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Intel® Nehalem™ Microarchitecture –

Computer Architecture Overview 

Instructions 

Memory System 
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Instruction Execution


Cycles


Instruction # 1 2 3 4 5 6 7 8 9 10


Instruction i 

Instruction i+1 

Instruction i+2 

Instruction i+3 

Instruction i+4 



Instruction Execution


IF: Instruction fetch ID : Instruction decode 

EX : Execution MEM: Memory access 

WB : Write back 

Cycles 

Instruction # 1 2 3 4 5 6 7 8 9 10


Instruction i 

Instruction i+1 

Instruction i+2 

Instruction i+3 

Instruction i+4 

IF ID EX MEM 

IF ID EX MEM 

WB 

WB 



Pipelining Execution


IF: Instruction fetch ID : Instruction decode 

EX : Execution MEM: Memory access 

WB : Write back 

Cycles 

Instruction # 1 2 3 4 5 6 7 8 9 10


Instruction i 

Instruction i+1 

Instruction i+2 

Instruction i+3 

Instruction i+4 

IF ID EX MEM 

IF ID EX MEM 

IF ID EX MEM 

IF ID EX MEM 

IF ID EX MEM 

WB 

WB 

WB 

WB 

WB 



Limits to pipelining


Hazards prevent next instruction from executing 

during its designated clock cycle 

Structural hazards: attempt to use the same hardware to do two 

different things at once 

Data hazards: Instruction depends on result of prior instruction still in 

the pipeline 

Control hazards: Caused by delay between the fetching of instructions 

and decisions about changes in control flow (branches and jumps). 
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Data Hazards: 

True Dependence 

InstrJ is data dependent (aka true dependence) on InstrI: 

addl rbx, rax 

J: subl rax,rcx 

If two instructions are data dependent, they cannot execute 

simultaneously, be completely overlapped or execute in out-

of-order 

If data dependence caused a hazard in pipeline, 

called a Read After Write (RAW) hazard 



l


cmpq	

Benefits of Unrolling 
int A[1000000]; For(i=0; i<N; I += 4) { 
int B[1000000]; A[i] = A[i] + 1 
test() A[i+1] = A[i+1] + 1 
{ A[i+2] = A[i+2] + 1 

i t i  A[i+3] = A[i+3] = A[i+3] + 1A[i+3] + 1int i; 
for(i=0; i <1000000; i++) } 

A[i] = A[i] + B[i]; 
} 

xorl %edi,, %edi 

xorl %edx, %edx ..B1.2:

movl
..B1.2:

movl


movl 
mov l

addl
 movl

addq 

B(%rdx), %eax 

%eax,A(%r dx) 

$4, %rdx addl


cmpq $4000000, %rdx	 addl 

jl ..B1.2	 addl

addl


..B1.3: 
addq 

B(%rdi), %eax 
4+B(%rdi), %edx 
8+B(% di)  %  8+B(%rdi), %ecx 
12+B(%rdi), %esi 

%eax,A(%r di) 
%edx, 4+A(%rdi) 
%ecx, 8+A(%rdi) 
%esi, 12+A(%rdi) 
$16, %rdi 

ret cmpq $4000000$4000000, % %rdrdii
jl ..B1.2 

..B1.3: 
ret 



Name Dependence #1: 

Anti-dependence 

Name dependence: when 2 instructions use same register 

or memory location, called a name, but no flow of data 

between the instructions associated with that name; 2 

versions of name dependence 

InstrJ writes operand before InstrI reads it 

subl rax,rbx 

addl rcx, rax 

Called an “anti-dependence” by compiler writers. 

This results from reuse of the name “rax” 

If anti-dependence caused a hazard in the pipeline, called a 

Write After Read (WAR) hazard 



Name Dependence #2: 

Output dependence 
InstrJ writes operand before InstrI writes it. 

subl rcx, rax

addl rbx, rax


Called an “output dependence” by compiler writers.

This also results from the reuse of name “rax”


If anti-dependence caused a hazard in the pipeline, called a 
Write After Write (WAW) hazard 

Instructions involved in a name dependence can execute 
simultaneously if name used in instructions is changed so 
instructions do not conflict 

Register renaming resolves name dependence for registers 

Renaming can be done either by compiler or by HW 



Control Hazards


Every instruction is control dependent on some set of 
branches, and, in general, these control dependencies must 
be preserved to preserve program order 

if p1 { 

S1; 

}; 

if p2 { 

S2; 

} 

S1 is control dependent on p1, and S2 is control 
dependent on p2 but not on p1. 

Control dependence need not be preserved 

willing to execute instructions that should not have been executed, 
thereby violating the control dependences, if can do so without 
affecting correctness of the program 

Speculative Execution 



Intel® Nehalem™ Microarchitecture

– Pipelining 

20-24 stage Pipeline
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Superscalar Execution


Cycles


Instruction type 1 2 3 4 5 6 7


Integer IF ID EX MEM 

Floating point IF ID EX MEM 

Integer 

Floating point 

Integer 

Floating point 

Integer 

Floating point 

IF ID EX MEM 

IF ID EX MEM 

IF ID EX MEM 

IF ID EX MEM 

IF ID EX MEM 

IF ID EX MEM 

WB 

WB 

WB 

WB 

WB 

WB 

WB 

WB 

2-issue super-scalar machine




ILP and Data Hazards 
Finds Instruction Level Parallelism 

Multiple instructions issued in parallel 

HW/SW must preserve program order: 

order instructions would execute in if executed sequentially 

as determined by original source program 

Dependences are a property of programs 

Importance of the data dependencies 

1) indicates the possibility of a hazard 

2) determines order in which results must be calculated 

3) sets an upper bound on how much parallelism can possibly be

exploited


Goal: exploit parallelism by preserving program order only 

where it affects the outcome of the program 



Multimedia Instructions


SIMD: 
In computing, SIMD (Single Instruction, Multiple Data) is 

a technique employed to achieve data level parallelism, as 
in a vector or array processor. 

Intel calls the latest version SSE 



Multimedia Instructions


Packed data type

Separate register file


Single Instruction on Multiple Data (SIMD)


© x86.org. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/fairuse. 

http://ocw.mit.edu/fairuse
http:x86.org


Multimedia Instructions
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Multimedia Instructions

int A[1000000];

int B[1000000];

test()

{


int i; 
for(i=0; i <1000000; i++) 

A[i] = A[i] + B[i]; 
} 

xorl %edx, %edx 

..B1.2: 

movl B(%rdx), %eax 

addl %eax,A(%rdx) 

addq $4, %rdx 

cmpq $4000000, %rdx 

jl ..B1.2 

..B1.3: 

ret 

xorl %eax, %eax 

..B1.2: 

movdqa A(%rax), %xmm0 

paddd B(%rax), %xmm0 

movdqa 16+A(%rax), %xmm1 

paddd 16+B(%rax), %xmm1 

movdqa 32+A(%rax), %xmm2 

paddd 32+B(%rax), %xmm2 

movdqa 48+A(%rax), %xmm3 

paddd 48+B(%rax), %xmm3 

movdqa 64+A(%rax), %xmm4 

paddd 64+B(%rax), %xmm4 

movdqa 80+A(%rax), %xmm5 

paddd 80+B(%rax), %xmm5  

movdqa 96+A(%rax), %xmm6   

paddd 96+B(%rax), %xmm6  

movdqa 112+A(%rax), %xmm7   

paddd 112+B(%rax), %xmm7 

movdqa %xmm0,A(%rax) 

movdqa %xmm1, 16+A(%rax) 

movdqa %xmm2, 32+A(%rax) 

movdqa %xmm3, 48+A(%rax) 

movdqa %xmm4, 64+A(%rax) 

movdqa %xmm5, 80+A(%rax) 

movdqa %xmm6, 96+A(%rax) 

movdqa %xmm7, 112+A(%rax) 

addq $128, %rax 

cmpq $4000000, %rax 

jl ..B1.2 

..B1.3: 

ret 



Intel® Nehalem™ Microarchitecture

– Superscalar Execution 

Can execute 6 Ops per cycle 

3 Memory Operations 
1 Load 

1 Sore address 

1 Store data 

3 Computational Operations 

Reprinted with permission of Intel Corporation. 
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Out of Order Execution 
Issue varying numbers of instructions per clock

dynamically scheduled 

• Extracting ILP by examining 100’s of instructions 

• Scheduling them in parallel as operands become available 

• Rename registers to eliminate anti and dependences 

• out-of-order execution 

• Speculative execution 

© Saman Amarasinghe 2008 



Speculation 
Different predictors 

 Branch Prediction 

 Value Prediction 

 Prefetching (memory access pattern prediction) 

Greater ILP: Overcome control dependence by hardware 

speculating on outcome of branches and executing 

program as if guesses were correct 

 Speculation fetch, issue, and execute instructions as if 

branch predictions were always correct 

 Dynamic scheduling only fetches and issues instructions

Essentially a data flow execution model: Operations 

execute as soon as their operands are available 



Intel® Nehalem™ Microarchitecture 
-Out of Order Execution 

20 to 24 stage Pipeline


6 micro-ops issued  at a 

time 

128 micro-ops waiting to 

be executed 

Reprinted with permission of Intel Corporation. 
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Branch Prediction and 

Speculative Execution


Cycles


Instruction # 1 2 3 4 5 6 7 8 9 10


Instruction i 
(branch) 

Instruction i+1 

Instruction i+2 

Instruction i+3 

Instruction i+4 

IF ID EX MEM 

IF ID EX MEM 

IF ID EX MEM 

IF ID EX MEM 

IF ID EX MEM 

WB 

WB 

WB 

WB 

WB 

Instruction i+5 IF ID EX MEM WB 

Branch target decided 



Branch Prediction and 

Speculative Execution


Cycles 

Instruction i 
(branch) 

stall 

stall 

stall 

stall 

IF ID EX 

Instruction i+1 

Instruction # 1 2 3 4 5 6 7 8 9 10 
Branch target decided 

MEM WB 

IF ID EX MEM WB 



Branch Prediction and 

Speculative Execution

Build a predictor to figure out which direction branch is going 

 Today we have complex predictors with 99+% accuracy 

 Even predict the address in indirect branches / returns 

Fetch and speculatively execute from the predicted address 

 No pipeline stalls 

When the branch is finally decided, the speculative execution is 

confirmed or squashed 



Intel® Core™ Microarchitecture – 
Branch Prediction 

Complex predictor 

Multiple predictors 

Use branch history 

Different algorithms 

Vote at the end 

Indirect address predictor 

Return address predictor 

Nehalem is even more 

complicated! 

Reprinted with permission of Intel Corporation. 
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Memory System


The Principle of Locality: 
 Program access a relatively small portion of the address space at any instant of time. 

Two Different Types of Locality: 
 Temporal Locality (Locality in Time): If an item is referenced, it will tend to be referenced 

again soon (e.g., loops, reuse) 

 Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close 
by tend to be referenced soon 
(e.g., straight-line code, array access) 

Last 30 years, HW  relied on locality for memory perf. 

P MEM$ 

8/28 CS252-Fall’07 29 



Levels of the Memory Hierarchy

Capacity

Access Time
 Staging

Cost
 Xfer Unit


CPU Registers Registers

100s Bytes


prog./compiler 300 – 500 ps (0.3-0.5 ns)
 Instr. Operands 1-8 bytes 

L1 and L2 Cache L1 Cache 
10s-100s K Bytes
 cache cntl 
~1 ns - ~10 ns
 Blocks 32-64 bytes 
$1000s/ GByte


cache cntl 

Main Memory 64-128 bytes 

G Bytes

80ns- 200ns

~ $100/ GByte


Disk 

Upper Level 

faster 

L2 Cache


Blocks


10s T Bytes, 10 ms Disk 
(10,000,000 ns) 
~ $1 / GByte user/operator 

Files Mbytes 

Memory 

Larger 
Tape 
infinite Tape Lower Level 
sec-min 
~$1 / GByte 

8/28 CS252-Fall’07 30 

OS 
Pages 4K-8K bytes 



Cache Issues 
Cold Miss 

 The first time the data is available 

 Prefetching may be able to reduce the cost 

Capacity Miss 

 The previous access has been evicted because too much data touched in between 

 “Working Set” too large 

 Reorganize the data access so reuse occurs before getting evicted. 

 Prefetch otherwise 

Conflict Miss 

 Multiple data items mapped to the same location. Evicted even before cache is full 

 Rearrange data and/or pad arrays 

True Sharing Miss 

 Thread in another processor wanted the data, it got moved to the other cache 

 Minimize sharing/locks 

False Sharing Miss 

 Other processor used different data in the same cache line. So the line got moved 

 Pad data and make sure structures such as locks don’t get into the same cache line 



Intel® Nehalem™ Microarchitecture – 
Memory Sub-system 

Intel 6 Core Processor 

Core Core Core Core Core Core 

L1 Data Cache 

Size Line Size Latency Associativty 

32 KB 64 bytes 4 ns 8-way 

L1 Instruction Cache 

L1 L1 L1 L1 
dat 

L1 L1 L1 L1 
dat inst dat 

L1 L1 
dat 

L1 L1 
dat 

Size Line Size Latency Associativty 
inst dat inst inst inst inst 

32 KB 64 bytes 4 ns 4-way 

L2 Cache 
L2 L2 L2 L2 L2 L2 Size Line Size Latency Associativty 

256 KB 64 bytes 10 ns 8-way 

L3 Cache 
L3 Size Line Size Latency Associativty 

12 MB 64 bytes 50 ns 16-way 

Main Memory 

Main Memory Size Line Size Latency Associativty 

64 bytes 75 ns 
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Intel, VTune, and the Intel logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States or other countries.

Performance Analyzer 

Helps you identify and characterize 

performance issues by: 

•	 Collecting performance data from the system running 

your application. 

•	 Organizing and displaying the data in a variety of 

interactive views, from system-wide down to source code 

or processor instruction perspective. 

•	 Identifying potential performance issues and suggesting 

improvements. 

• Example: Intel Vtune, gprof, oprofile, perf


Copyright © 2004 Intel Corporation
34 



Intel and the Intel logo are trademarks or registered trademarks of Intel 
Corporation or its subsidiaries in the United States or other countries.

Performance Tuning Concepts 

What Is a Hotspot? 

Where in an application or system there is a

significant amount of activity

Where = address in memory 


=> OS process 

=> OS thread 

=> executable file or module

=> user function (requires symbols)

=> line of source code (requires symbols with 


line numbers) or assembly instruction 

Significant = activity that occurs infrequently probably does 

not have much impact on system performance


Activity = time spent or other internal processor event 
•	 Examples of other events: Cache misses, branch mispredictions, floating-point 

instructions retired, partial register stalls, and so on. 

Copyright © 2004 Intel Corporation.
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tel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States or other countries

Two Ways to Track Location 

Problem: I need to know where you spend most of 
your time. 

Statistical Solution: I call you on your cellular phone 

every 30 minutes and ask you to report your location.

Then I plot the data as a histogram.


Instrumentation Solution: I install a special phone 

booth at the entrance of every site you plan to visit.As 

you enter or exit every site, you first go into the booth,

call the operator to get the exact time, and then call me 

and tell me where you are and when you got there.


3 
Copyright © 2004 Intel Corporation.



.
Intel and the Intel logo are trademarks or registered trademarks of Intel 
Corporation or its subsidiaries in the United States or other countries.

Sampling Collector 

Periodically interrupt the processor to 

obtain the execution context 

 Time-based sampling (TBS) is triggered by: 

•	 Operating system timer services. 

•	 Every n processor clockticks. 

 Event-based sampling (EBS) is triggered by 

processor event counter overflow.

•	 These events are processor-specific, like L2 cache misses, 

branch mispredictions, floating-point instructions retired, 

and so on. 

Copyright © 2004 Intel Corporation. 

37 



.
Intel and the Intel logo are trademarks or registered trademarks of Intel 
Corporation or its subsidiaries in the United States or other countries.

The Statistical Solution: Advantages 

No Installation Required 

 No need to install a phone everywhere you want a man 

in the field to make a report. 

Wide Coverage 

 Assuming all his territory has cellular coverage, you can 

track him wherever he goes. 

Low Overhead 

 Answering his cellular telephone once in a while, 

reporting his location, and returning to other tasks do 

not take much of his time. 

3 
Copyright © 2004 Intel Corporation.





Intel and the Intel logo are trademarks or registered trademarks of Intel 
Corporation or its subsidiaries in the United States or other countries.

The Statistical Solution: 
Disadvantages 

Approximate Precision: 

 A number of factors can influence exactly how long he takes to 

answer the phone. 

Limited Report: 

 Insufficient time to find out how he got to where he is or where he 

has been since you last called him. 

Statistical Significance: There are some 

places you might not locate him, if he does not 

go there often or he does not stay very long. 

Does that really matter? 

Copyright © 2004 Intel Corporation.
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subsidiaries in the United States or other countries.

The Instrumentation Solution: 
Advantages 

Perfect Accuracy 

 I know where you were immediately before and after 

your visit to each customer. 

 I can calculate how much time you spent at each 

customer site. 

 I know how many times you visited each customer site.


Copyright © 2004 Intel Corporation.
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States or other countries.

The Instrumentation Solution: 
Disadvantages 

Low Granularity 

 Too coarse; the site is the site. 

High Overhead 

 You spend valuable time going to phone booths, calling 

operators, and calling me. 

High Touch 

 I have to build all those phone booths, which expands the 

space in each site you visit. 

Copyright © 2004 Intel Corporation.
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Events 
Intel provide 100’s of types of events 

Can be very confusing (ex:“number of bogus branches”) 

Some useful event categories 

• Total instruction count and mix 

• Branch events 

• Load/store events 

• L1/L2 cache events 

• Prefetching events 

• TLB events 

• Multicore events 

Copyright © 2004 Intel Corporation.
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Corporation or its subsidiaries in the United States or other countries.

Use Event Ratios


In isolation, events may not tell you much. 

Event ratios are dynamically calculated values based on 
events that make up the formula. 
Cycles per instruction (CPI) consists of clockticks and instructions retired. 

There are a wide variety of predefined event ratios. 

Copyright © 2004 Intel Corporation.
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test div by 4 

for(j=0; j<MAXA; j++) {

if((j & 0x03) == 0)

A[j] = A[j]+1;

}

test incA[i] < maxa_half

for(j=0; j<MAXA; j++) {

if(incA[j] < maxa_half)

multiple passes over data A[j] = A[j]+1;

}
for(j=0; j<MAXA; j++)

A[j] = A[j]+1;
test rndA[i] < maxa_half

test j < maxa_half for(j=0; j<MAXA; j++) {

if(rndA[j] < maxa_half)
for(j=0; j<MAXA; j++) {

A[j] = A[j]+1;
if(j < maxa_half)

}
A[j] = A[j]+1;

}

#define MAXA 10000 

int maxa_half = MAXA/2; 

int32_t A[MAXA]; 

// [0, 1, 2, 3, 4, …] 

int32_t incA[MAXA]; 

// [ 0..MAXA-1 randomly] 

int32_t rndA[MAXA]; 

© Saman Amarasinghe 2008 



Assembly listings 
multiple passes over data test j < maxa_half 

for(j=0; j<MAXA; j++) for(j=0; j<MAXA; j++) {

A[j] [j] ; (j _ )


rax

[j] = A[j] +1; if(j < maxa_half)
A[j] = A[j]+1; 

} 

momovl vl $A$A,  % %eaxeax momovlvl maxamaxa_halfhalf(%rip)(%rip)  % %edxedx, 

movl $A+40000, %edx xorl %ecx, %ecx 
..B3.3: ..B3.2: 

incl (%rax) cmpl %edx, %ecx 
addq $4% jge B3 4 addq $4,  %rax jge ..
B3.4
cmpq %rdx, %rax ..B3.3:

jl ..B3.3 movslq %ecx, %rax


incl A(,%rax,4) 
..B3.4: 

incl %ecx 
cmpl $10000, %ecx 
jl ..B3.2 

© Saman Amarasinghe 2008 



cmpq rcx x

Assembly listings 
test div by 4 test incA[i] < maxa_half 

for(j=0; j<MAXA; j++) { for(j=0; j<MAXA; j++) { 
if((j ) ) ( [j] _ )((j & 0x03) == 0) if(incA[j] < maxa_half)

A[j] = A[j]+1; A[j] = A[j]+1; 
} } 

xorlxorl %%edxedx,  % %edxedx momovslqvslq maxamaxa half(%rip), %rdx _half(%rip)  %rdx
..B2.2: xorl %ecx, %ecx 

testb $3, %dl xorl %eax, %eax 
jne ..B2.4 ..B1.2: 

..B2B2 . 3:3: cmpq incAincA(( %  ,%rcx,8)8), %% rdrd x 
movslq %edx, %rax jle ..B1.4 
incl A(,%rax,4) ..B1.3: 

..B2.4: incl A(%rax) 
incl %edx ..B1.4: 
cmpl $10000, %edx addq $4, %rax 
jl ..B2.2 addq $1, %rcx 

cmpq $10000, %rcx 
jl ..B1.2 

© Saman Amarasinghe 2008 
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RE
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BR
_I

N
ST

ev
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ts

multi pass over 101 1920064000 4.80E+08 4.81E+08 +08

test j < maxa half 127 2880096000 2 40E+08test j < maxa half 127 2880096000 2.40E+08 9.57E+08

test div by 4 223 2636930000 1.20E+08 9.59E+08 +09

test incA[i] < maxa half 134 3120104000 7.20E+08 9.60E+08 +09

test rndA[i] <maxa_half 687 3123262000 7.22E+08 9.59E+08 +09

multi pass over 1.00 1.00 1.00 1.00 00

test j < maxa half 1.26 1.50 0.50 1.99 75

test div by 4 2.21 1.37 0.25 1.99 62

i A[i] h lf 1 33 1 63 1 50 2 00test incA[i] < maxa half 1.33 1.63 1.50 2.00 .

test rndA[i] <maxa_half 6.80 1.63 1.50 1.99 50

results�

 

 

 

m
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(m
s)

 
Ru

nt
im

 
lmulti pass over 1 00  1.00 

_test j < maxa_half 1.26 

t t  <test div by 4 _test div by 4 2 21  2.21 

test incA[i] < maxa_half 1.33 

test rndA[i] <maxa_half 6.80 
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results 

R
u

n
ti

m
e

 (
m

s)

IN
ST

_R
ET

IR
ED

.A
N

Y 

ev
en

ts

multi pass over 1.00 1.00

test j < maxa_half 1.26 1.50

test div by 4 2.21 1.37

test incA[i] < maxa_half 1.33 1.63

test rndA[i] <maxa_half 6.80 1.63

INST_RETIRED.ANY  Instructions retired. 

This event counts the number of instructions that retire execution. For instructions that consist 

of multiple micro-ops, this event counts the retirement of the last micro-op of the instruction. 

The counter continues counting during hardware interrupts, traps, and inside interrupt handlers. 
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results 

R
u

n
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s)
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.L
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A
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ev
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B
R

_I
N
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ev
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In
st

 R
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(A
N

Y 
- 

LO
A

D
 -

 B
R

)

multi pass over 1.00 1.00 1.00 1.00 1.00

test j < maxa_half 1.26 1.50 0.50 1.99 1.75

test div by 4 2.21 1.37 0.25 1.99 1.62

test incA[i] < maxa_half 1.33 1.63 1.50 2.00 1.50

test rndA[i] <maxa_half 6.80 1.63 1.50 1.99 1.50

INST_RETIRED.LOADS Instructions retired, contain a load 

INST_RETIRED.STORE Instructions retired, contain a store 

BR_INST_RETIRED.ANY Number of branch instructions retired 
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results 

R
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C
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er
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R
et

ir
ed

 -
 C

P
I

C
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I*
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In
st
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s

multi pass over 1.00 1.00 1.00 1.00

test j < maxa_half 1.26 1.50 0.84 1.25

test div by 4 2.21 1.37 1.60 2.19

test incA[i] < maxa_half 1.33 1.63 0.82 1.33

test rndA[i] <maxa_half 6.80 1.63 4.17 6.78

CPI CPU_CLK_UNHALTED.CORE / INST_RETIRED.ANY 

High CPI indicates that instructions require more cycles to execute than they should. In 

this case there may be opportunities to modify your code to improve the efficiency with 

which instructions are executed within the processor. CPI can get as low as 0.25 cycles 

per instructions. © Saman Amarasinghe 2008 
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multi pass over 1.00 1.00

test j < maxa_half 1.26 2.50

test div by 4 2.21 400.00

test incA[i] < maxa_half 1.33 2.00

test rndA[i] <maxa_half 6.80 2134.00

BR_INST_RETIRED.MISPRED 
This event counts the number of retired branch instructions that were mispredicted by 

the processor.A branch misprediction occurs when the processor predicts that the 

branch would be taken, but it is not, or vice-versa. …. 
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multi pass over 1.00 1.00 1.00 1.00 1.00

test j < maxa_half 1.26 1.50 2.50 4.97 1.50

test div by 4 2.21 1.37 400.00 797.51 2.21

test incA[i] < maxa_half 1.33 1.63 2.00 3.99 1.63

test rndA[i] <maxa_half 6.80 1.63 2134.00 4254.69 6.10

Assume the cost of a mispredicted branch is 21 “instructions wasted” 

 Number 21 got the closest answer 
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Blocked access

for(j=0; j<MAXB; j += MAXA)

for(i=0; i<DRV; i++)

for(k=0; k<MAXA; k++)

B[j+k] = B[j+k]+1;

multiple passes over array stride access

for(i=0; i<DRV; i++) for(i=0; i<DRV; i++)

for(j=0; j<MAXB; j++) for(k=0; k<MAXA; k++)

B[j] = B[j]+1; for(j=0; j<MAXB; j +=

B[j+k] = B[j+k]+1;

Accessing Memory

inner accumulate 

for(j=0; j<MAXB; j++)


for(i=0; i<DRV; i++)


B[j] = B[j]+1;


MAXA)
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Inner Accumulate 162 2.3E+09 0.662 1.51E+09 2.40E+08 0.3% 1.00E+05 0.01%

Multiple Passes 249 1.9E+09 1.196 2.30E+09 4.80E+08 1.6% 5.00E+05 0.28%

Blocked Access 140 1.9E+09 0.676 1.30E+09 4.80E+08 1.6% 2.00E+05 0.10%

Strided Access 1420 1.9E+09 6.893 1.32E+10 4.80E+08 50.1% 2.02E+07 2.20%

Inner Accumulate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Multiple Passes 1.54 0.84 1.81 1.52 2.00 5.33 5.00 28.00

Blocked Access 0.86 0.84 1.02 0.86 2.00 5.33 2.00 10.00

Strided Access 8.77 0.84 10.41 8.75 2.00 167.00 202.00 220.00
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Inner Accumulate 1.0 1.0 1.0 1.0 1 1 1 1

Multiple Passes 1.5 0.8 1.8 1.5 2 5 5 28

Blocked Access 0.9 0.8 1.0 0.9 2 5 2 10

Strided Access 8.8 0.8 10.4 8.8 2 167 202 220

Results
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Pointer chase

struct list  * curr;

for(i=0; i<DRV; i++) {

curr = start;

for(j=0; j<MAXB; j++) {

curri = curri + 1;

curr = currnext;

}

}

Indirect stride access

for(i=0; i<DRV; i++)

for(j=0; j<MAXB; j += MAXA)

for(k=0; k<MAXA; k++)

B[incA[k]+j] = B[incA[k]+j]+1;

Indirect random access 

for(i=0; i<DRV; i++) 

for(j=0; j<MAXB; j += MAXA) 

for(k=0; k<MAXA; k++) 

B[rndA[k]*MAXB/MAXA+k] 
= B[rndA[k]*MAXB/MAXA+k]+1; 
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Inner Accumulate 162 2.3E+09 0.662 1.51E+09 2.40E+08 0.3% 1.00E+05 0.01%
indirect random access 1320 6.2E+09 1.998 1.25E+10 9.60E+08 16.0% 0.00E+00 1.80%
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 1 ESR R L L A R %indirect strided access 250 2.4E+09 0.988 2.37E+09 9.60E+08 3.8% 6.00E+05 0.25%
pointer chase 2015 1.9E+09 9.862 1.89E+10 9.60E+08 12.5% 4.30E+06 3.20%
pointer chase ‐‐ post randomize 23587 2E+09 115.46 2.25E+11 9.62E+08 58.1% 7.75E+08 39.27%

Inner Accumulate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
i di t d 8 15 2 74 3 02 8 26 4 00 53 33 0 00 180 00

R I e C R C I e L R L A R %

Inner Accumulate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
indirect random access 8.1 2.7 3.0 8.3 4.0 53.3 0.0 180.0

1 5 1 1 1 5 1 6 4 0 12 7 6 0 25 0indirect random access 8.15 2.74 3.02 8.26 4.00 53.33 0.00 180.00
indirect strided access 1.54 1.05 1.49 1.57 4.00 12.67 6.00 25.00
pointer chase 12.44 0.84 14.90 12.55 4.00 41.67 43.00 320.00
pointer chase ‐‐ post randomize 145.60 0.86 174.41 149.29 4.01 193.67 7752.00 3927.00

indirect strided access 1.5 1.1 1.5 1.6 4.0 12.7 6.0 25.0
pointer chase 12.4 0.8 14.9 12.5 4.0 41.7 43.0 320.0
pointer chase ‐‐ post randomize 146 0.9 174 149 4.0 194 7752 3927

© Saman Amarasinghe 2008



Compiler Heroics 
What else can be done 

Deeper optimizations (see lecture 2) 

Vectorization for SSE 

Loop interchange 

O1 O2 O3 

multi pass over 101.78 32.25 3.16 13.09 7.78 

test j < maxa_half 127.28 34.78 3.66 37.10 3.43 

test div by 3 223.43 37.24 6.00 20.53 10.88 

test incA[i] < maxa_half 134.50 134.11 1.00 152.27 0.88 

test rndA[i] <maxa_half 687.44 658.72 1.04 154.06 4.46 

Inner Accumulate 158.59 64.02 2.48 64.03 2.48 

Multiple Passes 242.08 233.43 1.04 64.20 3.77 

Blocked Access 136.79 82.27 1.66 82.00 1.67 

Strided Access 1392.56 1400.19 0.99 81.96 16.99 

indirect random access 1315.34 1308.75 1.01 1350.17 0.97 

indirect strided access 248.37 250.55 0.99 250.48 0.99 

pointer chase 2005.12 2002.99 1.00 2007.83 1.00 

pointer chase -- post randomize 23581.20 23603.33 1.00 23559.83 1.00 
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