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Preface — Second Edition

It is almost two decades ago that the first edition of this book was first printed, and so far the
text has been printed seventeen times. Although the edition is still much in demand, I decided
that some updating of the text would be appropriate.

Frequently, a second edition of a book is significantly more voluminous than the first
edition. However, I decided that this book should not grow in size. Hence, to add any new text

required the removal of some previously published text, and only new important material was
to be added.

This aim goes well with the basic objective of the book — to focus on those finite
element procedures that I consider very useful and that I believe will be in use for a long time.

Although many papers on research and development of finite element methods have been
published during the last two decades, the fundamental formulations and procedures, focused
upon in this book, hardly changed. Hence, the updates to reach this new edition are not
extensive. Only some important recent work is now briefly mentioned and referred to, and
some recently developed novel procedures have been inserted in the new text.

I would like to thank all my colleagues and students with whom I have collaborated in
my endeavors on finite element procedures, and Victor Lee of ADINA R & D who has typeset
the new added text. For me, the work on finite element procedures has been very exciting and
gratifying, and continues to be so, as can be read about in my book “To Enrich Life”.

K.J. Bathe

Xiii



Preface — First Edition

Finite element procedures are now an important and frequently indispensable part of
engineering analysis and design. Finite element computer programs are now widely used in
practically all branches of engineering for the analysis of structures, solids, and fluids.

My objective in writing this book was to provide a text for upper-level undergraduate
and graduate courses on finite element analysis and to provide a book for self-study by
engineers and scientists.

With this objective in mind, I have developed this book from my earlier publication
Finite Element Procedures in Engineering Analysis (Prentice-Hall, 1982). I have kept the
same mode of presentation but have consolidated, updated, and strengthened the earlier
writing to the current state of finite element developments. Also, I have added new sections,
both to cover some important additional topics for completeness of the presentation and to
facilitate (through exercises) the teaching of the material discussed in the book.

This text does not present a survey of finite element methods. For such an endeavor,
anumber of volumes would be needed. Instead, this book concentrates only on certain finite
element procedures, namely, on techniques that I consider very useful in engineering
practice and that will probably be employed for many years to come. Also, these methods
are introduced in such a way that they can be taught effectively—and in an exciting
manner—to students.

An important aspect of a finite element procedure is its reliability, so that the method
can be used in a confident manner in computer-aided design. This book emphasizes this
point throughout the presentations and concentrates on finite element procedures that are
general and reliable for engineering analysis.

Hence, this book is clearly biased in that it presents only certain finite element
procedures and in that it presents these procedures in a certain manner. In this regard, the
book reflects my philosophy toward the teaching and the use of finite element methods.

Xiv



Preface XV

While the basic topics of this book focus on mathematical methods, an exciting and
thorough understanding of finite element procedures for engineering applications is
achieved only if sufficient attention is given to both the physical and mathematical charac-
teristics of the procedures. The combined physical and mathematical understanding greatly
enriches our confident use and further development of finite element methods and is there-
fore emphasized in this text.

These thoughts also indicate that a collaboration between engineers and mathemati-
cians to deepen our understanding of finite element methods and to further advance in the
fields of research can be of great benefit. Indeed, I am thankful to the mathematician Franco
Brezzi for our research collaboration in this spirit, and for his valuable suggestions regard-
ing this book.

I consider it one of the greatest achievements for an educator to write a valuable book.
In these times, all fields of engineering are rapidly changing, and new books for students are
needed in practically all areas of engineering. I am therefore grateful that the Mechanical
Engineering Department of M.I.T. has provided me with an excellent environment in which
to pursue my interests in teaching, research, and scholarly writing. While it required an
immense effort on my part to write this book, I wanted to accomplish this task as a
commitment to my past and future students, to any educators and researchers who might
have an interest in the work, and, of course, to improve upon my teaching at M.L.T.

I have been truly fortunate to work with many outstanding students at M.I.T., for
which I am very thankful. It has been a great privilege to be their teacher and work with
them. Of much value has also been that I have been intimately involved, at my company
ADINA R & D, Inc., in the development of finite element methods for industry. This
involvement has been very beneficial in my teaching and research, and in my writing of this
book.

A text of significant depth and breadth on a subject that came to life only a few decades
ago and that has experienced tremendous advances, can be written only by an author who
has had the benefit of interacting with many people in the field. I would like to thank all my
students and friends who contributed—and will continue to contribute—to my knowledge
and understanding of finite element methods. My interaction with them has given me great
joy and satisfaction.

I also would like to thank my secretary, Kristan Raymond, for her special efforts in
typing the manuscript of this text.

Finally, truly unbounded thanks are due to my wife, Zorka, and children, Ingrid and

Mark, who, with their love and their understanding of my efforts, supported me in writing
this book.

K. J. Bathe






Bl CHAPTER ONE I

An Introduction
to the Use of Finite
Element Procedures

1.1 INTRODUCTION

Finite element procedures are at present very widely used in engineering analysis, and we
can expect this use to increase significantly in the years to come. The procedures are
employed extensively in the analysis of solids and structures and of heat transfer and fluids,
and indeed, finite element methods are useful in virtually every field of engineering analysis.

The development of finite element methods for the solution of practical engineering
problems began with the advent of the digital computer. That is, the essence of a finite
element solution of an engineering problem is that a set of governing algebraic equations is
established and solved, and it was only through the use of the digital computer that this
process could be rendered effective and given general applicability. These two properties—
effectiveness and general applicability in engineering analysis—are inherent in the theory
used and have been developed to a high degree for practical computations, so that finite
element methods have found wide appeal in engineering practice.

As is often the case with original developments, it is rather difficult to quote an exact
“date of invention,” but the roots of the finite element method can be traced back to three
separate research groups: applied mathematicians-—see R. Courant [A]; physicists—see
J. L. Synge [A]; and engineers—see J. H. Argyris and S. Kelsey [A]. Although in principle
published already, the finite element method obtained its real impetus from the develop-
ments of engineers. The original contributions appeared in the papers by J. H. Argyris and
S. Kelsey [A]; M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp [A]; and R. W.
Clough [A]. The name “finite element” was coined in the paper by R. W. Clough [A].
Important early contributions were those of J. H. Argyris [A] and O. C. Zienkiewicz and
Y. K. Cheung [A]. Since the early 1960s, a large amount of research has been devoted to
the technique, and a very large number of publications on the finite element method is

1



2 An Introduction to the Use of Finite Element Procedures  Chap. 1

available (see, for example, the compilation of references by A. K. Noor [A] and the Finite
Element Handbook edited by H. Kardestuncer and D. H. Norrie [A)).

The finite element method in engineering was initially developed on a physical basis
for the analysis of problems in structural mechanics. However, it was soon recognized that
the technique could be applied equally well to the solution of many other classes of
problems. The objective of this book is to present finite element procedures comprehen-
sively and in a broad context for solids and structures, field problems (specifically heat
transfer), and fluid flows.

To introduce the topics of this book we consider three important items in the following
sections of this chapter. First, we discuss the important point that in any analysis we always
select a mathematical model of a physical problem, and then we solve that model. The finite
element method is employed to solve very complex mathematical models, but it is important
to realize that the finite element solution can never give more information than that
contained in the mathematical model.

Then we discuss the importance of finite element analysis in the complete process of
computer-aided design (CAD). This is where finite element analysis procedures have their
greatest utility and where an engineer is most likely to encounter the use of finite element
methods.

In the last section of this chapter we mention some recent important research accom-
plishments that have been reached since the first publication of this book in 1996. These
achievements have been published in numerous papers, of which we can only mention
some, but it is important to note that these research efforts build, to a large degree, upon the
fundamental finite element procedures focused upon in this book.

1.2 PHYSICAL PROBLEMS, MATHEMATICAL MODELS,
AND THE FINITE ELEMENT SOLUTION

The finite element method is used to solve physical problems in engineering analysis and
design. Figure 1.1 summarizes the process of finite element analysis. The physical problem
typically involves an actual structure or structural component subjected to certain loads.
The idealization of the physical problem to a mathematical model requires certain assump-
tions that together lead to differential equations governing the mathematical model (see
Chapter 3). The finite element analysis solves this mathematical model. Since the finite
element solution technique is a numerical procedure, it is necessary to assess the solution
accuracy. If the accuracy criteria are not met, the numerical (i.e., finite element) solution
has to be repeated with refined solution parameters (such as finer meshes) until a sufficient
accuracy is reached.

It is clear that the finite element solution will solve only the selected mathematical
model and that all assumptions in this model will be reflected in the predicted response. We
cannot expect any more information in the prediction of physical phenomena than the
information contained in the mathematical model. Hence the choice of an appropriate
mathematical model is crucial and completely determines the insight into the actual physical
problem that we can obtain by the analysis.
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Figure 1.1 The process of finite element analysis

Let us emphasize that, by our analysis, we can of course only obtain insight into the
physical problem considered: we cannot predict the response of the physical problem
exactly because it is impossible to reproduce even in the most refined mathematical model
all the information that is present in nature and therefore contained in the physical problem.

Once a mathematical model has been solved accurately and the results have been
interpreted, we may well decide to consider next a refined mathematical mode! in order to
increase our insight into the response of the physical problem. Furthermore, a change in the
physical problem may be necessary, and this in turn will also lead to additional mathemat-
ical models and finite element solutions (see Fig. 1.1).

The key step in engineering analysis is therefore choosing appropriate mathematical
models. These models will clearly be selected depending on what phenomena are to be



4 An Introduction to the Use of Finite Element Procedures Chap. 1

predicted, and it is most important to select mathematical models that are reliable and
effective in predicting the quantities sought.

To define the reliability and effectiveness of a chosen model we think of a very-
comprehensive mathematical model of the physical problem and measure the response of
our chosen model against the response of the comprehensive model. In general, the very-

comprehensive mathematical model is a fully three-dimensional description that also in-
cludes nonlinear effects.

Effectiveness of a mathematical model

The most effective mathematical model for the analysis is surely that one which yields
the required response to a sufficient accuracy and at least cost.

Reliability of a mathematical model

The chosen mathematical model is reliable if the required response is known to be

predicted within a selected level of accuracy measured on the response of the very-
comprehensive mathematical model.

Hence to assess the results obtained by the solution of a chosen mathematical model,
it may be necessary to also solve higher-order mathematical models, and we may well think
of (but of course not necessarily solve) a sequence of mathematical models that include
increasingly more complex effects. For example, a beam structure (using engineering termi-
nology) may first be analyzed using Bernoulli beam theory, then Timoshenko beam theory,
then two-dimensional plane stress theory, and finally using a fully three-dimensional
continuum model, and in each case nonlinear effects may be included. Such a sequence of
models is referred to as a hierarchy of models (see K. J. Bathe, N. S. Lee, and M. L. Bucalem
[A]. Clearly, with these hierarchical models the analysis will include ever more complex
response effects but will also lead to increasingly more costly solutions. As is well known,
a fully three-dimensional analysis is about an order of magnitude more expensive (in
computer resources and engineering time used) than a two-dimensional solution,

Let us consider a simple example to illustrate these ideas.

Figure 1.2(a) shows a bracket used to support a vertical load. For the analysis, we need
to choose a mathematical model. This choice must clearly depend on what phenomena are
to be predicted and on the geometry, material properties, loading, and support conditions
of the bracket.

We have indicated in Fig. 1.2(a) that the bracket is fastened to a very thick steel
column. The description “very thick” is of course relative to the thickness f and the height
h of the bracket. We translate this statement into the assumption that the bracket is fastened
to a (practically) rigid column. Hence we can focus our attention on the bracket by applying
a “rigid column boundary condition” to it. (Of course, at a later time, an analysis of the
column may be required, and then the loads carried by the two bolts, as a consequence of
the load W, will need to be applied to the column.)

We also assume that the load W is applied very slowly. The condition of time “very
slowly” is relative to the largest natural period of the bracket; that is, the time span over
which the load W is increased from zero to its full value is much longer than the fundamen-
tal period of the bracket. We translate this statement into requiring a static analysis (and not
a dynamic analysis).
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With these preliminary considerations we can now establish an appropriate mathe-
matical model for the analysis of the bracket—depending on what phenomena are to be
predicted. Let us assume, in the first instance, that only the total bending moment at section
AA in the bracket and the deflection at the load application are sought. To predict these
quantities, we consider a beam mathematical model including shear deformations [see
Fig. 1.2(b)] and obtain

M = WL
1.1
= 27,500 N cm (.1
8] 1 W(L + ry)? + W(L + ry)
atlopdW ™
3 EI H
sAG (1.2)
= 0,053 cm
7//
i
Uniform
thickness t W= 1000 N
@ Two bolts L =27.5cm
rn=05cm
E =2x 107 Njem?
4 v =03
| h h =6.0cm
! t =0.4cm
1
i Tn
< L Pin
‘A W w
— Very thick steel column
_
(a) Physical problem of steel bracket
' A
—{ == ry=05cm
7 E W= 1000 N
1
2 : h=6cm ‘}
/—*‘—»X e = e = o e i e ey i
1 1
Y
1 d
At -
' A L+ry=28cm

{b) Beam model

Figure 1.2 Bracket to be analyzed and two mathematical models
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Areas with impaosed zero displacements u, v
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Hole w
Load applied
N at point B
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Equilibrium equations (see Example 4.2)

a;'xx + ggﬂ =0

* 4 in domain of bracket
9 9 _
ax ay

7 = 0, 7. = 0 on surfaces except at point B
and at imposed zero displacements

Stress-strain relation (see Table 4.3):

Trex 1 v 0 €xx
Ty)' = 1 — ]}2 v 1 0 Eyy
Tey 0 0 (U-v2ll vy

E = Young’s modulus, » = Poisson’s ratio
Strain-displacement relations (see Section 4.2):

_ﬁ%_ dv ou ov

x = y = hy =+ —
& ax & ay T dy ax

(c) Plane stress model

Figure 1.2 (continued)

where L and ry are given in Fig. 1.2(a), E is the Young's modulus of the steel used, G is the
shear modulus, I is the moment of inertia of the bracket arm (I = {5h°1), A is the cross-
sectional area (A = hr), and the factor £ is a shear correction factor (see Section 5.4.1).

Of course, the relations in (1.1) and (1.2) assume linear elastic infinitesimal displace-
ment conditions, and hence the load must not be so large as to cause yielding of the material
and/or large displacements.

Let us now ask whether the mathematical model used in Fig. 1.2(b) was reliable and
effective. To answer this question, strictly, we should consider a very-comprehensive math-
ematical model, which in this case would be a fully three-dimensional representation of the
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full bracket. This model should include the two bolts fastening the bracket to the (assumed
rigid) column as well as the pin through which the load W is applied. The three-dimensional
solution of this model using the appropriate geometry and material data would give the
numbers against which we would compare the answers given in (1.1) and (1.2). Note that
this three-dimensional mathematical model contains contact conditions (the contact is
between the bolts, the bracket, and the column, and between the pin carrying the load and
the bracket) and stress concentrations in the fillets and at the holes. Also, if the stresses
are high, nonlinear material conditions should be included in the model. Of course, an
analytical solution of this mathematical model is not available, and all we can obtain is a
numerical solution. We describe in this book how such solutions can be calculated using
finite element procedures, but we may note here already that the solution would be rela-
tively expensive in terms of computer resources and engineering time used,

Since the three-dimensional comprehensive mathematical model is very likely too
comprehensive a model (for the analysis questions we have posed), we instead may consider
a linear elastic two-dimensional plane stress model as shown in Fig. 1.2(c). This mathemat-
ical model represents the geometry of the bracket more accurately than the beam model and
assumes a two-dimensional stress situation in the bracket (see Section 4.2). The bending
moment at section AA and deflection under the load calculated with this model can be
expected to be quite close to those calculated with the very-comprehensive three-
dimensional model, and certainly this two-dimensional model represents a higher-order
model against which we can measure the adequacy of the results given in (1.1) and (1.2).
Of course, an analytical solution of the model is not available, and a numerical solution must
be sought.

Figures 1.3(a) to (¢) show the geometry and the finite element discretization used in
the solution of the plane stress mathematical model and some stress and displacement
results obtained with this discretization. Let us note the various assumptions of this math-
ematical model when compared to the more comprehensive three-dimensional model dis-
cussed earlier. Since a plane stress condition is assumed, the only nonzero stresses are 7,
Tyy, and 7,. Hence we assume that the stresses 7,., 7., and 7., are zero. Also, the actual bolt
fastening and contact conditions between the steel column and the bracket are not included

%
O

O
N

(a) Geometry of bracket as obtained from a CAD program

Figure 1.3 Plane stress analysis of bracket in Fig. 1.2, AutoCAD was used to create the
geometry, and ADINA was used for the finite element analysis.



(b) Mesh of nine-node elements used in finite element dis-
cretization

(c) Deflected shape. Deflections are drawn with a magpnifi-
cation factor of 100 together with the original configura-

tion

{e) Maximum principal stress near notch.
Smoothed stress results. (The averages of
nodal point stresses are taken and interpo-
lated over the elements.)

{d) Maximum principal stress near notch. Un-
smoothed stress results are shown. The small
breaks in the bands indicate that a reasonably
accurate solution of the mathematical model
has been obtained {see Section 4.3.6)

Figure 1.3 (continued)
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in the model, and the pin carrying the load into the bracket is not modeled. However, since
our objective is only to predict the bending moment at section AA and the deflection at point
B, these assumptions are deemed reasonable and of relatively little influence.

Let us assume that the results obtained in the finite element solution of the mathemat-
ical model are sufficiently accurate that we can refer to the solution given in Fig. 1.3. as the
solution of the plane stress mathematical model.

Figure 1.3(c) shows the calculated deformed configuration. The deflection at the point
of load application B as predicted in the plane stress solution is

5|auoadw = 0.064 cm (1.3)
Also, the total bending moment predicted at section AA is
M |¢=o = 27,500 N cm (1.4)

Whereas the same magnitude of bending moment at section AA is predicted by the
beam model and the plane stress model,' the deflection of the beam model is considerably
less than that predicted by the plane stress model [because of the assumption that the beam
in Fig. 1.2(b) is supported rigidly at its left end, which neglects any deformation between
the beam end and the bolts],

Considering these results, we can say that the beam mathematical model in Fig. 1.2(b)
is reliable if the required bending moment is to be predicted within 1 percent and the
deflection is to be predicted only within 20 precent accuracy. The beam model is of course
also effective because the calculations are performed with very little effort.

On the other hand, if we next ask for the maximum stress in the bracket, then the
simple mathematical beam model in Fig. 1.2(b) will not yield a sufficiently accurate answer.
Specifically, the beam model totally neglects the stress increase due to the fillets.> Hence a
plane stress solution including the fillets is necessary.

The important points to note here are the following.

1. The selection of the mathematical model must depend on the response to be predicted
(i.e., on the questions asked of nature).

2. The most effective mathematical model is that one which delivers the answers to the
questions in a reliable manner (i.e., within an acceptable error) with the least amount
of effort.

3. A finite element solution can solve accurately only the chosen mathematical model
(e.g., the beam model or the plane stress model in Fig. 1.2) and cannot predict any
more informatjon than that contained in the model.

4. The notion of reliability of the mathematical model hinges upon an accuracy assess-
ment of the results obtained with the chosen mathematical model (in response to the
questions asked) against the results obtained with the very-comprehensive mathemat-
ical model. However, in practice the very-comprehensive mathematical model is

! The bending moment at section AA in the plane stress model is calculated here from the finite element
nodal point forces, and for this statically determinate analysis problem the internal resisting moment must be equal
to the externally applied moment (see Example 4.9).

20f course, the effect of the fillets could be estimated by the use of stress concentration factors that have
been established from plane stress solutions.
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usually not solved, and instead engineering experience is used, or a more refined
mathematical model is solved, to judge whether the mathematical model used was
adequate (i.e., reliable) for the response to be predicted.

Finally, there is one further important general point. The chosen mathematical model
may contain extremely high stresses because of sharp corners, concentrated loads, or other
effects. These high stresses may be due solely to the simplifications used in the model when
compared with the very-comprehensive mathematical model (or with nature). For example,
the concentrated load in the plane stress model in Fig. 1.2(c) is an idealization of a pressure
load over a small area. (This pressure would in nature be transmitted by the pin carrying
the load into the bracket.) The exact solution of the mathematical model in Fig. 1.2(c) gives
an infinite stress at the point of load application, and we must therefore expect a very large
stress at point B as the finite element mesh is refined. Of course, this very large stress is an
artifice of the chosen model, and the concentrated load should be replaced by a pressure
load over a small area when a very fine discretization is used (see further discussion).
Furthermore, if the model then still predicts a very high stress, a nonlinear mathematical
model would be appropriate.

Note that the concentrated load in the beam model in Fig. 1.2(b) does not introduce
any solution difficulties. Also, the right-angled sharp corners at the support of the beam
model, of course, do not introduce any solution difficulties, whereas such corners in a plane
stress model would introduce infinite stresses. Hence, for the plane stress model, the corners
have to be rounded to more accurately represent the geometry of the actual physical bracket.

We thus realize that the solution of a mathematical model may result in artificial
difficulties that are easily removed by an appropriate change in the mathematical model to
more closely represent the actual physical situation. Furthermore, the choice of a more
encompassing mathematical model may result, in such cases, in a decrease in the required
solution effort.

While these observations are of a general nature, let us consider once again,
specifically, the use of concentrated loads. This idealization of load application is exten-
sively used in engineering practice. We now realize that in many mathematical models (and
therefore also in the finite element solutions of these models), such loads create stresses of
infinite value. Hence, we may ask under what conditions in engineering practice solution
difficulties may arise. We find that in practice solution difficulties usually arise only when
the finite element discretization is very fine, and for this reason the matter of infinite stresses
under concentrated loads is frequently ignored. As an example, Fig. 1.4 gives finite element
results obtained in the analysis of a cantilever, modeled as a plane stress problem. The
cantilever is subjected to a concentrated tip load. In practice, the 6 X 1 mesh is usually
considered sufficiently fine, and clearly, a much finer discretization would have to be used
to accurately show the effects of the stress singularities at the point of load application and
at the support. As already pointed out, if such a solution is pursued, it is necessary to change
the mathematical model to more accurately represent the actual physical situation of the
structure. This change in the mathematical model may be important in self-adaptive finite
element analyses because in such analyses new meshes are generated automatically and
artificial stress singularities cause—artificially—extremely fine discretizations.

We refer to these considerations in Section 4.3.4 when we state the general elasticity
problem considered for finite element solution.
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(a) Geometry, boundary conditions, and material data.
Bernoulli beam theory results: § = 0,16, Tmax= 120
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{b) Typica! finite element discretization,
6 x 1 mesh of 9-node elements;
resuits are: d = 0.16, Tmgx = 116

Figure 1.4 Analysis of a cantilever as a plane stress problem

In summary, we should keep firmly in mind that the crucial step in any finite element
analysis is always choosing an appropriate mathematical model since a finite element
solution solves only this model. Furthermore, the mathematical model must depend on the
analysis questions asked and should be reliable and effective (as defined earlier). In the
process of analysis, the engineer has to judge whether the chosen mathematical model has
been solved to a sufficient accuracy and whether the chosen mathematical model was
appropriate (i.e., reliable) for the questions asked. Choosing the mathematical model,
solving the model by appropriate finite element procedures, and judging the results are the
fundamental ingredients of an engineering analysis using finite element methods.

1.3 FINITE ELEMENT ANALYSIS AS AN INTEGRAL PART
OF COMPUTER-AIDED ENGINEERING

Although a most exciting field of activity, engineering analysis is clearly only a support
activity in the larger field of engineering design. The analysis process helps to identify good
new designs and can be used to improve a design with respect to performance and cost.

In the early use of finite element methods, only specific structures were analyzed,
mainly in the aerospace and civil engineering industries. However, once the full potential
of finite element methods was realized and the use of computers increased in engineering
design environments, emphasis in research and development was placed upon making the

use of finite element methods an integral part of the design process in mechanical, civil, and
aeronautical engineering.
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Figure 1.5 The field of CAE viewed schematically

Figure 1.5 gives a schematic of the steps in computer-aided engineering, see K. J. Bathe

[C, D, H]. Finite element analysis is only a part of the complete process, but it is an important
part.

We note that the first step in Figure 1.5 is the creation of a geometric representation
of the design part. Many different computer programs can be employed (e.g., a typical and
popular program is AutoCAD). In this step, the material properties, the applied loading and
boundary conditions on the geometry also need to be defined. Given this information, a
finite element analysis may proceed. Since the geometry and other data of the actual
physical part may be quite complex, it is usually necessary to simplify the geometry and
loading in order to reach a tractable mathematical model. Of course, the mathematical
model should be reliable and effective for the analysis questions posed, as discussed in the
preceding section. The finite element analysis solves the chosen mathematical model, which
may be changed and evolve depending on the purpose of the analysis (see Fig. 1.1).

Considering this process—which generally is and should be performed by engineer-
ing designers and not only specialists in analysis—we recognize that the finite element
methods must be very reliable and robust. By reliability of the finite element methods we
now® mean that in the solution of a well-posed mathematical model, the finite element
procedures should always for a reasonable finite element mesh give a reasonable solution,

3 Note that this meaning of “reliability of finite element methods” is different from that of “reliability of a
mathematical model” defined in the previous section.
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and if the mesh is reasonably fine, an accurate solution should always be obtained. By
robustness of the finite element methods we mean that the performance of the finite element
procedures should not be unduly sensitive to the material data, the boundary conditions,
and the loading conditions used. Therefore, finite element procedures that are not robust
will also not be reliable.

For example, assume that in the plane stress solution of the mathematical model in
Fig. 1.2(c), any reasonable finite element discretization using a certain element type is
employed. Then the solution obtained from any such analysis should not be hugely in error,
that is, an order of magnitude larger (or smaller) than the exact solution. Using an unreliable
finite element for the discretization would typically lead to good solutions for some mesh
topologies, whereas with other mesh topologies it would lead to bad solutions. Elements
based on reduced integration with spurious zero energy modes can show this unreliable
behavior (see Section 5.5.6).

Similarly, assume that a certain finite element discretization of a mathematical model
gives accurate results for one set of material parameters and that a small change in the
parameters corresponds to a small change in the exact solution of the mathematical model.
Then the same finite element discretization should also give accurate results for the math-
ematical model with the small change in material parameters and not yield results that are
very much in error.

These considerations regarding effective finite element discretizations are very im-
portant and are discussed in the presentation of finite element discretizations and their
stability and convergence properties (see Chapters 4 to 7). For use in engineering design,
it is of utmost importance that the finite element methods be reliable, robust, and of course
efficient. Reliability and robustness are important because a designer has relatively little
time for the process of analysis and must be able to obtain an accurate solution of the chosen
mathematical model quickly and without “trial and error.” The use of unreliable finite
element methods is simply unacceptable in engineering practice.

A general aim in a finite element analysis is also the calculation of error estimates, that is,
estimates of how closely the finite element solution approximates the exact solution of the
solution of the mathematical model (see Section 4.3.6). These estimates indicate whether a spe-
cific finite element discretization has indeed yielded an accurate response prediction, and a de-

signer can then rationally decide whether the given results should be used. In the case that un-

acceptable results have been obtained, perhaps by using unreliable finite element methods, the
difficulty is of course how to obtain accurate results.

Finally, we venture to comment on the future of finite element methods in CAE and the
engineering sciences. Surely, many designers do not have time to study finite element methods
in depth. Their sole objective is to use these techniques to enhance the design product. Hence
the integrated use of finite clement methods in CAE ideally involves less scrutiny of finite
element meshes during the analysis, so that the engineer can focus on the actual questions relat-
ed to the design. This has now been achieved to some extent, buta fully automatic solution
involving all steps of analysis is so far only possible some simple design questions. The aspects
of human judgments and solution costs play major roles in complex analyses involving dyna-
mic or nonlinear response solutions, including the selection of an appropriate mathematical
model, see M.L. Bucalem and K.J. Bathe [B], and may require considerable analysis expertise.
Also, the simulations sought become increasingly more complex, involving not only solids and
structures, but multiphysics phenomena with solids, fluids, piezoelectrics, electromagnetics and
their interactions, see for example K. J. Bathe [I, K, L], P. Gaudenzi and K. J. Bathe [A], K. J.
Bathe, H. Zhang, and Y. Yan [A] and C. Deilmann and K. J. Bathe [A].
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Considering the use of finite element methods in the engineering sciences, while there is
considerable use already, there is much further potential for development and applications. In
essence, the aim in all analyses, in engineering and in the sciences, is to predict—to predict
how a chosen design or a structure will perform, or to predict why and how in sciences a
specific phenomenon occurs. Clearly, the human spirit is extremely interested in predicting,
and when using the finite element process much can be done in that respect.

With these remarks we do not wish to suggest overconfidence but to express a realistic
outlook with respect to the valuable and exciting future use of finite element procedures. For
some remarks on overconfidence in regard to finite element methods, see the article “A
Commentary on Computational Mechanics” by J. T. Oden and K. J. Bathe [A].

1.4 SOME RECENT RESEARCH ACCOMPLISHMENTS

Since the publication of the 1996 edition of this book, significant research has focused on new
finite element developments, primarily, to address the solution of physical problems that before
could not be solved, to alleviate the human effort required to perform a finite element analysis,
and to establish computationally faster solution schemes. These aims to perform simulations
more broadly and more effectively are naturally very important to be addressed in research and
developments.

Numerous papers have been published on these topics, and it is hardly possible to
describe in a single book all these recent developments with an exhaustive list of references
while also presenting in some detail important fundamental formulations and finite element
techniques — which are the focus of this book. In accordance with this focus, it is however
appropriate to refer to some major recent research, published in many papers, briefly here.
While mostly academically excellent research accomplishments, the step from a publication of
a method in a paper to its wide use is very large and, frequently, it is still questionable in how
far the proposed methods will actually advance the state of simulations in practice.

A very natural further development of finite element procedures is based on “enriching
the interpolation functions” used. Usually, simple polynomial functions are employed but other
functions for specific problem solutions can be more effective. In fact, the best interpolation
functions are clearly always those that contain the solution sought (see Section 4.3). Some of
the first developments in this regard are the special crack tip elements, see S.E. Benzley [A],
special pipe elements to include ovalization modes, see K.J. Bathe and C. A. Almeida [A], and
special elements with discontinuities, see E.N. Dvorkin, A.M. Cuitifio, and G. Gioia, [A]. The
procedure to enrich finite element interpolation functions can be valuable, in particular, for the
analyses of structures with cracks and crack propagations, see N. Moés, J. Dolbow, and T.
Belytschko [A], and the solution of wave propagations, see S. Ham and K.J. Bathe [A]. More
recently, the approach has been named “extended finite element method” or in short XFEM,
see N. Sukumar, N. Moés, B. Moran, and T. Belytschko [A], “generalized finite element
method”, see T. Strouboulis, K. Copps, and I. Babuska [A], and the “partition of unity finite
element method”, see J.M. Melenk and I. Babuska [A]. In essence, the usual, widely employed
finite element discretizations and interpolation functions are in these approaches enriched with
special functions, known to be effective for the solution of specific problems. A valuable other
development for general polygonal elements preserving polynomial accuracy and continuity
requirerments has been proposed by L. Beirdo da Veiga, F. Brezzi, A. Cangiani, G. Manzini,
L.D. Marini, and A. Russo [A]. An important consideration in all developments is, of course,
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to ensure that the overall solution is computationally always effective, in particular when
considering solutions in three-dimensional complex domains, see R. Tian, G. Yagawa, and H.
Terasaka [A] and S. Ham and K.J. Bathe [A].

Instead of embedding new special functions in the finite element interpolations, also
“interpolation covers” can be used to increase the accuracy of the solution while always
working with non-singular, well-conditioned stiffness matrices, see C.A. Duarte, 1. Babuska,
and J.T. Oden [A], J.H. Kim and K.J. Bathe [A,B] and H.M. Jeon, P. S. Lee, and K.J. Bathe
[A]. This approach is appealing because the standard finite elements are used and covers are
applied only when needed in certain areas of the finite element mesh, without remeshing. The
basic idea relates to the original development of the “numerical manifold method”, see G.H.
Shi [A] and G.W. Ma, X.M. An, H.H. Zhang, and L.X. Li [A].

To increase the accuracy of solution, mostly just the mesh density is increased in the
areas of large solution errors. However, remeshing using traditional finite element
interpolations that are continuous over the clement boundaries can be computationally
demanding and here the discontinuous Galerkin finite element procedures have been proposed,
see F. Bassi and S. Rebay [A], D.N. Amold, F. Brezzi, B. Cockburn, and L.D. Marini [(A] and
L. Noels and R. Radovitzky [A]. The elements are formulated with discontinuous
interpolations, and, in theory, a mesh density can be easily increased. Various interesting forms
of discontinuous finite element formulations exist.

In practice, a major effort in finite element analysis frequently pertains to the generation
of a good finite element mesh. The geometry is constructed in the finite element preprocessor
or taken as input to the preprocessor from a CAD package, like NX or SolidWorks. Simple
geometries can directly be meshed but frequently the CAD geometry is first worked on to
simplify the geometry, for example to remove small features such as small holes, or to convert
a thin three-dimensional geometry into a two-dimensional surface of a shell structure. The
result is a geometry tractable for analysis, that is, given in terms of lines (defining surfaces and
volumes) associated with control points for the lines. This geometry is then meshed with finite
elements defined by nodal points and degrees of freedom on and within the geometry. Instead
of defining the elements in this way, some recent research has focused on defining the finite
elements and the interpolations of solution variables directly by the CAD interpolation
functions used to define the CAD geometry, with degrees of freedom located at the control
points of the CAD functions. These control points are mostly not located on the CAD lines and
are usually located outside the physical domain that is considered in the analysis. Much
research has been focused on this interesting approach, see for example P. Kagan, A. Fischer,
and P.Z. Bar-Yoseph [A] and T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs [A].

For the finite element mesh generation, today, very powerful programs are in use, but it is
a specific challenge to only generate “good elements”, which means elements that are close to
their natural geometries, for example in three-dimensional analysis, tetrahedral elements of
equal sides and not thin and long elements. In fluid mechanics solutions, it is particularly
important that the lines connecting the centers of the elements are perpendicular to the element
faces (for the upwinding procedures used, see Chapter 7.4.3). The difficulty of obtaining a
good mesh of elements stems, in essence, from the fact that the complete geometry needs to be
covered with finite elements that do not overlap. Good element meshes can be generated quite
easily in two-dimensional analyses but not so for complex three-dimensional solutions.

To by-pass the need for a mesh, so-called “meshless methods” (or meshfree methods)
have been developed. Here nodal points are used with unknown solution variables, like in the
finite element method, but the domains pertaining to these nodes are different. Some specific
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developments are the “element-free Galerkin methods™, see T. Belytschko, Y.Y. Lu, and L. Gu
[A], the “reproducing kemel particle methods”, see W.K. Liu, S. Jun, and Y.F. Zhang [A], the
“meshless cloud method”, see T.J. Liszka, C.A.M. Duarte, and W.W. Tworzydlo [A] and J.T.
Oden, C.AM. Duarte, and O.C. Zienkiewicz [A], the “finite point method”, see E. Ofate, S.
1delsohn, O.C. Zienkiewicz, and R.L.Taylor [A], the “meshless Petrov-Galerkin method”, see
S.N. Atluri and T. Zhu [A], the “method of finite spheres”, see S. De and K.J. Bathe [A, B] and
J.W. Hong and K.J. Bathe [A], and “particle methods”, see T. Rabczuk, T. Belytschko, and
S.P. Xiao [A] and G.R. Liu [A]. While the basic ideas of meshless methods are very appealing,
the difficulties are in the expense of the numerical integrations and, sometimes, in the use of
numerical factors (undesirable in practice) to have a stable scheme. Of course, in principle, the
interpolation enhancements mentioned above can also be embedded into meshless methods, see
S. Ham, B. Lai, and K.J. Bathe [A].

Considering the method of finite spheres, it can be thought of as a finite element method
in which the elements (here now the discs, spheres) overlap. Using "overlapping finite
elements” (including quadrilaterals and bricks, and only near the boundaries of a CAD domain)
coupled with traditional finite elements, an analysis scheme with much promise has been
proposed for CAD driven analyses in K.J. Bathe [M] and K.J. Bathe and L. Zhang [A].

Significant further research effort has also been directed to the more effective analysis of
shells. These structures are very difficult to analyze because of their extremely rich linear and
nonlinear behavior, see D. Chapelle and K.J. Bathe [B,E]. Progress has been achieved in
establishing more encompassing formulations, see M. Bischoff and E. Ramm [A], D. Chapelle,
A. Ferent, and K.J. Bathe [A], T. Sussman and K.J. Bathe [D], formulating new elements, see
P.S. Lee and K.J. Bathe [A], proposing different discretization techniques, see F, Cirak, M.
Ortiz, and P. Schréder [A] and identifying stringent test problems with appropriate norms to
measure the solution accuracy, see K.J. Bathe and P.S. Lee [A]. As pointed out in Section
5.4.2, the stringent testing of any shell discretization technique is very important, see D.
Chapelle and K.J. Bathe [E].

Of much interest in engineering practice is the solution of increasingly larger finite
element systems. This is achieved through combinations of sparse and iterative solvers in
parallel processing, on shared and distributed memory machines. Finite element solutions with
millions of degrees of freedom are now routinely obtained, see for example K.J. Bathe [J, K],
and this trend towards the solution of larger finite element models must be expected to
continue.

Today, an increased emphasis of finite element analysis is on the solution of fluid-
structure interactions, see S. Rugonyi and K.J. Bathe [A], and general multiphysics problems
involving structures, fluids and electromagnetics, see K.J. Bathe, H. Zhang, and Y. Yan [A].
Simulations are performed from the nano- to the kilometer scales, like the modeling of proteins
and DNA structures, see e.g. M. Bathe [A], to the modeling of the earth crust for understanding
earthquakes. The possible applications are vast in the various fields of engineering and the
sciences, and simulations will be possible and pursued to an ever increasing extent, due to the
increase in capabilities of software and hardware. Indeed, we may conjecture that “we are still
only at the beginning of all the many and varied simulations that will be performed in the
future because to understand and predict is a basic and most valuable desire of mankind.”

In many of these developments and applications, the finite element procedures given in
this book are fundamental ingredients that have been built upon. The procedures given in the
book are those that we can expect to be used for a long time, because they are reliable and
effective, they are used already extensively in practice, and represent foundations for many
further developments.



El CHAPTER TWO NI

Vectors, Matrices,
and Tensors

I

2.1 INTRODUCTION

The use of vectors, matrices, and tensors is of fundamental importance in engineering
analysis because it is only with the use of these quantities that the complete solution process
can be expressed in a compact and elegant manner. The objective of this chapter is to
present the fundamentals of matrices and tensors, with emphasis on those aspects that are
important in finite element analysis.

From a simplistic point of view, matrices can simply be taken as ordered arrays of
numbers that are subjected to specific rules of addition, multiplication, and so on. It is of
course important to be thoroughly familiar with these rules, and we review them in this
Chapter.

However, by far more interesting aspects of matrices and matrix algebra are recog-
nized when we study how the elements of matrices are derived in the analysis of a physical
problem and why the rules of matrix algebra are actually applicable. In this context, the use
of tensors and their matrix representations are important and provide a most interesting
subject of study.

Of course, only a rather limited discussion of matrices and tensors is given here, but

we hope that the focused practical treatment will provide a strong basis for understanding
the finite element formulations given later.

17
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2.2 INTRODUCTION TO MATRICES

The effectiveness of using matrices in practical calculations is readily realized by consider-
ing the solution of a set of linear simultaneous equations such as

5x1~4x2+ X3 = ()

"4.!1 + 6X2 ha 4X3 + Xy = 1

2.1)

x1—4x2+6x3—4x4=0
12“4X3+5.X4=0

where the unknowns are x,, X2, x3, and x4. Using matrix notation, this set of equations is
written as

0

! 22)
1 -4 6 —4 X3 0

0

where it is noted that, rather logically, the coefficients of the unknowns (5, —4, 1, etc.) are
grouped together in one array; the left-hand-side unknowns (x;, x2, x3, and x4) and the
right-hand-side known quantities are each grouped together in additional arrays. Although
written differently, the relation (2.2) still reads the same way as (2.1). However, using

matrix symbols to represent the arrays in (2.2), we can now write the set of simultaneous
equations as

Ax =b (2.3)

where A is the matrix of the coefficients in the set of linear equations, x is the matrix of
unknowns, and b is the matrix of known quantities; i.e.,

5 -4 1 0 X 0
-4 6 -4 1 X2 1
= =|*|. = 4
A 1 -4 6 -4 *Tlul  PTo 24)
0 1 -4 5 X 0

The following formal definition of a matrix now seems apparent.

Definition; A matrix is an array of ordered numbers. A general matrix consists of mn numbers
arranged in m rows and n columns, giving the following array:

a4 Qin

an Qp . Gy (2.5)
A= . . .

am  Qm te Qmn

We say that this matrix has order m X n (m by n). When we have only one row (m = 1) or
one column (n = 1), we also call A a vector. Matrices are represented in this book by
boldface letters, usually uppercase letters when they are not vectors. On the other hand,
vectors can be uppercase or lowercase boldface.
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We therefore see that the following are matrices:

B
2 |
where the first and the last matrices are also column and row vectors, respectively.

A typical element in the ith row and jth column of A is identified as ay; e.g., in the
first matrix in (2.4), a1 = 5 and a,; = —4. Considering the elements a; in (2.5), we note
that the subscript i runs from 1 to m and the subscript j runs from 1 to n. A comma between
subscripts will be used when there is any risk of confusion, e.g., @i+r, j+s, O to denote
differentiation (see Chapter 6).

In general, the utility of matrices in practice arises from the fact that we can identify

and manipulate an array of many numbers by use of a single symbol. We shall use matrices
in this way extensively in this book.

1 4 -53
[3 21 6 ], [61 22 3] (2.6)

Symmetric, Diagonal, and Banded Matrices; A Storage Scheme

Whenever the elements of a matrix obey a certain law, we can consider the matrix to be of
special form. A real matrix is a matrix whose elements are all real. A complex matrix has

elements that may be complex. We shall deal only with real matrices. In addition, the matrix
will often be symmetric.

Definition: The transpose of the m X n matrix A, written as A", is obtained by interchanging
the rows and columns in A. If A = A7, it follows that the number of rows and columns in A are
equal and that a; = a;;. Because m = n, we say that A is a square matrix of order n, and because
a; = ag, we say that A is a symmetric matrix. Note that symmetry implies that A is square, but
not vice versa, i.e., a square matrix need not be symmetric.

For example, the coefficient matrix A in (2.2) is a symmetric matrix of order 4. We
can verify that AT = A by simply checking that a; = a;; fori,j = 1,...,4.

Another special matrix is the identity (or unit) matrix I,, which is a square matrix of
order n with only zero elements except for its diagonal entries, which are unity. For
example, the identity matrix of order 3 is

10
L=|01 @7
00

- O

In practical calculations the order of an identity matrix is often implied and the subscript
is not written. In analogy with the identity matrix, we also use identity (or unit) vectors of
order n, defined as e;, where the subscript { indicates that the vector is the ith column of an
identity matrix.

We shall work abundantly with symmetric banded matrices. Bandedness means that

all elements beyond the bandwidth of the matrix are zero. Because A is symmetric, we can
state this condition as

a; =0 forj>i+my (2.8)
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where 2ma + 1 is the bandwidth of A. As an example, the following matrix is a symmetric
banded matrix of order 5. The half-bandwidth m, is 2:

32100
23410

A=|1 4 5 6 1 (2.9)
0167 4
00143

If the half-bandwidth of a matrix is zero, we have nonzero elements only on the
diagonal of the matrix and denote it as a diagonal matrix. For example, the identity matrix
is a diagonal matrix.

In computer calculations with matrices, we need to use a scheme of storing the
elements of the matrices in high-speed storage. An obvious way of storing the elements of
a matrix A of order m X n is simply to dimension in the FORTRAN program an array
A(M, N), where M = m and N = n, and store each matrix element a; in the storage
location A(l, J). However, in many calculations we store in this way unnecessarily many
zero elements of A, which are never needed in the calculations. Also, if A is symmetric, we
should probably take advantage of it and store only the upper half of the matrix, including
the diagonal elements. In general, only a restricted number of high-speed storage locations
are available, and it is necessary to use an effective storage scheme in order to be able to take
into high-speed core the maximum matrix size possible. If the matrix is too large to be
contained in high-speed storage, the solution process will involve reading and writing on
secondary storage, which can add significantly to the solution cost. Fortunately, in finite
element analysis, the system matrices are symmetric and banded. Therefore, with an effec-
tive storage scheme, rather large-order matrices can be kept in high-speed core.

Let us denote by A(I) the Ith element in the one-dimensional storage array A. A
diagonal matrix of order n would simply be stored as shown in Fig. 2.1(a):

A(D = ai; I=i=1...,n (2.10)

Consider a banded matrix as shown in Fig. 2.1(b). We will see later that zero elements
within the “skyline” of the matrix may be changed to nonzero elements in the solution
process; for example, a;s may be a zero element but becomes nonzero during the solution
process (see Section 8.2.3). Therefore we allocate storage locations to zero elements within
the skyline but do not need to store zero elements that are outside the skyline. The storage
scheme that will be used in the finite element solution process is indicated in Fig. 2.1 and
is explained further in Chapter 12.

Matrix Equality, Addition, and Muiltiplication by a Scalar

We have defined matrices to be ordered arrays of numbers and identified them by single
symbols. In order to be able to deal with them as we deal with ordinary numbers, it is
necessary to define rules corresponding to those which govern equality, addition, subtrac-
tion, multiplication, and division of ordinary numbers. We shall simply state the matrix
rules and not provide motivation for them. The rationale for these rules will appear later,
as it will turn out that these are precisely the rules that are needed to use matrices in the
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— ~
an Elements not
agz shown are zeros
a3 .
844 A(1) = 841, Al{2) = a3, A(3) = a3
. Ald) = agy, ..., A(N) = ap
aﬂn
L JR—
{a) Diagonal matrix
= matl=4 ~  Skyline
an 0 a3 s y/
N 0 ha
az \an ax S A1) = an, Al2) = az,
a3 33 ass \\\ A(3) = 833, A(4) = a3,
— A(8) = ay3, A(6) = ayq,
a“\a“s s A(T) = a3, A(B) = ass,
ags  asg A(9) = a5, A(10) = azs,
symmetric 266 At::”’ = az5, A(12) = 3ge.
etc.

(b} Banded matrix, ma=3

Figure 2.1 Storage of matrix A in a one-dimensional array

solution of practical problems. For matrix equality, matrix addition, and matrix multiplica-
tion by a scalar, we provide the following definitions.

Definition: The matrices A and B are equal if and only if

1. A and B have the same number of rows and columns.
2. All corresponding elements are equal; i.e. ay = by for all i and j.

Definition: Two matrices A and B can be added if and only if they have the same number of
rows and columns. The addition of the matrices is performed by adding all corresponding
elements; i.e., if a; and b; denote general elements of A and B, respectively, then c; = a; + by
denotes a general element of C, where C = A + B. It follows that C has the same number of
rows and columns as A and B.

EXAMPLE 2.1: Calculate C = A + B, where
2 11
A”[o.s 3 0]’ B=

Here we have C=A+B=[

f
~
[ EOL )
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It should be noted that the order in which the matrices are added is not important. The
subtraction of matrices is defined in an analogous way.

EXAMPLE 2.2: Calculate C = A — B, where A and B are given in Example 2.1. Here we

have
-1 0 -1
C=4A B“Ll.s -1 "1]

From the definition of the subtraction of matrices, it follows that the subtraction of a
matrix from itself results in a matrix with zero elements only. Such a matrix is defined to
be a null matrix 0. We turn now to the multiplication of a matrix by a scalar.

Definition: A matrix is multiplied by a scalar by multiplying each matrix element by the
scalar; i.e.,, C = kA means that ¢; = kay.

The following example demonstrates this definition.

EXAMPLE 2.3: Calculate C = kA, where

2 11
A= : ==
{0.5 3 0:|’ k=2

4 2 2

We have kaA-—[l 6 0]

It should be noted that so far all definitions are completely analogous to those used in

the calculation with ordinary numbers. Furthermore, to add (or subtract) two general

matrices of order n X m requires nm addition (subtraction) operations, and to multiply a

general matrix of order n X m by a scalar requires nm multiplications. Therefore, when the

matrices are of special form, such as symmetric and banded, we should take advantage of

the situation by evaluating only the elements below the skyline of the matrix C because all
other elements are zero.

Muttiplication of Matrices

We consider two matrices A and B and want to find the matrix product C = AB.

Definition: Two matrices A and B can be multiplied to obtain C = AB if and only if the
number of columns in A is equal to the number of rows in B. Assume that A is of orderp X m
and B is of order m X q. Then for each element in C we have

Cy = 2 aiby (2.11)
r==4

where C is of order p X gq; i.e., the indices i and j in (2.11) vary from 1 to p and 1 to g,
respectively.

Therefore, to calculate the (i, j)th element in C, we multiply the elements in the ith
row of A by the elements in the jth column of B and add all individual products. By taking
the product of each row in A and each column in B, it follows that C must be of orderp X g.
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EXAMPLE 2.4: Calculate the matrix product C = AB, where

5 31 1 5

A=| 462, B=|2 4

10 3 4 32

We have cn = (SY(1) + 3)(2) + (1)(3) = 14

ey = 4)(1) + (6)(2) + 2)3) =22
cn = (10)(1) + (3)(2) + (4)(3) = 28 etc.

14 39
Hence we obtain C=122 48
28 70

As can readily be verified, the number of multiplications required in this matrix
multiplication is p X g X m. When we deal with matrices in practice, however, we can
often reduce the number of operations by taking advantage of zero elements within the
matrices.

EXAMPLE 2.5: Calculate the matrix product ¢ = Ab, where

2 -1 0 0 4

2 -1 0 1

AT symmetric 2 -1y . 2
¥ 1 3

Here we can take advantage of the fact that the bandwidth of A is 3; i.e., ma = 1, Thus,
taking into account only the elements within the band of A, we have

a =)@+ (-1D)1) =7

= (=D@+ @AM+ (-1)Q2) = -4
= (N1 + Q)+ (-DE) =0
ca=(=D2)+ (HB) =1

Hence ¢ =

As is well known, the multiplication of ordinary numbers is commutative; i.e.,
ab = ba. We need to investigate if the same holds for matrix multiplication. If we consider
the matrices

A= B] B=[3 4] 2.12)

we have AB = [2 ;] BA = [11] (2.13)
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Therefore, the products AB and BA are not the same, and it follows that matrix multiplica-
tion is not commutative. Indeed, depending on the orders of A and B, the orders of the two
product matrices AB and BA can be different, and the product AB may be defined, whereas
the product BA may not be calculable.

To distinguish the order of multiplication of matrices, we say that in the product AB,
the matrix A premultiplies B, or the matrix B postmultiplies A. Although AB # BA in
general, it may happen that AB = BA for special A and B, in which case we say that A and
B commute.

Although the commutative law does not hold in matrix multiplication, the distributive
law and associative law are both valid. The distributive law states that

E = (A + B)C = AC + BC (2.14)

In other words, we may first add A and B and then multiply by C, or we may first multiply
A and B by C and then do the addition. Note that considering the number of operations, the
evaluation of E by adding A and B first is much more economical, which is important to
remember in the design of an analysis program.

The distributive law is proved using (2.11); that is, using

ey = 2 (ar‘r + bir)crj (2.15)

r=1

we obtain ey = 2 apCy + > bi.c, (2.16)
1

r= r={

The associative law states that
G = (AB)C = A(BC) = ABC 2.17)

in other.words, that the order of multiplication is immaterial. The proof is carried out by

using the definition of matrix multiplication in (2.11) and calculating in either way a general
element of G.

Since the associative law holds, in practice, a string of matrix multiplications can be
carried out in an arbitrary sequence, and by a clever choice of the sequence, many opera-
tions can frequently be saved. The only point that must be remembered when manipulating
the matrices is that brackets can be removed or inserted and that powers can be combined,
but that the order of multiplication must be preserved.

Consider the following examples to demonstrate the use of the associative and distribu-
tive laws in order to simplify a string of matrix multiplications.
EXAMPLE 2.6: Calculate A®, where

S

One way of evaluating A* is to simply calculate
2 12 1 5 3

2 =1 =
S 1 R R

s 52 1 15 20
I = A2 - =
Hence AT =AA [5 10][1 3} [20 35]
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15 201[2 17 [50 75
4= AIA = =
and AT=AA [20 35“1 3] [75 125]

Alternatively, we may use

5 55 5 50 75
4 = A2A2 .. =
AT=AA [5 10][5 10] {75 125]

and save one matrix multiplication.

EXAMPLE 2.7: Evaluate the product v7Av, where

3 21 1
A=12 4 2| v= 2
1 26 -1

The formal procedure would be to calculate x = Av: ie.,

3 2 1 1 6

X=Av=]|2 4 2 2| = 8

I 2 6]} -1 -1

and then calculate v7x to obtain
6
VAv=[1 2 -1]{ 8|=23
~1
However, it is more effective to calculate the required product in the following way. First,

we write
A=U+D+ U

where U is a lower triangular matrix and D is a diagonal matrix,

0 0 0 300
U=1{2 0 0} D=]0 4 0
1 20 0 0 6
Hence we have VAV = v (U + D + Uy

vTAvV = vTUv + v'Dv + vTUTy
However, v'Uv is a single number and hence v7U’v = v"Uy, and it follows that
v'AvV = 2v7Uv + v'Dy (a)

The higher efficiency in the matrix multiplication is obtained by taking advantage of the fact that
U is a lower triangular and D is a diagonal matrix. Let x = Uv; then we have

X, = 0
X = (2)(1) =2
= ()1) + 2)2) =5
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Hence x=12

Next, we obtain
vViUy = vix = (2)2) + (—1D(5) = ~1
Also viDy = (1)(1)(3) + (2)(2)@) + (—1)(—1)(6)
= 25

Hence using (a) we have vAv = 23, as before.

Apart from the commutative law, which in general does not hold in matrix multipli-
cations, the cancellation of matrices in matrix equations also cannot be performed, in
general, as the cancellation of ordinary numbers. In particular, if AB = CB, it does not
necessarily follow that A = C. This is easily demonstrated considering a specific case:

2 1]1 4 0|11
[+ olla)= 15 31L2] @19
2 1 4 0
" 2« e
However, it must be noted that A = C if the equation AB = CB holds for all possible B.
Namely, in that case, we simply select B to be the identity matrix I, and hence A = C.

It should also be noted that included in this observation is the fact that if AB = 0, it
does not follow that either A or B is a null matrix. A specific case demonstrates this

observation:
1 0 00 0 0
A= [2 O]’ B = [3 4], AB = {0 O] (2.20)

Some special rules concerning the use of transposed matrices in matrix multiplica-
tions need to be pointed out. It is noted that the transpose of the product of two matrices
A and B is equal to the product of the transposed matrices in reverse order; i.e.,

(AB)” = BTAT 2.21)

The proof that (2.21) does hold is obtained using the definition for the evaluation of a matrix
product given in (2.11).

Considering the matrix products in (2.21), it should be noted that although A and B
may be symmetric, AB is, in general, not symmetric. However, if A is symmetric, the matrix
B7AB is always symmetric. The proof follows using (2.21):

(B"AB)" = (AB)"(B")” (2.22)
= BTA’B (2.23)

But, because AT = A, we have
(BTAB)” = BTAB (2.24)

and hence B"AB is symmetric.
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The Inverse Matrix

We have seen that matrix addition and subtraction are carried out using essentially the same
laws as those used in the manipulation of ordinary numbers. However, matrix multiplication
is quite different, and we have to get used to special rules. With regard to matrix division,
it strictly does not exist. Instead, an inverse matrix is defined. We shall define and use the
inverse of square matrices only.

Definition: The inverse of a matrix A is denoted by A™". Assume that the inverse exists; then
the elements of A~ are such that A™'A = Y and AA~! = L. A matrix that possesses an inverse
is said to be nonsingular. A matrix without an inverse is a singular matrix.

As mentioned previously, the inverse of a matrix does not need to exist. A trivial
example is the null matrix. Assume that the inverse of A exists. Then we still want to show
that either of the conditions A"'A = Ior AA™' = Iimplies the other. Assume that we have
evaluated the ¢lements of the matrices A;' and A;' such that A7'A = Tand AA;! = L,
Then we have

Ar' = ATHAATY) = (A7A)AT = A (2.25)
and hence A;' = A

EXAMPLE 2.8: Evaluate the inverse of the matrix A, where

a-[ 7]

For the inverse of A we need AA™' = 1. By trial and error (or otherwise) we find that

oo

We check that AA™' = Jand A™'A = I:
2 —1703 ¢ [l 0]
AA-! = e
[‘1 3]& %] 01
H 2 —1] _ [1 0
-1 3 0 1

To calculate the inverse of a product AB, we proceed as follows. Let G = (AB)™!,
where A and B are both square matrices. Then

[ v
ALt tafe

A'A = [

nfon TATW

GAB =1 (2.26)
and postmultiplying by B™' and A™', we obtain
GA = B (2.27)
G =B 'A"! (2.28)
Therefore, (AB)"! = B 'A™! (2.29)

We note that the same law of matrix reversal was shown to apply when the transpose of a
matrix product is calculated.
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EXAMPLE 2.9: For the matrices A and B given, check that (AB)™! = B~'A™\,

2 -1 : 30
A= : 3
- 31’ s[5 4]
The inverse of A was used in Example 2.8. The inverse of B is easy to obtain:
Lo
B =|>
o 1]
To check that (AB)™' = B~'A™!, we need to evaluate C = AB:
Cx[ 2 -1] 3 0}_ 6 —4
-1 3j10 4 -3 12
Assume that C™! = B~'A~'. Then we would have
| @

I
o 1l Tl

To check that the matrix given in (a) is indeed the inverse of C, we evaluate C~'C and find that

LS 6 -4
—1 — 5 15 —
cc {% r'a][”?’ 12] !

But since C™! is unique and only the correct C™! satisfies the relation C™'C = I, we indeed have
found in (a) the inverse of C, and the relation (AB)™' = B~'A™! is satisfied.

=

In Examples 2.8 and 2.9, the inverse of A and B could be found by trial and error.
However, to obtain the inverse of a general matrix, we need to have a general algorithm.

One way of calculating the inverse of a matrix A of order » is to solve the n systems of
equations

AX =1 (2.30)
where I is the identity matrix of order n and we have X = A", For the solution of each
system of equations in (2.30), we can use the algorithms presented in Section 8.2.

These considerations show that a system of equations could be solved by calculating
the inverse of the coefficient matrix; i.e., if we have
Ay = ¢ (2.31)
where A is of order n X n and y and ¢ are of order n X 1, then
y = Alc (2.32)

However, the inversion of A is very costly, and it is much more effective to only solve the
equations in (2.31) without inverting A (see Chapter 8). Indeed, although we may write
symbolically that y = A™'c, to evaluate y we actually only solve the equations.

Partitioning of Matrices

To facilitate matrix manipulations and to take advantage of the special form of matrices, it
may be useful to partition a matrix into submatrices. A submatrix is a matrix that is obtained
from the original matrix by including only the elements of certain rows and columns. The
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idea is demonstrated using a specific case in which the dashed lines are the lines of
partitioning:

an | i Q3 a4 A5 Qi
i H]
A=1lay | an an aun | axs ax (2.33)
e oo . ————— P QR
G311 | G G G, A3 43

It should be noted that each of the partitioning lines must run completely across the original
matrix. Using the partitioning, matrix A is written as

All AIZ AIS]
A= 2.34
{AZI Axn An @34
where Ay = {a"]; Ay = [au o a“]; etc. (2.35)
an G2 4 axn
The right-hand side of (2.34) could again be partitioned, such as
All : A12 Al3}
A= , 2.36
[Azn i An An (2.36)
and we may write A as
- - - A”] - [AIZ AlS]
A=[A A A = H A = 237
(A Al l [Azl ? Axn Ap @37)

The partitioning of matrices can be of advantage in saving computer storage; namely,
if submatrices repeat, it is necessary to store the submatrix only once. The same applies in
arithmetic. Using submatrices, we may identify a typical operation that is repeated many
times. We then carry out this operation only once and use the result whenever it is needed.

The rules to be used in calculations with partitioned matrices follow from the
definition of matrix addition, subtraction, and multiplication. Using partitioned matrices we
can add, subtract, or multiply as if the submatrices were ordinary matrix elements, provided
the original matrices have been partitioned in such a way that it is permissible to perform
the individual submatrix additions, subtractions, or multiplications.

These rules are easily justified and remembered if we keep in mind that the partition-

ing of the original matrices is only a device to facilitate matrix manipulations and does not
change any results.

EXAMPLE 2.10: Evaluate the matrix product C = AB in Example 2.4 by using the following
partitioning:
53 11 15
A=|4.6: 21 B=|24
10 3 ¢ 4 3 2
AH Al’Z Bl
Here we have A= [ ]; B = { ]
AZ] A22 B2
AHB[ + AIZBZ:]
Therefore, AB = [ a
AB) + AxB, ®
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5 311 51 [ 37
But = =
! AuBy [4 6}[2 4] [16 44]

o[ - ]

Then substituting into (a) we have

14 39
AB = |22 48
28 70

EXAMPLE 2.11; Taking advantage of partitioning, evaluate ¢ = Ab, where

4 3 .1 2 2
36 12 1 2
A12§86’ b=1,
2 16 12 1

The only products that we need to evaluate are
w = [4 3}[1" _[7
Y3 oedit] o
3

M HEH

We can now construct ¢:

2w+ W]
2w, + 2w |

or, substituting, c=

The Trace and Determinant of a Matrix

The trace and determinant of a matrix are defined only if the matrix is square. Both

quantities are single numbers, which are evaluated from the elements of the matrix and are
therefore functions of the matrix elements.

Definition: The trace of the matrix A is denoted as tr(A) and is equal to 3~ a;;, where n is
the order of A.
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EXAMPLE 2,12: Calculate the trace of the matrix A given in Example 2.11.
Here we have

tr(A) =4+ 6+ 8 + 12 =30
The determinant of a matrix A can be defined in terms of the determinants of subma-

trices of A and by noting that the determinant of a matrix of order 1 is simply the element
of the matrix; i.e., if A = [a;], then det A = a,.

Definition: The determinant of an n X n matrix A is denoted as det A and is defined by the
recurrence relation

det A = 2 (~1)"*/a,, det A, (2.38)

j=1

where Ay is the (n — 1) X (n — 1) matrix obtained by eliminating the 1st row and jth column
Sfrom the matrix A.

EXAMPLE 2,13: Evaluate the determinant of A, where

A= [an 012]
azn an
Using the relation in (2.38), we obtain
det A = (“‘l)zau det A;, + (-l)’au det Ay

But det Ay = ap; det Az = ay

Hence det A = ay1a; — apay

This relation is the general formula for the determinant of a 2 X 2 matrix.

It can be shown that to evaluate the determinant of a matrix we may use the recurrence
relation given in (2.38) along any row or column, as indicated in Example 2.14.

EXAMPLE 2.14: Evaluate the determinant of the matrix A, where

210
A=1{1 3 1
01 2

Using the recurrence relation in (2.38), we obtain

det A = (—1)(2) det E’ ;]

, 11
+ (—1)(1) det [0 2]

. 13
+ (—1)*(0) det [0 1]
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We now employ the formula for the determinant of a 2 X 2 matrix given in Example 2.13 and
have

det A = (2){(3)(2) - (D)} = {(1)(2) — O} + 0
Hence detA =8
Let us check that the same result is obtained by using (2.38) along the second row instead

of the first row. In this case we have, changing the 1 to 2 in (2.38),

det A = (—1)°(1) det [i g]

N——rk

s 2 1
+ (=1)%(1) det [0 1]

Again using the formula given in Example 2.13, we have
det A = —{(1)(2) — O)(1)} + GH2)(2) - OO} - {2)(1) — (1)©O)}
or, as before,
detA =8

Finally, using (2.38) along the third column, we have

e 1 3
det A = ( 1)(O)det[0 1]

+(=1)%(1) det [(2) 1]

21
+ (— 6
(—1)%2) det [1 3]
and, as before, obtain det A = 8.

Many theorems are associated with the use of determinants. Typically, the solution of

a set of simultaneous equations can be obtained by a series of determinant evaluations (see,
for example, B. Noble [A]). However, from a modern viewpoint, most of the results that are
obtained using determinants can be obtained much more effectively. For example, the
solution of simultaneous equations using determinants is very inefficient. As we shall see
later, a primary value of using determinants lies in the convenient shorthand notation we
can use in the discussion of certain questions, such as the existence of an inverse of a matrix.
We shall use determinants in particular in the solution of eigenvalue problems.

In evaluating the determinant of a matrix, it may be effective to first factorize the

matrix into a product of matrices and then use the following result:

det (BC:--F) = (det B)}det C) - - - (det F) (2.39)
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Relation (2.39) states that the determinant of the product of a number of matrices is equal
to the product of the determinants of each matrix. The proof of this result is rather lengthy
and clumsy [it is obtained using the determinant definition in (2.38)], and therefore we shall
not include it here. We shall use the result in (2.39) often in eigenvalue calculations when
the determinant of a matrix, say matrix A, is required. The specific decomposition used is
A = LDL', where L is a lower unit triangular matrix and D is a diagonal matrix (see
Section 8.2.2). In that case,

det A = det L det D det L7 (2.40)
and because det L = 1, we have
det A = I;I1 dii (2.41)

EXAMPLE 2.15: Using the LDL" decomposition, evaluate the determinant of A, where A is
given in Example 2.14.

The procedure to obtain the LDL” decomposition of A is presented in Section 8.2. Here
we simply give L and D, and it can be verified that LDLT = A:

1 0 0 2 00
L=1}{4{ 1 0} D=0 { 0
0 % 1 00 ¢

Using (2.41), we obtain

det A = 2)(H)(§) = 8
This is also the value obtained in Example 2.14.

The determinant and the trace of a matrix are functions of the matrix elements.
However, it is important to observe that the off-diagonal elements do not affect the trace
of a matrix, whereas the determinant is a function of all the elements in the matrix.
Although we can conclude that a large determinant or a large trace means that some matrix

elements are large, we cannot conclude that a small determinant or a small trace means that
all matrix elements are small.

EXAMPLE 2.16: Calculate the trace and determinant of A, where

A= [ulr“ 10,2000]
Here we have
tr(A) =3
and det A = (1)(2) — (107%)(10,000)

ie., det A = 1

Hence both the trace and the determinant of A are small in relation to the off-diagonal ele-
ment a;;.
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2.3 VECTOR SPACES

In the previous section we defined a vector of order n to be an array of n numbers written
in matrix form. We now want to associate a geometric interpretation with the elements of
a vector. Consider as an example a column vector of order 3 such as

X1 2
x=|x|=1|4 (2.42)
X3 3

We know from elementary geometry that x represents a geometric vector in a chosen
coordinate system in three-dimensional space. Figure 2.2 shows assumed coordinate axes
and the vector corresponding to (2.42) in this system. We should note that the geometric
representation of x depends completely on the coordinate system chosen; in other words, if
(2.42) would give the components of a vector in a different coordinate system, then the
geometric representation of x would be different from the one in Fig. 2.2. Therefore, the
coordinates (or components of a vector) alone do not define the actual geometric quantity,

but they need to be given together with the specific coordinate system in which they are
measured.

X3 4

2
X = [4} Figure 2.2 Geometric representation of

X1 vector X

The concepts of three-dimensional geometry generalize to a vector of any finite order
n. If n > 3, we can no longer obtain a plot of the vector; however, we shall see that
mathematically all concepts that pertain to vectors are independent of n. As before, when
we considered the specific case n = 3, the vector of order » represents a quantity in a
specific coordinate system of an n-dimensional space.

Assume that we are dealing with a number of vectors all of order n, which are defined
in a fixed coordinate system. Some fundamental concepts that we shall find extremely
powerful in the later chapters are summarized in the following definitions and facts.
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Definition: A collection of vectors X,, X, . . . , X is said to be linearly dependent if there exist
numbers a;, a, . . ., &, which are not all zero, such that
ax; +mxa+ -+ ax, =0 (2.43)

If the vectors are not linearly dependent, they are called linearly independent vectors.

We consider the following examples to clarify the meaning of this definition.

EXAMPLE 2.17: Letn = 3 and determine if the vectors e;, i = 1, 2, 3, are linearly dependent
or independent.

According to the definition of linear dependency, we need to check if there are constants
ay, a2, and as, not all zero, that satisfy the equation

1 0 0 0
a; O + (7] 1 + a3 O = 0 (a)
0 0 1 0
But the equations in (a) read
[+ § 0
ay | = 0
453 0

which is satisfied only if a; = 0, = 1, 2, 3; therefore, the vectors ¢; are linearly independent.

EXAMPLE 2.18: Withn = 4, investigate whether the following vectors are linearly dependent
or independent.

1 -1 0
< = 1 X = 0| X = -0.5
1 0 ] 2 1 ’ 3 _0'5
0.5 0 | —0.25
We need to consider the system of equations
1 -1 0 0
1 0 -0.5 0
o | T 1)t =05 0
0.5 0 -0.25 | 0
or, considering each row,
a, — ap = Q
ay ~05ay = 0
an — 0.5 Ay = 0
0.50!\ - 0.2503 =0

where we note that the equations are satisfied for @y = 1, a, = 1, and a; == 2. Therefore, the
vectors are linearly dependent.
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In the preceding examples, the solution for «;, a;, and a; could be obtained by
inspection. We shall later develop a systematic procedure of checking whether a number of
vectors are linearly dependent or independent.

Another way of looking at the problem, which may be more appealing, is to say that
the vectors are linearly dependent if any one of them can be expressed in terms of the others.
That is, if not all of the «; fin (2.43) are zero, say a; # 0, then we can write

5
o

X = <2 =X (2.44)
I
Geometrically, when n < 3, we could plot the vectors and if they are linearly dependent,
we would be able to plot one vector in terms of multiples of the other vectors. For example,
plotting the vectors used in Example 2.17, we immediately observe that none of them can
be expressed in terms of multiples of the remaining ones; hence the vectors are linearly
independent.

Assume that we are given g vectors of order n, n = g, which are linearly dependent,
but that we only consider any (g — 1) of them. These (¢ — 1) vectors may still be linearly
dependent. However, by continuing to decrease the number of vectors under consideration,
we would arrive at p vectors, which are linearly independent, where, in general, p =< g. The

other (¢ — p) vectors can be expressed in terms of the p vectors. We are thus led to the
following definition.

Definition: Assume that we have p linearly independent vectors of order n, where n = p.
These p vectors form a basis for a p-dimensional vector space.

We talk about a vector space of dimension p because any vector in the space can be
expressed as a linear combination of the p base vectors. We should note that the base vectors
for the specific space considered are not unique; linear combinations of them can give
another basis for the same space. Specifically, if p = n, then a basis for the space considered
ise, i =1,...,n, from which it also follows that p cannot be larger than n.

Definition: q vectors, of which p vectors are linearly independent, are said to span a
p-dimensional vector space.

We therefore realize that all the importance lies in the base vectors since they are the
smallest number of vectors that span the space considered. All g vectors can be expressed
in terms of the base vectors, however large g may be (and indeed g could be larger than n).

EXAMPLE 2.19; Establish a basis for the space spanned by the three vectors in Example 2.18.

In this case ¢ = 3 and n = 4. We find by inspection that the two vectors X, and x, are
linearly independent. Hence x; and X, can be taken as base vectors of the two-dimensional space
spanned by Xy, X;, and Xs. Also, using the result of Example 2.18, we have X3 = —3X; — $ Xy,

Assume that we are given a p-dimensional vector space which we denote as E,, for
which x,, X2, . . . , X, are chosen base vectors, p > 1. Then we might like to consider only
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all those vectors that can be expressed in terms of x; and x,. But the vectors x, and x; also
form the basis of a vector space that we call E,. If p = 2, we note that E, and E; coincide.
We call E; a subspace of E,, the concise meaning of which is defined next.

Definition: A subspace of a vector space is a vector space such that any vector in the subspace
is also in the original space. If X;, Xa, . . ., X, are the base vectors of the original space, any
subset of these vectors forms the basis of a subspace; the dimension of the subspace is equal to
the number of base vectors selected.

EXAMPLE 2.20: The three vectors X;, X2, and X3 are linearly independent and therefore form
the basis of a three-dimensional vector space Ej:

x={"L x2={_|; X3 = (a)

i A 2

1
0 -1
0

0 0

p—

Identify some possible two-dimensional subspaces of Ej.

Using the base vectors in (a), a two-dimensional subspace is formed by any two of the three
vectors; €.g., X; and X, represent a basis for a two-dimensional subspace; x; and x3 are the basis
for another two-dimensional subspace; and so on. Indeed, any two linearly independent vectors
in E; form the basis of a two-dimensional subspace, and it follows that there are an infinite
number of two-dimensional subspaces in E;.

Having considered the concepts of a vector space, we may now recognize that the
columns of any rectangular matrix A also span a vector space. We call this space the column
space of A. Similarly, the rows of a matrix span a vector space, which we call the row space
of A. Conversely, we may assemble any g vectors of order n into a matrix A of ordern X q.
The number of linearly independent vectors used is equal to the dimension of the column
space of A. For example, the three vectors in Example 2.20 form the matrix

1 1 O
2 0 -1

A= ) 0 o0 (2.45)
0 0 1

Assume that we are given a matrix A and that we need to calculate the dimension of
the column space of A. In other words, we want to evaluate how many columns in A are
linearly independent. The number of linearly independent columns in A is neither increased
nor decreased by taking any linear combinations of them. Therefore, in order to identify the
column space of A, we may try to transform the matrix, by linearly combining its columns,
to obtain unit vectors e;. Because unit vectors e; with distinct i are linearly independent, the
dimension of the column space of A is equal to the number of unit vectors that can be
obtained. While frequently we are not able to actually obtain unit vectors e; (see Exam-
ple 2.21), the process followed in the transformation of A will always lead to a form that
displays the dimension of the column space.
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EXAMPLE 2.21: Calculate the dimension of the column space of the matrix A formed by the
vectors Xi, Xz, and X, considered in Example 2.20.
The matrix considered is

-~

1 1
2 0 -1
A=l o
0 0 1]
Writing the second and third columns as the first and second columns, respectively, we obtain
1 0 1]
o -1 2
A=l 0
0 1 0

Subtracting the first column from the third column, adding twice the second column to the third
column, and finally multiplying the second column by (—1), we obtain

1 0 O
0 1 0
el P
0 -1 2

But we have now reduced the matrix to a form where we can identify that the three columns are
linearly independent; i.e., the columns are linearly independent because the first three elements
in the vectors are the columns of the identity matrix of order 3. However, since we obtained A,
from A by interchanging and linearly combining the original columns of A and thus in the
solution process have not increased the space spanned by the columns of the matrix, we find that
the dimension of the column space of A is 3.

In the above presentation we linearly combined the vectors x;, . . . , X,, which were
the columns of A, in order to identify whether they were linearly independent. Alternatively,
to find the dimension of the space spanned by a set of vectors X, Xz, . . . , X,, we could use

the definition of vector linear independence in (2.43) and consider the set of simultaneous
homogeneous equations

ax; + aX, + - opx, =0 (2.46)

which is, in matrix form,
Aa =0 (2.47)
where a is a vector with elements a, . . . a,, and the columns of A are the vectors X,

X3, ..., X, The solution for the unknowns ai, ..., a, is not changed by linearly
combining or multiplying any of the rows in the matrix A. Therefore, we may try to reduce
A by multiplying and combining its rows into a matrix in which the columns consist only
of unit vectors. This reduced matrix is called the row-echelon form of A. The number of unit
column vectors in the row-echelon form of A is equal to the dimension of the column space
of A and, from the preceding discussion, is also equal to the dimension of the row space of
A. It follows that the dimension of the column space of A is equal to the dimension of the
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row space of A. In other words, the number of linearly independent columns in A is equal
to the number of linearly independent rows in A. This result is summarized in the definition
of the rank of A and the definition of the null space (or kernel) of A.

Definition: The rank of a matrix A is equal to the dimension of the column space and equal
1o the dimension of the row space of A.

Definition: The space of vectors o such that A = 0 is the null space (or kernel) of A.

EXAMPLE 2.22: Consider the following three vectors:

1] 3] (2]
2 1 3
X 1 X; = -2, X 1

i 3 » 2 4 ’ x} 5

4 2 6

| 3] | 1] 4]

Use these vectors as the columns of a matrix A and reduce the matrix to row-echelon form.
We have
1 3 2]
2 1 3
1 -2 1
A=

3 4 5
4 2 6
|3 —1 4]

Subtracting multiples of the first row from the rows below it in order to obtain the unit
vector e, in the first column, we obtain

1 3 7]
0 -5 -1
0 -5 -1
A=y s
0 —-10 -2
0 10 -2

Dividing the second row by (—5) and then subtracting multiples of it from the other rows in order
to reduce the second column to the unit vector e;, we obtain

1 0

-

il

S oo oo

Az

oo O o -
S OO O v wi

i
l
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Hence we can give the following equivalent statements:

1. The solution to Aa = 0 is
a = “'377 a3
a = "“% a3
2. The three vectors X, X2, and x; are linearly dependent. They form a two-dimensional

vector space. The vectors x, and x; are linearly independent, and they form a basis of the
two-dimensional space in which x;, X;, and x; lie.

3. The rank of A is 2.

4. The dimension of the column space of A is 2.

5. The dimension of the row space of A is 2.

6. The null space (kernel) of A has dimension 1 and a basis is the vector

—— Lafes U

Note that the rank of A7 is also 2, but that the kernel of AT has dimension 4.

2.4 DEFINITION OF TENSORS

In engineering analysis, the concept of tensors and their matrix representations can be
important. We shall limit our discussion to tensors in three-dimensional space and pri-
marily be concerned with the representation of tensors in rectangular Cartesian coordinate
frames.

Let the Cartesian coordinate frame be defined by the unit base vectors e; (see Fig. 2.3).
A vector u in this frame is given by

3
U= ue (2.48)
i=1

Figure 2.3 Cartesian coordinate systems
for definition of tensors
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where the u; are the components of the vector. In tensor algebra it is convenient for the

purpose of a compact notation to omit the summation sign in (2.48); i.e., instead of (2.48)
we simply write

u = ue (2.49)

where the summation on the repeated index i is implied (here i = 1, 2, 3). Since i could
be replaced by any other subscript without changing the result (e.g., k or j), it is also called
a dummy index. This convention is referred to as the ,ummation convention of indicial
notation (or the Einstein convention) and is used with efficiency to express in a compact
manner relations involving tensor quantities (see Chapter 6 where we use this notation
extensively).

Considering vectors in three-dimensional space, vector algebra is employed effec-
tively,

The scalar (or dot) product of the vectors u and v, denoted by u - v is given by

u-v=|ul|v|cos 8 (2.50)

where |u| is equal to the length of the vector u, |u| = Vuu;. The dot product can be
evaluated using the components of the vectors,

ucv =y (2.51)
The vector (or cross) product of the vectors u and v produces a new vectorw = u X v
e € €
w=det|w w us (2.52) .
Uy U2 U3

Figure 2.4 illustrates the vector operations performed in (2.50) and (2.52). We should
note that the direction of the vector w is obtained by the right-hand rule; i.e., the right-hand
thumb points in the direction of w when the fingers curl from u to v.

x3 4 cosf= YiYi
lul vl

iwl = lul Ivl sin 8

Figure 2.4 Vectors used in products
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These vector algebra procedures are frequently employed in finite element analysis to

evaluate angles between two given directions and to establish the direction perpendicular
to a given plane.

EXAMPLE 2,23: Assume that the vectors u and v in Fig. 2.4 are

3 0
u=13} v=12
4] 2

Calculate the angle between these vectors and establish a vector perpendicular to the plane that
is defined by these vectors.

Here we have

lu| = 3V2
Iv] =2V2
Hence cos 0 = %
and 8 = 60°.
A vector perpendicular to the plane defined by u and v is given by
€ € €
w=det{3 3 0
0 2 2
6
hence w=|-6
6
Using |w| = Vw;w;, we obtain
lw| = 6V3

which is also equal to the value obtained using the formula given in Fig. 2.4.

Although not specifically stated, the typical vector considered in (2.48) is a tensor. Let
us now formally define what we mean by a tensor.

For this purpose, we consider in addition to the unprimed Cartesian coordinate frame
a primed Cartesian coordinate frame with base vectors e; which spans the same space as
the unprimed frame (see Fig. 2.3).

An entity is called a scalar, a vector (i.e., a tensor of first order or rank 1), or a tensor
(i.e., a tensor of higher order or rank) depending on how the components of the entity are

defined in the unprimed frame (coordinate system) and how these components transform to
the primed frame.

Definition: An entity is called a scalar if it has only a single component ¢ in the coordinates

x; measured along e; and this component does not change when expressed in the coordinates x;
measured along e :

lx1, X2, x3) = @' (x1, x3, x3) (2.53)
A scalar is also a tensor of order 0. As an example, temperature at a point is a scalar.
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Definition: An entity is called a vector or tensor of first order if it has three components §; in
the unprimed frame and three components & in the primed frame, and if these components are
related by the characteristic law (using the summation convention)

& = pube (2.54)
where Dix = cos (e/, &) (2.55)

The relation (2.54) can also be written in matrix form as
£ =Pt (2.56)

where £, P, and £ contain the elements of (2.54).
The transformation in (2.54) corresponds to a change of basis in the representation of

the vector. To arrive at (2.54) we recognize that the same vector is considered in the two
different bases; hence we have

te) = Ley (2.57)
Using the fact that the base vectors in each coordinate frame are orthogonal to each other

and are of unit length, we can take the dot products [see (2.50)] on both sides of (2.57) with

e/ and obtain (2.54). Of course, analogously we could also take the dot product on both
sides with e,, to obtain the inverse transformation

& = cos(en, €/)§) (2.58)
or in matrix form, £E=PE (2.59)
Hence we note that P™' = P7, and this leads us to the following definition.

Definition: A matrix Q is an orthogonal matrix if Q"Q = QQ7 = L Therefore, for an or-
thogonal matrix, we have Q' = Q.

Hence the matrix P defined in (2.55) and (2.56) is an orthogonal matrix, and because the
elements of P produce a rotation, we also refer to P as a rotation matrix.
We demonstrate the preceding discussion in the following example.

EXAMPLE 2.24: The components of a force expressed in the unprimed coordinate system
shown in Fig. E2.24 are

X1, X7 1 ___,| x;  Figure E2.24 Representation of a force
in different coordinate systems
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Evaluate the components of the force in the primed coordinate system in Fig. £2.24.
Here we have, using (2.56),
1 0 0
P=|0 cosé8 sin 6
0 -—sin@ cos 6

and then R’ = PR (a)
where R’ gives the components of the force in the primed coordinate system, As a check, if we
use 6 = —30° we obtain, using (a),
0
R'=1]0
2

which is correct because the e3-vector is now aligned with the force vector.

To define a second-order tensor we build on the definition given in (2.54) for a tensor
of rank 1.

Definition: An entity is called a second-order tensor if it has nine components t;, i = 1, 2, 3,

andj = 1, 2, 3, in the unprimed frame and nine components t;; in the primed frame and if these
components are related by the characteristic law

I3 l'j = PuPutu (260)

As in the case of the definition of a first-order tensor, the relation in (2.60) represents
a change of basis in the representation of the entity (see Example 2.25) and we can formally
derive (2.60) in essentially the same way as we derived (2.54). That is, if we write the same
tensor of rank 2 in the two different bases, we obtain

Lrn€m€y = lyere (2.61)

where clearly in the tensor representation the first base vector goes with the first subscript
(the row in the matrix representation) and the second base vector goes with the second
subscript (the column in the matrix representation). The open product' or tensor product
ece; is called a dyad and a linear combination of dyads as used in (2.61) is called a dyadic,
(see, for example, L. E, Malvern [A}).

Taking the dot product from the right in (2.61), first with ¢; and then with e;, we
obtain

tr’nnevlnsnj = (e e - e,')
LrnOmiBn = tules - €7 )(e; * &) (2.62)
or ti = tupibp
'The open product or tensor product of two vectors denoted as ab is defined by the requirement that
(ab) v = a-v)

for all vectors v. Some writers use the notation a ® b instead of ab.
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Here §; is the Kronecker delta (6; = 1 for{ = j, and §; = O for i # j). This transforma-
tion may also be written in matrix form as

t' = PtP” (2.63)

where the (i, k)th element in P is given by pi. Of course, the inverse transformation also
holds:

t=PtP (2.64)

This relation can be derived using (2.61) and [similar to the operation in (2.62)] taking the

dot product from the right with ¢; and then e;, or simply using (2.63) and the fact that P is
an orthogonal matrix.

In the preceding definitions we assumed that all indices vary from 1 to 3; special cases
are when the indices vary from 1 to n, with n < 3. In engineering analysis we frequently
deal only with two-dimensional conditions, in which case n = 2.

EXAMPLE 2.25: Stress is a tensor of rank 2. Assume that the stress at a point measured in
an unprimed coordinate frame in a plane stress analysis is (not including the third row and

column of zeros)
_ 1 -1
Tl

Establish the components of the tensor in the primed coordinate system shown in Fig. E2.25.

#122-1 11
4 =—‘<_1 ” [— ) :}
21 1 1
=1
B —— ;u—-»-

Ty2=~1

x5 b X2

Figure E2.25 Representation of a stress tensor in different coordinate systems
Here we use the rotation matrix P as in Example 2.24, and the transformation in (2.63) is

o = PeP" p- [ cos 6 sin 9]
—sin § cos 6

Assume that we are interested in the specific case when 6 = 45°, In this case we have

SR I I R R P
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and we recognize that in this coordinate system the off-diagonal elements of the tensor (shear
components) are zero. The primed axes are called the principal coordinate axes, and the diagonal
elements 7{; = 0 and 15, = 2 are the principal values of the tensor. We will see in Section 2.5

that the principal tensor values are the eigenvalues of the tensor and that the primed axes define
the corresponding eigenvectors.

The previous discussion can be directly expanded to also define tensors of higher order
than 2. In engineering analysis we are, in particular, interested in the constitutive tensors
that relate the components of a stress tensor to the components of a strain tensor (see, for
example, Sections 4.2.3 and 6.6)

75 = Cyuén (2.65)

The stress and strain tensors are both of rank 2, and the constitutive tensor with components
Ciu is of rank 4 because its components transform in the following way:

Ci’;‘kl = pimpjnpkrpl.rcmnrs (266)

In the above discussion we used the orthogonal base vectors e; and e of two
Cartesian systems. However, we can also express the tensor in components of a basis of
nonorthogonal base vectors. It is particularly important in shell analysis to be able to use
such base vectors (see Sections 5.4.2 and 6.5.2).

In continuum mechanics it is common practice to use what is called a covariant basis
with the covariant base vectors g;, i = 1, 2, 3, and what is called a contravariant basis with
the contravariant base vectors, g/,j = 1, 2, 3; see Fig. 2.5 for an example. The covariant and
contravariant base vectors are in general not of unit length and satisfy the relationships

g g =28 (2.67)
where & is the (mixed) Kronecker delta (8 = 1 fori = j, and & = 0 for i # j).

X2 ‘“

X

. ] Figure 2.5 Example of covariant and
91°9' =1 9209 =0 contravariant base vectors, n = 2 (plotted
91°9%=0; g2-9%=1 in Cartesian reference frame)
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Hence the contravariant base vectors are orthogonal to the covariant base vectors.
Furthermore, we have

g = g (2.68)
with 8= &g (2.69)
and g = glg, (2.70)
with gl =g g 2.71)

where g; and g” are, respectively, the covariant and contravariant components of the metric
tensor.

To prove that (2.68) holds, we tentatively let

g = aug’ (2.72)
with the a; unknown elements. Taking the dot product on both sides with g;, we obtain
88 = g g

= aikS} (2.73)

Of course, (2.70) can be proven in a similar way (see Exercise 2.11),

Frequently, in practice, the covariant basis is conveniently selected and then the
contravariant basis is given by the above relationships.

Assume that we need to use a basis with nonorthogonal base vectors. The elegance of
then using both the covariant and contravariant base vectors is seen if we simply consider
the work done by a force R going through a displacement u, given by R - u. If we express
both R and u in the covariant basis given by the base vectors g;, we have

R-u= (R'g + R%g + Rgs) * (u'gy + u’g + u’gy)
- (2.74)
= R'u’g;

On the other hand, if we express only R in the covariant basis, but u in the contravariant
basis, given by the base vectors g/, we have

R-u=(R'gi + Rz + R%gy) * (u1g' + g + usg®) = R'w;8}
- R (2.75)
- {

which is a much simpler expression. Fig. 2.6 gives a geometrical representation of this
evaluation in a two-dimensional case.

We shall use covariant and contravariant bases in the formulation of plate and shell
elements. Since we are concerned with the product of stress and strain (e.g., in the principle
of virtual work), we express the stress tensor in contravariant components [as for the force

R in (2.75)],
T = fmg.o 2.76)
and the strain tensor in covariant components [as for the displacement in (2.75)],

== é‘.jg’gj (277)
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ligyll = 1
ligalt = 1
1
wo 3
lig'it cosa
R=A'gy+ Rg, 2 1
3 2 llglt = ——
u=1u19 + uzg cos o

Figure 2.6 Geometrical representation of R and u using covariant and contravariant bases

Using these dyadics we obtain for the product of stress and strain
W= ("gng) - &g'g)
= F" ¢80, (2.78)
= g,
This expression for W is as simple as the result in (2.75). Note that here we used the

convention—designed such that its use leads to correct results>—that in the evaluation of

the dot product the first base vector of the first tensor multiplies the first base vector of the
second tensor, and so on.

Instead of writing the product in summation form of products of components, we shall
also simply use the notation

W=nr-¢ (2.79)

and simply imply the result in (2.78), in whichever coordinate system it may be obtained.
The notation in (2.79) is, in essence, a simple extension of the notation of a dot product
between two vectors. Of course, when considering u * v, a unique result is implied, but this
result can be obtained in different ways, as given in (2.74) and (2.75). Similarly, when

2Namely, consider (ab) - (cd). Let A = ab, B = ¢d; then A+ B = A;B; = aibyed; = (aic))(bd) =
(a-c)b-d).
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writing (2.79), the unique result of W is implied, and this result may also be obtained in
different ways, but the use of 7/ and &; can be effective (see Example 2.26).
Hence we note that the covariant and contravariant bases are used in the same way as

Cartesian bases but provide much more generality in the representation and use of tensors.
Consider the following examples.

EXAMPLE 2.26: Assume that the stress and strain tensor components at a point in a contin-
uum corresponding to a Cartesian basis are 7, and €; and that the strain energy, per unit volume,
is given by U = } 7;€;. Assume also that a basis of covariant base vectors g:, i = 1,2, 3, is given.
Show explicitly that the value of U is then also given by 3 #™ &na.
Here we use

PGB = Ty€€; (a)
and EnEE" = €08 )
But from (a) and (b) we obtain

Tu = F™(gn * e} g, * &) sum on m and n

and € = Eml(g™ " e)(g" - @) sum on m and n

Now since

we also have U =3¢,

EXAMPLE 2.27: The Cartesian components 7; of the stress tensor 7;¢;¢; are 7, = 100,

T2 = 60, T, = 200, and the components ¢; of the strain tensor €;e;e; are €, = 0.001,
€y = 0.002, €y = 0.003.

Assume that the stress and strain tensors are to be expressed in terms of covariant strain
components and contravariant stress components with

1

. _—
g = [0]; g = Vli

V2

Calculate these components and, using these components, evaluate the product 4 7;¢;.
Here we have, using (2.67),

<[ el

To evaluate ¥ we use

Fligig; = Tpp€mes

so that T = Ton(em * g€, * &)
Therefore, the contravariant stress components are
Fl=180; 7%= = -140V2, 72 =400

Similarly, EE'Y = €mene,

é"j = Emn(em N gi)(en * gl)
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and the covariant strain components are

- . 3 4

1
“1"0—6"0, €2 = € = W, €n = T&)ﬁ
Then we have
Vg = 72,‘5 (180 + 1600 — 840) = 0.47

This value is of course also equal to 37;€;.

EXAMPLE 2.28: The Green-Lagrange strain tensor can be defined as

€= éuoga Ogj
with the components
& = 3('g'g; — 8 ‘8) (@)
ax x + u)
Oy — —. g, = 2 T
where g ar.’ g an (b)

and x denotes the vector of Cartesian coordinates of the material point considered, u denotes the
vector of displacements into the Cartesian directions, and the r; are convected coordinates (in
finite element analysis the r; are the isoparametric coordinates; see Sections 5.3 and 5.4.2),

1. Establish the linear and nonlinear components (in displacements) of the strain tensor.

2. Assume that the convected coordinates are identical to the Cartesian coordinates. Show
that the components in the Cartesian system can be written as

1(2&+2ﬁ+2ﬂ6w)

€y = -~ -

2 3Xj ax, ax‘- an (C)

To establish the linear and nonlinear components, we substitute from (b) into (a). Hence

N 1| /ox du dx odu Jx odx
4323222
2 ari ar; arJ 6r, ar; a']

The terms linear in displacements are therefore

lfdu 0x éx du
&;inear = —(‘— te— —) @

2\dr; ar; o, 9n
and the terms nonlinear in displacements are
1/0u odu
€. . 2 ] — — e
6[; Inonlmear 2(6'_i ar)) ( )

If the convected coordinates are identical to the Cartesian coordinates, we have r; = x;, i =
1, 2, 3, and dx;/9x; = 8;. Therefore, (d) becomes

1/ ou au,)
ij flinear = T} + — f
e"[l 2( an ax; ( )
and (e) becomes
- 1 auk auk
Eij{nm\lmear = 2( o axj) (g)

Adding the linear and nonlinear terms (f) and (g), we obtain (c).
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The preceding discussion was only a very brief introduction to the definition and use
of tensors. Our objective was merely to introduce the basic concepts of tensors so that we
can work with them later (see Chapter 6). The most important point about tensors is that
the components of a tensor are always represented in a chosen coordinate system and that
these components differ when different coordinate systems are employed. It follows from
the definition of tensors that if all compcnents of a tensor vanish in one coordinate system,
they vanish likewise in any other (admissible) coordinate system. Since the sum and differ-
ence of tensors of a given type are tensors of the same type, it also follows that if a tensor
equation can be established in one coordinate system, then it must also hold in any other
(admissible) coordinate system. This property detaches the fundamental physical relation-
ships between tensors under consideration from the specific reference frame chosen and is
the most important characteristic of tensors: in the analysis of an engineering problem we
are concerned with the physics of the problem, and the fundamental physical relationships
between the variables involved must be independent of the specific coordinate system
chosen; otherwise, a simple change of the reference system would destroy these relation-
ships, and they would have been merely fortuitous. As an example, consider a body sub-
Jjected to a set of forces. If we can show using one coordinate system that the body is in
equilibrium, then we have proven the physical fact that the body is in equilibrium, and this
force equilibrium will hold in any other (admissible) coordinate system.

The preceding discussion also hinted at another important consideration in engineer-
ing analysis, namely, that for an effective analysis suitable coordinate systems should be
chosen because the effort required to express and work with a physical relationship in one
coordinate system can be a great deal less than when using another coordinate system. We
will see in the discussion of the finite element method (see, for example, Section 4.2) that
indeed one important ingredient for the effectiveness of a finite element analysis is the
flexibility to choose different coordinate systems for different finite elements (domains) that
together idealize the complete structure or continuum.,

2.5 THE SYMMETRIC EIGENPROBLEM Av = Av

In the previous section we discussed how a change of basis can be performed. In finite
element analysis we are frequently interested in a change of basis as applied to symmetric
matrices that have been obtained from a variational formulation, and we shall assume in the
discussion to follow that A is symmetric. For example, the matrix A may represent the
stiffness matrix, mass matrix, or heat capacity matrix of an element assemblage.

There are various important applications (sec Examples 2.34 to 2.36 and Chapter 9)
in which for overall solution effectiveness a change of basis is performed using in the
transformation matrix the eigenvectors of the eigenproblem

Av = Ay (2.80)

The problem in (2.80) is a standard eigenproblem. If the solution of (2.80) is consid-
ered in order to obtain eigenvalues and eigenvectors, the problem Av = Av is referred to as
an eigenproblem, whereas if only eigenvalues are to be calculated, Av = Av is called an
eigenvalue problem. The objective in this section is to discuss the various properties that
pertain to the solutions of (2.80).
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Let n be the order of the matrix A. The first important point is that there exist n
nontrivial solutions to (2.80). Here the word “nontrivial” means that v must not be a null
vector for which (2.80) is always satisfied. The ith nontrivial solution is given by the
eigenvalue A; and the corresponding eigenvector v;, for which we have

Av; = Ay, (2.81)

Therefore, each solution consists of an eigenpair, and we write the n solutions as (A, v1),
(A2, ¥2), . . ., (As, Va), where

MSAh=... .=, (2.82)

We also call all n eigenvalues and eigenvectors the eigensystem of A.

The proof that there must be n eigenvalues and corresponding eigenvectors can
conveniently be obtained by writing (2.80) in the form

A-A}v=0 (2.83)
But these equations have a solution only if
det (A — AI) =0 (2.84)

Unfortunately, the necessity for (2.84) to hold can be explained only after the solution of
simultaneous equations has been presented. For this reason we postpone until Sec-
tion 10.2.2 a discussion of why (2.84) is indeed required.

Using (2.84), the eigenvalues of A are thus the roots of the polynomial
p(A) = det (A — Al) (2.85)

This polynomial is called the characteristic polynomial of A. However, since the order of
the polynomial is equal to the order of A, we have n eigenvalues, and using (2.83) we obtain
n corresponding eigenvectors. It may be noted that the vectors obtained from the solution
of (2.83) are defined only within a scalar multiple.

EXAMPLE 2.29: Consider the matrix

[0

Show that the matrix has two eigenvalues. Calculate the eigenvalues and eigenvectors.
The characteristic polynomial of A is

”M:dmrﬁgA 23J

Using the procedure given in Section 2.2 to calculate the determinant of a matrix (see Exam-
ple 2.13), we obtain

pd) = (=1 = N2 = 1) - @A)Q)
=A2—-A-6
=@A+2)A~-3)
The order of the polynomial is 2, and hence there are two eigenvalues. In fact, we have

)\1=~2; /\1“‘—«“3
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The corresponding eigenvectors are obtained by applying (2.83) at the eigenvalues. Thus we have

for A,
[ﬂl PR —2(~2)][31] B [g] X

with the solution (within a scalar multiple)

=1
RN N o

with the solution (within a scalar multiple)
3
IH

A change of basis on the matrix A is performed by using
v =PV (2.86)

where P is an orthogonal matrix and ¥ represents the solution vector in the new basis.
Substituting into (2.80), we obtain

For A,, we have

AV = AV (2.87)
where A = PTAP (2.88)

and since A is a symmetric matrix, A is a symmetric matrix also. This transformation is
called a similarity transformation, and because P is an orthogonal matrix, the transforma-
tion is called an orthogonal similarity transformation.

If P were not an orthogonal matrix, the result of the transformation would be
AV = AB¥ (2.89)
where A=PAP; B =PP (2.90)

The eigenproblem in (2.89) is called a generalized eigenproblem. However, since a
generalized eigenproblem is more difficult to solve than a standard problem, the transfor-
mation to a generalized problem should be avoided. This is achieved by using an orthogonal
matrix P, which yields B = L .

In considering a change of basis, it should be noted that the problem AV = ABVin
(2.89) has the same eigenvalues as the problem Av = Av, whereas the eigenvectors are

related as given in (2.86). To show that the eigenvalues are identical, we consider the
characteristic polynomials.

For the problem in (2.89), we have
p(A) = det (PTAP — APTP) (2.91)
which can be written as
FA) = det P7 det (A — AI) det P (2.92)
and therefore, P(A) = det PT det P p(A) (2.93)
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where p(A) is given in (2.85). Hence the characteristic polynomials of the problems
Av = Avand AV = AB¥ are the same within a multiplier. This means that the eigenvalues
of the two problems are identical.

So far we have shown that there are n eigenvalues and corresponding eigenvectors, but
we have not yet discussed the properties of the eigenvalues and vectors.

A first observation is that the eigenvalues are real. Consider the ith eigenpair (A;, v2),

for which we have
Av; = A\yv; (2.94)

Assume that v; and A; are complex, which includes the case of real eigenvalues, and let the
elements of v; and A; be the complex conjugates of the elements of v; and A;. Then premul-
tiplying (2.94) by V7, we obtain

¥IAv, = AVTv; (2.95)
On the other hand, we also obtain from (2.94),
VTA =T\, (2.96)
and postmultiplying by v, we have
VTAV, = ATV, (2.97)
But the left-hand sides of (2.95) and (2.97) are the same, and thus we have
= ATV, =0 (2.98)

Since v; is nontrivial, it follows that A; = A;, and hence the eigenvalue must be real.
However, it then also follows from (2.83) that the eigenvectors can be made real because
the coefficient matrix A — Al is real.

Another important point is that the eigenvectors that correspond to distinct eigen-
values are unique (within scalar multipliers) and orthogonal, whereas the eigenvectors
corresponding to multiple eigenvalues are not unique, but we can always choose an orthog-
onal set.

Assume first that the eigenvalues are distinct. In this case we have for two eigenpairs,

Av; = Ay, (2.99)

and Av; = Av; (2.100)
Premultiplying (2.99) by v/ and (2.100) by v, we obtain

viAv;, = Avlv; (2.101)

vIAv; = Avly; (2.102)

Taking the transpose in (2.102), we have
v/Av;, = Av]v; (2.103)
and thus from (2.103) and (2.101) we obtain
A= AVivi=0 (2.104)

Since we assumed that A; # A;, it follows that v]v; = 0, i.e., that v; and v; are orthogonal.
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Furthermore, we can scale the elements of the vector v; to obtain

V‘ij = 8@. (2.105)
where &; = the Kronecker delta; i.e., 8; = 1 when i = j, and 8§; = O when { # j. If
(2.105) is satisfied, we say that the eigenvectors are orthonormal.

It should be noted that the solution of (2.83) yields a vector in which only the relative
magnitudes of the elements are defined. If all elements are scaled by the same amount, the
new vector would still satisfy (2.83). In effect, the solution of (2.83) yields the direction of
the eigenvector, and we use the orthonormality condition in (2.105) to fix the magnitudes

of the elements in the vector. Therefore, when we refer to eigenvectors from now on it is
implied that the vectors are orthonormal.

EXAMPLE 2.30: Check that the vectors calculated in Example 2.29 are orthogonal and then
orthonormalize them.

The orthogonality is checked by forming vIv,, which gives
vive = (2)3) + (1)) =0

Hence the vectors are orthogonal. To orthonormalize the vectors, we need to make the lengths
of the vectors equal to 1. Then we have

N T o R [y o

We now turn to the case in which multiple eigenvalues are also present. The proof of
eigenvector orthonormality given in (2.99) to (2.105) is not possible because for a multiple

eigenvalue, A; is equal to A;in (2.104). Assume that A; = Ajy) = « + + = Ajym-1; 1.€., Asis an
m-times multiple root. Then we can show that it is still always possible to choose m
orthonormal eigenvectors that correspond to A;, Ai+1, . . . , Ai+m-1. This follows because for

a symmetric matrix of order n, we can always establish a complete set of n orthonormal
eigenvectors. Corresponding to each distinct eigenvalue we have an eigenspace with dimen-
sion equal to the multiplicity of the eigenvalue. All eigenspaces are unique and are orthog-
onal to the eigenspaces that correspond to other distinct eigenvalues. The eigenvectors
associated with an eigenvalue provide a basis for the eigenspace, and since the basis is not
unique if m > 1, the eigenvectors corresponding to a multiple eigenvalue are not unique.

The formal proofs of these statements are an application of the principles discussed earlier
and are given in the following examples.

EXAMPLE 2.31: Show that for a symmetric matrix A of order n, there are always n orthonor-
mal eigenvectors.

Assumne that we have calculated an eigenvalue A; and corresponding eigenvector v;. Let us
construct an orthonormal matrix Q whose first column is v;,

Q=[vi Qk QQ=1I
This matrix can always be constructed because the vectors in Q provide an orthonormal basis for

the n-dimensional space in which A is defined. However, we can now calculate

eaa=|y 4] @
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where A = QTAO

and A, is a full matrix of order (n — 1). If n = 2, we note that Q"AQ is diagonal. In that case,
if we premultiply (a) by Q and let @ = A; we obtain

AQ = Q[’(‘; 2]

and hence the vector in 6 is the other eigenvector and a is the other eigenvalue regardless of
whether A; is a multiple eigenvalue or not.

The complete proof is now obtained by induction. Assume that the statement is true for
a matrix of order (n — 1); then we will show that it is also true for a matrix of order . But since
we demonstrated that the statement is true for n = 2, it follows that it is true for any n.

The assumption that there are (n — 1) orthonormal eigenvectors for a matrix of order
(n — 1) gives

QA Qr= A (b)

where Q, is a matrix of the eigenvectors of A, and A is a digonal matrix listing the eigenvalues
of A,. However, if we now define
1 0
Y
0 Q

A0
h TOT — ¥
we have S’Q'AQS {0 A] ©
Let P = QS; PP =1

Then premultiplying (c) by P, we obtain

A0
AP = P[O A]

Therefore, under the assumption in (b), the statement is also true for a matrix of order n, which
completes the proof.

EXAMPLE 2.32: Show that the eigenvectors corresponding to a multiple eigenvalue of multi-
plicity m define an m-dimensional space in which each vector is also an eigenvector. This space
is called the eigenspace corresponding to the eigenvalue considered.

Let A; be the eigenvalue of multiplicity m; i.e., we have

A[‘ = Ai+l T ew e = /\l‘+m~'l

We showed in Example 2.31 that there are m orthonormal eigenvectors Vi, Vi+1, . . ., Viem-i

corresponding to A;. These vectors provide the basis of an m-dimensional space. Consider any
vector w in this space, such as

W = Vi + Qi Vi T 0 0 T Girm-1 Viem-t
where the a;, a;+1, . . ., are constants. The vector w is also an eigenvector because we have
Aw = azAV; + af+1AVi+| + .+ C{,'+,,,,._|A\','+m—1
which gives
Aw = gV + @ Aivie) + 0 Qi AiViemer = AW
Therefore, any vector w in the space spanned by the m eigenvectors V;, Vi+1, . . . , Vitm-1 is also

an eigenvector. It should be noted that the vector w will be orthogonal to the eigenvectors that
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correspond to eigenvalues not equal to A;. Hence there is one eigenspace that corresponds to each,

distinct or multiple, eigenvalue. The dimension of the eigenspace is equal to the multiplicity of
the eigenvalue.

Now that the main properties of the eigenvalues and eigenvectors of A have been
presented, we can write the n solutions to Av = Av in various forms. First, we have

AV = VA (2.106)

where V is a matrix storing the eigenvectors, V = [v,, . . ., v.), and A is a diagonal matrix
with the corresponding eigenvalues on its diagonal, A = diag (A;). Using the orthonormal-
ity property of the eigenvectors (i.e., V'V = I), we obtain from (2.106),

VTAV = A (2.107)
Furthermore, we obtain the spectral decomposition of A,
A = VAV’ (2.108)

where it may be convenient to write the spectral decomposition of A as
A =2 Avv] (2.109)
i=1

It should be noted that each of these equations represents the solution to the eigen-
problem Av = Av. Consider the following example.

EXAMPLE 2.33: Establish the relations given in (2.106) to (2.109) for the matrix A used in
Example 2.29.
The eigenvalues and eigenvectors of A have been calculated in Examples 2.29 and 2.30.
Using the information given in these examples, we have for (2.106),
NI O I A
[*-12]\/5\/5:\/5\/5[—20]
22 1 2 1 2 0 3
V5 V5] V5 V5
.2 1 ~2 L
~ i -2
for (2.107), V5 \/3[ 12} V5 Vs [ 0
1 2 2201 1 2 0 3]
V5 Vs V5 Vs
_2 2 L]
for (2.108), -1 3]: 5 V5 {“2 0] V5 Vs
L 2 2 1 2 0 3 1 2
5 Vs | V5 s |
and for (2.109), 5
-2 L
V5 21 1 2
A=l V== o V=% =
L V5 Vs 2 |LV5 Vs
V5
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The relations in (2.107) and (2.108) can be employed effectively in various important
applications. The objective in the following examples is to present some solution procedures
in which they are used.

EXAMPLE 2.34: Calculate the kth power of a given matrix A; i.e., evaluate A*. Demonstrate
the result using A in Example 2.29.

One way of evaluating A* is to simply calculate A> = AA, A* = A?A?, etc. However, if k
is large, it may be more effective to employ the spectral decomposition of A. Assume that we
have calculated the eigenvalues and eigenvectors of A; i.e., we have

A = VAV"
To calculate A%, we use A? = VAVTVAVT
but because V7'V= I, we have A? = VAXYT

Proceeding in the same manner, we thus obtain
At = YAVT

As an example, let A be the matrix considered in Example 2.29. Then we have

e Bl

A=l [.(:-2)}?. u N O G _(%).@f]
SLE2FT+ @0F T (-2 + @Y

It is interesting to note that if the largest absolute value of all the eigenvalues of A is smaller than
1, we have A¥ — 0 as k — . Thus, defining the spectral radius of A,

or

p(A) = max |A|
we have }im At = 0, provided that p(A) < 1.

EXAMPLE 2.35: Consider the system of differential equations
X + Ax = f(t) » (a)

and obtain the solution using the spectral decomposition of A. Demonstrate the result using the
matrix A in Example 2.29 and
_1e'l op — |1
o[} -]

where %% are the initial conditions.
Substituting A = VAV7 and premultiplying by V7, we obtain

VX + A(Vx) = V(1)

Thus if we define y = VX, we need to solve the equations

y + Ay = V()
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But this is a set of # decoupled differential equations. Consider the rth equation, which is typical:
yr + Aryr = vz-f(l)

t

The solution is yef) = Oy, e 4+ g™ f eM" vIf(r) dr
V]

where °y, is the value of y, attime ¢ = 0. The complete solution to the system of equations in (a) is

X = i B (b)

r={

As an example, we consider the system of differential equations

1= - 5]
X 2 2 X2 0
In this case we have to solve the two decoupled differential equations

)"l + (""2)}’1 = 2e”'

y2 + 3y, = &7
with initial conditions
112 ~1}j1 1]1
[« S vTO T — = —
yo o 5[1 2]{1] \/5[3]
1 2
W b 3 = e P2 s e g™l
e obtain »N 5 e 3 e
3 .1
= —— Y =gt
SRV 2¢
Thus, using (b), we have
X1 1 2
= — +
=2+ )
Vs 3 2
PRIl R Bl -3 + = 2
6 ¢ "53¢ T5°
V5 6, L
3 5 5

To conclude the presentation, we may note that by introducing auxiliary variables, higher-
order differential equations can be reduced to a system of first-order differential equations.
However, the coefficient matrix A is in that case nonsymmetric.

EXAMPLE 2.36: Using the spectral decomposition of an n X n symmertric matrix A, evalu-
ate the inverse of the matrix. Demonstrate the result using the matrix A in Example 2.29.

Assume that we have evaluated the eigenvalues A, and corresponding eigenvectors v;,
i=1,...,n, of the matrix A; i.e.,, we have solved the eigenproblem

Av = Av (a)
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Premultiplying both sides of (a) by A"'A™', we obtain the eigenproblem

A7y = A7ly
But this relation shows that the eigenvalues of A™' are 1/A; and the eigenvectors are v;, i =
1, ..., n Thus using (2.109) for A}, we have
A7l = VA-IVT
or Al =2 (l)v;vf
i=1 /\i

These equations show that we cannot find the inverse of A if the matrix has a zero eigenvalue.
As an example, we evaluate the inverse of the matrix A considered in Example 2.29. In this

case we have
50L—-1 2 0 $lit 2 6L 2 1

The key point of the tranformation (2.107) is that in (2.107) we perform a change of basis
[see (2.86) and (2.88)]. Since the vectors in V correspond to a new basis, they span the
n-dimensional space in which A and A are defined, and any vector w can be expressed as
a linear combination of the eigenvectors v;; i.e., we have

n

W= oV (2.110)
i=]

An important observation is that A shows directly whether the matrices A and A are
singular. Using the definition given in Section 2.2, we find that A and hence A are singular
if and only if an eigenvalue is equal to zero, because in that case A~' cannot be calculated.
In this context it is useful to define some additional terminology. If all eigenvalues are
positive, we say that the matrix is positive definite. If all eigenvalues are greater than or

equal to zero, the matrix is positive semidefinite; with negative, zero, or positive eigenval-
ues, the matnix is indefinite.

2.6 THE RAYLEIGH QUOTIENT AND THE MINIMAX
CHARACTERIZATION OF EIGENVALUES

In the previous section we defined the eigenproblem Av = Av and discussed the basic
properties that pertain to the solutions of the problem. The objective in this section is to
complement the information given with some very powerful principles.

A number of important principles are derived using the Rayleigh quotient p (v), which
is defined as

viAy

= 2.111
p(v) Ve ( )
The first observation is that
A= pv) = A, (2.112)

and it follows that using the definitions given in Section 2.5, we have for any vector v, if A
is positive definite p(v) > 0, if A is positive semidefinite p(v) = 0, and for A indefinite p(v)
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can be negative, zero, or positive. For the proof of (2.112) we use
v=3am @113)
i=1

where v; are the eigenvectors of A. Substituting for v into (2.111) and using that Av; = A:v;,
V?Vj = 5;';, we obtain

At hadt -+ MGl

p(v) R (2.114)
Hence, if A, # 0,
2+ (W/A)ad + - - - + (A/A)ad
o) = A, LEL ’/a%)‘: — a;'( e (2.115)
2 2 e 2
and if A, # 0, o(v) = A, QiAo ;(’J‘:{ ““i; * o (2.116)

Butsince A; = A; < - - - < A, therelations in (2.114) to (2.116) show that (2.112) holds.
Furthermore, it is seen that if v = v;, we have p(v) = A,

Considering the practical use of the Rayleigh quotient, the following property is of

particular value. Assume that v is an approximation to the eigenvector v;; i.e., say with €
small, we have

v=v + ex 2.17n
Then the Rayleigh quotient of v will give an approximation to A; of order €% i.e.,
p(¥) = A + ol€?) (2.118)

The notation o(e?) means “of order €2” and indicates that if § = o(e?), then |8| = be?,
where b is a constant.

To prove this property of the Rayleigh quotient, we substitute for v from (2.113) into
the Rayleigh quotient expression to obtain
(vI + exDA(v; + €x)
(vT + ex(v; + €x) (2.119)

vIAv, + 2eviAx + €XxTAx

p(v; + ex) =

or vi + €X) = 2.120
Al ) viv, + 2ex™v; + €Xx"x ( )
However, since X is an error in v;, we can write
x=2 @V, (2.121)
yor
But then using v]v; = §; and Av; = A;v;, we have vJAx = 0 and x’v; = 0, and hence
n
At e a? )
=1
p(vi + ex) = o (2.122)

n
1+e2 of

i=1

J#i
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However, using the binomial theorem to expand the denominator in (2.122), we have

pvi + ex) = (k; + € i a};\j)[l - 62(2"‘, a}) + e“(i a})z + .. ] (2.123)

j=1 j=1 j=1
jPi J#EI Jri
n n
or p(v; + ex) = A, + € (2 aly — A > a}) + higher-order terms (2.124)
=1 =1
j#i J#i

The relation in (2.118) thus follows. We demonstrate the preceding results in a brief
example.

EXAMPLE 2.37: Evaluate the Rayleigh quotients p(v) for the matrix A used in Example 2.29.
Using v; and v, in Example 2.29, consider the following cases:

1. v=v + 2v; 2.v=y,; 3 v=v + 002w,
In case 1, we have
- |21+ L) =[]
~1 2] Lt
RN H
and thus p(v) = = 5

o )

Recalling that A, = —~2 and A; = 3, we have, as expected,

A =ply) S A
In case 2, we have
=[]
-1
e -5 3]
and hence plv) = = =2

2
2 -1
e -]
and so, as expected, p(v) = A,.

Finally, in case 3, we use

=[]+ [oo) = o]
[2.01 —«0.98][“; ﬂ[.jgﬂ

and hence p(v) =
0
[2.01 »—-0.98][ 2 ’]

—0.98
= —1.99950005

Here we note that p(v) > A, and that p(v) approximates A; more closely than v approx-
imates v;.



Sec. 2.6 The Rayleigh Quotient and the Minimax Characterization of Eigenvalues 63

Having introduced the Rayleigh quotient, we can now proceed to a very important
principle, the minimax characterization of eigenvalues. We know from Rayleigh’s principle
that

p(v) = A (2.125)

where v is any vector. In other words, if we consider the problem of varying v, we will
always have p(v) = A,, and the minimum will be reached when v = v, in which case
p(v1) = A,. Suppose that we now impose a restriction on v, namely that v be orthogonal to
a specific vector w, and that we consider the problem of minimizing p(v) subject to this
restriction. After calculating the minimum of p(v) with the condition v'w = 0, we could
start varying w and for each new w evaluate a new minimum of p(v). We would then find
that the maximum value of all the minimum values evaluated is A,. This result can be
generalized to the following principle, called the minimax characterization of eigenvalues,

v’Av}

r=1,...,n (2.126)

T,

A, = max {min
vy

with v satisfying v'w; = Ofori = 1,...,r — 1,r = 2.In(2.126) we choose vectors w;,
i=1,...,r — 1, and then evaluate the minimum of p(v) with v subject to the condition
viw; = 0,i=1,...,r — 1, After calculating this minimum we vary the vectors w; and
always evaluate a new minimum. The maximum value that the minima reach is A,.

The proof of (2.126) is as follows. Let

V=2 av (2.127)
i=1

and evaluate the right-hand side of (2.126), which we call R,

_ L ofd ot @At abiAa + o+ ad)s
R-max{mm R S R (2.128)
The coefficients a; must satisfy the conditions
wiXavi=0 j=1...,r—1 (2.129)
i=1
Rewriting (2.128), we obtain
a%(Ar - Al) + .0+ a3~l(Ar - Ar--l)
- . + aEH(Ar - ‘\r+l) + ..ot 03(/\r — An)
R = max {min | A, Tt Tata Tt (2.130)
But we can now see that for the condition @,+1 = @,+2 = - - - = &, = 0, we have
R =A (2.131)
and the condition in (2.129) can still be satisfied by a judicious choice for a,. On the other
hand, suppose that we now choose w; = v;forj = 1, ..., r — 1. This would require that
a=0forj=1,...,r — 1, and consequently we would have R = A,, which completes

the proof.

A most important property that can be established using the minimax characterization
of eigenvalues is the eigenvalue separation property. Suppose that in addition to the
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problem Av = Av, we consider the problems
Ay = yimym (2.132)

where A™ is obtained by omitting the last m rows and columns of A. Hence A™ is a
square-symmetric matrix of order (n — m). Using also the notation A® = A, \©@ = ),
v® = vy, the eigenvalue separation property states that the eigenvalues of the problem
ALyt = \m+lyn+1) geparate the eigenvalues of the problem in (2.132); i.e., we have
A = A = A S AP = = A S ALY = AR

o 2.13
form=0,...,n—2 ( 3

For the proof of (2.133) we consider the problems Av = Avand AVv!D = AWy If
we can show that the eigenvalue separation property holds for these two problems, it will
hold also form = 1, 2, ..., n — 2. Specifically, we therefore want to prove that

A =AW = A, r=1,...,n-1 (2.134)

Using the minimax characterization, we have

{ . VTAV}
Ar+1 = max {min

T,

vy (2.135)
viw, = 0; i=1,...,r;all w arbitrary
Similarly, we have
T
A = max {min M ;“}
vy
viw, = 0; i=1,...,r (2.136)
w; arbitrary fori = 1,...,r — 1
W, = €,

where w, is constrained to be equal to e, to ensure that the last element in v is zero because
e, is the last column of the n X n identity matrix I. However, since the constraint for A, +
can be more severe and includes that for A", we have

AD < AL, (2.137)

To determine A, we use

TA
A, = max {min M v}

vy

viw, = 0; i=1...,r—1 (2.138)
all w; arbitrary

Comparing the characterizations of A{" and A,, i.e., (2.136) with (2.138), we observe
that to calculate A‘" we have the same constraints as in the calculation of A, plus one more
(namely, v'e, = 0), and hence

A= AW (2.139)
But (2.137) and (2.139) together establish the required result given in (2.134).
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The eigenvalue separation property now yields the following result. If we write the
eigenvalue problems in (2.132) including the problem Av = Av in the form

P™A™) = det (A — AC]); m=0,...,n—1 (2.140)

where p©@ = p, we see that the roots of the polynomial p(A“*") separate the roots of the
polynomial p (A“), However, a sequence of polynomials pi(x), i = 1,. . ., g, form a Sturm
sequence if the roots of the polynomial p;.:(x) separate the roots of the polynomial p;(x).
Hence the eigenvalue separation property states that the characteristic polynomials of the
problems A™v™ = A\ p =0 1,...,n — 1, form a Sturm sequence. It should be
noted that in the presentation we considered all symmetric matrices; i.e., the minimax
characterization of eigenvalues and the Sturm sequence property are applicable to positive
definite and indefinite matrices. We shall use the Sturm sequence property extensively in
later chapters (see Sections 8.2.5, 10.2.2, 11.4.3, and 11.6.4). Consider the following
example.

EXAMPLE 2.38: Consider the eigenvalue problem Av = Av, where

5 -4 -7
A=|-4 2 -4
-7 -4 5

Evaluate the eigenvalues of A and of the matrices A", m = 1, 2. Show that the separation
property given in (2.133) holds and sketch the characteristic polynomials p(A), p(A™"), and
pA(AP),

We have

p(A) = det (A — AI) = (5 — M[(2 — A5 — A) — 16]
+ 4[—4(5 — A) — 28] — 7[16 + 7(2 ~ A)]
Hence pA) = (=6 —~ A)(6 — A)(12 — A)
and the eigenvalues are

A] = “6; /\2 = 6; Ay = 12

Also, PIAD) = det (AN — AVT)

= (5 — A2 - A" ~ 16
or PPAD) = AW — 7AW — 6
Hence AP =1-3V73 = ~0.7720

A =3 +4VT73=17772

Finally, PPAD) = det (AP — APT)

=5- A2
Hence AR =5

The separation property holds because
MEARsAL=sAP s
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p(Z) { ,1(2))

| A= 5\ ,1(;

p“)().(”)

207720 e A'=7772 40

\ =6 N

l‘=—6\___r_./ 43= 12 _,1

and A < AP < A

Figure E2.38 Characteristic polynomials

The characteristic polynomials are sketched in Fig. E2.38.

2.7 VECTOR AND MATRIX NORMS

We have discussed vectors, matrices, eigenvalues, and eigenvectors of symmetric matrices
and have investigated the deeper significance of the elements in these entities. However, one
important aspect has not been discussed so far. If we deal with single numbers, we can
identify a number as being large or small. Vectors and matrices are functions of many
elements, but we also need to measure their “size.” Specifically, if single numbers are used
in iterative processes, the convergence of a series of numbers, say x), X3, . . ., X, t0 a number
x is simply measured by

lim |x — x| =0 (2.141)

or, in words, convergence is obtained if the residual y, = | xx — x|approaches zero as k — <.
Furthermore, if we can find constants p = 1 and ¢ > 0 such that

lim 1Xk+1 - x|

= 2.142

k—son 1 Xe — X !P ( )

we say that convergence is of order p. If p = 1, convergence is linear and the rate of
convergence is ¢, in which case ¢ must be smaller than 1.

In iterative solution processes using vectors and matrices we also need a measure of

convergence. Realizing that the size of a vector or matrix should depend on the magnitude
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of all elements in the arrays, we arrive at the definition of vector and matrix norms. A norm
is a single number that depends on the magnitude of all elements in the vector or matrix.

Definition: A norm of a vector v of order n written as || vl is a single number. The norm is
a function of the elements of v, and the following conditions are satisfied:

1. |v] = 0and||v|]| = 0ifand only if v = 0. (2.143)
2. llevll = | c|ll vl for any scalar c. (2.144)
3. v + w| s|v| + || W] for vectors v and w. (2.145)

The relation (2.145) is the triangle inequality. The following three vector norms are
commonly used and are called the infinity, one, and two vector norms:

vl = max | ;] (2.146)

vl = § [vi] (2.147)

vl = (5-} for F)W (2.148)

| v |l2 is also known as the Euclidean vector norm. Geometrically, this norm is equal to the
length of the vector v. All three norms are special cases of the vector norm V'Z,|v;|?,
where for (2.146), (2.147), and (2.148), p = =, 1, and 2, respectively. It should be noted
that each of the norms in (2.146) to (2.148) satisfies the conditions in (2.143) to (2.145).
We can now measure convergence of a sequence of vectors x;, X2, X3, . . ., Xc to a
vector x. That is, for the sequence to converge to x it is sufficient and necessary that

lim % — x| =0 (2.149)

for any one of the vector norms. The order of convergence p, and in case p = 1, the rate
of convergence c, are calculated in an analogous manner as in (2.142) but using norms; i.c.,
we have

lim | i1 — x[| -

e e — X|P ¢ (2.150)

Looking at the relationship between the vector norms, we note that they are equivalent
in the sense that for any two norms | * |is, and || « |ls, there exist two positive constants e
and a> such that

Ivlls, = ai vlls, (2.151)

and Ivlls, = aallvlls, (2.152)
where 5, and s; denote the «-, 1-, or 2-norms. Hence it follows that

e[ vlls, = llvls, = eall vlls, (2.153)

where ¢, and c; are two positive constants that may depend on n, and of course also

1 1
vl = lvlsy = Zlvls,
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EXAMPLE 2.39: Give the constants ¢, and ¢; in (2.153) if, first, the norms s; and s are the
oo- and 1-norms, and then, second, the oo~ and 2-norms. Then show that in each case (2.153) is
satisfied using the vector

1
v=1-3
2
In the first case we have
Ivle = llvl = nlvi- (a)

with ¢; = 1, ¢; = n, and in the second case we have
Ivle = vl = Valvi- (b)

with ¢; = 1 and ¢; = Vn. These relations show that the 1- and 2-norms are equivalent to the
oo- norm. We can easily show that lower and upper bounds on || v||; in (a) and || v{z in (b) cannot
be closer because the equal signs are reached for the vectors v = [1 1. . .1]and v7 = e; (and
any scalar multiples thereof).

If we apply (a) and (b) to the given vector v, we have

vl =3

ivli=1+3+2=6

vl =VI+ 953 =V
and the relations in (a) and (b) read

3=6=(3)3); 3 < V14 = (V3)(3)

In analogy with the definition of a vector norm, we also define a matrix norm.

Definition: A norm of a matrix A of order n X n, written as | A|, is a single number. The
norm is a function of the elements of A, and the following relations hold:

L |A] =0and |A| = Oifand only if A = 0. (2.154)
2. || cAll = | c|l| A| for any scalar c. (2.155)
3. |A + Bl = ||A|| + || B]| for matrices A and B. (2.156)
4. | AB|| =< || A B|| for matrices A and B. (2.157)

The relation in (2.156) is the triangle inequality equivalent to (2.145). The additional
condition in (2.157), which was not postulated in the definition of a vector norm, must be
satisfied in order to be able to use matrix norms when matrix products occur.

The following are frequently used matrix norms:

Al = max 2 |ay| (2.158)
L

[Al = max 2 |ay] (2.159)
=1

Al = Vi A, = maximum eigenvalue of ATA (2.160)

where for a symmetric matrix A we have Al = | Al and || A]: = max |A:| (see Exer-

cise 2.21). The norm || A |); is called the spectral norm of A. Each of these norms satisfies



Sec. 2.7 Vector and Matrix Norms 69

the relations in (2.154) to (2.157). The proof that the relation in (2.157) is satisfied for the
infinity norm is given in Example 2.41.

EXAMPLE 2.40: Calculate the -, 1-, and 2-norms of the matrix A, where A was given in
Example 2.38.
The matrix A considered is

5 -4 -7
A=|-4 2 -4
-7 -4 5

Using the definitions given in (2.158) to (2.160), we have
Al =5+4+7=16
Al =5+4+7=16
The 2-norm is equal to | A; |, and hence (see Example 2.38) || A [, = 12.

EXAMPLE 2.41: Show that for two matrices A and B, we have
|AB|. = [|All [ B

Using the definition of the infinity matrix norm in (2.158), we have
[ ABJ = max 2 | 2 auby|
o=y k=
but then |ABJ < max 2 2 |ax| | byl
fj=1 k=1
= max 2 {Iaul by lbzu-f}
i =1

k=1

= {m?xg la,-kl}{mlfmgI }bkif}

This proves the desired result.

As in the case of a sequence of vectors, we can now measure the convergence of a
sequence of matrices A;, A,, A, . . ., Axto amatrix A. For convergence it is necessary and
sufficient that

lim [ A: ~ Al =0 (2.161)

for any one of the given matrix norms.

In the definition of a matrix norm we needed relation (2.157) to be able to use norms
when we encounter matrix products. Similarly, we also want to use norms when products
of matrices with vectors occur. In such a case, in order to obtain useful information by
applying norms, we need to employ only specific vector norms with specific matrix norms.
Which matrix and vector norms should only be used together is determined by the condition
that the following relation hold for any matrix A and vector v:

Tavi =[Af ] (2.162)
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where || Av|| and || v || are evaluated using the vector norm and || A || is evaluated using the
matrix norm. We may note the close relationship to the condition (2.157), which was
required to hold for a matrix norm. If (2.162) holds for a specific vector and matrix norm,
the two norms are said to be compatible and the matrix norm 1is said to be subordinate to
the vector norm. The 1-, 2-, and x-norms of a matrix, as defined previously, are subordi-
nate, respectively, to the 1-, 2-, and co-norms of a vector given in (2.146) to (2.148). In the
following example we give the proof that the co-norms are compatible and subordinate. The
compatibility of the vector and matrix 1- and 2-norms is proved similarly.

EXAMPLE 2.42: Show that for a matrix A and vector v, we have
[Av[e = [Ale{v]e (a)

Using the definitions of the infinity norms, we have

n
2 a;v;
j=1

| AV [l = max
< max 2 | ay | v
i =y
= {max 2 Iaqt} {max] v, }
Eoog=1 7
This proves (a).

To show that equality can be reached, we need only to consider the case where v is a full
unit vector and a; = 0. In this case, | v|. = 1 and || Av]}e = || A .

In later chapters we shall encounter various applications of norms. One valuable
application arises in the calculation of eigenvalues of a matrix: if we consider the problem
Av = \v, we obtain, taking norms on both sides,

TAv = [l Av]| (2.163)

and hence using (2.144) and (2.162), we have
FAllvl = 1allv (2.164)
or Il =1]Al (2.165)

Therefore, every eigenvalue of A is in absolute magnitude smaller than or equal to any norm
of A. Defining the spectral radius p(A) as’

pfA) = max | Ae (2.166)
we have
p(A) = [[A] (2.167)

In practice, the co-norm of A is calculated most conveniently and thus used effectively to
obtain an upper bound on the largest absolute value reached by the eigenvalues.

3Note that for a symmetric matrix A we have p(A) = || A],, but this does not hold in general for a

1l a

nonsymmetric matrix; consider, for example, A = 0 1}. a#0.
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EXAMPLE 2.43: Calculate the spectral radius of the matrix A considered in Example 2.38.
Then show that p(A) = || A [|.

The spectral radius is equal to max |A;| The eigenvalues of A have been calculated in
Example 2.38.

A] = "'6; Az = 6; A; = 12
Hence p(A) = 12
In Example 2.40 we calculated || A |l = 16. Thus the relation p(A) =< || A |l is satisfied.

Another important application of norms is encountered when considering the stability
of finite element formulations (see Section 4.5). Assume that we have a sequence of finite
element discretizations using a specific element and that a typical discretization gives the
equation

Ax=Db (2.168)
Then, roughly speaking, for stability we want a small change in b to result in only a small
change in x. To measure the magnitude of these changes, assume that we choose a norm

||+ |l for measuring the size of solutions and a norm | * ||x for measuring the size of the
right-hand side terms.

Definition: Let A be a nonsingular matrix of size n X n. We define the stability constant of A
with respect to the norms ||* || and ||+ ||z as the smallest possible constant Six such that

[&xl _ . || Ablk
Txl = ™ ol

Jor all vectors x and perturbations Ax which satisfy Ax = b and A Ax = Ab.

(2.169)

This relation bounds the relative change in the solution x (in the norm ||+ [|;) as a
consequence of a change in the forcing vector b (in the norm || * |lz), and we say that a
sequence of discretizations is stable with respect to the norms || * ||, and | * ||z if the constant
S:r is uniformly bounded irrespective of how large n is (see Section 4.5.2).

In accordance with (2.162), let*

A flcn = sup yﬁ&b (2.170)
and 1A~ lee = sup "A": !‘t"L (2.171)
Using y = x in (2.170), we obtain
I e = 0 @m)
and using z = Ab in (2.171), we obtain
A" flee = i—}%%%’: (2.173)

“4In the following presentation “sup” means “supremum” and “inf” means “infimum” (see Table 4.5).
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= 1 e 4~ o I

and hence Sz = | Alle | A ae (2.175)

Therefore, (2.174)

In the evaluation of Sy it is crucial to use appropriate norms, and given a norm ||+||, a
natural choice for the R norm is the dual norm of ]f |l defined as

lzlp. = S“P P ” (2.176)

With this choice we obtain for a symmetric matrix A (see Exercise 2.22)

T
x'A
I4e = 20 Ty
g (2177)
= ky
and (A7 lle0™" = inf sup ;- Ay (2.178)
flae ey T
The stability constant S;r is then given by
ka
Sip = — 2.179
Ya ( )

As we mentioned earlier, for stability of a discretization we need to show that S, in
(2.179) remains bounded as the finite element mesh is refined. This is a rather general
result. Our discussion in Section 4.5 is concerned with a particular form of A, namely, the
form arising in our mixed displacement/pressure (1/p) formulations. In this case the stabil-
ity condition leads to specific expressions that pertain specifically to the u/p formulations,
and we give these expressions in Section 4.5.2.

2.8 EXERCISES

2.1, Evaluate the following required result in the most efficient way, that is, with the least number of
multiplications. Count the number of multiplications used,

3041
Let A=14 6 2
1 2 3
=[1 3 2]
k=4
4 1 -2
c=| 1 8 -1
-2 -1 6

and calculate BTAk CB.
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2.2. (a) Evaluate A™' when

2
and when A=1]0
1

(b) Evaluate the determinants of these two matrices.
2.3. Consider the following three vectors.

1 4 -7

3 1 1

x; =] 41 X =|-1]; X; = 6
-1 0 -1

2 1 -1

Use these vectors as the columns of a matrix A and determine the rank and kernel of A.

73

2.4. Consider the following matrix A. Determine the constant k such that the rank of A is 2 and then

determine the kernel of A.

1 -1 0
A=1-1 1+k -1
0 -1 1
2.5. Consider the following two vectors defined in the three-dimensional Cartesian frame with basis
vectors e;.
2 1
u=13}|; v =
4 3

(a) Evaluate the angle between these vectors.

(b) Assume that a new basis is to be used, namely, the primed basis in Example 2.24. Evaluate

the components of the two vectors in this basis.
(¢) Evaluate the angle between the vectors in this new basis.

.. 2 .
2.6. A reflection matrixis definedasP = I — avw, a = v where v is a vector (of order n) normal

to the plane of reflection.
(a) Show that P is an orthogonal matrix.

(b) Consider the vector Pu where u is also a vector of order n. Show that the action of P on u
is that the component of u normal to the plane of reflection has its direction reversed and

the component of u in the plane of reflection is not changed.

2.7. The components of the stress tensor in the x,, x; coordinate system of Fig. E2.25 are at a point

. [ 10 —6]
-6 20

(a) Establish a new basis in which the off-diagonal components are zero, and give the new

diagonal components.
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2.8.

29.

2.10.

211
2.12,
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(b) The effective stress is defined as G = {%S.;S;,- where the S; are the components of the

S . T .
deviatoric stress tensor, Sy = T; — . 8; and 7, is the mean stress 7, = —?:-‘ Prove that 7 is

a scalar. Then also show explicitly for the given value of T that @ is the same number in
the old and new bases.
= X1
1 [Xl + 12]

The column q is defined as

where (x,, x2) are the coordinates of a point. Prove that q is not a vector.

The components of the Green-Lagrange strain tensor in the Cartesian coordinate system are
defined as (see Section 6.2.2 for details)

= 4x7X - )
where the components of the deformation gradient X are

du;
v v axj
and u;, x; are the displacements and coordinates, respectively. Prove that the Green-Lagrange
strain tensor is a second-order tensor.

The material tensor in (2.66) can be written as [see (6.185)]
Cn'jn = i\az‘jar: + “(6#6}: + aisajr) (3)
where A and u are the Lamé constants,

I S - E
T+ na-2) P20+

This stress-strain relation can also be written in the matrix form used in Table 4.3, but in the table

the use of engineering strain components is implied. (The tensor normal strain components are

equal to the engineering normal strain components, but the tensor shear strain components are

one-half the engineering components).

(a) Prove that Cj, is a fourth-order tensor.

(b) Consider the plane stress case and derive from the expression in (a) the expression in
Table 4.3.

(c) Consider the plane stress case and write (2.66) in the matrix form C' = TCTY, where C is
given in Table 4.3 and you derive T. (See also Exercise 4.39.)

Prove that (2.70) holds.

The covariant base vectors expressed in a Cartesian coordinate system are

1
g8 = [0}; g =

The force and displacement vectors in this basis are

A

Si-Sl-

R = 3g; + 4g,; v = —2g, + 3g;
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(a) Calculate R + u using the covariant basis only.
(b) Calculate R - u using the covariant basis for R and the contravariant basis for u.

2.13. Assume that the covariant basis is given by g, and g, in Exercise 2.12, Let the stress and strain
tensor components in the Cartesian basis be

.= 100 10 | c = 0.01 0.05
10 200]° 0.05 0.02
Evaluate the components 77" and €, and show explicitly that the product = - € is the same using

on the one side the Cartesian stress and strain components and on the other side the contravari-
ant stress and covariant strain components.

2.14. Let a and b be second-order tensors and let A and B be transformation matrices. Prove that
a -+ (AbB") = (A’aB) - b.

(Hint: This proof is easily achieved by writing the quantities in component forms.)
2.15. Consider the eigenproblem Av = Av with

2 —1
A=
7
(a) Solve for the eigenvalues and orthonormalized eigenvectors and write A in the form (2.109).

{b) Calculate A%, A~' and A2
2.16. Consider the eigenproblem

-

210
1 3 1jv=A
01 2

The smallest eigenvalue and corresponding eigenvector are

Ay

il

Vi =1 -

Also, A; = 2, A; = 4. Calculate the Rayleigh quotient p(v) with

1
v=vwv + 01} 1
0

and show that p(v) is closer to A, than v is to v;.

2.17. Consider the eigenproblem

2 -1 0
-1 4 —11]v=Av
0 -1 8
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2.18.

2.19,
2.20,
2.21.
2.22,

Vectors, Matrices, and Tensors Chap. 2

Evaluate the eigenvalues of the matrices A and A™, m = 1, 2, where A"™ is obtained by omitting
the last m rows and columns in A. Sketch the corresponding characteristic polynomials (see
Example 2.38).

Prove that the 1- and 2-norms of a vector v are equivalent. Then show explicitly this equivalency
for the vector

Prove the relation (2.157) for the 1-norm.

Prove that || Av[, < [|A]l | v].

Prove that for a symmetric matrix A we have | All; = p(A). (Hint: Use (2.108).)

Prove that (2.177) and (2.178) hold when we use the dual norm of the L-norm for the R-norm.



Il CHAPTER THREE I

Some Basic Concepts

of Engineering Analysis

and an Introduction

to the Finite Element Method

3.1 INTRODUCTION

The analysis of an engineering system requires the idealization of the system into a form that
can be solved, the formulation of the mathematical model, the solution of this model, and
the interpretation of the results (see Section 1.2). The main objective of this chapter is to
discuss some classical techniques used for the formulation and solution of mathematical
models of engineering systems (see also S. H. Crandall [A]). This discussion will provide
a valuable basis for the presentation of finite element procedures in the next chapters. Two
categories of mathematical models are considered: lumped-parameter models and
continuum-mechanics-based models. We also refer to these as “discrete-system” and
“continuous-system” mathematical models.

In a lumped-parameter mathematical model, the actual system response is directly
described by the solution of a finite number of state variables. In this chapter we discuss
some general procedures that are employed to obtain the governing equations of lumped-
parameter models. We consider steady-state, propagation, and eigenvalue problems and
also briefly discuss the nature of the solutions of these problems.

For a continuum-mechanics-based mathematical model, the formulation of the gov-
erning equations is achieved as for a lumped-parameter model, but instead of a set of
algebraic equations for the unknown state variables, differential equations govern the
response. The exact solution of the differential equations satisfying all boundary conditions
is possible only for relatively simple mathematical models, and numerical procedures must
in general be employed. These procedures, in essence, reduce the continuous-system math-
ematical model to a discrete idealization that can be solved in the same manner as a
lumped-parameter model. In this chapter we summarize some important classical proce-
dures that are employed to reduce continuous-system mathematical models to lumped-
parameter numerical models and briefly show how these classical procedures provide the
basis for modern finite element methods.

77
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In practice, the analyst must decide whether an engineering system should be repre-
sented by a lumped-parameter or a continuous-system mathematical model and must
choose all specifics of the model. Furthermore, if a certain mathematical model is chosen,
the analyst must decide how to solve numerically for the response. This is where much of
the value of finite element procedures can be found; that is, finite element techniques used
in conjunction with the digital computer have enabled the numerical solution of continuous-
system mathematical models in a systematic manner and in effect have made possible the
practical extension and application of the classical procedures presented in this chapter to
very complex engineering systems.

3.2 SOLUTION OF DISCRETE-SYSTEM MATHEMATICAL MODELS

In this section we deal with discrete or lumped-parameter mathematical models. The
essence of a lumped-parameter mathematical model is that the state of the system can be
described directly with adequate precision by the magnitudes of a finite (and usually small)
number of state variables. The solution requires the following steps:

1. System idealization: the actual system is idealized as an assemblage of elements

2. Element equilibrium: the equilibrium requirements of each element are established in
terms of state variables

3. Element assemblage: the element interconnection requirements are invoked to estab-
lish a set of simultaneous equations for the unknown state variables

4. Calculation of response: the simultaneous equations are solved for the state variables,
and using the element equilibrium requirements, the response of each element is
calculated.

These steps of solution are followed in the analyses of the different types of problems
that we consider: steady-state problems, propagation problems, and eigenvalue problems.
The objective in this section is to provide an introduction showing how problems in these
particular areas are analyzed and to briefly discuss the nature of the solutions. It should be
realized that not all types of analysis problems in engineering are considered; however, a
large majority of problems do fall naturally into these problem areas. In the examples in this
section we consider structural, electrical, fluid flow, and heat transfer problems, and we
emphasize that in each of these analyses the same basic steps of solution are followed.

3.2.1 Steady-State Problems

The main characteristic of a steady-state problem is that the response of the system does not
change with time. Thus, the state variables describing the response of the system under
consideration can be obtained from the solution of a set of equations that do not involve time
as a variable. In the following examples we illustrate the procedure of analysis in the
solution of some problems. Five sample problems are presented:

1. Elastic spring system
2. Heat transfer system
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3. Hydraulic network
4. Dc network
5. Nonlinear elastic spring system.

The analysis of each problem illustrates the application of the general steps of analysis
summarized in Section 3.2. The first four problems involve the analysis of linear systems,
whereas the nonlinear elastic spring system responds nonlinearly to the applied loads. All
the problems are well defined, and a unique solution exists for each system response.

EXAMPLE 3.1: Figure E3.1 shows a system of three rigid carts on a horizontal plane that are
interconnected by a system of linear elastic springs. Calculate the displacements of the carts and
the forces in the springs for the loading shown.

U By Us, A3

—

"

kq

——t WV}

N

{a) Physical layout
Uy
ki A

F@ ks o F5 ks F9

W[V 1 [U]-[FY kK [V -1 [e]-[7
1w @ -1 1] U] [P

(b) Element equilibrium relations

Figure E3.1 System of rigid carts interconnected by linear springs
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We perform the analysis by following steps 1 to 4 in Section 3.2. As state variables that
characterize the response of the system, we choose the displacements U,, U, and Us;. These
displacements are measured from the initial positions of the carts, in which the springs are
unstretched. The individual spring elements and their equilibrium requirements are shown in
Fig. E3.1(b).

To generate the governing equations for the state variables we invoke the element intercon-
nection requirements, which correspond to the static equilibrium of the three carts:

F'+FP+ FP + F = R,

FP+F+ P =R (@
F¥ + F§ = R,
We can now substitute for the element end forces Fi”; i = 1,2, 3;j = 1,...,5; using the

element equilibrium requirements given in Fig. E3.1(b). Here we recognize that corresponding
to the displacement components U,, U, and U; we can write for element 1,

kK 0 O[U F"
0 0 0 Uy | = 0
0 0 0|l Us 0
or K®U = F¢
for element 2,
k —k O U F?
“"kz kz 0 Uz = | F 52)
0 0 0l Us 0
or K?U = F®, and so on. Hence the element interconnection requirements in (a) reduce to
KU = R (b)
where UT = [U1 Uz U;]
(k| + kz + k3 + k4) —’(kz + kg) ““k4
K= ~ (k2 + ki) (k2 + ks + ks) —ks
~k4 —ks (ks + ks)
and R"=[R R, Rj]

Here it is noted that the coefficient matrix K can be obtained using

5
K=K ©
i=1
where the K are the element stiffness matrices. The summation process for obtaining in (c) the
total structure stiffness matrix by direct summation of the element stiffness matrices is referred
to as the direct stiffness method.
The analysis of the system is completed by solving (b) for the state variables U, U;, and
U; and then calculating the element forces from the element equilibrium relationships in
Fig. E3.1.

EXAMPLE 3.2: A wall is constructed of two homogeneous slabs in contact as shown in
Fig. E3.2. In steady-state conditions the temperatures in the wall are characterized by the
external surface temperatures 6, and 6 and the interface temperature 6,. Establish the equi-
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6 62 /03
Surface \ Surface
coefficient coefficient
3k 2k
90 % "
Conductance Conductance
2k 3k

Figure E3.2 Slab subjected to temperature boundary conditions

librium equations of the problem in terms of these temperatures when the ambient temperatures
6y and 6, are known,

The conductance per unit area for the individual slabs and the surface coefficients are
given in Fig. E3.2. The heat conduction law is ¢/A = k Af, where ¢ is the total heat flow, A is
the area, Af is the temperature drop in the direction of heat flow, and k is the conductance or
surface coefficient. The state variables in this analysis are 6,, 6., and 8;. Using the heat conduc-
tion law, the element equilibrium equations are

for the left surface, per unit area:

Q= 3k(6o — 6))
for the left slab: q2 = 2k(6 — 6)
for the right slab: g = 3k(6; — &)
for the right surface: Ga = 2k(6 — 64)

To obtain the governing equations for the state variables, we invoke the heat flow equilibrium
requirement ¢ = g2 = gs = g4. Thus,

3k(6o — 8) = 2k(6h — &)
2k(6; — &) = 3k(6, — 65)
3k(0; — 0s) = 2k(6h — 6)

Writing these equations in matrix form we obtain

sk ~2k 06 3k,
-2k 5k -3kllel=1] 0 (@
0 -3k 5k{{6 2k6,

These equilibrium equations can be also derived in a systematic manner using a direct
stiffness procedure. Using this technique, we proceed as in Example 3.1 with the typical element

equilibrium relations
- 1 "_1 9:‘ . qi
e [q,]
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where ¢;, ¢; are the heat flows into the element and 6;, 6; are the element-end temperatures. For
the system in Fig. E3.2 we have two conduction elements (each slab being one element), hence

we obtain
2k -2 0 & 3k(6o — 61)
~2k Sk =3kl &)= 0 (b)
0 -3k 3kl| 6 2k(6s — 65)

Since 6, and 65 are unknown, the equilibrium relations in (b) are rearranged for solution to obtain
the relations in (a).

It is interesting to note the analogy between the displacement and force analysis of the
spring system in Example 3.1 and the temperature and heat transfer analysis in Example 3.2.
The coefficient matrices are very similar in both analyses, and they can both be obtained
in a very systematic manner. To emphasize the analogy we give in Fig. 3.1 a spring model
that is governed by the coefficient matrix of the heat transfer problem.

2

U1I R‘l U21 RZ U3: H3

Figure 3.1 Assemblage of springs governed by same coefficient matrix as the heat transfer
problem in Fig. E3.2

We next consider the analyses of a simple flow problem and a simple electrical system,
both of which are again analyzed in much the same manner as the spring and heat transfer
problems.

EXAMPLE 3.3: Establish the equations that govern the steady-state pressure and flow distribu-
tions in the hydraulic network shown in Fig. E3.3. Assume the fluid to be incompressible and the
pressure drop in a branch to be proportional to the flow g through that branch, Ap = Rq, where
R is the branch resistance coefficient.

In this analysis the elements are the individual branches of the pipe network. As unknown
state variables that characterize the flow and pressure distributions in the system we select the

\_ a
[
R=5b/
”
_—.-

c B=3b D

Figure E3.3 Pipe network
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pressures at A, C, and D, which we denote as pa, pc, and pp, and we assume that the pressure
at B is zero. Thus, we have for the elements

_ P _pc—po
" P T

- _ (a)

lac = Ba_Pc, 42 |os = £o, qa = Pe _Pp

7 56 5b’ 3b
The element interconnectivity requirements require continuity of flow, hence
Q=q +q

(b)

G2lac = @3 + qa; Qlos = ¢35 + ¢4

Substituting from (a) into (b) and writing the resulting equations in matrix form, we obtain

3 -2 O} pa 106Q
-6 31 =25|lpc|~= 0
-1 1 11l po 0
9 -6 0] pa 306Q
or -6 31 -25|ipcl= ¢ ©
0 =25 31|}|po 0

The analysis of the pipe network is completed by solving from (c) for the pressures pa4, pc, and
po, and then the element equilibrium relations in (a) can be employed to obtain the flow
distribution.

The equilibrium relations in (c) can also be derived—as in the preceding spring and heat
transfer examples—using a direct stiffness procedure. Using this technique, we proceed as in
Example 3.1 with the typical element equilibrium relations

CEE A
where g;, g; are the fluid flows into the element and p, p; are the element-end pressures.

EXAMPLE 3.4: Consider the dc network shown in Fig. E3.4. The network with the resistances
shown is subjected to the constant-voltage inputs E and 2F at A and B, respectively. We are to
determine the steady-state current distribution in the network.

In this analysis we use as unknown state variables the currents /;, I, and ;. The system
elements are the resistors, and the element equilibrium requirements are obtained by applying
Ohm’s law to the resistors. For a resistor R, carrying current /, we have Ohm’s law

AE = RI

where AE is the voltage drop across the resistor.
The element interconnection law to be satisfied is Kirchhoff’s voltage law for each closed
loop in the network,

2E = 2R11 + 2R(11 - 13)
E = 4R(12 - ]3)
0 = 6RI, + 4R(13 - L)+ 2R(I] - 1)
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Figure E3.4 Dc network

Writing these equations in matrix form, we obtain

4R 0 2R 2E
0 4R -aR|lL|=| E (a)
~2R —4R 12R || b, 0

The analysis is completed by solving these equations for /{, /;, and /5. Note that the equilibrium
equations in (a) could also have been established using a direct stiffness procedure, as in
Examples 3.1 to 3.3.

We should note once again that the steps of analysis in the preceding structural, heat
transfer, fluid flow, and electrical problems are very similar, the basic analogy being
possibly best expressed in the use of the direct stiffness procedure for each problem. This
indicates that the same basic numerical procedures will be applicable in the analysis of
almost any physical problem (see Chapters 4 and 7).

Each of these examples deals with a linear system; i.e., the coefficient matrix is
constant and thus, if the right-hand-side forcing functions are multiplied by a constant «,
the system response is also a times as large. We consider in this chapter primarily linear
systems, but the same steps for solution summarized previously are also applicable in
nonlinear analysis, as demonstrated in the following example (see also Chapters 6 and 7).

EXAMPLE 3.5: Consider the spring-cart system in Fig. E3.1 and assume that spring @ now
has the nonlinear behavior shown in Fig. E3.5. Discuss how the equilibrium equations given in
Example 3.1 have to be modified for this analysis.

As long as U, = Ay, the equilibrium equations in Example 3.1 are applicable with k; = k.
However, if the loads are such that U, > Ay, i.e., F{" > F,, we need to use a different value for
k1, and this value depends on the force F{" acting in the element. Denoting the stiffness value by
k., as shown in Fig. E3.5, the response of the system is described for any load by the equilibrium

equations
KU=R (a)
where the coefficient matrix is established exactly as in Example 3.1 but using &; instead of &,
ks + ko + ks + ki) —(ka + k) —ks
K, = —(ky + ks) (k2 + ks + ks) —ks (b)

—~Ka —ks (ks + ks)
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Figure E3.5 Spring (D of the cart-spring system of Fig. E3.1 with nonlinear elastic charac-
teristics

Although the response of the system can be calculated using this approach, in which K; is
referred to as the secant matrix, we will see in Chapter 6 that in general practical analysis we
actually use an incremental procedure with a tangent stiffness matrix.

These analyses demonstrate the general analysis procedure: the selection of unknown
state variables that characterize the response of the system under consideration, the
identification of elements that together comprise the complete system, the establishment of
the element equilibrium requirements, and finally the assemblage of the elements by invok-
ing interelement continuity requirements.

A few observations should be made. First, we need to recognize that there is some
choice in the selection of the state variables. For example, in the analysis of the carts in
Example 3.1, we could have chosen the unknown forces in the springs as state variables. A
second observation is that the equations from which the state variables are calculated can
be linear or nonlinear equations and the coefficient matrix can be of a general nature.
However, it is most desirable to deal with a symmetric positive definite coefficient matrix
because in such cases the solution of the equations is numerically very effective (see
Section 8.2).

In general, the physical characteristics of a problem determine whether the numerical
solution can actually be cast in a form that leads to a symmetric positive definite coefficient
matrix. However, even if possible, a positive definite coefficient matrix is obtained only if
appropriate solution variables are selected, and in a nonlinear analysis an appropriate
linearization must be performed in the iterative solution. For this reason, in practice, it is
valuable to employ general formulations for whole classes of problems (e.g., structural
analysis, heat transfer, and so on—see Sections 4.2, 7.2, and 7.3) that for any analysis lead
to a symmetric and positive definite coefficient matrix.

In the preceding discussion we employed the direct approach of assembling the
system-governing equilibrium equations. An important point is that the governing equi-
librium equations for state variables can in many analyses also be obtained using an
extremum, or variational formulation. An extremum problem consists of locating the set (or
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sets) of values (state variables) U, i = 1, . . . n, for which a given functional I{U,, . . .,
U.) is a maximum, is a minimum, or has a saddle point. The condition for obtaining the
equations for the state variables is

8l =0 ' (3.1)
. oll oIl
I e— + o0+
and since S11 U, SU, U o6U, 3.2)
we must have QII_ =0 fori=1,...,n (3.3)
U,

We note that U, stands for “variations in the state variables U; that are arbitrary except that
they must be zero at and corresponding to the state variable boundary conditions.”' The
second derivatives of T with respect to the state variables then decide whether the solution
corresponds to a maximum, a minimum, or a saddle point. In the solution of lumped-
parameter models we can consider that I1 is defined such that the relations in (3.3) generate
the governing equilibrium equations.? For example, in linear structural analysis, when
displacements are used as state variables, I is the total potential (or total potential energy)

nM=a —Ww (3.4)
where AU is the strain energy of the system and W is the total potential of the loads. The
solution for the state variables corresponds in this case to the minimum of II.

EXAMPLE 3.6: Consider a simple spring of stiffness k and applied load P, and discuss the use
of (3.1) and (3.4).
Let u be the displacement of the spring under the load P. We then have

W = 3ku?; W = Pu
and Il = jku® ~ Pu
Note that for a given P, we could graph II as a function of u. Using (3.1) we have, with

u as the only variable,

SII = (ku — P) du, — = ky — P
ou

which gives the equilibrium equation

ku = P (2
Using (a) to evaluate ‘W', we have at equilibrium W = ku® ie., W = 2 and [1 = — jku? =
—4 Pu. Also, 8*I1/du® = k and hence at equilibrium IT is at its minimum.

EXAMPLE 3.7: Consider the analysis of the system of rigid carts in Example 3.1. Determine
IT and invoke the condition in (3.1) for obtaining the governing equilibrium equations.
Using the notation defined in Example 3.1, we have

QY = {UTKU (a)

'More precisely, the variations in the state variables must be zero ar and corresponding 1o the essential
boundary conditions, as further discussed in Section 3.3.2.
21n this way we consider a specific variational formulation, as further discussed in Chapters 4 and 7.
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and W = UR (b)
where it should be noted that the total strain energy in (a) could also be written as

5
a = éUT(E K"”)U

i=1
= UTKPU + jU'K?U + - .« + {UTK®U
=0 + U+ -+ - + Us
where A is the strain energy stored in the ith element.
Using (a) and (b), we now obtain
= 1U'KU - U'R ()
Applying (3.1) gives
KU = R

Solving for U and then substituting into (c), we find that IT corresponding to the displacements
at system equilibrium is

= -lUR

Since the same equilibrium equations are generated using the direct solution approach
and the variational approach, we may ask what the advantages of employing a variationa!
scheme are. Assume that for the problem under consideration IT is defined. The equilibrium
equations can then be generated by simply adding the contributions from all elements to IT
and invoking the stationarity condition in (3.1). In essence, this condition generates auto-
matically the element interconnectivity requirements. Thus, the variational technique can
be very effective because the system-governing equilibrium equations can be generated
“quite mechanically.” The advantages of a variational approach are even more pronounced
when we consider the numerical solution of a continuous system (see Section 3.3.2). How-
ever, a main disadvantage of a variational approach is that, in general, less physical insight
into a problem formulation is obtained than when using the direct approach. Therefore, it
may be critical that we interpret physically the system equilibrium equations, once they have
been established using a variational approach, in order to identify possible errors in the
solution and in order to gain a better understanding of the physical meaning of the equations.

3.2.2 Propagation Problems

The main characteristic of a propagation or dynamic problem is that the response of the
system under consideration changes with time. For the analysis of a system, in principle, the
same procedures as in the analysis of a steady-state problem are employed, but now the state
variables and element equilibrivm relations depend on time. The objective of the analysis
is to caiculate the state variables for all time 7.

Before discussing actual propagation problems, let us consider the case where the time
effect on the element equilibrium relations is negligible but the load vector is a function of
time. In this case the system response is obtained using the equations governing the steady-
state response but substituting the time-dependent load or forcing vector for the load vector
employed in the steady-state analysis. Since such an analysis is in essence still a steady-state
analysis, but with steady-state conditions considered at any time ¢z, the analysis may be
referred to as a pseudo steady-state analysis.
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In an actual propagation problem, the element equilibrium relations are time-
dependent, and this accounts for major differences in the response characteristics when
compared to steady-state problems. In the following we present two examples that demon-
strate the formulation of the governing equilibrium equations in propagation problems.
Methods for calculating the solution of these equations are given in Chapter 9.

EXAMPLE 3.8: Consider the system of rigid carts that was analyzed in Example 3.1. Assume
that the loads are time-dependent and establish the equations that govern the dynamic response

of the systemn.
For the analysis we assume that the springs are massless and that the carts have masses m;,

m,, and m; (which amounts to lumping the distributed mass of each spring to its two end points).
Then, using the information given in Example 3.1 and invoking d’Alembert’s principle, the
element interconnectivity requirements yield the equations

F"+ FP + FP + F = Ri() ~ m U,
F@+ FQ + FY = R(t) — my U
Fga) + F9 = Ry(t) — ms Us

. d*U; .
where Ui=_d—t_2—; i=1,23
Thus we obtain as the system-governing equilibrium equations
MU + KU = R() (a)
where K, U, and R have been defined in Example 3.1 and M is the systemn mass matrix
m, 0 0
M= 0 ma 0
0 0 ms

The equilibrium equations in (a) represent a system of ordinary differential equations of second
order in time. For the solution of these equations it is also necessary that the initial conditions
on U and U be given; i.e., we need to have °U and °U, where

U= U|l=0; 0[.1 = (.Jl:-o

Earlier we mentioned the case of a pseudo steady-state analysis. Considering the
response of the carts, such analysis implies that the loads change very slowly and hence
mass effects can be neglected. Therefore, to obtain the pseudo steady-state response, the
equilibrium equations (a) in Example 3.8 should be solved with M = 0.

EXAMPLE 3.9: Figure E3.9 shows an idealized case of the transient heat flow in an electron
tube. A filament is heated to a temperature § by an electric current; heat is convected from the
filament to the surrounding gas and is radiated to the wall, which also receives heat by convection
from the gas. The wall itself convects heat to the surrounding atmosphere, which is at tempera-
ture 6,. It is required to formulate the system-governing heat flow equilibrium equations.

In this analysis we choose as unknown state variables the temperature of the gas, 6, and
the temperature of the wall, 6. The system equilibrium equations are generated by invoking the
heat flow equilibrium for the gas and the wall. Using the heat transfer coefficients given in
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Figure E3.9 Heat transfer idealization of an electron tube

Fig. E3.9, we obtain for the gas

do
cl;-f—; = k(6 — 6) — ka(6y — 65)

and for the wall
CA d02 . k 4 4
vy = A0 — (82)) + ka6 — &) — ka(62 — 6.)

These two equations can be written in matrix form as

Co + Ko =Q (a
[ 0] Jk+k)  —k J
where ¢= [0 Czjl’ K [ ) (k2 + K3)
a1l _[k8 }
b= [92]’ Q [k,((ﬂf)“ = (62)%) + k36,

We note that because of the radiation boundary condition, the heat flow equilibrium equations
are nonlinear in 0. Here the radiation boundary condition term has been incorporated in the heat
flow load vector Q. The solution of the equations can be carried out as described in Section 9.6.

Although, in the previous examples, we considered very specific cases, these examples
illustrated in a quite general way how propagation problems of discrete systems are formu-
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lated for analysis. In essence, the same procedures are employed as in the analysis of
steady-state problems, but “time-dependent loads” are generated that are a result of the
“resistance to change” of the elements and thus of the complete system. This resistance to
change or inertia of the system must be considered in a dynamic analysis.

Based on the preceding arguments and observations, it appears that we can conclude
that the analysis of a propagation problem is a very simple extension of the analysis of the
corresponding steady-state problem. However, we assumed in the earlier discussion that the
discrete system is given and thus the degrees of freedom or state variables can be directly
identified. In practice, the selection of an appropriate discrete system that contains all the
important characteristics of the actual physical system is usually not straightforward, and
in general a different discrete model must be chosen for a dynamic response prediction than
is chosen for the steady-state analysis. However, the discussion illustrates that once the
discrete model has been chosen for a propagation problem, formulation of the governing
equilibrium equations can proceed in much the same way as in the analysis of a steady-state
response, except that inertia loads are generated that act on the system in addition to the
externally applied loads (see Section 4.2.1). This observation leads us to anticipate that
the procedures for solving the dynamic equilibrium equations of a system are largely based
on the techniques employed for the solution of steady-state equilibrium equations (see Sec-
tion 9.2).

3.2.3 Eigenvalue Problems

In our earlier discussion of steady-state and propagation problems we implied the existence -
of a unique solution for the response of the system. A main characteristic of an eigenvalue
problem is that there is no unique solution to the response of the system, and the objective
of the analysis is to calculate the various possible solutions. Eigenvalue problems arise in
both steady-state and dynamic analyses.

Various different eigenvalue problems can be formulated in engineering analysis. In
this book we are primarily concerned with the generalized eigenvalue problem of the form

Av = ABv (3.5)

where A and B are symmetric matrices, A is a scalar, and v is a vector. If A; and v; satisfy
(3.5), they are called an eigenvalue and an eigenvector, respectively.

In steady-state analysis an eigenvalue problem of the form (3.5) is formulated when
it is necessary to investigate the physical stability of the system under consideration. The
question that is asked and leads to the eigenvalue problem is as follows: Assuming that the
steady-state solution of the system is known, is there another solution into which the system
could bifurcate if it were slightly perturbed from its equilibrium position? The answer to
this question depends on the system under consideration and the loads acting on the system.
We consider a very simple example to demonstrate the basic idea.

EXAMPLE 3.10: Consider the simple cantilever shown in Fig. E3.10. The structure consists of
a rotational spring and a rigid lever arm. Predict the response of the structure for the load
applications shown in the figure.

We consider first only the steady-state response as discussed in Section 3.2.1. Since the bar
is rigid, the cantilever is a single degree of freedom system and we employ A, as the state variable.
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In loading condition I, the bar is subjected to a longitudinal tensile force P, and the moment
in the spring is zero. Since the bar is rigid, we have

A, =0 ()

Next consider loading condition II. Assuming small displacements we have in this case
PL?

A, = e (b)

Finally, for loading condition III we have, as in condition I,
A, =0 {c)

We now proceed to determine whether the system is stable under these load applications.
To investigate the stability we perturb the structure from the equilibrium positions defined in (a),
(b), and (c) and ask whether an additional equilibrium position is possible.

Assume that A, is positive but small in loading conditions I and II. If we write the
equilibrium equations taking this displacement into account, we observe that in loading condition
I the small nonzero A, cannot be sustained, and that in loading condition II the effect of including
A, in the analysis is negligible.

Consider next that A, > 0 in loading condition III. In this case, for an equilibrium
configuration to be possible with A, nonzero, the following equilibrium equation must be
satisfied:

pa, = k2
L

But this equation is satisfied for any A, provided P = k/L. Hence the critical load P.r; at which
an equilibrium position in addition to the horizontal one becomes possible is

k
Pey = z
In summary, we have
P < P only the horizontal position of the bar is possible;

equilibrium is stable

P = Py horizontal and deflected positions of the bar are
possible; the horizontal equilibrium position is
unstable for P = P..

To gain an improved understanding of these results we may assume that in addition to the
load P shown in Fig. E3.10(b), a small transverse load W is applied as shown in Fig. E3.10(d).
If we then perform an analysis of the cantilever model subjected to P and W, the response curves
shown schematically in Fig. E3.10(¢) are obtained. Thus, we observe that the effect of the load
W decreases and is constant as P increases in loading conditions I and II, but that in loading
condition III the transverse displacement A, increases very rapidly as P approaches the critical
load, Pes:.

The analyses given in Example 3.10 illustrate the main objective of an eigenvalue

formulation and solution in instability analysis, namely, to predict whether small distur-
bances that are imposed on the given equilibrium configuration tend to increase very
substantially. The load level at which this situation arises corresponds to the critical loading
of the system. In the second solution carried out in Example 3.10 the small disturbance was
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due to the small load W, which, for example, may simulate the possibility that the horizontal
load on the cantilever is not acting perfectly horizontally. In the eigenvalue analysis, we
simply assume a deformed configuration and investigate whether there is a load level that
indeed admits such a configuration as a possible equilibrium solution. We shall discuss in
Section 6.8.2 that the eigenvalue analysis really consists of a linearization of the nonlinear
response of the system, and that it depends largely on the system being considered whether
areliable critical load is calculated. The eigenvalue solution is particularly applicable in the
analysis of “beam-column-type situations” of beam, plate, and shell structures.

EXAMPLE 3.11: Experience shows that in structural analysis the critical load on column-type
structures can be assessed appropriately using an eigenvalue problem formulation. Consider the
system defined in Fig. E3.11. Construct the eigenvalue problem from which the critical loading
on the system can be calculated.

P
Z4 Spring A
x| I
Rigid bar \
2] Spring Bl i
'@ k1
k .

Rigid bar
N

Smooth hinges at
A B and C l

P
kU,
et A
kUy
ntffpuem B
kU] + kUz
- C
P

Figure E3.11 Instability analysis of a column
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As in the derivation of steady-state equilibrium equations (see Section 3.2.1), we can
employ the direct procedure or a variational approach to establish the problem-governing equa-
tions, and we describe both techniques in this problem solution.

In the direct approach we establish the governing equilibrium equations directly by consid-
ering the equilibrium of the structure in its deformed configuration. Referring to Fig. E3.11, the
moment equilibrium of bar AB requires that

PL sin(a + B) = kU, L cos(a + B) + k.a (a)
Similarly, for bars CBA we need
PL[sin(a + B) + sin B] = kU, L[cos(a + B) + cos B] + kU, L cos BB (b)

We select U, and U, as state variables that completely describe the structural response. We also
assume small displacements, for which

Lsin(a+B)=U1*Uz; Lsin 8 = U,

Leost@ + 8) =L;  LcospB = L; aﬁgi:zgyﬁ
Substituting into (a) and (b) and writing the resulting equations in matrix form, we obtain
k. k.
+ — [y R —
kL 2 2 I U, = p 1 11U,
2kL kL U, 1 0|V,

We can symmetrize the coefficient matrices by multiplying the first row by —2 and adding the
result to row 2, which gives the eigenvalue problem

k, 2k,
kL + T -1 U . 1 -] o
2%, 4k, = ¢
. —‘T kL + T Uz "‘1 2 Uz

It may be noted that the second equation in (c) can also be obtained by considering the moment
equilibrium of bar CB.

Considering next the variational approach, we need to determine the total potential IT of
the system in the deformed configuration. Here we have

I = 1kU% + $kU3 + Lk,a* — PL[1 — cos(a + B) + 1 — cos B] (d)

As in the direct approach, we now assume small displacement conditions. Since we want
to derive, using (3.1), an eigenvalue problem of form (3.5) in which the coefficient matrices are
independent of the state variables, we approximate the trigonometric expressions to second order
in the state variables. Thus, we use

2
cos(a+,8)il—£e~t2--@—
(€
2B
cos B =1 )
and a+35——-_——~U'ZU2; ai__.__U‘_L2UZ; Ba% (f)
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Substituting from (e) and (f) into (d) we obtain

1 .1 1 (U =2, P P
= + - —k,| e — 2 o o JT2
n 2IcU. 2kU§+2k( 7 ) ZL(U' Us) LUz
Applying the stationarity principle,
oIl all
au, % au °

the equations in (c) are obtained.

Considering now dynamic analysis, an eigenvalue problem may need to be formulated
in the solution of the dynamic equilibrium equations. In essence, the objective is then to find
a mathematical transformation on the state variables that is employed effectively in the
solution of the dynamic response (see Section 9.3). In the analysis of physical problems, it
is then most valuable to identify the eigenvalues and vectors with physical quantities (see
Section 9.3).

To illustrate how eigenvalue problems are formulated in dynamic analysis, we present
the following examples.

EXAMPLE 3.12: Consider the dynamic analysis of the system of rigid carts discussed in
Example 3.8. Assume free vibration conditions and that

U = ¢ sin(wt ~ ) (a)

where & is a vector with components independent of time, o is a circular frequency, and i is a
phase angle. Show that with this assumption an eigenvalue problem of the form given in (3.5)
is obtained when searching for a solution of ¢ and w.

The equilibrium equations of the system when considering free-vibration conditions are

MU + KU = 0 (b)
where the matrices M and K and vector U have been defined in Examples 3.1 and 3.8. If U given

in (a) is to be a solution of the equations in (b), these equations must be satisfied when substituting
for U,

—w*M¢ sin(wr — ) + Ko sinfwr — ¢) =0
Thus, for (a) to be a solution of (b) we obtain the condition
K¢ = o*Md ©

which is an eigenvalue problem of form (3.5). We discuss in Section 9.3 the physical character-
istics of a solution, w? and ¢;, to the problem in {(c).

EXAMPLE 3.13: Consider the electric circuit in Fig. E3.13. Determine the eigenvalue problem
from which the resonant frequencies and modes can be calculated when L, = L, = L and
Ci=0C= C.
Our first objective is to derive the dynamic equilibrium equations of the system. The
element equilibrium equation for an inductor is
dl

Lo =V (@
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L
* 11
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h+h
L1 T’Z C1 - Cz
® Figure E3.13 Electric circuit

where L is the inductance, [ is the current through the inductor, and V is the voltage drop across
the inductor. For a capacitor of capacitance C the equilibrium equation is

dav
I = C—E; b)

As state variables we select the currents [, and /> shown in Fig. E3.13. The governing
equilibrium equations are obtained by invoking the element interconnectivity requirements

contained in Kirchhoff’s voltage law:
VCI+‘/L2+VC2=0
Vi, + Vi, + Ve, = 0 ©
Ly Ly Cy ™

Differentiating (a) and (c) with respect to time and substituting into (c) with L, = L, = L and
C1 = (p = C, we obtain

1 i, 12 1)fn 0
w !+ — ==
2 RS- AR A @
We note that these equations are quite analogous to the free-vibration equilibrium equations of
a structural system. Indeed, recognizing the analogy

1
I — displacement; —C~ ~> stiffness; L — mass

the eigenproblem for the resonant frequencies is established as in Example 3.12 (and an equiv-
alent structural system could be constructed).

3.2.4 On the Nature of Solutions

In the preceding sections we discussed the formulation of steady-state, propagation, and
eigenvalue problems, and we gave a number of simple examples. In all cases a system of
equations for the unknown state variables was formulated but not solved. For the solution
of the equations we refer to the techniques presented in Chapters 8 to 11. The objective in
this section is to discuss briefly the nature of the solutions that are calculated when steady-
state, propagation, or eigenvalue problems are considered.

For steady-state and propagation problems, it is convenient to distinguish between
linear and nonlinear problems. In simple terms, a linear problem is characterized by the fact
that the response of the system varies in proportion to the magnitude of the applied loads.
All other problems are nonlinear, as discussed in more detail in Section 6.1. To demonstrate
in an introductory way some basic response characteristics that are predicted in linear
steady-state, propagation, and eigenvalue analyses we consider the following example.
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EXAMPLE 3.14: Consider the simple structural system consisting of an assemblage of rigid
weightless bars, springs, and concentrated masses shown in Fig. E3.14. The elements are con-
nected at A, B, and C using frictionless pins. It is required to analyze the discrete system for the
loading indicated, when the initial displacements and velocities are zero.

The response of the system is described by the two state variables U; and U, shown in
Fig. E3.14(c). To decide what kind of analysis is appropriate we need to have sufficient informa-
tion on the characteristics of the structure and the applied forces F and P. Let us assume that the
structural characteristics and the applied forces are such that the displacements of the element
assemblage are relatively small,

u 1 U,
— < and — <
L 10 L 10
2F
m mi2 AF
ke, = kL2 ke = kL2
Rigid bar \/; Rigid bar cy P
<k
o
L L L -
7
Smooth hinges at 77
A, B, and C
(a) Discrete system
F P |
F=sin % -
Ta i t Vt

(b} Loading conditions

ko

{c) External forces in deformed configuration

Figure E3.14 A two degree of freedom system
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We can then assume that

cosa = cos B = cos(B — a) = 1

sin a = a; sin 8 =8 (a)
_U. _U-U
=T A L

The governing equilibrium equations are derived as in Example 3.11 but we include inertia forces
(see Example 3.8); thus we obtain

m o || (Sk + »2{1) -(2k + ;—j) vl |2r
m ] .. * P P = (b)
0 "2" U, "‘(Zk + z) (Zk + z) U, F

The response of the system must depend on the relative values of k, m, and P/L. In order
to obtain a measure of whether a static or dynamic analysis must be performed we calculate the
natural frequencies of the system. These frequencies are obtained by solving the eigenvalue

problem
(Sk + 3—’3) —(2k + f) U, m 0]lu
L L o ©
= @
P P m
"‘(2’( + Z) (2]( + Z) U, 0 ‘2‘ U,

The solution of (c) gives (see Section 2.5)

9% 2P [ 8Pk 2P |~
2m  mL 4m?>  m’L  miL?

(s, 2p, fe e ap
@ 2m  mL 4m*  m*L mPL?

We note that for constant k and m the natural frequencies (radians per unit time) are a function
of P/L and increase with P/L as shown in Fig. E3.14(d). The ith natural period, T, of the system
is given by T, = 2m/w;, hence

£
I

The response of the system depends to a large degree on the duration of load application when
measured on the natural periods of the system. Since P is constant, the duration of load applica-
tion is measured by T,. To illustrate the response characteristics of the system, we assume a
specific case k = m = P/L = 1 and three different values of T,. ’
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Figure E3.14 (continued)
Case (i) T, = 4T;:  The response of the system is shown for this case of load application in

Fig. E3.14(e), Case i. We note that the dynamic response solution is somewhat close to the static
response of the system and would be very close if Ty < Ty
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Case (ii) Tg= (T7 + T2)/2:  The response of the system is truly dynamic as shown in
Fig. E3.14(e), Case ii. It would be completely inappropriate to neglect the inertia effects.

Case (iii) Ty = 1/4 T2:  In this case the duration of the loading is relatively short compared
to the natural periods of the system. The response of the system is truly dynamic, and inertia
effects must be included in the analysis as shown in Fig. E3.14(e), Case iii. The response of the
system is somewhat close to the response generated assuming impulse conditions and would be
very close if T; > T..
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{e} Analysis of the system: Case iii (here the actual
displacements are obtained by multiplying the given
values by 2T, /m; the impulse response was calculated
using °U, = %, = 0, °U, = °(J, = 4T,/m and setting the
external loads to zero).

Figure E3.14 (continued)
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To identify some conditions for which the structure becomes unstable, we note from (b)
that the stiffness of the structure increases with increasing values of P/L (which is why the
frequencies increase as P/L increases). Therefore, for the structure to become unstable, we need
a negative value of P; i.e., P must be compressive. Let us now assume that P is decreased very
slowly (P increases in compression) and that F is very small. In this case a static analysis is
appropriate, and we can neglect the force F to obtain from (b) the governing equilibrinm

equations
[ Sk —Zk][lh] - _ij[—2 I][Ul]
=2k 2k]LU, LL 1 —-1]LU-
The solution of this eigenvalue problem gives two values for P/L. Because of the sign convention
for P, the larger eigenvalue gives the critical load
Pey = —2kL

It may be noted that this is the load at which the smallest frequency of the system is zero
[see Fig. E3.14(d)].

Although we considered a structural system in this example, most of the solution
characteristics presented are also directly observed in the analysis of other types of prob-
lems. As shown in an introductory manner in the example, it is important that an analyst
be able to decide what kind of analysis is required: whether a steady-state analysis is
sufficient or whether a dynamic analysis should be performed, and whether the system may
become unstable. We discuss some important factors that influence this decision in Chap-
ters 6 and 9.

In addition to deciding what kind of analysis should be performed, the analyst must
select an appropriate lumped-parameter mathematical model of the actual physical system.
The characteristics of this model depend on the analysis to be carried out, but in complex
engineering analyses, a simple lumped-parameter model is in many cases not sufficient, and
it is necessary to idealize the system by a continuum-mechanics-based mathematical model.
We introduce the use of such models in the next section.

3.2.5 Exercises

3.1. Consider the simple cart system in static (steady-state) conditions shown. Establish the governing
equilibrium equations.
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3.2, Consider the wall of three homogeneous slabs in contact as shown. Establish the steady-state heat

transfer equilibrium equations of the analysis problem.

—

Prescribed 62

temparature 6

Conductance 3k

Surface coefficient 3k

Environmental
temperature 65

3.3. The hydraulic network shown is to be analyzed. Establish the equilibrium equations of the system

when Ap = Rq and R is the branch resistance coefficient.

3.4. The dc network shown is to be analyzed. Using Ohm’s law, establish the current-voltage drop

equilibrium equations of the system.
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3.5. Consider the spring-cart system in Exercise 3.1. Determine the variational indicator IT of the total
potential of this system.

3.6. Consider the slab in Example 3.2. Find a variational indicator IT that has the property that
8I1 = O generates the governing equilibrium equations.

3.7. Establish the dynamic equilibrium equations of the system of carts in Exercise 3.1 when the carts
have masses m,, mz, and m;.

3.8, Consider the simple spring-cart system shown initially at rest. Establish the equations governing
the dynamic response of the system.

Ri

Time

__' > Ri=50 Spring stiffness k _1, > A3 =10
v#ﬁ
}——)" Ry=0
2k
l'l'A'A' ﬂ 2k /

AAAA

AAAAJ
/ 3k m3

3.9. The rigid bar and cable structure shown is to be analyzed for its dynamic response. Formulate
the equilibrium equations of motion.

Rigid carts

Mass my

Massless cable
Tension T
R Length L

L—:l l«-————-L

Rigid, massless bars
Spring stiffness k
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3.10. Consider the structural model shown. Determine the eigenvalue problem from which the critical
load can be calculated. Use the direct method and the variational method to obtain the governing
equations.

1) et
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3.11. Establish the eigenproblem governing the stability of the system shown.
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3.12. The column structure in Exercise 3.11 is initially at rest under the constant force P (where P is
below the critical load) when suddenly the force W is applied. Establish the governing equations
of equilibrium. Assume the springs to be massless and that the bars have mass m per unit length.

3.13. Consider the analysis in Example 3.9. Assume 8 = ¢e™ and Q = 0 and establish an eigenprob-
lem corresponding to A, &.

3.14. Consider the wall of three homogeneous slabs in Exercise 3.2. Formulate the heat transfer
equations for a transient analysis in which the initial temperature distribution is given and
suddenly 6, is changed to 67**. Then assume @ = e ™ and Q = 0, and establish an eigenprob-
lem corresponding to A, &. Assume that, for a unit cross-sectional area, each slab has a total heat
capacity of ¢, and that for each slab the heat capacity can be lumped to the faces of the slab.

3.3 SOLUTION OF CONTINUQUS-SYSTEM MATHEMATICAL MODELS

The basic steps in the solution of a continuous-system mathematical model are quite similar
to those employed in the solution of a lumped-parameter model (see Section 3.2). However,
instead of dealing with discrete elements, we focus attention on typical differential elements
with the objective of obtaining differential equations that express the element equilibrium
requirements, constitutive relations, and element interconnectivity requirements. These
differential equations must hold throughout the domain of the system, and before the
solution can be calculated they must be supplemented by boundary conditions and, in
dynamic analysis, also by initial conditions.

As in the solution of discrete models, rwo different approaches can be followed to
generate the system-governing differential equations: the direct method and the variational
method. We discuss both approaches in this section (see also R. Courant and D. Hilbert [A])
and illustrate the variational procedure in some detail because, as introduced in Sec-
tion 3.3.4, this approach can be regarded as the basis of the finite element method.

3.3.1 Differential Formulation

In the differential formulation we establish the equilibrium and constitutive requirements
of typical differential elements in terms of state variables. These considerations lead to a
system of differential equations in the state variables, and it is possible that all compatibility
requirements (i.e., the interconnectivity requirements of the differential elements) are
already contained in these differential equations (e.g., by the mere fact that the solution is
to be continuous). However, in general, the equations must be supplemented by additional
differential equations that impose appropriate constraints on the state variables in order
that all compatibility requirements be satisfied. Finally, to complete the formulation of the
problem, all boundary conditions, and in a dynamic analysis the initial conditions, are
stated.

For purposes of mathematical analysis it is expedient to classify problem-governing
differential equations. Consider the second-order general partial differential equation in the
domain x, y,

du au) 36)

u *u u
Alx, y)— + 2B(x, y)—— + SV = s Uy T, T
(x, y) Py (x, ) Gxdy Clx, y) 3y ¢(x Y By
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where u is the unknown state variable. Depending on the coefficients in (3.6) the differential
equation is elliptic, parabolic or hyperbolic:

<0 elliptic
B> - AC{ =0  parabolic
>0 hyperbolic

This classification is established when solving (3.6) using the method of characteristics
because it is then observed that the character of the solutions is distinctly different for the
three categories of equations. These differences are also apparent when the differential
equations are identified with the different physical problems that they govern. In their
simplest form the three types of equations can be identified with the Laplace equation, the
heat conduction equation, and the wave equation, respectively. We demonstrate how these
equations arise in the solution of physical problems by the following examples.

EXAMPLE 3.15: The idealized dam shown in Fig. E3.15 stands on permeable soil. Formulate
the differential equation governing the steady-state seepage of water through the soil and give the
corresponding boundary conditions.

For a typical element of widths dx and dy (and unit thickness), the total flow into the
element must be equal to the total flow out of the element. Hence we have

@l — ql+a) dx + (gl — gli+a) dy = 0

9 0gx
or —Ta%dy dx — a—idx dy =10 (a)
Impermeable
T Y dam
h \V4

Impermeable rock
(a) ldealization of dam on soii and rock

qumy

Tq ly Figure E3.15  Two-dimensional seepage
(b) Differential element of soil problem
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Using Darcy’s law, the flow is given in terms of the total potential ¢,

P ¢
e = —k— = b
q ax 9y 3y ®)
where we assume a uniform permeability k. Substituting from (b) into (a), we obtain the Laplace
equation

82 a?

k(—% + —i’;-) = ©
ax dy

It may be noted that this same equation is also obtained in heat transfer analysis and in the
solution of electrostatic potential and other field problems (see Chapter 7).

The boundary conditions are no-flow boundary conditions in the soil at x = —c and
x = oo,
o o
— =0 - =0 d
0X|im e 0X | et @

at the rock-soil interface,

%% L0 ©
and at the dam-soil interface,
%%(x,L)-:O for~%£x$+% (f)
In addition, the total potential is prescribed at the water-soil interface,
&(x, L <02y = b3 &(x, D>t = b (8

The differential equation in (c) and the boundary conditions in (d) to (g) define the seepage flow
steady-state response.

EXAMPLE 3.16: The very long slab shown in Fig. E3.16 is at a constant initial temperature
6; when the surface at x = 0 is suddenly subjected to a constant uniform heat flow input. The
surface at x = L of the slab is kept at the temperature 6;, and the surfaces parallel to the x, z plane
are insulated. Assuming one-dimensional heat flow conditions, show that the problem-governing
differential equation is the heat conduction equation

where the parameters are defined in Fig. E3.16, and the temperature 6 is the state variable. State
also the boundary and initial conditions.
We consider a typical differential element of the slab [see Fig. E3.16(b)]. The element

equilibrium requirement is that the net heat flow input to the element must equal the rate of heat
stored in the element. Thus

g a6
- — = —d
gA| (qAL. + A P xdx) pA ¢ ik X ()
The constitutive relation is given by Fourier’s law of heat conduction
a0

dx
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slab, A=1.0

(a) dealization of very long slab

Figure E3.16 One-dimensional heat conduction problem

Substituting from (b) into (a) we obtain

@0 a4
ko = 0 C
axt P ©
In this case the element interconnectivity requirements are contained in the assumption that the
temperature 8 be a continuous function of x and no additional compatibility conditions are
applicable.

The boundary conditions are

6 . )
PP
: t>0 (d)
oL, 1) = 8
and the initial condition is 0(x, 0) = 6 e}

The formulation of the problem is now complete, and the solution of (c) subject to the
boundary and initial conditions in (d) and (¢) yields the temperature response of the slab.

EXAMPLE 3.17: The rod shown in Fig. E3.17 is initially at rest when a load R(?) is suddenly

applied at its free end. Show that the problem-governing differential equation is the wave
equation

where the variables are defined in Fig. E3.17 and the displacement of the rod, u, is the state
variable. Also state the boundary and initial conditions.

The element force equilibrium requirements of a typical differential element are, using
d’ Alembert’s principle,

dx (a)
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Figure E3,17 Rod subjected to step load

d
The constitutive relation is o= E—a% (b)
Combining (a) and (b) we obtain
u 1 9%
w G ©

The element interconnectivity requirements are satisfied because we assume that the displace-
ment u is continuous, and no additional compatibility conditions are applicable.
The boundary conditions are

w0, =0
; t>0 @)
EA—(?E(L, N = Ro
ax
and the initial conditions are u(x,0) =0
ou ©
B;(X’ 0 =0

With the conditions in (d) and (e) the formulation of the problem is complete, and (c) can be
solved for the displacement response of the rod.

Although we considered in these examples specific problems that are governed by
elliptic, parabolic, and hyperbolic differential equations, the problem formulations illus-
trate in a quite general way some basic characteristics. In elliptic problems (see Exam-
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ple 3.15) the values of the unknown state variables (or their normal derivatives) are given
on the boundary. These problems are for this reason also called boundary value problems,
where we should note that the solution at a general interior point depends on the data at
every point of the boundary. A change in only one boundary value affects the complete
solution; for instance, in Example 3.15 the complete solution for ¢ depends on the actual
value of h,. Elliptic differential equations generally govern the steady-state response of
systems.

Comparing the governing differential equations given in Examples 3.15 to 3.17 it is
noted that in contrast to the elliptic equation, the parabolic and hyperbolic equations
(Examples 3.16 and 3.17, respectively) include time as an independent variable and thus
define propagation problems. These problems are also called initial value problems because
the solution depends on the initial conditions. We may note that analogous to the derivation
of the dynamic equilibrium equations of lumped-parameter models, the governing differen-
tial equations of propagation problems are obtained from the steady-state equations by
including the “resistance to change” (inertia) of the differential elements. Conversely, the
parabolic and hyperbolic differential equations in Examples 3.16 and 3.17 would become
elliptic equations if the time-dependent terms were neglected. In this way the initial value
problems would be converted to boundary value problems with steady-state solutions.

We stated earlier that the solution of a boundary value problem depends on the data
at all points of the boundary. Here lies a significant difference in the analysis of a propaga-
tion problem, namely, considering propagation problems the solution at an interior point

may depend only on the boundary conditions of part of the boundary and the initial
conditions over part of the interior domain.

3.3.2 Variational Formulations

The variational approach of establishing the governing equilibrium equations of a system
was already introduced as an alternative to the direct approach when we discussed the
analysis of discrete systems (see Section 3.2.1). As described, the essence of the approach
is to calculate the total potential IT of the system and to invoke the stationarity of I, i.e.,
8II = 0, with respect to the state variables. We pointed out that the variational technique
can be effective in the analysis of discrete systems; however, we shall now observe that the
variational approach provides a particularly powerful mechanism for the analysis of contin-
uous systems. The main reason for this effectiveness lies in the way by which some boundary
conditions (namely, the natural boundary conditions defined below) can be generated and
taken into account when using the variational approach.

To demonstrate the variational formulation in the following examples, we assume that
the total potential II is given and defer the description of how an appropriate II can be
determined until after the presentation of the examples.

The total potential I1 is also called the functional of the problem. Assume that in the
functional the highest derivative of a state variable (with respect to a space coordinate) is
of order m; i.e., the operator contains at most mth-order derivatives. We call such a problem
a C™! variational problem. Considering the boundary conditions of the problem, we
identify two classes of boundary conditions, called essential and natural boundary condi-
tions.

The essential boundary conditions are also called geometric boundary conditions
because in structural mechanics the essential boundary conditions correspond to prescribed
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displacements and rotations. The order of the derivatives in the essential boundary condi-
tions is, in a C™! problem, at most m — 1.

The second class of boundary conditions, namely, the natural boundary conditions,
are also called force boundary conditions because in structural mechanics the natural
boundary conditions correspond to prescribed boundary forces and moments. The highest
derivatives in these boundary conditions are of order m to 2m — 1.

We will see later that this classification of variational problems and associated
boundary conditions is most useful in the design of numerical solutions.

In the variational formulations we will use the variational symbol 8, already briefly
employed in (3.1). Let us recall some important operational properties of this symbol; for
more details, see, for example, R. Courant and D. Hilbert [A]. Assume that a function F for

a given value of x depends on v (the state variable), dv/dx, . . ., d?v/dx?, where p =
1, 2,.... Then the first variation of F is defined as
oF oF dv oF drv
=8 + ———— 8l — )+ -+ ———— & — .
OF = 558 ¥ Savian) 6(dx) a(dvjdx") a(dx”) (3.72)

This expression is explained as follows. We associate with v(x) a function € n(x) where
€ is a constant (independent of x) and 7(x) is an arbitrary but sufficiently smooth function
that is zero at and corresponding to the essential boundary conditions. We call n(x) a

variation in v, that is 7(x) = 8v(x) [and of course € 7(x) is then also a variation in v] and
also have for the required derivatives

d'm _d"év _ a(d"v)
dx"  dx" ax"

that is, the variation of a derivative of v is equal to the derivative of the variation in v. The
expression (3.7a) then follows from evaluating

+ By + Py
F[u + en,d(ud en),“”d(vd pen)] - F(v,gg,”.,%;g)
5F = lim ad - ad X (3.7b)

Considering (3.7a) we note that the expression for §F looks like the expression for the
total differential dF; that is, the variational operator J acts like the differential operator with
respect to the variables v, dv/dx, ..., d’v/dx”. These equations can be extended to
multiple functions and state variables, and we find that the laws of variations of sums,
products, and so on, are completely analogous to the corresponding laws of differentiation.

For example, let F and Q be two functions possibly dependent on different state variables;
then

8(F + Q) = 8F + 8Q; 8(FQ) = (8F)Q + F(5Q); 8(FY* = n(F)" ' 8F

In our applications the functions usually appear within an integral sign; and so, for example,
we also use

SJ F(x) dx = f 8F(x) dx

We shall employ these rules extensively in the variational derivations and will use one
important condition (which corresponds to the properties of 7 stated earlier), namely, that
the variations of the state variables and of their (m — 1)st derivatives must be zero at and
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corresponding to the essential boundary conditions, but otherwise the variations can be
arbitrary.

Consider the following examples.

EXAMPLE 3.18: The functional governing the temperature distribution in the slab considered

in Example 3.16 is
L
II = f ( ) dx—f 0gq% dx — 6oqo ()
1]

and the essential boundary condition is
6. =6 (b)
where 8 = 6(0, 1) and 6, = 6(L, 1)

q® is the heat generated per unit volume, and otherwise the same notation as in Example 3.16
is used. Invoke the stationarity condition on I1 to derive the governing heat conduction equation
and the natural boundary condition.

This is a C° variational problem,; i.e., the highest derivative in the functional in (a) is of
order 1, or m = 1. An essential boundary condition, here given in (b), can therefore correspond
only to a prescribed temperature, and a natural boundary condition must correspond to a
prescribed temperature gradient or boundary heat flow input.

To invoke the stationarity condition 811 = 0, we can directly use the fact that variations
and differentiations are performed with the same rules. That is, using (3.7a) we obtain

J (k‘;i)(aa )dx - f: 80 g% dx — 8600 = 0 ©

where also §(90/9x) = 986/3.x . The same result is also obtained when using (3.7b), which gives

here
1,./08 0
{L 2k(ax "7) dx — f 6 + en)g®dx — (6 + €n ':-—D)qo}

8I1 = lim
e—0 €
30 L }
{2 [wer- o
€
LToaean 1 (an)z] r
—— k| — - Bdx — enle=
' L [ekax Pl dx i eng® dx — €nli-o0 go
=i c

L L
20 dan j
= 2l A - B gy -
fkaxaxx an X = Mo qo

where 10 = 7):=0 and we would now substitute 58 for 7. )
Now using integration by parts,” we obtain from (c) the following equation:

2 ]
"f (k—'3—§+q)aedx+k9-0— 86, — [k—f +qn1600=0 (d)
0 0x =L ax x=0

vy J
e ot ~

@ ) ®

2The divergence theorem is used (see Examples 4.2 and 7.1).
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To extract from (d) the governing differential equation and natural boundary condition, we use
the argument that the variations on 6 are completely arbitrary, except that there can be no
variations on the prescribed essential boundary conditions. Hence, because 6y is prescribed, we
have 86, = 0 and term (2) in (d) vanishes.

Considering next terms (1) and (3), assume that 56, = 0 but that 56 is otherwise nonzero
(except at x = 0, where we have a sudden jump to a zero value). If (d) is to hold for any nonzero
56, we need to have®

36
k "5-;2' +q%2=0 (e)
Conversely, assume that 86 is zero everywhere except at x = 0; i.e., we have 86 # 0; then
(d) is valid only if
a6
k—
ox x=0

+g =10 (f)

The expression in (f) represents the natural boundary condition.
The governing differential equation of the propagation problem is obtained from ({g),

specifying here that
a0
B e
q pc ()
36 a0
H d — O —
ence (e) reduces to Py pc Py

We may note that until the heat capacity effect was introduced in the formulation in (g), the
equations were derived as if a steady-state problem (and with ¢” time-dependent a pseudo
steady-state problem) was being considered. Hence, as noted previously, the formulation of the
propagation problem can be obtained from the equation governing the steady-state response by
simply taking into account the time-dependent “inertia term.”

EXAMPLE 3.19: The functional and essential boundary condition governing the wave propa-
gation in the rod considered in Example 3.17 are

Y1 feu\? L
= — — — B —
II L 2EA(ax) dx L uf? dx — u R (a)
and u =10 )]

where the same notation as in Example 3.17 is used, 4o = u(0, #), u. = u(L, 1), and % is the body
force per unit length of the rod. Show that by invoking the stationarity condition on IT the

governing differential equation of the propagation problem and the natural boundary condition
can be derived.

We proceed as in Example 3.18. The stationarity condition 8I1 = 0 gives

L du du x
ik | I Shdad - B4y =
J; (EA ax)<8 ax) dx L Suffdx — R =20

Writing 98u/dx for 8 (9u/dx), recalling that EA is constant, and using integration by parts yields

L u ou
~| (EA— + f?| 8udx + { EA —
fo( ax? f) uax { Ax

- R] Su, — EA 9"u‘
x=L

0x Buo = 0

x=0

¥'We in effect imply here that the limits of integration are not 0 to L but 0* to L~ .
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To obtain the governing differential equation and natural boundary condition we use, in essence,

the same argument as in Example 3.18; i.e., since 8up is zero but u is arbitrary at all other points,
we must have

%u
EA—+ f2 =
ot T /=0 ©
and Ead| =R )
ox x=L
In this problem we have f# = —Ap 3%u/ar* and hence (c) reduces to the problem-governing

differential equation

The natural boundary condition was stated in (d).

Finally, it may be noted that the problem in (a) and (b) is a C° variational problem; i.e.,
m = 1 in this case,

EXAMPLE 3.20: The functional governing static buckling of the column in Fig. E3.20 is

1 (" (d?w)2 P r (dw)2 1
M=z Ell-=) dx— = — + —kw}
2L dx? 2 ), \ax) &+t @
where w, = w/,. and the essential boundary conditions are
dw
=0 & U, b = b
Wleo = 0 x| 0 (b)

Invoke the stationarity condition §II = 0 to derive the problem-governing differential equation
and the natural boundary conditions.

4 Flexural stiffness
/71 El
Z’ AW /
7 Y P
ﬁ -% - - e >
j p- Spring
; stiffness
é k
7 07777
- : -

1

Figure E3.20 Column subjected to a compressive load

This problem is a C' variational problem, i.e., m = 2, because the highest derivative in the
functional is of order 2.

The stationarity condition 611 = 0 yields

L L
f Ew" éw" dx — Pj w Sw' dx + kw, 8w, = 0

[ 0
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where we use the notation w’ = dw/dx, and so on. But éw” = d(éw')/dx, and EI is constant;
hence, using integration by parts, we obtain

L L
J‘ Elw" §w" dx = EIw" w'l§ — EIJ w” 8w’ dx
[} o

If we continue to integrate by parts fv w"” &w’ dx and also integrate by parts [y w' dw’ dx,
we obtain

L
f (EIw™ + Pw") 8w dx + (EIw" 6w')|. — (EIw" 8w")o

0 / ™
A o e v

@ @ ®
~ [(Ew™ + Pw') 6w]{,,l+ [{EIw"” + Pw") 6w]loj+ kw, dw, =0 ©

@ ® ®

Since the variations on w and w' must be zero at the essential boundary conditions, we have
Swo = 0 and dw{ = 0. It follows that terms (3) and (5) are zero. The variations on w and w’
are arbitrary at all other points, hence to satisfy (c) we conclude, using the earlier arguments (see
Example 3.18), that the following equations must be satisfied:

term 1: EIw®™ + Pw" =0 (d)
term 2: EW"e-r =0 ©
terms 4 and 6: (Ew™ + Pw' — kw)je=r, = 0 )

The problem-governing differential equation is given in (d), and the natural boundary conditions
are the relations in (€} and (f). We should note that these boundary conditions correspond to the
physical conditions of moment and shear equilibrium at x = L.

We have illustrated in the preceding examples how the problem-governing differential
equation and the natural boundary conditions can be derived by invoking the stationarity
of the functional of the problem. At this point a number of observations should be made.

First, considering a C™' variational problem, the order of the highest derivative
present in the problem-governing differential equation is 2m. The reason for obtaining a
derivative of order 2m in the problem-governing differential equation is that integration by
parts is employed m times.

A second observation is that the effect of the natural boundary conditions was always
included as a potential in the expression for I1. Hence the natural boundary conditions are
implicitly contained in II, whereas the essential boundary conditions have been stated
separately.

Our objective in Examples 3.18 to 3.20 was to derive the governing differential
equations and natural boundary conditions by invoking the stationarity of a functional, and
for this purpose the appropriate functional was given in each case. However, an important
question then arises: How can we establish an appropriate functional corresponding to a
given problem? The two previous observations and the mathematical manipulations in
Examples 3.18 to 3.20 suggest that to derive a functional for a given problem we could start
with the governing differential equation, establish an integral equation, and then proceed
backward in the mathematical manipulations. In this derivation it is necessary to use
integration by parts, i.e., the divergence theorem, and the final check would be that the
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stationarity condition on the IT derived does indeed yield the governing differential equa-
tions. This procedure is employed to derive appropriate functionals in many cases (see
Section 3.3.4 and Chapters 4 and 7, and for further treatment see, for example, R. Courant
and D. Hilbert [A], S. G. Mikhlin [A}, K. Washizu [B],and M.L Bucalem and K. J. Bathe [B]).
In this context, it should also be noted that in considering a specific problem, there does not
generally exist a unique appropriate functional, but a number of functionals are applicable.
For instance, in the solution of structural mechanics problems, we can employ the principle
of minimum potential energy, other displacement-based variational formulations, the Hu-
Washizu or Hellinger-Reissner principles, and so on (see Section 4.4.2).

Another important observation is that once a functional has been established for a
certain class of problems, the functional can be employed to generate the governing equa-
tions for all problems in that class and therefore provides a general analysis tool. For
example, the principle of minimum potential energy is general and is applicable to all
problems in linear elasticity theory.

Based simply on a utilitarian point of view, the following observations can be made in
regard to variational formulations.

1. The variational method may provide a relatively easy way to construct the system-
governing equations. This ease of use of a variational principle depends largely on the
fact that in the variational formulation scalar quantities (energies, potentials, and so
on) are considered rather than vector quantities (forces, displacements, and so on).

2. A variational approach may lead more directly to the system-governing equations and
boundary conditions. For example, if a complex system is being considered, it is of
advantage that some variables that need to be included in a direct formulation are not
considered in a variational formulation (such as internal forces that do no net work).

3. The variational approach provides some additional insight into a problem and gives
an independent check on the formulation of the problem.

4. For approximate solutions, a larger class of trial functions can be employed in many
cases if the analyst operates on the variational formulation rather than on the differ-
ential formulation of the problem; for example, the trial functions need not satisfy the

natural boundary conditions because these boundary conditions are implicitly con-
tained in the functional (see Section 3.3.4).

This last consideration has most important consequences, and much of the success of
the finite element method hinges on the fact that by employing a variational formulation, a
larger class of functions can be used. We examine this point in more detail in the next section
and in Section 3.3.4.

3.3.3 Weighted Residual Methods; Ritz Method

In previous sections we have discussed differential and variational formulations of the
governing equilibrium equations of continuous systems. In dealing with relatively simple
systems, these equations can be solved in closed form using techniques of integration,
separation of variables, and so on. For more complex systems, approximate procedures of
solution must be employed. The objective in this section is to survey some classical tech-
niques in which a family of trial functions is used to obtain an approximate solution. We
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shall see later that these techniques are very closely related to the finite element method of

analysis and that indeed the finite element method can be regarded as an extension of these
classical procedures.

Consider the analysis of a steady-state problem using its differential formulation
Lan[¢] = r (3.8)

in which L, is a linear differential operator, ¢ is the state variable to be calculated, and r
is the forcing function. The solution to the problem must also satisfy the boundary condi-
tions

B{#] = qilu voundary s;3 i=12... (3.9

We shall be concerned, in particular, with symmetric and positive definite operators that
satisfy the symmetry condition

I (Laful)v dD = j (Lam[v])u dD (3.10)
D D
and the condition of positive definiteness
J(L;,,,[u])u dD >0 (3.11)
D

where D is the domain of the operator and u and v are any functions that satisfy homoge-
neous essential and natural boundary conditions. To clarify the meaning of relations (3.8)
to (3.11), we consider the following example.

EXAMPLE 3.21: The steady-state response of the bar shown in Fig. E3.17 is calculated by
solving the differential equation

d*u
~EA— =0
ax? @
subject to the boundary conditions
du
-0 =0 EA — =
U oo ax .o R (b)

Identify the operators and functions of (3.8) and (3.9) and check whether the operator L,,, is
symmetric and positive definite.

Comparing (3.8) with (a), we see that in this problem
al

Low = —EA —; =u
2 Y ¢=u r

I
o

Similarly, comparing (3.9) with (b), we obtain
B1 = l', q = 0

d
Bl"“'EAE‘:‘; q2=R

To identify whether the operater Lo, is symmetric and positive definite, we consider the
case R = 0. This means physically that we are concerned only with the structure itself and not
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with the loading applied to it. For (3.10) we have

L L L
*u du du dv
—~FEA ——pdx = —EA — + | EFA——
J:) ax2 0 ox "’ o _L dx dx dx
©
ou |* ool [ .. #v
van “axo J; Aaxzudx

Since the boundary conditions are 4 = v = Qatx = 0 and du/3x = dv/dx = Oatx = L, we
have

L L
a%u v
L"EAE}—ZvdeJ;-—EA-a—x—zudx

and the operator is symmetric. We can also directly conclude that the operator is positive definite
because from (c) we obtain

L L
du ou'\?
— EA — = e
L Py udx L EA(ax) dx

In the following we discuss the use of classical weighted residual methods and the Ritz
method in the solution of linear steady-state problems as in (3.8) and (3.9), but the same
concepts can also be employed in the analysis of propagation problems and eigenproblems
and in the analysis of nonlinear response (see Examples 3.23 and 3.24).

The basic step in the weighted residual and Ritz analyses is to assume a solution of the
form

¢ = 2 af; (3.12)

where the f; are linearly independent trial functions and the a: are multipliers to be deter-
mined in the solution.

Consider first the weighted residual methods. These techniques operate directly on
(3.8) and (3.9). Using these methods, we choose the functions f; in (3.12) so as to satisfy
all boundary conditions in (3.9), and we then calculate the residual

R=r- Lzm[z aJ;] (3.13)
i=1

For the exact solution this residual is of course zero. A good approximation to the exact
solution would imply that R is small at all points of the solution domain. The various
weighted residual methods differ in the criteria that they employ to calculate the a; such that

R is small. However, in all techniques we determine the a; so as to make a weighted average
of R vanish.

Galerkin method. In this technique the parameters a; are determined from the n
equations

fﬁRdD=0; i=1L2,...,n (3.14)
D

where D is the solution domain.
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Least squares method. In this technique the integral of the square of the residual
is minimized with respect to the parameters a;,

2 R*dD = 0; i=12...,n (3.15)
aa; D

Substituting from (3.13), we thus obtain the following n simultaneous equations for the
parameters a;,

f RL..[f]dD = 0; i=12...,n (3.16)
D

Collocation method. In this method the residual R is set equal to zero at n distinct
points in the solution domain to obtain n simultaneous equations for the parameters a;. The
location of the n points can be somewhat arbitrary, and a uniform pattern may be appropri-
ate, but usually the analyst should use some judgment to employ appropriate locations.

Subdomain method. The complete domain of solution is subdivided into n sub-

domains, and the integral of the residual in (3.13) over each subdomain is set equal to zero
to generate n equations for the parameters a;.

An important step in using a weighted residual method is the solution of the simulta-
neous equations for the parameters a;. We note that since L. is a linear operator, in all the
procedures mentioned, a linear set of equations in the parameters a; is generated. In the
Galerkin method, the coefficient matrix is symmetric (and also positive definite) if L, is a
symmetric (and also positive definite) operator. In the least squares method we always
generate a symmetric coefficient matrix irrespective of the properties of the operator La.
However, in the collocation and subdomain methods, nonsymmetric coefficient matrices
may be generated. In practical analysis, therefore, the Galerkin and least squares methods
are usually preferable.

Using weighted residual methods, we operate directly on (3.8) and (3.9) to minimize
the error between the trial solution in (3.12) and the actual solution to the problem.
Considering next the Ritz analysis method (due to W. Ritz [A}), the fundamental difference
from the weighted residual methods is that in the Ritz method we operate on the functional
corresponding to the problem in (3.8) and (3.9). Let II be the functional of the C™!
variational problem that is equivalent to the differential formulation given in (3.8) and
(3.9); in the Ritz method we substitute the trial functions ¢ given in (3.12) into IT and

generate n simultaneous equations for the parameters a; using the stationarity condition of
IL 811 = 0 [see (3.1)], which now gives

ol _

0; i=12 ...,n (3.17)
6a1

An important consideration is the selection of the trial (or Ritz) functions f; in (3.12).
In the Ritz analysis these functions need only satisfy the essential boundary conditions and
not the natural boundary conditions. The reason for this relaxed requirement on the trial
functions is that the natural boundary conditions are implicitly contained in the functional
I1. Assume that the L, operator corresponding to the variational problem is symmetric and
positive definite. In this case the actual extremum of II is its minimum, and by invoking
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(3.17) we minimize (in some sense) the violation of the internal equilibrium requirements
and the violation of the natural boundary conditions (see Section 4.3). Therefore, for
convergence in a Ritz analysis, the trial functions need only satisfy the essential boundary
conditions, which is a fact that may not be anticipated because we know that the exact
solution also satisfies the natural boundary conditions. Actually, assuming a given number
of trial functions, it can be expected that in most cases the solution will be more accurate
if these functions also satisfy the natural boundary conditions. However, it can be very
difficult to find such trial functions, and it is generally more effective to use instead a larger

number of functions that satisfy only the essential boundary conditions. We demonstrate
the use of the Ritz method in the following examples.

EXAMPLE 3.22: Consider a simple bar fixed at one end (x = 0) and subjected to a concen-

trated force at the other end (x = 180) as shown in Fig. E3.22. Using the notation given in the
figure, the total potential of the structure is

180 1 du 2
H = fo EEA(;i;) dx — 100u|,=1gn (a)
and the essential boundary condition is u},—o = 0.

1. Calculate the exact displacement and stress distributions in the bar.

2. Calculate the displacement and stress distributions using the Ritz method with the follow-
ing displacement assumptions:

U= ax + apx? {b)
and = fl-g—%; 0=x=<100
©
x - 100 x — 100
={1- + sx=
u (1 80 )u,, ( %0 )uc, 100 = x < 180

Cross-sectional area = (1 + _Va)lcmz

Area = 1 cm?
- o X, U ———— >
,ﬁA
7

T

y
100 cm >} 80 e ——>|

Figure E3.22 Bar subjected to a concentrated end force

In order to calculate the exact displacements in the structure, we use the stationarity
condition of IT and generate the governing differential equation and the natural boundary

condition. We have
180 du du
81-[ = j (EA "—) 5<—> dx — 100 5“'::180 (d)
0 dx dx
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Setting 8I1 = 0 and using integration by parts, we obtain (see Example 3.19)

d du

E(EA E;) = ©

EA "i—t{ = 100 ()
dx x=180

The solution of (¢) subject to the natural boundary condition in (f) and the essential
boundary condition ul,~s = 0 gives

u=-1—99x; 0=x=100
E
u=10000+4000- 4000 ; 100 = x < 180
E E E(1+xM100)
40

The exact stresses in the bar are
o = 100; 0=x=100
100

x — 100
+
(15 %)
Next, to perform the Ritz analyses, we note that the displacement assumptions in (b) and

(¢) satisfy the essential boundary condition but not the natural boundary condition. Substituting
from (b) into (a), we obtain

100 180 _ 2
II = %f (a1 + 2a2x)* dx + 'Eij (l + : 100) (a1 + 2a,x)* dx — 100“""”0
0

o =

100 = x = 180

100 40
Invoking 8I1 = 0, we obtain the following equations for a, and a:
E[0'4467 115.6 ][a,] _ [ 18 } (@
115.6  34075.7 ]| a. 3240
and a = l-2—2; a; = -~
E E
This Ritz analysis therefore yields the approximate solution
o, o
o =129 — 0.682x; 0=x=180 (@)

Using next the Ritz functions in (c), we have

E 100 1 2 E 180 x — 100 2 1 1 )2
n=E[(L +E N I B
2L (100“”) dx 2[100 (1 m )( 5l + gglc) dx ~ 100uc

Invoking again 811 = 0, we obtain

_1_«:_[15.4 ~13][u3] _ [ 0 ] )
2401 —13  13|{uc] (100 {
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Hence we now have

o = 10,000 e = 11,846.2
B E * C E
and o = 100, 0=x=<100
4
188(? = 23.08; 100 = x < 180

We shall see in Chapter 4 (see Example 4.5) that this Ritz analysis can be regarded to be
a finite element analysis.
EXAMPLE 3.23: Consider the slab in Example 3.16. Assume that
6() = 6:1(5) + B()x + B(1)x? )

where 6,(1), 6:(r), and 65(r) are the undetermined parameters. Use the Ritz analysis procedure to
generate the governing heat transfer equilibrium equations.
The functional governing the temperature distribution in the slab is (see Example 3.18)

Il = J ( ) dx — f: 0q® dx — 8.0 qo (b)

with the essential boundary condition
6 ix=L = 61'

Substituting the temperature assumption of (a) into (b), we obtain
L L
1
II= f ik((ez)z + 46,6:x + 4(03)*xV)dx ~ j (8 + Bx + 8:x%)g%dx — 6Giqo
0 0

Invoking the stationarity condition of I, i.e., 811 = 0, we use

ol all oll
0% @ % w
and obtain -
f q dx+qo
0 0 076
o L r2flel= quadx ©
0 L* 43|l 6

J q%dx
[}

In this analysis g varies with time, so that the temperature varies with time, and heat
capacity effects can be important. Using

a0
B = —ppem d
q pe, (d)

because no other heat is generated, substituting for @ in (d) from (a), and then substituting into
(c), we obtain as the equilibrium equations,

0 0 07la L i e, Q0
KO L L2 ||6|+pc|sL? L2 sLtf|l&]=|0 (@
0 L* $L%|| 6 ISR VAR VAR | 0

W
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The final equilibrium equations are now obtained by imposing on the equations in (¢) the
condition that 8|.-. = 6;; i.e.,

a0 + &)L + 6:()L* = 6,
which can be achieved by expressing 6 in (¢) in terms of &, 6, and 6.

EXAMPLE 3.24: Consider the static buckling response of the column in Example 3.20. As-
sume that

w = ax? + ax? (a)

and use the Ritz method to formulate equations from which we can obtain an approximate
buckling load.

The functional governing the problem was given in Example 3.20,

Lt (dPw\? Pde)z 1 :
M= "Z'J; EI(EX—Z*) dx EJ (;i; dx + 'ik(w!,=1_) (b)

0

We note that the trial function on w in (a) already satisfies the essential boundary conditions
(displacement and slope equal to zero at the fixed end). Substituting for w into (b), we obtain

1 L L
= -2-J. El(2a; + 6axx)? dx — }—;f (2aix + 3ax®?dx + —lz-k(a.L2 + a,L?)?
[4] 1]

Invoking the stationarity condition 8II = 0, i.e,,

an_,
da, ’ da,
we obtain
2L 3L* 1 L a; g % a 0
2 i ~ P o =
3L 6L L L? az — =] a 0

2 5

The solution of this eigenproblem gives two values of P for which w in (a) is nonzero. The
smaller value of P represents an approximation to the lowest buckling load of the structure.

The weighted residual methods presented in (3.14) to (3.16) are difficult to use in
practice because the trial functions must be 2m-times-differentiable and satisfy all—essen-
tial and natural—boundary conditions {see (3.13)]. On the other hand, with the Ritz
method, which operates on the functional corresponding to the problem being considered,
the trial functions need to be only m-times-differentiable and do not need to satisfy the
natural boundary conditions. These considerations are most important for practical analy-
sis, and therefore the Galerkin method is used in practice in a different form, namely,
in a form that allows the use of the same functions as used in the Ritz method. In the
displacement-based analysis of solids and structures, this form of the Galerkin method is
referred to as the principle of virtual displacements. If the appropriate variational indicator
IT is used, the equations obtained with the Ritz method are then identical to those obtained
with the Galerkin method.

We elaborate upon these issues in the next section with the objective of providing
further understanding for the introduction of finite element procedures.
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3.3.4 An Overview: The Differential and Galerkin
Formulations, the Principle of Virtual Displacements,
and an Introduction to the Finite Element Solution

In the previous sections we reviewed some classical differential and variational formula-
tions, some classical weighted residual methods, and the Ritz method. We now want to
reinforce our understanding of these analysis approaches—by summarizing some impor-
tant concepts—and briefly introduce a mathematical framework for finite element proce-
dures that we will further use and extend in Chapter 4. Let us pursue this objective by
focusing on the analysis of a simple example problem.

Consider the one-dimensional bar in Fig. 3.2. The bar is subjected to a distributed load
f#(x) and a concentrated load R at its right end. As discussed in Section 3.3.1, the differen-
tial formulation of the bar gives the governing equations

-

d*u » .
EAZ5+ f7=0 in the bar (3.18)
Differential ) _
formulation Ulmo = 0 (3.19)
d
EAZ| =R (3.20)
dx x=L

L

Since f% = ax, we obtain the solution

_ —(ax3/6) + (R + {al¥x

u(x) EA

(321

Constant cross-sectional area A
Young's modulus E

7
7 fB{x) = ax
§...> X —— 75(x) l—R ‘ .

Figure 3.2 Uniform bar subjected to
% 7 body load 8 (force/unit length) and tip
7 L load R

We recall that (3.18) is a statement of equilibrium at any point x within the bar, (3.19) is
the essential (or geometric) boundary condition (see Section 3.2.2), and (3.20) is the natural
(or force) boundary condition. The exact analytical solution (3.21) of course satisfies all
three equations (3.18) to (3.20).

We also note that the solution u(x) is a continuous and twice-differentiable function,
as required in (3.18). Indeed, we can say that the solutions to (3.18) satisfying (3.19) and
(3.20) for any continuous loading f? lie in the space of continuous and twice-differentiable
functions that satisfy (3.19) and (3.20).
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An alternative approach for the solution of the analysis problem is given by the
variational formulation (see Section 3.3.2),

Ly (duy L
I = J "EA(“‘) dx — f uf® dx — Ruli-r (3.22)
0 2 dx 0
Variational _
formulation ) 6l =0 (3.23)
with u‘xgo = Q (3.24)
{ Buji=o = 0 (3.25)

where 8 means “variation in” and éu is an arbitrary variation on u subject to the condition
du lx=0 = 0. We may think of du(x) as any continuous function that satisfies the boundary
condition (3.25).%

Let us recall that (3.22) to (3.25) are totally equivalent to (3.18) to (3.20) (see
Section 3.3.2). That is, invoking (3.23) and then using integration by parts and the

boundary condition (3.25) gives (3.18) and (3.20). Therefore, the solution of (3.22) to
(3.25) is also (3.21).

The variational formulation can be derived as follows.
Since (3.18) holds for all points within the bar, we also have

(EA 2y f”) bu = (3.26)

where Su(x) is an arbitrary variation on u (or an arbitrary continuous function) with
8u -0 = 0. Hence, also

f (EA f;—i; + f") dudx =0 (3.27)

Integrating by parts, we obtain

5
J' QEA ~—dx = f fE8udx + EA 8u|o (3.28)
Substituting from (3.20) and (3.25), we therefore have
(" déu du

Principle of J; M EA o dx = f f28udx + R dul=y (3.29)

virtual displacements
with |0 = 0; St f=0 = 0 (3.30)

Of course, (3.29) gives

[ rdamado o

which with (3.30) is the variational statement of (3.22) to (3.25).
The relation (3.29) along with the condition (3.30) is the celebrated principle of
virtual displacements (or principle of virtual work) in which u(x) is the virtual displace-

*In the literature, differential and variational formulations are, respectively, also referred to as strong and
weak forms. Variational formulations are also referred to as generalized formulations.
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ment. We discuss this principle extensively in Section 4.2 and note that the derivation in
(3.26) to (3.30) is a special case of Example 4.2.

It is important to recognize that the above three formulations of the analysis problem
are totally equivalent, that is, the solution (3.21) is rhe (unique) solution® u(x) of the
differential formulation, the variational formulation, and the principle of virtual displace-
ments. However, we note that the variational formulation and the principle of virtual work
involve only first-order derivatives of the functions « and 6u. Hence the space of functions
in which we look for a solution is clearly larger than the space of functions used for the
solution of (3.18) [we define the space precisely in (3.35)], and there must be a question as
to what it means and how important it is that we use a larger space of functions when solving
the problem in Fig. 3.2 with the principle of virtual displacements.

Of course, the space of functions used with the principle of virtual displacements
contains the space of functions used with the differential formulation, hence all analysis
problems that can be solved with the differential formulation (3.18) to (3.20) can also be
solved exactly with the principle of virtual displacements. However, in the analysis of the
bar (and the analysis of general bar and beam structures) additional conditions for which
the principle of virtual work can be used directly for solution are those where concentrated
loads are applied within the bar or discontinuities in the material property or cross-sectional
area are present. In these cases the first derivative of u(x) is discontinuous and hence the
differential formulation has to be extended to account for such cases (in essence treating
separately each section of the bar in which no concentrated loads are applied and in which
no discontinuities in the material property and cross-sectional area are present, and con-
necting the section to the adjoining sections by the boundary conditions; see, for example,
S. H. Crandall, N. C. Dahl, and T. J. Lardner [A]). Hence, in these cases the variational
formulation and the principle of virtual displacements are somewhat more direct and more
powerful for solution.

For general two- and three-dimensional stress situations, we will only consider math-
ematical models of finite strain energy (meaning for example that concentrated loads should
only be applied as enumerated in Section 1.2, see Fig. 1.4, and further discussed in Section
4.3.4), and then the differential and principle of virtual work formulations are also totally
equivalent and give the same solutions (see Chapter 4).

These considerations point to a powerful general procedure for formulating the nu-

merical solution of the problem in Fig. 3.2, Consider (3.27) in which we now replace &u
with the test function v,

f (EA -3——‘-;— + f”) vdx =0 (3.32)
with u = 0 and v = 0 at x = 0. Integrating by parts and using (3.20), we obtain

L
d
f -f; Ea % dx = [ fBo dx + Roler (3.33)
0

This relation is an application of the Galerkin method or of the principle of virtual displace-
ments and states that *“for u(x) to be the solution of the problem, the left-hand side of (3.33)
(the internal virtual work) must be equal fo the right-hand side (the external virtual work)

$The uniqueness of x(x) follows in this case clearly from the simple integration process for obtaining (3.21),
but a general proof that the solution of a linear elasticity problem is always unique is given in (4.80) to (4.82).
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for arbitrary test or virtual displacement functions v(x) that are continuous and that satisfy
the condition v = Q atx = 0.”

In Chapter 4 we write the formulation (3.33) in the following form:
Find u4 € V such that® a(u, v) = (f, ) YoEV (3.34)
where the space V is defined as

= {u lv € L), % € LAL), 6o = 0} (3.35)

and L*(L) is the space of square integrable functions over the length of the bar,0 = x = L,
L

LA(L) = {w | w is defined over 0 < x =< L and f widx = ||wli. < 00} (3.36)
Q

Using (3.34) and (3.33), we have

a(u, v) = f — EA — dx 3.37

and (fiv) = j fPodx + Ro|,., (3.38)
0

where a(u, v) is the bilinear form and (f, v) is the linear form of the problem.
The definition of the space of functions V in (3.35) says that any element v in Vis zero

atx = 0 and
L dv
jvzdx<w; f{ ]dx<0°
0 dx

Hence, any element v in V corresponds to a finite strain energy. We note that the elements
in V comprise all functions that are candidates for solution of the differential formulation
(3.18) to (3.20) with any continuous f# and also correspond to possible solutions with
discontinuous strains [because of concentrated loads, in this one-dimensional analysis case,
or discontinuities in the material behavior or cross-sectional area). This observation under-
lines the generality of the problem formulation given in (3.34) and (3.35).

For the Galerkin (or finite element) solution we define the space Vj, of trial (or finite
element) functions v,

Vh == {Uhlf)h (S LI(L) gl)'ﬁ (S LI(L) Vi 15 = 0} (339)

where S, denotes the surface area on which the zero displacement is prescribed. The
subscript & denotes that a particular finite element discretization is being considered (and

h actually refers to the size of the elements; see Section 4.3). The finite element formulation
of the problem is then

Find u, € V, such that a(us, vs) = (f, vs) Yo, €V, (3.40)

Of course, (3.40) is the principle of virtual displacements applied with the functions
contained in V, and also corresponds to the minimization of the total potential energy within
this space of trial functions. Therefore, (3.40) corresponds to the use of the Ritz method

$The symbols V and € mean, respectively, “for all” and “an element of.”



128 Some Basic Concepts of Engineering Analysis Chap. 3

described in Section 3.3.3. We discuss the finite element formulation extensively in
Chapter 4.

However, let us note here that the same solution approach can also be used directly
for any analysis problem for which we have the governing differential equation(s). The
procedure would be: weigh the governing differential equation(s) in the domain with
suitable test function(s); integrate the resulting equation(s) with a transformation using
integration by parts (or more generally the divergence theorem; see Example 4.2); and
substitute the natural boundary conditions—as we did to find (3.33).

We obtain in this way the principle of virtual displacements for the general analysis
of solids and structures (see Example 4.2), the “principle of virtual temperatures” for the

general heat flow and temperature analysis of solids (see Example 7.1), and the “principle
of virtual velocities” for general fluid flow analysis (see Section 7.4.2).
To demonstrate the use of the above notation, consider the following examples.

EXAMPLE 3.25: Consider the analysis problem in Example 3.22. Write the problem formu-
lation in the form (3.40) and identify the finite element basis functions used when employing
the displacement assumptions (b) and (c) in the example.

Here the bilinear form a(.,.) is

180
duy, dvy
, = Zhpa b
a(tn, vs) L o A e dx

and we have the linear form
(f, vw) = 1000, ;x=180
With the displacement assumption (b) we use
Up = a1x + axx*?
Hence V, is a two-dimensional space, and the two basis functions are
i) = x and o = x2

With the displacement assumption (c) we use

u;.=l—g6u3; 0=<x=100
- 100 - 100

u;.=(1 -z %0 )ug+(x %0 )uc; 100 = x = 180

and the two basis functions for V; are
— for0 < x = 100
[Q))] 100 o *
Op =
x — 100
- =x= 180
1 %0 for 100 = x

and o =X 10 100 = x =180

80

Clearly, all these functions satisfy the conditions in (3.39). If we use (3.40), the equations in (g)
and (j) in Example 3.22 are generated.
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EXAMPLE 3.26: Consider the analysis problem in Example 3.23. Write the problem formula-

tion in the form (3.40) and identify the element basis functions used when employing the
temperature assumption given in the example.
Here the problem formulation is

Find 6, € V, such that a(6s, ¢») = (f, ¢n) Y € V, (a)
L
where a(by, ) = f d——% kée—h dx
o dx dx

L
(f, ) = fo Ung”® dx + gon o

Here 6, and 5 correspond to temperature distributions in the slab. With the assumption in
Example 3.23 we have for V, the three basis functions

eil) = 1 05‘2) = x 65.3) = x?
Using (a) the governing equations given in (c) in Example 3.23 are obtained. Note that in this

formulation we have not yet imposed the essential boundary condition (which is achieved later,
as in Example 3.23).

3.3.5 Finite Difference Differential and Energy Methods

A classical approach to finding a numerical solution to the governing equations of a math-
ematical continuum model is to use finite differences (see, for example, L. Collatz [A]), and
it is valuable to be familiar with this approach because such knowledge will reinforce our
understanding of the finite element procedures. In a finite difference solution, the deriva-
tives are replaced by finite difference approximations and the differential and variational
formulations of mathematical models can be solved.

As an example, consider the analysis of the uniform bar in Fig. 3.2 with the governing
differential equation (see Example 3.17 and Section 3.3.4),

" R A .
u EA 0 (341)
and the boundary conditions
u=90 atx =0 (3.42)
EA du R atx = L (3.43)
dx

Using an equal spacing & between finite difference stations, we can write (see Fig. 3.3)

Uivy — Ui

, - , U Uy
u lm/z = *“"h‘" s u ‘é~l/2 =

. (3.44)

and H"},- = u'IiH/Z - u'[;_,/z

- (3.45)

SO that u"i‘- = ;tl—z(u,w] - 2u; + ll,‘u]) (346)
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Young's modulus E

Y, Cross-sectional area A
2
7
é»x e it e s el i
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/ A
Z
7
{a) Barto be analyzed,
f8(x) = ax
1hiz h

P l

L
i-1 i i+1
- Gl e =@ v
i-3 i+l
2 Y4
AY

|

Ui h T h *!

(b} Finite difference stations i~ 1,4, i+ 1
{locations i~ %, i+ % are not stations)

(
% n-1 n n+1
O . —— e ——

X

} 5 } 7
{c} Fictitious finite difference station n + 1 outside bar

Figure 3.3 Finite difference analysis of a bar

The relation in (3.46) is called the central difference approximation. If we substitute (3.46)
into (3.41), we obtain

E":i('*ufn + 2w — wi-)) = fPh (3.47)

where f7 is the load f%(x) at station i and f7h can be thought of as the total load applied at
that finite difference station.
Assume now that we use a total of n + 1 finite difference stations on the bar, with

station i = 0 at the fixed end and station i = n at the other end. Then the boundary
conditions are

Uy = 0 (3‘48)

Up+y Up—y
R 3.49
and EA -—-"'-—'-2 = ( )
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where we have introduced the fictitious station n + 1 outside the bar [see Fig. 3.3(c)],
merely to impose the boundary condition (3.43).

For the finite difference solution we apply (3.47) at all stationsi = 1, ..., nand use
the boundary conditions (3.48) and (3.49) to obtain

[ 2 ~1 I ul'“ r R|-
“1 2 "“1 77) Rz
-1 2 -1 u3 R;
EA : = (3.50)
h - . .
| 2 —1}jun- Ru-y
L -1 !_ | U] L R’LJ

where R, = f?h,i=1,...,n— 1,and R, = fih/2 + R.

We note that the equations in (3.50) are identical to the equations that would be
obtained using a series of n spring elements, each of stiffness EA/h . The loads at the nodes
corresponding to f2(x) would be obtained by using the distributed load value at node i and
multiplying that value by the contributing length (h for the interior nodes and h/2 for the
end node.) .

The same coefficient matrix is also obtained if we use the Ritz method with the
variational formulation of the mathematical model and specific Ritz functions. The varia-
tional indicator is (see Example 3.19)

L L
Il = %j EA(')? dx — f uf® dx — Ruler (3.51)

0 0

and the specific Ritz functions are depicted in Fig. 3.4. While the same coefficient matrix
is obtained, the load vector is different unless the loading is constant along the length of the
bar.

Typical Ritz “hat” function

(1—«) u; for0sésh

(1+-—) u; for~-h<&<0

Figure 3.4 Typical Ritz function or Galerkin basis function used in analysis of bar problem
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The same equations as in the Ritz solution are of course also obtained using the
Galerkin method given in Section 3.3.4 (i.e., the principle of virtual work) with the basis
functions in Fig. 3.4.

The preceding discussion indicates that the finite difference method can also be used
to generate stiffness matrices, and that in some cases the resulting equations obtained in a
Ritz analysis and in a finite difference solution are identical or almost identical.

Table 3.1 summarizes some widely used finite difference approximations, also called

finite difference stencils or molecules. Let us demonstrate the use of these stencils in two
examples.

TABLE 3.1 Finite difference approximations for various differentiations

Finite difference

Differentiation approximation Molecules
h h
e
dw ) Witl = Wimy @"'@
dx |; 2h
h h
bt
d*w Wiri — 2w; + wi
I
d*w Wisz — 2Wiey + 2Wiey — W2
= |, e QuOaaCn0
d‘w Wis2 ™ 4W,'+1 + 6W,' - 4W1-| + Wi-2
&, W 020202920
4w, ; + + + + ‘ h
—4W;; t Wisy,; Wi j+ Wi-yj + Wi -

Pl sttt s (DD
Viwli [20w;; = 8(wis; + Wiy

+ Wijer + Wij-1) + 2Wie

+ Wimrjer F Wiepjor + Wiep 1)

t Witz F Wiezj T Wi

Wi.j~2]/ h?

Uniform spacing h; error in each case is o(h%). Point { or (i, j) is being considered; and i + - - - denotes points

in the x-direction; j * - - - denotes points in the y-direction.
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EXAMPLE 3.27: Consider the simply supported beam in Fig. E3.27. Use conventional finite
differencing to establish the system equilibrium equations.

The finite difference grid used for the beam analysis is shown in the figure. In the
conventional finite difference analysis the differential equation of equilibrium and the geometric

and natural boundary conditions are considered; i.e., we approximate by finite differences at
each interior station,

d*w

E[‘c‘i-;'zq (@)

and use the conditions thatw = 0 and w” = 0 atx = Q0 and x = L.

Flexural
Ra rigidity El

t
T &

| -
- L »

T
VR | B
Ft| 3

T
vti

Figure E3.27 Finite difference stations for simply supported beam
Using central differencing, (a) is approximated at station i by
El
(E/“B‘)‘S{W-‘vz = 4w + 6w, — dwiy + Wi} = R (b)

where R; = q,L/5 and is the concentrated load applied at station i. The condition that w” is zero
at station i is approximated using

Wiy — 2Wi + Wiy = 0 (C)

Applying (b) at each finite difference station, i = 1, 2, 3, 4, and using condition (c) at the
support points, we obtain the system of equations

5 -4 1 07w R,
125EI| -4 6 -4 1||wm| _|R
L 1 ~4 6 —4|{w| [|R
0 1 -4 5]lw, R,

where the coefficient matrix of the displacement vector can be regarded as a stiffness matrix.

EXAMPLE 3.28: Consider the plate shown in Fig. E3.28.

1. Calculate the center point transverse deflection when the plate is uniformly loaded under

static conditions with the distributed load p per unit area. Use only one finite difference
station in the interior of the plate.

2. If the load p is applied dynamically, i.., p = p(r), establish an equation of motion
governing the behavior of the plate.
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|
|- )
Transverse load /} |

P per unit area

| _.lr".‘. . w3 For Table 3.1:
I L wy=wyq
Flexural rigidity D W2 E Wy,
Mass per unit area m | ' wa= Wy

Figure E3.28 Simply supported plate

The governing differential equation of the plate is (see, for example, S. Timoshenko and
S. Woinowsky-Krieger [A])

Viw =

Ols

where w is the transverse displacement. The boundary conditions are that on each edge of the
plate the transverse displacement and the moment across the edge are zero.

We use the finite difference stencil for V*w given in Table 3.1, with the center point of the
molecule placed at the center of the plate. The displacements corresponding to the coefficients
—8 and +2 are zero, and the displacements corresponding to the coefficients +1 are expressed
in terms of the center displacement. For example, the zero moment condition gives (refer to

Fig. E3.28)
wi—2wa +w; =0

and because w; = 0, W3 = —w

Therefore, the governing finite difference equation is

- p(LY
16W; = D<2)

. 16D o _ LV
and we obtain [(17-2—-)—2] w, = R; R= p( 2)

Note that with this relation we in essence represent the platec by a single spring of stiffness
k = 64D/L?, and the total load acting on the spring is given by R. The deflection w, thus
calculated is only about 4 percent different from the analytically calculated “exact” value.
For the dynamic analysis, we use d’ Alembert’s principle and subtract from the externally
applied load R the inertia load Mw,, where M represents a mass in some sense equivalent to the
distributed mass of the plate
L 2
= n(3)

Hence the dynamic equilibrium equation is

Lw + 82, - g
T T T
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In these two examples and in the analysis of the bar in Fig. 3.2, the differential
equations of equilibrium have been approximated by finite differences. When the differen-
tial equations of equilibrium are used to solve a mathematical model, it is necessary to
approximate by finite differences and impose on the coefficient matrix both the essential
and the natural boundary conditions. In the analysis of the beam and the plate considered
in Examples 3.27 and 3.28, these boundary conditions could easily be imposed (the zero
displacements on the boundaries are the essential boundary conditions and the zero mo-
ment conditions across the boundaries are the natural boundary conditions). However, for
complex geometries the imposition of the natural boundary conditions can be difficult to
achieve since the topology of the finite difference mesh restricts the form of differencing that
can be carried out, and it may be difficult to obtain a symmetric coefficient matrix in a
rigorous manner (see A. Ghali and K. J. Bathe [A}).

The difficulties associated with the use of the differential formulations have given
impetus to the development of finite difference analysis procedures based on the principle
of minimum total potential energy, referred to as the finite difference energy method (see,
for example, D. Bushnell, B. O. Almroth, and F. Brogan [A]). in this scheme the displace-
ment derivatives in the total potential energy, I, of the system are approximated by finite
differences, and the minimum condition of Il is used to calculate the unknown displace-
ments at the finite difference stations. Since the variational formulation of the problem
under consideration is employed, only the essential (geometric) boundary conditions must
be satisfied in the differencing. Furthermore, a symmetric coefficient matrix is always
obtained.

As might well be expected, the finite difference energy method is very closely related
to the Ritz method, and in some cases the same algebraic equations are generated.

An advantage of the finite difference energy method lies in the effectiveness with
which the coefficient matrix of the algebraic equations can be generated. This effectiveness
is due to the simple scheme of energy integration employed. However, the Galerkin method
implemented in the form of the finite element procedures discussed in the forthcoming
chapters is a much more general and powerful technique, and this of course is the reason
for the success of the finite element method.

It is instructive to examine the use of the finite difference energy method in some
examples.

EXAMPLE 3.29: Consider the cantilever beam in Fig. E3.29. Evaluate the tip deflection using
the conventional finite difference method and the finite difference energy method.

Finite difference R
2 stations * Flezuraiﬂ
rigidity

7 \ / _____

7 L ettt ettt et it et e i i

T VU VR T
1wy w2 w3 wy ws wp

l L/4
- L

Figure E3.29 Finite difference stations on cantilever beam
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The finite difference mesh used is shown in the figure. Using the conventional finite

difference procedure and central differencing as in Example 3.27, we obtain the equilibrium
equations

T —4 1 0} iwa
G4EI1-4 6 -4 11 {ws

L I ~4 5 =2)}iw
0 1 -2 1 {ws
It may be noted that in addition to the equations employed in Example 3.27 the conditions

w' = 0 at the fixed end and w"” = 0 at the free end are also used. For w' and w" equal to zero
at station i, we employ, respectively,

o oo

(a)

Wir1 — Wiy = 0
Wivz ™ 2W.~+| + 2W§-; ™ Wiy = 0
Using the finite difference energy method, the total potential energy I1 is given as
L
1
m=Z j [w" (] dx — Rw
2 ),

=“L

To evaluate the integral we need to approximate w”(x). Using central differencing, we obtain for
station i,

n

1
Wi = (T/ZF Wiss — 2w, + wiy) (b)

An approximate solution can now be obtained by evaluating II at the finite difference stations
using (b) and replacing the integral by a summation process; i.e., we use the approximation

n=%n‘ + S+ T + T +5§H5~Rw., ©
1 Wi-1
1 El
where H.' = *2"[W.'-.1 W; W;+|] "‘? W[l -2 l] ::i
i+

Therefore, we can write, in analogy with the finite element analysis procedures (see Section 4.2),
I, = ';'UTBTC, B;U

where B; is a generalized strain-displacement transformation matrix, C; is the stress-strain
matrix, and U is a vector listing all nodal point displacements. Using the direct stiffness method
to calculate the total potential energy as given in (c) and employing the condition that the total
potential energy is stationary (i.e., 8I1 = 0), we obtain the equilibrium equations

7 —4 1 Wy 0
—4 6 —4 1 W3 0
64E/ .
-—I—;E- 1 -4 55 -3 0S5}ws]l =|R (d)
I -3 3 -1 Wws 0
05 ~1  0.5]{ws 0

where the condition of zero slope at the fixed end has already been used.
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The close similarity between the equilibrium equations in (a) and (d) should be noted.
Indeed, if we eliminate we from the equations in (d), we obtain the equations in (a). Hence, using
the finite difference energy method and the conventional finite difference method, we obtain in
this case the same equilibrium equations.

As an example, let R = 1, EI = 10°, and L = 10, Then we obtain, using the equations
in (a) or (d),
0.023437
0.078125
0.14843
0.21875

The exact answer for the tip deflection is ws = 0.2109375. Hence the finite difference analysis
gives a good approximate solution.

EXAMPLE 3.30: The rod shown in Fig. E3.30 is subjected to a heat flux input of ¢° at its right

end and a constant temperature &, at its left end and is in steady-state conditions. The variational
indicator is

1 (Y (80
II= *Z‘J k(-{:j—;) A dx —q°A.6, (a)

]

AlX)= Ay (1 + X = . ‘
( ‘ ) y //////////////;/////////////////

e
6 A f—> x - A(x) q°
——

< 77,
Section BB //////////g/ﬁ///////////////// 72
Insulated around

circumference

> & o . &

A o1 8, 63 PA

g% = prescribed heat flow
input per unit area at x= L

k = conductivity (constant)

Figure E3.30 Rod in heat transfer condition; finite difference stations used

Use the finite difference method to obtain an approximate solution for the temperature distribu-
tion.

Let us use five equally spaced finite difference stations as shown in Fig. E3.30. The finite
difference approximation of the integral in (a) is then

L
II= Z{nl/z + My + sz + My} ~ g°AL6,

where =300 ol ([50% 0 [ 2]
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and the values Il5,, [1s/5, and I15/; are similarly evaluated. Calculating I1, invoking 811 = 0, and
imposing the boundary condition that 6, is known, we thus obtain

202 —121 ) %"Ao b0
kAo |-121 290 —169 6| _ 0
16L —-169 394 -225} 16, 0
-225  225] {6 440q°
Now assume that 6 = 0. Then the solution is
0, 0.79
6| _ |1.32]|L¢°
6| |10 K
6a 1.98
which compares as follows with the analytical solution
[ 3
6, _ |5’
6l % *
64 analytical 2

3.3.6 Exercises

3.15. Establish the differential equation of equilibrium of the problem shown and the (geometric and

force) boundary conditions. Determine whether the operator L., of the problem is symmetric and
positive definite and prove your answer.

}——k— X Alx) = Agl2 - x/L}
Ao
‘ k
g
l |
I L 1
Young's modulus E Rod with varying

cross-sectional area

3.16. Consider the cantilever beam shown, which is subjected to a moment M at its tip. Determine the

variational indicator I and state the essential boundary conditions. Invoke the stationarity of I1
by using (3.7b) and by using the fact that variations and differentiations are performed using the
same rules. Then extract the differential equation of equilibrium and the natural boundary

conditions. Determine whether the operator L, is symmetric and positive definite and prove your
answer.
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3.17,

3.18.

3.19.

3.20.

Fiexural stiffness E/

INANNNNNNNY
£

Consider the heat transfer problem in Example 3.30. Invoke the stationarity of the given varia-
tional indicator by using (3.7b) and by using the fact that variations and differentiations are
performed using the same rules. Establish the governing differential equation of equilibrium and
all boundary conditions. Determine whether the operator L,., is symmetric and positive definite
and prove your answer.

Consider the prestressed cable shown in the figure. The variational indicator is

1 (" (dw)z JL 1
= = T|—]) dx + - k 2 d — P
3 J; Ir b .2 (w)? dx Wi
where w is the transverse displacement and w is the transverse displacement at x = L. Establish

the differential equation of equilibrium and state all boundary conditions. Determine whether the
operator L,, is symmetric and positive definite and prove your answer.

Constant tension T

b g

! 7 L Frictionless
% roller

Cable on distributed vertical
springs of stiffness k/unit length of cable

AAKA
Yyyy
AA
Yy
AAAA
Yyyy
AAAA
yYYyy

Z7777777777777777777777 777777777777 7777

Consider the prestressed cable in Exercise 3.18.

(a) Establish a suitable trial function that can be employed in the analysis of the cable using the
classical Galerkin and least squares methods. Try w(x) = ag + a,x + a,x? and modify the
function as necessary.

(b) Establish the governing equations of the system for the selected trial function using the
classical Galerkin and least squares methods.

Consider the prestressed cable in Exercise 3.18. Establish the governing equations using the Ritz

method with the trial function w(x) = ap + a;x + a,x? (i.e., a suitable modification thereof).
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3.21. Use the Ritz method to calculate the linearized buckling load of the column shown. Assume that
w = cx?, where ¢ is the unknown Ritz parameter.

|

w(x)
El(x) = Ely(2 - x/L)

X

3.22. Consider the structure shown.
(a) Use the Ritz method to establish the governing equations for the bending response. Use the
following functions: (i) w = a;x? and (i) w = b,[1 — cos(wx/2L)].
(b) WithEl, = 100,k = 2, L = 1 estimate the critical load of the column using a Ritz analysis.

k = spring stiffness per unit length of beam

Elix) = Elp(1 - x/2L)

///////ﬁ(////////«/ SIS,

3.23. Consider the slab shown for a heat transfer analysis. The variational indicator for this analysis is

L L
1 [/doN?
=1 < - | es%4
It L2k(dx) dx J; q® dx

State the essential and natural boundary conditions. Then perform a Ritz analysis of the problem
using two unknown parameters.
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Prescribed temperature

Infinitely long slab
8= 20°

in y- and z-directions

Zero heat flux

P
Inside ky ky Qutside

ky = conductivity of inner part of slab = 20

ky = conductivity of outer part of slab = 40

4B = heat generated per unit volume in total slab = 100

S

=2 ——r12—|

L=10

3.24. The prestressed cable shown is to be analyzed. The governing differential equation of equilibrium
is !

9w FPw
T'g;g =m—5 — plt)

with the boundary conditions

Wlx=0 = W§x=L = 0

and the initial conditions
o
w(x, 0) = 0, -;;{-(x, 0)=0

(a) Use the conventional finite difference method to approximate the governing differential
equation of equilibrium and thus establish equations governing the response of the cable.

(b) Use the finite difference energy method to establish equations governing the response of the
cable.

(¢) Use the principle of virtual work to establish equations governing the response of the cable.

When using the finite difference methods, employ two internal finite difference stations. To
employ the principle of virtual work, use the two basis functions shown.

Unifarmly distributed
loading plt)

TE————r
iw(x) J\

L Constant tension T
| Mass/unitlength m
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e
e N

Finite difference stations

Basis functions for use of
principle of virtual work

3.25. The disk shown is to be analyzed for the temperature distribution. Determine the variational
indicator of the problem and obtain an approximate solution using the Ritz method with the basis

functions shown in Fig. 3.4. Use two unknown temperatures. Compare your results with the exact
analytical solution.

2}

g°= 100 Btu/(hr-in?) (prescribed heat flux}
6= T0°F (prescribed temperature)
<] ro=1.0in
n= 3.0in
k =120 Btu/(hr s in « °F)
h = 0.1 in {thickness of disk}

The top and bottom faces
of the disk are insulated

3.26. Consider the beam analysis problem shown.

(a) Use four finite difference stations on the beam with the differential formulation to establish
equations governing the response of the beam.

(b) Use four finite difference stations on the beam with the variational formulation to establish
equations governing the response of the beam.
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p = load/unit length

1/
IR NN
é 4

ESpring stiffness k

AAAA

Flexural stiffness E/

77777,
l<—h——>—l—~—h=LI3—+—h"—*

3.27. Use the finite difference energy method with only two unknown temperature values to solve the
problem in Exercise 3.23.

3.28. Use the finite difference energy method with only two unknown temperature values to solve the
problem in Exercise 3.25.

3.29. The computer program STAP (see Chapter 12) has been written for the analysis of truss struc-
tures. However, by using analogies involving variables and equations, the program can also be
employed in the analysis of pressure and flow distributions in pipe networks, current distributions
in dc networks, and in heat transfer analyses. Use the program STAP to solve the analysis
problems in Examples 3.1 to 3.4.

3.30. Use a computer program to solve the problems in Examples 3.1 to 3.4.

3.4 IMPOSITION OF CONSTRAINTS

The analysis of an engineering problem frequently requires that a specific constraint be
imposed on certain solution variables. These constraints may need to be imposed on some
continuous solution parameters or on some discrete variables and may consist of certain
continuity requirements, the imposition of specified values for the solution variables, or
conditions to be satisfied between certain solution variables. Two widely used procedures
are available, namely, the Lagrange multiplier method and the penalty method (see, for
example, D. P. Bertsekas [A]). Applications of these techniques are given in Sections 4.2.2,
44.2,44.3,45,54,6.7.2, and 7.4. Both the Lagrange multiplier and the penalty methods
operate on the variational or weighted residual formulations of the problem to be solved.

3.4.1 An Introduction to Lagrange Multiplier and Penalty
Methods

As abrief introduction to Lagrange multiplier and penalty methods, consider the variational
formulation of a discrete structural model for a steady-state analysis,

I = JU'KU - U'R (3.52)
. . oIl .
with the conditions 7 =0 for all i (3.53)
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and assume that we want to impose the displacement at the degree of freedom U; with

U= U? (3.54)
In the Lagrange multiplier method we amend the right-hand side of (3.52) to obtain
IT* = JU'KU — U'R + AMU; — U¥) (3.55)
where A is an additional variable, and invoke 811} = 0, which gives
SUKU — 8U'R + ASU; + 8A(U; — U =0 (3.56)

Since 8U and 8A are arbitrary, we obtain

K ¢][U] _[R
5533

where e; is a vector with all entries equal to zero except its ith entry, which is equal to one.
Hence the equilibrium equations without a constraint are amended with an additional
equation that embodies the constraint condition.

In the penalty method we also amend the right-hand side of (3.52) but without
introducing an additional variable. Now we use

n* = %UTKU ~UR + 5 (U ~ UP? (3.58)

in which a is a constant of relatively large magnitude, a > max (k;). The condition
8II** = 0 now yields

SU'KU — 8UR + a(U; — U¥) 86U, = 0 (3.59)
and (K + ae;e;T)U =R + aU,*e,- (3.60)

Hence, using this technique, a large value is added to the ith diagonal element of K and a
corresponding force is added so that the required displacement U; is approximately equal
to U*. This is a general technique that has been used extensively to impose specified
displacements or other variables. The method is effective because no additional equation is
required, and the bandwidth of the coefficient matrix is preserved (see Section 4.2.2).

We demonstrate the Lagrange multiplier method and penalty procedure in the following
example.

EXAMPLE 3.31: Use the Lagrange multiplier method and penalty procedure to analyze the
simple spring system shown in Fig. E3.31 with the imposed displacement U, = 1/k.
The governing equilibrium equations without the imposed displacement U, are

1% )= [R) 0

Up=1

U'l, H] Uz, R,

Figure E3.31 A simple spring system
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The exact solution is obtained by using the relation U, = 1/k and solving from the first
equation of (a) for U,

v =L1tR (b)

Hence we also have Rh=1-

which is the force required at the U, degree of freedom to impose U, = 1/k.
Using the Lagrange multiplier method, the governing equations are

2k "'k 0 U| R!

-k &k 11U 1=10
: ©

1

k

0 1 O0ffA

1+ R 14+ R
and we obtain U, = - A=—~1+ !

’

2k 2

Hence the solution in (b) is obtained, and A is equal to minus the force that must be applied at
the degree of freedom U, in order to impose the displacement U, = 1/k. We may note that with
this value of A the first two equations in (c) reduce to the equations in (a).

Using the penalty method, we obtain

2/( "‘k Ul Rl
-k k+a)|jt|=|7
k
The solution now depends on «, and we obtain
_ ) _ HR + 10 _ R +20
for @ = 10k: U, IR U, 21k
101R, + 100 R + 200
i = 100k: Uy 5 e = e
or & ! 201k 2= ik
_ . _ 1001R, + 1000 _ R+ 2000
and for a = 1000k: U = 2001k : U= 2001k

In practice, the accuracy obtained using a = 1000k is usually sufficient,

This example gives only a very elementary demonstration of the use of the Lagrange
multiplier method and the penalty procedure. Let us now briefly state some more general
equations. Assume that we want to impose onto the solution the m linearly independent

discrete constraints BU = V where B is a matrix of order m X n. Then in the Lagrange
multiplier method we use

I*(U, A) = %UTKU ~ UR + N(BU - V) (3.61)
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where A is a vector of m Lagrange multipliers. Invoking 8II* = 0 we now obtain

[g ﬂ [ﬂ - {3] (3.62)

In the penalty method we use
II*+(U) = %UTKU ~UR + 9‘2-(13[1 - V)T(BU - V) (3.63)

and invoking 8II** = 0 we obtain
(K + aB'B)U = R + aB"V (3.64)

Of course, (3.57) and (3.60) are special cases of (3.62) and (3.64).

The above relations are written for discrete systems. When a continuous system is
considered, the usual variational indicator I1 (see, for example, Examples 3.18 to 3.20) is
amended in the Lagrange multiplier method with integral(s) of the continuous constraint(s)
times the Lagrange multiplier(s) and in the penalty method with integral(s) of the penalty
factor(s) times the square of the constraint(s). If the continuous variables are then expressed
through trial functions or finite difference expressions, relations of the form (3.62) and
(3.64) are obtained (see Section 4.4).

Although the above introduction to the Lagrange multiplier method and penalty
procedure is brief, some basic observations can be made that are quite generally applicable.
First, we observe that in the Lagrange multiplier method the diagonal elements in the
coefficient matrix corresponding to the Lagrange multipliers are zero. Hence for the solu-
tion it is effective to arrange the equations as given in (3.62). Considering the equilibrium
equations with the Lagrange multipliers, we also find that these multipliers have the same
units as the forcing functions; for example, in (3.57) the Lagrange multiplier is a force.

Using the penalty method, an important consideration is the choice of an appropriate
penalty number. In the analysis leading to (3.64) the penalty number « is explicitly specified
(such as in Example 3.31), and this is frequently the case (see Section 4.2.2). However, in
other analyses, the penalty number is defined by the problem itself using a specific formu-
lation (see Section 5.4.1). The difficulty with the use of a very high penalty number lies in
that the coefficient matrix can become ill-conditioned when the off-diagonal elements are
multiplied by a large number. If the off-diagonal elements are affected by the penalty
number, it is necessary to use enough digits in the computer arithmetical operations to
ensure an accurate solution of the problem (see Section 8.2.6).

Finally, we should note that the penalty and Lagrange multiplier methods are quite
closely related (see Exercise 3.35) and that the basic ideas of imposing the constraints can

also be combined, see M. Fortin and R. Glowinski [A], J. C. Simo, P. Wriggers, and R. L. Tay-
lor [A], and Exercise 3.36.

3.4.2 Exercises

3.31. Consider the system of equations

[+ -]
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3.32.

3.33.

3.34.

3.35.

3.36.

Use the Lagrange multiplier method and the penalty method to impose the condition {/; = 0.
Solve the equations and interpret the solution.

Consider the system of carts in Example 3.1 withk; = k&, R, = 1, R, = 0, Ry = 1. Develop the
governing equilibrium equations, imposing the condition U, = U;.

(a) Use the Lagrange multiplier method.

(b) Use the penalty method with an appropriate penalty factor.

In each case solve for the displacements and the constraining force.

Consider the heat transfer problem in Example 3.2 with £ = 1 and 6, = 10, 6, = 20. Impose
the condition that 6; = 46, and physically interpret the solution. Use the Lagrange multiplier
method and then the penalty method with a reasonable penalty parameter.

Consider the fluid flow in the hydraulic network in Example 3.3. Develop the governing equations
for use of the Lagrange multiplier method to impose the condition pc = 2 py. Solve the equations
and interpret the solution.

Repeat the solution using the penalty method with an appropriate penalty factor.
Consider the problem KU = R with the m linearly independent constraints BU = V (see (3.61)

and (3.62)). Show that the stationarity of the following variational indicator gives the equations
of the penalty method (3.64),

~ 1 ATA

II**(U, \) = EUTKU - UR + N"(BU — V) - e
where N is a vector of the m Lagrange multipliers and a is the penalty parameter, @ > 0.
Evaluate the Lagrange multipliers in general to be A = a(BU — V), and show that for the
specific case considered in (3.60) A = a(U, — U¥).

1In the augmented Lagrangian method the following functional is used for the problem stated in
Exercise 3.35:

~ 1
I*(U, A) = ~2‘UTKU ~UR + %(BU ~V)(BU ~ V) + N"BU - V); ¢ = 0

(a) Invoke the stationarity of [1* and obtain the governing equations.

(b) Use the augmented Lagrangian method to solve the problem posed in Example 3.31 for
a = 0, k, and 1000k. Show that, actually, for any value of « the constraint is accurately
satisfied. (The augmented Lagrangian method is used in iterative solution procedures, in
which case using an efficient value for o can be important.)
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4.1 INTRODUCTION
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A very important application area for finite element analysis is the linear analysis of solids
and structures. This is where the first practical finite element procedures were applied and
where the finite element method has obtained its primary impetus of development.

Today many types of linear analyses of structures can be performed in a routine
manner. Finite element discretization schemes are well established and are used in standard
computer programs. However, there are two areas in which effective finite elements have
been developed only recently, namely, the analysis of general plate and shell structures and
the solution of (almost) incompressible media.

The standard formulation for the finite element solution of solids is the displacement
method, which is widely used and effective except in these two areas of analysis. For the
analysis of plate and shell structures and the solution of incompressible solids, mixed
formulations are preferable.

In this chapter we introduce the displacement-based method of analysis in detail. The
principle of virtual work is the basic relationship used for the finite element formulation. We
first establish the governing finite element equations and then discuss the convergence
properties of the method. Since the displacement-based solution is not effective for certain
applications, we then introduce the use of mixed formulations in which not only the displace-
ments are employed as unknown variables. The use of a mixed method, however, requires
a careful selection of appropriate interpolations, and we address this issue in the last part of
the chapter.

Various displacement-based and mixed formulations have been presented in the liter-
ature, and as pointed out before, our aim is not to survey all these formulations. Instead, we
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will concentrate in this chapter on some important useful principles of formulating finite

elements. Some efficient applications of the principles discussed in this chapter are then
presented in Chapter 5.

4.2 FORMULATION OF THE DISPLACEMENT-BASED FINITE
ELEMENT METHOD

The displacement-based finite element method can be regarded as an extension of the
displacement method of analysis of beam and truss structures, and it is therefore valuable
to review this analysis process. The basic steps in the analysis of a beam and truss structure
using the displacement method are the following.

1. Idealize the total structure as an assemblage of beam and truss elements that are
interconnected at structural joints.

2. Identify the unknown joint displacements that completely define the displacement
response of the structural idealization.

3. Formulate force balance equations corresponding to the unknown joint displacements
and solve these equations.

4. With the beam and truss element end displacements known, calculate the internal
element stress distributions.

5. Interpret, based on the assumptions used, the displacements and stresses predicted by
the solution of the structural idealization.

In practical analysis and design the most important steps of the complete analysis are
the proper idealization of the actual problem, as performed in step 1, and the correct
interpretation of the results, as in step 5. Depending on the complexity of the actual system
to be analyzed, considerable knowledge of the characteristics of the system and its mechan-
ical behavior may be required in order to establish an appropriate idealization, as briefly
discussed in Chapter 1.

These analysis steps have already been demonstrated to some degree in Chapter 3, but
it is instructive to consider another more complex example.

EXAMPLE 4.1: The piping system shown in Fig. E4.1(a) must be able to carry a large trans-
verse load P applied accidentally to the flange connecting the small- and large-diameter pipes.
“Analyze this problem.”

The study of this problem may require a number of analyses in which the local kinematic
behavior of the pipe intersection is properly modeled, the nonlinear material and geometric
behaviors are taken into account, the characteristics of the applied load are modeled accurately,
and so on. In such a study, it is usually most expedient to start with a simple analysis in which

gross assumptions are made and then work toward a more refined model as the need arises (see
Section 6.8.1).
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(c) Global degrees of freedom of unrestraint structure

Figure E4,1 Piping system and idealization

Assume that in a first analysis we primarily want to calculate the transverse displacement
at the flange when the transverse load is applied slowly. In this case it is reasonable to model the
structure as an assemblage of beam, truss, and spring elements and perform a static analysis.

The model chosen is shown in Fig. E4.1(b). The structural idealization consists of two
beams, one truss, and a spring element. For the analysis of this idealization we first evaluate the
element stiffness matrices that correspond to the global structural degrees of freedom shown in
Fig. E4.1(c). For the beam, spring, and truss elements, respectively, we have in this case
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where the subscript on K* indicates the element number, and the global degrees of freedom that
correspond to the element stiffnesses are written next to the matrices. It should be noted that in
this example the element matrices are independent of direction cosines since the centerlines of
the elements are aligned with the global axes. If the local axis of an element is not in the direction
of a global axis, the local element stiffness matrix must be transformed to obtain the required
global element stiffness matrix (see Example 4.10).

The stiffness matrix of the complete element assemblage is effectively obtained from the
stiffness matrices of the individual elements using the direct stiffness method (see Examples 3.1
and 4.11). In this procedure the structure stiffness matrix K is calculated by direct addition of
the element stiffness matrices; i.e.,

K=2K:
where the summation includes all elements. To perform the summation, each element matrix K

is written as a matrix K of the same order as the stiffness matrix K, where all entries in K@

are zero except those which correspond to an element degree of freedom. For example, for
element 4 we have
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Therefore, the stiffness matrix of the structure is

[12E1 6El 12E7 6E1
T o D T 0 0 0|
4E1 6EI 2Er
T T 0 0 0
24E] 6EI 12E] 12E1
- " "o T 0
K = 20E1 12EI 8EI 0
L L? L
metric 12E1 24E  12EI  2AE
R4 [ L I8 L
16EI
— +k
T 0
24E
L

and the equilil;rium equations for the system are
KU = R

where U is a vector of the system global displacements and R is a vector of forces acting in the
direction of these displacements:

UT=[U1,....U7]; RT=[R|,...,R7]

Before solving for the displacements of the structure, we need to impose the boundary
conditions that U; = 0 and U; = 0. This means that we may consider only five equations in five
unknown displacements; i.e.,

KU =R (a)
where K is obtained by eliminating from K the first and seventh rows and columns, and
U=[, ) Us Us Ui R =[0 -P 0 0 0]

The solution of (a) gives the structure displacements and therefore the element nodal point
displacements. The element nodal forces are obtained by multiplying the element stiffness
matrices K? by the element displacements. If the forces at any section of an element are required,
we can evaluate them from the element end forces by use of simple statics.

~ Considering the analysis results it should be recognized, however, that although the struc-
tural idealization in Fig. E4.1(b) was analyzed accurately, the displacements and stresses are only
a prediction of the response of the actual physical structure. Surely this prediction will be
accurate only if the model used was appropriate, and in practice a specific model is in general
adequate for predicting certain quantities but inadequate for predicting others. For instance, in
this analysis the required transverse displacement under the applied load is quite likely predicted
accurately using the idealization in Fig. E4.1(b) (provided the load is applied slowly enough, the
stresses are small enough not to cause yielding, and so on), but the stresses directly under the load
are probably predicted very inaccurately. Indeed, a different and more refined finite element
model would need to be used in order to accurately calculate the stresses (see Section 1.2).

This example demonstrates some important aspects of the displacement method of

analysis and the finite element method. As summarized previously, the basic process is that
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the complete structure is idealized as an assemblage of individual structural elements. The
element stiffness matrices corresponding to the global degrees of freedom of the structural
idealization are calculated, and the total stiffness matrix is formed by the addition of the
element stiffness matrices. The solution of the equilibrium equations of the assemblage of
elements yields the element displacements, which are then used to calculate the element
stresses. Finally, the element displacements and stresses must be interpreted as an estimate
of the actual structural behavior, taking into account that a truss and beam idealization was
solved.

Considering the analysis of truss and beam assemblages such as in Example 4.1,
originally these solutions were not called finite element analyses because there is one major
difference in these solutions when compared to a more general finite element analysis of a
two- or three-dimensional problem, namely, in the analysis performed in Example 4.1 the
exact element stiffness matrices (“exact” within beam theory) could be calculated. The
stiffness properties of a beam element are physically the element end forces that correspond
to unit element end displacements. These forces can be evaluated by solving the differential
equations of equilibrium of the element when it is subjected to the appropriate boundary
conditions. Since by virtue of the solution of the differential equations of equilibrium, all
three requirements of an exact solution—namely, the stress equilibrium, the compatibility,
and the constitutive requirements-—throughout each element are fulfilled, the exact ele-
ment internal displacements and stiffness matrices are calculated. In an alternative ap-
proach, these element end forces could also be evaluated by performing a variational
solution based on the Ritz method or Galerkin method, as discussed in Section 3.3.4. Such
solutions would give the exact element stiffness coefficients if the exact element internal
displacements (as calculated in the solution of the differential equations of equilibrium) are
used as trial functions (see Examples 3.22 and 4.8). However, approximate stiffness
coefficients are obtained if other trial functions (which may be more suitable in practice) are
- employed.

When considering more general two- and three-dimensional finite element analyses,
we use the variational approach with trial functions that approximate the actual displace-
ments because we do not know the exact displacement functions as in the case of truss and
beam elements. The result is that the differential equations of equilibrium are not satisfied
in general, but this error is reduced as the finite element idealization of the structure or the
continuum is refined.

The general formulation of the displacement-based finite element method is based on
the use of the principle of virtual displacements which, as discussed in Section 3.3.4, is
equivalent to the use of the Galerkin method, and also equivalent to the use of the Ritz
method to minimize the total potential of the system.

4.2.1 General Derivation of Finite Element Equilibrium
Equations

In this section we first state the general elasticity problem to be solved. We then discuss the
principle of virtual displacements, which is used as the basis of our finite element solution,
and we derive the finite element equations. Next we elaborate on some important consider-
ations regarding the satisfaction of stress equilibrium, and finally we discuss some details
of the process of assemblage of element matrices.
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Figured.1 General three-dimensional body with an 8-node three- dimensional element

Problem Statement

Consider the equilibrium of a general three-dimensional body such as that shown in
Fig. 4.1. The body is located in the fixed (stationary) coordinate system X, ¥, Z. Considering
the body surface area, the body is supported on the area S, with prescribed displacements

US« and is subjected to surface tractions f* (forces per unit surface area) on the surface area
St

! We may assume here, for simplicity, that all displacement components on S, are prescribed, in which case
S. U 8= §and S, N §; = 0. However, in practice, it may well be that at a surface point the displacement(s)
corresponding to some direction(s) is (are) imposed, while corresponding to the remaining direction(s) the force
component(s) is (are) prescribed. For example, a roller boundary condition on a three-dimensional body would
correspond to an imposed zero displacement only in the direction normal to the body surface, while tractions are
applied (which are frequently zero) in the remaining directions tangential to the body surface. In such cases, the
surface point would belong to S, and S;. However, later, in our finite element formulation, we shall first remove all
displacement constraints (support conditions) and assume that the reactions are known, and thus consider §; = §
and S, = 0, and then, only after the derivation of the governing finite element equations, impose the displacement

constraints. Hence, the assumption that all displacement compenents on S, are prescribed may be used here for ease
of exposition and does not in any way restrict our formulation.
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In addition, the body is subjected to externally applied body forces £2 (forces per unit
volume) and concentrated loads R (where i denotes the point of load application). We
introduce the forces R{ as separate quantities, although each such force could also be
considered surface tractions % over a very small area (which would usually model the
actual physical situation more accurately). In general, the externally applied forces have
three components corresponding to the X, Y, Z coordinate axes:

fx b Ricx
P=1rl = jj::,f i Rb=|Re (4.1
f2 7z Rz

where we note that the components of £# and £% vary as a function of X, Y, Z (and for £%
the specific X, ¥, Z coordinates of Sy are considered).

The displacements of the body from the unloaded configuration are measured in the
coordinate system X, Y, Z and are denoted by U, where

U
Ux, v,2)=|V 4.2)
w

and U = U% on the surface area S,. The strains corresponding to U are

€ =[exx €rv €z Yoo Yz Y 4.3)
al oV aw
where = — o= e = 2"
Exx ax’ €yy ar’ €zz oz
(4.4)
UL = W LY
WEx T Mz T Tz
The stresses corresponding to € are
T=lm T Tz T Tz Tzx] (4.5)
where T=Ce+ 7 (4.6)

In (4.6), C is the stress-strain material matrix and the vector 7' denotes given initial stresses
[with components ordered as in (4.5)].

The analysis problem is now the following.

Given

the geometry of the body, the applied loads £%, £, R, i = 1, 2, . . ., the support
conditions on S,, the material stress-strain law, and the initial stresses in the body.
Calculate

the displacements U of the body and the corresponding strains € and stresses 7.
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In the problem solution considered here, we assume linear analysis conditions, which
require that

The displacements be infinitesimally small so that (4.4) is valid and the equilibrium
of the body can be established (and is solved for) with respect to its unloaded
configuration.

The stress-strain material matrix can vary as a function of X, Y, Z but is constant
otherwise (e.g., C does not depend on the stress state).

We consider nonlinear analysis conditions in which one or more of these assumptions
are not satisfied in Chapters 6 and 7.

To calculate the response of the body, we could establish the governing differential
equations of equilibrium, which then would have to be solved subject to the boundary
conditions (see Section 3.3). However, closed-form analytical solutions are possible only
when relatively simple geometries are considered.

The Principle of Virtual Displacements

The basis of the displacement-based finite element solution is the principle of virtual
displacements (which we also call the principle of virtual work). This principle states that
the equilibrium of the body in Fig. 4.1 requires that for any compatible small* virtual
displacements (which are zero at and corresponding to the prescribed displacements)’

imposed on the body in its state of equilibrium, the total internal virtual work is equal to
the total external virtual work:

Internal virtual External virtual work 9
work

f €Tr dV = f UTf2av + f U 15ds + 2 UTRL
v \4 T 5¢ [ i ‘[ (47)
I 1

Stresses in equilibrium with applied loads _
Virtual strains corresponding to virtual displacements U

where the U are the virtual displacements and the € are the corresponding virtual strains
(the overbar denoting virtual quantities).

The adjective “virtual” denotes that the virtual displacements (and corresponding
virtual strains) are not ‘‘real” displacements which the body actually undergoes as a conse-
quence of the loading on the body. Instead, the virtual displacements are totally independent

2We stipulate here that the virtual displacements be “small” because the virtual strains corresponding to
these displacements are calculated using the small strain measure (see Example 4.2). Actually, provided this small

strain measure is used, the virtual displacements can be of any magnitude and indeed we later on choose convenient
magnitudes for solution.

3We use the wording “at and corresponding to the prescribed displacements” to mean “at the points and
surfaces and corresponding to the components of displacements that are prescribed at those points and surfaces.”
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from the actual displacements and are used by the analyst in a thought experiment to
establish the integral equilibrium equation in (4.7).
Let us emphasize that in (4.7),

The stresses 7 are assumed to be known quantities and are the unique stresses* that
exactly balance the applied loads.
The virtual strains € are calculated by the differentiations given in (4.4) from the
assumed virtual displacements U.
The virtual displacements U must represent a continuous virtual displacement field (to
be able to evaluate €), with U equal to zero at and corresponding to the prescribed

displacements on S,; also, the components in U% are simply the virtual displacements
U evaluated on the surface ;.

All integrations are performed over the original volume and surface area of the body,
unaffected by the imposed virtual displacements.

To exemplify the use of the principle of virtual displacements, assume that we believe
(but are not sure) to have been given the exact solution displacement field of the body. This
given displacement field is continuous and satisfies the displacement boundary conditions
on S.. Then we can calculate € and 7 (corresponding to this displacement field). The vector
7 lists the correct stresses if and only if the equation (4.7) holds for any arbitrary virtual
displacements U that are continuous and zero at and corresponding to the prescribed
displacements on S,. In other words, if we can pick one virtual dlsplacemcnt field U for
which the relation in (4.7) is not satisfied, then this is proof that 7 is not the correct stress
vector (and hence the given displacement field is not the exact solution displacement field).

We derive and demonstrate the principle of virtual displacements in the following
examples.

EXAMPLE 4.2: Derive the principle of virtual displacements for the general three-
dimensional body in Fig. 4.1.

To simplify the presentation we use indicial notation with the summation convention (see
Section 2.4), with x; denoting the i th coordinate axis (x, = X, x, = ¥, x, = Z), u; denoting the
ith displacement component (4, = U, u; = V, 43 = W), and a comma denoting differentiation.

The given displacement boundary conditions are uf« on S., and let us assume that we have
no concentrated surface loads, that is, all surface loads are contained in the components f3.

The solution to the problem must satisfy the following differential equations (see, for
example, S. Timoshenko and J. N. Goodier [A]):

i+ fF=0 throughout the body (a)
with the natural (force) boundary conditions
T = f onSs (b)
and the essential (displacement) boundary conditions
W = ufu on §, ©

where § = §, U &, S, N § = 0, and the n, are the components of the unit normal vector to the
surface S of the body.

4For a proof that these stresses are unique, see Section 4.3.4.
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Consider now any arbitrarily chosen continuous displacements ; satisfying

=0 on S, @
Then (Tij.j + f?)i’ =0
and therefore, J(n-j, i+ fAudv =0 (&
v

We call the &, virtual displacements. Note that since the 7; are arbitrary, (€) can be satisfied if (and
only if) the quantity in the parentheses vanishes. Hence (¢} is equivalent to (a).
Using the mathematical identity (7;ii),; = 7% + 7;U;;, we obtain from (),

j () — m¥; + ffu]dv =0
v

Next, using the identity [v (&), dV = [s (ryi)n; dS, which follows from the divergence
theorem® (see, for example, G. B. Thomas and R. L. Finney [A]), we have
I (= 7y + fim) dv + f (ryit)n; dS = 0 (f)
v s

In light of (b) and (d), we obtain

f (=7 + fPu) dv + j frafrdsS =0 (®
\'4 Sy
Also, because of the symmetry of the stress tensor (r; = 7;), we have

ity = T3y + w)] = 7,

and hence we obtain from (g) the required result, (4.7),

J' € dV = J fEudv + f fray ds (h)
v v s

Note that in (h) we use the tensor notation for the strains; hence, the engineering shear strains
used in (4.7) are obtained by adding the appropriate tensor shear strain components, €.g.,

Yxy = &2 + &. Also note that by using (b) [and (d)] in (f), we explicitly introduced the natural
boundary conditions into the principle of virtual displacements (h).

EXAMPLE 4.3: Consider the bar shown in Figure E4.3.

(a) Specialize the equation of the principle of virtual displacements (4.7) to this probiem.

(b) Solve for the exact response of the mechanical model.

(¢} Show that for the exact displacement response the principle of virtual displacements is
satisfied with the displacement patterns (i) # = axand (ii) # = ax?, where a is a constant.

(d) Assume that the stress solution is

£
Ao

Tax =

mw

$The divergence theorem states: Let F be a vector field in volume V; then

fﬁ..-dhfF-ms
v §

where n is the unit outward normal on the surface S of V.
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A= Apl2 - x/L} t

;

Young's modulus £
‘t Force F

RAMMMITININGNS

Figure E4.3 Bar subjected to concentrated load F

i.e., that 7, is the force F divided by the average cross-sectional area, and investigate
whether the principle of virtual displacements is satisfied for the displacement patterns
given in (c).

The principle of virtual displacements (4.7) specialized to this bar problem gives

L
du _  du —
L‘&;EAadxhu fo (a)
The governing differential equations are obtained using integration by parts (see Exam-
ple 3.19):
EEA-‘—{li L—jLEi(EA'QE)dx:H F (b)
dx |, o dx dx =L

Since @ |- = 0 and # is arbitrary otherwise, we obtain from (b) (see Example 3.18 for the
arguments used),

d du
~—\EA—| = i i : e
dx( dx) 0 differential equation of equilibrium (©)
du -
EA ax = F force or natural boundary condition @
x=L

Of course, in addition we have the displacement boundary condition u|,~o = 0. Integrating (c)
and using the boundary conditions, we obtain as the exact solution of the mathematical model,

FL 2
u= pen(z2o) ©

Next, using (e) and @ = ux and @ = ax? in equation (a), we obtain

¢ F x _
L aon(Z - Z) dx = aLF )

and

JLz —-————f———A(z—-f)d = al?F
o A —xpiN\- T )T @

Equations (f) and (g) show that for the exact displacement /stress response the principle of virtual
displacements is satisfied with the assumed virtual displacements.
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Now let us employ the principle of virtual displacements with 7., = 2 (F/Ao) and use first
u = ax and then ¥ = ax®. We obtain with @ = ax,

L
2 F x
== Al 2 — = = gl
j0a3A0 0( L)dx alLF
which shows that the principle of virtual displacements is satisfied with this virtual displacement
field. For @ = ax?, we obtain
L
2 F x
2ax = — Aol 2 — = # al?
L ax IA Ao( L) dx # al*F

and this equation shows that 7, = %(F/Ao) is not the correct stress solution.

The principle of virtual displacements can be directly related to the principle that the
total potential II of the system must be stationary (see Sections 3.3.2 and 3.3.4). We study
this relationship in the following example.

EXAMPLE 4.4: Show how for a linear elastic continuum the principle of virtual displacements
relates to the principle of stationarity of the total potential.

Assuming a linear elastic continuum with zero initial stresses, the total potential of the
body in Fig. 4.1 is

1 oo
= —J. €’ Ce dV — f U e dv — j USE dS — E U'TR‘C ()
2y v S i
where the notation was defined earlier, and we have

T = Ce

with C the stress-strain matrix of the material.

Invoking the stationarity of I1, i.e., evaluating 81 = O with respect to the displacements
(which now appear in the strains) and using the fact that C is symmetric, we obtain

J' 8e"Ce aV = f U2 gV + f
v v Sy
However, to evaluate I1 in (a) the displacements must satisfy the displacement boundary condi-
tions. Hence in (b) we consider any variations on the displacements but with zero values at and
corresponding to the displacement boundary conditions, and the corresponding variations in

strains. It follows that invoking the stationarity of I is equivalent to using the principle of virtual
displacements, and indeed we may write

85Ut dS + 2 UTRE (b)

de=¢, 8U=0 oU09=T% oU=U
so that (b) reduces to (4.7).

It is important to realize that when the principle of virtual displacements (4.7) is
satisfied for all admissible virtual displacements with the stresses 7 “properly obtained”
from a continuous displacement field U that satisfies the displacement boundary conditions
on S, all three fundamental requirements of mechanics are fulfilled:

1. Equilibrium holds because the principle of virtual displacements is an expression of
equilibrium as shown in Example 4.2.
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2. Compatibility holds because the displacement field U is continuous and satisfies the
displacement boundary conditions.

3. The stress-strain law holds because the stresses 7 have been calculated using the

constitutive relationships from the strains € (which have been evaluated from the
displacements U).

So far we have assumed that the body being considered is properly supported, i.e., that
there are sufficient support conditions for a unique displacement solution. However, the
principle of virtual displacements also holds when all displacement supports are removed
and the correct reactions (then assumed known) are applied instead. In this case the surface
area Sy on which known tractions are applied is equal to the complete surface area S of the
body (and S, is zero)®. We use this basic observation in developing the governing finite
element equations. That is, it is conceptually expedient to first not consider any displace-
ment boundary conditions, develop the governing finite element equations accordingly, and
then prior to solving these equations impose all displacement boundary conditions.

Finite Element Equations

Let us now derive the governing finite element equations. We first consider the response of
the general three-dimensional body shown in Fig. 4.1 and later specialize this general
formulation to specific problems (see Section 4.2.3).

In the finite element analysis we approximate the body in Fig. 4.1 as an assemblage
of discrete finite elements interconnected at nodal points on the element boundaries. The
displacements measured in a local coordinate system x, y, z (to be chosen conveniently)
within each element are assumed to be a function of the displacements at the N finite
element nodal points. Therefore, for element m we have

uw(x, y, 2) = H™(x, y, 2) ("J (4.8)

where H™ is the displacement interpolation matrix, the superscript m denotes element m,
and U is a vector of the three global displacement components U;, Vi, and W; at all nodal

points, including those at the supports of the element assemblage; i.e., U is a vector of
dimension 3N,

U=[UviWw, U,V:Ws ... UyVyWa) (4.9)
We may note here that more generally, we write
U= v, U, ... Ul (4.10)

where it is understood that U; may correspond to a displacement in any direction X, ¥, or
Z, or even in a direction not aligned with these coordinate axes (but aligned with the axes
of another local coordinate system), and may also signify a rotation when we consider
beams, plates, or shells (see Section 4.2.3). Since U includes the displacements (and rota-

8 For this reason, and for ease of notation, we shall now mostly (i.e., until Section 4.4.2) no longer use the
superscripts Syand S, but simply the superscript S on the surface tractions and displacements.
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tions) at the supports of the element assemblage, we need to impose, at a later time, the
known values of U prior to solving for the unknown nodal point displacements.

Figure 4.1 shows a typical finite element of the assemblage. This element has eight
nodal points, one at each of its corners, and can be thought of as a “brick” element. We
should imagine that the complete body is represented as an assemblage of such brick
elements put together so as to not leave any gaps between the element domains. We show
this element here merely as an example; in practice, elements of different geometries and
nodal points on faces and in the element interiors may be used.

The choice of element and the construction of the corresponding entries in H* (which
depend on the element geometry, the number of element nodes/degrees of freedom, and
convergence requirements) constitute the basic steps of a finite element solution and are
discussed in detail later. .

Although all nodal point displacements are listed in U, it should be realized that for
a given element only the displacements at the nodes of the element affect the displacement
and strain distributions within the element.

With the assumption on the displacements in (4.8) we can now evaluate the corre-
sponding element strains,

€"(x, y, 2) = B™(x, y, 2)0 (4.11)

where B™ is the strain-displacement matrix; the rows of B™ are obtained by appropriately
differentiating and combining rows of the matrix H"™.

The purpose of defining the element displacements and strains in terms of the com-
plete array of finite element assemblage nodal point displacements may not be obvious now.
However, we will see that by proceeding in this way, the use of (4.8) and (4.11) in the
principle of virtual displacements will automatically lead to an effective assemblage process
of all element matrices into the governing structure matrices. This assemblage process is
referred to as the direct stiffness method.

The stresses in a finite element are related to the element strains and the element initial
stresses using

T = Clmem) 4 pllm) (4.12)

where C™ is the elasticity matrix of element m and 7/ are the given element initial
stresses. The material law specified in C" for each element can be that for an isotropic or
an anisotropic material and can vary from element to element.

Using the assumption on the displacements within each finite element, as expressed in
(4.8), we can now derive equilibrium equations that correspond to the nodal point displace-
ments of the assemblage of finite elements. First, we rewrite (4.7) as a sum of integrations
over the volume and areas of all finite elements:

> T g gy = > [ TR gyom
m Jyim

" yim)
(4.13)
+ 2 GSmTpstm ggim 4 E iR

m Jsm, s
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where m = 1,2, ..., k, where k = number of elements, and ${”, . . ., Sy denotes the
element surfaces that are part of the body surface S. For elements totally surrounded by
other elements no such surfaces exist, whereas for elements on the surface of the body one
or more such element surfaces are included in the surface force integral. Note that we
assume in (4.13) that nodal points have been placed at the points where concentrated loads
are applied, although a concentrated load can of course also be included in the surface force
integrals.

It is important to note that since the integrations in (4.13) are performed over the
element volumes and surfaces, for efficiency we may use a different and any convenient
coordinate system for each element in the calculations. After all, for a given virtual displace-
ment field, the internal virtual work is a number, as is the external virtual work, and this
number can be evaluated by integrations in any coordinate system. Of course, it is assumed
that for each integral in (4.13) only a single coordinate system for all variables is employed;
e.g., U is defined in the same coordinate system as £, The use of different coordinate
systems is in essence the reason why each of the integrals can be evaluated very effectively
in general element assemblages.

The relations in (4.8) and (4.11) have been given for the unknown (real) element
displacements and strains. In our use of the principle of virtual displacements we employ
the same assumptions for the virtual displacements and strains

=
ﬁ'(m)(x, Y Z) - H(M)(x, Y, Z)U (4.14)

€"(x, y, 2) = B™(x, y, )0 (4.15)

In this way the element stiffness (and mass) matrices will be symmetric matrices.
If we now substitute into (4.13), we obtain

ﬁT[Z B™TCrB e de}fj = ﬁ’HE Hm7 80 dV""’}

m Yim) m yim)

+ {2 f HET 50 dS"”’} (4.16)
moJsim, o sym

— { BT 4 f(m) dV(m)} + RC]
m yim)

where the surface displacement interpolation matrices H™ are obtained from the displace-
ment interpolation matrices H™ in (4.8) by substituting the appropriate element surface
coordinates (see Examples 4.7 and 5.12) and Rc is a vector of concentrated loads applied
to the nodes of the element assemblage.

We should note that the ith component in Rc is the concentrated nodal force that
corresponds to the i th displacement component in U. In (4.16) the nodal point displacement
vectors U and U of the element assemblage are independent of element m and are therefore
taken out of the summation signs.

To obtain from (4.16) the equations for the unknown nodal point displacements, we
apply the principle of virtual displacements n times by imposing unit virtual displacements
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in turn for all components of U. In the first application U = e,/ in the second application

. A
U = e;, and so on, until in the nth application U = e,, so that the result is

KU =R

4.17)

where we do not show the identity matrices I due to the virtual displacements on each side

of the equation and

R=R5+

Rs - R + R¢

(4.18)

and, as we shall do from now on, we denote the unknown nodal point displacements as U,

ie,U=1U.

The matrix K is the stiffness matrix of the element assemblage,

The load vector R includes the effect of the element body forces,

K=2
mLV(M)

B(m)rc(m)B(m) dv(m)
I

= K

the effect of the element surface forces,

Ry =2 | H™TEm gy
m Jvim
| 4
= Ry
R, = 2 j HSTSem g gtm)
ml S;0m, ., 5§ \
= Rg”')

the effect of the element initial stresses,

R =2 f BTl gyim
vim)

m

= R;’")

and the nodal concentrated loads Re.

7 For the definition of the vector e;, see the text following (2.7).

4.19)

(4.20)

4.21)

(4.22)
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We note that the summation of the element volume integrals in (4.19) expresses the
direct addition of the element stiffness matrices K™ to obtain the stiffness matrix of the
total element assemblage. In the same way, the assemblage body force vector Rp is calcu-
lated by directly adding the element body force vectors R§”; and Rs and R; are similarly
obtained. The process of assembling the element matrices by this direct addition is called
the direct stiffness method.

This elegant writing of the assemblage process hinges upon two main factors: first, the
dimensions of all matrices to be added are the same and, second, the element degrees of
freedom are equal to the global degrees of freedom. In practice of course only the nonzero
rows and columns of an element matrix K™ are calculated (corresponding to the actual
element nodal degrees of freedom), and then the assemblage is carried out using for each
element a connectivity array LM (see Example 4.11 and Chapter 12). Also, in practice, the
element stiffness matrix may first be calculated corresponding to element local degrees of
freedom not aligned with the global assemblage degrees of freedom, in which case a
transformation is necessary prior to the assemblage [see (4.41)].

Equation (4.17) is a statement of the static equilibrium of the element assemblage. In
these equilibrium considerations, the applied forces may vary with time, in which case the
displacements also vary with time and (4.17) is a statement of equilibrium for any specific
point in time. (In practice, the time-dependent application of loads can thus be used to
model multiple-load cases; see Example 4.5.) However, if in actuality the loads are applied
rapidly, measured on the natural frequencies of the system, inertia forces need to be
considered; i.e., a truly dynamic problem needs to be solved. Using d’ Alembert’s principle,
we can simply include the element inertia forces as part of the body forces. Assuming that
the element accelerations are approximated in the same way as the element displacements

in (4.8), the contribution from the total body forces to the load vector R is (with the X, ¥,
Z coordinate system stationary)

R; = 2 HT[foe p""’H""’ﬁ] dye {4.23)
m wim)

where %" no longer includes inertia forces, U lists the nodal point accelerations (i.e., is the

second time derivative of U), and p™ is the mass density of element m. The equilibrium
equations are, in this case,

MU + KU = R (4.24)

where R and U are time-dependent. The matrix M is the mass matrix of the structure,

M= 2 j PPHETH™ gy
m v | (4.25)

— M(M)

In actually measured dynamic responses of structures it is observed that energy is
dissipated during vibration, which in vibration analysis is usually taken account of by
introducing velocity-dependent damping forces. Introducing the damping forces as addi-
tional contributions to the body forces, we obtain corresponding to (4.23),

R; = D HmT[fam e — K(m)[-]('")[']] dy™ (4.26)

m vim)
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In this case the vectors f*™ no longer include inertia and velocity-dependent damping
forces, U is a vector of the nodal point velocities (i.e., the first time derivative of U), and

k"™ is the damping property parameter of element m. The equilibrium equations are, in this
case,

MU + CU + KU =R 427

where C is the damping matrix of the structure; i.e., formally,

C = 2 KMPTH e gy (4.28)

m yim) |

- C(M)

In practice it is difficult, if not impossible, to determine for general finite element
assemblages the element damping parameters, in particular because the damping properties
are frequency dependent. For this reason, the matrix C is in general not assembled from
element damping matrices but is constructed using the mass matrix and stiffness matrix of
the complete element assemblage together with experimental results on the amount of
damping. Some formulations used to construct physically significant damping matrices are
described in Section 9.3.3.

A complete analysis, therefore, consists of calculating the matrix K (and the matrices
M and C in a dynamic analysis) and the load vector R, solving for the response U from
(4.17) [or U, U, U from (4.24) or (4.27)], and then evaluating the stresses using (4.12). We
should emphasize that the stresses are simply obtained using (4.12)—hence only from the
initial stresses and element displacements—and that these values are not corrected for
externally applied element pressures or body forces, as is common practice in the analysis
of frame structures with beam elements (see Example 4.5 and, for example, S. H. Crandall,
N. C. Dahl, and T. J. Lardner [A]). In the analysis of beam structures, each element
represents a one-dimensional stress situation, and the stress correction due to distributed
loading is performed by simple equilibrium considerations. In static analysis, relatively long
beam elements can therefore be employed, resulting in the use of only a few elements (and
degrees of freedom) to represent a frame structure. However, a similar scheme would
require, in general two- and three-dimensional finite element analysis, the solution of
boundary value problems for the (large) element domains used, and the use of fine meshes
for an accurate prediction of the displacements and strains is more effective. With such fine
discretizations, the benefits of even correcting approximately the stress predictions for the
effects of distributed element loadings are in general small, although for specific situations
of course the use of a rational scheme can result in notable improvements.

To illustrate the above derivation of the finite element equilibrium equations, we
consider the following examples.

EXAMPLE 4.5; Establish the finite element equilibrium equations of the bar structure shown
in Fig. E4.5. The mathematical model to be used is discussed in Examples 3.17 and 3.22. Use
the two-node bar element idealization given and consider the following two cases:

1. Assume that the loads are applied very slowly when measured on the time constants
(natural periods) of the structure.

2. Assume that the loads are applied rapidly. The structure is initially at rest.
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In the formulation of the finite element equilibrium equations we employ the general
equations (4.8) to (4.24) but use that the only nonzero stress is the longitudinal stress in the bar.
Furthermore, considering the complete bar as an assemblage of 2 two-node bar elements corre-
sponds to assuming a linear displacement variation between the nodal points of each element.

The first step is to construct the matrices H™ and B™ for m = 1, 2, We recall that
although the displacement at the left end of the structure is zero, we first include the displacement
at that surface in the construction of the finite element equilibrium equations.

Corresponding to the displacement vector U = [U, U, Us], we have

M = 2y X
H [(1 100) 100 0]
1 1
M = | - —
B |l 100 100 0]
w=log ((-X) =
H _0 (l 80) 30]
I 1 1
(2) — R R,
B _O 80 80]
The material property matrices are
CY = E, C® =E

where E is Young’s modulus for the material. For the volume integrations we need the
cross-sectional areas of the elements. We have

x 2
L 2. = + —— 2
Al 1 cm?; A (l ) 0) cm
When the loads are applied very slowly, a static analysis is required in which the stiffness

matrix K and load vector R must be calculated. The body forces and loads are given in Fig. E4.5.
We therefore have

- .
100 0
106 80 2
1 1 1 x 1 1 1]
= A= = + + 2V -={lo ——= —|d
“)EL 100[ 100 100 O] dx EL (1 40) so[ 80 80|
1
Y] | 80]
1 -1 0 0 0
or KzTgB -1 1 0 +%§ 0 -1
[ 0 0 0 0 -1 1
g 24 —24 0
== -24 154 -13 (a)
i [T S
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and also,
X
| - — 0
10 x]OO %0 - =1
(0] 5 foroc (s 2] Sl
0 Pt
80
1 150
= 3| 186 |50) (b)
68
0
Re = 0 |£i(n) ()
100

To obtain the solution at a specific time #*, the vectors Rp and R¢ must be evaluated correspond-
ing to t*, and the equation

KU ‘l’=l‘ = RBlt=t‘ + RC|:=1" (d)

yields the displacements at £*. We should note that in this static analysis the displacements at time
t* depend only on the magnitude of the loads at that time and are independent of the loading
history.

Considering now the dynamic analysis, we also need to calculate the mass matrix. Using
the displacement interpolations and (4.25), we have

- X
100 100 . .
M=(1)pf X [(l————-) _— 0] dx
. = 100/ 100
0 |
0
80 2 X x x
+ + =11 - = - =
pfo (l 40) T [0 (1 80) so]d"‘
i
| %0
200 100 0
Hence M=—’é 100 584 336
0 336 1024

Damping was not specified; thus, the equilibrium equations now to be solved are
MU() + KU() = Ry{r) + R1) (e

where the stiffness matrix K and load vectors Ry and R¢ have already been given in (a) to (c).
Using the initial conditions

Uleo=0; Ul=o=10 ()

these dynamic equilibrium equations must be integrated from time 0 to time #* in order to obtain
the solution at time ¢* (see Chapter 9).
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To actually solve for the response of the structure in Fig. E4.5(a), we need to impose
U, = 0 for all time r. Hence, the equations (d) and (¢) must be amended by this condition (see

Section 4.2.2). The solution of (d) and (e) then yields Us(t), Us(1), and the stresses are obtained
using

™ = CPBMUE;, m=1,2 ®

These stresses will be discontinuous between the elements because constant element strains are
assumed. Of course, in this example, since the exact solution to the mathematical model can be
computed, stresses more accurate than those given by (g) could be evaluated within each
element.

In static analysis, this increase in accuracy could simply be achieved, as in beam theory,
by adding a stress correction for the distributed element loading to the values given in (g).
However, such a stress correction is not straightforward in general dynamic analysis (and in any
two- and three-dimensional practical analysis), and if a large number of elements is used to
represent the structure, the stresses using (g) are sufficiently accurate (see Section 4.3.6).

EXAMPLE 4.6: Consider the analysis of the cantilever plate shown in Fig. E4.6. To illustrate
the analysis technique, use the coarse finite element idealization given in the figure (in a practical
analysis more finite elements must be employed (see Section 4.3). Establish the matrices H®,
B2, and C®,

The cantilever plate is acting in plane stress conditions, For an isotropic linear elastic

material the stress-strain matrix is defined using Young's modulus E and Poisson’s ratio v (see
Table 4.3),

1 v 0
E v 1 0
Cc? = ;
1l —-v 0 0 1 v

The displacement transformation matrix H® of element 2 relates the element internal
displacements to the nodal point displacements,

@
[“(x’ Y )] = H®U (a)
olx, y)
where U is a vector listing all nodal point displacements of the structure,
U=[U U U Uy ... Uy Uyl (b

(As mentioned previously, in this phase of analysis we are considering the structural model
without displacement boundary conditions.) In considering element 2, we recognize that only the
displacements at nodes 6, 3, 2, and 5 affect the displacements in the element. For computational
purposes it is convenient to use a convention to number the element nodal points and correspond-
ing element degrees of freedom as shown in Fig E4.6(c). In the same figure the global structure
degrees of freedom of the vector U in (b) are also given.

To derive the matrix H® in (a) we recognize that there are four nodal point displacements
each for expressing u(x, y) and v(x, y). Hence, we can assume that the local element displace-

ments « and v are given in the following form of polynomials in the local coordinate variables
xand y:

u(x,y) = ay + apx + azy + aaxy

©
o(x,y) = By + Box + Bsy + Baxy
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Figure E4.6 Finite element plane stress analysis

The unknown coefficients a, . . . , B4, which are also called the generalized coordinates, will
be expressed in terms of the unknown element nodal point displacements w, . . ., us and
Uy, . . ., Us. Defining

G =[w u s us i v, V2 V3 04 d)
we can write (¢) in matrix form:

[”("’ y)] = ®a ©
v(x, y)
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0
where D = [‘: ¢]; db={1 x y xy]
and (!T = [C![ oy Q3 0Oy § B] Bz Bg B4]
Equation () must hold for all nodal points of the element; therfore, using (d), we have
8= Aa )
in which A= {A' 0 ]
0 A
1 1 1 1
1 -1 1 ~1
and ATl o o
1 1 -1 -1

Solving from (f) for o and substituting into (e), we obtain
H = @A™ (g

where the fact that no superscript is used on H indicates that the displacement interpolation
matrix is defined corresponding to the element nodal point displacements in (d),

H= 1[(1 +tx0(l+y) A-00+y Q-00-y A+090-y
4 0 0 0 0 h)
0 0 0 0 ] (
AT+ +y) QA=-x00+y) A-00=-y 0+90-y)

The displacement functions in H could also have been established by inspection. Let H;;
be the (i, j)th element of H; then H}, corresponds to a function that varies linearly in x and y [as
required in (c)], is unity at x = 1,y = 1, and is zero at the other three element nodes. We discuss
the construction of the displacement functions in H based on these thoughts in Section 5.2.

With H given in (h) we have

Us U3 1753 U2 U U4
Ui Uz y Uy Usi U Usy Uy Us i Us Ui
H® [0 0 :’ Hs Hy ': Hyp, HmE 0 0 E Hi Hyg E
0 O ', Hz} H27 : sz HZG: 0 0 : H24 Hzg :
u;  v; <Element degrees of freedom @)
Ui Un Us Uy U,s<Assemblage degrees
V Hy Hys | O 0 ...zeros...O0 of freedom
:. Hy Hi E 0 0} ...zeros...()]

The strain-displacement matrix can now directly be obtained from (g). In plane stress
conditions the element strains are

ET = [Qt,\' e_»')‘ ‘)"\'.V]

Whel'e €xx & T €y = Yxy
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Using (g) and recognizing that the elements in A™' are independent of x and y, we obtain

B = EA™!
01 0y 00O00O0
where E=]0 00 000 1 x
001 x 010y
Hence, the strain-displacement matrix corresponding to the local element degrees of
freedom is
JA+y —0+y —1-y» A=y
B= 3 0 0 0 0
1+ x l-x -1-x —-1+x
0 0 0 0
I+x (-2 -(1-x -1+ 6)

+y -Q+y -0-y Q-y

The matrix B could also have been calculated directly by operating on the rows of the matrix H
in (h).
Let By be the (4, j)th element of B; then we now have

0 0 ! B3 By

! t Biz Bis ; 0 0} B By i By Bis i 0 0
B®=10 0 E By By E By, By E ¢ 0 E B By ; By Bss E 00 E
0 0 i By By | By B ! O O ! Bu By | By Bss | 0 0 |

0

...zeroes...0

0

where the element degrees of freedom and assemblage degrees of freedom are ordered as in (d)
and (b).

EXAMPLE 4.7: A linearly varying surface pressure distribution as shown in Fig, E4.7 is
applied to element (m) of an element assemblage. Evaluate the vector R§” for this element.
The first step in the calculation of R{™ is the evaluation of the matrix H™, This matrix

can be established using the same approach as in Example 4.6. For the surface displacements we
assume

¥ = o, + aax + aax?

vf = B+ Bax + B’ @

where (as in Example 4.6) the unknown coefficients ay, . . . , B3 are evaluated using the nodal
point displacements. We thus obtain
N
{“ (")] = B

v%(x)

:[ul Uz Uz E (R ) 03]
and

o = {%x(l +x) —ix(l1 -2 (1-~x?) 0 0 0 ]
B 0 0 0  ix(1+x —ix(1—-2x (1-x?)
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Thickness = 0.5 cm

Element m

(a) Element layout

Vim Uzg

h= Uzz

{b) Local-global degrees of freedom

Figure E4,7 Pressure loading on element (m)

The vector of surface loads is (with p; and p, positive)

£ = [ 1+ x)pt + 41 - x)pa‘]
=31+ D)pi — 31 - x)ps

To obtain R{” we first evaluate

+1
Rs = 0.5 j H £5 dx

-1
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-
pi
2(pt + p¥)

“‘p'f

..pg

| —2(p§ + p9)]

to obtain Rs

W | =

Thus, corresponding to the global degrees of freedom given in Fig. E4.7, we have

Uo Un Up Un Ui Uis
RPT=40 ... 01 pt —ps : 0 O 2(pt+ps —20pi+pp | 0

Uz Uy < Assemblage degrees of freedom

0: pt =-pii 0 ... 0]

The Assumption About Stress Equilibrium

We noted earlier that the analyses of truss and beam assemblages were originally not
considered to be finite element analysis because the “exact” element stiffness matrices can
be employed in the analyses. These stiffness matrices are obtained in the application of the
principle of virtual displacements if the assumed displacement interpolations are in fact the
exact displacements that the element undergoes when subjected to the unit nodal point
displacements. Here the word “exact” refers to the fact that by imposing these displacements
on the element, all pertinent differential equations of equilibrium and compatibility and the
constitutive requirements (and also the boundary conditions) are fully satisfied in static
analysis,

In considering the analysis of the truss assemblage in Example 4.5, we obtained the
exact stiffness matrix of element 1. However, for element 2 an approximate stiffness matrix
was calculated as shown in the next example.

EXAMPLE 4.8: Calculate for element 2 in Example 4.5 the exact element internal displace-
ments that correspond to a unit element end displacement u, and evaluate the corresponding
stiffness matrix. Also, show that using the element displacement assumption in Example 4.5,
internal element equilibrium is not satisfied.

Consider element 2 with a unit displacement imposed at its right end as shown in Fig. E4.8.
The element displacements are calculated by solving the differential equation (see Exam-

ple 3.22),
d{ du
E EI';(A E;) = () (a)

subject to the boundary conditions u|.=o = 0 and u|,~s = 1.0. Substituting for the area A and
integrating the relation in (a), we obtain

o (R
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x
}-4—-——~30 € Figure E4.8 Element 2 of bar analyzed
in Example 4.5

These are the exact element internal displacements. The element end forces required to subject
the bar to these displacements are

du
ki = —EA “—
12 EA x|,
©
kzz = FA iiﬁ
dx x=L
Substituting from (b) into (c) we have
3E 3E
ko = 30’ kip = — 30
Hence we have, using the symmetry of the element matrix and equilibrium to establish k;; and
ki,
3 1 -1
K= gaE[_‘l 1:\ (d)

The same result is of course obtained using the principle of virtual displacements with the
displacement (b).

We note that the stiffness coefficient in (d) is smaller than the corresponding value
obtained in Example 4.5 (3£/80 instead of 13£/240). The finite element solution in Example 4.5
overestimates the stiffness of the structure because the assumed displacements artificially con-
strain the motion of the material particles (see Section 4.3.4), To check that the internal equi-
librium is indeed not satisfied, we substitute the finite element solution (given by the displacement
assumption in Example 4.5) into (a) and obtain

d x\V 1
= 4+ =) —
de{(l 40) 80} #0

The solution of truss and beam structures, using the exact displacements correspond-
ing to unit nodal point displacements and rotations to evaluate the stiffness matrices, gives
analysis results that for the selected mathematical model satisfy all three requirements of
mechanics exactly: differential equilibrium for every point of the structure (including nodal
point equilibrium), compatibility, and the stress-strain relationships. Hence, the exact
(unique) solution for the selected mathematical model is obtained.

We may note that such an exact solution is usually pursued in static analysis, in which
the exact stiffness relationships are obtained as described in Example 4.8, but an exact
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solution is much more difficult to reach in dynamic analysis because in this case the
distributed mass and damping effects must be included (see, for example, R. W. Clough and
J. Penzien [A]).

However, although in a general (static or dynamic) finite element analysis, differential
equilibrium is not exactly satisfied at all points of the continuum considered, two important
properties are always satisfied by the finite element solution using a coarse or a fine mesh.
These properties are (see Fig. 4.2)

1. Nodal point equilibrium

2. Element equilibrium.

m-1 Element

\ m

Sum of forces F™ equilibrate ————————»
externally applied loads

H . . .
in equilibrium
ey o - e
\\ / ; ¢
) 1 7’ \
S !
m-1 i m 1
! H
\ 7
\ !
N [ —

-
o

Figure 4.2 Nodal point and element equilibrium in a finite element analysis
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Namely, consider that a finite element analysis has been performed and that we calculate
for each finite element m the element nodal point force vectors

Fm = fv‘ )B(m)r.,(m) dve (4.29)

where 7™ = C™e™, Then we observe that according to property 1,

At any node, the sum of the element nodal point forces is in equilibrium with the
externally applied nodal loads (which include all effects due to body forces, surface
tractions, initial stresses, concentrated loads, inertia and damping forces, and reac-
tions).

And according to property 2,

Each element m is in equilibrium under its forces F™,

Property 1 follows simply because (4.27) expresses the nodal point equilibrium
and we have
2 F™ = KU (4.30)
The element equilibrium stated in property 2 is satisfied provided the finite element
displacement interpolations in H™ satisfy the basic convergence requirements, which in-
clude the condition that the element must be able to represent the rigid body motions (see
Section 4.3). Namely, let us consider element m subjected to the nodal point forces F*™ and
impose virtual nodal point displacements corresponding to the rigid body motions. Then for
each virtual element rigid body motion with nodal point displacements @, we have

i7F" = (B™a) 5™ dym = j € gl gyim = ()
vim) yim)
because here € ™ = 0. Using all applicable rigid body motions we therefore find that the
forces F™ are in equilibrium.
Hence, a finite element analysis can be interpreted as a process in which

1. The structure or continuum is idealized as an assemblage of discrete elements con-

nected at nodes pertaining to the elements.

The externally applied forces (body forces, surface tractions, initial stresses, concen-

trated loads, inertia and damping forces, and reactions) are lumped to these nodes

using the virtual work principle to obtain equivalent externally applied nodal point

forces.

3. The equivalent externally applied nodal point forces (calculated in 2) are equilibrated
by the element nodal point forces that are equivalent (in the virtual work sense) to the
element internal stresses; i.e., we have

2 F™ =R

2

4. Compatibility and the stress-strain material relationship are satisfied exactly, but
instead of equilibrium on the differential level, only global equilibrium for the com-
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plete structure, at the nodes, and of each element m under its nodal point forces F®™
is satisfied.

Consider the following example.

EXAMPLE 4.9: The finite element solution to the problem in Fig. E4.6, with P = 100, E =
2.7 X 105 v = 0.30, t = 0.1, is given in Fig. E4.9. Clearly, the stresses are not continuous
between elements, and equilibrium on the differential level is not satisfied. However,

1. Show that T, F* = R and calculate the reactions.
2. Show that the element forces F for element 4 are in equilibrium.

The fact that =, F® = R follows from the solution of (4.17), and R consists of the sum
of all nodal point forces. Hence, this relation can also be used to evaluate the reactions.
Referring to the nodal point numbering in Fig. E4.6(b), we find

for node 1:
reactions R, = 100.15
R, = 41.36
for node 2:
reactions R, = 2.58 — 2.88 = —0.30
R, = 16.79 + 5.96 = 22.74 (because of rounding)
for node 3:
reactions R, = —99.85
R, = 35.90
for node 4:
horizontal force equilibrium: —42.01 + 42.01 = 0
vertical force equilibrium: ~22.90 + 2290 = 0
for node §:
horizonta) force equilibrium: —60.72 ~ 12.04 + 44.73 + 28.03 = 0
vertical force equilibrium: —35.24 — 35.04 + 19.10 + 51.18 = 0
for node 6:

horizontal force equilibrium: 57.99 — 57.99 = 0
vertical force equilibrium: —6.81 + 6.81 = 0

And for nodes 7, 8, and 9, force equilibrium is obviously also satisfied, where at node 9 the
element nodal force balances the applied load P = 100.

Finally, let us check the overall force equilibrium of the model:
horizontal equilibrium:

100.15 — 030 — 99.85 = 0

vertical equilibrium:

41.36 + 22.74 + 3590 — 100 = 0
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Figure E4.9 Solution results for problem considered in Example 4.6 (rounded to digits shown)
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{d) Exploded view of elements showing element nodal point forces equivalent (in the
virtual work sense) to the element stresses. The nodal point forces are at each
node in equilibrium with the applied forces {including the reactions)

Figure E4.9 (continued)
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moment equilibrium (about node 2):
—100 X 4 + 10015 X 2 + 9985 X2 =0

It is important to realize that this force equilibrium will hold for any finite element mesh, however

coarse the mesh may be, provided properly formulated elements are used (see Section 4.3).
Now consider element 4:

horizontal equilibrium:
0 — 57.99 + 28.03 + 29.97 = 0 (because of rounding)
vertical equilibrium:
—100 + 6.81 + 51.18 + 4201 = 0
moment equilibrium (about its local node 3):
~100 X 2 + 5799 X2 +4201 X2=0

Hence the element nodal forces are in equilibrium.

Element Local and Structure Global Degrees of Freedom

The derivations of the element matrices in Example 4.6 and 4.7 show that it is expedient to
first establish the matrices corresponding to the local element degrees of freedom. The
construction of the finite element matrices, which correspond to the global assemblage
degrees of freedom [used in (4.19) to (4.25)] can then be directly achieved by identifying
the global degrees of freedom that correspond to the local element degrees of freedom.
However, considering the matrices H™, B™, K™, and so on, corresponding to the global
assemblage degrees of freedom, only those rows and columns that correspond to element
degrees of freedom have nonzero entries, and the main objective in defining these specific
matrices was to be able to express the assemblage process of the element matrices in a
theoretically elegant manner. In the practical implementation of the finite element method,
this elegance is also present, but all element matrices are calculated corresponding only to
the element degrees of freedom and are then directly assembled using the correspondence
between the local element and global assemblage degrees of freedom. Thus, with only the
element local nodal point degrees of freedom listed in ii, we now write (as in Example 4.6)

u = Hi (4.31)

where the entries in the vector u are the element displacements measured in any convenient
local coordinate system. We then also have

€ = Bii (4.32)

Considering the relations in (4.31) and (4.32), the fact that no superscript is used on
the interpolation matrices indicates that the matrices are defined with respect to the local
element degrees of freedom. Using the relations for the element stiffness matrix, mass
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matrix, and load vector calculations as before, we obtain

K= Iy B’CB dV (4.33)
M= fv PHTH dV (4.34)
R; = fv Hf? dV (4.35)
Rg = L Ht5 4§ (4.36)
R = jv B'+' dV (4.37)

where all variables are defined as in (4.19) to (4.25), but corresponding to the local element
degrees of freedom. In the derivations and discussions to follow, we shall refer extensively
to the relations in (4.33) to (4.37). Once the matrices given in (4.33) to (4.37) have been
calculated, they can be assembled directly using the procedures described in Example 4.11
and Chapter 12.

In this assemblage process it is assumed that the directions of the element nodal point
displacements @ in (4.31) are the same as the directions of the global nodal point displace-
ments U. However, in some analyses it is convenient to start the derivation with element

nodal point degrees of freedom 1 that are not aligned with the global assemblage degrees
of freedom. In this case we have

u = Hii (4.38)
and

i = Ta (4.39)
where the matrix T transforms the degrees of freedom 4 to the degrees of freedom 0 and
(4.39) corresponds to a first-order tensor transformation (see Section 2.4); the entries in
column j of the matrix T are the direction cosines of a unit vector corresponding to the jth

degree of freedom in { when measured in the directions of the @ degrees of freedom.
Substituting (4.39) into (4.38), we obtain

H = HT (4.40)
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Thus, identifying all finite element matrices corresponding to the degrees of freedom @ with
a curl placed over them, we obtain from (4.40) and (4.33) to (4.37),

K=TKT, M =TMT

R = Trﬁsi Rs = Trﬁsi

We note that such transformations are also used when boundary displacements must

be imposed that do not correspond to the global assemblage degrees of freedom (see

Section 4.2.2). Table 4.1 summarizes some of the notation that we have employed.
We demonstrate the presented concepts in the following examples.

i (4.41)
R; = T'R,

TABLE 4.1 Summary of some notation used

(8 u™ = H™ U or u = H™ U
where u™ = displacements within element m as a function of the element coordinates
U = nodal point displacements of the total element assemblage [from equation (4.17)
onward we simply use U].

u = Hia
where u = u* and it is implied that a specific element is considered

@ = nodal point displacements of the element under consideration; the entries of @ are

those displacements in U that belong to the element.

(b)

u = Hi
where @ = nodal point displacements of an element in a coordinate system other than the
global system (in which U is defined).

(c)

EXAMPLE 4.10: Establish the matrix H for the truss element shown in Fig. E4.10. The
directions of local and global degrees of freedom are shown in the figure.
Here we have
1T
+ x) 0 .

Ml_(%—x) 0 (%

(a)

2

o) =1 RO E

i cos a sina 0 0 |
and 0 —-sina cos a 0 0 )
773 0 0 cos a sin a || u:
02 0 0 —sina cosa|| va]
Thus, we have
(E _ x) 0 (£ + x) o cc?s a sina 0 0
H = 1{\2 2 —-sin @ Cos a 0 0
L 0 L 0 L + ) 0 0 cos a Sina
2 * 2 * 0 0 ~sin @ C€Oos o

It should be noted that for the construction of the strain-displacement matrix B (in linear
analysis), only the first row of H is required because only the normal strain €, = du/dx is
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} Figure E4.10 Truss element

considered in the derivation of the stiffness matrix. In practice, it is effective to use only the first
row of the matrix H in (a) and then transform the matrix K as given in (4.41).

EXAMPLE 4.11: Assume that the element stiffness matrices corresponding to the element
displacements shown in Fig. E4.11 have been calculated and denote the elements as shown @,
®), ©, and (©). Assemble these element matrices directly into the global structure stiffness
matrix with the displacement boundary conditions shown in Fig. E4.11(a). Also, give the con-
nectivity arrays LM for the elements.

In this analysis all element stiffness matrices have already been established corresponding
to the degrees of freedom aligned with the global directions. Therefore, no transformation as
given in (4.41) is required, and we can directly assemble the complete stiffness matrix.

Since the displacements at the supports are zero, we need only assemble the structure
stiffness matrix corresponding to the unknown displacement components in U. The connectivity
array (LM array) for each element lists the global structure degrees of freedom in the order of
the element local degrees of freedom, with a zero signifying that the corresponding column and
row of the efement stiffness matrix are not assembled (the column and row correspond to a zero
structure degree of freedom) (see also Chapter 12).

U, U U, U, Us<—— Global displacements
i v W D2 u3 vy uy vs——Local displacements
[ay  an s ai apn awl] W U
ax an T ax ary ax| v; Us
Uz
. . 02
Ke=1. .
U
61 Qde2 o aee de1  Qss vy U
an  an s ar ar am| s U
| @31 as2 ags Gy aw} vs Us
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Figure E4.11 A simple element assemblage
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and the equation K = Z_ K™ gives

U U, Uy Us Us Us U, Uy

[aso as) as2 as [ Zeros 1U,
A an t e an t cu an a cn cxn U,
Qx Gu t Ci3 an t Ca an axz Cay Ca2 Us
dzs  an an an + by an + bu by by Us
K =|as as as: agr + bas ass + b ba baa Us
Ci3 Cus bis bia by +cy bt de Us

+ du + dys
€23 Cu bas by bu +cun bntcn ds Us

+ dsa + dss
i symmetric about diagonal ldm des des 1 Us

The LM arrays for the elements are

for element A: IM=[2 3 0 0 0 1 4 5]
for element B: IM=[6 7 4 5]

for element C: IM=[6 7 2 3]

for element D: IM=[0 0 0 6 7 8]

We note that if the element stiffness matrices and LM arrays are known, the total structure
stiffness matrix can be obtained directly in an automated manner (see also Chapter 12).

4.2.2 Impaosition of Displacement Boundary Conditions

We discussed in Section 3.3.2 that in the analysis of a continuum we have displacement (also
called essential) boundary conditions and force (also called natural) boundary conditions.
Using the displacement-based finite element method, the force boundary conditions are
taken into account in evaluating the externally applied nodal point force vector. The vector
Rc assembles the concentrated loads including the reactions, and the vector R contains the
effect of the distributed surface loads and distributed reactions.

Assume that the equilibrium equations of a finite element system without the imposi-
tion of the displacement boundary conditions as derived in Section 4.2.1 are, neglecting

damping,
Mua Mah tju Kaa Kab Ua Rﬂ
o+ = 442
[Mw Mbb][ub] [Kb,, K,,J[Ub] [RJ “42)
where the U, are the unknown displacements and the U, are the known, or prescribed,
displacements. Solving for U,, we obtain
M. U, + KU, = R, = KUy, — MaUs, (4.43)

Hence, in this solution for U,, only the stiffness and mass matrices of the complete assem-
blage corresponding to the unknown degrees of freedom U, need to be assembled (see
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Example 4.11), but the load vector R, must be modified to include the effect of imposed
nonzero displacements. Once the displacements U, have been evaluated from (4.43), the
reactions can be calculated by first writing [(using (4.18)]

R, = R} + Rt — R} + R: + R, (4.44)

where R%, R%, R}, and R% are the known externally applied nodal point loads not including
the reactions and R, denotes the unknown reactions. The superscript b indicates that of R,
Rs, Ry, and Re in (4.17) only the components corresponding to the U, degrees of freedom
are used in the force vectors. Note that the vector R, may be thought of as an unknown

correction to the concentrated loads. Using (4.44) and the second set of equations in (4.42),
we thus obtain

R, = M,,U, + MwU, + KU, + KuU, — RS ~ R% + R} — R% (4.45)

Here, the last four terms are a correction due to known internal and surface element loading
and any concentrated loading, all directly applied to the supports.
We demonstrate these relations in the following example.

EXAMPLE 4.12: Consider the structure shown in Fig. E4.12. Solve for the displacement
response and calculate the reactions.

P p {force/length) y
7
{ R TR | 2
/
. z
El ‘ A g
L N 261 7
b L o
. . >
El=10"
L =100
p =0.01
P =10

(a) Cantilever beam

U, 'Us Us
* U2 Lo U4 Le Us

I klement 1 T Element 2 T

(b) Discretization

Figure E4.12  Analysis of cantilever beam



Sec. 4.2 Formulation of the Displacement-Based Finite Element Method 189

We consider the cantilever beam as an assemblage of two beam elements. The governing
equations of equilibrium (4.42) are (using the matrices in Example 4.1)

(12 6 12 6 1 - .
= 2= 2 y
X L L' L v
6 6
2 -2 U 0
I 4 I 2 3
_l2o 6 36 6 24 1241, _pL
el > L L* L L' L } _ 2
L] 6 6 12 pL?
E 3 12 2 4 Us 2
24 12 24 12 pL
oo | T2t R
12 12 pL?
—— [ .....,..+ r
) 8— [U"_ | 2 Rl”"_

Here U] = [Us Us) and U, = 0. Using (4.43), we obtain, for the case of E/ = 107, L = 100,
p=001,P =10,
UT = [—165 1.33 —47.9 0.83] X 10~

and then using (4.45), we have
2
R, = Lzso]

In using (4.42) we assume that the displacement components employed in Sec-
tion 4.2.1 actually contain all prescribed displacements [denoted as U, in (4.42)]. If this is
not the case, we need to identify all prescribed displacements that do not correspond to
defined assemblage degrees of freedom and transform the finite element equilibrium equa-
tions to correspond to the prescribed displacements. Thus, we write

U=1U 4.46)

where U is the vector of nodal point degrees of freedom in the required directions. The
transformation matrix T is an identity matrix that has been altered by the direction cosines
of the components in U measured in the original displacement directions [see (2.58)). Using
(4.46) in (4.42), we obtain

MU + RU = R (4.47)
where M = T™MT; K = TKT; R=TR (4.48)

We should note that the matrix multiplications in (4.48) involve changes only in those
columns and rows of M, K, and R that are actually affected and that this transformation
is equivalent to the calculations performed in (4.41) on a single element matrix. In practice,
the transformation is carried out effectively on the element level just prior to adding the
element matrices to the matrices of the total assemblage. Figure 4.3 gives the transforma-
tion matrices T for a typical nodal point in two- and three-dimensional analysis when
displacements are constrained in skew directions. The unknown displacements can now be
calculated from (4.47) using the procedure in (4.42) and (4.43).
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AV
4 ? § Transformed
Y - I degrees
Global of freedom
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cos{Z X) cos(Z Y} cos(Z 2

Figure 4.3 Transformation to skew boundary conditions

In an alternative approach, the required displacements can also be imposed by adding
to the finite element equilibrium equations (4.47) the constraint equations that express the
prescribed displacement conditions. Assume that the displacement is to be specified at
degree of freedom i, say U; = b; then the constraint equation

kU, = kb (4.49)

is added to the equilibrium equations (4.47), where k > k. Therefore, the solution of the
modified equilibrium equations must now give U; = b, and we note that because (4.47) was
used, only the diagonal element in the stiffness matrix was affected, resulting in a numeri-
cally stable solution (see Section 8.2.6). Physically, this procedure can be interpreted as
adding at the degree of freedom i a spring of large stiffness k and specifying a load which,
because of the relatively flexible element assemblage, produces at this degree of freedom the
required displacement b (see Fig. 4.4). Mathematically, the procedure corresponds to an
application of the penalty method discussed in Section 3.4,

In addition to specified nodal point displacement conditions, some nodal point dis-
placements may also be subjected to constraint conditions. Considering (4.24), a typical
constraint equation would be

U =2 a,U, (4.50)
j=1
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Y

A

A

element

Spring —

Y

Figure 4.4 Skew boundary condition
imposed using spring element

where the U, is a dependent nodal point displacement and the U,; are r; independent nodal
point displacements. Using all constraint equations of the form (4.50) and recognizing that
these constraints must hold in the application of the principle of virtual work for the actual
nodal point displacements as well as for the virtual displacements, the imposition of the
constraints corresponds to a transformation of the form (4.46) and (4.47), in which T is now
a rectangular matrix and U contains all independent degrees of freedom. This transforma-
tion corresponds to adding a,, times the ith columns and rows to the ¢;th columns and rows,
forj = 1,...,r;and all i considered. In the actual implementation the transformation is
performed effectively on the element level during the assemblage process.

Finally, it should be noted that combinations of the above displacement boundary
conditions are possible, where, for example, in (4.50) an independent displacement compo-
nent may correspond to a skew boundary condition with a specified displacement. We
demonstrate the imposition of displacement constraints in the following examples.

Ki= EAi
L

1
-1

Displacement conditions: uz = 2u,
ug=3s

-1
;

Figure E4.13 Truss assemblage

EXAMPLE 4.13: Consider the truss assemblage shown in Fig. E4.13. Establish the stiffness
matrix of the structure that contains the constraint conditions given.

The independent degrees of freedom in this analysis are Uy, Us, and Us. The element
stiffness matrices are given in Fig. E4.13, and we recognize that corresponding to (4.50), we

EA, EA; EA;
uy u3 /] i
1 4 1 A
pe— Ly} L, - L
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have i = 3, @, = 2, and ¢, = 1. Establishing the complete stiffness matrix directly during the
assemblage process, we have

0T R T T 7
L, L, Ly L,
K = ,.gél E_é_:_ +| _2EA Efl 0
L, L, L, L,
0 0 0 0 0 0
iEﬁ 0 _2EA4
Ly Ly 000
+ 0 0 0 [+]10 0 0
2 o Ba | [0 ok
L, L,
where k>EA3

3

EXAMPLE 4.14: 'The frame structure shown in Fig.

E4.14(a) is to be analyzed. Use symmetry
and constraint conditions to establish a suitable model for analysis.

P

Vs
A
Fixed shaft 6, f

-
v U
4

2

A
-3 Us

5

w“f\
o
b N
A
W Ptf— )

e P

(a) Frame structure {b) One-quarter of structure

Figure E4.14 Analysis of a cyclicly symmetric structure

The complete structure and applied loading display cyclic symmetry, so that only one-
quarter of the structure need be considered, as shown in Fig. E4.14(b), with the following
constraint conditions:

Us = U4
Vs = —Uy

05"—' 34
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This is a simple example demonstrating how the analysis effort can be reduced considerably
through the use of symmetry conditions. In practice, the saving through the use of cyclic
symmetry conditions can in some cases be considerable, and indeed only by use of such condi-
tions may the analysis be possible.

In this analysis, the structure and loading show cyclic symmetry. An analysis capability can
also be developed in which only a part of the structure is modeled for the case of a geometrically
cyclic symmetric structure with arbitrary loading (see, for example, W. Zhong and C. Qiu [A]).

4.2.3 Generalized Coordinate Models for Specific Problems

In Section 4.2.1 the finite element discretization procedure and derivation of the equi-
librium equations was presented in general; i.e., a general three-dimensional body was
considered. As shown in the examples, the general equations derived must be specialized
in specific analyses to the specific stress and strain conditions considered. The objective in
this section is to discuss and summarize how the finite element matrices that correspond to
specific problems can be obtained from the general finite element equations (4.8) to (4.25).

Although in theory any body may be understood to be three-dimensional, for practical
analysis it is in many cases imperative to reduce the dimensionality of the problem. The first
step in a finite element analysis is therefore to decide what kind of problem® is at hand. This
decision is based on the assumptions used in the theory of elasticity mathematical models
for specific problems. The classes of problems that are encountered may be summarized as
(1) truss, (2) beam, (3) plane stress, (4) plane strain, (5) axisymmetric, (6) plate bending,
(7) thin shell, (8) thick shell, and (9) general three-dimensional. For each of these problem
cases, the general formulation is applicable; however, only the appropriate displacement,
stress, and strain variables must be used. These variables are summarized in Tables 4.2 and
4.3 together with the stress-strain matrices to be employed when considering an isotropic

material. Figure 4.5 shows various stress and strain conditions considered in the formula-
tion of finite element matrices.

TABLE 4.2 Corresponding kinematic and static variables in various problems

Displacement

Problem components Strain vector €7 Stress vector 77
Bar . U [Exx] [TIX]
Beam w [Kxe) M..]
Plane stress u, v [ €y ¥ay) [7ex Ty Tan)
Plane st.rain u, v [e-" €y ‘ny] [Txx Tyy T;(y]
Axisymmetric U, v [ &y Yy €] [Tex Tyy Tay Tl
Th'ree_dimenSional o, w [EH e.V)' (373 Yxy Vyz yu] [Txx Tyy Tez Txy 7yz Tu]
Plate bending w [Ksx Kyy Kny) M. M, M,,]
Notation: €. = du v _du B _ Pw _ w o P

oration: € = e €y = “5;: Yay = -B—y FPURREE Kax = Pl Kyy = 'é;} Key = 2’5}'73;-

In Examples 4.5 to 4.10 we already developed some specific finite element matrices.
Referring to Example 4.6, in which we considered a plane stress condition, we used for the
u and v displacements simple linear polynomial assumptions, where we identified the

# We use here the parlance commonly used in engineering analysis but recognize that “choice of problem”
really corresponds to *choice of mathematical model” (see Section 1.2).



TABLE 4.3 Generalized stress-strain matrices for isotropic materials and the problems in Table 4.2

Problem Material matrix C
Bar E
Beam El
1 v 0
E
Plane stress v 0
1 - p?
1-v
00
2
_ v -
1 0
1 -»
E(1 —
Plane strain ( L d 1 0
A+t -2»| 1-»
1-2v
0
L 2(1 = v) |
- v v
1 0 1
1-v 1 —v
v v
1 : 0 1
. s -V
Axisymmetric _El-v L=
1+na-) , 0 =
2(1 ~ »)
v v
i
,[ -—v 1—-v i
[ v 7
! ]
l-v 1—-vw
v v
1
1-v 1-v
v v :
. . E(l — ) 1~v 11—
Three-dimensional e
1+l -2 1 -2
2(1 — v)
1~ 2v
Elements not 2(1 - v)
shown are zeros 1 -2
2(1 ~ »)

Plate bending m .
0

Notation: E = Young's modulus, v = Poisson’s ratio, # = thickness of plate, / = moment of inertia

194
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unknown coefficients in the polynomials as generalized coordinates. The number of un-
known coefficients in the polynomials was equal to the number of element nodal point
displacements. Expressing the generalized coordinates in terms of the element nedal point
displacements, we found that, in general, each polynomial coefficient is not an actual
physical displacement but is equal to a linear combination of the element nodal point
displacements.

Finite element matrices that are formulated by assuming that the displacements vary
in the form of a function whose unknown coefficients are treated as generalized coordinates
are referred to as generalized coordinate finite element models. A rather natural class of
functions to use for approximating element displacements are polynomials because they are
commonly employed to approximate unknown functions, and the higher the degree of the
polynomial, the better the approximation that we can expect. In addition, polynomials are
easy to differentiate; i.e., if the polynomials approximate the displacements of the structure,
we can evaluate the strains with relative ease.

Using polynomial displacement assumptions, a very large number of finite elements
for practically all problems in structural mechanics have been developed.

The objective in this section is to describe the formulation of a variety of generalized
coordinate finite element models that use polynomials to approximate the displacement
fields. Other functions could in principle be used in the same way, and their use can be
effective in specific applications (see Example 4.20). In the presentation, emphasis is given
to the general formulation rather than to numerically effective finite elements. Therefore,
this section serves primarily to enhance our general understanding of the finite element
method. More effective finite elements for general application are the isoparametric and
related elements described in Chapter 5.

In the following derivations the displacements of the finite elements are always de-
scribed in the local coordinate systems shown in Fig. 4.5. Also, since we consider one
specific element, we shall leave out the superscript (m) used in Section 4.2.1 [see (4.31)].

For one-dimensional bar elements (truss elements) we have

u(x) = o + aox + asx?+ - (4.51)

where x varies over the length of the element, u is the local element displacement, and a;,
ay, . . ., are the generalized coordinates. The displacement expansion in (4.51) can also be
used for the transverse and longitudinal displacements of a beam.

For two-dimensional elements (i.e., plane stress, plane strain, and axisymmetric

elements), we have for the u and v displacements as a function of the element x and y
coordinates,

JY) = o+ + + + asx? + -
ulx, ) = ay + apx + asy + auxy + asx 4.52)
o(x,y) = Bi + Box + Bay + Baxy + Bsx? + - -+

where a;, a2, . .., and By, B, . . ., are the generalized coordinates.

In the case of a plate bending element, the transverse deflection w is assumed as a
function of the element coordinates x and y; i.e.,

wx,y) =y + mx + yy + yxy + ysx? + - - - (4.53)

where 1, 12, . . ., are the generalized coordinates.
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{c) Plane strain condition: long dam subjected to water pressure

Figure 4.5 Various stress and strain conditions with illustrative examples

Finally, for elements in which the u, v, and w displacements are measured as a
function of the element x, y, and z coordinates, we have, in general,
ulx,,2) = oy + aax + asy + oz + asxy + - - -

o(x, 7, 2) = B+ Bax + Bay + Baz + Bsxy + - - - (4.54)
wx, y,2) =y + yx + ny + vz + yxy + -

where ay, 0z, . .., Bi, B2, .. ., and vy, s, . . . are now the generalized coordinates.
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As in the discussion of the plane stress element in Example 4.6, the relations (4.51)
to (4.54) can be written in matrix form,

u = Pa 4.55)

where the vector n corresponds to the displacements used in (4.51) to (4.54), the elements
of @ are the corresponding polynomial terms, and « is a vector of the generalized coordi-
nates arranged in the appropriate order.

To evaluate the generalized coordinates in terms of the element nodal point displace-
ments, we need to have as many nodal point displacements as assumed generalized coordi-
nates. Then, evaluating (4.55) specifically for the nodal point displacements @ of the
element, we obtain

i = Aa {4.56)
Assuming that the inverse of A exists, we have

a=A" (4.57)

The element strains to be considered depend on the specific problem to be solved.

Denoting by € a generalized strain vector, whose components are given for specific prob-
lems in Table 4.2, we have

€ = Ex (4.58)

where the matrix E is established using the displacement assumptions in (4.55). A vector
of generalized stresses T is obtained using the relation

7= Ceg (4.59)

where C is a generalized elasticity matrix. The quantities T and C are defined for some
problems in Tables 4.2 and 4.3. We may note that except in bending problems, the general-
ized T, €, and C matrices are those that are used in the theory of elasticity. The word
“generalized” is employed merely to include curvatures and moments as strains and
stresses, respectively. The advantage of using curvatures and moments in bending analysis
is that in the stiffness evaluation an integration over the thickness of the corresponding
element is not required because this stress and strain variation has already been taken into
account (see Example 4.15).

Referring to Table 4.3, it should be noted that all stress-strain matrices can be derived
from the general three-dimensional stress-strain relationship. The plane strain and axisym-
metric stress-strain matrices are obtained simply by deleting in the three-dimensional
stress-strain matrix the rows and columns that correspond to the zero strain components.
The stress-strain matrix for plane stress analysis is then obtained from the axisymmetric
stress-strain matrix by using the condition that 7, is zero (see the program QUADS in
Section 5.6). To calculate the generalized stress-strain matrix for plate bending analysis, the

stress-strain matrix corresponding to plane stress conditions is used, as shown in the
following example.

EXAMPLE 4.15: Derive the stress-strain matrix C used for plate bending analysis (see
Table 4.3).

The strains at a distance z measured upward from the midsurface of the plate are

L ¥w @w 20w
Yot Tt ay? Sox ay
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In plate bending analysis it is assumed that each layer of the plate acts in plane stress condition
and positive curvatures correspond to positive moments (see Section 5.4.2). Hence, integrating
the normal stresses in the plate to obtain moments per unit length, the generalized stress-strain
matrix is
1 » 0
+h/2
E 1 0
C=f zzl-—v2 ’ 1 —» d
—h/2 00
1 v 0
ER’ v 1 0
r C=rmm—s
¢ 12(1 - ) - v
00 )

Considering (4.55) to (4.59), we recognize that, in general terms, ail relationships for
evaluation of the finite element matrices corresponding to the local finite element nodal
point displacements have been defined, and using the notation of Section 4.2.1, we have

H= QA" (4.60)
B =EA™ 4.61)

Let us now consider briefly various types of finite elements encountered, which are
subject to certain static or kinematic assumptions.

Truss and beam elements. Truss and beam elements are very widely used in
structural engineering to model, for example, building frames and bridges [see Fig. 4.5(a)
for an assemblage of truss elements].

As discussed in Section 4.2.1, the stiffness matrices of these elements can in many
cases be calculated by solving the differential equations of equilibrium (see Example 4.8),
and much literature has been published on such derivations. The results of these derivations
have been employed in the displacement method of analysis and the corresponding approx-
imate solution techniques, such as the method of moment distribution. However, it can be
effective to evaluate the stiffness matrices using the finite element formulation, i.e., the

virtual work principle, particularly when considering complex beam geometries and. geo-
metric nonlinear analysis (see Section 5.4.1).

Plane stress and plane strain elements. Plane stress elements are employed to
model membranes, the in-plane action of beams and plates as shown in Fig. 4.5(b), and so
on. In each of these cases a two-dimensional stress situation exists in an xy plane with the
stresses 7., Ty, and 7., equal to zero. Plane strain elements are used to represent a slice (of
unit thickness) of a structure in which the strain components €, y,., and %, are zero. This
situation arises in the analysis of a long dam as illustrated in Fig. 4.5(c).

Axisymmetric elements. Axisymmetric elements are used to model structural
components that are rotationally symmetric about an axis. Examples of application are
pressure vessels and solid rings. If these structures are also subjected to axisymmetric loads,

a two-dimensional analysis of a unit radian of the structure yields the complete stress and
strain distributions as illustrated in Fig. 4.5(d).
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On the other hand, if the axisymmetric structure is loaded nonaxisymmetrically, the
choice lies between a fully three-dimensional analysis, in which substructuring (see Sec-
tion 8.2.4) or cyclic symmetry (see Example 4.14) is used, and a Fourier decomposition of
the loads for a superposition of harmonic solutions (see Example 4.20).

Plate bending and shell elements. The basic proposition in plate bending and
shell analyses is that the structure is thin in one dimension, and therefore the following
assumptions can be made [see Fig. 4.5(¢)]:

1. The stress through the thickness (i.e., perpendicular to the midsurface) of the
plate/shell is zero.

2. Material particles that are originally on a straight line perpendicular to the midsurface
of the plate/shell remain on a straight line during deformations. In the Kirchhoff
theory, shear deformations are neglected and the straight line remains perpendicular
to the midsurface during deformations. In the Reissner/Mindlin theory, shear deforma-
tions are included, and therefore the line originally normal to the midsurface in

general does not remain perpendicular to the midsurface during the deformations (see
Section 5.4.2).

The first finite elements developed to model thin plates in bending and shells were
based on the Kirchhoff plate theory (see R. H. Gallagher [A}). The difficulties in these
approaches are that the elements must satisfy the convergence requirements and be rela-
tively effective in their applications. Much research effort was spent on the development of
such elements; however, it was recognized that more effective elements can frequently be
formulated using the Reissner/Mindlin plate theory (see Section 5.4.2).

To obtain a shell element a simple approach is to superimpose a plate bending stiffness
and a plane stress membrane stiffness. In this way flat shell elements are obtained that can
be used to model flat components of shells (e.g., folded plates) and that can also be
employed to model general curved shells as an assemblage of flat elements. We demonstrate
the development of a plate bending element based on the Kirchhoff plate theory and the
construction of an associated flat shell element in Examples 4.18 and 4.19.

EXAMPLE 4.16: Discuss the derivation of the displacement and strain-displacement interpo-
lation matrices of the beam shown in Fig. E4.16.

The exact stiffness matrix (within beam theory) of this beam could be evaluated by solving
the beam differential equations of equilibrium, which are for the bending behavior

da? d*w bh?
c—i-f-z(EI F) = 0 El = ETz- (a)
and for the axial behavior
d du
—(EAZ) =0, A= b
df( A df) 0 bh ®

where E is Young’s modulus. The procedure is to impose a unit end displacement, with all other
end displacements equal to zero, and solve the appropriate differential equation of equilibrium
of the beam subject to these boundary conditions. Once the element internal displacements for
these boundary conditions have been calculated, appropriate derivatives give the element end




Sec. 4.2 Formulation of the Displacement-Based Finite Element Method 201

7»4
o
ol
Section A-A
n| .
] “1-—\/_— y hy
z i oV :m :5 B - 6 v
N\
X A
L =

Figure E4.16 Beam element with varying section

forces that together constitute the column of the stiffness matrix corresponding to the imposed
end displacement. It should be noted that this stiffness matrix is only “exact” for static analysis
because in dynamic analysis the stiffness coefficients are frequency-dependent.

Alternatively, the formulation given in (4.8) to (4.17) can be used. The same stiffness
matrix as would be evaluated by the above procedure is obtained if the exact element internal
displacements [that satisfy (a) and (b)] are employed to construct the strain-displacement matrix.
However, in practice it is frequently expedient to use the displacement interpolations that corre-
spond to a uniform cross-section beam, and this yields an approximate stiffness matrix. The
approximation is generally adequate when A, is not very much larger than h; (hence when a
sufficiently large number of beam elements is employed to model the complete structure). The
errors encountered in the analysis are those discussed in Section 4.3, because this formulation
corresponds to displacement-based finite element analysis.

Using the variables defined in Fig. E4.16 and the “exact” displacements (Hermitian func-
tions) corresponding to a prismatic beam, we have

u= (1 - {—)u. + 61—’7(5 - g—)w, - n(l - 4% + 3{;)9,

6 2 2
B B 1o

s8] o
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For (c) we ordered the nodal point displacements as follows
07 = [uywi6) uawa 6]

Considering only normal strains and stresses in the beam, i.e., neglecting shearing defor-
mations, we have as the only strain and stress components

du
€ = f—i? Te = Eeg
and hence

_ _.Liénz_zé)%m(:i Qf)iliaéﬂ(l...zé)i (-4
B [L{L(L ) MT )it )"\ (d)

The relations in (c) and (d) can be used directly to evaluate the element matrices defined in (4.33)
to (4.37); e.g.,

L ph/2
K=Ebf f B'B dn d¢
0 -hf2
where h=h + (hy — hl)‘E

This formulation can be directly extended to develop the element matrices corresponding

to the three-dimensional action of the beam element and to include shear deformations (see
K. 1. Bathe and S. Bolourchi [A]).

EXAMPLE 4.17: Discuss the derivation of the stiffness, mass, and load matrices of the axisym-
metric three-node finite element in Fig. E4.17.

This element was one of the first finite elements developed. For most practical applications,
much more effective finite elements are presently available (see Chapter 5), but the element is

conveniently used for instructional purposes because the equations to be dealt with are relatively
simple.

The displacement assumption used is
u(x, y) = ay + apx + azy

v(x, y) = By + Bax + Byy
Therefore, a linear displacement variation is assumed, just as for the derivation of the four-node
plane stress element considered in Example 4.6 where the fourth node required that the term xy
be included in the displacement assumption. Referring to the derivations carried out in Example
4.6, we can directly establish the following relationships:

u
U

ulx, yy| _ us
[v(x, y)] =H
2
U3

where H=

1 X YN

A7t 0

Awl=[o‘ A"]; i
1

o
S -
o o=
o <
_ O
- o
- Q
| DS |
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Figure E4.17 Axisymmetric three-node element

1 X2Y3 < X3Y2 X3Yr T Xi¥3 X1y — XN

Hence Ayl = m—l Y2 = ¥ yi—n »—»n
X3 ™ X2 Xy — X3 Xz ™ X
where det A = xi(y2 = y3) + x2(s = y)) + x3ys — y2)

We may note that det A, is zero only if the three element nodal points lie on a straight line. The
strains are given in Table 4.2 and are

= o S o _w_u
= e’ O A &y ox’ 9 x
Using the assumed displacement polynomials, we obtain
.
€. Y2 01 0000
c ¢ 000 O01
vy i
=Bl L B=]0 01 0 1 0|]A" = EA"!
Yey L] 1
€ vz -12000
X X
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Using the relations (4.33) to (4.37), we thus have

B 1r .
000 I 1 2 0 -
X 1—v» 1 -
E(1 — ) IOO; lzv ! 0 lzv
K=A7{| —0u "7 =
{A(I'FV)(I"ZV)O 01 x 0 0 1 -2 0
0 0 00 2(1 - v)
0010 v v 0 1
01 0 0fl1-» 1-v _]
- -
01 0000
000 001
001 01 Oxdxdy}A“' (a)
1
-12 000
| x x
where 1 radian of the axisymmetric element is considered in the volume integration. Similarly,
we have
o]
x 0
E- ~T y 0 ?
R = A LO i [ff:]xdxdy
0 «x
0 )
_ .
00 0 -
x
1 0 0 1]+,
- Y[y
R,=A7f0 0 1 =} Jlxdxdy (b)
A X Txy
0 0 0 of|r,
001 0
[0 1 0 0]
[1 0]
x 0
~ a1y offt x y O] }\l
M pAU;Ol[OOOl yJ\fa'xdyA
0 x
_0 y

where the mass density p is assumed to be constant. :

For calculation of the surface load vector Ry, it is expedient in practice to introduce
auxiliary coordinate systems located along the loaded sides of the element. Assume that the side
2-3 of the element is loaded as shown in Fig. E4.17. The load vector Rs is then evaluated using
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as the variable s,

0 0
s
l""z 0
fL- 0
b s s
RS=L 0 Os{ff XZI—I +'.x3'1: ds

0 l—-z

s
IR

Considering these finite element matrix evalvations the following observations can be
made. First, to evaluate the integrals, it is possible to obtain closed-form solutions; alternatively,
numerical integration (discussed in Section 5.5) can be used. Second, we find that the stiffness,
mass, and load matrices corresponding to plane stress and plane strain finite elements can be
obtained simply by (1) not including the fourth row in the strain-displacement matrix E used in
(a) and (b), (2) employing the appropriate stress-strain matrix C in (a), and (3) using as the
differential volume element h dx dy instead of x dx dy, where h is the thickness of the element
(conveniently taken equal to 1 in plane strain analysis). Therefore, axisymmetric, plane stress,
and plane strain analyses can effectively be implemented in a single computer program. Also, the
matrix E shows that constant-strain conditions €., €,y, and 7, are assumed in either analysis.

The concept of performing axisymmetric, plane strain, and plane stress analysis in an
effective manner in one computer program is, in fact, presented in Section 5.6, where we discuss
the efficient implementation of isoparametric finite element analysis.

EXAMPLE 4.18: Derive the matrices ¢ (x, y), E(x, y), and A for the rectangular plate bending
element in Fig. £4.18.

This element is one of the first plate bending elements derived, and more effective plate
bending elements are already in use (see Section 5.4.2).

As shown in Fig. E4.18, the plate bending element considered has three degress of freedom
per node. Therefore, it is necessary to have 12 unknown generalized coordinates, a, . . . , a1z,

Figure E4.18 Rectangular plate bending element.
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in the displacement assumption for w. The polynomial used is

W=+ ox + asy + aux? + asxy + asy? + agx’
+ agxy? + aey® + anx’y + apxy?

Using the conditions

W= (w)

Xi, ¥i*

(3
Y/ xiy

1,
: ow
()
y X/ 4y
we can construct the matrix A, obtaining
Wi (o, ]
e
Wa
al
SEA
6‘4
0!
[60)  foal
where
*1 Xt M X} X1y1 y% X? x%}’l xl}'% y?
I xa yo x3  xiya ¥y 1} xiys  xei  yi
0 0 1 0 xi 2y 0 x} 2y 3y?
A= :
0 0 1 o Xs 2ys 0 X3 2xys 3y}
0 -1 0 -2xy, -y, 0 -3x =2xy -y} 0
0 -1 0 “2xs =ys 0 =3x% -2xy -yi 0

which can be shown to be always nonsingular,
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+ agx?y

Hence,
b =01 x y x* xy y* x* 1 »? y* 1y x

We can now calculate dw/dx and aw/ay:

bi)

B-E =0 + 2aex + asy + 3anx? + 2asxy + agy® + Janxly + apny?
and

dw 2 2 3 2

3; = a3 + asx + 206y + agx? + 2a9xy + 3aiy? + anx® + 3ai2xy
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To evaluate the matrix E, we recall that in plate bending analysis curvatures and moments
are used as generalized strains and stresses (see Tables 4.2 and 4.3). Calculating the required
derivatives of (b) and (c), we obtain

9w
T = 2a4 + 603x + 205y + 6o xy
i*w
57 = 26 + 2005 + by + Gausxy C)
o*w 2 2
_ax—ay = 2[15 + 4&51 + 4&9)’ + 6anx + 60’12)’

Hence we have

0002 006x2y 0 0 6xy O
E=10 0 0 0 0 2 0 0 2x 6y 0O 6xy )
0 000 20 0 4x 4y 0 6x* 6y*

With the matrices ®, A, and E given in (a), (d), and (f) and the material matrix C in
Table 4.3, the element stiffness matrix, mass matrix, and load vectors can now be calculated.

An important consideration in the evaluation of an element stiffness matrix is whether the
element is complete and compatible. The element considered in this example is complete as
shown in (e) (i.e., the element can represent constant curvature states), but the element is not
compatible. The compatibility requirements are violated in a number of plate bending elements,
meaning that convergence in the analysis is in general not monotonic (see Section 4.3).

EXAMPLE 4.19: Discuss the evaluation of the stiffness matrix of a flat rectangular shell
element.

A simple rectangular flat shell element can be obtained by superimposing the plate bending
behavior considered in Example 4.18 and the plane stress behavior of the element used in
Example 4.6. The resulting element is shown in Fig. E4.19. The element can be employed to
model assemblages of flat plates (e.g., folded plate structures) and also curved shells. For actual
analyses more effective shell elements are available, and we discuss here only the element in
Fig. E4.19 in order to demonstrate some basic analysis approaches.

Let K5 and Ky, be the stiffness matrices, in the local coordinate system, corresponding to

the bending and membrane behavior of the element, respectively. Then the shell element stiffness
matrix K is

By, = | @
0 Ky
8x8
The matrices RM and f(g were discussed in Examples 4.6 and 4.18, respectively.

This shell element can now be directly employed in the analysis of a variety of shell
structures. Consider the structures in Fig. E4.19, which might be idealized as shown. Since we
deal in these analyses with six degrees of freedom per node, the element stiffness matrices
corresponding to the global degrees of freedom are calculated using the transformation given

in (4.41) -
K = TKT )
where 2%;4 = { 205

0 0 (©
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No stiffness
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Shell element Plate element Plane stress element

{a) Basic shell element with local five degrees of freedom at a node

(b) Analysis of folded plate structure

{c) Analysis of slightly curved shell
Figure E4.19 Use of a flat shell element

and T is the transformation matrix between the local and global element degrees of freedom. To
define K¥ corresponding to six degrees of freedom per node, we have amended Ks on the
right-hand side of (c) to include the stiffness coefficients corresponding to the local rotations 6,
(rotations about the z-axis) at the nodes. These stiffness coefficients have been set equal to zero
in (c). The reason for doing so is that these degrees of freedom have not been included in the
formulation of the element; thus the element rotation 6. at a node is not measured and does not
contribute to the strain energy stored in the element,

The solution of a model can be obtained using K§ in (c) as long as the elements surround-
ing a node are not coplanar. This does not hold for the folded plate model, and considering the
analysis of the slightly curved shell in Fig. E4.19(c), the elements may be almost coplanar
(depending on the curvature of the shell and the idealization used). In these cases, the global
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stiffness matrix is singular or ill-conditioned because of the zero diagonal elements in K#and
difficulties arise in solving the global equilibrium equations (see Section 8.2.6). To avoid this

problem it js possible to add a small stiffness coefficient corresponding to the 6, rotation, i.e.,
instead of K¥ in (c) we use

Ky = | sl @
0 131

4x4

where k is about one-thousandth of the smallest diagonal element of Ks. The stiffness coefficient
k must be large enough to allow accurate solution of the finite element system equilibrium
equations and small enough not to affect the system response significantly. Therefore, a large
enough number of digits must be used in the floating-point arithmetic (see Section 8.2.6).

A more effective way to circumvent the problem is to use curved shell elements with five
degrees of freedom per node where these are defined corresponding to a plane tangent to the

midsurface of the shell. In this case the rotation normal to the shell surface is not a degree of
freedom (see Section 5.4.2).

In the above element formulations we used polynomial functions to express the
displacements. We should briefly note, however, that for certain applications the use of other
functions such as trigonometric expressions can be effective. Trigonometric functions, for
example, are used in the analysis of axisymmetric structures subjected to nonaxisymmetric
loading (see E. L. Wilson [A]), and in the finite strip method (see Y. K. Cheung [A]). The
advantage of the trigonometric functions lies in their orthogonality properties. Namely, if
sine and cosine products are integrated over an appropriate interval, the integral can be
zero. This then means that there is no coupling in the equilibrium equations between the
generalized coordinates that correspond to the sine and cosine functions, and the equi-
librium equations can be solved more effectively. In this context it may be noted that the best
functions that we could use in the finite element analysis would be given by the eigenvectors
of the problem because they would give a diagonal stiffness matrix. However, these func-
tions are not known, and for general applications, the use of polynomial, trigonometric, or
other assumptions for the finite element displacements is most natural.

The use of special interpolation functions can of course also lead to efficient solution
schemes in the analysis of certain fluid flows (see, for example, A. T. Patera [A]).

We demonstrate the use of trigonometric functions in the following example.

EXAMPLE 4.20: Figure E4.20 shows an axisymmetric structure subjected to a nonaxisymmet-
ric loading in the radial direction. Discuss the analysis of this structure using the three-node
axisymmetric element in Example 4.17 when the loading is represented as a superposition of
Fourier components.

The stress distribution in the structure is three-dimensional and could be calculated using
a three-dimensional finite element idealization. However, it is possible to take advantage of the
axisymmetric geometry of the structure and, depending on the exact loading applied, reduce the
computational effort very significantly.

The key point in this analysis is that we expand the externally applied loads R,(6,y) in the
Fourier series:

Pc Ps
R, = 2 RScos pd + & R} sin pd (a)
p=1

p=1



210

Formulation of the Finite Element. Method Chap. 4

3-node
triangular

Ry, 6)
r element

u = radial displacement
v= axial displacement
,,,, ; w = circumferential displacement

First symmetric load term First antisymmetric load term

{b) Representation of nonaxisymmetric loading

Figure E4.20 Axisymmetric structure subjected to nonaxisymmetric loading

where p, and p; are the total number of symmetric and antisymmetric load contributions about
6 = 0, respectively. Figure E4.20(b) illustrates the first terms in the expansion of (a).

The complete analysis can now be performed by superimposing the responses due to the
symmetric and antisymmetric load contributions defined in (a). For example, considering the
symmetric response, we use for an element

Pc
u(x,y, 6) = 2 cos pf Ho?
p=1

pl’
o(x, y, 8) = 2 cos po H¥ (b)

p=1

Pe
wix,y, 8) = 2 sin po HWw”

=1



Sec. 4.2 Formulation of the Displacement-Based Finite Element Method 211

where for the triangular elements, referring to Example 4.17,

H=[1 x y]A{' ©
and the 97, ¥/, and WP are the element unknown generalized nodal point displacements corre-
sponding to mode p.

We should note that we superimpose in (b) the response measured in individual harmonic
displacement distributions. Using (b), we can now establish the strain-displacement matrix of the

element. Since we are dealing with a three-dimensional stress distribution, we use the expression
for three-dimensional strain distributions in cylindrical coordinates:

—2‘_‘ W
or

dv

Low
r 0@
9_13
ar
100
+ = —
gy r a8
B_w+16u

¥
L or radf r |

(d)

g ¢lg "5 ¢

where € =[e €, € vy Yo Yor) (©

Substituting from (b) into (d) we obtain a strain-displacement matrix B, for each value of

p, and the total strains can be thought of as the superposition of the strain distributions contained
in each harmonic.

The unknown nodal point displacements can now be evaluated using the usual procedures.

The equilibrium equations corresponding to the generalized nodal point displacements U?, V¥,

W i=1,...,N(Nisequal to the total number of nodes) and p = 1, . . ., p. are evaluated
as given in {(4.17) to (4.22), where we now have

UT=[U7T U7 ... U] )

and
U= v W Wl @
In the calculations of K and Rs we note that because of the orthogonality properties

2w
f sin n@ sin mé dé = 0 n#*m

0

2 (h)
f cos nfcosmddd =0 n#Em

0

the stiffness matrices corresponding to the different harmonics are decoupled from each other.
Hence, we have the following equilibrium equations for the structure:

K°Ur = RY p=1...,p: (i)

where K? and Rf are the stiffness matrix and load vector corresponding to the pth harmonic.
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Solution of the equations in (i) gives the generalized nodal point displacements of each element,
and (b) then yields all element internal displacements.

In the above displacement solution we considered only the symmetric load contributions.
But an analogous analysis can be performed for the antisymmetric load harmonics of (a) by
simply replacing in (b) to (i) all sine and cosine terms by cosine and sine terms, respectively. The
complete structural response is then obtained by superimposing the displacements corresponding
to all harmonics.

Although we have considered only surface loading in the discussion, the analysis can be
extended using the same approach to include body force loading and initial stresses.

Finally, we note that the computational effort required in the analysis is directly propor-
tional to the number of load harmonics used. Hence, the solution procedure is very efficient if
the loading can be represented using only a few harmonics (e.g., wind loading) but may be

inefficient when many harmonics must be used to represent the loading (e.g., a concentrated
force).

4.2.4 Lumping of Structure Properties and Loads

A physical interpretation of the finite element procedure of analysis as presented in the
previous sections is that the structure properties——stiffness and mass-—and the loads,
internal and external, are lumped to the discrete nodes of the element assemblage using the
virtual work principle. Because the same interpolation functions are employed in the
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Figure 4.6 Body force distribution and corresponding lumped body force vector R; of a
rectanguiar element .
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calculation of the load vectors and the mass matrix as in the evaluation of the stiffness
matrix, we say that “consistent” load vectors and a consistent mass matrix are evaluated.
In this case, provided certain conditions are fulfilled (see Section 4.3.3), the finite element
solution is a Ritz analysis.

It may now be recognized that instead of performing the integrations leading to the
consistent load vector, we may evaluate an approximate load vector by simply adding to the
actually applied concentrated nodal forces Rc¢ additional forces that are in some sense
equivalent to the distributed loads on the elements. A somewhat obvious way of constructing
approximate load vectors is to calculate the total body and surface forces corresponding to
an element and to assign equal parts to the appropriate element nodal degrees of freedom.
Consider as an example the rectangular plane stress element in Fig. 4.6 with the variation
of the body force shown. The total body force is equal to 2.0, and hence we obtain the
lumped body force vector given in the figure.

In considering the derivation of an element mass matrix, we recall that the inertia
forces have been considered part of the body forces. Hence we may also establish an
approximate mass matrix by lumping equal parts of the total element mass to the nodal
points. Realizing that each nodal mass essentially corresponds to the mass of an element
contributing volume around the node, we note that using this procedure of lumping mass,
we assume in essence that the accelerations of the contributing volume to a node are
constant and equal to the nodal values.

An important advantage of using a lumped mass matrix is that the matrix is diagonal,
and, as will be seen later, the numerical operations for the solution of the dynamic equations
of equilibrium are in some cases reduced very significantly.

EXAMPLE 4.21: Evaluate the lumped body force vector and the lumped mass matrix of the
element assemblage in Fig. E4.5.

The lumped mass matrix is

100 %00 80 2000
M=pf (1)0%de+pf (1+i) 0 L 0fadx
¢ 000 0 710 0o !
150 0 0
or M=f3’— 0 670 0
0 0 520

Similarly, the lumped body force vector is

R; = (L‘m Mfz]Q)dx+ f:o (1 M 74%)2

[150
= 3| 202 |50
52

(1))

O Nl— Ni—
Nl Nl- O

It may be noted that, as required, the sums of the elements in M and R; in both this
example and in Example 4.5 are the same.
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When using the load lumping procedure it should be recognized that the nodal point
loads are, in general, calculated only approximately, and if a coarse finite element mesh is
employed, the resulting solution may be very inaccurate. Indeed, in some cases when
higher-order finite elements are used, surprising results are obtained. Figure 4.7 demon-
strates such a case (see also Example 5.12).

1\ y Thickness = 1 cm
7,
7 p
> p = 300 N/ecm?
2cm Y - E=3x 107 Njcm?
- v=03
pteee . €YY ] "
{a)} Problem
V/ Y Integration
. . P point | x| v |
X 3
A 4p A 300.00{ 0.0 0.0
"% B Xp——>b— B 300.00] 0.0 0.0
" X L P c 300.00 0.0 0.0
- > 3
(b} Finite element model (All stresses have units of N/cm?)
with consistent foading
T y
V7 .
. ez R | |
A X
> A 301.41| -7.85 | -24.72
X g X P B 295.74) -9.55 0.0
o X4 P c 301.41] -7.85 | 2472
- T2
- its of Nfem?)
{c) Einite element model (Al stresses have units 0
with lumped loading (3 x 3 Gauss points are used, see Table 5.7)

Figure 4.7 Some sample analysis results with and without consistent loading

Considering dynamic analysis, the inertia effects can be thought of as body forces.
Therefore, if a lumped mass matrix is employed, little might be gained by using a consistent
load vector, whereas consistent nodal point loads should be used if a consistent mass matrix
is employed in the analysis.

4.2.5 Exercises

4.1. Use the procedure in Example 4.2 to formally derive the principle of virtual work for the
one-dimensional bar shown.
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Alx)

— 8  anandli]

t ) |

E = Young's modulus

T

The differential equations of equilibrium are

E—Q-(A-?—L-‘-) +fi=0

ax ax
EA Q’i =R
ox x=L

4.2, Consider the structure shown.

(a) Write down the principle of virtual displacements by specializing the general equation (4.7)
to this case.

(b) Use the principle of virtual work to check whether the exact solution is

- (24 22) £
73 73L/ Ao

Use the following three virtual displacements: (i) #(x) = aox, (ii) T(x) = aox?,
(iil) #(x) = aox’.
(e) Solve the governing differential equations of equilibrium,

d du
E—lA—] =
8x(A ax) 0

a
Al

= F
ax

x=L

(d) Use the three different virtual displacement patterns given in part (b), substitute into the

principle of virtual work using the exact solution for the stress [from part (c)], and explicitly
show that the principle holds.

— x

YYYYYY

AT

[OIIOIAYAR®)

T

L P

F = total force exerted on right end
E = Young's modulus
Ax) = Agl1 - x/4L)
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N

4.3, Consider the bar shown.
(a) Solve for the exact displacement response of the structure.
{b) Show explicitly that the principle of virtual work is satisfied with the displacement patterns
(i) ¥ = ax and (il) ¥ = ax’
(c) Identify a stress 7., for which the principle of virtual work is satisfied with pattern (ii) but
not with pattern (i).

A= Apld - 3x/L}

P = constant force per unit length
Young's modulus E

4.4. For the two-dimensional body shown, use the principle of virtual work to show that the body
forces are in equilibrium with the applied concentrated nodal loads.

£2 = 10(1 + 2x) N/m®
f2=20(1 + y) N/m?®

R, = 60N
Ry, =45N
Ry = 15N
Unit thickness
| — |
8

f)"
f8 Tm

Ry Rs
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4.5. Idealize the bar structure shown as an assemblage of 2 two-node bar elements.
(a) Calculate the equilibrium equations KU = R.
(b) Calculate the mass matrix of the element assemblage.

, 60 5 80 ]
~ 1 "
Y,
»
H—x ! — %) | == 20Ah
é / £8(x) = 0.1f, force/unit volume
//j/ E = Young's modulus
A=Agl1-n/120;;n s60 P =mMmass density
f1x
100 }--
i
[}
I t Time

4.6. Consider the disk with a centerline hole of radius 20 shown spinning at a rotational velocity of
w radians/second.

| /u Young's modulus
!

p = mass density
v = Poisson's ratio

Idealize the structure as an assemblage of 2 two-node elements and calculate the steady-state
(pseudostatic) equilibrium equations. (Note that the strains are now du/dx and u/x, where u/x
is the hoop strain.)
4.7. Consider Example 4.5 and the state at time ¢ = 2.0 with U(f) = O at all times.
(a) Use the finite element formulation given in the example to calculate the static nodal point
displacements and the element stresses.
(b) Calculate the reaction at the support.
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(c) Let the calculated finite element solution be u*E. Calculate and plot the error r measured in
satisfying the differential equation of equilibrium, i.e.,

d [ out®
r E[ax (A - )] 124

(d) Calculate the strain energy of the structure as evaluated in the finite element solution and
compare this strain energy with the exact strain energy of the mathematical model.

4.8. The two-node truss element shown, originally at a uniform temperature, 20°C, is subjected to a
temperature variation

0 = (10x + 20)°C

Calculate the resulting stress and nodal point displacement. Also obtain the analytical solution,
assuming a continuum, and briefly discuss your results.

X

2 E = 200,000

a>' ;97 A=1

a=1x107¢ (per °C)

4.9, Consider the finite element analysis illustrated.

5 psi
Young's modulus E

Poisson's ratio v = 0.30 2 psi
A Us Us t 1 Una
/o ~ A= —
Uy Us Uz

3in
U ﬁ Us U 1 Un

U U U
l——ain 2 _4in |——4in | Mo

Plane stress condition (thickness t).
All elements are 4-node elements

(a) Begin by establishing the typical matrix B of an element for the vector @7 =
[u. vy U2 V2 U3 V3 Us 04].

(b) Calculate the elements of the K matrix, Ku,v,, Kvzv,» Kuv,ug, and Ky,u,, of the structural
assemblage.

(c) Calculate the nodal load Ry due to the linearly varying surface pressure distribution.
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sz \V1
us L]
2
3in
| V3 | Va
us Uy
> e
}+——-—- 4 in

4.10. Consider the simply supported beam shown.
(a) Assume that usual beam theory is employed and use the principle of virtual work to evaluate

the reactions R, and R,.

i’
+

b ]

2
o
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{b) Now assume that the beam is modeled by a four-node finite element. Show that to be able

A
"“""‘1_ R

Ry

4.11. The four-node plane stress element shown carries the initial stresses

i, = 0 MPa
7y = 10 MPa
7!, = 20 MPa

to evaluate R, and R, as in part (a) it is necessary that the finite element displacement
functions can represent the rigid body mode displacements.
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(a) Calculate the corresponding nodal point forces R;.

(b) Evaluate the nodal point forces Rs equivalent to the surface tractions that correspond to the
element stresses. Check your results using elementary statics and show that Ry is equal to R,
evaluated in part (a). Explain why this result makes sense.

(¢) Derive a general result: Assume that any stresses are given, and R, and R; are calculated.
What conditions must the given stresses satisfy in order that R, = Rs, where the surface
tractions in R; are obtained from equation (b) in Example 4.2?

Ht—————— §0 mm 1

Young's modulus £
Poisson's ratio v
Thickness = 0.5 mm

4.12. The four-node plane strain element shown is subjected to the constant stresses

Tex = 20 psi
Ty = 10 psi
T = 10 psi

Calculate the nodal point displacements of the element.

= 3in -]
2 JT
2in
y 3 4J'
(4 7

X

Young's modulus E = 30 x 10 psi
Poisson's ratiov = 0.30
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4.13. Consider element 2 in Fig. E4.9.
(a) Show explicitly that

F? = BT @ gy@
w2)

(b) Show that the element nodal point forces F® are in equilibrium.

4.14. Assume that the element stiffness matrices K, and K corresponding to the element displace-
ments shown have been calculated. Assemble these element matrices directly into the global
structure stiffness matrix with the displacement boundary conditions shown.

th Us v2 Vi CAve v
s Uy . & uz 6, q u
Q in B
A
va individual elements
3
Structural assemblage U3
and degrees of freedom
A A2 Qia G dis Qe U bn by bis bis bis bm—‘ w
Az Qxn a3 @ 425 Qx| Uy by by by ba by by | vy
Gy Gy Gp Gy O3 A | W byy byz bz ba by b 6
K,q = KB =
G4 Qa3 Qa3 Gas Qs dag | U2 bsi bi bas bas bas bas| e
as) Aas» QAs3 QGsa Ass Ase | Us bsy bs: bsy bss bss bss| 02
Lam Qs2 Qs3 QAgq Aes Qqes | U3 L_bm by bes bes bes b66_ 6,

4.15. Assume that the element stiffness matrices K, and Kj corresponding to the element displace-
ments shown have been calculated. Assemble these element matrices directly into the global
structure stiffness matrix with the displacement boundary conditions shown.

, Uz 11«00 aee G LY
o v
U Ka= ' Uz
A 881 +ese  «es 3g8 | Vi
U U, ~ -
5,’\ b1y eev ool big | 0
Tuy I v
Kgn ‘ 64
B : : .
NNKKN L 81 bggﬁl 92
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V2 L V1
4]
6
u2 uy
th
A B
V.
AV3 vy 273 2
u:
us Uy 2

4.16. Consider Example 4.11. Assume that at the support A, the roller allows a displacement only along
a slope of 30 degrees to the horizontal direction. Determine the modifications necessary in the
solution in Example 4.11 to obtain the structure matrix K for this situation.

(a) Consider imposing the zero displacement condition exactly.
(b) Consider imposing the zero displacement condition using the penalty method.

Quadrilateral plane
stress element

U A

A -

v Uo
30°

4.,17. Consider the beam element shown. Evaluate the stiffness coefficients k;, and k1.
(a) Obtain the exact coefficients from the solution of the differential equation of equilibrium
(using the mathematical model of Bernoulli beam theory).

{(b) Obtain the coefficients using the principle of virtual work with the Hermitian beam functions
(see Example 4.16).

hi{x) = hp {1+ x/L)

u

N o
ho up 4 %

us

us
5 ug

13‘

Young's modulus £
Unit thickness
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4.18. Consider the two-element assemblage shown.

(a) Evaluate the stiffness coefficients K;,, K4 for the finite element idealization.
(b) Calculate the load vector of the element assemblage.

|
Y
s

Element 1

- Element 2

AUs AU
.
a: 4 2 Us
S
- x -
P /’\ E = 200,000

v=03
Plane stress, thickness = 0.1

A 4

4,19. Consider the two-element assemblage in Exercise 4.18 but now assume axisymmetric condi-
tions. The y-axis is the axis of revolution.

(a) Evaluate the stiffness coefficients X)), K4 for the finite element idealization.
(b) Evaluate the corresponding load vector.
4.20. Consider Example 4.20 and let the loading on the structure be R, = fi(¢) cos 6.
(a) Establish the stiffness matrix, mass matrix, and load vector of the three-node element

y.vi
f(t)
\ ]
1 >
‘ > xlorn, u
zZw T 2 3 "
~t 10 =1l< 1 —>|
E = 200,000
v=03

p = mass density
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shown. Establish explicitly all matrices you need but do not perform any multiplications
and integrations.
(b) Explain (by physical reasoning) that your assumptions on 4, v, w make sense.

4.21. Aninviscid fluid element (for acoustic motions) can be obtained by considering only volumetric
strain energy (since inviscid fluids provide no resistance to shear). Formulate the finite element
fluid stiffness matrix for the four-node plane element shown and write out all matrices required,
Do not actually perform any integrations or matrix multiplications. Hint: Remember that
p=—BAV/Vand1 = [r. Ty, Ty, T =[-p —p 0 —pland AV/V = ¢, + ¢,

Thickness t
Bulk modulus §

*——-U’—-———PJ
N
Y

4.22. Consider the element assemblages in Exercises 4.18 and 4.19. For each case, evaluate a
lumped mass matrix (using a uniform mass density p) and a lumped load vector.
4.23. Use a finite element program to solve the model shown of the problem in Example 4.6.
(a) Print out the element stresses and element nodal point forces and draw the “exploded
element views” for the stresses and nodal point forces as in Example 4.9.
(b) Show that the element nodal point forces of element 5 are in equilibrium and that the
element nodal point forces of elements 5 and 6 equilibrate the applied load.
(¢) Print out the reactions and show that the element nodal point forces equilibrate these
reactions.
(d) Calculate the strain energy of the finite element model.

P=100

Eight constant-strain triangles
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4.24, Use a finite element program to solve the model shown of the problem in Example 4.6. Print out
the element stresses and reactions and calculate the strain energy of the model. Draw the
“exploded element views” for the siresses and nodal point forces. Compare your results with
those for Exercise 4.23 and discuss why we should not be surprised to have obtained different
results (although the same kind and same number of elements are used in both idealizations).

P=100

Eight constant-strain triangles

4.3 CONVERGENCE OF ANALYSIS RESULTS

Since the finite element method is a numerical procedure for solving complex engineering
problems, important considerations pertain to the accuracy of the analysis results and the
convergence of the numerical solution. The objective in this section is to address these
issues. We start by defining in Section 4.3.1 what we mean by convergence. Then we
consider in a rather physical manner the criteria for monotonic convergence and relate these
criteria to the conditions in a Ritz analysis (introduced in Section 3.3.3). Next, some
important properties of the finite element solution are summarized (and proven) and the
rate of convergence is discussed. Finally, we consider the calculation of stresses and the
evaluation of error measures that indicate the magnitude of the error in stresses at the
completion of an analysis.

We consider in this section displacement-based finite elements leading to monotoni-
cally convergent solutions. Formulations that lead to a nonmonotonic convergence are
considered in Sections 4.4 and 4.5.

4.3.1 The Model Problem and a Definition of Convergence

Based on the preceding discussions, we can now say that, in general, a finite element
analysis requires the idealization of an actual physical problem into a mathematical model
and then the finite element solution of that model (see Section 1.2). Figure 4.8 summarizes
these concepts. The distinction given in the figure is frequently not recognized in practical
analysis because the differential equations of motion of the mathematical model are not
dealt with, and indeed the equations may be unknown in the analysis of a complex problem,
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Actual Physical Problem

Geometric domain
Material

Loading

Boundary conditions

!

Mathematical Model {which corresponds to a mechanical idealization)

Kinematics, e.g., truss )
plane stress
three-dimensional
Kirchhoff plate .
ete. P Yields:
Material ) - Governing differential
aterial, e.g., 'e-"l‘;;rt?é’*c linear equation(s) of motion
eg.
Mooney-Rivlin rubber 3 g
- & (o4) -0
Loading, e.g., concentrated X
centrifugal and principle of
etc. virtual work equation
Boundary prescribed (see Example 4.2}
Conditions, e.g., displacements
etc.
Finite Element Solution Yields: )
Approximate solution of the
Choice of elements and solution procedures mathematical model (that is,

approximate response of mechanical
idealization)

Figure 4.8 Finite element solution process

such as the response prediction of a three-dimensional shell. Instead, in a practical analysis,
a finite element idealization of the physical problem is established directly. However, to
study the convergence of the finite element solution as the number of elements increases,
it is valuable to recognize that a mathematical model is actually implied in the finite element
representation of the physical problem. That is, a proper finite element solution should
converge (as the number of elements is increased) to the analytical (exact) solution of the
differential equations that govern the response of the mathematical model. Furthermore,
the convergence behavior displays all the characteristics of the finite element scheme be-
cause the differential equations of motion of the mathematical model express in a very
precise and compact manner all basic conditions that the solution variables (stress, dis-
placement, strain, and so on) must satisfy. If the differential equations of motion are not
known, as in a complex shell analysis, and/or analytical solutions cannot be obtained, the
convergence of the finite element solutions can be measured only on the fact that all basic
kinematic, static, and constitutive conditions contained in the mathematical model must
ultimately (at convergence) be satisfied. Therefore, in all discussions of the convergence of
finite element solutions we imply that the convergence to the exact solution of a mathemat-
ical model is meant.

Here it is important to recognize that in linear elastic analysis there is a unique exact
solution to the mathematical model. Hence if we have a solution that satisfies the governing



Sec. 4.3 Convergence of Analysis Results 227

mathematical equations exactly, then this is the exact solution to the problem (see Sec-
tion 4.3.4).

In considering the approximate finite element solution to the exact response of the
mathematical model, we need to recognize that different sources of errors affect the finite
element solution results. Table 4.4 summarizes various general sources of errors. Round-off
errors are a result of the finite precision arithmetic of the computer used; solution errors in
the constitutive modeling are due to the linearization and integration of the constitutive
relations; solution errors in the calculation of the dynamic response arise in the numerical
integration of the equations of motion or because only a few modes are used in a mode
superposition analysis; and solution errors arise when an iterative solution is obtained
because convergence is measured on increments in the solution variables that are small but
not zero. In this section, we will discuss only the finite element discretization errors, which
are due to interpolation of the solution variables. Thus, in essence, we consider in this
section a model problem in which the other solution errors referred to above do not arise:
a linear elastic static problem with the geometry represented exactly with the exact calcula-
tion of the element matrices and solution of equations, i.e., also negligible round-off
errors. For ease of presentation, we assume that the prescribed displacements are zero.
Nonzero displacement boundary conditions would be imposed as discussed in Sec-
tion 4.2.2, and such boundary conditions do not change the properties of the finite element
solution.

For this model problem, let us restate for purposes of our discussion the basic equation
of the principle of virtual work governing the exact solution of the mathematical model

f €'t dV= f uiey ds + f [T 14 (4.62)
v Sf v

TABLE 4.4 Finite element solution errors

Error Error occurrence in See section
Discretization Use of finite element 42.1
interpolations for geome- 423,53
try and solution variables
Numerical Evaluation of finite 5.5
integration element matrices using 6.8.4
in space numerical integration
Evaluation of Use of nonlinear material 6.6.3
constitutive models 6.64
relations
Solution of Direct time integration, 9.2-94
dynamic equi-  mode superposition
librium
equations
Solution of Gauss-Seidel, conjugate 83,84
finite element gradient, Newton-Raphson, 9.5
equations by quasi-Newton methods, 10.4
iteration eigensolutions
Round-off Setting up equations and 8.2.6

their solution
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We recall that for T to be the exact solution of the mathematical model, (4.62) must
hold for arbitrary virtual displacements u (and corresponding virtual strains € ), with tizero
at and corresponding to the prescribed displacements. A short notation for (4.62) 1s

Find the displacements u (and corresponding stresses T) such that

a(u,v) = (f,v) for all admissible v (4.63)

Here a(-,") is a bilinear form and (f,-) is a linear form®-these forms depend on the mathe-
matical model considered—u is the exact displacement solution, v is any admissible virtual
displacement [“admissible” because the functions v must be continuous and zero at and
corresponding to actually prescribed displacements (see (4.7)], and f represents the forcing
functions (loads £ and f®). Note that the notation in (4.63) implies an integration process.
The bilinear forms a(-,-) that we consider in this section are symmetric in the sense that
a(u, v) = a(v, u).

From (4.63) we have that the strain energy corresponding to the exact solution u is
1/2 a(u, u). We assume that the material properties and boundary conditions of our model
problem are such that this strain energy is finite. This is not a serious restriction in practice
but requires the proper choice of a mathematical model. In particular, the material proper-
ties must be physically realistic and the load distributions (externally applied or due to
displacement constraints) must be sufficiently smooth. We have discussed the need of
modeling the applied loads properly already in Section 1.2 and will comment further on it
in Section 4.3.4.

Assume that the finite element solution is u,: this solution lies of course in the finite
element space given by the displacement interpolation functions (h denoting bere the size

of the generic element and hence denoting a specific mesh). Then we define “convergence”
to mean that

au — u,u — ) —0 ash—0 (4.64)

or, equivalently [see (4.90)], that
a(us, wy) — a(u, w) ash—+0

Physically, this statement means that the strain energy calculated by the finite element
solution converges to the exact strain energy of the mathematical model as the finite element

mesh is refined. Let us consider a simple example to show what we mean by the bilinear
form a(.,-).

9The bilinearity of a(-,-) refers to the fact that for any constants ¥, and ¥,
al(yiuy + 20z, V) = pan,, v) + ya(u,, v)
a(u, yiv + yav2) = ma(u, v)) + ralu, v7)

and the linearity of (f,-) refers to the fact that for any constants y, and y,,

v + vava) = 0l vi) + pff, v).
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EXAMPLE 4.22: Assume that a simply supported prestressed membrane, with (constant)
prestress tension T, subjected to transverse loading p is to be analyzed (see Fig. E4.22). Establish
for this problem the form (4.63) of the principle of virtual work.

Hinged on all edges

T>0

z
y <7/-' Tension T,

Figure E4.22 Prestressed membrane

The principle of virtual work gives for this problem

aw]™ [ow

ax 0x
T dx dy = w dx d
LBW szy prxy

oy dy

where w(x, y) is the transverse displacement. The left-hand side of this equation gives the bilinear
form a(v, 1), with © = W, u = w, and the integration on the right-hand side gives (f, v).

Depending on the specific (properly formulated) displacement-based finite elements
used in the analysis of the model problem defined above, we may converge monotonically
or nonmonotonically to the exact solution as the number of finite elements is increased. In
the following discussion we consider the criteria for the monotonic convergence of solutions.

Finite element analysis conditions that lead to nonmonotonic convergence are discussed in
Section 4.4,

4.3.2 Criteria for Monotonic Convergence

For monotonic convergence, the elements must be complete and the elements and mesh must
be compatible. 1f these conditions are fulfilled, the accuracy of the solution results will
increase continuously as we continue to refine the finite element mesh. This mesh re-
finement should be performed by subdividing a previously used element into two or more
elements; thus, the old mesh will be “embedded” in the new mesh. This means mathemat-
ically that the new space of finite element interpolation functions will contain the previously
used space, and as the mesh is refined, the dimension of the finite ¢lement solution space
will be continuously increased to contain ultimately the exact solution.

The requirement of completeness of an element means that the displacement functions

of the element must be able to represent the rigid body displacements and the constant
strain states.
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The rigid body displacements are those displacement modes that the element must be
able to undergo as a rigid body without stresses being developed in it. As an example, a
two-dimensional plane stress element must be able to translate uniformly in either direction
of its plane and to rotate without straining. The reason that the element must be able to
undergo these displacements without developing stresses is illustrated in the analysis of the
cantilever shown in Fig. 4.9: the element at the tip of the beam—for any element size—
must translate and rotate stress-free because by simple statics the cantilever is not subjected
to stresses beyond the point of load application.

The number of rigid body modes that an element must be able to undergo can usually
be identified without difficulty by inspection, but it is instructive to note that the number of
element rigid body modes is equal to the number of element degrees of freedom minus the
number of element straining modes (or natural modes). As an example, a two-noded truss
has one straining mode (constant strain state), and thus one, three, and five rigid body modes
in one-, two-, and three-dimensional conditions, respectively. For more complex finite

S

(a) Rigid body modes of a plane stress element

Distributed
load p

NANNNNNNNY

Rigid body transiation
and rotation;

element must be

{ stress-free for any
element size

{b) Analysis to illustrate the rigid body mode
conditon

Figure 4.9 Use of plane stress element in analysis of cantilever
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elements the individual straining modes and rigid body modes are displayed effectively by
representing the stiffness matrix in the basis of eigenvectors. Thus, solving the eigenproblem

Kb = Ad (4.65)

we have (see Section 2.5)
K® = OA (4.66)
where @ is a matrix storing the eigenvectors &,. . ., ¢, and A is a diagonal matrix storing

the corresponding eigenvalues, A = diag(A;). Using the eigenvector orthonormality prop-
erty we thus have

DPKD = A (4.67)
We may look at A as being the stiffness matrix of the element corresponding to the
eigenvector displacement modes. The stiffness coefficients Ay, . . ., A, display directly how

stiff the element is in the corresponding displacement mode. Thus, the transformation in
(4.67) shows clearly whether the rigid body modes and what additional straining modes are
present.'® As an example, the eight eigenvectors and corresponding eigenvalues of a four-
node element are shown in Fig. 4.10.

The necessity for the constant strain states can be physically understood if we imagine
that more and more elements are used in the assemblage to represent the structure. Then
in the limit as each element approaches a very small size, the strain in each element
approaches a constant value, and any complex variation of strain within the structure can
be approximated. As an example, the plane stress element used in Fig. 4.9 must be able to
represent two constant normal stress conditions and one constant shearing stress condition.
Figure 4.10 shows that the element can represent these constant stress conditions and, in
addition, contains two flexural straining modes.

The rigid body modes and constant strain states that an element can represent can also
be directly identified by studying the element strain-displacement matrix (see Exam-
ple 4.23).

The requirement of compatibility means that the displacements within the elements
and across the element boundaries must be continuous. Physically, compatibility ensures
that no gaps occur between elements when the assemblage is loaded. When only transla-
tional degrees of freedom are defined at the element nodes, only continuity in the displace-
ments u, v, or w, whichever are applicable, must be preserved. However, when rotational
degrees of freedom are also defined that are obtained by differentiation of the transverse
displacement (such as in the formulation of the plate bending element in Example 4.18), it
is also necessary to satisfy element continuity in the corresponding first displacement
derivatives. This is a consequence of the kinematic assumption on the displacements over
the depth of the plate bending element; that is, the continuity in the displacement w and the
derivatives dw/dx and/or dw/dy along the respective element edges ensures continuity of
displacements over the thickness of adjoining elements.

Compatibility is automatically ensured between truss and beam elements because
they join only at the nodal points, and compatibility is relatively easy to maintain in

Note also that since the finite element analysis overestimates the stiffness, as discussed in Section 4.3.4,
the “smaller” the eigenvalues, the more effective the element.
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Figure 4.10 Eigenvalues and eigenvectors of four-node plane stress element

two-dimensional plane strain, plane stress, and axisymmetric analysis and in three-
dimensional analysis, when only u, v, and w degrees of freedom are used as nodal point
variables. However, the requirements of compatibility are difficult to satisfy in plate bend-
ing analysis, and particularly in thin shell analysis if the rotations are derived from the
transverse displacements. For this reason, much emphasis has been directed toward the
development of plate and shell elements, in which the displacements and rotations are
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variables (see Section 5.4). With such elements the compatibility requirements are just as
easy to fulfill as in the case of dealing only with translational degrees of freedom.

Whether a specific element is complete and compatible depends on the formulation
used, and each formulation need be analyzed individually. Consider the following simple
example.

EXAMPLE 4.23: Investigate if the plane stress element used in Example 4.6 is compatible and

complete.
We have for the displacements of the element,

u(x,y) = ay + aox + asy + auxy
v(x,y) = B + Bax + Biy + Baxy

Observing that the displacements within an element are continuous, in order to show that
the element is compatible, we need only investigate if interelement continuity is also preserved
when an element assemblage is loaded. Consider two elements interconnected at two node points
(Fig. E4.23) on which we impose two arbitrary displacements. It follows from the displacement
assumptions that the points (i.e., the material particles) on the adjoining element edges displace
linearly, and therefore continuity between the elements is preserved. Hence the element is

compatible.
= us ’:2/' Vs
Noded . .omcm==—""""""_ \kz. ‘‘‘‘‘‘‘‘‘
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' H remain together
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Figure E4.23 Compatibility of plane stress element

Considering completeness, the displacement functions show that a rigid body translation
in the x direction is achieved if only a, is nonzero. Similarly, a rigid body displacement in the
y direction is imposed by having only $; nonzero, and for a rigid body rotation a3 and 3, must
be nonzero only with 8, = —a,. The same conclusion can also be arrived at using the matrix
E that relates the strains to the generalized coordinates (see Example 4.6). This matrix also
shows that the constant strain states are possible. Therefore the element is complete.
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4.3.3 The Monotonically Convergent Finite Element
Solution: A Ritz Solution

We observed earlier that the application of the principle of virtual work is identical to using
the stationarity condition of the total potential of the system (see Example 4.4). Considering
also the discussion of the Ritz method in Section 3.3.3, we can conclude that monotonically
convergent displacement-based finite element solutions are really only applications of this
method. In the finite element analysis the Ritz functions are contained in the element
displacement interpolation matrices H™, m = 1, 2,. . ., and the Ritz parameters are the
unknown nodal point displacements stored in U. As we discuss further below, the mathe-
matical conditions on the displacement interpolation functions in the matrices H™, in order
that the finite element solution be a Ritz analysis, are exactly those that we identified earlier
using physical reasoning. The correspondence between the analysis methods is illustrated
in Examples 3.22 and 4.5.

Considering the Ritz method of analysis with the finite element interpolations, we
have

I = {UKU - U'R (4.68)

where I is the total potential of the system. Invoking the stationarity of II with respect to
the Ritz parameters U; stored in U and recognizing that the matrix K is symmetric, we
obtain

KU =R (4.69)

The solution of (4.69) yields the Ritz parameters, and then the displacement solution in the
domain considered is

u™ = H"U; m=12,... 4.70)

The relations in (4.68) to (4.70) represent a Ritz analysis provided the functions used
satisfy certain conditions. We defined in Section 3.3.2 a C™"* variational problem as one
in which the variational indicator of the problem contains derivatives of order m and lower.
We then noted that for convergence the Ritz functions must satisfy the essential (or geomet-
ric) boundary conditions of the problem involving derivatives up to order (m — 1), but that
the functions do not need to satisfy the natural (or force) boundary conditions involving
derivatives of order m to (2m — 1) because these conditions are implicitly contained in the
variational indicator I1. Therefore, in order for a finite element solution to be a Ritz analysis,
the essential boundary conditions must be completely satisfied by the finite element nodal
point displacements and the displacement interpolations between the nodal points. How-
ever, in selecting the finite element displacement functions, no special attention need be
given to the natural boundary conditions because these conditions are imposed with the
load vector and are satisfied approximately in the Ritz solution. The accuracy with which
the natural or force boundary conditions are satisfied depends on the specific Ritz functions
employed, but this accuracy can always be increased by using a larger number of functions,
i.e., a larger number of finite elements to model the problem.

In the classical Ritz analysis the Ritz functions extend over the complete domain
considered, whereas in the finite element analysis the individual Ritz functions extend only
over subdomains (finite elements) of the complete region. Hence, there must be a question
as to what conditions must be fulfilied by the finite element interpolations with regard to
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continuity requirements between adjacent subdomains. To answer this question we consider
the integrations that must be performed to evaluate the coefficient matrix K. We recognize
that in considering a C™~' problem we need continuity in at least the (m — 1)st derivatives
of the Ritz trial functions in order that we can perform the integrations across the element
boundaries. However, this continuity requirement corresponds entirely to the element
compatibility conditions that we discussed in Section 4.3.2. For example, in the analysis of
fully three-dimensional problems only the displacements between elements must be contin-
uous, whereas in the analysis of plate problems formulated using the Kirchhoff plate theory
we also need continuity in the first derivatives of the displacement functions.

In summary, therefore, for a C™~' problem [C™™! = continuity on trial functions and
their derivatives up to order (m — 1)], in the classical Ritz analysis the trial functions are
selected to satisfy exactly all boundary conditions that involve derivatives up to order
(m — 1). The same holds in finite element analysis, but in addition, continuity in the trial
functions and their derivatives up to order (m — 1) must be satisfied between elements in
order for the finite element solution to correspond to a Ritz analysis.

Although the classical Ritz analysis procedure and the displacement-based finite
element method are theoretically identical, in practice, the finite element method has
important advantages over a conventional Ritz analysis. One disadvantage of the conven-
tional Ritz analysis is that the Ritz functions are defined over the whole region considered.
For example, in the analysis of the cantilever in Example 3.24, the Ritz functions spanned
from x = 0 to x = L. Therefore, in the conventional Ritz analysis, the matrix K is a full
matrix, and as pointed out in Section 8.2.3, the numerical operations required for solution
of the resulting algebraic equations are considerable if many functions are used.

A particular difficulty in a conventional Ritz analysis is the selection of appropriate
Ritz functions since the solution is a linear combination of these functions. In order to solve
accurately for large displacement or stress gradients, many functions may be needed.
However, these functions also unnecessarily extend over the regions in which the displace-
ments and stresses vary rather slowly and where not many functions are needed.

Another difficulty arises in the conventional Ritz analysis when the total region of
interest is made up of subregions with different kinds of strain distributions. As an example,
consider a plate that is supported by edge beams and columns. In such a case, the Ritz
functions used for one region (e.g., the plate) are not appropriate for the other regions (i.e.,
the edge beams and columns), and special displacement continuity conditions or boundary
relations must be introduced.

The few reasons given already show that the conventional Ritz analysis is, in general,
not particularly computer-oriented, except'in some cases for the development of special-
purpose programs. On the other hand, the finite element method has to a large extent
removed the practical difficulties while retaining the advantageous properties of the con-
ventional Ritz method. With regard to the difficulties mentioned above, the selection of Ritz
functions is handled by using an adequate element library in the computer program. The use
of relatively many functions in regions of high stress and displacement gradients is possible
simply by using many elements, and the combination of domains with different kinds of
strain distributions is possible by using different kinds of elements to idealize the domains.
It is this generality of the finite element method, and the good mathematical foundation,
that have made the finite element method the very widely used analysis tool in today’s
engineering environments.
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4.3.4 Properties of the Finite Element Solution

Let us consider the general linear elasticity problem and its finite element solution and
identify certain properties that are useful for an understanding of the finite element method.
We shall use the notation summarized in Table 4.5.

The elasticity problem can be written as follows (see, for example, G. Strang and G. J.
Fix [A], P. G. Ciarlet [A], or F. Brezzi and M, Fortin [A]).

Find u € V such that

am,v)=({f,v) VYvevV (4.71)

where the space V is defined as

du;
V= {v{ v € L*(Vol); —5% € LAVol), i,j = 1,2,3,uls, = 0,i = 1,2, 3} (4.72)
j

Here L*(Vol) is the space of square integrable functions in the volume, “Vol”, of the body
being considered,

L(Vol) = {w} w is defined in Vol and J

Vol

(2 (W,-)z> dVol = ”Wnlz.-’(\tox) < +°°} (4.73)

i=]

TABLE 4.5 Noration used in discussion of the properties and convergence of finite element
solutions
Symbol Meaning
a(,.) Bilinear form corresponding to model problem being considered (see Example 4.22)
Load vector
Exact displacement solution to mathematical model; an element of the space V

A\ Displacements; an element of the space V
u Finite element solution, an element of the space V,,
Vi Finite element displacements; an element of the space V,,
v For all
€ An element of

vV, Vi Spaces of functions [see (4.72) and (4.84)]

Vol Volume of body considered

L? Space of a square integrable functions [see (4.73)]

(A Error between exact and finite element selution, e, = u — w,
3 There exists

c Contained in

(%’ Contained in but not equal to

I lle Energy norm [see (4.74)]

inf We take the infimum.

sup We take the supremum.
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Hence, (4.72) defines a space of functions corresponding to a general three-dimensional
analysis. The functions in the space vanish on the boundary S,, and the squares of the

functions and of their first derivatives are integrable. Corresponding to V, we use the energy
norm

Ivliz = a(v. ¥) (4.74)
which actually corresponds to twice the strain energy stored in the body when the body is
subjected to the displacement field v.

We assume in our discussion that the structure considered in (4.71) is properly
supported, corrresponding to the zero displacement conditions on S, so that|| v |2 is greater
than zero for any v different from zero.

In addition, we shall also use the Sobolev norms of orderm = O andm = 1 defined as

m=0:

(Ivio) = Lm@ (u,-)z) dVol 4.75)

Uvll)? = v lo? + j

Vol

(3 ()]avo -

i=1,j=1 X

For our elasticity problem the norm of order 1 is used,'' and we have the following two
important properties for our bilinear form a.

Continuity:

IM>0 such that v v, ¥2 E V, Ia(VI, Vz) i =M ” Vi "1 “ V2 Iil (4.77)

Ellipticity:

Ja>0suchthat Vv EV, alv,v) =z afv|? (4.78)

where the constants a and M depend on the actual elasticity problem being considered,
including the material constants used, but are independent of v.

"In our discussion, we shall also use the Poincaré-Friedrichs inequality, namely, that for the analysis
problems we consider, for any v we have

[L(Berova=c] (3 () ou

where c is a constant (see, for example, P. G. Ciarlet [A]).



238 Formulation of the Finite Element Method Chap. 4

The continuity property is satisfied because reasonable norms are used in (4.77), and
the ellipticity property is satisfied because a properly supported (i.e., stable) structure is
being considered (see P. G. Ciarlet [A] for a mathematical proof ). Based on these properties

we have
alvl = (av, ) = o vl 4.79)

where ¢ and c; are constants independent of v, and we therefore have that the energy norm
is equivalent to the 1-norm (see Section 2.7). In mathematical analysis the Sobolev norms
are commonly used to measure rates of convergence (see Section 4.3.5), but in practice the
energy norm is frequently more easily evaluated [see (4.97)]. Because of (4.79), we can say
that convergence can also be defined, instead of using (4.64), as

“\l’““ll/,“l'-)() ash—0

and the energy norm in problem solutions will converge with the same order as the 1-norm.
We examine the continuity and ellipticity of a bilinear form a in the following example.

EXAMPLE 4.24: Consider the problem in Example 4.22. Show that the bilinear form a
satisfies the continuity and ellipticity conditions.
Continuity follows because'?

aw, oW, aW] dw,
alwi, w2 L (Bx ax 3y 3y> xdy

AT BT 31T o
={[ G+ )]0}
A 7[5 + (B2)  asar | = et o

Ellipticity requires that

A+ 8o
> aJ; [W + (Z‘:) + (%)2] dx dy = a|wl|?

However, the Poincaré-Friedrichs inequality,

aw\? (c’)w)]
: = —] + dx d
wa dx dy CL[(GX) 3 x dy

where ¢ is a constant, ensures that (a) is satisfied.

(a)

12 Here we use the Schwarz inequality, which says that for vectorsaand b, a - b| < [[al || bl, where ]}« .
is defined in (2.148).
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The above statements on the elasticity problem encompass one important point
already mentioned earlier: the exact solution to the problem must correspond to a finite
strain energy, see (4.64) and (4.79). Therefore, for example,—strictly—we do not endeavor
to solve general two- or three-dimensional elasticity problems with the mathematical
idealization of point loads (the solution for a point load on a half space corresponds to
infinite strain energy, see for instance S. Timoshenko and J. N. Goodier [A]). Instead, we
represent the loads in the elasticity problem closer to how they actually act in nature, namely
as smoothly distributed loads, which however can have high magnitudes and act over very
small areas. Then the solution of the variational formulation in (4.71) is the same as the
solution of the differential formulation. Of course, in our finite element analysis so long as
the finite elements are much larger than the area of load application, we can replace the
distributed load over the area with an equivalent point load, merely for efficiency of
solution; see Section 1.2 and the example in Fig. 1.4.

An important observation is that the exact solution to our elasticity problem is unique.
Namely, assume that u; and u; are two different solutions; then we would have

a(u;, v) = (£, v) VYveV (4.80)
and a(uy, v) = (£, v) YvevV (4.81)
Subtracting, we obtain

au; —wy, v) =0 VvEeY (4.82)
and takingv = u; — u,, wehave a(u, — uy, u; — wp) = 0. Using (4.79) withv = u, —u,
we obtain [|u, — u; ||| = 0, which means u, = u,, and hence we have proven that our

assumption of two different solutions is untenable.

Now let V, be the space of finite element displacement functions (which correspond
to the displacement interpolations contained in all element displacement interpolation
matrices H™) and let v, be any element in that space (i.e., any displacement pattern that
can be obtained by the displacement interpolations). Let u, be the finite element solution;
hence u, is also an element in V; and the specific element that we seek. Then the finite
element solution of the problem in (4.71) can be written as

Find w, € V, such that
(4.83)

a(up, vi) = £, vi) VWmEYV,

The space V;, is defined as

A(on)i
V, = {v,,] v, € L¥(Vol); —%—:—) € LXVol), i,j = 1,2,3; (oa)i]s, = 0,i = 1, 2, 3} (4.84)
)

and for the elements of this space we use the energy norm (4.74) and the Sobolev norm
(4.76). Of course, V,, C V.

The relation in (4.83) is the principle of virtual work for the finite element discretiza-
tion corresponding to V,.. With this solution space, the continuity and ellipticity conditions

(4.77) and (4.78) are satisfied, using v, € V,, and a positive definite stiffness matrix is
obtained for any V.
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We should note that V, corresponds to a given mesh, where s denotes the generic
element size, and that in the discussion of convergence we of course consider a sequence of
spaces V, (a sequence of meshes with decreasing k). We illustrate in Figure 4.11 the
elements of V, for the discretization dealt with in Example 4.6.

Nodal Element
point number

number

Figure 4.11  Aerial view of basis functions for space Vj used in analysis of cantilever plate
of Example 4.6. The displacement functions are plotted upwards for ease of display, but each
function shown is applicable to the u and v displacements. An element of V; is any linear
combination of the 12 displacement functions. Note that the functions correspond to the

clement displacement interpolation matrices H", discussed in Example 4.6, and that the
displacements at nodes 1, 2 and 3 are zero.
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Considering the finite element solution u, and the exact solution u to the problem, we
have the following important properties.

Property 1. Let the error between the exact solution u and the finite element
solution u, be e,

€=U — U, (4.85)
Then the first property is

alen V) =0 Y v, EV, (4.86)

The proof is obtained by realizing that the principle of virtual work gives
a(u, vp) = (f, vi) Yv,EY, (4.87)
and a(u,., Vh) = (f, V).) v vy € V), (488)

so that by subtraction we obtain (4.86). We may say that the error is “orthogonalina(. , .)”
to all v, in V,. Clearly, as the space V, increases, with the larger space always containing the

smaller space, the solution accuracy will increase continuously. The next two properties are
based on Property 1.

Property 2. The second property is

a(uy, wy) = a(u, ) (4.89)

We prove this property by considering
a(a, u) = a(u, + ey, u, + €
= a(uy, wy) + 2a(uy, e) + a(en, €,) (4.90)
= a(ug, wy) + ales, )

where we have used (4.86) with v, = u,. The relation (4.89) follows because a(ex, €x) > 0
for any e, # 0 (since for the properly supported structure ||v||z > O for any nonzero v).

Hence, the strain energy corresponding to the finite element solution is always smaller
than or equal to the strain energy corresponding to the exact solution.

Property 3. The third property is

aes, e) < afu — vy, u — V) Yv,EV, 491}

For the proof we use that for any w; in V,, we have

ale, + wy, e, + W) = afes, e,) + alwy, wy) (4.92)
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Hence, alex, e;) = alex + w,, e, + wy) (4.93)
Choosing w, = u, — v, gives (4.91).

This third property says that the finite element solution w, is chosen from all the
possible displacement patterns v, in V,, such that the strain energy corresponding tou — u,
is the minimum. Hence, in that sense, the “energy distance” between u and the elements in
Vi is minimized by the solution u, in V.

Using (4.91) and the ellipticity and continuity of the bilinear form, we further obtain

allu—wl|}=<am-uw,u-u)

= inf alu — vi, 8 — V;) (4.94)

YAEV),
=M inf fla = valli flu = vall

where “inf” denotes the infimum (see Table 4 5). If we let d(u, V,) = mf lu — v\, we
recognize that we have the property

Iill - ll),"] = d(u, Vh) (495)

where c is a constant, ¢ = V M/a, independent of h but dependent on the material proper-
ties.!® This result is referred to as Cea’s lemma (see, for example, P. G. Ciarlet [A]).

The above three properties give valuable insight into how the finite element solution
is chosen from the displacement patterns possible within a given finite element mesh and
what we can expect as the mesh is refined.

We note, in particular, that (4.95), which is based on Property 3, states that a
sufficient condition for convergence with our sequence of finite element spaces is that for
any u € V we have lims—influ — v4]|i = 0. Also, (4.95) can be used to measure the rate
of convergence as the mesh is refined by introducing an upper bound on how d(u, V;)
changes with the mesh refinement (see Section 4.3.5).

Further, Properties 2 and 3 say that at the finite element solution the error 