
LIMIT

SPEED

PER ORDER OF 6.172

Computer Architecture and

Performance Engineering

Saman Amarasinghe

Fall 2010

Outline

Overview of Computer Architecture

Profiling a Program

Set of Example Programs

© Saman Amarasinghe 2008

Computer Architecture Overview

Instructions

Memory System

Processor Bus and IO Subsystem

Disk System

GPU and Graphics System

Network

© Saman Amarasinghe 2008

Intel® Nehalem™ Microarchitecture –

Computer Architecture Overview

Instructions

Memory System

Reprinted with permission of Intel Corporation.

© Saman Amarasinghe 2008

Instruction Execution

Cycles

Instruction # 1 2 3 4 5 6 7 8 9 10

Instruction i

Instruction i+1

Instruction i+2

Instruction i+3

Instruction i+4

Instruction Execution

IF: Instruction fetch ID : Instruction decode

EX : Execution MEM: Memory access

WB : Write back

Cycles

Instruction # 1 2 3 4 5 6 7 8 9 10

Instruction i

Instruction i+1

Instruction i+2

Instruction i+3

Instruction i+4

IF ID EX MEM

IF ID EX MEM

WB

WB

Pipelining Execution

IF: Instruction fetch ID : Instruction decode

EX : Execution MEM: Memory access

WB : Write back

Cycles

Instruction # 1 2 3 4 5 6 7 8 9 10

Instruction i

Instruction i+1

Instruction i+2

Instruction i+3

Instruction i+4

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM

WB

WB

WB

WB

WB

Limits to pipelining

Hazards prevent next instruction from executing

during its designated clock cycle

Structural hazards: attempt to use the same hardware to do two

different things at once

Data hazards: Instruction depends on result of prior instruction still in

the pipeline

Control hazards: Caused by delay between the fetching of instructions

and decisions about changes in control flow (branches and jumps).

8/28

Data Hazards:

True Dependence

InstrJ is data dependent (aka true dependence) on InstrI:

addl rbx, rax

J: subl rax,rcx

If two instructions are data dependent, they cannot execute

simultaneously, be completely overlapped or execute in out-

of-order

If data dependence caused a hazard in pipeline,

called a Read After Write (RAW) hazard

l

cmpq	

Benefits of Unrolling
int A[1000000]; For(i=0; i<N; I += 4) {
int B[1000000]; A[i] = A[i] + 1
test() A[i+1] = A[i+1] + 1
{ A[i+2] = A[i+2] + 1

i t i A[i+3] = A[i+3] = A[i+3] + 1A[i+3] + 1int i;
for(i=0; i <1000000; i++) }

A[i] = A[i] + B[i];
}

xorl %edi,, %edi

xorl %edx, %edx ..B1.2:

movl
..B1.2:

movl

movl
mov l

addl
 movl

addq

B(%rdx), %eax

%eax,A(%r dx)

$4, %rdx addl

cmpq $4000000, %rdx	 addl

jl ..B1.2	 addl

addl

..B1.3:
addq

B(%rdi), %eax
4+B(%rdi), %edx
8+B(% di) % 8+B(%rdi), %ecx
12+B(%rdi), %esi

%eax,A(%r di)
%edx, 4+A(%rdi)
%ecx, 8+A(%rdi)
%esi, 12+A(%rdi)
$16, %rdi

ret cmpq $4000000$4000000, % %rdrdii
jl ..B1.2

..B1.3:
ret

Name Dependence #1:

Anti-dependence

Name dependence: when 2 instructions use same register

or memory location, called a name, but no flow of data

between the instructions associated with that name; 2

versions of name dependence

InstrJ writes operand before InstrI reads it

subl rax,rbx

addl rcx, rax

Called an “anti-dependence” by compiler writers.

This results from reuse of the name “rax”

If anti-dependence caused a hazard in the pipeline, called a

Write After Read (WAR) hazard

Name Dependence #2:

Output dependence
InstrJ writes operand before InstrI writes it.

subl rcx, rax

addl rbx, rax

Called an “output dependence” by compiler writers.

This also results from the reuse of name “rax”

If anti-dependence caused a hazard in the pipeline, called a
Write After Write (WAW) hazard

Instructions involved in a name dependence can execute
simultaneously if name used in instructions is changed so
instructions do not conflict

Register renaming resolves name dependence for registers

Renaming can be done either by compiler or by HW

Control Hazards

Every instruction is control dependent on some set of
branches, and, in general, these control dependencies must
be preserved to preserve program order

if p1 {

S1;

};

if p2 {

S2;

}

S1 is control dependent on p1, and S2 is control
dependent on p2 but not on p1.

Control dependence need not be preserved

willing to execute instructions that should not have been executed,
thereby violating the control dependences, if can do so without
affecting correctness of the program

Speculative Execution

Intel® Nehalem™ Microarchitecture

– Pipelining

20-24 stage Pipeline

Reprinted with permission of Intel Corporation.

© Saman Amarasinghe 2008

Superscalar Execution

Cycles

Instruction type 1 2 3 4 5 6 7

Integer IF ID EX MEM

Floating point IF ID EX MEM

Integer

Floating point

Integer

Floating point

Integer

Floating point

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM

WB

WB

WB

WB

WB

WB

WB

WB

2-issue super-scalar machine

ILP and Data Hazards
Finds Instruction Level Parallelism

Multiple instructions issued in parallel

HW/SW must preserve program order:

order instructions would execute in if executed sequentially

as determined by original source program

Dependences are a property of programs

Importance of the data dependencies

1) indicates the possibility of a hazard

2) determines order in which results must be calculated

3) sets an upper bound on how much parallelism can possibly be

exploited

Goal: exploit parallelism by preserving program order only

where it affects the outcome of the program

Multimedia Instructions

SIMD:
In computing, SIMD (Single Instruction, Multiple Data) is

a technique employed to achieve data level parallelism, as
in a vector or array processor.

Intel calls the latest version SSE

Multimedia Instructions

Packed data type

Separate register file

Single Instruction on Multiple Data (SIMD)

© x86.org. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
http:x86.org

Multimedia Instructions

Reprinted with permission of Intel Corporation.

Multimedia Instructions

int A[1000000];

int B[1000000];

test()

{

int i;
for(i=0; i <1000000; i++)

A[i] = A[i] + B[i];
}

xorl %edx, %edx

..B1.2:

movl B(%rdx), %eax

addl %eax,A(%rdx)

addq $4, %rdx

cmpq $4000000, %rdx

jl ..B1.2

..B1.3:

ret

xorl %eax, %eax

..B1.2:

movdqa A(%rax), %xmm0

paddd B(%rax), %xmm0

movdqa 16+A(%rax), %xmm1

paddd 16+B(%rax), %xmm1

movdqa 32+A(%rax), %xmm2

paddd 32+B(%rax), %xmm2

movdqa 48+A(%rax), %xmm3

paddd 48+B(%rax), %xmm3

movdqa 64+A(%rax), %xmm4

paddd 64+B(%rax), %xmm4

movdqa 80+A(%rax), %xmm5

paddd 80+B(%rax), %xmm5

movdqa 96+A(%rax), %xmm6

paddd 96+B(%rax), %xmm6

movdqa 112+A(%rax), %xmm7

paddd 112+B(%rax), %xmm7

movdqa %xmm0,A(%rax)

movdqa %xmm1, 16+A(%rax)

movdqa %xmm2, 32+A(%rax)

movdqa %xmm3, 48+A(%rax)

movdqa %xmm4, 64+A(%rax)

movdqa %xmm5, 80+A(%rax)

movdqa %xmm6, 96+A(%rax)

movdqa %xmm7, 112+A(%rax)

addq $128, %rax

cmpq $4000000, %rax

jl ..B1.2

..B1.3:

ret

Intel® Nehalem™ Microarchitecture

– Superscalar Execution

Can execute 6 Ops per cycle

3 Memory Operations
1 Load

1 Sore address

1 Store data

3 Computational Operations

Reprinted with permission of Intel Corporation.

© Saman Amarasinghe 2008

Out of Order Execution
Issue varying numbers of instructions per clock

dynamically scheduled

• Extracting ILP by examining 100’s of instructions

• Scheduling them in parallel as operands become available

• Rename registers to eliminate anti and dependences

• out-of-order execution

• Speculative execution

© Saman Amarasinghe 2008

Speculation
Different predictors

 Branch Prediction

 Value Prediction

 Prefetching (memory access pattern prediction)

Greater ILP: Overcome control dependence by hardware

speculating on outcome of branches and executing

program as if guesses were correct

 Speculation fetch, issue, and execute instructions as if

branch predictions were always correct

 Dynamic scheduling only fetches and issues instructions

Essentially a data flow execution model: Operations

execute as soon as their operands are available

Intel® Nehalem™ Microarchitecture
-Out of Order Execution

20 to 24 stage Pipeline

6 micro-ops issued at a

time

128 micro-ops waiting to

be executed

Reprinted with permission of Intel Corporation.

© Saman Amarasinghe 2008

Branch Prediction and

Speculative Execution

Cycles

Instruction # 1 2 3 4 5 6 7 8 9 10

Instruction i
(branch)

Instruction i+1

Instruction i+2

Instruction i+3

Instruction i+4

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM

WB

WB

WB

WB

WB

Instruction i+5 IF ID EX MEM WB

Branch target decided

Branch Prediction and

Speculative Execution

Cycles

Instruction i
(branch)

stall

stall

stall

stall

IF ID EX

Instruction i+1

Instruction # 1 2 3 4 5 6 7 8 9 10
Branch target decided

MEM WB

IF ID EX MEM WB

Branch Prediction and

Speculative Execution

Build a predictor to figure out which direction branch is going

 Today we have complex predictors with 99+% accuracy

 Even predict the address in indirect branches / returns

Fetch and speculatively execute from the predicted address

 No pipeline stalls

When the branch is finally decided, the speculative execution is

confirmed or squashed

Intel® Core™ Microarchitecture –
Branch Prediction

Complex predictor

Multiple predictors

Use branch history

Different algorithms

Vote at the end

Indirect address predictor

Return address predictor

Nehalem is even more

complicated!

Reprinted with permission of Intel Corporation.

© Saman Amarasinghe 2008

Memory System

The Principle of Locality:
 Program access a relatively small portion of the address space at any instant of time.

Two Different Types of Locality:
 Temporal Locality (Locality in Time): If an item is referenced, it will tend to be referenced

again soon (e.g., loops, reuse)

 Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close
by tend to be referenced soon
(e.g., straight-line code, array access)

Last 30 years, HW relied on locality for memory perf.

P MEM$

8/28 CS252-Fall’07 29

Levels of the Memory Hierarchy

Capacity

Access Time
 Staging

Cost
 Xfer Unit

CPU Registers Registers

100s Bytes

prog./compiler 300 – 500 ps (0.3-0.5 ns)
 Instr. Operands 1-8 bytes

L1 and L2 Cache L1 Cache
10s-100s K Bytes
 cache cntl
~1 ns - ~10 ns
 Blocks 32-64 bytes
$1000s/ GByte

cache cntl

Main Memory 64-128 bytes

G Bytes

80ns- 200ns

~ $100/ GByte

Disk

Upper Level

faster

L2 Cache

Blocks

10s T Bytes, 10 ms Disk
(10,000,000 ns)
~ $1 / GByte user/operator

Files Mbytes

Memory

Larger
Tape
infinite Tape Lower Level
sec-min
~$1 / GByte

8/28 CS252-Fall’07 30

OS
Pages 4K-8K bytes

Cache Issues
Cold Miss

 The first time the data is available

 Prefetching may be able to reduce the cost

Capacity Miss

 The previous access has been evicted because too much data touched in between

 “Working Set” too large

 Reorganize the data access so reuse occurs before getting evicted.

 Prefetch otherwise

Conflict Miss

 Multiple data items mapped to the same location. Evicted even before cache is full

 Rearrange data and/or pad arrays

True Sharing Miss

 Thread in another processor wanted the data, it got moved to the other cache

 Minimize sharing/locks

False Sharing Miss

 Other processor used different data in the same cache line. So the line got moved

 Pad data and make sure structures such as locks don’t get into the same cache line

Intel® Nehalem™ Microarchitecture –
Memory Sub-system

Intel 6 Core Processor

Core Core Core Core Core Core

L1 Data Cache

Size Line Size Latency Associativty

32 KB 64 bytes 4 ns 8-way

L1 Instruction Cache

L1 L1 L1 L1
dat

L1 L1 L1 L1
dat inst dat

L1 L1
dat

L1 L1
dat

Size Line Size Latency Associativty
inst dat inst inst inst inst

32 KB 64 bytes 4 ns 4-way

L2 Cache
L2 L2 L2 L2 L2 L2 Size Line Size Latency Associativty

256 KB 64 bytes 10 ns 8-way

L3 Cache
L3 Size Line Size Latency Associativty

12 MB 64 bytes 50 ns 16-way

Main Memory

Main Memory Size Line Size Latency Associativty

64 bytes 75 ns

Outline

Overview of Computer Architecture

Profiling a Program

Set of Example Programs

© Saman Amarasinghe 2008

.

Intel, VTune, and the Intel logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States or other countries.

Performance Analyzer

Helps you identify and characterize

performance issues by:

•	 Collecting performance data from the system running

your application.

•	 Organizing and displaying the data in a variety of

interactive views, from system-wide down to source code

or processor instruction perspective.

•	 Identifying potential performance issues and suggesting

improvements.

• Example: Intel Vtune, gprof, oprofile, perf

Copyright © 2004 Intel Corporation
34

Intel and the Intel logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States or other countries.

Performance Tuning Concepts

What Is a Hotspot?

Where in an application or system there is a

significant amount of activity

Where = address in memory

=> OS process

=> OS thread

=> executable file or module

=> user function (requires symbols)

=> line of source code (requires symbols with

line numbers) or assembly instruction

Significant = activity that occurs infrequently probably does

not have much impact on system performance

Activity = time spent or other internal processor event
•	 Examples of other events: Cache misses, branch mispredictions, floating-point

instructions retired, partial register stalls, and so on.

Copyright © 2004 Intel Corporation.

35

.
Intel and the In

tel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States or other countries

Two Ways to Track Location

Problem: I need to know where you spend most of
your time.

Statistical Solution: I call you on your cellular phone

every 30 minutes and ask you to report your location.

Then I plot the data as a histogram.

Instrumentation Solution: I install a special phone

booth at the entrance of every site you plan to visit.As

you enter or exit every site, you first go into the booth,

call the operator to get the exact time, and then call me

and tell me where you are and when you got there.

3
Copyright © 2004 Intel Corporation.

.
Intel and the Intel logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States or other countries.

Sampling Collector

Periodically interrupt the processor to

obtain the execution context

 Time-based sampling (TBS) is triggered by:

•	 Operating system timer services.

•	 Every n processor clockticks.

 Event-based sampling (EBS) is triggered by

processor event counter overflow.

•	 These events are processor-specific, like L2 cache misses,

branch mispredictions, floating-point instructions retired,

and so on.

Copyright © 2004 Intel Corporation.

37

.
Intel and the Intel logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States or other countries.

The Statistical Solution: Advantages

No Installation Required

 No need to install a phone everywhere you want a man

in the field to make a report.

Wide Coverage

 Assuming all his territory has cellular coverage, you can

track him wherever he goes.

Low Overhead

 Answering his cellular telephone once in a while,

reporting his location, and returning to other tasks do

not take much of his time.

3
Copyright © 2004 Intel Corporation.

Intel and the Intel logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States or other countries.

The Statistical Solution:
Disadvantages

Approximate Precision:

 A number of factors can influence exactly how long he takes to

answer the phone.

Limited Report:

 Insufficient time to find out how he got to where he is or where he

has been since you last called him.

Statistical Significance: There are some

places you might not locate him, if he does not

go there often or he does not stay very long.

Does that really matter?

Copyright © 2004 Intel Corporation.

3

	

.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its

subsidiaries in the United States or other countries.

The Instrumentation Solution:
Advantages

Perfect Accuracy

 I know where you were immediately before and after

your visit to each customer.

 I can calculate how much time you spent at each

customer site.

 I know how many times you visited each customer site.

Copyright © 2004 Intel Corporation.

40

Intel and the Intel logo ar

e trademarks or registered trademarks of Intel Corporation or its

subsidiaries in the United

States or other countries.

The Instrumentation Solution:
Disadvantages

Low Granularity

 Too coarse; the site is the site.

High Overhead

 You spend valuable time going to phone booths, calling

operators, and calling me.

High Touch

 I have to build all those phone booths, which expands the

space in each site you visit.

Copyright © 2004 Intel Corporation.

4

Events
Intel provide 100’s of types of events

Can be very confusing (ex:“number of bogus branches”)

Some useful event categories

• Total instruction count and mix

• Branch events

• Load/store events

• L1/L2 cache events

• Prefetching events

• TLB events

• Multicore events

Copyright © 2004 Intel Corporation.

Intel and the Intel logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States or other countries.

Use Event Ratios

In isolation, events may not tell you much.

Event ratios are dynamically calculated values based on
events that make up the formula.
Cycles per instruction (CPI) consists of clockticks and instructions retired.

There are a wide variety of predefined event ratios.

Copyright © 2004 Intel Corporation.

43

Outline

Overview of Computer Architecture

Profiling a Program

Set of Example Programs

© Saman Amarasinghe 2008

test div by 4

for(j=0; j<MAXA; j++) {

if((j & 0x03) == 0)

A[j] = A[j]+1;

}

test incA[i] < maxa_half

for(j=0; j<MAXA; j++) {

if(incA[j] < maxa_half)

multiple passes over data A[j] = A[j]+1;

}
for(j=0; j<MAXA; j++)

A[j] = A[j]+1;
test rndA[i] < maxa_half

test j < maxa_half for(j=0; j<MAXA; j++) {

if(rndA[j] < maxa_half)
for(j=0; j<MAXA; j++) {

A[j] = A[j]+1;
if(j < maxa_half)

}
A[j] = A[j]+1;

}

#define MAXA 10000

int maxa_half = MAXA/2;

int32_t A[MAXA];

// [0, 1, 2, 3, 4, …]

int32_t incA[MAXA];

// [0..MAXA-1 randomly]

int32_t rndA[MAXA];

© Saman Amarasinghe 2008

Assembly listings
multiple passes over data test j < maxa_half

for(j=0; j<MAXA; j++) for(j=0; j<MAXA; j++) {

A[j] [j] ; (j _)

rax

[j] = A[j] +1; if(j < maxa_half)
A[j] = A[j]+1;

}

momovl vl AA, % %eaxeax momovlvl maxamaxa_halfhalf(%rip)(%rip) % %edxedx,

movl $A+40000, %edx xorl %ecx, %ecx
..B3.3: ..B3.2:

incl (%rax) cmpl %edx, %ecx
addq $4% jge B3 4 addq $4, %rax jge ..
B3.4
cmpq %rdx, %rax ..B3.3:

jl ..B3.3 movslq %ecx, %rax

incl A(,%rax,4)
..B3.4:

incl %ecx
cmpl $10000, %ecx
jl ..B3.2

© Saman Amarasinghe 2008

cmpq rcx x

Assembly listings
test div by 4 test incA[i] < maxa_half

for(j=0; j<MAXA; j++) { for(j=0; j<MAXA; j++) {
if((j)) ([j] _)((j & 0x03) == 0) if(incA[j] < maxa_half)

A[j] = A[j]+1; A[j] = A[j]+1;
} }

xorlxorl %%edxedx, % %edxedx momovslqvslq maxamaxa half(%rip), %rdx _half(%rip) %rdx
..B2.2: xorl %ecx, %ecx

testb $3, %dl xorl %eax, %eax
jne ..B2.4 ..B1.2:

..B2B2 . 3:3: cmpq incAincA((% ,%rcx,8)8), %% rdrd x
movslq %edx, %rax jle ..B1.4
incl A(,%rax,4) ..B1.3:

..B2.4: incl A(%rax)
incl %edx ..B1.4:
cmpl $10000, %edx addq $4, %rax
jl ..B2.2 addq $1, %rcx

cmpq $10000, %rcx
jl ..B1.2

© Saman Amarasinghe 2008

_

(m
s)

TI
RE

D
.A

N
Y

TI
RE

D
.L

O
A

D
S

RE
TI

RE
D

.A
N

Y

Ru
nt

im
e

IN
ST

RE
ev

en
ts

IN
ST

RE
ev

en
ts

BR
_I

N
ST

ev
en

ts

multi pass over 101 1920064000 4.80E+08 4.81E+08 +08

test j < maxa half 127 2880096000 2 40E+08test j < maxa half 127 2880096000 2.40E+08 9.57E+08

test div by 4 223 2636930000 1.20E+08 9.59E+08 +09

test incA[i] < maxa half 134 3120104000 7.20E+08 9.60E+08 +09

test rndA[i] <maxa_half 687 3123262000 7.22E+08 9.59E+08 +09

multi pass over 1.00 1.00 1.00 1.00 00

test j < maxa half 1.26 1.50 0.50 1.99 75

test div by 4 2.21 1.37 0.25 1.99 62

i A[i] h lf 1 33 1 63 1 50 2 00test incA[i] < maxa half 1.33 1.63 1.50 2.00 .

test rndA[i] <maxa_half 6.80 1.63 1.50 1.99 50

results�

m
e

(m
s)

Ru

nt
im

lmulti pass over 1 00 1.00

_test j < maxa_half 1.26

t t <test div by 4 _test div by 4 2 21 2.21

test incA[i] < maxa_half 1.33

test rndA[i] <maxa_half 6.80

© Saman Amarasinghe 2008

results

R
u

n
ti

m
e

 (
m

s)

IN
ST

_R
ET

IR
ED

.A
N

Y

ev
en

ts

multi pass over 1.00 1.00

test j < maxa_half 1.26 1.50

test div by 4 2.21 1.37

test incA[i] < maxa_half 1.33 1.63

test rndA[i] <maxa_half 6.80 1.63

INST_RETIRED.ANY Instructions retired.

This event counts the number of instructions that retire execution. For instructions that consist

of multiple micro-ops, this event counts the retirement of the last micro-op of the instruction.

The counter continues counting during hardware interrupts, traps, and inside interrupt handlers.

© Saman Amarasinghe 2008

results

R
u

n
ti

m
e

(m
s)

IN
ST

_R
ET

IR
ED

.A
N

Y

ev
en

ts

IN
ST

_R
ET

IR
ED

.L
O

A
D

S

ev
en

ts

B
R

_I
N

ST
_R

ET
IR

ED
.A

N
Y

ev
en

ts

In
st

 R
et

ir
ed

(A
N

Y
-

LO
A

D
 -

 B
R

)

multi pass over 1.00 1.00 1.00 1.00 1.00

test j < maxa_half 1.26 1.50 0.50 1.99 1.75

test div by 4 2.21 1.37 0.25 1.99 1.62

test incA[i] < maxa_half 1.33 1.63 1.50 2.00 1.50

test rndA[i] <maxa_half 6.80 1.63 1.50 1.99 1.50

INST_RETIRED.LOADS Instructions retired, contain a load

INST_RETIRED.STORE Instructions retired, contain a store

BR_INST_RETIRED.ANY Number of branch instructions retired

© Saman Amarasinghe 2008

results

R
u

n
ti

m
e

 (
m

s)

IN
ST

_R
ET

IR
ED

.A
N

Y

ev
en

ts

C
lo

ck
s

p
er

 In
st

ru
ct

io
n

s

R
et

ir
ed

 -
 C

P
I

C
P

I*
T

o
t

In
st

ru
ct

io
n

s

multi pass over 1.00 1.00 1.00 1.00

test j < maxa_half 1.26 1.50 0.84 1.25

test div by 4 2.21 1.37 1.60 2.19

test incA[i] < maxa_half 1.33 1.63 0.82 1.33

test rndA[i] <maxa_half 6.80 1.63 4.17 6.78

CPI CPU_CLK_UNHALTED.CORE / INST_RETIRED.ANY

High CPI indicates that instructions require more cycles to execute than they should. In

this case there may be opportunities to modify your code to improve the efficiency with

which instructions are executed within the processor. CPI can get as low as 0.25 cycles

per instructions. © Saman Amarasinghe 2008

results

R
u

n
ti

m
e

(m
s)

B
R

_I
N

ST
_R

ET
IR

ED
.M

IS

P
R

ED
 %

multi pass over 1.00 1.00

test j < maxa_half 1.26 2.50

test div by 4 2.21 400.00

test incA[i] < maxa_half 1.33 2.00

test rndA[i] <maxa_half 6.80 2134.00

BR_INST_RETIRED.MISPRED
This event counts the number of retired branch instructions that were mispredicted by

the processor.A branch misprediction occurs when the processor predicts that the

branch would be taken, but it is not, or vice-versa. ….

© Saman Amarasinghe 2008

results

R
u

n
ti

m
e

(m
s)

IN
ST

_R
ET

IR
ED

.A
N

Y

ev
en

ts

B
R

_I
N

ST
_R

ET
IR

ED
.M

IS

P
R

ED
 %

"I
n

st
ru

ct
io

n
s

w
as

te
d

"

o
f

m
is

p
re

d
ic

te
d

b
ra

n
ch

es

To
ta

l "
C

o
st

"

multi pass over 1.00 1.00 1.00 1.00 1.00

test j < maxa_half 1.26 1.50 2.50 4.97 1.50

test div by 4 2.21 1.37 400.00 797.51 2.21

test incA[i] < maxa_half 1.33 1.63 2.00 3.99 1.63

test rndA[i] <maxa_half 6.80 1.63 2134.00 4254.69 6.10

Assume the cost of a mispredicted branch is 21 “instructions wasted”

 Number 21 got the closest answer

© Saman Amarasinghe 2008

Blocked access

for(j=0; j<MAXB; j += MAXA)

for(i=0; i<DRV; i++)

for(k=0; k<MAXA; k++)

B[j+k] = B[j+k]+1;

multiple passes over array stride access

for(i=0; i<DRV; i++) for(i=0; i<DRV; i++)

for(j=0; j<MAXB; j++) for(k=0; k<MAXA; k++)

B[j] = B[j]+1; for(j=0; j<MAXB; j +=

B[j+k] = B[j+k]+1;

Accessing Memory

inner accumulate

for(j=0; j<MAXB; j++)

for(i=0; i<DRV; i++)

B[j] = B[j]+1;

MAXA)

© Saman Amarasinghe 2008

multiple

passes over

array

blocked

access

stride

access

Memory access pattern

inner

accumulate

R
u

n
ti

m
e

(m
s)

IN
ST

_R
ET

IR
ED

.A
N

Y
ev

en
ts

C
lo

ck
s

p
er

 In
st

ru
ct

io
n

s
R

et
ir

ed
 -

C
P

I

C
P

I*
To

t
In

st
ru

ct
io

n
s

IN
ST

_R
ET

IR
ED

.L
O

A
D

S
ev

en
ts

L1
 D

at
a

C
ac

h
e

M
is

s
R

at
e

L2
_

LI
N

ES
_I

N
.S

EL
F.

D
EM

A
N

D
 e

ve
n

ts

R
ES

O
U

R
C

E_
ST

A
LL

S.
A

N
Y

%

Inner Accumulate 162 2.3E+09 0.662 1.51E+09 2.40E+08 0.3% 1.00E+05 0.01%

Multiple Passes 249 1.9E+09 1.196 2.30E+09 4.80E+08 1.6% 5.00E+05 0.28%

Blocked Access 140 1.9E+09 0.676 1.30E+09 4.80E+08 1.6% 2.00E+05 0.10%

Strided Access 1420 1.9E+09 6.893 1.32E+10 4.80E+08 50.1% 2.02E+07 2.20%

Inner Accumulate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Multiple Passes 1.54 0.84 1.81 1.52 2.00 5.33 5.00 28.00

Blocked Access 0.86 0.84 1.02 0.86 2.00 5.33 2.00 10.00

Strided Access 8.77 0.84 10.41 8.75 2.00 167.00 202.00 220.00

R
u

n
ti

m
e

 (
m

s)

IN
S

T
_

R
E

T
IR

E
D

.A
N

Y

e
v

e
n

ts

C
lo

ck
s

p
e

r
In

st
ru

ct
io

n
s

R
e

ti
re

d
 -

 C
P

I

C
P

I*
T

o
t

In
st

ru
ct

io
n

s

IN
S

T
_

R
E

T
IR

E
D

.L
O

A
D

S

e
v

e
n

ts

L1
 D

a
ta

 C
a

ch
e

 M
is

s

R
a

te

L2
_

LI
N

E
S

_
IN

.S
E

LF
.D

E
M

A
N

D
 e

v
e

n
ts

R
E

S
O

U
R

C
E

_
S

T
A

LL
S

.A
N

Y

%

Inner Accumulate 1.0 1.0 1.0 1.0 1 1 1 1

Multiple Passes 1.5 0.8 1.8 1.5 2 5 5 28

Blocked Access 0.9 0.8 1.0 0.9 2 5 2 10

Strided Access 8.8 0.8 10.4 8.8 2 167 202 220

Results

© Saman Amarasinghe 2008

Pointer chase

struct list * curr;

for(i=0; i<DRV; i++) {

curr = start;

for(j=0; j<MAXB; j++) {

curri = curri + 1;

curr = currnext;

}

}

Indirect stride access

for(i=0; i<DRV; i++)

for(j=0; j<MAXB; j += MAXA)

for(k=0; k<MAXA; k++)

B[incA[k]+j] = B[incA[k]+j]+1;

Indirect random access

for(i=0; i<DRV; i++)

for(j=0; j<MAXB; j += MAXA)

for(k=0; k<MAXA; k++)

B[rndA[k]*MAXB/MAXA+k]
= B[rndA[k]*MAXB/MAXA+k]+1;

© Saman Amarasinghe 2008

Results

 ‐

ev
en

ts

ts Re
tir
ed

en
ts

N
D

A %
 Ysn Y io s D

S M N

 st n A s D
E .AS

ev
en R ev e A % s

io
n

Ra
t

 A
N
Y

sY
.A
N ct on

s

ru it

IR
ED st

.L
O
A
D
S

M
is

ru
c

In r IR
ED

T e T Ca
ch
e

(m
s)

ns
t

_I
N
.S
EL
F.
D
EM

S CE
_S
TA

LL
S.

I

Y t n A s . S

N c o O

.A ru it .L M
i F LL E

) D t c A
L

s

st
ru D he .S T

m
s SE In E PI IN(IR r C n IR ac ts_ n E_

un
tim

e T
ST
_R

E e I T

p t
ck
s o

IN Cl
o I I*

T

ST
_R

E C S C

D
at
a

R CP CP

IN L1 L2
_L
IN
E

RE
SO

U
R

Inner Accumulate 162 2.3E+09 0.662 1.51E+09 2.40E+08 0.3% 1.00E+05 0.01%
indirect random access 1320 6.2E+09 1.998 1.25E+10 9.60E+08 16.0% 0.00E+00 1.80%

(T

pe
C n T _ nC Ce E ‐ I S E E R

m R s
ed ot R ass ti _ t N

un
t T

ve
n ck T _ I ev

e

Ut r i * T
ve

n D
a e L

N
S lo et PI ate C C N
S

e R 2_ N
D O

 1 ESR R L L A R %indirect strided access 250 2.4E+09 0.988 2.37E+09 9.60E+08 3.8% 6.00E+05 0.25%
pointer chase 2015 1.9E+09 9.862 1.89E+10 9.60E+08 12.5% 4.30E+06 3.20%
pointer chase ‐‐ post randomize 23587 2E+09 115.46 2.25E+11 9.62E+08 58.1% 7.75E+08 39.27%

Inner Accumulate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
i di t d 8 15 2 74 3 02 8 26 4 00 53 33 0 00 180 00

R I e C R C I e L R L A R %

Inner Accumulate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
indirect random access 8.1 2.7 3.0 8.3 4.0 53.3 0.0 180.0

1 5 1 1 1 5 1 6 4 0 12 7 6 0 25 0indirect random access 8.15 2.74 3.02 8.26 4.00 53.33 0.00 180.00
indirect strided access 1.54 1.05 1.49 1.57 4.00 12.67 6.00 25.00
pointer chase 12.44 0.84 14.90 12.55 4.00 41.67 43.00 320.00
pointer chase ‐‐ post randomize 145.60 0.86 174.41 149.29 4.01 193.67 7752.00 3927.00

indirect strided access 1.5 1.1 1.5 1.6 4.0 12.7 6.0 25.0
pointer chase 12.4 0.8 14.9 12.5 4.0 41.7 43.0 320.0
pointer chase ‐‐ post randomize 146 0.9 174 149 4.0 194 7752 3927

© Saman Amarasinghe 2008

Compiler Heroics
What else can be done

Deeper optimizations (see lecture 2)

Vectorization for SSE

Loop interchange

O1 O2 O3

multi pass over 101.78 32.25 3.16 13.09 7.78

test j < maxa_half 127.28 34.78 3.66 37.10 3.43

test div by 3 223.43 37.24 6.00 20.53 10.88

test incA[i] < maxa_half 134.50 134.11 1.00 152.27 0.88

test rndA[i] <maxa_half 687.44 658.72 1.04 154.06 4.46

Inner Accumulate 158.59 64.02 2.48 64.03 2.48

Multiple Passes 242.08 233.43 1.04 64.20 3.77

Blocked Access 136.79 82.27 1.66 82.00 1.67

Strided Access 1392.56 1400.19 0.99 81.96 16.99

indirect random access 1315.34 1308.75 1.01 1350.17 0.97

indirect strided access 248.37 250.55 0.99 250.48 0.99

pointer chase 2005.12 2002.99 1.00 2007.83 1.00

pointer chase -- post randomize 23581.20 23603.33 1.00 23559.83 1.00

© Saman Amarasinghe 2008

MIT OpenCourseWare
http://ocw.mit.edu

6.172 Performance Engineering of Software Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

