(>..) are the eigenvalues of the eigenproblem Kcf> = >..Mcf>. To calculate the 
eigenvalues, we therefore may operate on p(>..) to extract the zeros of the polynomial, and 
basically there are two strategies-explicit and implicit evaluation procedures-both of 
which may use the same basic iteration schemes. 

In the discussion of the polynomial iteration schemes, we assume that the solution is 
carried out directly using Kand M of the finite element assemblage, i.e., without transform­
ing the problem into a different form. For example, if M is the identity matrix, we could 
transform K first into tridiagonal form as is done in the HQRI solution (see Section 11.3.3). 
In case M :f:. I, we would need to transform the generalized eigenproblem into a standard 
form (see Section 10.2.5) before the Householder reduction to a tridiagonal matrix could be 
performed. Whichever problem we finally consider in the iterative solution of the required 
eigenvalues, the solution strategy would not be changed. However, if only a few eigenvalues 
are to be calculated, the direct solution using K and M is nearly always most effective. 

In conjunction with a polynomial iteration method, it is natural and can be effective 
to use the Sturm sequence property discussed in Section 10.2.2. We show in this section how 
this property can be employed. 

It should be noted that using a polynomial iteration or Sturm sequence method, only 
the eigenvalues are calculated. The corresponding eigenvectors can then be obtained effec­
tively by using inverse iteration with shifting; i.e., each required eigenvector is obtained by 
inverse iteration at a shift equal to the corresponding eigenvalue. 

These techniques-implicit polynomial iterations, Sturm sequence checks, and vector 
iterations-have been combined in a determinant search algorithm, efficient for small 
banded systems (see K. J. Bathe [A] and K. J. Bathe and E. L. Wilson [C]). 

11.4.1 Explicit Polynomial Iteration 

In the explicit polynomial iteration methods, the first step is to write p(>..) in the form 

p(A) = ao + a,A + a2A 2 + · · · + a11A 11 (11.115) 

and evaluate the polynomial coefficients ao, a,, ... , an, The second step is to calculate the 
roots of the polynomial. We demonstrate the procedure by means of an example. 

EXAMPLE 11.17: Establish the coefficients of the characteristic polynomial of the problem 
Kcf> = AMcf>, where K and M are the matrices used in Example 11.4. 

The problem is to evaluate the expression 

[

- 2,\ -4 
-4 6 - 2A -4 

p(A) = det 01 -4 6 - .,\ 

-4 

0 ] I 
-4 

5 - ,\ 
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Following the rules given in Section 2.2 for the evaluation of a determinant, we obtain 

p(A) = (5 - 2A) det [
6 

=4
2

A 6 -_\. ~4 J 
1 -4 5 - A 

Hence, 

+ (4) det [-~ 6 -=_\ ~4 J + (1) det [-; 
6 

=4
2
A 

0 -4 5 - ,\ 0 

p(A) = (5 - 2A){(6 - 2A)[(6 - A)(S - A) - 16] 
+ 4[ -4(5 - A) + 4] + 16 - (6 - A)} 

+ 4{-4[(6 - A)(S - >.) - 16] + 4(5 - A) - 4} 

+ {-4[(-4)(5 - A) + 4] - (6 - 2A)(5 - A) + l} 

and the expression finally reduces to 

p(A) = 4A4 
- 66A3 + 276A2 285A + 25 

1 J -4 
5 - ,\ 

In the general case when n is large, we cannot evaluate the polynomial coefficients as 
easily as in this example. The expansion of the determinant would require about n-factorial 
operations, which are far too many operations to make the method practical. However, 
other procedures have been developed; for example, the Newton identities may be used (see, 
for example, C. E. Froberg [A]). Once the coefficients have been evaluated, it is necessary 
to employ a standard polynomial root finder, using, for example, a Newton iteration or 
secant iteration to evaluate the required eigenvalues. 

Although the procedure seems most natural to use, one difficulty has caused the 
method to be almost completely abandoned for the solution of eigenvalue problems. A basic 
defect of the method is that small errors in the coefficients ao, ... , an cause large errors 
in the roots of the polynomial. But small errors are almost unavoidable, owing to round-off 
in the computer. Therefore, an explicit evaluation of the coefficients ao, ... , an from Kand 
M with subsequent solution of the required eigenvalues is not effective in general analysis. 

11.4.2 Implicit Polynomial Iteration 

In an implicit polynomial iteration solution we evaluate the value of p(Ji.) directly without 
calculating first the coefficients ao, ... , an in ( 11.115). The value of p(Ji.) can be obtained 
effectively by decomposing K - AM into a lower-unit triangular matrix Land an upper 
triangular matrix S; i.e., we have 

where then 

K - AM= LS 

det(K - AM) = Il Su 
i=I 

(11.116) 

(11.117) 

The decomposition of K - AM is obtained as discussed in Section 8.2, but, as pointed out 
in Section 8.2.5, may require interchanges when Ji. > Ai. When row and corresponding 
column interchanges are carried out, the coefficient matrix remains symmetric and, in 
effect, the degree of freedom numbering has then merely been rearranged. In other words, 
the stiffness and mass matrices of the finite element system actually used correspond to a 
different degree of freedom numbering than originally specified. On the other hand, if only 
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row interchanges are employed, a nonsymmetric coefficient matrix is obtained. However, 
in either case it is important to note that the required row and column interchanges could 
have been carried out prior to the Gauss elimination process to obtain an "effective" 
coefficient matrix K AM that is considered in ( 11.116), and no more interchanges would 
then be needed. Each row or column interchange introduced merely effects a change in sign 
of the determinant. In practice, we do not know the actual row and column interchanges that 
will be required, but the realization that all interchanges could have been carried out prior 
to the factorization shows that we can always use the Gauss elimination procedure given in 
(8.10) to (8.14), provided that we admit that the "effective" initial coefficient matrix may 
be nonsymmetric. Consider the following example. 

EXAMPLE 11.18: Use Gauss elimination to evaluate p{A) = det(K - AM), where 

K = H :~ n M = [' J A= 2 

In~c•~~haw K-AM=H :; -!] 
Since the first diagonal element is zero, we need to use interchanges. Assume that we 

interchange the first and second rows (and not the corresponding columns); then we effectively 
factorize K - AM, where 

[-1 4 -1] 
K = 2 -1 o ; 

0 -1 2 [
O 1 OJ 

M = 1 0 0 
0 0 i 

The factorization of K - AM is now obtained in the usual way (see Examples 10.4 and 10.5), 

K-AM=[~ ! J[-1 -~ -fl 
Hence, det(K - AM) = {-1)(-1)(1) = 1 

and taking account of the fact that the row interchange has changed the sign of the determinant 
(see Section 2.2), we have 

det{K - AM)= -1 

As pointed out above, if in the Gauss elimination no interchanges have been carried 
out or each row interchange was accompanied by a corresponding column interchange, the 
coefficient matrix K - AM in ( 11.116) is symmetric. In this case we have S = DLr, as in 
Section 8.2.2, and hence, ,, 

det(K - A.M) = II d;; (11.118) 
i=I 

In the determinant search solution method (see K. J. Bathe [A] and K. J. Bathe and 
E. L. Wilson [ C]}, we use a factorization only if it can be completed without interchanges 
and therefore always employ ( 11.118). In this case, one polynomial evaluation requires 
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about ! nmk operations, where n is the order of K and M and mK is the half-bandwidth 
of K. 

With a method available for the evaluation of p(A), we can now employ a number of 
iteration schemes to calculate a root of the polynomial. One commonly used simple tech­
nique is the secant method, in which a linear interpolation is employed; i.e., let µk-1 < #J,k, 

then we iterate using 

p(µk) 
/J,k+I = Jl,k - ( ) ( //J,k - Jl,H) 

p Jl,k - p JJ,k-1 
(11.119) 

where #J,k is the kth iterate (see Fig. 11.3). We may note that the secant method in (11.119) 
is an approximation to the Newton iteration, 

p(JJ,k) 
Jl,k+I = Jl,k - -- (11.120) 

p'(µk) 

where p'(µ") is approximated using 

1 ( ) • p(JJ,k) - p(JJ,k- L) 
p Jl,k = 

Jl,k - JJ,k-1 
(11.121) 

An actual scheme for accurately evaluating p' (µ,,.:) has been tested but was not found to be 
effective (see K. J. Bathe [A]). 

Figure 11.3 Secant iteration for calculation of .\1 

Another technique commonly used in the solution of complex eigenvalue problems is 
Muller's method, in which case a quadratic interpolation is employed. A disadvantage of 
Muller's method in the solution of Kcf> = AMcf> is that although the starting values JJ,k, 

/J,k-1, and #J,k-2 are real, the calculated value µk+1 may be complex. 
It should be noted that so far we have not discussed to which eigenvalue any one of 

the iteration strategies converges. This depends on the starting iteration values. Using µk-1 

and µk both smaller than A1, the Newton and secant iterations converge montonically to A1, 
as shown in Fig. 11.3, and the ultimate order of convergence is quadratic and linear, 
respectively. In effect, convergence is achieved in the iterations because p" (A) > 0 for 
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A< A1, which is always the case for any order and bandwidth of Kand M. However, 
convergence cannot be guaranteed for arbitrary starting values #Lk- 1 andµ,;.. 

In an actual solution scheme, it is effective to first calculate A1 and then repeat the 
algorithm on the characteristic polynomial deflated by A1. This approach can be used to 
calculate the smallest eigenvalues in succession from A1 to the required value Ap (see 
K. J. Bathe [A], K. J. Bathe and E. L. Wilson [C], and Exercise 11.9). 

Consider the following example of a secant iteration. 

EXAMPLE 11.19: Use the secant iteration to calculate A1 in the eigenproblem Kc1> AM4>, 
where 

[ 
2 -1 OJ K = -1 4 -1 ; 
0 -1 2 M=r J 

For the secant iteration we need two starting values for µ.1 and µ.2 that are lower bounds 
to A.1. Let µ.1 = -1 and µ.i = 0. Then we have 

Hence, 

Similarly, 

p(-1) = det H :~ 
= mn [-i 

-2.. 
23 

P< - o = m<¥)('JJi) = 26.2s 

[ 
2 -1 OJ 

p(O) = det -1 4 -1 = 12 
0 -1 2 

Now using ( 11.119), we obtain as the next shift, 

12 
µ.3 = O - 12 - 26.25[0 - (-l)] 

Hence, µ.3 = 0.8421 

Continuing in the same way, we obtain 

p(0.8421) = 4.7150 

#'-4 = 1.3871 

p(l.3871) = 1.8467 

#A,s = 1.7380 

p(l.7380) = 0.63136 

µ,<, = l. 9203 

p(l.9203) = 0.16899 

#A,1 = 1.9870 

-~] 23 

1 
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p(l.9870) = 0.026347 

µs = 1.9993 

Hence. after six iterations we have as an approximation to A1, A1 = 1.9993. 

11.4.3 Iteration Based on the Sturm Sequence Property 

943 

In Section 10.2.2 we discussed the Sturm sequence property of the characteristic polynomi­
als of the problem Ket, = AM<J, and of its associated constraint problems. The main result 
was the following. Assume that for a shift µk, the Gauss factorization of K - µkM into 
LOU can be obtained. Then the number of negative elements in D is equal to the number 
of eigenvalues smaller than IJ-k. This result can be used directly to construct an algorithm 
for the calculation of eigenvalues and corresponding eigenvectors. As in the discussion of 
the polynomial iteration methods, we assume in the following that the solution is performed 
directly using K and M, although the same strategies could be used after the generalized 
eigenproblem has been transformed into a different form. Also, as in Section 11.4.2, the 
solution method to be presented solves only for the eigenvalues, and the corresponding 
eigenvectors would be calculated using inverse iteration with shifting (see Section 11.2.3 ). 

Consider that we want to solve for all eigenvalues between A1 and Au, where A1 and Au 
are the lower and upper limits, respectively. For example, we may have a case such as 
depicted in Fig. 11.4 or A, may be zero, in which case we would need to solve for all 
eigenvalues up to the value Au, The basis of the solution procedure is the triangular factor­
ization of K - µkM, where /J,k is selected in such way as to obtain from the positive or 
negative signs of the diagonal elements in the factorization meaningful information about 
the unknown and required eigenvalues. The following solution procedure, known as the 
bisection method, may be used (refer to Fig. 11.4 for a typical example): 

1. Factorize K - A,M and hence find how many eigenvalues, say qi, are smaller than A,. 
2. Apply the Sturm sequence check at K - AuM and hence find how many eigenvalues, 

say qu, are smaller than Au, There are thus qu - q, eigenvalues between Au and A1, 

pU) • det (K - ..t.M) 

I 
I 
I 

I I I 

l BS4: 
BS2 BS3 

..t, BS1 

qu - q, • 6; BSi, bisection i 

Interval with two 
identical eigenvalues 

I 
I 
I 
I 
I I Q) I ! BS7 BS6 

BS6 Au 

Figure 11.4 Use of Sturm sequence property to isolate eigenvalues 

, .. l 
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3. Use a simple scheme of bisection to identify intervals in which the individual eigenval­
ues lie. In this process, those intervals in which more than one eigenvalue are known 
to lie are successively bisected and the Sturm sequence check is carried out until all 
eigenvalues are isolated. 

4. Calculate the eigenvalues to the accuracy required and then obtain the corresponding 
eigenvectors by inverse iteration. 

To obtain the eigenvalues accurately in step 4, the method of bisection is abandoned 
and a more efficient procedure is generally used. For example, the secant iteration pre­
sented in Section 11.4.2 can be employed once the eigenvalues have been isolated (see 
Example 11.20). 

The above technique for calculating the required eigenvalues is straightforward. How­
ever, the method can be quite inefficient because each iteration in step 3 requires a triangu­
lar factorization and because many iterations may be needed. The number of iterations can 
be particularly high when multiple eigenvalues (see Fig. 11.4) or eigenvalue clusters must 
be evaluated, in which case additional strategies to accelerate the process must be included. 
In general, the method is effective if only a few factorizations are needed to identify 
intervals of individual eigenvalues and the smallest required eigenvalue is much larger 
than A1. 

EXAMPLE 11.20: Use the bisection method followed by secant iteration to calculate A2 in the 
problem Kcf> = AM«f,, where 

K = -1 4 -1 ; [ 
2 -1 OJ 
0 -1 2 

We considered this problem in Example 10.5, where we isolated the eigenvalues using the 
bisection technique. Specifically, we found that 

At < 3 < A2 < 5 < ..\3 

Hence, we can start the secant iteration withµ,, = 3, JJ,1. = 5, and using the results of Exam­
ple 10.5, 

Using (11.119), we obtain 
3 

µ,3 = 5 - G) -\-i)(S - 3) 

or /J,3 = 4 

Next we need to evaluate p(µ,3) = det(K - µ,3M) 

and we find that p(µ,3) = 0.0. Hence, A2 = µ,3 = 4. Therefore, in this case one step of secant 
iteration was sufficient to calculate A2. But it may be noted that to evaluate p(µ,3) by Gauss 
factorization of K - µ,3M, a row interchange is needed (see Example 10.4). 

It is important to note that we assumed in the above presentation that the factorization 
of K - J.(,kM into LDLr can be obtained. However, we discussed in Sections 8.2.5 and 
11.4.2 that if J.(,k > A1, interchanges may be required. If interchanges are needed, the same 
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considerations as mentioned in these sections are applicable and proper account has to be 
taken of the effect of each row interchange on the Sturm sequence property. 

The bisection method has two major disadvantages: ( 1) it is necessary to complete the 
factorization of K - µkM with as much accuracy as possible, although the coefficient 
matrix may be ill-conditioned (indeed, this may still be the case even when row inter­
changes are included), and (2) convergence can be very slow when a cluster of eigenvalues 
has to be solved. However, the Sturm sequence property can be employed in conjunction 
with other solution strategies, and it is in such cases that the property can be extremely 
useful. In particular, the Sturm sequence property is employed in the determinant search 
algorithm (see K. J. Bathe and E. L. Wilson [ C]), in which the factorization of K - µkM 
is carried out without interchanges but is completed only provided that no instability occurs. 
If the factorization proves to be unstable, a different ~ is selected. This is possible because 
the final accuracy with which the eigenvalues and eigenvectors are calculated does not 
depend on the specific shift µk used in the solution. 

11.4.4 Exercises 

11.9. Perform an implicit secant polynomial iteration on the eigenproblem in Exercise 11.1 to calcu­
late A1. Next use instead of p(A) the characteristic polynomial deflated by A1, given by 

p(n(A) = p(A) 
A - .\, 

where p(A) = det(K - AM), to calculate A2 • 

Plot p(A) and p(0 (A) and show on these plots the iterative steps you have performed. 
11.10. Consider the eigenproblem in Exercise 11. l and develop a quadratic interpolation for an itera­

tive scheme to solve for A, . 
11.11. Use the Sturm sequence property to evaluate A1 and A2 in the eigenvalue problem in Exer­

cise 11.8. 
11.12. Use the Sturm sequence property to evaluate A1 in the eigenvalue problem in Exercise 11.1. (If 

a zero pivot is encountered, use row and column interchanges.) 

11.5 THE LANCZOS ITERATION METHOD 

Very effective procedures for the solution of p eigenvalues and eigenvectors of finite element 
equations have been developed based on iterations with Lanczos transformations. 

In his seminal work, C. Lanczos [A) proposed a transformation for the tridiagonaliza­
tion of matrices. However, as already recognized by Lanczos, the tridiagonalization proce­
dure has a major shortcoming in that the constructed vectors, which in theory should be 
orthogonal, are, as a result of round-off errors, not orthogonal in practice. A remedy is to 
use Gram-Schmidt orthogonalization, but such an approach is also sensitive to round-off 
errors and renders the process inefficient when a complete matrix is to be tridiagonalized. 
Other techniques such as the Householder method (see Section 11.3.3) are significantly 
more efficient. 

If, on the other hand, the objective is to calculate only a few eigenvalues and corre­
sponding eigenvectors of the problem Ket> = AM<!>, an iteration based on the Lanczos 
transformation can be very efficient (see C. C. Paige [A, BJ and T. Ericsson and A. Rube 
[A]). 
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In the following sections, we first present the basic Lanczos transformation with its 
important properties, and then we discuss the use of this transformation in an iterative 
manner for the solution of p eigenvalues and vectors of the problem Kif> = ..\M<f>, where 
p ~ n and n is the order of the matrices. 

11.5.1 The Lanczos Transformation 

The basic steps of the Lanczos method transform, in theory, our generalized eigenproblem 
Kif> = AM<f> into a standard form with a tridiagonal coefficient matrix. Let us summarize 
the steps of transformation. 

Pick a starting vector x and calculate 

x 
X1 = -; 

"Y 

Let {3o = 0; then calculate for i = 1, ... , n, 

Kxi = Mxi 

and if i =t= n, 

and 

ai = xfMx; 
X; = x, - a;X; - A-1X1-1 

{3; = (ifMi;)112 

X; 
X:;+1 = 11 

(11.122) 

(11.123) 

(1 l.124) 

(11.125) 

(11.126) 

(11.127) 

Theoretically, the vectors X;, i = l, ... , n, generated using (11.122) to (11.127) are 
M-orthonormal 

and the matrix Xn = [xi, ... 'Xn] 

satisfies the relationship X~(MK- 1M)Xn = Tn ... 

a1 (31 
(3, a2 f3,. 

where T,. = 

an-I Pn-1 
f3n-l an 

(11.128) 

(11.129} 

(11.130) 

(11.131) 

We can now relate the eigenvalues and vectors of Tn to those of the problem Kif> = 
..\M<f>, which can be written in the form 

Using the transformation 

1 
MK- 1Mct, = - Met, 

.l 

ct, = Xn«f> 

and (11.128) and (11.130), we obtain from (11.132), 

.l. 1 -
T,..., = Acf> 

(11.132) 

(11.133) 

(11.134) 
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Hence, the eigenvalues of Tn are the reciprocals of the eigenvalues of Ket, = .A.Met, and the 
eigenvectors of the two problems are related as in (11.133). 

As further discussed later, we assume in the above transformational steps that these 
steps can be completed. We defer the proof that the vectors x, are M-orthonormal to 
Exercise 11.13 but show in the following example that (11.130) holds. 

EXAMPLE 11.21: Show that Tn in (11.131) is obtained by the transformation of (11.130). 
Using (11.123), we obtain 

Substituting from (11.124) and (11.127), we obtain 

K-1Mx; = /31-1 x,-1 + a,x, + /3,x1+1 

Using this relation for i = l, ... , j, we obtain 

Hence, 

where e1 is a vector of length j, 

a1 /31 
/31 a1 f3.i 

<Xj-1 /3,-, 
/31-1 a1 

K-1MX, = x,T, + /31X1+1e; 

eJ = [O . . . 0 1] 

. + [O, ... , 0, /31X1+1] 

(a) 

Premultiplying (a} by XJM and using the M-orthonormality of the vectors X1, we obtain 

1j = XIMK- 1MX, (b) 

which for j = n proves the desired result. 
Note that when j == n, we also have Xn = 0 in (11.125} because the complete space is 

spanned by X .. and no vector M-orthogonal to all vectors in X11 exists. 
We use the relation in (b) in Lanczos iteration when only a few eigenvalues and corre­

sponding vectors are to be calculated. Also, the relation in (a) gives in that case error bounds on 
the calculated eigenvalue approximations. 

As we have already mentioned, the tridiagonalization procedure in ( 11.122) to 
(11.127) does not, in practice, produce the desired M-orthonormal vectors because of 
round-off errors, and if additional Gram-Schmidt orthogonalizations are used, the method 
of tridiagonalization for a complete matrix is inefficient. 

However, there are certain important properties of the transformation in ( 11.122) to 
( 11.127) when i = l, . . . , q, with q ~ n, that can provide the basis of an effective iterative 
solution scheme. If we perform the Lanczos transformation in truncated form, we calculate, 
with i = l, ... , q, 

(11.135) 
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and the elements of the matrix Tq, 

T = q 
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(11.136) 

This matrix Tq is actually the result of a Rayleigh-Ritz transformation on the eigenvalue 
problem (11.132). Namely, using 

(11.137) 

in a Rayleigh-Ritz transformation (see Section 10.3.2) on the problem (11.132), equivalent 
to Ket> = .,\Mcf>, we obtain the eigenproblem 

(11.138) 

Hence, using the transformation from (11.132) to (11.134), all exact eigenvalues.,\; and 
eigenvectors cf>; of the problem Ket> = .,\Mcf> are calculated by solving ( 11.134 ), while using 
( 11.137) and ( 11.138) only approximations to eigenvalues and eigenvectors are computed. 

However, we also realize that in ( 11.123) an inverse iteration step is performed, and 
therefore, the Ritz vectors in Xq should largely correspond to a space close to the least 
dominant subspace of Ket> = .,\Mcf> (i.e., the subspace corresponding to the smallest eigen­
values). For this reason, the solution of (11.138) may yield good approximations to the 
smallest eigenvalues and corresponding eigenvectors of Ket> = .,\Mcf>. 

Of course, in the computations we never calculate the matrix MK-1 M but directly use 
the values a;, {3; obtained from ( 1 L 124) and (11.126) to form T q. We also note that since 
in exact arithmetic, the inverses of the exact eigenvalues are calculated when q = n, in 
general we may expect better approximations to the inverses of the smallest eigenvalues as 
q increases. 

During the calculation of the eigenvalues v; in ( 11.13 8) we also directly obtain error 
bounds on the accuracy of these values. These error bounds are derived as follows. 

Using the decomposition M = ssr (see Section 10.2.5), we can transform the prob­
lem (11.132) to 

where 

1 
srK-1Stt, = -ti, 

A 

"' = sr ct> 

(11.139) 

(11.140) 

We can now directly use the error bound formula (10.101). Assume {v,, Si) is an eigenpair 
of (11.138) and <t>', is the corresponding vector obtained using (11.137). Then from 
(11.140), 

and hence, 

ii,;= sr+i 
11 r,11 = II srK-1Sii,1 - v,iiidl 

= II srK-1ssrxqs; - V;S7Xqs1II 

= II sr(K-1MXq - Xq Tq)S; II 
= II sr((3q Xq+ I ens; II 

(11.141) 

(11.142) 
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where we used the result (a) in Example 11.21. Since II srxq+dl = 1, we thus have 

II rdl :S I J3qsqd (11.143) 

where Sq; is the qth element, i.e. the last element, in the eigenvector S; of (11.138). 
Using (10.101 ), we thus have 

(11.144) 

for some value k. This bound hence requires only the calculation of {3q used for all values 
of Vt, In an actual solution we need to establish k, by a Sturm sequence check or otherwise, 
so as to know which eigenvalue has been approximated. 

We demonstrate the truncated Lanczos transformation and solution of approximate 
eigenvalues in the following example. 

EXAMPLE 11.22: Use the Lanczos transformation to calculate approximations to the two 
smallest eigenvalues of the eigenproblem Kcf> = ,\Mcf> considered in Example 10.18. 

Using the algorithm in (11.122) to ( 11.127) with x a full unit vector, we obtain 

for i = I: 

for i == 2: 

Hence, we have 

'Y = 2.121; 

2.121 
3.771 

i1 = 4.950 ; 
5.657 
5.893 

1 

1 
X1 = 0.4714 1 

l 
1 

a1 = 9.167; 

/31 = 2.925; 

0.000 
0.7521 

i, = 

X2 = 

X2 = 1.692 
2.417 

a2 = 2.048 

2.686 

T = [9.167 2.925] 
2 

2.925 2.048 

-2.200 
-0.5500 

0.6285 ; 
1.336 
1.571 

-.7521 
-.1880 
0.2149 
0.4566 
0.5372 

Approximations to the eigenvalues of Ket, = ,\Mcf> are obtained by solving 

which gives 

1 
T2s = -s· p' 

Pi = 0.09790; 

1 
Vt= P2 ' 

/>2 = 1.000 

1 
J>i = -

Pt 
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Comparing these values with the exact eigenvalues of Kcf> = .i\Mcf> (see Example 10.18). we find 
that P1 is a good approximation to..\, but P2 is not very close to A2 • Of course, p; ~ .i\;, i = 1, 2. 
The smallest eigenvalue is well predicted in this solution because the starting vector x is relatively 
close to 4>1 • The error bound calculations of (11.144) give here 

I .i\, 1 
- v-i I = 0.0016 :::; 0.123 

I ...\2 1 
- vd = 0.213 :5 0.343 

11.5.2 Iteration with Lanczos Transformations 

As discussed in the previous section, a truncated Lanczos transformation is a Rayleigh-Ritz 
analysis and therefore the predicted eigenvalues and eigenvectors may or may not be 
accurate approximations of the values sought. It is a further step to develop, based on 
Lanczos transformations, an algorithm that in an iterative manner calculates the required 
eigenvalues and vectors to the required accuracy. 

As an example, consider the following proposal of a simple iterative algorithm. As­
sume that we require the p smallest eigenvalues and corresponding eigenvectors of K<f> = 
lM<f,, where n is the number of equations and n ?;>- p. 

Perform the Lanczos transformation with q = 2 p and solve for the largest p eigenval­
ues of T2p· [Note that we seek the smallest values of A in (11.134).] 
Then perform the Lanczos transformation with q = 3 p and solve for the largest p 
eigenvalues of T3p· 
Continue this process to q = rp, with r == 4, 5, ... , until the largest p eigenvalues 
satisfy the accuracy criterion I {3qsq; I < tol for i = 1, ... , p [ see ( 11.144) where tol 
is a selected tolerance]. Of course, there is no need to increase the number of vectors 
in each stage by p, but depending on the problem considered, a smaller increase may 
be used. 

This simple process appears very attractive; unfortunately, however, it is unstable 
because in finite digit arithmetic, loss of M-orthogonality of the actually calculated vectors 
X; occurs. When this loss of orthogonality occurs, some values obtained from the solution 
are approximations to spurious copies of the actual eigenvalues; in other words, for example, 
a single eigenvalue may be approximated a few times. Such a result is of course unaccept­
able, and we would have to sort out which calculated values are approximations to actual 
eigenvalues and whether any actual eigenvalue has been missed. For this purpose, Sturm 
sequence checks could be performed, but too many such checks render the complete solu­
tion inefficient. 

A remedy to prevent spurious copies of eigenvalues is to use Gram-Schmidt orthogo­
nalization of the Lanczos vectors. In some cases, selective reorthogonalization may be 
sufficient (see B. N. Parlett and D. S. Scott [A]). However, the Gram-Schmidt process is 
also sensitive to round-off errors (see Section 11.2.6), and it actually may be necessary to 
perform the orthogonalization completely on all earlier established vectors not only once 
but twice, as reported by H. Matthies [B]. 

Considering the Lanczos iteration method in exact arithmetic, we also notice that the 
vector x, may be a null· vector after some vectors have been established with x 1 as the 
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starting vector. This phenomenon occurs when Xi contains only components of q eigenvec­
tors, that is, x1 lies in a q-dimensional subspace of the entire n-dimensional space corre­
sponding to the matrices Kand M (then iq == 0). Let us demonstrate this observation and 
what can happen when a multiple eigenvalue is present in the following simple example. 

EXAMPLE 11.23: Use the Lanczos method in the solution of the eigenproblem Kcf, = AMcf>, 
where 

1 

K= M= 

As 

and At = ,\2 < A3 < A4 < As. 

(i) Let X1 = -1
- and calculate the Lanczos vectors. V2 0 

0 
0 

0 

( •• ) 1 0 d l n Let x 1 = V2 an calcu ate the Lanczos vectors. 

1 

0 

(a) 

Although the matrices used here are of special diagonal form, the observations in this example 
are of a general nature. Namely, we can imagine that the matrices in (a) have been obtained by 
a transformation of more general matrices to their eigenvector basis, but this transformation is 
performed here merely to display more readily the ingredients of the solution algorithm (in the 
same way as we proceeded in the analysis of the vector iteration methods; see Section 11.2.1 ). 

and 

In case (i) we obtain, using (11.123) to (11.125), 

In case (ii) we obtain 

i, = 0 

0 
0 
I 

V2 
1 

-V2 
0 

i2 = 0 

(b) 

(c) 

Hence (b) shows that because Xi is an eigenvector, we cannot continue with the process, and (c) 
shows that because x, lies in the subspace corresponding to A3 and A4, we cannot find more than 
two Lanczos vectors including x 1 • 
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In practice, the solution process usually does not break down as mentioned above 
because of round-off errors. However, the preceding discussion shows that two features are 
important in a Lanczos iteration method, namely, Gram-Schmidt orthogonalization and, 
when necessary, restarting of the algorithm with a new Lanczos vector x. 

To present a general solution approach, let us define a Lanczos step, a Lanczos stage, 
and restarting. 

A Lanczos step is the use of ( 11.123) to ( 11.127), in which we now include reorthog­
onalization. 

A Lanczos stage consists of q Lanczos steps and the calculation of the eigenvalues and 
eigenvectors ofTqs = vs. If one of the following conditions is satisfied, the eigenvalues and 
eigenvectors of Tqs = vs are calculated and hence the stage is completed. 

1. The preassigned maximum number of Lanczos steps, qmax, is reached. 
2. The loss of orthogonality in the Lanczos vectors or between the Lanczos vectors and 

the converged eigenvectors is detected. 

In case ( 1), q = qmax, and in case (2), q is the number of Lanczos steps completed prior to 
the loss of orthogonality. 

At the end of each Lanczos stage, we check whether all required eigenvalues and 
eigenvectors have been calculated. If the required eigenpairs have not yet been obtained, we 
restart for a new Lanczos stage with a new vector x in ( 11.122). Prior to the restart, it can 
be effective to introduce a shift µ. so that the inverse iteration step in ( 11.123) is performed 
with K - µ.M (see Section 11.2.3). 

Without giving all details, a complete solution algorithm can therefore be summarized 
as follows. 

Start of a new Lanczos stage: Choose a starting vector x that is orthogonal to all 
previously calculated eigenvector approximations and calculate 

x 
x, -; 

'Y 
'Y = (xTMx)1/2 

Choose a shift µ.(usuallyµ. = 0 for the first Lanczos stage). 
Perform the Lanczos steps, using i = 1, 2, . . . ; ~o = 0, 

(K µ.M)x'; = Mx; 

a;= xfM:x; 

if = X; - a;X; - f3;-1X;-1 
i lie 

i; = if - ~ (ifTMxk)Xk - ~ (i/TM<t,i)<l>i 

i; 
X;+t = f3; 

ksl j=I 

(11.122) 

(11.145) 

where nc is the number of converged eigenvalues in the preceding stages. Although a 
Gram-Schmidt orthogonalization has been performed, the vector X;+1 is checked for 
loss of orthogonality and if the loss occurs, this Lanczos stage is terminated with 
q = i; otherwise perform a maximum number of steps, qmax, and set q = qmax• 
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Compute r additional converged eigenvalues Anc+ 1, ••• , Anc+r and corresponding 
eigenvectors 4>nc+ 1, ••• , 4>nc+r by solving (using, for example, QR-inverse iteration, 
see Section 11.3.3) 

(11.138) 

Convergence is defined by satisfying the criterion ( 11.144 ). Reset nc to the new value. 

If the required eigenvalues and eigenvectors have not yet been obtained, restart for an 
additional Lanczos stage. 
Continue until all required eigenvalues and eigenvectors have been calculated or until 
the maximum number of assigned Lanczos steps has been reached. 

These solution steps give the general steps (including a simple and single full re­
orthogonalization) of a Lanczos iterative scheme. As mentioned earlier, the details of the 
actual implementation-which are not given here-are most important to render the 
method effective and reliable. Some important and subtle aspects of an actual Lanczos 
iterative scheme are to select the actual reorthogonalization to be performed, to identify 
efficiently and reliably the loss of orthogonality and then restart with an effective new 
vector x, to ensure that only converged values to true eigenvalues and not spuriously 
duplicated values are accepted as eigenvalues, to restart for a new stage when such is more 
effective than to continue with the present stage, to select an appropriate value for qmu., and 
to use an effective shifting strategy. Also, Sturm sequence checks need to be performed in 
order to ensure that all required eigenvalues have been calculated (see Section 11.6.4 for 
more information on such checking strategies). The rate of convergence of the eigenvalues 
depends of course on the actual algorithm used. 

Finally, we should mention that the Lanczos algorithm has been ·developed also to 
work with blocks of vectors (instead of individual vectors only) (see, for example, 
G. H. Golub and R. Underwood [A] and H. Matthies [B]). 

11.5.3 Exercises 

11.13. Show that the vectors x, generated in the Lanczos transformation are (in exact arithmetic) 
M-orthonormal. (Hint: Show that x., X2, and X3 are M-orthonormal and then use the method 
of induction.) 

11.14. Assume that the loss of vector orthogonality in the Lanczos transformation is only a result of 
the vector subtraction step ( 11.125). Then show that the loss of orthogonality can be predicted 
using the equation 

I xTMx1+1 I :s : E 

where the symbol :S stands for uapproximately smaller than" and 

j = Lanczos step number; 

1 sis j 

lxfMXkl s E (1 s i, k sj; 

{
la; - a1I + /31-1 + /31-1 + /3, 

Iii= la, - a,1 + /31-2 
/3J-l 

k :¢: i) 

(is j - 2) 

(i = j - 1) 
(i = j) 
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11.15. Use a Lanczos iteration method that you design to solve for the smallest eigenvalue and 
corresponding eigenvector of the problem 

11.16. Use a Lanczos iteration method that you design to calculate the smallest two eigenvalues and 
corresponding eigenvectors of the problem 

11.17. Write a computer program for a Lanczos iteration method. Use this program to solve for the 
smallest p eigenvalues and corresponding eigenvectors of the problem 

101 -10 
-IO 102 -10 

-10 103 

Use 

-10 
-IO 100 + n 

p = 4; 

p = 8; 

p = 16; 

n = 40 

n = 80 

n = 80 

2 
3 

n 

Use the error bounds in ( 10.106) to identify the accuracy of the calculated eigenvalues and 
ensure that no eigenvalues have been missed or are spuriously given as multiple eigenvalues. 

11.6 THE SUBSPACE ITERATION METHOD 

An effective method widely used in engineering practice for the solution of eigenvalues and 
eigenvectors of finite element equations is the subspace iteration procedure. This technique 
is particularly suited for the calculation of a few eigenvalues and eigenvectors of large finite 
element systems. 

The subspace iteration method developed and so named by K. J. Bathe [A] consists 
of the following three steps. 

1. Establish q starting iteration vectors, q > p, where p is the number of eigenvalues and 
vectors to be calculated. 

2. Use simultaneous inverse iteration on the q vectors and Ritz analysis to extract the 
"best" eigenvalue and eigenvector approximations from the q iteration vectors. 

3. After iteration convergence, use the Sturm sequence check to verify that the required 
eigenvalues and corresponding eigenvectors have been calculated. 
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The solution procedure was named the subspace iteration method because the itera­
tion is equivalent to iterating with a q-dimensional subspace and should not be regarded 
as a simultaneous iteration with q individual iteration vectors. Specifically, we should note 
that the selection of the starting iteration vectors in step 1 and the Sturm sequence check 
in step 3 are very important parts of the iteration procedure. Altogether, the subspace 
iteration method is largely based on various techniques that have been used earlier, namely, 
simultaneous vector iteration (see F. L. Bauer [A] and A. Jennings (A]), Sturm sequence 
information (see Section 10.2.2), and Rayleigh-Ritz analysis (see Section 10.3.2), but very 
enlightening has been the work of H. Rutishauser [BJ. 

Some advantages of the subspace iteration method are that the theory is relatively 
easy to understand and that the method is robust and can be programmed with little effort 
(see K. J. Bathe [A] and K. J. Bathe and E. L. Wilson [D]). 

In the following sections, we describe the basic theory and iterative steps of the 
subspace iteration method and then present a complete program of the basic algorithm. Our 
only objective here is to discuss the basic subspace iteration method and reinforce this 
understanding by presenting a computer program. In actual engineering practice, a well­
programmed subroutine of the Lanczos method (see Section 11.5) or of an accelerated 
subspace iteration method that includes shifting can be substantially more effective. 

11.6.1 Preliminary Considerations 

The basic objective in the subspace iteration method is to solve for the smallest p eigenvalues 
and corresponding eigenvectors satisfying 

Kc!> = Mcl>A (1 l.146) 

where A = diag(,,\;) and cJ, = [ <f>1, ••. , <f>p], 
In addition to the relation in ( 11.146), the eigenvectors also satisfy the orthogonality 

conditions 

(11.147) 

where I is a unit matrix of order p because cJ, stores only p eigenvectors. It is important to 
note that the relation in ( 11.146) is a necessary and sufficient condition for the vectors in 
ell to be eigenvectors but that the eigenvector orthogonality conditions in ( 11.14 7) are 
necessary but not sufficient. In other words, if we have p vectors that satisfy (11.147), 
p < n, then these vectors are not necessarily eigenvectors. However, if the p vectors satisfy 
( 11.146), they are definitely eigenvectors, although we still need to make sure that they are 
indeed the p specific eigenvectors sought (see Section 10.2.1 ). 

The essential idea of the subspace iteration method uses the fact that the eigenvectors 
in ( 11.146) form an M-orthonormal basis of the p-dimensional least dominant subspace of 
the matrices K and M, which we will now call Etn (see Section 2.3 ). In the solution the 
iteration with p linearly independent vectors can therefore be regarded as an iteration with 
a subspace. The starting iteration vectors span E1, and iteration continues until, to sufficient 
accuracy, ECI> is spanned. The fact that iteration is performed with a subspace has some 
important consequences. The total number of required iterations depends on how "close" 
E1 is to ECI> and not on how close each iteration vector is to an eigenvector. Hence, the 
effectiveness of the algorithm lies in that it is much easier to establish a p-dimensional 
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starting subspace which is close to E,., than to find p vectors that are each close to a required 
eigenvector. The specific algorithm used to establish the starting iteration vectors is de­
scribed later. Also, because iteration is performed with a subspace, convergence of the 
subspace is all that is required and not convergence of individual iteration vectors to 
eigenvectors. In other words, if the iteration vectors are linear combinations of the required 
eigenvectors, the solution algorithm converges in one step. 

To demonstrate the essential idea, we first consider simultaneous vector inverse itera­
tion on p vectors. Let Xi store the p starting iteration vectors, which span the starting 
subspace E1. Simultaneous inverse iteration on the p vectors can be written 

k = 1, 2, ... (l 1.148) 

where we now observe that the p iteration vectors in Xk+ 1 span a p-dimensional subspace 
Ek+1, and the sequence of subspaces generated converges to Eoo, provided the starting 
vectors are not orthogonal to E..,. This seems to contradict the fact that in this iteration each 
column in Xk+t is known to converge to the least dominant eigenvector unless the column 
is deficient in cf>1 (see Section 11.2.1). Actually, there is no contradiction. Although in exact 
arithmetic the vectors in Xk+ 1 span Ek+,, they do become more and more parallel and 
therefore a poorer and poorer basis for Ek+,. One way to preserve numerical stability is to 
generate orthogonal bases in the subspaces Ek+, using the Gram-Schmidt process (see 
Section 11.2.5). In this case we iterate for k = l, 2, . . . , as follows: 

KXk+I = MX1i: 

xk+1 = xk+,Rk+, 

(11.149) 

(1 l.150) 

where Rk+t is an upper triangular matrix chosen in such way that Xf+1MXk+1 = I. Then 
provided that the starting vectors in X1 are not deficient in the eigenvectors cf,,, cf,2, ... cf,p, 
we have 

R.1:+1 ~ A 

It is important to note that the iteration in ( 11.148) generates the same sequence of 
subspaces as the iteration in (11.149) and (11.150). However, the ith column in XH1 of 
(11.150) converges linearly to cf,i with the convergence rate equal to max {A;-./A1, A;/Ai+1}. 
To demonstrate the solution procedure, consider the following example. 

EXAMPLE 11.24: Consider the eigenproblem Ket> = ,\McJ,, where 

K= -1 4 -1; M= 
2 

1 
1 [ 

2 1 OJ [! ] 
0 -1 2 2 

The two smallest eigenvalues and corresponding eigenvectors are (see Example I 0.4) 

1 

A1 

V2 
1 

2. ct>1 = V2 ; 

1 

V2 
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Use the simultaneous vector iteration with Gram-Schmidt orthogonalization given in ( 11.149) 
and ( 11.150) with starting vectors 

x, = [! n 
to calculate approximations to A1, 4>1 and A2, 4>2, 

The relation KX2 = MX1 gives 

[°"~ 0.75] 
X2 = 0.50 0.50 

0.75 0.25 

M-orthonormalizing X2 gives 

[°.3333 1.179 J 
R2 = [1.~33 -1.650] X2 = 0.6667 0.2357 ; 

2.121 1.000 -0.7071 

Proceeding similarly, we obtain the following results: 

[0.5222 1.108 J R3 = [2.~89 -0.9847] X3 = 0.6963 0.1231 ; 
3.830 0.8704 -0.8614 

[0.6163 1.058 ] 
Its= [2.~23 -0.5202] ~ = 0.7044 0.0622 ; 

3.954 0.7924 -0.9339 

[0.6623 1.030 ] 
Rs= [

2
·~ 

-0.2639] Xs = 0.7064 0.0312 ; 
3.988 0.7506 -0.9678 

[0.6848 1.015 J ~ = [2.~1 -0.1324] J'6 = 0.7069 0.0156 ; 
3.997 0.7290 -0.9841 

[°.6960 1.008 ] 
R1 = [

2
·~ 

-0.0663] X1 = 0.7071 0.0078 ; 
3.999 0.7181 -0.9921 

[0.7016 1.004 ] 
Rs= [2.~00 -0.0331] Xs = 0.7071 0.0039 ; 

4.000 0.7126 -0.9961 

[0.7043 1.002 J 
R9 = [

2
·~ 

-0.0166] x9 = 0.1011 0.0020 ; 
4.000 0.7099 -0.9980 

[0.7057 1.001 J R _ [2.000 -0.0083] X10 = 0.7071 0.0010 ; 
0.7085 -0.9990 

10 - 0 4.000 
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and after nine iterations we have 

[

0.7057] 
<l,1 = 0.7071 ; 

0.7085 
A,= 2.000 

[ 

l.001 J 
<f,2 = 0.0010 ; 

-0.9990 
A2 = 4.000 

It should be noted that although the vectors in X1 already span the space of <l,1 and <f,2, 
we need a relatively large number of iterations for convergence. 

The solution in the preceding example demonstrates the iteration procedure in 
(11.149) and (11.150) and also shows the main deficiency of the method. Namely, each 
iteration vector is forced to converge to a different eigenvector by orthogonalizing the ith 
iteration vector to the (i - 1) iteration vectors that have been orthogonalized already 
without allowing a more effective linear combination of the vectors to take place. In the 
example, the iteration was started with two iteration vectors that were linear combinations 
of the required eigenvectors, and this did not yield any advantage. In general, if the iteration 
vectors in XH1 span Erz, but are not eigenvectors (i.e., the vectors in XH1 are linear 
combinations of the eigenvectors <l>1, ..• , <f>p), then, although the subspace Ek+1 has al­
ready converged, many more iterations may be needed in order to turn the orthogonal basis 
of iteration vectors into the basis of eigenvectors. 

11.6.2 Subspace Iteration 

The following algorithm, which we call subspace iteration, finds an orthogonal basis of 
vectors in Ek+1, thus preserving numerical stability in the iteration of (11.148), and also 
calculates in one step the required eigenvectors when Ek+l converges to Eoo. This algorithm 
is the iteration used in the subspace iteration method, i.e., step 2 of the complete solution 
phase. 

For k = 1, 2, . . . , iterate from Ek to Ek+ 1 : 

KXH, = MXk 

Find the projections of the matrices K and M onto Ek+,: 

Kk+1 = Xf+1KXH1 

Mk+1 = XI+1MXk+t 

Solve for the eigensystem of the projected matrices: 

Find an improved approximation to the eigenvectors: 

Xk+t = Xk+IQk+I 

(11.151) 

(11.152) 

(11.153) 

(11.154) 

(11.155) 

Then, provided that the vectors X1 are not deficient in one of the required eigenvectors, 
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we have 

At+1-+ A and Xt+1-+ Cl> ask-+oo 

In the subspace iteration, it is implied that the iteration vectors are ordered in an 
appropriate way; i.e., the iteration vectors converging to <f>1, <f>2, ... , are stored as the first, 
second, . . . , columns of Xk+ • · We demonstrate the iteration procedure by calculating the 
solution to the problem considered in Example 11.24. 

EXAMPLE 11.25: Use the subspace iteration algorithm to solve the problem considered in 
Example 11.24. 

Using the relations in (11.151) to (11.155) with K, M, and X1 given in Example 11.24, 
we obtain 

X2 = - 2 2 _ I [I 3] 
4 

3 1 

1 [5 3] 
K2 =43 5; 

1 [9 
Mz = 16 7 ;] 

Hence, 
A2 = [~ ~l ~=[0 _:] 

V2 
1 

-1 
V2 

and X2 = 1 
0 

V2 
1 

I 
V2 

Comparing the results with the solution obtained in Example 11.24, we observe that we have 
calculated the exact eigenvalues and eigenvectors in the first subspace iteration. This must be the 
case because the starting iteration vectors X1 span the subspace defined by c.f>1 and c.f>2. 

Considering the subspace iteration, a first observation is that KH 1 and Mk+ 1 in 
( 11.152) and ( 11.153), respectively, tend toward diagonal form as the number of iterations 
increases; i.e., KH1 and Mk+t are diagonal matrices when the columns in XH1 store 
multiples of eigenvectors. Hence, it follows from the discussion in Section 11.3.2 that the 
generalized Jacobi method can be used effectively for the solution of the eigenproblem in 
(11.154). 

An important aspect is the convergence of the method. Assuming that in the iteration 
the vectors in Xk+t are ordered in such way that the ith diagonal element in A1c+1 is larger 
than the (i - l)st element, i = 2, ... , p, then the ith column in XH1 converges linearly 
to <f>; and the convergence rate is A;/Ap+t (see K. J. Bathe [B]). Although this is an 
asymptotic convergence rate, it indicates that the smallest eigenvalues converge fastest. In 
addition, a higher convergence rate can be obtained by using q iteration vectors, with 
q > p. However, using more iteration vectors will also increase the computer effort for one 
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iteration. In practice, q = max { 2 p, p + 8 } is in general effective, and we use this value, 
see K. J. Bathe [J]. Considering the convergence rate, it should be noted that multiple 
eigenvalues do not decrease the rate of convergence, provided that Aq+ 1 > AP. 

As for the iteration schemes presented earlier, the theoretical convergence behavior 
can be observed in practice only when the iteration vectors are relatively close to eigenvec­
tors. However, in practice, we are very much interested in knowing what happens in the first 
few iterations when EH1 is not yet "close" to Eoo. Indeed, the effectiveness of the algorithm 
lies to a large extent in that a few iterations can already give good approximations to the 
required eigenpairs, the reason being that one subspace iteration given in ( 11.151) to 
( 11.155) is, in fact, a Ritz analysis, as described in Section 10.3.2. Therefore, all character­
istics of the Ritz analysis pertain also to the subspace iteration,· i.e., the smallest eigenval­
ues are approximated best in the iteration, and all eigenvalue approximations are upper 
bounds on the actual eigenvalues sought. It follows that we may think of the subspace 
iteration as a repeated application of the Ritz analysis method in Section 10.3.2, in which 
the eigenvector approximations calculated in the previous iteration are used to form the 
right-hand-side load vectors in the current iteration. 

It is important to realize that using either one of the iteration procedures given in 
(11.148) to (11.150) or (11.151) to (11.155), the same subspace EH1 is spanned by the 
iteration vectors. Therefore, there is no need to always iterate as in (11.151) to (11.155), 
but we may first use the simple inverse iteration in (11.148) or inverse iteration with 
Gram-Schmidt orthogonalization as given in (11.149) and (11.150), and finally use the 
subspace iteration scheme given in (11.151) to (11.155). The calculated results would be 
the same in theory as those obtained when only subspace iterations are performed. How­
ever, the difficulty then lies in deciding at what stage to orthogonalize the iteration vectors 
by using (11.152) to (11.155) because the iteration in (11.151) yields vectors that are more 
and more parallel. Also, the Gram-Schmidt orthogonalization is numerically not very 
stable. If the iteration vectors have become "too close to each other" because either the 
initial assumptions gave iteration vectors that were almost parallel or by iterating without 
orthogonalization, it may be impossible to orthogonalize them because of finite precision 
arithmetic in the computer. Unfortunately, considering large finite element systems, the 
starting iteration vectors can in some cases be nearly parallel, although they span a subspace 
that is close to Ee», and it is best to immediately orthogonalize the iteration vectors using the 
projections of Kand M onto E2. In addition, using the subspace iteration, we obtain in each 
iteration the "best" approximations to the required eigenvalues and eigenvectors and can 
measure convergence in each iteration. 

11.6.3 Starting Iteration Vectors 

The first step in the subspace iteration method is the selection of the starting iteration 
vectors in X1 [see (11.151)). As pointed out earlier, if starting vectors are used that span 
the least dominant subspace, the iteration converges in one step. This is the case, for 
example, when there are only p nonzero masses in a diagonal mass matrix and the starting 
vectors are unit vectors ei with the entries + 1 corresponding to the mass degrees of 
freedom. In this case one subspace iteration is in effect a static condensation analysis or a 
Guyan reduction. This follows from the discussion in Section 10.3.2 and because a subspace 
iteration embodies a Ritz analysis. Consider the following example. 
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EXAMPLE 11.26: Use the subspace iteration to calculate the eigenpairs (Ai, ct>,) and (,\2, cf>2) 
of the problem Ket> = ,\M4,, where 

t 
2 -1 0 01 

== -1 2 -1 0. 
K O -1 2 -1 ' 

0 0 -1 1 

As suggested above, we use as starting vectors the unit vectors e2 and e4. Following 
(11.151) to (11.155), we then obtain 

-~ -~~ ox = [~ ~] 
-1 2 -1 

2 
0 0 

0 -1 1 .0 1 

X, = [l ~ 
and K2 = 4[~ ~l M2 = s[! ;] 

[
G -"7) 0 J Q .. = [s + 

1

1
4V2 

A2 == 0 (-21 + V242) ; .. 
4 + 4V2 

Hence, 4~-sl 
4\1'2- 4J 

l -1 4 4 
1 -! 2 

and X2 = 1 + V2 -1 + V2 
4 4 

V2 V2 
2 2 

Comparing these results with the solution calculated in Example 10.12, we observe that we 
obtained the exact results with one subspace iteration. 

A second case for which the subspace iteration can converge in one step arises when 
K and M are both diagonal. This is a rather trivial case, but it is considered for the 
development of an effective procedure for the selection of starting iteration vectors when 
general matrices are involved in the analysis. When K and M are diagonal, the iteration 
vectors should be unit vectors with the entries + 1 corresponding to those degrees of 
freedom that have the smallest ratios kii/mu. These vectors are the eigenvectors correspond­
ing to the smallest eigenvalues, and this is why convergence is achieved in one step. We 
demonstrate the procedure in the following example. 
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EXAMPLE 11.27: Construct starting iteration vectors for the solution of the smallest two 
eigenvalues by subspace iteration when considering the problem Ket, = AMcf,, where 

K=[ 2 4 J M{ O 4 J 
The ratios ku/mu are here!, oo, 1, and 8 for i = 1, ... , 4, and indeed these are the 

eigenvalues of the problem. The starting vectors to be used are therefore 

[
o 1 1] 0 : 0 

X1 = 1 ! 0 

0 : 0 
I 

The vectors X 1 are multiples of the required eigenvectors, and hence convergence occurs 
in the first step of iteration. 

The two cases that we dealt with above involved rather special matrices; i.e., in the 
first case static condensation could be performed, and in the second case the matrices K and 
M were diagonal. In both cases unit vectors e1 were employed, where i = r 1, r2, .•. , rp, and 
the 1;, j = l, 2, ... , p, corresponded to the p smallest values of ku/mli over all i. Using this 
notation, we have n = 2 and r2 = 4 for Example 11.26 and r1 = 3, r2 = l for Exam­
ple 11.27. 

Although such specific matrices will hardly be encountered in general practical 
analysis, the results concerning the construction of the starting iteration vectors indicate 
how in general analysis effective starting iteration vectors may be selected. A general 
observation is that starting vectors that span the least dominant subspace Eco could be 
selected in the above cases because the mass and stiffness properties have been lumped to 
a sufficient degree. In a general case, such lumping is not possible or would result in 
inaccurate stiffness and mass representations of the actual structure. However, although the 
matrices K and M do not have exactly the same form used above, the discussion shows that 
the starting iteration vectors should be constructed to excite those degrees of freedom with 
which large mass and small stiffness are associated. Based on this observation, in essence, 
the following algorithm has been used effectively for the selection of the starting iteration 
vectors. The first column in MX1 is simply the diagonal of M. This ensures that all mass 
degrees of freedom are excited. The other columns in MX1, except for the last column, are 
unit vectors e; with entries + 1 at the degrees of freedom with the smallest ratios ku/mu, and 
the last column in MX1 is a random vector. (In the analysis of large systems, an appropriate 
spacing between the unit entries in the starting vectors is also important and taken into 
account; see program SSPACE.) 

The starting subspace described above is, in general, only an approximation to the 
actual subspace required, which we denoted as Eoo; however, the closer K and M are to the 
matrix forms used in Examples 11.26 and 11.27, the "better" the starting subspace, i.e., the 
fewer iterations to be expected until convergence. In practice, the number of iterations 
required for convergence depends on the matrices K and M, the number of eigenvalues 
sought, the number of iteration vectors used, and on the accuracy required in the eigenval-
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ues and eigenvectors. At the original development of the subspace iteration method, K. J. 
Bathe [A], only about 10 to 20 frequencies and mode shapes were sought; however, in today's 
practice hundreds of eigenpairs may be calculated. A general quite effective formula to choose 
the number of iteration vectors is q =max {2p, p+8}, see K. J. Bathe [J], with of course p « n. 

The starting subspaces above have proven by experience to be suitable. However, 
"better" starting vectors may still be available in specific applications. For instance, in dynamic 
optimization, as the structure is modified in small steps, the eigensystem of the previous 
structure may be a good approximation to the eigensystem of the new structure. A similar 
situation is encountered in protein normal mode analyses, see RS. Sedeh, M. Bathe and K.J. 
Bathe [A], and in the solution of random eigenproblems, see H.J. Pradlwarter, G. I. Schueller, 
and G. S. Szekely [A]. Also, if some eigenvectors have already been evaluated and we now 
want to solve for more eigenvectors, the eigenvectors already calculated would effectively be 
used in X1• If the eigenvectors of substructures have already been obtained, these may also be 
used in establishing the starting iteration vectors in X1 (see Section 10.3.3 and K.J. Bathe and J. 
Dong [A]), and indeed any approximate eigenvectors may be effective starting vectors. 
Finally, the method can, of course, be accelerated, see K. J. Bathe and S. Ramaswamy [AJ and 
Q. C. Zhao, P. Chen, W. B. Peng, Y.C. Gong, and M. W. Yuan [A]. 

11.6.4 Convergence 

In the subspace iteration it is necessary to measure convergence. Assume that in iteration 

(k) the eigenvalue approximations At1
>, i = 1, ... , p, have been calculated, k ~ 2 . Then we use 

(10.107) to measure convergence, in the form 

[ ]

112 

(,1,t+1> r 
1 :$'; tol; 

( qttl) ( q:k+l) 
i = 1, ... , p (11.156) 

where q:k+IJ is the vector in the matrix Qk+1 corresponding to.iit•1) (see Exercise 11.20) and tol = 
10-28 when the eigenvalues shall be accurate to about 2s digits. For example, if we iterate until all 
p bounds in ( 11.156) are smaller than 1 o-6, we find that Ap has been approximated to at least six­
digit accuracy, and the smaller eigenvalues have usually been evaluated more accurately. Since 
the eigenvalue approximations are calculated using a Rayleigh quotient, the eigenvector 
approximations are accurate to only about s ( or more) digits. It should be noted that the iteration 
is performed with q vectors, q > p, but convergence is measured only on the approximations 
obtained for the p smallest eigenvalues. 

Another important point when using the subspace iteration technqiue is to verify that in 
fact the required eigenvalues and vectors have been calculated since the relations in ( 11.146) 
and ( 11.14 7) are satisfied by any eigenpairs. This verification is the third important phase 
of the subspace iteration method. As pointed out, the iteration in (11.151) to (11.155) 
converges in the limit to the eigenvectors (j>1, ... , q>p, provided the starting iteration vectors in 
X1 are not M-orthogonal to any one of the required eigenvectors. The starting subspaces 
described above have proven, by experience, to be very satisfactory in this regard, although 
there is no formal mathematical proof available that convergence will indeed always occur. 
However, once the convergence tolerance in (11.156) is satisfied, withs being at least being 
equal to 3, we can make sure that the smallest eigenvalues and corresponding 
eigenvectors have indeed been calculated. For the check we use the Sturm sequence prop-
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Bound on il.4 
and As 

Bound on ..t1 I µ 
j j i I i 
I I I I I 
I I I I I 

f•I 
(1, 

E•J. r1i (." !Ill 
I I ,t I I I 
I I I 
I I I 

Figure 11.5 Bounds on eigenvalues to 
,i~+1) Radius o.o, i~+ u apply Sturm sequence check, p = 6 

erty of the characteristic polynomials of problems K«f> = AM«f, and K<,>-t,<r) = ,\ (r)M(r) -t,<r> 
at a shift µ,, where µ, is just to the right of the calculated value for Ap (see Fig. 11.5). The 
Sturm sequence property yields that in the Gauss factorization of K - µ,M into LDL7, the 
number of negative elements in D is equal to the number of eigenvalues smaller than µ... 
Hence, in the case considered, we should have p negative elements in D. However, in order 
to apply the Sturm sequence check, a meaningful µ. must be used that takes account of the 
fact that we have obtained only approximations to the exact eigenvalues of the problem 
K«f> = AM«f,. Let l be the last iteration, so that the calculated eigenvalues are A y+ •>, 
\<,+•> 1 <1+o s· (11156) · · fl d 1\2 , • • • , l\p • mce . ts satls e , we can use 

(11.157) 

or tighter bounds based on the actual accuracy reached in ( 11.156). The relation in ( 11. 157) 
can then be used to establish bounds on all exact eigenvalues, and hence a realistic Sturm 
sequence check can be applied. 

11.6.5 Implementation of the Subspace Iteration Method 

The equations of subspace iteration have been presented in ( 11.151) to ( 11.155). However, 
in actual implementation, the solution can be performed more effectively as summarized in 
Table 11.3, which for p small also gives the corresponding number of operations used. 

The solution method is presented in a compact manner in the computer program 
SSPACE. This program provides only an implementation of the basic steps of the subspace 
iteration method described above without including acceleration techniques that are impor­
tant in practice. One important aspect of the method is its relative simplicity when com­
pared with other solution techniques, and this simplicity is also reflected in the program 
SS PACE. 

Subroutine SSPACE. Program SSPACE is an implementation of the basic sub­
space iteration method presented above for the solution of the smallest eigenvalues and 
corresponding eigenvectors of the generalized eigenproblem K«f> = AM«f,. The argument 
variables and use of the subroutine are defined using comment lines in the program. 
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SUBROUTINE $SPACE (A,B,M.AXA,R,EIGV,TT,W,AR,BR,VEC,D,RTOLV,BUP,BLO,SSPOOOOl 
1 BUPC,NN,NNM,NWK,NWM,NROOT,RTOL,NC,NNC,NITEM,IFSS,IFPR,NSTIF,IOUT)SSP00002 

C. . SSP00003 
C, • SSP00004 
C • P R O G R A M • SSPOOOOS 
C. TO SOLVE FOR THE SMALLEST EIGENVALUES-- ASSUMED .GT. 0 . SSP00006 
C, AND CORRESPONDING EIGENVECTORS IN THE GENERALIZED • SSP00007 
C , EIGENPROBLEM USING THE SUBSPACE ITERATION METHOD , SSF00008 
C, . SSP00009 
C ~ INPUT VARIABLES - - SSP00010 
C. A(NWK) • STIFFNESS MATRIX IN COMPACTED FORM (ASSUMED • SSP00011 
C. POSITIVE DEFINITE) . SSP00012 
C, B(NWM) • MASS MATRIX IN COMPACTED FORM • SSP00013 
C • MAXA(NNM) • VECTOR CONTAINING ADDRESSES OF DIAGONAL . SSP00014 
C, ELEMENTS OF STIFFNESS MATRIX A • SSP00015 
C R(NN,NC) • STORAGE FOR EIGENVECTORS . SSP00016 
C. EIGV(NC) • STORAGE FOR EIGENVALUES • SSP00017 
C, TT(NN) • WORKING VECTOR • SSP00018 
C. W(NN) • WORKING VECTOR • SSP000l9 
C, AR(NNC) • WORKING MATRIX STORING PROJECTION OF K . SSP00020 
C, BR(NNC) • WORKING MATRIX STORING PROJECTION OF M . SSP00021 
C. VEC(NC,NC)• WORKING MATRIX • SSP00022 
C. D(NC) • WORKING VECTOR • SSP00023 
C. RTOLV(NC) • WORKING VECTOR . SSP00024 
C. BUP(NC} • WORKING VECTOR • SSP00025 
C. BLO(NC) • WORKING VECTOR . SSP00026 
C, BUPC(NC) • WORKING VECTOR . SSP00027 
C · NN • ORDER OF STIFFNESS AND MASS MATRICES . SSP00028 
C, NNM • NN + 1 • SSP00029 
C • NWK • NUMBER OF ELEMENTS BELOW SKYLINE OF • SSPOOO 30 
C, STIFFNESS MATRIX SSP00031 
C · NWM • NUMBER OF ELEMENTS BELOW SKYLINE OF • SSP00032 
C , MASS MATRIX • SSP00033 
C, I.E. NWM•NWK FOR CONSISTENT MASS MATRIX • SSP00034 
C, NWM•NN FOR LUMPED MASS MATRIX SSP00035 
C. NROOT • NUMBER OF REQUIRED EIGENVALUES ANO EIGENVECTORS. SSP00036 
C, RTOL • CONVERGENCE TOLERANCE ON EIGENVALUES • SSP00037 
C. ( l.E-06 OR SMALLER) . SSP00038 
C, NC • NUMBER OF ITERATION VECTORS USED . SSP00039 
C. (USUALLY SET TO MIN(2*NROOT, NROOT+8), BUT NC . SSP00040 
C, CANNOT BE LARGER THAN THE NUMBER OF MASS . SSP00041 
C, DEGREES OF FREEDOM) • SSP00042 
C · NNC • NC*(NC+l)/2 DIMENSION OF STORAGE VECTORS AR,BR. SSP00043 
C, NITEM • MAXIMUM NUMBER OF SUBSPACE ITERATIONS PERMITTED. SSP00044 
C (USUALLY SET TO 16) • SSP00045 
C, THE PARAMETERS NC AND/OR NITEM MUST BE . SSP00046 
C, INCREASED IF A SOLUTION HAS NOT CONVERGED . SSP00047 
C, IFSS • FLAG FOR STURM SEQUENCE CHECK • SSP00048 
C, EQ.O NO CHECK SSP00049 
C EQ.1 CHECK SSP00050 
C. IFPR • FLAG FOR PRINTING DURING ITERATION SSP00051 
C, EQ.0 NO PRINTING SSP00052 
C, EQ.l PRINT • SSP00053 
C , NSTIF • SCRATCH FILE . SSP00054 
C, IOUT • UNIT USED FOR OUTPUT . SSPOOOSS 
C. • SSP00056 
C OUTPUT - - • SSP00057 
C, EIGV(NROOT) • EIGENVALUES . SSP00058 
C, R(NN,NROOT) • EIGENVECTORS • SSP00059 
C , . SSP00060 
C . • SSP00061 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) SSP00062 
C . SSP00063 
C THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON CRAY • SSP00064 
C. EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM MACHINES, SSP00065 
C, ENGINEERING WORKSTATIONS AND PCS. DEACTIVATE ABOVE LINE FOR . SSP00066 
C, SINGLE PRECISION ARITHMETIC. . SSP00067 
C . • SSP00068 

INTEGER MAXA(NNM) SSP00069 
DIMENSION A(NWK),B(NWM),R(NN,NC),TT(NN),W(NN),EIGV(NC), SSP00070 
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1 
2 

D(NC),VEC(NC,NC),AR(NNC),BR(NNC),RTOLV(NC),BUP(NC), 
BLO(NC),BUPC(NC) 

SET TOLERANCE FOR JACOBI ITERATION 
TOLJ•l.OD-12 

INITIALIZATION 

ICONV•O 
NSCH•O 
NSMAX•l2 
Nl•NC + 1 
NCl•NC - 1 
REWIND NSTIF 
WRITE (NSTIF) A 
DO 2 I•l,NC 

2 D(I)•O. 

ESTABLISH STARTING ITERATION VECTORS 

ND•NN/NC 
IF (NWM.GT.NN) GO TO 4 
J•O 
DO 6 I•l,NN 
II•MAXA( I) 
R(I,l)•B(I) 
IF (B(I).GT.0) J•J + l 

6 W(I)•B(I)/A(II) 
IF (NC.LE.J) GO TO 16 
WRITE (IOUT,1007) 
GO TO 800 

4 DO 10 I•l,NN 
II•MAXA( I} 
R(I,l)•B(Il} 

10 W(I)•B(II)/A(II) 
16 DO 20 J•2,NC 

DO 20 I•l,NN 
20 R(I,J)•O. 

L•NN - ND 
00 30 J•2,NC 
RT•O. 
DO 40 I•l,L 
IF (W(I).LT.RT) GO TO 40 
RT•W(I) 
IJ•I 

40 CONTINUE 
DO 50 X-L,NN 
IF (W(I).LE.RT) GO TO 50 
RT•W(I) 
IJ•I 

50 CONTINUE 
TT(J)•FLOAT(IJ) 
W(IJ)•O. 
L•L - ND 

30 R(IJ,J)•l. 

WRITE (IOUT,1008) 
WRITE (IOUT,1002) (TT(J),J•2,NC) 

A RANDOM VECTOR IS ADDED TO THE LAST VECTOR 

PI•3.141592654DO 
xx-o.soo 
00 60 K•l,NN 
XX•( PI + XX) **S 
IX•INT(XX) 
XX•XX - FLOAT(IX) 

60 R(K,NC)•R(K,NC) + XX 
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C FACTORIZE MATRIX A INTO (L)*(D)*(L(T)) 
c 

ISH•O 

c 
CALL OECOMP (A,MAXA,NN,ISH,IOUT) 

C - S T A R T O F I T E R A T I O N L O O P 
c 

c 

NITE•O 
TOLJ2•1.0D-24 

100 NITE•NITE + l 
IF (IFPR.EQ.0) GO TO 90 
WRITE (IOUT,1010) NITE 

C CALCULATE THE PROJECTIONS OF A AND B 
c 

c 

90 IJ•O 
DO 110 J•l,NC 
DO 120 K•l,NN 

120 TT(K)•R(K,J) 
CALL REDBAK (A,TT,MAXA,NN) 
DO 130 l•J,NC 
ART•O. 
DO 140 K•l,NN 

140 ART•ART + R(K,I)*TT(K) 
IJ•IJ + 1 

130 AR(IJ)•ART 
DO 150 K•l,NN 

150 R(K,J)•TT(K) 
110 CONTINUE 

IJ•O 
DO 160 J•l,NC 
CALL MULT (TT,B,R(l,J},MAXA,NN,NWM) 
DO 180 I•J,NC 
BRT•O. 
DO 190 K•l,NN 

190 BRT•BRT + R(K,I)*TT(K) 
IJ•IJ + l 

180 BR(IJ)•BRT 
IF (ICONV.GT.0) GO TO 160 
00 200 K•l,NN 

200 R(K,J)•TT(K) 
160 CONTINUE 

C SOLVE FOR EIGENSYSTEM OF SUBSPACE OPERATORS 
c 

c 

c 

c 

IF (IFPR.EQ.0) GO TO 320 
IND•l 

210 WRITE (IOUT,1020) 
II•l 
DO 300 I•l,NC 
ITEMP•II + NC - I 
WRITE (IOUT,1005) (AR(J),J•II,ITEMP) 

300 II•II + Nl - I 
WRITE (IOUT,1030) 
II•l 
DO 310 I•l ,NC 
ITEMP•II + NC - I 
WRITE (IOUT,1005} (BR(J),J•II,ITEMP) 

310 II•II + Nl - I 
IF (IND.EQ.2) GO TO 350 

320 CALL JACOBI (AR,BR,VEC,EIGV,W,NC,NNC,TOLJ,NSMAX,IFPR,IOUT) 

IF (IFPR.EQ,0) GO TO 350 
WRITE (IOUT,1040) 
IND•2 
GO TO 210 

C ARRANGE EIGENVALUES IN ASCENDING ORDER 
c 
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c 
c 
c 
c 

c 
c 
c 

c 

c 

Sec. 11.6 The Subspace Iteration Method 

350 IS•O 
II•l 
DO 360 I•l,NCl 
ITEMP•II + Nl - I 
IF (EIGV(I+l).GE.EIGV(I)) GO TO 360 
IS•IS + 1 
EIGVT•EIGV(I+l) 
EIGV(I+l)•EIGV(I) 
EIGV(I)•EIGVT 
BT•BR(ITEMP) 
BR( ITEMP)•BR( 1I) 
BR( II )•BT 
DO 370 K•l,NC 
RT•VEC(K,I+l) 
VEC(K,I+l)•VEC(K,I) 

370 VEC(K,I}•RT 
360 II•ITEMP 

375 

422 

430 
424 
420 

IF (IS.GT.0) GO TO 350 
IF (IFPR.EQ.O) GO TO 375 
WRITE {IOUT,1035) 
WRITE (IOUT,1006) (EIGV(I),I•l,NC) 

CALCULATE B TIMES APPROXIMATE EIGENVECTORS (ICONV.EQ.0) 
OR FINAL EIGENVECTOR APPROXIMATIONS (ICONV.GT.0) 

DO 420 I•l,NN 
DO 422 J•l,NC 
TT(J)•R(I,J) 
00 424 K•l,NC 
RT•O. 
DO 430 L•l,NC 
RT•RT + TT(L)*VEC(L,K) 
R(I,K)•RT 
CONTINUE 

CALCULATE ERROR BOUNDS AND CHECK FOR CONVERGENCE OF EIGENVALUES 

DO 380 l•l,NC 
VDOT•O. 
DO 382 J•l,NC 

382 VDOT•VDOT + VEC(J,I)*VEC(J,I) 
EIGV2•EIGV(l)*EIGV(I) 
DIF•VDOT - EIGV2 
RDIF•MAX(DIF,TOLJ2*EIGV2)/VDOT 
RDIF•SQRT(RDIF) 
RTOLV(I)•RDIF 

380 CONTINUE 
IF {IFPR.EQ.0 .AND. ICONV.EQ.O) GO TO 385 
WRITE (IOUT,1050) 
WRITE (IOUT,1005) (RTOLV(I),I•l,NCJ 

385 IF (ICONV.GT.OJ GO TO 500 

DO 390 I•l,NROOT 
IF (RTOLV(I).GT.RTOL) GO TO 400 

390 CONTINUE 
WRITE (IOUT,1060) RTOL 
ICONV•l 
GO TO 100 

400 IF (NITE.LT.NITEM) GO TO 100 
WRITE (IOUT,1070) 
ICONV•2 
IFSS•O 
GO TO 100 

C E N D O F I T E R A T I O N L O O P 
c 

500 WRITE (IOUT,1100) 
WRITE (IOUT,1006) (EIGV(I),I•l,NROOT) 
WRITE (IOUT,1110) 
DO 530 J=l,NROOT 

530 WRITE (IOUT,1005) (R(K,J),K•l,NN) 
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c 
C CALCULATE AND PRINT ERROR MEASURES 
c 

c 

c 

REWIND NSTIF 
READ (NSTIF) A 

DO 580 L•l,NROOT 
RT•EIGV{L) 
CALL MULT(TT,A,R(l,L),MAX.A,NN,NWK) 
VNORM•O. 
DO 590 I•l,NN 

590 VNORM•VNORM + TT(I)*TT(I) 
CALL MULT(W,B,R(l,L),MAX.A,NN,NWM) 
WNORM•O. 
DO 600 I•l,NN 
TT(I)•TT(I) - RT*W(I) 

600 WNORM•WNORM + TT(I)*TT(I) 
VNORM•SQRT(VNORM) 
WNORM•SQRT(WNORM) 
D(L)•WNORM/VNORM 

580 CONTINUE 
WRITE (IOUT,1115) 
WRITE (IOUT,1005) (D(I),I•l,NROOT) 

C APPLY STURM SEQUENCE CHECK 
c 

IF (IFSS.EQ.O) GO TO 900 

c 
CALL SCHECK (EIGV,RTOLV,BUP,BLO,BUPC,D,NC,NEI,RTOL,SHIFT,IOUT) 

WRITE (IOUT,1120) SHIFT 
c 
C SHIFT MATRIX A 
c 

REWIND NSTIF 
READ (NSTIF) A 
IF (NWM.GT.NN) GO TO 645 
DO 640 I•l,NN 
II•MAXA( I) 

640 A(II)•A(II) - B(I)*SHIFT 
GO TO 660 

645 00 650 I•l,NWK 
650 A(I)•A(I) - B(I)*SHIFT 

c 
C FACTORIZE SHIFTED MATRIX 
c 

660 ISH•l 

c 
CALL DECOMP (A,MAXA,NN,ISH,IOUT) 

C COUNT NUMBER OF NEGATIVE DIAGONAL ELEMENTS 
c 

c 

c 

NSCH•O 
DO 664 I•l,NN 
II•MAXA(I) 
IF (A(II).LT.0.) NSCH•NSCH + 1 

664 CONTINUE 
IF (NSCH.EQ.NEI) GO TO 670 
NMIS•NSCH - NEI 
WRITE (IOUT,1130) NMIS 
GO TO 900 

670 WRITE (IOUT,1140) NSCH 
GO TO 900 

800 STOP 
900 RETURN 

1002 FORMAT (' ', 1or10. 0) 
1005 FORMAT(' ',12Ell.4) 
1006 FORMAT(' ',6E22.l4) 
1007 FORMAT(///,' STOP, NC IS LARGER THAN THE NUMBER OF MASS' 

l 'DEGREES OF FREEDOM') 
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c 

Sec. 11.6 

1008 FORMAT 
1 

1010 FORMAT 
1020 FORMAT 
1030 FORMAT 
1035 FORMAT 
1040 FORMAT 
1050 FORMAT 
1060 FORMAT 
1070 FORMAT 

1 
2 
3 

1100 FORMAT 
lllS FORMAT 
1110 FORMAT 
1120 FORMAT 
1130 FORMAT 
1140 FORMAT 

END 

The Subspace Iteration Method 

(///,' DEGREES OF FREEDOM EXCITED BY UNIT STARTING' 
'ITERATION VECTORS') 

(//,' ITERATION NUMBER ',I8) 
(/,' PROJECTION OF A (MATRIX AR)') 
(/,' PROJECTION OF B (MATRIX BR)'} 
(/,' EIGENVALUES OF AR-LAMBDA*BR') 
(//,'ARAND BR AFTER JACOBI DIAGONALIZATION') 
(/,' ERROR BOUNDS REACHED ON EIGENVALUES') 
(///,' CONVERGENCE REACHED FOR RTOL ',El0.4) 
(' *** NO CONVERGENCE IN MAXIMUM NUMBER OF ITERATIONS', 

I PERMITTED',/ I 
'WE ACCEPT CURRENT ITERATION VALUES',/, 
'THE STURM SEQUENCE CHECK IS NOT PERFORMED') 

(///,' THE CALCULATED EIGENVALUES ARE') 
(//,' ERROR MEASURES ON THE EIGENVALUES') 
(//,' THE CALCULATED EIGENVECTORS ARE',/) 
(///,' CHECK APPLIED AT SHIFT ',E22.14) 
(//,' THERE ARE ',IS,' EIGENVALUES MISSING') 
(//,' WE FOUND THE LOWEST ',18,' EIGENVALUES') 

c . 
c . 
c . 
c . 
c . 
c . 
c . 
c 

SUBROUTINE DECOMP (A,MAXA,NN,ISH,IOUT) . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 
PROGRAM 

TO CALCULATE (L)*(D)*(L)(T) FACTORIZATION OF 
STIFFNESS MATRIX 

. ................. . 

c 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
DIMENSION A(l),MAXA(l) 
IF (NN.EQ.l) GO TO 900 

00 200 N•l,NN 
KN•MAXA(N) 
KL•KN + l 
KU•MAXA(N+l) - 1 
KH•KU - KL 
IF (KR) 304,240,210 

210 K•N - KH 
IC•O 
KLT•KU 
DO 260 J•l,KH 
IC•IC + l 
KLT•KLT - 1 
KI•MAXA(K) 
ND•MAXA(K+l) - KI - 1 
IF (ND) 260,260,270 

270 KK•MINO(IC,ND) 
c-o. 
DO 280 L•l,KK 

280 C•C + A(KI+L)*A(KLT+L) 
A(KLT)•A(KLT) - C 

260 K•K + 1 
240 K•N 

B•O. 
DO 300 KK•KL,KU 
R•K - 1 
Kl*MAXA(K) 
C•A(KK)/A(KI) 
IF (ABS(C).LT.l.E07) GO TO 290 
WRITE (IOUT,2010) N,C 
GO TO 800 

290 B•B + C*A(KK) 
300 A(KK)•C 

A(KN)•A(KN) - B 
304 IF (A(KN)) 310,310,200 
310 IF (ISH.EQ.O) GO TO 320 

IF (A(KN).EQ.0.) A{KN)•-l.E-16 
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c 

GO TO 200 
320 WRITE (IOUT,2000} N,A(KN) 

GO TO 800 
200 CONTINUE 

GO TO 900 

800 STOP 
900 RETURN 

c 
2000 FORMAT 

1 
2 

2010 FORMAT 
1 
2 

END 

(//' STOP - STIFFNESS MATRIX NOT POSITIVE DEFINITE',//, 
'NONPOSITIVE PIVOT FOR EQUATION ',18,//, 
' PIVOT• ',E20.12) 

(//' STOP - STURM SEQUENCE CHECK FAILED BECAUSE OF', 
'MULTIPLIER GROWTH FOR COLUMN NUMBER' ,18,//, 
'MULTIPLIER• ',E20.8) 

SUBROUTINE REDBAK (A,V,MAXA,NN) 
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c . 
c . 
c . 

PROGRAM 
TO REDUCE AND BACK-SUBSTITUTE ITERATION VECTORS 

• • · · • · • • • • • • • , • • , • • • • • • , , , • • • • • SSP00444 c .. 
c 

c 

c 

c 

410 

420 

400 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
DIMENSION A(l),V(l),MAXA(l) 

DO 400 N•l,NN 
KL•MAXA(N) + l 
KU•MAXA(N+l) - 1 
IF (KU-KL) 400,410,410 
K•N 
c-o. 
DO 420 KI<:•KL,KU 
K•K - l 
C•C + A(KK)*V(K) 
V{N)•V(N) - C 
CONTINUE 

DO 480 N•l,NN 
K•MAXA(N) 

480 V(N)•V(N)/A(K) 
IF (NN,EQ.1) GO TO 900 
N•NN 
DO 500 L•2,NN 
KL•MAXA(N) + l 
KU•MAXA(N+l) - 1 
IF (KU-KL) 500,510,510 

510 K•N 
DO 520 KK•KL,KU 
K•K - l 

520 V(K)•V(K) - A(KK)*V(N) 
500 N•N - 1 

900 RETURN 
END 

c 
c . 
c . 
c . 
c . 

SUBROUTINE MULT (TT,B,RR,MAXA,NN,NWM) 

PROGRAM 
TO EVALUATE PRODUCT OF B TIMES RR AND STORE RESULT IN TT 
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c 
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c 
IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
DIMENSION TT(l),B(l),RR(l),MAXA(l) 

IF (NWM.GT.NN) GO TO 20 
DO 10 I•l,NN 

10 TT(I)•B(I)*RR(I) 
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c 

c 

Sec. 11.6 The Subspace Iteration Method 

GO TO 900 

20 DO 40 I•l,NN 
40 TT(I)•O. 

DO 100 I•l,NN 
KL•MAXA(I) 
KU•MAXA(I+l) - 1 
II•I + l 
CC•RR(I) 
DO 100 KK•KL,KU 
II•II - 1 

100 TT(II)•TT(II) + B(KK)*CC 
IF (NN.EQ.1) GO TO 900 
DO 200 I•2,NN 
KL•MAXA(I) + 1 
KU•MAXA(I+l) - l 
IF (KU-KL) 200,210,210 

210 II•I 
AA•O. 
DO 220 KK•KL,KU 
II•II - 1 

220 AA•AA + B(KK)*RR(II) 
TT(I)•TT(I) + AA 

200 CONTINUE 

900 RETURN 
END 
SUBROUTINE SCHECK (EIGV,RTOLV,BUP,BLO,BUPC,NEIV,NC,NEl,RTOL, 

1 SHIFT,IOUT) 
c . . . . . . . . . . . . . . . . . . . . . . 
c . 
c . PROGRAM 
c . TO EVALUATE SHIFT FOR STURM SEQUENCE CHECK c . 
c . ................... 
c 

c 

c 

c 
c 
c 

100 

120 

200 
240 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
DIMENSION EIGV(NC),RTOLV(NC),BUP(NC),BLO(NC),BUPC(NC),NEIV(NC) 

FTOL•0.01 

DO 100 I•l,NC 
BUP(l)•EIGV(I)*(l.+FTOL) 
BLO(l)•EIGV(I)*(l.-FTOL) 
NROOT•O 
DO 120 l•l,NC 
IF (RTOLV(I).LT.RTOL) NROOT•NROOT + l 
IF (NROOT.GE.l) GO TO 200 
WRITE (IOUT,1010) 
GO TO 800 

FIND UPPER BOUNDS ON EIGENVALUE CLUSTERS 

DO 240 I•l,NROOT 
NEIV(I)•l 
IF (NROOT.NE.l) GO TO 260 
BUPC(l)•BUP(l) 
LM•l 
L•l 
1-2 
GO TO 295 

260 L•l 
I•2 

270 IF (BUP(I-1).LE.BLO(I)) GO TO 280 
NEIV(L)•NEIV(L) + 1 
I•I + l 
IF (I.LE,NROOT) GO TO 270 

280 BUPC(L)•BUP(I-1) 
IF (I.GT,NROOT) GO TO 290 
L•L + 1 
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I•I + 1 
IF (I.LE.NROOT) GO TO 270 
BUPC(L)•BUP(I-1) 

290 LM•L 
IF (NROOT.EQ.NC) GO TO 300 
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295 IF (BUP(I-1).LE.BLO(I)) GO TO 300 
IF (RTOLV(I).GT.RTOL) GO TO 300 
BUPC(L)•BUP(I) 
NEIV(L)•NEIV(L) + 1 
NROOT•NROOT + l 
IF (NROOT.EQ.NC) GO TO 300 
I•I + 1 
GO TO 295 

FIND SHIFT 

300 WRITE (IOUT,1020) 
WRITE (IOUT,1005) (BUPC(I),I•l,LM) 
WRITE (IOUT,1030) 
WRITE (IOUT,1006) (NEIV(I),I•l,LM) 
LL•LM - l 
IF (LM.EQ.l) GO TO 310 

330 DO 320 I•l,LL 
320 NEIV(L)•NEIV(L) + NEIV(I) 

L•L - 1 
LL•LL - 1 
IF (L.NE.1) GO TO 330 

310 WRITE (IOUT,1040) 
WRITE (IOUT,1006) (NEIV(I),I•l,LM) 
L•O 
DO 340 I•l,LM 
L•L + 1 
IF (NEIV(I).GE.NROOT) GO TO 350 

340 CONTINUE 
350 SHIFT•BUPC(L) 

NEI•NEIV(L) 
GO TO 900 
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800 STOP SSP00600 
900 RETURN SSP00601 

C SSP00602 
1005 FORMAT(' ',6E22.14) SSP00603 
1006 FORMAT(' ',6122) SSP00604 
1010 FORMAT(' ***ERROR*** SOLUTION STOP IN *SCHECK*',/, SSP00605 

l 'NO EIGENVALUES FOUND',/) SSP00606 
1020 FORMAT(///,' UPPER BOUNDS ON EIGENVALUE CLUSTERS') SSP00607 
1030 FORMAT(//,' NO. OF EIGENVALUES IN EACH CLUSTER') SSP00608 
1040 FORMAT(' NO. OF EIGENVALUES LESS THAN UPPER BOUNDS') SSP00609 

END SSP00610 
SUBROUTINE JACOBI (A,B,X,EIGV,D,N,NWA,RTOL,NSMAX,IFPR,IOUT) SSP00611 

C •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , •••••• SSP00612 
C • • SSP00613 
C. PROGRAM • SSP00614 
C. TO SOLVE THE GENERALIZED EIGENPROBLEM USING THE • SSP00615 
C. GENERALIZED JACOBI ITERATION , SSP00616 
C ••••••••••••••••••••• , • • • • • • • • • • • • • • • • • • • . • • • • • • • . • • • • . • • • • . . . . . . . • • • SSP00617 

c 
c 
c 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) SSP00618 
DIMENSION A(NWA),B(NWA),X(N,N),EIGV(N),D(N) SSP00619 

INITIALIZE EIGENVALUE AND EIGENVECTOR MATRICES 

Nl•N + l 
II•l 
DO 10 l•l,N 
IF ( A ( II ) • GT. 0 • • AND. 8 ( II ). GT. 0 • ) 
WRITE (IOUT,2020) II,A(Il),B(II) 
GO TO 800 

4 D(I)•A(Il)/B(II) 
EIGV(I)•D(I) 

10 II•II + Nl - I 

GO TO 4 
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DO 30 l•l,N SSP00632 
DO 20 J•l,N SSP00633 

20 X(I,J)•O. SSP00634 
30 X(I,l)•l. SSP00635 

IF (N,EQ,l) GO TO 900 SSP00636 
C SSP00637 
C INITIALIZE SWEEP COUNTER AND BEGIN ITERATION SSP00638 
C SSP00639 

NSWEEP•O SSP00640 
NR•N - 1 SSP00641 

40 NSWEEP•NSWEEP + 1 SSP00642 
IF (IFPR.EQ.l) WRITE (IOUT,2000) NSWEEP SSP00643 

C SSP00644 
C CHECK IF PRESENT OFF-DIAGONAL ELEMENT IS LARGE ENOUGH TO REQUIRE SSP00645 
C ZEROING SSP00646 
C SSP00647 

EPS•(.Ol)**(NSWEEP*2) SSP00648 
DO 210 J•l,NR SSP00649 
JPl•J + l SSP00650 
JMl•J - 1 SSP00651 
LJK•JMl*N - JMl*J/2 SSP00652 
JJ•LJK + J SSP00653 
DO 210 K•JPl,N SSP00654 
KPl•K + 1 SSP00655 
KMl•K - 1 SSP00656 
JK•LJK + K SSP00657 
KK•KMl*N - KMl*K/2 + K SSP00658 
EPTOLA•(A(JK)/A(JJ))*(A(JK)/A(KK)) SSP00659 
EPTOLB•(B(JK)/B(JJ))*(B(JK)/B(KK)) SSP00660 
IF (EPTOLA.LT.EPS ,AND. EPTOLB.LT.EPS) GO TO 210 SSP00661 

C SSP00662 
C IF ZEROING IS REQUIRED, CALCULATE THE ROTATION MATRIX ELEMENTS CA SSP00663 
C AND CG SSP00664 
C SSP00665 

AKK•A(KK)*B(JK) - B(KK)*A(JK) SSP00666 
AJJ•A(JJ)*B(JK) - B(JJ)*A(JK) SSP00667 
AB•A(JJ)*B(KK) - A(KK)*B(JJ) SSP00668 
SCALE•A(KK)*B(KK) SSP00669 
ABCH•AB/SCALE SSP00670 
AKKCH•AKK/SCALE SSP00671 
AJJCH•AJJ/SCALE SSP00672 
CHECK•(ABCH*ABCH+4.0*AKKCH*AJJCH)/4.0 SSP00673 
IF (CHECK) 50,60,60 SSP00674 

50 WRITE (IOUT,2020) JJ,A(JJ),B(JJ) SSP00675 
GO TO 800 SSP00676 

60 SQCH•SCALE*SORT(CHECK) SSP00677 
Dl•AB/2. + SQCH SSP00678 
D2•AB/2. - SQCH SSP00679 
DEN•Dl SSP00680 
IF (ABS(D2).GT.ABS(Dl)) DEN•D2 SSP00681 
IF (DEN) 80,70,80 SSP00682 

70 CA•O. SSP00683 
CG•-A(JK)/A(KK) SSP00684 
GO TO 90 SSP0068S 

80 CA•AKK/DEN SSP00686 
CG•-AJJ/DEN SSP00687 

C SSP00688 
C PERFORM THE GENERALIZED ROTATION TO ZERO THE PRESENT OFF-DIAGONAL SSP00689 
C ELEMENT SSP00690 
C SSP00691 

90 IF (N-2) 100,190,100 SSP00692 
100 IF (JMl-1) 130,110,110 SSP00693 
110 DO 120 I•l,JMl SSP00694 

IMl•I - 1 SSP00695 
IJ•IMl*N - IMl*I/2 + J SSP00696 
IK•IMl*N - IMl*I/2 + K SSP00697 
AJ•A(IJ) SSP00696 
BJ•B(IJ) SSP00699 
AK•A(IK) SSP00700 
BK•B{IK) SSP00701 
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A(IJ)•AJ + CG*AK 
B(IJ)•BJ + CG*BK 
A(IK)•AK + CA*AJ 

120 B(IK)•BK + CA*BJ 
130 IF (KP1-N) 140,140,160 
140 LJI•JMl*N - JMl*J/2 

LKI•KMl*N - KMl*K/2 
DO 150 I•KPl,N 
JI•LJI + I 
IU•LKI + I 
AJ•A(JI) 
BJ•B(JI) 
AK•A(KI) 
BK•B(Kl) 
A(JI)•AJ + CG*AK 
B(JI)•BJ + CG*BK 
A(KI)•AK + CA*AJ 

150 B(KI}•BK + CA*BJ 
160 IF (JPl-KMl) 170,170,190 
170 LJI•JMl*N - JMl*J/2 

DO 180 I•JPl,KMl 
JI•LJI + I 
IMl•I - l 
IK•IMl*N - IMl*I/2 + K 
AJ•A(JI) 
BJ•B(JI) 
AK•A(IK) 
BK•B(IK) 
A(JI)•AJ + CG*AK 
B(JI)•BJ + CG*BK 
A(IK)•AK + CA*AJ 

180 B(IK)•BK + CA*BJ 
190 AK•A(KK) 

BK•B(KK) 
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A(KK)•AK + 2.*CA*A(JK) + CA*CA*A(JJ) 
B(KK)•BK + 2.*CA*B(JK) + CA*CA*B(JJ) 
A(JJ)•A(JJ) + 2.*CG*A(JK) + CG*CG*AK 
B(JJ)•B(JJ) + 2.*CG*B(JK) + CG*CG*BK 
A(JK)•O. 
B(JK)•O. 

C UPDATE THE EIGENVECTOR MATRIX AFTER EACH ROTATION 
c 

c 

DO 200 I•l,N 
XJ•X(I,J) 
XK•X(I,K) 
X(I,J)•XJ + CG*XK 

200 X(I,K)•XK + CA*XJ 
210 CONTINUE 

C UPDATE THE EIGENVALUES AFTER EACH SWEEP 
c 

c 

II•l 
DO 220 I•l,N 
IF ( A ( II ) • GT. 0. • AND. B ( II ) • GT. 0. ) GO TO 215 
WRITE (IOUT,2020) II,A(II),B(II) 
GO TO 800 

215 EIGV(I)•A(II)/B(II) 
220 II•II + Nl - I 

IF (IFPR.EQ.O) GO TO 230 
WRITE (IOUT,2030) 
WRITE (IOUT,2010) (EIGV(I),I•l,N) 

C CHECK FOR CONVERGENCE 
c 

230 DO 240 l•l,N 
TOL•RTOL*D(I) 
DIF•ABS(EIGV(I)-D(I)) 
IF (DIF.GT.TOL) GO TO 280 

240 CONTINUE 
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c 
C CHECK ALL OFF-DIAGONAL ELEMENTS TO SEE IF ANOTHER SWEEP IS 
C REQUIRED 
c 

c 

EPS•RTOL**2 
DO 250 J•l,NR 
JMl•J - l 
JPl•J + 1 
LJK•JMl*N - JMl*J/2 
JJ•LJK + J 
DO 250 K•JPl,N 
KMl•K - l 
JK•LJK + K 
KK•KMl*N - KMl*K/2 + K 
EPSA•(A(JK)/A(JJ))*(A(JK)/A(KK)) 
EPSB•(B(JK)/B(JJ))*(B(JK)/B(KK)) 
IF (EPSA.LT.EPS .ANO. EPSB.LT.EPS) GO TO 250 
GO TO 280 

250 CONTINUE 

C SCALE EIGENVECTORS 
c 

c 

255 II•l 
DO 275 I•l,N 
BB•SQRT(B( II)) 
DO 270 K•l,N 

270 X(K,I)=X(K,I)/88 
275 II•II + Nl - I 

GO TO 900 

C UPDATE D MATRIX AND START NEW SWEEP, IF ALLOWED 
c 

c 

c 

280 DO 290 l•l,N 
290 D(I)w:EIGV(I) 

IF (NSWEEP.LT.NSMAX) GO TO 40 
GO TO 255 

800 STOP 
900 RETURN 

2000 FORMAT 
2010 FORMAT 
2020 FORMAT 

1 
2 

2030 FORMAT 
END 

(//,' SWEEP NUMBER IN *JACOBI*• ',18) 
(' ',6E20.12) 
(' ***ERROR*** SOLUTION STOP',/, 

' MATRICES NOT POSITIVE DEFINITE',/, 
' II • ',18,' A(II) • ',E20.12,' B(II) • ',E20.12) 

(/,' CURRENT EIGENVALUES IN *JACOBI* ARE',/) 
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The subspace iteration program presented here is for the solution of the smallest eigen­
values and corresponding eigenvectors, where pis assumed to be small (say p:::;; 20). Consi­
dering the solution of problems for a larger number of eigenpairs, the formula q = max {2p , p + 
8} should be used, see K.J. Bathe [J]. 

Of course, in practice procedures for accelerating the basic subspace iteration solution 
given in subroutine SSP ACE are very desirable, in particular, when a larger number of 
eigenpairs is to be calculated. Various acceleration procedures for the basic subspace iteration 
method have indeed been proposed, see for example K. J. Bathe and S. Ramaswamy [A], F.A. 
Dul and K. Arczewski [A], Q. C. Zhao, P. Chen, W. B. Peng, Y. C. Gong, and M. W. Yuan 
[A] and K. J. Bathe and J. Dong [A]. 

11.6.6 Exercises 

11.18. Show explicitly that the iteration vectors Xk+t in the subspace iteration are K- and M-orthogonal. 

11.19. Use two iteration vectors in the subspace iteration method to solve for the two smallest 
eigenvalues and corresponding eigenvectors of the problem considered in Exercise 11.1. 

11.20. Show that in the subspace iteration the use of (10.107) results after (k-1) iterations into 

[ 
( )2 ]1/2 l") 

}- I ,, ::;; /Q/ 

( q;k) )1 q;") 

where :tt) is the calculated eigenvalue approximation and qtl is the corresponding eigenvector 

inQk. 

11.21. The number of numerical operations used in program SSPACE can be decreased at the expense 
of using more memory. Then no additional iteration is performed after convergence. Reprogram 
SSPACE to achieve this decrease in numerical operations used. 

11.22. Develop a program such as SSPACE using the programming language C (instead of Fortran), and 
compare the efficiencies of the two implementations. 
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Implementation 
of the Finite 
Element Method 

12.1 INTRODUCTION 

In this book we have presented formulations, general theories, and numerical methods of 
finite element analysis. The objective in this final chapter is to discuss some important 
computational aspects pertaining to the implementation of finite element procedures. Al­
though the implementation of displacement-based finite element analysis is discussed, it 
should be noted that most of the concepts presented can also be employed in finite element 
analysis using mixed formulations. Note, in particular, that the mixed interpolations of the 
u/p formulation for two- and three-dimensional continuum elements (see Sections 4.4.3, 
5.3.5, and 6.4) and the mixed interpolations for beam, plate, and shell elements (see 
Sections 5.4 and 6.5) have only nodal displacements and rotations as final element degrees 
of freedom, and hence the process of element assemblage and solution of equations is as in 
the pure displacement-based formulation. 

The main advantage that the finite element method has over other analysis techniques 
is its large generality. Normally, as was pointed out, it seems possible, by using many 
elements, to virtually approximate any continuum with complex boundary and loading 
conditions to such a degree that an accurate analysis can be carried out. In practice, 
however, obvious engineering limitations arise, a most important one being the cost of the 
analysis. This cost consists of the purchase and/or leasing of hardware and software, the 
analyst's effort and time required to prepare the analysis input data, the computer program 
execution time, and the analyst's time to interpret the results. Of course, as discussed in 
Section 1.2, a number of program runs may be required. Also, the limitations of the 
computer and the program employed may prevent the use of a sufficiently fine discretization 
to obtain accurate results. Hence, it is clearly desirable to use an efficient finite element 
program. 

The effectiveness of a program depends essentially on the following factors. First, the 
use of efficient finite elements is important. 

Second, efficient programming methods and sophisticated use of the available com­
puter hardware and software are important. Although this aspect of program development 

979 
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is computer-dependent, using standard FORTRAN 77 or C and high- and low-speed storage 
in a system-independent manner, very effective computer programs can be developed. If 
such a program is to be permanently installed on a specific computer, its efficiency may 
normally be increased with relatively little effort by making use of the specific hardware 
and software options available. In the following, we therefore discuss the design of finite 
element programs in which largely computer-independent procedures are used. 

The third very important aspect of the development of a finite element program is the 
use of appropriate numerical techniques. As an example, if inappropriate techniques for the 
solution of the frequencies of a system in a dynamic analysis are employed, the cost may be 
many times greater than with effective techniques, and, even worse, a solution may not be 
possible at all if an unstable algorithm is employed. In order to implement the finite element 
method in practice, we need to use the digital computer. However, even with a relatively 
large-capacity computer available, the feasibility of a problem solution and the effectiveness 
of an analysis depend directly on the numerical procedures employed. 

Assume that an actual structure has been idealized as an assemblage of finite ele­
ments. The stress analysis process can be understood to consist of essentially three phases: 

1. Calculation of system matrices K, M, C, and R, whichever are applicable. 
2. Solution of equilibrium equations. 
3. Evaluation of element stresses. 

In the analysis of a heat transfer, field, or fluid mechanics problem, the steps are 
identical, but the pertinent matrices and solution quantities need to be used. 

The objective in this chapter is to describe a program implementation of the first and 
third phases and to present a small computer program that has all the important features 
of a general code. Although the total solution may be subdivided into the above three 
phases, it should be realized that the specific implementation of one phase can have a 
pronounced effect on the efficiency of another phase, and, indeed, in some programs the 
first two phases are carried out simultaneously (e.g., when using the frontal solution 
method; see Section 8.2.4). 

As might be imagined, there is no unique optimum program organization for the 
evaluation of the system matrices; however, although program designs may appear to be 
quite different, in effect, some basic steps are followed. For this reason, it is most instructive 
to discuss in detail all the important features of one implementation that is based on 
classical methods. First we discuss the algorithms used, and then we present a small 
example program. This implementation is for a single processor machine but can be adapted 
for use of multiple processors and parallel computing. 

12.2 COMPUTER PROGRAM ORGANIZATION FOR CALCULATION 
OF SYSTEM MATRICES 

The final results of this phase are the required structure matrices for the solution of the 
system equilibrium equations. In a static analysis the computer program needs to calculate 
the structure stiffness matrix and the load vectors. In a dynamic analysis, the program must 
also establish the system mass and damping matrices. In the implementation to be described 
here, the calculation of the structure matrices is performed as follows. 
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1. The nodal point and element information are read and/or generated. 
2. The element stiffness matrices, mass and damping matrices, and equivalent nodal 

loads are calculated. 
3. The structure matrices K, M, C, and R, whichever are applicable, are assembled. 

12.2.1 Nodal Point and Element Information Read-in 

Consider first the data that correspond to the nodal points. Assume that the program is set 
up to allow a maximum of six degrees of freedom at each node, three translational and three 
rotational degrees of freedom, as shown in Fig. 12.1. Corresponding to each nodal point, 
it must then be identified which of these degrees of freedom shall actually be used in the 
analysis, i.e., which of the six possible nodal degrees of freedom correspond to degrees of 
freedom of the finite element assemblage. This is achieved by defining an identification 
array, the array ID, of dimension 6 times NUMNP, where NUMNP is equal to the number 
of nodal points in the system. Element (i, j) in the ID array corresponds to the ith degree 
of freedom at the nodal point j. If ID(I, J) = 0, the corresponding degree of freedom is 
defined in the global system, and if ID(I, J) = 1, the degree of freedom is not defined. It 
should be noted that using the same procedure, an ID array for more (or less) than six 
degrees of freedom per nodal point could be established, and, indeed, the number of degrees 
of freedom per nodal point could be a variable. Consider the following simple example. 

Figure 12.1 Possible degrees of 
freedom at a nodal point 

EXAMPLE 12.1: Establish the ID array for the plane stress element idealization of the canti~ 
lever in Fig. El2.l in order to define the active and nonactive degrees of freedom. 

The active degrees of freedom are defined by ID(I, J) = 0, and the nonactive degrees of 
freedom are defined by ID(I, J) = 1. Since the cantilever is in the X, Y plane and plane stress 
elements are used in the idealization, only X and Y translational degrees of freedom are active. 
By inspection, the ID array is given by 

ID= 

0 0 0 0 0 0 
0 0 0 0 0 0 
1 
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Figure E12.1 Finite element cantilever idealization 

Once all active degrees of freedom have been defined by zeros in the ID array, the 
equation numbers corresponding to these degrees of freedom are assigned. The procedure 
is to simply scan column after column through the ID array and replace each zero by an 
equation number, which increases successively from 1 to the total number of equations. At 
the same time, the entries corresponding to the nonactive degrees of freedom are set to zero. 

EXAMPLE 12.2: Modify the ID array obtained in Example 12.1 for the analysis of the canti­
lever plate in Fig. E12.1 to obtain the ID array that defines the equation numbers corresponding 
to the active degrees of freedom. 

As explained above, we simply replace the zeros, column by column, in succession by 
equation numbers to obtain 

0 0 0 3 5 7 9 11 

0 0 0 2 4 6 8 10 12 

ID= 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Apart from the definition of all active degrees of freedom, we also need to read the 
X, Y, Z global coordinates and, if required, the temperature corresponding to each nodal 
point. For the cantilever beam in Fig. El2.l, the X, Y, Z coordinate arrays and nodal point 
temperature array T would be as follows: 

X= [O.O 0.0 0.0 60.0 60.0 60.0 120.0 120.0 120.0] 

Y= [0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0] 
(12.1) 

Z= [0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] 

T = [70.0 85.0 100.0 70.0 85.0 100.0 70.0 85.0 100.0] 

At this stage, with all the nodal point data known, the program may read and generate 
the element information. It is expedient to consider each element type in turn. For example, 
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in the analysis of a container structure, all beam elements, all plane stress elements, and all 
shell elements are read and generated together. This is efficient because specific information 
must be provided for each element of a certain type, which, because of its repetitive nature, 
can be generated to some degree if all elements of the same type are specified together. 
Furthermore, the element routine for an element type that reads the element data and 
calculates the element matrices needs to be called only once. 

The required data corresponding to an element depend on the specific element type. 
In general, the information required for each element is the element node numbers that 
correspond to the nodal point numbers of the complete element assemblage, the element 
material properties, and the surface and body forces applied to the element. Since the 
element material properties and the element loading are the same for many elements, it is 
efficient to define material property sets and load sets pertaining to an element type. These 
sets are specified at the beginning of each group of element data. Therefore, any one of the 
material property sets and element load sets can be assigned to an element at the same time 
the element node numbers are read. 

EXAMPLE 12.3: Consider the analysis of the cantilever plate shown in Fig. E12.l and the local 
element node numbering defined in Fig. 5.4. For each element give the node numbers that 
correspond to the nodal point numbers of the complete element assemblage. Also indicate the use 
of material property sets. 

In this analysis we define two material property sets: material property set I for E 
106 N/cm2 and v = 0.15, and material property set 2 for E 2 X 106 N/cm2 and v = 0.20. 
We then have the following node numbers and material property sets for each element: 

Element 1: node numbers: 5, 2, l, 4; material property set: 1 

Element 2: node numbers: 6, 3, 2, 5; material property set: 1 

Element 3: node numbers: 8, 5, 4, 7; material property set: 2 

Element 4: node numbers: 9, 6, 5, 8; material property set: 2 

12.2.2 Calculation of Element Stiffness, Mass, 
and Equivalent Nodal Loads 

The general procedure for calculating element matrices was discussed in Chapters 4 and 5, 
and a computer implementation was presented in Section 5.6. The program organization 
during this phase consists of calling the appropriate element subroutines for each element. 
During the element matrix calculations, the element coordinates, properties, and load sets, 
which have been read and stored in the preceding phase (Section 12.2.1), are needed. After 
calculation, either an element matrix may be stored on backup storage, because the assem­
blage into the structure matrices is carried out later, or the element matrix may be added 
immediately to the appropriate structure matrix. 

12.2.3 Assemblage of Matrices 

The assemblage process for obtaining the structure stiffness matrix K is symbolically 
written 

(12.2) 
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where the matrix KV> is the stiffness matrix of the ith element and the summation goes over 
all elements in the assemblage. In an analogous manner the structure mass matrix and load 
vectors are assembled from the element mass matrices and element load vectors, respec­
tively. In addition to the element stiffness, mass, and load matrices, concentrated stiffnesses, 
masses, and loads corresponding to specific degrees of freedom can also be added. 

It should be noted that the element stiffness matrices K(i> in ( 12.2) are of the same 
order as the structure stiffness matrix K. However, considering the internal structure of the 
matrices K<1>, nonzero elements are in only those rows and columns that correspond to 
element degrees of freedom (see Section 4.2). Therefore, in practice, we only need to store 
the compacted element stiffness matrix, which is of order equal to the number of element 
degrees of freedom, together with an array that relates to each element degree of freedom 
the corresponding assemblage degree of freedom. This array is conveniently a connectivity 
array LM in which entry i gives the equation number that corresponds to the element degree 
of freedom i. 

EXAMPLE 12.4: Using the convention for the element degrees of freedom in Fig. 5.4, establish 
the connectivity arrays defining the assemblage degrees of freedom of the elements in the 
assemblage in Fig. El2.1. 

Consider element 1 in Fig. E12.1. For this element, nodes 5, 2, 1, and 4 of the element 
assemblage correspond to the element nodes 1, 2, 3, and 4, respectively (Fig. 5.4). Using the ID 
array, the equation numbers corresponding to the nodes 5, 2, 1, and 4 of the element assemblage 
are obtained, and hence the relation between the column (and row) numbers of the compacted, 
or local, element stiffness matrix and the global stiffness matrix is as follows: 

Corresponding column and row numbers 

For compacted 
1 2 3 4 5 6 7 8 matrix 

For Km 3 4 0 0 0 0 1 2 

The array LM, storing the assemblage degrees of freedom of this element, is therefore 

LM = [3 4 0 0 0 0 1 2] 

where a zero means that the corresponding column and row of the compacted element stiffness 
are ignored and do not enter the global structure stiffness matrix. 

Similarly, we can obtain the LM arrays that correspond to the elements 2, 3, and 4. We 
have 

for element 2: LM = (5 6 0 0 0 0 3 4] 

for element 3: LM = (9 10 3 4 1 2 7 8) 

and for element 4: LM = [11 12 5 6 3 4 9 10] 

As shown in the example, the connectivity array of an element is determined from the 
nodal points to which the element is connected and the equation numbers that have been 
assigned to those nodal points. Once the array LM has been defined, the corresponding 
element stiffness matrix can be added in compact form to the structure stiffness matrix K, 
but the process must take due account of the specific storage scheme used for K. As already 
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pointed out in Section 2.2, an effective storage scheme for the structure stiffness matrix is 
to store only the elements below the skyline of the matrix K (i.e., the active columns of K) 
in a one-dimensional array A. However, together with the active column storage scheme, we 
also need a specific procedure for addressing the elements of K in A when they are stored 
as indicated in Section 2.2. Thus, before we are able to proceed with the assemblage of the 
element stiffn.ess matrices, it is necessary to establish the addresses of the stiffness matrix 
elements in the one-dimensional array A. 

Figure 12.2 shows the element pattern of a typical stiffness matrix. Let us derive the 
storage scheme and addressing procedure that we propose to use, and that are employed 
with the active column solver discussed in Section 8.2.3. Since the matrix is symmetric, we 
choose to store and work on only the part above and including the diagonal. However, in 
addition, we observe that the elements (i, j) of K (i.e., k;i) are zero for j > i + mK. The 

1~ mK•! •I 
',, 

Skyline 

k11 k12 0 0 0 0 

k22 k23 0 0 ,0 
' 

0 0 

--------- ----· m6 • 3 
k33 k34 0 k3a ,,o O 

' 

K• 
k.u k45 k,a 0 ',,,-.Q 

' 
k55 ksa 

kea 
symmetric 

(a) Actual stiffness matrix 

A(1) A(3) A(9) 1 
A(2) A(6) A(8) 2 

A(4) A(7) A(15) 4 

A(6) A(11) A(14) 6 

A(10) A(13) ; MAXA· 
10 

A(12) A(17) A(20) 12 

A(16) A(19) 16 

A(18) 18 

22 

(b) Array A storing elements of K 

Figure 12.2 Storage scheme used for a typical stiffness matrix 
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value mK is known as the half-bandwidth of the matrix. Defining by m; the row number of 
the first nonzero element in column i (Fig. 12.2), the variables m;, i = 1, . : . , n, define the 
skyline of the matrix, and the variables i - m; are the column heights. Furthermore, the 
half-bandwidth of the stiffness matrix, mK, equals max{ i- m;}, i = 1, ... , n; i.e., mK is 
equal to the maximum difference in global degrees of freedom pertaining to any one of the 
finite elements in the mesh. In many finite element analyses, the column heights vary with 
i, and it is important that all zero elements outside the skyline not be included in the 
equation solution (see Section 8.2.3). 

The columns heights are determined from the connectivity arrays, LM, of the ele­
ments; i.e., by evaluating m,, we also obtain the column height i - m,. Consider, as an 
example, that m,o of the stiffness matrix that corresponds to the element assemblage in 
Fig. E12.1 is required. The LM arrays of the four elements have been given in Example 
12.4. We note that only elements 3 and 4 couple into degree of freedom 10, and that the 
smallest number of degree of freedom in the LM array of these elements is 1; hence, 
m10 = 1 and the column height of column 10 is 9. 

With the column heights of a stiffness matrix defined, we can now store all elements 
below the skyline of K as a one-dimensional array in A; i.e., the active columns of K 
including the diagonal elements are stored consecutively in A. Figure 12.2 shows which 
storage locations the elements of the matrix K given in the figure would take in A. In 
addition to A, we also define an array MAXA, which stores the addresses of the diagonal 
elements of Kin A; i.e., the address of the ith diagonal element of K, ku, in A is MAXA(l). 
Referring to Fig. 12.2, it is noted that MAXA(I) is equal to the sum of the column heights 
up to the (i - 1 )st column plus I. Hence the number of nonzero elements in the ith column 
of K is equal to MAXA(I + 1) - MAXA(I), and the element addresses are MAXA(l), 
MAXA(I) + 1, MAXA(I) + 2, ... , MAXA(l + 1) - 1. It follows that using this stor­
age scheme of K in A together with the address array MAXA, each element of K in A can 
be addressed easily. 

This storage scheme is used in the computer program STAP presented in Section 12.4 
and in the equation and eigenvalue solution subroutines in Sections 8.2.3 and 11.6.5. The 
scheme is quite effective because no elements outside the skyline are stored and processed 
in the calculations. 

In the discussion of algorithms for the solution of the equations KU = R, where K, 
U, and Rare the stiffness matrix, the displacement vector, and the load vector of the element 
assemblage, respectively, we pointed out that the active column and other solution proce­
dures require about !nml operations, where n is the order of the stiffness matrix, mK is its 
half-bandwidth, and we assume constant column heights; i.e., i - m; = mK for nearly all 
i. Therefore, it can be important to minimize mK from considerations of both storage 
requirements and number of operations. If the column heights vary, a mean or "effective" 
value for m1e must be used (see Section 8.2.3). In practice we can frequently determine a 
reasonable nodal point numbering by inspection. However, this nodal point numbering may 
not be particularly easy to generate, and various automatic schemes are currently used.for 
bandwidth reduction; see Section 8.2.3. Figure 12.3 shows a typical good and a typical bad 
nodal point numbering. 

It should be pointed out that in the discussion of the above storage scheme, we 
implicitly assumed that the entire array A (i.e., the sum of all active columns of the matrix 
K) does fit into the available high-speed storage of the computer. For instructional purposes 
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(a) Bad nodal point numbering, mK + 1 • 46 

4 6 9 11 14 16 19 21 24 26 29 31 

2 7 12 17 22 27 32 

3 5 8 10 13 15 18 20 23 25 28 30 33 

(bJ Good nodal point numbering, mK + 1 • 16 

Figure 12.3 Bad and good nodal point numbering for finite element assemblage 

it is most appropriate to concentrate on in-core solution, although in practice large systems 
are solved by storing the matrices in blocks. Considering out-of-core solution, in principle, 
the same storage scheme is effective as for in-core solutions. The main additional problem 
is one of program logistics; namely, the individual blocks of the matrices must be stored on 
backup storage and called into high-speed storage in an effective manner. Specific attention 
must then be given to minimize the amount of disk writing and reading required in the 
assemblage. However, once an effective in-core finite element solution has been studied, 
little difficulty should be encountered in understanding an out-of-core implementation. 

12.3 CALCULATION OF ELEMENT STRESSES 

In the previous section we described the process of assembling individual finite element 
matrices into total structure matrices. The next step is the calculation of nodal point 
displacements using the procedures discussed in Chapters 8 and 9. Once the nodal point 
displacements have been obtained, element stresses are calculated in the final phase of the 
analysis. 

The equations employed in the element stress calculations are (4.11) and (4.12). 
However, as in the assemblage of the structure matrices, it is again effective to manipulate 
compacted finite element matrices, i.e., deal only with the nonzero columns of B<m> in 
( 4.11 ). Using the implementation described in the previous section, we calculate the ele­
ment compacted strain-displacement transformation matrix and then extract the element 
nodal point displacements from the total displacement vector using the LM array of the 
element. The procedure is implemented in the program STAP described next. Of course, in 
linear analysis the finite element stresses can be calculated at any desired location by simply 
establishing the strain-displacement transformation matrix for the point under consider­
ation in the element. In isoparametric finite element analysis we use the procedures given 
in Chapter 5. · 



988 Implementation of the Finite Element Method Chap. 12 

12.4 EXAMPLE PROGRAM STAP 

Probably the best way of getting familiar with the implementation of finite element analysis 
is to study an actual computer program that, although simplified in various areas, shows all 
the important features of more general codes. The following program, STAP (STatic Anal­
ysis Program), is a simple computer program for static linear elastic finite element analysis. 

The main objective in the presentation of the program is to show the overall flow of 
a typical finite element analysis program, and for this reason only a truss element has been 
made available in STAP. However, the code can generally be used for one-, two-, and 
three-dimensional analysis, and additional elements can be added with relative ease. 1 

Figure 12.4 shows a flowchart of the program, and Fig. 12.5 gives the storage alloca­
tions used during the various program phases. We should note that the elements are pro­
cessed in element groups. This concept is valuable when implementing the program on 
parallel processing machines. Next we give the instructions describing the data input to the 
program. 

12.4.1 Data Input to Computer Program STAP 

I. HEADING LINE (20A4) 

Note Columns 

(1) 1-80 

NOTES/ 

Variable 

HED (20) 

Entry 

Enter the master heading infonnation for use in 
labeling the output 

1. Begin each new data case with a new heading line. Two blank lines must be input 
after the last data case. 

II. CONTROL LINE ( 415) 

Note Columns Variable Entry 

(1) 1-5 NUMNP Total number of nodal points; 
EQ.O, program stop 

(2) 6-10 NUMEG Total number of element groups, GT.0 
(3) 11-15 NLCASE Number of load cases, GT.O 
(4) 16-20 MO DEX Flag indicating solution mode; 

EQ.O, data check only 
EQ.l, execution 

NOTES/ 

1. The total number of nodes (NUMNP) controls the amount of data to be read in 
Section III. If NUMNP.EQ.O, the program stops. 

1 The program has been tested on a Cray, various engineering workstations, and PCs. 
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z. The total number of elements are dealt with in element groups. An element group 
consists of a convenient collection of elements. Each element group is input as 
given in Section V. There must be at least one element per element group, and there 
must be at least one element group. 

3. The number of load cases (NLCASE) gives the number of load vectors for which 
the displacement and stress solution is sought. 

START 

READ NEXT DATA CASE 

Read nodal point data 
(coordinates, boundary 
conditions) and establish 
equation numbers in the 
ID array. 

Calculate and store load 
vectors for all load cases. 

Read, generate, and store 
element data. Loop over all 
element groups. 

Read element group data, and 
assemble global structure 
stiffness matrix. Loop over all 
element groups. 

Calculate L *D*L T factorization 
of global stiffness matrix.* 

FOR EACH LOAD CASE 

Read load vector and calculate ..... ---t 
nodal point displacements. 

Read element group data and 
calculate element stresses. 
Loop over all element groups. 

END 

* The equation solver used is COLSOL described in Section 8.2.3. 

Figure 12.4 Flowchart of program 
STAP 
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Address Storage Array 

N 1 = 1 -t 3*NUMNP ID- array 

N2 ~ X-coordlnate array 

N3~ Y-coordinatearray 

N4~ Z-coordinatearray 

N5~ Load vector R 

N6~ NOD 

N7~ 

NS~ 

Variables 
IDIRN to define 

load vectors 

FLO AO 

(a) Input of 10 array, nodal point coordinates, 
and load vectors. 

Address Storage 

Nl • 1 { 3•NUMNP 

N2 -t NUMNP•nwo 

N3 -tNUMNP•nwo 

N4 -t NUMNP•ITWO 

Ns--t _____ N_ea ____ _ 

N6 2*NUMMAT*ITWO 
+ 7*NUME 
+ 6*NUME*ITWO 

Array 

ID-array 

X - coordinate array 

Y - coordinate array 

Z- coordinate array 

Vector of column 
heights MHT 

Element group data 
(element groups are 
read in succession) 

(b) Element data input 

Figure 12.5 High-speed storage allo­
cation in program STAP. 
ITWO = 1 in single precision arithmetic. 
ITWO = 2 in double precision arithmetic. 
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Address Storage Array 

N1·1{ 3*NUMNP I ID- array 

N2-t NEQ+ 1 I MAXA-array 

N3-t NWK*ITWO I Global structure 
stiffness matrix K 

N4-t I 
Load vector Rand 

NEO*ITWO then displacement 
solution U 

N5 2*NUMMAT*ITWO Element group data 
+7*NUME (element groups are 
+ 6*NUME*ITWO read in succession) 

(c) Assemblage of global structure stiffness; 
displacement and stress solution phase Figure 12.5 (continued) 

4. The MODEX parameter determines whether the program is to check the data 
without executing the analysis (i.e., MODEX. EQ. 0) or if the program is to solve 
the problem (i.e., MODEX. EQ. 1). In the data-check-only mode, the program only 
reads and prints all data. 

III. NODAL POINT DATA LINES (415, 3FJ0.0, 15) 

Note Columns Variable Entry 

(1) 1-5 N Node (joint) number; 
GE.1 and LE.NUMNP 

(2) 6-10 ID (1, N) X-translation boundary code 
11-15 ID (2, N) Y-translation boundary code 
16-20 ID (3, N) Z-translation boundary code 

(3) 21-30 X(N) X-coordinate 
31-40 Y(N) Y-coordinate 
41-50 Z(N) Z-coordinate 

(4) 51-55 KN Node number increment for node data generation; 
EQ.O, no generation 

NOTES/ 

1. Nodal data must be defined for all (NUMNP) nodes. Node data may be input directly 
(i.e., each node on its own individual line) or the generation option may be used if 
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applicable (see note 4 below). Admissible node numbers range from l to the total 
number of nodes (NUMNP). The last node that is input must be NUMNP. 

2. Boundary condition codes can be assigned only the following values (M = 1, 2, 3) 

ID(M, N) = O; unspecified (free) displacement 

ID(M, N) = I; deleted (fixed) displacement 

An unspecified [ID(M, N) = 0] degree of freedom is free to translate as the solution 
dictates. Concentrated forces may be applied in this degree of freedom. 

One system equilibrium equation is established for each unspecified degree of 
freedom in the model. The total number of equilibrium equations is defined as NEQ 
and is always less than three times the total number of nodes in the system. 

Deleted [ID(M, N) = 1] degrees of freedom are removed from the final set of 
equilibrium equations. Deleted degrees of freedom are used to define fixities (points 
of external reaction), and any loads applied in these degrees of freedom are ignored 
by the program. 

3. The geometric location of each node is specified by its X, Y, and Z coordinates. 
4. Node lines need not be input in node order sequence; eventually, however, all nodes 

in the set [1, NUMNP] must be defined. Nodal data for a series of nodes 

may be generated from information given on two lines in sequence-

LINE 1 - Ni, ID(l, Ni), ... , X(N,), ... , KN, 

LINE 2 - N2, ID(l, N2), ... , X(N2), ... , KN2 

KN I is the node generation parameter given on the first line in the sequence. The first 
generated node is N, + l * KN,; the second generated node is N, + 2 * KN 1; etc. 
Generation continues until node number N2 - KN, is established. Note that the node 
difference N2 - N 1 must be evenly divisible by KN•· 

In the generation the boundary condition codes [ID(L, J) values] of the gener­
ated nodes are set equal to those of node N,. The coordinate values of the generated 
nodes are interpolated linearly. 

IV. LOAD DATA LINES 

Each load case requires the following set of lines. The total number of load cases was 
defined on the CONTROL LINE (Section II). 

Note 

(1) 

(2) 

Columns 

1-5 
6-10 

LINE I (215) 

Variable 

LL 
NLOAD 

Entry 

Enter the load case number 
Enter the number of concentrated loads applied 
in this load case 
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NOTES/ 

1. Load cases must be input in ascending sequence beginning with 1. 
2. The variable NLOAD defines the number of lines to be read next for this load case. 

Note Columns 

(1) 1-5 

(2) 6-10 

11-20 

NOTES/ 

NEXT LINES (215, FI 0.0) 

Variable 

NOD 

IDIRN 

FLO AD 

Entry 

Node number to which this load is applied; 
GE.1 and LE.NUMNP 
Degree of freedom number for this load component; 
EQ.l, X-direction 
EQ.2, Y-direction 
EQ.3, Z-direction 
Magnitude of load 

1. For each concentrated load applied in this load case, one line must be supplied. 
2. All loads must be acting into the global X-, Y-, or Z-direction. 

V. TRUSS ELEMENTS 

TRUSS elements are two-node members allowed arbitrary orientation in the X, Y, Z 
system. The truss transmits axial force only, and in general is a six degree of freedom 
element (i.e., three global translation components at each end of the member). The follow­
ing sequence of lines is input for each element group. The total number of element groups 
(NUMEG) was defined on the CONTROL LINE (Section II). 

V.1 Element Group Control Line ( 3 I 5) 

Note Columns Variable Entry 

1-5 NPAR(l) Enter the number I 
(1) 6-10 NPAR(2) Number of TRUSS elements in this group; 

NPAR(2) = NUMB 
GE.I 

(2) 11-15 NPAR(3) Number of different sets of material/section properties; 
NPAR(3) == NUMMAT 
GB.l 
BQ.O, default set to 1 

NOTES/ 

1. TRUSS element numbers begin with 1 and end with the total number of elements in 
this group, NPAR(2). Element data are input in Section V.3. 

2. The variable NPAR(3) defines the number of sets of material/section properties to be 
read in Section V.2. 
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V.2 Material/Section Property Lines (15, 2FJ0.0) 

NUMMAT lines are read in this section. 

Note 

(1) 

NOTES/ 

Columns 

1-5 
6-15 

16-25 

Variable 

N 
E(N) 
AREA(N) 

Entry 

Number of property set 
Young's modulus 
Section area 

Chap. 12 

1. Property sets are input in ascending sequence beginning with 1 and ending with 
NUMMAT. The Young's modulus and section area of each TRUSS element input 
below are defined using one of the property sets input here. 

V.3 Element Data Lines (515) 

NUMB elements must be input and/or generated in this section in ascending sequence 
beginning with 1. 

Note Columns Variable Entry 

1-5 M TRUSS element number; 
GE.I and LE.NUME 

6-10 II Node number at one end 
11-15 JJ Node number at other end; 

I 

GE. I and LE.NUMNP 
(1) 16-20 MTYP Material property set; 

GE.I and LE.NUMMAT 

(2) 21-25 KG Node generation increment used to compute 
node numbers for missing elements; 
EQ.O, default set to 1 

NOTES/ 

1. The material/section property sets have been defined in Section V.2. 

2. Elements must be input in increasing element number order. If lines for elements 
[M + l, M + 2, . . . , M + J] are omitted, these J missing elements are generated 
using MTYP of element M and by incrementing the node numbers of successive 
elements with the value KG; KG is taken from the first line of the element generation 
sequence (i.e., from the Mth element line). The last element (NUMB) must always be 
input. 
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Sec. 12.4 Example Program STAP 

12.4.2 Listing of Program STAP 

S T A P 

AN IN-CORE SOLUTION STATIC ANALYSIS PROGRAM 

COMMON /SOL/ NUMNP,NEQ,NWK,NUMEST,MIDEST,MAXEST,MK 
COMMON /DIM/ Nl,N2,N3,N4,N5,N6,N7,N8,N9,Nl0,Nll,Nl2,Nl3,N14,Nl5 
COMMON /EL/ IND,NPAR(lO),NUMEG,MTOT,NFIRST,NLAST,ITWO 
COMMON /VAR/ NG,MODEX 
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT 

DIMENSION TIM(S), HED(20) 
DIMENSION IA(l) 
EQUIVALENCE (A(l),IA(l)) ................................ 
THE FOLLOWING TWO LINES ARE USED TO DETERMINE THE MAXIMUM HIGH 
SPEED STORAGE THAT CAN BE USED FOR SOLUTION, TO CHANGE THE HIGH 
SPEED STORAGE AVAILABLE FOR EXECUTION, CHANGE THE VALUE OF MTOT 
AND CORRESPONDINGLY COMMON A(MTOT). ....................... 
COMMON A(lOOOO) 
MTOT•lOOOO ................................ 
DOUBLE PRECISION LINE 

ITWO • 1 SINGLE PRECISION ARITHMETIC 
ITWO • 2 DOUBLE PRECISION ARITHMETIC 

ITW0•2 

THE FOLLOWING SCRATCH FILES ARE USED 
IELMNT • UNIT STORING ELEMENT DATA 
!LOAD • UNIT STORING LOAD VECTORS 
IIN • UNIT USED FOR INPUT 
IOUT • UNIT USED FOR OUTPUT 

ON SOME MACHINES THESE FILES MUST BE EXPLICITLY OPENED 

IELMNT • 1 
!LOAD• 2 
IIN • 5 
IOUT • 6 

200 NUMEST•O 
MAXEST•O 
* * * * * * * * * * * * * * * * * * * * * * 
* * * I N P U T P H A S E * * * 

* * * * * * * * * * * * * * * * * * * * * * CALL SECOND (TIM(l)) 

R E A D C O N T R O L I N F O R M A T I O N 

READ (IIN,1000) HED,NUMNP,NUMEG,NLCASE,MODEX 
IF (NUMNP.EQ.O) GO TO 800 
WRITE (IOUT,2000) HED,NUMNP,NUMEG,NLCASE,MODEX 

R E A D N O D A L P O I N T D A T A 

Nl• 1 

995 

STAOOOOl 
STA00002 
STA00003 
STA00004 
STAOOOOS 
STA00006 
STA00007 
STA00008 
STA00009 
STA00010 
STAOOOll 
STA00012 
STA00013 
STA00014 
STA00015 
STA00016 
STA00017 
STA00018 
STA00019 
STA00020 
STA00021 
STA00022 
STA00023 
STA00024 
STA00025 
STA00026 
STA00027 
STA00028 
STA00029 
STA00030 
STA00031 
STA00032 
STA00033 
STA00034 
STA00035 
STA00036 
STA00037 
STA00038 
STA00039 
STA00040 
STA00041 
STA00042 
STA00043 
STA00044 
STA00045 
STA00046 
STA00047 
STA00048 
STA00049 
STAOOOSO 
STA00051 
STA00052 
STA00053 
STA00054 
STAOOOSS 
STA00056 
STA00057 
STA00058 
STA00059 
STA00060 
STA00061 
STA00062 
STA00063 
STA00064 
STA00065 
STA00066 



c 

c 
c 
c 
c 
c 
c 

c 

c 

c 

c 

c 

c 

c 

c 

c 
c 
c 
c 
c 
c 
c 

c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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N2•Nl + 3*NUMNP 
N2•(N2/2)*2 + 1 
N3•N2 + NUMNP*ITWO 
N4•N3 + NUMNP*ITWO 
NS•N4 + NUMNP*ITWO 
IF (NS.GT.MTOT) CALL ERROR (NS-MTOT,l) 

CALL INPUT (A(Nl),A(N2),A(N3},A(N4),NUMNP,NEO) 

NEQl•NEQ + 1 

CALCULATE AND STORE LOAD VECTORS 

N6•N5 + NEQ*ITWO 
WRITE (IOUT,2005) 

REWIND !LOAD 

DO 300 L•l,NLCASE 

READ (IIN,1010) LL,NLOAD 

WRITE (IOUT,2010) LL,NLOAD 
IF (LL.EQ.L) GO TO 310 
WRITE (IOUT,2020) 
GO TO 800 

310 CONTINUE 

N7•N6 + NLOAO 
N8•N7 + NLOAO 
N9•N8 + NLOAD*ITWO 

IF (N9.GT.MTOT) CALL ERROR (N9-MTOT,2) 

CALL LOADS (A(NS),A(N6),A(N7),A(N8),A(Nl),NLOAD,NEQ) 

300 CONTINUE 

R E A D , G E N E R A T E A N D S T O R E 
E L E M E N T D A T A 

CLEAR STORAGE 

N6•NS + NEQ 
N6•(N6/2)•2 + 1 
00 10 I•NS,N6 

10 IA(I)•O 
IND•l 

CALL ELCAL 

CALL SECOND (TIM(2)) 
.. * * * * * * * * * * * * * * * * * * * * * 
* * * S O L U T I O N P H A S E * * * 

* * * * * * * * * * * * * * * * * * * * * * 
A S S E M B L E S T I F F N E S S M A T R I X 

CALL ADORES (A{N2),A(NS)) 

MM•NWK/NEQ 
N3•N2 + NEQ + l 
N3•(N3/2)*2 + 1 
N4•N3 + NWK*ITWO 
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c 
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N5•N4 + NEO*ITWO 
N6•NS + MAXEST 
IF (N6.GT.MTOT) CALL ERROR (N6-MTOT,4) 

C WRITE TOTAL SYSTEM DATA 
c 

WRITE (IOUT,2025) NEQ,NWK,MK,MM 
c 
C IN DATA CHECK ONLY MODE WE SKIP ALL FURTHER CALCULATIONS 
c 

c 

IF (MODEX.GT.0) GO TO 100 
CALL SECOND (TIM(3)) 
CALL SECOND (TIM(4)) 
CALL SECOND (TIM(S)) 
GO TO 120 

C CLEAR STORAGE 
c 

c 

c 
c 

c 
c 

100 NNL•NWK + NEQ 
CALL CLEAR (A(N3),NNL) 

IND•2 

CALL ASSEM (A(N5)) 

CALL SECOND (TIM(3)) 

C T R I A N G U L A R I Z E S T I F F N E S S M A T R I X 
c 
c 

c 
c 

c 

c 

c 
c 

KTR•l 
CALL COLSOL (A(N3),A(N4),A(N2),NEQ,NWK,NEQ1,KTR) 

35 CALL SECOND (TIM(4)) 

REWIND ILOAO 
DO 400 L•l,NLCASE 

CALL LOADV (A(N4),NEQ) 

C C A L C U L A T I O N O F O I S P L A C E M E N T S c 
c 

c 

c 
c 

CALL COLSOL {A(N3),A(N4),A(N2),NEQ,NWK,NEQ1,KTR) 

WRITE (IOUT,2015) L 
CALL WRITED (A(N4),A(Nl),NEQ,NUMNP) 

C C A L C U L A T I O N O F S T R E S S E S c 
c 

c 

c 

CALL STRESS (A(NS)) 

400 CONTINUE 

CALL SECOND (TIM(S)) 
c 
C PRINT SOLUTION TIMES 
c 

120 TT•O. 
DO 500 l•l,4 
TIM(I)•TIM(I+l) - TIM(I) 

500 TT•TT + TIM(I) 
WRITE (IOUT,2030) HED,(TIM(I),I•l,4),TT 
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c 
c READ NEXT ANALYSIS CASE 
c 

GO TO 200 
c 

800 STOP 

STA00207 
STA00208 
STA00209 
STA00210 
STA00211 
STA00212 

C STA00213 
1000 FORMAT (20A4,/,4I5) STA00214 
1010 FORMAT (215) STA00215 

C STA00216 
2000 FORMAT(///,' ',20A4,///, STA00217 

c 

c 
c 
c 
c 
c 
c 

c 

c 

c 

1 'CONTROL INFORMATION',//, STA00218 
2 NUMBER OF NODAL POINTS',10(' .'),' (NUMNP) • ',15,//, STA00219 
3 NUMBER OF ELEMENT GROUPS',9(' .'),' (NUMEG) • ',I5,//,STA00220 
4 NUMBER OF LOAD CASES',11(' .'),' (NLCASE) • ',IS,//, STA00221 
5 SOLUTION MODE ',14(' .'),' (MODEX) • ',IS,/, STA00222 
6 EQ.O, DATA CHECK',/, STA00223 
7 EQ.l, EXECUTION') STA00224 

2005 FORMAT(//,' LO AD CASE DAT A') STA00225 
2010 FORMAT(////,' LOAD CASE NUMBER',7(' .'),'•',IS,//, STA00226 

1 ' NUMBER OF CONCENTRATED LOADS.• ',IS) STA00227 
2015 FORMAT(//,' LOAD CASE ',13) STA00228 
2020 FORMAT(' ***ERROR*** LOAD CASES ARE NOT IN ORDER') STA00229 
2025 FORMAT(//,' TOTAL SYSTEM DATA',///, STA00230 

1 ' NUMBER OF EQUATIONS',14(' .'),'(NEO) • ',IS,//, STA00231 
2 NUMBER OF MATRIX ELEMENTS',11(' .'),'(NWK) • ',I5,//,STAC0232 
3 MAXIMUM HALF BANDWIDTH ',12(' .'),'(MK)• ',IS,//, STA00233 
4 MEAN HALF BANDWIDTH',14(' .'),'(MM)• ',IS) STA00234 

2030 FORMAT(//,' SOLUTION TIME LOG IN SEC',//, STA00235 
1 ' FOR PROBLEM',//,' ',20A4,///, STA00236 
2' TIME FOR INPUT PHASE ',14(' .'),' •',F12.2,//, STA00237 
3' TIME FOR CALCULATION OF STIFFNESS MATRIX •',Fl2.2,STA00238 
4 //, STA00239 
5' TIME FOR FACTORIZATION OF STIFFNESS MATRIX •',Fl2.2,STA00240 
6 //, STA00241 
7' TIME FOR LOAD CASE SOLUTIONS ',10(' .'),' •',Fl2.2,///, STA00242 
8' TOT AL SOLUTION TIME •... =',Fl2.2)STA00243 

END 
SUBROUTINE ERROR (N,I) 

P R O G R A M 
TO PRINT MESSAGES WHEN HIGH-SPEED STORAGE IS EXCEEDED 

COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT 

GO TO (1,2,3,4),I 

l WRITE 
GO TO 

2 WRITE 
GO TO 

3 WRITE 
GO TO 

4 WRITE 

(IOUT,2000) 
6 
(IOUT,2010) 
6 
(IOUT,2020) 
6 
(IOUT,2030) 

STA00244 
STA00245 
STA00246 
STA00247 
STA00248 
STA00249 
STA00250 
STA00251 
STA00252 
STA00253 
STA00254 
STA00255 
STA00256 
STA00257 
STA00258 
STA00259 
STA00260 
STA00261 
STA00262 
STA00263 
STA00264 

6 WRITE (IOUT,2050) N STA00265 
STOP STA00266 

C STA00267 
2000 FORMAT(//,' NOT ENOUGH STORAGE FOR ID ARRAY AND NODAL POINT', STA00268 

1 'COORDINATES') STA00269 
2010 FORMAT(//,' NOT ENOUGH STORAGE FOR DEFINITION OF LOAD VECTORS') STA00270 
2020 FORMAT(//,' NOT ENOUGH STORAGE FOR ELEMENT DATA INPUT') STA00271 
2030 FORMAT(//,' NOT ENOUGH STORAGE FOR ASSEMBLAGE OF GLOBAL', STA00272 

l'STRUCTURE STIFFNESS, AND DISPLACEMENT AND STRESS SOLUTION PHASE')STA00273 
2050 FORMAT(//,' ***ERROR*** STORAGE EXCEEDED BY', 19) STA00274 

C STA00275 
END STA00276 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

c 
c 
c 

c 

c 

c 
c 
c 

c 
c 
c 

Sec. 12.4 Example Program ST AP 

SUBROUTINE INPUT (ID,X,Y,Z,NUMNP,NEQ) ............................... 
PROGRAM 

.TO READ, GENERATE, AND PRINT NODAL POINT INPUT DATA 

.TO CALCULATE EQUATION NUMBERS AND STORE THEM IN ID ARRRAY 

N•ELEMENT NUMBER 
ID•BOUNDARY CONDITION CODES (O•FREE,l•DELETED) 
X,Y,Z• COORDINATES 
KN• GENERATION CODE 

I.E. INCREMENT ON NODAL POINT NUMBER 

........................... 
IMPLICIT DOUBLE PRECISION (A-H,0-Z) ........................... 
THE PROGRAM STAP IS USED IN SINGLE PRECISION ARITHMETIC ON CRAY 
EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM MACHINES, 
ENGINEERING WORKSTATIONS AND PCS. DEACTIVATE ABOVE LINE (ALSO 
OCCURRING IN OTHER SUBROUTINES) FOR SINGLE PRECISION ARITHMETIC •• ................................. 
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT 
DIMENSION X(l),Y(l),Z(l),ID(3,NUMNP) 

READ AND GENERATE NODAL POINT DATA 

WRITE (IOUT,2000) 
WRITE (IOUT,2010) 
WRITE (IOUT,2020) 
KNOLD•O 
NOLD•O 

10 READ (IIN,1000) N,(ID(I,N),I•l,3),X(N),Y(N),Z(N),KN 
WRITE (IOUT,2030) N,(ID(I,N),I•l,3),X(N),Y(N),Z(N),KN 
IF (KNOLD.EQ.0) GO TO 50 
NUM•(N-NOLO)/KNOLD 
NUMN•NUM - 1 
IF (NUMN.LT.1) GO TO 50 
XNUM•NUM 
DX•(X(N)-X(NOLD))/XNUM 
DY•(Y(N)-Y(NOLD))/XNUM 
DZ•(Z(N)-Z(NOLD))/XNUM 
K•NOLD 
DO 30 J•l,NUMN 
KK•K 
K•K + KNOLO 
X(K)•X(KK) + DX 
Y(K)•Y(KK) + DY 
Z(K)•Z(KK) + DZ 
DO 30 I•l,3 
ID(I,K)•ID(I,KK) 

30 CONTINUE 

50 NOLD•N 
KNOLD•KN 
IF (N.NE.NUMNP) GO TO 10 

WRITE COMPLETE NODAL DATA 

WRITE (IOUT,2015) 
WRITE (IOUT,2020) 
DO 200 N•l,NUMNP 

200 WRITE (IOUT,2030) N,(ID(I,N),I•l,3),X(N),Y(N),Z(N),KN 

NUMBER UNKNOWNS 

NEQ•O 
DO 100 N•l,NUMNP 
DO 100 I•l,3 
IF (ID(I,N)) 110,120,110 

999 

STA00277 
STA00278 
STA00279 
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STA00322 
STA00323 
STA00324 
STA00325 
STA00326 
STA00327 
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STA00330 
STA00331 
STA00332 
STA00333 
STA00334 
STA00335 
STA00336 
STA00337 
STA00338 
STA00339 
STA00340 
STA00341 
STA00342 
STA00343 
STA00344 
STA00345 
STA00346 



c 
c 
c 

c 

1000 

120 NEQ•NEQ + 1 
ID(I,N}•NEQ 
GO TO 100 

110 ID( I ,N)•O 
100 CONTINUE 

WRITE EQUATION NUMBERS 

Implementation of the Finite Element Method 

WRITE (IOUT,2040) (N,(ID(I,N),I•l,3),N•l,NUMNP) 

RETURN 
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STA00347 
STA00348 
STA00349 
STA00350 
STA00351 
STA00352 
STA00353 
STA00354 
STA00355 
STA00356 
STA00357 

C STA00358 
1000 FORMAT (4IS,3Fl0.0,IS) STA00359 
2000 FORMAT(//,' NOD AL PO INT DAT A',/) STA00360 
2010 FORMAT(' INPUT NODAL DATA',//) STA00361 
2015 FORMAT(//,' GENERATED NODAL DATA',//) STA00362 
2020 FORMAT(' NODE',10X,'BOUNDARY',2SX,'NODAL POINT' ,l7X,'MESH',/, STA00363 

1' NUMBER CONDITION CODES',21X,'COORDINATES',14X,'GENERATING',STA00364 
2/,77X,'CODE',/, STA00365 
315X,'X Y Z',15X,'X',12X,'Y',12X,'Z',10X,'KN') STA00366 

2030 FORMAT (I5,6X,3I5,6X,3F13.3,3X,I6) STA00367 
2040 FORMAT(//,' EQUATION NUMBERS',//,' NODE',9X, STA00368 

l 'DEGREES OF FREEDOM',/,' NUMBER',//, STA00369 
2' N',13X,'X Y Z' ,/,(1X,IS,9X,3IS)) STA00370 

STA00371 
ENO STA00372 

c 

c . 
c . 
c . 
c . 

SUBROUTINE LOADS (R,NOD,IDIRN,FLOAD,ID,NLOAD,NEQ) STA00373 
• ••.•.••••• , .•. , • • STA00374 

• STA00375 
• STA00376 
• STA00377 

PROGRAM 
, TO READ NODAL LOAD DATA 

c . 
c . 
c . 

. TO CALCULATE THE LOAD VECTOR R FOR EACH LOAD CASE AND 
WRITE ONTO UNIT !LOAD 

• STA00378 
. STA00379 
. STA00380 c . • • · • • • • • • • • , . • • • , , . . • • • . . . • • . . . STA00381 

IMPLICIT DOUBLE PRECISION {A-H,0-Z) 
COMMON /VAR/ NG,MODEX 

c 

c 

c 

c 

c 

c 

c 
c 

c 

COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT 
DIMENSION R(NEQ),NOD(l),IDIRN(l),FLOAD{l) 
DIMENSION 10(3,1) 

WRITE (IOUT,2000) 
READ (IIN,1000) (NOD(I),IDIRN(I),FLOAD(I),l•l,NLOAD) 
WRITE (IOUT,2010) (NOD(I),IOIRN(I),FLOAD(I),I•l,NLOAD) 
IF (MODEX.EQ.0) GO TO 900 

DO 210 l•l,NEQ 
210 R(I)•O. 

240 

DO 220 L•l,NLOAD 
LN•NOD(L) 
LI•IDIRN( L) 
II•ID(LI,LN) 
IF (II) 220,220,240 
R(II)•R(II) + FLOAD(L) 

220 CONTINUE 

WRITE (ILOAO) R 

200 CONTINUE 

900 RETURN 

1000 FORMAT (215,FlO.O) 
2000 FORMAT(//,' NODE DIRECTION 

l NUMBER',19X,'MAGNITUDE') 
2010 FORMAT(' ',I6,9X,I4,7X,El2.S) 

ENO 

LOAD',/, 

STA00382 
STA00383 
STA00384 
STA00385 
STA00386 
STA00387 
STA00388 
STA00389 
STA00390 
STA00391 
STA00392 
STA00393 
STA00394 
STA00395 
STA00396 
STA00397 
STA00398 
STA00399 
STA00400 
STA0040l 
STA00402 
STA00403 
STA00404 
STA00405 
STA00406 
STA00407 
STA00408 
STA00409 
STA00410 
STA00411 
STA00412 
STA00413 
STA00414 
STA00415 
STA00416 
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c 
c . 
c . 
c . 
c . 
c . 
c .. 

c 

c 

SUBROUTINE ELCAL . . . . . . . . . . . . . . . . . . . . . 
PROGRAM 

TO LOOP OVER ALL ELEMENT GROUPS FOR READING, 
GENERATING AND STORING THE ELEMENT DATA 

. . . . . . . . . . . . •; . . . . . . . . . . . . . . . . . 
COMMON /SOL/ NUMNP,NEQ,NWK,NUMEST,MIDEST,MAXEST,MK 
COMMON /EL/ IND,NPAR(lO),NUMEG,MTOT,NFIRST,NLAST,ITWO 
COMMON /TAPES/ IELMNT,ILOAO,IIN,IOUT 
COMMON A(l) 

REWIND IELMNT 
WRITE (IOUT,2000) 

C LOOP OVER ALL ELEMENT GROUPS 
c 

c 
c 
c 

c 

DO 100 N•l,NUMEG 
lF (N.NE.1) WRITE (IOUT,2010) 

READ (IIN,1000) NPAR 

CALL ELEMNT 

IF (MIDEST.GT.MAXEST) MAXEST•MIDEST 

c 

c 

WRITE (IELMNT) MIDEST,NPAR,(A(I),I•NFIRST,NLAST) 

100 CONTINUE 

RETURN 
c 

1000 FORMAT (1015) 
2000 FORMAT(//,' ELEMENT GROUP DAT A',//) 
2010 FORMAT(' ') 

c 
END 
SUBROUTINE ELEMNT 

c . 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
c . PROGRAM 
c . 
c . TO CALL THE APPROPRIATE ELEMENT SUBROUTINE 

c .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
c 
c 

c 

c 

COMMON /EL/ lNO,NPAR(lO),NUMEG,MTOT,NFIRST,NLAST,ITWO 

NPARl•NPAR(1) 

GO TO (1,2,3),NPARl 

1 CALL TRUSS 
GO TO 900 

C OTHER ELEMENT TYPES WOULD BE CALLEO HERE, IDENTIFYING EACH 
C ELEMENT TYPE BY A DIFFERENT NPAR(l) PARAMETER 
c 

c 

c 

2 GO TO 900 

3 GO TO 900 

900 RETURN 
END 

c . 
c . 
c . 
c . 
c . 
c . 

SUBROUTINE COLHT (MHT,ND,LM) . . . . . . . . . . . .. . . . ............. . 
PROGRAM 

TO CALCULATE COLUMN HEIGHTS 

. ............................ . 

1001 
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STA00452 
STA00453 
STA00454 
STA00455 

. STA00456 
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• STA00458 
• STA00459 
• STA00460 
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1002 Implementation of the Finite Element Method 

c 

COMMON /SOL/ NUMNP,NEQ,NWK,NUMEST,MIDEST,MAXEST,MR 
DIMENSION LM(l),MHT(l) 

LS•lOOOOO 
DO 100 I•l,ND 
IF (LM(I)) 110,100,110 

110 IF (LM(I)-LS) 120,100,100 
120 LS•LM(I) 
100 CONTINUE 

c 
DO 200 I•l,ND 
Il•LM( l) 
IF (II.EQ.0) GO TO 200 
ME•II - LS 
IF (ME.GT.MHT(II)) MHT(Il)•ME 

200 CONTINUE 
c 

c 
c 
c . 
c 
c . 
c ' 
c . 
c. 
c . 
c 

c 
c 
c 

c 

RETURN 
END 
SUBROUTINE ADORES (MAXA,MHT) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
P R O G R A M 

TO CALCULATE ADDRESSES OF DIAGONAL ELEMENTS IN BANDED 
MATRIX WHOSE COLUMN HEIGHTS ARE KNOWN 

MHT • ACTIVE COLUMN HEIGHTS 
MAXA • ADDRESSES OF DIAGONAL ELEMENTS 

.............................. 
COMMON /SOL/ NUMNP,NEQ,NWK,NUMEST,MIDEST,MAXEST,MK 
DIMENSION MAXA(*),MHT(*) 

CLEAR ARRAY MAXA 

NN•NEQ + 1 
DO 20 I•l,NN 

20 MAXA(I)•O.O 

MAXA( l )•l 
MAXA(2)•2 
MK•O 
IF (NEQ.EQ.1) GO TO 100 
DO 10 I•2,NEQ 
IF (MHT(I).GT.MK) MK•MHT(I) 

10 MAXA(I+l)•MAXA(I) + MHT(I) + l 
100 MK•MK + l 

c 

c . 
c . 
c . 
c . 
c . 
c .. 

NWK•MAXA(NEQ+l) - MA.XA(l) 

RETURN 
ENO 
SUBROUTINE CLEAR (A,N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
P R O G R A M 

TO CLEAR ARRAY A 

. . . . . . . . . . . . . . . . . . . . . . . . . 
IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
DIMENSION A(l) 
DO 10 I•l,N 

10 A(I)•O. 

c .. 
c . 
c . 
c . 
c 

RETURN 
END 
SUBROUTINE ASSEM (AA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
P R O G R A M 

TO CALL ELEMENT SUBROUTINES FOR ASSEMBLAGE OF THE 
STRUCTURE STIFFNESS MATRIX 
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STA00487 
STA00488 
STA00489 
STA00490 
STA00491 
STA00492 
STA00493 
STA00494 
STA00495 
STA00496 
STA00497 
STA00498 
STA00499 
STAOOSOO 
STAOOSOl 
STA00502 
STA00503 
STA00504 
STAOOSOS 
STA00506 
STA00507 
STA00508 
STA00509 
STA00510 
STAOOSll 
STA00512 
STA00513 
STA00514 
STA00515 
STA00516 
STA00517 
STA00518 
STA00519 
STA00520 
STA00521 
STA00522 
STA00523 
STA00524 
STA00525 
STA00526 
STA00527 
STA0052B 
STA00529 
STA00530 
STA00531 
STA00532 
STA00533 
STA00534 
STA00535 
STA00536 
STA00537 
STA00538 
STA00539 
STA00540 
STA00541 
STA00542 
STA00543 
STA00544 
STA00545 
STA00546 
STA00547 
STA00548 
STA00549 
STAOOSSO 
STA0055l 
STA00552 
STA00553 
STA00554 
STA00555 
STA00556 
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c . 
c . 

c 
c 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
COMMON /EL/ IND,NPAR(lO),NUMEG,MTOT,NFIRST,NLAST,ITWO 
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT 
DIMENSION AA(l) 

REWIND IELMNT 

DO 200 N•l,NUMEG 
READ (IELMNT) NUMEST,NPAR,(AA(I),I•l,NUMEST) 

c 

c 

c 

CALL ELEMNT 

200 CONTINUE 

c . 
c • 
c . 
c . 
c • 
c . 
c . 
c . 
c . 
c . 
c . 
c . 
c . 
c . 
c . 
c • 
c . 
c . 
c . 
c . 
c . 

RETURN 
END 
SUBROUTINE ADDBAN (A,MAXA,S,LM,ND} . ............... . 
PROGRAM 

TO ASSEMBLE UPPER TRIANGULAR ELEMENT STIFFNESS INTO 
COMPACTED GLOBAL STIFFNESS 

A• GLOBAL STIFFNESS 
S • ELEMENT STIFFNESS 
NO• DEGREES OF FREEDOM IN ELEMENT STIFFNESS 

S(l) 
s 

A(l) 
A 

S(2) 
S(NO+l) 

A( 3) 
A(2) 

$(3) 
S(ND+2) 
S(2*ND) 

A(6) 
A( S) 
A(4) 

1003 

• STA00557 
• STA00558 

STAOOS59 
STA00560 
STA0056l 
STAOOS62 
STA00563 
STA00564 
STAOOS65 
STA00566 
STA00567 
STA00568 
STA00569 
STAOOS70 
STAOOS71 
STAOOS72 
STA00573 
STA00574 

• STAOOS75 
• STA00576 
• STAOOS77 
, STA00578 
. STA00579 
. STA00580 
• STA00581 
• STA00582 
• STA00583 
. STAOOS84 
. STA00585 
. STAOOS86 
• STA00587 
• STA00588 
• STAOOS89 
• STA00590 
• STA00591 
• STA00592 
• STA00593 
. STA00594 
. STA00595 
• STA00596 c . 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
DIMENSION A(l),MAXA(l),S(l),LM(l) 

• STA00597 

c 

c 

NDI•O 
DO 200 I•l,ND 
Il•LM( I) 
IF (II) 200,200,100 

100 MI•MAXA( II) 
KS•I 
DO 220 J•l,ND 
JJ•LM(J) 
IF (JJ) 220,220,110 

110 IJ•II - JJ 
IF (IJ) 220,210,210 

210 KK•MI + IJ 
KSS•KS 
IF (J.GE.I) KSS•J + NDI 
A(KK)•A(KK) + S(KSS) 

220 KS•KS + ND - J 
200 NDI•NOI + ND - I 

RETURN 
END 

c . 
c . 
c . 
c . 
c . 

SUBROUTINE COLSOL (A,V,MAXA,NN,NWK,NNM,KKK) . .................. . 
PROGRAM 

TO SOLVE FINITE ELEMENT STATIC EQUILIBRIUM EQUATIONS IN 
CORE, USING COMPACTED STORAGE AND COLUMN REDUCTION SCHEME 

STAOOS98 
STA00599 
STA00600 
STA00601 
STA00602 
STA00603 
STA00604 
STA00605 
STA00606 
STA00607 
STA00608 
STA00609 
STA00610 
STA00611 
STA00612 
STA00613 
STA00614 
STA00615 
STA00616 
STA00617 
STA00618 
STA00619 
STA00620 
STA00621 

•• STA00622 
• STA00623 
• STA00624 
• STA00625 
• STA00626 
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c . 
c . 
c . 
c . 
c . 
c 
c • 
c 
c 
c . 
c . 
c . 
c . 
c . 
c . 
c . 
c • 
c . 
c . 

c 
c 
c 

c 
c 
c 

• STA00627 
INPUT VARIABLES - - STA00628 

A(NWK) • STIFFNESS MATRIX STORED IN COMPACTED FORM • STA00629 
V(NN) • RIGHT-HAND-SIDE LOAD VECTOR • STA00630 
MAXA(NNM) • VECTOR CONTAINING ADDRESSES OF DIAGONAL . STA00631 

ELEMENTS OF STIFFNESS MATRIX IN A , STA00632 
NN 
NWK 
NNM 
KKK 

• NUMBER OF EQUATIONS . STA00633 
• NUMBER OF ELEMENTS BELOW SKYLINE OF MATRIX • STA00634 
• NN + 1 • STA00635 
• INPUT FLAG • STA00636 

EQ. l TRIANGULARIZATION OF STIFFNESS MATRIX , STA00637 
EQ. 2 REDUCTION AND BACK-SUBSTITUTION OF LOAD VECTOR, STA00638 

IOUT • UNIT USED FOR OUTPUT • STA00639 

OUTPUT - -
A(NWK) 
V(NN) 

• D AND L - FACTORS OF STIFFNESS MATRIX 
• DISPLACEMENT VECTOR 

, STA00640 
STA00641 

• STA00642 
. STA00643 
• STA00644 

, , • , • • , • • , • , • • • • • • • • • • • • • • STA0064S 
IMPLICIT DOUBLE PRECISION (A-H,0-Z) STA00646 
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT STA00647 
DIMENSION A(NWK),V(l),MAXA(l) STA00648 

PERFORM L*D*L(T) FACTORIZATION OF STIFFNESS MATRIX 

IF (KKK-2) 40,150,150 
40 DO 140 N•l,NN 

KN•MAXA(N) 
KL•KN + l 
KU•MAXA(N+l) - l 
KH•KU - KL 
IF (KH) 110,90,50 

50 K•N - KH 
IC•O 
KLT•KU 
DO 80 J•l,KH 
IC•IC + l 
KLT•KLT - 1 
Kl•MAXA(K) 
ND•MAXA(K+l) - KI - 1 
IF (ND) 80,80,60 

60 KK•MINO(IC,ND) 
C•O. 
DO 70 L•l,KK 

70 C•C + A(KI+L)*A(KLT+L) 
A(KLT)•A(KLT) - C 

80 K•K + 1 
90 K•N 

B•O. 
DO 100 KK•KL,KU 
K•K - l 
KI•MAXA(K) 
C•A(KK)/A(KI) 
B•B + C*A(KK) 

100 A(KK)•C 
A(KN)•A(KN) - B 

110 IF (A(KN)) 120,120,140 
120 WRITE (IOUT,2000) N,A(KN} 

GO TO 800 
140 CONTINUE 

150 

160 

GO TO 900 

REDUCE RIGHT-HAND-SIDE LOAD VECTOR 

DO 180 N•l,NN 
KL•MAXA(N) + 1 
KU•MAXA(N+l) - l 
IF (KU-KL) 180,160,160 
K•N 
c-o. 

STA00649 
STA00650 
STA00651 
STA00652 
STA00653 
STA00654 
STA00655 
STA00656 
STA00657 
STA00658 
STA00659 
STA00660 
STA00661 
STA00662 
STA00663 
STA00664 
STA00665 
STA00666 
STA00667 
STA00668 
STA00669 
STA00670 
STA00671 
STA00672 
STA00673 
STA00674 
STA00675 
STA00676 
STA00677 
STA00678 
STA00679 
STA00680 
STA00681 
STA00682 
STA00683 
STA00684 
STA00685 
STA00686 
STA00687 
STA00688 
STA00689 
STA00690 
STA00691 
STA00692 
STA00693 
STA00694 
STA00695 
STA00696 
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DO 170 KK•KL,KU 
J(-1( - 1 

170 C•C + A(KK)*V(K) 
V(N)•V(N) - C 

180 CONTINUE 
c 
C BACK-SUBSTITUTE 
c 

c 

DO 200 N•l,NN 
K•MAXA(N) 

200 V(N)•V(N)/A(K) 
IF (NN.EQ.1) GO TO 900 
N•NN 
DO 230 L•2,NN 
KL•MAXA(N) + l 
KU•MAXA(N+l) - 1 
IF (KU-KL) 230,210,210 

210 K•N 
DO 220 KK•KL,KU 
K•K - l 

220 V(K)•V(K) - A(KK)*V(N) 
230 N•N - l 

GO TO 900 

800 STOP 
900 RETURN 

c 
2000 FORMAT 

l 
2 

(//' STOP - STIFFNESS MATRIX NOT POSITIVE DEFINITE',//, 
'NONPOSITIVE PIVOT FOR EQUATION' ,18,//, 
' PIVOT• ',E20.12 ) 

c 
END 

c 
SUBROUTINE LOADV (R,NEQ) 

c . 
. . . . . . . . . . . . ................. 

c . 
c . 
c .. 

c 

c 

c 
c . 
c . 
c . 
c .. 

c 

PROGRAM 
TO OBTAIN THE LOAD VECTOR . . . . . . . . . . . . . . . . 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT 
DIMENSION R(NEQ) 

READ (ILOAD) R 

RETURN 
END 
SUBROUTINE WRITED (DISP,IO,NEQ,NUMNP) . . . . . . . . . ..... 
P R O G R A M 

TO PRINT DISPLACEMENTS . . . . . . . . . . . . . . . . . . . 
IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
COMMON /TAPES/ IELMNT,ILOAO,IIN,IOUT 
DIMENSION DISP(NEQ),ID(3,NUMNP) 
DIMENSION 0(3) 

C PRINT DISPLACEMENTS 
c 

c 

c 

WRITE (IOUT,2000) 
IC•4 

DO 100 II•l,NUMNP 
IC•IC + l 
IF (IC.LT.So) GO TO 105 
WRITE (IOUT,2000) 
IC•4 

105 DO 110 I•l, 3 
110 D(I)•O. 

. . . . . . . . . . . . . 

............. 

1005 

STA00697 
STA00698 
STA00699 
STA00700 
STA00701 
STA00702 
STA00703 
STA00704 
STA00705 
STA00706 
STA00707 
STA00708 
STA00709 
STA00710 
STA00711 
STA00712 
STA00713 
STA00714 
STA00715 
STA00716 
STA00717 
STA00718 
STA00719 
STA00720 
STA00721 
STA00722 
STA00723 
STA00724 
STA00725 
STA00726 
STA00727 
STA00728 
STA00729 

. STA00730 

. STA00731 
, STA00732 

STA00733 
• STA00734 

STA0073S 
STA00736 
STA00737 
STA00738 
STA00739 
STA00740 
STA00741 
STA00742 
STA00743 

• STA00744 
• STA00745 
• STA00746 
, STA00747 
• STA00748 

STA00749 
STA00750 
STA007Sl 
STA00752 
STA00753 
STA00754 
STA00755 
STA00756 
STA00757 
STA00758 
STA00759 
STA00760 
STA00761 
STA00762 
STA00763 
STA00764 
STA00765 
STA00766 
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DO 120 I•l,3 
KK•ID( I, II) 
IL•I 

120 IF (KK.NE.0) D(IL)•DISP(KK) 

STA00767 
STA00768 
STA00769 
STA00770 
STA00771 
STA00772 
STA00773 
STA00774 
STA00775 
STA00776 
STA00777 
STA00778 
STA00779 
STA00780 
STA00781 
STA00782 
STA00783 

c 
100 WRITE (IOUT,2010) II,D 

c 
RETURN 

c 
2000 FORMAT(///,' DISPLACEMENTS',//,' NODE ',lOX, 

1 'X-DISPLACEMENT Y-DISPLACEMENT Z-DISPLACEMENT') 
2010 FORMAT (1X,I3,8X,3E18.6) 

c 

c • 
c . 
c . 
c . 
c . 
c . 
c .. 

c 
c 
c 

c 

END 
SUBROUTINE STRESS (AA) 

P R O G R A M 
TO CALL THE ELEMENT SUBROUTINE FOR THE CALCULATION OF 
STRESSES 

, STA00784 
• STA00785 
• STA00786 
, STA00787 

• , • , , • . • • • • • • • • • . . • • • . • • • $TA00788 
COMMON /VAR/ NG,MODEX STA00789 
COMMON /EL/ IND,NPAR(lO),NUMEG,MTOT,NFIRST,NLAST,ITWO STA00790 
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT STA00791 
DIMENSION AA(l) STA00792 

LOOP OVER ALL ELEMENT GROUPS 

REWIND IELMNT 

DO 100 N•l,NUMEG 
NG•N 

READ (IELMNT} NUMEST,NPAR,(AA(I),I•l,NUMEST) 
c 
c 

c 
CALL ELEMNT 

100 CONTINUE 

STA00793 
STA00794 
STA00795 
STA00796 
STA00797 
STA00798 
STA00799 
STA00800 
STA00801 
STA00802 
STA00803 
STA00804 
STA00805 
STA00806 
STA00807 
STA00808 
STA00809 

c 

c . 
c . 
c . 
c . 
c . 
c . 

c 

c 

c 

RETURN 
END 
SUBROUTINE TRUSS 

PROGRAM 
TO SET UP STORAGE AND CALL THE TRUSS ELEMENT SUBROUTINE 

• STA00810 
• STA00811 
• STA00812 
• STA00813 
. STA00814 

• •••••.• STA00815 
COMMON /SOL/ NUMNP,NEQ,NWK,NUMEST,MIDEST,MAXEST,MK STA00616 
COMMON /DIM/ Nl,N2,N3,N4,NS,N6,N7,N8,N9,Nl0,Nll,Nl2,N13,N14,Nl5 STA00817 
COMMON /EL/ IND,NPAR(lO),NUMEG,MTOT,NFIRST,NLAST,ITWO STA00816 
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT STA00819 
COMMON A(l) STA00820 

EQUIVALENCE (NPAR(2),NUME),(NPAR(3),NUMMAT) 

NFIRST•N6 
IF (IND.GT.l) NFIRST•NS 
NlOl•NFIRST 
Nl02•Nl01 + NUMMAT*ITWO 
Nl03•Nl02 + NUMMAT*ITWO 
Nl04•Nl03 + 6*NUME 
Nl05•Nl04 + 6*NUME*ITWO 
Nl06•Nl05 + NUME 
NLAST•Nl06 

IF (IND.GT.!) GO TO 100 
IF (NLAST.GT.MTOT) CALL ERROR (NLAST-MTOT,3) 
GO TO 200 

STA00821 
STA00822 
STA00823 
STA00824 
STA00825 
STA00826 
STA00827 
STA00828 
STA00629 
STA00830 
STA00831 
STA00832 
STA00833 
STA00834 
STA00835 
STA00836 
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· - . l O O IF ( NLAST. GT. MTOT) CALL ERROR ( NLAST-MTOT, 4 ) 
c 

200 MIDEST•NLAST - NFIRST 
c 

c 
c 

c 
c . 
c . 
c . 
c .. 

c 

c 

c 

c 
c 

CALL RUSS (A(Nl) ,A(N2) ~A(N3) ,A(N4) ,A(N4) ,A(NS) ,A(NlOl) ,A( Nl02), 
1 A(Nl03),A(N104),A(Nl05)) 

RETURN 

END 
SUBROUTINE RUSS (ID,X,Y,Z,U,MHT,E,AREA,LM,XYZ,MATP) . . . .. . . . . . . . . . . . . . . . . . . . . . . . . ... . 

TRUSS ELEMENT SUBROUTINE 

. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 
IMPLICIT DOUBLE PRECISION (A-B,0-Z) 
REAL A 
COMMON /SOL/ NUMNP,NEQ,NWK,NUMEST,MIDEST,MAXEST,MK 
COMMON /DIM/ Nl,N2,N3,N4,N5,N6,N7,N8,N9,Nl0,Nll,N12,Nl3,Nl4,Nl5 
COMMON /EL/ IND,NPAR(lO),NUMEG,MTOT,NFIRST,NLAST,ITWO 
COMMON /VAR/ NG,MODEX 
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT 
COMMON A(l) 

DIMENSION X(l),Y(l),Z(l),ID(3,1),E(l),AREA(l),LM(6,1), 
l XYZ(6,l),MATP{l),U(1),MHT(1) 

DIMENSION S(21),ST(6),D(3) 

EQUIVALENCE (NPAR(l),NPAR1),(NPAR(2),NUME),(NPAR(3),NUMMAT) 
ND•6 

GO TO (300,610,800),IND 

C R E A D A N D G E N E R A T E E L E M E N T 
C I N F O R M A T I O N 
c 
C READ MATERIAL INFORMATION 
c 

300 WRITE (IOUT,2000) NPARl,NUME 
IF (NUMMAT.EQ.0) NUMMAT•l 
WRITE (IOUT,2010) NUMMAT 

c 
WRITE (IOUT,2020) 
DO 10 I•l,NUMMAT 
READ (IIN,1000) N,E(N),AREA(N) 

10 WRITE (IOUT,2030) N,E(N),AREA(N) 
c 
c READ ELEMENT INFORMATION 
c 

WRITE (IOUT,2040) 
N"'l 

100 READ (IIN,1020) M,II,JJ,MTYP,KG 
IF (KG.EQ.0) KG•l 

120 IF (M.NE.N) GO TO 200 
I•II 
J•JJ 
MTYPE•MTYP 
KKK•KG 

c 
c SAVE ELEMENT INFORMATION 
c 

200 X¥Z( 1,N)•X( I) 
X¥Z(2,N)•Y(I) 
XYZ(3,N)•Z(I) 

c 
XYZ(4,N)•X(J) 
XYZ(5,N)•Y(J) 
XYZ(6,N)•Z(J) 

1007 

STA00837 
STA00838 
STA00839 
STA00840 
STA00841 
ST.A.00842 
STA00843 
STA00844 
STA00845 
STA00846 
STA00847 

• STA00848 
• STA00849 
• STA00850 
• STA00851 
• STA00852 

STA00853 
STA00854 
STA00855 
STA00856 
STA00857 
STA00858 
STA00859 
STA00860 
STA00861 
STA00862 
STA00863 
STA00864 
STA00865 
STA00866 
STA00867 
STA00868 
STA00869 
STA00870 
STA00871 
STA00872 
STA00873 
STA00874 
STA00875 
STA00876 
STA00877 
STA00878 
STA00879 
STA00880 
STA00881 
STA00882 
STA00883 
STAOOB84 
STA00885 
STA00886 
STA00887 
STA00888 
STA00889 
STA00890 
STA00891 
STA00892 
STA00893 
STA00894 
STA00895 
STA00896 
STA00897 
STA00898 
STA00899 
STA00900 
STA00901 
STA00902 
STA00903 
STA00904 
STA00905 
STA00906 



c 

c 

c 

1008 

MATP(N)•MTYPE 

DO 390 L•l,6 
390 LM(L,N)•O 

DO 400 L•l,3 
LM(L,N)•ID(L,I) 

400 LM(L+3,N)•ID(L,J) 

Implementation of the Finite Element Method 

C UPDATE COLUMN HEIGHTS AND BANDWIDTH 
c 

c 

c 
c 

CALL COLHT (MHT,ND,LM(l,N)) 

WRITE (IOUT,2050) N,I,J,MTYPE 
IF (N.EQ.NUME) GO TO 900 
N•N + 1 
I•I + KKK 
J•J + KKK 
IF (N.GT.M) GO TO 100 
GO TO 120 

C A S S E M B L E S T U C T U R E S T I F F N E S S M A T R I X 
c 
c 

c 

c 
c 

610 DO 500 N•l,NUME 
MTYPE•MATP(N) 
XL2•0. 
DO 505 L•l,3 
D(L)•XYZ(L,N) - XYZ(L+3,N) 

505 XL2•XL2 + O(L)*D(L) 
XL•SQRT(XL2) 
XX•E(MTYPE)*AREA(MTYPE)*XL 
DO 510 L•l,3 
ST(L)•D(L)/XL2 

510 ST(L+3)•-ST(L) 

KL•O 
DO 600 L•l,6 
YY•ST( L) *XX 
DO 600 K•L,6 
KL•KL + 1 

600 S(KL)•ST(K)*YY 
CALL ADDBAN (A(N3),A(N2),S,LM(l,N),ND) 

500 CONTINUE 
GO TO 900 

C S T R E S S C A L C U L A T I O N S 
c 
c 

800 IPRINT•O 
DO 830 N•l,NUME 
IPRINT•IPRINT + 1 
IF (IPRINT.GT.50) IPRINT•l 
IF (IPRINT.EQ.l) WRITE (IOUT,2060) NG 
MTYPE•MATP(N) 
XL2•0. 
DO 820 L•l,3 
D(L) • XYZ(L,N) - XYZ(L+3,N) 

820 XL2•XL2 + D(L)*D(L) 
DO 814 L•l, 3 
ST(L)•(D(L)/XL2)*E(MTYPE) 

814 ST(L+3)•-ST(L) 
STR•O.O 
DO 806 L•l,3 
l•LM(L,N) 
IF (I.LE.0) GO TO 807 
STR•STR + ST(L)*U(I) 

807 J•LM(L+3,N) 
IF (J.LE.O) GO TO 806 
STR•STR + ST(L+3)*U(J) 
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STA00907 
STA00908 
STA00909 
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c 

c 

Sec. 12.5 Exercises and Projects 

806 CONTINUE 
P•STR*AREA(MTYPE) 
WRITE (IOUT,2070) N,P,STR 

830 CONTINUE 

900 RETURN 

1000 FORMAT 
1010 FORMAT 
1020 FORMAT 
2000 FORMAT 

(I5,2Fl0.0) 
(2F10.0) 
(SIS) 
('ELEMENT DEFINITION',///, 

' ELEMENT TYPE ',13(' .'),'( NPAR(l) ) •• •',IS,/, 
EQ.1, TRUSS ELEMENTS',/, 
EQ.2, ELEMENTS CURRENTLY',/, 
EQ.3, NOT AVAILABLE',//, 
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STA00979 
STA00980 
STA00981 
STA00982 
STA00983 
STA00984 
STA0098S 
STA00986 
STA00987 
STA00988 
STA00989 
STA00990 
STA00991 
STA00992 
STA00993 

l 
2 
3 
4 
s 

2010 FORMAT 
l 

'NUMBER OF ELEMENTS.',10(' .'),'( NPAR(2) ) • 
('MATERIAL DEFINITION',///, 

'NUMBER OF DIFFERENT SETS OF MATERIAL',/, 

•',15,//)STA00994 
STA00995 
STA00996 

2 
3 

2020 FORMAT 
l 
2 

2030 FORMAT 
2040 FORMAT 

l 
2 

2050 FORMAT 
2060 FORMAT 

l 
2 
3 

2070 FORMAT 
c 

END 

'AND CROSS-SECTIONAL CONSTANTS', 
4(' .'),'( NPAR(3)) •• •',IS,//) 

(' SET YOUNG''$ CROSS-SECTIONAL',/, 
'NUMBER MODULUS',lOX,'AREA',/, 
lSX, 'E' ,14X, 'A') 

(/,I5,4X,El2.5,2X,El4.6) 
(//,'ELEMENT INFORMATION',///, 

' ELEMENT NODE NODE MATERIAL',/, 
'NUMBER-N I J SET NUMBER',/) 

(IS,6X,I5,4X,IS,7X,15) 
(///,' STRESS CAL CUL AT IONS FOR 
'ELEMENT GR OU P',I4,//, 
' ELEMENT',13X,'FORCE',12X,'STRESS',/, 

NUMBER',/) 
(lX,I5,llX,E13.6,4X,E13.6) 

SUBROUTINE SECOND (TIM} 
c 
c 
c 
c 

c 

SUBROUTINE TO OBTAIN TIME 
THIS SUBROUTINE HAS BEEN USED ON AN IBM RS/6000 WORKSTATION 

TIM•O.Ol*MCLOCK() 

RETURN 
END 

12.5 EXERCISES AND PROJECTS 

Exercises 

STA00997 
STA00998 
STA00999 
STAOlOOO 
STA01001 
STA01002 
STA01003 
STA01004 
STA01005 
STA01006 
STA01007 
STA01008 
STA01009 
STA01010 
STA01011 
STA01012 
STA01013 
STA01014 
STA01015 
STA01016 
STA01017 
STA01018 
STA01019 
STA01020 
STA01021 
STA01022 

12.1. Consider the truss structure shown. Use the program STAP to solve for the response of the 
structure. Check your answer. 

I ~ 
5 5 

Each bar has cross-sectional area A • 1, 
Young's modulus E • 200,000 
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12.2. Consider the truss structure shown. Use the program STAP to solve for the response of the 
structure. Check your answer. 

10 8 

Each bar has cross-sectional area A • 1, 
Young's modulus E-= 200,000 

12.3. Consider the truss structure shown. Use the program STAP to solve for the response of the 
structure. Check your answer. 

Each bar has cross-sectional area A • 1, 
Young's modulus E • 200,000 

12.4. Consider the truss structure shown. Use the program STAP to solve for the response of the 
structure. Check your answer. 

Each bar has cross-sectional area A= 1, 
Young's modulus E = 200,000 
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Projects 

Below we give descriptions of some projects using STAP. Of course, once the program 
implementations have been performed, various analysis problems could be solved, and we 
point out only some possibilities. The student is encouraged to solve additional analysis 
problems. 

Project 12.1. Extend the program STAP to be also applicable to static two­
dimensional plane stress, plane strain, and axisymmetric analyses. For this purpose incor­
porate the subroutine QUADS in Section 5.6 into STAP. Verify the program implementa­
tion by solving the patch test problems in Fig. 4.17 and the cantilever plate problem 
discussed in Example 4.6. 

Project 12.2. Proceed as in project 12.1 but incorporate a modified program 
QUADS, modified for the u/p formulation and the 4/1 element (see Section 4.4.3). 

Project 12.3. Extend the program STAP to be also applicable to dynamic analysis 
by direct step-by-step integration. Allow for the selection of a lumped or consistent mass 
matrix and allow for the use of the central difference method or the Newmark method. 

Use the extended program STAP to solve the problem considered in Example 9.14. 

Project 12.4. Extend the program STAP to be also applicable to dynamic analysis 
by mode superposition. Allow for the selection of a lumped or consistent mass matrix. 

Incorporate the subroutine JACOBI in Section 11.3.2 to calculate the frequencies and 
mode shapes and allow for the selection of the number of modes to be included in the mode 
superposition from l top, where p s n and n = number of degrees of freedom. 

Use the extended program STAP to solve the problem considered in Example 9 .14. 

Project 12.5. Extend the program STAP as in project 12.4 but allow for the selec­
tion and use of all modes with frequencies between w, and w11 • Then solve the following 
problem. Let R(t) = sin wRt, WR = 2000. The bar is initially at rest (i.e., at zero displace­
ment and at zero velocity). Perform the analysis using 4, 8, 40, 60, ... , equal two-node 
truss elements in the finite element discretization of the bar. Compare your response 
predictions. 

~.. tOOcm 

~~-~--~--~~----~----~ ..... ~~) 
Bar of cross-sectional area A • 4 cm2 
Young's modulus f • 4.4 MPa 
p = mass density • 1560 kg/m3 

Project 12.6. Extend the program STAP to allow for large displacements (but small 
strains) in the analysis of truss structures. Use the information given in Example 6.16. Then 
solve the analysis problem in Example 6.3. 
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Proiect 12.7. Extend the program STAP to allow for large displacement two­
dimensional plane stress, plane strain, and axisymmetric analysis. Use the program QUADS 
in Section 5.6 as the basis of the element subroutine and extend this program for the total 
Lagrangian formulation described in Section 6.3.4. Assume an elastic material with 
Young's modulus E and Poisson's ratio v. Test the program on the simple analysis problems 
shown and compare your results with analytical calculations. 

p p ' p 

o.~--~~---------- -----------------
p 

;.c,e-------------------

Project 12.8. Proceed as in project 12.7 but use the u/p formulation and implement 
the 4/ 1 element. 

Project 12.9. Extend the program STAP for one-dimensional transient conduc­
tion heat transfer analysis, including linear convection boundary conditions. Then solve 
the problem in Fig. E7 .2 with h = 2, L = 20, q 5 = 2, k = 1.0, pc = 1.0, and neglecting 
the radiation heat transfer. Assume various temperature initial conditions and also change 
the values of k and pc. 

Project 12.10. Extend the program STAP for the analysis of steady-state two­
dimensional planar and axisymmetric linear heat transfer by conduction. Use the subroutine 
QUADS in Section 5.6 as the basis to develop the element routine. Then solve the analysis 
problem in Exercise 7. 7. 

Project 12.11. Extend the program STAP to the analysis of one of the field prob­
lems: seepage (see Section 7 .3.1 ), incompressible inviscid fluid flow (see Section 7 .3.2), 
solution of torsional stiffness (see Section 7.3.3), or analysis of acoustic fluids (see Sec­
tion 7.3.4). In each case consider only planar conditions and solve an analysis problem of 
your choice. 

Project 12.12. Extend the program STAP for the analysis of viscous incompressible 
fluid flow at a very low Reynolds number (Stokes flow). Use the u/p formulation and the 
4/1 element. Solve a problem of your choice (for example, the problem in Exercise 7.28). 
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Acoustic fluid, 666 
Almansi strain tensor, 585 
Alpha (a) integration method: 

in heat transfer analysis, 830 
in inelastic analysis, 606 

Amplitude decay, 811 
Analogies, 82, 662 
Angular distortion, 381 
Approximation of geometry, 208, 342 
Approximation operator, 803 
Arbitrary Lagrangian-Eulerian formulation, 672 
Aspect-ratio distortion, 381 
Assemblage of element matrices, 78, 149, 165, 

185,983 
Associated constraint problems, 728, 846 
Augmented Lagrangian method, 146, 147 
Axial stress member (See Bar; Truss element) 
Axisymmetric element, 199, 202, 209, 356, 552 
Axisymmetric shell element, 419, 568, 574 

B 

Bandwith of matrix, 20, 714, 985 
Bar, 108, 120, 124, 126 
Base vectors: 

contravariant, 46 
covariant, 46 

Bathe method, 779, 791, 805, 809, 811 
Beam element, 150, 199, 200, 397, 568 
BFGS method, 759 
Bilinear form, 228 
Bisection method, 943 
Body force loading, 155, 164, 165, 204, 213 
Boundary conditions: 

in analysis: 
acoustic, 667 
displacement and stress, 154 
heat transfer, 643, 676 
incompressible inviscid flow, 663 
seepage, 662 
viscous fluid flow, 675 

convection, 644 
cyclic, 192 
displacement, 154, 187 
essential, 110 
force, 111 
geometric, 110 
natural, 110 
phase change, 656 
radiation, 644, 658 
skew, 189 

Boundary layer: 
in fluid mechanics, 684 
in Reissner/Mindlin plates, 434, 449 

Boundary value problems, 110 
Bubble function, 373, 432, 690 
Buckling analysis, 90, 114, 630 
Bulk modulus, 277, 297 
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c 
c•-1 problem, 235 
Cable element, 543 
Cauchy stress tensor, 499 
Cauchy-Green deformation tensor (left and right 

tensors). 506 
Cauchy's formula, 516 
Caughey series, 799 
Cea's lemma, 242 
Central difference method, 770, 815, 824 
CFL number, 816 
Change of basis, 43, 49, 60. 189, 786 
Characteristic polynomial, 52, 888, 938 
Characteristic roots (See Eigenvalues) 
Cholesky factorization, 717 
Collapse analysis, 630 
Column heights, 708, 986 
Column space of a matrix, 37 
Compacted column storage, 21, 708, 985 
Compatibility: 

of elements/meshes, 161. 229, 377 
of norms, 70 

Compatible norm, 70 
Complete polynomial, 244 
Completeness condition: 

of element, 229 
of element assemblage, 263 

Component mode synthesis, 875 
Computer programs for: 

finite element analysis, 988 
Gauss elimination equation solution, 708 
isoparametric element, 480 
Jacobi generalized eigensolution. 924 
subspace iteration eigensolution, 964 

Computer-aided engineering, 11 
Concentrated loads, modeling of, 10, 228, 239 
Condensation (See Static condensation) 
Condition number, 738 
Conditional stability, 773 
Conductivity matrix. 651 
Conforming (See Compatibility) 
Conjugate gradient method, 749 
Connectivity array, 185, 984 
Consistent load vector, 164, 213, 814 
Consistent mass matrix, 165, 213 
Consistent tangent stiffness matrix, 758 
Consistent tangent stress-strain matrix, 583, 

602, 758 
Constant increment of external work. criterion, 763 
Constant strain: 

one-dimensional (truss) element, 150, 166, 
339 

two-dimensional 3-node element, 205, 364, 373 
three-dimensional 4-node element, 366, 373 

Constant-average-acceleration method, 780 

Index 

Constitutive equations (See Stress-strain relations) 
Constraint equations, 190 
Constraint function method, 626 
Contact analysis, 622 
Contactor, 623 
Continuity of a bilinear form. 237 
Contravariant: 

base vectors, 46 
basis, 46 

Convection boundary conditions, 644 
Convergence criteria in: 

conjugate gradient method, 750 
eigensolutions, 892, 914, 920, 949, 963 
finite element discretization, 254 
for iterative processes using norms, 67 
Gauss-Seidel iteration, 747 
mode superposition solution, 795 
nonlinear analysis, 764 

Convergence of: 
conjugate gradient iteration, 750 
finite element discretization, 225, 376 
Gauss-Seidel iteration, 747 
Jacobi iteration, 914, 920 
Lanczos method, 949, 953 
mode superposition solution, 795, 814 
Newton-Raphson iteration, 756 
QR iteration, 935 
Rayleigh quotient iteration, 904 
subspace iteration, 959. 963 
vector forward iteration, 897 
vector inverse iteration, 892 

Coordinate interpolation, 342 
Coordinate systems: 

area, 371 
Cartesian, 40 
global, 154 
local, 154, 161 
natural, 339, 342, 372 
skew, 189 
volume, 373 

Coulomb's law of friction, 624 
Coupling of different integration operators, 782 
Covariant: 

base vectors, 46 
basis, 46 

Creep, 606 
Critical time step for use of: 

a integration method, 831 
central difference method, 772, 808, 817 

Cyclic symmetry, 192 

D 

d' Alembert's principle, 134, 165, 402 
Damping, 165, 796 
Damping ratio, 796, 802 
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De network, 83 
Deflation of: 

matrix, 906 
polynomial, 942, 945 
vectors, 907 

Deformation dependent loading, 527 
Deformation gradient, 502 
Degree of freedom, 161, 172, 273, 286, 329, 345, 

413, 981 
Determinant: 

of associated constraint problems, 729, 850 
calculation of, 31 
of deformation gradient, 503 
of Jacobian operator, 347, 389 

Determinant search algorithm, 938 
Digital computer arithmetic, 734 
Dimension of: 

space, 36 
subspace, 37 

Direct integration in: 
dynamic stress analysis, 769, 824 
fluid flow analysis, 680, 835 
heat transfer analysis, 830 

Direct stiffness method, 80, 151, 165 
Director vectors, 409, 438, 570, 576 
Displacement interpolation, 161, 195 
Displacement method of analysis, 149 
Displacement/pressure formulations: 

basic considerations, 276 
elements, 292, 329 
ulp formulation, 287 
u/p-c formulation, 287 

Distortion of elements (effect on convergence), 
382,469 

Divergence of iterations, 758, 761, 764 
Divergence theorem, 158 
Double precision arithmetic, 739 
Drucker-Prager yield condition, 604 
Duhamel integral, 789, 796 
Dyad, 44 
Dyadic, 44 
Dynamic buckling, 636 
Dynamic load factor, 793 
Dynamic response calculations by: 

E 

mode superposition solution, 785 
step-by-step integration, 769 

Effective 
creep strain, 607 
plastic strain, 599 
stress, 599 

Effective stiffness matrix, 775, 778, 781 
Effective-stress-function algorithm, 600, 609, 

611, 616 

Eigenpair, 52 
Eigenproblem in: 

buckling analysis, 92, 632, 839 
heat transfer analysis, 105, 836, 840 
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vibration mode superposition analysis, 786, 839 
Eigenspace, 56 
Eigensystem, 52 
Eigenvalue problem, 51 
Eigenvalue separation property (See also Sturm se­

quence property), 63, 728, 846 
Eigenvalues and eigenvectors: 

of associated constraint problems, 64 
basic definitions, 52 
calculation of, 52, 887 

Electric conduction analysis, 83, 662 
Electro-static field analysis, 662 
Element matrices, definitions in: 

displacement-based formulations, 164, 347, 540 
displacement/pressure formulations, 286, 

388,561 
field problems, 661 
general mixed formulations, 272 
heat transfer analysis, 651 
incompressible fluid flow, 677 

Elliptic equation, 106 
Ellipticity condition, 304 
Ellipticity of a bilinear form, 237 
Energy norm, 237 
Energy-conjugate (work-conjugate) stresses and 

strains, 515 
Engineering strain, 155, 486 
Equations of finite elements: 

assemblage, 185, 983 
in heat transfer analysis, 651 
in incompressible fluid flow analysis, 678 
in linear dynamic analysis, 165 
in linear static analysis, 164 
in nonlinear dynamic analysis, 540 
in nonlinear static analysis, 491, 540 

Equilibrium: 
on differential level, 160, 17 5 
on element level, 177 

Equilibrium iteration, 493, 526, 754 
Equivalency of norms, 67, 238 
Error bounds in eigenvalue solution, 880, 884, 949 
Error estimates for: 

MITC plate elements, 432 
displacement~based elements, 246, 380, 469 
displacement/pressure elements. 312 

Error measures in: 
eigenvalue solution, 884, 892 
finite element analysis, 254 
mode superposition solution, 795 

Errors in solution, 227 
Euclidean vector norm, 67 
Euler backward method, 602, 831, 834 
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Euler forward method. 831. 834 
Euler integration method. use in: 

creep, plasticity, 607 
heat transfer. 831 

Eulerian formulation, 498, 672 
Existence of inverse matrix, 27 
Explicit integration, 770 
Explicit-implicit integration, 783 
Exponential scheme of upwinding, 686 

F 

Field problems, 661 
Finite difference method! 

approximations, 132 
differential formulation, 129 
in dynamic response calculation, 769 
energy formulation, 135 · 

Finite elements: 
elementary examples, 79, 124, 149, 166 
history, 1 
an overview of use, 2 

Finite strip method, 209 
First Piola-Kirchhoff stress tensor, S 15 
Fluid flow analysis: 

incompressible viscous flow, 671 
irrotational (potential) flow, 663 

Fluid-structure interactions, 668, 672, 690 
Folded plate structure, 208 
Forced vibration analysis (See Dynamic response 

calculations by) 
Forms: 

bilinear, 228 
linear, 228 

Fracture mechanics elements, 369 
Free vibration conditions, 95, 786 
Friction (See Coulomb's law of friction) 
Frontal solution method, 725 
Full Newton-Raphson iteration, 756, 834 
Full numerical integration, 469 
Functionals (See also Variational indicators), 110, 

ll5 

G 

Oalerkin least squares method, 688 
Oalerkin method (See also Principle of virtual 

displacements; Principle of virtual tempera­
tures; and Principle of virtual velocities), 
118, 126 

Gauss elimination: 
computational errors in, 734 
a computer program, 71 S 
introduction to, 697 
number of operations, 714 
physical interpretation, 699 

Gauss quadrature, 461 
Gauss-Seidel iteration, 747 
Generalized coordinates, 171, 195 

Index 

Generalized displacements, (See Generalized coor­
dinates) 

Generalized eigenproblems (See also Eigenprob­
lem in): 

definition, 53 
various problems, 839 

Generalized formulation, 125 
Generalized Jacobi method, 919 
Ghost frequencies (See Phantom frequencies) 
GMRes (Generalized minimal residual) meth-

od, 752 
Oram-Schmidt orthogonalization, 907, 952, 956 
Green-Lagrange strain tensor, 50, 512 
Guyan reduction, 875, 960 

H 

Half-bandwidth (See Bandwidth of matrix) 
Hardening in: 

creep, 607 
plasticity, 599 
viscoplasticity, 610 

Hat function, 131, 692 
Heat capacity matrix, 89, 655 
Heat conduction equation, 106, 107, 643 
Heat transfer analysis, 80, 89, 642 
Hellinger-Reissner functional 274, 285, 297, 477 
Hencky (logarithmic) strain tensor, 512, 614 
Hierarchical functions, 252, 260, 692 
Hierarchy of mathematical models, 4 
History of finite elements, 1 
h- method of finite element refinement, 251 
Houbolt method, 774, 804. 809, 811 
Householder reduction to tridiagonal form, 927 
hip method of finite element refinement, 253 
Hu-Washizu functional, 270, 297 
Hydraulic network, 82 
Hyperbolic equation. 106 
Hyperelastic. 582, 592 
Hypoelastic, 582 

I 

Identity matrix, 19 
Identity vector, 19 
Imperfections (on structural model), 634 
lmplicit·explicit integration, 783 
Incompatible modes, 262 
Incompressibility, 276 
Incremental potential, 561 
Indefinite matrix, 60, 731, 939, 944 
lndicial notation: 

definition, 41 
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use, 41, 499 
Infinite eigenvalue, 853 
Inf-sup condition for incompressible analysis: 

derivation, 304, 312 
general remarks, 291 

Inf-sup condition for structurallbeam ele­
ments, 330 

Inf-sup test, 322 
Initial calculations in: 

central difference method, 771 
Houbolt method, 775 
Newmark method, 778 
Bathe method, 780 

Initial stress load vector, 164 
Initial stress method, 758 
Initial value problems, 110 
Instability analysis of: 

integration methods, 806 
structural systems, 630 

Integration of: 
dynamic equilibrium equations (See Direct inte­

gration in) 
finite element matrices (See Numerical integra­

tion of finite element matrices) 
stresses (See Stress integration) 

lnterelement continuity conditions (See Compati-
bility of elements/meshes) 

lnterpolant of solution, 246 
Interpolation functions, 338, 343, 344, 374 
Inverse of matrix, 27 
Inviscid (acoustic) fluid, 666 
Inviscid flow, 663 
lsobands of stresses, 255 
lsoparametric formulations: 

computer program implementation, 480 
definition, 345 
interpolations (See Interpolation functions) 
introduction, 338 

Iteration (See Gauss-Seidel iteration; Conjugate 
gradient method; Quasi-Newton methods; Ei­
genvalues and eigenvectors) 

J 

Jacobi eigensolution method, 912 
Jacobian operator, 346 
Jaumann stress rate tensor, 591. 617 
Joining unlike elements, 377 
Jordan canonical form, 808 

K 

Kernel: 
definition, 39 
use in analysis of stability, 318 

Kinematic assumptions, 399, 420, 437 

Kirchhoff hypothesis. 420 
Kirchhoff stress tensor, 515 
Kronecker delta, 45, 46 

L 

L 2 space, 236 
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Lagrange multipliers, 144. 270, 286, 626, 744 
Lagrangian formulations: 

linearization, 523, 538 
total Lagrangian (TL), 523, 561, 586 
updated Lagrangian (UL), 523. 565, 586 
updated Lagrangian Hencky (ULH), 614 

Lagrangian interpolation, 456 
Lame constants, 298, 584 
Lanczos method, 945 
Laplace equation, 106, 107 
Large displacement/strain analysis, 487, 498 
Latent heat, 656 
LDLT factorization (See also Gauss elimina-

tion), 705 
Least squares averaging (smoothing), 256 
Legendre polynomials, 252 
Length of vector (See Euclidean vector norm) 
Linear acceleration method, 777. 780 
Linear dependency, 36 
Linear equations (See Equations) 
Linear form, 228 
Lipschitz continuity, 757 
Load-displacement-constraint methods, 761 
Load operator, 803 
Loads in analysis of: 

fluid flows, 678 
heat transfer, 652 
structures, 164 

Locking: 
in (almost) incompressible analysis, 283, 303, 

308, 317 
in structural analysis, 275, 332, 404. 408, 

424,444 
Logarithmic strain tensor, 512, 614 
Loss of orthogonality, 952 
Lumped force vectors, 213 
Lumped mass matrix, 213 

M 

Mass matrix, 165 
Mass proportional damping, 798 
Master-slave solution, 740 
Materially-nonlinear-only analysis, 487, 540 
Mathematical model: 

accuracy, 7 
effectiveness, 4, 6 
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Mathematical model (cont.) 
reliability, 4 
very-comprehensive, 6 

Matrix: 
addition and subtraction, 21 
bandwidth, 19, 985 
definition, 18 
determinant, 31 
identity matrix, 19 
inverse, 27 
multiplication by scalar, 22 
norms, 68 
partitioning, 28 
products, 22 
storage, 20 
symmetry, 19 
trace, 30 

Matrix deflation, 906 
Matrix shifting, 851, 899, 943, 964 
Membrane locking, 408, 444 
Mesh (from a sequence of meshes): 

compatible, 377 
regular, 380 
quasi-uniform, 382, 434 
uniform, 243, 245 

Metric tensor, 47 
Mindlin (Reissner/Mindlin) plate theory, 420 
Minimax characterization of eigenvalues, 63 
Minimization of bandwidth, 714, 986 
MITC elements: 

error estimates, 432 
plate elements, 425 
shell elements, 445, 577 

Mixed finite element formulations, 268 
Mixed interpolations: 

for continuum elements (See Displacement/pres­
sure formulations) 

for structural elements 
beam,274,330,406 
plate, 424 
shell, 444 

Mode shape, 786 
Mode superposition: 

with damping included, 796 
with damping neglected, 789 

Modeling: 
constitutive relations, 582 
linear/nonlinear conditions, 487 
type of problems, 196 

Modeling in dynamic analysis, 813 
Modified Newton-Raphson iteration, 759 
Monotonic convergence, 225, 376 
Mooney-Rivlin material model, 592 
Multiple eigenvalues: 

convergence to, 895, 944, 951, 960 
orthogonality of eigenvectors, 55 

N 

Nanson's formula, 516 
Natural coordinate system, 339, 342 
Navier-Stokes equations, 676, 680 
Newmark method, 777, 805, 809, 811 
Newton identities, 939 
Newton-Raphson iterations, 493, 755 
Nodal point: 

information, 981 
numbering, 986 

Nonaxisymmetric loading, 209 

Index 

Nonconforming elements (See Compatibility of el­
ements/meshes; Incompatible modes) 

Nondimensionalized variables, 676 
Nonlinear analysis: 

classification, 487 
introduction to, 485 
simple examples, 488 

Nonproportional damping, 799 
Nonsymmetric coefficient matrix, 528, 628, 678, 

696, 744, 752 
Norms of: 

matrices, 68 
vectors, 67 

Numerical integration of finite element matrices: 
composite formulas, 459 
effect on order of convergence, 469 
Gauss quadrature, 461 

0 

in multiple dimensions, 464 
Newton-Cotes formulas, 457 
for quadrilateral elements, 466 
recommended (full) order, 469 
Simpson rule, 457 
trapezoidal rule, 457 
for triangular elements, 467 

Ogden material model, 592, 594 
Order of convergence of: 

finite element discretizations, 247, 312, 432, 469 
Newton-Raphson iteration, 757 
polynomial iteration, 941 
Rayleigh quotient iteration, 904 
subspace iteration, 959 
vector iteration, 895, 898 

Orthogonal matrices: 
definition, 43 
use,44, 73, 189,913,927,931 

Orthogonal similarity transformation, 53 
Orthogonality of: 

eigenspaces, 55 
eigenvectors, 54 

Orthogonalization: 
by Gram-Schmidt, 907, 952, 956 
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in Lanczos method, 946 
in subspace iteration, 958 

Orthonormality, 55 
Ovalization, 413 
Overrelaxation, 747 

p 

Parabolic equation, 106 
Partitioning (See Matrix, partitioning) 
Pascal triangle, 246, 380 
Patch test, 263 
Peclet number, 677 
Penalty method: 

connection to Timoshenko beam theory (and 
Reissner/Mindlin plate theory), 404 

elementary concepts, 144 
to impose boundary conditions, 190 
relation to Lagrange multiplier method, 147 

Period elongation, 811 
Petrov-Oalerkin method, 687 
Phantom frequencies/modes, 472 
Phase change, 656 
Pipe elements, 413 
Plane reflection matrix, 73 
Plane rotation matrix, 43, 913, 932 
Plane strain element, 199, 351 
Plane stress element, 170, 199, 351 
Plasticity, 597 
Plate bending, 200, 205, 420 
Plate/shell boundary conditions, 448 
p-method of finite element refinement, 251 
Poincare~Friedrichs inequality, 237 
Polar decomposition, 508 
Polynomial displacement fields, 195, 246, 385 
Polynomial iteration: 

explicit iteration, 938 
implicit iteration, 939 

Positive definiteness, 60, 726 
Positive semidefiniteness, 60, 726 
Postbuckling response (postcollapse), 630, 762 
Potential: 

incremental, 561 
total, 86, 160, 268 

Prandtl number, 677 
Preconditioning, 749 
Pressure modes: 

checkerboarding, 319 
physical, 315 
spurious, 316, 318, 325 

Principle of virtual displacements (or principle of 
virtual work): 

basic statement, 125, 156, 499 
derivation, 126, 157 
linearization of continuum mechanics equa­

tions, 523 
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linearization with respect to finite element vari­
ables, 538 

relation to stationarity of total potential, 160 
Principle of virtual temperatures: 

basic statement, 644, 678 
derivation, 645 

Principle of virtual velocities, 677 
Products of matrices (See Matrix, products) 
Projection operator, 308 
Proportional damping, 796 

Q 

QR iteration, 931 
Quadrature (See Numerical integration of finite el-

ement matrices) 
Quarter-point elements, 370 
Quasi-Newton methods, 759 
Quasi-uniform sequence of meshes, 382, 434 

R 

Radial return method, 598 
Radiation boundary conditions, 644, 658 
Rank, 39 
Rate of convergence of finite element discretiza-

tions, 244, 247, 312, 432, 469 
Rate-of-deformation tensor, 511 
Rayleigh damping, 797 
Rayleigh quotient, 60, 868, 904 
Rayleigh quotient iteration, 904 
Rayleigh-Ritz analysis, 868, 960 
Rayleigh's minimum principle, 63 
Reaction calculations, 188 
Reduced order numerical integration, 476 
Reduction of matrix to: 

diagonal form {See also Eigenvalues and eigen­
vectors), 57 

upper triangular form, 699, 705 
Reflection matrix (See Plane reflection matrix) 
Regular mesh, 380 
Reissner plate theory, 420 
Relative degrees of freedom, 739, 741 
Reliability: 

of finite element methods, 12, 296, 303, 469 
of mathematical model, 4 

Residual vector: 
in eigensolution, 880 
in solution of equations, 736 

Resonance, 793 
Response history (See Dynamic response calculaw 

tions by) 
Reynolds number, 677 
Rigid body modes, 230, 232, 704, 726 
Ritz analysis, 119, 234 
Robustness of finite element methods, 12, 296 
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Rotation matrix (See Plane rotation matrix) 
Rotation of axes, 189 
Rotation of director vectors, consistent/full lin­

earization: 
beams, 570, 579 
shells, 577, 580 

Round-off error, 735 
Row space of a matrix, 39 
Row-echelon forni, 38 
Rubber elasticity, 561, 592 

s 
Schwarz inequality, 238 
Secantiteration,941 
Second Piola-Kirchhoff stress tensor, 515 
Seepage, 662 
Selective integration, 476 
Shape functions (See Interpolation functions) 
Shear correction factor, 399 
Shearlocking,275,332,404,408,424,444 
Shell elements, 200, 207, 437, 575 
Shifting of matrix (See Matrix shifting) 
Similarity transformation, 53 
Simpson's rule, 457 
Single precision arithmetic, 734 
Singular matrix, 27 
Skew boundary displacement conditions, 189 
Skyline of matrix, 708, 986 
Snap-through response, 631 
Sobolev norms, 237 
Solution of equations in: 

dynamic analysis, 768 
static analysis, 695 

Solvability of equations, 313 
Spaces: 

L2,236 
V,236 
v,., 239 

Span of vectors, 36 
Sparse solver, 714 
Spatial isotropy, 368 
Spectral decomposition, 57 
Spectral norm, 68 
Spectral radius, 58, 70, 808 
Spherical constant arc length criterion, 763 
Spin tensor, 511 
Spurious modes, 4 72 
Stability constant of matrix, 71 
Stability of formulation, 72, 308, 313 
Stability of step-by-step: 

displacement and stress analysis. 806 
fluid flow analysis, 835 
heat transfer analysis, 831 

Standard eigenproblems: 
definition, S 1 

Index 

use, 58, 231, 726 
STAP (STructural Analysis Program), 988 
Starting iteration vectors, 890, 909, 952, 960 
Static condensation, 717 
Static correction, 795 
Step-by-step integration methods (See Direct inte­

gration in) 
Stiffness matrix: 

assemblage, 79, 149, 165, 185, 983 
definition, 164 
elementary example, 166 

Stiffness proportional damping, 798 
Storage of matrices, 20, 985 
Strain hardening (tangent) modulus. 601 
Strain measures: 

Almansi, 585, 586 
engineering, 155 
Green-Lagrange, 512 
Hencky,512,614 
logarithmic, 512, 614 

Strain-displacement matrix: 
definition, 162 
elementary example, 168 

Strain singularity, 369 
Stress calculation, 162, 170, 179. 254 
Stress integration, 583, 596 
Stress jumps, 254 
Stress measures: 

Cauchy, 499 
first Piola-Kirchhoff, 515 
Kirchhoff, 515 
second Piola-Kirchhoff, S 15 

Stress-strain (constitutive) relations, 109, 161, 194, 
297,581 

Stretch matrix: 
left, 510 
right, 508, 510 

Strong form, 125 
Structural dynamics, 813 
Studying finite element methods, 14 
Sturm sequence check. 953, 964 
Sturm sequence property, 63, 728, 846 

application in calculation of eigenvalues. 
943,964 

application in solution of equations, 731 
proof for generalized eigenvalue problem, 859 
proof for standard eigenvalue problem, 64 

Subdomain method, 119 
Subparametric element, 363 
Subspace, 37 
Subspace iteration method, 954 
Substructure analysis. 721 
SuPG method, 691 
Surface load vector, 164, 173, 205, 214, 355, 359 
Symmetry of: 

bilinear form, 228 



Index 

T 

matrix, 19 
operator, 117 

Tangent stiffness matrix, 494, 540, 755 
Tangent stress-strain matrix, 524, 583, 602 
Target, 623 
Temperature gradient interpolation matrix, 651 
Temperature interpolation matrix, 651 
Tensors, 40 
Thermal stress, 359 
Thermoelastoplasticity and creep, 606 
Torsional behavior, 664 
Total Lagrangian formulation, 523, 538, 561, 587 
Total potential (or total potential energy), 86, 

160,268 
Trace of a matrix, 30 
Transformations: 

to different coordinate system, 189 
of generalized eigenproblem to standard 

form, 854 
in mode superposition, 789 

Transient analysis (See Dynamic response calcula-
tions by) 

Transition elements, 415 
Transpose of a matrix, 19 
Transverse shear strains, 424 
Trapezoidal rule: 

in displacement and stress dynamic step-by-step 
solution, 625, 780 

in heat transfer transient step-by-step solution, 
831 

Newton-Cotes formula, 457 
Triangle inequality, 67 
Triangular decomposition, 705 
Triangular factorization, 705 
Truncation error, 735 
Truss element, 150, 184, 199, 342, 543 
Turbulence, 676, 682 
Tying: 

of in·layer strains, 408, 444 
of transverse shear strains, 408, 430, 444 

u 

Unconditional stability, 774, 807 
Uniqueness of linear elasticity solution, 239 
Unit iµatrix (See Identity matrix) 
Unit vector (See Identity vector) 
Updated Lagrangian formulation, 523, 565, 587, 

614 
Upwinding, 685 
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v 
Vandermonde matrix, 456 
Variable-number-nodes elements, 343, 373 
Variational formulations (introduction to), 110 
Variational indicators: 

Hellinger-Reissner, 274, 285, 297 
Hu-Washizu, 270, 285, 297 
incremental potential, 561 
total potential energy, 86, 125, 160, 242, 268 

Vector: 
back-substitution, 707, 712 
cross product, 41 
definition, 18, 40 
deflation (See Gram-Schmidt orthogonalization) 
dot product, 41 
forward iteration, 889, 897 
inverse iteration, 889, 890 
norm, 67 
reduction, 707, 712 
space, 36 
subspace, 37 

Velocity gradient, 511 
Velocity strain tensor, 511 
Vibration analysis (See Dynamic response calcula­

tions by) 
Virtual work principle (See Principle of virtual dis-

placements) 
Viscoplasticity, 609 
Von Mises yield condition, 599 
Vorticity tensor, 511 

w 

Warping, 413 
Wave equation, 106, 108, 114 
Wave propagation, 772, 783, 814 
Wavefront solution method (See Frontal solution 

method) 
Weak form, 125 
Weighted residuals: 

z 

collocation method, 119 
Galerkin method (See also Principle of virtual 

displacements; Principle of virtual tempera~ 
tures; and Principle of virtual velocities), 
118, 126, 688 

least squares method, 119, 257, 688 
variational formulation, 116 

Zero mass effects, 772, 852, 862 














