Trends in computer systems

(slides from several sources)
Frans Kaashoek
6.033 Spring 2012

Ilii
MASSACHUSETTS INSTITUTE OF

Outline

- All systems are similar
- But computer systems are different
- Unbounded composability
- Hardware and software
- Easy to build too complex systems
- dtech / dt large for computer systems
- dcost / dt drives qualitative change

HW composibility via static discipline

Figure 1-3: How gain and non-linearity of a digital component restore levels. The range of accepted inputs is much wider than the range of generated outputs.

- Regenerate $0 / 1$ at every gate
- Be tolerant of inputs and strict on outputs

Static discipline

- Noise does not accumulate
- Unlike analog circuits
- Can chain together arbitrary \#s of gates
- Other limits to size
- Size, cost, reliability, power
- Rapid progress over many decades
- Integrated cuircits a vast business
- Lots of money for R\&D -> rapid improvement
- Moore observed pattern for early ICs

Moore's law sets a clear goal

- Tremendous investment in technology
- Technology improvement is proportional to technology
- Example: processors
- Better processors \Rightarrow
- Better layout tools \Rightarrow
- Better processors
- Mathematically: d (technology)/dt \approx technology > technology $\sim \mathrm{e}^{t}$

CPU performance

Trends in CPU performance growth. from microprocessors to supercomputers

DRAM density

UNIVAC (Universal Automatic Computer)

Cray 1: supercomputer

- 1976
- 80 sold
- 80 MHz
- 130 KWatt
- 8 Mbyte SRAM
- 230,000 gates
- \$5 million

Software

- No h/w limits to composition
- Big CPU, DRAM, disk, networks, CHEAP
- Limiting factor is designers' understanding
- Tools have improved over the years
- compilers, type checkers
- high-level languages
- language support for modularity
- many ready-made libraries (modules)
- version control / build / bug tracking systems
- Programmers are keeping up with hardware!

Software keeps up with hardware

Storm clouds on horizon hidden

- Complexity
- Society and the law
- Scaling problems

Heat is a problem

Recent Intel CPU Clock Rates

The Future: will it be painful?

AMD Barcelona Quad-core chip

What went right?

- Unbounded composibility
- General-purpose computers
- Only need to make one thing fast
- Separate arch from implementation
- S/W can exploit new H/W
- Cumulative R\&D investment over years
\rightarrow What you can build limited by your imagination
$>$ Seldom design the same system twice
$>$ Every system is a new design problem

